WorldWideScience

Sample records for nucleotide polymorphism genomic

  1. Genome-wide patterns of nucleotide polymorphism in domesticated rice

    DEFF Research Database (Denmark)

    Caicedo, Ana L; Williamson, Scott H; Hernandez, Ryan D

    2007-01-01

    Domesticated Asian rice (Oryza sativa) is one of the oldest domesticated crop species in the world, having fed more people than any other plant in human history. We report the patterns of DNA sequence variation in rice and its wild ancestor, O. rufipogon, across 111 randomly chosen gene fragments......, and use these to infer the evolutionary dynamics that led to the origins of rice. There is a genome-wide excess of high-frequency derived single nucleotide polymorphisms (SNPs) in O. sativa varieties, a pattern that has not been reported for other crop species. We developed several alternative models...... to explain contemporary patterns of polymorphisms in rice, including a (i) selectively neutral population bottleneck model, (ii) bottleneck plus migration model, (iii) multiple selective sweeps model, and (iv) bottleneck plus selective sweeps model. We find that a simple bottleneck model, which has been...

  2. Genome-wide divergence and linkage disequilibrium analyses for Capsicum baccatum revealed by genome-anchored single nucleotide polymorphisms

    Science.gov (United States)

    Principal component analysis (PCA) with 36,621 polymorphic genome-anchored single nucleotide polymorphisms (SNPs) identified collectively for Capsicum annuum and Capsicum baccatum was used to show the distribution of these 2 important incompatible cultivated pepper species. Estimated mean nucleotide...

  3. Single Nucleotide Polymorphism

    DEFF Research Database (Denmark)

    Børsting, Claus; Pereira, Vania; Andersen, Jeppe Dyrberg

    2014-01-01

    Single nucleotide polymorphisms (SNPs) are the most frequent DNA sequence variations in the genome. They have been studied extensively in the last decade with various purposes in mind. In this chapter, we will discuss the advantages and disadvantages of using SNPs for human identification...... of SNPs. This will allow acquisition of more information from the sample materials and open up for new possibilities as well as new challenges....

  4. DivStat: a user-friendly tool for single nucleotide polymorphism analysis of genomic diversity.

    Directory of Open Access Journals (Sweden)

    Inês Soares

    Full Text Available Recent developments have led to an enormous increase of publicly available large genomic data, including complete genomes. The 1000 Genomes Project was a major contributor, releasing the results of sequencing a large number of individual genomes, and allowing for a myriad of large scale studies on human genetic variation. However, the tools currently available are insufficient when the goal concerns some analyses of data sets encompassing more than hundreds of base pairs and when considering haplotype sequences of single nucleotide polymorphisms (SNPs. Here, we present a new and potent tool to deal with large data sets allowing the computation of a variety of summary statistics of population genetic data, increasing the speed of data analysis.

  5. Prediction of maize phenotype based on whole-genome single nucleotide polymorphisms using deep belief networks

    Science.gov (United States)

    Rachmatia, H.; Kusuma, W. A.; Hasibuan, L. S.

    2017-05-01

    Selection in plant breeding could be more effective and more efficient if it is based on genomic data. Genomic selection (GS) is a new approach for plant-breeding selection that exploits genomic data through a mechanism called genomic prediction (GP). Most of GP models used linear methods that ignore effects of interaction among genes and effects of higher order nonlinearities. Deep belief network (DBN), one of the architectural in deep learning methods, is able to model data in high level of abstraction that involves nonlinearities effects of the data. This study implemented DBN for developing a GP model utilizing whole-genome Single Nucleotide Polymorphisms (SNPs) as data for training and testing. The case study was a set of traits in maize. The maize dataset was acquisitioned from CIMMYT’s (International Maize and Wheat Improvement Center) Global Maize program. Based on Pearson correlation, DBN is outperformed than other methods, kernel Hilbert space (RKHS) regression, Bayesian LASSO (BL), best linear unbiased predictor (BLUP), in case allegedly non-additive traits. DBN achieves correlation of 0.579 within -1 to 1 range.

  6. A New Single Nucleotide Polymorphism Database for Rainbow Trout Generated Through Whole Genome Resequencing

    Directory of Open Access Journals (Sweden)

    Guangtu Gao

    2018-04-01

    Full Text Available Single-nucleotide polymorphisms (SNPs are highly abundant markers, which are broadly distributed in animal genomes. For rainbow trout (Oncorhynchus mykiss, SNP discovery has been previously done through sequencing of restriction-site associated DNA (RAD libraries, reduced representation libraries (RRL and RNA sequencing. Recently we have performed high coverage whole genome resequencing with 61 unrelated samples, representing a wide range of rainbow trout and steelhead populations, with 49 new samples added to 12 aquaculture samples from AquaGen (Norway that we previously used for SNP discovery. Of the 49 new samples, 11 were double-haploid lines from Washington State University (WSU and 38 represented wild and hatchery populations from a wide range of geographic distribution and with divergent migratory phenotypes. We then mapped the sequences to the new rainbow trout reference genome assembly (GCA_002163495.1 which is based on the Swanson YY doubled haploid line. Variant calling was conducted with FreeBayes and SAMtools mpileup, followed by filtering of SNPs based on quality score, sequence complexity, read depth on the locus, and number of genotyped samples. Results from the two variant calling programs were compared and genotypes of the double haploid samples were used for detecting and filtering putative paralogous sequence variants (PSVs and multi-sequence variants (MSVs. Overall, 30,302,087 SNPs were identified on the rainbow trout genome 29 chromosomes and 1,139,018 on unplaced scaffolds, with 4,042,723 SNPs having high minor allele frequency (MAF > 0.25. The average SNP density on the chromosomes was one SNP per 64 bp, or 15.6 SNPs per 1 kb. Results from the phylogenetic analysis that we conducted indicate that the SNP markers contain enough population-specific polymorphisms for recovering population relationships despite the small sample size used. Intra-Population polymorphism assessment revealed high level of polymorphism and

  7. Overlapping genomic sequences: a treasure trove of single-nucleotide polymorphisms.

    Science.gov (United States)

    Taillon-Miller, P; Gu, Z; Li, Q; Hillier, L; Kwok, P Y

    1998-07-01

    An efficient strategy to develop a dense set of single-nucleotide polymorphism (SNP) markers is to take advantage of the human genome sequencing effort currently under way. Our approach is based on the fact that bacterial artificial chromosomes (BACs) and P1-based artificial chromosomes (PACs) used in long-range sequencing projects come from diploid libraries. If the overlapping clones sequenced are from different lineages, one is comparing the sequences from 2 homologous chromosomes in the overlapping region. We have analyzed in detail every SNP identified while sequencing three sets of overlapping clones found on chromosome 5p15.2, 7q21-7q22, and 13q12-13q13. In the 200.6 kb of DNA sequence analyzed in these overlaps, 153 SNPs were identified. Computer analysis for repetitive elements and suitability for STS development yielded 44 STSs containing 68 SNPs for further study. All 68 SNPs were confirmed to be present in at least one of the three (Caucasian, African-American, Hispanic) populations studied. Furthermore, 42 of the SNPs tested (62%) were informative in at least one population, 32 (47%) were informative in two or more populations, and 23 (34%) were informative in all three populations. These results clearly indicate that developing SNP markers from overlapping genomic sequence is highly efficient and cost effective, requiring only the two simple steps of developing STSs around the known SNPs and characterizing them in the appropriate populations.

  8. Genetic analysis of glucosinolate variability in broccoli florets using genome-anchored single nucleotide polymorphisms.

    Science.gov (United States)

    Brown, Allan F; Yousef, Gad G; Reid, Robert W; Chebrolu, Kranthi K; Thomas, Aswathy; Krueger, Christopher; Jeffery, Elizabeth; Jackson, Eric; Juvik, John A

    2015-07-01

    The identification of genetic factors influencing the accumulation of individual glucosinolates in broccoli florets provides novel insight into the regulation of glucosinolate levels in Brassica vegetables and will accelerate the development of vegetables with glucosinolate profiles tailored to promote human health. Quantitative trait loci analysis of glucosinolate (GSL) variability was conducted with a B. oleracea (broccoli) mapping population, saturated with single nucleotide polymorphism markers from a high-density array designed for rapeseed (Brassica napus). In 4 years of analysis, 14 QTLs were associated with the accumulation of aliphatic, indolic, or aromatic GSLs in floret tissue. The accumulation of 3-carbon aliphatic GSLs (2-propenyl and 3-methylsulfinylpropyl) was primarily associated with a single QTL on C05, but common regulation of 4-carbon aliphatic GSLs was not observed. A single locus on C09, associated with up to 40 % of the phenotypic variability of 2-hydroxy-3-butenyl GSL over multiple years, was not associated with the variability of precursor compounds. Similarly, QTLs on C02, C04, and C09 were associated with 4-methylsulfinylbutyl GSL concentration over multiple years but were not significantly associated with downstream compounds. Genome-specific SNP markers were used to identify candidate genes that co-localized to marker intervals and previously sequenced Brassica oleracea BAC clones containing known GSL genes (GSL-ALK, GSL-PRO, and GSL-ELONG) were aligned to the genomic sequence, providing support that at least three of our 14 QTLs likely correspond to previously identified GSL loci. The results demonstrate that previously identified loci do not fully explain GSL variation in broccoli. The identification of additional genetic factors influencing the accumulation of GSL in broccoli florets provides novel insight into the regulation of GSL levels in Brassicaceae and will accelerate development of vegetables with modified or enhanced GSL

  9. Multi-generational imputation of single nucleotide polymorphism marker genotypes and accuracy of genomic selection.

    Science.gov (United States)

    Toghiani, S; Aggrey, S E; Rekaya, R

    2016-07-01

    Availability of high-density single nucleotide polymorphism (SNP) genotyping platforms provided unprecedented opportunities to enhance breeding programmes in livestock, poultry and plant species, and to better understand the genetic basis of complex traits. Using this genomic information, genomic breeding values (GEBVs), which are more accurate than conventional breeding values. The superiority of genomic selection is possible only when high-density SNP panels are used to track genes and QTLs affecting the trait. Unfortunately, even with the continuous decrease in genotyping costs, only a small fraction of the population has been genotyped with these high-density panels. It is often the case that a larger portion of the population is genotyped with low-density and low-cost SNP panels and then imputed to a higher density. Accuracy of SNP genotype imputation tends to be high when minimum requirements are met. Nevertheless, a certain rate of genotype imputation errors is unavoidable. Thus, it is reasonable to assume that the accuracy of GEBVs will be affected by imputation errors; especially, their cumulative effects over time. To evaluate the impact of multi-generational selection on the accuracy of SNP genotypes imputation and the reliability of resulting GEBVs, a simulation was carried out under varying updating of the reference population, distance between the reference and testing sets, and the approach used for the estimation of GEBVs. Using fixed reference populations, imputation accuracy decayed by about 0.5% per generation. In fact, after 25 generations, the accuracy was only 7% lower than the first generation. When the reference population was updated by either 1% or 5% of the top animals in the previous generations, decay of imputation accuracy was substantially reduced. These results indicate that low-density panels are useful, especially when the generational interval between reference and testing population is small. As the generational interval

  10. Natural Selection and Recombination Rate Variation Shape Nucleotide Polymorphism Across the Genomes of Three Related Populus Species.

    Science.gov (United States)

    Wang, Jing; Street, Nathaniel R; Scofield, Douglas G; Ingvarsson, Pär K

    2016-03-01

    A central aim of evolutionary genomics is to identify the relative roles that various evolutionary forces have played in generating and shaping genetic variation within and among species. Here we use whole-genome resequencing data to characterize and compare genome-wide patterns of nucleotide polymorphism, site frequency spectrum, and population-scaled recombination rates in three species of Populus: Populus tremula, P. tremuloides, and P. trichocarpa. We find that P. tremuloides has the highest level of genome-wide variation, skewed allele frequencies, and population-scaled recombination rates, whereas P. trichocarpa harbors the lowest. Our findings highlight multiple lines of evidence suggesting that natural selection, due to both purifying and positive selection, has widely shaped patterns of nucleotide polymorphism at linked neutral sites in all three species. Differences in effective population sizes and rates of recombination largely explain the disparate magnitudes and signatures of linked selection that we observe among species. The present work provides the first phylogenetic comparative study on a genome-wide scale in forest trees. This information will also improve our ability to understand how various evolutionary forces have interacted to influence genome evolution among related species. Copyright © 2016 by the Genetics Society of America.

  11. Whole Genome Association Study to Detect Single Nucleotide Polymorphisms for Behavior in Sapsaree Dog (

    Directory of Open Access Journals (Sweden)

    J. H. Ha

    2015-07-01

    Full Text Available The purpose of this study was to characterize genetic architecture of behavior patterns in Sapsaree dogs. The breed population (n = 8,256 has been constructed since 1990 over 12 generations and managed at the Sapsaree Breeding Research Institute, Gyeongsan, Korea. Seven behavioral traits were investigated for 882 individuals. The traits were classified as a quantitative or a categorical group, and heritabilities (h2 and variance components were estimated under the Animal model using ASREML 2.0 software program. In general, the h2 estimates of the traits ranged between 0.00 and 0.16. Strong genetic (rG and phenotypic (rP correlations were observed between nerve stability, affability and adaptability, i.e. 0.9 to 0.94 and 0.46 to 0.68, respectively. To detect significant single nucleotide polymorphism (SNP for the behavioral traits, a total of 134 and 60 samples were genotyped using the Illumina 22K CanineSNP20 and 170K CanineHD bead chips, respectively. Two datasets comprising 60 (Sap60 and 183 (Sap183 samples were analyzed, respectively, of which the latter was based on the SNPs that were embedded on both the 22K and 170K chips. To perform genome-wide association analysis, each SNP was considered with the residuals of each phenotype that were adjusted for sex and year of birth as fixed effects. A least squares based single marker regression analysis was followed by a stepwise regression procedure for the significant SNPs (p<0.01, to determine a best set of SNPs for each trait. A total of 41 SNPs were detected with the Sap183 samples for the behavior traits. The significant SNPs need to be verified using other samples, so as to be utilized to improve behavior traits via marker-assisted selection in the Sapsaree population.

  12. Genome-wide single nucleotide polymorphisms (SNPs) for a model invasive ascidian Botryllus schlosseri.

    Science.gov (United States)

    Gao, Yangchun; Li, Shiguo; Zhan, Aibin

    2018-04-01

    Invasive species cause huge damages to ecology, environment and economy globally. The comprehensive understanding of invasion mechanisms, particularly genetic bases of micro-evolutionary processes responsible for invasion success, is essential for reducing potential damages caused by invasive species. The golden star tunicate, Botryllus schlosseri, has become a model species in invasion biology, mainly owing to its high invasiveness nature and small well-sequenced genome. However, the genome-wide genetic markers have not been well developed in this highly invasive species, thus limiting the comprehensive understanding of genetic mechanisms of invasion success. Using restriction site-associated DNA (RAD) tag sequencing, here we developed a high-quality resource of 14,119 out of 158,821 SNPs for B. schlosseri. These SNPs were relatively evenly distributed at each chromosome. SNP annotations showed that the majority of SNPs (63.20%) were located at intergenic regions, and 21.51% and 14.58% were located at introns and exons, respectively. In addition, the potential use of the developed SNPs for population genomics studies was primarily assessed, such as the estimate of observed heterozygosity (H O ), expected heterozygosity (H E ), nucleotide diversity (π), Wright's inbreeding coefficient (F IS ) and effective population size (Ne). Our developed SNP resource would provide future studies the genome-wide genetic markers for genetic and genomic investigations, such as genetic bases of micro-evolutionary processes responsible for invasion success.

  13. Next Generation Semiconductor Based Sequencing of the Donkey (Equus asinus) Genome Provided Comparative Sequence Data against the Horse Genome and a Few Millions of Single Nucleotide Polymorphisms

    Science.gov (United States)

    Bertolini, Francesca; Scimone, Concetta; Geraci, Claudia; Schiavo, Giuseppina; Utzeri, Valerio Joe; Chiofalo, Vincenzo; Fontanesi, Luca

    2015-01-01

    Few studies investigated the donkey (Equus asinus) at the whole genome level so far. Here, we sequenced the genome of two male donkeys using a next generation semiconductor based sequencing platform (the Ion Proton sequencer) and compared obtained sequence information with the available donkey draft genome (and its Illumina reads from which it was originated) and with the EquCab2.0 assembly of the horse genome. Moreover, the Ion Torrent Personal Genome Analyzer was used to sequence reduced representation libraries (RRL) obtained from a DNA pool including donkeys of different breeds (Grigio Siciliano, Ragusano and Martina Franca). The number of next generation sequencing reads aligned with the EquCab2.0 horse genome was larger than those aligned with the draft donkey genome. This was due to the larger N50 for contigs and scaffolds of the horse genome. Nucleotide divergence between E. caballus and E. asinus was estimated to be ~ 0.52-0.57%. Regions with low nucleotide divergence were identified in several autosomal chromosomes and in the whole chromosome X. These regions might be evolutionally important in equids. Comparing Y-chromosome regions we identified variants that could be useful to track donkey paternal lineages. Moreover, about 4.8 million of single nucleotide polymorphisms (SNPs) in the donkey genome were identified and annotated combining sequencing data from Ion Proton (whole genome sequencing) and Ion Torrent (RRL) runs with Illumina reads. A higher density of SNPs was present in regions homologous to horse chromosome 12, in which several studies reported a high frequency of copy number variants. The SNPs we identified constitute a first resource useful to describe variability at the population genomic level in E. asinus and to establish monitoring systems for the conservation of donkey genetic resources. PMID:26151450

  14. Next Generation Semiconductor Based Sequencing of the Donkey (Equus asinus Genome Provided Comparative Sequence Data against the Horse Genome and a Few Millions of Single Nucleotide Polymorphisms.

