WorldWideScience

Sample records for nucleotide-level mammalian ancestor

  1. A facile and sensitive method for quantification of cyclic nucleotide monophosphates in mammalian organs: basal levels of eight cNMPs and identification of 2',3'-cIMP.

    Science.gov (United States)

    Jia, Xin; Fontaine, Benjamin M; Strobel, Fred; Weinert, Emily E

    2014-12-12

    A sensitive, versatile and economical method to extract and quantify cyclic nucleotide monophosphates (cNMPs) using LC-MS/MS, including both 3',5'-cNMPs and 2',3'-cNMPs, in mammalian tissues and cellular systems has been developed. Problems, such as matrix effects from complex biological samples, are addressed and have been optimized. This protocol allows for comparison of multiple cNMPs in the same system and was used to examine the relationship between tissue levels of cNMPs in a panel of rat organs. In addition, the study reports the first identification and quantification of 2',3'-cIMP. The developed method will allow for quantification of cNMPs levels in cells and tissues with varying disease states, which will provide insight into the role(s) and interplay of cNMP signalling pathways.

  2. A Facile and Sensitive Method for Quantification of Cyclic Nucleotide Monophosphates in Mammalian Organs: Basal Levels of Eight cNMPs and Identification of 2',3'-cIMP

    Directory of Open Access Journals (Sweden)

    Xin Jia

    2014-12-01

    Full Text Available A sensitive, versatile and economical method to extract and quantify cyclic nucleotide monophosphates (cNMPs using LC-MS/MS, including both 3',5'-cNMPs and 2',3'-cNMPs, in mammalian tissues and cellular systems has been developed. Problems, such as matrix effects from complex biological samples, are addressed and have been optimized. This protocol allows for comparison of multiple cNMPs in the same system and was used to examine the relationship between tissue levels of cNMPs in a panel of rat organs. In addition, the study reports the first identification and quantification of 2',3'-cIMP. The developed method will allow for quantification of cNMPs levels in cells and tissues with varying disease states, which will provide insight into the role(s and interplay of cNMP signalling pathways.

  3. Extensive intron gain in the ancestor of placental mammals

    Science.gov (United States)

    2011-01-01

    Background Genome-wide studies of intron dynamics in mammalian orthologous genes have found convincing evidence for loss of introns but very little for intron turnover. Similarly, large-scale analysis of intron dynamics in a few vertebrate genomes has identified only intron losses and no gains, indicating that intron gain is an extremely rare event in vertebrate evolution. These studies suggest that the intron-rich genomes of vertebrates do not allow intron gain. The aim of this study was to search for evidence of de novo intron gain in domesticated genes from an analysis of their exon/intron structures. Results A phylogenomic approach has been used to analyse all domesticated genes in mammals and chordates that originated from the coding parts of transposable elements. Gain of introns in domesticated genes has been reconstructed on well established mammalian, vertebrate and chordate phylogenies, and examined as to where and when the gain events occurred. The locations, sizes and amounts of de novo introns gained in the domesticated genes during the evolution of mammals and chordates has been analyzed. A significant amount of intron gain was found only in domesticated genes of placental mammals, where more than 70 cases were identified. De novo gained introns show clear positional bias, since they are distributed mainly in 5' UTR and coding regions, while 3' UTR introns are very rare. In the coding regions of some domesticated genes up to 8 de novo gained introns have been found. Intron densities in Eutheria-specific domesticated genes and in older domesticated genes that originated early in vertebrates are lower than those for normal mammalian and vertebrate genes. Surprisingly, the majority of intron gains have occurred in the ancestor of placentals. Conclusions This study provides the first evidence for numerous intron gains in the ancestor of placental mammals and demonstrates that adequate taxon sampling is crucial for reconstructing intron evolution. The

  4. Next-generation mammalian genetics toward organism-level systems biology.

    Science.gov (United States)

    Susaki, Etsuo A; Ukai, Hideki; Ueda, Hiroki R

    2017-01-01

    Organism-level systems biology in mammals aims to identify, analyze, control, and design molecular and cellular networks executing various biological functions in mammals. In particular, system-level identification and analysis of molecular and cellular networks can be accelerated by next-generation mammalian genetics. Mammalian genetics without crossing, where all production and phenotyping studies of genome-edited animals are completed within a single generation drastically reduce the time, space, and effort of conducting the systems research. Next-generation mammalian genetics is based on recent technological advancements in genome editing and developmental engineering. The process begins with introduction of double-strand breaks into genomic DNA by using site-specific endonucleases, which results in highly efficient genome editing in mammalian zygotes or embryonic stem cells. By using nuclease-mediated genome editing in zygotes, or ~100% embryonic stem cell-derived mouse technology, whole-body knock-out and knock-in mice can be produced within a single generation. These emerging technologies allow us to produce multiple knock-out or knock-in strains in high-throughput manner. In this review, we discuss the basic concepts and related technologies as well as current challenges and future opportunities for next-generation mammalian genetics in organism-level systems biology.

  5. Possible involvement of SINEs in mammalian-specific brain formation.

    Science.gov (United States)

    Sasaki, Takeshi; Nishihara, Hidenori; Hirakawa, Mika; Fujimura, Koji; Tanaka, Mikiko; Kokubo, Nobuhiro; Kimura-Yoshida, Chiharu; Matsuo, Isao; Sumiyama, Kenta; Saitou, Naruya; Shimogori, Tomomi; Okada, Norihiro

    2008-03-18

    Retroposons, such as short interspersed elements (SINEs) and long interspersed elements (LINEs), are the major constituents of higher vertebrate genomes. Although there are many examples of retroposons' acquiring function, none has been implicated in the morphological innovations specific to a certain taxonomic group. We previously characterized a SINE family, AmnSINE1, members of which constitute a part of conserved noncoding elements (CNEs) in mammalian genomes. We proposed that this family acquired genomic functionality or was exapted after retropositioning in a mammalian ancestor. Here we identified 53 new AmnSINE1 loci and refined 124 total loci, two of which were further analyzed. Using a mouse enhancer assay, we demonstrate that one SINE locus, AS071, 178 kbp from the gene FGF8 (fibroblast growth factor 8), is an enhancer that recapitulates FGF8 expression in two regions of the developing forebrain, namely the diencephalon and the hypothalamus. Our gain-of-function analysis revealed that FGF8 expression in the diencephalon controls patterning of thalamic nuclei, which act as a relay center of the neocortex, suggesting a role for FGF8 in mammalian-specific forebrain patterning. Furthermore, we demonstrated that the locus, AS021, 392 kbp from the gene SATB2, controls gene expression in the lateral telencephalon, which is thought to be a signaling center during development. These results suggest important roles for SINEs in the development of the mammalian neuronal network, a part of which was initiated with the exaptation of AmnSINE1 in a common mammalian ancestor.

  6. Still under the ancestors' shadow? Ancestor worship and family formation in contemporary China

    Directory of Open Access Journals (Sweden)

    Anning Hu

    2018-01-01

    Full Text Available Background: Ancestor worship in China used to be an indispensable component of marriage and family life because it fostered an orientation toward perpetuating the family line. However, whether or not ancestor worship still matters in contemporary China is an open question. Objective: This article presents a comprehensive study of the association between ancestor worship practices and 1 the timing of transition to first marriage, 2 the pattern of childbearing, and 3 the orientation toward son preference. Methods: Drawing on the adult sample from the Chinese Family Panel Studies 2010, several multivariate models (Cox proportional hazard model, probit regression model, negative binomial regression models, and ordered probit model were fitted, corresponding to different types of outcome. Results: All else being equal, involvement in ancestor worship practices is correlated with 1 an early transition to marriage, 2 a larger number of children, 3 a higher probability of having at least one son, and 4 a larger number of sons. Conclusions: The relevance of the kinship tradition to family formation persists in contemporary China and has not faded away. Contribution: By highlighting the demographic implications of ancestor worship, this study illustrates the ongoing connection between culture and demography.

  7. Insight into pattern of codon biasness and nucleotide base usage in serotonin receptor gene family from different mammalian species.

    Science.gov (United States)

    Dass, J Febin Prabhu; Sudandiradoss, C

    2012-07-15

    5-HT (5-Hydroxy-tryptamine) or serotonin receptors are found both in central and peripheral nervous system as well as in non-neuronal tissues. In the animal and human nervous system, serotonin produces various functional effects through a variety of membrane bound receptors. In this study, we focus on 5-HT receptor family from different mammals and examined the factors that account for codon and nucleotide usage variation. A total of 110 homologous coding sequences from 11 different mammalian species were analyzed using relative synonymous codon usage (RSCU), correspondence analysis (COA) and hierarchical cluster analysis together with nucleotide base usage frequency of chemically similar amino acid codons. The mean effective number of codon (ENc) value of 37.06 for 5-HT(6) shows very high codon bias within the family and may be due to high selective translational efficiency. The COA and Spearman's rank correlation reveals that the nucleotide compositional mutation bias as the major factors influencing the codon usage in serotonin receptor genes. The hierarchical cluster analysis suggests that gene function is another dominant factor that affects the codon usage bias, while species is a minor factor. Nucleotide base usage was reported using Goldman, Engelman, Stietz (GES) scale reveals the presence of high uracil (>45%) content at functionally important hydrophobic regions. Our in silico approach will certainly help for further investigations on critical inference on evolution, structure, function and gene expression aspects of 5-HT receptors family which are potential antipsychotic drug targets. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. A mammalianized synthetic nitroreductase gene for high-level expression

    International Nuclear Information System (INIS)

    Grohmann, Maik; Paulmann, Nils; Fleischhauer, Sebastian; Vowinckel, Jakob; Priller, Josef; Walther, Diego J

    2009-01-01

    The nitroreductase/5-(azaridin-1-yl)-2,4-dinitrobenzamide (NTR/CB1954) enzyme/prodrug system is considered as a promising candidate for anti-cancer strategies by gene-directed enzyme prodrug therapy (GDEPT) and has recently entered clinical trials. It requires the genetic modification of tumor cells to express the E. coli enzyme nitroreductase that bioactivates the prodrug CB1954 to a powerful cytotoxin. This metabolite causes apoptotic cell death by DNA interstrand crosslinking. Enhancing the enzymatic NTR activity for CB1954 should improve the therapeutical potential of this enzyme-prodrug combination in cancer gene therapy. We performed de novo synthesis of the bacterial nitroreductase gene adapting codon usage to mammalian preferences. The synthetic gene was investigated for its expression efficacy and ability to sensitize mammalian cells to CB1954 using western blotting analysis and cytotoxicity assays. In our study, we detected cytoplasmic protein aggregates by expressing GFP-tagged NTR in COS-7 cells, suggesting an impaired translation by divergent codon usage between prokaryotes and eukaryotes. Therefore, we generated a synthetic variant of the nitroreductase gene, called ntro, adapted for high-level expression in mammalian cells. A total of 144 silent base substitutions were made within the bacterial ntr gene to change its codon usage to mammalian preferences. The codon-optimized ntro either tagged to gfp or c-myc showed higher expression levels in mammalian cell lines. Furthermore, the ntro rendered several cell lines ten times more sensitive to the prodrug CB1954 and also resulted in an improved bystander effect. Our results show that codon optimization overcomes expression limitations of the bacterial ntr gene in mammalian cells, thereby improving the NTR/CB1954 system at translational level for cancer gene therapy in humans

  9. Measurement of Heme Synthesis Levels in Mammalian Cells.

    Science.gov (United States)

    Hooda, Jagmohan; Alam, Maksudul; Zhang, Li

    2015-07-09

    Heme serves as the prosthetic group for a wide variety of proteins known as hemoproteins, such as hemoglobin, myoglobin and cytochromes. It is involved in various molecular and cellular processes such as gene transcription, translation, cell differentiation and cell proliferation. The biosynthesis levels of heme vary across different tissues and cell types and is altered in diseased conditions such as anemia, neuropathy and cancer. This technique uses [4-(14)C] 5-aminolevulinic acid ([(14)C] 5-ALA), one of the early precursors in the heme biosynthesis pathway to measure the levels of heme synthesis in mammalian cells. This assay involves incubation of cells with [(14)C] 5-ALA followed by extraction of heme and measurement of the radioactivity incorporated into heme. This procedure is accurate and quick. This method measures the relative levels of heme biosynthesis rather than the total heme content. To demonstrate the use of this technique the levels of heme biosynthesis were measured in several mammalian cell lines.

  10. Mosaic evolution of the mammalian auditory periphery.

    Science.gov (United States)

    Manley, Geoffrey A

    2013-01-01

    The classical mammalian auditory periphery, i.e., the type of middle ear and coiled cochlea seen in modern therian mammals, did not arise as one unit and did not arise in all mammals. It is also not the only kind of auditory periphery seen in modern mammals. This short review discusses the fact that the constituents of modern mammalian auditory peripheries arose at different times over an extremely long period of evolution (230 million years; Ma). It also attempts to answer questions as to the selective pressures that led to three-ossicle middle ears and the coiled cochlea. Mammalian middle ears arose de novo, without an intermediate, single-ossicle stage. This event was the result of changes in eating habits of ancestral animals, habits that were unrelated to hearing. The coiled cochlea arose only after 60 Ma of mammalian evolution, driven at least partly by a change in cochlear bone structure that improved impedance matching with the middle ear of that time. This change only occurred in the ancestors of therian mammals and not in other mammalian lineages. There is no single constellation of structural features of the auditory periphery that characterizes all mammals and not even all modern mammals.

  11. Nucleotide sequence preservation of human mitochondrial DNA

    International Nuclear Information System (INIS)

    Monnat, R.J. Jr.; Loeb, L.A.

    1985-01-01

    Recombinant DNA techniques have been used to quantitate the amount of nucleotide sequence divergence in the mitochondrial DNA population of individual normal humans. Mitochondrial DNA was isolated from the peripheral blood lymphocytes of five normal humans and cloned in M13 mp11; 49 kilobases of nucleotide sequence information was obtained from 248 independently isolated clones from the five normal donors. Both between- and within-individual differences were identified. Between-individual differences were identified in approximately = to 1/200 nucleotides. In contrast, only one within-individual difference was identified in 49 kilobases of nucleotide sequence information. This high degree of mitochondrial nucleotide sequence homogeneity in human somatic cells is in marked contrast to the rapid evolutionary divergence of human mitochondrial DNA and suggests the existence of mechanisms for the concerted preservation of mammalian mitochondrial DNA sequences in single organisms

  12. A proposal of the proteome before the last universal common ancestor (LUCA)

    Science.gov (United States)

    de Farias, Sávio Torres; Rêgo, Thais Gaudêncio; José, Marco V.

    2016-01-01

    The search for understanding the biological nature of the last universal common ancestor (LUCA) has been a theoretical challenge and has sparked intense debate in the scientific community. We reconstructed the ancestral sequences of tRNAs in order to test the hypothesis that these molecules originated the first genes. The results showed that the proteome before LUCA may have been composed of basal energy metabolism, namely, compounds with three carbons in the glycolytic pathway, which operated as a distribution centre of substrates for the development of metabolic pathways of nucleotides, lipids and amino acids. Thus, we present a proposal for metabolism in organisms before LUCA that was the initial core for the assembly of further metabolic pathways.

  13. Mammalian development in space

    Science.gov (United States)

    Ronca, April E.

    2003-01-01

    Life on Earth, and thus the reproductive and ontogenetic processes of all extant species and their ancestors, evolved under the constant influence of the Earth's l g gravitational field. These considerations raise important questions about the ability of mammals to reproduce and develop in space. In this chapter, I review the current state of our knowledge of spaceflight effects on developing mammals. Recent studies are revealing the first insights into how the space environment affects critical phases of mammalian reproduction and development, viz., those events surrounding fertilization, embryogenesis, pregnancy, birth, postnatal maturation and parental care. This review emphasizes fetal and early postnatal life, the developmental epochs for which the greatest amounts of mammalian spaceflight data have been amassed. The maternal-offspring system, the coordinated aggregate of mother and young comprising mammalian development, is of primary importance during these early, formative developmental phases. The existing research supports the view that biologically meaningful interactions between mothers and offspring are changed in the weightlessness of space. These changes may, in turn, cloud interpretations of spaceflight effects on developing offspring. Whereas studies of mid-pregnant rats in space have been extraordinarily successful, studies of young rat litters launched at 9 days of postnatal age or earlier, have been encumbered with problems related to the design of in-flight caging and compromised maternal-offspring interactions. Possibilities for mammalian birth in space, an event that has not yet transpired, are considered. In the aggregate, the results indicate a strong need for new studies of mammalian reproduction and development in space. Habitat development and systematic ground-based testing are important prerequisites to future research with young postnatal rodents in space. Together, the findings support the view that the environment within which young

  14. A promoter-level mammalian expression atlas

    KAUST Repository

    Forest, Alistair R R

    2014-03-26

    Regulated transcription controls the diversity, developmental pathways and spatial organization of the hundreds of cell types that make up a mammal. Using single-molecule cDNA sequencing, we mapped transcription start sites (TSSs) and their usage in human and mouse primary cells, cell lines and tissues to produce a comprehensive overview of mammalian gene expression across the human body. We find that few genes are truly ‘housekeeping’, whereas many mammalian promoters are composite entities composed of several closely separated TSSs, with independent cell-type-specific expression profiles. TSSs specific to different cell types evolve at different rates, whereas promoters of broadly expressed genes are the most conserved. Promoter-based expression analysis reveals key transcription factors defining cell states and links them to binding-site motifs. The functions of identified novel transcripts can be predicted by coexpression and sample ontology enrichment analyses. The functional annotation of the mammalian genome 5 (FANTOM5) project provides comprehensive expression profiles and functional annotation of mammalian cell-type-specific transcriptomes with wide applications in biomedical research.

  15. A promoter-level mammalian expression atlas

    KAUST Repository

    Forest, Alistair R R; Kawaji, Hideya; Rehli, Michael; Baillie, John Kenneth; De Hoon, Michiel Jl L; Haberle, Vanja; Lassmann, Timo; Kulakovskiy, Ivan V.; Lizio, Marina; Itoh, Masayoshi; Andersson, Robin; Iida, Kei; Ikawa, Tomokatsu; Jankovic, Boris R.; Jia, Hui; Joshi, Anagha Madhusudan; Jurman, Giuseppe; Kaczkowski, Bogumił; Kai, Chieko; Kaida, Kaoru; Kaiho, Ai; Mungall, Christopher J.; Kajiyama, Kazuhiro; Kanamori-Katayama, Mutsumi; Kasianov, Artem S.; Kasukawa, Takeya; Katayama, Shintaro; Kato, Sachi; Kawaguchi, Shuji; Kawamoto, Hiroshi; Kawamura, Yuki I.; Kawashima, Tsugumi; Meehan, Terrence F.; Kempfle, Judith S.; Kenna, Tony J.; Kere, Juha; Khachigian, Levon M.; Kitamura, Toshio; Klinken, Svend Peter; Knox, Alan; Kojima, Miki; Kojima, Soichi; Kondo, Naoto; Schmeier, Sebastian; Koseki, Haruhiko; Koyasu, Shigeo; Krampitz, Sarah; Kubosaki, Atsutaka; Kwon, Andrew T.; Laros, Jeroen F J; Lee, Weonju; Lennartsson, Andreas; Li, Kang; Lilje, Berit; Bertin, Nicolas; Lipovich, Leonard; MacKay-Sim, Alan; Manabe, Riichiroh; Mar, Jessica; Marchand, Benoî t; Mathelier, Anthony; Mejhert, Niklas; Meynert, Alison M.; Mizuno, Yosuke; De Morais, David A Lima; Jø rgensen, Mette Christine; Morikawa, Hiromasa; Morimoto, Mitsuru; Moro, Kazuyo; Motakis, Efthymios; Motohashi, Hozumi; Mummery, Christine L.; Murata, Mitsuyoshi; Nagao-Sato, Sayaka; Nakachi, Yutaka; Nakahara, Fumio; Dimont, Emmanuel; Nakamura, Toshiyuki; Nakamura, Yukio; Nakazato, Kenichi; Van Nimwegen, Erik; Ninomiya, Noriko; Nishiyori, Hiromi; Noma, Shohei; Nozaki, Tadasuke; Ogishima, Soichi; Ohkura, Naganari; Arner, Erik; Ohmiya, Hiroko; Ohno, Hiroshi; Ohshima, Mitsuhiro; Okada-Hatakeyama, Mariko; Okazaki, Yasushi; Orlando, Valerio; Ovchinnikov, Dmitry A.; Pain, Arnab; Passier, Robert C J J; Patrikakis, Margaret; Schmidl, Christian; Persson, Helena A.; Piazza, Silvano; Prendergast, James G D; Rackham, Owen J L; Ramilowski, Jordan A.; Rashid, Mamoon; Ravasi, Timothy; Rizzu, Patrizia; Roncador, Marco; Roy, Sugata; Schaefer, Ulf; Rye, Morten Beck; Saijyo, Eri; Sajantila, Antti; Saka, Akiko; Sakaguchi, Shimon; Sakai, Mizuho; Sato, Hiroki; Satoh, Hironori; Savvi, Suzana; Saxena, Alka; Medvedeva, Yulia; Schneider, Claudio H.; Schultes, Erik A.; Schulze-Tanzil, Gundula G.; Schwegmann, Anita; Sengstag, Thierry; Sheng, Guojun; Shimoji, Hisashi; Shimoni, Yishai; Shin, Jay W.; Simon, Chris M.; Plessy, Charles; Sugiyama, Daisuke; Sugiyama, Takaaki; Suzuki, Masanori; Suzuki, Naoko; Swoboda, Rolf K.; 't Hoen, Peter Ac Chr; Tagami, Michihira; Tagami, Naokotakahashi; Takai, Jun; Tanaka, Hiroshi; Vitezic, Morana; Tatsukawa, Hideki; Tatum, Zuotian; Thompson, Mark; Toyoda, Hiroo; Toyoda, Tetsuro; Valen, Eivind; Van De Wetering, Marc L.; Van Den Berg, Linda M.; Verardo, Roberto; Vijayan, Dipti; Severin, Jessica M.; Vorontsov, Ilya E.; Wasserman, Wyeth W.; Watanabe, Shoko; Wells, Christine A.; Winteringham, Louise Natalie; Wolvetang, Ernst Jurgen; Wood, Emily J.; Yamaguchi, Yoko; Yamamoto, Masayuki; Yoneda, Misako; Semple, Colin Am M; Yonekura, Yohei; Yoshida, Shigehiro; Zabierowski, Susan E.; Zhang, Peter; Zhao, Xiaobei; Zucchelli, Silvia; Summers, Kim M.; Suzuki, Harukazu; Daub, Carsten Olivier; Kawai, Jun; Ishizu, Yuri; Heutink, Peter; Hide, Winston; Freeman, Tom C.; Lenhard, Boris; Bajic, Vladimir B.; Taylor, Martin S.; Makeev, Vsevolod J.; Sandelin, Albin; Hume, David A.; Carninci, Piero; Young, Robert S.; Hayashizaki, Yoshihide Yoshihide; Francescatto, Margherita; Altschuler, Intikhab Alam; Albanese, Davide; Altschule, Gabriel M.; Arakawa, Takahiro; Archer, John A.C.; Arner, Peter; Babina, Magda; Rennie, Sarah; Balwierz, Piotr J.; Beckhouse, Anthony G.; Pradhan-Bhatt, Swati; Blake, Judith A.; Blumenthal, Antje; Bodega, Beatrice; Bonetti, Alessandro; Briggs, James A.; Brombacher, Frank; Burroughs, Alexander Maxwell; Califano, Andrea C.; Cannistraci, Carlo; Carbajo, Daniel; Chen, Yun; Chierici, Marco; Ciani, Yari; Clevers, Hans C.; Dalla, Emiliano; Davis, Carrie Anne; Detmar, Michael J.; Diehl, Alexander D.; Dohi, Taeko; Drablø s, Finn; Edge, Albert SB B; Edinger, Matthias G.; Ekwall, Karl; Endoh, Mitsuhiro; Enomoto, Hideki; Fagiolini, Michela; Fairbairn, Lynsey R.; Fang, Hai; Farach-Carson, Mary Cindy; Faulkner, Geoffrey J.; Favorov, Alexander V.; Fisher, Malcolm E.; Frith, Martin C.; Fujita, Rie; Fukuda, Shiro; Furlanello, Cesare; Furuno, Masaaki; Furusawa, Junichi; Geijtenbeek, Teunis Bh H; Gibson, Andrew P.; Gingeras, Thomas R.; Goldowitz, Dan; Gough, Julian; Guhl, Sven; Guler, Reto; Gustincich, Stefano; Ha, Thomas; Hamaguchi, Masahide; Hara, Mitsuko; Harbers, Matthias; Harshbarger, Jayson; Hasegawa, Akira; Hasegawa, Yuki; Hashimoto, Takehiro; Herlyn, Meenhard F.; Hitchens, Kelly J.; Sui, Shannan J Ho; Hofmann, Oliver M.; Hoof, Ilka; Hori, Fumi; Huminiecki, Łukasz B.

    2014-01-01

    Regulated transcription controls the diversity, developmental pathways and spatial organization of the hundreds of cell types that make up a mammal. Using single-molecule cDNA sequencing, we mapped transcription start sites (TSSs) and their usage in human and mouse primary cells, cell lines and tissues to produce a comprehensive overview of mammalian gene expression across the human body. We find that few genes are truly ‘housekeeping’, whereas many mammalian promoters are composite entities composed of several closely separated TSSs, with independent cell-type-specific expression profiles. TSSs specific to different cell types evolve at different rates, whereas promoters of broadly expressed genes are the most conserved. Promoter-based expression analysis reveals key transcription factors defining cell states and links them to binding-site motifs. The functions of identified novel transcripts can be predicted by coexpression and sample ontology enrichment analyses. The functional annotation of the mammalian genome 5 (FANTOM5) project provides comprehensive expression profiles and functional annotation of mammalian cell-type-specific transcriptomes with wide applications in biomedical research.

  16. Evaluation of Mammalian Interspersed Repeats to investigate the goat genome

    Directory of Open Access Journals (Sweden)

    P. Mariani

    2010-01-01

    Full Text Available Among the repeated sequences present in most eukaryotic genomes, SINEs (Short Interspersed Nuclear Elements are widely used to investigate evolution in the mammalian order (Buchanan et al., 1999. One family of these repetitive sequences, the MIR (Mammalian Interspersed Repeats; Jurka et al., 1995, is ubiquitous in all mammals.MIR elements are tRNA-derived SINEs and are identifiable by a conserved core region of about 70 nucleotides.

  17. Random ancestor trees

    International Nuclear Information System (INIS)

    Ben-Naim, E; Krapivsky, P L

    2010-01-01

    We investigate a network growth model in which the genealogy controls the evolution. In this model, a new node selects a random target node and links either to this target node, or to its parent, or to its grandparent, etc; all nodes from the target node to its most ancient ancestor are equiprobable destinations. The emerging random ancestor tree is very shallow: the fraction g n of nodes at distance n from the root decreases super-exponentially with n, g n = e −1 /(n − 1)!. We find that a macroscopic hub at the root coexists with highly connected nodes at higher generations. The maximal degree of a node at the nth generation grows algebraically as N 1/β n , where N is the system size. We obtain the series of nontrivial exponents which are roots of transcendental equations: β 1 ≅1.351 746, β 2 ≅1.682 201, etc. As a consequence, the fraction p k of nodes with degree k has an algebraic tail, p k ∼ k −γ , with γ = β 1 + 1 = 2.351 746

  18. Single nucleotide polymorphisms in the 5'-flanking region of the ...

    African Journals Online (AJOL)

    Prolactin (PRL), a polypeptide hormone synthesized and secreted by the animal's anterior pituitary gland, plays an important role in the regulation of mammalian lactation and avian reproduction. Considering the significant association between single nucleotide polymorphisms (SNPs) in the 5'-flanking region of PRL and ...

  19. Near-optimal labeling schemes for nearest common ancestors

    DEFF Research Database (Denmark)

    Alstrup, Stephen; Bistrup Halvorsen, Esben; Larsen, Kasper Green

    2014-01-01

    and Korman (STOC'10) established that labels in ancestor labeling schemes have size log n + Θ(log log n), our new lower bound separates ancestor and NCA labeling schemes. Our upper bound improves the 10 log n upper bound by Alstrup, Gavoille, Kaplan and Rauhe (TOCS'04), and our theoretical result even...

  20. Single nucleotide polymorphism discovery in bovine liver using RNA-seq technology

    DEFF Research Database (Denmark)

    Pareek, Chandra Shekhar; Błaszczyk, Paweł; Dziuba, Piotr

    2017-01-01

    Background RNA-seq is a useful next-generation sequencing (NGS) technology that has been widely used to understand mammalian transcriptome architecture and function. In this study, a breed-specific RNA-seq experiment was utilized to detect putative single nucleotide polymorphisms (SNPs) in liver...

  1. Dewey Called Them Utopians, I Call Them Ancestors

    Science.gov (United States)

    Kulago, Hollie A.

    2018-01-01

    In this article, I will describe how the Utopians whom John Dewey once referenced are possibly the ancestors of Indigenous peoples, in this case, ancestors of the Diné. I will describe a Diné philosophy of education through the Kinaaldá ceremony which was the first ceremony created by the Holy People of the Diné to ensure the survival of the…

  2. The common ancestor of archaea and eukarya was not an archaeon.

    Science.gov (United States)

    Forterre, Patrick

    2013-01-01

    It is often assumed that eukarya originated from archaea. This view has been recently supported by phylogenetic analyses in which eukarya are nested within archaea. Here, I argue that these analyses are not reliable, and I critically discuss archaeal ancestor scenarios, as well as fusion scenarios for the origin of eukaryotes. Based on recognized evolutionary trends toward reduction in archaea and toward complexity in eukarya, I suggest that their last common ancestor was more complex than modern archaea but simpler than modern eukaryotes (the bug in-between scenario). I propose that the ancestors of archaea (and bacteria) escaped protoeukaryotic predators by invading high temperature biotopes, triggering their reductive evolution toward the "prokaryotic" phenotype (the thermoreduction hypothesis). Intriguingly, whereas archaea and eukarya share many basic features at the molecular level, the archaeal mobilome resembles more the bacterial than the eukaryotic one. I suggest that selection of different parts of the ancestral virosphere at the onset of the three domains played a critical role in shaping their respective biology. Eukarya probably evolved toward complexity with the help of retroviruses and large DNA viruses, whereas similar selection pressure (thermoreduction) could explain why the archaeal and bacterial mobilomes somehow resemble each other.

  3. THE WHITE BLOOD ANCESTOR?

    OpenAIRE

    M.Arulmani; V.R.Hema Latha

    2014-01-01

    This scientific research article focus that “Red colour blood” of human shall be considered as the 3rd generation Blood and the Human on origin shall be considered having white colour Blood. The white colour blood of human Ancestor shall be considered composed of only ions of Photon, Electron, Proton and free from Hydrogen, Carbon, Nitrogen, Ozone.

  4. Proposed Ancestors of Phage Nucleic Acid Packaging Motors (and Cells

    Directory of Open Access Journals (Sweden)

    Philip Serwer

    2011-07-01

    Full Text Available I present a hypothesis that begins with the proposal that abiotic ancestors of phage RNA and DNA packaging systems (and cells include mobile shells with an internal, molecule-transporting cavity. The foundations of this hypothesis include the conjecture that current nucleic acid packaging systems have imprints from abiotic ancestors. The abiotic shells (1 initially imbibe and later also bind and transport organic molecules, thereby providing a means for producing molecular interactions that are links in the chain of events that produces ancestors to the first molecules that are both information carrying and enzymatically active, and (2 are subsequently scaffolds on which proteins assemble to form ancestors common to both shells of viral capsids and cell membranes. Emergence of cells occurs via aggregation and merger of shells and internal contents. The hypothesis continues by using proposed imprints of abiotic and biotic ancestors to deduce an ancestral thermal ratchet-based DNA packaging motor that subsequently evolves to integrate a DNA packaging ATPase that provides a power stroke.

  5. Unique genome organization of non-mammalian papillomaviruses provides insights into the evolution of viral early proteins.

    Science.gov (United States)

    Van Doorslaer, Koenraad; Ruoppolo, Valeria; Schmidt, Annie; Lescroël, Amelie; Jongsomjit, Dennis; Elrod, Megan; Kraberger, Simona; Stainton, Daisy; Dugger, Katie M; Ballard, Grant; Ainley, David G; Varsani, Arvind

    2017-07-01

    The family Papillomaviridae contains more than 320 papillomavirus types, with most having been identified as infecting skin and mucosal epithelium in mammalian hosts. To date, only nine non-mammalian papillomaviruses have been described from birds ( n  = 5), a fish ( n  = 1), a snake ( n  = 1), and turtles ( n  = 2). The identification of papillomaviruses in sauropsids and a sparid fish suggests that early ancestors of papillomaviruses were already infecting the earliest Euteleostomi. The Euteleostomi clade includes more than 90 per cent of the living vertebrate species, and progeny virus could have been passed on to all members of this clade, inhabiting virtually every habitat on the planet. As part of this study, we isolated a novel papillomavirus from a 16-year-old female Adélie penguin ( Pygoscelis adeliae ) from Cape Crozier, Ross Island (Antarctica). The new papillomavirus shares ∼64 per cent genome-wide identity to a previously described Adélie penguin papillomavirus. Phylogenetic analyses show that the non-mammalian viruses (expect the python, Morelia spilota , associated papillomavirus) cluster near the base of the papillomavirus evolutionary tree. A papillomavirus isolated from an avian host (Northern fulmar; Fulmarus glacialis ), like the two turtle papillomaviruses, lacks a putative E9 protein that is found in all other avian papillomaviruses. Furthermore, the Northern fulmar papillomavirus has an E7 more similar to the mammalian viruses than the other avian papillomaviruses. Typical E6 proteins of mammalian papillomaviruses have two Zinc finger motifs, whereas the sauropsid papillomaviruses only have one such motif. Furthermore, this motif is absent in the fish papillomavirus. Thus, it is highly likely that the most recent common ancestor of the mammalian and sauropsid papillomaviruses had a single motif E6. It appears that a motif duplication resulted in mammalian papillomaviruses having a double Zinc finger motif in E6. We

  6. Unique genome organization of non-mammalian papillomaviruses provides insights into the evolution of viral early proteins

    Science.gov (United States)

    Van Doorslaer, Koenraad; Ruoppolo, Valeria; Schmidt, Annie; Lescroël, Amelie; Jongsomjit, Dennis; Elrod, Megan; Kraberger, Simona; Stainton, Daisy; Dugger, Katie M.; Ballard, Grant; Ainley, David G.; Varsani, Arvind

    2017-01-01

    The family Papillomaviridae contains more than 320 papillomavirus types, with most having been identified as infecting skin and mucosal epithelium in mammalian hosts. To date, only nine non-mammalian papillomaviruses have been described from birds (n = 5), a fish (n = 1), a snake (n = 1), and turtles (n = 2). The identification of papillomaviruses in sauropsids and a sparid fish suggests that early ancestors of papillomaviruses were already infecting the earliest Euteleostomi. The Euteleostomi clade includes more than 90 per cent of the living vertebrate species, and progeny virus could have been passed on to all members of this clade, inhabiting virtually every habitat on the planet. As part of this study, we isolated a novel papillomavirus from a 16-year-old female Adélie penguin (Pygoscelis adeliae) from Cape Crozier, Ross Island (Antarctica). The new papillomavirus shares ∼64 per cent genome-wide identity to a previously described Adélie penguin papillomavirus. Phylogenetic analyses show that the non-mammalian viruses (expect the python, Morelia spilota, associated papillomavirus) cluster near the base of the papillomavirus evolutionary tree. A papillomavirus isolated from an avian host (Northern fulmar; Fulmarus glacialis), like the two turtle papillomaviruses, lacks a putative E9 protein that is found in all other avian papillomaviruses. Furthermore, the Northern fulmar papillomavirus has an E7 more similar to the mammalian viruses than the other avian papillomaviruses. Typical E6 proteins of mammalian papillomaviruses have two Zinc finger motifs, whereas the sauropsid papillomaviruses only have one such motif. Furthermore, this motif is absent in the fish papillomavirus. Thus, it is highly likely that the most recent common ancestor of the mammalian and sauropsid papillomaviruses had a single motif E6. It appears that a motif duplication resulted in mammalian papillomaviruses having a double Zinc finger motif in E6. We estimated the

  7. Phylogenetic rooting using minimal ancestor deviation.

    Science.gov (United States)

    Tria, Fernando Domingues Kümmel; Landan, Giddy; Dagan, Tal

    2017-06-19

    Ancestor-descendent relations play a cardinal role in evolutionary theory. Those relations are determined by rooting phylogenetic trees. Existing rooting methods are hampered by evolutionary rate heterogeneity or the unavailability of auxiliary phylogenetic information. Here we present a rooting approach, the minimal ancestor deviation (MAD) method, which accommodates heterotachy by using all pairwise topological and metric information in unrooted trees. We demonstrate the performance of the method, in comparison to existing rooting methods, by the analysis of phylogenies from eukaryotes and prokaryotes. MAD correctly recovers the known root of eukaryotes and uncovers evidence for the origin of cyanobacteria in the ocean. MAD is more robust and consistent than existing methods, provides measures of the root inference quality and is applicable to any tree with branch lengths.

  8. The galaxy ancestor problem

    Science.gov (United States)

    Disney, M. J.; Lang, R. H.

    2012-11-01

    The Hubble Space Telescope (HST) findsgalaxies whose Tolman dimming exceeds 10 mag. Could evolution alone explain these as our ancestor galaxies or could they be representatives of quite a different dynasty whose descendants are no longer prominent today? We explore the latter hypothesis and argue that surface brightness selection effects naturally bring into focus quite different dynasties from different redshifts. Thus, the HST z = 7 galaxies could be examples of galaxies whose descendants are both too small and too choked with dust to be recognizable in our neighbourhood easily today. Conversely, the ancestors of the Milky Way and its obvious neighbours would have completely sunk below the sky at z > 1.2, unless they were more luminous in the past, although their diffused light could account for the missing re-ionization flux. This Succeeding Prominent Dynasties Hypothesis (SPDH) fits the existing observations both naturally and well even without evolution, including the bizarre distributions of galaxy surface brightness found in deep fields, the angular size ˜(1 + z)-1 law, 'downsizing' which turns out to be an 'illusion' in the sense that it does not imply evolution, 'infant mortality', that is, the discrepancy between stars born and stars seen, the existence of 'red nuggets', and finally the recently discovered and unexpected excess of quasar absorption line damped Lyα systems at high redshift. If galaxies were not significantly brighter in the past and the SPDH were true, then a large proportion of galaxies could remain sunk from sight, possibly at all redshifts, and these sunken galaxies could supply the missing re-ionization flux. We show that fishing these sunken galaxies out of the sky by their optical emissions alone is practically impossible, even when they are nearby. More ingenious methods are needed to detect them. It follows that disentangling galaxy evolution through studying ever higher redshift galaxies may be a forlorn hope because one could

  9. The Common Ancestor of Archaea and Eukarya Was Not an Archaeon

    Directory of Open Access Journals (Sweden)

    Patrick Forterre

    2013-01-01

    Full Text Available It is often assumed that eukarya originated from archaea. This view has been recently supported by phylogenetic analyses in which eukarya are nested within archaea. Here, I argue that these analyses are not reliable, and I critically discuss archaeal ancestor scenarios, as well as fusion scenarios for the origin of eukaryotes. Based on recognized evolutionary trends toward reduction in archaea and toward complexity in eukarya, I suggest that their last common ancestor was more complex than modern archaea but simpler than modern eukaryotes (the bug in-between scenario. I propose that the ancestors of archaea (and bacteria escaped protoeukaryotic predators by invading high temperature biotopes, triggering their reductive evolution toward the “prokaryotic” phenotype (the thermoreduction hypothesis. Intriguingly, whereas archaea and eukarya share many basic features at the molecular level, the archaeal mobilome resembles more the bacterial than the eukaryotic one. I suggest that selection of different parts of the ancestral virosphere at the onset of the three domains played a critical role in shaping their respective biology. Eukarya probably evolved toward complexity with the help of retroviruses and large DNA viruses, whereas similar selection pressure (thermoreduction could explain why the archaeal and bacterial mobilomes somehow resemble each other.

  10. Evolution of CRISPs associated with toxicoferan-reptilian venom and mammalian reproduction.

    Science.gov (United States)

    Sunagar, Kartik; Johnson, Warren E; O'Brien, Stephen J; Vasconcelos, Vítor; Antunes, Agostinho

    2012-07-01

    Cysteine-rich secretory proteins (CRISPs) are glycoproteins found exclusively in vertebrates and have broad diversified functions. They are hypothesized to play important roles in mammalian reproduction and in reptilian venom, where they disrupt homeostasis of the prey through several mechanisms, including among others, blockage of cyclic nucleotide-gated and voltage-gated ion channels and inhibition of smooth muscle contraction. We evaluated the molecular evolution of CRISPs in toxicoferan reptiles at both nucleotide and protein levels relative to their nonvenomous mammalian homologs. We show that the evolution of CRISP gene in these reptiles is significantly influenced by positive selection and in snakes (ω = 3.84) more than in lizards (ω = 2.33), whereas mammalian CRISPs were under strong negative selection (CRISP1 = 0.55, CRISP2 = 0.40, and CRISP3 = 0.68). The use of ancestral sequence reconstruction, mapping of mutations on the three-dimensional structure, and detailed evaluation of selection pressures suggests that the toxicoferan CRISPs underwent accelerated evolution aided by strong positive selection and directional mutagenesis, whereas their mammalian homologs are constrained by negative selection. Gene and protein-level selection analyses identified 41 positively selected sites in snakes and 14 sites in lizards. Most of these sites are located on the molecular surface (nearly 76% in snakes and 79% in lizards), whereas the backbone of the protein retains a highly conserved structural scaffold. Nearly 46% of the positively selected sites occur in the cysteine-rich domain of the protein. This directional mutagenesis, where the hotspots of mutations are found on the molecular surface and functional domains of the protein, acts as a diversifying mechanism for the exquisite biological targeting of CRISPs in toxicoferan reptiles. Finally, our analyses suggest that the evolution of toxicoferan-CRISP venoms might have been influenced by the specific predatory

  11. Guanylic nucleotide starvation affects Saccharomyces cerevisiae mother-daughter separation and may be a signal for entry into quiescence

    Directory of Open Access Journals (Sweden)

    Sagot Isabelle

    2005-05-01

    Full Text Available Abstract Background Guanylic nucleotides are both macromolecules constituents and crucial regulators for a variety of cellular processes. Therefore, their intracellular concentration must be strictly controlled. Consistently both yeast and mammalian cells tightly correlate the transcription of genes encoding enzymes critical for guanylic nucleotides biosynthesis with the proliferation state of the cell population. Results To gain insight into the molecular relationships connecting intracellular guanylic nucleotide levels and cellular proliferation, we have studied the consequences of guanylic nucleotide limitation on Saccharomyces cerevisiae cell cycle progression. We first utilized mycophenolic acid, an immunosuppressive drug that specifically inhibits inosine monophosphate dehydrogenase, the enzyme catalyzing the first committed step in de novo GMP biosynthesis. To approach this system physiologically, we next developed yeast mutants for which the intracellular guanylic nucleotide pools can be modulated through changes of growth conditions. In both the pharmacological and genetic approaches, we found that guanylic nucleotide limitation generated a mother-daughter separation defect, characterized by cells with two unseparated daughters. We then showed that this separation defect resulted from cell wall perturbations but not from impaired cytokinesis. Importantly, cells with similar separation defects were found in a wild type untreated yeast population entering quiescence upon nutrient limitation. Conclusion Our results demonstrate that guanylic nucleotide limitation slows budding yeast cell cycle progression, with a severe pause in telophase. At the cellular level, guanylic nucleotide limitation causes the emergence of cells with two unseparated daughters. By fluorescence and electron microscopy, we demonstrate that this phenotype arises from defects in cell wall partition between mother and daughter cells. Because cells with two unseparated

  12. Degradation of brown adipocyte purine nucleotides regulates uncoupling protein 1 activity

    Directory of Open Access Journals (Sweden)

    Tobias Fromme

    2018-02-01

    Full Text Available Objective: Non-shivering thermogenesis in mammalian brown adipose tissue depends on thermogenic uncoupling protein 1. Its activity is triggered by free fatty acids while purine nucleotides mediate inhibition. During activation, it is thought that free fatty acids overcome purine-mediated inhibition. We measured the cellular concentration and the release of purine nucleotide metabolites to uncover a possible role of purine nucleotide degradation in uncoupling protein 1 activation. Methods: With mass spectrometry, purine nucleotide metabolites were quantified in cellular homogenates and supernatants of cultured primary brown adipocytes. We also determined oxygen consumption in response to a β-adrenergic agonist. Results: Upon adrenergic activation, brown adipocytes decreased the intracellular concentration of inhibitory nucleotides (ATP, ADP, GTP and GDP and released the respective degradation products. At the same time, an increase in cellular calcium occurred. None of these phenomena occurred in white adipocytes or myotubes. The brown adipocyte expression of enzymes implicated in purine metabolic remodeling is altered upon cold exposure. Pharmacological and genetic interference of purine metabolism altered uncoupling protein 1 mediated uncoupled respiration. Conclusion: Adrenergic stimulation of brown adipocytes lowers the intracellular concentration of purine nucleotides, thereby contributing to uncoupling protein 1 activation. Keywords: Purine nucleotides, Uncoupling protein 1, Brown adipose tissue, Non-shivering thermogenesis, HILIC-MS/MS, Guanosine monophosphate reductase

  13. Genetic Relationships among Reptilian and Mammalian Campylobacter fetus Strains Determined by Multilocus Sequence Typing

    NARCIS (Netherlands)

    Dingle, K.E.; Blaser, M.J.; Tu, Z.C.; Pruckler, J.; Fitzgerald, C.; Bergen, van M.A.P.; Lawson, A.J.; Owen, R.J.; Wagenaar, J.A.

    2010-01-01

    Reptile Campylobacter fetus isolates and closely related strains causing human disease were characterized by multilocus sequence typing. They shared similar to 90% nucleotide sequence identity with classical mammalian C. fetus, and there was evidence of recombination among members of these two

  14. The artiodactyl APOBEC3 innate immune repertoire shows evidence for a multi-functional domain organization that existed in the ancestor of placental mammals

    Directory of Open Access Journals (Sweden)

    Andrésdóttir Valgerdur

    2008-11-01

    Full Text Available Abstract Background APOBEC3 (A3 proteins deaminate DNA cytosines and block the replication of retroviruses and retrotransposons. Each A3 gene encodes a protein with one or two conserved zinc-coordinating motifs (Z1, Z2 or Z3. The presence of one A3 gene in mice (Z2–Z3 and seven in humans, A3A-H (Z1a, Z2a-Z1b, Z2b, Z2c-Z2d, Z2e-Z2f, Z2g-Z1c, Z3, suggests extraordinary evolutionary flexibility. To gain insights into the mechanism and timing of A3 gene expansion and into the functional modularity of these genes, we analyzed the genomic sequences, expressed cDNAs and activities of the full A3 repertoire of three artiodactyl lineages: sheep, cattle and pigs. Results Sheep and cattle have three A3 genes, A3Z1, A3Z2 and A3Z3, whereas pigs only have two, A3Z2 and A3Z3. A comparison between domestic and wild pigs indicated that A3Z1 was deleted in the pig lineage. In all three species, read-through transcription and alternative splicing also produced a catalytically active double domain A3Z2-Z3 protein that had a distinct cytoplasmic localization. Thus, the three A3 genes of sheep and cattle encode four conserved and active proteins. These data, together with phylogenetic analyses, indicated that a similar, functionally modular A3 repertoire existed in the common ancestor of artiodactyls and primates (i.e., the ancestor of placental mammals. This mammalian ancestor therefore possessed the minimal A3 gene set, Z1-Z2-Z3, required to evolve through a remarkable series of eight recombination events into the present day eleven Z domain human repertoire. Conclusion The dynamic recombination-filled history of the mammalian A3 genes is consistent with the modular nature of the locus and a model in which most of these events (especially the expansions were selected by ancient pathogenic retrovirus infections.

  15. Amplification of an ancestral mammalian L1 family of long interspersed repeated DNA occurred just before the murine radiation

    International Nuclear Information System (INIS)

    Pascale, E.; Valle, E.; Furano, A.V.

    1990-01-01

    Each mammalian genus examined so far contains 50,000-100,000 members of an L1 (LINE 1) family of long interspersed repeated DNA elements. Current knowledge on the evolution of L1 families presents a paradox because, although L1 families have been in mammalian genomes since before the mammalian radiation ∼80 million years ago, most members of the L1 families are only a few million years old. Accordingly it has been suggested either that the extensive amplification that characterizes present-day L1 families did not occur in the past or that old members were removed as new one were generated. However, the authors show here that an ancestral rodent L1 family was extensively amplified ∼10 million years ago and that the relics of this amplification have persisted in modern murine genomes. This amplification occurred just before the divergence of modern murine genera from their common ancestor and identifies the murine node in the lineage of modern muroid rodents The results suggest that repeated amplification of L1 elements is a feature of the evaluation of mammalian genomes and that ancestral amplification events could provide a useful tool for determining mammalian lineages

  16. InXy and SeXy, compact heterologous reporter proteins for mammalian cells.

    Science.gov (United States)

    Fluri, David A; Kelm, Jens M; Lesage, Guillaume; Baba, Marie Daoud-El; Fussenegger, Martin

    2007-10-15

    Mammalian reporter proteins are essential for gene-function analysis, drugscreening initiatives and as model product proteins for biopharmaceutical manufacturing. Bacillus subtilis can maintain its metabolism by secreting Xylanase A (XynA), which converts xylan into shorter xylose oligosaccharides. XynA is a family 11 xylanase monospecific for D-xylose containing substrates. Mammalian cells transgenic for constitutive expression of wild-type xynA showed substantial secretion of this prokaryotic enzyme. Deletion analysis confirmed that a prokaryotic signal sequence encoded within the first 81 nucleotides was compatible with the secretory pathway of mammalian cells. Codon optimization combined with elimination of the prokaryotic signal sequence resulted in an exclusively intracellular mammalian Xylanase A variant (InXy) while replacement by an immunoglobulin-derived secretion signal created an optimal secreted Xylanase A derivative (SeXy). A variety of chromogenic and fluorescence-based assays adapted for use with mammalian cells detected InXy and SeXy with high sensitivity and showed that both reporter proteins resisted repeated freeze/thaw cycles, remained active over wide temperature and pH ranges, were extremely stable in human serum stored at room temperature and could independently be quantified in samples also containing other prominent reporter proteins such as the human placental alkaline phosphatase (SEAP) and the Bacillus stearothermophilus-derived secreted alpha-amylase (SAMY). Glycoprofiling revealed that SeXy produced in mammalian cells was N- glycosylated at four different sites, mutation of which resulted in impaired secretion. SeXy was successfully expressed in a variety of mammalian cell lines and primary cells following transient transfection and transduction with adeno-associated virus particles (AAV) engineered for constitutive SeXy expression. Intramuscular injection of transgenic AAVs into mice showed significant SeXy levels in the bloodstream

  17. The Five Ancestors--Book 1: Tiger

    Science.gov (United States)

    Stone, Jeff

    2004-01-01

    Losing a job is an awfully low point--until it turns into the opportunity to pursue writing full time, and a book like "The Five Ancestors: Tiger" results. Jeff Stone looks back to his own experience as a young reader and taps that experience to help frame his own writing. An intriguing snapshot of his new book follows.

  18. Information-Theoretic Inference of Common Ancestors

    Directory of Open Access Journals (Sweden)

    Bastian Steudel

    2015-04-01

    Full Text Available A directed acyclic graph (DAG partially represents the conditional independence structure among observations of a system if the local Markov condition holds, that is if every variable is independent of its non-descendants given its parents. In general, there is a whole class of DAGs that represents a given set of conditional independence relations. We are interested in properties of this class that can be derived from observations of a subsystem only. To this end, we prove an information-theoretic inequality that allows for the inference of common ancestors of observed parts in any DAG representing some unknown larger system. More explicitly, we show that a large amount of dependence in terms of mutual information among the observations implies the existence of a common ancestor that distributes this information. Within the causal interpretation of DAGs, our result can be seen as a quantitative extension of Reichenbach’s principle of common cause to more than two variables. Our conclusions are valid also for non-probabilistic observations, such as binary strings, since we state the proof for an axiomatized notion of “mutual information” that includes the stochastic as well as the algorithmic version.

  19. Apparatus Named after Our Academic Ancestors, III

    Science.gov (United States)

    Greenslade, Thomas B., Jr.

    2014-01-01

    My academic ancestors in physics have called on me once more to tell you about the apparatus that they devised, and that many of you have used in your demonstrations and labs. This article is about apparatus named after François Arago, Heinrich Helmholtz, Leon Foucault, and James Watt.

  20. [The 2,3-diphosphoglycerate shunt and stabilization of the ATP level in mammalian erythrocytes].

    Science.gov (United States)

    Ataullakhanov, A I; Ataullakhanov, F I; Vitvitskiĭ, V M; Zhabotinskiĭ, A M; Pichugin, A V

    1985-06-01

    The mechanisms of regulation of energy metabolism in erythrocytes of various mammalian species were investigated. In native erythrocytes of man, sheep, cow, dog and mouse the dependencies of the rates of glucose uptake on ATP concentration (i.e., regulatory parameters of glycolysis) were measured. These parameters plotted in normalized coordinates are not species-specific (invariant). The dependence of the rate of ATP-consuming processes on ATP concentration has been studied for the first time in intact mammalian erythrocytes. This dependence was found to be linear only in the species, in whose erythrocytes the activity of 2,3-diphosphoglycerate shunt is practically zero. In all species under study, the stabilization of ATP level is provided for mainly by the hexokinase-phosphofructokinase system. A comparison of regulatory mechanisms of energy metabolism in mammalian (sheep, cow) erythrocytes, in which the 2,3-diphosphoglycerate shunt is absent, with human and animal erythrocytes, in which this pathway is active, points to the important role of the 2,3-diphosphoglycerate shunt in regulation of energy conversion in erythrocytes. This shunt operates as an additional stabilizer protecting the cell from extremal influences.

  1. Trichomonas vaginalis NTPDase and ecto-5'-nucleotidase hydrolyze guanine nucleotides and increase extracellular guanosine levels under serum restriction.

    Science.gov (United States)

    Menezes, Camila Braz; Durgante, Juliano; de Oliveira, Rafael Rodrigues; Dos Santos, Victor Hugo Jacks Mendes; Rodrigues, Luiz Frederico; Garcia, Solange Cristina; Dos Santos, Odelta; Tasca, Tiana

    2016-05-01

    Trichomonas vaginalis is the aethiologic agent of trichomoniasis, the most common non-viral sexually transmitted disease in the world. The purinergic signaling pathway is mediated by extracellular nucleotides and nucleosides that are involved in many biological effects as neurotransmission, immunomodulation and inflammation. Extracellular nucleotides can be hydrolyzed by a family of enzymes known as ectonucleotidases including the ecto-nucleoside triphosphate diphosphohydrolases (E-NTPDases) family which hydrolyses nucleosides triphosphate and diphosphate as preferential substrates and ecto-5'-nucleotidase which catalyzes the conversion of monophosphates into nucleosides. In T. vaginalis the E-NTPDase and ecto-5'-nucleotidase activities upon adenine nucleotides have already been characterized in intact trophozoites but little is known concerning guanine nucleotides and nucleoside. These enzymes may exert a crucial role on nucleoside generation, providing the purine sources for the synthesis de novo of these essential nutrients, sustaining parasite growth and survival. In this study, we investigated the hydrolysis profile of guanine-related nucleotides and nucleoside in intact trophozoites from long-term-grown and fresh clinical isolates of T. vaginalis. Knowing that guanine nucleotides are also substrates for T. vaginalis ectoenzymes, we evaluated the profile of nucleotides consumption and guanosine uptake in trophozoites submitted to a serum limitation condition. Results show that guanine nucleotides (GTP, GDP, GMP) were substrates for T. vaginalis ectonucleotidases, with expected kinetic parameters for this enzyme family. Different T. vaginalis isolates (two from the ATCC and nine fresh clinical isolates) presented a heterogeneous hydrolysis profile. The serum culture condition increased E-NTPDase and ecto-5'-nucleotidase activities with high consumption of extracellular GTP generating enhanced GDP, GMP and guanosine levels as demonstrated by HPLC, with final

  2. Genome-wide patterns of nucleotide polymorphism in domesticated rice

    DEFF Research Database (Denmark)

    Caicedo, Ana L; Williamson, Scott H; Hernandez, Ryan D

    2007-01-01

    Domesticated Asian rice (Oryza sativa) is one of the oldest domesticated crop species in the world, having fed more people than any other plant in human history. We report the patterns of DNA sequence variation in rice and its wild ancestor, O. rufipogon, across 111 randomly chosen gene fragments......, and use these to infer the evolutionary dynamics that led to the origins of rice. There is a genome-wide excess of high-frequency derived single nucleotide polymorphisms (SNPs) in O. sativa varieties, a pattern that has not been reported for other crop species. We developed several alternative models...... to explain contemporary patterns of polymorphisms in rice, including a (i) selectively neutral population bottleneck model, (ii) bottleneck plus migration model, (iii) multiple selective sweeps model, and (iv) bottleneck plus selective sweeps model. We find that a simple bottleneck model, which has been...

  3. Ancestors protocol for scalable key management

    Directory of Open Access Journals (Sweden)

    Dieter Gollmann

    2010-06-01

    Full Text Available Group key management is an important functional building block for secure multicast architecture. Thereby, it has been extensively studied in the literature. The main proposed protocol is Adaptive Clustering for Scalable Group Key Management (ASGK. According to ASGK protocol, the multicast group is divided into clusters, where each cluster consists of areas of members. Each cluster uses its own Traffic Encryption Key (TEK. These clusters are updated periodically depending on the dynamism of the members during the secure session. The modified protocol has been proposed based on ASGK with some modifications to balance the number of affected members and the encryption/decryption overhead with any number of the areas when a member joins or leaves the group. This modified protocol is called Ancestors protocol. According to Ancestors protocol, every area receives the dynamism of the members from its parents. The main objective of the modified protocol is to reduce the number of affected members during the leaving and joining members, then 1 affects n overhead would be reduced. A comparative study has been done between ASGK protocol and the modified protocol. According to the comparative results, it found that the modified protocol is always outperforming the ASGK protocol.

  4. A nucleotide substitution at the 5′ splice site of intron 1 of rice HEADING DATE 1 (HD1 gene homolog in foxtail millet, broadly found in landraces from Europe and Asia

    Directory of Open Access Journals (Sweden)

    Kenji Fukunaga

    2015-12-01

    Full Text Available We investigated genetic variation of a rice HEADING DATE 1(HD1 homolog in foxtail millet. First, we searched for a rice HD1 homolog in a foxtail millet genome sequence and designed primers to amplify the entire coding sequence of the gene. We compared full HD1 gene sequences of 11 accessions (including Yugu 1, a Chinese cultivar used for genome sequencing from various regions in Europe and Asia, found a nucleotide substitution at a putative splice site of intron 1, and designated the accessions with the nucleotide substitution as carrying a splicing variant. We verified by RT-PCR that this single nucleotide substitution causes aberrant splicing of intron 1. We investigated the geographical distribution of the splicing variant in 480 accessions of foxtail millet from various regions of Europe and Asia and part of Africa by dCAPS and found that the splicing variant is broadly distributed in Europe and Asia. Differences of heading times between accessions with wild type allele of the HD1 gene and those with the splicing variant allele were unclear. We also investigated variation in 13 accessions of ssp. viridis, the wild ancestor, and the results suggested that the wild type is predominant in the wild ancestor.

  5. Vacuum fluctuations in an ancestor vacuum: A possible dark energy candidate

    Science.gov (United States)

    Aoki, Hajime; Iso, Satoshi; Lee, Da-Shin; Sekino, Yasuhiro; Yeh, Chen-Pin

    2018-02-01

    We consider an open universe created by bubble nucleation, and study possible effects of our "ancestor vacuum," a de Sitter space in which bubble nucleation occurred, on the present universe. We compute vacuum expectation values of the energy-momentum tensor for a minimally coupled scalar field, carefully taking into account the effect of the ancestor vacuum by the Euclidean prescription. We pay particular attention to the so-called supercurvature mode, a non-normalizable mode on a spatial slice of the open universe, which has been known to exist for sufficiently light fields. This mode decays in time most slowly, and may leave residual effects of the ancestor vacuum, potentially observable in the present universe. We point out that the vacuum energy of the quantum field can be regarded as dark energy if mass of the field is of order the present Hubble parameter or smaller. We obtain preliminary results for the dark energy equation of state w (z ) as a function of the redshift.

  6. The extended Price equation quantifies species selection on mammalian body size across the Palaeocene/Eocene Thermal Maximum.

    Science.gov (United States)

    Rankin, Brian D; Fox, Jeremy W; Barrón-Ortiz, Christian R; Chew, Amy E; Holroyd, Patricia A; Ludtke, Joshua A; Yang, Xingkai; Theodor, Jessica M

    2015-08-07

    Species selection, covariation of species' traits with their net diversification rates, is an important component of macroevolution. Most studies have relied on indirect evidence for its operation and have not quantified its strength relative to other macroevolutionary forces. We use an extension of the Price equation to quantify the mechanisms of body size macroevolution in mammals from the latest Palaeocene and earliest Eocene of the Bighorn and Clarks Fork Basins of Wyoming. Dwarfing of mammalian taxa across the Palaeocene/Eocene Thermal Maximum (PETM), an intense, brief warming event that occurred at approximately 56 Ma, has been suggested to reflect anagenetic change and the immigration of small bodied-mammals, but might also be attributable to species selection. Using previously reconstructed ancestor-descendant relationships, we partitioned change in mean mammalian body size into three distinct mechanisms: species selection operating on resident mammals, anagenetic change within resident mammalian lineages and change due to immigrants. The remarkable decrease in mean body size across the warming event occurred through anagenetic change and immigration. Species selection also was strong across the PETM but, intriguingly, favoured larger-bodied species, implying some unknown mechanism(s) by which warming events affect macroevolution. © 2015 The Author(s).

  7. The SH2 and SH3 domains of mammalian Grb2 couple the EGF receptor to the Ras activator mSos1.

    Science.gov (United States)

    Rozakis-Adcock, M; Fernley, R; Wade, J; Pawson, T; Bowtell, D

    1993-05-06

    Many tyrosine kinases, including the receptors for hormones such as epidermal growth factor (EGF), nerve growth factor and insulin, transmit intracellular signals through Ras proteins. Ligand binding to such receptors stimulates Ras guanine-nucleotide-exchange activity and increases the level of GTP-bound Ras, suggesting that these tyrosine kinases may activate a guanine-nucleotide releasing protein (GNRP). In Caenorhabditis elegans and Drosophila, genetic studies have shown that Ras activation by tyrosine kinases requires the protein Sem-5/drk, which contains a single Src-homology (SH) 2 domain and two flanking SH3 domains. Sem-5 is homologous to the mammalian protein Grb2, which binds the autophosphorylated EGF receptor and other phosphotyrosine-containing proteins such as Shc through its SH2 domain. Here we show that in rodent fibroblasts, the SH3 domains of Grb2 are bound to the proline-rich carboxy-terminal tail of mSos1, a protein homologous to Drosophila Sos. Sos is required for Ras signalling and contains a central domain related to known Ras-GNRPs. EGF stimulation induces binding of the Grb2-mSos1 complex to the autophosphorylated EGF receptor, and mSos1 phosphorylation. Grb2 therefore appears to link tyrosine kinases to a Ras-GNRP in mammalian cells.

  8. Expression Pattern and Localization Dynamics of Guanine Nucleotide Exchange Factor RIC8 during Mouse Oogenesis.

    Directory of Open Access Journals (Sweden)

    Merly Saare

    Full Text Available Targeting of G proteins to the cell cortex and their activation is one of the triggers of both asymmetric and symmetric cell division. Resistance to inhibitors of cholinesterase 8 (RIC8, a guanine nucleotide exchange factor, activates a certain subgroup of G protein α-subunits in a receptor independent manner. RIC8 controls the asymmetric cell division in Caenorhabditis elegans and Drosophila melanogaster, and symmetric cell division in cultured mammalian cells, where it regulates the mitotic spindle orientation. Although intensely studied in mitosis, the function of RIC8 in mammalian meiosis has remained unknown. Here we demonstrate that the expression and subcellular localization of RIC8 changes profoundly during mouse oogenesis. Immunofluorescence studies revealed that RIC8 expression is dependent on oocyte growth and cell cycle phase. During oocyte growth, RIC8 is abundantly present in cytoplasm of oocytes at primordial, primary and secondary preantral follicle stages. Later, upon oocyte maturation RIC8 also populates the germinal vesicle, its localization becomes cell cycle dependent, and it associates with chromatin and the meiotic spindle. After fertilization, RIC8 protein converges to the pronuclei and is also detectable at high levels in the nucleolus precursor bodies of both maternal and paternal pronucleus. During first cleavage of zygote RIC8 localizes in the mitotic spindle and cell cortex of forming blastomeres. In addition, we demonstrate that RIC8 co-localizes with its interaction partners Gαi1/2:GDP and LGN in meiotic/mitotic spindle, cell cortex and polar bodies of maturing oocytes and zygotes. Downregulation of Ric8 by siRNA leads to interferred translocation of Gαi1/2 to cortical region of maturing oocytes and reduction of its levels. RIC8 is also expressed at high level in female reproductive organs e.g. oviduct. Therefore we suggest a regulatory function for RIC8 in mammalian gametogenesis and fertility.

  9. The evolution of gene expression levels in mammalian organs

    DEFF Research Database (Denmark)

    Brawand, David; Soumillon, Magali; Necsulea, Anamaria

    2011-01-01

    and chromosomes, owing to differences in selective pressures: transcriptome change was slow in nervous tissues and rapid in testes, slower in rodents than in apes and monotremes, and rapid for the X chromosome right after its formation. Although gene expression evolution in mammals was strongly shaped......Changes in gene expression are thought to underlie many of the phenotypic differences between species. However, large-scale analyses of gene expression evolution were until recently prevented by technological limitations. Here we report the sequencing of polyadenylated RNA from six organs across...... ten species that represent all major mammalian lineages (placentals, marsupials and monotremes) and birds (the evolutionary outgroup), with the goal of understanding the dynamics of mammalian transcriptome evolution. We show that the rate of gene expression evolution varies among organs, lineages...

  10. Heterokont predator Develorapax marinus gen. et sp. nov. – a model of the ochrophyte ancestor

    Directory of Open Access Journals (Sweden)

    Vladimir V. Aleoshin

    2016-08-01

    Full Text Available Heterotrophic lineages of Heterokonta (or stramenopiles, in contrast to a single monophyletic group of autotrophs, Ochrophyta, form several clades that independently branch off the heterokont stem lineage. The nearest neighbors of Ochrophyta in the phylogenetic tree appear to be almost exclusively bacterivorous, whereas the hypothesis of plastid acquisition by the ancestors of the ochrophyte lineage suggests an ability to engulf eukaryotic alga. In line with this hypothesis, the heteretrophic predator at the base of the ochrophyte lineage may be regarded as a model for the ochrophyte ancestor. Here we present a new genus and species of marine free-living heterotrophic heterokont Develorapax marinus, which falls into an isolated heterokont cluster, along with the marine flagellate Developayella elegans, and is able to engulf eukaryotic cells. Together with environmental sequences D. marinus and D. elegans form a class-level clade Developea nom. nov. represented by species adapted to different environmental conditions and with a wide geographical distribution. The position of Developea among Heterokonta in large-scale phylogenetic tree is discussed. We propose that members of the Developea clade represent a model for transition from bacterivory to a predatory feeding mode by selection for larger prey. Presumably, such transition in the grazing strategy is possible in the presence of bacterial biofilms, and has likely occured in the ochrophyte ancestor.

  11. Base-By-Base: single nucleotide-level analysis of whole viral genome alignments.

    Science.gov (United States)

    Brodie, Ryan; Smith, Alex J; Roper, Rachel L; Tcherepanov, Vasily; Upton, Chris

    2004-07-14

    With ever increasing numbers of closely related virus genomes being sequenced, it has become desirable to be able to compare two genomes at a level more detailed than gene content because two strains of an organism may share the same set of predicted genes but still differ in their pathogenicity profiles. For example, detailed comparison of multiple isolates of the smallpox virus genome (each approximately 200 kb, with 200 genes) is not feasible without new bioinformatics tools. A software package, Base-By-Base, has been developed that provides visualization tools to enable researchers to 1) rapidly identify and correct alignment errors in large, multiple genome alignments; and 2) generate tabular and graphical output of differences between the genomes at the nucleotide level. Base-By-Base uses detailed annotation information about the aligned genomes and can list each predicted gene with nucleotide differences, display whether variations occur within promoter regions or coding regions and whether these changes result in amino acid substitutions. Base-By-Base can connect to our mySQL database (Virus Orthologous Clusters; VOCs) to retrieve detailed annotation information about the aligned genomes or use information from text files. Base-By-Base enables users to quickly and easily compare large viral genomes; it highlights small differences that may be responsible for important phenotypic differences such as virulence. It is available via the Internet using Java Web Start and runs on Macintosh, PC and Linux operating systems with the Java 1.4 virtual machine.

  12. Function of mammalian genes regulation cellular growth; Saibo zoshoku wo seigyosuru dobutsu saibo idenshi no kino kaiseki

    Energy Technology Data Exchange (ETDEWEB)

    Matsumoto, K. [Nagoya University, Nagoya (Japan)

    1995-12-15

    Intracellular signaling from receptor tyrosine kindles in mammalian cells results in activation of a signal cascade that includes the guanine nucleotide binding protein Ras and the protein kinases Raf, MEK [Mitogen activated protein kindle (MAPK) or Extracellular signal regulated kinase (ERK) kinase] and MAPK. MAPK activation that is dependent on the coupling of Ras and Raf was reconstituted in yeast. Yeast genes were isolated that, when overexpressed, enhanced the function of Raf. One of them is identical to BMH 1, which encodes a protein similar to members of the mammalian 14-3-3 family. Bacterially synthesized mammalian 14-3-3 protein stimulated the activity of Raf prepared from yeast cells expressing c-Raf-1. Thus, the 14-3-3 protein may participate in or be required for activation of Raf. 9 refs., 2 figs.

  13. Three-dimensional structures of the mammalian multidrug resistance P-glycoprotein demonstrate major conformational changes in the transmembrane domains upon nucleotide binding.

    Science.gov (United States)

    Rosenberg, Mark F; Kamis, Alhaji Bukar; Callaghan, Richard; Higgins, Christopher F; Ford, Robert C

    2003-03-07

    P-glycoprotein is an ATP-binding cassette transporter that is associated with multidrug resistance and the failure of chemotherapy in human patients. We have previously shown, based on two-dimensional projection maps, that P-glycoprotein undergoes conformational changes upon binding of nucleotide to the intracellular nucleotide binding domains. Here we present the three-dimensional structures of P-glycoprotein in the presence and absence of nucleotide, at a resolution limit of approximately 2 nm, determined by electron crystallography of negatively stained crystals. The data reveal a major reorganization of the transmembrane domains throughout the entire depth of the membrane upon binding of nucleotide. In the absence of nucleotide, the two transmembrane domains form a single barrel 5-6 nm in diameter and about 5 nm deep with a central pore that is open to the extracellular surface and spans much of the membrane depth. Upon binding nucleotide, the transmembrane domains reorganize into three compact domains that are each 2-3 nm in diameter and 5-6 nm deep. This reorganization opens the central pore along its length in a manner that could allow access of hydrophobic drugs (transport substrates) directly from the lipid bilayer to the central pore of the transporter.

  14. The Ancestor Project: Aboriginal Computer Education through Storytelling

    Science.gov (United States)

    Weston, Marla; Biin, Dianne

    2013-01-01

    The goal of the ANCESTOR program is to use digital storytelling as a means of promoting an interest in technology careers for Aboriginal learners, as well as increasing cultural literacy. A curriculum was developed and first tested with Aboriginal students at the LÁU,WELNEW Tribal School near Victoria, British Columbia, Canada. Based on feedback…

  15. Exploiting nucleotide composition to engineer promoters.

    Directory of Open Access Journals (Sweden)

    Manfred G Grabherr

    Full Text Available The choice of promoter is a critical step in optimizing the efficiency and stability of recombinant protein production in mammalian cell lines. Artificial promoters that provide stable expression across cell lines and can be designed to the desired strength constitute an alternative to the use of viral promoters. Here, we show how the nucleotide characteristics of highly active human promoters can be modelled via the genome-wide frequency distribution of short motifs: by overlapping motifs that occur infrequently in the genome, we constructed contiguous sequence that is rich in GC and CpGs, both features of known promoters, but lacking homology to real promoters. We show that snippets from this sequence, at 100 base pairs or longer, drive gene expression in vitro in a number of mammalian cells, and are thus candidates for use in protein production. We further show that expression is driven by the general transcription factors TFIIB and TFIID, both being ubiquitously present across cell types, which results in less tissue- and species-specific regulation compared to the viral promoter SV40. We lastly found that the strength of a promoter can be tuned up and down by modulating the counts of GC and CpGs in localized regions. These results constitute a "proof-of-concept" for custom-designing promoters that are suitable for biotechnological and medical applications.

  16. Graves, Ancestors and Cement in Land disputes in Acholi and Ikland, Uganda

    DEFF Research Database (Denmark)

    Meinert, Lotte; Willerslev, Rane; Seebach, Sophie Hooge

    2017-01-01

    graves are made concrete and increasingly cemented indices of belonging in wrangles over land. Belonging is often justified through the presence of ancestor graves on land. The cementing of graves turns them into more concrete and durable proofs of ownership, and the reburial of relatives to disputed......The paper explores the roles of graves, ancestors and concrete pillars in disputes over land across different land-systems, -conflicts, and territory making in northern Uganda by comparing extended cases between Acholi in Gulu district and Ik in Kaabong district . In the post-conflict Acholi region...

  17. Base-By-Base: Single nucleotide-level analysis of whole viral genome alignments

    Directory of Open Access Journals (Sweden)

    Tcherepanov Vasily

    2004-07-01

    Full Text Available Abstract Background With ever increasing numbers of closely related virus genomes being sequenced, it has become desirable to be able to compare two genomes at a level more detailed than gene content because two strains of an organism may share the same set of predicted genes but still differ in their pathogenicity profiles. For example, detailed comparison of multiple isolates of the smallpox virus genome (each approximately 200 kb, with 200 genes is not feasible without new bioinformatics tools. Results A software package, Base-By-Base, has been developed that provides visualization tools to enable researchers to 1 rapidly identify and correct alignment errors in large, multiple genome alignments; and 2 generate tabular and graphical output of differences between the genomes at the nucleotide level. Base-By-Base uses detailed annotation information about the aligned genomes and can list each predicted gene with nucleotide differences, display whether variations occur within promoter regions or coding regions and whether these changes result in amino acid substitutions. Base-By-Base can connect to our mySQL database (Virus Orthologous Clusters; VOCs to retrieve detailed annotation information about the aligned genomes or use information from text files. Conclusion Base-By-Base enables users to quickly and easily compare large viral genomes; it highlights small differences that may be responsible for important phenotypic differences such as virulence. It is available via the Internet using Java Web Start and runs on Macintosh, PC and Linux operating systems with the Java 1.4 virtual machine.

  18. The Constrained Maximal Expression Level Owing to Haploidy Shapes Gene Content on the Mammalian X Chromosome

    KAUST Repository

    Hurst, Laurence D.

    2015-12-18

    X chromosomes are unusual in many regards, not least of which is their nonrandom gene content. The causes of this bias are commonly discussed in the context of sexual antagonism and the avoidance of activity in the male germline. Here, we examine the notion that, at least in some taxa, functionally biased gene content may more profoundly be shaped by limits imposed on gene expression owing to haploid expression of the X chromosome. Notably, if the X, as in primates, is transcribed at rates comparable to the ancestral rate (per promoter) prior to the X chromosome formation, then the X is not a tolerable environment for genes with very high maximal net levels of expression, owing to transcriptional traffic jams. We test this hypothesis using The Encyclopedia of DNA Elements (ENCODE) and data from the Functional Annotation of the Mammalian Genome (FANTOM5) project. As predicted, the maximal expression of human X-linked genes is much lower than that of genes on autosomes: on average, maximal expression is three times lower on the X chromosome than on autosomes. Similarly, autosome-to-X retroposition events are associated with lower maximal expression of retrogenes on the X than seen for X-to-autosome retrogenes on autosomes. Also as expected, X-linked genes have a lesser degree of increase in gene expression than autosomal ones (compared to the human/Chimpanzee common ancestor) if highly expressed, but not if lowly expressed. The traffic jam model also explains the known lower breadth of expression for genes on the X (and the Z of birds), as genes with broad expression are, on average, those with high maximal expression. As then further predicted, highly expressed tissue-specific genes are also rare on the X and broadly expressed genes on the X tend to be lowly expressed, both indicating that the trend is shaped by the maximal expression level not the breadth of expression per se. Importantly, a limit to the maximal expression level explains biased tissue of expression

  19. The Constrained Maximal Expression Level Owing to Haploidy Shapes Gene Content on the Mammalian X Chromosome.

    Directory of Open Access Journals (Sweden)

    Laurence D Hurst

    2015-12-01

    Full Text Available X chromosomes are unusual in many regards, not least of which is their nonrandom gene content. The causes of this bias are commonly discussed in the context of sexual antagonism and the avoidance of activity in the male germline. Here, we examine the notion that, at least in some taxa, functionally biased gene content may more profoundly be shaped by limits imposed on gene expression owing to haploid expression of the X chromosome. Notably, if the X, as in primates, is transcribed at rates comparable to the ancestral rate (per promoter prior to the X chromosome formation, then the X is not a tolerable environment for genes with very high maximal net levels of expression, owing to transcriptional traffic jams. We test this hypothesis using The Encyclopedia of DNA Elements (ENCODE and data from the Functional Annotation of the Mammalian Genome (FANTOM5 project. As predicted, the maximal expression of human X-linked genes is much lower than that of genes on autosomes: on average, maximal expression is three times lower on the X chromosome than on autosomes. Similarly, autosome-to-X retroposition events are associated with lower maximal expression of retrogenes on the X than seen for X-to-autosome retrogenes on autosomes. Also as expected, X-linked genes have a lesser degree of increase in gene expression than autosomal ones (compared to the human/Chimpanzee common ancestor if highly expressed, but not if lowly expressed. The traffic jam model also explains the known lower breadth of expression for genes on the X (and the Z of birds, as genes with broad expression are, on average, those with high maximal expression. As then further predicted, highly expressed tissue-specific genes are also rare on the X and broadly expressed genes on the X tend to be lowly expressed, both indicating that the trend is shaped by the maximal expression level not the breadth of expression per se. Importantly, a limit to the maximal expression level explains biased

  20. Effects of oxytocin and methacholine on cyclic nucleotide levels of rabbit myometrium.

    Science.gov (United States)

    Schlageter, N; Janis, R A; Gualtieri, R T; Hechter, O

    1980-03-01

    The effects of oxytocin and methacholine on cyclic nucleotide levels in estrogen-primed rabbit myometrium were studied in the presence and absence of 1-methyl-3-isobutyl xanthine (MIX), a phosphodiesterase inhibitor. In the absence of MIX, methacholine increased guanosine 3',5'-cyclic monophosphate (cGMP) levels at a time when contraction was decreasing, but had no influence on adenosine 3',5'-cyclic monophosphate (cAMP) levels. In contrast, oxytocin did not elevate cGMP, but rapidly decreased cAMP levels. MIX (1 mM) increased both cAMP and cGMP levels. Oxytocin or methacholine further increased cGMP, indicating activation of guanylate cyclase. Oxytocin- but not methacholine-induced stimulation of guanylate cyclase was abolished in Ca2+-free solution. Oxytocin increased cAMP over the levels produced by MIX alone, whereas methacholine decreased cAMP below the MIX control values; these effects were insensitive to indomethacin. Tissue levels of cGMP and cAMP did not directly correlate with isometric tension. The results also indicate that both oxytocin and methacholine stimulate guanylate cyclase but have opposing effects on adenylate cyclase of rabbit myometrium.