    Directory of Open Access Journals (Sweden)

    Francesca Bertolini

    Full Text Available Few studies investigated the donkey (Equus asinus at the whole genome level so far. Here, we sequenced the genome of two male donkeys using a next generation semiconductor based sequencing platform (the Ion Proton sequencer and compared obtained sequence information with the available donkey draft genome (and its Illumina reads from which it was originated and with the EquCab2.0 assembly of the horse genome. Moreover, the Ion Torrent Personal Genome Analyzer was used to sequence reduced representation libraries (RRL obtained from a DNA pool including donkeys of different breeds (Grigio Siciliano, Ragusano and Martina Franca. The number of next generation sequencing reads aligned with the EquCab2.0 horse genome was larger than those aligned with the draft donkey genome. This was due to the larger N50 for contigs and scaffolds of the horse genome. Nucleotide divergence between E. caballus and E. asinus was estimated to be ~ 0.52-0.57%. Regions with low nucleotide divergence were identified in several autosomal chromosomes and in the whole chromosome X. These regions might be evolutionally important in equids. Comparing Y-chromosome regions we identified variants that could be useful to track donkey paternal lineages. Moreover, about 4.8 million of single nucleotide polymorphisms (SNPs in the donkey genome were identified and annotated combining sequencing data from Ion Proton (whole genome sequencing and Ion Torrent (RRL runs with Illumina reads. A higher density of SNPs was present in regions homologous to horse chromosome 12, in which several studies reported a high frequency of copy number variants. The SNPs we identified constitute a first resource useful to describe variability at the population genomic level in E. asinus and to establish monitoring systems for the conservation of donkey genetic resources.

  15. A resource of genome-wide single-nucleotide polymorphisms generated by RAD tag sequencing in the critically endangered European eel

    DEFF Research Database (Denmark)

    Pujolar, J.M.; Jacobsen, M.W.; Frydenberg, J.

    2013-01-01

    Reduced representation genome sequencing such as restriction-site-associated DNA (RAD) sequencing is finding increased use to identify and genotype large numbers of single-nucleotide polymorphisms (SNPs) in model and nonmodel species. We generated a unique resource of novel SNP markers for the Eu...... 425 loci and 376 918 associated SNPs provides a valuable tool for future population genetics and genomics studies and allows for targeting specific genes and particularly interesting regions of the eel genome...

  16. Genomic DNA Enrichment Using Sequence Capture Microarrays: a Novel Approach to Discover Sequence Nucleotide Polymorphisms (SNP) in Brassica napus L

    Science.gov (United States)

    Clarke, Wayne E.; Parkin, Isobel A.; Gajardo, Humberto A.; Gerhardt, Daniel J.; Higgins, Erin; Sidebottom, Christine; Sharpe, Andrew G.; Snowdon, Rod J.; Federico, Maria L.; Iniguez-Luy, Federico L.

    2013-01-01

    Targeted genomic selection methodologies, or sequence capture, allow for DNA enrichment and large-scale resequencing and characterization of natural genetic variation in species with complex genomes, such as rapeseed canola (Brassica napus L., AACC, 2n=38). The main goal of this project was to combine sequence capture with next generation sequencing (NGS) to discover single nucleotide polymorphisms (SNPs) in specific areas of the B. napus genome historically associated (via quantitative trait loci –QTL– analysis) to traits of agronomical and nutritional importance. A 2.1 million feature sequence capture platform was designed to interrogate DNA sequence variation across 47 specific genomic regions, representing 51.2 Mb of the Brassica A and C genomes, in ten diverse rapeseed genotypes. All ten genotypes were sequenced using the 454 Life Sciences chemistry and to assess the effect of increased sequence depth, two genotypes were also sequenced using Illumina HiSeq chemistry. As a result, 589,367 potentially useful SNPs were identified. Analysis of sequence coverage indicated a four-fold increased representation of target regions, with 57% of the filtered SNPs falling within these regions. Sixty percent of discovered SNPs corresponded to transitions while 40% were transversions. Interestingly, fifty eight percent of the SNPs were found in genic regions while 42% were found in intergenic regions. Further, a high percentage of genic SNPs was found in exons (65% and 64% for the A and C genomes, respectively). Two different genotyping assays were used to validate the discovered SNPs. Validation rates ranged from 61.5% to 84% of tested SNPs, underpinning the effectiveness of this SNP discovery approach. Most importantly, the discovered SNPs were associated with agronomically important regions of the B. napus genome generating a novel data resource for research and breeding this crop species. PMID:24312619

  17. Microsatellite genotyping and genome-wide single nucleotide polymorphism-based indices of Plasmodium falciparum diversity within clinical infections.

    Science.gov (United States)

    Murray, Lee; Mobegi, Victor A; Duffy, Craig W; Assefa, Samuel A; Kwiatkowski, Dominic P; Laman, Eugene; Loua, Kovana M; Conway, David J

    2016-05-12

    In regions where malaria is endemic, individuals are often infected with multiple distinct parasite genotypes, a situation that may impact on evolution of parasite virulence and drug resistance. Most approaches to studying genotypic diversity have involved analysis of a modest number of polymorphic loci, although whole genome sequencing enables a broader characterisation of samples. PCR-based microsatellite typing of a panel of ten loci was performed on Plasmodium falciparum in 95 clinical isolates from a highly endemic area in the Republic of Guinea, to characterize within-isolate genetic diversity. Separately, single nucleotide polymorphism (SNP) data from genome-wide short-read sequences of the same samples were used to derive within-isolate fixation indices (F ws), an inverse measure of diversity within each isolate compared to overall local genetic diversity. The latter indices were compared with the microsatellite results, and also with indices derived by randomly sampling modest numbers of SNPs. As expected, the number of microsatellite loci with more than one allele in each isolate was highly significantly inversely correlated with the genome-wide F ws fixation index (r = -0.88, P 10 % had high correlation (r > 0.90) with the index derived using all SNPs. Different types of data give highly correlated indices of within-infection diversity, although PCR-based analysis detects low-level minority genotypes not apparent in bulk sequence analysis. When whole-genome data are not obtainable, quantitative assay of ten or more SNPs can yield a reasonably accurate estimate of the within-infection fixation index (F ws).

  18. Genomic expression and single-nucleotide polymorphism profiling discriminates chromophobe renal cell carcinoma and oncocytoma

    International Nuclear Information System (INIS)

    Tan, Min-Han; Furge, Kyle A; Kort, Eric; Giraud, Sophie; Ferlicot, Sophie; Vielh, Philippe; Amsellem-Ouazana, Delphine; Debré, Bernard; Flam, Thierry; Thiounn, Nicolas; Zerbib, Marc; Wong, Chin Fong; Benoît, Gérard; Droupy, Stéphane; Molinié, Vincent; Vieillefond, Annick; Tan, Puay Hoon; Richard, Stéphane; Teh, Bin Tean; Tan, Hwei Ling; Yang, Ximing J; Ditlev, Jonathon; Matsuda, Daisuke; Khoo, Sok Kean; Sugimura, Jun; Fujioka, Tomoaki

    2010-01-01

    Chromophobe renal cell carcinoma (chRCC) and renal oncocytoma are two distinct but closely related entities with strong morphologic and genetic similarities. While chRCC is a malignant tumor, oncocytoma is usually regarded as a benign entity. The overlapping characteristics are best explained by a common cellular origin, and the biologic differences between chRCC and oncocytoma are therefore of considerable interest in terms of carcinogenesis, diagnosis and clinical management. Previous studies have been relatively limited in terms of examining the differences between oncocytoma and chromophobe RCC. Gene expression profiling using the Affymetrix HGU133Plus2 platform was applied on chRCC (n = 15) and oncocytoma specimens (n = 15). Supervised analysis was applied to identify a discriminatory gene signature, as well as differentially expressed genes. High throughput single-nucleotide polymorphism (SNP) genotyping was performed on independent samples (n = 14) using Affymetrix GeneChip Mapping 100 K arrays to assess correlation between expression and gene copy number. Immunohistochemical validation was performed in an independent set of tumors. A novel 14 probe-set signature was developed to classify the tumors internally with 93% accuracy, and this was successfully validated on an external data-set with 94% accuracy. Pathway analysis highlighted clinically relevant dysregulated pathways of c-erbB2 and mammalian target of rapamycin (mTOR) signaling in chRCC, but no significant differences in p-AKT or extracellular HER2 expression was identified on immunohistochemistry. Loss of chromosome 1p, reflected in both cytogenetic and expression analysis, is common to both entities, implying this may be an early event in histogenesis. Multiple regional areas of cytogenetic alterations and corresponding expression biases differentiating the two entities were identified. Parafibromin, aquaporin 6, and synaptogyrin 3 were novel immunohistochemical markers effectively discriminating

  19. Genomic expression and single-nucleotide polymorphism profiling discriminates chromophobe renal cell carcinoma and oncocytoma

    Directory of Open Access Journals (Sweden)

    Thiounn Nicolas

    2010-05-01

    Full Text Available Abstract Background Chromophobe renal cell carcinoma (chRCC and renal oncocytoma are two distinct but closely related entities with strong morphologic and genetic similarities. While chRCC is a malignant tumor, oncocytoma is usually regarded as a benign entity. The overlapping characteristics are best explained by a common cellular origin, and the biologic differences between chRCC and oncocytoma are therefore of considerable interest in terms of carcinogenesis, diagnosis and clinical management. Previous studies have been relatively limited in terms of examining the differences between oncocytoma and chromophobe RCC. Methods Gene expression profiling using the Affymetrix HGU133Plus2 platform was applied on chRCC (n = 15 and oncocytoma specimens (n = 15. Supervised analysis was applied to identify a discriminatory gene signature, as well as differentially expressed genes. High throughput single-nucleotide polymorphism (SNP genotyping was performed on independent samples (n = 14 using Affymetrix GeneChip Mapping 100 K arrays to assess correlation between expression and gene copy number. Immunohistochemical validation was performed in an independent set of tumors. Results A novel 14 probe-set signature was developed to classify the tumors internally with 93% accuracy, and this was successfully validated on an external data-set with 94% accuracy. Pathway analysis highlighted clinically relevant dysregulated pathways of c-erbB2 and mammalian target of rapamycin (mTOR signaling in chRCC, but no significant differences in p-AKT or extracellular HER2 expression was identified on immunohistochemistry. Loss of chromosome 1p, reflected in both cytogenetic and expression analysis, is common to both entities, implying this may be an early event in histogenesis. Multiple regional areas of cytogenetic alterations and corresponding expression biases differentiating the two entities were identified. Parafibromin, aquaporin 6, and synaptogyrin 3 were novel

  20. Rapid Genome-wide Single Nucleotide Polymorphism Discovery in Soybean and Rice via Deep Resequencing of Reduced Representation Libraries with the Illumina Genome Analyzer

    Directory of Open Access Journals (Sweden)

    Stéphane Deschamps

    2010-07-01

    Full Text Available Massively parallel sequencing platforms have allowed for the rapid discovery of single nucleotide polymorphisms (SNPs among related genotypes within a species. We describe the creation of reduced representation libraries (RRLs using an initial digestion of nuclear genomic DNA with a methylation-sensitive restriction endonuclease followed by a secondary digestion with the 4bp-restriction endonuclease This strategy allows for the enrichment of hypomethylated genomic DNA, which has been shown to be rich in genic sequences, and the digestion with serves to increase the number of common loci resequenced between individuals. Deep resequencing of these RRLs performed with the Illumina Genome Analyzer led to the identification of 2618 SNPs in rice and 1682 SNPs in soybean for two representative genotypes in each of the species. A subset of these SNPs was validated via Sanger sequencing, exhibiting validation rates of 96.4 and 97.0%, in rice ( and soybean (, respectively. Comparative analysis of the read distribution relative to annotated genes in the reference genome assemblies indicated that the RRL strategy was primarily sampling within genic regions for both species. The massively parallel sequencing of methylation-sensitive RRLs for genome-wide SNP discovery can be applied across a wide range of plant species having sufficient reference genomic sequence.

  1. A Genome Wide Association Study on Age at First Calving Using High Density Single Nucleotide Polymorphism Chips in Hanwoo (

    Directory of Open Access Journals (Sweden)

    K.-E. Hyeong

    2014-10-01

    Full Text Available Age at first calving is an important trait for achieving earlier reproductive performance. To detect quantitative trait loci (QTL for reproductive traits, a genome wide association study was conducted on the 96 Hanwoo cows that were born between 2008 and 2010 from 13 sires in a local farm (Juk-Am Hanwoo farm, Suncheon, Korea and genotyped with the Illumina 50K bovine single nucleotide polymorphism (SNP chips. Phenotypes were regressed on additive and dominance effects for each SNP using a simple linear regression model after the effects of birth-year-month and polygenes were considered. A forward regression procedure was applied to determine the best set of SNPs for age at first calving. A total of 15 QTL were detected at the comparison-wise 0.001 level. Two QTL with strong statistical evidence were found at 128.9 Mb and 111.1 Mb on bovine chromosomes (BTA 2 and 7, respectively, each of which accounted for 22% of the phenotypic variance. Also, five significant SNPs were detected on BTAs 10, 16, 20, 26, and 29. Multiple QTL were found on BTAs 1, 2, 7, and 14. The significant QTLs may be applied via marker assisted selection to increase rate of genetic gain for the trait, after validation tests in other Hanwoo cow populations.

  2. High performance computing enabling exhaustive analysis of higher order single nucleotide polymorphism interaction in Genome Wide Association Studies.

    Science.gov (United States)

    Goudey, Benjamin; Abedini, Mani; Hopper, John L; Inouye, Michael; Makalic, Enes; Schmidt, Daniel F; Wagner, John; Zhou, Zeyu; Zobel, Justin; Reumann, Matthias

    2015-01-01

    Genome-wide association studies (GWAS) are a common approach for systematic discovery of single nucleotide polymorphisms (SNPs) which are associated with a given disease. Univariate analysis approaches commonly employed may miss important SNP associations that only appear through multivariate analysis in complex diseases. However, multivariate SNP analysis is currently limited by its inherent computational complexity. In this work, we present a computational framework that harnesses supercomputers. Based on our results, we estimate a three-way interaction analysis on 1.1 million SNP GWAS data requiring over 5.8 years on the full "Avoca" IBM Blue Gene/Q installation at the Victorian Life Sciences Computation Initiative. This is hundreds of times faster than estimates for other CPU based methods and four times faster than runtimes estimated for GPU methods, indicating how the improvement in the level of hardware applied to interaction analysis may alter the types of analysis that can be performed. Furthermore, the same analysis would take under 3 months on the currently largest IBM Blue Gene/Q supercomputer "Sequoia" at the Lawrence Livermore National Laboratory assuming linear scaling is maintained as our results suggest. Given that the implementation used in this study can be further optimised, this runtime means it is becoming feasible to carry out exhaustive analysis of higher order interaction studies on large modern GWAS.

  3. Should we use the single nucleotide polymorphism linked to in genomic evaluation of French trotter?

    Science.gov (United States)

    Brard, S; Ricard, A

    2015-10-01

    An A/C mutation responsible for the ability to pace in horses was recently discovered in the gene. It has also been proven that allele C has a negative effect on trotters' performances. However, in French trotters (FT), the frequency of allele A is only 77% due to an unexpected positive effect of allele C in late-career FT performances. Here we set out to ascertain whether the genotype at SNP (linked to ) should be used to compute EBV for FT. We used the genotypes of 630 horses, with 41,711 SNP retained. The pedigree comprised 5,699 horses. Qualification status (trotters need to complete a 2,000-m race within a limited time to begin their career) and earnings at different ages were precorrected for fixed effects and evaluated with a multitrait model. Estimated breeding values were computed with and without the genotype at SNP as a fixed effect in the model. The analyses were performed using pedigree only via BLUP and using the genotypes via genomic BLUP (GBLUP). The genotype at SNP was removed from the file of genotypes when already taken into account as a fixed effect. Alternatively, 3 groups of 100 candidates were used for validation. Validations were also performed on 50 random-clustered groups of 126 candidates and compared against the results of the 3 disjoint sets. For performances on which has a minor effect, the coefficients of correlation were not improved when the genotype at SNP was a fixed effect in the model (earnings at 3 and 4 yr). However, for traits proven strongly related to , the accuracy of evaluation was improved, increasing +0.17 for earnings at 2 yr, +0.04 for earnings at 5 yr and older, and +0.09 for qualification status (with the GBLUP method). For all traits, the bias was reduced when the SNP linked to was a fixed effect in the model. This work finds a clear rationale for using the genotype at for this multitrait evaluation. Genomic selection seemed to achieve better results than classic selection.

  4. Genome-wide association study using high-density single nucleotide polymorphism arrays and whole-genome sequences for clinical mastitis traits in dairy cattle.

    Science.gov (United States)

    Sahana, G; Guldbrandtsen, B; Thomsen, B; Holm, L-E; Panitz, F; Brøndum, R F; Bendixen, C; Lund, M S

    2014-11-01

    Mastitis is a mammary disease that frequently affects dairy cattle. Despite considerable research on the development of effective prevention and treatment strategies, mastitis continues to be a significant issue in bovine veterinary medicine. To identify major genes that affect mastitis in dairy cattle, 6 chromosomal regions on Bos taurus autosome (BTA) 6, 13, 16, 19, and 20 were selected from a genome scan for 9 mastitis phenotypes using imputed high-density single nucleotide polymorphism arrays. Association analyses using sequence-level variants for the 6 targeted regions were carried out to map causal variants using whole-genome sequence data from 3 breeds. The quantitative trait loci (QTL) discovery population comprised 4,992 progeny-tested Holstein bulls, and QTL were confirmed in 4,442 Nordic Red and 1,126 Jersey cattle. The targeted regions were imputed to the sequence level. The highest association signal for clinical mastitis was observed on BTA 6 at 88.97 Mb in Holstein cattle and was confirmed in Nordic Red cattle. The peak association region on BTA 6 contained 2 genes: vitamin D-binding protein precursor (GC) and neuropeptide FF receptor 2 (NPFFR2), which, based on known biological functions, are good candidates for affecting mastitis. However, strong linkage disequilibrium in this region prevented conclusive determination of the causal gene. A different QTL on BTA 6 located at 88.32 Mb in Holstein cattle affected mastitis. In addition, QTL on BTA 13 and 19 were confirmed to segregate in Nordic Red cattle and QTL on BTA 16 and 20 were confirmed in Jersey cattle. Although several candidate genes were identified in these targeted regions, it was not possible to identify a gene or polymorphism as the causal factor for any of these regions. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  5. In-silico single nucleotide polymorphisms (SNP) mining of Sorghum ...

    African Journals Online (AJOL)

    Single nucleotide polymorphisms (SNPs) may be considered the ultimate genetic markers as they represent the finest resolution of a DNA sequence (a single nucleotide), and are generally abundant in populations with a low mutation rate. SNPs are important tools in studying complex genetic traits and genome evolution.