  1. RNase MRP and the RNA processing cascade in the eukaryotic ancestor.

    Science.gov (United States)

    Woodhams, Michael D; Stadler, Peter F; Penny, David; Collins, Lesley J

    2007-02-08

    Within eukaryotes there is a complex cascade of RNA-based macromolecules that process other RNA molecules, especially mRNA, tRNA and rRNA. An example is RNase MRP processing ribosomal RNA (rRNA) in ribosome biogenesis. One hypothesis is that this complexity was present early in eukaryotic evolution; an alternative is that an initial simpler network later gained complexity by gene duplication in lineages that led to animals, fungi and plants. Recently there has been a rapid increase in support for the complexity-early theory because the vast majority of these RNA-processing reactions are found throughout eukaryotes, and thus were likely to be present in the last common ancestor of living eukaryotes, herein called the Eukaryotic Ancestor. We present an overview of the RNA processing cascade in the Eukaryotic Ancestor and investigate in particular, RNase MRP which was previously thought to have evolved later in eukaryotes due to its apparent limited distribution in fungi and animals and plants. Recent publications, as well as our own genomic searches, find previously unknown RNase MRP RNAs, indicating that RNase MRP has a wide distribution in eukaryotes. Combining secondary structure and promoter region analysis of RNAs for RNase MRP, along with analysis of the target substrate (rRNA), allows us to discuss this distribution in the light of eukaryotic evolution. We conclude that RNase MRP can now be placed in the RNA-processing cascade of the Eukaryotic Ancestor, highlighting the complexity of RNA-processing in early eukaryotes. Promoter analyses of MRP-RNA suggest that regulation of the critical processes of rRNA cleavage can vary, showing that even these key cellular processes (for which we expect high conservation) show some species-specific variability. We present our consensus MRP-RNA secondary structure as a useful model for further searches.

  2. 2,3-diphosphoglycerate, nucleotide phosophate, and organic and inorganic phosphate levels during the early phases of diabetic ketoacidosis.

    Science.gov (United States)

    Kanter, Y; Gerson, J R; Bessman, A N

    1977-05-01

    The relation between serum and red blood cell (RBC) inorganic phosphate levels, RBC 2,3-diphosphoglycerate (2,3-DPG) levels, RBC nucleotide phosphate (Pn), and RBC total phosphate (Pt) levels were studied during the early phases of treatment and recovery from diabetic ketoacidosis (DKA). A steady drop in serum inorganic phosphate was found during the first 24 hours of insulin treatment and was most profound at 24 hours. No statistically significant changes (P less than 0.05) were found in red cell inorganic phosphate or nucleotide phosphate levels during the 24-hour study period. The levels of total red cell phosphate were lower in this group of patients than in nonacidotic diabetic subjects and decreased slightly after 24 hours of treatment. The red cell 2,3-DPG levels were low at the initiation of therapy and remained low during the 24-hour study period. Glucose, bicarbonate, lactate, and ketone levels fell in linear patterns with treatment. In view of the current evidence for the effects of low 2,3-DPG on oxygen delivery and the relation of low serum phosphate levels to RBC glycolysis and 2,3-DPG formation, this study reemphasizes the need for phosphate replacement during the early phases of treatment of DKA.

  3. Identifying and engineering promoters for high level and sustainable therapeutic recombinant protein production in cultured mammalian cells.

    Science.gov (United States)

    Ho, Steven C L; Yang, Yuansheng

    2014-08-01

    Promoters are essential on plasmid vectors to initiate transcription of the transgenes when generating therapeutic recombinant proteins expressing mammalian cell lines. High and sustained levels of gene expression are desired during therapeutic protein production while gene expression is useful for cell engineering. As many finely controlled promoters exhibit cell and product specificity, new promoters need to be identified, optimized and carefully evaluated before use. Suitable promoters can be identified using techniques ranging from simple molecular biology methods to modern high-throughput omics screenings. Promoter engineering is often required after identification to either obtain high and sustained expression or to provide a wider range of gene expression. This review discusses some of the available methods to identify and engineer promoters for therapeutic recombinant protein expression in mammalian cells.

  4. Amino acid and nucleotide recurrence in aligned sequences: synonymous substitution patterns in association with global and local base compositions.

    Science.gov (United States)

    Nishizawa, M; Nishizawa, K

    2000-10-01

    The tendency for repetitiveness of nucleotides in DNA sequences has been reported for a variety of organisms. We show that the tendency for repetitive use of amino acids is widespread and is observed even for segments conserved between human and Drosophila melanogaster at the level of >50% amino acid identity. This indicates that repetitiveness influences not only the weakly constrained segments but also those sequence segments conserved among phyla. Not only glutamine (Q) but also many of the 20 amino acids show a comparable level of repetitiveness. Repetitiveness in bases at codon position 3 is stronger for human than for D.melanogaster, whereas local repetitiveness in intron sequences is similar between the two organisms. While genes for immune system-specific proteins, but not ancient human genes (i.e. human homologs of Escherichia coli genes), have repetitiveness at codon bases 1 and 2, repetitiveness at codon base 3 for these groups is similar, suggesting that the human genome has at least two mechanisms generating local repetitiveness. Neither amino acid nor nucleotide repetitiveness is observed beyond the exon boundary, denying the possibility that such repetitiveness could mainly stem from natural selection on mRNA or protein sequences. Analyses of mammalian sequence alignments show that while the 'between gene' GC content heterogeneity, which is linked to 'isochores', is a principal factor associated with the bias in substitution patterns in human, 'within gene' heterogeneity in nucleotide composition is also associated with such bias on a more local scale. The relationship amongst the various types of repetitiveness is discussed.

  5. Nucleotide excision repair in differentiated cells

    Energy Technology Data Exchange (ETDEWEB)

    Wees, Caroline van der [Department of Toxicogenetics, Leiden University Medical Center, Leiden (Netherlands); Department of Cardiology, Leiden University Medical Center, Leiden (Netherlands); Jansen, Jacob [Department of Toxicogenetics, Leiden University Medical Center, Leiden (Netherlands); Vrieling, Harry [Department of Toxicogenetics, Leiden University Medical Center, Leiden (Netherlands); Laarse, Arnoud van der [Department of Cardiology, Leiden University Medical Center, Leiden (Netherlands); Zeeland, Albert van [Department of Toxicogenetics, Leiden University Medical Center, Leiden (Netherlands); Mullenders, Leon [Department of Toxicogenetics, Leiden University Medical Center, Leiden (Netherlands)]. E-mail: l.mullenders@lumc.nl

    2007-01-03

    Nucleotide excision repair (NER) is the principal pathway for the removal of a wide range of DNA helix-distorting lesions and operates via two NER subpathways, i.e. global genome repair (GGR) and transcription-coupled repair (TCR). Although detailed information is available on expression and efficiency of NER in established mammalian cell lines, little is known about the expression of NER pathways in (terminally) differentiated cells. The majority of studies in differentiated cells have focused on repair of UV-induced cyclobutane pyrimidine dimers (CPD) and 6-4-photoproducts (6-4PP) because of the high frequency of photolesions at low level of toxicity and availability of sensitive technologies to determine photolesions in defined regions of the genome. The picture that emerges from these studies is blurred and rather complex. Fibroblasts and terminally differentiated myocytes of the rat heart display equally efficient GGR of 6-4PP but poor repair of CPD due to the absence of p48 expression. This repair phenotype is clearly different from human terminal differentiated neurons. Furthermore, both cell types were found to carry out TCR of CPD, thus mimicking the repair phenotype of established rodent cell lines. In contrast, in intact rat spermatogenic cells repair was very inefficient at the genome overall level and in transcriptionally active genes indicating that GGR and TCR are non-functional. Also, non-differentiated mouse embryonic stem (ES) cells exhibit low levels of NER after UV irradiation. However, the mechanisms that lead to low NER activity are clearly different: in differentiated spermatogenic cells differences in chromatin compaction and sequestering of NER proteins may underlie the lack of NER activity in pre-meiotic cells, whereas in non-differentiated ES cells NER is impaired by a strong apoptotic response.

  6. Steroid hydroxylations: A paradigm for cytochrome P450 catalyzed mammalian monooxygenation reactions

    International Nuclear Information System (INIS)

    Estabrook, Ronald W.

    2005-01-01

    The present article reviews the history of research on the hydroxylation of steroid hormones as catalyzed by enzymes present in mammalian tissues. The report describes how studies of steroid hormone synthesis have played a central role in the discovery of the monooxygenase functions of the cytochrome P450s. Studies of steroid hydroxylation reactions can be credited with showing that: (a) the adrenal mitochondrial enzyme catalyzing the 11β-hydroxylation of deoxycorticosterone was the first mammalian enzyme shown by O 18 studies to be an oxygenase; (b) the adrenal microsomal enzyme catalyzing the 21-hydroxylation of steroids was the first mammalian enzyme to show experimentally the proposed 1:1:1 stoichiometry (substrate:oxygen:reduced pyridine nucleotide) of a monooxygenase reaction; (c) application of the photochemical action spectrum technique for reversal of carbon monoxide inhibition of the 21-hydroxylation of 17α-OH progesterone was the first demonstration that cytochrome P450 was an oxygenase; (d) spectrophotometric studies of the binding of 17α-OH progesterone to bovine adrenal microsomal P450 revealed the first step in the cyclic reaction scheme of P450, as it catalyzes the 'activation' of oxygen in a monooxygenase reaction; (e) purified adrenodoxin was shown to function as an electron transport component of the adrenal mitochondrial monooxygenase system required for the activity of the 11β-hydroxylase reaction. Adrenodoxin was the first iron-sulfur protein isolated and purified from mammalian tissues and the first soluble protein identified as a reductase of a P450; (f) fractionation of adrenal mitochondrial P450 and incubation with adrenodoxin and a cytosolic (flavoprotein) fraction were the first demonstration of the reconstitution of a mammalian P450 monooxygenase reaction

  7. Guanine nucleotide regulation of α1-adrenergic receptors of muscle and kidney eptihelial cells

    International Nuclear Information System (INIS)

    Terman, B.I.; Hughes, R.J.; Slivka, S.R.; Insel, P.A.

    1986-01-01

    The authors have examined the effect of guanine nucleotides on the interaction of adrenergic agents with α 1 -adrenergic receptors of two cell lines, the Madin-Darby Canine Kidney (MDCK) and BC3H-1 muscle cells. While gaunylylimidodiphosphoate (Gpp(NH)p) had no effect on the affinity or the total number of [ -3 H]prazosin binding sites in membranes prepared from these cells, the nucleotide decreased the apparent affinity of the agonist epinephrine in competing for [ 3 H]prazosin binding sites in both cell types. The EC 50 of Gpp(NH)p was ∼100 μM, and a maximal effect was seen at 500 μM. In contrast, 100 μM Gpp(NH)p yielding maximal shifts in binding of epinephrine to β-adrenergic receptors in BC3H-1 cell membranes. Guanine nucleotides were significantly more effective than adenine nucleotides in shifting agonist affinity for the α 1 -receptor and Mg ++ was required to observe a maximal effect. α 1 -receptor agonists activated phosphatidylinositol (PI) hydrolysis in both cell types, but have no direct effect on membrane adenylate cyclase activity. In intact BC3H-1 cells, α 1 -agonists inhibited β-adrenergic cAMP production, an effect which appears in preliminary studies not to result from enhanced phosphodieterase activity. These results show that agonist binding to α 1 -adrenergic receptors in mammalian kidney and muscle cells is regulated by guanine nucleotides. This regulation and inturn transmembrane signalling (PI hydrolysis) by these receptors appear to involve a guanine nucleotide binding (G) protein, which may be different than G/sub s/ and G/sub i/

  8. Evolutionary changes of Hox genes and relevant regulatory factors provide novel insights into mammalian morphological modifications.

    Science.gov (United States)

    Li, Kui; Sun, Xiaohui; Chen, Meixiu; Sun, Yingying; Tian, Ran; Wang, Zhengfei; Xu, Shixia; Yang, Guang

    2018-01-01

    The diversity of body plans of mammals accelerates the innovation of lifestyles and the extensive adaptation to different habitats, including terrestrial, aerial and aquatic habitats. However, the genetic basis of those phenotypic modifications, which have occurred during mammalian evolution, remains poorly explored. In the present study, we synthetically surveyed the evolutionary pattern of Hox clusters that played a powerful role in the morphogenesis along the head-tail axis of animal embryos and the main regulatory factors (Mll, Bmi1 and E2f6) that control the expression of Hox genes. A deflected density of repetitive elements and lineage-specific radical mutations of Mll have been determined in marine mammals with morphological changes, suggesting that evolutionary changes may alter Hox gene expression in these lineages, leading to the morphological modification of these lineages. Although no positive selection was detected at certain ancestor nodes of lineages, the increased ω values of Hox genes implied the relaxation of functional constraints of these genes during the mammalian evolutionary process. More importantly, 49 positively-selected sites were identified in mammalian lineages with phenotypic modifications, indicating adaptive evolution acting on Hox genes and regulatory factors. In addition, 3 parallel amino acid substitutions in some Hox genes were examined in marine mammals, which might be responsible for their streamlined body. © 2017 The Authors. Integrative Zoology published by International Society of Zoological Sciences, Institute of Zoology/Chinese Academy of Sciences and John Wiley & Sons Australia, Ltd.

  9. Mammalian translation elongation factor eEF1A2: X-ray structure and new features of GDP/GTP exchange mechanism in higher eukaryotes.

    Science.gov (United States)

    Crepin, Thibaut; Shalak, Vyacheslav F; Yaremchuk, Anna D; Vlasenko, Dmytro O; McCarthy, Andrew; Negrutskii, Boris S; Tukalo, Michail A; El'skaya, Anna V

    2014-11-10

    Eukaryotic elongation factor eEF1A transits between the GTP- and GDP-bound conformations during the ribosomal polypeptide chain elongation. eEF1A*GTP establishes a complex with the aminoacyl-tRNA in the A site of the 80S ribosome. Correct codon-anticodon recognition triggers GTP hydrolysis, with subsequent dissociation of eEF1A*GDP from the ribosome. The structures of both the 'GTP'- and 'GDP'-bound conformations of eEF1A are unknown. Thus, the eEF1A-related ribosomal mechanisms were anticipated only by analogy with the bacterial homolog EF-Tu. Here, we report the first crystal structure of the mammalian eEF1A2*GDP complex which indicates major differences in the organization of the nucleotide-binding domain and intramolecular movements of eEF1A compared to EF-Tu. Our results explain the nucleotide exchange mechanism in the mammalian eEF1A and suggest that the first step of eEF1A*GDP dissociation from the 80S ribosome is the rotation of the nucleotide-binding domain observed after GTP hydrolysis. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  10. Insights into the evolution of mammalian telomerase: Platypus TERT shares similarities with genes of birds and other reptiles and localizes on sex chromosomes

    Directory of Open Access Journals (Sweden)

    Hrdličková Radmila

    2012-06-01

    Full Text Available Abstract Background The TERT gene encodes the catalytic subunit of the telomerase complex and is responsible for maintaining telomere length. Vertebrate telomerase has been studied in eutherian mammals, fish, and the chicken, but less attention has been paid to other vertebrates. The platypus occupies an important evolutionary position, providing unique insight into the evolution of mammalian genes. We report the cloning of a platypus TERT (OanTERT ortholog, and provide a comparison with genes of other vertebrates. Results The OanTERT encodes a protein with a high sequence similarity to marsupial TERT and avian TERT. Like the TERT of sauropsids and marsupials, as well as that of sharks and echinoderms, OanTERT contains extended variable linkers in the N-terminal region suggesting that they were present already in basal vertebrates and lost independently in ray-finned fish and eutherian mammals. Several alternatively spliced OanTERT variants structurally similar to avian TERT variants were identified. Telomerase activity is expressed in all platypus tissues like that of cold-blooded animals and murine rodents. OanTERT was localized on pseudoautosomal regions of sex chromosomes X3/Y2, expanding the homology between human chromosome 5 and platypus sex chromosomes. Synteny analysis suggests that TERT co-localized with sex-linked genes in the last common mammalian ancestor. Interestingly, female platypuses express higher levels of telomerase in heart and liver tissues than do males. Conclusions OanTERT shares many features with TERT of the reptilian outgroup, suggesting that OanTERT represents the ancestral mammalian TERT. Features specific to TERT of eutherian mammals have, therefore, evolved more recently after the divergence of monotremes.

  11. Is Ancestor veneration the most universal of all world religions? A critique of modernist cosmological bias

    Directory of Open Access Journals (Sweden)

    Thomas Reuter

    2015-07-01

    Full Text Available Research by anthropologists engaged with the Comparative Austronesia Project (Australian National University has amassed an enormous data set for ethnological comparison between the religions of Austronesian-speaking societies, a language group to which nearly all Indonesian societies also belong. Comparative analysis reveals that ancestor veneration is a key-shared feature among “Austronesian” religious cosmologies; a feature that also resonates strongly with the ancestor-focused religions characteristic of East Asia. Characteristically, the religions of Austronesian-speaking societies focus on the core idea of a sacred time and place of ancestral origin and the continuous flow of life that is issuing forth from this source. Present-day individuals connect with the place and time of origin though ritual acts of retracing a historical path of migration to its source. What can this seemingly exotic notion of a flow of life reveal about the human condition writ large? Is it merely a curiosity of the ethnographic record of this region, a traditional religious insight forgotten even by many of the people whose traditional religion this is, but who have come under the influence of so-called world religions? Or is there something of great importance to be learnt from the Austronesian approach to life? Such questions have remained unasked until now, I argue, because a systematic cosmological bias within western thought has largely prevented us from taking Ancestor Religion and other forms of “traditional knowledge” seriously as an alternative truth claim. While I have discussed elsewhere the significance of Ancestor Religion in reference to my own research in highland Bali, I will attempt in this paper to remove this bias by its roots. I do so by contrasting two modes of thought: the “incremental dualism” of precedence characteristic of Austronesian cultures and their Ancestor Religions, and the “transcendental dualism” of mind and

  12. Targeted mutations induced by a single acetylaminofluorene DNA adduct in mammalian cells and bacteria

    International Nuclear Information System (INIS)

    Moryia, M.; Takeshita, M.; Johnson, F.; Peden, K.; Will, S.; Grollman, A.P.

    1988-01-01

    Mutagenic specificity of 2-acetylaminofluorene (AAF) has been established in mammalian cells and several strains of bacteria by using a shuttle plasmid vector containing a single N-(deoxyguanosin-8-yl)acetylaminofluorene (C8-dG-AAF) adduct. The nucleotide sequence of the gene conferring tetracycline resistance was modified by conservative codon replacement so as to accommodate the sequence d(CCTTCGCTAC) flanked by two restriction sites, Bsm I and Xho I. The corresponding synthetic oligodeoxynucleotide underwent reaction with 2-(N-acetoxy-N-acetylamino)-fluorene (AAAF), forming a single dG-AAF adduct. This modified oligodeoxynucleotide was hybridized to its complementary strand and ligated between the Bsm I and Xho I sites of the vector. Plasmids containing the C8-dG-AAF adduct were used to transfect simian virus 40-transformed simian kidney (COS-1) cells and to transform several AB strains of Escherichia coli. Colonies containing mutant plasmides were detected by hybridization to 32 P-labeled oligodeoxynucleotides. Presence of the single DNA adduct increased the mutation frequency by 8-fold in both COS cells and E. coli. Over 80% of mutations detected in both systems were targeted and represented G x C → C x G or G x C → T x A transversions or single nucleotide deletions. The authors conclude that modification of a deoxyguanosine residue with AAF preferentially induces mutations targeted at this site when a plasmid containing a single C8-dG-AAF adduct is introduced into mammalian cells or bacteria

  13. Ric-8A, a Gα protein guanine nucleotide exchange factor potentiates taste receptor signaling

    Directory of Open Access Journals (Sweden)

    Claire J Fenech

    2009-10-01

    Full Text Available Taste receptors for sweet, bitter and umami tastants are G-protein coupled receptors (GPCRs. While much effort has been devoted to understanding G-protein-receptor interactions and identifying the components of the signalling cascade downstream of these receptors, at the level of the G-protein the modulation of receptor signal transduction remains relatively unexplored. In this regard a taste-specific regulator of G-protein signaling (RGS, RGS21, has recently been identified. To study whether guanine nucleotide exchange factors (GEFs are involved in the transduction of the signal downstream of the taste GPCRs we investigated the expression of Ric-8A and Ric-8B in mouse taste cells and their interaction with G-protein subunits found in taste buds. Mammalian Ric-8 proteins were initially identified as potent GEFs for a range of Gα subunits and Ric-8B has recently been shown to amplify olfactory signal transduction. We find that both Ric-8A and Ric-8B are expressed in a large portion of taste bud cells and that most of these cells contain IP3R-3 a marker for sweet, umami and bitter taste receptor cells. Ric-8A interacts with Gα-gustducin and Gαi2 through which it amplifies the signal transduction of hTas2R16, a receptor for bitter compounds. Overall, these findings are consistent with a role for Ric-8 in mammalian taste signal transduction.

  14. Masticatory loading, function, and plasticity: a microanatomical analysis of mammalian circumorbital soft-tissue structures.

    Science.gov (United States)

    Jasarević, Eldin; Ning, Jie; Daniel, Ashley N; Menegaz, Rachel A; Johnson, Jeffrey J; Stack, M Sharon; Ravosa, Matthew J

    2010-04-01

    In contrast to experimental evidence regarding the postorbital bar, postorbital septum, and browridge, there is exceedingly little evidence regarding the load-bearing nature of soft-tissue structures of the mammalian circumorbital region. This hinders our understanding of pronounced transformations during primate origins, in which euprimates evolved a postorbital bar from an ancestor with the primitive mammalian condition where only soft tissues spanned the lateral orbital margin between frontal bone and zygomatic arch. To address this significant gap, we investigated the postorbital microanatomy of rabbits subjected to long-term variation in diet-induced masticatory stresses. Rabbits exhibit a masticatory complex and feeding behaviors similar to primates, yet retain a more primitive mammalian circumorbital region. Three cohorts were obtained as weanlings and raised on different diets until adult. Following euthanasia, postorbital soft tissues were dissected away, fixed, and decalcified. These soft tissues were divided into inferior, intermediate, and superior units and then dehydrated, embedded, and sectioned. H&E staining was used to characterize overall architecture. Collagen orientation and complexity were evaluated via picrosirius-red staining. Safranin-O identified proteoglycan content with additional immunostaining performed to assess Type-II collagen expression. Surprisingly, the ligament along the lateral orbital wall was composed of elastic fibrocartilage. A more degraded organization of collagen fibers in this postorbital fibrocartilage is correlated with increased masticatory forces due to a more fracture-resistant diet. Furthermore, the lack of marked changes in the extracellular composition of the lateral orbital wall related to tissue viscoelasticity suggests it is unlikely that long-term exposure to elevated masticatory stresses underlies the development of a bony postorbital bar. (c) 2010 Wiley-Liss, Inc.

  15. A molecular clock dates the common ancestor of European-type porcine reproductive and respiratory syndrome virus at more than 10 years before the emergence of disease

    DEFF Research Database (Denmark)

    Forsberg, Roald; Oleksiewicz, Martin B.; Krabbe Petersen, Anne Mette

    2001-01-01

    an accurate molecular clock for the European PRRSV ORF 3 gene, place the root in the genealogy, estimate the rate of nucleotide substitution, and date the most recent common viral ancestor of the data set to 1979; more than 10 years before the onset of the European epidemic. Based on these findings, we...... conclude that PRRSV virus most likely entered the pig population some time before the epidemic emergence of the virus, and hence, that emergence of European-type PRRSV is not the result of a recent species transmission event. Together, our results show that ORF3 sequencing is a valuable epidemiologic tool...... for examining the emergence and spread of PRRSV in Europe. As such, the panel of well-characterized and highly divergent ORF3 sequences described in this study provides a reference point for future molecular epidemiologic studies....

  16. Gaining insights into the codon usage patterns of TP53 gene across eight mammalian species.

    Directory of Open Access Journals (Sweden)

    Tarikul Huda Mazumder

    Full Text Available TP53 gene is known as the "guardian of the genome" as it plays a vital role in regulating cell cycle, cell proliferation, DNA damage repair, initiation of programmed cell death and suppressing tumor growth. Non uniform usage of synonymous codons for a specific amino acid during translation of protein known as codon usage bias (CUB is a unique property of the genome and shows species specific deviation. Analysis of codon usage bias with compositional dynamics of coding sequences has contributed to the better understanding of the molecular mechanism and the evolution of a particular gene. In this study, the complete nucleotide coding sequences of TP53 gene from eight different mammalian species were used for CUB analysis. Our results showed that the codon usage patterns in TP53 gene across different mammalian species has been influenced by GC bias particularly GC3 and a moderate bias exists in the codon usage of TP53 gene. Moreover, we observed that nature has highly favored the most over represented codon CTG for leucine amino acid but selected against the ATA codon for isoleucine in TP53 gene across all mammalian species during the course of evolution.

  17. The proteomic complexity and rise of the primordial ancestor of diversified life

    Directory of Open Access Journals (Sweden)

    Kim Kyung

    2011-05-01

    Full Text Available Abstract Background The last universal common ancestor represents the primordial cellular organism from which diversified life was derived. This urancestor accumulated genetic information before the rise of organismal lineages and is considered to be either a simple 'progenote' organism with a rudimentary translational apparatus or a more complex 'cenancestor' with almost all essential biological processes. Recent comparative genomic studies support the latter model and propose that the urancestor was similar to modern organisms in terms of gene content. However, most of these studies were based on molecular sequences, which are fast evolving and of limited value for deep evolutionary explorations. Results Here we engage in a phylogenomic study of protein domain structure in the proteomes of 420 free-living fully sequenced organisms. Domains were defined at the highly conserved fold superfamily (FSF level of structural classification and an iterative phylogenomic approach was used to reconstruct max_set and min_set FSF repertoires as upper and lower bounds of the urancestral proteome. While the functional make up of the urancestral sets was complex, they represent only 5-11% of the 1,420 FSFs of extant proteomes and their make up and reuse was at least 5 and 3 times smaller than proteomes of free-living organisms, repectively. Trees of proteomes reconstructed directly from FSFs or from molecular functions, which included the max_set and min_set as articial taxa, showed that urancestors were always placed at their base and rooted the tree of life in Archaea. Finally, a molecular clock of FSFs suggests the min_set reflects urancestral genetic make up more reliably and confirms diversified life emerged about 2.9 billion years ago during the start of planet oxygenation. Conclusions The minimum urancestral FSF set reveals the urancestor had advanced metabolic capabilities, was especially rich in nucleotide metabolism enzymes, had pathways for the

  18. NUCLEOTIDES IN INFANT FEEDING

    Directory of Open Access Journals (Sweden)

    L.G. Mamonova

    2007-01-01

    Full Text Available The article reviews the application of nucleotides-metabolites, playing a key role in many biological processes, for the infant feeding. The researcher provides the date on the nucleotides in the women's milk according to the lactation stages. She also analyzes the foreign experience in feeding newborns with nucleotides-containing milk formulas. The article gives a comparison of nucleotides in the adapted formulas represented in the domestic market of the given products.Key words: children, feeding, nucleotides.

  19. The Waikato river: Changing properties of a living Māori ancestor

    NARCIS (Netherlands)

    Meijl, A.H.M. van

    2015-01-01

    In Māori cosmology, rivers and other waterways are conceptualised as living ancestors, who have their own life force and spiritual strength. The special status of rivers in Māori society also explains why they are sometimes separated from other Māori claims to natural resources of which they were

  20. Detecting DNA double-stranded breaks in mammalian genomes by linear amplification-mediated high-throughput genome-wide translocation sequencing.

    Science.gov (United States)

    Hu, Jiazhi; Meyers, Robin M; Dong, Junchao; Panchakshari, Rohit A; Alt, Frederick W; Frock, Richard L

    2016-05-01

    Unbiased, high-throughput assays for detecting and quantifying DNA double-stranded breaks (DSBs) across the genome in mammalian cells will facilitate basic studies of the mechanisms that generate and repair endogenous DSBs. They will also enable more applied studies, such as those to evaluate the on- and off-target activities of engineered nucleases. Here we describe a linear amplification-mediated high-throughput genome-wide sequencing (LAM-HTGTS) method for the detection of genome-wide 'prey' DSBs via their translocation in cultured mammalian cells to a fixed 'bait' DSB. Bait-prey junctions are cloned directly from isolated genomic DNA using LAM-PCR and unidirectionally ligated to bridge adapters; subsequent PCR steps amplify the single-stranded DNA junction library in preparation for Illumina Miseq paired-end sequencing. A custom bioinformatics pipeline identifies prey sequences that contribute to junctions and maps them across the genome. LAM-HTGTS differs from related approaches because it detects a wide range of broken end structures with nucleotide-level resolution. Familiarity with nucleic acid methods and next-generation sequencing analysis is necessary for library generation and data interpretation. LAM-HTGTS assays are sensitive, reproducible, relatively inexpensive, scalable and straightforward to implement with a turnaround time of <1 week.

  1. Nucleotide Metabolism

    DEFF Research Database (Denmark)

    Martinussen, Jan; Willemoës, M.; Kilstrup, Mogens

    2011-01-01

    Metabolic pathways are connected through their utilization of nucleotides as supplier of energy, allosteric effectors, and their role in activation of intermediates. Therefore, any attempt to exploit a given living organism in a biotechnological process will have an impact on nucleotide metabolis...

  2. The mitochondrial genome of Frankliniella intonsa: insights into the evolution of mitochondrial genomes at lower taxonomic levels in Thysanoptera.

    Science.gov (United States)

    Yan, Dankan; Tang, Yunxia; Hu, Min; Liu, Fengquan; Zhang, Dongfang; Fan, Jiaqin

    2014-10-01

    Thrips is an ideal group for studying the evolution of mitochondrial (mt) genomes in the genus and family due to independent rearrangements within this order. The complete sequence of the mitochondrial DNA (mtDNA) of the flower thrips Frankliniella intonsa has been completed and annotated in this study. The circular genome is 15,215bp in length with an A+T content of 75.9% and contains the typical 37 genes and it has triplicate putative control regions. Nucleotide composition is A+T biased, and the majority of the protein-coding genes present opposite CG skew which is reflected by the nucleotide composition, codon and amino acid usage. Although the known thrips have massive gene rearrangements, it showed no reversal of strand asymmetry. Gene rearrangements have been found in the lower taxonomic levels of thrips. Three tRNA genes were translocated in the genus Frankliniella and eight tRNA genes in the family Thripidae. Although the gene arrangements of mt genomes of all three thrips species differ massively from the ancestral insect, they are all very similar to each other, indicating that there was a large rearrangement somewhere before the most recent common ancestor of these three species and very little genomic evolution or rearrangements after then. The extremely similar sequences among the CRs suggest that they are ongoing concerted evolution. Analyses of the up and downstream sequence of CRs reveal that the CR2 is actually the ancestral CR. The three CRs are in the same spot in each of the three thrips mt genomes which have the identical inverted genes. These characteristics might be obtained from the most recent common ancestor of this three thrips. Above observations suggest that the mt genomes of the three thrips keep a single massive rearrangement from the common ancestor and have low evolutionary rates among them. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Hydrogen peroxide production is affected by oxygen levels in mammalian cell culture.

    Science.gov (United States)

    Maddalena, Lucas A; Selim, Shehab M; Fonseca, Joao; Messner, Holt; McGowan, Shannon; Stuart, Jeffrey A

    2017-11-04

    Although oxygen levels in the extracellular space of most mammalian tissues are just a few percent, under standard cell culture conditions they are not regulated and are often substantially higher. Some cellular sources of reactive oxygen species, like NADPH oxidase 4, are sensitive to oxygen levels in the range between 'normal' physiological (typically 1-5%) and standard cell culture (up to 18%). Hydrogen peroxide in particular participates in signal transduction pathways via protein redox modifications, so the potential increase in its production under standard cell culture conditions is important to understand. We measured the rates of cellular hydrogen peroxide production in some common cell lines, including C2C12, PC-3, HeLa, SH-SY5Y, MCF-7, and mouse embryonic fibroblasts (MEFs) maintained at 18% or 5% oxygen. In all instances the rate of hydrogen peroxide production by these cells was significantly greater at 18% oxygen than at 5%. The increase in hydrogen peroxide production at higher oxygen levels was either abolished or substantially reduced by treatment with GKT 137831, a selective inhibitor of NADPH oxidase subunits 1 and 4. These data indicate that oxygen levels experienced by cells in culture influence hydrogen peroxide production via NADPH oxidase 1/4, highlighting the importance of regulating oxygen levels in culture near physiological values. However, we measured pericellular oxygen levels adjacent to cell monolayers under a variety of conditions and with different cell lines and found that, particularly when growing at 5% incubator oxygen levels, pericellular oxygen was often lower and variable. Together, these observations indicate the importance, and difficulty, of regulating oxygen levels experienced by cells in culture. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. gEVE: a genome-based endogenous viral element database provides comprehensive viral protein-coding sequences in mammalian genomes.

    Science.gov (United States)

    Nakagawa, So; Takahashi, Mahoko Ueda

    2016-01-01

    In mammals, approximately 10% of genome sequences correspond to endogenous viral elements (EVEs), which are derived from ancient viral infections of germ cells. Although most EVEs have been inactivated, some open reading frames (ORFs) of EVEs obtained functions in the hosts. However, EVE ORFs usually remain unannotated in the genomes, and no databases are available for EVE ORFs. To investigate the function and evolution of EVEs in mammalian genomes, we developed EVE ORF databases for 20 genomes of 19 mammalian species. A total of 736,771 non-overlapping EVE ORFs were identified and archived in a database named gEVE (http://geve.med.u-tokai.ac.jp). The gEVE database provides nucleotide and amino acid sequences, genomic loci and functional annotations of EVE ORFs for all 20 genomes. In analyzing RNA-seq data with the gEVE database, we successfully identified the expressed EVE genes, suggesting that the gEVE database facilitates studies of the genomic analyses of various mammalian species.Database URL: http://geve.med.u-tokai.ac.jp. © The Author(s) 2016. Published by Oxford University Press.

  5. Nucleotide diversity maps reveal variation in diversity among wheat genomes and chromosomes

    Directory of Open Access Journals (Sweden)

    McGuire Patrick E

    2010-12-01

    Full Text Available Abstract Background A genome-wide assessment of nucleotide diversity in a polyploid species must minimize the inclusion of homoeologous sequences into diversity estimates and reliably allocate individual haplotypes into their respective genomes. The same requirements complicate the development and deployment of single nucleotide polymorphism (SNP markers in polyploid species. We report here a strategy that satisfies these requirements and deploy it in the sequencing of genes in cultivated hexaploid wheat (Triticum aestivum, genomes AABBDD and wild tetraploid wheat (Triticum turgidum ssp. dicoccoides, genomes AABB from the putative site of wheat domestication in Turkey. Data are used to assess the distribution of diversity among and within wheat genomes and to develop a panel of SNP markers for polyploid wheat. Results Nucleotide diversity was estimated in 2114 wheat genes and was similar between the A and B genomes and reduced in the D genome. Within a genome, diversity was diminished on some chromosomes. Low diversity was always accompanied by an excess of rare alleles. A total of 5,471 SNPs was discovered in 1791 wheat genes. Totals of 1,271, 1,218, and 2,203 SNPs were discovered in 488, 463, and 641 genes of wheat putative diploid ancestors, T. urartu, Aegilops speltoides, and Ae. tauschii, respectively. A public database containing genome-specific primers, SNPs, and other information was constructed. A total of 987 genes with nucleotide diversity estimated in one or more of the wheat genomes was placed on an Ae. tauschii genetic map, and the map was superimposed on wheat deletion-bin maps. The agreement between the maps was assessed. Conclusions In a young polyploid, exemplified by T. aestivum, ancestral species are the primary source of genetic diversity. Low effective recombination due to self-pollination and a genetic mechanism precluding homoeologous chromosome pairing during polyploid meiosis can lead to the loss of diversity from large

  6. Non-nucleotide Agonists Triggering P2X7 Receptor Activation and Pore Formation

    Directory of Open Access Journals (Sweden)

    Francesco Di Virgilio

    2018-02-01

    Full Text Available The P2X7 receptor (P2X7R is a ligand-gated plasma membrane ion channel belonging to the P2X receptor subfamily activated by extracellular nucleotides. General consensus holds that the physiological (and maybe the only agonist is ATP. However, scattered evidence generated over the last several years suggests that ATP might not be the only agonist, especially at inflammatory sites. Solid data show that NAD+ covalently modifies the P2X7R of mouse T lymphocytes, thus lowering the ATP threshold for activation. Other structurally unrelated agents have been reported to activate the P2X7R via a poorly understood mechanism of action: (a the antibiotic polymyxin B, possibly a positive allosteric P2X7R modulator, (b the bactericidal peptide LL-37, (c the amyloidogenic β peptide, and (d serum amyloid A. Some agents, such as Alu-RNA, have been suggested to activate the P2X7R acting on the intracellular N- or C-terminal domains. Mode of P2X7R activation by these non-nucleotide ligands is as yet unknown; however, these observations raise the intriguing question of how these different non-nucleotide ligands may co-operate with ATP at inflammatory or tumor sites. New information obtained from the cloning and characterization of the P2X7R from exotic mammalian species (e.g., giant panda and data from recent patch-clamp studies are strongly accelerating our understanding of P2X7R mode of operation, and may provide hints to the mechanism of activation of P2X7R by non-nucleotide ligands.

  7. Distinctive features of single nucleotide alterations in induced pluripotent stem cells with different types of DNA repair deficiency disorders

    Science.gov (United States)

    Okamura, Kohji; Sakaguchi, Hironari; Sakamoto-Abutani, Rie; Nakanishi, Mahito; Nishimura, Ken; Yamazaki-Inoue, Mayu; Ohtaka, Manami; Periasamy, Vaiyapuri Subbarayan; Alshatwi, Ali Abdullah; Higuchi, Akon; Hanaoka, Kazunori; Nakabayashi, Kazuhiko; Takada, Shuji; Hata, Kenichiro; Toyoda, Masashi; Umezawa, Akihiro

    2016-01-01

    Disease-specific induced pluripotent stem cells (iPSCs) have been used as a model to analyze pathogenesis of disease. In this study, we generated iPSCs derived from a fibroblastic cell line of xeroderma pigmentosum (XP) group A (XPA-iPSCs), a rare autosomal recessive hereditary disease in which patients develop skin cancer in the areas of skin exposed to sunlight. XPA-iPSCs exhibited hypersensitivity to ultraviolet exposure and accumulation of single-nucleotide substitutions when compared with ataxia telangiectasia-derived iPSCs that were established in a previous study. However, XPA-iPSCs did not show any chromosomal instability in vitro, i.e. intact chromosomes were maintained. The results were mutually compensating for examining two major sources of mutations, nucleotide excision repair deficiency and double-strand break repair deficiency. Like XP patients, XPA-iPSCs accumulated single-nucleotide substitutions that are associated with malignant melanoma, a manifestation of XP. These results indicate that XPA-iPSCs may serve a monitoring tool (analogous to the Ames test but using mammalian cells) to measure single-nucleotide alterations, and may be a good model to clarify pathogenesis of XP. In addition, XPA-iPSCs may allow us to facilitate development of drugs that delay genetic alteration and decrease hypersensitivity to ultraviolet for therapeutic applications. PMID:27197874

  8. Sequence of cDNAs for mammalian H2A. Z, an evolutionarily diverged but highly conserved basal histone H2A isoprotein species

    Energy Technology Data Exchange (ETDEWEB)

    Hatch, C L; Bonner, W M

    1988-02-11

    The nucleotide sequences of cDNAs for the evolutionarily diverged but highly conserved basal H2A isoprotein, H2A.Z, have been determined for the rat, cow, and human. As a basal histone, H2A.Z is synthesized throughout the cell cycle at a constant rate, unlinked to DNA replication, and at a much lower rate in quiescent cells. Each of the cDNA isolates encodes the entire H2A.Z polypeptide. The human isolate is about 1.0 kilobases long. It contains a coding region of 387 nucleotides flanked by 106 nucleotides of 5'UTR and 376 nucleotides of 3'UTR, which contains a polyadenylation signal followed by a poly A tail. The bovine and rat cDNAs have 97 and 94% nucleotide positional identity to the human cDNA in the coding region and 98% in the proximal 376 nucleotides of the 3'UTR which includes the polyadenylation signal. A potential stem-forming sequence imbedded in a direct repeat is found centered at 261 nucleotides into the 3'UTR. Each of the cDNA clones could be transcribed and translated in vitro to yield H2A.Z protein. The mammalian H2A.Z cDNA coding sequences are approximately 80% similar to those in chicken and 75% to those in sea urchin.

  9. Deoxyribonucleotide pool analysis: functional association of thymidylate synthase with the other enzymes of DNA biosynthesis in mammalian cells

    International Nuclear Information System (INIS)

    Reddy, G.P.V.; Christiansen, E.

    1986-01-01

    Allosteric interaction between thymidylate synthase (TS) and the other enzymes of DNA biosynthesis was suggested from the authors observation that inhibitors of ribonucleotide reductase, topoisomerase of DNA polymerase-α inhibit TS in intact S phase CHEF/18 cells, but not in their soluble extracts. In addition the authors observed that 4'-(9-acridinylamino)-methanesulfon-m-anisidide (m-AMSA), a poison of topoisomerase II, had similar effects on TS activity in mammalian cells. They have examined if the inhibitory effects of these antimetabolites on TS is due to the accumulation of thymidine nucleotide(s) in intact cells, rather than to an allosteric interaction in the replitase complex. A novel method of nucleotide pool analysis revealed that in the presence of these antimetabolites the incorporation of radioactivity from 3 H-deoxyuridine (dUrd) into thymidine nucleotide pools inside the cell did not increase as compared to the control. Furthermore, TS activity as measured in-vitro was not inhibited by supraphysiological concentrations (50μM) of thymidine mono- or tri-phosphates. None of these antimetabolites dramatically influenced the uptake of dUrd and its subsequent phosphorylation to deoxyuridine monophosphate. Therefore, they suggest that the inhibitory effect of these antimetabolites is due to the functional association of their target enzymes with TS

  10. Evolution of life history and behavior in Hominidae: towards phylogenetic reconstruction of the chimpanzee-human last common ancestor.

    Science.gov (United States)

    Duda, Pavel; Zrzavý, Jan

    2013-10-01

    The origin of the fundamental behavioral differences between humans and our closest living relatives is one of the central issues of evolutionary anthropology. The prominent, chimpanzee-based referential model of early hominin behavior has recently been challenged on the basis of broad multispecies comparisons and newly discovered fossil evidence. Here, we argue that while behavioral data on extant great apes are extremely relevant for reconstruction of ancestral behaviors, these behaviors should be reconstructed trait by trait using formal phylogenetic methods. Using the widely accepted hominoid phylogenetic tree, we perform a series of character optimization analyses using 65 selected life-history and behavioral characters for all extant hominid species. This analysis allows us to reconstruct the character states of the last common ancestors of Hominoidea, Hominidae, and the chimpanzee-human last common ancestor. Our analyses demonstrate that many fundamental behavioral and life-history attributes of hominids (including humans) are evidently ancient and likely inherited from the common ancestor of all hominids. However, numerous behaviors present in extant great apes represent their own terminal autapomorphies (both uniquely derived and homoplastic). Any evolutionary model that uses a single extant species to explain behavioral evolution of early hominins is therefore of limited use. In contrast, phylogenetic reconstruction of ancestral states is able to provide a detailed suite of behavioral, ecological and life-history characters for each hypothetical ancestor. The living great apes therefore play an important role for the confident identification of the traits found in the chimpanzee-human last common ancestor, some of which are likely to represent behaviors of the fossil hominins. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Population genetics of foxtail millet and its wild ancestor

    Directory of Open Access Journals (Sweden)

    Wang Yongfang

    2010-10-01

    Full Text Available Abstract Background Foxtail millet (Setaria italica (L. P. Beauv., one of the most ancient domesticated crops, is becoming a model system for studying biofuel crops and comparative genomics in the grasses. However, knowledge on the level of genetic diversity and linkage disequilibrium (LD is very limited in this crop and its wild ancestor, green foxtail (Setaria viridis (L. P. Beauv.. Such information would help us to understand the domestication process of cultivated species and will allow further research in these species, including association mapping and identification of agricultural significant genes involved in domestication. Results In this study, we surveyed DNA sequence for nine loci across 50 accessions of cultivated foxtail millet and 34 of its wild progenitor. We found a low level of genetic diversity in wild green foxtail (θ = 0.0059, θ means Watterson's estimator of θ. Despite of a 55% loss of its wild diversity, foxtail millet still harbored a considerable level of diversity (θ = 0.0027 when compared to rice and sorghum (θ = 0.0024 and 0.0034, respectively. The level of LD in the domesticated foxtail millet extends to 1 kb, while it decayed rapidly to a negligible level within 150 bp in wild green foxtail. Using coalescent simulation, we estimated the bottleneck severity at k = 0.6095 when ρ/θ = 1. These results indicated that the domestication bottleneck of foxtail millet was more severe than that of maize but slightly less pronounced than that of rice. Conclusions The results in this study establish a general framework for the domestication history of foxtail millet. The low level of genetic diversity and the increased level of LD in foxtail millet are mainly caused by a population bottleneck, although gene flow from foxtail millet to green foxtail is another factor that may have shaped the pattern of genetic diversity of these two related gene pools. The knowledge provided in this study will benefit future population

  12. Mammalian hibernation: lessons for organ preparation?

    Science.gov (United States)

    Green, C

    2000-01-01

    The adaptations to low environmental temperatures exhibited in mammalian hibernation are many and varied, and involve molecular and cellular mechanisms as well as the systematic physiology of the whole organism. Natural torpidity is characterised by a profound reduction in body temperature and other functions lasting from a few hours to several weeks. Controlled reduction of heart rate, respiration and oxygen consumption is followed by the fall in body temperature. However, thermoregulation persists such that a decrease in ambient temperature below dangerous levels typically triggers arousal, and shivering and non-shivering thermogenesis from brown fat provide the heat to restore body temperature to normal levels. Many of the cellular mechanisms for survival are similar to those brought into play during medium-term storage of organs destined for transplantation. For example maintenance of ionic regulation and membrane fluxes is fundamental to cell survival and function at low body temperatures. Differences between hibernating and non-hibernating species are marked by differences in Na+/K+ transport and Ca++pumps. These in turn are probably associated with alterations in the lipoproteins of the plasma membrane and inner mitochondrial membrane. We have accordingly conducted a series of pilot studies in captured Richardson's ground squirrels kept in laboratory conditions as a model for hypothermic organ preservation. Tissue function was compared during the summer (non-hibernating season) with that in the winter when the animals could be: (i) in deep hibernation in a cold chamber at 4 degree C; (ii) maintained in an ambient temperature of 4 degree C but active and awake; or (iii) active at an ambient temperature of 22 degree C. The studies involved: whole animal monitoring of standard physiological parameters; whole organ (kidney) storage and transplantation for viability assessment; storage and functional assessment on an ex vivo test circuit with capacity for

  13. The domain architecture of large guanine nucleotide exchange factors for the small GTP-binding protein Arf

    Directory of Open Access Journals (Sweden)

    Geldner Niko

    2005-02-01

    Full Text Available Abstract Background Small G proteins, which are essential regulators of multiple cellular functions, are activated by guanine nucleotide exchange factors (GEFs that stimulate the exchange of the tightly bound GDP nucleotide by GTP. The catalytic domain responsible for nucleotide exchange is in general associated with non-catalytic domains that define the spatio-temporal conditions of activation. In the case of small G proteins of the Arf subfamily, which are major regulators of membrane trafficking, GEFs form a heterogeneous family whose only common characteristic is the well-characterized Sec7 catalytic domain. In contrast, the function of non-catalytic domains and how they regulate/cooperate with the catalytic domain is essentially unknown. Results Based on Sec7-containing sequences from fully-annotated eukaryotic genomes, including our annotation of these sequences from Paramecium, we have investigated the domain architecture of large ArfGEFs of the BIG and GBF subfamilies, which are involved in Golgi traffic. Multiple sequence alignments combined with the analysis of predicted secondary structures, non-structured regions and splicing patterns, identifies five novel non-catalytic structural domains which are common to both subfamilies, revealing that they share a conserved modular organization. We also report a novel ArfGEF subfamily with a domain organization so far unique to alveolates, which we name TBS (TBC-Sec7. Conclusion Our analysis unifies the BIG and GBF subfamilies into a higher order subfamily, which, together with their being the only subfamilies common to all eukaryotes, suggests that they descend from a common ancestor from which species-specific ArfGEFs have subsequently evolved. Our identification of a conserved modular architecture provides a background for future functional investigation of non-catalytic domains.

  14. Developing Multi-Level Institutions from Top-Down Ancestors

    Directory of Open Access Journals (Sweden)

    Martha Dowsley

    2007-11-01

    Full Text Available The academic literature contains numerous examples of the failures of both top-down and bottom-up common pool resource management frameworks. Many authors agree that management regimes instead need to utilize a multi-level governance approach to meet diverse objectives in management. However, many currently operating systems do not have that history. This paper explores the conversion of ancestral top-down regimes to complex systems involving multiple scales, levels and objectives through the management of the polar bear (Ursus maritimus in its five range countries. The less successful polar bear management systems continue to struggle with the challenges of developing institutions with the capacity to learn and change, addressing multiple objectives while recognizing the conservation backbone to management, and matching the institutional scale with biophysical, economic and social scales. The comparatively successful institutions incorporate these features, but reveal on-going problems with vertical links that are partially dealt with through the creation of links to other groups.

  15. Windmills: Ancestors of the wind power generation

    Institute of Scientific and Technical Information of China (English)

    Cesare ROSSI; Flavio RUSSO; Sergio SAVINO

    2017-01-01

    A brief description of the windmills from the second millennium BC to the Renaissance is presented.This survey is a part of several studies conducted by the authors on technology in the ancient world.The windmills are the first motor,other than human muscles,and are the ancestors of the modem wind turbines.Some authors' virtual reconstructions of old windmills are also presented.The paper shows that the operating principle of many modem machines had already been conceived in the ancient times by using a technology that was more advanced than expected,but with two main differences,as follows:Similar tasks were accomplished by using much less energy;and the environmental impact was nil or very low.Modem designers should sometimes consider simplicity rather than the use of a large amount of energy.

  16. Windmills: Ancestors of the wind power generation

    Science.gov (United States)

    Rossi, Cesare; Russo, Flavio; Savino, Sergio

    2017-09-01

    A brief description of the windmills from the second millennium BC to the Renaissance is presented. This survey is a part of several studies conducted by the authors on technology in the ancient world. The windmills are the first motor, other than human muscles, and are the ancestors of the modern wind turbines. Some authors' virtual reconstructions of old windmills are also presented. The paper shows that the operating principle of many modern machines had already been conceived in the ancient times by using a technology that was more advanced than expected, but with two main differences, as follows: Similar tasks were accomplished by using much less energy; and the environmental impact was nil or very low. Modern designers should sometimes consider simplicity rather than the use of a large amount of energy.

  17. Enzymatic Incorporation of Modified Purine Nucleotides in DNA.

    Science.gov (United States)

    Abu El Asrar, Rania; Margamuljana, Lia; Abramov, Mikhail; Bande, Omprakash; Agnello, Stefano; Jang, Miyeon; Herdewijn, Piet

    2017-12-14

    A series of nucleotide analogues, with a hypoxanthine base moiety (8-aminohypoxanthine, 1-methyl-8-aminohypoxanthine, and 8-oxohypoxanthine), together with 5-methylisocytosine were tested as potential pairing partners of N 8 -glycosylated nucleotides with an 8-azaguanine or 8-aza-9-deazaguanine base moiety by using DNA polymerases (incorporation studies). The best results were obtained with the 5-methylisocytosine nucleotide followed by the 1-methyl-8-aminohypoxanthine nucleotide. The experiments demonstrated that small differences in the structure (8-azaguanine versus 8-aza-9-deazaguanine) might lead to significant differences in recognition efficiency and selectivity, base pairing by Hoogsteen recognition at the polymerase level is possible, 8-aza-9-deazaguanine represents a self-complementary base pair, and a correlation exists between in vitro incorporation studies and in vivo recognition by natural bases in Escherichia coli, but this recognition is not absolute (exceptions were observed). © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Nucleotide excision repair modulates the cytotoxic and mutagenic effects of N-n-butyl-N-nitrosourea in cultured mammalian cells as well as in mouse splenocytes in vivo.

    Science.gov (United States)

    Bol, S A; van Steeg, H; van Oostrom, C T; Tates, A D; Vrieling, H; de Groot, A J; Mullenders, L H; van Zeeland, A A; Jansen, J G

    1999-05-01

    The butylating agent N-n-butyl-N-nitrosourea (BNU) was employed to study the role of nucleotide excision repair (NER) in protecting mammalian cells against the genotoxic effects of monofunctional alkylating agents. The direct acting agent BNU was found to be mutagenic in normal and XPA mouse splenocytes after a single i.p. treatment in vivo. After 25 and 35 mg/kg BNU, but not after 75 mg/ kg, 2- to 3-fold more hprt mutants were detected in splenocytes from XPA mice than from normal mice. Using O6-alkylguanine-DNA alkyltransferase (AGT)-deficient hamster cells, it was found that NER-deficient CHO UV5 cells carrying a mutation in the ERCC-2 gene were 40% more mutable towards lesions induced by BNU when compared with parental NER-proficient CHO AA8 cells. UV5 cells were 1.4-fold more sensitive to the cytotoxic effects of BNU compared with AA8 cells. To investigate whether this increased sensitivity of NER-deficient cells is modulated by AGT activity, cell survival studies were performed in human and mouse primary fibroblasts as well. BNU was 2.7-fold more toxic for mouse XPA fibroblasts compared with normal mouse fibroblasts. Comparable results were found for human fibroblasts. Taken together these data indicate that the role of NER in protecting rodent cells against the mutagenic and cytotoxic effects of the alkylating agent BNU depends on AGT.

  19. Correction to: A sophisticated, differentiated Golgi in the ancestor of eukaryotes.

    Science.gov (United States)

    Barlow, Lael D; Nývltová, Eva; Aguilar, Maria; Tachezy, Jan; Dacks, Joel B

    2018-03-28

    Upon publication of the original article, Barlow et al. [1], the authors noticed that Fig. 4b contained an inaccuracy when additional data is taken into account. We inferred a loss of GRASP in the common ancestor of cryptophytes and archaeplastids, based on the absence of identified homologues in the data from taxa that we analyzed, which include Cyanidioschyzon merolae as the single representative of red algae.

  20. Turkish and Japanese Mycobacterium tuberculosis sublineages share a remote common ancestor

    KAUST Repository

    Refregier, Guislaine

    2016-10-14

    Two geographically distant M. tuberculosis sublineages, Tur from Turkey and T3-Osaka from Japan, exhibit partially identical genotypic signatures (identical 12-loci MIRU-VNTR profiles, distinct spoligotyping patterns). We investigated T3-Osaka and Tur sublineages characteristics and potential genetic relatedness, first using MIRU-VNTR locus analysis on 21 and 25 samples of each sublineage respectively, and second comparing Whole Genome Sequences of 8 new samples to public data from 45 samples uncovering human tuberculosis diversity. We then tried to date their Most Recent Common Ancestor (MRCA) using three calibrations of SNP accumulation rate (long-term = 0.03 SNP/genome/year, derived from a tuberculosis ancestor of around 70,000 years old; intermediate = 0.2 SNP/genome/year derived from a Peruvian mummy; short-term = 0.5 SNP/genome/year). To disentangle between these scenarios, we confronted the corresponding divergence times with major human history events and knowledge on human genetic divergence. We identified relatively high intrasublineage diversity for both T3-Osaka and Tur. We definitively proved their monophyly; the corresponding super-sublineage (referred to as “T3-Osa-Tur”) shares a common ancestor with T3-Ethiopia and Ural sublineages but is only remotely related to other Euro-American sublineages such as X, LAM, Haarlem and S. The evolutionary scenario based on long-term evolution rate being valid until T3-Osa-Tur MRCA was not supported by Japanese fossil data. The evolutionary scenario relying on short-term evolution rate since T3-Osa-Tur MRCA was contradicted by human history and potential traces of past epidemics. T3-Osaka and Tur sublineages were found likely to have diverged between 800 y and 2000 years ago, potentially at the time of Mongol Empire. Altogether, this study definitively proves a strong genetic link between Turkish and Japanese tuberculosis. It provides a first hypothesis for calibrating TB Euro-American lineage molecular clock

  1. Turkish and Japanese Mycobacterium tuberculosis sublineages share a remote common ancestor.

    Science.gov (United States)

    Refrégier, Guislaine; Abadia, Edgar; Matsumoto, Tomoshige; Ano, Hiromi; Takashima, Tetsuya; Tsuyuguchi, Izuo; Aktas, Elif; Cömert, Füsun; Gomgnimbou, Michel Kireopori; Panaiotov, Stefan; Phelan, Jody; Coll, Francesc; McNerney, Ruth; Pain, Arnab; Clark, Taane G; Sola, Christophe

    2016-11-01

    Two geographically distant M. tuberculosis sublineages, Tur from Turkey and T3-Osaka from Japan, exhibit partially identical genotypic signatures (identical 12-loci MIRU-VNTR profiles, distinct spoligotyping patterns). We investigated T3-Osaka and Tur sublineages characteristics and potential genetic relatedness, first using MIRU-VNTR locus analysis on 21 and 25 samples of each sublineage respectively, and second comparing Whole Genome Sequences of 8 new samples to public data from 45 samples uncovering human tuberculosis diversity. We then tried to date their Most Recent Common Ancestor (MRCA) using three calibrations of SNP accumulation rate (long-term=0.03SNP/genome/year, derived from a tuberculosis ancestor of around 70,000years old; intermediate=0.2SNP/genome/year derived from a Peruvian mummy; short-term=0.5SNP/genome/year). To disentangle between these scenarios, we confronted the corresponding divergence times with major human history events and knowledge on human genetic divergence. We identified relatively high intrasublineage diversity for both T3-Osaka and Tur. We definitively proved their monophyly; the corresponding super-sublineage (referred to as "T3-Osa-Tur") shares a common ancestor with T3-Ethiopia and Ural sublineages but is only remotely related to other Euro-American sublineages such as X, LAM, Haarlem and S. The evolutionary scenario based on long-term evolution rate being valid until T3-Osa-Tur MRCA was not supported by Japanese fossil data. The evolutionary scenario relying on short-term evolution rate since T3-Osa-Tur MRCA was contradicted by human history and potential traces of past epidemics. T3-Osaka and Tur sublineages were found likely to have diverged between 800y and 2000years ago, potentially at the time of Mongol Empire. Altogether, this study definitively proves a strong genetic link between Turkish and Japanese tuberculosis. It provides a first hypothesis for calibrating TB Euro-American lineage molecular clock; additional

  2. The possible role of human milk nucleotides as sleep inducers.

    Science.gov (United States)

    Sánchez, Cristina L; Cubero, Javier; Sánchez, Javier; Chanclón, Belén; Rivero, Montserrat; Rodríguez, Ana B; Barriga, Carmen

    2009-02-01

    Breast-milk contains a potent mixture of diverse components, such as the non-protein nitrogen fraction which includes nucleotides, whose variation in levels is evident throughout lactation. In addition, these substances play an important role in sleep homeostasis. In the present study, human milk samples were analyzed using a capillary electrophoresis system. The rhythmicity of each nucleotide was studied by cosinor analysis. It was found that the nucleotides 5'AMP, 5'GMP, 5'CMP, and 5'IMP have significant (P inducing the 'hypnotic' action of breast-milk at night in the infant.

  3. Brucella spp. of amphibians comprise genomically diverse motile strains competent for replication in macrophages and survival in mammalian hosts

    Science.gov (United States)

    Al Dahouk, Sascha; Köhler, Stephan; Occhialini, Alessandra; Jiménez de Bagüés, María Pilar; Hammerl, Jens Andre; Eisenberg, Tobias; Vergnaud, Gilles; Cloeckaert, Axel; Zygmunt, Michel S.; Whatmore, Adrian M.; Melzer, Falk; Drees, Kevin P.; Foster, Jeffrey T.; Wattam, Alice R.; Scholz, Holger C.

    2017-01-01

    Twenty-one small Gram-negative motile coccobacilli were isolated from 15 systemically diseased African bullfrogs (Pyxicephalus edulis), and were initially identified as Ochrobactrum anthropi by standard microbiological identification systems. Phylogenetic reconstructions using combined molecular analyses and comparative whole genome analysis of the most diverse of the bullfrog strains verified affiliation with the genus Brucella and placed the isolates in a cluster containing B. inopinata and the other non-classical Brucella species but also revealed significant genetic differences within the group. Four representative but molecularly and phenotypically diverse strains were used for in vitro and in vivo infection experiments. All readily multiplied in macrophage-like murine J774-cells, and their overall intramacrophagic growth rate was comparable to that of B. inopinata BO1 and slightly higher than that of B. microti CCM 4915. In the BALB/c murine model of infection these strains replicated in both spleen and liver, but were less efficient than B. suis 1330. Some strains survived in the mammalian host for up to 12 weeks. The heterogeneity of these novel strains hampers a single species description but their phenotypic and genetic features suggest that they represent an evolutionary link between a soil-associated ancestor and the mammalian host-adapted pathogenic Brucella species. PMID:28300153

  4. Adenine nucleotide depletion from endothelial cells exposed to xanthine oxidase

    International Nuclear Information System (INIS)

    Aalto, T.K.; Raivio, K.O.

    1990-01-01

    Hypoxia causes breakdown of cellular nucleotides, accumulation of hypoxanthine (HX), and conversion of xanthine dehydrogenase into xanthine oxidase (XO). Upon reoxygenation, the HX-XO reaction generates free radicals, one potential mechanism of tissue damage. Because endothelial cells contain XO and are exposed to circulating HX, they are a likely target for damage. We studied the effect of XO and/or HX at physiologically relevant concentrations on nucleotide metabolism of cultured endothelial cells from human umbilical veins. Cells were labeled with [14C]adenine and incubated for up to 6 h with HX, XO, or both, in the absence or presence of serum. Adenine nucleotides from cell extracts and nucleotide breakdown products (HX, xanthine, and urate) from the medium were separated and counted. HX alone had no effect. XO (80 mU/ml) alone caused a 70% (no serum) or 40% (with serum) fall in adenine nucleotides and an equivalent increase of xanthine and urate. The combination of HX and XO caused a 90% (no serum) or 70% (with serum) decrease in nucleotides, decrease in energy charge, and detachment of cells from the culture plate. Nucleotide depletion was not accounted for by proteolytic activity in the XO preparation. Albumin was only half as effective as serum in preventing nucleotide loss. Thus exogenous XO, in the presence of endogenous HX, triggers adenine nucleotide catabolism, but endogenous XO activity is too low to influence nucleotide levels even at high exogenous HX concentrations. Serum limits the catabolic effect of XO and thus protects cells from free radical damage

  5. The low single nucleotide polymorphism heritability of plasma and saliva cortisol levels.

    Science.gov (United States)

    Neumann, Alexander; Direk, Nese; Crawford, Andrew A; Mirza, Saira; Adams, Hieab; Bolton, Jennifer; Hayward, Caroline; Strachan, David P; Payne, Erin K; Smith, Jennifer A; Milaneschi, Yuri; Penninx, Brenda; Hottenga, Jouke J; de Geus, Eco; Oldehinkel, Albertine J; van der Most, Peter J; de Rijke, Yolanda; Walker, Brian R; Tiemeier, Henning

    2017-11-01

    Cortisol is an important stress hormone affected by a variety of biological and environmental factors, such as the circadian rhythm, exercise and psychological stress. Cortisol is mostly measured using blood or saliva samples. A number of genetic variants have been found to contribute to cortisol levels with these methods. While the effects of several specific single genetic variants is known, the joint genome-wide contribution to cortisol levels is unclear. Our aim was to estimate the amount of cortisol variance explained by common single nucleotide polymorphisms, i.e. the SNP heritability, using a variety of cortisol measures, cohorts and analysis approaches. We analyzed morning plasma (n=5705) and saliva levels (n=1717), as well as diurnal saliva levels (n=1541), in the Rotterdam Study using genomic restricted maximum likelihood estimation. Additionally, linkage disequilibrium score regression was fitted on the results of genome-wide association studies (GWAS) performed by the CORNET consortium on morning plasma cortisol (n=12,597) and saliva cortisol (n=7703). No significant SNP heritability was detected for any cortisol measure, sample or analysis approach. Point estimates ranged from 0% to 9%. Morning plasma cortisol in the CORNET cohorts, the sample with the most power, had a 6% [95%CI: 0-13%] SNP heritability. The results consistently suggest a low SNP heritability of these acute and short-term measures of cortisol. The low SNP heritability may reflect the substantial environmental and, in particular, situational component of these cortisol measures. Future GWAS will require very large sample sizes. Alternatively, more long-term cortisol measures such as hair cortisol samples are needed to discover further genetic pathways regulating cortisol concentrations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Levels and patterns of nucleotide variation in domestication QTL regions on rice chromosome 3 suggest lineage-specific selection.

    Directory of Open Access Journals (Sweden)

    Xianfa Xie

    Full Text Available Oryza sativa or Asian cultivated rice is one of the major cereal grass species domesticated for human food use during the Neolithic. Domestication of this species from the wild grass Oryza rufipogon was accompanied by changes in several traits, including seed shattering, percent seed set, tillering, grain weight, and flowering time. Quantitative trait locus (QTL mapping has identified three genomic regions in chromosome 3 that appear to be associated with these traits. We would like to study whether these regions show signatures of selection and whether the same genetic basis underlies the domestication of different rice varieties. Fragments of 88 genes spanning these three genomic regions were sequenced from multiple accessions of two major varietal groups in O. sativa--indica and tropical japonica--as well as the ancestral wild rice species O. rufipogon. In tropical japonica, the levels of nucleotide variation in these three QTL regions are significantly lower compared to genome-wide levels, and coalescent simulations based on a complex demographic model of rice domestication indicate that these patterns are consistent with selection. In contrast, there is no significant reduction in nucleotide diversity in the homologous regions in indica rice. These results suggest that there are differences in the genetic and selective basis for domestication between these two Asian rice varietal groups.

  7. The Role of Vitamin D Level and Related Single Nucleotide Polymorphisms in Crohn’s Disease

    Directory of Open Access Journals (Sweden)

    Wen J. Lam

    2013-09-01

    Full Text Available New Zealand has one of the highest rates of Crohn’s Disease (CD in the world, and there is much speculation as to why this might be. A high risk of CD has been associated with deficient or insufficient levels of Vitamin D (Vit D, lifestyle as well as various genetic polymorphisms. In this study we sought to analyse the relevance of serum Vit D levels, lifestyle and genotype to CD status. Serum samples were analysed for 25-OH-Vitamin D levels. DNA was isolated from blood and cheek-swabs, and Sequenom and ImmunoChip techniques were used for genotyping. Serum Vit D levels were significantly lower in CD patients (mean = 49.5 mg/L than those found in controls (mean = 58.9 mg/L, p = 4.74 × 10−6. A total of seven single nucleotide polymorphisms were examined for effects on serum Vit D levels, with adjustment for confounding variables. Two variants: rs731236[A] (VDR and rs732594[A] (SCUBE3 showed a significant association with serum Vit D levels in CD patients. Four variants: rs7975232[A] (VDR, rs732594[A] (SCUBE3, and rs2980[T] and rs2981[A] (PHF-11 showed a significant association with serum Vit D levels in the control group. This study demonstrates a significant interaction between Vit D levels and CD susceptibility, as well as a significant association between Vit D levels and genotype.

  8. Antinociceptive effect of purine nucleotides.

    Science.gov (United States)

    Mello, C F; Begnini, J; De-La-Vega, D D; Lopes, F P; Schwartz, C C; Jimenez-Bernal, R E; Bellot, R G; Frussa-Filho, R

    1996-10-01

    The antinociceptive effect of purine nucleotides administered systematically (sc) was determined using the formalin and writhing tests in adult male albino mice. The mechanisms underlying nucleotide-induced antinociception were investigated by preinjecting the animals (sc) with specific antagonists for opioid (naloxone, 1 mg/kg), purinergic P1 (caffeine, 5, 10, of 30 mg/kg); theophylline, 10 mg/kg) or purinergic P2 receptors (suramin, 100 mg/kg; Coomassie blue, 30-300 mg/kg; quinidine, 10 mg/kg). Adenosine, adenosine monophosphate (AMP), diphosphate (ADP) and triphosphate (ATP) caused a reduction in the number of writhes and in the time of licking the formalin-injected paw. Naloxone had no effect on adenosine- or adenine nucleotide-induced antinociception. Caffeine (30 mg/kg) and theophylline (10 mg/kg) reversed the antinociceptive action of adenosine and adenine nucleotide derivatives in both tests. P2 antagonists did not reverse adenine nucleotide-induced antinociception. These results suggest that antinociceptive effect of adenine nucleotides is mediated by adenosine.

  9. Mammalian niche conservation through deep time.

    Directory of Open Access Journals (Sweden)

    Larisa R G DeSantis

    Full Text Available Climate change alters species distributions, causing plants and animals to move north or to higher elevations with current warming. Bioclimatic models predict species distributions based on extant realized niches and assume niche conservation. Here, we evaluate if proxies for niches (i.e., range areas are conserved at the family level through deep time, from the Eocene to the Pleistocene. We analyze the occurrence of all mammalian families in the continental USA, calculating range area, percent range area occupied, range area rank, and range polygon centroids during each epoch. Percent range area occupied significantly increases from the Oligocene to the Miocene and again from the Pliocene to the Pleistocene; however, mammalian families maintain statistical concordance between rank orders across time. Families with greater taxonomic diversity occupy a greater percent of available range area during each epoch and net changes in taxonomic diversity are significantly positively related to changes in percent range area occupied from the Eocene to the Pleistocene. Furthermore, gains and losses in generic and species diversity are remarkably consistent with ~2.3 species gained per generic increase. Centroids demonstrate southeastern shifts from the Eocene through the Pleistocene that may correspond to major environmental events and/or climate changes during the Cenozoic. These results demonstrate range conservation at the family level and support the idea that niche conservation at higher taxonomic levels operates over deep time and may be controlled by life history traits. Furthermore, families containing megafauna and/or terminal Pleistocene extinction victims do not incur significantly greater declines in range area rank than families containing only smaller taxa and/or only survivors, from the Pliocene to Pleistocene. Collectively, these data evince the resilience of families to climate and/or environmental change in deep time, the absence of

  10. Healing and coping with life within challenges of spiritual insecurity: Juxtaposed consideration of Christ’s sinlessness and African ancestors in pastoral guidance

    Directory of Open Access Journals (Sweden)

    Vhumani Magezi

    2017-04-01

    Full Text Available Spiritual insecurity among African Christians is a huge challenge. The insecurity among other things arises from African people’s former traditional African ancestral world view of ancestral veneration. The ancestors promote or hinder African Christians’ reliance on Christ because they have presupposedly acquired the supernatural power that enables them to provide diagnoses and solutions to life challenges. The inherent problem in the ancestral world view, however, is that the ancestors are both respected and feared by their descendants because they can either bless or harm depending on the state of the relationship between the surviving human beings and the ancestors. The basis of the unpredictable influence of ancestors lies in the fact that they (ancestors are considered as human beings who carry their human qualities to the spiritual world. In light of this situation, one constructive approach that can be advanced to address the challenges of African Christians’ spiritual insecurity is a proper understanding of Christ as a sinless representative of humanity. This approach maintains that healing and coping with life within the challenge of African spirituality in the context of threatening life issues can be addressed by an appropriate understanding of Christ’s sinlessness. The article argues for the foundational status of Christ as a sinless representative of humanity as the controlling framework. In doing so, Christ’s sinlessness and the sinfulness of natural ancestors are juxtaposed to compare the two ontologies in order to draw some pastoral guidelines for African Christians. This approach pays close attention to the factors and mindset that sustain people who adhere to ancestral worship and assess them through a lens of Christology focusing on Christ’s sinlessness as an exemplary doctrine.

  11. The arabidopsis cyclic nucleotide interactome

    KAUST Repository

    Donaldson, Lara Elizabeth

    2016-05-11

    Background Cyclic nucleotides have been shown to play important signaling roles in many physiological processes in plants including photosynthesis and defence. Despite this, little is known about cyclic nucleotide-dependent signaling mechanisms in plants since the downstream target proteins remain unknown. This is largely due to the fact that bioinformatics searches fail to identify plant homologs of protein kinases and phosphodiesterases that are the main targets of cyclic nucleotides in animals. Methods An affinity purification technique was used to identify cyclic nucleotide binding proteins in Arabidopsis thaliana. The identified proteins were subjected to a computational analysis that included a sequence, transcriptional co-expression and functional annotation analysis in order to assess their potential role in plant cyclic nucleotide signaling. Results A total of twelve cyclic nucleotide binding proteins were identified experimentally including key enzymes in the Calvin cycle and photorespiration pathway. Importantly, eight of the twelve proteins were shown to contain putative cyclic nucleotide binding domains. Moreover, the identified proteins are post-translationally modified by nitric oxide, transcriptionally co-expressed and annotated to function in hydrogen peroxide signaling and the defence response. The activity of one of these proteins, GLYGOLATE OXIDASE 1, a photorespiratory enzyme that produces hydrogen peroxide in response to Pseudomonas, was shown to be repressed by a combination of cGMP and nitric oxide treatment. Conclusions We propose that the identified proteins function together as points of cross-talk between cyclic nucleotide, nitric oxide and reactive oxygen species signaling during the defence response.

  12. Estimate at the nucleotide resolution level of genetic changes in the humans residing in the ecologically unfavourable regions of the Techa river

    International Nuclear Information System (INIS)

    Sojfer, V.N.; Petrova, N.V.; Timofeeva, O.A.; Filipenko, M.L.; Solov'eva, N.A.; Popovskij, A.V.; Vlasko, V.V.

    1998-01-01

    To study DNA at the nucleotide level of resolution in residents of settlements located along the Techa river, studies are performed by direct sequencing of gene sequences preliminary amplified and selected by means of analysis of changes of the conformation of DNA unifilament fragments (SSCP-method). Results are presented in details [ru

  13. Mechanisms Underlying Mammalian Hybrid Sterility in Two Feline Interspecies Models.

    Science.gov (United States)

    Davis, Brian W; Seabury, Christopher M; Brashear, Wesley A; Li, Gang; Roelke-Parker, Melody; Murphy, William J

    2015-10-01

    The phenomenon of male sterility in interspecies hybrids has been observed for over a century, however, few genes influencing this recurrent phenotype have been identified. Genetic investigations have been primarily limited to a small number of model organisms, thus limiting our understanding of the underlying molecular basis of this well-documented "rule of speciation." We utilized two interspecies hybrid cat breeds in a genome-wide association study employing the Illumina 63 K single-nucleotide polymorphism array. Collectively, we identified eight autosomal genes/gene regions underlying associations with hybrid male sterility (HMS) involved in the function of the blood-testis barrier, gamete structural development, and transcriptional regulation. We also identified several candidate hybrid sterility regions on the X chromosome, with most residing in close proximity to complex duplicated regions. Differential gene expression analyses revealed significant chromosome-wide upregulation of X chromosome transcripts in testes of sterile hybrids, which were enriched for genes involved in chromatin regulation of gene expression. Our expression results parallel those reported in Mus hybrids, supporting the "Large X-Effect" in mammalian HMS and the potential epigenetic basis for this phenomenon. These results support the value of the interspecies feline model as a powerful tool for comparison to rodent models of HMS, demonstrating unique aspects and potential commonalities that underpin mammalian reproductive isolation. © The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  14. Molecular Comparison and Evolutionary Analyses of VP1 Nucleotide Sequences of New African Human Enterovirus 71 Isolates Reveal a Wide Genetic Diversity

    Science.gov (United States)

    Nougairède, Antoine; Joffret, Marie-Line; Deshpande, Jagadish M.; Dubot-Pérès, Audrey; Héraud, Jean-Michel

    2014-01-01

    Most circulating strains of Human enterovirus 71 (EV-A71) have been classified primarily into three genogroups (A to C) on the basis of genetic divergence between the 1D gene, which encodes the VP1 capsid protein. The aim of the present study was to provide further insights into the diversity of the EV-A71 genogroups following the recent description of highly divergent isolates, in particular those from African countries, including Madagascar. We classified recent EV-A71 isolates by a large comparison of 3,346 VP1 nucleotidic sequences collected from GenBank. Analysis of genetic distances and phylogenetic investigations indicated that some recently-reported isolates did not fall into the genogroups A-C and clustered into three additional genogroups, including one Indian genogroup (genogroup D) and 2 African ones (E and F). Our Bayesian phylogenetic analysis provided consistent data showing that the genogroup D isolates share a recent common ancestor with the members of genogroup E, while the isolates of genogroup F evolved from a recent common ancestor shared with the members of the genogroup B. Our results reveal the wide diversity that exists among EV-A71 isolates and suggest that the number of circulating genogroups is probably underestimated, particularly in developing countries where EV-A71 epidemiology has been poorly studied. PMID:24598878

  15. Measurement of DNA base and nucleotide excision repair activities in mammalian cells and tissues using the comet assay - A methodological overview

    Czech Academy of Sciences Publication Activity Database

    Azqueta, A.; Langie, S. A. S.; Slyšková, Jana; Collins, A. R.

    2013-01-01

    Roč. 12, č. 11 (2013), s. 1007-1010 ISSN 1568-7864 Grant - others:EU FP6(XE) LSHB-CT-2006-037575 Institutional support: RVO:68378041 Keywords : comet assay * base excision repair * nucleotide excision repair Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.362, year: 2013

  16. Comparative symbiotic plasmid analysis indicates that symbiosis gene ancestor type affects plasmid genetic evolution.

    Science.gov (United States)

    Wang, X; Zhao, L; Zhang, L; Wu, Y; Chou, M; Wei, G

    2018-07-01

    Rhizobial symbiotic plasmids play vital roles in mutualistic symbiosis with legume plants by executing the functions of nodulation and nitrogen fixation. To explore the gene composition and genetic constitution of rhizobial symbiotic plasmids, comparison analyses of 24 rhizobial symbiotic plasmids derived from four rhizobial genera was carried out. Results illustrated that rhizobial symbiotic plasmids had higher proportion of functional genes participating in amino acid transport and metabolism, replication; recombination and repair; carbohydrate transport and metabolism; energy production and conversion and transcription. Mesorhizobium amorphae CCNWGS0123 symbiotic plasmid - pM0123d had similar gene composition with pR899b and pSNGR234a. All symbiotic plasmids shared 13 orthologous genes, including five nod and eight nif/fix genes which participate in the rhizobia-legume symbiosis process. These plasmids contained nod genes from four ancestors and fix genes from six ancestors. The ancestral type of pM0123d nod genes was similar with that of Rhizobium etli plasmids, while the ancestral type of pM0123d fix genes was same as that of pM7653Rb. The phylogenetic trees constructed based on nodCIJ and fixABC displayed different topological structures mainly due to nodCIJ and fixABC ancestral type discordance. The study presents valuable insights into mosaic structures and the evolution of rhizobial symbiotic plasmids. This study compared 24 rhizobial symbiotic plasmids that included four genera and 11 species, illuminating the functional gene composition and symbiosis gene ancestor types of symbiotic plasmids from higher taxonomy. It provides valuable insights into mosaic structures and the evolution of symbiotic plasmids. © 2018 The Society for Applied Microbiology.

  17. Study on the change of cyclic nucleotide in mice with yang vacuity disease

    International Nuclear Information System (INIS)

    Zhu Xinhua; Shen Ling; Wang Shuguang

    2002-01-01

    To study the relation between Yang Vacuity disease happening, development and cyclic nucleotide response, and prove curative effects of some assisting Yang drug, the plasma cAMP, cGMP and cAMP/cGMP levels were detected by radioimmunoassay in the Yang Vacuity group and curing group. Results: showed: (1) Yang Vacuity group: the symptoms were clear, death rate was high, the plasma cAMP and cAMP/cGMP increased obviously, it suggests that cyclic nucleotide was imbalance. (2) Curing group: the symptoms of Yang Vacuity disease were improved obviously, death rate dropped, cAMP declined, cGMP increased, while cAMP/cGMP reached the normal level, it showed that cyclic nucleotide of the body had altered greatly. (3) It is a reference target for Yang Vacuity. (4) Assisting yang drug (Sini Decoction) had a close relation with correcting imbalance of cyclic nucleotide

  18. The complete nucleotide sequences of the five genetically distinct plastid genomes of Oenothera, subsection Oenothera: I. sequence evaluation and plastome evolution.