  6. A survey of single nucleotide polymorphisms identified from whole-genome sequencing and their functional effect in the porcine genome.

    Science.gov (United States)

    Keel, B N; Nonneman, D J; Rohrer, G A

    2017-08-01

    Genetic variants detected from sequence have been used to successfully identify causal variants and map complex traits in several organisms. High and moderate impact variants, those expected to alter or disrupt the protein coded by a gene and those that regulate protein production, likely have a more significant effect on phenotypic variation than do other types of genetic variants. Hence, a comprehensive list of these functional variants would be of considerable interest in swine genomic studies, particularly those targeting fertility and production traits. Whole-genome sequence was obtained from 72 of the founders of an intensely phenotyped experimental swine herd at the U.S. Meat Animal Research Center (USMARC). These animals included all 24 of the founding boars (12 Duroc and 12 Landrace) and 48 Yorkshire-Landrace composite sows. Sequence reads were mapped to the Sscrofa10.2 genome build, resulting in a mean of 6.1 fold (×) coverage per genome. A total of 22 342 915 high confidence SNPs were identified from the sequenced genomes. These included 21 million previously reported SNPs and 79% of the 62 163 SNPs on the PorcineSNP60 BeadChip assay. Variation was detected in the coding sequence or untranslated regions (UTRs) of 87.8% of the genes in the porcine genome: loss-of-function variants were predicted in 504 genes, 10 202 genes contained nonsynonymous variants, 10 773 had variation in UTRs and 13 010 genes contained synonymous variants. Approximately 139 000 SNPs were classified as loss-of-function, nonsynonymous or regulatory, which suggests that over 99% of the variation detected in our pigs could potentially be ignored, allowing us to focus on a much smaller number of functional SNPs during future analyses. Published 2017. This article is a U.S. Government work and is in the public domain in the USA.

  7. Whole genome sequencing options for bacterial strain typing and epidemiologic analysis based on single nucleotide polymorphism versus gene-by-gene-based approaches.

    Science.gov (United States)

    Schürch, A C; Arredondo-Alonso, S; Willems, R J L; Goering, R V

    2018-04-01

    Whole genome sequence (WGS)-based strain typing finds increasing use in the epidemiologic analysis of bacterial pathogens in both public health as well as more localized infection control settings. This minireview describes methodologic approaches that have been explored for WGS-based epidemiologic analysis and considers the challenges and pitfalls of data interpretation. Personal collection of relevant publications. When applying WGS to study the molecular epidemiology of bacterial pathogens, genomic variability between strains is translated into measures of distance by determining single nucleotide polymorphisms in core genome alignments or by indexing allelic variation in hundreds to thousands of core genes, assigning types to unique allelic profiles. Interpreting isolate relatedness from these distances is highly organism specific, and attempts to establish species-specific cutoffs are unlikely to be generally applicable. In cases where single nucleotide polymorphism or core gene typing do not provide the resolution necessary for accurate assessment of the epidemiology of bacterial pathogens, inclusion of accessory gene or plasmid sequences may provide the additional required discrimination. As with all epidemiologic analysis, realizing the full potential of the revolutionary advances in WGS-based approaches requires understanding and dealing with issues related to the fundamental steps of data generation and interpretation. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. Genome-Wide Single-Nucleotide Polymorphisms Discovery and High-Density Genetic Map Construction in Cauliflower Using Specific-Locus Amplified Fragment Sequencing

    Science.gov (United States)

    Zhao, Zhenqing; Gu, Honghui; Sheng, Xiaoguang; Yu, Huifang; Wang, Jiansheng; Huang, Long; Wang, Dan

    2016-01-01

    Molecular markers and genetic maps play an important role in plant genomics and breeding studies. Cauliflower is an important and distinctive vegetable; however, very few molecular resources have been reported for this species. In this study, a novel, specific-locus amplified fragment (SLAF) sequencing strategy was employed for large-scale single nucleotide polymorphism (SNP) discovery and high-density genetic map construction in a double-haploid, segregating population of cauliflower. A total of 12.47 Gb raw data containing 77.92 M pair-end reads were obtained after processing and 6815 polymorphic SLAFs between the two parents were detected. The average sequencing depths reached 52.66-fold for the female parent and 49.35-fold for the male parent. Subsequently, these polymorphic SLAFs were used to genotype the population and further filtered based on several criteria to construct a genetic linkage map of cauliflower. Finally, 1776 high-quality SLAF markers, including 2741 SNPs, constituted the linkage map with average data integrity of 95.68%. The final map spanned a total genetic length of 890.01 cM with an average marker interval of 0.50 cM, and covered 364.9 Mb of the reference genome. The markers and genetic map developed in this study could provide an important foundation not only for comparative genomics studies within Brassica oleracea species but also for quantitative trait loci identification and molecular breeding of cauliflower. PMID:27047515

  9. Makeup of the genetic correlation between milk production traits using genome-wide single nucleotide polymorphism information.

    Science.gov (United States)

    van Binsbergen, R; Veerkamp, R F; Calus, M P L

    2012-04-01

    The correlated responses between traits may differ depending on the makeup of genetic covariances, and may differ from the predictions of polygenic covariances. Therefore, the objective of the present study was to investigate the makeup of the genetic covariances between the well-studied traits: milk yield, fat yield, protein yield, and their percentages in more detail. Phenotypic records of 1,737 heifers of research farms in 4 different countries were used after homogenizing and adjusting for management effects. All cows had a genotype for 37,590 single nucleotide polymorphisms (SNP). A bayesian stochastic search variable selection model was used to estimate the SNP effects for each trait. About 0.5 to 1.0% of the SNP had a significant effect on 1 or more traits; however, the SNP without a significant effect explained most of the genetic variances and covariances of the traits. Single nucleotide polymorphism correlations differed from the polygenic correlations, but only 10 regions were found with an effect on multiple traits; in 1 of these regions the DGAT1 gene was previously reported with an effect on multiple traits. This region explained up to 41% of the variances of 4 traits and explained a major part of the correlation between fat yield and fat percentage and contributes to asymmetry in correlated response between fat yield and fat percentage. Overall, for the traits in this study, the infinitesimal model is expected to be sufficient for the estimation of the variances and covariances. Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  10. Landscape genomics and biased FST approaches reveal single nucleotide polymorphisms under selection in goat breeds of North-East Mediterranean

    Directory of Open Access Journals (Sweden)

    Joost Stephane

    2009-02-01

    Full Text Available Abstract Background In this study we compare outlier loci detected using a FST based method with those identified by a recently described method based on spatial analysis (SAM. We tested a panel of single nucleotide polymorphisms (SNPs previously genotyped in individuals of goat breeds of southern areas of the Mediterranean basin (Italy, Greece and Albania. We evaluate how the SAM method performs with SNPs, which are increasingly employed due to their high number, low cost and easy of scoring. Results The combined use of the two outlier detection approaches, never tested before using SNP polymorphisms, resulted in the identification of the same three loci involved in milk and meat quality data by using the two methods, while the FST based method identified 3 more loci as under selection sweep in the breeds examined. Conclusion Data appear congruent by using the two methods for FST values exceeding the 99% confidence limits. The methods of FST and SAM can independently detect signatures of selection and therefore can reduce the probability of finding false positives if employed together. The outlier loci identified in this study could indicate adaptive variation in the analysed species, characterized by a large range of climatic conditions in the rearing areas and by a history of intense trade, that implies plasticity in adapting to new environments.

  11. Single-nucleotide polymorphism discovery in Leptographium longiclavatum, a mountain pine beetle-associated symbiotic fungus, using whole-genome resequencing.

    Science.gov (United States)

    Ojeda, Dario I; Dhillon, Braham; Tsui, Clement K M; Hamelin, Richard C

    2014-03-01

    Single-nucleotide polymorphisms (SNPs) are rapidly becoming the standard markers in population genomics studies; however, their use in nonmodel organisms is limited due to the lack of cost-effective approaches to uncover genome-wide variation, and the large number of individuals needed in the screening process to reduce ascertainment bias. To discover SNPs for population genomics studies in the fungal symbionts of the mountain pine beetle (MPB), we developed a road map to discover SNPs and to produce a genotyping platform. We undertook a whole-genome sequencing approach of Leptographium longiclavatum in combination with available genomics resources of another MPB symbiont, Grosmannia clavigera. We sequenced 71 individuals pooled into four groups using the Illumina sequencing technology. We generated between 27 and 30 million reads of 75 bp that resulted in a total of 1, 181 contigs longer than 2 kb and an assembled genome size of 28.9 Mb (N50 = 48 kb, average depth = 125x). A total of 9052 proteins were annotated, and between 9531 and 17,266 SNPs were identified in the four pools. A subset of 206 genes (containing 574 SNPs, 11% false positives) was used to develop a genotyping platform for this species. Using this roadmap, we developed a genotyping assay with a total of 147 SNPs located in 121 genes using the Illumina(®) Sequenom iPLEX Gold. Our preliminary genotyping (success rate = 85%) of 304 individuals from 36 populations supports the utility of this approach for population genomics studies in other MPB fungal symbionts and other fungal nonmodel species. © 2013 John Wiley & Sons Ltd.

  12. Whole-genome single-nucleotide polymorphism (SNP marker discovery and association analysis with the eicosapentaenoic acid (EPA and docosahexaenoic acid (DHA content in Larimichthys crocea

    Directory of Open Access Journals (Sweden)

    Shijun Xiao

    2016-12-01

    Full Text Available Whole-genome single-nucleotide polymorphism (SNP markers are valuable genetic resources for the association and conservation studies. Genome-wide SNP development in many teleost species are still challenging because of the genome complexity and the cost of re-sequencing. Genotyping-By-Sequencing (GBS provided an efficient reduced representative method to squeeze cost for SNP detection; however, most of recent GBS applications were reported on plant organisms. In this work, we used an EcoRI-NlaIII based GBS protocol to teleost large yellow croaker, an important commercial fish in China and East-Asia, and reported the first whole-genome SNP development for the species. 69,845 high quality SNP markers that evenly distributed along genome were detected in at least 80% of 500 individuals. Nearly 95% randomly selected genotypes were successfully validated by Sequenom MassARRAY assay. The association studies with the muscle eicosapentaenoic acid (EPA and docosahexaenoic acid (DHA content discovered 39 significant SNP markers, contributing as high up to ∼63% genetic variance that explained by all markers. Functional genes that involved in fat digestion and absorption pathway were identified, such as APOB, CRAT and OSBPL10. Notably, PPT2 Gene, previously identified in the association study of the plasma n-3 and n-6 polyunsaturated fatty acid level in human, was re-discovered in large yellow croaker. Our study verified that EcoRI-NlaIII based GBS could produce quality SNP markers in a cost-efficient manner in teleost genome. The developed SNP markers and the EPA and DHA associated SNP loci provided invaluable resources for the population structure, conservation genetics and genomic selection of large yellow croaker and other fish organisms.

  13. Estimating additive and non-additive genetic variances and predicting genetic merits using genome-wide dense single nucleotide polymorphism markers.

    Directory of Open Access Journals (Sweden)

    Guosheng Su

    Full Text Available Non-additive genetic variation is usually ignored when genome-wide markers are used to study the genetic architecture and genomic prediction of complex traits in human, wild life, model organisms or farm animals. However, non-additive genetic effects may have an important contribution to total genetic variation of complex traits. This study presented a genomic BLUP model including additive and non-additive genetic effects, in which additive and non-additive genetic relation matrices were constructed from information of genome-wide dense single nucleotide polymorphism (SNP markers. In addition, this study for the first time proposed a method to construct dominance relationship matrix using SNP markers and demonstrated it in detail. The proposed model was implemented to investigate the amounts of additive genetic, dominance and epistatic variations, and assessed the accuracy and unbiasedness of genomic predictions for daily gain in pigs. In the analysis of daily gain, four linear models were used: 1 a simple additive genetic model (MA, 2 a model including both additive and additive by additive epistatic genetic effects (MAE, 3 a model including both additive and dominance genetic effects (MAD, and 4 a full model including all three genetic components (MAED. Estimates of narrow-sense heritability were 0.397, 0.373, 0.379 and 0.357 for models MA, MAE, MAD and MAED, respectively. Estimated dominance variance and additive by additive epistatic variance accounted for 5.6% and 9.5% of the total phenotypic variance, respectively. Based on model MAED, the estimate of broad-sense heritability was 0.506. Reliabilities of genomic predicted breeding values for the animals without performance records were 28.5%, 28.8%, 29.2% and 29.5% for models MA, MAE, MAD and MAED, respectively. In addition, models including non-additive genetic effects improved unbiasedness of genomic predictions.

  14. Analysis of single nucleotide polymorphisms in case-control studies.

    Science.gov (United States)

    Li, Yonghong; Shiffman, Dov; Oberbauer, Rainer

    2011-01-01

    Single nucleotide polymorphisms (SNPs) are the most common type of genetic variants in the human genome. SNPs are known to modify susceptibility to complex diseases. We describe and discuss methods used to identify SNPs associated with disease in case-control studies. An outline on study population selection, sample collection and genotyping platforms is presented, complemented by SNP selection, data preprocessing and analysis.

  15. Replication of endometriosis-associated single-nucleotide polymorphisms from genome-wide association studies in a Caucasian population.

    Science.gov (United States)

    Sundqvist, J; Xu, H; Vodolazkaia, A; Fassbender, A; Kyama, C; Bokor, A; Gemzell-Danielsson, K; D'Hooghe, T M; Falconer, H

    2013-03-01

    Is it possible to replicate the previously identified genetic association of four single-nucleotide polymorphisms (SNPs), rs12700667, rs7798431, rs1250248 and rs7521902, with endometriosis in a Caucasian population? A borderline association was observed for rs1250248 and endometriosis (P = 0.049). However, we could not replicate the other previously identified endometriosis-associated SNPs (rs12700667, rs7798431 and rs7521902) in the same population. Endometriosis is considered a complex disease, influenced by several genetic and environmental factors, as well as interactions between them. Previous studies have found genetic associations with endometriosis for SNPs at the 7p15 and 2q35 loci in a Caucasian population. Allele frequencies of SNPs were investigated in patients with endometriosis and controls. Blood samples and peritoneal biopsies were taken from a Caucasian female population consisting of 1129 patients with endometriosis and 831 controls. DNA was extracted for genotyping. The study was performed at a University hospital and research laboratories. A weak association with endometriosis (all stages) was observed for rs1250248 (P = 0.049). No significant associations were observed for the SNPs rs12700667, rs7798431 and rs7521902. A non-significant trend towards the association of rs1250248 with moderate/severe endometriosis was observed (odds ratio 1.18, 95% confidence interval 0.97-1.44). The inability to confirm all previous findings may result from differences between populations and type II errors. Our result demonstrates the difficulty of identifying common genetic variants in complex diseases. This study was supported by grants from the Karolinska Institutet and Stockholm City County/Karolinska Institutet (ALF), Stockholm, Sweden, Swedish Medical Research Council (K2007-54X-14212-06-3, K2010-54X-14212-09-3), Stockholm, Sweden, Leuven University Research Council (Onderzoeksraad KU Leuven), the Leuven University Hospitals Clinical Research Foundation

  16. Fine definition of the pedigree haplotypes of closely related rice cultivars by means of genome-wide discovery of single-nucleotide polymorphisms.

    Science.gov (United States)

    Yamamoto, Toshio; Nagasaki, Hideki; Yonemaru, Jun-ichi; Ebana, Kaworu; Nakajima, Maiko; Shibaya, Taeko; Yano, Masahiro

    2010-04-27

    To create useful gene combinations in crop breeding, it is necessary to clarify the dynamics of the genome composition created by breeding practices. A large quantity of single-nucleotide polymorphism (SNP) data is required to permit discrimination of chromosome segments among modern cultivars, which are genetically related. Here, we used a high-throughput sequencer to conduct whole-genome sequencing of an elite Japanese rice cultivar, Koshihikari, which is closely related to Nipponbare, whose genome sequencing has been completed. Then we designed a high-throughput typing array based on the SNP information by comparison of the two sequences. Finally, we applied this array to analyze historical representative rice cultivars to understand the dynamics of their genome composition. The total 5.89-Gb sequence for Koshihikari, equivalent to 15.7 x the entire rice genome, was mapped using the Pseudomolecules 4.0 database for Nipponbare. The resultant Koshihikari genome sequence corresponded to 80.1% of the Nipponbare sequence and led to the identification of 67,051 SNPs. A high-throughput typing array consisting of 1917 SNP sites distributed throughout the genome was designed to genotype 151 representative Japanese cultivars that have been grown during the past 150 years. We could identify the ancestral origin of the pedigree haplotypes in 60.9% of the Koshihikari genome and 18 consensus haplotype blocks which are inherited from traditional landraces to current improved varieties. Moreover, it was predicted that modern breeding practices have generally decreased genetic diversity Detection of genome-wide SNPs by both high-throughput sequencer and typing array made it possible to evaluate genomic composition of genetically related rice varieties. With the aid of their pedigree information, we clarified the dynamics of chromosome recombination during the historical rice breeding process. We also found several genomic regions decreasing genetic diversity which might be

  17. Next-Generation Sequencing Approaches in Genome-Wide Discovery of Single Nucleotide Polymorphism Markers Associated with Pungency and Disease Resistance in Pepper.

    Science.gov (United States)

    Manivannan, Abinaya; Kim, Jin-Hee; Yang, Eun-Young; Ahn, Yul-Kyun; Lee, Eun-Su; Choi, Sena; Kim, Do-Sun

    2018-01-01

    Pepper is an economically important horticultural plant that has been widely used for its pungency and spicy taste in worldwide cuisines. Therefore, the domestication of pepper has been carried out since antiquity. Owing to meet the growing demand for pepper with high quality, organoleptic property, nutraceutical contents, and disease tolerance, genomics assisted breeding techniques can be incorporated to develop novel pepper varieties with desired traits. The application of next-generation sequencing (NGS) approaches has reformed the plant breeding technology especially in the area of molecular marker assisted breeding. The availability of genomic information aids in the deeper understanding of several molecular mechanisms behind the vital physiological processes. In addition, the NGS methods facilitate the genome-wide discovery of DNA based markers linked to key genes involved in important biological phenomenon. Among the molecular markers, single nucleotide polymorphism (SNP) indulges various benefits in comparison with other existing DNA based markers. The present review concentrates on the impact of NGS approaches in the discovery of useful SNP markers associated with pungency and disease resistance in pepper. The information provided in the current endeavor can be utilized for the betterment of pepper breeding in future.

  18. Next-Generation Sequencing Approaches in Genome-Wide Discovery of Single Nucleotide Polymorphism Markers Associated with Pungency and Disease Resistance in Pepper

    Directory of Open Access Journals (Sweden)

    Abinaya Manivannan

    2018-01-01

    Full Text Available Pepper is an economically important horticultural plant that has been widely used for its pungency and spicy taste in worldwide cuisines. Therefore, the domestication of pepper has been carried out since antiquity. Owing to meet the growing demand for pepper with high quality, organoleptic property, nutraceutical contents, and disease tolerance, genomics assisted breeding techniques can be incorporated to develop novel pepper varieties with desired traits. The application of next-generation sequencing (NGS approaches has reformed the plant breeding technology especially in the area of molecular marker assisted breeding. The availability of genomic information aids in the deeper understanding of several molecular mechanisms behind the vital physiological processes. In addition, the NGS methods facilitate the genome-wide discovery of DNA based markers linked to key genes involved in important biological phenomenon. Among the molecular markers, single nucleotide polymorphism (SNP indulges various benefits in comparison with other existing DNA based markers. The present review concentrates on the impact of NGS approaches in the discovery of useful SNP markers associated with pungency and disease resistance in pepper. The information provided in the current endeavor can be utilized for the betterment of pepper breeding in future.

  19. Signatures of selection in the Iberian honey bee (Apis mellifera iberiensis) revealed by a genome scan analysis of single nucleotide polymorphisms.

    Science.gov (United States)

    Chávez-Galarza, Julio; Henriques, Dora; Johnston, J Spencer; Azevedo, João C; Patton, John C; Muñoz, Irene; De la Rúa, Pilar; Pinto, M Alice

    2013-12-01

    Understanding the genetic mechanisms of adaptive population divergence is one of the most fundamental endeavours in evolutionary biology and is becoming increasingly important as it will allow predictions about how organisms will respond to global environmental crisis. This is particularly important for the honey bee, a species of unquestionable ecological and economical importance that has been exposed to increasing human-mediated selection pressures. Here, we conducted a single nucleotide polymorphism (SNP)-based genome scan in honey bees collected across an environmental gradient in Iberia and used four FST -based outlier tests to identify genomic regions exhibiting signatures of selection. Additionally, we analysed associations between genetic and environmental data for the identification of factors that might be correlated or act as selective pressures. With these approaches, 4.4% (17 of 383) of outlier loci were cross-validated by four FST -based methods, and 8.9% (34 of 383) were cross-validated by at least three methods. Of the 34 outliers, 15 were found to be strongly associated with one or more environmental variables. Further support for selection, provided by functional genomic information, was particularly compelling for SNP outliers mapped to different genes putatively involved in the same function such as vision, xenobiotic detoxification and innate immune response. This study enabled a more rigorous consideration of selection as the underlying cause of diversity patterns in Iberian honey bees, representing an important first step towards the identification of polymorphisms implicated in local adaptation and possibly in response to recent human-mediated environmental changes. © 2013 John Wiley & Sons Ltd.

  20. Genome-wide survey of single-nucleotide polymorphisms reveals fine-scale population structure and signs of selection in the threatened Caribbean elkhorn coral, Acropora palmata

    Directory of Open Access Journals (Sweden)

    Meghann K. Devlin-Durante

    2017-11-01

    Full Text Available The advent of next-generation sequencing tools has made it possible to conduct fine-scale surveys of population differentiation and genome-wide scans for signatures of selection in non-model organisms. Such surveys are of particular importance in sharply declining coral species, since knowledge of population boundaries and signs of local adaptation can inform restoration and conservation efforts. Here, we use genome-wide surveys of single-nucleotide polymorphisms in the threatened Caribbean elkhorn coral, Acropora palmata, to reveal fine-scale population structure and infer the major barrier to gene flow that separates the eastern and western Caribbean populations between the Bahamas and Puerto Rico. The exact location of this break had been subject to discussion because two previous studies based on microsatellite data had come to differing conclusions. We investigate this contradiction by analyzing an extended set of 11 microsatellite markers including the five previously employed and discovered that one of the original microsatellite loci is apparently under selection. Exclusion of this locus reconciles the results from the SNP and the microsatellite datasets. Scans for outlier loci in the SNP data detected 13 candidate loci under positive selection, however there was no correlation between available environmental parameters and genetic distance. Together, these results suggest that reef restoration efforts should use local sources and utilize existing functional variation among geographic regions in ex situ crossing experiments to improve stress resistance of this species.

  1. Genome-wide survey of single-nucleotide polymorphisms reveals fine-scale population structure and signs of selection in the threatened Caribbean elkhorn coral, Acropora palmata.

    Science.gov (United States)

    Devlin-Durante, Meghann K; Baums, Iliana B

    2017-01-01

    The advent of next-generation sequencing tools has made it possible to conduct fine-scale surveys of population differentiation and genome-wide scans for signatures of selection in non-model organisms. Such surveys are of particular importance in sharply declining coral species, since knowledge of population boundaries and signs of local adaptation can inform restoration and conservation efforts. Here, we use genome-wide surveys of single-nucleotide polymorphisms in the threatened Caribbean elkhorn coral, Acropora palmata , to reveal fine-scale population structure and infer the major barrier to gene flow that separates the eastern and western Caribbean populations between the Bahamas and Puerto Rico. The exact location of this break had been subject to discussion because two previous studies based on microsatellite data had come to differing conclusions. We investigate this contradiction by analyzing an extended set of 11 microsatellite markers including the five previously employed and discovered that one of the original microsatellite loci is apparently under selection. Exclusion of this locus reconciles the results from the SNP and the microsatellite datasets. Scans for outlier loci in the SNP data detected 13 candidate loci under positive selection, however there was no correlation between available environmental parameters and genetic distance. Together, these results suggest that reef restoration efforts should use local sources and utilize existing functional variation among geographic regions in ex situ crossing experiments to improve stress resistance of this species.

  2. Detection of Hereditary 1,25-Hydroxyvitamin D-Resistant Rickets Caused by Uniparental Disomy of Chromosome 12 Using Genome-Wide Single Nucleotide Polymorphism Array.

    Directory of Open Access Journals (Sweden)

    Mayuko Tamura

    Full Text Available Hereditary 1,25-dihydroxyvitamin D-resistant rickets (HVDRR is an autosomal recessive disease caused by biallelic mutations in the vitamin D receptor (VDR gene. No patients have been reported with uniparental disomy (UPD.Using genome-wide single nucleotide polymorphism (SNP array to confirm whether HVDRR was caused by UPD of chromosome 12.A 2-year-old girl with alopecia and short stature and without any family history of consanguinity was diagnosed with HVDRR by typical laboratory data findings and clinical features of rickets. Sequence analysis of VDR was performed, and the origin of the homozygous mutation was investigated by target SNP sequencing, short tandem repeat analysis, and genome-wide SNP array.The patient had a homozygous p.Arg73Ter nonsense mutation. Her mother was heterozygous for the mutation, but her father was negative. We excluded gross deletion of the father's allele or paternal discordance. Genome-wide SNP array of the family (the patient and her parents showed complete maternal isodisomy of chromosome 12. She was successfully treated with high-dose oral calcium.This is the first report of HVDRR caused by UPD, and the third case of complete UPD of chromosome 12, in the published literature. Genome-wide SNP array was useful for detecting isodisomy and the parental origin of the allele. Comprehensive examination of the homozygous state is essential for accurate genetic counseling of recurrence risk and appropriate monitoring for other chromosome 12 related disorders. Furthermore, oral calcium therapy was effective as an initial treatment for rickets in this instance.

  3. Signatures of selection in the Iberian honey bee: a genome wide approach using single nucleotide polymorphisms (SNPs)

    OpenAIRE

    Chavez-Galarza, Julio; Johnston, J. Spencer; Azevedo, João; Muñoz, Irene; De la Rúa, Pilar; Patton, John C.; Pinto, M. Alice

    2011-01-01

    Dissecting genome-wide (expansions, contractions, admixture) from genome-specific effects (selection) is a goal of central importance in evolutionary biology because it leads to more robust inferences of demographic history and to identification of adaptive divergence. The publication of the honey bee genome and the development of high-density SNPs genotyping, provide us with powerful tools, allowing us to identify signatures of selection in the honey bee genome. These signatur...

  4. Characterization of the Gray Whale Eschrichtius robustus Genome and a Genotyping Array Based on Single-Nucleotide Polymorphisms in Candidate Genes.

    Science.gov (United States)

    DeWoody, J Andrew; Fernandez, Nadia B; Brüniche-Olsen, Anna; Antonides, Jennifer D; Doyle, Jacqueline M; San Miguel, Phillip; Westerman, Rick; Vertyankin, Vladimir V; Godard-Codding, Céline A J; Bickham, John W

    2017-06-01

    Genetic and genomic approaches have much to offer in terms of ecology, evolution, and conservation. To better understand the biology of the gray whale Eschrichtius robustus (Lilljeborg, 1861), we sequenced the genome and produced an assembly that contains ∼95% of the genes known to be highly conserved among eukaryotes. From this assembly, we annotated 22,711 genes and identified 2,057,254 single-nucleotide polymorphisms (SNPs). Using this assembly, we generated a curated list of candidate genes potentially subject to strong natural selection, including genes associated with osmoregulation, oxygen binding and delivery, and other aspects of marine life. From these candidate genes, we queried 92 autosomal protein-coding markers with a panel of 96 SNPs that also included 2 sexing and 2 mitochondrial markers. Genotyping error rates, calculated across loci and across 69 intentional replicate samples, were low (0.021%), and observed heterozygosity was 0.33 averaged over all autosomal markers. This level of variability provides substantial discriminatory power across loci (mean probability of identity of 1.6 × 10 -25 and mean probability of exclusion >0.999 with neither parent known), indicating that these markers provide a powerful means to assess parentage and relatedness in gray whales. We found 29 unique multilocus genotypes represented among our 36 biopsies (indicating that we inadvertently sampled 7 whales twice). In total, we compiled an individual data set of 28 western gray whales (WGSs) and 1 presumptive eastern gray whale (EGW). The lone EGW we sampled was no more or less related to the WGWs than expected by chance alone. The gray whale genomes reported here will enable comparative studies of natural selection in cetaceans, and the SNP markers should be highly informative for future studies of gray whale evolution, population structure, demography, and relatedness.

  5. A whole genome association study to detect additive and dominant single nucleotide polymorphisms for growth and carcass traits in Korean native cattle, Hanwoo

    Directory of Open Access Journals (Sweden)

    Yi Li

    2017-01-01

    Full Text Available Objective A whole genome association study was conducted to identify single nucleotide polymorphisms (SNPs with additive and dominant effects for growth and carcass traits in Korean native cattle, Hanwoo. Methods The data set comprised 61 sires and their 486 Hanwoo steers that were born between spring of 2005 and fall of 2007. The steers were genotyped with the 35,968 SNPs that were embedded in the Illumina bovine SNP 50K beadchip and six growth and carcass quality traits were measured for the steers. A series of lack-of-fit tests between the models was applied to classify gene expression pattern as additive or dominant. Results A total of 18 (0, 15 (3, 12 (8, 15 (18, 11 (7, and 21 (1 SNPs were detected at the 5% chromosome (genome - wise level for weaning weight (WWT, yearling weight (YWT, carcass weight (CWT, backfat thickness (BFT, longissimus dorsi muscle area (LMA and marbling score, respectively. Among the significant 129 SNPs, 56 SNPs had additive effects, 20 SNPs dominance effects, and 53 SNPs both additive and dominance effects, suggesting that dominance inheritance mode be considered in genetic improvement for growth and carcass quality in Hanwoo. The significant SNPs were located at 33 quantitative trait locus (QTL regions on 18 Bos Taurus chromosomes (i.e. BTA 3, 4, 5, 6, 7, 9, 11, 12, 13, 14, 16, 17, 18, 20, 23, 26, 28, and 29 were detected. There is strong evidence that BTA14 is the key chromosome affecting CWT. Also, BTA20 is the key chromosome for almost all traits measured (WWT, YWT, LMA. Conclusion The application of various additive and dominance SNP models enabled better characterization of SNP inheritance mode for growth and carcass quality traits in Hanwoo, and many of the detected SNPs or QTL had dominance effects, suggesting that dominance be considered for the whole-genome SNPs data and implementation of successive molecular breeding schemes in Hanwoo.

  6. A Whole Genome Association Study to Detect Single Nucleotide Polymorphisms for Blood Components (Immunity in a Cross between Korean Native Pig and Yorkshire

    Directory of Open Access Journals (Sweden)

    Y.-M. Lee

    2012-12-01

    Full Text Available The purpose of this study was to detect significant SNPs for blood components that were related to immunity using high single nucleotide polymorphism (SNP density panels in a Korean native pig (KNP×Yorkshire (YK cross population. A reciprocal design of KNP×YK produced 249 F2 individuals that were genotyped for a total of 46,865 available SNPs in the Illumina porcine 60K beadchip. To perform whole genome association analysis (WGA, phenotypes were regressed on each SNP under a simple linear regression model after adjustment for sex and slaughter age. To set up a significance threshold, 0.1% point-wise p value from F distribution was used for each SNP test. Among the significant SNPs for a trait, the best set of SNP markers were determined using a stepwise regression procedure with the rates of inclusion and exclusion of each SNP out of the model at 0.001 level. A total of 54 SNPs were detected; 10, 6, 4, 4, 5, 4, 5, 10, and 6 SNPs for neutrophil, lymphocyte, monocyte, eosinophil, basophil, atypical lymph, immunoglobulin, insulin, and insulin-like growth factor-I, respectively. Each set of significant SNPs per trait explained 24 to 42% of phenotypic variance. Several pleiotropic SNPs were detected on SSCs 4, 13, 14 and 15.

  7. Genomic single-nucleotide polymorphisms confirm that Gunnison and Greater sage-grouse are genetically well differentiated and that the Bi-State population is distinct

    Science.gov (United States)

    Oyler-McCance, Sara J.; Cornman, Robert S.; Jones, Kenneth L.; Fike, Jennifer

    2015-01-01

    Sage-grouse are iconic, declining inhabitants of sagebrush habitats in western North America, and their management depends on an understanding of genetic variation across the landscape. Two distinct species of sage-grouse have been recognized, Greater (Centrocercus urophasianus) and Gunnison sage-grouse (C. minimus), based on morphology, behavior, and variation at neutral genetic markers. A parapatric group of Greater Sage-Grouse along the border of California and Nevada ("Bi-State") is also genetically distinct at the same neutral genetic markers, yet not different in behavior or morphology. Because delineating taxonomic boundaries and defining conservation units is often difficult in recently diverged taxa and can be further complicated by highly skewed mating systems, we took advantage of new genomic methods that improve our ability to characterize genetic variation at a much finer resolution. We identified thousands of single-nucleotide polymorphisms (SNPs) among Gunnison, Greater, and Bi-State sage-grouse and used them to comprehensively examine levels of genetic diversity and differentiation among these groups. The pairwise multilocus fixation index (FST) was high (0.49) between Gunnison and Greater sage-grouse, and both principal coordinates analysis and model-based clustering grouped samples unequivocally by species. Standing genetic variation was lower within the Gunnison Sage-Grouse. The Bi-State population was also significantly differentiated from Greater Sage-Grouse, albeit more weakly (FST = 0.09), and genetic clustering results were consistent with reduced gene flow with Greater Sage-Grouse. No comparable genetic divisions were found within the Greater Sage-Grouse sample, which spanned the southern half of the range. Thus, we provide much stronger genetic evidence supporting the recognition of Gunnison Sage-Grouse as a distinct species with low genetic diversity. Further, our work confirms that the Bi-State population is differentiated from other

  8. Genome-Wide Association Study to Identify Single Nucleotide Polymorphisms (SNPs) Associated With the Development of Erectile Dysfunction in African-American Men After Radiotherapy for Prostate Cancer

    International Nuclear Information System (INIS)

    Kerns, Sarah L.; Ostrer, Harry; Stock, Richard; Li, William; Moore, Julian; Pearlman, Alexander; Campbell, Christopher; Shao Yongzhao; Stone, Nelson; Kusnetz, Lynda; Rosenstein, Barry S.