    Science.gov (United States)

    Greiner, Stephan; Wang, Xi; Rauwolf, Uwe; Silber, Martina V; Mayer, Klaus; Meurer, Jörg; Haberer, Georg; Herrmann, Reinhold G

    2008-04-01

    The flowering plant genus Oenothera is uniquely suited for studying molecular mechanisms of speciation. It assembles an intriguing combination of genetic features, including permanent translocation heterozygosity, biparental transmission of plastids, and a general interfertility of well-defined species. This allows an exchange of plastids and nuclei between species often resulting in plastome-genome incompatibility. For evaluation of its molecular determinants we present the complete nucleotide sequences of the five basic, genetically distinguishable plastid chromosomes of subsection Oenothera (=Euoenothera) of the genus, which are associated in distinct combinations with six basic genomes. Sizes of the chromosomes range from 163 365 bp (plastome IV) to 165 728 bp (plastome I), display between 96.3% and 98.6% sequence similarity and encode a total of 113 unique genes. Plastome diversification is caused by an abundance of nucleotide substitutions, small insertions, deletions and repetitions. The five plastomes deviate from the general ancestral design of plastid chromosomes of vascular plants by a subsection-specific 56 kb inversion within the large single-copy segment. This inversion disrupted operon structures and predates the divergence of the subsection presumably 1 My ago. Phylogenetic relationships suggest plastomes I-III in one clade, while plastome IV appears to be closest to the common ancestor.

  19. The complete nucleotide sequences of the five genetically distinct plastid genomes of Oenothera, subsection Oenothera: I. Sequence evaluation and plastome evolution†

    Science.gov (United States)

    Greiner, Stephan; Wang, Xi; Rauwolf, Uwe; Silber, Martina V.; Mayer, Klaus; Meurer, Jörg; Haberer, Georg; Herrmann, Reinhold G.

    2008-01-01

    The flowering plant genus Oenothera is uniquely suited for studying molecular mechanisms of speciation. It assembles an intriguing combination of genetic features, including permanent translocation heterozygosity, biparental transmission of plastids, and a general interfertility of well-defined species. This allows an exchange of plastids and nuclei between species often resulting in plastome–genome incompatibility. For evaluation of its molecular determinants we present the complete nucleotide sequences of the five basic, genetically distinguishable plastid chromosomes of subsection Oenothera (=Euoenothera) of the genus, which are associated in distinct combinations with six basic genomes. Sizes of the chromosomes range from 163 365 bp (plastome IV) to 165 728 bp (plastome I), display between 96.3% and 98.6% sequence similarity and encode a total of 113 unique genes. Plastome diversification is caused by an abundance of nucleotide substitutions, small insertions, deletions and repetitions. The five plastomes deviate from the general ancestral design of plastid chromosomes of vascular plants by a subsection-specific 56 kb inversion within the large single-copy segment. This inversion disrupted operon structures and predates the divergence of the subsection presumably 1 My ago. Phylogenetic relationships suggest plastomes I–III in one clade, while plastome IV appears to be closest to the common ancestor. PMID:18299283

  20. Evidence for intron length conservation in a set of mammalian genes associated with embryonic development

    LENUS (Irish Health Repository)

    2011-10-05

    Abstract Background We carried out an analysis of intron length conservation across a diverse group of nineteen mammalian species. Motivated by recent research suggesting a role for time delays associated with intron transcription in gene expression oscillations required for early embryonic patterning, we searched for examples of genes that showed the most extreme conservation of total intron content in mammals. Results Gene sets annotated as being involved in pattern specification in the early embryo or containing the homeobox DNA-binding domain, were significantly enriched among genes with highly conserved intron content. We used ancestral sequences reconstructed with probabilistic models that account for insertion and deletion mutations to distinguish insertion and deletion events on lineages leading to human and mouse from their last common ancestor. Using a randomization procedure, we show that genes containing the homeobox domain show less change in intron content than expected, given the number of insertion and deletion events within their introns. Conclusions Our results suggest selection for gene expression precision or the existence of additional development-associated genes for which transcriptional delay is functionally significant.

  1. A Nucleotide Phosphatase Activity in the Nucleotide Binding Domain of an Orphan Resistance Protein from Rice*

    Science.gov (United States)

    Fenyk, Stepan; de San Eustaquio Campillo, Alba; Pohl, Ehmke; Hussey, Patrick J.; Cann, Martin J.

    2012-01-01

    Plant resistance proteins (R-proteins) are key components of the plant immune system activated in response to a plethora of different pathogens. R-proteins are P-loop NTPase superfamily members, and current models describe their main function as ATPases in defense signaling pathways. Here we show that a subset of R-proteins have evolved a new function to combat pathogen infection. This subset of R-proteins possesses a nucleotide phosphatase activity in the nucleotide-binding domain. Related R-proteins that fall in the same phylogenetic clade all show the same nucleotide phosphatase activity indicating a conserved function within at least a subset of R-proteins. R-protein nucleotide phosphatases catalyze the production of nucleoside from nucleotide with the nucleotide monophosphate as the preferred substrate. Mutation of conserved catalytic residues substantially reduced activity consistent with the biochemistry of P-loop NTPases. Kinetic analysis, analytical gel filtration, and chemical cross-linking demonstrated that the nucleotide-binding domain was active as a multimer. Nuclear magnetic resonance and nucleotide analogues identified the terminal phosphate bond as the target of a reaction that utilized a metal-mediated nucleophilic attack by water on the phosphoester. In conclusion, we have identified a group of R-proteins with a unique function. This biochemical activity appears to have co-evolved with plants in signaling pathways designed to resist pathogen attack. PMID:22157756

  2. A nucleotide phosphatase activity in the nucleotide binding domain of an orphan resistance protein from rice.

    Science.gov (United States)

    Fenyk, Stepan; Campillo, Alba de San Eustaquio; Pohl, Ehmke; Hussey, Patrick J; Cann, Martin J

    2012-02-03

    Plant resistance proteins (R-proteins) are key components of the plant immune system activated in response to a plethora of different pathogens. R-proteins are P-loop NTPase superfamily members, and current models describe their main function as ATPases in defense signaling pathways. Here we show that a subset of R-proteins have evolved a new function to combat pathogen infection. This subset of R-proteins possesses a nucleotide phosphatase activity in the nucleotide-binding domain. Related R-proteins that fall in the same phylogenetic clade all show the same nucleotide phosphatase activity indicating a conserved function within at least a subset of R-proteins. R-protein nucleotide phosphatases catalyze the production of nucleoside from nucleotide with the nucleotide monophosphate as the preferred substrate. Mutation of conserved catalytic residues substantially reduced activity consistent with the biochemistry of P-loop NTPases. Kinetic analysis, analytical gel filtration, and chemical cross-linking demonstrated that the nucleotide-binding domain was active as a multimer. Nuclear magnetic resonance and nucleotide analogues identified the terminal phosphate bond as the target of a reaction that utilized a metal-mediated nucleophilic attack by water on the phosphoester. In conclusion, we have identified a group of R-proteins with a unique function. This biochemical activity appears to have co-evolved with plants in signaling pathways designed to resist pathogen attack.

  3. Nucleotide Interdependency in Transcription Factor Binding Sites in the Drosophila Genome.

    Science.gov (United States)

    Dresch, Jacqueline M; Zellers, Rowan G; Bork, Daniel K; Drewell, Robert A

    2016-01-01

    A long-standing objective in modern biology is to characterize the molecular components that drive the development of an organism. At the heart of eukaryotic development lies gene regulation. On the molecular level, much of the research in this field has focused on the binding of transcription factors (TFs) to regulatory regions in the genome known as cis-regulatory modules (CRMs). However, relatively little is known about the sequence-specific binding preferences of many TFs, especially with respect to the possible interdependencies between the nucleotides that make up binding sites. A particular limitation of many existing algorithms that aim to predict binding site sequences is that they do not allow for dependencies between nonadjacent nucleotides. In this study, we use a recently developed computational algorithm, MARZ, to compare binding site sequences using 32 distinct models in a systematic and unbiased approach to explore nucleotide dependencies within binding sites for 15 distinct TFs known to be critical to Drosophila development. Our results indicate that many of these proteins have varying levels of nucleotide interdependencies within their DNA recognition sequences, and that, in some cases, models that account for these dependencies greatly outperform traditional models that are used to predict binding sites. We also directly compare the ability of different models to identify the known KRUPPEL TF binding sites in CRMs and demonstrate that a more complex model that accounts for nucleotide interdependencies performs better when compared with simple models. This ability to identify TFs with critical nucleotide interdependencies in their binding sites will lead to a deeper understanding of how these molecular characteristics contribute to the architecture of CRMs and the precise regulation of transcription during organismal development.

  4. Non-detectable levels of 6-thioguanine nucleotides and 6-methylmercaptopurine in a patient treated with azathioprine: a case report

    Science.gov (United States)

    Wong, D R; den Dulk, M O; Derijks, L J J; Gemmeke, E H K M; Hooymans, P M

    2007-01-01

    Introduction: Azathioprine (AZA) is a thiopurine prodrug clinically used for immunosuppression in the treatment of auto-immune inflammatory diseases and in regimens of organ transplantations. The pharmacological action of AZA is based on the formation of 6-mercaptopurine (6-MP), which is metabolised into a variety of active thiopurine-nucleotide metabolites. We report the case of a 55 year old woman (bodyweight 30 kg) with chronic pancreatitis, weight loss, and progressive elevation of liver transaminases and serum amylase. Case description: The woman was treated with prednisolone (30 mg 1 dd; tapered 5 mg each week) and AZA (75 mg 1 dd; 5 weeks later 150 mg 1 dd). Despite good patient-compliance verified during hospital-stay, none of the active metabolites of AZA, 6-thioguanine-nucleotides (6TGN) and 6-methylmercaptopurine ribonucleotides (6MMPR), were detected in erythrocytes. After two months of treatment clinical improvement was achieved, but no normalisation of laboratory parameters. Subsequently, AZA was switched to 6-MP 75 mg 1 dd, and allopurinol 100 mg 1 dd was added. After one week the 6TGN level was 616 pmol/ 8 × 108 red blood cells (RBC), the 6MMPR level was 1319 pmol/ 8 × 108 RBC. Two weeks later the 6TGN level was 1163 pmol/ 8 × 108 RBC and the 6MMPR level 10015 pmol/ 8 × 108 RBC. These 6TGN and 6MMPR levels were higher than the upper limits of the therapeutic ranges (500 pmol/ 8 × 108 RBC and 5700 pmol/ 8 × 108 RBC, respectively). Therefore, treatment with 6-MP was discontinued. A week later the 6TGN and 6MMPR levels decreased to 686 pmol/ 8 × 108 RBC and 4027 pmol/ 8 × 108 RBC, respectively. Genotyping of the enzym thiopurine S-methyl transferase (TPMT) revealed a wild-type TPMT (*1/*1) genotype. Discussion: To our knowledge this is the first report of a patient who was not able to form detectable active thiopurine metabolites on the treatment with AZA. AZA is normally rapidly and almost completely converted to 6-MP and methylnitroimidazole

  5. Chitinase mRNA Levels Determined by QPCR in Crab-Eating Monkey (Macaca fascicularis) Tissues: Species-Specific Expression of Acidic Mammalian Chitinase and Chitotriosidase.

    Science.gov (United States)

    Uehara, Maiko; Tabata, Eri; Ishii, Kazuhiro; Sawa, Akira; Ohno, Misa; Sakaguchi, Masayoshi; Matoska, Vaclav; Bauer, Peter O; Oyama, Fumitaka

    2018-05-09

    Mice and humans express two active chitinases: acidic mammalian chitinase (AMCase) and chitotriosidase (CHIT1). Both chitinases are thought to play important roles in specific pathophysiological conditions. The crab-eating monkey ( Macaca fascicularis ) is one of the most frequently used nonhuman primate models in basic and applied biomedical research. Here, we performed gene expression analysis of two chitinases in normal crab-eating monkey tissues by way of quantitative real-time polymerase chain reaction (qPCR) using a single standard DNA molecule. Levels of AMCase and CHIT1 messenger RNAs (mRNAs) were highest in the stomach and the lung, respectively, when compared to other tissues. Comparative gene expression analysis of mouse, monkey, and human using monkey⁻mouse⁻human hybrid standard DNA showed that the AMCase mRNA levels were exceptionally high in mouse and monkey stomachs while very low in the human stomach. As for the CHIT1 mRNA, we detected higher levels in the monkey lung when compared with those of mouse and human. The differences of mRNA expression between the species in the stomach tissues were basically reflecting the levels of the chitinolytic activities. These results indicate that gene expression of AMCase and CHIT1 differs between mammalian species and requiring special attention in handling data in chitinase-related studies in particular organisms.

  6. Nucleotide sequences of immunoglobulin eta genes of chimpanzee and orangutan: DNA molecular clock and hominoid evolution

    Energy Technology Data Exchange (ETDEWEB)

    Sakoyama, Y.; Hong, K.J.; Byun, S.M.; Hisajima, H.; Ueda, S.; Yaoita, Y.; Hayashida, H.; Miyata, T.; Honjo, T.

    1987-02-01

    To determine the phylogenetic relationships among hominoids and the dates of their divergence, the complete nucleotide sequences of the constant region of the immunoglobulin eta-chain (C/sub eta1/) genes from chimpanzee and orangutan have been determined. These sequences were compared with the human eta-chain constant-region sequence. A molecular clock (silent molecular clock), measured by the degree of sequence divergence at the synonymous (silent) positions of protein-encoding regions, was introduced for the present study. From the comparison of nucleotide sequences of ..cap alpha../sub 1/-antitrypsin and ..beta..- and delta-globulin genes between humans and Old World monkeys, the silent molecular clock was calibrated: the mean evolutionary rate of silent substitution was determined to be 1.56 x 10/sup -9/ substitutions per site per year. Using the silent molecular clock, the mean divergence dates of chimpanzee and orangutan from the human lineage were estimated as 6.4 +/- 2.6 million years and 17.3 +/- 4.5 million years, respectively. It was also shown that the evolutionary rate of primate genes is considerably slower than those of other mammalian genes.

  7. The anti-Trichomonas vaginalis phloroglucinol derivative isoaustrobrasilol B modulates extracellular nucleotide hydrolysis.

    Science.gov (United States)

    Menezes, Camila Braz; Rigo, Graziela Vargas; Bridi, Henrique; Trentin, Danielle da Silva; Macedo, Alexandre José; von Poser, Gilsane Lino; Tasca, Tiana

    2017-11-01

    Trichomonas vaginalis causes trichomoniasis, a neglected sexually transmitted disease. Due to severe health consequences and treatment failure, new therapeutic alternatives are crucial. Phloroglucinols from southern Brazilian Hypericum species demonstrated anti-T. vaginalis and anti-Leishmania amazonensis activities. The modulation of biochemical pathways involved in the control of inflammatory response by ectonucleotidases, NTPDase, and ecto-5'-nucleotidase represents new targets for combating protozoa. This study investigated the activity of phloroglucinol derivatives of Hypericum species from southern Brazil against T. vaginalis as well as its ability on modulating parasite ectonucleotidases and, consequently, immune parameters through ATP and adenosine effects. Phloroglucinol derivatives screening revealed activity for isoaustrobrasilol B (IC 50 38 μm) with no hemolytic activity. Although the most active compound induced cytotoxicity against a mammalian cell lineage, the in vivo model evidenced absence of toxicity. Isoaustrobrasilol B significantly inhibited NTPDase and ecto-5'-nucleotidase activities, and the immune modulation attributed to extracellular nucleotide accumulation was evaluated. The production of ROS and IL-6 by T. vaginalis-stimulated neutrophils was not affected by the treatment. Conversely, IL-8 levels were significantly enhanced. The associative mechanism of trophozoites death and ectonucleotidases modulation by isoaustrobrasilol B may increase the susceptibility of T. vaginalis to host innate immune cell like neutrophils consequently, contributing to parasite clearance. © 2017 John Wiley & Sons A/S.

  8. Classification of pseudo pairs between nucleotide bases and amino acids by analysis of nucleotide-protein complexes.

    Science.gov (United States)

    Kondo, Jiro; Westhof, Eric

    2011-10-01

    Nucleotide bases are recognized by amino acid residues in a variety of DNA/RNA binding and nucleotide binding proteins. In this study, a total of 446 crystal structures of nucleotide-protein complexes are analyzed manually and pseudo pairs together with single and bifurcated hydrogen bonds observed between bases and amino acids are classified and annotated. Only 5 of the 20 usual amino acid residues, Asn, Gln, Asp, Glu and Arg, are able to orient in a coplanar fashion in order to form pseudo pairs with nucleotide bases through two hydrogen bonds. The peptide backbone can also form pseudo pairs with nucleotide bases and presents a strong bias for binding to the adenine base. The Watson-Crick side of the nucleotide bases is the major interaction edge participating in such pseudo pairs. Pseudo pairs between the Watson-Crick edge of guanine and Asp are frequently observed. The Hoogsteen edge of the purine bases is a good discriminatory element in recognition of nucleotide bases by protein side chains through the pseudo pairing: the Hoogsteen edge of adenine is recognized by various amino acids while the Hoogsteen edge of guanine is only recognized by Arg. The sugar edge is rarely recognized by either the side-chain or peptide backbone of amino acid residues.

  9. Spectral shifts of mammalian ultraviolet-sensitive pigments (short wavelength-sensitive opsin 1) are associated with eye length and photic niche evolution.

    Science.gov (United States)

    Emerling, Christopher A; Huynh, Hieu T; Nguyen, Minh A; Meredith, Robert W; Springer, Mark S

    2015-11-22

    Retinal opsin photopigments initiate mammalian vision when stimulated by light. Most mammals possess a short wavelength-sensitive opsin 1 (SWS1) pigment that is primarily sensitive to either ultraviolet or violet light, leading to variation in colour perception across species. Despite knowledge of both ultraviolet- and violet-sensitive SWS1 classes in mammals for 25 years, the adaptive significance of this variation has not been subjected to hypothesis testing, resulting in minimal understanding of the basis for mammalian SWS1 spectral tuning evolution. Here, we gathered data on SWS1 for 403 mammal species, including novel SWS1 sequences for 97 species. Ancestral sequence reconstructions suggest that the most recent common ancestor of Theria possessed an ultraviolet SWS1 pigment, and that violet-sensitive pigments evolved at least 12 times in mammalian history. We also observed that ultraviolet pigments, previously considered to be a rarity, are common in mammals. We then used phylogenetic comparative methods to test the hypotheses that the evolution of violet-sensitive SWS1 is associated with increased light exposure, extended longevity and longer eye length. We discovered that diurnal mammals and species with longer eyes are more likely to have violet-sensitive pigments and less likely to possess UV-sensitive pigments. We hypothesize that (i) as mammals evolved larger body sizes, they evolved longer eyes, which limited transmittance of ultraviolet light to the retina due to an increase in Rayleigh scattering, and (ii) as mammals began to invade diurnal temporal niches, they evolved lenses with low UV transmittance to reduce chromatic aberration and/or photo-oxidative damage. © 2015 The Author(s).

  10. Molecular evolution of the keratin associated protein gene family in mammals, role in the evolution of mammalian hair.

    Science.gov (United States)

    Wu, Dong-Dong; Irwin, David M; Zhang, Ya-Ping

    2008-08-23

    Hair is unique to mammals. Keratin associated proteins (KRTAPs), which contain two major groups: high/ultrahigh cysteine and high glycine-tyrosine, are one of the major components of hair and play essential roles in the formation of rigid and resistant hair shafts. The KRTAP family was identified as being unique to mammals, and near-complete KRTAP gene repertoires for eight mammalian genomes were characterized in this study. An expanded KRTAP gene repertoire was found in rodents. Surprisingly, humans have a similar number of genes as other primates despite the relative hairlessness of humans. We identified several new subfamilies not previously reported in the high/ultrahigh cysteine KRTAP genes. Genes in many subfamilies of the high/ultrahigh cysteine KRTAP genes have evolved by concerted evolution with frequent gene conversion events, yielding a higher GC base content for these gene sequences. In contrast, the high glycine-tyrosine KRTAP genes have evolved more dynamically, with fewer gene conversion events and thus have a lower GC base content, possibly due to positive selection. Most of the subfamilies emerged early in the evolution of mammals, thus we propose that the mammalian ancestor should have a diverse KRTAP gene repertoire. We propose that hair content characteristics have evolved and diverged rapidly among mammals because of rapid divergent evolution of KRTAPs between species. In contrast, subfamilies of KRTAP genes have been homogenized within each species due to concerted evolution.

  11. Before the dawn recovering the lost history of our ancestors

    CERN Document Server

    Wade, Nicholas

    2007-01-01

    Nicholas Wade’s articles are a major reason why the science section has become the most popular, nationwide, in the New York Times. In his groundbreaking Before the Dawn, Wade reveals humanity’s origins as never before—a journey made possible only recently by genetic science, whose incredible findings have answered such questions as: What was the first human language like? How large were the first societies, and how warlike were they? When did our ancestors first leave Africa, and by what route did they leave? By eloquently solving these and numerous other mysteries, Wade offers nothing less than a uniquely complete retelling of a story that began 500 centuries ago.

  12. Phenolic Amides Are Potent Inhibitors of De Novo Nucleotide Biosynthesis.

    Science.gov (United States)

    Pisithkul, Tippapha; Jacobson, Tyler B; O'Brien, Thomas J; Stevenson, David M; Amador-Noguez, Daniel

    2015-09-01

    An outstanding challenge toward efficient production of biofuels and value-added chemicals from plant biomass is the impact that lignocellulose-derived inhibitors have on microbial fermentations. Elucidating the mechanisms that underlie their toxicity is critical for developing strategies to overcome them. Here, using Escherichia coli as a model system, we investigated the metabolic effects and toxicity mechanisms of feruloyl amide and coumaroyl amide, the predominant phenolic compounds in ammonia-pretreated biomass hydrolysates. Using metabolomics, isotope tracers, and biochemical assays, we showed that these two phenolic amides act as potent and fast-acting inhibitors of purine and pyrimidine biosynthetic pathways. Feruloyl or coumaroyl amide exposure leads to (i) a rapid buildup of 5-phosphoribosyl-1-pyrophosphate (PRPP), a key precursor in nucleotide biosynthesis, (ii) a rapid decrease in the levels of pyrimidine biosynthetic intermediates, and (iii) a long-term generalized decrease in nucleotide and deoxynucleotide levels. Tracer experiments using (13)C-labeled sugars and [(15)N]ammonia demonstrated that carbon and nitrogen fluxes into nucleotides and deoxynucleotides are inhibited by these phenolic amides. We found that these effects are mediated via direct inhibition of glutamine amidotransferases that participate in nucleotide biosynthetic pathways. In particular, feruloyl amide is a competitive inhibitor of glutamine PRPP amidotransferase (PurF), which catalyzes the first committed step in de novo purine biosynthesis. Finally, external nucleoside supplementation prevents phenolic amide-mediated growth inhibition by allowing nucleotide biosynthesis via salvage pathways. The results presented here will help in the development of strategies to overcome toxicity of phenolic compounds and facilitate engineering of more efficient microbial producers of biofuels and chemicals. Copyright © 2015, Pisithkul et al.

  13. Phenolic Amides Are Potent Inhibitors of De Novo Nucleotide Biosynthesis

    Science.gov (United States)

    Pisithkul, Tippapha; Jacobson, Tyler B.; O'Brien, Thomas J.; Stevenson, David M.

    2015-01-01

    An outstanding challenge toward efficient production of biofuels and value-added chemicals from plant biomass is the impact that lignocellulose-derived inhibitors have on microbial fermentations. Elucidating the mechanisms that underlie their toxicity is critical for developing strategies to overcome them. Here, using Escherichia coli as a model system, we investigated the metabolic effects and toxicity mechanisms of feruloyl amide and coumaroyl amide, the predominant phenolic compounds in ammonia-pretreated biomass hydrolysates. Using metabolomics, isotope tracers, and biochemical assays, we showed that these two phenolic amides act as potent and fast-acting inhibitors of purine and pyrimidine biosynthetic pathways. Feruloyl or coumaroyl amide exposure leads to (i) a rapid buildup of 5-phosphoribosyl-1-pyrophosphate (PRPP), a key precursor in nucleotide biosynthesis, (ii) a rapid decrease in the levels of pyrimidine biosynthetic intermediates, and (iii) a long-term generalized decrease in nucleotide and deoxynucleotide levels. Tracer experiments using 13C-labeled sugars and [15N]ammonia demonstrated that carbon and nitrogen fluxes into nucleotides and deoxynucleotides are inhibited by these phenolic amides. We found that these effects are mediated via direct inhibition of glutamine amidotransferases that participate in nucleotide biosynthetic pathways. In particular, feruloyl amide is a competitive inhibitor of glutamine PRPP amidotransferase (PurF), which catalyzes the first committed step in de novo purine biosynthesis. Finally, external nucleoside supplementation prevents phenolic amide-mediated growth inhibition by allowing nucleotide biosynthesis via salvage pathways. The results presented here will help in the development of strategies to overcome toxicity of phenolic compounds and facilitate engineering of more efficient microbial producers of biofuels and chemicals. PMID:26070680

  14. The arabidopsis cyclic nucleotide interactome

    KAUST Repository

    Donaldson, Lara Elizabeth; Meier, Stuart Kurt; Gehring, Christoph A

    2016-01-01

    Cyclic nucleotides have been shown to play important signaling roles in many physiological processes in plants including photosynthesis and defence. Despite this, little is known about cyclic nucleotide-dependent signaling mechanisms

  15. Outgroup, alignment and modelling improvements indicate that two TNFSF13-like genes existed in the vertebrate ancestor.

    Science.gov (United States)

    Redmond, Anthony K; Pettinello, Rita; Dooley, Helen

    2017-03-01

    The molecular machinery required for lymphocyte development and differentiation appears to have emerged concomitantly with distinct B- and T-like lymphocyte subsets in the ancestor of all vertebrates. The TNFSF superfamily (TNFSF) members BAFF (TNFSF13/Blys) and APRIL (TNFSF13) are key regulators of B cell development survival, and activation in mammals, but the temporal emergence of these molecules, and their precise relationship to the newly identified TNFSF gene BALM (BAFF and APRIL-like molecule), have not yet been elucidated. Here, to resolve the early evolutionary history of this family, we improved outgroup sampling and alignment quality, and applied better fitting substitution models compared to past studies. Our analyses reveal that BALM is a definitive TNFSF13 family member, which split from BAFF in the gnathostome (jawed vertebrate) ancestor. Most importantly, however, we show that both the APRIL and BAFF lineages existed in the ancestors of all extant vertebrates. This implies that APRIL has been lost, or is yet to be found, in cyclostomes (jawless vertebrates). Our results suggest that lineage-specific gene duplication and loss events have caused lymphocyte regulation, despite shared origins, to become secondarily distinct between gnathostomes and cyclostomes. Finally, the structure of lamprey BAFF-like, and its phylogenetic placement as sister to BAFF and BALM, but not the more slowly evolving APRIL, indicates that the primordial lymphocyte regulator was more APRIL-like than BAFF-like.

  16. Nucleotide Selectivity in Abiotic RNA Polymerization Reactions

    Science.gov (United States)

    Coari, Kristin M.; Martin, Rebecca C.; Jain, Kopal; McGown, Linda B.

    2017-09-01

    In order to establish an RNA world on early Earth, the nucleotides must form polymers through chemical rather than biochemical reactions. The polymerization products must be long enough to perform catalytic functions, including self-replication, and to preserve genetic information. These functions depend not only on the length of the polymers, but also on their sequences. To date, studies of abiotic RNA polymerization generally have focused on routes to polymerization of a single nucleotide and lengths of the homopolymer products. Less work has been done the selectivity of the reaction toward incorporation of some nucleotides over others in nucleotide mixtures. Such information is an essential step toward understanding the chemical evolution of RNA. To address this question, in the present work RNA polymerization reactions were performed in the presence of montmorillonite clay catalyst. The nucleotides included the monophosphates of adenosine, cytosine, guanosine, uridine and inosine. Experiments included reactions of mixtures of an imidazole-activated nucleotide (ImpX) with one or more unactivated nucleotides (XMP), of two or more ImpX, and of XMP that were activated in situ in the polymerization reaction itself. The reaction products were analyzed using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) to identify the lengths and nucleotide compositions of the polymerization products. The results show that the extent of polymerization, the degree of heteropolymerization vs. homopolymerization, and the composition of the polymeric products all vary among the different nucleotides and depend upon which nucleotides and how many different nucleotides are present in the mixture.

  17. Nucleotide Selectivity in Abiotic RNA Polymerization Reactions.

    Science.gov (United States)

    Coari, Kristin M; Martin, Rebecca C; Jain, Kopal; McGown, Linda B

    2017-09-01

    In order to establish an RNA world on early Earth, the nucleotides must form polymers through chemical rather than biochemical reactions. The polymerization products must be long enough to perform catalytic functions, including self-replication, and to preserve genetic information. These functions depend not only on the length of the polymers, but also on their sequences. To date, studies of abiotic RNA polymerization generally have focused on routes to polymerization of a single nucleotide and lengths of the homopolymer products. Less work has been done the selectivity of the reaction toward incorporation of some nucleotides over others in nucleotide mixtures. Such information is an essential step toward understanding the chemical evolution of RNA. To address this question, in the present work RNA polymerization reactions were performed in the presence of montmorillonite clay catalyst. The nucleotides included the monophosphates of adenosine, cytosine, guanosine, uridine and inosine. Experiments included reactions of mixtures of an imidazole-activated nucleotide (ImpX) with one or more unactivated nucleotides (XMP), of two or more ImpX, and of XMP that were activated in situ in the polymerization reaction itself. The reaction products were analyzed using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) to identify the lengths and nucleotide compositions of the polymerization products. The results show that the extent of polymerization, the degree of heteropolymerization vs. homopolymerization, and the composition of the polymeric products all vary among the different nucleotides and depend upon which nucleotides and how many different nucleotides are present in the mixture.

  18. FUNCTIONAL IMPLICATIONS OF THE CLOCK 3111T/C SINGLE-NUCLEOTIDE POLYMORPHISM

    Directory of Open Access Journals (Sweden)

    Angela Renee Ozburn

    2016-04-01

    Full Text Available Circadian rhythm disruptions are prominently associated with Bipolar Disorder (BD. Circadian rhythms are regulated by the molecular clock, a family of proteins that function together in a transcriptional-translational feedback loop. The CLOCK protein is a key transcription factor of this feedback loop, and previous studies have found that manipulations of the Clock gene are sufficient to produce manic-like behavior in mice (Roybal et al., 2007. The Clock 3111T/C single-nucleotide polymorphism (SNP; rs1801260 is a genetic variation of the human Clock gene that is significantly associated with increased frequency of manic episodes in BD patients (Benedetti et al., 2003. The 3111T/C SNP is located in the 3’ untranslated region of the Clock gene. In this study, we sought to examine the functional implications of the human Clock 3111T/C SNP by transfecting a mammalian cell line (mouse embryonic fibroblasts isolated from Clock -/- knockout mice with pcDNA plasmids containing the human Clock gene with either the T or C SNP at position 3111. We then measured circadian gene expression over a 24 hour time period. We found that the Clock3111C SNP resulted in higher mRNA levels than the Clock 3111T SNP. Further, we found that Per2, a transcriptional target of CLOCK, was also more highly expressed with Clock 3111C expression, indicating the 3’UTR SNP affects the expression, function and stability of Clock mRNA.

  19. A multistep damage recognition mechanism for global genomic nucleotide excision repair.

    Science.gov (United States)

    Sugasawa, K; Okamoto, T; Shimizu, Y; Masutani, C; Iwai, S; Hanaoka, F

    2001-03-01

    A mammalian nucleotide excision repair (NER) factor, the XPC-HR23B complex, can specifically bind to certain DNA lesions and initiate the cell-free repair reaction. Here we describe a detailed analysis of its binding specificity using various DNA substrates, each containing a single defined lesion. A highly sensitive gel mobility shift assay revealed that XPC-HR23B specifically binds a small bubble structure with or without damaged bases, whereas dual incision takes place only when damage is present in the bubble. This is evidence that damage recognition for NER is accomplished through at least two steps; XPC-HR23B first binds to a site that has a DNA helix distortion, and then the presence of injured bases is verified prior to dual incision. Cyclobutane pyrimidine dimers (CPDs) were hardly recognized by XPC-HR23B, suggesting that additional factors may be required for CPD recognition. Although the presence of mismatched bases opposite a CPD potentiated XPC-HR23B binding, probably due to enhancement of the helix distortion, cell-free excision of such compound lesions was much more efficient than expected from the observed affinity for XPC-HR23B. This also suggests that additional factors and steps are required for the recognition of some types of lesions. A multistep mechanism of this sort may provide a molecular basis for ensuring the high level of damage discrimination that is required for global genomic NER.

  20. Models of gene gain and gene loss for probabilistic reconstruction of gene content in the last universal common ancestor of life

    OpenAIRE

    Kannan, Lavanya; Li, Hua; Rubinstein, Boris; Mushegian, Arcady

    2013-01-01

    Background The problem of probabilistic inference of gene content in the last common ancestor of several extant species with completely sequenced genomes is: for each gene that is conserved in all or some of the genomes, assign the probability that its ancestral gene was present in the genome of their last common ancestor. Results We have developed a family of models of gene gain and gene loss in evolution, and applied the maximum-likelihood approach that uses phylogenetic tree of prokaryotes...

  1. Enhancer evolution across 20 mammalian species

    DEFF Research Database (Denmark)

    Villar, Diego; Berthelot, Camille; Aldridge, Sarah

    2015-01-01

    The mammalian radiation has corresponded with rapid changes in noncoding regions of the genome, but we lack a comprehensive understanding of regulatory evolution in mammals. Here, we track the evolution of promoters and enhancers active in liver across 20 mammalian species from six diverse orders...... by profiling genomic enrichment of H3K27 acetylation and H3K4 trimethylation. We report that rapid evolution of enhancers is a universal feature of mammalian genomes. Most of the recently evolved enhancers arise from ancestral DNA exaptation, rather than lineage-specific expansions of repeat elements....... These results provide important insight into the functional genetics underpinning mammalian regulatory evolution....

  2. Involvement of cyclic nucleotides in locust flight muscle metabolism

    NARCIS (Netherlands)

    Worm, R.A.A.

    1980-01-01

    1. Flight had no significant effect on the levels of c-AMP of c-GMP in the flight muscles of Locusta migratoria. 2. Injections of 0.01 or 0.1 corpus cardiacum equivalents into the abdominal cavity did not elicit any effect on cyclic nucleotide levels either. 3. Injection of A23187 resulted in

  3. Paired Chicken and Mammalian Erythrocyte Indicator Systems for ...

    African Journals Online (AJOL)

    Three levels of erythrocytes suspensions, 1.5%, 1% and 0.5% respectively from goat and guinea pig, were compared to conventional 0.5% chicken erythrocytes, in an attempt to investigate the suitability for the two sources of mammalian erythrocytes as indicators for Newcastle disease virus haemagglutination (HA) tests.

  4. Ancestors We Didn’t Even Know We Had”: Alice Walker, Asian Religion, and Ethnic Authenticity

    Directory of Open Access Journals (Sweden)

    Kyle Garton-Gundling

    2015-03-01

    Full Text Available Recent debates about the ethics of identity in a global age have dealt with how to prioritize conflicting local and global allegiances. Guided by these concerns, the fiction of Alice Walker develops a distinctive view of how local cultures and global movements can fruitfully interact. This vision depends on concepts from Asian religions, a major influence that critics of Walker have largely overlooked. Walker promotes Hindu and Buddhist meditation in a context of widespread African American skepticism toward Asian religions. According to widespread notions of cultural authenticity, Asian religions cannot nourish an African American connection to ethnic roots. In response to this challenge, Alice Walker’s fiction portrays Hindu and Buddhist mystics as African Americans’ ancestors, thus positioning these faiths as authentically black. By creatively enfolding Asian religions into her sense of African American heritage, Walker builds a spiritual cosmopolitanism that relies on claims of ancestral affiliation even when these claims are not literal. This strategy is Walker’s effort to create a new paradigm of cultural authenticity, one that allows individuals and groups to choose their ancestors. Walker’s approach seeks to incorporate disparate global influences while still valorizing the figure of the ancestor. This innovative approach places Walker at the forefront of a growing number of African American artists and intellectuals who promote Asian religions to American minorities. Walker’s work vividly dramatizes larger concerns in transnational American Studies: Eastern philosophy’s relevance to identity politics, the tensions between universal ideals and cultural specifics, and the ethics of cross-cultural appropriation.

  5. Cyclic nucleotides and radioresistnace

    International Nuclear Information System (INIS)

    Kulinskij, V.I.; Mikheeva, G.A.; Zel'manovich, B.M.

    1982-01-01

    The addition of glucose to meat-peptone broth does not change the radiosensitizing effect (RSE) of cAMP at the logarithmic phase (LP) and the radioprotective effect (RPE) at the stationary phase (SP), but sensitization, characteristic of cGMP, disappears in SP and turns into RPE in LP. Introduction of glucose into the broth for 20 min eliminates all the effects of both cyclic nucleotides in the cya + strain while cya - mutant exhibits RSE. RSE of both cyclic nucleotides is only manifested on minimal media. These data brought confirmation of the dependence of the influence of cyclic media. These data brought confirmation of the dependence of the influence of cyclic nucleotides on radioresistance upon the metabolic status of the cell [ru

  6. Mutations in the testis-specific enhancer of SOX9 in the SRY independent sex-determining mechanism in the genus Tokudaia.

    Directory of Open Access Journals (Sweden)

    Ryutaro Kimura

    Full Text Available SRY (sex-determining region Y is widely conserved in eutherian mammals as a sex-determining gene located on the Y chromosome. SRY proteins bind to the testis-specific enhancer of SOX9 (TES with SF1 to upregulate SOX9 expression in undifferentiated gonads of XY embryos of humans and mice. The core region within TES, named TESCO, is an important enhancer for mammalian sex determination. We show that TESCO of the genus Tokudaia lost enhancer activity caused by mutations in its SRY and SF1 binding sites. Two species of Tokudaia do not have the Y chromosome or SRY, and one species has multiple SRYs located on the neo-Y chromosome consisting of the Y fused with an autosome. The sequence of Tokudaia TESCO exhibited more than 83% identity with mouse TESCO, however, nucleotide substitution(s were found in two out of three SRY binding sites and in five out of six SF1 binding sites. TESCO of all species showed low enhancer activity in cells co-transfected with SRY and SF1, and SOX9 and SF1 in reporter gene assays. Mutated TESCO, in which nucleotide substitutions found in SRY and SF1 binding sites were replaced with mouse sequence, recovered the activity. Furthermore, SRYs of the SRY-positive species could not activate the mutated TESCO or mouse TESCO, suggesting that SRYs lost function as a sex-determining gene any more. Our results indicate that the SRY dependent sex-determining mechanism was lost in a common ancestor of the genus Tokudaia caused by nucleotide substitutions in SRY and SF1 binding sites after emergence of a new sex-determining gene. We present the first evidence for an intermediate stage of the switchover from SRY to a new sex-determining gene in the evolution of mammalian sex-determining mechanism.

  7. Mutations in the testis-specific enhancer of SOX9 in the SRY independent sex-determining mechanism in the genus Tokudaia.

    Science.gov (United States)

    Kimura, Ryutaro; Murata, Chie; Kuroki, Yoko; Kuroiwa, Asato

    2014-01-01

    SRY (sex-determining region Y) is widely conserved in eutherian mammals as a sex-determining gene located on the Y chromosome. SRY proteins bind to the testis-specific enhancer of SOX9 (TES) with SF1 to upregulate SOX9 expression in undifferentiated gonads of XY embryos of humans and mice. The core region within TES, named TESCO, is an important enhancer for mammalian sex determination. We show that TESCO of the genus Tokudaia lost enhancer activity caused by mutations in its SRY and SF1 binding sites. Two species of Tokudaia do not have the Y chromosome or SRY, and one species has multiple SRYs located on the neo-Y chromosome consisting of the Y fused with an autosome. The sequence of Tokudaia TESCO exhibited more than 83% identity with mouse TESCO, however, nucleotide substitution(s) were found in two out of three SRY binding sites and in five out of six SF1 binding sites. TESCO of all species showed low enhancer activity in cells co-transfected with SRY and SF1, and SOX9 and SF1 in reporter gene assays. Mutated TESCO, in which nucleotide substitutions found in SRY and SF1 binding sites were replaced with mouse sequence, recovered the activity. Furthermore, SRYs of the SRY-positive species could not activate the mutated TESCO or mouse TESCO, suggesting that SRYs lost function as a sex-determining gene any more. Our results indicate that the SRY dependent sex-determining mechanism was lost in a common ancestor of the genus Tokudaia caused by nucleotide substitutions in SRY and SF1 binding sites after emergence of a new sex-determining gene. We present the first evidence for an intermediate stage of the switchover from SRY to a new sex-determining gene in the evolution of mammalian sex-determining mechanism.

  8. Gene organization inside replication domains in mammalian genomes

    Science.gov (United States)

    Zaghloul, Lamia; Baker, Antoine; Audit, Benjamin; Arneodo, Alain

    2012-11-01

    We investigate the large-scale organization of human genes with respect to "master" replication origins that were previously identified as bordering nucleotide compositional skew domains. We separate genes in two categories depending on their CpG enrichment at the promoter which can be considered as a marker of germline DNA methylation. Using expression data in mouse, we confirm that CpG-rich genes are highly expressed in germline whereas CpG-poor genes are in a silent state. We further show that, whether tissue-specific or broadly expressed (housekeeping genes), the CpG-rich genes are over-represented close to the replication skew domain borders suggesting some coordination of replication and transcription. We also reveal that the transcription of the longest CpG-rich genes is co-oriented with replication fork progression so that the promoter of these transcriptionally active genes be located into the accessible open chromatin environment surrounding the master replication origins that border the replication skew domains. The observation of a similar gene organization in the mouse genome confirms the interplay of replication, transcription and chromatin structure as the cornerstone of mammalian genome architecture.

  9. Chitinase mRNA levels by quantitative PCR using the single standard DNA: acidic mammalian chitinase is a major transcript in the mouse stomach.

    Directory of Open Access Journals (Sweden)

    Misa Ohno

    Full Text Available Chitinases hydrolyze the β-1-4 glycosidic bonds of chitin, a major structural component of fungi, crustaceans and insects. Although mammals do not produce chitin or its synthase, they express two active chitinases, chitotriosidase (Chit1 and acidic mammalian chitinase (AMCase. These mammalian chitinases have attracted considerable attention due to their increased expression in individuals with a number of pathological conditions, including Gaucher disease, Alzheimer's disease and asthma. However, the contribution of these enzymes to the pathophysiology of these diseases remains to be determined. The quantification of the Chit1 and AMCase mRNA levels and the comparison of those levels with the levels of well-known reference genes can generate useful and biomedically relevant information. In the beginning, we established a quantitative real-time PCR system that uses standard DNA produced by ligating the cDNA fragments of the target genes. This system enabled us to quantify and compare the expression levels of the chitinases and the reference genes on the same scale. We found that AMCase mRNA is synthesized at extraordinarily high levels in the mouse stomach. The level of this mRNA in the mouse stomach was 7- to 10-fold higher than the levels of the housekeeping genes and was comparable to that the level of the mRNA for pepsinogen C (progastricsin, a major component of the gastric mucosa. Thus, AMCase mRNA is a major transcript in mouse stomach, suggesting that AMCase functions as a digestive enzyme that breaks down polymeric chitin and as part of the host defense against chitin-containing pathogens in the gastric contents. Our methodology is applicable to the quantification of mRNAs for multiple genes across multiple specimens using the same scale.

  10. Removal of oxygen free-radical-induced 5′,8-purine cyclodeoxynucleosides from DNA by the nucleotide excision-repair pathway in human cells

    Science.gov (United States)

    Kuraoka, Isao; Bender, Christina; Romieu, Anthony; Cadet, Jean; Wood, Richard D.; Lindahl, Tomas

    2000-01-01

    Exposure of cellular DNA to reactive oxygen species generates several classes of base lesions, many of which are removed by the base excision-repair pathway. However, the lesions include purine cyclodeoxynucleoside formation by intramolecular crosslinking between the C-8 position of adenine or guanine and the 5′ position of 2-deoxyribose. This distorting form of DNA damage, in which the purine is attached by two covalent bonds to the sugar-phosphate backbone, occurs as distinct diastereoisomers. It was observed here that both diastereoisomers block primer extension by mammalian and microbial replicative DNA polymerases, using DNA with a site-specific purine cyclodeoxynucleoside residue as template, and consequently appear to be cytotoxic lesions. Plasmid DNA containing either the 5′R or 5′S form of 5′,8-cyclo-2-deoxyadenosine was a substrate for the human nucleotide excision-repair enzyme complex. The R diastereoisomer was more efficiently repaired than the S isomer. No correction of the lesion by direct damage reversal or base excision repair was detected. Dual incision around the lesion depended on the core nucleotide excision-repair protein XPA. In contrast to several other types of oxidative DNA damage, purine cyclodeoxynucleosides are chemically stable and would be expected to accumulate at a slow rate over many years in the DNA of nonregenerating cells from xeroderma pigmentosum patients. High levels of this form of DNA damage might explain the progressive neurodegeneration seen in XPA individuals. PMID:10759556

  11. 2-Oxoglutarate levels control adenosine nucleotide binding by Herbaspirillum seropedicae PII proteins.

    Science.gov (United States)

    Oliveira, Marco A S; Gerhardt, Edileusa C M; Huergo, Luciano F; Souza, Emanuel M; Pedrosa, Fábio O; Chubatsu, Leda S

    2015-12-01

    Nitrogen metabolism in Proteobacteria is controlled by the Ntr system, in which PII proteins play a pivotal role, controlling the activity of target proteins in response to the metabolic state of the cell. Characterization of the binding of molecular effectors to these proteins can provide information about their regulation. Here, the binding of ATP, ADP and 2-oxoglutarate (2-OG) to the Herbaspirillum seropedicae PII proteins, GlnB and GlnK, was characterized using isothermal titration calorimetry. Results show that these proteins can bind three molecules of ATP, ADP and 2-OG with homotropic negative cooperativity, and 2-OG binding stabilizes the binding of ATP. Results also show that the affinity of uridylylated forms of GlnB and GlnK for nucleotides is significantly lower than that of the nonuridylylated proteins. Furthermore, fluctuations in the intracellular concentration of 2-OG in response to nitrogen availability are shown. Results suggest that under nitrogen-limiting conditions, PII proteins tend to bind ATP and 2-OG. By contrast, after an ammonium shock, a decrease in the 2-OG concentration is observed causing a decrease in the affinity of PII proteins for ATP. This phenomenon may facilitate the exchange of ATP for ADP on the ligand-binding pocket of PII proteins, thus it is likely that under low ammonium, low 2-OG levels would favor the ADP-bound state. © 2015 FEBS.

  12. DNA incorporation of 6-thioguanine nucleotides during maintenance therapy of childhood acute lymphoblastic leukaemia and non-Hodgkin lymphoma

    DEFF Research Database (Denmark)

    Hedeland, Rikke L; Hvidt, Kristian; Nersting, Jacob

    2010-01-01

    To explore the DNA incorporation of 6-thioguanine nucleotide levels (DNA-6TGN) during 6-mercaptopurine (6MP) therapy of childhood acute lymphoblastic leukaemia (ALL) and non-Hodgkin lymphoma (NHL) and its relation to erythrocyte levels of their metabolites: 6-thioguanine-nucleotides (E-6TGN...

  13. DNA sequence explains seemingly disordered methylation levels in partially methylated domains of Mammalian genomes.

    Directory of Open Access Journals (Sweden)

    Dimos Gaidatzis

    2014-02-01

    Full Text Available For the most part metazoan genomes are highly methylated and harbor only small regions with low or absent methylation. In contrast, partially methylated domains (PMDs, recently discovered in a variety of cell lines and tissues, do not fit this paradigm as they show partial methylation for large portions (20%-40% of the genome. While in PMDs methylation levels are reduced on average, we found that at single CpG resolution, they show extensive variability along the genome outside of CpG islands and DNase I hypersensitive sites (DHS. Methylation levels range from 0% to 100% in a roughly uniform fashion with only little similarity between neighboring CpGs. A comparison of various PMD-containing methylomes showed that these seemingly disordered states of methylation are strongly conserved across cell types for virtually every PMD. Comparative sequence analysis suggests that DNA sequence is a major determinant of these methylation states. This is further substantiated by a purely sequence based model which can predict 31% (R(2 of the variation in methylation. The model revealed CpG density as the main driving feature promoting methylation, opposite to what has been shown for CpG islands, followed by various dinucleotides immediately flanking the CpG and a minor contribution from sequence preferences reflecting nucleosome positioning. Taken together we provide a reinterpretation for the nucleotide-specific methylation levels observed in PMDs, demonstrate their conservation across tissues and suggest that they are mainly determined by specific DNA sequence features.

  14. Levels of adenine nucleotides (ATP, ADP, AMP) and of inorganic phosphate in needles of Picea abies, representing different stages of development and of pollution dependence

    Energy Technology Data Exchange (ETDEWEB)

    Benz, T; Hampp, R; Horsch, F; Filby, G; Fund, N; Gross, S; Hanisch, B; Kilz, E; Seidel, A [comps.

    1986-04-01

    Levels of adenine nucleotides (ATP, ADP, AMP) and of inorganic phosphate in needles of Picea abies, representing different stages of development and of pollution dependence. Lyophilized needles of Picea abies (Kaelbelescheuer, southern Black Forest) were analyzed for their content of adenine nucleotides (ATP, ADP, AMP: AdN) and of inorganic phosphate (Psub(i)). The metabolite levels were related to needle age, vegetation period and degree of damage (chlorophyll content). The results were as follows: 1) With increasing needle age there is a general decrease in the total AdN-pool. This decrease is most pronounced in very young needles and occurs in both healthy and damaged tissue. 2) The ATP/ADP-ratio of damaged needle is significantly higher than that of healthy ones. 3) Both phosphorylation potential (ATP.(ADP.Psub(i))/sup -1/) and adenylate energy charge ((ATP + 0.5.ADP).(AdN)/sup -1/) are significantly reduced in damaged needles. This is due to relatively higher levels of Psub(i) and of AMP. The results, although incomplete and preliminary, indicate metabolic alterations which have been described for other tissues in response to pollution by photooxidants.

  15. In pursuit of our ancestors' hand laterality.

    Science.gov (United States)

    Bargalló, Amèlia; Mosquera, Marina; Lozano, Sergi

    2017-10-01

    The aim of this paper is to apply a previously published method (Bargalló and Mosquera, 2014) to the archaeological record, allowing us to identify the hand laterality of our ancestors and determine when and how this feature, which is exhibited most strongly in humans, appeared in our evolutionary history. The method focuses on identifying handedness by looking at the technical features of the flakes produced by a single knapper, and discovering how many flakes are required to ascertain their hand preference. This method can potentially be applied to the majority of archaeological sites, since flakes are the most abundant stone tools, and stone tools are the most widespread and widely-preserved remains from prehistory. For our study, we selected two Spanish sites: Gran Dolina-TD10.1 (Atapuerca) and Abric Romaní (Barcelona), which were occupied by pre-Neanderthal and Neanderthal populations, respectively. Our analyses indicate that a minimum number of eight flakes produced by the same knapper is required to ascertain their hand preference. Even though this figure is relatively low, it is quite difficult to obtain from many archaeological sites. In addition, there is no single technical feature that provides information about handedness, instead there is a combination of eight technical features, localised on the striking platforms and ventral surfaces. The raw material is not relevant where good quality rocks are used, in this case quartzite and flint, since most of them retain the technical features required for the analysis. Expertise is not an issue either, since the technical features analysed here only correlate with handedness (Bargalló and Mosquera, 2014). Our results allow us to tentatively identify one right-handed knapper among the pre-Neanderthals of level TD10.1 at Gran Dolina (Atapuerca), while four of the five Neanderthals analysed from Abric Romaní were right-handed. The hand preference of the fifth knapper from that location (AR5) remains unclear

  16. Current perspectives of CASA applications in diverse mammalian spermatozoa.

    Science.gov (United States)

    van der Horst, Gerhard; Maree, Liana; du Plessis, Stefan S

    2018-03-26

    Since the advent of computer-aided sperm analysis (CASA) some four decades ago, advances in computer technology and software algorithms have helped establish it as a research and diagnostic instrument for the analysis of spermatozoa. Despite mammalian spermatozoa being the most diverse cell type known, CASA is a great tool that has the capacity to provide rapid, reliable and objective quantitative assessment of sperm quality. This paper provides contemporary research findings illustrating the scientific and commercial applications of CASA and its ability to evaluate diverse mammalian spermatozoa (human, primates, rodents, domestic mammals, wildlife species) at both structural and functional levels. The potential of CASA to quantitatively measure essential aspects related to sperm subpopulations, hyperactivation, morphology and morphometry is also demonstrated. Furthermore, applications of CASA are provided for improved mammalian sperm quality assessment, evaluation of sperm functionality and the effect of different chemical substances or pathologies on sperm fertilising ability. It is clear that CASA has evolved significantly and is currently superior to many manual techniques in the research and clinical setting.

  17. Mammalian synthetic biology: emerging medical applications.

    Science.gov (United States)

    Kis, Zoltán; Pereira, Hugo Sant'Ana; Homma, Takayuki; Pedrigi, Ryan M; Krams, Rob

    2015-05-06

    In this review, we discuss new emerging medical applications of the rapidly evolving field of mammalian synthetic biology. We start with simple mammalian synthetic biological components and move towards more complex and therapy-oriented gene circuits. A comprehensive list of ON-OFF switches, categorized into transcriptional, post-transcriptional, translational and post-translational, is presented in the first sections. Subsequently, Boolean logic gates, synthetic mammalian oscillators and toggle switches will be described. Several synthetic gene networks are further reviewed in the medical applications section, including cancer therapy gene circuits, immuno-regulatory networks, among others. The final sections focus on the applicability of synthetic gene networks to drug discovery, drug delivery, receptor-activating gene circuits and mammalian biomanufacturing processes. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  18. Mammalian cell biology

    International Nuclear Information System (INIS)

    Elkind, M.M.

    1975-01-01

    Progress is reported on the following research projects: the effects of N-ethyl-maleimide and hydroxyurea on hamster cells in culture; sensitization of synchronized human cells to x rays by N-ethylmaleimide; sensitization of hypoxic mammalian cells with a sulfhydryl inhibitor; damage interaction due to ionizing and nonionizing radiation in mammalian cells; DNA damage relative to radioinduced cell killing; spurious photolability of DNA labeled with methyl- 14 C-thymidine; radioinduced malignant transformation of cultured mouse cells; a comparison of properties of uv and near uv light relative to cell function and DNA damage; Monte Carlo simulation of DNA damage and repair mechanisms; and radiobiology of fast neutrons

  19. Photodynamic Inactivation of Mammalian Viruses and Bacteriophages

    Directory of Open Access Journals (Sweden)

    Liliana Costa

    2012-06-01

    Full Text Available Photodynamic inactivation (PDI has been used to inactivate microorganisms through the use of photosensitizers. The inactivation of mammalian viruses and bacteriophages by photosensitization has been applied with success since the first decades of the last century. Due to the fact that mammalian viruses are known to pose a threat to public health and that bacteriophages are frequently used as models of mammalian viruses, it is important to know and understand the mechanisms and photodynamic procedures involved in their photoinactivation. The aim of this review is to (i summarize the main approaches developed until now for the photodynamic inactivation of bacteriophages and mammalian viruses and, (ii discuss and compare the present state of the art of mammalian viruses PDI with phage photoinactivation, with special focus on the most relevant mechanisms, molecular targets and factors affecting the viral inactivation process.

  20. Transcriptional and Posttranslational Regulation of Nucleotide Excision Repair: The Guardian of the Genome against Ultraviolet Radiation

    Directory of Open Access Journals (Sweden)

    Jeong-Min Park

    2016-11-01

    Full Text Available Ultraviolet (UV radiation from sunlight represents a constant threat to genome stability by generating modified DNA bases such as cyclobutane pyrimidine dimers (CPD and pyrimidine-pyrimidone (6-4 photoproducts (6-4PP. If unrepaired, these lesions can have deleterious effects, including skin cancer. Mammalian cells are able to neutralize UV-induced photolesions through nucleotide excision repair (NER. The NER pathway has multiple components including seven xeroderma pigmentosum (XP proteins (XPA to XPG and numerous auxiliary factors, including ataxia telangiectasia and Rad3-related (ATR protein kinase and RCC1 like domain (RLD and homologous to the E6-AP carboxyl terminus (HECT domain containing E3 ubiquitin protein ligase 2 (HERC2. In this review we highlight recent data on the transcriptional and posttranslational regulation of NER activity.

  1. Determination of the Nucleic Acid Adducts Structure at the Nucleoside/Nucleotide Level by NMR Spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Dračínský, Martin; Pohl, Radek

    2015-01-01

    Roč. 28, č. 2 (2015), s. 155-165 ISSN 0893-228X R&D Projects: GA ČR GA13-24880S Institutional support: RVO:61388963 Keywords : NMR spectroscopy * nucleic acids * nucleotides Subject RIV: CC - Organic Chemistry Impact factor: 3.025, year: 2015

  2. Cytomolecular analysis of ribosomal DNA evolution in a natural allotetraploid Brachypodium hybridum and its putative ancestors – dissecting complex repetitive structure of intergenic spacers

    Directory of Open Access Journals (Sweden)

    Natalia Borowska-Zuchowska

    2016-10-01

    Full Text Available Nucleolar dominance is an epigenetic phenomenon associated with nuclear 35S rRNA genes and consists in selective suppression of gene loci inherited from one of the progenitors in the allopolyploid. Our understanding of the exact mechanisms that determine this process is still fragmentary, especially in case of the grass species. This study aimed to shed some light on the molecular basis of this genome-specific inactivation of 35S rDNA loci in an allotetraploid Brachypodium hybridum (2n=30, which arose from the interspecific hybridization between two diploid ancestors that were very similar to modern B. distachyon (2n=10 and B. stacei (2n=20. Using fluorescence in situ hybridization with 25S rDNA and chromosome-specific BAC clones as probes we revealed that the nucleolar dominance is present not only in meristematic root-tip cells but also in differentiated cell fraction of B. hybridum. Additionally, the intergenic spacers (IGSs from both of the putative ancestors and the allotetraploid were sequenced and analyzed. The presumptive transcription initiation sites, spacer promoters and repeated elements were identified within the IGSs. Two different length variants, 2.3 kb and 3.5 kb, of IGSs were identified in B. distachyon and B. stacei, respectively, however only the IGS that had originated from B. distachyon-like ancestor was present in the allotetraploid. The amplification pattern of B. hybridum IGSs suggests that some genetic changes occurred in inactive B. stacei-like rDNA loci during the evolution of the allotetraploid. We hypothesize that their preferential silencing is an effect of structural changes in the sequence rather than just the result of the sole inactivation at the epigenetic level.

  3. Ontogeny of the maxilla in Neanderthals and their ancestors.

    Science.gov (United States)

    Lacruz, Rodrigo S; Bromage, Timothy G; O'Higgins, Paul; Arsuaga, Juan-Luis; Stringer, Chris; Godinho, Ricardo Miguel; Warshaw, Johanna; Martínez, Ignacio; Gracia-Tellez, Ana; de Castro, José María Bermúdez; Carbonell, Eudald

    2015-12-07

    Neanderthals had large and projecting (prognathic) faces similar to those of their putative ancestors from Sima de los Huesos (SH) and different from the retracted modern human face. When such differences arose during development and the morphogenetic modifications involved are unknown. We show that maxillary growth remodelling (bone formation and resorption) of the Devil's Tower (Gibraltar 2) and La Quina 18 Neanderthals and four SH hominins, all sub-adults, show extensive bone deposition, whereas in modern humans extensive osteoclastic bone resorption is found in the same regions. This morphogenetic difference is evident by ∼5 years of age. Modern human faces are distinct from those of the Neanderthal and SH fossils in part because their postnatal growth processes differ markedly. The growth remodelling identified in these fossil hominins is shared with Australopithecus and early Homo but not with modern humans suggesting that the modern human face is developmentally derived.

  4. Cyclic nucleotide specific phosphodiesterases of Leishmania major

    Directory of Open Access Journals (Sweden)

    Linder Markus

    2006-03-01

    Full Text Available Abstract Background Leishmania represent a complex of important human pathogens that belong to the systematic order of the kinetoplastida. They are transmitted between their human and mammalian hosts by different bloodsucking sandfly vectors. In their hosts, the Leishmania undergo several differentiation steps, and their coordination and optimization crucially depend on numerous interactions between the parasites and the physiological environment presented by the fly and human hosts. Little is still known about the signalling networks involved in these functions. In an attempt to better understand the role of cyclic nucleotide signalling in Leishmania differentiation and host-parasite interaction, we here present an initial study on the cyclic nucleotide-specific phosphodiesterases of Leishmania major. Results This paper presents the identification of three class I cyclic-nucleotide-specific phosphodiesterases (PDEs from L. major, PDEs whose catalytic domains exhibit considerable sequence conservation with, among other, all eleven human PDE families. In contrast to other protozoa such as Dictyostelium, or fungi such as Saccharomyces cerevisiae, Candida ssp or Neurospora, no genes for class II PDEs were found in the Leishmania genomes. LmjPDEA contains a class I catalytic domain at the C-terminus of the polypeptide, with no other discernible functional domains elsewhere. LmjPDEB1 and LmjPDEB2 are coded for by closely related, tandemly linked genes on chromosome 15. Both PDEs contain two GAF domains in their N-terminal region, and their almost identical catalytic domains are located at the C-terminus of the polypeptide. LmjPDEA, LmjPDEB1 and LmjPDEB2 were further characterized by functional complementation in a PDE-deficient S. cerevisiae strain. All three enzymes conferred complementation, demonstrating that all three can hydrolyze cAMP. Recombinant LmjPDEB1 and LmjPDEB2 were shown to be cAMP-specific, with Km values in the low micromolar range

  5. Adiponectin Single Nucleotide Polymorphism (+276G/T) and Its ...

    African Journals Online (AJOL)

    The present study was investigating the association between the single nucleotide polymorphism +276 G/T of the adiponectin gene with serum adiponectin level in patients with coronary artery disease (CAD). In this study 100 healthy controls and 100 Egyptian patients with coronary artery disease of both genders ...

  6. Crystal structures of mammalian glutamine synthetases illustrate substrate-induced conformational changes and provide opportunities for drug and herbicide design.

    Science.gov (United States)

    Krajewski, Wojciech W; Collins, Ruairi; Holmberg-Schiavone, Lovisa; Jones, T Alwyn; Karlberg, Tobias; Mowbray, Sherry L

    2008-01-04

    Glutamine synthetase (GS) catalyzes the ligation of glutamate and ammonia to form glutamine, with concomitant hydrolysis of ATP. In mammals, the activity eliminates cytotoxic ammonia, at the same time converting neurotoxic glutamate to harmless glutamine; there are a number of links between changes in GS activity and neurodegenerative disorders, such as Alzheimer's disease. In plants, because of its importance in the assimilation and re-assimilation of ammonia, the enzyme is a target of some herbicides. GS is also a central component of bacterial nitrogen metabolism and a potential drug target. Previous studies had investigated the structures of bacterial and plant GSs. In the present publication, we report the first structures of mammalian GSs. The apo form of the canine enzyme was solved by molecular replacement and refined at a resolution of 3 A. Two structures of human glutamine synthetase represent complexes with: a) phosphate, ADP, and manganese, and b) a phosphorylated form of the inhibitor methionine sulfoximine, ADP and manganese; these structures were refined to resolutions of 2.05 A and 2.6 A, respectively. Loop movements near the active site generate more closed forms of the eukaryotic enzymes when substrates are bound; the largest changes are associated with the binding of the nucleotide. Comparisons with earlier structures provide a basis for the design of drugs that are specifically directed at either human or bacterial enzymes. The site of binding the amino acid substrate is highly conserved in bacterial and eukaryotic GSs, whereas the nucleotide binding site varies to a much larger degree. Thus, the latter site offers the best target for specific drug design. Differences between mammalian and plant enzymes are much more subtle, suggesting that herbicides targeting GS must be designed with caution.

  7. Vertebrate brains and evolutionary connectomics: on the origins of the mammalian ‘neocortex’

    Science.gov (United States)

    Karten, Harvey J.

    2015-01-01

    The organization of the non-mammalian forebrain had long puzzled neurobiologists. Unlike typical mammalian brains, the telencephalon is not organized in a laminated ‘cortical’ manner, with distinct cortical areas dedicated to individual sensory modalities or motor functions. The two major regions of the telencephalon, the basal ventricular ridge (BVR) and the dorsal ventricular ridge (DVR), were loosely referred to as being akin to the mammalian basal ganglia. The telencephalon of non-mammalian vertebrates appears to consist of multiple ‘subcortical’ groups of cells. Analysis of the nuclear organization of the avian brain, its connections, molecular properties and physiology, and organization of its pattern of circuitry and function relative to that of mammals, collectively referred to as ‘evolutionary connectomics’, revealed that only a restricted portion of the BVR is homologous to the basal ganglia of mammals. The remaining dorsal regions of the DVR, wulst and arcopallium of the avian brain contain telencephalic inputs and outputs remarkably similar to those of the individual layers of the mammalian ‘neocortex’, hippocampus and amygdala, with instances of internuclear connections strikingly similar to those found between cortical layers and within radial ‘columns’ in the mammalian sensory and motor cortices. The molecular properties of these ‘nuclei’ in birds and reptiles are similar to those of the corresponding layers of the mammalian neocortex. The fundamental pathways and cell groups of the auditory, visual and somatosensory systems of the thalamus and telencephalon are homologous at the cellular, circuit, network and gene levels, and are of great antiquity. A proposed altered migration of these homologous neurons and circuits during development is offered as a mechanism that may account for the altered configuration of mammalian telencephalae. PMID:26554047

  8. Expression and proteasomal degradation of the major vault protein (MVP) in mammalian oocytes and zygotes.

    Science.gov (United States)

    Sutovsky, Peter; Manandhar, Gaurishankar; Laurincik, Jozef; Letko, Juraj; Caamaño, Jose Nestor; Day, Billy N; Lai, Liangxue; Prather, Randall S; Sharpe-Timms, Kathy L; Zimmer, Randall; Sutovsky, Miriam

    2005-03-01

    Major vault protein (MVP), also called lung resistance-related protein is a ribonucleoprotein comprising a major part (>70%) of the vault particle. The function of vault particle is not known, although it appears to be involved in multi-drug resistance and cellular signaling. Here we show that MVP is expressed in mammalian, porcine, and human ova and in the porcine preimplantation embryo. MVP was identified by matrix-assisted laser-desorption ionization-time-of-flight (MALDI-TOF) peptide sequencing and Western blotting as a protein accumulating in porcine zygotes cultured in the presence of specific proteasomal inhibitor MG132. MVP also accumulated in poor-quality human oocytes donated by infertile couples and porcine embryos that failed to develop normally after in vitro fertilization or somatic cell nuclear transfer. Normal porcine oocytes and embryos at various stages of preimplantation development showed mostly cytoplasmic labeling, with increased accumulation of vault particles around large cytoplasmic lipid inclusions and membrane vesicles. Occasionally, MVP was associated with the nuclear envelope and nucleolus precursor bodies. Nucleotide sequences with a high degree of homology to human MVP gene sequence were identified in porcine oocyte and endometrial cell cDNA libraries. We interpret these data as the evidence for the expression and ubiquitin-proteasome-dependent turnover of MVP in the mammalian ovum. Similar to carcinoma cells, MVP could fulfill a cell-protecting function during early embryonic development.

  9. Enhancer Evolution across 20 Mammalian Species

    Science.gov (United States)

    Villar, Diego; Berthelot, Camille; Aldridge, Sarah; Rayner, Tim F.; Lukk, Margus; Pignatelli, Miguel; Park, Thomas J.; Deaville, Robert; Erichsen, Jonathan T.; Jasinska, Anna J.; Turner, James M.A.; Bertelsen, Mads F.; Murchison, Elizabeth P.; Flicek, Paul; Odom, Duncan T.

    2015-01-01

    Summary The mammalian radiation has corresponded with rapid changes in noncoding regions of the genome, but we lack a comprehensive understanding of regulatory evolution in mammals. Here, we track the evolution of promoters and enhancers active in liver across 20 mammalian species from six diverse orders by profiling genomic enrichment of H3K27 acetylation and H3K4 trimethylation. We report that rapid evolution of enhancers is a universal feature of mammalian genomes. Most of the recently evolved enhancers arise from ancestral DNA exaptation, rather than lineage-specific expansions of repeat elements. In contrast, almost all liver promoters are partially or fully conserved across these species. Our data further reveal that recently evolved enhancers can be associated with genes under positive selection, demonstrating the power of this approach for annotating regulatory adaptations in genomic sequences. These results provide important insight into the functional genetics underpinning mammalian regulatory evolution. PMID:25635462

  10. A general framework for modeling growth and division of mammalian cells.

    Science.gov (United States)

    Gauthier, John H; Pohl, Phillip I

    2011-01-06

    Modeling the cell-division cycle has been practiced for many years. As time has progressed, this work has gone from understanding the basic principles to addressing distinct biological problems, e.g., the nature of the restriction point, how checkpoints operate, the nonlinear dynamics of the cell cycle, the effect of localization, etc. Most models consist of coupled ordinary differential equations developed by the researchers, restricted to deal with the interactions of a limited number of molecules. In the future, cell-cycle modeling--and indeed all modeling of complex biologic processes--will increase in scope and detail. A framework for modeling complex cell-biologic processes is proposed here. The framework is based on two constructs: one describing the entire lifecycle of a molecule and the second describing the basic cellular machinery. Use of these constructs allows complex models to be built in a straightforward manner that fosters rigor and completeness. To demonstrate the framework, an example model of the mammalian cell cycle is presented that consists of several hundred differential equations of simple mass action kinetics. The model calculates energy usage, amino acid and nucleotide usage, membrane transport, RNA synthesis and destruction, and protein synthesis and destruction for 33 proteins to give an in-depth look at the cell cycle. The framework presented here addresses how to develop increasingly descriptive models of complex cell-biologic processes. The example model of cellular growth and division constructed with the framework demonstrates that large structured models can be created with the framework, and these models can generate non-trivial descriptions of cellular processes. Predictions from the example model include those at both the molecular level--e.g., Wee1 spontaneously reactivates--and at the system level--e.g., pathways for timing-critical processes must shut down redundant pathways. A future effort is to automatically estimate

  11. Palindromic nucleotide analysis in human T cell receptor rearrangements.

    Directory of Open Access Journals (Sweden)

    Santosh K Srivastava

    Full Text Available Diversity of T cell receptor (TCR genes is primarily generated by nucleotide insertions upon rearrangement from their germ line-encoded V, D and J segments. Nucleotide insertions at V-D and D-J junctions are random, but some small subsets of these insertions are exceptional, in that one to three base pairs inversely repeat the sequence of the germline DNA. These short complementary palindromic sequences are called P nucleotides. We apply the ImmunoSeq deep-sequencing assay to the third complementarity determining region (CDR3 of the β chain of T cell receptors, and use the resulting data to study P nucleotides in the repertoire of naïve and memory CD8(+ and CD4(+ T cells. We estimate P nucleotide distributions in a cross section of healthy adults and different T cell subtypes. We show that P nucleotide frequency in all T cell subtypes ranges from 1% to 2%, and that the distribution is highly biased with respect to the coding end of the gene segment. Classification of observed palindromic sequences into P nucleotides using a maximum conditional probability model shows that single base P nucleotides are very rare in VDJ recombination; P nucleotides are primarily two bases long. To explore the role of P nucleotides in thymic selection, we compare P nucleotides in productive and non-productive sequences of CD8(+ naïve T cells. The naïve CD8(+ T cell clones with P nucleotides are more highly expanded.

  12. Replication labeling patterns and chromosome territories typical of mammalian nuclei are conserved in the early metazoan Hydra.

    Science.gov (United States)

    Alexandrova, Olga; Solovei, Irina; Cremer, Thomas; David, Charles N

    2003-12-01

    To investigate the evolutionary conservation of higher order nuclear architecture previously described for mammalian cells we have analyzed the nuclear architecture of the simple polyp Hydra. These diploblastic organisms have large nuclei (8-10 microm) containing about 3x10(9) bp of DNA organized in 15 chromosome pairs. They belong to the earliest metazoan phylum and are separated from mammals by at least 600 million years. Single and double pulse labeling with halogenated nucleotides (bromodeoxyuridine, iododeoxyuridine and chlorodeoxyuridine) revealed striking similarities to the known sequence of replication labeling patterns in mammalian nuclei. These patterns reflect a persistent nuclear arrangement of early, mid-, and late replicating chromatin foci that could be identified during all stages of interphase over at least 5-10 cell generations. Segregation of labeled chromatids led after several cell divisions to nuclei with single or a few labeled chromosome territories. In such nuclei distinct clusters of labeled chromatin foci were separated by extended nuclear areas with non-labeled chromatin, which is typical of a territorial arrangement of interphase chromosomes. Our results indicate the conservation of fundamental features of higher order chromatin arrangements throughout the evolution of metazoan animals and suggest the existence of conserved mechanism(s) controlling this architecture.

  13. Mammalian gastrointestinal parasites in rainforest remnants

    Indian Academy of Sciences (India)

    Here, we studied the gastrointestinal parasites of nonhuman mammalian hosts living in 10 rainforest patches of the Anamalai Tiger Reserve, India. We examined 349 faecal samples of 17 mammalian species and successfully identified 24 gastroin-testinal parasite taxa including 1 protozoan, 2 trematode, 3 cestode and 18 ...

  14. Localization of two mammalian cyclin dependent kinases during mammalian meiosis

    NARCIS (Netherlands)

    Ashley, T.; Walpita, D.; de rooij, D. G.

    2001-01-01

    Mammalian meiotic progression, like mitotic cell cycle progression, is regulated by cyclins and cyclin dependent kinases (CDKs). However, the unique requirements of meiosis (homologous synapsis, reciprocal recombination and the dual divisions that segregate first homologues, then sister chromatids)

  15. The binding of glucose and nucleotides to hexokinase from Saccharomyces cerevisiae.

    Science.gov (United States)

    Woolfitt, A R; Kellett, G L; Hoggett, J G

    1988-01-29

    The binding of glucose, ADP and AdoPP[NH]P, to the native PII dimer and PII monomer and the proteolytically-modified SII monomer of hexokinase (ATP:D-hexose 6-phosphotransferase, EC 2.7.1.1) from Saccharomyces cerevisiae was monitored at pH 6.7 by the concomitant quenching of protein fluorescence. The data were analysed in terms of Qmax, the maximal quenching of fluorescence at saturating concentrations of ligand, and [L]0.5, the concentration of ligand at half-maximal quenching. No changes in fluorescence were observed with free enzyme and nucleotide alone. In the presence of saturating levels of glucose, Qmax induced by nucleotide was between 2 and 7%, and [L]0.5 was between 0.12 and 0.56 mM, depending on the nucleotide and enzyme species. Qmax induced by glucose alone was between 22 and 25%, while [L]0.5 was approx. 0.4 mM for either of the monomeric hexokinase forms and 3.4 for PII dimer. In the presence of 6 mM ADP or 2 mM AdoPP[NH]P, Qmax for glucose was increased by up to 4% and [L]0.5 was diminished 3-fold for hexokinase PII monomer, 6-fold for SII monomer, and 15-fold for PII dimer. The results are interpreted in terms of nucleotide-induced conformational change of hexokinase in the presence of glucose and synergistic binding interactions between glucose and nucleotide.

  16. Radiation effects in mammalian cells in vitro

    International Nuclear Information System (INIS)

    Hill, C.K.; Han, A.; Elkind, M.M.; Wells, R.L.; Buess, E.M.; Lin, C.M.

    1985-01-01

    The purpose of this research effort is to elucidate the mechanisms for the radiation-induced changes in mammalian cells that lead to cell death, mutation, neoplastic transformation, DNA damage, and chromosomal alterations. Of particular interest are the effects of low-dose-rate and fractionated irradiation on these end points with respect to the mechanisms whereby these effects are influenced by cellular repair processes, inhibitors, and promoters that act at the genetic or biochemical level. 17 refs

  17. Cellular and Chemical Neuroscience of Mammalian Sleep

    OpenAIRE

    Datta, Subimal

    2010-01-01

    Extraordinary strides have been made toward understanding the complexities and regulatory mechanisms of sleep over the past two decades, thanks to the help of rapidly evolving technologies. At its most basic level, mammalian sleep is a restorative process of the brain and body. Beyond its primary restorative purpose, sleep is essential for a number of vital functions. Our primary research interest is to understand the cellular and molecular mechanisms underlying the regulation of sleep and it...

  18. The pyrimidine nucleotide carrier PNC1 and mitochondrial trafficking of thymidine phosphates in cultured human cells

    Energy Technology Data Exchange (ETDEWEB)

    Franzolin, Elisa; Miazzi, Cristina; Frangini, Miriam; Palumbo, Elisa; Rampazzo, Chiara [Department of Biology, University of Padova, Via Ugo Bassi 58B, I-35131 Padova (Italy); Bianchi, Vera, E-mail: vbianchi@bio.unipd.it [Department of Biology, University of Padova, Via Ugo Bassi 58B, I-35131 Padova (Italy)

    2012-10-15

    In cycling cells cytosolic de novo synthesis of deoxynucleotides is the main source of precursors for mitochondrial (mt) DNA synthesis. The transfer of deoxynucleotides across the inner mt membrane requires protein carriers. PNC1, a SLC25 family member, exchanges pyrimidine nucleoside triphosphates in liposomes and its downregulation decreases mtUTP concentration in cultured cells. By an isotope-flow protocol we confirmed transport of uridine nucleotides by PNC1 in intact cultured cells and investigated PNC1 involvement in the mt trafficking of thymidine phosphates. Key features of our approach were the manipulation of PNC1 expression by RNA interference or inducible overexpression, the employment of cells proficient or deficient for cytosolic thymidine kinase (TK1) to distinguish the direction of flow of thymidine nucleotides across the mt membrane during short pulses with [{sup 3}H]-thymidine, the determination of mtdTTP specific radioactivity to quantitate the rate of mtdTTP export to the cytoplasm. Downregulation of PNC1 in TK1{sup -} cells increased labeled dTTP in mitochondria due to a reduced rate of export. Overexpression of PNC1 in TK1{sup +} cells increased mtdTTP pool size and radioactivity, suggesting an involvement in the import of thymidine phosphates. Thus PNC1 is a component of the network regulating the mtdTTP pool in human cells. -- Highlights: Black-Right-Pointing-Pointer Thymidine phosphates exchange between mitochondria and cytosol in mammalian cells. Black-Right-Pointing-Pointer siRNA-downregulation of PNC1 delays mitochondrial dTTP export in TK1{sup -} cells. Black-Right-Pointing-Pointer PNC1 overexpression accumulates dTTP in mitochondria of TK1{sup +} cells. Black-Right-Pointing-Pointer PNC1 exchanges thymidine nucleotides across the mitochondrial inner membrane. Black-Right-Pointing-Pointer PNC1 participates in the regulation of the mtdTTP pool supporting mtDNA synthesis.

  19. The pyrimidine nucleotide carrier PNC1 and mitochondrial trafficking of thymidine phosphates in cultured human cells

    International Nuclear Information System (INIS)

    Franzolin, Elisa; Miazzi, Cristina; Frangini, Miriam; Palumbo, Elisa; Rampazzo, Chiara; Bianchi, Vera

    2012-01-01

    In cycling cells cytosolic de novo synthesis of deoxynucleotides is the main source of precursors for mitochondrial (mt) DNA synthesis. The transfer of deoxynucleotides across the inner mt membrane requires protein carriers. PNC1, a SLC25 family member, exchanges pyrimidine nucleoside triphosphates in liposomes and its downregulation decreases mtUTP concentration in cultured cells. By an isotope-flow protocol we confirmed transport of uridine nucleotides by PNC1 in intact cultured cells and investigated PNC1 involvement in the mt trafficking of thymidine phosphates. Key features of our approach were the manipulation of PNC1 expression by RNA interference or inducible overexpression, the employment of cells proficient or deficient for cytosolic thymidine kinase (TK1) to distinguish the direction of flow of thymidine nucleotides across the mt membrane during short pulses with [ 3 H]-thymidine, the determination of mtdTTP specific radioactivity to quantitate the rate of mtdTTP export to the cytoplasm. Downregulation of PNC1 in TK1 − cells increased labeled dTTP in mitochondria due to a reduced rate of export. Overexpression of PNC1 in TK1 + cells increased mtdTTP pool size and radioactivity, suggesting an involvement in the import of thymidine phosphates. Thus PNC1 is a component of the network regulating the mtdTTP pool in human cells. -- Highlights: ► Thymidine phosphates exchange between mitochondria and cytosol in mammalian cells. ► siRNA-downregulation of PNC1 delays mitochondrial dTTP export in TK1 − cells. ► PNC1 overexpression accumulates dTTP in mitochondria of TK1 + cells. ► PNC1 exchanges thymidine nucleotides across the mitochondrial inner membrane. ► PNC1 participates in the regulation of the mtdTTP pool supporting mtDNA synthesis.

  20. Pulmonary preservation studies: effects on endothelial function and pulmonary adenine nucleotides.

    Science.gov (United States)

    Paik, Hyo Chae; Hoffmann, Steven C; Egan, Thomas M

    2003-02-27

    Lung transplantation is an effective therapy plagued by a high incidence of early graft dysfunction, in part because of reperfusion injury. The optimal preservation solution for lung transplantation is unknown. We performed experiments using an isolated perfused rat lung model to test the effect of lung preservation with three solutions commonly used in clinical practice. Lungs were retrieved from Sprague-Dawley rats and flushed with one of three solutions: modified Euro-Collins (MEC), University of Wisconsin (UW), or low potassium dextran and glucose (LPDG), then stored cold for varying periods before reperfusion with Earle's balanced salt solution using the isolated perfused rat lung model. Outcome measures were capillary filtration coefficient (Kfc), wet-to-dry weight ratio, and lung tissue levels of adenine nucleotides and cyclic AMP. All lungs functioned well after 4 hr of storage. By 6 hr, UW-flushed lungs had a lower Kfc than LPDG-flushed lungs. After 8 hr of storage, only UW-flushed lungs had a measurable Kfc. Adenine nucleotide levels were higher in UW-flushed lungs after prolonged storage. Cyclic AMP levels correlated with Kfc in all groups. Early changes in endothelial permeability seemed to be better attenuated in lungs flushed with UW compared with LPDG or MEC; this was associated with higher amounts of adenine nucleotides. MEC-flushed lungs failed earlier than LPDG-flushed or UW-flushed lungs. The content of the solution may be more important for lung preservation than whether the ionic composition is intracellular or extracellular.

  1. A single-nucleotide polymorphism of human neuropeptide s gene originated from Europe shows decreased bioactivity.

    Directory of Open Access Journals (Sweden)

    Cheng Deng

    Full Text Available Using accumulating SNP (Single-Nucleotide Polymorphism data, we performed a genome-wide search for polypeptide hormone ligands showing changes in the mature regions to elucidate genotype/phenotype diversity among various human populations. Neuropeptide S (NPS, a brain peptide hormone highly conserved in vertebrates, has diverse physiological effects on anxiety, fear, hyperactivity, food intake, and sleeping time through its cognate receptor-NPSR. Here, we report a SNP rs4751440 (L(6-NPS causing non-synonymous substitution on the 6(th position (V to L of the NPS mature peptide region. L(6-NPS has a higher allele frequency in Europeans than other populations and probably originated from European ancestors ~25,000 yrs ago based on haplotype analysis and Approximate Bayesian Computation. Functional analyses indicate that L(6-NPS exhibits a significant lower bioactivity than the wild type NPS, with ~20-fold higher EC50 values in the stimulation of NPSR. Additional evolutionary and mutagenesis studies further demonstrate the importance of the valine residue in the 6(th position for NPS functions. Given the known physiological roles of NPS receptor in inflammatory bowel diseases, asthma pathogenesis, macrophage immune responses, and brain functions, our study provides the basis to elucidate NPS evolution and signaling diversity among human populations.

  2. Supplementary Material for: The arabidopsis cyclic nucleotide interactome

    KAUST Repository

    Donaldson, Lara; Meier, Stuart; Gehring, Christoph A

    2016-01-01

    Abstract Background Cyclic nucleotides have been shown to play important signaling roles in many physiological processes in plants including photosynthesis and defence. Despite this, little is known about cyclic nucleotide-dependent signaling mechanisms in plants since the downstream target proteins remain unknown. This is largely due to the fact that bioinformatics searches fail to identify plant homologs of protein kinases and phosphodiesterases that are the main targets of cyclic nucleotides in animals. Methods An affinity purification technique was used to identify cyclic nucleotide binding proteins in Arabidopsis thaliana. The identified proteins were subjected to a computational analysis that included a sequence, transcriptional co-expression and functional annotation analysis in order to assess their potential role in plant cyclic nucleotide signaling. Results A total of twelve cyclic nucleotide binding proteins were identified experimentally including key enzymes in the Calvin cycle and photorespiration pathway. Importantly, eight of the twelve proteins were shown to contain putative cyclic nucleotide binding domains. Moreover, the identified proteins are post-translationally modified by nitric oxide, transcriptionally co-expressed and annotated to function in hydrogen peroxide signaling and the defence response. The activity of one of these proteins, GLYGOLATE OXIDASE 1, a photorespiratory enzyme that produces hydrogen peroxide in response to Pseudomonas, was shown to be repressed by a combination of cGMP and nitric oxide treatment. Conclusions We propose that the identified proteins function together as points of cross-talk between cyclic nucleotide, nitric oxide and reactive oxygen species signaling during the defence response.

  3. Specificity of chicken and mammalian transferrins in myogenesis

    International Nuclear Information System (INIS)

    Beach, R.L.; Popiela, Heinz; Festoff, B.W.

    1985-01-01

    Chicken transferrins isolated from eggs, embryo extract, serum or ischiatic-peroneal nerves are able to stimulate incorporation of ( 3 H)thymidine, and promote myogenesis by primary chicken muscles cells in vitro. Mammalian transferrins (bovine, rat, mouse, horse, rabbit, and human) do not promote ( 3 H)thymidine incorporation or myotube development. Comparison of the peptide fragments obtained after chemical or limited proteolytic cleavage demonstrates that the four chicken transferrins are all indistinguishable, but they differ considerably from the mammalian transferrins. The structural differences between chicken and mammalian transferrins probably account for the inability of mammalian transferrins to act as mitogens for, and to support myogenesis of, primary chicken muscle cells. (author)

  4. Multifactor dimensionality reduction analysis identifies specific nucleotide patterns promoting genetic polymorphisms

    Directory of Open Access Journals (Sweden)

    Arehart Eric

    2009-03-01

    Full Text Available Abstract Background The fidelity of DNA replication serves as the nidus for both genetic evolution and genomic instability fostering disease. Single nucleotide polymorphisms (SNPs constitute greater than 80% of the genetic variation between individuals. A new theory regarding DNA replication fidelity has emerged in which selectivity is governed by base-pair geometry through interactions between the selected nucleotide, the complementary strand, and the polymerase active site. We hypothesize that specific nucleotide combinations in the flanking regions of SNP fragments are associated with mutation. Results We modeled the relationship between DNA sequence and observed polymorphisms using the novel multifactor dimensionality reduction (MDR approach. MDR was originally developed to detect synergistic interactions between multiple SNPs that are predictive of disease susceptibility. We initially assembled data from the Broad Institute as a pilot test for the hypothesis that flanking region patterns associate with mutagenesis (n = 2194. We then confirmed and expanded our inquiry with human SNPs within coding regions and their flanking sequences collected from the National Center for Biotechnology Information (NCBI database (n = 29967 and a control set of sequences (coding region not associated with SNP sites randomly selected from the NCBI database (n = 29967. We discovered seven flanking region pattern associations in the Broad dataset which reached a minimum significance level of p ≤ 0.05. Significant models (p Conclusion The present study represents the first use of this computational methodology for modeling nonlinear patterns in molecular genetics. MDR was able to identify distinct nucleotide patterning around sites of mutations dependent upon the observed nucleotide change. We discovered one flanking region set that included five nucleotides clustered around a specific type of SNP site. Based on the strongly associated patterns identified in

  5. Mammalian cell biology

    International Nuclear Information System (INIS)

    Elkind, M.M.

    1979-01-01

    This section contains summaries of research on mechanisms of lethality and radioinduced changes in mammalian cell properties, new cell systems for the study of the biology of mutation and neoplastic transformation, and comparative properties of ionizing radiations

  6. Use of reiterative primer extension methodology to map UV-induced photoproducts at the nucleotide level in the laci gene from genomic DNA

    International Nuclear Information System (INIS)

    Chandrasekhar, D.; Houten, B. Van

    1994-01-01

    A newly developed reiterative primer extension assay has been employed to examine photoproduct formation and repair at the nucleotide level. Analysis of UV-induced DNA photoproduct hotspots in the first 184 base pairs of the laci genes of genomic E. coli DNA has revealed that photoproducts are formed linearly with dose and display a sequence-dependent increase. Generally, pyrimdine dimers were twice as frequent as all other UV-induced photoproducts. However, specific sites showed differing distributions. A post-irradiation recovery period revealed differences in the repair efficiency at individual nucleotides. Repair of photoproducts on the transcribed strand was generally twice as efficient as repair of photoproducts on the nontranscribed strand, indicating that strand-specific DNA repair occurs in the constitutively transcribed laci gene of E. coli. The UV-induced DNA photoproduct distribution following repair was well correlated with an established UV-induced mutation spectrum for wild-type E. coli cells. This analysis revealed that photoproduct hotspots on the efficiently repaired transcribed strand did not correlate with mutagenic hotspots. These data strongly support the hypothesis that mutations arise at inefficiently repaired sites on the nontranscribed strand

  7. Understanding specificity in metabolic pathways-Structural biology of human nucleotide metabolism

    International Nuclear Information System (INIS)

    Welin, Martin; Nordlund, Paer

    2010-01-01

    Interactions are the foundation of life at the molecular level. In the plethora of activities in the cell, the evolution of enzyme specificity requires the balancing of appropriate substrate affinity with a negative selection, in order to minimize interactions with other potential substrates in the cell. To understand the structural basis for enzyme specificity, the comparison of structural and biochemical data between enzymes within pathways using similar substrates and effectors is valuable. Nucleotide metabolism is one of the largest metabolic pathways in the human cell and is of outstanding therapeutic importance since it activates and catabolises nucleoside based anti-proliferative drugs and serves as a direct target for anti-proliferative drugs. In recent years the structural coverage of the enzymes involved in human nucleotide metabolism has been dramatically improved and is approaching completion. An important factor has been the contribution from the Structural Genomics Consortium (SGC) at Karolinska Institutet, which recently has solved 33 novel structures of enzymes and enzyme domains in human nucleotide metabolism pathways and homologs thereof. In this review we will discuss some of the principles for substrate specificity of enzymes in human nucleotide metabolism illustrated by a selected set of enzyme families where a detailed understanding of the structural determinants for specificity is now emerging.

  8. Splicing of a C. elegans myosin pre-mRNA in a human nuclear extract

    Energy Technology Data Exchange (ETDEWEB)

    Ogg, S C; Anderson, P; Wickens, M P [Univ. of Wisconsin, Madison (USA)

    1990-01-11

    Splicing of mammalian introns requires that the intron possess at least 80 nucleotides. This length requirement presumably reflects the constraints of accommodating multiple snRNPs simultaneously in the same intro. In the free-living nematode, C. elegans, introns typically are 45 to 55 nucleotides in length. In this report, the authors determine whether C. elegans introns can obviate the mammalian length requirement by virtue of their structure or sequence. They demonstrate that a 53 nucleotide intron from the unc-54 gene of C. elegans does not undergo splicing in a mammalian (HeLa) nuclear extract. However, insertion of 31 nucleotides of foreign, prokaryotic sequence into the same intron results in efficient splicing. The observed splicing proceeds by the same two-step mechanism observed with mammalian introns, and exploits the same 3{prime} and 5{prime} sites as are used in C. elegans. The branch point used lies in the inserted sequences. They conclude that C. elegans splicing components are either fewer in number or smaller than their mammalian counterparts.

  9. Effect of pregnancy-associated plasma protein-A (PAPP-A) single-nucleotide polymorphisms on the level and activity of PAPP-A and the hormone profile in fluid from normal human small antral follicles

    DEFF Research Database (Denmark)

    Bøtkjær, Jane Alrø; Borgbo, Tanni; Kløverpris, Søren

    2016-01-01

    Objective: To reveal a possible relationship between two single nucleotide polymorphisms (SNPs) in PAPP-A—1224 (rs7020782) and 327 (rs12375498)—and the level and activity of PAPP-A in follicular fluid (FF) of human small antral follicles, and to analyze the intrafollicular hormone levels. Design:...

  10. Nucleotide Sequence Diversity and Linkage Disequilibrium of Four Nuclear Loci in Foxtail Millet (Setaria italica.

    Directory of Open Access Journals (Sweden)

    Shui-Lian He

    Full Text Available Foxtail millet (Setaria italica (L. Beauv is one of the earliest domesticated grains, which has been cultivated in northern China by 8,700 years before present (YBP and across Eurasia by 4,000 YBP. Owing to a small genome and diploid nature, foxtail millet is a tractable model crop for studying functional genomics of millets and bioenergy grasses. In this study, we examined nucleotide sequence diversity, geographic structure, and levels of linkage disequilibrium at four nuclear loci (ADH1, G3PDH, IGS1 and TPI1 in representative samples of 311 landrace accessions across its cultivated range. Higher levels of nucleotide sequence and haplotype diversity were observed in samples from China relative to other sampled regions. Genetic assignment analysis classified the accessions into seven clusters based on nucleotide sequence polymorphisms. Intralocus LD decayed rapidly to half the initial value within ~1.2 kb or less.

  11. Nucleotide Sequence Diversity and Linkage Disequilibrium of Four Nuclear Loci in Foxtail Millet (Setaria italica).

    Science.gov (United States)

    He, Shui-Lian; Yang, Yang; Morrell, Peter L; Yi, Ting-Shuang

    2015-01-01

    Foxtail millet (Setaria italica (L.) Beauv) is one of the earliest domesticated grains, which has been cultivated in northern China by 8,700 years before present (YBP) and across Eurasia by 4,000 YBP. Owing to a small genome and diploid nature, foxtail millet is a tractable model crop for studying functional genomics of millets and bioenergy grasses. In this study, we examined nucleotide sequence diversity, geographic structure, and levels of linkage disequilibrium at four nuclear loci (ADH1, G3PDH, IGS1 and TPI1) in representative samples of 311 landrace accessions across its cultivated range. Higher levels of nucleotide sequence and haplotype diversity were observed in samples from China relative to other sampled regions. Genetic assignment analysis classified the accessions into seven clusters based on nucleotide sequence polymorphisms. Intralocus LD decayed rapidly to half the initial value within ~1.2 kb or less.

  12. Nucleotide homeostasis and purinergic nociceptive signaling in rat meninges in migraine-like conditions.

    Science.gov (United States)

    Yegutkin, Gennady G; Guerrero-Toro, Cindy; Kilinc, Erkan; Koroleva, Kseniya; Ishchenko, Yevheniia; Abushik, Polina; Giniatullina, Raisa; Fayuk, Dmitriy; Giniatullin, Rashid

    2016-09-01

    Extracellular ATP is suspected to contribute to migraine pain but regulatory mechanisms controlling pro-nociceptive purinergic mechanisms in the meninges remain unknown. We studied the peculiarities of metabolic and signaling pathways of ATP and its downstream metabolites in rat meninges and in cultured trigeminal cells exposed to the migraine mediator calcitonin gene-related peptide (CGRP). Under resting conditions, meningeal ATP and ADP remained at low nanomolar levels, whereas extracellular AMP and adenosine concentrations were one-two orders higher. CGRP increased ATP and ADP levels in meninges and trigeminal cultures and reduced adenosine concentration in trigeminal cells. Degradation rates for exogenous nucleotides remained similar in control and CGRP-treated meninges, indicating that CGRP triggers nucleotide release without affecting nucleotide-inactivating pathways. Lead nitrate-based enzyme histochemistry of whole mount meninges revealed the presence of high ATPase, ADPase, and AMPase activities, primarily localized in the medial meningeal artery. ATP and ADP induced large intracellular Ca(2+) transients both in neurons and in glial cells whereas AMP and adenosine were ineffective. In trigeminal glia, ATP partially operated via P2X7 receptors. ATP, but not other nucleotides, activated nociceptive spikes in meningeal trigeminal nerve fibers providing a rationale for high degradation rate of pro-nociceptive ATP. Pro-nociceptive effect of ATP in meningeal nerves was reproduced by α,β-meATP operating via P2X3 receptors. Collectively, extracellular ATP, which level is controlled by CGRP, can persistently activate trigeminal nerves in meninges which considered as the origin site of migraine headache. These data are consistent with the purinergic hypothesis of migraine pain and suggest new targets against trigeminal pain.

  13. The Biochemistry of O-GlcNAc Transferase: Which Functions Make It Essential in Mammalian Cells?

    Science.gov (United States)

    Levine, Zebulon G; Walker, Suzanne

    2016-06-02

    O-linked N-acetylglucosamine transferase (OGT) is found in all metazoans and plays an important role in development but at the single-cell level is only essential in dividing mammalian cells. Postmitotic mammalian cells and cells of invertebrates such as Caenorhabditis elegans and Drosophila can survive without copies of OGT. Why OGT is required in dividing mammalian cells but not in other cells remains unknown. OGT has multiple biochemical activities. Beyond its well-known role in adding β-O-GlcNAc to serine and threonine residues of nuclear and cytoplasmic proteins, OGT also acts as a protease in the maturation of the cell cycle regulator host cell factor 1 (HCF-1) and serves as an integral member of several protein complexes, many of them linked to gene expression. In this review, we summarize current understanding of the mechanisms underlying OGT's biochemical activities and address whether known functions of OGT could be related to its essential role in dividing mammalian cells.

  14. Polyadenylation of RNA transcribed from mammalian SINEs by RNA polymerase III: Complex requirements for nucleotide sequences.

    Science.gov (United States)

    Borodulina, Olga R; Golubchikova, Julia S; Ustyantsev, Ilia G; Kramerov, Dmitri A

    2016-02-01

    It is generally accepted that only transcripts synthesized by RNA polymerase II (e.g., mRNA) were subject to AAUAAA-dependent polyadenylation. However, we previously showed that RNA transcribed by RNA polymerase III (pol III) from mouse B2 SINE could be polyadenylated in an AAUAAA-dependent manner. Many species of mammalian SINEs end with the pol III transcriptional terminator (TTTTT) and contain hexamers AATAAA in their A-rich tail. Such SINEs were united into Class T(+), whereas SINEs lacking the terminator and AATAAA sequences were classified as T(-). Here we studied the structural features of SINE pol III transcripts that are necessary for their polyadenylation. Eight and six SINE families from classes T(+) and T(-), respectively, were analyzed. The replacement of AATAAA with AACAAA in T(+) SINEs abolished the RNA polyadenylation. Interestingly, insertion of the polyadenylation signal (AATAAA) and pol III transcription terminator in T(-) SINEs did not result in polyadenylation. The detailed analysis of three T(+) SINEs (B2, DIP, and VES) revealed areas important for the polyadenylation of their pol III transcripts: the polyadenylation signal and terminator in A-rich tail, β region positioned immediately downstream of the box B of pol III promoter, and τ region located upstream of the tail. In DIP and VES (but not in B2), the τ region is a polypyrimidine motif which is also characteristic of many other T(+) SINEs. Most likely, SINEs of different mammals acquired these structural features independently as a result of parallel evolution. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Optogenetic interrogation of neural circuits: technology for probing mammalian brain structures

    Science.gov (United States)

    Zhang, Feng; Gradinaru, Viviana; Adamantidis, Antoine R; Durand, Remy; Airan, Raag D; de Lecea, Luis; Deisseroth, Karl

    2015-01-01

    Elucidation of the neural substrates underlying complex animal behaviors depends on precise activity control tools, as well as compatible readout methods. Recent developments in optogenetics have addressed this need, opening up new possibilities for systems neuroscience. Interrogation of even deep neural circuits can be conducted by directly probing the necessity and sufficiency of defined circuit elements with millisecond-scale, cell type-specific optical perturbations, coupled with suitable readouts such as electrophysiology, optical circuit dynamics measures and freely moving behavior in mammals. Here we collect in detail our strategies for delivering microbial opsin genes to deep mammalian brain structures in vivo, along with protocols for integrating the resulting optical control with compatible readouts (electrophysiological, optical and behavioral). The procedures described here, from initial virus preparation to systems-level functional readout, can be completed within 4–5 weeks. Together, these methods may help in providing circuit-level insight into the dynamics underlying complex mammalian behaviors in health and disease. PMID:20203662

  16. PARTIAL REPRODUCTIVE ISOLATION OF A RECENTLY DERIVED RESIDENT-FRESHWATER POPULATION OF THREESPINE STICKLEBACK (GASTEROSTEUS ACULEATUS) FROM ITS PUTATIVE ANADROMOUS ANCESTOR

    Science.gov (United States)

    Furin, Christoff G.; Von Hippel, Frank A.; Bell, Michael A.

    2012-01-01

    We used no-choice mating trials to test for assortative mating between a newly derived resident-freshwater population (8 – 22 generations since founding) of threespine stickleback (Gasterosteus aculeatus) in Loberg Lake, Alaska and its putative anadromous ancestor as well as a morphologically convergent but distantly related resident-freshwater population. Partial reproductive isolation has evolved between the Loberg Lake population and its ancestor within a remarkably short time period. However, Loberg stickleback readily mate with morphologically similar, but distantly related resident-freshwater stickleback. Partial pre-mating isolation is asymmetrical; anadromous females and smaller, resident-freshwater males from Loberg Lake readily mate, but the anadromous males and smaller Loberg females do not. Our results indicate that pre-mating isolation can begin to evolve in allopatry within a few generations after isolation as a correlated effect of evolution of reduced body size. PMID:23025615

  17. Recognition, signaling, and repair of DNA double-strand breaks produced by ionizing radiation in mammalian cells: the molecular choreography.

    Science.gov (United States)

    Thompson, Larry H

    2012-01-01

    The faithful maintenance of chromosome continuity in human cells during DNA replication and repair is critical for preventing the conversion of normal diploid cells to an oncogenic state. The evolution of higher eukaryotic cells endowed them with a large genetic investment in the molecular machinery that ensures chromosome stability. In mammalian and other vertebrate cells, the elimination of double-strand breaks with minimal nucleotide sequence change involves the spatiotemporal orchestration of a seemingly endless number of proteins ranging in their action from the nucleotide level to nucleosome organization and chromosome architecture. DNA DSBs trigger a myriad of post-translational modifications that alter catalytic activities and the specificity of protein interactions: phosphorylation, acetylation, methylation, ubiquitylation, and SUMOylation, followed by the reversal of these changes as repair is completed. "Superfluous" protein recruitment to damage sites, functional redundancy, and alternative pathways ensure that DSB repair is extremely efficient, both quantitatively and qualitatively. This review strives to integrate the information about the molecular mechanisms of DSB repair that has emerged over the last two decades with a focus on DSBs produced by the prototype agent ionizing radiation (IR). The exponential growth of molecular studies, heavily driven by RNA knockdown technology, now reveals an outline of how many key protein players in genome stability and cancer biology perform their interwoven tasks, e.g. ATM, ATR, DNA-PK, Chk1, Chk2, PARP1/2/3, 53BP1, BRCA1, BRCA2, BLM, RAD51, and the MRE11-RAD50-NBS1 complex. Thus, the nature of the intricate coordination of repair processes with cell cycle progression is becoming apparent. This review also links molecular abnormalities to cellular pathology as much a possible and provides a framework of temporal relationships. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. The role of transposable elements in the evolution of non-mammalian vertebrates and invertebrates

    Science.gov (United States)

    2010-01-01

    Background Transposable elements (TEs) have played an important role in the diversification and enrichment of mammalian transcriptomes through various mechanisms such as exonization and intronization (the birth of new exons/introns from previously intronic/exonic sequences, respectively), and insertion into first and last exons. However, no extensive analysis has compared the effects of TEs on the transcriptomes of mammals, non-mammalian vertebrates and invertebrates. Results We analyzed the influence of TEs on the transcriptomes of five species, three invertebrates and two non-mammalian vertebrates. Compared to previously analyzed mammals, there were lower levels of TE introduction into introns, significantly lower numbers of exonizations originating from TEs and a lower percentage of TE insertion within the first and last exons. Although the transcriptomes of vertebrates exhibit significant levels of exonization of TEs, only anecdotal cases were found in invertebrates. In vertebrates, as in mammals, the exonized TEs are mostly alternatively spliced, indicating that selective pressure maintains the original mRNA product generated from such genes. Conclusions Exonization of TEs is widespread in mammals, less so in non-mammalian vertebrates, and very low in invertebrates. We assume that the exonization process depends on the length of introns. Vertebrates, unlike invertebrates, are characterized by long introns and short internal exons. Our results suggest that there is a direct link between the length of introns and exonization of TEs and that this process became more prevalent following the appearance of mammals. PMID:20525173

  19. Pyridine nucleotides in regulation of cell death and survival by redox and non-redox reactions.

    Science.gov (United States)

    Novak Kujundžić, Renata; Žarković, Neven; Gall Trošelj, Koraljka

    2014-01-01

    Changes of the level and ratios of pyridine nucleotides determine metabolism- dependent cellular redox status and the activity of poly(ADP-ribose) polymerases (PARPs) and sirtuins, thereby influencing several processes closely related to cell survival and death. Pyridine nucleotides participate in numerous metabolic reactions whereby their net cellular level remains constant, but the ratios of NAD+/NADP+ and NADH/NADPH oscillate according to metabolic changes in response to diverse stress signals. In non-redox reactions, NAD+ is degraded and quickly, afterward, resynthesized in the NAD+ salvage pathway, unless overwhelming activation of PARP-1 consumes NAD+ to the point of no return, when the cell can no longer generate enough ATP to accommodate NAD+ resynthesis. The activity of PARP-1 is mandatory for the onset of cytoprotective autophagy on sublethal stress signals. It has become increasingly clear that redox status, largely influenced by the metabolism-dependent composition of the pyridine nucleotides pool, plays an important role in the synthesis of pro-apoptotic and anti-apoptotic sphingolipids. Awareness of the involvement of the prosurvival sphingolipid, sphingosine-1-phosphate, in transition from inflammation to malignant transformation has recently emerged. Here, the participation of pyridine nucleotides in redox and non-redox reactions, sphingolipid metabolism, and their role in cell fate decisions is reviewed.

  20. Cyclic Nucleotide Monophosphates and Their Cyclases in Plant Signaling

    KAUST Repository

    Gehring, Christoph A; Turek, Ilona S.

    2017-01-01

    The cyclic nucleotide monophosphates (cNMPs), and notably 3′,5′-cyclic guanosine monophosphate (cGMP) and 3′,5′-cyclic adenosine monophosphate (cAMP) are now accepted as key signaling molecules in many processes in plants including growth and differentiation, photosynthesis, and biotic and abiotic defense. At the single molecule level, we are now beginning to understand how cNMPs modify specific target molecules such as cyclic nucleotide-gated channels, while at the systems level, a recent study of the Arabidopsis cNMP interactome has identified novel target molecules with specific cNMP-binding domains. A major advance came with the discovery and characterization of a steadily increasing number of guanylate cyclases (GCs) and adenylate cyclases (ACs). Several of the GCs are receptor kinases and include the brassinosteroid receptor, the phytosulfokine receptor, the Pep receptor, the plant natriuretic peptide receptor as well as a nitric oxide sensor. We foresee that in the near future many more molecular mechanisms and biological roles of GCs and ACs and their catalytic products will be discovered and further establish cNMPs as a key component of plant responses to the environment.

  1. Cyclic Nucleotide Monophosphates and Their Cyclases in Plant Signaling

    KAUST Repository

    Gehring, Christoph A.

    2017-10-04

    The cyclic nucleotide monophosphates (cNMPs), and notably 3′,5′-cyclic guanosine monophosphate (cGMP) and 3′,5′-cyclic adenosine monophosphate (cAMP) are now accepted as key signaling molecules in many processes in plants including growth and differentiation, photosynthesis, and biotic and abiotic defense. At the single molecule level, we are now beginning to understand how cNMPs modify specific target molecules such as cyclic nucleotide-gated channels, while at the systems level, a recent study of the Arabidopsis cNMP interactome has identified novel target molecules with specific cNMP-binding domains. A major advance came with the discovery and characterization of a steadily increasing number of guanylate cyclases (GCs) and adenylate cyclases (ACs). Several of the GCs are receptor kinases and include the brassinosteroid receptor, the phytosulfokine receptor, the Pep receptor, the plant natriuretic peptide receptor as well as a nitric oxide sensor. We foresee that in the near future many more molecular mechanisms and biological roles of GCs and ACs and their catalytic products will be discovered and further establish cNMPs as a key component of plant responses to the environment.

  2. Lack of nucleotide variability in a beetle pest with extreme inbreeding.

    Science.gov (United States)

    Andreev, D; Breilid, H; Kirkendall, L; Brun, L O; ffrench-Constant, R H

    1998-05-01

    The coffee berry borer beetle Hypothenemus hampei (Ferrari) (Curculionidae: Scolytinae) is the major insect pest of coffee and has spread to most of the coffee-growing countries of the world. This beetle also displays an unusual life cycle, with regular sibling mating. This regular inbreeding and the population bottlenecks occurring on colonization of new regions should lead to low levels of genetic diversity. We were therefore interested in determining the level of nucleotide variation in nuclear and mitochondrial genomes of this beetle worldwide. Here we show that two nuclear loci (Resistance to dieldrin and ITS2) are completely invariant, whereas some variability is maintained at a mitochondrial locus (COI), probably corresponding to a higher mutation rate in the mitochondrial genome. Phylogenetic analysis of the mitochondrial data shows only two clades of beetle haplotypes outside of Kenya, the proposed origin of the species. These data confirm that inbreeding greatly reduces nucleotide variation and suggest the recent global spread of only two inbreeding lines of this bark beetle.

  3. Endogenous peripheral neuromodulators of the mammalian taste bud.

    Science.gov (United States)

    Dando, Robin

    2010-10-01

    The sensitivity of the mammalian taste system displays a degree of plasticity based on short-term nutritional requirements. Deficiency in a particular substance may lead to a perceived increase in palatability of this substance, providing an additional drive to redress this nutritional imbalance through modification of intake. This alteration occurs not only in the brain but also, before any higher level processing has occurred, in the taste buds themselves. A brief review of recent advances is offered.

  4. Homogenization of Mammalian Cells.

    Science.gov (United States)

    de Araújo, Mariana E G; Lamberti, Giorgia; Huber, Lukas A

    2015-11-02

    Homogenization is the name given to the methodological steps necessary for releasing organelles and other cellular constituents as a free suspension of intact individual components. Most homogenization procedures used for mammalian cells (e.g., cavitation pump and Dounce homogenizer) rely on mechanical force to break the plasma membrane and may be supplemented with osmotic or temperature alterations to facilitate membrane disruption. In this protocol, we describe a syringe-based homogenization method that does not require specialized equipment, is easy to handle, and gives reproducible results. The method may be adapted for cells that require hypotonic shock before homogenization. We routinely use it as part of our workflow to isolate endocytic organelles from mammalian cells. © 2015 Cold Spring Harbor Laboratory Press.

  5. Genetic analysis of the cardiac methylome at single nucleotide resolution in a model of human cardiovascular disease.

    Directory of Open Access Journals (Sweden)

    Michelle D Johnson

    2014-12-01

    Full Text Available Epigenetic marks such as cytosine methylation are important determinants of cellular and whole-body phenotypes. However, the extent of, and reasons for inter-individual differences in cytosine methylation, and their association with phenotypic variation are poorly characterised. Here we present the first genome-wide study of cytosine methylation at single-nucleotide resolution in an animal model of human disease. We used whole-genome bisulfite sequencing in the spontaneously hypertensive rat (SHR, a model of cardiovascular disease, and the Brown Norway (BN control strain, to define the genetic architecture of cytosine methylation in the mammalian heart and to test for association between methylation and pathophysiological phenotypes. Analysis of 10.6 million CpG dinucleotides identified 77,088 CpGs that were differentially methylated between the strains. In F1 hybrids we found 38,152 CpGs showing allele-specific methylation and 145 regions with parent-of-origin effects on methylation. Cis-linkage explained almost 60% of inter-strain variation in methylation at a subset of loci tested for linkage in a panel of recombinant inbred (RI strains. Methylation analysis in isolated cardiomyocytes showed that in the majority of cases methylation differences in cardiomyocytes and non-cardiomyocytes were strain-dependent, confirming a strong genetic component for cytosine methylation. We observed preferential nucleotide usage associated with increased and decreased methylation that is remarkably conserved across species, suggesting a common mechanism for germline control of inter-individual variation in CpG methylation. In the RI strain panel, we found significant correlation of CpG methylation and levels of serum chromogranin B (CgB, a proposed biomarker of heart failure, which is evidence for a link between germline DNA sequence variation, CpG methylation differences and pathophysiological phenotypes in the SHR strain. Together, these results will

  6. Preservation of mammalian germ plasm by freezing

    Energy Technology Data Exchange (ETDEWEB)

    Mazur, P.

    1978-01-01

    Embryos of several mammalian species can be frozen to -196/sup 0/C (or below) by procedures that result in the thawed embryos being indistinguishable from their unfrozen counterparts. The survival often exceeds 90%, and in liquid nitrogen it should remain at that high level for centuries. Sublethal biochemical changes are also precluded at -196/sup 0/C. No developmental abnormalities have been detected in mouse offspring derived from frozen-thawed embryos, and, since all the manipulations are carried out on the preimplantation stages, none would be expected.

  7. Different characteristics and nucleotide binding properties of inosine monophosphate dehydrogenase (IMPDH isoforms.

    Directory of Open Access Journals (Sweden)

    Elaine C Thomas

    Full Text Available We recently reported that Inosine Monophosphate Dehydrogenase (IMPDH, a rate-limiting enzyme in de novo guanine nucleotide biosynthesis, clustered into macrostructures in response to decreased nucleotide levels and that there were differences between the IMPDH isoforms, IMPDH1 and IMPDH2. We hypothesised that the Bateman domains, which are present in both isoforms and serve as energy-sensing/allosteric modules in unrelated proteins, would contribute to isoform-specific differences and that mutations situated in and around this domain in IMPDH1 which give rise to retinitis pigmentosa (RP would compromise regulation. We employed immuno-electron microscopy to investigate the ultrastructure of IMPDH macrostructures and live-cell imaging to follow clustering of an IMPDH2-GFP chimera in real-time. Using a series of IMPDH1/IMPDH2 chimera we demonstrated that the propensity to cluster was conferred by the N-terminal 244 amino acids, which includes the Bateman domain. A protease protection assay suggested isoform-specific purine nucleotide binding characteristics, with ATP protecting IMPDH1 and AMP protecting IMPDH2, via a mechanism involving conformational changes upon nucleotide binding to the Bateman domain without affecting IMPDH catalytic activity. ATP binding to IMPDH1 was confirmed in a nucleotide binding assay. The RP-causing mutation, R224P, abolished ATP binding and nucleotide protection and this correlated with an altered propensity to cluster. Collectively these data demonstrate that (i the isoforms are differentially regulated by AMP and ATP by a mechanism involving the Bateman domain, (ii communication occurs between the Bateman and catalytic domains and (iii the RP-causing mutations compromise such regulation. These findings support the idea that the IMPDH isoforms are subject to distinct regulation and that regulatory defects contribute to human disease.

  8. Evolutionary patterns of RNA-based duplication in non-mammalian chordates.

    Directory of Open Access Journals (Sweden)

    Ming Chen

    Full Text Available The role of RNA-based duplication, or retroposition, in the evolution of new gene functions in mammals, plants, and Drosophila has been widely reported. However, little is known about RNA-based duplication in non-mammalian chordates. In this study, we screened ten non-mammalian chordate genomes for retrocopies and investigated their evolutionary patterns. We identified numerous retrocopies in these species. Examination of the age distribution of these retrocopies revealed no burst of young retrocopies in ancient chordate species. Upon comparing these non-mammalian chordate species to the mammalian species, we observed that a larger fraction of the non-mammalian retrocopies was under strong evolutionary constraints than mammalian retrocopies are, as evidenced by signals of purifying selection and expression profiles. For the Western clawed frog, Medaka, and Sea squirt, many retrogenes have evolved gonad and brain expression patterns, similar to what was observed in human. Testing of retrogene movement in the Medaka genome, where the nascent sex chrosomes have been well assembled, did not reveal any significant gene movement. Taken together, our analyses demonstrate that RNA-based duplication generates many functional genes and can make a significant contribution to the evolution of non-mammalian genomes.

  9. Building the library of RNA 3D nucleotide conformations using the clustering approach

    Directory of Open Access Journals (Sweden)

    Zok Tomasz

    2015-09-01

    Full Text Available An increasing number of known RNA 3D structures contributes to the recognition of various RNA families and identification of their features. These tasks are based on an analysis of RNA conformations conducted at different levels of detail. On the other hand, the knowledge of native nucleotide conformations is crucial for structure prediction and understanding of RNA folding. However, this knowledge is stored in structural databases in a rather distributed form. Therefore, only automated methods for sampling the space of RNA structures can reveal plausible conformational representatives useful for further analysis. Here, we present a machine learning-based approach to inspect the dataset of RNA three-dimensional structures and to create a library of nucleotide conformers. A median neural gas algorithm is applied to cluster nucleotide structures upon their trigonometric description. The clustering procedure is two-stage: (i backbone- and (ii ribose-driven. We show the resulting library that contains RNA nucleotide representatives over the entire data, and we evaluate its quality by computing normal distribution measures and average RMSD between data points as well as the prototype within each cluster.

  10. Radiation enhanced reactivation of nuclear replicating mammalian viruses

    International Nuclear Information System (INIS)

    Bockstahler, L.E.; Lytle, C.D.

    1977-01-01

    When CV-1 monkey kidney cells were UV-irradiated (0 to 18 J/m 2 ) or X-irradiated (0 to 10 krads) before infection with UV-irradiated simian adenovirus 7 (SA7) or simian virus 40 (SV40), increases in the infectivity of these nuclear replicating viruses as measured by plaque formation were observed. These radiation enhanced reactivations, UV enhanced reactivation (UVER) and X-ray enhanced reactivation (X-ray ER), occurred both when virus infection immediately followed irradiation of the cells (except for X-ray ER with SA7) and when virus infection was delayed until 3 to 5 days after cell irradiation. While there was little difference in the levels of reactivation of UV-irradiated SV40 between immediate and delayed infection, delayed infection resulted in higher levels of reactivation of SA7. X-ray enhanced reactivation of UV-irradiated Herpes simplex virus persisted for several days but did not increase. Thus, X-ray enhanced and UV enhanced reactivations of these mammalian viruses were relatively long-lived effects. Essentially no UVER or X-ray ER was found in CV-1 cells for either immediate or delayed infection with UV-irradiated vaccinia virus or poliovirus, both of which replicate in the cell cytoplasm. These results suggest UVER and X-ray ER in mammalian cells may be restricted to viruses which are replicated in the cell nucleus. (author)

  11. Evolution of mammalian endothermic metabolism: leaky membranes as a source of heat

    International Nuclear Information System (INIS)

    Else, P.L.; Hulbert, A.J.

    1987-01-01

    O 2 consumption was measured at 37/degrees/C in tissue slices of liver, kidney, and brain from Amphilbolurus vitticeps and Rattus norvegicus (a reptile and mammal with same weight and body temperature) both in the presence and absence of ouabain. O 2 consumption of the mammalian tissues was two to four times that of the reptilian tissues and the mammalian tissues used three to six times the energy for Na + -K + transport than the reptilian tissues. Passive permeability to 42 K + was measured at 37/degrees/C in liver and kidney slices, and passive permeability to 22 Na + was measured at 37/degrees/C in isolated and cultured liver cells from each species. The mammalian cell membrane was severalfold leakier to both these ions than was the reptilian cell membrane, and thus the membrane pumps must use more energy to maintain the transmembrane ion gradients. It is postulated that this is a general difference between the cells of ectotherms and endotherms and thus partly explains the much higher levels of metabolism found in endothermic mammals

  12. Arctigenin from Fructus Arctii is a novel suppressor of heat shock response in mammalian cells

    Science.gov (United States)

    Ishihara, Keiichi; Yamagishi, Nobuyuki; Saito, Youhei; Takasaki, Midori; Konoshima, Takao; Hatayama, Takumi

    2006-01-01

    Because heat shock proteins (Hsps) are involved in protecting cells and in the pathophysiology of diseases such as inflammation, cancer, and neurodegenerative disorders, the use of regulators of the expression of Hsps in mammalian cells seems to be useful as a potential therapeutic modality. To identify compounds that modulate the response to heat shock, we analyzed several natural products using a mammalian cell line containing an hsp promoter-regulated reporter gene. In this study, we found that an extract from Fructus Arctii markedly suppressed the expression of Hsp induced by heat shock. A component of the extract arctigenin, but not the component arctiin, suppressed the response at the level of the activation of heat shock transcription factor, the induction of mRNA, and the synthesis and accumulation of Hsp. Furthermore, arctigenin inhibited the acquisition of thermotolerance in mammalian cells, including cancer cells. Thus, arctigenin seemed to be a new suppressive regulator of heat shock response in mammalian cells, and may be useful for hyperthermia cancer therapy. PMID:16817321

  13. Mammalian diversity: gametes, embryos and reproduction.

    Science.gov (United States)

    Behringer, Richard R; Eakin, Guy S; Renfree, Marilyn B

    2006-01-01

    The class Mammalia is composed of approximately 4800 extant species. These mammalian species are divided into three subclasses that include the monotremes, marsupials and eutherians. Monotremes are remarkable because these mammals are born from eggs laid outside of the mother's body. Marsupial mammals have relatively short gestation periods and give birth to highly altricial young that continue a significant amount of 'fetal' development after birth, supported by a highly sophisticated lactation. Less than 10% of mammalian species are monotremes or marsupials, so the great majority of mammals are grouped into the subclass Eutheria, including mouse and human. Mammals exhibit great variety in morphology, physiology and reproduction. In the present article, we highlight some of this remarkable diversity relative to the mouse, one of the most widely used mammalian model organisms, and human. This diversity creates challenges and opportunities for gamete and embryo collection, culture and transfer technologies.

  14. Models of gene gain and gene loss for probabilistic reconstruction of gene content in the last universal common ancestor of life.

    Science.gov (United States)

    Kannan, Lavanya; Li, Hua; Rubinstein, Boris; Mushegian, Arcady

    2013-12-19

    The problem of probabilistic inference of gene content in the last common ancestor of several extant species with completely sequenced genomes is: for each gene that is conserved in all or some of the genomes, assign the probability that its ancestral gene was present in the genome of their last common ancestor. We have developed a family of models of gene gain and gene loss in evolution, and applied the maximum-likelihood approach that uses phylogenetic tree of prokaryotes and the record of orthologous relationships between their genes to infer the gene content of LUCA, the Last Universal Common Ancestor of all currently living cellular organisms. The crucial parameter, the ratio of gene losses and gene gains, was estimated from the data and was higher in models that take account of the number of in-paralogs in genomes than in models that treat gene presences and absences as a binary trait. While the numbers of genes that are placed confidently into LUCA are similar in the ML methods and in previously published methods that use various parsimony-based approaches, the identities of genes themselves are different. Most of the models of either kind treat the genes found in many existing genomes in a similar way, assigning to them high probabilities of being ancestral ("high ancestrality"). The ML models are more likely than others to assign high ancestrality to the genes that are relatively rare in the present-day genomes.

  15. Quantitative Analyses of Core Promoters Enable Precise Engineering of Regulated Gene Expression in Mammalian Cells

    Science.gov (United States)

    Ede, Christopher; Chen, Ximin; Lin, Meng-Yin; Chen, Yvonne Y.

    2016-01-01

    Inducible transcription systems play a crucial role in a wide array of synthetic biology circuits. However, the majority of inducible promoters are constructed from a limited set of tried-and-true promoter parts, which are susceptible to common shortcomings such as high basal expression levels (i.e., leakiness). To expand the toolbox for regulated mammalian gene expression and facilitate the construction of mammalian genetic circuits with precise functionality, we quantitatively characterized a panel of eight core promoters, including sequences with mammalian, viral, and synthetic origins. We demonstrate that this selection of core promoters can provide a wide range of basal gene expression levels and achieve a gradient of fold-inductions spanning two orders of magnitude. Furthermore, commonly used parts such as minimal CMV and minimal SV40 promoters were shown to achieve robust gene expression upon induction, but also suffer from high levels of leakiness. In contrast, a synthetic promoter, YB_TATA, was shown to combine low basal expression with high transcription rate in the induced state to achieve significantly higher fold-induction ratios compared to all other promoters tested. These behaviors remain consistent when the promoters are coupled to different genetic outputs and different response elements, as well as across different host-cell types and DNA copy numbers. We apply this quantitative understanding of core promoter properties to the successful engineering of human T cells that respond to antigen stimulation via chimeric antigen receptor signaling specifically under hypoxic environments. Results presented in this study can facilitate the design and calibration of future mammalian synthetic biology systems capable of precisely programmed functionality. PMID:26883397

  16. Mesozoic mammals from Arizona: new evidence on Mammalian evolution.

    Science.gov (United States)

    Jenkins, F A; Crompton, A W; Downs, W R

    1983-12-16

    Knowledge of early mammalian evolution has been based on Old World Late Triassic-Early Jurassic faunas. The discovery of mammalian fossils of approximately equivalent age in the Kayenta Formation of northeastern Arizona gives evidence of greater diversity than known previously. A new taxon documents the development of an angular region of the jaw as a neomorphic process, and represents an intermediate stage in the origin of mammalian jaw musculature.

  17. Main: Nucleotide Analysis [KOME

    Lifescience Database Archive (English)

    Full Text Available Nucleotide Analysis Japonica genome blast search result Result of blastn search against jap...onica genome sequence kome_japonica_genome_blast_search_result.zip kome_japonica_genome_blast_search_result ...

  18. Factor 11 single-nucleotide variants in women with heavy menstrual bleeding

    NARCIS (Netherlands)

    Wiewel-Verschueren, Sophie; Mulder, Andre B.; Meijer, Karina; Mulder, Rene

    2017-01-01

    In a previous study it was shown that lower factor XI (FXI) levels in women with heavy menstrual bleeding (HMB). Our aim was to determine the single-nucleotide variants (SNVs) in the F11 gene in women with HMB. In addition, an extensive literature search was performed to determine the clinical

  19. Lack of nucleotide variability in a beetle pest with extreme inbreeding

    OpenAIRE

    Andreev, D.; Breilid, H.; Kirkendall, L.; Brun, Luc-Olivier; French-Constant, R.H.

    1998-01-01

    The coffee berry borer beetle #Hypothenemus hampei$ (Ferrari) (#Curculionidae$ : #Scolytinae$) is the major insect pest of coffee and has spread to most of the coffee-growing countries of the world. This beetle also displays an usual life cycle, with regular sibling mating. This regular inbreeding and the population bottlenecks occuring on colonization of new regions should lead to low levels of genetic diversity. We were therefore interested in determining the level of nucleotide variation i...

  20. The origin of life and the last universal common ancestor: do we need a change of perspective?

    Science.gov (United States)

    Glansdorff, Nicolas; Xu, Ying; Labedan, Bernard

    2009-09-01

    A complete tree with roots, trunk and crown remains an appropriate model to represent all steps of life's development, from the emergence of a unique genetic code up to the last universal common ancestor and its further radiation. Catalytic closure of a mixture of prebiotic polymers is a heuristic alternative to the RNA world. Conjectures about emergence of life in an infinite multiverse should not confuse probability with possibility.

  1. Classifying Coding DNA with Nucleotide Statistics

    Directory of Open Access Journals (Sweden)

    Nicolas Carels

    2009-10-01

    Full Text Available In this report, we compared the success rate of classification of coding sequences (CDS vs. introns by Codon Structure Factor (CSF and by a method that we called Universal Feature Method (UFM. UFM is based on the scoring of purine bias (Rrr and stop codon frequency. We show that the success rate of CDS/intron classification by UFM is higher than by CSF. UFM classifies ORFs as coding or non-coding through a score based on (i the stop codon distribution, (ii the product of purine probabilities in the three positions of nucleotide triplets, (iii the product of Cytosine (C, Guanine (G, and Adenine (A probabilities in the 1st, 2nd, and 3rd positions of triplets, respectively, (iv the probabilities of G in 1st and 2nd position of triplets and (v the distance of their GC3 vs. GC2 levels to the regression line of the universal correlation. More than 80% of CDSs (true positives of Homo sapiens (>250 bp, Drosophila melanogaster (>250 bp and Arabidopsis thaliana (>200 bp are successfully classified with a false positive rate lower or equal to 5%. The method releases coding sequences in their coding strand and coding frame, which allows their automatic translation into protein sequences with 95% confidence. The method is a natural consequence of the compositional bias of nucleotides in coding sequences.

  2. Bilaterally symmetric axes with rhizoids composed the rooting structure of the common ancestor of vascular plants.

    Science.gov (United States)

    Hetherington, Alexander J; Dolan, Liam

    2018-02-05

    There are two general types of rooting systems in extant land plants: gametophyte rhizoids and sporophyte root axes. These structures carry out the rooting function in the free-living stage of almost all land plant gametophytes and sporophytes, respectively. Extant vascular plants develop a dominant, free-living sporophyte on which roots form, with the exception of a small number of taxa that have secondarily lost roots. However, fossil evidence indicates that early vascular plants did not develop sporophyte roots. We propose that the common ancestor of vascular plants developed a unique rooting system-rhizoidal sporophyte axes. Here we present a synthesis and reinterpretation of the rootless sporophytes of Horneophyton lignieri , Aglaophyton majus , Rhynia gwynne-vaughanii and Nothia aphylla preserved in the Rhynie chert. We show that the sporophyte rooting structures of all four plants comprised regions of plagiotropic (horizontal) axes that developed unicellular rhizoids on their underside. These regions of axes with rhizoids developed bilateral symmetry making them distinct from the other regions which were radially symmetrical. We hypothesize that rhizoidal sporophyte axes constituted the rooting structures in the common ancestor of vascular plants because the phylogenetic positions of these plants span the origin of the vascular lineage.This article is part of a discussion meeting issue 'The Rhynie cherts: our earliest terrestrial ecosystem revisited'. © 2017 The Authors.

  3. The effect of exhaustive exercise on the concentration of purine nucleotides and their metabolites in erythrocytes

    OpenAIRE

    E Skotnicka; I Baranowska-Bosiacka; W Dudzińska; M Suska; R Nowak; K Krupecki; AJ Hłyńczak

    2008-01-01

    In this study we tried to obtain a complete overview of purine nucleotide metabolism in erythrocytes before and during an incremental, intermittent exhaustive exercise bout protocol for sportsmen (high-performance rowers) and untrained, healthy, active volunteers. Erythrocyte levels of the main nucleotides (ATP, ADP, AMP, GTP, GDP, GMP, IMP, NAD and NADP ), nucleosides (Ado, Guo, Ino) and the base Hyp were measured using the HPLC method. The parameters that can be deducted from their concent...

  4. Mammalian Survey Techniques for Level II Natural Resource Inventories on Corps of Engineers Projects (Part 1)

    Science.gov (United States)

    2009-07-01

    sheep (Ovis dalli dalli), mountain goats (Oreamnos americanus) and other hoofed animals are often surveyed using aerial counts from fixed-wing...Society Bulletin 34:69-73. Hilty, J. A., and A. M. Merenlender. 2004. Use of riparian corridors and vineyards by mammalian preda- tors in northern...Witmer, and R. M. Engeman. 2004. Feral swine impacts on agriculture and the environment. Sheep and Goat Research Journal 19:34-40. Slade, N. A., and

  5. An Analytical Study of Mammalian Bite Wounds Requiring Inpatient Management

    Directory of Open Access Journals (Sweden)

    Young-Geun Lee

    2013-11-01

    Full Text Available BackgroundMammalian bite injuries create a public health problem because of their frequency, potential severity, and increasing number. Some researchers have performed fragmentary analyses of bite wounds caused by certain mammalian species. However, little practical information is available concerning serious mammalian bite wounds that require hospitalization and intensive wound management. Therefore, the purpose of this study was to perform a general review of serious mammalian bite wounds.MethodsWe performed a retrospective review of the medical charts of 68 patients who were referred to our plastic surgery department for the treatment of bite wounds between January 2003 and October 2012. The cases were analyzed according to the species, patient demographics, environmental factors, injury characteristics, and clinical course.ResultsAmong the 68 cases of mammalian bite injury, 58 (85% were caused by dogs, 8 by humans, and 2 by cats. Most of those bitten by a human and both of those bitten by cats were male. Only one-third of all the patients were children or adolescents. The most frequent site of injury was the face, with 40 cases, followed by the hand, with 16 cases. Of the 68 patients, 7 were treated with secondary intention healing. Sixty-one patients underwent delayed procedures, including delayed direct closure, skin graft, composite graft, and local flap.ConclusionsBased on overall findings from our review of the 68 cases of mammalian bites, we suggest practical guidelines for the management of mammalian bite injuries, which could be useful in the treatment of serious mammalian bite wounds.

  6. GDP-bound and nucleotide-free intermediates of the guanine nucleotide exchange in the Rab5·Vps9 system.

    Science.gov (United States)

    Uejima, Tamami; Ihara, Kentaro; Goh, Tatsuaki; Ito, Emi; Sunada, Mariko; Ueda, Takashi; Nakano, Akihiko; Wakatsuki, Soichi

    2010-11-19

    Many GTPases regulate intracellular transport and signaling in eukaryotes. Guanine nucleotide exchange factors (GEFs) activate GTPases by catalyzing the exchange of their GDP for GTP. Here we present crystallographic and biochemical studies of a GEF reaction with four crystal structures of Arabidopsis thaliana ARA7, a plant homolog of Rab5 GTPase, in complex with its GEF, VPS9a, in the nucleotide-free and GDP-bound forms, as well as a complex with aminophosphonic acid-guanylate ester and ARA7·VPS9a(D185N) with GDP. Upon complex formation with ARA7, VPS9 wedges into the interswitch region of ARA7, inhibiting the coordination of Mg(2+) and decreasing the stability of GDP binding. The aspartate finger of VPS9a recognizes GDP β-phosphate directly and pulls the P-loop lysine of ARA7 away from GDP β-phosphate toward switch II to further destabilize GDP for its release during the transition from the GDP-bound to nucleotide-free intermediates in the nucleotide exchange reaction.

  7. Bacterial nucleotide-based second messengers.

    Science.gov (United States)

    Pesavento, Christina; Hengge, Regine

    2009-04-01

    In all domains of life nucleotide-based second messengers transduce signals originating from changes in the environment or in intracellular conditions into appropriate cellular responses. In prokaryotes cyclic di-GMP has emerged as an important and ubiquitous second messenger regulating bacterial life-style transitions relevant for biofilm formation, virulence, and many other bacterial functions. This review describes similarities and differences in the architecture of the cAMP, (p)ppGpp, and c-di-GMP signaling systems and their underlying signaling principles. Moreover, recent advances in c-di-GMP-mediated signaling will be presented and the integration of c-di-GMP signaling with other nucleotide-based signaling systems will be discussed.

  8. Surgical manipulation of mammalian embryos in vitro.

    Science.gov (United States)

    Naruse, I; Keino, H; Taniguchi, M

    1997-04-01

    Whole-embryo culture systems are useful in the fields of not only embryology but also teratology, toxicology, pharmacology, and physiology. Of the many advantages of whole-embryo culture, we focus here on the surgical manipulation of mammalian embryos. Whole-embryo culture allows us to manipulate mammalian embryos, similarly to fish, amphibian and avian embryos. Many surgical experiments have been performed in mammalian embryos in vitro. Such surgical manipulation alters the destiny of morphogenesis of the embryos and can answer many questions concerning developmental issues. As an example of surgical manipulation using whole-embryo culture systems, one of our experiments is described. Microsurgical electrocauterization of the deep preaxial mesodermal programmed cell death zone (fpp) in the footplate prevented the manifestation of polydactyly in genetic polydactyly mouse embryos (Pdn/Pdn), in which fpp was abolished.

  9. Evolutionary ancestry and novel functions of the mammalian glucose transporter (GLUT) family.

    Science.gov (United States)

    Wilson-O'Brien, Amy L; Patron, Nicola; Rogers, Suzanne

    2010-05-21

    In general, sugar porters function by proton-coupled symport or facilitative transport modes. Symporters, coupled to electrochemical energy, transport nutrients against a substrate gradient. Facilitative carriers transport sugars along a concentration gradient, thus transport is dependent upon extracellular nutrient levels. Across bacteria, fungi, unicellular non-vertebrates and plants, proton-coupled hexose symport is a crucial process supplying energy under conditions of nutrient flux. In mammals it has been assumed that evolution of whole body regulatory mechanisms would eliminate this need. To determine whether any isoforms bearing this function might be conserved in mammals, we investigated the relationship between the transporters of animals and the proton-coupled hexose symporters found in other species. We took a comparative genomic approach and have performed the first comprehensive and statistically supported phylogenetic analysis of all mammalian glucose transporter (GLUT) isoforms. Our data reveals the mammalian GLUT proteins segregate into five distinct classes. This evolutionary ancestry gives insight to structure, function and transport mechanisms within the groups. Combined with biological assays, we present novel evidence that, in response to changing nutrient availability and environmental pH, proton-coupled, active glucose symport function is maintained in mammalian cells. The analyses show the ancestry, evolutionary conservation and biological importance of the GLUT classes. These findings significantly extend our understanding of the evolution of mammalian glucose transport systems. They also reveal that mammals may have conserved an adaptive response to nutrient demand that would have important physiological implications to cell survival and growth.

  10. Iron from haemoglobin and haemin modulates nucleotide hydrolysis in Trichomonas vaginalis.

    Science.gov (United States)

    Vieira, Patrícia de Brum; Silva, Nícolas Luiz Feijó; Kist, Luiza Wilges; Oliveira, Giovanna Medeiros Tavares de; Bogo, Maurício Reis; Carli, Geraldo Atillio de; Macedo, Alexandre José; Tasca, Tiana

    2015-04-01

    Extracellular ATP may act as a danger signalling molecule, inducing inflammation and immune responses in infection sites. The ectonucleotidases NTPDase and ecto-5'-nucleotidase are enzymes that modulate extracellular nucleotide levels; these enzymes have been previously characterised in Trichomonas vaginalis. Iron plays an important role in the complex trichomonal pathogenesis. Herein, the effects of iron on growth, nucleotide hydrolysis and NTPDase gene expression in T. vaginalis isolates from female and male patients were evaluated. Iron from different sources sustained T. vaginalis growth. Importantly, iron from haemoglobin (HB) and haemin (HM) enhanced NTPDase activity in isolates from female patients and conversely reduced the enzyme activity in isolates from male patients. Iron treatments could not alter the NTPDase transcript levels in T. vaginalis. Furthermore, our results reveal a distinct ATP, ADP and AMP hydrolysis profile between isolates from female and male patients influenced by iron from HB and HM. Our data indicate the participation of NTPDase and ecto-5'-nucleotidase in the establishment of trichomonas infection through ATP degradation and adenosine production influenced by iron.

  11. Iron from haemoglobin and haemin modulates nucleotide hydrolysis in Trichomonas vaginalis

    Directory of Open Access Journals (Sweden)

    Patrícia de Brum Vieira

    2015-04-01

    Full Text Available Extracellular ATP may act as a danger signalling molecule, inducing inflammation and immune responses in infection sites. The ectonucleotidases NTPDase and ecto-5’-nucleotidase are enzymes that modulate extracellular nucleotide levels; these enzymes have been previously characterised in Trichomonas vaginalis. Iron plays an important role in the complex trichomonal pathogenesis. Herein, the effects of iron on growth, nucleotide hydrolysis and NTPDase gene expression in T. vaginalis isolates from female and male patients were evaluated. Iron from different sources sustained T. vaginalis growth. Importantly, iron from haemoglobin (HB and haemin (HM enhanced NTPDase activity in isolates from female patients and conversely reduced the enzyme activity in isolates from male patients. Iron treatments could not alter the NTPDase transcript levels in T. vaginalis. Furthermore, our results reveal a distinct ATP, ADP and AMP hydrolysis profile between isolates from female and male patients influenced by iron from HB and HM. Our data indicate the participation of NTPDase and ecto-5’-nucleotidase in the establishment of trichomonas infection through ATP degradation and adenosine production influenced by iron.

  12. Models of gene gain and gene loss for probabilistic reconstruction of gene content in the last universal common ancestor of life

    Science.gov (United States)

    2013-01-01

    Background The problem of probabilistic inference of gene content in the last common ancestor of several extant species with completely sequenced genomes is: for each gene that is conserved in all or some of the genomes, assign the probability that its ancestral gene was present in the genome of their last common ancestor. Results We have developed a family of models of gene gain and gene loss in evolution, and applied the maximum-likelihood approach that uses phylogenetic tree of prokaryotes and the record of orthologous relationships between their genes to infer the gene content of LUCA, the Last Universal Common Ancestor of all currently living cellular organisms. The crucial parameter, the ratio of gene losses and gene gains, was estimated from the data and was higher in models that take account of the number of in-paralogs in genomes than in models that treat gene presences and absences as a binary trait. Conclusion While the numbers of genes that are placed confidently into LUCA are similar in the ML methods and in previously published methods that use various parsimony-based approaches, the identities of genes themselves are different. Most of the models of either kind treat the genes found in many existing genomes in a similar way, assigning to them high probabilities of being ancestral (“high ancestrality”). The ML models are more likely than others to assign high ancestrality to the genes that are relatively rare in the present-day genomes. Reviewers This article was reviewed by Martijn A Huynen, Toni Gabaldón and Fyodor Kondrashov. PMID:24354654

  13. Regulation of gene expression in mammalian cells following ionizing radiation

    International Nuclear Information System (INIS)

    Boothman, D.A.; Lee, S.W

    1991-01-01

    Mammalian cells use a variety of mechanisms to control the expression of new gene transcrips elicited in response to ionizing radiation. Damage-induced proteins have been found which contain DNA binding sites located within the promoter regions of SV40 and human thymidine kinase genes. DNA binding proteins as well as proteins which bind to specific DNA lesions (e.g., XIP bp 175 binds specifically to X-ray-damaged DNA) may play a role in the initial recognition of DNA damage and may initiate DNA repair processes, along with new transcription. Mammalian gene expression after DNA damage is also regulated via the stabilization of preexisting mRNA transcripts. Stabilized mRNA transcripts are translated into protein products not previously present in the cell due to undefined posttranscriptional modifications. Thus far, the only example of mRNA stabilization following X-irradiation is the immediate induction of tissue-type plasminogen activator. Mammalian cells synthesize new mRNA transcripts indirect response to DNA damage. Using cDNA cloning, Northern RNA blotting and nuclear run-on techniques, the levels of a variety of known and previously unknown genes dramatically increase following X-irradiation. These genes/proteins now include; a) DNA binding transcripts factors, such as the UV-responsive element binding factors, ionizing radiation-induced DNA-binding proteins, and XIP bP 175; b) proto-oncogenes, such as c-fos, c-jun, and c-myc; c) several growth-related genes, (e.g., the gadd genes, protein kinase C, IL-1, and thymidine kinase); and d) a variety of other genes, including proteases, tumor necrosis factor-alpha, and DT diaphorase. Mammalian cells respond to X-irradiation by eliciting a very complex series of events resulting in the appearance of new genes and proteins. These gene products may affect DNA repair, adaptive responses, apoptosis, SOS-type mutagenic response, and/or carcinogenesis. (J.P.N.)

  14. Mesenchymal stem cells from different murine tissues have differential capacity to metabolize extracellular nucleotides.

    Science.gov (United States)

    Iser, Isabele C; Bracco, Paula A; Gonçalves, Carlos E I; Zanin, Rafael F; Nardi, Nance B; Lenz, Guido; Battastini, Ana Maria O; Wink, Márcia R

    2014-10-01

    Mesenchymal stem cells (MSCs) have shown a great potential for cell-based therapy and many different therapeutic purposes. Despite the recent advances in the knowledge of MSCs biology, their biochemical and molecular properties are still poorly defined. Ecto-nucleoside triphosphate diphosphohydrolases (E-NTPDases) and ecto-5'-nucleotidase (eNT/CD73) are widely expressed enzymes that hydrolyze extracellular nucleotides, generating an important cellular signaling cascade. Currently, studies have evidenced the relationship between the purinergic system and the development, maintenance, and differentiation of stem cells. The objective of this study is to identify the NTPDases and eNT/CD73 and compare the levels of nucleotide hydrolysis on MSCs isolated from different murine tissues (bone marrow, lung, vena cava, kidney, pancreas, spleen, skin, and adipose tissue). MSCs from all tissues investigated expressed the ectoenzymes at different levels. In MSCs from pancreas and adipose tissue, the hydrolysis of triphosphonucleosides was significantly higher when compared to the other cells. The diphosphonucleosides were hydrolyzed at a higher rate by MSC from pancreas when compared to MSC from other tissues. The differential nucleotide hydrolysis activity and enzyme expression in these cells suggests that MSCs play different roles in regulating the purinergic system in these tissues. Overall MSCs are an attractive adult-derived cell population for therapies, however, the fact that ecto-nucleotide metabolism can affect the microenvironment, modulating important events, such as immune response, makes the assessment of this metabolism an important part of the characterization of MSCs to be applied therapeutically. © 2014 Wiley Periodicals, Inc.

  15. Novel Nucleotide Variations, Haplotypes Structure and Associations with Growth Related Traits of Goat AT Motif-Binding Factor ( Gene

    Directory of Open Access Journals (Sweden)

    Xiaoyan Zhang

    2015-10-01

    Full Text Available The AT motif-binding factor (ATBF1 not only interacts with protein inhibitor of activated signal transducer and activator of transcription 3 (STAT3 (PIAS3 to suppress STAT3 signaling regulating embryo early development and cell differentiation, but is required for early activation of the pituitary specific transcription factor 1 (Pit1 gene (also known as POU1F1 critically affecting mammalian growth and development. The goal of this study was to detect novel nucleotide variations and haplotypes structure of the ATBF1 gene, as well as to test their associations with growth-related traits in goats. Herein, a total of seven novel single nucleotide polymorphisms (SNPs (SNP 1-7 within this gene were found in two well-known Chinese native goat breeds. Haplotypes structure analysis demonstrated that there were four haplotypes in Hainan black goat while seventeen haplotypes in Xinong Saanen dairy goat, and both breeds only shared one haplotype (hap1. Association testing revealed that the SNP2, SNP5, SNP6, and SNP7 loci were also found to significantly associate with growth-related traits in goats, respectively. Moreover, one diplotype in Xinong Saanen dairy goats significantly linked to growth related traits. These preliminary findings not only would extend the spectrum of genetic variations of the goat ATBF1 gene, but also would contribute to implementing marker-assisted selection in genetics and breeding in goats.

  16. Molecular cloning, characterization, and expression of human ADP-ribosylation factors: Two guanine nucleotide-dependent activators of cholera toxin

    International Nuclear Information System (INIS)

    Bobak, D.A.; Nightingale, M.S.; Murtagh, J.J.; Price, S.R.; Moss, J.; Vaughan, M.

    1989-01-01

    ADP-ribosylation factors (ARFs) are small guanine nucleotide-binding proteins that enhance the enzymatic activities of cholera toxin. Two ARF cDNAs, ARF1 and ARF3, were cloned from a human cerebellum library. Based on deduced amino acid sequences and patterns of hybridization of cDNA and oligonucleotide probes with mammalian brain poly(A) + RNA, human ARF1 is the homologue of bovine ARF1. Human ARF3, which differs from bovine ARF1 and bovine ARF2, appears to represent a newly identified third type of ARF. Hybridization patterns of human ARF cDNA and clone-specific oligonucleotides with poly(A) + RNA are consistent with the presence of at least two, and perhaps four, separate ARF messages in human brain. In vitro translation of ARF1, ARF2, and ARF3 produced proteins that behaved, by SDS/PAGE, similar to a purified soluble brain ARF. Deduced amino acid sequences of human ARF1 and ARF3 contain regions, similar to those in other G proteins, that are believed to be involved in GTP binding and hydrolysis. ARFS also exhibit a modest degree of homology with a bovine phospholipase C. The observations reported here support the conclusion that the ARFs are members of a multigene family of small guanine nucleotide-binding proteins. Definition of the regulation of ARF mRNAs and of function(s) of recombinant ARF proteins will aid in the elucidation of the physiologic role(s) of ARFs

  17. Regulation of Autophagy by Glucose in Mammalian Cells

    Directory of Open Access Journals (Sweden)

    Erwin Knecht

    2012-07-01

    Full Text Available Autophagy is an evolutionarily conserved process that contributes to maintain cell homeostasis. Although it is strongly regulated by many extracellular factors, induction of autophagy is mainly produced by starvation of nutrients. In mammalian cells, the regulation of autophagy by amino acids, and also by the hormone insulin, has been extensively investigated, but knowledge about the effects of other autophagy regulators, including another nutrient, glucose, is more limited. Here we will focus on the signalling pathways by which environmental glucose directly, i.e., independently of insulin and glucagon, regulates autophagy in mammalian cells, but we will also briefly mention some data in yeast. Although glucose deprivation mainly induces autophagy via AMPK activation and the subsequent inhibition of mTORC1, we will also comment other signalling pathways, as well as evidences indicating that, under certain conditions, autophagy can be activated by glucose. A better understanding on how glucose regulates autophagy not only will expand our basic knowledge of this important cell process, but it will be also relevant to understand common human disorders, such as cancer and diabetes, in which glucose levels play an important role.

  18. Algal ancestor of land plants was preadapted for symbiosis.

    Science.gov (United States)

    Delaux, Pierre-Marc; Radhakrishnan, Guru V; Jayaraman, Dhileepkumar; Cheema, Jitender; Malbreil, Mathilde; Volkening, Jeremy D; Sekimoto, Hiroyuki; Nishiyama, Tomoaki; Melkonian, Michael; Pokorny, Lisa; Rothfels, Carl J; Sederoff, Heike Winter; Stevenson, Dennis W; Surek, Barbara; Zhang, Yong; Sussman, Michael R; Dunand, Christophe; Morris, Richard J; Roux, Christophe; Wong, Gane Ka-Shu; Oldroyd, Giles E D; Ané, Jean-Michel

    2015-10-27

    Colonization of land by plants was a major transition on Earth, but the developmental and genetic innovations required for this transition remain unknown. Physiological studies and the fossil record strongly suggest that the ability of the first land plants to form symbiotic associations with beneficial fungi was one of these critical innovations. In angiosperms, genes required for the perception and transduction of diffusible fungal signals for root colonization and for nutrient exchange have been characterized. However, the origin of these genes and their potential correlation with land colonization remain elusive. A comprehensive phylogenetic analysis of 259 transcriptomes and 10 green algal and basal land plant genomes, coupled with the characterization of the evolutionary path leading to the appearance of a key regulator, a calcium- and calmodulin-dependent protein kinase, showed that the symbiotic signaling pathway predated the first land plants. In contrast, downstream genes required for root colonization and their specific expression pattern probably appeared subsequent to the colonization of land. We conclude that the most recent common ancestor of extant land plants and green algae was preadapted for symbiotic associations. Subsequent improvement of this precursor stage in early land plants through rounds of gene duplication led to the acquisition of additional pathways and the ability to form a fully functional arbuscular mycorrhizal symbiosis.

  19. Rheotaxis guides mammalian sperm

    Science.gov (United States)

    Miki, Kiyoshi; Clapham, David E

    2013-01-01

    Background In sea urchins, spermatozoan motility is altered by chemotactic peptides, giving rise to the assumption that mammalian eggs also emit chemotactic agents that guide spermatozoa through the female reproductive tract to the mature oocyte. Mammalian spermatozoa indeed undergo complex adaptations within the female (the process of capacitation) that are initiated by agents ranging from pH to progesterone, but these factors are not necessarily taxic. Currently, chemotaxis, thermotaxis, and rheotaxis have not been definitively established in mammals. Results Here, we show that positive rheotaxis, the ability of organisms to orient and swim against the flow of surrounding fluid, is a major taxic factor for mouse and human sperm. This flow is generated within 4 hours of sexual stimulation and coitus in female mice; prolactin-triggered oviductal fluid secretion clears the oviduct of debris, lowers viscosity, and generates the stream that guides sperm migration in the oviduct. Rheotaxic movement is demonstrated in capacitated and uncapacitated spermatozoa in low and high viscosity medium. Finally, we show that a unique sperm motion we quantify using the sperm head's rolling rate reflects sperm rotation that generates essential force for positioning the sperm in the stream. Rotation requires CatSper channels, presumably by enabling Ca2+ influx. Conclusions We propose that rheotaxis is a major determinant of sperm guidance over long distances in the mammalian female reproductive tract. Coitus induces fluid flow to guide sperm in the oviduct. Sperm rheotaxis requires rotational motion during CatSper channel-dependent hyperactivated motility. PMID:23453951

  20. Nucleotide diversity analysis of three major bacterial blight resistance genes in rice.

    Directory of Open Access Journals (Sweden)

    Waikhom Bimolata

    Full Text Available Nucleotide sequence polymorphisms among R gene alleles influence the process of co-evolutionary interaction between host and pathogen by shaping the response of host plants towards invading pathogens. Here, we present the DNA sequence polymorphisms and diversities present among natural alleles of three rice bacterial blight resistance genes, Xa21, Xa26 and xa5. The diversity was examined across different wild relatives and cultivars of Oryza species. Functional significance of selected alleles was evaluated through semi-quantitative reverse transcription polymerase chain reaction and real time PCR. The greatest nucleotide diversity and singleton variable sites (SVS were present in Xa26 (π = 0.01958; SVS = 182 followed by xa5 and Xa21 alleles. The highest frequency of single nucleotide polymorphisms were observed in Xa21 alleles and least in xa5. Transition bias was observed in all the genes and 'G' to 'A' transitions were more favored than other form of transitions. Neutrality tests failed to show the presence of selection at these loci, though negative Tajima's D values indicate the presence of a rare form of polymorphisms. At the interspecies level, O. nivara exhibited more diversity than O. sativa. We have also identified two nearly identical resistant alleles of xa5 and two sequentially identical alleles of Xa21. The alleles of xa5 showed basal levels of expression while Xa21 alleles were functionally not expressed.

  1. Nucleotide-binding oligomerization domain 2 (NOD2) activation induces apoptosis of human oral squamous cell carcinoma cells.

    Science.gov (United States)

    Yoon, Hyo-Eun; Ahn, Mee-Young; Kwon, Seong-Min; Kim, Dong-Jae; Lee, Jun; Yoon, Jung-Hoon

    2016-04-01

    Microbial Pattern-recognition receptors (PRRs), such as nucleotide-binding oligomerization domains (NODs), are essential for mammalian innate immune response. This study was designed to determine the effect of NOD1 and NOD2 agonist on innate immune responses and antitumor activity in oral squamous cell carcinoma (OSCC) cells. NODs expression was examined by RT-PCR, and IL-8 production by NODs agonist was examined by ELISA. Western blot analysis was performed to determine the MAPK activation in response to their agonist. Cell proliferation was determined by MTT assay. Flow cytometry and Western blot analysis were performed to determine the MDP-induced cell death. The levels of NODs were apparently expressed in OSCC cells. NODs agonist, Tri-DAP and MDP, led to the production of IL-8 and MAPK activation. NOD2 agonist, MDP, inhibited the proliferation of YD-10B cells in a dose-dependent manner. Also, the ratio of Annexin V-positive cells and cleaved PARP was increased by MDP treatment in YD-10B cells, suggesting that MDP-induced cell death in YD-10B cells may be owing to apoptosis. Our results indicate that NODs are functionally expressed in OSCC cells and can trigger innate immune responses. In addition, NOD2 agonist inhibited cell proliferation and induced apoptosis. These findings provide the potential value of MDP as novel candidates for antitumor agents of OSCC. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. Short sequence motifs, overrepresented in mammalian conservednon-coding sequences

    Energy Technology Data Exchange (ETDEWEB)

    Minovitsky, Simon; Stegmaier, Philip; Kel, Alexander; Kondrashov,Alexey S.; Dubchak, Inna

    2007-02-21

    Background: A substantial fraction of non-coding DNAsequences of multicellular eukaryotes is under selective constraint. Inparticular, ~;5 percent of the human genome consists of conservednon-coding sequences (CNSs). CNSs differ from other genomic sequences intheir nucleotide composition and must play important functional roles,which mostly remain obscure.Results: We investigated relative abundancesof short sequence motifs in all human CNSs present in the human/mousewhole-genome alignments vs. three background sets of sequences: (i)weakly conserved or unconserved non-coding sequences (non-CNSs); (ii)near-promoter sequences (located between nucleotides -500 and -1500,relative to a start of transcription); and (iii) random sequences withthe same nucleotide composition as that of CNSs. When compared tonon-CNSs and near-promoter sequences, CNSs possess an excess of AT-richmotifs, often containing runs of identical nucleotides. In contrast, whencompared to random sequences, CNSs contain an excess of GC-rich motifswhich, however, lack CpG dinucleotides. Thus, abundance of short sequencemotifs in human CNSs, taken as a whole, is mostly determined by theiroverall compositional properties and not by overrepresentation of anyspecific short motifs. These properties are: (i) high AT-content of CNSs,(ii) a tendency, probably due to context-dependent mutation, of A's andT's to clump, (iii) presence of short GC-rich regions, and (iv) avoidanceof CpG contexts, due to their hypermutability. Only a small number ofshort motifs, overrepresented in all human CNSs are similar to bindingsites of transcription factors from the FOX family.Conclusion: Human CNSsas a whole appear to be too broad a class of sequences to possess strongfootprints of any short sequence-specific functions. Such footprintsshould be studied at the level of functional subclasses of CNSs, such asthose which flank genes with a particular pattern of expression. Overallproperties of CNSs are affected by

  3. Building the mammalian testis

    DEFF Research Database (Denmark)

    Svingen, Terje; Koopman, Peter

    2013-01-01

    Development of testes in the mammalian embryo requires the formation and assembly of several cell types that allow these organs to achieve their roles in male reproduction and endocrine regulation. Testis development is unusual in that several cell types such as Sertoli, Leydig, and spermatogonial...

  4. Synthetic RNA Controllers for Programming Mammalian Cell Fate and Function

    Science.gov (United States)

    2015-11-04

    Final report for “Synthetic RNA controllers for programming mammalian cell fate and function” Principal Investigator: Christina D. Smolke...SUBTITLE Synthetic RNA controllers for programming mammalian cell fate and function 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER...Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18   2 Synthetic RNA controllers for programming mammalian cell fate and function Task 1

  5. Potassium secretion in mammalian distal colon

    DEFF Research Database (Denmark)

    Sørensen, Mads Vaarby

    2009-01-01

    Epithelial organs adjust the „inner milieu“ of the body and are crucial for all homeostatic processes. Epithelial transport of different solutes and water is regulated phenomena. The regulation processes include both long term hormonal regulation and short term local agonist mediated regulation....... This research project is the summary of 3 original papers addressing the functional role of different regulating factors on ion transport in mouse distal colon. The first paper addresses the effect of luminal nucleotides on electrogenic Na+ absorption. The distal colon, like the distal nephron is an aldosterone......-sensitive tissue and participates in the regulation of Na+ excretion. In the distal nephron it was found that luminal nucleotides inhibit ENaC-mediated Na+ absorption. Here it was addressed whether luminal nucleotides regulate Na+ absorption and if so, which of the known luminal P2 receptors are involved. Using...