    2010-01-01

    Purpose: To identify single nucleotide polymorphisms (SNPs) associated with erectile dysfunction (ED) among African-American prostate cancer patients treated with external beam radiation therapy. Methods and Materials: A cohort of African-American prostate cancer patients treated with external beam radiation therapy was observed for the development of ED by use of the five-item Sexual Health Inventory for Men (SHIM) questionnaire. Final analysis included 27 cases (post-treatment SHIM score ≤7) and 52 control subjects (post-treatment SHIM score ≥16). A genome-wide association study was performed using approximately 909,000 SNPs genotyped on Affymetrix 6.0 arrays (Affymetrix, Santa Clara, CA). Results: We identified SNP rs2268363, located in the follicle-stimulating hormone receptor (FSHR) gene, as significantly associated with ED after correcting for multiple comparisons (unadjusted p = 5.46 x 10 -8 , Bonferroni p = 0.028). We identified four additional SNPs that tended toward a significant association with an unadjusted p value -6 . Inference of population substructure showed that cases had a higher proportion of African ancestry than control subjects (77% vs. 60%, p = 0.005). A multivariate logistic regression model that incorporated estimated ancestry and four of the top-ranked SNPs was a more accurate classifier of ED than a model that included only clinical variables. Conclusions: To our knowledge, this is the first genome-wide association study to identify SNPs associated with adverse effects resulting from radiotherapy. It is important to note that the SNP that proved to be significantly associated with ED is located within a gene whose encoded product plays a role in male gonad development and function. Another key finding of this project is that the four SNPs most strongly associated with ED were specific to persons of African ancestry and would therefore not have been identified had a cohort of European ancestry been screened. This study demonstrates

  9. DNA sequence polymorphisms within the bovine guanine nucleotide-binding protein Gs subunit alpha (Gsα-encoding (GNAS genomic imprinting domain are associated with performance traits

    Directory of Open Access Journals (Sweden)

    Mullen Michael P

    2011-01-01

    Full Text Available Abstract Background Genes which are epigenetically regulated via genomic imprinting can be potential targets for artificial selection during animal breeding. Indeed, imprinted loci have been shown to underlie some important quantitative traits in domestic mammals, most notably muscle mass and fat deposition. In this candidate gene study, we have identified novel associations between six validated single nucleotide polymorphisms (SNPs spanning a 97.6 kb region within the bovine guanine nucleotide-binding protein Gs subunit alpha gene (GNAS domain on bovine chromosome 13 and genetic merit for a range of performance traits in 848 progeny-tested Holstein-Friesian sires. The mammalian GNAS domain consists of a number of reciprocally-imprinted, alternatively-spliced genes which can play a major role in growth, development and disease in mice and humans. Based on the current annotation of the bovine GNAS domain, four of the SNPs analysed (rs43101491, rs43101493, rs43101485 and rs43101486 were located upstream of the GNAS gene, while one SNP (rs41694646 was located in the second intron of the GNAS gene. The final SNP (rs41694656 was located in the first exon of transcripts encoding the putative bovine neuroendocrine-specific protein NESP55, resulting in an aspartic acid-to-asparagine amino acid substitution at amino acid position 192. Results SNP genotype-phenotype association analyses indicate that the single intronic GNAS SNP (rs41694646 is associated (P ≤ 0.05 with a range of performance traits including milk yield, milk protein yield, the content of fat and protein in milk, culled cow carcass weight and progeny carcass conformation, measures of animal body size, direct calving difficulty (i.e. difficulty in calving due to the size of the calf and gestation length. Association (P ≤ 0.01 with direct calving difficulty (i.e. due to calf size and maternal calving difficulty (i.e. due to the maternal pelvic width size was also observed at the rs

  10. Analysis of genetic diversity in Brown Swiss, Jersey and Holstein populations using genome-wide single nucleotide polymorphism markers

    Directory of Open Access Journals (Sweden)

    Melka Melkaye G

    2012-03-01

    Full Text Available Abstract Background Studies of genetic diversity are essential in understanding the extent of differentiation between breeds, and in designing successful diversity conservation strategies. The objective of this study was to evaluate the level of genetic diversity within and between North American Brown Swiss (BS, n = 900, Jersey (JE, n = 2,922 and Holstein (HO, n = 3,535 cattle, using genotyped bulls. GENEPOP and FSTAT software were used to evaluate the level of genetic diversity within each breed and between each pair of the three breeds based on genome-wide SNP markers (n = 50,972. Results Hardy-Weinberg equilibrium (HWE exact test within breeds showed a significant deviation from equilibrium within each population (P st indicated that the combination of BS and HO in an ideally amalgamated population had higher genetic diversity than the other pairs of breeds. Conclusion Results suggest that the three bull populations have substantially different gene pools. BS and HO show the largest gene differentiation and jointly the highest total expected gene diversity compared to when JE is considered. If the loss of genetic diversity within breeds worsens in the future, the use of crossbreeding might be an option to recover genetic diversity, especially for the breeds with small population size.

  11. Thoroughbred Horse Single Nucleotide Polymorphism and Expression Database: HSDB

    Directory of Open Access Journals (Sweden)

    Joon-Ho Lee

    2014-09-01

    Full Text Available Genetics is important for breeding and selection of horses but there is a lack of well-established horse-related browsers or databases. In order to better understand horses, more variants and other integrated information are needed. Thus, we construct a horse genomic variants database including expression and other information. Horse Single Nucleotide Polymorphism and Expression Database (HSDB (http://snugenome2.snu.ac.kr/HSDB provides the number of unexplored genomic variants still remaining to be identified in the horse genome including rare variants by using population genome sequences of eighteen horses and RNA-seq of four horses. The identified single nucleotide polymorphisms (SNPs were confirmed by comparing them with SNP chip data and variants of RNA-seq, which showed a concordance level of 99.02% and 96.6%, respectively. Moreover, the database provides the genomic variants with their corresponding transcriptional profiles from the same individuals to help understand the functional aspects of these variants. The database will contribute to genetic improvement and breeding strategies of Thoroughbreds.

  12. Direct detection of single-nucleotide polymorphisms in bacterial DNA by SNPtrap

    DEFF Research Database (Denmark)

    Grønlund, Hugo Ahlm; Moen, Birgitte; Hoorfar, Jeffrey

    2011-01-01

    A major challenge with single-nucleotide polymorphism (SNP) fingerprinting of bacteria and higher organisms is the combination of genome-wide screenings with the potential of multiplexing and accurate SNP detection. Single-nucleotide extension by the minisequencing principle represents a technolo...

  13. Development and validation of a 20K single nucleotide polymorphism (SNP) whole genome genotyping array for apple (Malus × domestica Borkh).

    Science.gov (United States)

    Bianco, Luca; Cestaro, Alessandro; Sargent, Daniel James; Banchi, Elisa; Derdak, Sophia; Di Guardo, Mario; Salvi, Silvio; Jansen, Johannes; Viola, Roberto; Gut, Ivo; Laurens, Francois; Chagné, David; Velasco, Riccardo; van de Weg, Eric; Troggio, Michela

    2014-01-01

    High-density SNP arrays for genome-wide assessment of allelic variation have made high resolution genetic characterization of crop germplasm feasible. A medium density array for apple, the IRSC 8K SNP array, has been successfully developed and used for screens of bi-parental populations. However, the number of robust and well-distributed markers contained on this array was not sufficient to perform genome-wide association analyses in wider germplasm sets, or Pedigree-Based Analysis at high precision, because of rapid decay of linkage disequilibrium. We describe the development of an Illumina Infinium array targeting 20K SNPs. The SNPs were predicted from re-sequencing data derived from the genomes of 13 Malus × domestica apple cultivars and one accession belonging to a crab apple species (M. micromalus). A pipeline for SNP selection was devised that avoided the pitfalls associated with the inclusion of paralogous sequence variants, supported the construction of robust multi-allelic SNP haploblocks and selected up to 11 entries within narrow genomic regions of ±5 kb, termed focal points (FPs). Broad genome coverage was attained by placing FPs at 1 cM intervals on a consensus genetic map, complementing them with FPs to enrich the ends of each of the chromosomes, and by bridging physical intervals greater than 400 Kbps. The selection also included ∼3.7K validated SNPs from the IRSC 8K array. The array has already been used in other studies where ∼15.8K SNP markers were mapped with an average of ∼6.8K SNPs per full-sib family. The newly developed array with its high density of polymorphic validated SNPs is expected to be of great utility for Pedigree-Based Analysis and Genomic Selection. It will also be a valuable tool to help dissect the genetic mechanisms controlling important fruit quality traits, and to aid the identification of marker-trait associations suitable for the application of Marker Assisted Selection in apple breeding programs.

  14. Development and validation of a 20K single nucleotide polymorphism (SNP whole genome genotyping array for apple (Malus × domestica Borkh.

    Directory of Open Access Journals (Sweden)

    Luca Bianco

    Full Text Available High-density SNP arrays for genome-wide assessment of allelic variation have made high resolution genetic characterization of crop germplasm feasible. A medium density array for apple, the IRSC 8K SNP array, has been successfully developed and used for screens of bi-parental populations. However, the number of robust and well-distributed markers contained on this array was not sufficient to perform genome-wide association analyses in wider germplasm sets, or Pedigree-Based Analysis at high precision, because of rapid decay of linkage disequilibrium. We describe the development of an Illumina Infinium array targeting 20K SNPs. The SNPs were predicted from re-sequencing data derived from the genomes of 13 Malus × domestica apple cultivars and one accession belonging to a crab apple species (M. micromalus. A pipeline for SNP selection was devised that avoided the pitfalls associated with the inclusion of paralogous sequence variants, supported the construction of robust multi-allelic SNP haploblocks and selected up to 11 entries within narrow genomic regions of ±5 kb, termed focal points (FPs. Broad genome coverage was attained by placing FPs at 1 cM intervals on a consensus genetic map, complementing them with FPs to enrich the ends of each of the chromosomes, and by bridging physical intervals greater than 400 Kbps. The selection also included ∼3.7K validated SNPs from the IRSC 8K array. The array has already been used in other studies where ∼15.8K SNP markers were mapped with an average of ∼6.8K SNPs per full-sib family. The newly developed array with its high density of polymorphic validated SNPs is expected to be of great utility for Pedigree-Based Analysis and Genomic Selection. It will also be a valuable tool to help dissect the genetic mechanisms controlling important fruit quality traits, and to aid the identification of marker-trait associations suitable for the application of Marker Assisted Selection in apple breeding programs.

  15. Development and Validation of a 20K Single Nucleotide Polymorphism (SNP) Whole Genome Genotyping Array for Apple (Malus × domestica Borkh)

    Science.gov (United States)

    Bianco, Luca; Cestaro, Alessandro; Sargent, Daniel James; Banchi, Elisa; Derdak, Sophia; Di Guardo, Mario; Salvi, Silvio; Jansen, Johannes; Viola, Roberto; Gut, Ivo; Laurens, Francois; Chagné, David; Velasco, Riccardo; van de Weg, Eric; Troggio, Michela

    2014-01-01

    High-density SNP arrays for genome-wide assessment of allelic variation have made high resolution genetic characterization of crop germplasm feasible. A medium density array for apple, the IRSC 8K SNP array, has been successfully developed and used for screens of bi-parental populations. However, the number of robust and well-distributed markers contained on this array was not sufficient to perform genome-wide association analyses in wider germplasm sets, or Pedigree-Based Analysis at high precision, because of rapid decay of linkage disequilibrium. We describe the development of an Illumina Infinium array targeting 20K SNPs. The SNPs were predicted from re-sequencing data derived from the genomes of 13 Malus × domestica apple cultivars and one accession belonging to a crab apple species (M. micromalus). A pipeline for SNP selection was devised that avoided the pitfalls associated with the inclusion of paralogous sequence variants, supported the construction of robust multi-allelic SNP haploblocks and selected up to 11 entries within narrow genomic regions of ±5 kb, termed focal points (FPs). Broad genome coverage was attained by placing FPs at 1 cM intervals on a consensus genetic map, complementing them with FPs to enrich the ends of each of the chromosomes, and by bridging physical intervals greater than 400 Kbps. The selection also included ∼3.7K validated SNPs from the IRSC 8K array. The array has already been used in other studies where ∼15.8K SNP markers were mapped with an average of ∼6.8K SNPs per full-sib family. The newly developed array with its high density of polymorphic validated SNPs is expected to be of great utility for Pedigree-Based Analysis and Genomic Selection. It will also be a valuable tool to help dissect the genetic mechanisms controlling important fruit quality traits, and to aid the identification of marker-trait associations suitable for the application of Marker Assisted Selection in apple breeding programs. PMID:25303088

  16. Single Nucleotide Polymorphisms in B-Genome Specific UDP-Glucosyl Transferases Associated with Fusarium Head Blight Resistance and Reduced Deoxynivalenol Accumulation in Wheat Grain.

    Science.gov (United States)

    Sharma, Pallavi; Gangola, Manu P; Huang, Chen; Kutcher, H Randy; Ganeshan, Seedhabadee; Chibbar, Ravindra N

    2018-01-01

    An in vitro spike culture method was optimized to evaluate Fusarium head blight (FHB) resistance in wheat (Triticum aestivum) and used to screen a population of ethyl methane sulfonate treated spike culture-derived variants (SCDV). Of the 134 SCDV evaluated, the disease severity score of 47 of the variants was ≤30%. Single nucleotide polymorphisms (SNP) in the UDP-glucosyltransferase (UGT) genes, TaUGT-2B, TaUGT-3B, and TaUGT-EST, differed between AC Nanda (an FHB-susceptible wheat variety) and Sumai-3 (an FHB-resistant wheat cultivar). SNP at 450 and 1,558 bp from the translation initiation site in TaUGT-2B and TaUGT-3B, respectively were negatively correlated with FHB severity in the SCDV population, whereas the SNP in TaUGT-EST was not associated with FHB severity. Fusarium graminearum strain M7-07-1 induced early expression of TaUGT-2B and TaUGT-3B in FHB-resistant SCDV lines, which were associated with deoxynivalenol accumulation and reduced FHB disease progression. At 8 days after inoculation, deoxynivalenol concentration varied from 767 ppm in FHB-resistant variants to 2,576 ppm in FHB-susceptible variants. The FHB-resistant SCDV identified can be used as new sources of FHB resistance in wheat improvement programs.

  17. Genome-wide association study identifies single-nucleotide polymorphism in KCNB1 associated with left ventricular mass in humans: The HyperGEN Study

    Directory of Open Access Journals (Sweden)

    Kraemer Rachel

    2009-05-01

    Full Text Available Abstract Background We conducted a genome-wide association study (GWAS and validation study for left ventricular (LV mass in the Family Blood Pressure Program – HyperGEN population. LV mass is a sensitive predictor of cardiovascular mortality and morbidity in all genders, races, and ages. Polymorphisms of candidate genes in diverse pathways have been associated with LV mass. However, subsequent studies have often failed to replicate these associations. Genome-wide association studies have unprecedented power to identify potential genes with modest effects on left LV mass. We describe here a GWAS for LV mass in Caucasians using the Affymetrix GeneChip Human Mapping 100 k Set. Cases (N = 101 and controls (N = 101 were selected from extreme tails of the LV mass index distribution from 906 individuals in the HyperGEN study. Eleven of 12 promising (Q Results Despite the relatively small sample, we identified 12 promising SNPs in the GWAS. Eleven SNPs were successfully genotyped in the validation study of 704 Caucasians and 1467 African Americans; 5 SNPs on chromosomes 5, 12, and 20 were significantly (P ≤ 0.05 associated with LV mass after correction for multiple testing. One SNP (rs756529 is intragenic within KCNB1, which is dephosphorylated by calcineurin, a previously reported candidate gene for LV hypertrophy within this population. Conclusion These findings suggest KCNB1 may be involved in the development of LV hypertrophy in humans.

  18. A single nucleotide polymorphism (SNP) assay for population ...

    African Journals Online (AJOL)

    A single nucleotide polymorphism (SNP) assay for population stratification test ... phenotypes and unlinked candidate loci in case-control and cohort studies of ... Key words: Chinese, Japanese, population stratification, ancestry informative ...

  19. Genomic diversity and affinities in population groups of North West India: an analysis of Alu insertion and a single nucleotide polymorphism.

    Science.gov (United States)

    Saini, J S; Kumar, A; Matharoo, K; Sokhi, J; Badaruddoza; Bhanwer, A J S

    2012-12-15

    The North West region of India is extremely important to understand the peopling of India, as it acted as a corridor to the foreign invaders from Eurasia and Central Asia. A series of these invasions along with multiple migrations led to intermixture of variable populations, strongly contributing to genetic variations. The present investigation was designed to explore the genetic diversities and affinities among the five major ethnic groups from North West India; Brahmin, Jat Sikh, Bania, Rajput and Gujjar. A total of 327 individuals of the abovementioned ethnic groups were analyzed for 4 Alu insertion marker loci (ACE, PV92, APO and D1) and a Single Nucleotide Polymorphism (SNP) rs2234693 in the intronic region of the ESR1 gene. Statistical analysis was performed to interpret the genetic structure and diversity of the population groups. Genotypes for ACE, APO, ESR1 and PV92 loci were found to be in Hardy-Weinberg equilibrium in all the ethnic groups, while significant departures were observed at the D1 locus in every investigated population after Bonferroni's correction. The average heterozygosity for all the loci in these ethnic groups was fairly substantial ranging from 0.3927 ± 0.1877 to 0.4333 ± 0.1416. Inbreeding coefficient indicated an overall 10% decrease in heterozygosity in these North West Indian populations. The gene differentiation among the populations was observed to be of the order of 0.013. Genetic distance estimates revealed that Gujjars were close to Banias and Jat Sikhs were close to Rajputs. Overall the study favored the recent division of the populations of North West India into largely endogamous groups. It was observed that the populations of North West India represent a more or less homogenous genetic entity, owing to their common ancestral history as well as geographical proximity. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Lupus-related single nucleotide polymorphisms and risk of diffuse large B-cell lymphoma

    NARCIS (Netherlands)

    Bernatsky, Sasha; Velásquez García, Héctor A; Spinelli, John; Gaffney, Patrick; Smedby, Karin E; Ramsey-Goldman, Rosalind; Wang, Sophia S.; Adami, Hans-Olov; Albanes, Demetrius; Angelucci, Emanuele; Ansell, Stephen M.; Asmann, Yan W.; Becker, Nikolaus; Benavente, Yolanda; Berndt, Sonja I.; Bertrand, Kimberly A.; Birmann, Brenda M.; Boeing, Heiner; Boffetta, Paolo; Bracci, Paige M.; Brennan, Paul; Brooks-Wilson, Angela R.; Cerhan, James R.; Chanock, Stephen J.; Clavel, Jacqueline; Conde, Lucia; Cotenbader, Karen H; Cox, David G; Cozen, Wendy; Crouch, Simon; De Roos, Anneclaire J.; De Sanjose, Silvia; Di Lollo, Simonetta; Diver, W. Ryan; Dogan, Ahmet; Foretova, Lenka; Ghesquières, Hervé; Giles, Graham G.; Glimelius, Bengt; Habermann, Thomas M.; Haioun, Corinne; Hartge, Patricia; Hjalgrim, Henrik; Holford, Theodore R.; Holly, Elizabeth A.; Jackson, Rebecca D.; Kaaks, Rudolph; Kane, Eleanor; Kelly, Rachel S.; Klein, Robert J.; Kraft, Peter; Kricker, Anne; Lan, Qing; Lawrence, Charles; Liebow, Mark; Lightfoot, Tracy; Link, Brian K.; Maynadie, Marc; McKay, James; Melbye, Mads; Molina, Thierry Jo; Monnereau, Alain; Morton, Lindsay M.; Nieters, Alexandra; North, Kari E.; Novak, Anne J.; Offit, Kenneth; Purdue, Mark P.; Rais, Marco; Riby, Jacques; Roman, Eve; Rothman, Nathaniel; Salles, Gilles; Severi, Gianluca; Severson, Richard K.; Skibola, Christine F.; Slager, Susan L.; Smith, Alex; Smith, Martyn T.; Southey, Melissa C.; Staines, Anthony; Teras, Lauren R.; Thompson, Carrie A.; Tilly, Hervé; Tinker, Lesley F.; Tjonneland, Anne; Turner, Jenny; Vajdic, Claire M.; Vermeulen, Roel C H; Vijai, Joseph; Vineis, Paolo; Virtamo, Jarmo; Wang, Zhaoming; Weinstein, Stephanie; Witzig, Thomas E.; Zelenetz, Andrew; Zeleniuch-Jacquotte, Anne; Zhang, Yawei; Zheng, Tongzhang; Zucca, Mariagrazia; Clarke, Ann E

    2017-01-01

    Objective: Determinants of the increased risk of diffuse large B-cell lymphoma (DLBCL) in SLE are unclear. Using data from a recent lymphoma genome-wide association study (GWAS), we assessed whether certain lupus-related single nucleotide polymorphisms (SNPs) were also associated with DLBCL.