  6. Complete nucleotide sequence of Alfalfa mosaic virus isolated from alfalfa (Medicago sativa L.) in Argentina.

    Science.gov (United States)

    Trucco, Verónica; de Breuil, Soledad; Bejerman, Nicolás; Lenardon, Sergio; Giolitti, Fabián

    2014-06-01

    The complete nucleotide sequence of an Alfalfa mosaic virus (AMV) isolate infecting alfalfa (Medicago sativa L.) in Argentina, AMV-Arg, was determined. The virus genome has the typical organization described for AMV, and comprises 3,643, 2,593, and 2,038 nucleotides for RNA1, 2 and 3, respectively. The whole genome sequence and each encoding region were compared with those of other four isolates that have been completely sequenced from China, Italy, Spain and USA. The nucleotide identity percentages ranged from 95.9 to 99.1 % for the three RNAs and from 93.7 to 99 % for the protein 1 (P1), protein 2 (P2), movement protein and coat protein (CP) encoding regions, whereas the amino acid identity percentages of these proteins ranged from 93.4 to 99.5 %, the lowest value corresponding to P2. CP sequences of AMV-Arg were compared with those of other 25 available isolates, and the phylogenetic analysis based on the CP gene was carried out. The highest percentage of nucleotide sequence identity of the CP gene was 98.3 % with a Chinese isolate and 98.6 % at the amino acid level with four isolates, two from Italy, one from Brazil and the remaining one from China. The phylogenetic analysis showed that AMV-Arg is closely related to subgroup I of AMV isolates. To our knowledge, this is the first report of a complete nucleotide sequence of AMV from South America and the first worldwide report of complete nucleotide sequence of AMV isolated from alfalfa as natural host.

  7. Improvement of mammalian cell culture performance through surfactant enabled concentrated feed media.

    Science.gov (United States)

    Hossler, Patrick; McDermott, Sean; Racicot, Christopher; Fann, John C H

    2013-01-01

    The design of basal and feed media in mammalian cell culture is paramount towards ensuring acceptable upstream process performance in various operation modes, especially fed-batch culture. Mammalian cell culture media designs have evolved from the classical formulations designed by Eagle and Ham, to today's formulations designed from continuous improvement and statistical frameworks. Feed media is especially important for ensuring robust cell growth, productivity, and ensuring the product quality of recombinant therapeutics are within acceptable ranges. Numerous studies have highlighted the benefit of various media designs, supplements, and feed addition strategies towards the resulting cell culture process. In this work we highlight the use of a top-down level approach towards feed media design enabled by the use of select surfactants for the targeted enrichment of a chemically defined feed media. The use of the enriched media was able to improve product titers at g/L levels, without adversely impacting the growth of multiple Chinese Hamster Ovary cell lines or the product quality of multiple recombinant antibodies. © 2013 American Institute of Chemical Engineers.

  8. Single nucleotide polymorphisms (SNPs in coding regions of canine dopamine- and serotonin-related genes

    Directory of Open Access Journals (Sweden)

    Lingaas Frode

    2008-01-01

    Full Text Available Abstract Background Polymorphism in genes of regulating enzymes, transporters and receptors of the neurotransmitters of the central nervous system have been associated with altered behaviour, and single nucleotide polymorphisms (SNPs represent the most frequent type of genetic variation. The serotonin and dopamine signalling systems have a central influence on different behavioural phenotypes, both of invertebrates and vertebrates, and this study was undertaken in order to explore genetic variation that may be associated with variation in behaviour. Results Single nucleotide polymorphisms in canine genes related to behaviour were identified by individually sequencing eight dogs (Canis familiaris of different breeds. Eighteen genes from the dopamine and the serotonin systems were screened, revealing 34 SNPs distributed in 14 of the 18 selected genes. A total of 24,895 bp coding sequence was sequenced yielding an average frequency of one SNP per 732 bp (1/732. A total of 11 non-synonymous SNPs (nsSNPs, which may be involved in alteration of protein function, were detected. Of these 11 nsSNPs, six resulted in a substitution of amino acid residue with concomitant change in structural parameters. Conclusion We have identified a number of coding SNPs in behaviour-related genes, several of which change the amino acids of the proteins. Some of the canine SNPs exist in codons that are evolutionary conserved between five compared species, and predictions indicate that they may have a functional effect on the protein. The reported coding SNP frequency of the studied genes falls within the range of SNP frequencies reported earlier in the dog and other mammalian species. Novel SNPs are presented and the results show a significant genetic variation in expressed sequences in this group of genes. The results can contribute to an improved understanding of the genetics of behaviour.

  9. DNA repair in non-mammalian animals

    International Nuclear Information System (INIS)

    Mitani, Hiroshi

    1984-01-01

    Studies on DNA repair have been performed using microorganisms such as Escherichia coli and cultured human and mammalian cells. However, it is well known that cultured organic cells differ from each other in many respects, although DNA repair is an extremely fundamental function of organisms to protect genetic information from environmental mutagens such as radiation and 0 radicals developing in the living body. To answer the question of how DNA repair is different between the animal species, current studies on DNA repair of cultured vertebrate cells using the methods similar to those in mammalian experiments are reviewed. (Namekawa, K.)

  10. Incorporation of mammalian actin into microfilaments in plant cell nucleus

    Directory of Open Access Journals (Sweden)

    Paves Heiti

    2004-04-01

    Full Text Available Abstract Background Actin is an ancient molecule that shows more than 90% amino acid homology between mammalian and plant actins. The regions of the actin molecule that are involved in F-actin assembly are largely conserved, and it is likely that mammalian actin is able to incorporate into microfilaments in plant cells but there is no experimental evidence until now. Results Visualization of microfilaments in onion bulb scale epidermis cells by different techniques revealed that rhodamine-phalloidin stained F-actin besides cytoplasm also in the nuclei whereas GFP-mouse talin hybrid protein did not enter the nuclei. Microinjection of fluorescently labeled actin was applied to study the presence of nuclear microfilaments in plant cells. Ratio imaging of injected fluorescent rabbit skeletal muscle actin and phalloidin staining of the microinjected cells showed that mammalian actin was able to incorporate into plant F-actin. The incorporation occurred preferentially in the nucleus and in the perinuclear region of plant cells whereas part of plant microfilaments, mostly in the periphery of cytoplasm, did not incorporate mammalian actin. Conclusions Microinjected mammalian actin is able to enter plant cell's nucleus, whereas incorporation of mammalian actin into plant F-actin occurs preferentially in the nucleus and perinuclear area.

  11. Amino acids in the cultivation of mammalian cells.

    Science.gov (United States)

    Salazar, Andrew; Keusgen, Michael; von Hagen, Jörg

    2016-05-01

    Amino acids are crucial for the cultivation of mammalian cells. This importance of amino acids was realized soon after the development of the first cell lines, and a solution of a mixture of amino acids has been supplied to cultured cells ever since. The importance of amino acids is further pronounced in chemically defined mammalian cell culture media, making the consideration of their biological and chemical properties necessary. Amino acids concentrations have been traditionally adjusted to their cellular consumption rates. However, since changes in the metabolic equilibrium of amino acids can be caused by changes in extracellular concentrations, metabolomics in conjunction with flux balance analysis is being used in the development of culture media. The study of amino acid transporters is also gaining importance since they control the intracellular concentrations of these molecules and are influenced by conditions in cell culture media. A better understanding of the solubility, stability, dissolution kinetics, and interactions of these molecules is needed for an exploitation of these properties in the development of dry powdered chemically defined media for mammalian cells. Due to the complexity of these mixtures however, this has proven to be challenging. Studying amino acids in mammalian cell culture media will help provide a better understanding of how mammalian cells in culture interact with their environment. It would also provide insight into the chemical behavior of these molecules in solutions of complex mixtures, which is important in the understanding of the contribution of individual amino acids to protein structure.

  12. Plasma treatment of mammalian vascular cells : A quantitative description

    NARCIS (Netherlands)

    Kieft, IE; Darios, D; Roks, AJM; Stoffels, E

    For the first time, quantitative data was obtained on plasma treatment of living mammalian cells. The nonthermal atmospheric discharge produced by the plasma needle was used for treatment of mammalian endothelial and smooth muscle cells. The influence of several experimental parameters on cell

  13. Plasma treatment of mammalian vascular cells: a quantitative description

    NARCIS (Netherlands)

    Kieft, I.E.; Darios, D.; Roks, A.J.M.; Stoffels - Adamowicz, E.

    2005-01-01

    For the first time, quantitative data was obtained on plasma treatment of living mammalian cells. The nonthermal atmospheric discharge produced by the plasma needle was used for treatment of mammalian endothelial and smooth muscle cells. The influence of several experimental parameters on cell

  14. Evolutionary ancestry and novel functions of the mammalian glucose transporter (GLUT family

    Directory of Open Access Journals (Sweden)

    Patron Nicola

    2010-05-01

    Full Text Available Abstract Background In general, sugar porters function by proton-coupled symport or facilitative transport modes. Symporters, coupled to electrochemical energy, transport nutrients against a substrate gradient. Facilitative carriers transport sugars along a concentration gradient, thus transport is dependent upon extracellular nutrient levels. Across bacteria, fungi, unicellular non-vertebrates and plants, proton-coupled hexose symport is a crucial process supplying energy under conditions of nutrient flux. In mammals it has been assumed that evolution of whole body regulatory mechanisms would eliminate this need. To determine whether any isoforms bearing this function might be conserved in mammals, we investigated the relationship between the transporters of animals and the proton-coupled hexose symporters found in other species. Results We took a comparative genomic approach and have performed the first comprehensive and statistically supported phylogenetic analysis of all mammalian glucose transporter (GLUT isoforms. Our data reveals the mammalian GLUT proteins segregate into five distinct classes. This evolutionary ancestry gives insight to structure, function and transport mechanisms within the groups. Combined with biological assays, we present novel evidence that, in response to changing nutrient availability and environmental pH, proton-coupled, active glucose symport function is maintained in mammalian cells. Conclusions The analyses show the ancestry, evolutionary conservation and biological importance of the GLUT classes. These findings significantly extend our understanding of the evolution of mammalian glucose transport systems. They also reveal that mammals may have conserved an adaptive response to nutrient demand that would have important physiological implications to cell survival and growth.

  15. Characterization of Mammalian Selenoprotein O: A Redox-Active Mitochondrial Protein

    OpenAIRE

    Han, Seong-Jeong; Lee, Byung Cheon; Yim, Sun Hee; Gladyshev, Vadim N.; Lee, Seung-Rock

    2014-01-01

    Selenoproteins exhibit diverse biological functions, most of which are associated with redox control. However, the functions of approximately half of mammalian selenoproteins are not known. One such protein is Selenoprotein O (SelO), the largest mammalian selenoprotein with orthologs found in a wide range of organisms, including bacteria and yeast. Here, we report characterization of mammalian SelO. Expression of this protein could be verified in HEK 293T cells by metabolic labeling of cells ...

  16. Thoroughbred Horse Single Nucleotide Polymorphism and Expression Database: HSDB

    Directory of Open Access Journals (Sweden)

    Joon-Ho Lee

    2014-09-01

    Full Text Available Genetics is important for breeding and selection of horses but there is a lack of well-established horse-related browsers or databases. In order to better understand horses, more variants and other integrated information are needed. Thus, we construct a horse genomic variants database including expression and other information. Horse Single Nucleotide Polymorphism and Expression Database (HSDB (http://snugenome2.snu.ac.kr/HSDB provides the number of unexplored genomic variants still remaining to be identified in the horse genome including rare variants by using population genome sequences of eighteen horses and RNA-seq of four horses. The identified single nucleotide polymorphisms (SNPs were confirmed by comparing them with SNP chip data and variants of RNA-seq, which showed a concordance level of 99.02% and 96.6%, respectively. Moreover, the database provides the genomic variants with their corresponding transcriptional profiles from the same individuals to help understand the functional aspects of these variants. The database will contribute to genetic improvement and breeding strategies of Thoroughbreds.

  17. Identification of cyclic nucleotide gated channels using regular expressions

    KAUST Repository

    Zelman, Alice K.; Dawe, Adam Sean; Berkowitz, Gerald A.

    2013-01-01

    Cyclic nucleotide-gated channels (CNGCs) are nonselective cation channels found in plants, animals, and some bacteria. They have a six-transmembrane/one- pore structure, a cytosolic cyclic nucleotide-binding domain, and a cytosolic calmodulin

  18. Ancestor-descendant relationships in evolution: origin of the extant pygmy right whale, Caperea marginata.

    Science.gov (United States)

    Tsai, Cheng-Hsiu; Fordyce, R Ewan

    2015-01-01

    Ancestor-descendant relationships (ADRs), involving descent with modification, are the fundamental concept in evolution, but are usually difficult to recognize. We examined the cladistic relationship between the only reported fossil pygmy right whale, †Miocaperea pulchra, and its sole living relative, the enigmatic pygmy right whale Caperea marginata, the latter represented by both adult and juvenile specimens. †Miocaperea is phylogenetically bracketed between juvenile and adult Caperea marginata in morphologically based analyses, thus suggesting a possible ADR-the first so far identified within baleen whales (Cetacea: Mysticeti). The †Miocaperea-Caperea lineage may show long-term morphological stasis and, in turn, punctuated equilibrium. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  19. Nucleotide Metabolism and its Control in Lactic Acid Bacteria

    DEFF Research Database (Denmark)

    Kilstrup, Mogens; Hammer, Karin; Jensen, Peter Ruhdal

    2005-01-01

    Most metabolic reactions are connected through either their utilization of nucleotides or their utilization of nucleotides or their regulation by these metabolites. In this review the biosynthetic pathways for pyrimidine and purine metabolism in lactic acid bacteria are described including...... the interconversion pathways, the formation of deoxyribonucleotides and the salvage pathways for use of exogenous precursors. The data for the enzymatic and the genetic regulation of these pathways are reviewed, as well as the gene organizations in different lactic acid bacteria. Mutant phenotypes and methods...... for manipulation of nucleotide pools are also discussed. Our aim is to provide an overview of the physiology and genetics of nucleotide metabolism and its regulation that will facilitate the interpretation of data arising from genetics, metabolomics, proteomics, and transcriptomics in lactic acid bacteria....

  20. Introducing Mammalian Cell Culture and Cell Viability Techniques in the Undergraduate Biology Laboratory.

    Science.gov (United States)

    Bowey-Dellinger, Kristen; Dixon, Luke; Ackerman, Kristin; Vigueira, Cynthia; Suh, Yewseok K; Lyda, Todd; Sapp, Kelli; Grider, Michael; Crater, Dinene; Russell, Travis; Elias, Michael; Coffield, V McNeil; Segarra, Verónica A

    2017-01-01

    Undergraduate students learn about mammalian cell culture applications in introductory biology courses. However, laboratory modules are rarely designed to provide hands-on experience with mammalian cells or teach cell culture techniques, such as trypsinization and cell counting. Students are more likely to learn about cell culture using bacteria or yeast, as they are typically easier to grow, culture, and manipulate given the equipment, tools, and environment of most undergraduate biology laboratories. In contrast, the utilization of mammalian cells requires a dedicated biological safety cabinet and rigorous antiseptic techniques. For this reason, we have devised a laboratory module and method herein that familiarizes students with common cell culture procedures, without the use of a sterile hood or large cell culture facility. Students design and perform a time-efficient inquiry-based cell viability experiment using HeLa cells and tools that are readily available in an undergraduate biology laboratory. Students will become familiar with common techniques such as trypsinizing cells, cell counting with a hemocytometer, performing serial dilutions, and determining cell viability using trypan blue dye. Additionally, students will work with graphing software to analyze their data and think critically about the mechanism of death on a cellular level. Two different adaptations of this inquiry-based lab are presented-one for non-biology majors and one for biology majors. Overall, these laboratories aim to expose students to mammalian cell culture and basic techniques and help them to conceptualize their application in scientific research.

  1. Effects of hypokinesia on cyclic nucleotides and hormonal regulation ...

    African Journals Online (AJOL)

    PTH), calcitonin (CT), cyclic nucleotides (cAMP, cGMP) and calcium in the blood of rats, while in urine - phosphate, calcium and cyclic nucleotides. Design: Laboratory based experiment. Setting: Laboratory in the Department of Biochemistry, ...

  2. Effect of ionizing radiation on calcium and cyclic nucleotides metabolism in rats of different age

    International Nuclear Information System (INIS)

    Efimova, N.I.; Libenson, S.V.

    1982-01-01

    Some features of mechanism of calcium homeostasis and cyclic nucleotide exchange breakage in case of acute radiation injury of rats of various age were studied. It is established that calcium level in blood in nonpuberal animals, calcium and cAMP excretion with urine are minimal and reach maximum at puberal age. cGMP excretion with urine and concentrational levels of cAMP and cGMP in blood do not change with age. It is shown that calcium excretion with urine decreases adaptively in conditions of acute radiation injury in rats of all age groups. Maximal shifts in cAMP/cGMP ratio were noted in nonpuberal animals, whereas maximal adaptive-compensatory abilities in the regulation system of calcium homeostasis and cyclic nucleotides are typical to adolescent puberal animals

  3. The evolutionary process of mammalian sex determination genes focusing on marsupial SRYs.

    Science.gov (United States)

    Katsura, Yukako; Kondo, Hiroko X; Ryan, Janelle; Harley, Vincent; Satta, Yoko

    2018-01-16

    Maleness in mammals is genetically determined by the Y chromosome. On the Y chromosome SRY is known as the mammalian male-determining gene. Both placental mammals (Eutheria) and marsupial mammals (Metatheria) have SRY genes. However, only eutherian SRY genes have been empirically examined by functional analyses, and the involvement of marsupial SRY in male gonad development remains speculative. In order to demonstrate that the marsupial SRY gene is similar to the eutherian SRY gene in function, we first examined the sequence differences between marsupial and eutherian SRY genes. Then, using a parsimony method, we identify 7 marsupial-specific ancestral substitutions, 13 eutherian-specific ancestral substitutions, and 4 substitutions that occurred at the stem lineage of therian SRY genes. A literature search and molecular dynamics computational simulations support that the lineage-specific ancestral substitutions might be involved with the functional differentiation between marsupial and eutherian SRY genes. To address the function of the marsupial SRY gene in male determination, we performed luciferase assays on the testis enhancer of Sox9 core (TESCO) using the marsupial SRY. The functional assay shows that marsupial SRY gene can weakly up-regulate the luciferase expression via TESCO. Despite the sequence differences between the marsupial and eutherian SRY genes, our functional assay indicates that the marsupial SRY gene regulates SOX9 as a transcription factor in a similar way to the eutherian SRY gene. Our results suggest that SRY genes obtained the function of male determination in the common ancestor of Theria (placental mammals and marsupials). This suggests that the marsupial SRY gene has a function in male determination, but additional experiments are needed to be conclusive.

  4. Ligand-selective activation of heterologously-expressed mammalian olfactory receptor.

    Science.gov (United States)

    Ukhanov, K; Bobkov, Y; Corey, E A; Ache, B W

    2014-10-01

    Mammalian olfactory receptors (ORs) appear to have the capacity to couple to multiple G protein-coupled signaling pathways in a ligand-dependent selective manner. To better understand the mechanisms and molecular range of such ligand selectivity, we expressed the mouse eugenol OR (mOR-EG) in HEK293T cells together with Gα15 to monitor activation of the phospholipase-C (PLC) signaling pathway and/or Gαolf to monitor activation of the adenylate cyclase (AC) signaling pathway, resulting in intracellular Ca(2+) release and/or Ca(2+) influx through a cyclic nucleotide-gated channel, respectively. PLC-dependent responses differed dynamically from AC-dependent responses, allowing them to be distinguished when Gα15 and Gαolf were co-expressed. The dynamic difference in readout was independent of the receptor, the heterologous expression system, and the ligand concentration. Of 17 reported mOR-EG ligands tested, including eugenol, its analogs, and structurally dissimilar compounds (mousse cristal, nootkatone, orivone), some equally activated both signaling pathways, some differentially activated both signaling pathways, and some had no noticeable effect even at 1-5mM. Our findings argue that mOR-EG, when heterologously expressed, can couple to two different signaling pathways in a ligand selective manner. The challenge now is to determine the potential of mOR-EG, and perhaps other ORs, to activate multiple signaling pathways in a ligand selective manner in native ORNs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Mammalian DNA Repair. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Wood, Richard D.

    2003-01-24

    The Gordon Research Conference (GRC) on Mammalian DNA Repair was held at Harbortown Resort, Ventura Beach, CA. Emphasis was placed on current unpublished research and discussion of the future target areas in this field.

  6. Metabolic modulation of mammalian DNA excision repair

    Energy Technology Data Exchange (ETDEWEB)

    Schrader, T.J.

    1988-01-01

    First, ultraviolet light (UVL)- and dimethylsulfate (DMS)-induced excision repair was examined in quiescent and lectin-stimulated bovine lymphocytes. Upon mitogenic stimulation, UVL-induced repair increased by a factor of 2 to 3, and reached this maximum 2 days before the onset of DNA replication. However, DMS-induced repair increased sevenfold in parallel with DNA replication. Repair patch sizes were smaller for DMS-induced damage reflecting patches of 7 nucleotides in quiescent lymphocytes compared to 20 nucleotides induced by UVL. The patch size increased during lymphocyte stimulation until one day prior to the peak of DNA replication when patch sizes of 45 and 35 nucleotides were produced in response to UVL- and DMS-induced damage, respectively. At the peak of DNA replication, the patch sizes were equal for both damaging agents at 34 nucleotides. In the second study, a small amount of repair replication was observed in undamaged quiescent and concanavalin A-stimulated bovine lymphocytes as well as in human T98G glioblastoma cells. Repair incorporation doubled in the presence of hydroxyurea. Thirdly, the enhanced repair replication induced by the poly (ADP-ribose) polymerase inhibitor, 3-aminobenzamide, (3-AB), could not be correlated either with an increased rate of repair in the presence of 3-AB or with the use of hydroxyurea in the repair protocol. Finally, treatment of unstimulated lymphocytes with hyperthermia was accompanied by decreased repair replication while the repair patches remained constant at 20 nucleotides.

  7. Mammalian Synthetic Biology: Engineering Biological Systems.

    Science.gov (United States)

    Black, Joshua B; Perez-Pinera, Pablo; Gersbach, Charles A

    2017-06-21

    The programming of new functions into mammalian cells has tremendous application in research and medicine. Continued improvements in the capacity to sequence and synthesize DNA have rapidly increased our understanding of mechanisms of gene function and regulation on a genome-wide scale and have expanded the set of genetic components available for programming cell biology. The invention of new research tools, including targetable DNA-binding systems such as CRISPR/Cas9 and sensor-actuator devices that can recognize and respond to diverse chemical, mechanical, and optical inputs, has enabled precise control of complex cellular behaviors at unprecedented spatial and temporal resolution. These tools have been critical for the expansion of synthetic biology techniques from prokaryotic and lower eukaryotic hosts to mammalian systems. Recent progress in the development of genome and epigenome editing tools and in the engineering of designer cells with programmable genetic circuits is expanding approaches to prevent, diagnose, and treat disease and to establish personalized theranostic strategies for next-generation medicines. This review summarizes the development of these enabling technologies and their application to transforming mammalian synthetic biology into a distinct field in research and medicine.

  8. Nucleotide Selectivity at a Preinsertion Checkpoint of T7 RNA Polymerase Transcription Elongation.

    Science.gov (United States)

    E, Chao; Duan, Baogen; Yu, Jin

    2017-04-20

    Nucleotide selection is crucial for transcription fidelity control, in particular, for viral T7 RNA polymerase (RNAP) lack of proofreading activity. It has been recognized that multiple kinetic checkpoints exist prior to full nucleotide incorporation. In this work, we implemented intensive atomistic molecular dynamics (MD) simulations to quantify how strong the nucleotide selection is at the initial checkpoint of an elongation cycle of T7 RNAP. The incoming nucleotides bind into a preinsertion site where a critical tyrosine residue locates nearby to assist the nucleotide selection. We calculated the relative binding free energy between a noncognate nucleotide and a cognate one at a preinsertion configuration via alchemical simulations, showing that a small selection free energy or the binding free energy difference (∼3 k B T) exists between the two nucleotides. Indeed, another preinsertion configuration favored by the noncognate nucleotides was identified, which appears to be off path for further nucleotide insertion and additionally assists the nucleotide selection. By chemical master equation (CME) approach, we show that the small selection free energy at the preinsertion site along with the off-path noncognate nucleotide filtering can help substantially to reduce the error rate and to maintain the elongation rate high in the T7 RNAP transcription.

  9. Radiation hybrid mapping as one of the main methods of the creation of high resolution maps of human and animal genomes

    International Nuclear Information System (INIS)

    Sulimova, G.E.; Kompanijtsev, A.A.; Mojsyak, E.V.; Rakhmanaliev, Eh.R.; Klimov, E.A.; Udina, I.G.; Zakharov, I.A.

    2000-01-01

    Radiation hybrid mapping (RH mapping) is considered as one of the main method of constructing physical maps of mammalian genomes. In introduction, theoretical prerequisites of developing of the RH mapping and statistical methods of data analysis are discussed. Comparative characteristics of universal commercial panels of the radiation hybrid somatic cells (RH panels) are shown. In experimental part of the work, RH mapping is used to localize nucleotide sequences adjacent to Not I sites of human chromosome 3 with the aim to integrate contig map of Nor I clones to comprehensive maps of human genome. Five nucleotide sequences adjacent to the sites of integration of papilloma virus in human genome and expressed in the cells of cervical cancer involved localized. It is demonstrated that the region 13q14.3-q21.1 was enriched with nucleotide sequences involved in the processes of carcinogenesis. RH mapping can be considered as one of the most perspective applications of modern radiation biology in the field of molecular genetics, that is, in constructing physical maps of mammalian genomes with high resolution level [ru

  10. Positive Selection Linked with Generation of Novel Mammalian Dentition Patterns.

    Science.gov (United States)

    Machado, João Paulo; Philip, Siby; Maldonado, Emanuel; O'Brien, Stephen J; Johnson, Warren E; Antunes, Agostinho

    2016-09-11

    A diverse group of genes are involved in the tooth development of mammals. Several studies, focused mainly on mice and rats, have provided a detailed depiction of the processes coordinating tooth formation and shape. Here we surveyed 236 tooth-associated genes in 39 mammalian genomes and tested for signatures of selection to assess patterns of molecular adaptation in genes regulating mammalian dentition. Of the 236 genes, 31 (∼13.1%) showed strong signatures of positive selection that may be responsible for the phenotypic diversity observed in mammalian dentition. Mammalian-specific tooth-associated genes had accelerated mutation rates compared with older genes found across all vertebrates. More recently evolved genes had fewer interactions (either genetic or physical), were associated with fewer Gene Ontology terms and had faster evolutionary rates compared with older genes. The introns of these positively selected genes also exhibited accelerated evolutionary rates, which may reflect additional adaptive pressure in the intronic regions that are associated with regulatory processes that influence tooth-gene networks. The positively selected genes were mainly involved in processes like mineralization and structural organization of tooth specific tissues such as enamel and dentin. Of the 236 analyzed genes, 12 mammalian-specific genes (younger genes) provided insights on diversification of mammalian teeth as they have higher evolutionary rates and exhibit different expression profiles compared with older genes. Our results suggest that the evolution and development of mammalian dentition occurred in part through positive selection acting on genes that previously had other functions. © The Author(s) 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  11. Single Nucleotide Polymorphism

    DEFF Research Database (Denmark)

    Børsting, Claus; Pereira, Vania; Andersen, Jeppe Dyrberg

    2014-01-01

    Single nucleotide polymorphisms (SNPs) are the most frequent DNA sequence variations in the genome. They have been studied extensively in the last decade with various purposes in mind. In this chapter, we will discuss the advantages and disadvantages of using SNPs for human identification...... of SNPs. This will allow acquisition of more information from the sample materials and open up for new possibilities as well as new challenges....

  12. THE AMINO-ACID-SEQUENCE OF IGUANA (IGUANA-IGUANA) PANCREATIC RIBONUCLEASE

    NARCIS (Netherlands)

    ZHAO, W; BEINTEMA, JJ; HOFSTEENGE, J

    1994-01-01

    The pyrimidine-specific ribonuclease superfamily constitutes a group of homologous proteins so far found only in higher vertebrates. Four separate families are found in mammals, which have resulted from gene duplications in mammalian ancestors. To learn more about the evolutionary history of this

  13. Strong gender differences in reproductive success variance, and the times to the most recent common ancestors.

    Science.gov (United States)

    Favre, Maroussia; Sornette, Didier

    2012-10-07

    The Time to the Most Recent Common Ancestor (TMRCA) based on human mitochondrial DNA (mtDNA) is estimated to be twice that based on the non-recombining part of the Y chromosome (NRY). These TMRCAs have special demographic implications because mtDNA is transmitted only from mother to child, while NRY is passed along from father to son. Therefore, the former locus reflects female history, and the latter, male history. To investigate what caused the two-to-one female-male TMRCA ratio r(F/M)=T(F)/T(M) in humans, we develop a forward-looking agent-based model (ABM) with overlapping generations. Our ABM simulates agents with individual life cycles, including life events such as reaching maturity or menopause. We implemented two main mating systems: polygynandry and polygyny with different degrees in between. In each mating system, the male population can be either homogeneous or heterogeneous. In the latter case, some males are 'alphas' and others are 'betas', which reflects the extent to which they are favored by female mates. A heterogeneous male population implies a competition among males with the purpose of signaling as alpha males. The introduction of a heterogeneous male population is found to reduce by a factor 2 the probability of finding equal female and male TMRCAs and shifts the distribution of r(F/M) to higher values. In order to account for the empirical observation of the factor 2, a high level of heterogeneity in the male population is needed: less than half the males can be alphas and betas can have at most half the fitness of alphas for the TMRCA ratio to depart significantly from 1. In addition, we find that, in the modes that maximize the probability of having 1.5ancestors. We also tested the effect of sex-biased migration and sex-specific death rates and found that these are unlikely to explain alone the sex-biased TMRCA ratio observed in humans. Our results support the view

  14. Acoustophoretic Synchronization of Mammalian Cells in Microchannels

    DEFF Research Database (Denmark)

    Thévoz, P.; Adams, J.D.; Shea, H.

    2010-01-01

    We report the first use of ultrasonic standing waves to achieve cell cycle phase synchronization in mammalian cells in a high-throughput and reagent-free manner. The acoustophoretic cell synchronization (ACS) device utilizes volume-dependent acoustic radiation force within a microchannel to selec......We report the first use of ultrasonic standing waves to achieve cell cycle phase synchronization in mammalian cells in a high-throughput and reagent-free manner. The acoustophoretic cell synchronization (ACS) device utilizes volume-dependent acoustic radiation force within a microchannel...

  15. Condensing the information in DNA with double-headed nucleotides

    DEFF Research Database (Denmark)

    Hornum, Mick; Sharma, Pawan K; Reslow-Jacobsen, Charlotte

    2017-01-01

    A normal duplex holds as many Watson-Crick base pairs as the number of nucleotides in its constituent strands. Here we establish that single nucleotides can be designed to functionally imitate dinucleotides without compromising binding affinity. This effectively allows sequence information...

  16. Mammalian designer cells: Engineering principles and biomedical applications.

    Science.gov (United States)

    Xie, Mingqi; Fussenegger, Martin

    2015-07-01

    Biotechnology is a widely interdisciplinary field focusing on the use of living cells or organisms to solve established problems in medicine, food production and agriculture. Synthetic biology, the science of engineering complex biological systems that do not exist in nature, continues to provide the biotechnology industry with tools, technologies and intellectual property leading to improved cellular performance. One key aspect of synthetic biology is the engineering of deliberately reprogrammed designer cells whose behavior can be controlled over time and space. This review discusses the most commonly used techniques to engineer mammalian designer cells; while control elements acting on the transcriptional and translational levels of target gene expression determine the kinetic and dynamic profiles, coupling them to a variety of extracellular stimuli permits their remote control with user-defined trigger signals. Designer mammalian cells with novel or improved biological functions not only directly improve the production efficiency during biopharmaceutical manufacturing but also open the door for cell-based treatment strategies in molecular and translational medicine. In the future, the rational combination of multiple sets of designer cells could permit the construction and regulation of higher-order systems with increased complexity, thereby enabling the molecular reprogramming of tissues, organisms or even populations with highest precision. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Critical role of DNA intercalation in enzyme-catalyzed nucleotide flipping

    Science.gov (United States)

    Hendershot, Jenna M.; O'Brien, Patrick J.

    2014-01-01

    Nucleotide flipping is a common feature of DNA-modifying enzymes that allows access to target sites within duplex DNA. Structural studies have identified many intercalating amino acid side chains in a wide variety of enzymes, but the functional contribution of these intercalating residues is poorly understood. We used site-directed mutagenesis and transient kinetic approaches to dissect the energetic contribution of intercalation for human alkyladenine DNA glycosylase, an enzyme that initiates repair of alkylation damage. When AAG flips out a damaged nucleotide, the void in the duplex is filled by a conserved tyrosine (Y162). We find that tyrosine intercalation confers 140-fold stabilization of the extrahelical specific recognition complex, and that Y162 functions as a plug to slow the rate of unflipping by 6000-fold relative to the Y162A mutant. Surprisingly, mutation to the smaller alanine side chain increases the rate of nucleotide flipping by 50-fold relative to the wild-type enzyme. This provides evidence against the popular model that DNA intercalation accelerates nucleotide flipping. In the case of AAG, DNA intercalation contributes to the specific binding of a damaged nucleotide, but this enhanced specificity comes at the cost of reduced speed of nucleotide flipping. PMID:25324304

  18. Methylated DNA Immunoprecipitation Analysis of Mammalian Endogenous Retroviruses.

    Science.gov (United States)

    Rebollo, Rita; Mager, Dixie L

    2016-01-01

    Endogenous retroviruses are repetitive sequences found abundantly in mammalian genomes which are capable of modulating host gene expression. Nevertheless, most endogenous retrovirus copies are under tight epigenetic control via histone-repressive modifications and DNA methylation. Here we describe a common method used in our laboratory to detect, quantify, and compare mammalian endogenous retrovirus DNA methylation. More specifically we describe methylated DNA immunoprecipitation (MeDIP) followed by quantitative PCR.

  19. Multilocus analysis of nucleotide variation and speciation in three closely related Populus (Salicaceae) species.

    Science.gov (United States)

    Du, Shuhui; Wang, Zhaoshan; Ingvarsson, Pär K; Wang, Dongsheng; Wang, Junhui; Wu, Zhiqiang; Tembrock, Luke R; Zhang, Jianguo

    2015-10-01

    Historical tectonism and climate oscillations can isolate and contract the geographical distributions of many plant species, and they are even known to trigger species divergence and ultimately speciation. Here, we estimated the nucleotide variation and speciation in three closely related Populus species, Populus tremuloides, P. tremula and P. davidiana, distributed in North America and Eurasia. We analysed the sequence variation in six single-copy nuclear loci and three chloroplast (cpDNA) fragments in 497 individuals sampled from 33 populations of these three species across their geographic distributions. These three Populus species harboured relatively high levels of nucleotide diversity and showed high levels of nucleotide differentiation. Phylogenetic analysis revealed that P. tremuloides diverged earlier than the other two species. The cpDNA haplotype network result clearly illustrated the dispersal route from North America to eastern Asia and then into Europe. Molecular dating results confirmed that the divergence of these three species coincided with the sundering of the Bering land bridge in the late Miocene and a rapid uplift of the Qinghai-Tibetan Plateau around the Miocene/Pliocene boundary. Vicariance-driven successful allopatric speciation resulting from historical tectonism and climate oscillations most likely played roles in the formation of the disjunct distributions and divergence of these three Populus species. © 2015 John Wiley & Sons Ltd.

  20. Effects of dual combinations of antifolates with atovaquone or dapsone on nucleotide levels in Plasmodium falciparum.

    Science.gov (United States)

    Yeo, A E; Seymour, K K; Rieckmann, K H; Christopherson, R I

    1997-04-04

    The triazine antifolates, cycloguanil and 4,6-diamino-1,2-dihydro-2,2-dimethyl-1-[(2,4,5-trichlorophenoxy)propy loxy]-1,3,5-triazine hydrobromide (WR99210), and their parent biguanide compounds, proguanil and N-[3-(2,4,5-trichlorophenoxy)propyloxy]-n-(1-methylethyl)-imido dicarbonimidic-diamine hydrochloride (PS-15), were tested in combination with a series of antimalarial drugs for synergism against Plasmodium falciparum growing in erythrocytic culture. Four synergistic combinations were found: cycloguanil dapsone, WR99210-dapsone, proguanil-atovaquone, and PS-15-atovaquone. Cycloguanil-dapsone or WR99210-dapsone had a profound suppressive effect on the concentration of dTTP in parasites while that of dATP increased. Depletion of dTTP is consistent with cycloguanil or WR99210 inhibiting dihydrofolate reductase and dapsone inhibiting dihydropteroate synthase. For the combinations proguanil-atovaquone and PS-15-atovaquone, the levels of nucleoside triphosphates (NTPs) and dNTPs were generally suppressed, suggesting that inhibition is not through nucleotide pathways but probably through another metabolic mechanism(s). Combinations of two synergistic pairs of antimalarial drugs, (proguanil-atovaquone)-(cycloguanil-dapsone) and (PS-15-atovaquone)-(WR99210-dapsone), were tested, and it was found that NTPs and dNTPs decreased much more than for a single synergistic combination. Dual synergistic combinations could play an important role in the therapy of multidrug-resistant malaria, just as combination chemotherapy is used to treat cancer.

  1. Differences in substrate specificity of C(5)-substituted or C(5)-unsubstituted pyrimidine nucleotides by DNA polymerases from thermophilic bacteria, archaea, and phages.

    Science.gov (United States)

    Sawai, Hiroaki; Nagashima, Junichi; Kuwahara, Msayasu; Kitagata, Rina; Tamura, Takehiro; Matsui, Ikuo

    2007-09-01

    The pyrimidine bases of RNA are uracil (U) and cytosine (C), while thymine (T) and C are used for DNA. The C(5) position of C and U is unsubstituted, whereas the C(5) of T is substituted with a Me group. Miller et al. hypothesized that various C(5)-substituted uracil derivatives were formed during chemical evolution, and that C(5)-substituted U derivatives may have played important roles in the transition from an 'RNA world' to a 'DNA-RNA-protein world'. Hyperthermophilic bacteria and archaea are considered to be primitive organisms that are evolutionarily close to the universal ancestor of all life on earth. Thus, we examined the substrate specificity of several C(5)-substituted or C(5)-unsubstituted dUTP and dCTP analogs for several DNA polymerases from hyperthermophilic bacteria, hyperthermophilic archaea, and viruses during PCR or primer extension reaction. The substrate specificity of the C(5)-substituted or C(5)-unsubstituted pyrimidine nucleotides varied greatly depending on the type of DNA polymerase. The significance of this difference in substrate specificity in terms of the origin and evolution of the DNA replication system is discussed briefly.

  2. Evidence of positive selection at codon sites localized in extracellular domains of mammalian CC motif chemokine receptor proteins

    Directory of Open Access Journals (Sweden)

    Metzger Kelsey J

    2010-05-01

    Full Text Available Abstract Background CC chemokine receptor proteins (CCR1 through CCR10 are seven-transmembrane G-protein coupled receptors whose signaling pathways are known for their important roles coordinating immune system responses through targeted trafficking of white blood cells. In addition, some of these receptors have been identified as fusion proteins for viral pathogens: for example, HIV-1 strains utilize CCR5, CCR2 and CCR3 proteins to obtain cellular entry in humans. The extracellular domains of these receptor proteins are involved in ligand-binding specificity as well as pathogen recognition interactions. In mammals, the majority of chemokine receptor genes are clustered together; in humans, seven of the ten genes are clustered in the 3p21-24 chromosome region. Gene conversion events, or exchange of DNA sequence between genes, have been reported in chemokine receptor paralogs in various mammalian lineages, especially between the cytogenetically closely located pairs CCR2/5 and CCR1/3. Datasets of mammalian orthologs for each gene were analyzed separately to minimize the potential confounding impact of analyzing highly similar sequences resulting from gene conversion events. Molecular evolution approaches and the software package Phylogenetic Analyses by Maximum Likelihood (PAML were utilized to investigate the signature of selection that has acted on the mammalian CC chemokine receptor (CCR gene family. The results of neutral vs. adaptive evolution (positive selection hypothesis testing using Site Models are reported. In general, positive selection is defined by a ratio of nonsynonymous/synonymous nucleotide changes (dN/dS, or ω >1. Results Of the ten mammalian CC motif chemokine receptor sequence datasets analyzed, only CCR2 and CCR3 contain amino acid codon sites that exhibit evidence of positive selection using site based hypothesis testing in PAML. Nineteen of the twenty codon sites putatively indentified as likely to be under positive

  3. Early Developmental and Evolutionary Origins of Gene Body DNA Methylation Patterns in Mammalian Placentas.

    Directory of Open Access Journals (Sweden)

    Diane I Schroeder

    2015-08-01

    Full Text Available Over the last 20-80 million years the mammalian placenta has taken on a variety of morphologies through both divergent and convergent evolution. Recently we have shown that the human placenta genome has a unique epigenetic pattern of large partially methylated domains (PMDs and highly methylated domains (HMDs with gene body DNA methylation positively correlating with level of gene expression. In order to determine the evolutionary conservation of DNA methylation patterns and transcriptional regulatory programs in the placenta, we performed a genome-wide methylome (MethylC-seq analysis of human, rhesus macaque, squirrel monkey, mouse, dog, horse, and cow placentas as well as opossum extraembryonic membrane. We found that, similar to human placenta, mammalian placentas and opossum extraembryonic membrane have globally lower levels of methylation compared to somatic tissues. Higher relative gene body methylation was the conserved feature across all mammalian placentas, despite differences in PMD/HMDs and absolute methylation levels. Specifically, higher methylation over the bodies of genes involved in mitosis, vesicle-mediated transport, protein phosphorylation, and chromatin modification was observed compared with the rest of the genome. As in human placenta, higher methylation is associated with higher gene expression and is predictive of genic location across species. Analysis of DNA methylation in oocytes and preimplantation embryos shows a conserved pattern of gene body methylation similar to the placenta. Intriguingly, mouse and cow oocytes and mouse early embryos have PMD/HMDs but their placentas do not, suggesting that PMD/HMDs are a feature of early preimplantation methylation patterns that become lost during placental development in some species and following implantation of the embryo.

  4. Is ultraviolet enhanced reactivation of mammalian virus mutagenic

    International Nuclear Information System (INIS)

    Bockstahler, L.E.; Hellman, K.B.; Cantwell, J.M.; Strickland, A.

    1981-01-01

    Ultraviolet enhanced reactivation consists of an increase in the survival of certain uv-irradiated mammalian viruses when assayed for infectivity in uv-irradiated host mammalian cells, as compared with unirradiated cells. In this report ultraviolet enhanced reactivation is described, and a review is presented of investigations from this and other laboratories to establish whether or not this process is mutagenic. The answer to this question may help establish if error-prone DNA repair is induced in irradiated mammalian cells. We approached the mutagenesis question by examining the phenotypic reversion of a uv-irradiated temperature sensitive mutant of Herpes simplex virus to wild type growth in uv-irradiated monkey kidney cells. Apparent reversion was observed in both irradiated and unirradiated cells. No correlation could be found between the extent of reversion and uv exposure to the cells. The conclusions from studies reported by other investigators using various mammalian virus mutagenesis systems are conflicting. It was generally agreed that viral mutagenesis occurs when irradiated virus is passaged through either irradiated or unexposed cells. However, in some studies it was found that the frequency of mutagenesis in irradiated cells was greater than that in unirradiated cells, while in other studies increased mutagenesis in irradiated cells was not observed

  5. DNA Nucleotides Detection via capacitance properties of Graphene

    Science.gov (United States)

    Khadempar, Nahid; Berahman, Masoud; Yazdanpanah, Arash

    2016-05-01

    In the present paper a new method is suggested to detect the DNA nucleotides on a first-principles calculation of the electronic features of DNA bases which chemisorbed to a graphene sheet placed between two gold electrodes in a contact-channel-contact system. The capacitance properties of graphene in the channel are surveyed using non-equilibrium Green's function coupled with the Density Functional Theory. Thus, the capacitance properties of graphene are theoretically investigated in a biological environment, and, using a novel method, the effect of the chemisorbed DNA nucleotides on electrical charges on the surface of graphene is deciphered. Several parameters in this method are also extracted including Electrostatic energy, Induced density, induced electrostatic potential, Electron difference potential and Electron difference density. The qualitative and quantitative differences among these parameters can be used to identify DNA nucleotides. Some of the advantages of this approach include its ease and high accuracy. What distinguishes the current research is that it is the first experiment to investigate the capacitance properties of gaphene changes in the biological environment and the effect of chemisorbed DNA nucleotides on the surface of graphene on the charge.

  6. Cross-talk and information transfer in mammalian and bacterial signaling.

    Directory of Open Access Journals (Sweden)

    Samanthe M Lyons

    Full Text Available In mammalian and bacterial cells simple phosphorylation circuits play an important role in signaling. Bacteria have hundreds of two-component signaling systems that involve phosphotransfer between a receptor and a response regulator. In mammalian cells a similar pathway is the TGF-beta pathway, where extracellular TGF-beta ligands activate cell surface receptors that phosphorylate Smad proteins, which in turn activate many genes. In TGF-beta signaling the multiplicity of ligands begs the question as to whether cells can distinguish signals coming from different ligands, but transduced through a small set of Smads. Here we use information theory with stochastic simulations of networks to address this question. We find that when signals are transduced through only one Smad, the cell cannot distinguish between different levels of the external ligands. Increasing the number of Smads from one to two significantly improves information transmission as well as the ability to discriminate between ligands. Surprisingly, both total information transmitted and the capacity to discriminate between ligands are quite insensitive to high levels of cross-talk between the two Smads. Robustness against cross-talk requires that the average amplitude of the signals are large. We find that smaller systems, as exemplified by some two-component systems in bacteria, are significantly much less robust against cross-talk. For such system sizes phosphotransfer is also less robust against cross-talk than phosphorylation. This suggests that mammalian signal transduction can tolerate a high amount of cross-talk without degrading information content. This may have played a role in the evolution of new functionalities from small mutations in signaling pathways, allowed for the development of cross-regulation and led to increased overall robustness due to redundancy in signaling pathways. On the other hand the lack of cross-regulation observed in many bacterial two

  7. Schizosaccharomyces pombe MutSα and MutLα Maintain Stability of Tetra-Nucleotide Repeats and Msh3 of Hepta-Nucleotide Repeats

    Directory of Open Access Journals (Sweden)

    Desirée Villahermosa

    2017-05-01

    Full Text Available Defective mismatch repair (MMR in humans is associated with colon cancer and instability of microsatellites, that is, DNA sequences with one or several nucleotides repeated. Key factors of eukaryotic MMR are the heterodimers MutSα (Msh2-Msh6, which recognizes base-base mismatches and unpaired nucleotides in DNA, and MutLα (Mlh1-Pms1, which facilitates downstream steps. In addition, MutSβ (Msh2-Msh3 recognizes DNA loops of various sizes, although our previous data and the data presented here suggest that Msh3 of Schizosaccharomyces pombe does not play a role in MMR. To test microsatellite stability in S. pombe and hence DNA loop repair, we have inserted tetra-, penta-, and hepta-nucleotide repeats in the ade6 gene and determined their Ade+ reversion rates and spectra in wild type and various mutants. Our data indicate that loops with four unpaired nucleotides in the nascent and the template strand are the upper limit of MutSα- and MutLα-mediated MMR in S. pombe. Stability of hepta-nucleotide repeats requires Msh3 and Exo1 in MMR-independent processes as well as the DNA repair proteins Rad50, Rad51, and Rad2FEN1. Most strikingly, mutation rates in the double mutants msh3 exo1 and msh3 rad51 were decreased when compared to respective single mutants, indicating that Msh3 prevents error prone processes carried out by Exo1 and Rad51. We conclude that Msh3 has no obvious function in MMR in S. pombe, but contributes to DNA repeat stability in MMR-independent processes.

  8. Distributional congruence of mammalian herbivores in the Trans-Himalayan Mountains

    NARCIS (Netherlands)

    Namgail, T.; Wieren, van S.E.; Prins, H.H.T.

    2013-01-01

    Large-scale distribution and diversity patterns of mammalian herbivores, especially less charismatic species in alpine environments remain little understood. We studied distributional congruence of mammalian herbivores in the Trans-Himalayan region of Ladakh to see if the distributions of less

  9. In-silico single nucleotide polymorphisms (SNP) mining of Sorghum ...

    African Journals Online (AJOL)

    Single nucleotide polymorphisms (SNPs) may be considered the ultimate genetic markers as they represent the finest resolution of a DNA sequence (a single nucleotide), and are generally abundant in populations with a low mutation rate. SNPs are important tools in studying complex genetic traits and genome evolution.

  10. Chromatographic study of nucleosides and nucleotides of central nervous system. Identification and first results on changes after total gamma irradiation of brain

    International Nuclear Information System (INIS)

    Valle, C.; Marquer, C.; Pasquier, C.

    Changes of brain energetic state and of different levels after irradiation are studied. The results will be compared with the variations of brain electric activity due to irradiation. Using an ion exchange chromatographic method for separation and quantitative analysis of nucleotides, evaluation of adenylic nucleotides in brain rat have been chosen [fr

  11. Base Composition Characteristics of Mammalian miRNAs

    Directory of Open Access Journals (Sweden)

    Bin Wang

    2013-01-01

    Full Text Available MicroRNAs (miRNAs are short RNA sequences that repress protein synthesis by either inhibiting the translation of messenger RNA (mRNA or increasing mRNA degradation. Endogenous miRNAs have been found in various organisms, including animals, plants, and viruses. Mammalian miRNAs are evolutionarily conserved, are scattered throughout chromosomes, and play an important role in the immune response and the onset of cancer. For this study, the author explored the base composition characteristics of miRNA genes from the six mammalian species that contain the largest number of known miRNAs. It was found that mammalian miRNAs are evolutionarily conserved and GU-rich. Interestingly, in the miRNA sequences investigated, A residues are clearly the most frequent occupants of positions 2 and 3 of the 5′ end of miRNAs. Unlike G and U residues that may pair with C/U and A/G, respectively, A residues can only pair with U residues of target mRNAs, which may augment the recognition specificity of the 5′ seed region.

  12. Endogenous adenosine produced during hypoxia attenuates neutrophil accumulation: coordination by extracellular nucleotide metabolism.

    Science.gov (United States)

    Eltzschig, Holger K; Thompson, Linda F; Karhausen, Jorn; Cotta, Richard J; Ibla, Juan C; Robson, Simon C; Colgan, Sean P

    2004-12-15

    Hypoxia is a well-documented inflammatory stimulus and results in tissue polymorphonuclear leukocyte (PMN) accumulation. Likewise, increased tissue adenosine levels are commonly associated with hypoxia, and given the anti-inflammatory properties of adenosine, we hypothesized that adenosine production via adenine nucleotide metabolism at the vascular surface triggers an endogenous anti-inflammatory response during hypoxia. Initial in vitro studies indicated that endogenously generated adenosine, through activation of PMN adenosine A(2A) and A(2B) receptors, functions as an antiadhesive signal for PMN binding to microvascular endothelia. Intravascular nucleotides released by inflammatory cells undergo phosphohydrolysis via hypoxia-induced CD39 ectoapyrase (CD39 converts adenosine triphosphate/adenosine diphosphate [ATP/ADP] to adenosine monophosphate [AMP]) and CD73 ecto-5'-nucleotidase (CD73 converts AMP to adenosine). Extensions of our in vitro findings using cd39- and cd73-null animals revealed that extracellular adenosine produced through adenine nucleotide metabolism during hypoxia is a potent anti-inflammatory signal for PMNs in vivo. These findings identify CD39 and CD73 as critical control points for endogenous adenosine generation and implicate this pathway as an innate mechanism to attenuate excessive tissue PMN accumulation.

  13. Effects of preservation methods on amino acids and 5'-nucleotides of Agaricus bisporus mushrooms.

    Science.gov (United States)

    Liu, Ying; Huang, Fan; Yang, Hong; Ibrahim, S A; Wang, Yan-Feng; Huang, Wen

    2014-04-15

    In this study, the proximate composition, free amino acids content and 5'-nucleotides in frozen, canned and salted Agaricus bisporus (A. bisporus) were investigated. We found that the three kinds of A. bisporus products were good sources of protein, with amount varying in the ranges of 16.54-24.35g/100g (dry weight). Freezing, canning and salting process, followed by 6months of storage led to a significant reduction in free amino acids, especially tyrosine, alanine, glutamine and cysteine. There were medium levels of MSG-like amino acids in frozen A. bisporus and canned A. bisporus, and low levels of MSG-like amino acids in salted A. bisporus. The mount of flavor 5'-nucleotides in frozen A. bisporus was higher than that of canned and salted A. bisporus. The present study thus suggests that freezing is beneficial for the preservation of A. bisporus. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Disruption of mammalian target of rapamycin complex 1 in macrophages decreases chemokine gene expression and atherosclerosis

    NARCIS (Netherlands)

    Ai, Ding; Jiang, Hongfeng; Westerterp, Marit; Murphy, Andrew J.; Wang, Mi; Ganda, Anjali; Abramowicz, Sandra; Welch, Carrie; Almazan, Felicidad; Zhu, Yi; Miller, Yury I.; Tall, Alan R.

    2014-01-01

    The mammalian target of rapamycin complex 1 inhibitor, rapamycin, has been shown to decrease atherosclerosis, even while increasing plasma low-density lipoprotein levels. This suggests an antiatherogenic effect possibly mediated by the modulation of inflammatory responses in atherosclerotic plaques.

  15. Genomic patterns of nucleotide diversity in divergent populations of U.S. weedy rice

    Directory of Open Access Journals (Sweden)

    Olsen Kenneth M

    2010-06-01

    Full Text Available Abstract Background Weedy rice (red rice, a conspecific weed of cultivated rice (Oryza sativa L., is a significant problem throughout the world and an emerging threat in regions where it was previously absent. Despite belonging to the same species complex as domesticated rice and its wild relatives, the evolutionary origins of weedy rice remain unclear. We use genome-wide patterns of single nucleotide polymorphism (SNP variation in a broad geographic sample of weedy, domesticated, and wild Oryza samples to infer the origin and demographic processes influencing U.S. weedy rice evolution. Results We find greater population structure than has been previously reported for U.S. weedy rice, and that the multiple, genetically divergent populations have separate origins. The two main U.S. weedy rice populations share genetic backgrounds with cultivated O. sativa varietal groups not grown commercially in the U.S., suggesting weed origins from domesticated ancestors. Hybridization between weedy groups and between weedy rice and local crops has also led to the evolution of distinct U.S. weedy rice populations. Demographic simulations indicate differences among the main weedy groups in the impact of bottlenecks on their establishment in the U.S., and in the timing of divergence from their cultivated relatives. Conclusions Unlike prior research, we did not find unambiguous evidence for U.S. weedy rice originating via hybridization between cultivated and wild Oryza species. Our results demonstrate the potential for weedy life-histories to evolve directly from within domesticated lineages. The diverse origins of U.S. weedy rice populations demonstrate the multiplicity of evolutionary forces that can influence the emergence of weeds from a single species complex.

  16. Statistical properties and fractals of nucleotide clusters in DNA sequences

    International Nuclear Information System (INIS)

    Sun Tingting; Zhang Linxi; Chen Jin; Jiang Zhouting

    2004-01-01

    Statistical properties of nucleotide clusters in DNA sequences and their fractals are investigated in this paper. The average size of nucleotide clusters in non-coding sequence is larger than that in coding sequence. We investigate the cluster-size distribution P(S) for human chromosomes 21 and 22, and the results are different from previous works. The cluster-size distribution P(S 1 +S 2 ) with the total size of sequential Pu-cluster and Py-cluster S 1 +S 2 is studied. We observe that P(S 1 +S 2 ) follows an exponential decay both in coding and non-coding sequences. However, we get different results for human chromosomes 21 and 22. The probability distribution P(S 1 ,S 2 ) of nucleotide clusters with the size of sequential Pu-cluster and Py-cluster S 1 and S 2 respectively, is also examined. In the meantime, some of the linear correlations are obtained in the double logarithmic plots of the fluctuation F(l) versus nucleotide cluster distance l along the DNA chain. The power spectrums of nucleotide clusters are also discussed, and it is concluded that the curves are flat and hardly changed and the 1/3 frequency is neither observed in coding sequence nor in non-coding sequence. These investigations can provide some insights into the nucleotide clusters of DNA sequences

  17. Femoral loading mechanics in the Virginia opossum, Didelphis virginiana: torsion and mediolateral bending in mammalian locomotion.

    Science.gov (United States)

    Gosnell, W Casey; Butcher, Michael T; Maie, Takashi; Blob, Richard W

    2011-10-15

    magnitudes experienced by opossums are lower than those of most mammals. Thus, the evolutionary transition from crouched to upright posture in mammalian ancestors may have been accompanied by an increase in limb bone load magnitudes.

  18. DNA Nucleotide Sequence Restricted by the RI Endonuclease

    Science.gov (United States)

    Hedgpeth, Joe; Goodman, Howard M.; Boyer, Herbert W.

    1972-01-01

    The sequence of DNA base pairs adjacent to the phosphodiester bonds cleaved by the RI restriction endonuclease in unmodified DNA from coliphage λ has been determined. The 5′-terminal nucleotide labeled with 32P and oligonucleotides up to the heptamer were analyzed from a pancreatic DNase digest. The following sequence of nucleotides adjacent to the RI break made in λ DNA was deduced from these data and from the 3′-dinucleotide sequence and nearest-neighbor analysis obtained from repair synthesis with the DNA polymerase of Rous sarcoma virus [Formula: see text] The RI endonuclease cleavage of the phosphodiester bonds (indicated by arrows) generates 5′-phosphoryls and short cohesive termini of four nucleotides, pApApTpT. The most striking feature of the sequence is its symmetry. PMID:4343974

  19. Detection of DNA nucleotides on pretreated boron doped diamond electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Garbellini, Gustavo S.; Uliana, Carolina V.; Yamanaka, Hideko [UNESP, Araraquara, SP (Brazil). Inst. de Quimica

    2011-07-01

    The individual detection and equimolar mixture of DNA nucleotides guanosine monophosphate (GMP), adenosine monophosphate (AMP), thymidine (TMP) and cytidine (CMP) 5'-monophosphate using square wave voltammetry was performed on boron doped diamond (BDD) electrodes cathodically (Red-DDB) and anodically (Oxi-DDB) pretreated. The oxidation of individual DNA nucleotides was more sensitive on Oxi-BDD electrode. In a simultaneous detection of nucleotides, the responses of GMP, AMP, TMP and CMP were very adequate on both treated electrodes. Particularly, more sensitive and separate peaks for TMP and CMP on Oxi-BDD and Red-BDD electrodes, respectively, were observed after deconvolution procedure. The detection of nucleotides in aqueous solutions will certainly contribute for genotoxic evaluation of substances and hybridization reactions by immobilizing ss or ds-DNA on BDD surface. (author)

  20. Posttransfusional changes of 2,3-diphosphoglycerate and nucleotides in CPD-SAGM-preserved erythrocytes.

    Science.gov (United States)

    Matthes, G; Strunk, S; Siems, W; Grune, T

    1993-06-01

    Posttransfusional changes of preserved red blood cells can influence the oxygen equilibrium curve which is mainly affected by the concentration of erythrocyte 2,3-diphosphoglycerate (DPG). The regeneration kinetics of DPG and nucleotides (ATP, ADP, AMP, GTP, GDP) was determined over a period of 0-48 h in surgically treated patients following transfusion of DPG-depleted packed red cells stored for 14 days in CPD-SAGM. 3 h after transfusion the DPG levels raised up to 40% of the patients' prior DPG concentrations. Complete regeneration of the DPG concentrations occurred 36-48 h after transfusion. Changes in the nucleotide pattern indicate, after a temporary decrease of ATP and GTP levels (after 10-30 min) and an activation phase (after 3-12 h), the full regeneration of these parameters 24-48 h after transfusion. The regeneration kinetics of DPG should be taken into consideration for transfusions with blood units stored for more than 14 days, especially in patients with reduced compensatory mechanisms (coronary and cerebral scleroses, pacemaker, etc.) and large transfusion volumes.

  1. Multiple sclerosis: evaluation of purine nucleotide metabolism in central nervous system in association with serum levels of selected fat-soluble antioxidants.

    Science.gov (United States)

    Kuračka, Lubomír; Kalnovičová, Terézia; Kucharská, Jarmila; Turčáni, Peter

    2014-01-01

    In the pathogenesis of demyelinating diseases including multiple sclerosis (MS) an important role is played by oxidative stress. Increased energy requirements during remyelination of axons and mitochondria failure is one of the causes of axonal degeneration and disability in MS. In this context, we analyzed to what extent the increase in purine catabolism is associated with selected blood lipophilic antioxidants and if there is any association with alterations in serum levels of coenzyme Q10. Blood serum and cerebrospinal fluid (CSF) samples from 42 patients with diagnosed MS and 34 noninflammatory neurologic patients (control group) were analyzed. Compared to control group, MS patients had significantly elevated values of all purine nucleotide metabolites, except adenosine. Serum lipophilic antioxidants γ -tocopherol, β -carotene, and coenzyme Q10 for the vast majority of MS patients were deficient or moved within the border of lower physiological values. Serum levels of TBARS, marker of lipid peroxidation, were increased by 81% in the MS patients. The results indicate that the deficit of lipophilic antioxidants in blood of MS patients may have a negative impact on bioenergetics of reparative remyelinating processes and promote neurodegeneration.

  2. Quantum Point Contact Single-Nucleotide Conductance for DNA and RNA Sequence Identification.

    Science.gov (United States)

    Afsari, Sepideh; Korshoj, Lee E; Abel, Gary R; Khan, Sajida; Chatterjee, Anushree; Nagpal, Prashant

    2017-11-28

    Several nanoscale electronic methods have been proposed for high-throughput single-molecule nucleic acid sequence identification. While many studies display a large ensemble of measurements as "electronic fingerprints" with some promise for distinguishing the DNA and RNA nucleobases (adenine, guanine, cytosine, thymine, and uracil), important metrics such as accuracy and confidence of base calling fall well below the current genomic methods. Issues such as unreliable metal-molecule junction formation, variation of nucleotide conformations, insufficient differences between the molecular orbitals responsible for single-nucleotide conduction, and lack of rigorous base calling algorithms lead to overlapping nanoelectronic measurements and poor nucleotide discrimination, especially at low coverage on single molecules. Here, we demonstrate a technique for reproducible conductance measurements on conformation-constrained single nucleotides and an advanced algorithmic approach for distinguishing the nucleobases. Our quantum point contact single-nucleotide conductance sequencing (QPICS) method uses combed and electrostatically bound single DNA and RNA nucleotides on a self-assembled monolayer of cysteamine molecules. We demonstrate that by varying the applied bias and pH conditions, molecular conductance can be switched ON and OFF, leading to reversible nucleotide perturbation for electronic recognition (NPER). We utilize NPER as a method to achieve >99.7% accuracy for DNA and RNA base calling at low molecular coverage (∼12×) using unbiased single measurements on DNA/RNA nucleotides, which represents a significant advance compared to existing sequencing methods. These results demonstrate the potential for utilizing simple surface modifications and existing biochemical moieties in individual nucleobases for a reliable, direct, single-molecule, nanoelectronic DNA and RNA nucleotide identification method for sequencing.

  3. Antagonistic control of a dual-input mammalian gene switch by food additives.

    Science.gov (United States)

    Xie, Mingqi; Ye, Haifeng; Hamri, Ghislaine Charpin-El; Fussenegger, Martin

    2014-08-01

    Synthetic biology has significantly advanced the design of mammalian trigger-inducible transgene-control devices that are able to programme complex cellular behaviour. Fruit-based benzoate derivatives licensed as food additives, such as flavours (e.g. vanillate) and preservatives (e.g. benzoate), are a particularly attractive class of trigger compounds for orthogonal mammalian transgene control devices because of their innocuousness, physiological compatibility and simple oral administration. Capitalizing on the genetic componentry of the soil bacterium Comamonas testosteroni, which has evolved to catabolize a variety of aromatic compounds, we have designed different mammalian gene expression systems that could be induced and repressed by the food additives benzoate and vanillate. When implanting designer cells engineered for gene switch-driven expression of the human placental secreted alkaline phosphatase (SEAP) into mice, blood SEAP levels of treated animals directly correlated with a benzoate-enriched drinking programme. Additionally, the benzoate-/vanillate-responsive device was compatible with other transgene control systems and could be assembled into higher-order control networks providing expression dynamics reminiscent of a lap-timing stopwatch. Designer gene switches using licensed food additives as trigger compounds to achieve antagonistic dual-input expression profiles and provide novel control topologies and regulation dynamics may advance future gene- and cell-based therapies. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  4. The immediate nucleotide precursor, guanosine triphosphate, in the riboflavin biosynthetic pathway

    International Nuclear Information System (INIS)

    Mitsuda, Hisateru; Nakajima, Kenji; Nadamoto, Tomonori

    1977-01-01

    In the present paper, the nucleotide precursor of riboflavin was investigated by experiments with labeled purines using non-growing cells of Eremothecium ashbyii. The added purines, at 10 -4 M, were effectively incorporated into riboflavin at an early stage of riboflavin biosynthesis under the experimental conditions. In particular, both labeled xanthine and labeled guanine were specifically transported to guanosine nucleotides, GMP, GDP, GDP-Mannose and GTP, in the course of the riboflavin biosynthesis. A comparison of specific activities of labeled guanosine nucleotides and labeled riboflavin indicated that the nucleotide precursor of riboflavin is guanosine triphosphate. From the results obtained, a biosynthetic pathway of riboflavin is proposed. (auth.)

  5. The shape of mammalian phylogeny

    DEFF Research Database (Denmark)

    Purvis, Andy; Fritz, Susanne A; Rodríguez, Jesús

    2011-01-01

    an assemblage, ecoregion or larger area always tends to be more unbalanced than expected from the phylogeny of species at the next more inclusive spatial scale. We conclude with a verbal model of mammalian macroevolution, which emphasizes the importance to diversification of accessing new regions...

  6. Technology of mammalian cell encapsulation

    NARCIS (Netherlands)

    Uludag, H; De Vos, P; Tresco, PA

    2000-01-01

    Entrapment of mammalian cells in physical membranes has been practiced since the early 1950s when it was originally introduced as a basic research tool. The method has since been developed based on the promise of its therapeutic usefulness in tissue transplantation. Encapsulation physically isolates

  7. Nucleotide sequence of Hungarian grapevine chrome mosaic nepovirus RNA1.

    OpenAIRE

    Le Gall, O; Candresse, T; Brault, V; Dunez, J

    1989-01-01

    The nucleotide sequence of the RNA1 of hungarian grapevine chrome mosaic virus, a nepovirus very closely related to tomato black ring virus, has been determined from cDNA clones. It is 7212 nucleotides in length excluding the 3' terminal poly(A) tail and contains a large open reading frame extending from nucleotides 216 to 6971. The presumably encoded polyprotein is 2252 amino acids in length with a molecular weight of 250 kDa. The primary structure of the polyprotein was compared with that o...

  8. Lysine and the Na+/K+ Selectivity in Mammalian Voltage-Gated Sodium Channels.

    Directory of Open Access Journals (Sweden)

    Yang Li

    Full Text Available Voltage-gated sodium (Nav channels are critical in the generation and transmission of neuronal signals in mammals. The crystal structures of several prokaryotic Nav channels determined in recent years inspire the mechanistic studies on their selection upon the permeable cations (especially between Na+ and K+ ions, a property that is proposed to be mainly determined by residues in the selectivity filter. However, the mechanism of cation selection in mammalian Nav channels lacks direct explanation at atomic level due to the difference in amino acid sequences between mammalian and prokaryotic Nav homologues, especially at the constriction site where the DEKA motif has been identified to determine the Na+/K+ selectivity in mammalian Nav channels but is completely absent in the prokaryotic counterparts. Among the DEKA residues, Lys is of the most importance since its mutation to Arg abolishes the Na+/K+ selectivity. In this work, we modeled the pore domain of mammalian Nav channels by mutating the four residues at the constriction site of a prokaryotic Nav channel (NavRh to DEKA, and then mechanistically investigated the contribution of Lys in cation selection using molecular dynamics simulations. The DERA mutant was generated as a comparison to understand the loss of ion selectivity caused by the K-to-R mutation. Simulations and free energy calculations on the mutants indicate that Lys facilitates Na+/K+ selection by electrostatically repelling the cation to a highly Na+-selective location sandwiched by the carboxylate groups of Asp and Glu at the constriction site. In contrast, the electrostatic repulsion is substantially weakened when Lys is mutated to Arg, because of two intrinsic properties of the Arg side chain: the planar geometric design and the sparse charge distribution of the guanidine group.

  9. Lysine and the Na+/K+ Selectivity in Mammalian Voltage-Gated Sodium Channels.

    Science.gov (United States)

    Li, Yang; Liu, Huihui; Xia, Mengdie; Gong, Haipeng

    2016-01-01

    Voltage-gated sodium (Nav) channels are critical in the generation and transmission of neuronal signals in mammals. The crystal structures of several prokaryotic Nav channels determined in recent years inspire the mechanistic studies on their selection upon the permeable cations (especially between Na+ and K+ ions), a property that is proposed to be mainly determined by residues in the selectivity filter. However, the mechanism of cation selection in mammalian Nav channels lacks direct explanation at atomic level due to the difference in amino acid sequences between mammalian and prokaryotic Nav homologues, especially at the constriction site where the DEKA motif has been identified to determine the Na+/K+ selectivity in mammalian Nav channels but is completely absent in the prokaryotic counterparts. Among the DEKA residues, Lys is of the most importance since its mutation to Arg abolishes the Na+/K+ selectivity. In this work, we modeled the pore domain of mammalian Nav channels by mutating the four residues at the constriction site of a prokaryotic Nav channel (NavRh) to DEKA, and then mechanistically investigated the contribution of Lys in cation selection using molecular dynamics simulations. The DERA mutant was generated as a comparison to understand the loss of ion selectivity caused by the K-to-R mutation. Simulations and free energy calculations on the mutants indicate that Lys facilitates Na+/K+ selection by electrostatically repelling the cation to a highly Na+-selective location sandwiched by the carboxylate groups of Asp and Glu at the constriction site. In contrast, the electrostatic repulsion is substantially weakened when Lys is mutated to Arg, because of two intrinsic properties of the Arg side chain: the planar geometric design and the sparse charge distribution of the guanidine group.

  10. An Investigation of Modifying Effects of Metallothionein Single-Nucleotide Polymorphisms on the Association between Mercury Exposure and Biomarker Levels

    Science.gov (United States)

    Wang, Yi; Goodrich, Jaclyn M.; Gillespie, Brenda; Werner, Robert; Basu, Niladri

    2012-01-01

    Background: Recent studies have suggested that several genes that mediate mercury metabolism are polymorphic in humans. Objective: We hypothesized that single-nucleotide polymorphisms (SNPs) in metallothionein (MT) genes may underlie interindividual differences in mercury biomarker levels. We studied the potential modifying effects of MT SNPs on mercury exposure–biomarker relationships. Methods: We measured total mercury in urine and hair samples of 515 dental professionals. We also surveyed occupational and personal exposures to dental amalgam and dietary fish consumption, from which daily methylmercury (MeHg) intake was estimated. Log-transformed urine and hair levels were modeled in multivariable linear regression separately against respective exposure surrogates, and the effect modification of 13 MT SNPs on exposure was investigated. Results: The mean mercury levels in urine (1.06 μg/L) and hair (0.51 μg/g) were not significantly different from the U.S. general population (0.95 μg/L and 0.47 μg/g, respectively). The mean estimated daily MeHg intake was 0.084 μg/kg/day (range, 0–0.98 μg/kg/day), with 25% of study population intakes exceeding the current U.S. Environmental Protection Agency reference dose of 0.1 μg/kg/day. Multivariate regression analysis showed that subjects with the MT1M (rs2270837) AA genotype (n = 10) or the MT2A (rs10636) CC genotype (n = 42) had lower urinary mercury levels than did those with the MT1M or MT2A GG genotype (n = 329 and 251, respectively) after controlling for exposure and potential confounders. After controlling for MeHg intake, subjects with MT1A (rs8052394) GA and GG genotypes (n = 24) or the MT1M (rs9936741) TT genotype (n = 459) had lower hair mercury levels than did subjects with MT1A AA (n = 113) or MT1M TC and CC genotypes (n = 15), respectively. Conclusion: Our findings suggest that some MT genetic polymorphisms may influence mercury biomarker concentrations at levels of exposure relevant to the general

  11. Electrical detection and quantification of single and mixed DNA nucleotides in suspension

    Science.gov (United States)

    Ahmad, Mahmoud Al; Panicker, Neena G.; Rizvi, Tahir A.; Mustafa, Farah

    2016-09-01

    High speed sequential identification of the building blocks of DNA, (deoxyribonucleotides or nucleotides for short) without labeling or processing in long reads of DNA is the need of the hour. This can be accomplished through exploiting their unique electrical properties. In this study, the four different types of nucleotides that constitute a DNA molecule were suspended in a buffer followed by performing several types of electrical measurements. These electrical parameters were then used to quantify the suspended DNA nucleotides. Thus, we present a purely electrical counting scheme based on the semiconductor theory that allows one to determine the number of nucleotides in a solution by measuring their capacitance-voltage dependency. The nucleotide count was observed to be similar to the multiplication of the corresponding dopant concentration and debye volume after de-embedding the buffer contribution. The presented approach allows for a fast and label-free quantification of single and mixed nucleotides in a solution.

  12. Mammalian RNA polymerase II core promoters: insights from genome-wide studies

    DEFF Research Database (Denmark)

    Sandelin, Albin; Carninci, Piero; Lenhard, Boris

    2007-01-01

    The identification and characterization of mammalian core promoters and transcription start sites is a prerequisite to understanding how RNA polymerase II transcription is controlled. New experimental technologies have enabled genome-wide discovery and characterization of core promoters, revealing...... in the mammalian transcriptome and proteome. Promoters can be described by their start site usage distribution, which is coupled to the occurrence of cis-regulatory elements, gene function and evolutionary constraints. A comprehensive survey of mammalian promoters is a major step towards describing...

  13. Increasing plasma fibrinogen, but unchanged levels of intraplatelet cyclic nucleotides, plasma endothelin-1, factor VII, and neopterin during cholesterol lowering with fluvastatin.

    Science.gov (United States)

    Gottsäter, A; Anwaar, I; Lind, P; Mattiasson, I; Lindgärde, F

    1999-04-01

    Lipid-lowering statin treatment reduces cardiovascular morbidity and mortality and improves endothelial function in patients with hypercholesterolemia. The aim of the present study was to evaluate plasma levels of fibrinogen, factor VII, and the macrophage-derived inflammatory mediator neopterin during lipid lowering. In addition, the endothelial production of platelet antiaggregatory and vasodilatory factors such as nitric oxide and prostacyclin, and vasoconstrictive factors such as endothelin-1, was assessed. Plasma fibrinogen, factor VII, endothelin-1, and the neopterin and intraplatelet nitric oxide and prostacyclin mediators cyclic 3'-5'guanosine monophosphate (cGMP) and cyclic 3'-5'adenosine monophosphate (cAMP) were measured before and 6 months after the institution of treatment with fluvastatin in 17 patients (eight men and nine women, median age 60 years) with vascular disease and previously untreated hypercholesterolemia. After 6 months, a decrease of 1.62 mmol/l [1.26-2.18 (19%); P factor VII [from 1.14 IE/ml (0.58-1.38) to 1.22 IE/ml (0.96-1.46); NS], or plasma neopterin [from 8.6 nmol/l (7.1-11.5) to 8.7 nmol/l (7.9-11.3); NS]. In conclusion, during cholesterol-lowering treatment with fluvastatin, plasma levels of fibrinogen increased whereas intraplatelet cyclic nucleotide levels and plasma endothelin-1, factor VII and neopterin levels were unchanged.

  14. Adult Neurogenesis in the Mammalian Hippocampus: Why the Dentate Gyrus?

    Science.gov (United States)

    Drew, Liam J.; Fusi, Stefano; Hen, René

    2013-01-01

    In the adult mammalian brain, newly generated neurons are continuously incorporated into two networks: interneurons born in the subventricular zone migrate to the olfactory bulb, whereas the dentate gyrus (DG) of the hippocampus integrates locally born principal neurons. That the rest of the mammalian brain loses significant neurogenic capacity…

  15. Identification of a single-nucleotide insertion in the promoter region affecting the sodC promoter activity in Brucella neotomae.

    Directory of Open Access Journals (Sweden)

    Dina A Moustafa

    Full Text Available Brucella neotomae is not known to be associated with clinical disease in any host species. Previous research suggested that B. neotomae might not express detectable levels of Cu/Zn superoxide dismutase (SOD, a periplasmic enzyme known to be involved in protecting Brucella from oxidative bactericidal effects of host phagocytes. This study was undertaken to investigate the genetic basis for the disparity in SOD expression in B. neotomae. Our Western blot and SOD enzyme assay analyses indicated that B. neotomae does express SOD, but at a substantially reduced level. Nucleotide sequence analysis of region upstream to the sodC gene identified a single-nucleotide insertion in the potential promoter region. The same single-nucleotide insertion was also detected in the sodC promoter of B. suis strain Thomsen, belonging to biovar 2 in which SOD expression was undetectable previously. Examination of the sodC promoter activities using translational fusion constructs with E. coli β-galactosidase demonstrated that the B. neotomae and B. suis biovar 2 promoters were very weak in driving gene expression. Site-directed mutation studies indicated that the insertion of A in the B. neotomae sodC promoter reduced the promoter activity. Increasing the level of SOD expression in B. neotomae through complementation with B. abortus sodC gene did not alter the bacterial survival in J774A.1 macrophage-like cells and in tissues of BALB/c and C57BL/6 mice. These results for the first time demonstrate the occurrence of a single-nucleotide polymorphism affecting promoter function and gene expression in Brucella.

  16. Bioenergetics of mammalian sperm capacitation.

    Science.gov (United States)

    Ferramosca, Alessandra; Zara, Vincenzo

    2014-01-01

    After ejaculation, the mammalian male gamete must undergo the capacitation process, which is a prerequisite for egg fertilization. The bioenergetics of sperm capacitation is poorly understood despite its fundamental role in sustaining the biochemical and molecular events occurring during gamete activation. Glycolysis and mitochondrial oxidative phosphorylation (OXPHOS) are the two major metabolic pathways producing ATP which is the primary source of energy for spermatozoa. Since recent data suggest that spermatozoa have the ability to use different metabolic substrates, the main aim of this work is to present a broad overview of the current knowledge on the energy-producing metabolic pathways operating inside sperm mitochondria during capacitation in different mammalian species. Metabolism of glucose and of other energetic substrates, such as pyruvate, lactate, and citrate, is critically analyzed. Such knowledge, besides its obvious importance for basic science, could eventually translate into the development of novel strategies for treatment of male infertility, artificial reproduction, and sperm selection methods.

  17. Low levels of foot-and-mouth disease virus 3C protease expression are required to achieve optimal capsid protein expression and processing in mammalian cells

    DEFF Research Database (Denmark)

    Polacek, Charlotta; Gullberg, Maria; Li, Jiong

    2013-01-01

    transient-expression assays, within mammalian cells, it is possible to modify the relative amounts of the substrate and protease. It has now been shown that optimal production of the processed capsid proteins from P1-2A is achieved with reduced levels of 3Cpro expression, relative to the P1-2A, compared...... detected by FMDV antigen detection assays. Furthermore, the P1-2A and the processed forms each bind to the integrin αvβ6, the major FMDV receptor. These results contribute to the development of systems which efficiently express the components of empty capsid particles and may represent the basis for safer...... production of diagnostic reagents and improved vaccines against foot-and-mouth disease....

  18. Mammalian-specific genomic functions: Newly acquired traits generated by genomic imprinting and LTR retrotransposon-derived genes in mammals.