  1. Characterization of single nucleotide polymorphism markers for eelgrass (Zostera marina)

    NARCIS (Netherlands)

    Ferber, Steven; Reusch, Thorsten B. H.; Stam, Wytze T.; Olsen, Jeanine L.

    We characterized 37 single nucleotide polymorphism (SNP) makers for eelgrass Zostera marina. SNP markers were developed using existing EST (expressed sequence tag)-libraries to locate polymorphic loci and develop primers from the functional expressed genes that are deposited in The ZOSTERA database

  2. Genome-wide association study identifies single nucleotide polymorphism in DYRK1A associated with replication of HIV-1 in monocyte-derived macrophages.

    Directory of Open Access Journals (Sweden)

    Sebastiaan M Bol

    2011-02-01

    Full Text Available HIV-1 infected macrophages play an important role in rendering resting T cells permissive for infection, in spreading HIV-1 to T cells, and in the pathogenesis of AIDS dementia. During highly active anti-retroviral treatment (HAART, macrophages keep producing virus because tissue penetration of antiretrovirals is suboptimal and the efficacy of some is reduced. Thus, to cure HIV-1 infection with antiretrovirals we will also need to efficiently inhibit viral replication in macrophages. The majority of the current drugs block the action of viral enzymes, whereas there is an abundance of yet unidentified host factors that could be targeted. We here present results from a genome-wide association study identifying novel genetic polymorphisms that affect in vitro HIV-1 replication in macrophages.Monocyte-derived macrophages from 393 blood donors were infected with HIV-1 and viral replication was determined using Gag p24 antigen levels. Genomic DNA from individuals with macrophages that had relatively low (n = 96 or high (n = 96 p24 production was used for SNP genotyping with the Illumina 610 Quad beadchip. A total of 494,656 SNPs that passed quality control were tested for association with HIV-1 replication in macrophages, using linear regression. We found a strong association between in vitro HIV-1 replication in monocyte-derived macrophages and SNP rs12483205 in DYRK1A (p = 2.16 × 10(-5. While the association was not genome-wide significant (p<1 × 10(-7, we could replicate this association using monocyte-derived macrophages from an independent group of 31 individuals (p = 0.0034. Combined analysis of the initial and replication cohort increased the strength of the association (p = 4.84 × 10(-6. In addition, we found this SNP to be associated with HIV-1 disease progression in vivo in two independent cohort studies (p = 0.035 and p = 0.0048.These findings suggest that the kinase DYRK1A is involved in the replication of HIV-1, in vitro in macrophages

  3. Genome-Wide Association Study Identifies Single Nucleotide Polymorphism in DYRK1A Associated with Replication of HIV-1 in Monocyte-Derived Macrophages

    Science.gov (United States)

    Bol, Sebastiaan M.; Moerland, Perry D.; Limou, Sophie; van Remmerden, Yvonne; Coulonges, Cédric; van Manen, Daniëlle; Herbeck, Joshua T.; Fellay, Jacques; Sieberer, Margit; Sietzema, Jantine G.; van 't Slot, Ruben; Martinson, Jeremy; Zagury, Jean-François; Schuitemaker, Hanneke; van 't Wout, Angélique B.

    2011-01-01

    Background HIV-1 infected macrophages play an important role in rendering resting T cells permissive for infection, in spreading HIV-1 to T cells, and in the pathogenesis of AIDS dementia. During highly active anti-retroviral treatment (HAART), macrophages keep producing virus because tissue penetration of antiretrovirals is suboptimal and the efficacy of some is reduced. Thus, to cure HIV-1 infection with antiretrovirals we will also need to efficiently inhibit viral replication in macrophages. The majority of the current drugs block the action of viral enzymes, whereas there is an abundance of yet unidentified host factors that could be targeted. We here present results from a genome-wide association study identifying novel genetic polymorphisms that affect in vitro HIV-1 replication in macrophages. Methodology/Principal Findings Monocyte-derived macrophages from 393 blood donors were infected with HIV-1 and viral replication was determined using Gag p24 antigen levels. Genomic DNA from individuals with macrophages that had relatively low (n = 96) or high (n = 96) p24 production was used for SNP genotyping with the Illumina 610 Quad beadchip. A total of 494,656 SNPs that passed quality control were tested for association with HIV-1 replication in macrophages, using linear regression. We found a strong association between in vitro HIV-1 replication in monocyte-derived macrophages and SNP rs12483205 in DYRK1A (p = 2.16×10−5). While the association was not genome-wide significant (p<1×10−7), we could replicate this association using monocyte-derived macrophages from an independent group of 31 individuals (p = 0.0034). Combined analysis of the initial and replication cohort increased the strength of the association (p = 4.84×10−6). In addition, we found this SNP to be associated with HIV-1 disease progression in vivo in two independent cohort studies (p = 0.035 and p = 0.0048). Conclusions/Significance These findings suggest that

  4. Single Nucleotide Polymorphism Identification, Characterization, and Linkage Mapping in Quinoa

    Directory of Open Access Journals (Sweden)

    P. J. Maughan

    2012-11-01

    Full Text Available Quinoa ( Willd. is an important seed crop throughout the Andean region of South America. It is important as a regional food security crop for millions of impoverished rural inhabitants of the Andean Altiplano (high plains. Efforts to improve the crop have led to an increased focus on genetic research. We report the identification of 14,178 putative single nucleotide polymorphisms (SNPs using a genomic reduction protocol as well as the development of 511 functional SNP assays. The SNP assays are based on KASPar genotyping chemistry and were detected using the Fluidigm dynamic array platform. A diversity screen of 113 quinoa accessions showed that the minor allele frequency (MAF of the SNPs ranged from 0.02 to 0.50, with an average MAF of 0.28. Structure analysis of the quinoa diversity panel uncovered the two major subgroups corresponding to the Andean and coastal quinoa ecotypes. Linkage mapping of the SNPs in two recombinant inbred line populations produced an integrated linkage map consisting of 29 linkage groups with 20 large linkage groups, spanning 1404 cM with a marker density of 3.1 cM per SNP marker. The SNPs identified here represent important genomic tools needed in emerging plant breeding programs for advanced genetic analysis of agronomic traits in quinoa.

  5. Sequencing genes in silico using single nucleotide polymorphisms

    Directory of Open Access Journals (Sweden)

    Zhang Xinyi

    2012-01-01

    Full Text Available Abstract Background The advent of high throughput sequencing technology has enabled the 1000 Genomes Project Pilot 3 to generate complete sequence data for more than 906 genes and 8,140 exons representing 697 subjects. The 1000 Genomes database provides a critical opportunity for further interpreting disease associations with single nucleotide polymorphisms (SNPs discovered from genetic association studies. Currently, direct sequencing of candidate genes or regions on a large number of subjects remains both cost- and time-prohibitive. Results To accelerate the translation from discovery to functional studies, we propose an in silico gene sequencing method (ISS, which predicts phased sequences of intragenic regions, using SNPs. The key underlying idea of our method is to infer diploid sequences (a pair of phased sequences/alleles at every functional locus utilizing the deep sequencing data from the 1000 Genomes Project and SNP data from the HapMap Project, and to build prediction models using flanking SNPs. Using this method, we have developed a database of prediction models for 611 known genes. Sequence prediction accuracy for these genes is 96.26% on average (ranges 79%-100%. This database of prediction models can be enhanced and scaled up to include new genes as the 1000 Genomes Project sequences additional genes on additional individuals. Applying our predictive model for the KCNJ11 gene to the Wellcome Trust Case Control Consortium (WTCCC Type 2 diabetes cohort, we demonstrate how the prediction of phased sequences inferred from GWAS SNP genotype data can be used to facilitate interpretation and identify a probable functional mechanism such as protein changes. Conclusions Prior to the general availability of routine sequencing of all subjects, the ISS method proposed here provides a time- and cost-effective approach to broadening the characterization of disease associated SNPs and regions, and facilitating the prioritization of candidate

  6. A genome-wide association study for milk production traits in Danish Jersey cattle using a 50K single nucleotide polymorphism chip

    DEFF Research Database (Denmark)

    Mai, Duy Minh; Sahana, Goutam; Christiansen, Freddy

    2010-01-01

    on BTA4, BTA5, BTA13, BTA20, and BTA29 were new QTL for fat index. We found 7 pleiotropic or very closely linked QTL. Most of the QTL were associated with polymorphisms within narrow regions and several may represent the effects of polymorphisms of genes: DGAT1, casein, ARFGAP3, CYP11B1, and CDC...

  7. Single-nucleotide polymorphisms in peroxisome proliferator ...

    Indian Academy of Sciences (India)

    However, association of these polymorphisms with the metabolic syndrome and its individual components has not been well investigated in the Indian population. The Indian population harbours the maximum number of diabetics in the world who are thus more susceptible to metabolic disorders. We screened a South ...

  8. No association between a common single nucleotide polymorphism, rs4141463, in the MACROD2 gene and autism spectrum disorder.

    NARCIS (Netherlands)

    Curran, S.; Bolton, P.; Rozsnyai, K.; Chiocchetti, A.; Klauck, S.M.; Duketis, E.; Poustka, F.; Schlitt, S.; Freitag, C.M.; Lee, I. van der; Muglia, P.; Poot, M.; Staal, W.G.; Jonge, M.V. de; Ophoff, R.A.; Lewis, C.; Skuse, D.; Mandy, W.; Vassos, E.; Fossdal, R.; Magnusson, P.; Hreidarsson, S.; Saemundsen, E.; Stefansson, H.; Stefansson, K.; Collier, D.

    2011-01-01

    The Autism Genome Project (AGP) Consortium recently reported genome-wide significant association between autism and an intronic single nucleotide polymorphism marker, rs4141463, within the MACROD2 gene. In the present study we attempted to replicate this finding using an independent case-control

  9. Length and nucleotide sequence polymorphism at the trnL and trnF non-coding regions of chloroplast genomes among Saccharum and Erianthus species

    Science.gov (United States)

    The aneupolyploidy genome of sugarcane (Saccharum hybrids spp.) and lack of a classical genetic linkage map make genetics research most difficult for sugarcane. Whole genome sequencing and genetic characterization of sugarcane and related taxa are far behind other crops. In this study, universal PCR...

  10. Development of a single nucleotide polymorphism (SNP) marker for ...

    African Journals Online (AJOL)

    The nature of the single nucleotide polymorphism (SNP) marker was validated by DNA sequencing of the parental PCR products. Using high resolution melt (HRM) profiles and normalised difference plots, we successfully differentiated the homozygous dominant (wild type), homozygous recessive (LPA) and heterozygous ...

  11. Four new single nucleotide polymorphisms (SNPs) of toll-like ...

    African Journals Online (AJOL)

    In order to reveal the single nucleotide polymorphisms (SNPs), genotypes and allelic frequencies of each mutation site of TLR7 gene in Chinese native duck breeds, SNPs of duck TLR7 gene were detected by DNA sequencing. The genotypes of 465 native ducks from eight key protected duck breeds were determined by ...

  12. Detection of new single nucleotide polymorphisms by means of real ...

    Indian Academy of Sciences (India)

    Unknown

    amplified millions to billions of times by means of a PCR before the PCR product ... Keywords. Single nucleotide polymorphism; real time PCR; DNA melting curve analysis. ... VAL158MET SNP and alcoholism and to test for interac- tions between the .... indicate a heterozygote sample (VAL/MET genotype). The curve with ...

  13. Adiponectin Single Nucleotide Polymorphism (+276G/T) and Its ...

    African Journals Online (AJOL)

    The present study was investigating the association between the single nucleotide polymorphism +276 G/T of the adiponectin gene with serum adiponectin level in patients with coronary artery disease (CAD). In this study 100 healthy controls and 100 Egyptian patients with coronary artery disease of both genders ...

  14. Single nucleotide polymorphisms in the 5'-flanking region of the ...

    African Journals Online (AJOL)

    Prolactin (PRL), a polypeptide hormone synthesized and secreted by the animal's anterior pituitary gland, plays an important role in the regulation of mammalian lactation and avian reproduction. Considering the significant association between single nucleotide polymorphisms (SNPs) in the 5'-flanking region of PRL and ...

  15. A response to Yu et al. "A forward-backward fragment assembling algorithm for the identification of genomic amplification and deletion breakpoints using high-density single nucleotide polymorphism (SNP) array", BMC Bioinformatics 2007, 8: 145.

    Science.gov (United States)

    Rueda, Oscar M; Diaz-Uriarte, Ramon

    2007-10-16

    Yu et al. (BMC Bioinformatics 2007,8: 145+) have recently compared the performance of several methods for the detection of genomic amplification and deletion breakpoints using data from high-density single nucleotide polymorphism arrays. One of the methods compared is our non-homogenous Hidden Markov Model approach. Our approach uses Markov Chain Monte Carlo for inference, but Yu et al. ran the sampler for a severely insufficient number of iterations for a Markov Chain Monte Carlo-based method. Moreover, they did not use the appropriate reference level for the non-altered state. We rerun the analysis in Yu et al. using appropriate settings for both the Markov Chain Monte Carlo iterations and the reference level. Additionally, to show how easy it is to obtain answers to additional specific questions, we have added a new analysis targeted specifically to the detection of breakpoints. The reanalysis shows that the performance of our method is comparable to that of the other methods analyzed. In addition, we can provide probabilities of a given spot being a breakpoint, something unique among the methods examined. Markov Chain Monte Carlo methods require using a sufficient number of iterations before they can be assumed to yield samples from the distribution of interest. Running our method with too small a number of iterations cannot be representative of its performance. Moreover, our analysis shows how our original approach can be easily adapted to answer specific additional questions (e.g., identify edges).

  16. Multifactor dimensionality reduction analysis identifies specific nucleotide patterns promoting genetic polymorphisms

    Directory of Open Access Journals (Sweden)

    Arehart Eric

    2009-03-01

    Full Text Available Abstract Background The fidelity of DNA replication serves as the nidus for both genetic evolution and genomic instability fostering disease. Single nucleotide polymorphisms (SNPs constitute greater than 80% of the genetic variation between individuals. A new theory regarding DNA replication fidelity has emerged in which selectivity is governed by base-pair geometry through interactions between the selected nucleotide, the complementary strand, and the polymerase active site. We hypothesize that specific nucleotide combinations in the flanking regions of SNP fragments are associated with mutation. Results We modeled the relationship between DNA sequence and observed polymorphisms using the novel multifactor dimensionality reduction (MDR approach. MDR was originally developed to detect synergistic interactions between multiple SNPs that are predictive of disease susceptibility. We initially assembled data from the Broad Institute as a pilot test for the hypothesis that flanking region patterns associate with mutagenesis (n = 2194. We then confirmed and expanded our inquiry with human SNPs within coding regions and their flanking sequences collected from the National Center for Biotechnology Information (NCBI database (n = 29967 and a control set of sequences (coding region not associated with SNP sites randomly selected from the NCBI database (n = 29967. We discovered seven flanking region pattern associations in the Broad dataset which reached a minimum significance level of p ≤ 0.05. Significant models (p Conclusion The present study represents the first use of this computational methodology for modeling nonlinear patterns in molecular genetics. MDR was able to identify distinct nucleotide patterning around sites of mutations dependent upon the observed nucleotide change. We discovered one flanking region set that included five nucleotides clustered around a specific type of SNP site. Based on the strongly associated patterns identified in

  17. Evaluation of a Panel of Single-Nucleotide Polymorphisms in miR-146a and miR-196a2 Genomic Regions in Patients with Chronic Periodontitis.

    Science.gov (United States)

    Venugopal, Priyanka; Lavu, Vamsi; RangaRao, Suresh; Venkatesan, Vettriselvi

    2017-04-01

    Periodontitis is an inflammatory disease caused by bacterial triggering of the host immune-inflammatory response, which in turn is regulated by microRNAs (miRNA). Polymorphisms in the miRNA pathways affect the expression of several target genes such as tumor necrosis factor-α and interleukins, which are associated with progression of disease. The objective of this study was to identify the association between the MiR-146a single nucleotide polymorphisms (SNPs) (rs2910164, rs57095329, and rs73318382), the MiR-196a2 (rs11614913) SNP and chronic periodontitis. Genotyping was performed for the MiR-146a (rs2910164, rs57095329, and rs73318382) and the MiR-196a2 (rs11614913) polymorphisms in 180 healthy controls and 190 cases of chronic periodontitis by the direct Sanger sequencing technique. The strength of the association between the polymorphisms and chronic periodontitis was evaluated using logistic regression analysis. Haplotype and linkage analyses among the polymorphisms was performed. Multifactorial dimensionality reduction was performed to determine epistatic interaction among the polymorphisms. The MiR-196a2 polymorphism revealed a significant inverse association with chronic periodontitis. Haplotype analysis of MiR-146a and MiR-196a2 polymorphisms revealed 13 different combinations, of which 5 were found to have an inverse association with chronic periodontitis. The present study has demonstrated a significant inverse association of MiR-196a2 polymorphism with chronic periodontitis.

  18. Combined array-comparative genomic hybridization and single-nucleotide polymorphism-loss of heterozygosity analysis reveals complex changes and multiple forms of chromosomal instability in colorectal cancers

    DEFF Research Database (Denmark)

    Gaasenbeek, Michelle; Howarth, Kimberley; Rowan, Andrew J

    2006-01-01

    Cancers with chromosomal instability (CIN) are held to be aneuploid/polyploid with multiple large-scale gains/deletions, but the processes underlying CIN are unclear and different types of CIN might exist. We investigated colorectal cancer cell lines using array-comparative genomic hybridization...

  19. Estimating Additive and Non-Additive Genetic Variances and Predicting Genetic Merits Using Genome-Wide Dense Single Nucleotide Polymorphism Markers

    DEFF Research Database (Denmark)

    Su, Guosheng; Christensen, Ole Fredslund; Ostersen, Tage

    2012-01-01

    of genomic predictions for daily gain in pigs. In the analysis of daily gain, four linear models were used: 1) a simple additive genetic model (MA), 2) a model including both additive and additive by additive epistatic genetic effects (MAE), 3) a model including both additive and dominance genetic effects...

  20. Application of a Combination of a Knowledge-Based Algorithm and 2-Stage Screening to Hypothesis-Free Genomic Data on Irinotecan-Treated Patients for Identification of a Candidate Single Nucleotide Polymorphism Related to an Adverse Effect

    Science.gov (United States)

    Takahashi, Hiro; Sai, Kimie; Saito, Yoshiro; Kaniwa, Nahoko; Matsumura, Yasuhiro; Hamaguchi, Tetsuya; Shimada, Yasuhiro; Ohtsu, Atsushi; Yoshino, Takayuki; Doi, Toshihiko; Okuda, Haruhiro; Ichinohe, Risa; Takahashi, Anna; Doi, Ayano; Odaka, Yoko; Okuyama, Misuzu; Saijo, Nagahiro; Sawada, Jun-ichi; Sakamoto, Hiromi; Yoshida, Teruhiko

    2014-01-01

    Interindividual variation in a drug response among patients is known to cause serious problems in medicine. Genomic information has been proposed as the basis for “personalized” health care. The genome-wide association study (GWAS) is a powerful technique for examining single nucleotide polymorphisms (SNPs) and their relationship with drug response variation; however, when using only GWAS, it often happens that no useful SNPs are identified due to multiple testing problems. Therefore, in a previous study, we proposed a combined method consisting of a knowledge-based algorithm, 2 stages of screening, and a permutation test for identifying SNPs. In the present study, we applied this method to a pharmacogenomics study where 109,365 SNPs were genotyped using Illumina Human-1 BeadChip in 168 cancer patients treated with irinotecan chemotherapy. We identified the SNP rs9351963 in potassium voltage-gated channel subfamily KQT member 5 (KCNQ5) as a candidate factor related to incidence of irinotecan-induced diarrhea. The p value for rs9351963 was 3.31×10−5 in Fisher's exact test and 0.0289 in the permutation test (when multiple testing problems were corrected). Additionally, rs9351963 was clearly superior to the clinical parameters and the model involving rs9351963 showed sensitivity of 77.8% and specificity of 57.6% in the evaluation by means of logistic regression. Recent studies showed that KCNQ4 and KCNQ5 genes encode members of the M channel expressed in gastrointestinal smooth muscle and suggested that these genes are associated with irritable bowel syndrome and similar peristalsis diseases. These results suggest that rs9351963 in KCNQ5 is a possible predictive factor of incidence of diarrhea in cancer patients treated with irinotecan chemotherapy and for selecting chemotherapy regimens, such as irinotecan alone or a combination of irinotecan with a KCNQ5 opener. Nonetheless, clinical importance of rs9351963 should be further elucidated. PMID:25127363

  1. Genome-wide DNA polymorphism analyses using VariScan

    Directory of Open Access Journals (Sweden)

    Vilella Albert J

    2006-09-01

    Full Text Available Abstract Background DNA sequence polymorphisms analysis can provide valuable information on the evolutionary forces shaping nucleotide variation, and provides an insight into the functional significance of genomic regions. The recent ongoing genome projects will radically improve our capabilities to detect specific genomic regions shaped by natural selection. Current available methods and software, however, are unsatisfactory for such genome-wide analysis. Results We have developed methods for the analysis of DNA sequence polymorphisms at the genome-wide scale. These methods, which have been tested on a coalescent-simulated and actual data files from mouse and human, have been implemented in the VariScan software package version 2.0. Additionally, we have also incorporated a graphical-user interface. The main features of this software are: i exhaustive population-genetic analyses including those based on the coalescent theory; ii analysis adapted to the shallow data generated by the high-throughput genome projects; iii use of genome annotations to conduct a comprehensive analyses separately for different functional regions; iv identification of relevant genomic regions by the sliding-window and wavelet-multiresolution approaches; v visualization of the results integrated with current genome annotations in commonly available genome browsers. Conclusion VariScan is a powerful and flexible suite of software for the analysis of DNA polymorphisms. The current version implements new algorithms, methods, and capabilities, providing an important tool for an exhaustive exploratory analysis of genome-wide DNA polymorphism data.

  2. Association of prediabetes-associated single nucleotide polymorphisms with microalbuminuria.

    Science.gov (United States)

    Choi, Jong Wook; Moon, Shinje; Jang, Eun Jung; Lee, Chang Hwa; Park, Joon-Sung

    2017-01-01

    Increased glycemic exposure, even below the diagnostic criteria for diabetes mellitus, is crucial in the pathogenesis of diabetic microvascular complications represented by microalbuminuria. Nonetheless, there is limited evidence regarding which single nucleotide polymorphisms (SNPs) are associated with prediabetes and whether genetic predisposition to prediabetes is related to microalbuminuria, especially in the general population. Our objective was to answer these questions. We conducted a genomewide association study (GWAS) separately on two population-based cohorts, Ansung and Ansan, in the Korean Genome and Epidemiology Study (KoGES). The initial GWAS was carried out on the Ansung cohort, followed by a replication study on the Ansan cohort. A total of 5682 native Korean participants without a significant medical illness were classified into either control group (n = 3153) or prediabetic group (n = 2529). In the GWAS, we identified two susceptibility loci associated with prediabetes, one at 17p15.3-p15.1 in the GCK gene and another at 7p15.1 in YKT6. When variations in GCK and YKT6 were used as a model of prediabetes, this genetically determined prediabetes increased microalbuminuria. Multiple logistic regression analyses revealed that fasting glucose concentration in plasma and SNP rs2908289 in GCK were associated with microalbuminuria, and adjustment for age, gender, smoking history, systolic blood pressure, waist circumference, and serum triglyceride levels did not attenuate this association. Our results suggest that prediabetes and the associated SNPs may predispose to microalbuminuria before the diagnosis of diabetes mellitus. Further studies are needed to explore the details of the physiological and molecular mechanisms underlying this genetic association.

  3. Association of prediabetes-associated single nucleotide polymorphisms with microalbuminuria

    Science.gov (United States)

    Choi, Jong Wook; Moon, Shinje; Jang, Eun Jung; Lee, Chang Hwa; Park, Joon-Sung

    2017-01-01

    Increased glycemic exposure, even below the diagnostic criteria for diabetes mellitus, is crucial in the pathogenesis of diabetic microvascular complications represented by microalbuminuria. Nonetheless, there is limited evidence regarding which single nucleotide polymorphisms (SNPs) are associated with prediabetes and whether genetic predisposition to prediabetes is related to microalbuminuria, especially in the general population. Our objective was to answer these questions. We conducted a genomewide association study (GWAS) separately on two population-based cohorts, Ansung and Ansan, in the Korean Genome and Epidemiology Study (KoGES). The initial GWAS was carried out on the Ansung cohort, followed by a replication study on the Ansan cohort. A total of 5682 native Korean participants without a significant medical illness were classified into either control group (n = 3153) or prediabetic group (n = 2529). In the GWAS, we identified two susceptibility loci associated with prediabetes, one at 17p15.3-p15.1 in the GCK gene and another at 7p15.1 in YKT6. When variations in GCK and YKT6 were used as a model of prediabetes, this genetically determined prediabetes increased microalbuminuria. Multiple logistic regression analyses revealed that fasting glucose concentration in plasma and SNP rs2908289 in GCK were associated with microalbuminuria, and adjustment for age, gender, smoking history, systolic blood pressure, waist circumference, and serum triglyceride levels did not attenuate this association. Our results suggest that prediabetes and the associated SNPs may predispose to microalbuminuria before the diagnosis of diabetes mellitus. Further studies are needed to explore the details of the physiological and molecular mechanisms underlying this genetic association. PMID:28158221

  4. Bioinformatics analysis of SARS coronavirus genome polymorphism

    Directory of Open Access Journals (Sweden)

    Pavlović-Lažetić Gordana M

    2004-05-01

    Full Text Available Abstract Background We have compared 38 isolates of the SARS-CoV complete genome. The main goal was twofold: first, to analyze and compare nucleotide sequences and to identify positions of single nucleotide polymorphism (SNP, insertions and deletions, and second, to group them according to sequence similarity, eventually pointing to phylogeny of SARS-CoV isolates. The comparison is based on genome polymorphism such as insertions or deletions and the number and positions of SNPs. Results The nucleotide structure of all 38 isolates is presented. Based on insertions and deletions and dissimilarity due to SNPs, the dataset of all the isolates has been qualitatively classified into three groups each having their own subgroups. These are the A-group with "regular" isolates (no insertions / deletions except for 5' and 3' ends, the B-group of isolates with "long insertions", and the C-group of isolates with "many individual" insertions and deletions. The isolate with the smallest average number of SNPs, compared to other isolates, has been identified (TWH. The density distribution of SNPs, insertions and deletions for each group or subgroup, as well as cumulatively for all the isolates is also presented, along with the gene map for TWH. Since individual SNPs may have occurred at random, positions corresponding to multiple SNPs (occurring in two or more isolates are identified and presented. This result revises some previous results of a similar type. Amino acid changes caused by multiple SNPs are also identified (for the annotated sequences, as well as presupposed amino acid changes for non-annotated ones. Exact SNP positions for the isolates in each group or subgroup are presented. Finally, a phylogenetic tree for the SARS-CoV isolates has been produced using the CLUSTALW program, showing high compatibility with former qualitative classification. Conclusions The comparative study of SARS-CoV isolates provides essential information for genome

  5. Prioritizing single-nucleotide polymorphisms and variants associated with clinical mastitis

    Directory of Open Access Journals (Sweden)

    Suravajhala P

    2017-06-01

    Full Text Available Prashanth Suravajhala,1 Alfredo Benso2 1Department of Molecular Biology and Genetics, Center for Quantitative Genetics and Genomics, Aarhus University, Aarhus, Denmark; 2Department of Control and Computer Engineering, Politecnico di Torino, Torino, Italy Abstract: Next-generation sequencing technology has provided resources to easily explore and identify candidate single-nucleotide polymorphisms (SNPs and variants. However, there remains a challenge in identifying and inferring the causal SNPs from sequence data. A problem with different methods that predict the effect of mutations is that they produce false positives. In this hypothesis, we provide an overview of methods known for identifying causal variants and discuss the challenges, fallacies, and prospects in discerning candidate SNPs. We then propose a three-point classification strategy, which could be an additional annotation method in identifying causalities. Keywords: clinical mastitis, single-nucleotide polymorphisms, variants, associations, diseases, linkage disequilibrium, GWAS

  6. Single nucleotide polymorphism in transcriptional regulatory regions and expression of environmentally responsive genes

    International Nuclear Information System (INIS)

    Wang, Xuting; Tomso, Daniel J.; Liu Xuemei; Bell, Douglas A.

    2005-01-01

    Single nucleotide polymorphisms (SNPs) in the human genome are DNA sequence variations that can alter an individual's response to environmental exposure. SNPs in gene coding regions can lead to changes in the biological properties of the encoded protein. In contrast, SNPs in non-coding gene regulatory regions may affect gene expression levels in an allele-specific manner, and these functional polymorphisms represent an important but relatively unexplored class of genetic variation. The main challenge in analyzing these SNPs is a lack of robust computational and experimental methods. Here, we first outline mechanisms by which genetic variation can impact gene regulation, and review recent findings in this area; then, we describe a methodology for bioinformatic discovery and functional analysis of regulatory SNPs in cis-regulatory regions using the assembled human genome sequence and databases on sequence polymorphism and gene expression. Our method integrates SNP and gene databases and uses a set of computer programs that allow us to: (1) select SNPs, from among the >9 million human SNPs in the NCBI dbSNP database, that are similar to cis-regulatory element (RE) consensus sequences; (2) map the selected dbSNP entries to the human genome assembly in order to identify polymorphic REs near gene start sites; (3) prioritize the candidate polymorphic RE containing genes by searching the existing genotype and gene expression data sets. The applicability of this system has been demonstrated through studies on p53 responsive elements and is being extended to additional pathways and environmentally responsive genes

  7. Single nucleotide polymorphisms as susceptibility, prognostic, and therapeutic markers of nonsmall cell lung cancer

    Directory of Open Access Journals (Sweden)

    Zienolddiny S

    2011-12-01

    Full Text Available Shanbeh Zienolddiny, Vidar SkaugSection for Toxicology and Biological Work Environment, National Institute of Occupational Health, Oslo, NorwayAbstract: Lung cancer is a major public health problem throughout the world. Among the most frequent cancer types (prostate, breast, colorectal, stomach, lung, lung cancer is the leading cause of cancer-related deaths worldwide. Among the two major subtypes of small cell lung cancer and nonsmall cell lung cancer (NSCLC, 85% of tumors belong to the NSCLC histological types. Small cell lung cancer is associated with the shortest survival time. Although tobacco smoking has been recognized as the major risk factor for lung cancer, there is a great interindividual and interethnic difference in risk of developing lung cancer given exposure to similar environmental and lifestyle factors. This may indicate that in addition to chemical and environmental factors, genetic variations in the genome may contribute to risk modification. A common type of genetic variation in the genome, known as single nucleotide polymorphism, has been found to be associated with susceptibility to lung cancer. Interestingly, many of these polymorphisms are found in the genes that regulate major pathways of carcinogen metabolism (cytochrome P450 genes, detoxification (glutathione S-transferases, adduct removal (DNA repair genes, cell growth/apoptosis (TP53/MDM2, the immune system (cytokines/chemokines, and membrane receptors (nicotinic acetylcholine and dopaminergic receptors. Some of these polymorphisms have been shown to alter the level of mRNA, and protein structure and function. In addition to being susceptibility markers, several of these polymorphisms are emerging to be important for response to chemotherapy/radiotherapy and survival of patients. Therefore, it is hypothesized that single nucleotide polymorphisms will be valuable genetic markers in individual-based prognosis and therapy in future. Here we will review some of the most

  8. Genome-Wide Association Mapping for Intelligence in Military Working Dogs: Canine Cohort, Canine Intelligence Assessment Regimen, Genome-Wide Single Nucleotide Polymorphism (SNP) Typing, and Unsupervised Classification Algorithm for Genome-Wide Association Data Analysis

    Science.gov (United States)

    2011-09-01

    SNP Array v2. A ‘proof-of-concept’ advanced data mining algorithm for unsupervised analysis of genome-wide association study (GWAS) dataset was... Opal F AUS Yes U141 Peggs F AUS Yes U142 Taxi F AUS Yes U143 Riso MI MAL Yes U144 Szarik MI GSD Yes U145 Astor MI MAL Yes U146 Roy MC MAL Yes... mining of genetic studies in general, and especially GWAS. As a proof-of-concept, a classification analysis of the WG SNP typing dataset of a

  9. Risk of estrogen receptor-positive and -negative breast cancer and single-nucleotide polymorphism 2q35-rs13387042

    DEFF Research Database (Denmark)

    Milne, Roger L; Benítez, Javier; Nevanlinna, Heli

    2009-01-01

    BACKGROUND: A recent genome-wide association study identified single-nucleotide polymorphism (SNP) 2q35-rs13387042 as a marker of susceptibility to estrogen receptor (ER)-positive breast cancer. We attempted to confirm this association using the Breast Cancer Association Consortium. METHODS: 2q35...

  10. Investigation of single nucleotide polymorphisms and biological pathways associated with response to TNFα inhibitors in patients with rheumatoid arthritis

    DEFF Research Database (Denmark)

    Krintel, Sophine B; Palermo, Giuseppe; Johansen, Julia S

    2012-01-01

    Recently, two genome-wide association studies identified single nucleotide polymorphisms (SNPs) significantly associated with the treatment response to tumor necrosis factor α (TNFα) inhibitors in patients with rheumatoid arthritis (RA). We aimed to replicate these results and identify SNPs and t...

  11. Microarray Beads for Identifying Blood Group Single Nucleotide Polymorphisms

    OpenAIRE

    Drago, Francesca; Karpasitou, Katerina; Poli, Francesca

    2009-01-01

    We have developed a high-throughput system for single nucleotide polymorphism (SNP) genotyping of alleles of diverse blood group systems exploiting Luminex technology. The method uses specific oligonucleotide probes coupled to a specific array of fluorescent microspheres and is designed for typing Jka/Jkb, Fya/Fyb, S/s, K/k, Kpa/Kpb, Jsa/Jsb, Coa/Cob and Lua/Lub alleles. Briefly, two multiplex PCR reactions (PCR I and PCR II) according to the laboratory specific needs are set up. PCR I amplif...

  12. Single nucleotide polymorphism (SNP) detection on a magnetoresistive sensor

    DEFF Research Database (Denmark)

    Rizzi, Giovanni; Østerberg, Frederik Westergaard; Dufva, Martin

    2013-01-01

    We present a magnetoresistive sensor platform for hybridization assays and demonstrate its applicability on single nucleotide polymorphism (SNP) genotyping. The sensor relies on anisotropic magnetoresistance in a new geometry with a local negative reference and uses the magnetic field from...... the sensor bias current to magnetize magnetic beads in the vicinity of the sensor. The method allows for real-time measurements of the specific bead binding to the sensor surface during DNA hybridization and washing. Compared to other magnetic biosensing platforms, our approach eliminates the need...... for external electromagnets and thus allows for miniaturization of the sensor platform....