    Science.gov (United States)

    Kaneko-Ishino, Tomoko; Ishino, Fumitoshi

    2015-01-01

    Mammals, including human beings, have evolved a unique viviparous reproductive system and a highly developed central nervous system. How did these unique characteristics emerge in mammalian evolution, and what kinds of changes did occur in the mammalian genomes as evolution proceeded? A key conceptual term in approaching these issues is "mammalian-specific genomic functions", a concept covering both mammalian-specific epigenetics and genetics. Genomic imprinting and LTR retrotransposon-derived genes are reviewed as the representative, mammalian-specific genomic functions that are essential not only for the current mammalian developmental system, but also mammalian evolution itself. First, the essential roles of genomic imprinting in mammalian development, especially related to viviparous reproduction via placental function, as well as the emergence of genomic imprinting in mammalian evolution, are discussed. Second, we introduce the novel concept of "mammalian-specific traits generated by mammalian-specific genes from LTR retrotransposons", based on the finding that LTR retrotransposons served as a critical driving force in the mammalian evolution via generating mammalian-specific genes.

  19. The Role of Cyclic Nucleotide Signaling Pathways in Cancer: Targets for Prevention and Treatment

    Energy Technology Data Exchange (ETDEWEB)

    Fajardo, Alexandra M.; Piazza, Gary A. [Drug Discovery Research Center, Mitchell Cancer Institute, University of South Alabama, 1660 Springhill Ave, Suite 3029, Mobile, AL 36604 (United States); Tinsley, Heather N., E-mail: htinsley@montevallo.edu [Department of Biology, Chemistry, and Mathematics, University of Montevallo, Station 6480, Montevallo, AL 35115 (United States)

    2014-02-26

    For more than four decades, the cyclic nucleotides cyclic AMP (cAMP) and cyclic GMP (cGMP) have been recognized as important signaling molecules within cells. Under normal physiological conditions, cyclic nucleotides regulate a myriad of biological processes such as cell growth and adhesion, energy homeostasis, neuronal signaling, and muscle relaxation. In addition, altered cyclic nucleotide signaling has been observed in a number of pathophysiological conditions, including cancer. While the distinct molecular alterations responsible for these effects vary depending on the specific cancer type, several studies have demonstrated that activation of cyclic nucleotide signaling through one of three mechanisms—induction of cyclic nucleotide synthesis, inhibition of cyclic nucleotide degradation, or activation of cyclic nucleotide receptors—is sufficient to inhibit proliferation and activate apoptosis in many types of cancer cells. These findings suggest that targeting cyclic nucleotide signaling can provide a strategy for the discovery of novel agents for the prevention and/or treatment of selected cancers.

  20. Fish Lymphocytes: An Evolutionary Equivalent of Mammalian Innate-Like Lymphocytes?

    Directory of Open Access Journals (Sweden)

    Giuseppe Scapigliati

    2018-05-01

    Full Text Available Lymphocytes are the responsible of adaptive responses, as they are classically described, but evidence shows that subpopulations of mammalian lymphocytes may behave as innate-like cells, engaging non-self rapidly and without antigen presentation. The innate-like lymphocytes of mammals have been mainly identified as γδT cells and B1-B cells, exert their activities principally in mucosal tissues, may be involved in human pathologies and their functions and tissue(s of origin are not fully understood. Due to similarities in the morphology and immunobiology of immune system between fish and mammals, and to the uniqueness of having free-living larval stages where the development can be precisely monitored and engineered, teleost fish are proposed as an experimental model to investigate human immunity. However, the homology between fish lymphocytes and mammalian innate-like lymphocytes is an issue poorly considered in comparative immunology. Increasing experimental evidence suggests that fish lymphocytes could have developmental, morphological, and functional features in common with innate-like lymphocytes of mammals. Despite such similarities, information on possible links between conventional fish lymphocytes and mammalian innate-like lymphocytes is missing. The aim of this review is to summarize and describe available findings about the similarities between fish lymphocytes and mammalian innate-like lymphocytes, supporting the hypothesis that mammalian γδT cells and B1-B cells could be evolutionarily related to fish lymphocytes.

  1. Nucleotide sequence and genetic organization of barley stripe mosaic virus RNA gamma.

    Science.gov (United States)

    Gustafson, G; Hunter, B; Hanau, R; Armour, S L; Jackson, A O

    1987-06-01

    The complete nucleotide sequences of RNA gamma from the Type and ND18 strains of barley stripe mosaic virus (BSMV) have been determined. The sequences are 3164 (Type) and 2791 (ND18) nucleotides in length. Both sequences contain a 5'-noncoding region (87 or 88 nucleotides) which is followed by a long open reading frame (ORF1). A 42-nucleotide intercistronic region separates ORF1 from a second, shorter open reading frame (ORF2) located near the 3'-end of the RNA. There is a high degree of homology between the Type and ND18 strains in the nucleotide sequence of ORF1. However, the Type strain contains a 366 nucleotide direct tandem repeat within ORF1 which is absent in the ND18 strain. Consequently, the predicted translation product of Type RNA gamma ORF1 (mol wt 87,312) is significantly larger than that of ND18 RNA gamma ORF1 (mol wt 74,011). The amino acid sequence of the ORF1 polypeptide contains homologies with putative RNA polymerases from other RNA viruses, suggesting that this protein may function in replication of the BSMV genome. The nucleotide sequence of RNA gamma ORF2 is nearly identical in the Type and ND18 strains. ORF2 codes for a polypeptide with a predicted molecular weight of 17,209 (Type) or 17,074 (ND18) which is known to be translated from a subgenomic (sg) RNA. The initiation point of this sgRNA has been mapped to a location 27 nucleotides upstream of the ORF2 initiation codon in the intercistronic region between ORF1 and ORF2. The sgRNA is not coterminal with the 3'-end of the genomic RNA, but instead contains heterogeneous poly(A) termini up to 150 nucleotides long (J. Stanley, R. Hanau, and A. O. Jackson, 1984, Virology 139, 375-383). In the genomic RNA gamma, ORF2 is followed by a short poly(A) tract and a 238-nucleotide tRNA-like structure.

  2. Using energy budgets to combine ecology and toxicology in a mammalian sentinel species

    Science.gov (United States)

    Desforges, Jean-Pierre W.; Sonne, Christian; Dietz, Rune

    2017-04-01

    Process-driven modelling approaches can resolve many of the shortcomings of traditional descriptive and non-mechanistic toxicology. We developed a simple dynamic energy budget (DEB) model for the mink (Mustela vison), a sentinel species in mammalian toxicology, which coupled animal physiology, ecology and toxicology, in order to mechanistically investigate the accumulation and adverse effects of lifelong dietary exposure to persistent environmental toxicants, most notably polychlorinated biphenyls (PCBs). Our novel mammalian DEB model accurately predicted, based on energy allocations to the interconnected metabolic processes of growth, development, maintenance and reproduction, lifelong patterns in mink growth, reproductive performance and dietary accumulation of PCBs as reported in the literature. Our model results were consistent with empirical data from captive and free-ranging studies in mink and other wildlife and suggest that PCB exposure can have significant population-level impacts resulting from targeted effects on fetal toxicity, kit mortality and growth and development. Our approach provides a simple and cross-species framework to explore the mechanistic interactions of physiological processes and ecotoxicology, thus allowing for a deeper understanding and interpretation of stressor-induced adverse effects at all levels of biological organization.

  3. Morpho-functional characterization of the systemic venous pole of the reptile heart

    NARCIS (Netherlands)

    Jensen, Bjarke; Vesterskov, Signe; Boukens, Bastiaan J.; Nielsen, Jan M.; Moorman, Antoon F. M.; Christoffels, Vincent M.; Wang, Tobias

    2017-01-01

    Mammals evolved from reptile-like ancestors, and while the mammalian heart is driven by a distinct sinus node, a sinus node is not apparent in reptiles. We characterized the myocardial systemic venous pole, the sinus venosus, in reptiles to identify the dominant pacemaker and to assess whether the

  4. Synthesis and degradation of cyclic nucleotides in brain after a high dose of ionizing radiation

    International Nuclear Information System (INIS)

    Hunt, W.A.; Dalton, T.K.

    1981-01-01

    Previous data from our laboratory have indicated that a high dose of ionizing radiation can deplete the cyclic nucleotides guanosine 3',5'-cyclic monophosphate (cGMP) and adenosine 3',5'-cyclic monophosphate (cAMP) on several areas of the rat brain. cGMP is more sensitive to radiation than cAMP and does not recover for at least 24 h after irradiation. The response of cAMP is transient and recovery occurs within 4 h. The purpose of the present paper is to determine whether alternations in the activity of the synthetic and degradative enzymes that regulate cyclic nucleotide levels could account for the observed effects. Guanylate and adenylate cyclase and cGMP and cAMP phosphodiesterase activities were determined 10 min after irradiation with 10,000 rad of high-energy electrons. No alteration was detected under these experimental conditions. The data suggest that the reduction in cyclic nucleotides is not a direct effect on their metabolic enzymes and is probably secondary to some as yet-undefined action of radiation on the brain

  5. Ethanol-induced activation of adenine nucleotide turnover. Evidence for a role of acetate

    International Nuclear Information System (INIS)

    Puig, J.G.; Fox, I.H.

    1984-01-01

    Consumption of alcohol causes hyperuricemia by decreasing urate excretion and increasing its production. Our previous studies indicate that ethanol administration increases uric acid production by increasing ATP degradation to uric acid precursors. To test the hypothesis that ethanol-induced increased urate production results from acetate metabolism and enhanced adenosine triphosphate turnover, we gave intravenous sodium acetate, sodium chloride and ethanol (0.1 mmol/kg per min for 1 h) to five normal subjects. Acetate plasma levels increased from 0.04 +/- 0.01 mM (mean +/- SE) to peak values of 0.35 +/- 0.07 mM and to 0.08 +/- 0.01 mM during acetate and ethanol infusions, respectively. Urinary oxypurines increased to 223 +/- 13% and 316 +/- 44% of the base-line values during acetate and ethanol infusions, respectively. Urinary radioactivity from the adenine nucleotide pool labeled with [8-14C] adenine increased to 171 +/- 27% and to 128 +/- 8% of the base-line values after acetate and ethanol infusions. These data indicate that both ethanol and acetate increase purine nucleotide degradation by enhancing the turnover of the adenine nucleotide pool. They support the hypothesis that acetate metabolism contributes to the increased production of urate associated with ethanol intake

  6. Pattern and density of vascularization in mammalian testes, ovaries, and ovotestes.

    Science.gov (United States)

    Lupiáñez, Darío G; Real, Francisca M; Dadhich, Rajesh K; Carmona, Francisco D; Burgos, Miguel; Barrionuevo, Francisco J; Jiménez, Rafael

    2012-05-01

    According to the classical paradigm, the vasculature of the embryonic testis is more dense and complex than that of the ovary, but recent studies based on whole-mount detection of Caveolin-1 (CAV1) as an endothelial cell marker, have suggested that the level of ovarian vascularization is higher than previously assumed. However, this new hypothesis has been neither tested using alternative methodology nor investigated in other mammalian species. In this paper, we have studied the vascularization process in the gonads of males and females of two mammalian species, the mouse (Mus musculus) and the Iberian mole (Talpa occidentalis). Our results show that the pattern of testis vascularization is very well conserved among mammals, including both pre- and postnatal stages of development and, at least in the mole, it is conserved irrespectively of whether the testicular tissue is XY or XX. We have shown that CAV1 is present not only in endothelial cells but also in prefollicular oocytes and in an ovarian population of somatic cortical cells. These data clearly establish that: (1) according to the classical hypothesis, the degree of vascularization of the developing ovary is lower than that of the testis, (2) ovarian vascularization is also evolutionarily conserved as it occurs similarly both in moles and in mice, and (3) that the degree of vascular development of the mammalian ovary is age-dependent increasing significatively at puberty. The expression of CAV1 in the ovary of most animal taxa, from nematodes to mammals, strongly suggests a role for this gene in the female meiosis. © 2012 WILEY PERIODICALS, INC.

  7. Nucleotide excision repair in yeast

    NARCIS (Netherlands)

    Eijk, Patrick van

    2012-01-01

    Nucleotide Excision Repair (NER) is a conserved DNA repair pathway capable of removing a broad spectrum of DNA damage. In human cells a defect in NER leads to the disorder Xeroderma pigmentosum (XP). The yeast Saccharomyces cerevisiae is an excellent model organism to study the mechanism of NER. The

  8. Synthetic Biology Platform for Sensing and Integrating Endogenous Transcriptional Inputs in Mammalian Cells.

    Science.gov (United States)

    Angelici, Bartolomeo; Mailand, Erik; Haefliger, Benjamin; Benenson, Yaakov

    2016-08-30

    One of the goals of synthetic biology is to develop programmable artificial gene networks that can transduce multiple endogenous molecular cues to precisely control cell behavior. Realizing this vision requires interfacing natural molecular inputs with synthetic components that generate functional molecular outputs. Interfacing synthetic circuits with endogenous mammalian transcription factors has been particularly difficult. Here, we describe a systematic approach that enables integration and transduction of multiple mammalian transcription factor inputs by a synthetic network. The approach is facilitated by a proportional amplifier sensor based on synergistic positive autoregulation. The circuits efficiently transduce endogenous transcription factor levels into RNAi, transcriptional transactivation, and site-specific recombination. They also enable AND logic between pairs of arbitrary transcription factors. The results establish a framework for developing synthetic gene networks that interface with cellular processes through transcriptional regulators. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  9. Patterns of Nucleotide Diversity at the Regions Encompassing the Drosophila Insulin-Like Peptide (dilp) Genes: Demography vs. Positive Selection in Drosophila melanogaster

    Science.gov (United States)

    Guirao-Rico, Sara; Aguadé, Montserrat

    2013-01-01

    In Drosophila, the insulin-signaling pathway controls some life history traits, such as fertility and lifespan, and it is considered to be the main metabolic pathway involved in establishing adult body size. Several observations concerning variation in body size in the Drosophila genus are suggestive of its adaptive character. Genes encoding proteins in this pathway are, therefore, good candidates to have experienced adaptive changes and to reveal the footprint of positive selection. The Drosophila insulin-like peptides (DILPs) are the ligands that trigger the insulin-signaling cascade. In Drosophila melanogaster, there are several peptides that are structurally similar to the single mammalian insulin peptide. The footprint of recent adaptive changes on nucleotide variation can be unveiled through the analysis of polymorphism and divergence. With this aim, we have surveyed nucleotide sequence variation at the dilp1-7 genes in a natural population of D. melanogaster. The comparison of polymorphism in D. melanogaster and divergence from D. simulans at different functional classes of the dilp genes provided no evidence of adaptive protein evolution after the split of the D. melanogaster and D. simulans lineages. However, our survey of polymorphism at the dilp gene regions of D. melanogaster has provided some evidence for the action of positive selection at or near these genes. The regions encompassing the dilp1-4 genes and the dilp6 gene stand out as likely affected by recent adaptive events. PMID:23308258

  10. The Coding of Biological Information: From Nucleotide Sequence to Protein Recognition

    Science.gov (United States)

    Štambuk, Nikola

    The paper reviews the classic results of Swanson, Dayhoff, Grantham, Blalock and Root-Bernstein, which link genetic code nucleotide patterns to the protein structure, evolution and molecular recognition. Symbolic representation of the binary addresses defining particular nucleotide and amino acid properties is discussed, with consideration of: structure and metric of the code, direct correspondence between amino acid and nucleotide information, and molecular recognition of the interacting protein motifs coded by the complementary DNA and RNA strands.

  11. Large number of ultraconserved elements were already present in the jawed vertebrate ancestor.

    KAUST Repository

    Wang, Jianli; Lee, Alison P; Kodzius, Rimantas; Brenner, Sydney; Venkatesh, Byrappa

    2009-01-01

    Stephen (2008) identified 13,736 ultraconserved elements (UCEs) in placental mammals and investigated their evolution in opossum, chicken, frog, and fugu. They found that there was a massive expansion of UCEs during tetrapod evolution and the substitution rate in UCEs showed a significant decline in tetrapods compared with fugu, suggesting they were exapted in tetrapods. They considered it unlikely that these elements are ancient but evolved at a higher rate in teleost fishes. In this study, we investigated the evolution of UCEs in a cartilaginous fish, the elephant shark and show that nearly half the UCEs were present in the jawed vertebrate ancestor. The substitution rate in UCEs is higher in fugu than in elephant shark, and approximately one-third of ancient UCEs have diverged beyond recognition in teleost fishes. These data indicate that UCEs have evolved at a higher rate in teleost fishes, which may have implications for their vast diversity and evolutionary success.

  12. Large number of ultraconserved elements were already present in the jawed vertebrate ancestor.

    KAUST Repository

    Wang, Jianli

    2009-03-01

    Stephen (2008) identified 13,736 ultraconserved elements (UCEs) in placental mammals and investigated their evolution in opossum, chicken, frog, and fugu. They found that there was a massive expansion of UCEs during tetrapod evolution and the substitution rate in UCEs showed a significant decline in tetrapods compared with fugu, suggesting they were exapted in tetrapods. They considered it unlikely that these elements are ancient but evolved at a higher rate in teleost fishes. In this study, we investigated the evolution of UCEs in a cartilaginous fish, the elephant shark and show that nearly half the UCEs were present in the jawed vertebrate ancestor. The substitution rate in UCEs is higher in fugu than in elephant shark, and approximately one-third of ancient UCEs have diverged beyond recognition in teleost fishes. These data indicate that UCEs have evolved at a higher rate in teleost fishes, which may have implications for their vast diversity and evolutionary success.

  13. Environmental Adaptation from the Origin of Life to the Last Universal Common Ancestor

    Science.gov (United States)

    Cantine, Marjorie D.; Fournier, Gregory P.

    2018-03-01

    Extensive fundamental molecular and biological evolution took place between the prebiotic origins of life and the state of the Last Universal Common Ancestor (LUCA). Considering the evolutionary innovations between these two endpoints from the perspective of environmental adaptation, we explore the hypothesis that LUCA was temporally, spatially, and environmentally distinct from life's earliest origins in an RNA world. Using this lens, we interpret several molecular biological features as indicating an environmental transition between a cold, radiation-shielded origin of life and a mesophilic, surface-dwelling LUCA. Cellularity provides motility and permits Darwinian evolution by connecting genetic material and its products, and thus establishing heredity and lineage. Considering the importance of compartmentalization and motility, we propose that the early emergence of cellularity is required for environmental dispersal and diversification during these transitions. Early diversification and the emergence of ecology before LUCA could be an important pre-adaptation for life's persistence on a changing planet.

  14. Nucleotide diversity and phylogenetic relationships among ...

    Indian Academy of Sciences (India)

    2017-03-03

    Mar 3, 2017 ... 2Department of Botany, D. S. B. Campus, Kumaun University, Nainital 263 001, India ... Rana T. S. 2017 Nucleotide diversity and phylogenetic relationships ... Anderson and Park 1989). ..... Edgewood Press, Edgewood, USA.

  15. The calmodulin-binding, short linear motif, NSCaTE is conserved in L-type channel ancestors of vertebrate Cav1.2 and Cav1.3 channels.

    Directory of Open Access Journals (Sweden)

    Valentina Taiakina

    Full Text Available NSCaTE is a short linear motif of (xWxxx(I or Lxxxx, composed of residues with a high helix-forming propensity within a mostly disordered N-terminus that is conserved in L-type calcium channels from protostome invertebrates to humans. NSCaTE is an optional, lower affinity and calcium-sensitive binding site for calmodulin (CaM which competes for CaM binding with a more ancient, C-terminal IQ domain on L-type channels. CaM bound to N- and C- terminal tails serve as dual detectors to changing intracellular Ca(2+ concentrations, promoting calcium-dependent inactivation of L-type calcium channels. NSCaTE is absent in some arthropod species, and is also lacking in vertebrate L-type isoforms, Cav1.1 and Cav1.4 channels. The pervasiveness of a methionine just downstream from NSCaTE suggests that L-type channels could generate alternative N-termini lacking NSCaTE through the choice of translational start sites. Long N-terminus with an NSCaTE motif in L-type calcium channel homolog LCav1 from pond snail Lymnaea stagnalis has a faster calcium-dependent inactivation than a shortened N-termini lacking NSCaTE. NSCaTE effects are present in low concentrations of internal buffer (0.5 mM EGTA, but disappears in high buffer conditions (10 mM EGTA. Snail and mammalian NSCaTE have an alpha-helical propensity upon binding Ca(2+-CaM and can saturate both CaM N-terminal and C-terminal domains in the absence of a competing IQ motif. NSCaTE evolved in ancestors of the first animals with internal organs for promoting a more rapid, calcium-sensitive inactivation of L-type channels.

  16. The backbone of the post-synaptic density originated in a unicellular ancestor of choanoflagellates and metazoans

    Directory of Open Access Journals (Sweden)

    Manuel Michaël

    2010-02-01

    Full Text Available Abstract Background Comparative genomics of the early diverging metazoan lineages and of their unicellular sister-groups opens new window to reconstructing the genetic changes which preceded or accompanied the evolution of multicellular body plans. A recent analysis found that the genome of the nerve-less sponges encodes the homologues of most vertebrate post-synaptic proteins. In vertebrate excitatory synapses, these proteins assemble to form the post-synaptic density, a complex molecular platform linking membrane receptors, components of their signalling pathways, and the cytoskeleton. Newly available genomes from Monosiga brevicollis (a member of Choanoflagellata, the closest unicellular relatives of animals and Trichoplax adhaerens (a member of Placozoa: besides sponges, the only nerve-less metazoans offer an opportunity to refine our understanding of post-synaptic protein evolution. Results Searches for orthologous proteins and reconstruction of gene gains/losses based on the taxon phylogeny indicate that post-synaptic proteins originated in two main steps. The backbone scaffold proteins (Shank, Homer, DLG and some of their partners were acquired in a unicellular ancestor of choanoflagellates and metazoans. A substantial additional set appeared in an exclusive ancestor of the Metazoa. The placozoan genome contains most post-synaptic genes but lacks some of them. Notably, the master-scaffold protein Shank might have been lost secondarily in the placozoan lineage. Conclusions The time of origination of most post-synaptic proteins was not concomitant with the acquisition of synapses or neural-like cells. The backbone of the scaffold emerged in a unicellular context and was probably not involved in cell-cell communication. Based on the reconstructed protein composition and potential interactions, its ancestral function could have been to link calcium signalling and cytoskeleton regulation. The complex later became integrated into the evolving

  17. Free amino acids and 5'-nucleotides in Finnish forest mushrooms.

    Science.gov (United States)

    Manninen, Hanna; Rotola-Pukkila, Minna; Aisala, Heikki; Hopia, Anu; Laaksonen, Timo

    2018-05-01

    Edible mushrooms are valued because of their umami taste and good nutritional values. Free amino acids, 5'-nucleotides and nucleosides were analyzed from four Nordic forest mushroom species (Lactarius camphoratus, Boletus edulis, Cantharellus cibarius, Craterellus tubaeformis) using high precision liquid chromatography analysis. To our knowledge, these taste components were studied for the first time from Craterellus tubaeformis and Lactarius camphoratus. The focus was on the umami amino acids and 5'-nucleotides. The free amino acid and 5'-nucleotide/nucleoside contents of studied species differed from each other. In all studied samples, umami amino acids were among five major free amino acids. The highest concentration of umami amino acids was on L. camphoratus whereas B. edulis had the highest content of sweet amino acids and C. cibarius had the highest content of bitter amino acids. The content of umami enhancing 5'-nucleotides were low in all studied species. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Role of cyclins in controlling progression of mammalian spermatogenesis

    OpenAIRE

    WOLGEMUTH, DEBRA J.; MANTEROLA, MARCIA; VASILEVA, ANA

    2013-01-01

    Cyclins are key regulators of the mammalian cell cycle, functioning primarily in concert with their catalytic partners, the cyclin-dependent kinases (Cdks). While their function during mitosis in somatic cells has been extensively documented, their function during both mitosis and meiosis in the germ line is poorly understood. From the perspective of cell cycle regulation there are several aspects of mammalian spermatogenesis that suggest unique modes of regulation and hence, possible unique ...

  19. Comparison of amphibian and mammalian thyroperoxidase ...

    Science.gov (United States)

    Thyroperoxidase (TPO) catalyzes the production of thyroid hormones in the vertebrate thyroid gland by oxidizing iodide (I- ) to produce iodinated tyrosines on thyroglobulin, and further coupling of specific mono- or di-iodinated tyrosines to generate the triiodo- and tetra-iodothyronine, precursors to thyroid hormone. This enzyme is a target for thyroid disrupting chemicals. TPO-inhibition by xenobiotics is a molecular initiating event that is known to perturb the thyroid axis by preventing synthesis of thyroid hormone. Previous work on TPO-inhibition has been focused on mammalian TPO; specifically, the rat and pig. A primary objective of this experiment was to directly measure TPO activity in a non-mammalian system, in this case a thyroid gland homogenate from Xenopus laevis; as well as compare chemical inhibition from past mammalian studies to the amphibian data generated. Thyroid glands obtained from X. laevis tadpoles at NF stages 58-60, were pooled and homogenized by sonication in phosphate buffer. This homogenate was then used to test 24 chemicals for inhibition of TPO as measured by conversion of Amplex UltraRed (AUR) substrate to its fluorescent product. The test chemicals were selected based upon previous results from rat in vitro TPO assays, and X. laevis in vitro and in vivo studies for thyroid disrupting endpoints, and included both positive and negative chemicals in these assays. An initial screening of the chemicals was done at a single high con

  20. Complexes of Escherichia coli adenylate kinase and nucleotides: 1H NMR studies of the nucleotide sites in solution

    International Nuclear Information System (INIS)

    Vetter, I.R.; Reinstein, J.; Roesch, P.

    1990-01-01

    One- and two-dimensional nuclear magnetic resonance (NMR) studies, in particular substrate-protein nuclear Overhauser effect (NOESY) measurements, as well as nucleotide and P 1 ,P 5 -bis-(5'-adenosyl) pentaphosphate (AP 5 A) titrations and studies of the temperature-dependent unfolding of the tertiary structure of Escherichia coli adenylate kinase (AK EC ) were performed. These experiments and comparison with the same type of experiments performed with the porcine enzyme led them to the following conclusions: (1) at pH 8 and concentrations of approximately 2.5-3 mM, AK EC is partially unfolded at 318 K; (2) ATP·Mg 2+ binds to the ATP site with a dissociation constant of approximately 40 μM under the assumption that ATP binds to one nucleotide site only; (3) AP 5 A·Mg 2+ binds to both nucleotide sites and thus simulates the active complex; (4) the ATP·Mg 2+ adenine in the AK EC ·AP 5 A·Mg 2+ complex is located close to His 134 and Phe 19 ; (5) the AK EC G-loop with bound ATP·Mg 2+ is structurally highly homologous to the loop region in the oncogene product p21 with bound GTP·Mg 2+

  1. Cellular and chemical neuroscience of mammalian sleep.

    Science.gov (United States)

    Datta, Subimal

    2010-05-01

    Extraordinary strides have been made toward understanding the complexities and regulatory mechanisms of sleep over the past two decades thanks to the help of rapidly evolving technologies. At its most basic level, mammalian sleep is a restorative process of the brain and body. Beyond its primary restorative purpose, sleep is essential for a number of vital functions. Our primary research interest is to understand the cellular and molecular mechanisms underlying the regulation of sleep and its cognitive functions. Here I will reflect on our own research contributions to 50 years of extraordinary advances in the neurobiology of slow-wave sleep (SWS) and rapid eye movement (REM) sleep regulation. I conclude this review by suggesting some potential future directions to further our understanding of the neurobiology of sleep. Copyright 2010 Elsevier B.V. All rights reserved.

  2. Global Screening of Antiviral Genes that Suppress Baculovirus Transgene Expression in Mammalian Cells.

    Science.gov (United States)

    Wang, Chia-Hung; Naik, Nenavath Gopal; Liao, Lin-Li; Wei, Sung-Chan; Chao, Yu-Chan

    2017-09-15

    Although baculovirus has been used as a safe and convenient gene delivery vector in mammalian cells, baculovirus-mediated transgene expression is less effective in various mammalian cell lines. Identification of the negative regulators in host cells is necessary to improve baculovirus-based expression systems. Here, we performed high-throughput shRNA library screening, targeting 176 antiviral innate immune genes, and identified 43 host restriction factor genes in a human A549 lung carcinoma cell line. Among them, suppression of receptor interaction protein kinase 1 (RIP1, also known as RIPK1) significantly increased baculoviral transgene expression without resulting in significant cell death. Silencing of RIP1 did not affect viral entry or cell viability, but it did inhibit nuclear translocation of the IRF3 and NF-κB transcription factors. Also, activation of downstream signaling mediators (such as TBK1 and IRF7) was affected, and subsequent interferon and cytokine gene expression levels were abolished. Further, Necrostatin-1 (Nec-1)-an inhibitor of RIP1 kinase activity-dramatically increased baculoviral transgene expression in RIP1-silenced cells. Using baculovirus as a model system, this study presents an initial investigation of large numbers of human cell antiviral innate immune response factors against a "nonadaptive virus." In addition, our study has made baculovirus a more efficient gene transfer vector for some of the most frequently used mammalian cell systems.

  3. Influence of ornithine decarboxylase antizymes and antizyme inhibitors on agmatine uptake by mammalian cells

    DEFF Research Database (Denmark)

    Ramos-Molina, Bruno; López-Contreras, Andrés J; Lambertos, Ana

    2015-01-01

    Agmatine (4-aminobutylguanidine), a dicationic molecule at physiological pH, exerts relevant modulatory actions at many different molecular target sites in mammalian cells, having been suggested that the administration of this compound may have therapeutic interest. Several plasma membrane...... transporters have been implicated in agmatine uptake by mammalian cells. Here we report that in kidney-derived COS-7cell line, at physiological agmatine levels, the general polyamine transporter participates in the plasma membrane translocation of agmatine, with an apparent Km of 44 ± 7 µM and V max of 17.......3 ± 3.3 nmol h(-1) mg(-1) protein, but that at elevated concentrations, agmatine can be also taken up by other transport systems. In the first case, the physiological polyamines (putrescine, spermidine and spermine), several diguanidines and bis(2-aminoimidazolines) and the polyamine transport inhibitor...

  4. Mammalian Sperm Motility: Observation and Theory

    KAUST Repository

    Gaffney, E.A.; Gadê lha, H.; Smith, D.J.; Blake, J.R.; Kirkman-Brown, J.C.

    2011-01-01

    the mechanics of these specialized cells, especially during their remarkable journey to the egg. The biological structure of the motile sperm appendage, the flagellum, is described and placed in the context of the mechanics underlying the migration of mammalian

  5. 1999 Gordon Research Conference on Mammalian DNA Repair. Final Progress Report

    International Nuclear Information System (INIS)

    NONE

    1999-01-01

    This Conference will examine DNA repair as the key component in genomic surveillance that is so crucial to the overall integrity and function of mammalian cells. Recent discoveries have catapulted the field of DNA repair into a pivotal position for fundamental investigations into oncology, aging, environmental health, and developmental biology. We hope to highlight the most promising and exciting avenues of research in robust discussions at this conference. This Mammalian DNA Repair Gordon Conference differs from the past conferences in this series, in which the programs were broader in scope, with respect to topics and biological systems covered. A conference sponsored by the Genetics Society in April 1998 emphasized recombinational mechanisms for double-strand break repair and the role of mismatch repair deficiency in colorectal cancer. These topics will therefore receive somewhat less emphasis in the upcoming Conference. In view of the recent mechanistic advances in mammalian DNA repair, an upcoming comprehensive DNA repair meeting next autumn at Hilton Head; and the limited enrollment for Gordon Conferences we have decided to focus session-by-session on particular areas of controversy and/or new developments specifically in mammalian systems. Thus, the principal presentations will draw upon results from other cellular systems only to the extent that they impact our understanding of mammalian DNA repair

  6. 1999 Gordon Research Conference on Mammalian DNA Repair. Final Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-02-12

    This Conference will examine DNA repair as the key component in genomic surveillance that is so crucial to the overall integrity and function of mammalian cells. Recent discoveries have catapulted the field of DNA repair into a pivotal position for fundamental investigations into oncology, aging, environmental health, and developmental biology. We hope to highlight the most promising and exciting avenues of research in robust discussions at this conference. This Mammalian DNA Repair Gordon Conference differs from the past conferences in this series, in which the programs were broader in scope, with respect to topics and biological systems covered. A conference sponsored by the Genetics Society in April 1998 emphasized recombinational mechanisms for double-strand break repair and the role of mismatch repair deficiency in colorectal cancer. These topics will therefore receive somewhat less emphasis in the upcoming Conference. In view of the recent mechanistic advances in mammalian DNA repair, an upcoming comprehensive DNA repair meeting next autumn at Hilton Head; and the limited enrollment for Gordon Conferences we have decided to focus session-by-session on particular areas of controversy and/or new developments specifically in mammalian systems. Thus, the principal presentations will draw upon results from other cellular systems only to the extent that they impact our understanding of mammalian DNA repair.

  7. Biosynthesis of a hypermodified nucleotide in Saccharomyces carlsbergensis 17S and HeLa-cell 18S ribosomal ribonucleic acid.

    Science.gov (United States)

    Brand, R C; Klootwijk, J; Planta, R J; Maden, B E

    1978-01-01

    The biosynthesis of a hypermodified nucleotide, similar to or identical with 3-(3-amino-3-carboxypropyl)-1-methylpseudouridine monophosphate, present in Saccharomyces carlsbergensis 17S and HeLa-cell 18S rRNA, was investigated with respect to the sequence of reactions required for synthesis and their timing in ribosome maturation. In both yeast and HeLa cells methylation precedes attachment of the 3-amino-3-carboxypropyl group. In yeast the methylated precursor nucleotide was tentatively characterized as 1-methylpseudouridine. This precursor nucleotide was demonstrated in both 37S and most of the cytoplasmic 18S pre-rRNA (rRNA precursor) molecules. The synthesis of the hypermodified nucleotide is completed just before the final cleavage of 18S pre-rRNA to give 17S rRNA, so that the final addition of the 3-amino-3-carboxypropyl group is a cytoplasmic event. Comparable experiments with HeLa cells indicated that formation of 1-methylpseudouridine occurs at the level of 45S RNA and addition of the 3-amino-3-carboxypropyl group occurs in the cytoplasm on newly synthesized 18S RNA.

  8. Apoptosis in mammalian oocytes: a review.

    Science.gov (United States)

    Tiwari, Meenakshi; Prasad, Shilpa; Tripathi, Anima; Pandey, Ashutosh N; Ali, Irfan; Singh, Arvind K; Shrivastav, Tulsidas G; Chaube, Shail K

    2015-08-01

    Apoptosis causes elimination of more than 99% of germ cells from cohort of ovary through follicular atresia. Less than 1% of germ cells, which are culminated in oocytes further undergo apoptosis during last phases of oogenesis and depletes ovarian reserve in most of the mammalian species including human. There are several players that induce apoptosis directly or indirectly in oocytes at various stages of meiotic cell cycle. Premature removal of encircling granulosa cells from immature oocytes, reduced levels of adenosine 3',5'-cyclic monophosphate and guanosine 3',5'-cyclic monophosphate, increased levels of calcium (Ca(2+)) and oxidants, sustained reduced level of maturation promoting factor, depletion of survival factors, nutrients and cell cycle proteins, reduced meiotic competency, increased levels of proapoptotic as well as apoptotic factors lead to oocyte apoptosis. The BH3-only proteins also act as key regulators of apoptosis in oocyte within the ovary. Both intrinsic (mitochondria-mediated) as well as extrinsic (cell surface death receptor-mediated) pathways are involved in oocyte apoptosis. BID, a BH3-only protein act as a bridge between both apoptotic pathways and its cleavage activates cell death machinery of both the pathways inside the follicular microenvironment. Oocyte apoptosis leads to the depletion of ovarian reserve that directly affects reproductive outcome of various mammals including human. In this review article, we highlight some of the important players and describe the pathways involved during oocyte apoptosis in mammals.

  9. Maternal hemochromatosis gene H63D single-nucleotide polymorphism and lead levels of placental tissue, maternal and umbilical cord blood

    Energy Technology Data Exchange (ETDEWEB)

    Kayaalti, Zeliha, E-mail: kayaalti@ankara.edu.tr [Ankara University, Institute of Forensic Sciences, Ankara (Turkey); Kaya-Akyüzlü, Dilek [Ankara University, Institute of Forensic Sciences, Ankara (Turkey); Söylemez, Esma [Ankara University, Institute of Forensic Sciences, Ankara (Turkey); Middle Black Sea Passage Generation of Agricultural Research Station Director, Tokat (Turkey); Söylemezoğlu, Tülin [Ankara University, Institute of Forensic Sciences, Ankara (Turkey)

    2015-07-15

    Human hemochromatosis protein (HFE), a major histocompatibility complex class I-like integral membrane protein, participates in the down regulation of intestinal iron absorption by binding to transferrin receptor (TR). HFE competes with transferrin-bound iron for the TR and thus reduces uptake of iron into cells. On the other hand, a lack of HFE increases the intestinal absorption of iron similarly to iron deficiency associated with increasing in absorption and deposition of lead. During pregnancy, placenta cannot prevent transfer lead to the fetus; even low-level lead poisoning causes neurodevelopmental toxicity in children. The aim of this study was to determine the association between the maternal HFE H63D single-nucleotide polymorphism and lead levels in placental tissue, maternal blood and umbilical cord bloods. The study population comprised 93 mother–placenta pairs. Venous blood from mother was collected to investigate lead levels and HFE polymorphism that was detected by standard PCR–RFLP technique. Cord bloods and placentas were collected for lead levels which were analyzed by dual atomic absorption spectrometer system. The HFE H63D genotype frequencies of mothers were found as 75.3% homozygote typical (HH), 23.6% heterozygote (HD) and 1.1% homozygote atypical (DD). Our study results showed that the placental tissue, umbilical cord and maternal blood lead levels of mothers with HD+DD genotypes were significantly higher than those with HH genotype (p<0.05). The present study indicated for the first time that mothers with H63D gene variants have higher lead levels of their newborn's placentas and umbilical cord bloods. - Highlights: • Mothers with H63D gene variants have higher lead levels of their newborn's umbilical cord blood. • Unborn child of women with HD+DD genotypes may be at increased risk of internal exposure to lead. • Maternal HFE status may have an effect on increased placenta, maternal and cord blood lead levels.

  10. Maternal hemochromatosis gene H63D single-nucleotide polymorphism and lead levels of placental tissue, maternal and umbilical cord blood

    International Nuclear Information System (INIS)

    Kayaalti, Zeliha; Kaya-Akyüzlü, Dilek; Söylemez, Esma; Söylemezoğlu, Tülin

    2015-01-01

    Human hemochromatosis protein (HFE), a major histocompatibility complex class I-like integral membrane protein, participates in the down regulation of intestinal iron absorption by binding to transferrin receptor (TR). HFE competes with transferrin-bound iron for the TR and thus reduces uptake of iron into cells. On the other hand, a lack of HFE increases the intestinal absorption of iron similarly to iron deficiency associated with increasing in absorption and deposition of lead. During pregnancy, placenta cannot prevent transfer lead to the fetus; even low-level lead poisoning causes neurodevelopmental toxicity in children. The aim of this study was to determine the association between the maternal HFE H63D single-nucleotide polymorphism and lead levels in placental tissue, maternal blood and umbilical cord bloods. The study population comprised 93 mother–placenta pairs. Venous blood from mother was collected to investigate lead levels and HFE polymorphism that was detected by standard PCR–RFLP technique. Cord bloods and placentas were collected for lead levels which were analyzed by dual atomic absorption spectrometer system. The HFE H63D genotype frequencies of mothers were found as 75.3% homozygote typical (HH), 23.6% heterozygote (HD) and 1.1% homozygote atypical (DD). Our study results showed that the placental tissue, umbilical cord and maternal blood lead levels of mothers with HD+DD genotypes were significantly higher than those with HH genotype (p<0.05). The present study indicated for the first time that mothers with H63D gene variants have higher lead levels of their newborn's placentas and umbilical cord bloods. - Highlights: • Mothers with H63D gene variants have higher lead levels of their newborn's umbilical cord blood. • Unborn child of women with HD+DD genotypes may be at increased risk of internal exposure to lead. • Maternal HFE status may have an effect on increased placenta, maternal and cord blood lead levels.

  11. Evolutionary dynamics of mammalian karyotypes

    Directory of Open Access Journals (Sweden)

    Carlo Alberto Redi

    2012-12-01

    Full Text Available This special volume of Cytogenetic and Genome Research (edited by Roscoe Stanyon, University of Florence and Alexander Graphodatsky, Siberian division of the Russian Academy of Sciences is dedicated to the fascinating long search of the forces behind the evolutionary dynamics of mammalian karyotypes, revealed after the hypotonic miracle of the 1950s....

  12. Ribose Supplementation Alone or with Elevated Creatine Does Not Preserve High Energy Nucleotides or Cardiac Function in the Failing Mouse Heart.

    Directory of Open Access Journals (Sweden)

    Kiterie M E Faller

    Full Text Available Reduced levels of creatine and total adenine nucleotides (sum of ATP, ADP and AMP are hallmarks of chronic heart failure and restoring these pools is predicted to be beneficial by maintaining the diseased heart in a more favourable energy state. Ribose supplementation is thought to support both salvage and re-synthesis of adenine nucleotides by bypassing the rate-limiting step. We therefore tested whether ribose would be beneficial in chronic heart failure in control mice and in mice with elevated myocardial creatine due to overexpression of the creatine transporter (CrT-OE.FOUR GROUPS WERE STUDIED: sham; myocardial infarction (MI; MI+ribose; MI+CrT-OE+ribose. In a pilot study, ribose given in drinking water was bioavailable, resulting in a two-fold increase in myocardial ribose-5-phosphate levels. However, 8 weeks post-surgery, total adenine nucleotide (TAN pool was decreased to a similar amount (8-14% in all infarcted groups irrespective of the treatment received. All infarcted groups also presented with a similar and substantial degree of left ventricular (LV dysfunction (3-fold reduction in ejection fraction and LV hypertrophy (32-47% increased mass. Ejection fraction closely correlated with infarct size independently of treatment (r(2 = 0.63, p<0.0001, but did not correlate with myocardial creatine or TAN levels.Elevating myocardial ribose and creatine levels failed to maintain TAN pool or improve post-infarction LV remodeling and function. This suggests that ribose is not rate-limiting for purine nucleotide biosynthesis in the chronically failing mouse heart and that alternative strategies to preserve TAN pool should be investigated.

  13. Nucleotide sequence, transcript mapping, and regulation of the RAD2 gene of Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Madura, K.; Prakash, S.

    1986-01-01

    The authors determined the nucleotide sequence, mapped the 5' and 3' nRNA termini, and examined the regulation of the RAD2 gene of Saccharomyces cerevisiae. A long open reading frame within the RAD2 transcribed region encodes a protein of 1031 amino acids with a calculated molecular weight of 117,847. A disruption of the RAD2 gene that deletes the 78 carboxyl terminal codons results in loss of RAD2 function. The 5' ends of RAD2 mRNA show considerable heterogeneity, mapping 5 to 62 nucleotides upstream of the first ATG codon of the long RAD2 open reading frame. The longest RAD2 transcripts also contain a short open reading frame of 37 codons that precedes and overlaps the 5' end of the long RAD2 open reading frame. The RAD2 3' nRNA end maps 171 nucleotides downstream of the TAA termination codon and 20 nucleotides downstream from a 12-base-pair inverted repeat that might function in transcript termination. Northern blot analysis showed a ninefold increase in steady-state levels of RAD2 mRNA after treatment of yeast cells with UV light. The 5' flanking region of the RAD2 gene contains several direct and inverted repeats and a 44-nuclotide-long purine-rich tract. The sequence T G G A G G C A T T A A found at position - 167 to -156 in the RAD2 gene is similar to at sequence present in the 5' flanking regions of the RAD7 and RAD10 genes

  14. Roles of phosphorylation and nucleotide binding domains in calcium transport by sarcoplasmic reticulum adenosinetriphosphatase

    International Nuclear Information System (INIS)

    Teruel, J.A.; Inesi, G.

    1988-01-01

    The roles of the phosphorylation (phosphorylated enzyme intermediate) and nucleotide binding domains in calcium transport were studied by comparing acetyl phosphate and ATP as substrates for the Ca 2+ -ATPase of sarcoplasmic reticulum vesicles. The authors found that the maximal level of phosphoenzyme obtained with either substrate is approximately 4 nmol/mg of protein, corresponding to the stoichiometry of catalytic sites in their preparation. The initial burst of phosphoenzyme formation observed in the transient state, following addition of either substrate, is accompanied by internalization of 2 mol of calcium per mole of phosphoenzyme. The internalized calcium is then translocated with a sequential pattern, independent of the substrate used. Following a rate-limiting step, the phosphoenzyme undergoes hydrolytic cleavage and proceeds to the steady-state activity which is soon back inhibited by the rise of Ca 2+ concentration in the lumen of the vesicles. When the back inhibition is released by the addition of oxalate, substrate utilization and calcium transport occur with a ratio of 1:2, independent of the substrate and its concentration. When the nucleotide binding site is derivatized with FITP, the enzyme can still utilize acetyl phosphate (but not ATP) for calcium transport. These observations demonstrate that the basic coupling mechanism of catalysis and calcium transport involves the phosphorylation and calcium binding domains, and not the nucleotide binding domain. On the other hand, occupancy of the FITC-sensitive nucleotide site is involved in kinetic regulation not only with respect to utilization of substrate for the phosphoryl transfer reaction but also for subsequent steps related to calcium translocation and phosphoenzyme turnover

  15. Pharmacophore Selection and Redesign of Non-nucleotide Inhibitors of Anthrax Edema Factor

    Directory of Open Access Journals (Sweden)

    Maria Estrella Jimenez

    2012-11-01

    Full Text Available Antibiotic treatment may fail to protect individuals, if not started early enough, after infection with Bacillus anthracis, due to the continuing activity of toxins that the bacterium produces. Stable and easily stored inhibitors of the edema factor toxin (EF, an adenylyl cyclase, could save lives in the event of an outbreak, due to natural causes or a bioweapon attack. The toxin’s basic activity is to convert ATP to cAMP, and it is thus in principle a simple phosphatase, which means that many mammalian enzymes, including intracellular adenylcyclases, may have a similar activity. While nucleotide based inhibitors, similar to its natural substrate, ATP, were identified early, these compounds had low activity and specificity for EF. We used a combined structural and computational approach to choose small organic molecules in large, web-based compound libraries that would, based on docking scores, bind to residues within the substrate binding pocket of EF. A family of fluorenone-based inhibitors was identified that inhibited the release of cAMP from cells treated with EF. The lead inhibitor was also shown to inhibit the diarrhea caused by enterotoxigenic E. coli (ETEC in a murine model, perhaps by serving as a quorum sensor. These inhibitors are now being tested for their ability to inhibit Anthrax infection in animal models and may have use against other pathogens that produce toxins similar to EF, such as Bordetella pertussis or Vibrio cholera.

  16. Pharmacophore selection and redesign of non-nucleotide inhibitors of anthrax edema factor.

    Science.gov (United States)

    Schein, Catherine H; Chen, Deliang; Ma, Lili; Kanalas, John J; Gao, Jian; Jimenez, Maria Estrella; Sower, Laurie E; Walter, Mary A; Gilbertson, Scott R; Peterson, Johnny W

    2012-11-08

    Antibiotic treatment may fail to protect individuals, if not started early enough, after infection with Bacillus anthracis, due to the continuing activity of toxins that the bacterium produces. Stable and easily stored inhibitors of the edema factor toxin (EF), an adenylyl cyclase, could save lives in the event of an outbreak, due to natural causes or a bioweapon attack. The toxin's basic activity is to convert ATP to cAMP, and it is thus in principle a simple phosphatase, which means that many mammalian enzymes, including intracellular adenylcyclases, may have a similar activity. While nucleotide based inhibitors, similar to its natural substrate, ATP, were identified early, these compounds had low activity and specificity for EF. We used a combined structural and computational approach to choose small organic molecules in large, web-based compound libraries that would, based on docking scores, bind to residues within the substrate binding pocket of EF. A family of fluorenone-based inhibitors was identified that inhibited the release of cAMP from cells treated with EF. The lead inhibitor was also shown to inhibit the diarrhea caused by enterotoxigenic E. coli (ETEC) in a murine model, perhaps by serving as a quorum sensor. These inhibitors are now being tested for their ability to inhibit Anthrax infection in animal models and may have use against other pathogens that produce toxins similar to EF, such as Bordetella pertussis or Vibrio cholera.

  17. Structural differences between yeast and mammalian microtubules revealed by cryo-EM

    Energy Technology Data Exchange (ETDEWEB)

    Howes, Stuart C. [Univ. of California, Berkeley, CA (United States). Biophysics Graduate Group; Geyer, Elisabeth A. [Univ. of Texas Southwestern Medical Center, Dallas, TX (United States). Dept. of Biophysics; Univ. of Texas Southwestern Medical Center, Dallas, TX (United States). Dept. of Biochemistry; LaFrance, Benjamin [Univ. of California, Berkeley, CA (United States). Molecular and Cell Biology Graduate Program; Zhang, Rui [Univ. of California, Berkeley, CA (United States). Howard Hughes Medical Inst.; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Molecular Biophysics and Integrated Bioimaging Division; Kellogg, Elizabeth H. [Univ. of California, Berkeley, CA (United States). Howard Hughes Medical Inst.; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Molecular Biophysics and Integrated Bioimaging Division; Westermann, Stefan [Univ. of Duisburg-Essen, Essen (Germany). Dept. of Molecular Genetics, Center for Medical Biotechnology; Rice, Luke M. [Univ. of Texas Southwestern Medical Center, Dallas, TX (United States). Dept. of Biophysics; Univ. of Texas Southwestern Medical Center, Dallas, TX (United States). Dept. of Biochemistry; Nogales, Eva [Univ. of California, Berkeley, CA (United States). Howard Hughes Medical Inst.; Univ. of California, Berkeley, CA (United States). Dept. of Molecular Biology and California Inst. for Quantitative Biosciences; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Molecular Biophysics and Integrated Bioimaging Division

    2017-06-26

    Microtubules are polymers of αβ-tubulin heterodimers essential for all eukaryotes. Despite sequence conservation, there are significant structural differences between microtubules assembled in vitro from mammalian or budding yeast tubulin. Yeast MTs were not observed to undergo compaction at the interdimer interface as seen for mammalian microtubules upon GTP hydrolysis. Lack of compaction might reflect slower GTP hydrolysis or a different degree of allosteric coupling in the lattice. The microtubule plus end–tracking protein Bim1 binds yeast microtubules both between αβ-tubulin heterodimers, as seen for other organisms, and within tubulin dimers, but binds mammalian tubulin only at interdimer contacts. At the concentrations used in cryo-electron microscopy, Bim1 causes the compaction of yeast microtubules and induces their rapid disassembly. In conclusion, our studies demonstrate structural differences between yeast and mammalian microtubules that likely underlie their differing polymerization dynamics. These differences may reflect adaptations to the demands of different cell size or range of physiological growth temperatures.

  18. Nucleos: a web server for the identification of nucleotide-binding sites in protein structures.

    Science.gov (United States)

    Parca, Luca; Ferré, Fabrizio; Ausiello, Gabriele; Helmer-Citterich, Manuela

    2013-07-01

    Nucleos is a web server for the identification of nucleotide-binding sites in protein structures. Nucleos compares the structure of a query protein against a set of known template 3D binding sites representing nucleotide modules, namely the nucleobase, carbohydrate and phosphate. Structural features, clustering and conservation are used to filter and score the predictions. The predicted nucleotide modules are then joined to build whole nucleotide-binding sites, which are ranked by their score. The server takes as input either the PDB code of the query protein structure or a user-submitted structure in PDB format. The output of Nucleos is composed of ranked lists of predicted nucleotide-binding sites divided by nucleotide type (e.g. ATP-like). For each ranked prediction, Nucleos provides detailed information about the score, the template structure and the structural match for each nucleotide module composing the nucleotide-binding site. The predictions on the query structure and the template-binding sites can be viewed directly on the web through a graphical applet. In 98% of the cases, the modules composing correct predictions belong to proteins with no homology relationship between each other, meaning that the identification of brand-new nucleotide-binding sites is possible using information from non-homologous proteins. Nucleos is available at http://nucleos.bio.uniroma2.it/nucleos/.

  19. The Last Universal Common Ancestor: emergence, constitution and genetic legacy of an elusive forerunner

    Directory of Open Access Journals (Sweden)

    Labedan Bernard

    2008-07-01

    Full Text Available Abstract Background Since the reclassification of all life forms in three Domains (Archaea, Bacteria, Eukarya, the identity of their alleged forerunner (Last Universal Common Ancestor or LUCA has been the subject of extensive controversies: progenote or already complex organism, prokaryote or protoeukaryote, thermophile or mesophile, product of a protracted progression from simple replicators to complex cells or born in the cradle of "catalytically closed" entities? We present a critical survey of the topic and suggest a scenario. Results LUCA does not appear to have been a simple, primitive, hyperthermophilic prokaryote but rather a complex community of protoeukaryotes with a RNA genome, adapted to a broad range of moderate temperatures, genetically redundant, morphologically and metabolically diverse. LUCA's genetic redundancy predicts loss of paralogous gene copies in divergent lineages to be a significant source of phylogenetic anomalies, i.e. instances where a protein tree departs from the SSU-rRNA genealogy; consequently, horizontal gene transfer may not have the rampant character assumed by many. Examining membrane lipids suggest LUCA had sn1,2 ester fatty acid lipids from which Archaea emerged from the outset as thermophilic by "thermoreduction," with a new type of membrane, composed of sn2,3 ether isoprenoid lipids; this occurred without major enzymatic reconversion. Bacteria emerged by reductive evolution from LUCA and some lineages further acquired extreme thermophily by convergent evolution. This scenario is compatible with the hypothesis that the RNA to DNA transition resulted from different viral invasions as proposed by Forterre. Beyond the controversy opposing "replication first" to metabolism first", the predictive arguments of theories on "catalytic closure" or "compositional heredity" heavily weigh in favour of LUCA's ancestors having emerged as complex, self-replicating entities from which a genetic code arose under natural

  20. Role of Notch signaling in the mammalian heart

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, X.L.; Liu, J.C. [Department of Cardiac Surgery, The First Affiliated Hospital, Nanchang University, Donghu District, Nanchang, Jiangxi (China)

    2013-12-12

    Notch signaling is an evolutionarily ancient, highly conserved pathway important for deciding cell fate, cellular development, differentiation, proliferation, apoptosis, adhesion, and epithelial-to-mesenchymal transition. Notch signaling is also critical in mammalian cardiogenesis, as mutations in this signaling pathway are linked to human congenital heart disease. Furthermore, Notch signaling can repair myocardial injury by promoting myocardial regeneration, protecting ischemic myocardium, inducing angiogenesis, and negatively regulating cardiac fibroblast-myofibroblast transformation. This review provides an update on the known roles of Notch signaling in the mammalian heart. The goal is to assist in developing strategies to influence Notch signaling and optimize myocardial injury repair.

  1. Hematologic syndrome in man modeled from mammalian lethality

    International Nuclear Information System (INIS)

    Jones, T.D.

    1981-01-01

    Data on acute radiation lethality due to failure of the hematologic system in rats, mice, dogs, swine, monkeys and man are analyzed. Based on the available data, the mortality incidences for 1-100% levels can be computed directly if one has only an estimate of the dose lethal to 50% of the population (LD 50 ) for the mammalian strain and radiation environment of interest. The sole restriction is that the dose profile to the marrow be moderately uniform. If an LD 50 for any exposure situation has been measured, then one can readily scale to any desired situation through implicit-biological and empirical-physical relationships. The LD 50 for man, exposed to an isotropic cloud of photons, and knowledge of the bone-marrow dose profiles readily permit evaluation of the model for other levels of human mortality from different irradiating particles, partial body irradiation and spatially dependent and/or mixed radiation environments. (author)

  2. Enhanced activity of the purine nucleotide cycle of the exercising muscle in patients with hyperthyroidism.

    Science.gov (United States)

    Fukui, H; Taniguchi , S; Ueta, Y; Yoshida, A; Ohtahara, A; Hisatome, I; Shigemasa, C

    2001-05-01

    Myopathy frequently develops in patients with hyperthyroidism, but its precise mechanism is not clearly understood. In this study we focused on the purine nucleotide cycle, which contributes to ATP balance in skeletal muscles. To investigate purine metabolism in muscles, we measured metabolites related to the purine nucleotide cycle using the semiischemic forearm test. We examined the following four groups: patients with untreated thyrotoxic Graves' disease (untreated group), patients with Graves' disease treated with methimazole (treated group), patients in remission (remission group), and healthy volunteers (control group). To trace the glycolytic process, we measured glycolytic metabolites (lactate and pyruvate) as well as purine metabolites (ammonia and hypoxanthine). In the untreated group, the levels of lactate, pyruvate, and ammonia released were remarkably higher than those in the control group. Hypoxanthine release also increased in the untreated group, but the difference among the patient groups was not statistically significant. The accelerated purine catabolism did not improve after 3 months of treatment with methimazole, but it was completely normalized in the remission group. This indicated that long-term maintenance of thyroid function was necessary for purine catabolism to recover. We presume that an unbalanced ATP supply or conversion of muscle fiber type may account for the acceleration of the purine nucleotide cycle under thyrotoxicosis. Such acceleration of the purine nucleotide cycle is thought to be in part a protective mechanism against a rapid collapse of the ATP energy balance in exercising muscles of patients with hyperthyroidism.

  3. Properties and distribution of pure GA-sequences of mammalian genomes.

    Directory of Open Access Journals (Sweden)

    Guenter Albrecht-Buehler

    Full Text Available The article describes DNA sequences of mammalian genomes that are longer than 50 bases, but consist exclusively of G's and A's ('pure GA-sequences'. Although their frequency of incidence should be 10(-16 or smaller, the chromosomes of human, chimpanzee, dog, cat, rat, and mouse contained many tens of thousands of them ubiquitously located along the chromosomes with a species-dependent density, reaching sizes of up to 1300 [b]. With the exception of a small number of poly-A-, poly-G-, poly-GA-, and poly-GAAA-sequences (combined <0.5%, all pure GA-sequences of the mammals tested were unique individuals, contained several repeated short GA-containing motifs, and shared a common hexa-nucleotide spectrum. At most 2% of the human GA-sequences were transcribed into mRNAs; all others were not coding for proteins. Although this could have made them less subject to natural selection, they contained many [corrected] times fewer point mutations than one should expect from the genome at large. As to the presence of other sequences with similarly restricted base contents, there were approximately as many pure TC-sequences as pure GA-sequences, but many fewer pure AC-, TA, and TG-sequences. There were practically no pure GC-sequences. The functions of pure GA-sequences are not known. Supported by a number of observations related to heat shock phenomena, the article speculates that they serve as genomic sign posts which may help guide polymerases and transcription factors to their proper targets, and/or as spatial linkers that help generate the 3-dimensional organization of chromatin.

  4. Mechanisms and evolutionary patterns of mammalian and avian dosage compensation.

    Directory of Open Access Journals (Sweden)

    Philippe Julien

    Full Text Available As a result of sex chromosome differentiation from ancestral autosomes, male mammalian cells only contain one X chromosome. It has long been hypothesized that X-linked gene expression levels have become doubled in males to restore the original transcriptional output, and that the resulting X overexpression in females then drove the evolution of X inactivation (XCI. However, this model has never been directly tested and patterns and mechanisms of dosage compensation across different mammals and birds generally remain little understood. Here we trace the evolution of dosage compensation using extensive transcriptome data from males and females representing all major mammalian lineages and birds. Our analyses suggest that the X has become globally upregulated in marsupials, whereas we do not detect a global upregulation of this chromosome in placental mammals. However, we find that a subset of autosomal genes interacting with X-linked genes have become downregulated in placentals upon the emergence of sex chromosomes. Thus, different driving forces may underlie the evolution of XCI and the highly efficient equilibration of X expression levels between the sexes observed for both of these lineages. In the egg-laying monotremes and birds, which have partially homologous sex chromosome systems, partial upregulation of the X (Z in birds evolved but is largely restricted to the heterogametic sex, which provides an explanation for the partially sex-biased X (Z expression and lack of global inactivation mechanisms in these lineages. Our findings suggest that dosage reductions imposed by sex chromosome differentiation events in amniotes were resolved in strikingly different ways.

  5. Single molecule approaches for quantifying transcription and degradation rates in intact mammalian tissues.

    Science.gov (United States)

    Bahar Halpern, Keren; Itzkovitz, Shalev

    2016-04-01

    A key challenge in mammalian biology is to understand how rates of transcription and mRNA degradation jointly shape cellular gene expression. Powerful techniques have been developed for measuring these rates either genome-wide or at the single-molecule level, however these techniques are not applicable to assessment of cells within their native tissue microenvironment. Here we describe a technique based on single molecule Fluorescence in-situ Hybridization (smFISH) to measure transcription and degradation rates in intact mammalian tissues. The technique is based on dual-color libraries targeting the introns and exons of the genes of interest, enabling visualization and quantification of both nascent and mature mRNA. We present a software, TransQuant, that facilitates quantifying these rates from smFISH images. Our approach enables assessment of both transcription and degradation rates of any gene of interest while controlling for the inherent heterogeneity of intact tissues. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Bacteria Facilitate Enteric Virus Co-infection of Mammalian Cells and Promote Genetic Recombination.

    Science.gov (United States)

    Erickson, Andrea K; Jesudhasan, Palmy R; Mayer, Melinda J; Narbad, Arjan; Winter, Sebastian E; Pfeiffer, Julie K

    2018-01-10

    RNA viruses exist in genetically diverse populations due to high levels of mutations, many of which reduce viral fitness. Interestingly, intestinal bacteria can promote infection of several mammalian enteric RNA viruses, but the mechanisms and consequences are unclear. We screened a panel of 41 bacterial strains as a platform to determine how different bacteria impact infection of poliovirus, a model enteric virus. Most bacterial strains, including those extracted from cecal contents of mice, bound poliovirus, with each bacterium binding multiple virions. Certain bacterial strains increased viral co-infection of mammalian cells even at a low virus-to-host cell ratio. Bacteria-mediated viral co-infection correlated with bacterial adherence to cells. Importantly, bacterial strains that induced viral co-infection facilitated genetic recombination between two different viruses, thereby removing deleterious mutations and restoring viral fitness. Thus, bacteria-virus interactions may increase viral fitness through viral recombination at initial sites of infection, potentially limiting abortive infections. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. How old are chimpanzee communities? Time to the most recent common ancestor of the Y-chromosome in highly patrilocal societies.

    Science.gov (United States)

    Langergraber, Kevin E; Rowney, Carolyn; Schubert, Grit; Crockford, Cathy; Hobaiter, Catherine; Wittig, Roman; Wrangham, Richard W; Zuberbühler, Klaus; Vigilant, Linda

    2014-04-01

    Many human societies are patrilineal, with males passing on their name or descent group affiliation to their offspring. Y-chromosomes are also passed on from father to son, leading to the simple expectation that males sharing the same surname or descent group membership should have similar Y-chromosome haplotypes. Although several studies in patrilineal human societies have examined the correspondence between Y-chromosome variation and surname or descent group membership, similar studies in non-human animals are lacking. Chimpanzees represent an excellent species for examining the relationship between descent group membership and Y-chromosome variation because they live in strongly male philopatric communities that arise by a group-fissioning process. Here we take advantage of recent analytical advances in the calculation of the time to the most recent common male ancestor and a large sample size of 273 Y-chromosome short tandem repeat haplotypes to inform our understanding of the potential ages of eight communities of chimpanzees. We find that the times to the most recent common male ancestor of chimpanzee communities are several hundred to as much as over two thousand years. These genetic estimates of the great time depths of chimpanzee communities accord well with behavioral observations suggesting that community fissions are a very rare event and are similar to genetic estimates of the time depth of patrilineal human groups. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Direct detection of single-nucleotide polymorphisms in bacterial DNA by SNPtrap

    DEFF Research Database (Denmark)

    Grønlund, Hugo Ahlm; Moen, Birgitte; Hoorfar, Jeffrey

    2011-01-01

    A major challenge with single-nucleotide polymorphism (SNP) fingerprinting of bacteria and higher organisms is the combination of genome-wide screenings with the potential of multiplexing and accurate SNP detection. Single-nucleotide extension by the minisequencing principle represents a technolo...

  9. The architecture of mammalian ribosomal protein promoters

    Directory of Open Access Journals (Sweden)

    Perry Robert P

    2005-02-01

    Full Text Available Abstract Background Mammalian ribosomes contain 79 different proteins encoded by widely scattered single copy genes. Coordinate expression of these genes at transcriptional and post-transcriptional levels is required to ensure a roughly equimolar accumulation of ribosomal proteins. To date, detailed studies of only a very few ribosomal protein (rp promoters have been made. To elucidate the general features of rp promoter architecture, I made a detailed sequence comparison of the promoter regions of the entire set of orthologous human and mouse rp genes. Results A striking evolutionarily conserved feature of most rp genes is the separation by an intron of the sequences involved in transcriptional and translational regulation from the sequences with protein encoding function. Another conserved feature is the polypyrimidine initiator, which conforms to the consensus (Y2C+1TY(T2(Y3. At least 60 % of the rp promoters contain a largely conserved TATA box or A/T-rich motif, which should theoretically have TBP-binding capability. A remarkably high proportion of the promoters contain conserved binding sites for transcription factors that were previously implicated in rp gene expression, namely upstream GABP and Sp1 sites and downstream YY1 sites. Over 80 % of human and mouse rp genes contain a transposable element residue within 900 bp of 5' flanking sequence; very little sequence identity between human and mouse orthologues was evident more than 200 bp upstream of the transcriptional start point. Conclusions This analysis has provided some valuable insights into the general architecture of mammalian rp promoters and has identified parameters that might coordinately regulate the transcriptional activity of certain subsets of rp genes.

  10. Nucleotide Excision Repair in Cellular Chromatin: Studies with Yeast from Nucleotide to Gene to Genome

    Directory of Open Access Journals (Sweden)

    Simon Reed

    2012-09-01

    Full Text Available Here we review our development of, and results with, high resolution studies on global genome nucleotide excision repair (GGNER in Saccharomyces cerevisiae. We have focused on how GGNER relates to histone acetylation for its functioning and we have identified the histone acetyl tranferase Gcn5 and acetylation at lysines 9/14 of histone H3 as a major factor in enabling efficient repair. We consider results employing primarily MFA2 as a model gene, but also those with URA3 located at subtelomeric sequences. In the latter case we also see a role for acetylation at histone H4. We then go on to outline the development of a high resolution genome-wide approach that enables one to examine correlations between histone modifications and the nucleotide excision repair (NER of UV-induced cyclobutane pyrimidine dimers throughout entire genomes. This is an approach that will enable rapid advances in understanding the complexities of how compacted chromatin in chromosomes is processed to access DNA damage and then returned to its pre-damaged status to maintain epigenetic codes.

  11. Development of an Improved Mammalian Overexpression Method for Human CD62L

    Science.gov (United States)

    Brown, Haley A.; Roth, Gwynne; Holzapfel, Genevieve; Shen, Sarek; Rahbari, Kate; Ireland, Joanna; Zou, Zhongcheng; Sun, Peter D.

    2014-01-01

    We have previously developed a glutamine synthetase (GS)-based mammalian recombinant protein expression system that is capable of producing 5 to 30 mg/L recombinant proteins. The over expression is based on multiple rounds of target gene amplification driven by methionine sulfoximine (MSX), an inhibitor of glutamine synthetase. However, like other stable mammalian over expression systems, a major shortcoming of the GS-based expression system is its lengthy turn-around time, typically taking 4–6 months to produce. To shorten the construction time, we replaced the muti-round target gene amplifications with single-round in situ amplifications, thereby shortening the cell line construction to 2 months. The single-round in situ amplification method resulted in highest recombinant CD62L expressing CHO cell lines producing ~5mg/L soluble CD62L, similar to those derived from the multi-round amplification and selection method. In addition, we developed a MSX resistance assay as an alternative to utilizing ELISA for evaluating the expression level of stable recombinant CHO cell lines. PMID:25286402

  12. Preparation of highly and generally enriched mammalian tissues for solid state NMR

    Energy Technology Data Exchange (ETDEWEB)

    Wong, Veronica Wai Ching; Reid, David G.; Chow, Wing Ying; Rajan, Rakesh [University of Cambridge, Department of Chemistry (United Kingdom); Green, Maggie [University of Cambridge, Central Biomedical Resources, School of Clinical Medicine (United Kingdom); Brooks, Roger A. [University of Cambridge, Department of Trauma and Orthopaedic Surgery, Addenbrooke’s Hospital (United Kingdom); Duer, Melinda J., E-mail: mjd13@cam.ac.uk [University of Cambridge, Department of Chemistry (United Kingdom)

    2015-10-15

    An appreciable level of isotope labelling is essential for future NMR structure elucidation of mammalian biomaterials, which are either poorly expressed, or unexpressable, using micro-organisms. We present a detailed protocol for high level {sup 13}C enrichment even in slow turnover murine biomaterials (fur keratin), using a customized diet supplemented with commercial labelled algal hydrolysate and formulated as a gel to minimize wastage, which female mice consumed during pregnancy and lactation. This procedure produced approximately eightfold higher fur keratin labelling in pups, exposed in utero and throughout life to label, than in adults exposed for the same period, showing both the effectiveness, and necessity, of this approach.

  13. Nucleotide excision repair in the test tube.

    NARCIS (Netherlands)

    N.G.J. Jaspers (Nicolaas); J.H.J. Hoeijmakers (Jan)

    1995-01-01

    textabstractThe eukaryotic nucleotide excision-repair pathway has been reconstituted in vitro, an achievement that should hasten the full enzymological characterization of this highly complex DNA-repair pathway.

  14. Search for biological effects of 13C-enrichment in developing mammalian systems

    International Nuclear Information System (INIS)

    Gregg, C.; Ott, D.; Deaven, L.; Spielmann, H.; Krowke, R.; Neubert, D.

    1975-01-01

    Increasing diagnostic use of stable isotopes, especially in children and pregnant women, enhances the importance of studies on the biological isotope effects in sensitive mammalian systems. Experimental data on animal systems are meager. The mouse embryos was studied at various stages and mouse limb buds were studied in organ culture. Limb bud development in vitro was unaffected by incubation with 82 mol percent 13 C-glucose as judged by either morphological or biochemical criteria. Of 271 preimplantation embryos incubated in vitro, 95.2 percent developed normally; in 13 C-enriched medium, 96.5 percent showed normal development. 13 C-Enrichment of the embryos in vitro is over 60 percent. Administration of 1.2 g glucose-U- 13 C to pregnant mice during organogenesis leads to enrichment of maternal liver glycogen to over 17 mol percent 13 C, about one-third this level in the embryo, and a lower level in maternal blood. The absolute 13 C content of the embryo continues to increase for several days after the end of isotope administration, while the enrichment in maternal tissues falls. The lipid fraction of the fetus is most highly labeled shortly after the end of isotope administration []These studies on developing mammalian systems have not yet revealed any alteration of normal development due to stable isotope enrichment. (auth)

  15. Chemical test for mammalian feces in grain products: collaborative study.

    Science.gov (United States)

    Gerber, H R

    1989-01-01

    A collaborative study was conducted to validate the use of the AOAC alkaline phosphatase method for mammalian feces in corn meal, 44.B01-44.B06, for 7 additional products: brown rice cream, oat bran, grits, semolina, pasta flour, farina, and barley plus (a mixture of barley, oat bran, and brown rice). The proposed method determines the presence of alkaline phosphatase, an enzyme contained in mammalian feces, by using phenolphthalein diphosphate as the enzyme substrate in a test agar medium. Fecal matter is separated from the grain products by specific gravity differences in 1% test agar. As the product is distributed on liquid test agar, fecal fragments float while the grain products sink. The alkaline phosphatase cleaves phosphate radicals from phenolphthalein diphosphate, generating free phenolphthalein, which produces a pink to red-purple color around the fecal particles in the previously colorless medium. Collaborators' recovery averages ranged from 21.7 particles (72.3%) for oat bran to 25.3 particles (84.3%) for semolina at the 30 particle spike level. Overall average background was 0.4 positive reactions per food type. The collaborators reported that the method was quick, simple, and easy to use. The method has been approved interim official first action for all 7 grain products.

  16. E2F8 is essential for polyploidization in mammalian cells.

    Science.gov (United States)

    Pandit, Shusil K; Westendorp, Bart; Nantasanti, Sathidpak; van Liere, Elsbeth; Tooten, Peter C J; Cornelissen, Peter W A; Toussaint, Mathilda J M; Lamers, Wouter H; de Bruin, Alain

    2012-11-01

    Polyploidization is observed in all mammalian species and is a characteristic feature of hepatocytes, but its molecular mechanism and biological significance are unknown. Hepatocyte polyploidization in rodents occurs through incomplete cytokinesis, starts after weaning and increases with age. Here, we show in mice that atypical E2F8 is induced after weaning and required for hepatocyte binucleation and polyploidization. A deficiency in E2f8 led to an increase in the expression level of E2F target genes promoting cytokinesis and thereby preventing polyploidization. In contrast, loss of E2f1 enhanced polyploidization and suppressed the polyploidization defect of hepatocytes deficient for atypical E2Fs. In addition, E2F8 and E2F1 were found on the same subset of target promoters. Contrary to the long-standing hypothesis that polyploidization indicates terminal differentiation and senescence, we show that prevention of polyploidization through inactivation of atypical E2Fs has, surprisingly, no impact on liver differentiation, zonation, metabolism and regeneration. Together, these results identify E2F8 as a repressor and E2F1 as an activator of a transcriptional network controlling polyploidization in mammalian cells.

  17. R3D Align web server for global nucleotide to nucleotide alignments of RNA 3D structures.

    Science.gov (United States)

    Rahrig, Ryan R; Petrov, Anton I; Leontis, Neocles B; Zirbel, Craig L

    2013-07-01

    The R3D Align web server provides online access to 'RNA 3D Align' (R3D Align), a method for producing accurate nucleotide-level structural alignments of RNA 3D structures. The web server provides a streamlined and intuitive interface, input data validation and output that is more extensive and easier to read and interpret than related servers. The R3D Align web server offers a unique Gallery of Featured Alignments, providing immediate access to pre-computed alignments of large RNA 3D structures, including all ribosomal RNAs, as well as guidance on effective use of the server and interpretation of the output. By accessing the non-redundant lists of RNA 3D structures provided by the Bowling Green State University RNA group, R3D Align connects users to structure files in the same equivalence class and the best-modeled representative structure from each group. The R3D Align web server is freely accessible at http://rna.bgsu.edu/r3dalign/.

  18. Genomic Diversity and Evolution of the Fish Pathogen Flavobacterium psychrophilum

    DEFF Research Database (Denmark)

    Duchaud, Eric; Rochat, Tatiana; Habib, Christophe

    2018-01-01

    genome accounting for similar to 80% of the genes in each genome. The pan-genome seems nevertheless "open" according to the scaling exponent of a power-law fitted on the rate of new gene discovery when genomes are added one-by-one. Recombination is a key component of the evolutionary process...... of recombination and mutations to nucleotide-level differentiation (r/m) was estimated to similar to 13. Within CC-ST10, evolutionary distances computed on non-recombined regions and comparisons between 22 isolates sampled up to 27 years apart suggest a most recent common ancestor in the second half...

  19. The nucleotide sequence of satellite RNA in grapevine fanleaf virus, strain F13.

    Science.gov (United States)

    Fuchs, M; Pinck, M; Serghini, M A; Ravelonandro, M; Walter, B; Pinck, L

    1989-04-01

    The nucleotide sequence of cDNA copies of grapevine fanleaf virus (strain F13) satellite RNA has been determined. The primary structure obtained was 1114 nucleotides in length, excluding the poly(A) tail, and contained only one long open reading frame encoding a 341 residue, highly hydrophilic polypeptide of Mr37275. The coding sequence was bordered by a leader of 14 nucleotides and a 3'-terminal non-coding region of 74 nucleotides. No homology has been found with small satellite RNAs associated with other nepoviruses. Two limited homologies of eight nucleotides have been detected between the satellite RNA in grapevine fanleaf virus and those in tomato black ring virus, and a consensus sequence U.G/UGAAAAU/AU/AU/A at the 5' end of nepovirus RNAs is reported. A less extended consensus exists in this region in comovirus and picornavirus RNA.

  20. Structure and function of mammalian cilia

    DEFF Research Database (Denmark)

    Satir, Peter; Christensen, Søren T

    2008-01-01

    In the past half century, beginning with electron microscopic studies of 9 + 2 motile and 9 + 0 primary cilia, novel insights have been obtained regarding the structure and function of mammalian cilia. All cilia can now be viewed as sensory cellular antennae that coordinate a large number...

  1. Evolution of the fish rhabdovirus viral haemorrhagic septicaemia virus

    DEFF Research Database (Denmark)

    Einer-Jensen, Katja; Ahrens, Peter; Forsberg, Roald

    2004-01-01

    of free-living marine fish species. To study the genetic evolution of VHSV, the entire G gene from 74 isolates was analysed. VHSV from wild marine species caught in the Baltic Sea, Skagerrak, Kattegat, North Sea, and English Channel and European freshwater isolates, appeared to share a recent common...... ancestor. Based on the estimated nucleotide substitution rate, the ancestor of the European fresh water isolates was dated some 50 years ago. This finding fits with the initial reports in the 1950s on clinical observations of VHS in Danish freshwater rainbow trout farms. The study also indicates...

  2. Mammalian Sperm Motility: Observation and Theory

    KAUST Repository

    Gaffney, E.A.

    2011-01-21

    Mammalian spermatozoa motility is a subject of growing importance because of rising human infertility and the possibility of improving animal breeding. We highlight opportunities for fluid and continuum dynamics to provide novel insights concerning the mechanics of these specialized cells, especially during their remarkable journey to the egg. The biological structure of the motile sperm appendage, the flagellum, is described and placed in the context of the mechanics underlying the migration of mammalian sperm through the numerous environments of the female reproductive tract. This process demands certain specific changes to flagellar movement and motility for which further mechanical insight would be valuable, although this requires improved modeling capabilities, particularly to increase our understanding of sperm progression in vivo. We summarize current theoretical studies, highlighting the synergistic combination of imaging and theory in exploring sperm motility, and discuss the challenges for future observational and theoretical studies in understanding the underlying mechanics. © 2011 by Annual Reviews. All rights reserved.

  3. Nucleotide sequence of Hungarian grapevine chrome mosaic nepovirus RNA1.

    Science.gov (United States)

    Le Gall, O; Candresse, T; Brault, V; Dunez, J

    1989-10-11

    The nucleotide sequence of the RNA1 of hungarian grapevine chrome mosaic virus, a nepovirus very closely related to tomato black ring virus, has been determined from cDNA clones. It is 7212 nucleotides in length excluding the 3' terminal poly(A) tail and contains a large open reading frame extending from nucleotides 216 to 6971. The presumably encoded polyprotein is 2252 amino acids in length with a molecular weight of 250 kDa. The primary structure of the polyprotein was compared with that of other viral polyproteins, revealing the same general genetic organization as that of other picorna-like viruses (comoviruses, potyviruses and picornaviruses), except that an additional protein is suspected to occupy the N-terminus of the polyprotein.

  4. DNA damage does not appear to be a trigger for thermotolerance in mammalian cells

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, R.L.; Shiu, E.; Fisher, G.A.; Hahn, G.M.

    1988-08-01

    The hypothesis that DNA damage is the trigger for thermotolerance in mammalian cells was tested in Chinese hamster ovary cells by looking for evidence of thermotolerance after ionizing radiation or ultraviolet light exposure. As previous studies have demonstrated that relatively non-toxic radiation exposures do not induce thermotolerance in mammalian cells (Li et al. 1976), higher doses, comparable to those used in yeast to induce thermotolerance (Mitchel and Morison 1984), were tested in this study. Doses of this magnitude are lethal to mammalian cells, thereby precluding the use of clonogenic survival as an endpoint. The authors used three alternative assays as indicators of the subsequent development of thermotolerance: (a) heat-induced inhibition of total protein synthesis, (b) heat-induced uptake of dansyl lysine, and (c) synthesis of heat shock proteins. Only total protein synthesis revealed evidence of a small degree of thermotolerance which occurred immediately after ..gamma..-radiation exposure. By 4 h postirradiation the tolerance, as measured by this assay, was no longer evident. No evidence of thermotolerance was seen following UV exposure. In addition, when a large radiation dose was given either immediately before or after a heat treatment used to induce thermotolerance, there was no alteration in the level of heat-induced tolerance, despite the extensive number of DNA strand breaks caused by the radiation.

  5. DNA damage does not appear to be a trigger for thermotolerance in mammalian cells

    International Nuclear Information System (INIS)

    Anderson, R.L.; Shiu, E.; Fisher, G.A.; Hahn, G.M.

    1988-01-01

    The hypothesis that DNA damage is the trigger for thermotolerance in mammalian cells was tested in Chinese hamster ovary cells by looking for evidence of thermotolerance after ionizing radiation or ultraviolet light exposure. As previous studies have demonstrated that relatively non-toxic radiation exposures do not induce thermotolerance in mammalian cells (Li et al. 1976), higher doses, comparable to those used in yeast to induce thermotolerance (Mitchel and Morison 1984), were tested in this study. Doses of this magnitude are lethal to mammalian cells, thereby precluding the use of clonogenic survival as an endpoint. The authors used three alternative assays as indicators of the subsequent development of thermotolerance: (a) heat-induced inhibition of total protein synthesis, (b) heat-induced uptake of dansyl lysine, and (c) synthesis of heat shock proteins. Only total protein synthesis revealed evidence of a small degree of thermotolerance which occurred immediately after γ-radiation exposure. By 4 h postirradiation the tolerance, as measured by this assay, was no longer evident. No evidence of thermotolerance was seen following UV exposure. In addition, when a large radiation dose was given either immediately before or after a heat treatment used to induce thermotolerance, there was no alteration in the level of heat-induced tolerance, despite the extensive number of DNA strand breaks caused by the radiation. (author)

  6. Chasing ghosts: allopolyploid origin of Oxyria sinensis (Polygonaceae) from its only diploid congener and an unknown ancestor.

    Science.gov (United States)

    Luo, Xin; Hu, Quanjun; Zhou, Pingping; Zhang, Dan; Wang, Qian; Abbott, Richard J; Liu, Jianquan

    2017-06-01

    Reconstructing the origin of a polyploid species is particularly challenging when an ancestor has become extinct. Under such circumstances, the extinct donor of a genome found in the polyploid may be treated as a 'ghost' species in that its prior existence is recognized through the presence of its genome in the polyploid. In this study, we aimed to determine the polyploid origin of Oxyria sinensis (2n = 40) for which only one congeneric species is known, that is diploid O. digyna (2n = 14). Genomic in situ hybridization (GISH), transcriptome, phylogenetic and demographic analyses, and ecological niche modelling were conducted for this purpose. GISH revealed that O. sinensis comprised 14 chromosomes from O. digyna and 26 chromosomes from an unknown ancestor. Transcriptome analysis indicated that following divergence from O. digyna, involving genome duplication around 12 million years ago (Ma), a second genome duplication occurred approximately 6 Ma to give rise to O. sinensis. Oxyria sinensis was shown to contain homologous gene sequences divergent from those present in O. digyna in addition to a set that clustered with those in O. digyna. Coalescent simulations indicated that O. sinensis expanded its distribution approximately 6-7 Ma, possibly following the second polyploidization event, whereas O. digyna expanded its range much later. It was also indicated that the distributions of both species contracted and re-expanded during the Pleistocene climatic oscillations. Ecological niche modelling similarly suggested that both species experienced changes in their distributional ranges in response to Quaternary climatic changes. The extinction of the unknown 'ghost' tetraploid species implicated in the origin of O. sinensis could have resulted from superior adaptation of O. sinensis to repeated climatic changes in the region where it now occurs. © 2017 John Wiley & Sons Ltd.

  7. Most Compositae (Asteraceae) are descendants of a paleohexaploid and all share a paleotetraploid ancestor with the Calyceraceae.

    Science.gov (United States)

    Barker, Michael S; Li, Zheng; Kidder, Thomas I; Reardon, Chris R; Lai, Zhao; Oliveira, Luiz O; Scascitelli, Moira; Rieseberg, Loren H

    2016-07-01

    Like many other flowering plants, members of the Compositae (Asteraceae) have a polyploid ancestry. Previous analyses found evidence for an ancient duplication or possibly triplication in the early evolutionary history of the family. We sought to better place this paleopolyploidy in the phylogeny and assess its nature. We sequenced new transcriptomes for Barnadesia, the lineage sister to all other Compositae, and four representatives of closely related families. Using a recently developed algorithm, MAPS, we analyzed nuclear gene family phylogenies for evidence of paleopolyploidy. We found that the previously recognized Compositae paleopolyploidy is also in the ancestry of the Calyceraceae. Our phylogenomic analyses uncovered evidence for a successive second round of genome duplication among all sampled Compositae except Barnadesia. Our analyses of new samples with new tools provide a revised view of paleopolyploidy in the Compositae. Together with results from a high density Lactuca linkage map, our results suggest that the Compositae and Calyceraceae have a common paleotetraploid ancestor and that most Compositae are descendants of a paleohexaploid. Although paleohexaploids have been previously identified, this is the first example where the paleotetraploid and paleohexaploid lineages have survived over tens of millions of years. The complex polyploidy in the ancestry of the Compositae and Calyceraceae represents a unique opportunity to study the long-term evolutionary fates and consequences of different ploidal levels. © 2016 Botanical Society of America.

  8. Nitrogen K-edge X-ray absorption near edge structure (XANES) spectra of purine-containing nucleotides in aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Shimada, Hiroyuki; Fukao, Taishi; Minami, Hirotake; Ukai, Masatoshi [Department of Applied Physics, Tokyo University of Agriculture and Technology, Koganei-shi, Tokyo 184-8588 (Japan); Fujii, Kentaro; Yokoya, Akinari [Advanced Science Research Center, Japan Atomic Energy Agency, Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan); Fukuda, Yoshihiro; Saitoh, Yuji [Synchrotron Radiation Research Center, Japan Atomic Energy Agency, Sayo-gun, Hyougo 679-5148 (Japan)

    2014-08-07

    The N K-edge X-ray absorption near edge structure (XANES) spectra of the purine-containing nucleotide, guanosine 5{sup ′}-monophosphate (GMP), in aqueous solution are measured under various pH conditions. The spectra show characteristic peaks, which originate from resonant excitations of N 1s electrons to π* orbitals inside the guanine moiety of GMP. The relative intensities of these peaks depend on the pH values of the solution. The pH dependence is explained by the core-level shift of N atoms at specific sites caused by protonation and deprotonation. The experimental spectra are compared with theoretical spectra calculated by using density functional theory for GMP and the other purine-containing nucleotides, adenosine 5{sup ′}-monophosphate, and adenosine 5{sup ′}-triphosphate. The N K-edge XANES spectra for all of these nucleotides are classified by the numbers of N atoms with particular chemical bonding characteristics in the purine moiety.

  9. Nucleotide Excision DNA Repair is Associated with Age-Related Vascular Dysfunction

    Science.gov (United States)

    Durik, Matej; Kavousi, Maryam; van der Pluijm, Ingrid; Isaacs, Aaron; Cheng, Caroline; Verdonk, Koen; Loot, Annemarieke E.; Oeseburg, Hisko; Musterd-Bhaggoe, Usha; Leijten, Frank; van Veghel, Richard; de Vries, Rene; Rudez, Goran; Brandt, Renata; Ridwan, Yanto R.; van Deel, Elza D.; de Boer, Martine; Tempel, Dennie; Fleming, Ingrid; Mitchell, Gary F.; Verwoert, Germaine C.; Tarasov, Kirill V.; Uitterlinden, Andre G.; Hofman, Albert; Duckers, Henricus J.; van Duijn, Cornelia M.; Oostra, Ben A.; Witteman, Jacqueline C.M.; Duncker, Dirk J.; Danser, A.H. Jan; Hoeijmakers, Jan H.; Roks, Anton J.M.

    2012-01-01

    Background Vascular dysfunction in atherosclerosis and diabetes, as observed in the aging population of developed societies, is associated with vascular DNA damage and cell senescence. We hypothesized that cumulative DNA damage during aging contributes to vascular dysfunction. Methods and Results In mice with genomic instability due to the defective nucleotide excision repair genes ERCC1 and XPD (Ercc1d/− and XpdTTD mice), we explored age-dependent vascular function as compared to wild-type mice. Ercc1d/− mice showed increased vascular cell senescence, accelerated development of vasodilator dysfunction, increased vascular stiffness and elevated blood pressure at very young age. The vasodilator dysfunction was due to decreased endothelial eNOS levels as well as impaired smooth muscle cell function, which involved phosphodiesterase (PDE) activity. Similar to Ercc1d/− mice, age-related endothelium-dependent vasodilator dysfunction in XpdTTD animals was increased. To investigate the implications for human vascular disease, we explored associations between single nucleotide polymorphisms (SNPs) of selected nucleotide excision repair genes and arterial stiffness within the AortaGen Consortium, and found a significant association of a SNP (rs2029298) in the putative promoter region of DDB2 gene with carotid-femoral pulse wave velocity. Conclusions Mice with genomic instability recapitulate age-dependent vascular dysfunction as observed in animal models and in humans, but with an accelerated progression, as compared to wild type mice. In addition, we found associations between variations in human DNA repair genes and markers for vascular stiffness which is associated with aging. Our study supports the concept that genomic instability contributes importantly to the development of cardiovascular disease. PMID:22705887

  10. Evolutionary relationships in the ilarviruses: nucleotide sequence of prunus necrotic ringspot virus RNA 3.

    Science.gov (United States)

    Sánchez-Navarro, J A; Pallás, V

    1997-01-01

    The complete nucleotide sequence of an isolate of prunus necrotic ringspot virus (PNRSV) RNA 3 has been determined. Elucidation of the amino acid sequence of the proteins encoded by the two large open reading frames (ORFs) allowed us to carry out comparative and phylogenetic studies on the movement (MP) and coat (CP) proteins in the ilarvirus group. Amino acid sequence comparison of the MP revealed a highly conserved basic sequence motif with an amphipathic alpha-helical structure preceding the conserved motif of the '30K superfamily' proposed by Mushegian and Koonin [26] for MP's. Within this '30K' motif a strictly conserved transmembrane domain is present in all ilarviruses sequenced so far. At the amino-terminal end, prune dwarf virus (PDV) has an extension not present in other ilarviruses but which is observed in all bromo- and cucumoviruses, suggesting a common ancestor or a recombinational event in the Bromoviridae family. Examination of the N-terminus of the CP's of all ilarviruses revealed a highly basic region, part of which resembles the Arg-rich motif that has been characterized in the RNA-binding protein family. This motif has also been found in the other members of the Bromoviridae family, suggesting its involvement in a structural function. Furthermore this region is required for infectivity in ilarviruses. The similarities found in this Arg-rich motif are discussed in terms of this process known as genome activation. Finally, phylogenetic analysis of both the MP and CP proteins revealed a higher relationship of A1MV to PNRSV, apple mosaic virus (ApMV) and PDV than any other member of the ilarvirus group. In that sense, A1MV should be considered as a true ilarvirus instead of forming a distinct group of viruses.

  11. Vγ9Vδ2 T cell activation by strongly agonistic nucleotidic phosphoantigens.

    Science.gov (United States)

    Moulin, Morgane; Alguacil, Javier; Gu, Siyi; Mehtougui, Asmaa; Adams, Erin J; Peyrottes, Suzanne; Champagne, Eric

    2017-12-01

    Human Vγ9Vδ2 T cells can sense through their TCR tumor cells producing the weak endogenous phosphorylated antigen isopentenyl pyrophosphate (IPP), or bacterially infected cells producing the strong agonist hydroxyl dimethylallyl pyrophosphate (HDMAPP). The recognition of the phosphoantigen is dependent on its binding to the intracellular B30.2 domain of butyrophilin BTN3A1. Most studies have focused on pyrophosphate phosphoantigens. As triphosphate nucleotide derivatives are naturally co-produced with IPP and HDMAPP, we analyzed their specific properties using synthetic nucleotides derived from HDMAPP. The adenylated, thymidylated and uridylated triphosphate derivatives were found to activate directly Vγ9Vδ2 cell lines as efficiently as HDMAPP in the absence of accessory cells. These antigens were inherently resistant to terminal phosphatases, but apyrase, when added during a direct stimulation of Vγ9Vδ2 cells, abrogated their stimulating activity, indicating that their activity required transformation into strong pyrophosphate agonists by a nucleotide pyrophosphatase activity which is present in serum. Tumor cells can be sensitized with nucleotide phosphoantigens in the presence of apyrase to become stimulatory, showing that this can occur before their hydrolysis into pyrophosphates. Whereas tumors sensitized with HDMAPP rapidly lost their stimulatory activity, sensitization with nucleotide derivatives, in particular with the thymidine derivative, induced long-lasting stimulating ability. Using isothermal titration calorimetry, binding of some nucleotide derivatives to BTN3A1 intracellular domain was found to occur with an affinity similar to that of IPP, but much lower than that of HDMAPP. Thus, nucleotide phosphoantigens are precursors of pyrophosphate antigens which can deliver strong agonists intracellularly resulting in prolonged and strengthened activity.

  12. Transcriptional and post-transcriptional regulation of nucleotide excision repair genes in human cells

    Energy Technology Data Exchange (ETDEWEB)

    Lefkofsky, Hailey B. [Translational Oncology Program, University of Michigan Medical School, Ann Arbor, MI (United States); Veloso, Artur [Translational Oncology Program, University of Michigan Medical School, Ann Arbor, MI (United States); Department of Radiation Oncology, University of Michigan Medical School, Ann Arbor, MI (United States); Bioinformatics Program, Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI (United States); Ljungman, Mats, E-mail: ljungman@umich.edu [Translational Oncology Program, University of Michigan Medical School, Ann Arbor, MI (United States); Department of Radiation Oncology, University of Michigan Medical School, Ann Arbor, MI (United States); Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI (United States)

    2015-06-15

    Nucleotide excision repair (NER) removes DNA helix-distorting lesions induced by UV light and various chemotherapeutic agents such as cisplatin. These lesions efficiently block the elongation of transcription and need to be rapidly removed by transcription-coupled NER (TC-NER) to avoid the induction of apoptosis. Twenty-nine genes have been classified to code for proteins participating in nucleotide excision repair (NER) in human cells. Here we explored the transcriptional and post-transcriptional regulation of these NER genes across 13 human cell lines using Bru-seq and BruChase-seq, respectively. Many NER genes are relatively large in size and therefore will be easily inactivated by UV-induced transcription-blocking lesions. Furthermore, many of these genes produce transcripts that are rather unstable. Thus, these genes are expected to rapidly lose expression leading to a diminished function of NER. One such gene is ERCC6 that codes for the CSB protein critical for TC-NER. Due to its large gene size and high RNA turnover rate, the ERCC6 gene may act as dosimeter of DNA damage so that at high levels of damage, ERCC6 RNA levels would be diminished leading to the loss of CSB expression, inhibition of TC-NER and the promotion of cell death.

  13. Adsorption of nucleotides onto Fe-Mg-Al rich swelling clays

    Science.gov (United States)

    Feuillie, Cécile; Daniel, Isabelle; Michot, Laurent J.; Pedreira-Segade, Ulysse

    2013-11-01

    Mineral surfaces may have played a role in the origin of the first biopolymers, by concentrating organic monomers from a dilute ocean. Swelling clays provide a high surface area for the concentration of prebiotic monomers, and have therefore been the subject of numerous investigations. In that context, montmorillonite, the most abundant swelling clay in modern environments, has been extensively studied with regard to adsorption and polymerization of nucleic acids. However, montmorillonite was probably rather marginal on the primitive ocean floor compared to iron-magnesium rich phyllosilicates such as nontronite that results from the hydrothermal alteration of a mafic or ultramafic oceanic crust. In the present paper, we study the adsorption of nucleotides on montmorillonite and nontronite, at various pH and ionic strength conditions plausible for Archean sea-water. A thorough characterization of the mineral surfaces shows that nucleotide adsorb mainly on the edge faces of the smectites by ligand exchange between the phosphate groups of the nucleotides and the -OH groups from the edge sites over a wide pH range (4-10). Nontronite is more reactive than montmorillonite. At low pH, additional ion exchange may play a role as the nucleotides become positively charged.

  14. Archetype, adaptation and the mammalian heart

    NARCIS (Netherlands)

    Meijler, F.L.; Meijler, T.D.

    2011-01-01

    Forty years ago, we started our quest for 'The Holy Grail' of understanding ventricular rate control and rhythm in atrial fibrillation (AF). We therefore studied the morphology and function of a wide range of mammalian hearts. From mouse to whale, we found that all hearts show similar structural

  15. Identification of the Elusive Mammalian Enzyme Phosphatidylcholine-Specific Phospholipase C

    Science.gov (United States)

    2015-09-01

    Summary of Results. Task 1. To identify mammalian PC- PLC . Based on results published by other groups, we proposed to identify candidate PC- PLC mRNAs by...establishing the role of the elusive mammalian protein, phosphatidycholine- specific phospholipase C (PC- PLC ) in the inflammatory processes involved in...progression of rheumatoid arthritis (RA). Thus, the main scopes of this proposal are: 1. to identify the PC- PLC gene and protein; and 2. to test PC- PLC

  16. NU-IN: Nucleotide evolution and input module for the EvolSimulator genome simulation platform

    Directory of Open Access Journals (Sweden)

    Barker Michael S

    2010-08-01

    Full Text Available Abstract Background There is increasing demand to test hypotheses that contrast the evolution of genes and gene families among genomes, using simulations that work across these levels of organization. The EvolSimulator program was developed recently to provide a highly flexible platform for forward simulations of amino acid evolution in multiple related lineages of haploid genomes, permitting copy number variation and lateral gene transfer. Synonymous nucleotide evolution is not currently supported, however, and would be highly advantageous for comparisons to full genome, transcriptome, and single nucleotide polymorphism (SNP datasets. In addition, EvolSimulator creates new genomes for each simulation, and does not allow the input of user-specified sequences and gene family information, limiting the incorporation of further biological realism and/or user manipulations of the data. Findings We present modified C++ source code for the EvolSimulator platform, which we provide as the extension module NU-IN. With NU-IN, synonymous and non-synonymous nucleotide evolution is fully implemented, and the user has the ability to use real or previously-simulated sequence data to initiate a simulation of one or more lineages. Gene family membership can be optionally specified, as well as gene retention probabilities that model biased gene retention. We provide PERL scripts to assist the user in deriving this information from previous simulations. We demonstrate the features of NU-IN by simulating genome duplication (polyploidy in the presence of ongoing copy number variation in an evolving lineage. This example is initiated with real genomic data, and produces output that we analyse directly with existing bioinformatic pipelines. Conclusions The NU-IN extension module is a publicly available open source software (GNU GPLv3 license extension to EvolSimulator. With the NU-IN module, users are now able to simulate both drift and selection at the nucleotide

  17. PCR/LDR/capillary electrophoresis for detection of single-nucleotide differences between fetal and maternal DNA in maternal plasma.

    Science.gov (United States)

    Yi, Ping; Chen, Zhuqin; Zhao, Yan; Guo, Jianxin; Fu, Huabin; Zhou, Yuanguo; Yu, Lili; Li, Li

    2009-03-01

    The discovery of fetal DNA in maternal plasma has opened up an approach for noninvasive diagnosis. We have now assessed the possibility of detecting single-nucleotide differences between fetal and maternal DNA in maternal plasma by polymerase chain reaction (PCR)/ligase detection reaction((LDR)/capillary electrophoresis. PCR/LDR/capillary electrophoresis was applied to detect the genotype of c.454-397T>gene (ESR1) from experimental DNA models of maternal plasma at different sensitivity levels and 13 maternal plasma samples.alphaC in estrogen receptor. (1) Our results demonstrated that the technique could discriminate low abundance single-nucleotide mutation with a mutant/normal allele ratio up to 1:10 000. (2) Examination of ESR1 c.454-397T>C genotypes by using the method of restriction fragment length analysis was performed in 25 pregnant women, of whom 13 pregnant women had homozygous genotypes. The c.454-397T>C genotypes of paternally inherited fetal DNA in maternal plasma of these 13 women were detected by PCR/LDR/capillary electrophoresis, which were accordant with the results of umbilical cord blood. PCR/LDR/capillary electrophoresis has very high sensitivity to distinguish low abundance single nucleotide differences and can discriminate point mutations and single-nucleotide polymorphisms(SNPs) of paternally inherited fetal DNA in maternal plasma.

  18. Vacuum ultraviolet photoionization of carbohydrates and nucleotides

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Joong-Won, E-mail: jshin@govst.edu [Division of Science, Governors State University, University Park, Illinois 60484-0975 (United States); Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872 (United States); Bernstein, Elliot R., E-mail: erb@lamar.colostate.edu [Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872 (United States)

    2014-01-28

    Carbohydrates (2-deoxyribose, ribose, and xylose) and nucleotides (adenosine-, cytidine-, guanosine-, and uridine-5{sup ′}-monophosphate) are generated in the gas phase, and ionized with vacuum ultraviolet photons (VUV, 118.2 nm). The observed time of flight mass spectra of the carbohydrate fragmentation are similar to those observed [J.-W. Shin, F. Dong, M. Grisham, J. J. Rocca, and E. R. Bernstein, Chem. Phys. Lett. 506, 161 (2011)] for 46.9 nm photon ionization, but with more intensity in higher mass fragment ions. The tendency of carbohydrate ions to fragment extensively following ionization seemingly suggests that nucleic acids might undergo radiation damage as a result of carbohydrate, rather than nucleobase fragmentation. VUV photoionization of nucleotides (monophosphate-carbohydrate-nucleobase), however, shows that the carbohydrate-nucleobase bond is the primary fragmentation site for these species. Density functional theory (DFT) calculations indicate that the removed carbohydrate electrons by the 118.2 nm photons are associated with endocyclic C–C and C–O ring centered orbitals: loss of electron density in the ring bonds of the nascent ion can thus account for the observed fragmentation patterns following carbohydrate ionization. DFT calculations also indicate that electrons removed from nucleotides under these same conditions are associated with orbitals involved with the nucleobase-saccharide linkage electron density. The calculations give a general mechanism and explanation of the experimental results.

  19. Vacuum ultraviolet photoionization of carbohydrates and nucleotides

    International Nuclear Information System (INIS)

    Shin, Joong-Won; Bernstein, Elliot R.

    2014-01-01

    Carbohydrates (2-deoxyribose, ribose, and xylose) and nucleotides (adenosine-, cytidine-, guanosine-, and uridine-5 ′ -monophosphate) are generated in the gas phase, and ionized with vacuum ultraviolet photons (VUV, 118.2 nm). The observed time of flight mass spectra of the carbohydrate fragmentation are similar to those observed [J.-W. Shin, F. Dong, M. Grisham, J. J. Rocca, and E. R. Bernstein, Chem. Phys. Lett. 506, 161 (2011)] for 46.9 nm photon ionization, but with more intensity in higher mass fragment ions. The tendency of carbohydrate ions to fragment extensively following ionization seemingly suggests that nucleic acids might undergo radiation damage as a result of carbohydrate, rather than nucleobase fragmentation. VUV photoionization of nucleotides (monophosphate-carbohydrate-nucleobase), however, shows that the carbohydrate-nucleobase bond is the primary fragmentation site for these species. Density functional theory (DFT) calculations indicate that the removed carbohydrate electrons by the 118.2 nm photons are associated with endocyclic C–C and C–O ring centered orbitals: loss of electron density in the ring bonds of the nascent ion can thus account for the observed fragmentation patterns following carbohydrate ionization. DFT calculations also indicate that electrons removed from nucleotides under these same conditions are associated with orbitals involved with the nucleobase-saccharide linkage electron density. The calculations give a general mechanism and explanation of the experimental results

  20. The International Nucleotide Sequence Database Collaboration.

    Science.gov (United States)

    Cochrane, Guy; Karsch-Mizrachi, Ilene; Nakamura, Yasukazu

    2011-01-01

    Under the International Nucleotide Sequence Database Collaboration (INSDC; http://www.insdc.org), globally comprehensive public domain nucleotide sequence is captured, preserved and presented. The partners of this long-standing collaboration work closely together to provide data formats and conventions that enable consistent data submission to their databases and support regular data exchange around the globe. Clearly defined policy and governance in relation to free access to data and relationships with journal publishers have positioned INSDC databases as a key provider of the scientific record and a core foundation for the global bioinformatics data infrastructure. While growth in sequence data volumes comes no longer as a surprise to INSDC partners, the uptake of next-generation sequencing technology by mainstream science that we have witnessed in recent years brings a step-change to growth, necessarily making a clear mark on INSDC strategy. In this article, we introduce the INSDC, outline data growth patterns and comment on the challenges of increased growth.

  1. Cyclic nucleotides in platelets of genetically hypertriglyceridemic and hypertensive rats. Thrombin and nitric oxide responses are unrelated to plasma triglyceride levels

    Czech Academy of Sciences Publication Activity Database

    Pernollet, M. G.; Kuneš, Jaroslav; Zicha, Josef; Devynck, M. A.

    2001-01-01

    Roč. 104, č. 1 (2001), s. 29-37 ISSN 0049-3848 R&D Projects: GA AV ČR IAA7011711; GA AV ČR IAA7011805 Institutional research plan: CEZ:AV0Z5011922 Keywords : cyclic nucleotides * platelets * hypertriglyceridemic rats Subject RIV: FA - Cardiovascular Diseases incl. Cardiotharic Surgery Impact factor: 1.446, year: 2001

  2. Effects of catecholamines on rat myocardial metabolism. I. Influence of catecholamines on energy-rich nucleotides and phosphorylated fraction contents.

    Science.gov (United States)

    Merouze, P; Gaudemer, Y

    1975-01-01

    1. The influence of catecholamines (adrenaline and noradrenaline) on energy metabolism of the rat myocardium has been studied by incubating slices of this tissue with these hormones and by following the levels of the different phosphorylated fractions and adenylic nucleotides. 2. Similar effects are obtained with both hormones, adrenaline being more effective. 3. Catecholamines decrease significantly the total amount of phosphate while Pi content increases during the first 10 minutes of incubation; labile and residual phosphate contents increase at the beginning of incubation and decrease to the initial values afterwards. 4. ATP and ADP levels decrease significantly with both hormones; however, the effect of noradrenalin on the ATP level needs a longer time of incubation. The ATP/ADP ratios decrease after 5 minutes incubation and the total adenylic nucleotide content is severely decreased (35 per cent with adrenalin, after 20 minutes incubation). 5. Similar results have been obtained with other tissues; these results can explain the decrease of aerobic metabolism we observed under the same conditions.

  3. The Tomato Nucleotide-binding Leucine-rich Repeat Immune Receptor I-2 Couples DNA-binding to Nucleotide-binding Domain Nucleotide Exchange*

    Science.gov (United States)

    Fenyk, Stepan; Dixon, Christopher H.; Gittens, William H.; Townsend, Philip D.; Sharples, Gary J.; Pålsson, Lars-Olof; Takken, Frank L. W.; Cann, Martin J.

    2016-01-01

    Plant nucleotide-binding leucine-rich repeat (NLR) proteins enable plants to recognize and respond to pathogen attack. Previously, we demonstrated that the Rx1 NLR of potato is able to bind and bend DNA in vitro. DNA binding in situ requires its genuine activation following pathogen perception. However, it is unknown whether other NLR proteins are also able to bind DNA. Nor is it known how DNA binding relates to the ATPase activity intrinsic to NLR switch function required to immune activation. Here we investigate these issues using a recombinant protein corresponding to the N-terminal coiled-coil and nucleotide-binding domain regions of the I-2 NLR of tomato. Wild type I-2 protein bound nucleic acids with a preference of ssDNA ≈ dsDNA > ssRNA, which is distinct from Rx1. I-2 induced bending and melting of DNA. Notably, ATP enhanced DNA binding relative to ADP in the wild type protein, the null P-loop mutant K207R, and the autoactive mutant S233F. DNA binding was found to activate the intrinsic ATPase activity of I-2. Because DNA binding by I-2 was decreased in the presence of ADP when compared with ATP, a cyclic mechanism emerges; activated ATP-associated I-2 binds to DNA, which enhances ATP hydrolysis, releasing ADP-bound I-2 from the DNA. Thus DNA binding is a general property of at least a subset of NLR proteins, and NLR activation is directly linked to its activity at DNA. PMID:26601946

  4. The Tomato Nucleotide-binding Leucine-rich Repeat Immune Receptor I-2 Couples DNA-binding to Nucleotide-binding Domain Nucleotide Exchange.

    Science.gov (United States)

    Fenyk, Stepan; Dixon, Christopher H; Gittens, William H; Townsend, Philip D; Sharples, Gary J; Pålsson, Lars-Olof; Takken, Frank L W; Cann, Martin J

    2016-01-15

    Plant nucleotide-binding leucine-rich repeat (NLR) proteins enable plants to recognize and respond to pathogen attack. Previously, we demonstrated that the Rx1 NLR of potato is able to bind and bend DNA in vitro. DNA binding in situ requires its genuine activation following pathogen perception. However, it is unknown whether other NLR proteins are also able to bind DNA. Nor is it known how DNA binding relates to the ATPase activity intrinsic to NLR switch function required to immune activation. Here we investigate these issues using a recombinant protein corresponding to the N-terminal coiled-coil and nucleotide-binding domain regions of the I-2 NLR of tomato. Wild type I-2 protein bound nucleic acids with a preference of ssDNA ≈ dsDNA > ssRNA, which is distinct from Rx1. I-2 induced bending and melting of DNA. Notably, ATP enhanced DNA binding relative to ADP in the wild type protein, the null P-loop mutant K207R, and the autoactive mutant S233F. DNA binding was found to activate the intrinsic ATPase activity of I-2. Because DNA binding by I-2 was decreased in the presence of ADP when compared with ATP, a cyclic mechanism emerges; activated ATP-associated I-2 binds to DNA, which enhances ATP hydrolysis, releasing ADP-bound I-2 from the DNA. Thus DNA binding is a general property of at least a subset of NLR proteins, and NLR activation is directly linked to its activity at DNA. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Subnanomole detection and quantitation of high specific activity 32P-nucleotides

    International Nuclear Information System (INIS)

    Coniglio, C.; Pappas, G.; Gill, W.J.; Kashdan, M.; Maniscalco, M.

    1991-01-01

    Microbore liquid chromatography utilizes conventional HPLC and ultraviolet detection principles to determine subnanomole mass quantities of biologically significant molecules. This system takes advantage of specifically designed microflow equipment to analyze ultraviolet absorbing species at the picomole range. 32P-labeled nucleotides are examples of compounds routinely used at picomole quantities that are extremely difficult to accurately quantify using standard mass measurement techniques. The procedure described in this paper has the capability of measuring nucleotides down to 10 pmol using commercially available microbore ultraviolet detection equipment. The technique can be used to accurately measure the specific activity of as little as 10 microCi of an aqueous 32P-nucleotide solution

  6. Reconstructed ancestral Myo-inositol-3-phosphate synthases indicate that ancestors of the Thermococcales and Thermotoga species were more thermophilic than their descendants.

    Science.gov (United States)

    Butzin, Nicholas C; Lapierre, Pascal; Green, Anna G; Swithers, Kristen S; Gogarten, J Peter; Noll, Kenneth M

    2013-01-01

    The bacterial genomes of Thermotoga species show evidence of significant interdomain horizontal gene transfer from the Archaea. Members of this genus acquired many genes from the Thermococcales, which grow at higher temperatures than Thermotoga species. In order to study the functional history of an interdomain horizontally acquired gene we used ancestral sequence reconstruction to examine the thermal characteristics of reconstructed ancestral proteins of the Thermotoga lineage and its archaeal donors. Several ancestral sequence reconstruction methods were used to determine the possible sequences of the ancestral Thermotoga and Archaea myo-inositol-3-phosphate synthase (MIPS). These sequences were predicted to be more thermostable than the extant proteins using an established sequence composition method. We verified these computational predictions by measuring the activities and thermostabilities of purified proteins from the Thermotoga and the Thermococcales species, and eight ancestral reconstructed proteins. We found that the ancestral proteins from both the archaeal donor and the Thermotoga most recent common ancestor recipient were more thermostable than their descendants. We show that there is a correlation between the thermostability of MIPS protein and the optimal growth temperature (OGT) of its host, which suggests that the OGT of the ancestors of these species of Archaea and the Thermotoga grew at higher OGTs than their descendants.

  7. Reconstructed ancestral Myo-inositol-3-phosphate synthases indicate that ancestors of the Thermococcales and Thermotoga species were more thermophilic than their descendants.

    Directory of Open Access Journals (Sweden)

    Nicholas C Butzin

    Full Text Available The bacterial genomes of Thermotoga species show evidence of significant interdomain horizontal gene transfer from the Archaea. Members of this genus acquired many genes from the Thermococcales, which grow at higher temperatures than Thermotoga species. In order to study the functional history of an interdomain horizontally acquired gene we used ancestral sequence reconstruction to examine the thermal characteristics of reconstructed ancestral proteins of the Thermotoga lineage and its archaeal donors. Several ancestral sequence reconstruction methods were used to determine the possible sequences of the ancestral Thermotoga and Archaea myo-inositol-3-phosphate synthase (MIPS. These sequences were predicted to be more thermostable than the extant proteins using an established sequence composition method. We verified these computational predictions by measuring the activities and thermostabilities of purified proteins from the Thermotoga and the Thermococcales species, and eight ancestral reconstructed proteins. We found that the ancestral proteins from both the archaeal donor and the Thermotoga most recent common ancestor recipient were more thermostable than their descendants. We show that there is a correlation between the thermostability of MIPS protein and the optimal growth temperature (OGT of its host, which suggests that the OGT of the ancestors of these species of Archaea and the Thermotoga grew at higher OGTs than their descendants.

  8. Novel method to load multiple genes onto a mammalian artificial chromosome.

    Directory of Open Access Journals (Sweden)

    Anna Tóth

    Full Text Available Mammalian artificial chromosomes are natural chromosome-based vectors that may carry a vast amount of genetic material in terms of both size and number. They are reasonably stable and segregate well in both mitosis and meiosis. A platform artificial chromosome expression system (ACEs was earlier described with multiple loading sites for a modified lambda-integrase enzyme. It has been shown that this ACEs is suitable for high-level industrial protein production and the treatment of a mouse model for a devastating human disorder, Krabbe's disease. ACEs-treated mutant mice carrying a therapeutic gene lived more than four times longer than untreated counterparts. This novel gene therapy method is called combined mammalian artificial chromosome-stem cell therapy. At present, this method suffers from the limitation that a new selection marker gene should be present for each therapeutic gene loaded onto the ACEs. Complex diseases require the cooperative action of several genes for treatment, but only a limited number of selection marker genes are available and there is also a risk of serious side-effects caused by the unwanted expression of these marker genes in mammalian cells, organs and organisms. We describe here a novel method to load multiple genes onto the ACEs by using only two selectable marker genes. These markers may be removed from the ACEs before therapeutic application. This novel technology could revolutionize gene therapeutic applications targeting the treatment of complex disorders and cancers. It could also speed up cell therapy by allowing researchers to engineer a chromosome with a predetermined set of genetic factors to differentiate adult stem cells, embryonic stem cells and induced pluripotent stem (iPS cells into cell types of therapeutic value. It is also a suitable tool for the investigation of complex biochemical pathways in basic science by producing an ACEs with several genes from a signal transduction pathway of interest.

  9. Novel method to load multiple genes onto a mammalian artificial chromosome.

    Science.gov (United States)

    Tóth, Anna; Fodor, Katalin; Praznovszky, Tünde; Tubak, Vilmos; Udvardy, Andor; Hadlaczky, Gyula; Katona, Robert L

    2014-01-01

    Mammalian artificial chromosomes are natural chromosome-based vectors that may carry a vast amount of genetic material in terms of both size and number. They are reasonably stable and segregate well in both mitosis and meiosis. A platform artificial chromosome expression system (ACEs) was earlier described with multiple loading sites for a modified lambda-integrase enzyme. It has been shown that this ACEs is suitable for high-level industrial protein production and the treatment of a mouse model for a devastating human disorder, Krabbe's disease. ACEs-treated mutant mice carrying a therapeutic gene lived more than four times longer than untreated counterparts. This novel gene therapy method is called combined mammalian artificial chromosome-stem cell therapy. At present, this method suffers from the limitation that a new selection marker gene should be present for each therapeutic gene loaded onto the ACEs. Complex diseases require the cooperative action of several genes for treatment, but only a limited number of selection marker genes are available and there is also a risk of serious side-effects caused by the unwanted expression of these marker genes in mammalian cells, organs and organisms. We describe here a novel method to load multiple genes onto the ACEs by using only two selectable marker genes. These markers may be removed from the ACEs before therapeutic application. This novel technology could revolutionize gene therapeutic applications targeting the treatment of complex disorders and cancers. It could also speed up cell therapy by allowing researchers to engineer a chromosome with a predetermined set of genetic factors to differentiate adult stem cells, embryonic stem cells and induced pluripotent stem (iPS) cells into cell types of therapeutic value. It is also a suitable tool for the investigation of complex biochemical pathways in basic science by producing an ACEs with several genes from a signal transduction pathway of interest.

  10. Direct Capture of Functional Proteins from Mammalian Plasma Membranes into Nanodiscs.

    Science.gov (United States)

    Roy, Jahnabi; Pondenis, Holly; Fan, Timothy M; Das, Aditi

    2015-10-20

    Mammalian plasma membrane proteins make up the largest class of drug targets yet are difficult to study in a cell free system because of their intransigent nature. Herein, we perform direct encapsulation of plasma membrane proteins derived from mammalian cells into a functional nanodisc library. Peptide fingerprinting was used to analyze the proteome of the incorporated proteins in nanodiscs and to further demonstrate that the lipid composition of the nanodiscs directly affects the class of protein that is incorporated. Furthermore, the functionality of the incorporated membrane proteome was evaluated by measuring the activity of membrane proteins: Na(+)/K(+)-ATPase and receptor tyrosine kinases. This work is the first report of the successful establishment and characterization of a cell free functional library of mammalian membrane proteins into nanodiscs.

  11. Effect of radioprotectant WR 2721 on cyclic nucleotides, prostaglandins, and lysosomes

    International Nuclear Information System (INIS)

    Trocha, P.J.; Catravas, G.N.

    1983-01-01

    Within 1 hr after ip injection of the radioprotectant WR 2721 into rats, splenic cGMP levels dropped and remained suppressed for 6 hr before returning to normal. However, if rats were exposed to ionizing radiation 30-40 min after WR 2721 treatment, they had higher cGMP levels at 3 hr postirradiation than the nonirradiUted, drug-treated controls, but the cGMP content was still found to be lower than that of the irradiated nondrug-treated controls. Radiation exposure of animals pretreated with WR 2721 also resulted in higher liver and spleen levels of cAMP and additional elevations in spleen prostaglandin content, compared with irradiated controls at 3-6 hr after radiation treatment. The secondary fluctuations of lysosomal enzyme activities, prostaglandin content, and cyclic nucleotide levels were also altered in irradiated rats pretreated with WR 2721 when compared with irradiated controls. Liver and spleen lysosomal β-glucuronidase activities, spleen cAMP and cGMP levels, and spleen prostaglandin concentrations were closer to physiological levels at 3 days postirradiation in rats given WR 2721 before the radiation treatment

  12. De novo synthesis of adenine nucleotides in different skeletal muscle fiber types

    International Nuclear Information System (INIS)

    Tullson, P.C.; John-Alder, H.B.; Hood, D.A.; Terjung, R.L.

    1988-01-01

    Management of adenine nucleotide catabolism differs among skeletal muscle fiber types. This study evaluated whether there are corresponding differences in the rates of de novo synthesis of adenine nucleotide among fiber type sections of skeletal muscle using an isolated perfused rat hindquarter preparation. Label incorporation into adenine nucleotides from the [1-14C]glycine precursor was determined and used to calculate synthesis rates based on the intracellular glycine specific radioactivity. Results show that intracellular glycine is closely related to the direct precursor pool. Rates of de novo synthesis were highest in fast-twitch red muscle (57.0 +/- 4.0, 58.2 +/- 4.4 nmol.h-1.g-1; deep red gastrocnemius and vastus lateralis), relatively high in slow-twitch red muscle (47.0 +/- 3.1; soleus), and low in fast-twitch white muscle (26.1 +/- 2.0 and 21.6 +/- 2.3; superficial white gastrocnemius and vastus lateralis). Rates for four mixed muscles were intermediate, ranging between 32.3 and 37.3. Specific de novo synthesis rates exhibited a strong correlation (r = 0.986) with muscle section citrate synthase activity. Turnover rates (de novo synthesis rate/adenine nucleotide pool size) were highest in high oxidative muscle (0.82-1.06%/h), lowest in low oxidative muscle (0.30-0.35%/h), and intermediate in mixed muscle (0.44-0.55%/h). Our results demonstrate that differences in adenine nucleotide management among fiber types extends to the process of de novo adenine nucleotide synthesis

  13. A novel Y-xylosidase, nucleotide sequence encoding it and use thereof.

    NARCIS (Netherlands)

    Graaff, de L.H.; Peij, van N.N.M.E.; Broeck, van den H.C.; Visser, J.

    1996-01-01

    A nucleotide sequence is provided which encodes a peptide having beta-xylosidase activity and exhibits at least 30mino acid identity with the amino acid sequence shown in SEQ ID NO. 1 or hybridises under stringent conditions with a nucleotide sequence shown in SEQ ID NO. 1, or a part thereof having

  14. Non-linear leak currents affect mammalian neuron physiology

    Directory of Open Access Journals (Sweden)

    Shiwei eHuang

    2015-11-01

    Full Text Available In their seminal works on squid giant axons, Hodgkin and Huxley approximated the membrane leak current as Ohmic, i.e. linear, since in their preparation, sub-threshold current rectification due to the influence of ionic concentration is negligible. Most studies on mammalian neurons have made the same, largely untested, assumption. Here we show that the membrane time constant and input resistance of mammalian neurons (when other major voltage-sensitive and ligand-gated ionic currents are discounted varies non-linearly with membrane voltage, following the prediction of a Goldman-Hodgkin-Katz-based passive membrane model. The model predicts that under such conditions, the time constant/input resistance-voltage relationship will linearize if the concentration differences across the cell membrane are reduced. These properties were observed in patch-clamp recordings of cerebellar Purkinje neurons (in the presence of pharmacological blockers of other background ionic currents and were more prominent in the sub-threshold region of the membrane potential. Model simulations showed that the non-linear leak affects voltage-clamp recordings and reduces temporal summation of excitatory synaptic input. Together, our results demonstrate the importance of trans-membrane ionic concentration in defining the functional properties of the passive membrane in mammalian neurons as well as other excitable cells.

  15. DNA repair and radiation sensitivity in mammalian cells

    International Nuclear Information System (INIS)

    Chen, D.J.C.; Stackhouse, M.; Chen, D.S.

    1993-01-01

    Ionizing radiation induces various types of damage in mammalian cells including DNA single-strand breaks, DNA double-strand breaks (DSB), DNA-protein cross links, and altered DNA bases. Although human cells can repair many of these lesions there is little detailed knowledge of the nature of the genes and the encoded enzymes that control these repair processes. We report here on the cellular and genetic analyses of DNA double-strand break repair deficient mammalian cells. It has been well established that the DNA double-strand break is one of the major lesions induced by ionizing radiation. Utilizing rodent repair-deficient mutant, we have shown that the genes responsible for DNA double-strand break repair are also responsible for the cellular expression of radiation sensitivity. The molecular genetic analysis of DSB repair in rodent/human hybrid cells indicate that at least 6 different genes in mammalian cells are responsible for the repair of radiation-induced DNA double-strand breaks. Mapping and the prospect of cloning of human radiation repair genes are reviewed. Understanding the molecular and genetic basis of radiation sensitivity and DNA repair in man will provide a rational foundation to predict the individual risk associated with radiation exposure and to prevent radiation-induced genetic damage in the human population

  16. Comparative anatomy of the mammalian hypothalamic suprachiasmatic nucleus.

    Science.gov (United States)

    Cassone, V M; Speh, J C; Card, J P; Moore, R Y

    1988-01-01

    A detailed analysis of the cytoarchitecture, retinohypothalamic tract (RHT) projections, and immunohistochemical localization of major cell and fiber types within the hypothalamic suprachiasmatic nuclei (SCN) was conducted in five mammalian species: two species of opossum, the domestic cat, the guinea pig, and the house mouse. Cytoarchitectural and immunohistochemical studies were conducted in three additional species of marsupial mammals and in the domestic pig. The SCN in this diverse transect of mammalian taxonomy bear striking similarities. First, the SCN are similar in location, lying close to the third ventricle (3V) dorsal to the optic chiasm (OC), with a cytoarchitecture characterized by small, tightly packed neurons. Second, in all groups studied, the SCN receive bilateral retinal input. Third, the SCN contain immunohistochemically similar elements. These similarities suggest that the SCN developed characteristic features early in mammalian phylogeny. Some details of SCN organization vary among the species studied. In marsupials, vasopressin-like immunoreactive (VP-LI) and vasoactive intestinal polypeptide-like immunoreactive (VIP-LI) cells codistribute primarily in the dorsomedial aspects of the SCN, while in eutherians, VP-LI and VIP-LI cells are separated into SCN subnuclei. Furthermore, the marsupial RHT projects to the periventricular dorsomedial region, whereas the eutherian RHT projects more ventrally in the SCN into the zone that typically contains VIP-LI perikarya.

  17. Musculoskeletal networks reveal topological disparity in mammalian neck evolution.

    Science.gov (United States)

    Arnold, Patrick; Esteve-Altava, Borja; Fischer, Martin S

    2017-12-13

    The increase in locomotor and metabolic performance during mammalian evolution was accompanied by the limitation of the number of cervical vertebrae to only seven. In turn, nuchal muscles underwent a reorganization while forelimb muscles expanded into the neck region. As variation in the cervical spine is low, the variation in the arrangement of the neck muscles and their attachment sites (i.e., the variability of the neck's musculoskeletal organization) is thus proposed to be an important source of neck disparity across mammals. Anatomical network analysis provides a novel framework to study the organization of the anatomical arrangement, or connectivity pattern, of the bones and muscles that constitute the mammalian neck in an evolutionary context. Neck organization in mammals is characterized by a combination of conserved and highly variable network properties. We uncovered a conserved regionalization of the musculoskeletal organization of the neck into upper, mid and lower cervical modules. In contrast, there is a varying degree of complexity or specialization and of the integration of the pectoral elements. The musculoskeletal organization of the monotreme neck is distinctively different from that of therian mammals. Our findings reveal that the limited number of vertebrae in the mammalian neck does not result in a low musculoskeletal disparity when examined in an evolutionary context. However, this disparity evolved late in mammalian history in parallel with the radiation of certain lineages (e.g., cetartiodactyls, xenarthrans). Disparity is further facilitated by the enhanced incorporation of forelimb muscles into the neck and their variability in attachment sites.

  18. The potential effect of metallothionein 2A - 5 A/G single nucleotide polymorphism on blood cadmium, lead, zinc and copper levels

    International Nuclear Information System (INIS)

    Kayaalti, Zeliha; Aliyev, Vugar; Soeylemezoglu, Tuelin

    2011-01-01

    Metallothioneins (MTs) are low molecular weight, cysteine-rich, metal-binding proteins. Because of their rich thiol groups, MTs bind to the biologically essential metals and perform these metals' homeostatic regulations; absorb the heavy metals and assist with their transportation and extraction. The aim of this study was to investigate the association between the metallothionein 2A (MT2A) core promoter region - 5 A/G single nucleotide polymorphism (SNP) and Cd, Pb, Zn and Cu levels in the blood samples. MT2A polymorphism was determined by the standard polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) technique using the 616 blood samples and the genotype frequencies were found as 86.6% homozygote typical (AA), 12.8% heterozygote (AG) and 0.6% homozygote atypical (GG). Metal levels were analyzed by dual atomic absorption spectrophotometer system and the average levels of Cd, Pb, Zn and Cu in the blood samples were 1.69 ± 1.57 ppb, 30.62 ± 14.13 ppb, 0.98 ± 0.49 ppm and 1.04 ± 0.45 ppm, respectively. As a result; highly statistically significant associations were detected between the - 5 A/G core promoter region SNP in the MT2A gene and Cd, Pb and Zn levels (p = 0.004, p = 0.012 and p = 0.002, respectively), but no association was found with Cu level (p = 0.595). Individuals with the GG genotype had statistically lower Zn level and higher Cd and Pb levels in the blood samples than individuals with AA and AG genotypes. This study suggests that having the GG genotype individuals may be more sensitive for the metal toxicity and they should be more careful about protecting their health against the toxic effects of the heavy metals. - Highlights: → MT2A -5A/G SNP has strong effect on the Cd, Pb and Zn levels in the blood. → MT2A GG individuals should be more careful for their health against metal toxicity. → This SNP might be considered as a biomarker for risk of disease related to metals.

  19. HPLC-based quantification of bacterial housekeeping nucleotides and alarmone messengers ppGpp and pppGpp.

    Science.gov (United States)

    Varik, Vallo; Oliveira, Sofia Raquel Alves; Hauryliuk, Vasili; Tenson, Tanel

    2017-09-08

    Here we describe an HPLC-based method to quantify bacterial housekeeping nucleotides and the signaling messengers ppGpp and pppGpp. We have replicated and tested several previously reported HPLC-based approaches and assembled a method that can process 50 samples in three days, thus making kinetically resolved experiments feasible. The method combines cell harvesting by rapid filtration, followed by acid extraction, freeze-drying with chromatographic separation. We use a combination of C18 IPRP-HPLC (GMP unresolved and co-migrating with IMP; GDP and GTP; AMP, ADP and ATP; CTP; UTP) and SAX-HPLC in isocratic mode (ppGpp and pppGpp) with UV detection. The approach is applicable to bacteria without the requirement of metabolic labelling with 32P-labelled radioactive precursors. We applied our method to quantify nucleotide pools in Escherichia coli BW25113 K12-strain both throughout the growth curve and during acute stringent response induced by mupirocin. While ppGpp and pppGpp levels vary drastically (40- and ≥8-fold, respectively) these changes are decoupled from the quotients of the housekeeping pool and guanosine and adenosine housekeeping nucleotides: NTP/NDP/NMP ratio remains stable at 6/1/0.3 during both normal batch culture growth and upon acute amino acid starvation.

  20. Influence of Spirulina platensis exudates on the endocrine and nervous systems of a mammalian model

    OpenAIRE

    Samah M.M. Fathy; Ashraf M.M. Essa

    2015-01-01

    Objective: To investigate the effect of intra-peritoneal injection of purified exudates of axenic Spirulina platensis on the mammalian endocrine and nervous systems. Methods: The intra-peritoneal injection of the cyanobacterial exudates in mice was applied. Sex hormonal levels of testosterone and progesterone were measured using radioimmunoassay while the follicular stimulating hormone and luteinizing hormone were evaluated by direct chemiluminescence. In addition, superoxide dismutase, ca...

  1. When does the lung die? Kfc, cell viability, and adenine nucleotide changes in the circulation-arrested rat lung.

    Science.gov (United States)

    Jones, D R; Becker, R M; Hoffmann, S C; Lemasters, J J; Egan, T M

    1997-07-01

    Lungs harvested from cadaveric circulation-arrested donors may increase the donor pool for lung transplantation. To determine the degree and time course of ischemia-reperfusion injury, we evaluated the effect of O2 ventilation on capillary permeability [capillary filtration coefficient (Kfc)], cell viability, and total adenine nucleotide (TAN) levels in in situ circulation-arrested rat lungs. Kfc increased with increasing postmortem ischemic time (r = 0.88). Lungs ventilated with O2 1 h postmortem had similar Kfc and wet-to-dry ratios as controls. Nonventilated lungs had threefold (P Kfc at 30 and 60 min postmortem compared with controls. Cell viability decreased in all groups except for 30-min postmortem O2-ventilated lungs. TAN levels decreased with increasing ischemic time, particularly in nonventilated lungs. Loss of adenine nucleotides correlated with increasing Kfc values (r = 0.76). This study indicates that lungs retrieved 1 h postmortem may have normal Kfc with preharvest O2 ventilation. The relationship between Kfc and TAN suggests that vascular permeability may be related to lung TAN levels.

  2. Plastid: nucleotide-resolution analysis of next-generation sequencing and genomics data.

    Science.gov (United States)

    Dunn, Joshua G; Weissman, Jonathan S

    2016-11-22

    Next-generation sequencing (NGS) informs many biological questions with unprecedented depth and nucleotide resolution. These assays have created a need for analytical tools that enable users to manipulate data nucleotide-by-nucleotide robustly and easily. Furthermore, because many NGS assays encode information jointly within multiple properties of read alignments - for example, in ribosome profiling, the locations of ribosomes are jointly encoded in alignment coordinates and length - analytical tools are often required to extract the biological meaning from the alignments before analysis. Many assay-specific pipelines exist for this purpose, but there remains a need for user-friendly, generalized, nucleotide-resolution tools that are not limited to specific experimental regimes or analytical workflows. Plastid is a Python library designed specifically for nucleotide-resolution analysis of genomics and NGS data. As such, Plastid is designed to extract assay-specific information from read alignments while retaining generality and extensibility to novel NGS assays. Plastid represents NGS and other biological data as arrays of values associated with genomic or transcriptomic positions, and contains configurable tools to convert data from a variety of sources to such arrays. Plastid also includes numerous tools to manipulate even discontinuous genomic features, such as spliced transcripts, with nucleotide precision. Plastid automatically handles conversion between genomic and feature-centric coordinates, accounting for splicing and strand, freeing users of burdensome accounting. Finally, Plastid's data models use consistent and familiar biological idioms, enabling even beginners to develop sophisticated analytical workflows with minimal effort. Plastid is a versatile toolkit that has been used to analyze data from multiple NGS assays, including RNA-seq, ribosome profiling, and DMS-seq. It forms the genomic engine of our ORF annotation tool, ORF-RATER, and is readily

  3. The effects of selenium on glutathione peroxidase activity and radioprotection in mammalian cells

    International Nuclear Information System (INIS)

    Diamond, A.M.; Murray, J.L.; Dale, P.; Tritz, R.; Grdina, D.J.

    1995-01-01

    The media of representative mammalian cell lines were supplemented with low levels of selenium in the form of sodium selenite in order to investigate the effects of selenium on mammalian cells. Following incubation in 30 nM sodium selenite, these cells were assayed for changes in glutathione peroxidase (GPx) activity. The cells examined included NIH 3T3 mouse fibroblasts, PC12 rat sympathetic precursor cells, SupT-1 human lymphocytes, MCF-7 adr human breast carcinoma cells and AA8 Chinese hamster ovary cells. Selenium supplementation resulted in a marginal increase in GPx activity for the NIH 3T3, MCF-7 adr and Supt-1 cells but stimulated GPx activity approximately 5-fold in PC12 and AA8 cells. AA8 cells were selected to evaluate whether selenium supplementation was radioprotective against 60 cobalt gamma irradiation. Protection against radiation-induced mutation was measured by evaluating mutation frequency at the hprt locus. In this assay, preincubation of AA8 CHO cells significantly protected these cells from exposure to 8 Gy

  4. Different intracellular distribution of avian reovirus core protein sigmaA in cells of avian and mammalian origin

    International Nuclear Information System (INIS)

    Vázquez-Iglesias, Lorena; Lostalé-Seijo, Irene; Martínez-Costas, José; Benavente, Javier

    2012-01-01

    A comparative analysis of the intracellular distribution of avian reovirus (ARV) core protein sigmaA in cells of avian and mammalian origin revealed that, whereas the viral protein accumulates in the cytoplasm and nucleolus of avian cells, most sigmaA concentrates in the nucleoplasm of mammalian cells in tight association with the insoluble nuclear matrix fraction. Our results further showed that sigmaA becomes arrested in the nucleoplasm of mammalian cells via association with mammalian cell-specific factors and that this association prevents nucleolar targeting. Inhibition of RNA polymerase II activity, but not of RNA polymerase I activity, in infected mammalian cells induces nucleus-to-cytoplasm sigmaA translocation through a CRM1- and RanGTP-dependent mechanism, yet a heterokaryon assay suggests that sigmaA does not shuttle between the nucleus and cytoplasm. The scarcity of sigmaA in cytoplasmic viral factories of infected mammalian cells could be one of the factors contributing to limited ARV replication in mammalian cells.

  5. Different intracellular distribution of avian reovirus core protein sigmaA in cells of avian and mammalian origin

    Energy Technology Data Exchange (ETDEWEB)

    Vazquez-Iglesias, Lorena; Lostale-Seijo, Irene; Martinez-Costas, Jose [Departamento de Bioquimica y Biologia Molecular, Facultad de Farmacia, y Centro Singular de Investigacion en Quimica Biologica y Materiales Moleculares (CIQUS), Universidad de Santiago de Compostela, 15782-Santiago de Compostela (Spain); Benavente, Javier, E-mail: franciscojavier.benavente@usc.es [Departamento de Bioquimica y Biologia Molecular, Facultad de Farmacia, y Centro Singular de Investigacion en Quimica Biologica y Materiales Moleculares (CIQUS), Universidad de Santiago de Compostela, 15782-Santiago de Compostela (Spain)

    2012-10-25

    A comparative analysis of the intracellular distribution of avian reovirus (ARV) core protein sigmaA in cells of avian and mammalian origin revealed that, whereas the viral protein accumulates in the cytoplasm and nucleolus of avian cells, most sigmaA concentrates in the nucleoplasm of mammalian cells in tight association with the insoluble nuclear matrix fraction. Our results further showed that sigmaA becomes arrested in the nucleoplasm of mammalian cells via association with mammalian cell-specific factors and that this association prevents nucleolar targeting. Inhibition of RNA polymerase II activity, but not of RNA polymerase I activity, in infected mammalian cells induces nucleus-to-cytoplasm sigmaA translocation through a CRM1- and RanGTP-dependent mechanism, yet a heterokaryon assay suggests that sigmaA does not shuttle between the nucleus and cytoplasm. The scarcity of sigmaA in cytoplasmic viral factories of infected mammalian cells could be one of the factors contributing to limited ARV replication in mammalian cells.

  6. The nematode Caenorhabditis elegans as a tool to predict chemical activity on mammalian development and identify mechanisms influencing toxicological outcome.

    Science.gov (United States)

    Harlow, Philippa H; Perry, Simon J; Widdison, Stephanie; Daniels, Shannon; Bondo, Eddie; Lamberth, Clemens; Currie, Richard A; Flemming, Anthony J

    2016-03-18

    To determine whether a C. elegans bioassay could predict mammalian developmental activity, we selected diverse compounds known and known not to elicit such activity and measured their effect on C. elegans egg viability. 89% of compounds that reduced C. elegans egg viability also had mammalian developmental activity. Conversely only 25% of compounds found not to reduce egg viability in C. elegans were also inactive in mammals. We conclude that the C. elegans egg viability assay is an accurate positive predictor, but an inaccurate negative predictor, of mammalian developmental activity. We then evaluated C. elegans as a tool to identify mechanisms affecting toxicological outcomes among related compounds. The difference in developmental activity of structurally related fungicides in C. elegans correlated with their rate of metabolism. Knockdown of the cytochrome P450s cyp-35A3 and cyp-35A4 increased the toxicity to C. elegans of the least developmentally active compounds to the level of the most developmentally active. This indicated that these P450s were involved in the greater rate of metabolism of the less toxic of these compounds. We conclude that C. elegans based approaches can predict mammalian developmental activity and can yield plausible hypotheses for factors affecting the biological potency of compounds in mammals.

  7. Effects of dietary nucleotides on growth, non-specific immune response and disease resistance of sea cucumber Apostichopus japonicas.

    Science.gov (United States)

    Wei, Zehong; Yi, Lina; Xu, Wei; Zhou, Huihui; Zhang, Yanjiao; Zhang, Wenbing; Mai, Kangsen

    2015-11-01

    A 9-week feeding trial was conducted to investigate the effects of dietary nucleotides (NT) on growth, immune response and disease resistance of sea cucumber Apostichopus japonicas (initial weight: 5.87 ± 0.03 g). Four graded levels of dietary NT were designed as 0, 150, 375 and 700 mg/kg, respectively. After the feeding trial, sea cucumbers were challenged with Vibrio splendidus for the determination of disease resistance. The results showed that the specific growth rates were significantly higher in sea cucumber fed the diet with 375 mg/kg NT than those fed the basal diet without NT supplementation (P sea cucumber fed diets with nucleotides (≥ 375 mg/kg) had significantly higher phagocytic activities in coelomic fluid (P 0.05). After being challenged with V. splendidus, the cumulative mortalities of sea cucumber fed diets with 150 and 375 mg/kg NT were significantly lower than that in the treatment without dietary nucleotide supplementation (P sea cucumber in vivo. In conclusion, it was showed that dietary NT does increase the growth performance, non-specific immunity and disease resistance of sea cucumber. The optimum dietary NT supplementation level for sea cucumber was found to be 375 mg/kg. The application of dietary NT may present a novel strategy for health management in sea cucumber's aquaculture. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Production of soluble mammalian proteins in Escherichia coli: identification of protein features that correlate with successful expression

    Directory of Open Access Journals (Sweden)

    Perera Rajika L

    2004-12-01

    Full Text Available Abstract Background In the search for generic expression strategies for mammalian protein families several bacterial expression vectors were examined for their ability to promote high yields of soluble protein. Proteins studied included cell surface receptors (Ephrins and Eph receptors, CD44, kinases (EGFR-cytoplasmic domain, CDK2 and 4, proteases (MMP1, CASP2, signal transduction proteins (GRB2, RAF1, HRAS and transcription factors (GATA2, Fli1, Trp53, Mdm2, JUN, FOS, MAD, MAX. Over 400 experiments were performed where expression of 30 full-length proteins and protein domains were evaluated with 6 different N-terminal and 8 C-terminal fusion partners. Expression of an additional set of 95 mammalian proteins was also performed to test the conclusions of this study. Results Several protein features correlated with soluble protein expression yield including molecular weight and the number of contiguous hydrophobic residues and low complexity regions. There was no relationship between successful expression and protein pI, grand average of hydropathicity (GRAVY, or sub-cellular location. Only small globular cytoplasmic proteins with an average molecular weight of 23 kDa did not require a solubility enhancing tag for high level soluble expression. Thioredoxin (Trx and maltose binding protein (MBP were the best N-terminal protein fusions to promote soluble expression, but MBP was most effective as a C-terminal fusion. 63 of 95 mammalian proteins expressed at soluble levels of greater than 1 mg/l as N-terminal H10-MBP fusions and those that failed possessed, on average, a higher molecular weight and greater number of contiguous hydrophobic amino acids and low complexity regions. Conclusions By analysis of the protein features identified here, this study will help predict which mammalian proteins and domains can be successfully expressed in E. coli as soluble product and also which are best targeted for a eukaryotic expression system. In some cases

  9. Dedifferentiation and proliferation of mammalian cardiomyocytes.

    Directory of Open Access Journals (Sweden)

    Yiqiang Zhang

    2010-09-01

    Full Text Available It has long been thought that mammalian cardiomyocytes are terminally-differentiated and unable to proliferate. However, myocytes in more primitive animals such as zebrafish are able to dedifferentiate and proliferate to regenerate amputated cardiac muscle.Here we test the hypothesis that mature mammalian cardiomyocytes retain substantial cellular plasticity, including the ability to dedifferentiate, proliferate, and acquire progenitor cell phenotypes. Two complementary methods were used: 1 cardiomyocyte purification from rat hearts, and 2 genetic fate mapping in cardiac explants from bi-transgenic mice. Cardiomyocytes isolated from rodent hearts were purified by multiple centrifugation and Percoll gradient separation steps, and the purity verified by immunostaining and RT-PCR. Within days in culture, purified cardiomyocytes lost their characteristic electrophysiological properties and striations, flattened and began to divide, as confirmed by proliferation markers and BrdU incorporation. Many dedifferentiated cardiomyocytes went on to express the stem cell antigen c-kit, and the early cardiac transcription factors GATA4 and Nkx2.5. Underlying these changes, inhibitory cell cycle molecules were suppressed in myocyte-derived cells (MDCs, while microRNAs known to orchestrate proliferation and pluripotency increased dramatically. Some, but not all, MDCs self-organized into spheres and re-differentiated into myocytes and endothelial cells in vitro. Cell fate tracking of cardiomyocytes from 4-OH-Tamoxifen-treated double-transgenic MerCreMer/ZEG mouse hearts revealed that green fluorescent protein (GFP continues to be expressed in dedifferentiated cardiomyocytes, two-thirds of which were also c-kit(+.Contradicting the prevailing view that they are terminally-differentiated, postnatal mammalian cardiomyocytes are instead capable of substantial plasticity. Dedifferentiation of myocytes facilitates proliferation and confers a degree of stemness

  10. Mammalian cell biology

    International Nuclear Information System (INIS)

    Elkind, M.M.

    1975-01-01

    Studies of the action of N-ethylmaleimide (NEM), as an inhibitor of repair of x radioinduced injuries were extended from synchronous Chinese hamster cells to synchronous human HeLa cells. These studies showed a similar mode of action in both cell types lending support to the notion that conclusions may be extracted from such observations that are of fairly general applicability to mammalian cells. Radiation studies with NEM are being extended to hypoxic cells to inquire if NEM is effective relative to oxygen-independent damage. Observations relative to survival, DNA synthesis, and DNA strand elongation resulting from the addition products to DNA when cells were exposed to near uv in the presence of psoralen were extended. (U.S.)

  11. Delivery of proteins to mammalian cells via gold nanoparticle mediated laser transfection

    International Nuclear Information System (INIS)

    Heinemann, D; Kalies, S; Schomaker, M; Ertmer, W; Meyer, H; Ripken, T; Murua Escobar, H

    2014-01-01

    Nanoparticle laser interactions are in widespread use in cell manipulation. In particular, molecular medicine needs techniques for the directed delivery of molecules into mammalian cells. Proteins are the final mediator of most cellular cascades. However, despite several methodical approaches, the efficient delivery of proteins to cells remains challenging. This paper presents a new protein transfection technique via laser scanning of cells previously incubated with gold nanoparticles. The laser-induced plasmonic effects on the gold nanoparticles cause a transient permeabilization of the cellular membrane, allowing proteins to enter the cell. Applying this technique, it was possible to deliver green fluorescent protein into mammalian cells with an efficiency of 43%, maintaining a high level of cell viability. Furthermore, a functional delivery of Caspase 3, an apoptosis mediating protein, was demonstrated and evaluated in several cellular assays. Compared to conventional protein transfection techniques such as microinjection, the methodical approach presented here enables high-throughput transfection of about 10 000 cells per second. Moreover, a well-defined point in time of delivery is guaranteed by gold nanoparticle mediated laser transfection, allowing the detailed temporal analysis of cellular pathways and protein trafficking. (papers)

  12. Convergent evolution of Hawaiian and Australo-Pacific honeyeaters from distant songbird ancestors.

    Science.gov (United States)

    Fleischer, Robert C; James, Helen F; Olson, Storrs L

    2008-12-23

    The Hawaiian "honeyeaters," five endemic species of recently extinct, nectar-feeding songbirds in the genera Moho and Chaetoptila, looked and acted like Australasian honeyeaters (Meliphagidae), and no taxonomist since their discovery on James Cook's third voyage has classified them as anything else. We obtained DNA sequences from museum specimens of Moho and Chaetoptila collected in Hawaii 115-158 years ago. Phylogenetic analysis of these sequences supports monophyly of the two Hawaiian genera but, surprisingly, reveals that neither taxon is a meliphagid honeyeater, nor even in the same part of the songbird radiation as meliphagids. Instead, the Hawaiian species are divergent members of a passeridan group that includes deceptively dissimilar families of songbirds (Holarctic waxwings, neotropical silky flycatchers, and palm chats). Here we designate them as a new family, the Mohoidae. A nuclear-DNA rate calibration suggests that mohoids diverged from their closest living ancestor 14-17 mya, coincident with the estimated earliest arrival in Hawaii of a bird-pollinated plant lineage. Convergent evolution, the evolution of similar traits in distantly related taxa because of common selective pressures, is illustrated well by nectar-feeding birds, but the morphological, behavioral, and ecological similarity of the mohoids to the Australasian honeyeaters makes them a particularly striking example of the phenomenon.

  13. AVP-stimulated nucleotide secretion in perfused mouse medullary thick ascending limb and cortical collecting duct

    DEFF Research Database (Denmark)

    Odgaard, Elvin V. P.; Prætorius, Helle; Leipziger, Jens Georg

    2009-01-01

    is stimulated remain elusive. Here, we investigate the phenomenon of nucleotide secretion in intact, perfused mouse medullary thick ascending limb (mTAL) and cortical collecting duct (CCD). The nucleotide secretion was monitored by a biosensor adapted to register nucleotides in the tubular outflow...

  14. Impact of anesthesia and euthanasia on metabolomics of mammalian tissues: studies in a C57BL/6J mouse model.

    Directory of Open Access Journals (Sweden)

    Katherine A Overmyer

    Full Text Available A critical application of metabolomics is the evaluation of tissues, which are often the primary sites of metabolic dysregulation in disease. Laboratory rodents have been widely used for metabolomics studies involving tissues due to their facile handing, genetic manipulability and similarity to most aspects of human metabolism. However, the necessary step of administration of anesthesia in preparation for tissue sampling is not often given careful consideration, in spite of its potential for causing alterations in the metabolome. We examined, for the first time using untargeted and targeted metabolomics, the effect of several commonly used methods of anesthesia and euthanasia for collection of skeletal muscle, liver, heart, adipose and serum of C57BL/6J mice. The data revealed dramatic, tissue-specific impacts of tissue collection strategy. Among many differences observed, post-euthanasia samples showed elevated levels of glucose 6-phosphate and other glycolytic intermediates in skeletal muscle. In heart and liver, multiple nucleotide and purine degradation metabolites accumulated in tissues of euthanized compared to anesthetized animals. Adipose tissue was comparatively less affected by collection strategy, although accumulation of lactate and succinate in euthanized animals was observed in all tissues. Among methods of tissue collection performed pre-euthanasia, ketamine showed more variability compared to isoflurane and pentobarbital. Isoflurane induced elevated liver aspartate but allowed more rapid initiation of tissue collection. Based on these findings, we present a more optimal collection strategy mammalian tissues and recommend that rodent tissues intended for metabolomics studies be collected under anesthesia rather than post-euthanasia.

  15. Impact of anesthesia and euthanasia on metabolomics of mammalian tissues: studies in a C57BL/6J mouse model.

    Science.gov (United States)

    Overmyer, Katherine A; Thonusin, Chanisa; Qi, Nathan R; Burant, Charles F; Evans, Charles R

    2015-01-01

    A critical application of metabolomics is the evaluation of tissues, which are often the primary sites of metabolic dysregulation in disease. Laboratory rodents have been widely used for metabolomics studies involving tissues due to their facile handing, genetic manipulability and similarity to most aspects of human metabolism. However, the necessary step of administration of anesthesia in preparation for tissue sampling is not often given careful consideration, in spite of its potential for causing alterations in the metabolome. We examined, for the first time using untargeted and targeted metabolomics, the effect of several commonly used methods of anesthesia and euthanasia for collection of skeletal muscle, liver, heart, adipose and serum of C57BL/6J mice. The data revealed dramatic, tissue-specific impacts of tissue collection strategy. Among many differences observed, post-euthanasia samples showed elevated levels of glucose 6-phosphate and other glycolytic intermediates in skeletal muscle. In heart and liver, multiple nucleotide and purine degradation metabolites accumulated in tissues of euthanized compared to anesthetized animals. Adipose tissue was comparatively less affected by collection strategy, although accumulation of lactate and succinate in euthanized animals was observed in all tissues. Among methods of tissue collection performed pre-euthanasia, ketamine showed more variability compared to isoflurane and pentobarbital. Isoflurane induced elevated liver aspartate but allowed more rapid initiation of tissue collection. Based on these findings, we present a more optimal collection strategy mammalian tissues and recommend that rodent tissues intended for metabolomics studies be collected under anesthesia rather than post-euthanasia.

  16. Impact of Anesthesia and Euthanasia on Metabolomics of Mammalian Tissues: Studies in a C57BL/6J Mouse Model

    Science.gov (United States)

    Overmyer, Katherine A.; Thonusin, Chanisa; Qi, Nathan R.; Burant, Charles F.; Evans, Charles R.

    2015-01-01

    A critical application of metabolomics is the evaluation of tissues, which are often the primary sites of metabolic dysregulation in disease. Laboratory rodents have been widely used for metabolomics studies involving tissues due to their facile handing, genetic manipulability and similarity to most aspects of human metabolism. However, the necessary step of administration of anesthesia in preparation for tissue sampling is not often given careful consideration, in spite of its potential for causing alterations in the metabolome. We examined, for the first time using untargeted and targeted metabolomics, the effect of several commonly used methods of anesthesia and euthanasia for collection of skeletal muscle, liver, heart, adipose and serum of C57BL/6J mice. The data revealed dramatic, tissue-specific impacts of tissue collection strategy. Among many differences observed, post-euthanasia samples showed elevated levels of glucose 6-phosphate and other glycolytic intermediates in skeletal muscle. In heart and liver, multiple nucleotide and purine degradation metabolites accumulated in tissues of euthanized compared to anesthetized animals. Adipose tissue was comparatively less affected by collection strategy, although accumulation of lactate and succinate in euthanized animals was observed in all tissues. Among methods of tissue collection performed pre-euthanasia, ketamine showed more variability compared to isoflurane and pentobarbital. Isoflurane induced elevated liver aspartate but allowed more rapid initiation of tissue collection. Based on these findings, we present a more optimal collection strategy mammalian tissues and recommend that rodent tissues intended for metabolomics studies be collected under anesthesia rather than post-euthanasia. PMID:25658945

  17. Ecology and evolution of mammalian biodiversity.

    Science.gov (United States)

    Jones, Kate E; Safi, Kamran

    2011-09-12

    Mammals have incredible biological diversity, showing extreme flexibility in eco-morphology, physiology, life history and behaviour across their evolutionary history. Undoubtedly, mammals play an important role in ecosystems by providing essential services such as regulating insect populations, seed dispersal and pollination and act as indicators of general ecosystem health. However, the macroecological and macroevolutionary processes underpinning past and present biodiversity patterns are only beginning to be explored on a global scale. It is also particularly important, in the face of the global extinction crisis, to understand these processes in order to be able to use this knowledge to prevent future biodiversity loss and loss of ecosystem services. Unfortunately, efforts to understand mammalian biodiversity have been hampered by a lack of data. New data compilations on current species' distributions, ecologies and evolutionary histories now allow an integrated approach to understand this biodiversity. We review and synthesize these new studies, exploring the past and present ecology and evolution of mammalian biodiversity, and use these findings to speculate about the mammals of our future.

  18. Ecology and evolution of mammalian biodiversity

    Science.gov (United States)

    Jones, Kate E.; Safi, Kamran

    2011-01-01

    Mammals have incredible biological diversity, showing extreme flexibility in eco-morphology, physiology, life history and behaviour across their evolutionary history. Undoubtedly, mammals play an important role in ecosystems by providing essential services such as regulating insect populations, seed dispersal and pollination and act as indicators of general ecosystem health. However, the macroecological and macroevolutionary processes underpinning past and present biodiversity patterns are only beginning to be explored on a global scale. It is also particularly important, in the face of the global extinction crisis, to understand these processes in order to be able to use this knowledge to prevent future biodiversity loss and loss of ecosystem services. Unfortunately, efforts to understand mammalian biodiversity have been hampered by a lack of data. New data compilations on current species' distributions, ecologies and evolutionary histories now allow an integrated approach to understand this biodiversity. We review and synthesize these new studies, exploring the past and present ecology and evolution of mammalian biodiversity, and use these findings to speculate about the mammals of our future. PMID:21807728

  19. Efficient secretion of small proteins in mammalian cells relies on Sec62-dependent posttranslational translocation

    Science.gov (United States)

    Lakkaraju, Asvin K. K.; Thankappan, Ratheeshkumar; Mary, Camille; Garrison, Jennifer L.; Taunton, Jack; Strub, Katharina

    2012-01-01

    Mammalian cells secrete a large number of small proteins, but their mode of translocation into the endoplasmic reticulum is not fully understood. Cotranslational translocation was expected to be inefficient due to the small time window for signal sequence recognition by the signal recognition particle (SRP). Impairing the SRP pathway and reducing cellular levels of the translocon component Sec62 by RNA interference, we found an alternate, Sec62-dependent translocation path in mammalian cells required for the efficient translocation of small proteins with N-terminal signal sequences. The Sec62-dependent translocation occurs posttranslationally via the Sec61 translocon and requires ATP. We classified preproteins into three groups: 1) those that comprise ≤100 amino acids are strongly dependent on Sec62 for efficient translocation; 2) those in the size range of 120–160 amino acids use the SRP pathway, albeit inefficiently, and therefore rely on Sec62 for efficient translocation; and 3) those larger than 160 amino acids depend on the SRP pathway to preserve a transient translocation competence independent of Sec62. Thus, unlike in yeast, the Sec62-dependent translocation pathway in mammalian cells serves mainly as a fail-safe mechanism to ensure efficient secretion of small proteins and provides cells with an opportunity to regulate secretion of small proteins independent of the SRP pathway. PMID:22648169

  20. Influence of ornithine decarboxylase antizymes and antizyme inhibitors on agmatine uptake by mammalian cells.

    Science.gov (United States)

    Ramos-Molina, Bruno; López-Contreras, Andrés J; Lambertos, Ana; Dardonville, Christophe; Cremades, Asunción; Peñafiel, Rafael

    2015-05-01

    Agmatine (4-aminobutylguanidine), a dicationic molecule at physiological pH, exerts relevant modulatory actions at many different molecular target sites in mammalian cells, having been suggested that the administration of this compound may have therapeutic interest. Several plasma membrane transporters have been implicated in agmatine uptake by mammalian cells. Here we report that in kidney-derived COS-7 cell line, at physiological agmatine levels, the general polyamine transporter participates in the plasma membrane translocation of agmatine, with an apparent Km of 44 ± 7 µM and Vmax of 17.3 ± 3.3 nmol h(-1) mg(-1) protein, but that at elevated concentrations, agmatine can be also taken up by other transport systems. In the first case, the physiological polyamines (putrescine, spermidine and spermine), several diguanidines and bis(2-aminoimidazolines) and the polyamine transport inhibitor AMXT-1501 markedly decreased agmatine uptake. In cells transfected with any of the three ornithine decarboxylase antizymes (AZ1, AZ2 and AZ3), agmatine uptake was dramatically reduced. On the contrary, transfection with antizyme inhibitors (AZIN1 and AZIN2) markedly increased the transport of agmatine. Furthermore, whereas putrescine uptake was significantly decreased in cells transfected with ornithine decarboxylase (ODC), the accumulation of agmatine was stimulated, suggesting a trans-activating effect of intracellular putrescine on agmatine uptake. All these results indicate that ODC and its regulatory proteins (antizymes and antizyme inhibitors) may influence agmatine homeostasis in mammalian tissues.

  1. Chlamydiaceae Genomics Reveals Interspecies Admixture and the Recent Evolution of Chlamydia abortus Infecting Lower Mammalian Species and Humans.

    Science.gov (United States)

    Joseph, Sandeep J; Marti, Hanna; Didelot, Xavier; Castillo-Ramirez, Santiago; Read, Timothy D; Dean, Deborah

    2015-10-27

    Chlamydiaceae are obligate intracellular bacteria that cause a diversity of severe infections among humans and livestock on a global scale. Identification of new species since 1989 and emergence of zoonotic infections, including abortion in women, underscore the need for genome sequencing of multiple strains of each species to advance our knowledge of evolutionary dynamics across Chlamydiaceae. Here, we genome sequenced isolates from avian, lower mammalian and human hosts. Based on core gene phylogeny, five isolates previously classified as Chlamydia abortus were identified as members of Chlamydia psittaci and Chlamydia pecorum. Chlamydia abortus is the most recently emerged species and is a highly monomorphic group that lacks the conserved virulence-associated plasmid. Low-level recombination and evidence for adaptation to the placenta echo evolutionary processes seen in recently emerged, highly virulent niche-restricted pathogens, such as Bacillus anthracis. In contrast, gene flow occurred within C. psittaci and other Chlamydiaceae species. The C. psittaci strain RTH, isolated from a red-tailed hawk (Buteo jamaicensis), is an outlying strain with admixture of C. abortus, C. psittaci, and its own population markers. An average nucleotide identity of less than 94% compared with other Chlamydiaceae species suggests that RTH belongs to a new species intermediary between C. psittaci and C. abortus. Hawks, as scavengers and predators, have extensive opportunities to acquire multiple species in their intestinal tract. This could facilitate transformation and homologous recombination with the potential for new species emergence. Our findings indicate that incubator hosts such as birds-of-prey likely promote Chlamydiaceae evolution resulting in novel pathogenic lineages. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  2. Reconstructing a B-cell clonal lineage. I. Statistical inference of unobserved ancestors [v1; ref status: indexed, http://f1000r.es/z6

    Directory of Open Access Journals (Sweden)

    Thomas B Kepler

    2013-04-01

    Full Text Available One of the key phenomena in the adaptive immune response to infection and immunization is affinity maturation, during which antibody genes are mutated and selected, typically resulting in a substantial increase in binding affinity to the eliciting antigen. Advances in technology on several fronts have made it possible to clone large numbers of heavy-chain light-chain pairs from individual B cells and thereby identify whole sets of clonally related antibodies. These collections could provide the information necessary to reconstruct their own history - the sequence of changes introduced into the lineage during the development of the clone - and to study affinity maturation in detail. But the success of such a program depends entirely on accurately inferring the founding ancestor and the other unobserved intermediates. Given a set of clonally related immunoglobulin V-region genes, the method described here allows one to compute the posterior distribution over their possible ancestors, thereby giving a thorough accounting of the uncertainty inherent in the reconstruction. I demonstrate the application of this method on heavy-chain and light-chain clones, assess the reliability of the inference, and discuss the sources of uncertainty.

  3. Patterns of nucleotide diversity and phenotypes of two domestication related genes (OsC1 and Wx) in indigenous rice varieties in Northeast India.

    Science.gov (United States)

    Choudhury, Baharul Islam; Khan, Mohammed Latif; Dayanandan, Selvadurai

    2014-06-16

    During the domestication of crops, individual plants with traits desirable for human needs have been selected from their wild progenitors. Consequently, genetic and nucleotide diversity of genes associated with these selected traits in crop plants are expected to be lower than their wild progenitors. In the present study, we surveyed the pattern of nucleotide diversity of two selected trait specific genes, Wx and OsC1, which regulate amylose content and apiculus coloration respectively in cultivated rice varieties. The analyzed samples were collected from a wide geographic area in Northeast (NE) India, and included contrasting phenotypes considered to be associated with selected genes, namely glutinous and nonglutinous grains and colored and colorless apiculus. No statistically significant selection signatures were detected in both Wx and OsC1gene sequences. However, low level of selection that varied across the length of each gene was evident. The glutinous type varieties showed higher levels of nucleotide diversity at the Wx locus (πtot = 0.0053) than nonglutinous type varieties (πtot = 0.0043). The OsC1 gene revealed low levels of selection among the colorless apiculus varieties with lower nucleotide diversity (πtot = 0.0010) than in the colored apiculus varieties (πtot = 0.0023). The results revealed that functional mutations at Wx and OsC1genes considered to be associated with specific phenotypes do not necessarily correspond to the phenotypes in indigenous rice varieties in NE India. This suggests that other than previously reported genomic regions may also be involved in determination of these phenotypes.

  4. Prdm9 controls activation of mammalian recombination hotspots.

    Science.gov (United States)

    Parvanov, Emil D; Petkov, Petko M; Paigen, Kenneth

    2010-02-12

    Mammalian meiotic recombination, which preferentially occurs at specialized sites called hotspots, ensures the orderly segregation of meiotic chromosomes and creates genetic variation among offspring. A locus on mouse chromosome 17, which controls activation of recombination at multiple distant hotspots, has been mapped within a 181-kilobase interval, three of whose genes can be eliminated as candidates. The remaining gene, Prdm9, codes for a zinc finger containing histone H3K4 trimethylase that is expressed in early meiosis and whose deficiency results in sterility in both sexes. Mus musculus exhibits five alleles of Prdm9; human populations exhibit two predominant alleles and multiple minor alleles. The identification of Prdm9 as a protein regulating mammalian recombination hotspots initiates molecular studies of this important biological control system.

  5. Locomotor circuits in the mammalian spinal cord

    DEFF Research Database (Denmark)

    Kiehn, Ole

    2006-01-01

    Intrinsic spinal networks, known as central pattern generators (CPGs), control the timing and pattern of the muscle activity underlying locomotion in mammals. This review discusses new advances in understanding the mammalian CPGs with a focus on experiments that address the overall network struct...

  6. Nucleotide sequence of tomato ringspot virus RNA-2.

    Science.gov (United States)

    Rott, M E; Tremaine, J H; Rochon, D M

    1991-07-01

    The sequence of tomato ringspot virus (TomRSV) RNA-2 has been determined. It is 7273 nucleotides in length excluding the 3' poly(A) tail and contains a single long open reading frame (ORF) of 5646 nucleotides in the positive sense beginning at position 78 and terminating at position 5723. A second in-frame AUG at position 441 is in a more favourable context for initiation of translation and may act as a site for initiation of translation. The TomRSV RNA-2 3' noncoding region is 1550 nucleotides in length. The coat protein is located in the C-terminal region of the large polypeptide and shows significant but limited amino acid sequence similarity to the putative coat proteins of the nepoviruses tomato black ring (TBRV), Hungarian grapevine chrome mosaic (GCMV) and grapevine fanleaf (GFLV). Comparisons of the coding and non-coding regions of TomRSV RNA-2 and the RNA components of TBRV, GCMV, GFLV and the comovirus cowpea mosaic virus revealed significant similarity for over 300 amino acids between the coding region immediately to the N-terminal side of the putative coat proteins of TomRSV and GFLV; very little similarity could be detected among the non-coding regions of TomRSV and any of these viruses.

  7. Molecular Identification of Necrophagous Muscidae and Sarcophagidae Fly Species Collected in Korea by Mitochondrial Cytochrome c Oxidase Subunit I Nucleotide Sequences

    Directory of Open Access Journals (Sweden)

    Yu-Hoon Kim

    2014-01-01

    Full Text Available Identification of insect species is an important task in forensic entomology. For more convenient species identification, the nucleotide sequences of cytochrome c oxidase subunit I (COI gene have been widely utilized. We analyzed full-length COI nucleotide sequences of 10 Muscidae and 6 Sarcophagidae fly species collected in Korea. After DNA extraction from collected flies, PCR amplification and automatic sequencing of the whole COI sequence were performed. Obtained sequences were analyzed for a phylogenetic tree and a distance matrix. Our data showed very low intraspecific sequence distances and species-level monophylies. However, sequence comparison with previously reported sequences revealed a few inconsistencies or paraphylies requiring further investigation. To the best of our knowledge, this study is the first report of COI nucleotide sequences from Hydrotaea occulta, Muscina angustifrons, Muscina pascuorum, Ophyra leucostoma, Sarcophaga haemorrhoidalis, Sarcophaga harpax, and Phaonia aureola.

  8. Pervasive within-Mitochondrion Single-Nucleotide Variant Heteroplasmy as Revealed by Single-Mitochondrion Sequencing

    Directory of Open Access Journals (Sweden)

    Jacqueline Morris

    2017-12-01

    Full Text Available Summary: A number of mitochondrial diseases arise from single-nucleotide variant (SNV accumulation in multiple mitochondria. Here, we present a method for identification of variants present at the single-mitochondrion level in individual mouse and human neuronal cells, allowing for extremely high-resolution study of mitochondrial mutation dynamics. We identified extensive heteroplasmy between individual mitochondrion, along with three high-confidence variants in mouse and one in human that were present in multiple mitochondria across cells. The pattern of variation revealed by single-mitochondrion data shows surprisingly pervasive levels of heteroplasmy in inbred mice. Distribution of SNV loci suggests inheritance of variants across generations, resulting in Poisson jackpot lines with large SNV load. Comparison of human and mouse variants suggests that the two species might employ distinct modes of somatic segregation. Single-mitochondrion resolution revealed mitochondria mutational dynamics that we hypothesize to affect risk probabilities for mutations reaching disease thresholds. : Morris et al. use independent sequencing of multiple individual mitochondria from mouse and human brain cells to show high pervasiveness of mutations. The mutations are heteroplasmic within single mitochondria and within and between cells. These findings suggest mechanisms by which mutations accumulate over time, resulting in mitochondrial dysfunction and disease. Keywords: single mitochondrion, single cell, human neuron, mouse neuron, single-nucleotide variation

  9. Optimization time synthesis of nucleotide labelled [γ-32P]-ATP

    International Nuclear Information System (INIS)

    Rahman, Wira Y; Sarmini, Endang; Herlina; Lubis, Hotman; Triyanto; Hambali

    2013-01-01

    Adenosine triphosphate-labelled with γ- 32 P([γ- 32 p]-ATP) has been widely used in the biotechnology research, usually as a tracer to study aspects of physiological and pathological processes. In order to support biotechnology research in Indonesia, a process for production of [γ- 32 P]-ATP with enzymatic reaction was used as precursors DL-glyceraldehydde 3-phosphate, Adenosine Diphosphate (ADP) and H 3 32 PO 4 , and enzyme glyceraldehid 3-phosphate dehydrogenase, 3-phosphoglyceryc phosphokinase and lactate dehydrogenase. Optimization of incubation time labeled nucleotide synthesis process is performed to find the optimum conditions, in terms of the most advantageous time in the synthesis process. With the success of the synthesis and optimization is done incubation time of synthesis labeled nucleotide, the result suggested can be used for producing [γ- 32 P] -ATP to support the provision of radiolabeled nucleotide for biotechnology research in Indonesia. (author)

  10. Aberrant Time to Most Recent Common Ancestor as a Signature of Natural Selection.

    Science.gov (United States)

    Hunter-Zinck, Haley; Clark, Andrew G

    2015-10-01

    Natural selection inference methods often target one mode of selection of a particular age and strength. However, detecting multiple modes simultaneously, or with atypical representations, would be advantageous for understanding a population's evolutionary history. We have developed an anomaly detection algorithm using distributions of pairwise time to most recent common ancestor (TMRCA) to simultaneously detect multiple modes of natural selection in whole-genome sequences. As natural selection distorts local genealogies in distinct ways, the method uses pairwise TMRCA distributions, which approximate genealogies at a nonrecombining locus, to detect distortions without targeting a specific mode of selection. We evaluate the performance of our method, TSel, for both positive and balancing selection over different time-scales and selection strengths and compare TSel's performance with that of other methods. We then apply TSel to the Complete Genomics diversity panel, a set of human whole-genome sequences, and recover loci previously inferred to be under positive or balancing selection. © The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  11. Origins and Impacts of New Mammalian Exons

    Directory of Open Access Journals (Sweden)

    Jason J. Merkin

    2015-03-01

    Full Text Available Mammalian genes are composed of exons, but the evolutionary origins and functions of new internal exons are poorly understood. Here, we analyzed patterns of exon gain using deep cDNA sequencing data from five mammals and one bird, identifying thousands of species- and lineage-specific exons. Most new exons derived from unique rather than repetitive intronic sequence. Unlike exons conserved across mammals, species-specific internal exons were mostly located in 5′ UTRs and alternatively spliced. They were associated with upstream intronic deletions, increased nucleosome occupancy, and RNA polymerase II pausing. Genes containing new internal exons had increased gene expression, but only in tissues in which the exon was included. Increased expression correlated with the level of exon inclusion, promoter proximity, and signatures of cotranscriptional splicing. Altogether, these findings suggest that increased splicing at the 5′ ends of genes enhances expression and that changes in 5′ end splicing alter gene expression between tissues and between species.

  12. Ghrelin: an emerging player in the regulation of reproduction in non-mammalian vertebrates.

    Science.gov (United States)

    Unniappan, Suraj

    2010-07-01

    The endocrine regulation of vertebrate reproduction is achieved by the coordinated actions of multiple endocrine factors mainly produced from the brain, pituitary, and gonads. In addition to these, several other tissues including the fat and gut produce factors that have reproductive effects. Ghrelin is one such gut/brain hormone with species-specific effects in the regulation of mammalian reproduction. Recent studies have shown that ghrelin and ghrelin receptor mRNAs, and protein are expressed in the ovary and testis of mammals, indicating a direct effect for ghrelin in the control of reproduction. Ghrelin regulates mammalian reproduction by modulating hormone secretion from the brain and pituitary, and by acting directly on the gonads to influence reproductive tissue development and steroid hormone release. Based on the studies reported so far, ghrelin seems to have a predominantly inhibitory role on mammalian reproduction. The presence of ghrelin and ghrelin receptor has been found in the brain, pituitary and gonads of several non-mammalian vertebrates. In contrast to mammals, ghrelin seems to have a stimulatory role in the regulation of non-mammalian reproduction. The main objective of this review is to do a perspective analysis of the comparative aspects of ghrelin regulation of reproduction. (c) 2009 Elsevier Inc. All rights reserved.

  13. Endogenous retrovirus sequences expressed in male mammalian ...

    African Journals Online (AJOL)

    Objectives: To review the research findings on the expression of endogenous retroviruses and retroviral-related particles in male mammalian reproductive tissues, and to discuss their possible role in normal cellular events and association with disease conditions in male reproductive tissues. Data sources: Published ...

  14. Retention of the Native Epigenome in Purified Mammalian Chromatin.

    Directory of Open Access Journals (Sweden)

    Andreas H Ehrensberger

    Full Text Available A protocol is presented for the isolation of native mammalian chromatin as fibers of 25-250 nucleosomes under conditions that preserve the natural epigenetic signature. The material is composed almost exclusively of histones and DNA and conforms to the structure expected by electron microscopy. All sequences probed for were retained, indicating that the material is representative of the majority of the genome. DNA methylation marks and histone marks resembled the patterns observed in vivo. Importantly, nucleosome positions also remained largely unchanged, except on CpG islands, where nucleosomes were found to be unstable. The technical challenges of reconstituting biochemical reactions with native mammalian chromatin are discussed.

  15. A role for carbohydrate recognition in mammalian sperm-egg binding

    International Nuclear Information System (INIS)

    Clark, Gary F.

    2014-01-01

    Highlights: • Mammalian sperm-egg binding as a carbohydrate dependent species recognition event. • The role of carbohydrate recognition in human, mouse and pig sperm-egg binding. • Historical perspective and future directions for research focused on gamete binding. - Abstract: Mammalian fertilization usually requires three sequential cell–cell interactions: (i) initial binding of sperm to the specialized extracellular matrix coating the egg known as the zona pellucida (ZP); (ii) binding of sperm to the ZP via the inner acrosomal membrane that is exposed following the induction of acrosomal exocytosis; and (iii) adhesion of acrosome-reacted sperm to the plasma membrane of the egg cell, enabling subsequent fusion of these gametes. The focus of this review is on the initial binding of intact sperm to the mammalian ZP. Evidence collected over the past fifty years has confirmed that this interaction relies primarily on the recognition of carbohydrate sequences presented on the ZP by lectin-like egg binding proteins located on the plasma membrane of sperm. There is also evidence that the same carbohydrate sequences that mediate binding also function as ligands for lectins on lymphocytes that can inactivate immune responses, likely protecting the egg and the developing embryo up to the stage of blastocyst hatching. The literature related to initial sperm-ZP binding in the three major mammalian models (human, mouse and pig) is discussed. Historical perspectives and future directions for research related to this aspect of gamete adhesion are also presented

  16. Edible Scaffolds Based on Non-Mammalian Biopolymers for Myoblast Growth

    Directory of Open Access Journals (Sweden)

    Javier Enrione

    2017-12-01

    Full Text Available In vitro meat has recently emerged as a new concept in food biotechnology. Methods to produce in vitro meat generally involve the growth of muscle cells that are cultured on scaffolds using bioreactors. Suitable scaffold design and manufacture are critical to downstream culture and meat production. Most current scaffolds are based on mammalian-derived biomaterials, the use of which is counter to the desire to obviate mammal slaughter in artificial meat production. Consequently, most of the knowledge is related to the design and control of scaffold properties based on these mammalian-sourced materials. To address this, four different scaffold materials were formulated using non-mammalian sources, namely, salmon gelatin, alginate, and additives including gelling agents and plasticizers. The scaffolds were produced using a freeze-drying process, and the physical, mechanical, and biological properties of the scaffolds were evaluated. The most promising scaffolds were produced from salmon gelatin, alginate, agarose, and glycerol, which exhibited relatively large pore sizes (~200 μm diameter and biocompatibility, permitting myoblast cell adhesion (~40% and growth (~24 h duplication time. The biodegradation profiles of the scaffolds were followed, and were observed to be less than 25% after 4 weeks. The scaffolds enabled suitable myogenic response, with high cell proliferation, viability, and adequate cell distribution throughout. This system composed of non-mammalian edible scaffold material and muscle-cells is promising for the production of in vitro meat.

  17. A role for carbohydrate recognition in mammalian sperm-egg binding

    Energy Technology Data Exchange (ETDEWEB)

    Clark, Gary F., E-mail: clarkgf@health.missouri.edu

    2014-08-01

    Highlights: • Mammalian sperm-egg binding as a carbohydrate dependent species recognition event. • The role of carbohydrate recognition in human, mouse and pig sperm-egg binding. • Historical perspective and future directions for research focused on gamete binding. - Abstract: Mammalian fertilization usually requires three sequential cell–cell interactions: (i) initial binding of sperm to the specialized extracellular matrix coating the egg known as the zona pellucida (ZP); (ii) binding of sperm to the ZP via the inner acrosomal membrane that is exposed following the induction of acrosomal exocytosis; and (iii) adhesion of acrosome-reacted sperm to the plasma membrane of the egg cell, enabling subsequent fusion of these gametes. The focus of this review is on the initial binding of intact sperm to the mammalian ZP. Evidence collected over the past fifty years has confirmed that this interaction relies primarily on the recognition of carbohydrate sequences presented on the ZP by lectin-like egg binding proteins located on the plasma membrane of sperm. There is also evidence that the same carbohydrate sequences that mediate binding also function as ligands for lectins on lymphocytes that can inactivate immune responses, likely protecting the egg and the developing embryo up to the stage of blastocyst hatching. The literature related to initial sperm-ZP binding in the three major mammalian models (human, mouse and pig) is discussed. Historical perspectives and future directions for research related to this aspect of gamete adhesion are also presented.

  18. Association of single nucleotide polymorphism at position 45 in adiponectin gene with plasma adiponectin level and insulin resistance in obesity

    International Nuclear Information System (INIS)

    Chen Xiaoyu; Li Xisheng; Lin Xiahong; Gao Hongzhi; Li Qiulan; Zha Jinshun

    2012-01-01

    Objective: To explore the association of single nucleotide polymorphism at position 45 (SNP45) in adiponectin gene with plasma adiponectin level and insulin resistance in obesity in Quanzhou area of Fujian province. Methods: Two hundred and forty-eight patients with obesity and 225 normal control subjects were enrolled in this study.Fasting insulin (FINS) were measured by radioimmunoassay and fasting plasma glucose (FPG), total cholesterol (TC), triglyceride (TG), high density lipoprotein-cholesterol (HDL-C), low density lipoprotein-cholesterol (LDL-C) were measured by BECKMAN DXC800 biochemistry analyzer. Body mass index (BMI), waist to hip ratio,homeostasis model assessment of insulin resistance (HOMA-IR) were calculated. Plasma adiponectin levels were examined by means of enzyme-linked immunosorbentassy. The adiponectin gene SNP45 was identified by PCR-restriction fragment length polymorphism. Results: (1) Frequencies of GG+GT genotype in obesity group and normal control group were 61% and 44% respectively (χ 2 =14.182, P<0.01), and G allele frequencies were 35% and 25% (χ 2 =10.708, P<0.01). (2) In obesity group,the subjects with SNP45 GG+GT genotype had higher TG and LDL-C levels than those with TT genotype (t=2.604, P<0.01; t=5.507, P<0.01), and had lower adiponectin level than those with TT genotype (t=2.275, P<0.05), and had significantly lower HDL-L level than those with TT genotype (t=10.100, P< 0.01). (3) In normal control group,the subjects with SNP45 GG +GT genotype had significantly lower adiponectin,TG,TC levels than those with TT genotype (t=2.510, P<0.05; t=2.922, P<0.01; t=3.272, P< 0.01). (4) Logistic analysis proved that the SNP45 GG+GT genotype in obesity group was associated with decreased risk of plasma adiponectin level (OR=0.810, 95% CI : 0.673-0.975, P<0.05), and with increased risk of HOMA-IR (OR=1.746, 95% CI : 1.060-2.875, P<0.05). The SNP45 GG+GT genotype in normal control group was associated with increased risk of HOMA-IR (OR=3

  19. WEB-server for search of a periodicity in amino acid and nucleotide sequences

    Science.gov (United States)

    E Frenkel, F.; Skryabin, K. G.; Korotkov, E. V.

    2017-12-01

    A new web server (http://victoria.biengi.ac.ru/splinter/login.php) was designed and developed to search for periodicity in nucleotide and amino acid sequences. The web server operation is based upon a new mathematical method of searching for multiple alignments, which is founded on the position weight matrices optimization, as well as on implementation of the two-dimensional dynamic programming. This approach allows the construction of multiple alignments of the indistinctly similar amino acid and nucleotide sequences that accumulated more than 1.5 substitutions per a single amino acid or a nucleotide without performing the sequences paired comparisons. The article examines the principles of the web server operation and two examples of studying amino acid and nucleotide sequences, as well as information that could be obtained using the web server.

  20. Milk—A Nutrient System of Mammalian Evolution Promoting mTORC1-Dependent Translation

    Science.gov (United States)

    Melnik, Bodo C.

    2015-01-01

    Based on own translational research of the biochemical and hormonal effects of cow’s milk consumption in humans, this review presents milk as a signaling system of mammalian evolution that activates the nutrient-sensitive kinase mechanistic target of rapamycin complex 1 (mTORC1), the pivotal regulator of translation. Milk, a mammary gland-derived secretory product, is required for species-specific gene-nutrient interactions that promote appropriate growth and development of the newborn mammal. This signaling system is highly conserved and tightly controlled by the lactation genome. Milk is sufficient to activate mTORC1, the crucial regulator of protein, lipid, and nucleotide synthesis orchestrating anabolism, cell growth and proliferation. To fulfill its mTORC1-activating function, milk delivers four key metabolic messengers: (1) essential branched-chain amino acids (BCAAs); (2) glutamine; (3) palmitic acid; and (4) bioactive exosomal microRNAs, which in a synergistical fashion promote mTORC1-dependent translation. In all mammals except Neolithic humans, postnatal activation of mTORC1 by milk intake is restricted to the postnatal lactation period. It is of critical concern that persistent hyperactivation of mTORC1 is associated with aging and the development of age-related disorders such as obesity, type 2 diabetes mellitus, cancer, and neurodegenerative diseases. Persistent mTORC1 activation promotes endoplasmic reticulum (ER) stress and drives an aimless quasi-program, which promotes aging and age-related diseases. PMID:26225961

  1. Milk—A Nutrient System of Mammalian Evolution Promoting mTORC1-Dependent Translation

    Directory of Open Access Journals (Sweden)

    Bodo C. Melnik

    2015-07-01

    Full Text Available Based on own translational research of the biochemical and hormonal effects of cow’s milk consumption in humans, this review presents milk as a signaling system of mammalian evolution that activates the nutrient-sensitive kinase mechanistic target of rapamycin complex 1 (mTORC1, the pivotal regulator of translation. Milk, a mammary gland-derived secretory product, is required for species-specific gene-nutrient interactions that promote appropriate growth and development of the newborn mammal. This signaling system is highly conserved and tightly controlled by the lactation genome. Milk is sufficient to activate mTORC1, the crucial regulator of protein, lipid, and nucleotide synthesis orchestrating anabolism, cell growth and proliferation. To fulfill its mTORC1-activating function, milk delivers four key metabolic messengers: (1 essential branched-chain amino acids (BCAAs; (2 glutamine; (3 palmitic acid; and (4 bioactive exosomal microRNAs, which in a synergistical fashion promote mTORC1-dependent translation. In all mammals except Neolithic humans, postnatal activation of mTORC1 by milk intake is restricted to the postnatal lactation period. It is of critical concern that persistent hyperactivation of mTORC1 is associated with aging and the development of age-related disorders such as obesity, type 2 diabetes mellitus, cancer, and neurodegenerative diseases. Persistent mTORC1 activation promotes endoplasmic reticulum (ER stress and drives an aimless quasi-program, which promotes aging and age-related diseases.

  2. Buoyancy differences among two deepwater ciscoes from the Great Lakes and their putative ancestor

    Science.gov (United States)

    Krause, A.E.; Eshenroder, R.L.; Begnoche, L.J.

    2002-01-01

    We analyzed buoyancy in two deepwater ciscoes, Coregonus hoyi and C. kiyi, and in C. artedi, their putative ancestor, and also analyzed how variations in fish weight, water content, and lipid content affected buoyancy. Buoyancy was significantly different among the three species (p < 0.0001). Estimates of percent buoyancy (neutral buoyancy = 0.0%) were: kiyi, 3.8%; hoyi, 4.7%; and artedi, 5.7%. Buoyancy did not change with fish weight alone (p = 0.38). Fish weight was negatively related to water content for all three species (p = 0.037). Lipid content was not significantly different between hoyi and kiyi, but artedi had significantly fewer lipids than hoyi and kiyi (p < 0.10). When artedi was removed from the analysis, fish weight and lipids accounted for 48% of the variation in buoyancy (p = 0.003), fatter hoyi were less dense than leaner hoyi, but fatter and leaner kiyi were no different in density. Our findings provide additional evidence that buoyancy regulation was a speciating mechanism in deepwater ciscoes and that kiyi is more specialized than hoyi for diel-vertical migration in deep water.

  3. Recovering probabilities for nucleotide trimming processes for T cell receptor TRA and TRG V-J junctions analyzed with IMGT tools

    Directory of Open Access Journals (Sweden)

    Lefranc Marie-Paule

    2008-10-01

    Full Text Available Abstract Background Nucleotides are trimmed from the ends of variable (V, diversity (D and joining (J genes during immunoglobulin (IG and T cell receptor (TR rearrangements in B cells and T cells of the immune system. This trimming is followed by addition of nucleotides at random, forming the N regions (N for nucleotides of the V-J and V-D-J junctions. These processes are crucial for creating diversity in the immune response since the number of trimmed nucleotides and the number of added nucleotides vary in each B or T cell. IMGT® sequence analysis tools, IMGT/V-QUEST and IMGT/JunctionAnalysis, are able to provide detailed and accurate analysis of the final observed junction nucleotide sequences (tool "output". However, as trimmed nucleotides can potentially be replaced by identical N region nucleotides during the process, the observed "output" represents a biased estimate of the "true trimming process." Results A probabilistic approach based on an analysis of the standardized tool "output" is proposed to infer the probability distribution of the "true trimmming process" and to provide plausible biological hypotheses explaining this process. We collated a benchmark dataset of TR alpha (TRA and TR gamma (TRG V-J rearranged sequences and junctions analysed with IMGT/V-QUEST and IMGT/JunctionAnalysis, the nucleotide sequence analysis tools from IMGT®, the international ImMunoGeneTics information system®, http://imgt.cines.fr. The standardized description of the tool output is based on the IMGT-ONTOLOGY axioms and concepts. We propose a simple first-order model that attempts to transform the observed "output" probability distribution into an estimate closer to the "true trimming process" probability distribution. We use this estimate to test the hypothesis that Poisson processes are involved in trimming. This hypothesis was not rejected at standard confidence levels for three of the four trimming processes: TRAV, TRAJ and TRGV. Conclusion By

  4. Recovering probabilities for nucleotide trimming processes for T cell receptor TRA and TRG V-J junctions analyzed with IMGT tools.

    Science.gov (United States)

    Bleakley, Kevin; Lefranc, Marie-Paule; Biau, Gérard

    2008-10-02

    Nucleotides are trimmed from the ends of variable (V), diversity (D) and joining (J) genes during immunoglobulin (IG) and T cell receptor (TR) rearrangements in B cells and T cells of the immune system. This trimming is followed by addition of nucleotides at random, forming the N regions (N for nucleotides) of the V-J and V-D-J junctions. These processes are crucial for creating diversity in the immune response since the number of trimmed nucleotides and the number of added nucleotides vary in each B or T cell. IMGT sequence analysis tools, IMGT/V-QUEST and IMGT/JunctionAnalysis, are able to provide detailed and accurate analysis of the final observed junction nucleotide sequences (tool "output"). However, as trimmed nucleotides can potentially be replaced by identical N region nucleotides during the process, the observed "output" represents a biased estimate of the "true trimming process." A probabilistic approach based on an analysis of the standardized tool "output" is proposed to infer the probability distribution of the "true trimmming process" and to provide plausible biological hypotheses explaining this process. We collated a benchmark dataset of TR alpha (TRA) and TR gamma (TRG) V-J rearranged sequences and junctions analysed with IMGT/V-QUEST and IMGT/JunctionAnalysis, the nucleotide sequence analysis tools from IMGT, the international ImMunoGeneTics information system, http://imgt.cines.fr. The standardized description of the tool output is based on the IMGT-ONTOLOGY axioms and concepts. We propose a simple first-order model that attempts to transform the observed "output" probability distribution into an estimate closer to the "true trimming process" probability distribution. We use this estimate to test the hypothesis that Poisson processes are involved in trimming. This hypothesis was not rejected at standard confidence levels for three of the four trimming processes: TRAV, TRAJ and TRGV. By using trimming of rearranged TR genes as a benchmark, we

  5. Three crocodilian genomes reveal ancestral patterns of evolution among archosaurs

    Science.gov (United States)

    Green, Richard E; Braun, Edward L; Armstrong, Joel; Earl, Dent; Nguyen, Ngan; Hickey, Glenn; Vandewege, Michael W; St John, John A; Capella-Gutiérrez, Salvador; Castoe, Todd A; Kern, Colin; Fujita, Matthew K; Opazo, Juan C; Jurka, Jerzy; Kojima, Kenji K; Caballero, Juan; Hubley, Robert M; Smit, Arian F; Platt, Roy N; Lavoie, Christine A; Ramakodi, Meganathan P; Finger, John W; Suh, Alexander; Isberg, Sally R; Miles, Lee; Chong, Amanda Y; Jaratlerdsiri, Weerachai; Gongora, Jaime; Moran, Christopher; Iriarte, Andrés; McCormack, John; Burgess, Shane C; Edwards, Scott V; Lyons, Eric; Williams, Christina; Breen, Matthew; Howard, Jason T; Gresham, Cathy R; Peterson, Daniel G; Schmitz, Jürgen; Pollock, David D; Haussler, David; Triplett, Eric W; Zhang, Guojie; Irie, Naoki; Jarvis, Erich D; Brochu, Christopher A; Schmidt, Carl J; McCarthy, Fiona M; Faircloth, Brant C; Hoffmann, Federico G; Glenn, Travis C; Gabaldón, Toni; Paten, Benedict; Ray, David A

    2015-01-01

    To provide context for the diversifications of archosaurs, the group that includes crocodilians, dinosaurs and birds, we generated draft genomes of three crocodilians, Alligator mississippiensis (the American alligator), Crocodylus porosus (the saltwater crocodile), and Gavialis gangeticus (the Indian gharial). We observed an exceptionally slow rate of genome evolution within crocodilians at all levels, including nucleotide substitutions, indels, transposable element content and movement, gene family evolution, and chromosomal synteny. When placed within the context of related taxa including birds and turtles, this suggests that the common ancestor of all of these taxa also exhibited slow genome evolution and that the relatively rapid evolution of bird genomes represents an autapomorphy within that clade. The data also provided the opportunity to analyze heterozygosity in crocodilians, which indicates a likely reduction in population size for all three taxa through the Pleistocene. Finally, these new data combined with newly published bird genomes allowed us to reconstruct the partial genome of the common ancestor of archosaurs providing a tool to investigate the genetic starting material of crocodilians, birds, and dinosaurs. PMID:25504731

  6. A single nucleotide polymorphism (SNP) assay for population ...

    African Journals Online (AJOL)

    A single nucleotide polymorphism (SNP) assay for population stratification test ... phenotypes and unlinked candidate loci in case-control and cohort studies of ... Key words: Chinese, Japanese, population stratification, ancestry informative ...

  7. A hypothesis for the minimal overall structure of the mammalian plasma membrane redox system.

    Science.gov (United States)

    de Grey, Aubrey D N J

    2003-05-01

    After a long period of frustration, many components of the mammalian plasma membrane redox system are now being identified at the molecular level. Some are apparently ubiquitous but are necessary only for a subset of electron donors or acceptors; some are present only in certain cell types; some appear to be associated with proton extrusion; some appear to be capable of superoxide production. The volume and variety of data now available have begun to allow the formulation of tentative models for the overall network of interactions of enzymes and substrates that together make up the plasma membrane redox system. Such a model is presented here. The structure discussed here is of the mammalian system, though parts of it may apply more or less accurately to fungal and plant cells too. Judging from the history of mitochondrial oxidative phosphorylation, it may be hoped that the development of models of the whole system - even if they undergo substantial revision thereafter - will markedly accelerate the pace of research in plasma membrane redox, by providing a coherent basis for the design of future experiments.

  8. Scambio, a novel guanine nucleotide exchange factor for Rho

    Directory of Open Access Journals (Sweden)

    Groffen John

    2004-04-01

    Full Text Available Abstract Background Small GTPases of the Rho family are critical regulators of various cellular functions including actin cytoskeleton organization, activation of kinase cascades and mitogenesis. For this reason, a major objective has been to understand the mechanisms of Rho GTPase regulation. Here, we examine the function of a novel protein, Scambio, which shares homology with the DH-PH domains of several known guanine nucleotide exchange factors for Rho family members. Results Scambio is located on human chromosome 14q11.1, encodes a protein of around 181 kDa, and is highly expressed in both heart and skeletal muscle. In contrast to most DH-PH-domain containing proteins, it binds the activated, GTP-bound forms of Rac and Cdc42. However, it fails to associate with V14RhoA. Immunofluorescence studies indicate that Scambio and activated Rac3 colocalize in membrane ruffles at the cell periphery. In accordance with these findings, Scambio does not activate either Rac or Cdc42 but rather, stimulates guanine nucleotide exchange on RhoA and its close relative, RhoC. Conclusion Scambio associates with Rac in its activated conformation and functions as a guanine nucleotide exchange factor for Rho.

  9. Functional assessment of sodium chloride cotransporter NCC mutants in polarized mammalian epithelial cells.

    Science.gov (United States)

    Rosenbaek, Lena L; Rizzo, Federica; MacAulay, Nanna; Staub, Olivier; Fenton, Robert A

    2017-08-01

    The thiazide-sensitive sodium chloride cotransporter NCC is important for maintaining serum sodium (Na + ) and, indirectly, serum potassium (K + ) levels. Functional studies on NCC have used cell lines with native NCC expression, transiently transfected nonpolarized cell lines, or Xenopus laevis oocytes. Here, we developed the use of polarized Madin-Darby canine kidney type I (MDCKI) mammalian epithelial cell lines with tetracycline-inducible human NCC expression to study NCC activity and membrane abundance in the same system. In radiotracer assays, induced cells grown on filters had robust thiazide-sensitive and chloride dependent sodium-22 ( 22 Na) uptake from the apical side. To minimize cost and maximize throughput, assays were modified to use cells grown on plastic. On plastic, cells had similar thiazide-sensitive 22 Na uptakes that increased following preincubation of cells in chloride-free solutions. NCC was detected in the plasma membrane, and both membrane abundance and phosphorylation of NCC were increased by incubation in chloride-free solutions. Furthermore, in cells exposed for 15 min to low or high extracellular K + , the levels of phosphorylated NCC increased and decreased, respectively. To demonstrate that the system allows rapid and systematic assessment of mutated NCC, three phosphorylation sites in NCC were mutated, and NCC activity was examined. 22 Na fluxes in phosphorylation-deficient mutants were reduced to baseline levels, whereas phosphorylation-mimicking mutants were constitutively active, even without chloride-free stimulation. In conclusion, this system allows the activity, cellular localization, and abundance of wild-type or mutant NCC to be examined in the same polarized mammalian expression system in a rapid, easy, and low-cost fashion. Copyright © 2017 the American Physiological Society.

  10. The complete nucleotide sequence of RNA 3 of a peach isolate of Prunus necrotic ringspot virus.

    Science.gov (United States)

    Hammond, R W; Crosslin, J M

    1995-04-01

    The complete nucleotide sequence of RNA 3 of the PE-5 peach isolate of Prunus necrotic ringspot ilarvirus (PNRSV) was obtained from cloned cDNA. The RNA sequence is 1941 nucleotides and contains two open reading frames (ORFs). ORF 1 consisted of 284 amino acids with a calculated molecular weight of 31,729 Da and ORF 2 contained 224 amino acids with a calculated molecular weight of 25,018 Da. ORF 2 corresponds to the coat protein gene. Expression of ORF 2 engineered into a pTrcHis vector in Escherichia coli results in a fusion polypeptide of approximately 28 kDa which cross-reacts with PNRSV polyclonal antiserum. Analysis of the coat protein amino acid sequence reveals a putative "zinc-finger" domain at the amino-terminal portion of the protein. Two tetranucleotide AUGC motifs occur in the 3'-UTR of the RNA and may function in coat protein binding and genome activation. ORF 1 homologies to other ilarviruses and alfalfa mosaic virus are confined to limited regions of conserved amino acids. The translated amino acid sequence of the coat protein gene shows 92% similarity to one isolate of apple mosaic virus, a closely related member of the ilarvirus group of plant viruses, but only 66% similarity to the amino acid sequence of the coat protein gene of a second isolate. These relationships are also reflected at the nucleotide sequence level. These results in one instance confirm the close similarities observed at the biophysical and serological levels between these two viruses, but on the other hand call into question the nomenclature used to describe these viruses.

  11. Divergent evolutionary rates in vertebrate and mammalian specific conserved non-coding elements (CNEs) in echolocating mammals.

    Science.gov (United States)

    Davies, Kalina T J; Tsagkogeorga, Georgia; Rossiter, Stephen J

    2014-12-19

    The majority of DNA contained within vertebrate genomes is non-coding, with a certain proportion of this thought to play regulatory roles during development. Conserved Non-coding Elements (CNEs) are an abundant group of putative regulatory sequences that are highly conserved across divergent groups and thus assumed to be under strong selective constraint. Many CNEs may contain regulatory factor binding sites, and their frequent spatial association with key developmental genes - such as those regulating sensory system development - suggests crucial roles in regulating gene expression and cellular patterning. Yet surprisingly little is known about the molecular evolution of CNEs across diverse mammalian taxa or their role in specific phenotypic adaptations. We examined 3,110 vertebrate-specific and ~82,000 mammalian-specific CNEs across 19 and 9 mammalian orders respectively, and tested for changes in the rate of evolution of CNEs located in the proximity of genes underlying the development or functioning of auditory systems. As we focused on CNEs putatively associated with genes underlying the development/functioning of auditory systems, we incorporated echolocating taxa in our dataset because of their highly specialised and derived auditory systems. Phylogenetic reconstructions of concatenated CNEs broadly recovered accepted mammal relationships despite high levels of sequence conservation. We found that CNE substitution rates were highest in rodents and lowest in primates, consistent with previous findings. Comparisons of CNE substitution rates from several genomic regions containing genes linked to auditory system development and hearing revealed differences between echolocating and non-echolocating taxa. Wider taxonomic sampling of four CNEs associated with the homeobox genes Hmx2 and Hmx3 - which are required for inner ear development - revealed family-wise variation across diverse bat species. Specifically within one family of echolocating bats that utilise

  12. Mammalian Synthetic Biology: Time for Big MACs.

    Science.gov (United States)

    Martella, Andrea; Pollard, Steven M; Dai, Junbiao; Cai, Yizhi

    2016-10-21

    The enabling technologies of synthetic biology are opening up new opportunities for engineering and enhancement of mammalian cells. This will stimulate diverse applications in many life science sectors such as regenerative medicine, development of biosensing cell lines, therapeutic protein production, and generation of new synthetic genetic regulatory circuits. Harnessing the full potential of these new engineering-based approaches requires the design and assembly of large DNA constructs-potentially up to chromosome scale-and the effective delivery of these large DNA payloads to the host cell. Random integration of large transgenes, encoding therapeutic proteins or genetic circuits into host chromosomes, has several drawbacks such as risks of insertional mutagenesis, lack of control over transgene copy-number and position-specific effects; these can compromise the intended functioning of genetic circuits. The development of a system orthogonal to the endogenous genome is therefore beneficial. Mammalian artificial chromosomes (MACs) are functional, add-on chromosomal elements, which behave as normal chromosomes-being replicating and portioned to daughter cells at each cell division. They are deployed as useful gene expression vectors as they remain independent from the host genome. MACs are maintained as a single-copy and can accommodate multiple gene expression cassettes of, in theory, unlimited DNA size (MACs up to 10 megabases have been constructed). MACs therefore enabled control over ectopic gene expression and represent an excellent platform to rapidly prototype and characterize novel synthetic gene circuits without recourse to engineering the host genome. This review describes the obstacles synthetic biologists face when working with mammalian systems and how the development of improved MACs can overcome these-particularly given the spectacular advances in DNA synthesis and assembly that are fuelling this research area.

  13. De novo CpG methylation on an artificial chromosome-like vector maintained for a long-term in mammalian cells.

    Science.gov (United States)

    Nishioka, Keisuke; Kishida, Tsunao; Masui, Shinji; Mazda, Osam

    2016-04-01

    To examine whether an autonomously replicating, artificial chromosome-like vector containing a long genomic DNA sequence (namely, Epigenosome-Nanog) undergoes de novo CpG methylation after maintenance in cultured cells for more than a half year. Epigenosome-Nanog efficiently replicated in iPS cells after transfection. In HeLa and C2C12 cells Epigenosome-Nanog was stably maintained for more than eight months. The CpG methylation occurred de novo at the Nanog gene promoter region on the epigenosome in C2C12 cells but the degrees of methylation were much lower than those at the same CpG sites on the chromosomes. Among the four CpG sites at the region, the upstream two CpGs underwent methylation in a correlated manner while methylation at the downstream two CpGs was also correlated to each other, and these correlations were commonly shared between the epigenosome and the chromosome. CpG methylation thus was not solely dependent on the nucleotide sequence at the DNA locus. The epigenosome may become a useful tool to study the mechanisms of epigenetic regulation of a genetic region of interest in mammalian cells.

  14. Purine nucleotide synthesis from exogenous adenine and guanine in rodent small intestine

    International Nuclear Information System (INIS)

    Gross, C.J.; Karlberg, P.K.; Savaiano, D.A.

    1986-01-01

    14 C-Adenine and 14 C-guanine uptake was studied in isolated guinea pig enterocytes. Cells were incubated in Hank's buffer and separated from the medium by centrifugation through silicone oil into 1M PCA. Uptake was temperature and concentration dependent. Both compounds were incorporated into nucleotides as measured by HPLC and HVE. Adenine was more extensively incorporated into nucleotides than was guanine. Adenine nucleotides accounted for about 70% of the intracellular label after 30 min with a majority being ADP and ATP (medium concentration = 10 μM). Guanine nucleotides accounted for only 30% of the intracellular label after 30 min. Labeled intracellular free adenine or guanine were not detected. Significantly more guanine vs. adenine was converted to uric acid. After 30 min, 11.5 +/- 3.9% (n=3) and 83.0 +/- 8.4% (n=4) of the label was present as uric acid in the medium when adenine and guanine, respectively, were the substrate. After 1 min, 34.8 +/- 3.4% (n=4) of the label in the medium was present as uric acid when guanine was the substrate. Decreasing the concentration of adenine resulted in an increase in the percent of uric acid in the medium. 14 C-adenine (75 nmol) was injected into 1 gm segments of rat jejunum. After 5 min., segments were quickly flushed and the tissue homogenized in 1M PCA. Only uric acid was present after 5 min (n=6). In contrast, in animals fasted 3 to 5 days, less conversion to uric acid was observed in the intestinal content (50-80% of the same dose was still present as adenine after 5 min) and nucleotide formation was observed in the tissue. The results indicate that uric acid and nucleotide synthesis from exogenous adenine and guanine are concentration dependent and affected by nutritional state

  15. Secondary osteons scale allometrically in mammalian humerus and femur.

    Science.gov (United States)

    Felder, A A; Phillips, C; Cornish, H; Cooke, M; Hutchinson, J R; Doube, M

    2017-11-01

    Intra-cortical bone remodelling is a cell-driven process that replaces existing bone tissue with new bone tissue in the bone cortex, leaving behind histological features called secondary osteons. While the scaling of bone dimensions on a macroscopic scale is well known, less is known about how the spatial dimensions of secondary osteons vary in relation to the adult body size of the species. We measured the cross-sectional area of individual intact secondary osteons and their central Haversian canals in transverse sections from 40 stylopodal bones of 39 mammalian species (body mass 0.3-21 000 kg). Scaling analysis of our data shows that mean osteonal resorption area (negative allometry, exponent 0.23, R 2  0.54, p <0.005) and Haversian canal area (negative allometry, exponent 0.31, R 2  0.45, p <0.005) are significantly related to body mass, independent of phylogeny. This study is the most comprehensive of its kind to date, and allows us to describe overall trends in the scaling behaviour of secondary osteon dimensions, supporting the inference that the osteonal resorption area may be limited by the need to avoid fracture in smaller mammalian species, but the need to maintain osteocyte viability in larger mammalian species.

  16. Sirtuin1 single nucleotide polymorphism (A2191G is a diagnostic marker for vibration-induced white finger disease

    Directory of Open Access Journals (Sweden)

    Voelter-Mahlknecht Susanne

    2012-10-01

    Full Text Available Abstract Background Vibration-induced white finger disease (VWF, also known as hand-arm vibration syndrome, is a secondary form of Raynaud’s disease, affecting the blood vessels and nerves. So far, little is known about the pathogenesisof the disease. VWF is associated with an episodic reduction in peripheral blood flow. Sirtuin 1, a class III histone deacetylase, has been described to regulate the endothelium dependent vasodilation by targeting endothelial nitric oxide synthase. We assessed Sirt1single nucleotide polymorphisms in patients with VWF to further elucidate the role of sirtuin 1 in the pathogenesis of VWF. Methods Peripheral blood samples were obtained from 74 patients with VWF (male 93.2%, female 6.8%, median age 53 years and from 317 healthy volunteers (gender equally distributed, below 30 years of age. Genomic DNA was extracted from peripheral blood mononuclear cells and screened for potential Sirt1single nucleotide polymorphisms. Four putative genetic polymorphisms out of 113 within the Sirt1 genomic region (NCBI Gene Reference: NM_012238.3 were assessed. Allelic discrimination was performed by TaqMan-polymerasechainreaction-based allele-specific genotyping single nucleotide polymorphism assays. Results Sirt1single nucleotide polymorphism A2191G (Assay C_25611590_10, rs35224060 was identified within Sirt1 exon 9 (amino acid position 731, Ile → Val, with differing allelic frequencies in the VWF population (A/A: 70.5%, A/G: 29.5%, G/G: 0% and the control population (A/A: 99.7%, A/G: 0.3%, G/G: 0.5%, with significance levels of P U test (two-tailed P t-test and Chi-square test with Yates correction (all two-tailed: P Conclusion We identified theSirt1A2191Gsingle nucleotide polymorphism as a diagnostic marker for VWF.

  17. Enamel formation and growth in non-mammalian cynodonts

    Science.gov (United States)

    Dirks, Wendy; Martinelli, Agustín G.

    2018-01-01

    The early evolution of mammals is associated with the linked evolutionary origin of diphyodont tooth replacement, rapid juvenile growth and determinate adult growth. However, specific relationships among these characters during non-mammalian cynodont evolution require further exploration. Here, polarized light microscopy revealed incremental lines, resembling daily laminations of extant mammals, in histological sections of enamel in eight non-mammalian cynodont species. In the more basal non-probainognathian group, enamel extends extremely rapidly from cusp to cervix. By contrast, the enamel of mammaliamorphs is gradually accreted, with slow rates of crown extension, more typical of the majority of non-hypsodont crown mammals. These results are consistent with the reduction in dental replacement rate across the non-mammalian cynodont lineage, with greater rates of crown extension required in most non-probainognathians, and slower crown extension rates permitted in mammaliamorphs, which have reduced patterns of dental replacement in comparison with many non-probainognathians. The evolution of mammal-like growth patterns, with faster juvenile growth and more abruptly terminating adult growth, is linked with this reduction in dental replacement rates and may provide an additional explanation for the observed pattern in enamel growth rates. It is possible that the reduction in enamel extension rates in mammaliamorphs reflects an underlying reduction in skeletal growth rates at the time of postcanine formation, due to a more abruptly terminating pattern of adult growth in these more mammal-like, crownward species. PMID:29892415

  18. "While we are questioning we are progressing"—A Reply to the Ancestors of Qualitative Research

    Directory of Open Access Journals (Sweden)

    Monika Götsch

    2009-07-01

    Full Text Available REICHERTZ' reflections on the development of qualitative research during the Berlin Meeting on Qualitative Research Methods in 2009 (http://www.berliner-methodentreffen.de/ have led to the following central questions: Are we facing the end of critical social research? Is this possible end correlated with an uncritical mass of young scientists? In their reply to the ancestors of qualitative research the present authors advocate the abolition of a bipolar thinking about the issues and support a hybrid turn, standing the test through a fundamentally open-minded, reflexive, and deconstructive researcher`s attitude. Using the example of ethnography and gender studies we show that there are indeed opportunities for the future of critical social research: This approach would take place beyond the slaves of market-controlled contract research and ahead of the characters of the eternal hall of fame of social research. URN: urn:nbn:de:0114-fqs0903306

  19. Some important advances in DNA repair study on the mammalian cells

    International Nuclear Information System (INIS)

    Xia Shouxuan.

    1991-01-01

    In the recent years the study of DNA damage and repair in the mammalian cells has gone deeply at gene level and got the following advances: (1) For a long time DNA has been considered to be an uniform unit in case of damage and repair. Now this concept should be replaced by the non-random distribution of damage and heterogenous repair in the genome. These would allow us to study cellular mutagenesis, carcinogenesis, aging and dying processes in great detail, and would be beneficial to the elucidation of mechanisms of radiation sickness and chemical toxicology. (2) The advent of new techniques in molecular biology has made it possible to isolate and clone the human DNA repair genes. Up to now more than ten human DNA repair genes have been cloned and these works would have an important impact on the theoretical and practical study in this field. Because DNA repair system is very complicate, voluminous work should be done in the future. (3) The technique of gene transfer has been efficiently used in the study of DNA repair in mammalian cells and has made great contribution in the cellular engineering. It could modify the genetic behavior of the gene-accepting cells, and enhance the DNA repair ability to physical and chemical damages. Human gene therapy for DNA deficient diseases is now on the day

  20. Heated oligonucleotide ligation assay (HOLA): an affordable single nucleotide polymorphism assay.

    Science.gov (United States)

    Black, W C; Gorrochotegui-Escalante, N; Duteau, N M

    2006-03-01

    Most single nucleotide polymorphism (SNP) detection requires expensive equipment and reagents. The oligonucleotide ligation assay (OLA) is an inexpensive SNP assay that detects ligation between a biotinylated "allele-specific detector" and a 3' fluorescein-labeled "reporter" oligonucleotide. No ligation occurs unless the 3' detector nucleotide is complementary to the SNP nucleotide. The original OLA used chemical denaturation and neutralization. Heated OLA (HOLA) instead uses a thermal stable ligase and cycles of denaturing and hybridization for ligation and SNP detection. The cost per genotype is approximately US$1.25 with two-allele SNPs or approximately US$1.75 with three-allele SNPs. We illustrate the development of HOLA for SNP detection in the Early Trypsin and Abundant Trypsin loci in the mosquito Aedes aegypti (L.) and at the a-glycerophosphate dehydrogenase locus in the mosquito Anopheles gambiae s.s.

  1. Cytosolic nucleotides block and regulate the Arabidopsis vacuolar anion channel AtALMT9.

    Science.gov (United States)

    Zhang, Jingbo; Martinoia, Enrico; De Angeli, Alexis

    2014-09-12

    The aluminum-activated malate transporters (ALMTs) form a membrane protein family exhibiting different physiological roles in plants, varying from conferring tolerance to environmental Al(3+) to the regulation of stomatal movement. The regulation of the anion channels of the ALMT family is largely unknown. Identifying intracellular modulators of the activity of anion channels is fundamental to understanding their physiological functions. In this study we investigated the role of cytosolic nucleotides in regulating the activity of the vacuolar anion channel AtALMT9. We found that cytosolic nucleotides modulate the transport activity of AtALMT9. This modulation was based on a direct block of the pore of the channel at negative membrane potentials (open channel block) by the nucleotide and not by a phosphorylation mechanism. The block by nucleotides of AtALMT9-mediated currents was voltage dependent. The blocking efficiency of intracellular nucleotides increased with the number of phosphate groups and ATP was the most effective cellular blocker. Interestingly, the ATP block induced a marked modification of the current-voltage characteristic of AtALMT9. In addition, increased concentrations of vacuolar anions were able to shift the ATP block threshold to a more negative membrane potential. The block of AtALMT9-mediated anion currents by ATP at negative membrane potentials acts as a gate of the channel and vacuolar anion tune this gating mechanism. Our results suggest that anion transport across the vacuolar membrane in plant cells is controlled by cytosolic nucleotides and the energetic status of the cell. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Cytosolic Nucleotides Block and Regulate the Arabidopsis Vacuolar Anion Channel AtALMT9*

    Science.gov (United States)

    Zhang, Jingbo; Martinoia, Enrico; De Angeli, Alexis

    2014-01-01

    The aluminum-activated malate transporters (ALMTs) form a membrane protein family exhibiting different physiological roles in plants, varying from conferring tolerance to environmental Al3+ to the regulation of stomatal movement. The regulation of the anion channels of the ALMT family is largely unknown. Identifying intracellular modulators of the activity of anion channels is fundamental to understanding their physiological functions. In this study we investigated the role of cytosolic nucleotides in regulating the activity of the vacuolar anion channel AtALMT9. We found that cytosolic nucleotides modulate the transport activity of AtALMT9. This modulation was based on a direct block of the pore of the channel at negative membrane potentials (open channel block) by the nucleotide and not by a phosphorylation mechanism. The block by nucleotides of AtALMT9-mediated currents was voltage dependent. The blocking efficiency of intracellular nucleotides increased with the number of phosphate groups and ATP was the most effective cellular blocker. Interestingly, the ATP block induced a marked modification of the current-voltage characteristic of AtALMT9. In addition, increased concentrations of vacuolar anions were able to shift the ATP block threshold to a more negative membrane potential. The block of AtALMT9-mediated anion currents by ATP at negative membrane potentials acts as a gate of the channel and vacuolar anion tune this gating mechanism. Our results suggest that anion transport across the vacuolar membrane in plant cells is controlled by cytosolic nucleotides and the energetic status of the cell. PMID:25028514

  3. An obligatory role of mind bomb-1 in notch signaling of mammalian development.

    Directory of Open Access Journals (Sweden)

    Bon-Kyoung Koo

    2007-11-01

    Full Text Available The Notch signaling pathway is an evolutionarily conserved intercellular signaling module essential for cell fate specification that requires endocytosis of Notch ligands. Structurally distinct E3 ubiquitin ligases, Neuralized (Neur and Mind bomb (Mib, cooperatively regulate the endocytosis of Notch ligands in Drosophila. However, the respective roles of the mammalian E3 ubiquitin ligases, Neur1, Neur2, Mib1, and Mib2, in mammalian development are poorly understood.Through extensive use of mammalian genetics, here we show that Neur1 and Neur2 double mutants and Mib2(-/- mice were viable and grossly normal. In contrast, conditional inactivation of Mib1 in various tissues revealed the representative Notch phenotypes: defects of arterial specification as deltalike4 mutants, abnormal cerebellum and skin development as jagged1 conditional mutants, and syndactylism as jagged2 mutants.Our data provide the first evidence that Mib1 is essential for Jagged as well as Deltalike ligand-mediated Notch signaling in mammalian development, while Neur1, Neur2, and Mib2 are dispensable.

  4. Dynamic JUNQ inclusion bodies are asymmetrically inherited in mammalian cell lines through the asymmetric partitioning of vimentin.

    Science.gov (United States)

    Ogrodnik, Mikołaj; Salmonowicz, Hanna; Brown, Rachel; Turkowska, Joanna; Średniawa, Władysław; Pattabiraman, Sundararaghavan; Amen, Triana; Abraham, Ayelet-chen; Eichler, Noam; Lyakhovetsky, Roman; Kaganovich, Daniel

    2014-06-03

    Aging is associated with the accumulation of several types of damage: in particular, damage to the proteome. Recent work points to a conserved replicative rejuvenation mechanism that works by preventing the inheritance of damaged and misfolded proteins by specific cells during division. Asymmetric inheritance of misfolded and aggregated proteins has been shown in bacteria and yeast, but relatively little evidence exists for a similar mechanism in mammalian cells. Here, we demonstrate, using long-term 4D imaging, that the vimentin intermediate filament establishes mitotic polarity in mammalian cell lines and mediates the asymmetric partitioning of damaged proteins. We show that mammalian JUNQ inclusion bodies containing soluble misfolded proteins are inherited asymmetrically, similarly to JUNQ quality-control inclusions observed in yeast. Mammalian IPOD-like inclusion bodies, meanwhile, are not always inherited by the same cell as the JUNQ. Our study suggests that the mammalian cytoskeleton and intermediate filaments provide the physical scaffold for asymmetric inheritance of dynamic quality-control JUNQ inclusions. Mammalian IPOD inclusions containing amyloidogenic proteins are not partitioned as effectively during mitosis as their counterparts in yeast. These findings provide a valuable mechanistic basis for studying the process of asymmetric inheritance in mammalian cells, including cells potentially undergoing polar divisions, such as differentiating stem cells and cancer cells.

  5. Biochemistry of an olfactory purinergic system: dephosphorylation of excitatory nucleotides and uptake of adenosine

    Energy Technology Data Exchange (ETDEWEB)

    Trapido-Rosenthal, H G; Carr, W E; Gleeson, R A

    1987-10-01

    The olfactory organ of the spiny lobster, Panulirus argus, is composed of chemosensory sensilla containing the dendrites of primary chemosensory neurons. Receptors on these dendrites are activated by the nucleotides AMP, ADP, and ATP but not by the nucleoside adenosine. It is shown here that the lobster chemosensory sensilla contain enzymes that dephosphorylate excitatory nucleotides and an uptake system that internalizes the nonexcitatory dephosphorylated product adenosine. The uptake of (/sup 3/H)-adenosine is saturable with increasing concentration, linear with time for up to 3 h, sodium dependent, insensitive to moderate pH changes and has a Km of 7.1 microM and a Vmax of 5.2 fmol/sensillum/min (573 fmol/micrograms of protein/min). Double-label experiments show that sensilla dephosphorylate nucleotides extracellularly; /sup 3/H from adenine-labeled AMP or ATP is internalized, whereas 32P from phosphate-labeled nucleotides is not. The dephosphorylation of AMP is very rapid; /sup 3/H from AMP is internalized at the same rate as /sup 3/H from adenosine. Sensillar 5'-ectonucleotidase activity is inhibited by ADP and the ADP analog alpha, beta-methylene ADP. Collectively, these results indicate that the enzymes and the uptake system whereby chemosensory sensilla of the lobster inactivate excitatory nucleotides and clear adenosine from extracellular spaces are very similar to those present in the internal tissues of vertebrates, where nucleotides have many neuroactive effects.

  6. NDR1 modulates the UV-induced DNA-damage checkpoint and nucleotide excision repair

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jeong-Min; Choi, Ji Ye [Department of Biological Science, Dong-A University, Busan (Korea, Republic of); Yi, Joo Mi [Research Center, Dongnam Institute of Radiological & Medical Sciences, Busan (Korea, Republic of); Chung, Jin Woong; Leem, Sun-Hee; Koh, Sang Seok [Department of Biological Science, Dong-A University, Busan (Korea, Republic of); Kang, Tae-Hong, E-mail: thkang@dau.ac.kr [Department of Biological Science, Dong-A University, Busan (Korea, Republic of)

    2015-06-05

    Nucleotide excision repair (NER) is the sole mechanism of UV-induced DNA lesion repair in mammals. A single round of NER requires multiple components including seven core NER factors, xeroderma pigmentosum A–G (XPA–XPG), and many auxiliary effector proteins including ATR serine/threonine kinase. The XPA protein helps to verify DNA damage and thus plays a rate-limiting role in NER. Hence, the regulation of XPA is important for the entire NER kinetic. We found that NDR1, a novel XPA-interacting protein, modulates NER by modulating the UV-induced DNA-damage checkpoint. In quiescent cells, NDR1 localized mainly in the cytoplasm. After UV irradiation, NDR1 accumulated in the nucleus. The siRNA knockdown of NDR1 delayed the repair of UV-induced cyclobutane pyrimidine dimers in both normal cells and cancer cells. It did not, however, alter the expression levels or the chromatin association levels of the core NER factors following UV irradiation. Instead, the NDR1-depleted cells displayed reduced activity of ATR for some set of its substrates including CHK1 and p53, suggesting that NDR1 modulates NER indirectly via the ATR pathway. - Highlights: • NDR1 is a novel XPA-interacting protein. • NDR1 accumulates in the nucleus in response to UV irradiation. • NDR1 modulates NER (nucleotide excision repair) by modulating the UV-induced DNA-damage checkpoint response.

  7. Rasp21 sequences opposite the nucleotide binding pocket are required for GRF-mediated nucleotide release

    DEFF Research Database (Denmark)

    Leonardsen, L; DeClue, J E; Lybaek, H

    1996-01-01

    The substrate requirements for the catalytic activity of the mouse Cdc25 homolog Guanine nucleotide Release Factor, GRF, were determined using the catalytic domain of GRF expressed in insect cells and E. coli expressed H-Ras mutants. We found a requirement for the loop 7 residues in Ras (amino ac...... and the human Ras like proteins RhoA, Rap1A, Rac1 and G25K revealed a strict Ras specificity; of these only S. pombe Ras was GRF sensitive....

  8. Horizontal transfer of a subtilisin gene from plants into an ancestor of the plant pathogenic fungal genus Colletotrichum.

    Science.gov (United States)

    Armijos Jaramillo, Vinicio Danilo; Vargas, Walter Alberto; Sukno, Serenella Ana; Thon, Michael R

    2013-01-01

    The genus Colletotrichum contains a large number of phytopathogenic fungi that produce enormous economic losses around the world. The effect of horizontal gene transfer (HGT) has not been studied yet in these organisms. Inter-Kingdom HGT into fungal genomes has been reported in the past but knowledge about the HGT between plants and fungi is particularly limited. We describe a gene in the genome of several species of the genus Colletotrichum with a strong resemblance to subtilisins typically found in plant genomes. Subtilisins are an important group of serine proteases, widely distributed in all of the kingdoms of life. Our hypothesis is that the gene was acquired by Colletotrichum spp. through (HGT) from plants to a Colletotrichum ancestor. We provide evidence to support this hypothesis in the form of phylogenetic analyses as well as a characterization of the similarity of the subtilisin at the primary, secondary and tertiary structural levels. The remarkable level of structural conservation of Colletotrichum plant-like subtilisin (CPLS) with plant subtilisins and the differences with the rest of Colletotrichum subtilisins suggests the possibility of molecular mimicry. Our phylogenetic analysis indicates that the HGT event would have occurred approximately 150-155 million years ago, after the divergence of the Colletotrichum lineage from other fungi. Gene expression analysis shows that the gene is modulated during the infection of maize by C. graminicola suggesting that it has a role in plant disease. Furthermore, the upregulation of the CPLS coincides with the downregulation of several plant genes encoding subtilisins. Based on the known roles of subtilisins in plant pathogenic fungi and the gene expression pattern that we observed, we postulate that the CPLSs have an important role in plant infection.

  9. Single nucleotide polymorphisms as susceptibility, prognostic, and therapeutic markers of nonsmall cell lung cancer

    Directory of Open Access Journals (Sweden)

    Zienolddiny S

    2011-12-01

    Full Text Available Shanbeh Zienolddiny, Vidar SkaugSection for Toxicology and Biological Work Environment, National Institute of Occupational Health, Oslo, NorwayAbstract: Lung cancer is a major public health problem throughout the world. Among the most frequent cancer types (prostate, breast, colorectal, stomach, lung, lung cancer is the leading cause of cancer-related deaths worldwide. Among the two major subtypes of small cell lung cancer and nonsmall cell lung cancer (NSCLC, 85% of tumors belong to the NSCLC histological types. Small cell lung cancer is associated with the shortest survival time. Although tobacco smoking has been recognized as the major risk factor for lung cancer, there is a great interindividual and interethnic difference in risk of developing lung cancer given exposure to similar environmental and lifestyle factors. This may indicate that in addition to chemical and environmental factors, genetic variations in the genome may contribute to risk modification. A common type of genetic variation in the genome, known as single nucleotide polymorphism, has been found to be associated with susceptibility to lung cancer. Interestingly, many of these polymorphisms are found in the genes that regulate major pathways of carcinogen metabolism (cytochrome P450 genes, detoxification (glutathione S-transferases, adduct removal (DNA repair genes, cell growth/apoptosis (TP53/MDM2, the immune system (cytokines/chemokines, and membrane receptors (nicotinic acetylcholine and dopaminergic receptors. Some of these polymorphisms have been shown to alter the level of mRNA, and protein structure and function. In addition to being susceptibility markers, several of these polymorphisms are emerging to be important for response to chemotherapy/radiotherapy and survival of patients. Therefore, it is hypothesized that single nucleotide polymorphisms will be valuable genetic markers in individual-based prognosis and therapy in future. Here we will review some of the most

  10. Molecular properties of mammalian proteins that interact with cGMP: protein kinases, cation channels, phosphodiesterases, and multi-drug anion transporters.

    Science.gov (United States)

    Francis, Sharron H; Blount, Mitsi A; Zoraghi, Roya; Corbin, Jackie D

    2005-09-01

    Cyclic GMP is a critical second messenger signaling molecule in many mammalian cell types. It is synthesized by a family of guanylyl cyclases that is activated in response to stimuli from hormones such as natriuretic peptides, members of the guanylin family, and chemical stimuli including nitric oxide and carbon monoxide. The resulting elevation of cGMP modulates myriad physiological processes. Three major groups of cellular proteins bind cGMP specifically at allosteric sites; interaction of cGMP with these sites modulates the activities and functions of other domains within these protein groups to bring about physiological effects. These proteins include the cyclic nucleotide (cN)-dependent protein kinases, cN-gated cation channels, and cGMP-binding phosphodiesterases (PDE). Cyclic GMP also interacts with the catalytic sites of many cN PDEs and with some members of the multi-drug anion transporter family (MRPs) which can extrude nucleotides from cells. The allosteric cN-binding sites in the kinases and the cN-gated channels are evolutionarily and biochemically related, whereas the allosteric cGMP-binding sites in PDEs (also known as GAF domains), the catalytic sites of PDEs , and the ligand-binding sites in the MRPs are evolutionarily and biochemically distinct from each other and from those in the kinase and channel families. The sites that interact with cGMP within each of these groups of proteins have unique properties that provide for cGMP binding. Within a given cell, cGMP can potentially interact with members of all these groups of proteins if they are present. The relative abundance and affinities of these various cGMP-binding sites in conjunction with their subcellular compartmentation, proximity to cyclases and PDEs, and post-translational modification contribute importantly in determining the impact of these respective proteins to cGMP signaling within a particular cell.

  11. The evolution of air resonance power efficiency in the violin and its ancestors.

    Science.gov (United States)

    Nia, Hadi T; Jain, Ankita D; Liu, Yuming; Alam, Mohammad-Reza; Barnas, Roman; Makris, Nicholas C

    2015-03-08

    The fact that acoustic radiation from a violin at air-cavity resonance is monopolar and can be determined by pure volume change is used to help explain related aspects of violin design evolution. By determining the acoustic conductance of arbitrarily shaped sound holes, it is found that air flow at the perimeter rather than the broader sound-hole area dominates acoustic conductance, and coupling between compressible air within the violin and its elastic structure lowers the Helmholtz resonance frequency from that found for a corresponding rigid instrument by roughly a semitone. As a result of the former, it is found that as sound-hole geometry of the violin's ancestors slowly evolved over centuries from simple circles to complex f-holes, the ratio of inefficient, acoustically inactive to total sound-hole area was decimated, roughly doubling air-resonance power efficiency. F-hole length then slowly increased by roughly 30% across two centuries in the renowned workshops of Amati, Stradivari and Guarneri, favouring instruments with higher air-resonance power, through a corresponding power increase of roughly 60%. By evolution-rate analysis, these changes are found to be consistent with mutations arising within the range of accidental replication fluctuations from craftsmanship limitations with subsequent selection favouring instruments with higher air-resonance power.

  12. Expression of a Rho guanine nucleotide exchange factor, Ect2, in the developing mouse pituitary.

    Science.gov (United States)

    Islam, M S; Tsuji, T; Higashida, C; Takahashi, M; Higashida, H; Koizumi, K

    2010-05-01

    The pituitary gland is a highly mitotically active tissue after birth. Various cell types are known to undergo proliferation in the anterior pituitary. However, little is known about the mechanisms regulating mitotic activity in this tissue. When searching for genes specifically expressed in the pituitary gland among those that we previously screened in Drosophila, we found epithelial cell-transforming gene 2 (Ect2). Ect2 is a guanine nucleotide exchange factor for Rho GTPases, which is known to play an essential role in cytokinesis. Although there have been many cellular studies regarding the function of Ect2, the temporal and spatial expression patterns of Ect2 in vivo have not been determined. In the present study, we examined the postnatal developmental expression of Ect2 in the mouse pituitary. Enhanced Ect2 expression was detected in the mouse pituitary gland during the first 3 weeks after birth, which coincided well with the period of rapid pituitary expansion associated with increased growth rate. Immunostaining analysis showed that Ect2-expressing cells were distributed in the anterior and intermediate lobes, but not the posterior lobe, of the pituitary. These Ect2-expressing cells frequently incorporated the thymidine analogue, EdU (5-ethynyl-2'-deoxyuridine), indicating that these cells were mitotically active. Taken together, the results demonstrate the functional role of Ect2 in postnatal proliferating cells in the two lobes of the pituitary, thereby suggesting roles in developmental growth of the mammalian pituitary.

  13. Prediction of Nucleotide Binding Peptides Using Star Graph Topological Indices.

    Science.gov (United States)

    Liu, Yong; Munteanu, Cristian R; Fernández Blanco, Enrique; Tan, Zhiliang; Santos Del Riego, Antonino; Pazos, Alejandro

    2015-11-01

    The nucleotide binding proteins are involved in many important cellular processes, such as transmission of genetic information or energy transfer and storage. Therefore, the screening of new peptides for this biological function is an important research topic. The current study proposes a mixed methodology to obtain the first classification model that is able to predict new nucleotide binding peptides, using only the amino acid sequence. Thus, the methodology uses a Star graph molecular descriptor of the peptide sequences and the Machine Learning technique for the best classifier. The best model represents a Random Forest classifier based on two features of the embedded and non-embedded graphs. The performance of the model is excellent, considering similar models in the field, with an Area Under the Receiver Operating Characteristic Curve (AUROC) value of 0.938 and true positive rate (TPR) of 0.886 (test subset). The prediction of new nucleotide binding peptides with this model could be useful for drug target studies in drug development. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Inotropic responses of the frog ventricle to adenosine triphosphate and related changes in endogenous cyclic nucleotides.

    Science.gov (United States)

    Flitney, F W; Singh, J

    1980-07-01

    1. A study has been made of a well documented but poorly understood response of the isolated frog ventricle to treatment with exogenous adenosine 5' triphosphate (ATP). Measurements of membrane potential, isometric twitch tension and levels of endogenous 3',5'-cyclic nucleotides have been made at various times during the ATP-induced response. 2. ATP elicits a characteristic triphasic response, which comprises an initial, abrupt increase in contractility, rising to a maximum within a few beats (first phase); followed by a period when the twitch amplitude falls, sometimes to below the control level (second phase); and superceded by a more slowly developing and longer-lasting increase in contractile force (third phase). The response is unaffected by atropine, propranolol or phentolamine. However, the prostaglandin synthetase inhibitor indomethacin depresses the first phase and entirely suppresses the third phase. 3. The inotropic effects of ATP are accompanied by changes in the shape of the action potential. These effects are dose-related. The duration of the action potential (D-30mV) and its positive overshoot (O) are increased during all phases of the response, for [ATP]o's up to 10(-5) M. However, at higher [ATP]o's, D-30mV and O ar both reduced during the second phase (but not the first or third phase), when isometric twitch tension is also depressed. The relationship between action potential duration and twitch tension (P) for different [ATP]o's is linear for all three phases of the response, but the slopes of the curves (delta P/delta D) are markedly different, indicating that the sensitivity of the contractile system to membrane depolarization is not constant, but varies continuously throughout the response. 4. ATP has a potent stimulatory effect on the metabolism of endogenous 3',5'-cyclic nucleotides. The time courses of the changes in adenosine 3','5-cyclic monophosphate (3',5'-cyclic AMP) and guanosine 3',5'-cyclic monophosphate (3',5'-cyclic GMP) are

  15. Molecular Markers for Interspecies Transmission of Avian Influenza Viruses in Mammalian Hosts

    Science.gov (United States)

    Lee, Taehyung

    2017-01-01

    In the last decade, a wide range of avian influenza viruses (AIVs) have infected various mammalian hosts and continuously threaten both human and animal health. It is a result of overcoming the inter-species barrier which is mostly associated with gene reassortment and accumulation of mutations in their gene segments. Several recent studies have shed insights into the phenotypic and genetic changes that are involved in the interspecies transmission of AIVs. These studies have a major focus on transmission from avian to mammalian species due to the high zoonotic potential of the viruses. As more mammalian species have been infected with these viruses, there is higher risk of genetic evolution of these viruses that may lead to the next human pandemic which represents and raises public health concern. Thus, understanding the mechanism of interspecies transmission and molecular determinants through which the emerging AIVs can acquire the ability to transmit to humans and other mammals is an important key in evaluating the potential risk caused by AIVs among humans. Here, we summarize previous and recent studies on molecular markers that are specifically involved in the transmission of avian-derived influenza viruses to various mammalian hosts including humans, pigs, horses, dogs, and marine mammals. PMID:29236050

  16. Leadership in Mammalian Societies: Emergence, Distribution, Power, and Payoff.

    Science.gov (United States)

    Smith, Jennifer E; Gavrilets, Sergey; Mulder, Monique Borgerhoff; Hooper, Paul L; Mouden, Claire El; Nettle, Daniel; Hauert, Christoph; Hill, Kim; Perry, Susan; Pusey, Anne E; van Vugt, Mark; Smith, Eric Alden

    2016-01-01

    Leadership is an active area of research in both the biological and social sciences. This review provides a transdisciplinary synthesis of biological and social-science views of leadership from an evolutionary perspective, and examines patterns of leadership in a set of small-scale human and non-human mammalian societies. We review empirical and theoretical work on leadership in four domains: movement, food acquisition, within-group conflict mediation, and between-group interactions. We categorize patterns of variation in leadership in five dimensions: distribution (across individuals), emergence (achieved versus inherited), power, relative payoff to leadership, and generality (across domains). We find that human leadership exhibits commonalities with and differences from the broader mammalian pattern, raising interesting theoretical and empirical issues. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. How hot are drosophila hotspots? examining recombination rate variation and associations with nucleotide diversity, divergence, and maternal age in Drosophila pseudoobscura.

    Directory of Open Access Journals (Sweden)

    Brenda Manzano-Winkler

    Full Text Available Fine scale meiotic recombination maps have uncovered a large amount of variation in crossover rate across the genomes of many species, and such variation in mammalian and yeast genomes is concentrated to <5kb regions of highly elevated recombination rates (10-100x the background rate called "hotspots." Drosophila exhibit substantial recombination rate heterogeneity across their genome, but evidence for these highly-localized hotspots is lacking. We assayed recombination across a 40Kb region of Drosophila pseudoobscura chromosome 2, with one 20kb interval assayed every 5Kb and the adjacent 20kb interval bisected into 10kb pieces. We found that recombination events across the 40kb stretch were relatively evenly distributed across each of the 5kb and 10kb intervals, rather than concentrated in a single 5kb region. This, in combination with other recent work, indicates that the recombination landscape of Drosophila may differ from the punctate recombination pattern observed in many mammals and yeast. Additionally, we found no correlation of average pairwise nucleotide diversity and divergence with recombination rate across the 20kb intervals, nor any effect of maternal age in weeks on recombination rate in our sample.

  18. The NBS-LRR architectures of plant R-proteins and metazoan NLRs evolved in independent events.

    Science.gov (United States)

    Urbach, Jonathan M; Ausubel, Frederick M

    2017-01-31

    There are intriguing parallels between plants and animals, with respect to the structures of their innate immune receptors, that suggest universal principles of innate immunity. The cytosolic nucleotide binding site-leucine rich repeat (NBS-LRR) resistance proteins of plants (R-proteins) and the so-called NOD-like receptors of animals (NLRs) share a domain architecture that includes a STAND (signal transduction ATPases with numerous domains) family NTPase followed by a series of LRRs, suggesting inheritance from a common ancestor with that architecture. Focusing on the STAND NTPases of plant R-proteins, animal NLRs, and their homologs that represent the NB-ARC (nucleotide-binding adaptor shared by APAF-1, certain R gene products and CED-4) and NACHT (named for NAIP, CIIA, HET-E, and TEP1) subfamilies of the STAND NTPases, we analyzed the phylogenetic distribution of the NBS-LRR domain architecture, used maximum-likelihood methods to infer a phylogeny of the NTPase domains of R-proteins, and reconstructed the domain structure of the protein containing the common ancestor of the STAND NTPase domain of R-proteins and NLRs. Our analyses reject monophyly of plant R-proteins and NLRs and suggest that the protein containing the last common ancestor of the STAND NTPases of plant R-proteins and animal NLRs (and, by extension, all NB-ARC and NACHT domains) possessed a domain structure that included a STAND NTPase paired with a series of tetratricopeptide repeats. These analyses reject the hypothesis that the domain architecture of R-proteins and NLRs was inherited from a common ancestor and instead suggest the domain architecture evolved at least twice. It remains unclear whether the NBS-LRR architectures were innovations of plants and animals themselves or were acquired by one or both lineages through horizontal gene transfer.

  19. Extracellular nucleotide derivatives protect cardiomyctes against hypoxic stress

    DEFF Research Database (Denmark)

    Golan, O; Issan, Y; Isak, A

    2011-01-01

    assures cardioprotection. Treatment with extracellular nucleotides, or with tri/di-phosphate, administered under normoxic conditions or during hypoxic conditions, led to a decrease in reactive oxygen species production. CONCLUSIONS: Extracellular tri/di-phosphates are apparently the molecule responsible...

  20. Fossilized Mammalian Erythrocytes Associated With a Tick Reveal Ancient Piroplasms.

    Science.gov (United States)

    Poinar, George

    2017-07-01

    Ticks transmit a variety of pathogenic organisms to vertebrates, especially mammals. The fossil record of such associations is extremely rare. An engorged nymphal tick of the genus Ambylomma in Dominican amber was surrounded by erythrocytes from its mammalian host. Some of the exposed erythrocytes contained developmental stages of a hemoprotozoan resembling members of the Order Piroplasmida. The fossil piroplasm is described, its stages compared with those of extant piroplasms, and reasons provided why the mammalian host could have been a primate. The parasites were also found in the gut epithelial cells and body cavity of the fossil tick. Aside from providing the first fossil mammalian red blood cells and the first fossil intraerythrocytic hemoparasites, the present discovery shows that tick-piroplasm associations were already well established in the Tertiary. This discovery provides a timescale that can be used in future studies on the evolution of the Piroplasmida. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com Version of Record, first published online March 20, 2017 with fixed content and layout in compliance with Art. 8.1.3.2 ICZN.