  13. Computational Analysis of Single Nucleotide Polymorphisms Associated with Altered Drug Responsiveness in Type 2 Diabetes

    Directory of Open Access Journals (Sweden)

    Valerio Costa

    2016-06-01

    Full Text Available Type 2 diabetes (T2D is one of the most frequent mortality causes in western countries, with rapidly increasing prevalence. Anti-diabetic drugs are the first therapeutic approach, although many patients develop drug resistance. Most drug responsiveness variability can be explained by genetic causes. Inter-individual variability is principally due to single nucleotide polymorphisms, and differential drug responsiveness has been correlated to alteration in genes involved in drug metabolism (CYP2C9 or insulin signaling (IRS1, ABCC8, KCNJ11 and PPARG. However, most genome-wide association studies did not provide clues about the contribution of DNA variations to impaired drug responsiveness. Thus, characterizing T2D drug responsiveness variants is needed to guide clinicians toward tailored therapeutic approaches. Here, we extensively investigated polymorphisms associated with altered drug response in T2D, predicting their effects in silico. Combining different computational approaches, we focused on the expression pattern of genes correlated to drug resistance and inferred evolutionary conservation of polymorphic residues, computationally predicting the biochemical properties of polymorphic proteins. Using RNA-Sequencing followed by targeted validation, we identified and experimentally confirmed that two nucleotide variations in the CAPN10 gene—currently annotated as intronic—fall within two new transcripts in this locus. Additionally, we found that a Single Nucleotide Polymorphism (SNP, currently reported as intergenic, maps to the intron of a new transcript, harboring CAPN10 and GPR35 genes, which undergoes non-sense mediated decay. Finally, we analyzed variants that fall into non-coding regulatory regions of yet underestimated functional significance, predicting that some of them can potentially affect gene expression and/or post-transcriptional regulation of mRNAs affecting the splicing.

  14. Single Nucleotide Polymorphism Analysis of Protamine Genes in Infertile Men

    Directory of Open Access Journals (Sweden)

    Ahamad Salamian

    2008-01-01

    Full Text Available Background: Single nucleotide polymorphism (SNPs are considered as one of the underlyingcauses of male infertility. Proper sperm chromatin packaging which involves replacement ofhistones with protamines has profound effect on male fertility. Over 20 SNPs have been reportedfor the protamine 1 and 2.Materials and Methods: The aim of this study was to evaluate the frequency of two previouslyreported SNPs using polymerase chain reaction (PCR-restriction fragment length polymorphism(RFLP approach in 35, 96 and 177 normal, oligozoospermic and azoospermic individuals. TheseSNPs are: 1. A base pair substitution (G at position 197 instead of T in protamine type 1 Openreading frame (ORF including untranslated region, which causes an Arg residue change to Serresidue in a highly conserved region. 2. cytidine nucleotide change to thymidine in position of 248of protamine type 2 ORF which caused a nonsense point mutation.Results: The two mentioned SNPs were not present in the studied population, thus concluding thatthese SNPs can not serves as molecular markers for male infertility diagnosis.Conclusion: The results of our study reveal that in a selected Iranian population, the SNP G197Tand C248T are completely absent and are not associated with male infertility and therefore theseSNPs may not represent a molecular marker for genetic diagnosis of male infertility.

  15. Hapsembler: An Assembler for Highly Polymorphic Genomes

    Science.gov (United States)

    Donmez, Nilgun; Brudno, Michael

    As whole genome sequencing has become a routine biological experiment, algorithms for assembly of whole genome shotgun data has become a topic of extensive research, with a plethora of off-the-shelf methods that can reconstruct the genomes of many organisms. Simultaneously, several recently sequenced genomes exhibit very high polymorphism rates. For these organisms genome assembly remains a challenge as most assemblers are unable to handle highly divergent haplotypes in a single individual. In this paper we describe Hapsembler, an assembler for highly polymorphic genomes, which makes use of paired reads. Our experiments show that Hapsembler produces accurate and contiguous assemblies of highly polymorphic genomes, while performing on par with the leading tools on haploid genomes. Hapsembler is available for download at http://compbio.cs.toronto.edu/hapsembler.

  16. Templated sequence insertion polymorphisms in the human genome

    Science.gov (United States)

    Onozawa, Masahiro; Aplan, Peter

    2016-11-01

    Templated Sequence Insertion Polymorphism (TSIP) is a recently described form of polymorphism recognized in the human genome, in which a sequence that is templated from a distant genomic region is inserted into the genome, seemingly at random. TSIPs can be grouped into two classes based on nucleotide sequence features at the insertion junctions; Class 1 TSIPs show features of insertions that are mediated via the LINE-1 ORF2 protein, including 1) target-site duplication (TSD), 2) polyadenylation 10-30 nucleotides downstream of a “cryptic” polyadenylation signal, and 3) preference for insertion at a 5’-TTTT/A-3’ sequence. In contrast, class 2 TSIPs show features consistent with repair of a DNA double-strand break via insertion of a DNA “patch” that is derived from a distant genomic region. Survey of a large number of normal human volunteers demonstrates that most individuals have 25-30 TSIPs, and that these TSIPs track with specific geographic regions. Similar to other forms of human polymorphism, we suspect that these TSIPs may be important for the generation of human diversity and genetic diseases.

  17. Sirtuin1 single nucleotide polymorphism (A2191G is a diagnostic marker for vibration-induced white finger disease

    Directory of Open Access Journals (Sweden)

    Voelter-Mahlknecht Susanne

    2012-10-01

    Full Text Available Abstract Background Vibration-induced white finger disease (VWF, also known as hand-arm vibration syndrome, is a secondary form of Raynaud’s disease, affecting the blood vessels and nerves. So far, little is known about the pathogenesisof the disease. VWF is associated with an episodic reduction in peripheral blood flow. Sirtuin 1, a class III histone deacetylase, has been described to regulate the endothelium dependent vasodilation by targeting endothelial nitric oxide synthase. We assessed Sirt1single nucleotide polymorphisms in patients with VWF to further elucidate the role of sirtuin 1 in the pathogenesis of VWF. Methods Peripheral blood samples were obtained from 74 patients with VWF (male 93.2%, female 6.8%, median age 53 years and from 317 healthy volunteers (gender equally distributed, below 30 years of age. Genomic DNA was extracted from peripheral blood mononuclear cells and screened for potential Sirt1single nucleotide polymorphisms. Four putative genetic polymorphisms out of 113 within the Sirt1 genomic region (NCBI Gene Reference: NM_012238.3 were assessed. Allelic discrimination was performed by TaqMan-polymerasechainreaction-based allele-specific genotyping single nucleotide polymorphism assays. Results Sirt1single nucleotide polymorphism A2191G (Assay C_25611590_10, rs35224060 was identified within Sirt1 exon 9 (amino acid position 731, Ile → Val, with differing allelic frequencies in the VWF population (A/A: 70.5%, A/G: 29.5%, G/G: 0% and the control population (A/A: 99.7%, A/G: 0.3%, G/G: 0.5%, with significance levels of P U test (two-tailed P t-test and Chi-square test with Yates correction (all two-tailed: P Conclusion We identified theSirt1A2191Gsingle nucleotide polymorphism as a diagnostic marker for VWF.

  18. Nucleotide polymorphisms and haplotype diversity of RTCS gene in China elite maize inbred lines.

    Directory of Open Access Journals (Sweden)

    Enying Zhang

    Full Text Available The maize RTCS gene, encoding a LOB domain transcription factor, plays important roles in the initiation of embryonic seminal and postembryonic shoot-borne root. In this study, the genomic sequences of this gene in 73 China elite inbred lines, including 63 lines from 5 temperate heteroric groups and 10 tropic germplasms, were obtained, and the nucleotide polymorphisms and haplotype diversity were detected. A total of 63 sequence variants, including 44 SNPs and 19 indels, were identified at this locus, and most of them were found to be located in the regions of UTR and intron. The coding region of this gene in all tested inbred lines carried 14 haplotypes, which encoding 7 deferring RTCS proteins. Analysis of the polymorphism sites revealed that at least 6 recombination events have occurred. Among all 6 groups tested, only the P heterotic group had a much lower nucleotide diversity than the whole set, and selection analysis also revealed that only this group was under strong negative selection. However, the set of Huangzaosi and its derived lines possessed a higher nucleotide diversity than the whole set, and no selection signal were identified.

  19. Strand bias in complementary single-nucleotide polymorphisms of transcribed human sequences: evidence for functional effects of synonymous polymorphisms

    Directory of Open Access Journals (Sweden)

    Majewski Jacek

    2006-08-01

    Full Text Available Abstract Background Complementary single-nucleotide polymorphisms (SNPs may not be distributed equally between two DNA strands if the strands are functionally distinct, such as in transcribed genes. In introns, an excess of A↔G over the complementary C↔T substitutions had previously been found and attributed to transcription-coupled repair (TCR, demonstrating the valuable functional clues that can be obtained by studying such asymmetry. Here we studied asymmetry of human synonymous SNPs (sSNPs in the fourfold degenerate (FFD sites as compared to intronic SNPs (iSNPs. Results The identities of the ancestral bases and the direction of mutations were inferred from human-chimpanzee genomic alignment. After correction for background nucleotide composition, excess of A→G over the complementary T→C polymorphisms, which was observed previously and can be explained by TCR, was confirmed in FFD SNPs and iSNPs. However, when SNPs were separately examined according to whether they mapped to a CpG dinucleotide or not, an excess of C→T over G→A polymorphisms was found in non-CpG site FFD SNPs but was absent from iSNPs and CpG site FFD SNPs. Conclusion The genome-wide discrepancy of human FFD SNPs provides novel evidence for widespread selective pressure due to functional effects of sSNPs. The similar asymmetry pattern of FFD SNPs and iSNPs that map to a CpG can be explained by transcription-coupled mechanisms, including TCR and transcription-coupled mutation. Because of the hypermutability of CpG sites, more CpG site FFD SNPs are relatively younger and have confronted less selection effect than non-CpG FFD SNPs, which can explain the asymmetric discrepancy of CpG site FFD SNPs vs. non-CpG site FFD SNPs.

  20. Single Nucleotide Polymorphisms in Common Bean: Their Discovery and Genotyping Using a Multiplex Detection System

    Directory of Open Access Journals (Sweden)

    E. Gaitán-Solís

    2008-11-01

    Full Text Available Single nucleotide polymorphism (SNP markers are by far the most common form of DNA polymorphism in a genome. The objectives of this study were to discover SNPs in common bean ( L. by comparing sequences from coding and noncoding regions obtained from the GenBank and genomic DNA and to compare sequencing results with those obtained using single base extension (SBE assays on the Luminex-100 system for use in high-throughput germplasm evaluation. We assessed the frequency of SNPs in 47 fragments of common bean DNA, using SBE as the evaluation methodology. We conducted a sequence analysis of 10 genotypes of cultivated and wild beans belonging to the Mesoamerican and Andean genetic pools of . For the 10 genotypes evaluated, a total of 20,964 bp of sequence were analyzed in each genotype and compared, resulting in the discovery of 239 SNPs and 133 InDels, giving an average SNP frequency of one per 88 bp and an InDel frequency of one per 157 bp. This is the equivalent of a nucleotide diversity (θ of 6.27 × 10. Comparisons with the SNP genotypes previously obtained by direct sequencing showed that the SBE assays on the Luminex-100 were accurate, with 2.5% being miscalled and 1% showing no signal. These results indicate that the Luminex-100 provides a high-throughput system that can be used to analyze SNPs in large samples of genotypes both for purposes of assessing diversity and also for mapping studies.

  1. Association of single nucleotide polymorphisms with radiation-induced esophagitis

    International Nuclear Information System (INIS)

    Zhang Li; Wang Lvhua; Yang Ming; Ji Wei; Zhao Lujun; Yang Weizhi; Zhou Zongmei; Ou Guangfei; Lin Dongxin

    2008-01-01

    Objective: To evaluate the relationship between single nucleotide polymorphism(SNP) of candidate genes and radiation-induced esophagitis (RIE) in patients with lung cancer. Methods: Between Jan. 2004 and Aug. 2006, 170 patients with pathologically diagnosed lung cancer were enrolled in this study. The total target dose was 45-70 Gy (median 60 Gy). One hundred and thirty-two patients were treated with three-dimensional conformal radiotherapy(3DCRT) and 38 with two-dimensional radiotherapy(2DRT). Forty-one patients received radiotherapy alone, 78 received sequential chemoradiotherapy and 51 received concurrent chemoradiotherapy. Thirty-seven SNPs in 20 DNA repair genes were analyzed by using PCR- based restricted fragment length polymorphism (RFLP). These genes were apoptosis and inflammatory cytokine genes including ATM, ERCC1, XRCC3, XRCCI, XPD, XPC, XPG, NBS1, STK15, ZNF350, ADPRT, TP53, FAS, FASL, CYP2D6*4, CASPASE8, COX2,TGF-β, CD14 and ACE. The endpoint was grade ≥2 R I E. Results: Forty of the 170 patients developed grade ≥2 R I E, including 36 in grade 2 and 4 in grade 3. Univariate analysis revealed that radiation technique and concurrent chemoradiotherapy were statistically significant relatives to the incidence of R I E (P=0.032, 0.049), and both of them had the trend associating with the esophagitis (P=0.072, 0.094). An increased incidence of esophagitis was observed associating with the TGF-β 1 -509T and XPD 751Lys/Lys genotypes (χ 2 =5.65, P=0.017; χ 2 =3.84, P=0.048) in multivariate analysis. Conclusions: Genetic polymorphisms in TGF-β 1 gene and XPD gene have a significant association with radiation-induced esophagitis. (authors)

  2. Evidence for single nucleotide polymorphisms and their association with bipolar disorder

    Directory of Open Access Journals (Sweden)

    Szczepankiewicz A

    2013-10-01

    Full Text Available Aleksandra Szczepankiewicz1,21Laboratory of Molecular and Cell Biology, 2Department of Psychiatric Genetics, Poznan University of Medical Sciences, Poznan, PolandAbstract: Bipolar disorder (BD is a complex disorder with a number of susceptibility genes and environmental risk factors involved in its pathogenesis. In recent years, huge progress has been made in molecular techniques for genetic studies, which have enabled identification of numerous genomic regions and genetic variants implicated in BD across populations. Despite the abundance of genetic findings, the results have often been inconsistent and not replicated for many candidate genes/single nucleotide polymorphisms (SNPs. Therefore, the aim of the review presented here is to summarize the most important data reported so far in candidate gene and genome-wide association studies. Taking into account the abundance of association data, this review focuses on the most extensively studied genes and polymorphisms reported so far for BD to present the most promising genomic regions/SNPs involved in BD. The review of association data reveals evidence for several genes (SLC6A4/5-HTT [serotonin transporter gene], BDNF [brain-derived neurotrophic factor], DAOA [D-amino acid oxidase activator], DTNBP1 [dysbindin], NRG1 [neuregulin 1], DISC1 [disrupted in schizophrenia 1] to be crucial candidates in BD, whereas numerous genome-wide association studies conducted in BD indicate polymorphisms in two genes (CACNA1C [calcium channel, voltage-dependent, L type, alpha 1C subunit], ANK3 [ankyrin 3] replicated for association with BD in most of these studies. Nevertheless, further studies focusing on interactions between multiple candidate genes/SNPs, as well as systems biology and pathway analyses are necessary to integrate and improve the way we analyze the currently available association data.Keywords: candidate gene, genome-wide association study, SLC6A4, BDNF, DAOA, DTNBP1, NRG1, DISC1

  3. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3.

    Science.gov (United States)

    Cingolani, Pablo; Platts, Adrian; Wang, Le Lily; Coon, Melissa; Nguyen, Tung; Wang, Luan; Land, Susan J; Lu, Xiangyi; Ruden, Douglas M

    2012-01-01

    We describe a new computer program, SnpEff, for rapidly categorizing the effects of variants in genome sequences. Once a genome is sequenced, SnpEff annotates variants based on their genomic locations and predicts coding effects. Annotated genomic locations include intronic, untranslated region, upstream, downstream, splice site, or intergenic regions. Coding effects such as synonymous or non-synonymous amino acid replacement, start codon gains or losses, stop codon gains or losses, or frame shifts can be predicted. Here the use of SnpEff is illustrated by annotating ~356,660 candidate SNPs in ~117 Mb unique sequences, representing a substitution rate of ~1/305 nucleotides, between the Drosophila melanogaster w(1118); iso-2; iso-3 strain and the reference y(1); cn(1) bw(1) sp(1) strain. We show that ~15,842 SNPs are synonymous and ~4,467 SNPs are non-synonymous (N/S ~0.28). The remaining SNPs are in other categories, such as stop codon gains (38 SNPs), stop codon losses (8 SNPs), and start codon gains (297 SNPs) in the 5'UTR. We found, as expected, that the SNP frequency is proportional to the recombination frequency (i.e., highest in the middle of chromosome arms). We also found that start-gain or stop-lost SNPs in Drosophila melanogaster often result in additions of N-terminal or C-terminal amino acids that are conserved in other Drosophila species. It appears that the 5' and 3' UTRs are reservoirs for genetic variations that changes the termini of proteins during evolution of the Drosophila genus. As genome sequencing is becoming inexpensive and routine, SnpEff enables rapid analyses of whole-genome sequencing data to be performed by an individual laboratory.

  4. Comparison of single nucleotide polymorphisms and microsatellites in non-invasive genetic monitoring of a wolf population

    DEFF Research Database (Denmark)

    Fabbri, Elena; Caniglia, R.; Mucci, Nadia

    2012-01-01

    Single nucleotide polymorphisms (SNPs) which represent the most widespread source of sequence variation in genomes, are becoming a routine application in several fields such as forensics, ecology and conservation genetics. Their use, requiring short amplifications, may allow a more efficient geno....... We evaluated the cost, laboratory effort and reliability of these different markers and discuss the possible future use of VeraCode, SNPlex and Fluidigm EP1 system in wild population monitoring....

  5. Transcript-specific, single-nucleotide polymorphism discovery and linkage analysis in hexaploid bread wheat (Triticum aestivum L.).

    Science.gov (United States)

    Allen, Alexandra M; Barker, Gary L A; Berry, Simon T; Coghill, Jane A; Gwilliam, Rhian; Kirby, Susan; Robinson, Phil; Brenchley, Rachel C; D'Amore, Rosalinda; McKenzie, Neil; Waite, Darren; Hall, Anthony; Bevan, Michael; Hall, Neil; Edwards, Keith J

    2011-12-01

    Food security is a global concern and substantial yield increases in cereal crops are required to feed the growing world population. Wheat is one of the three most important crops for human and livestock feed. However, the complexity of the genome coupled with a decline in genetic diversity within modern elite cultivars has hindered the application of marker-assisted selection (MAS) in breeding programmes. A crucial step in the successful application of MAS in breeding programmes is the development of cheap and easy to use molecular markers, such as single-nucleotide polymorphisms. To mine selected elite wheat germplasm for intervarietal single-nucleotide polymorphisms, we have used expressed sequence tags derived from public sequencing programmes and next-generation sequencing of normalized wheat complementary DNA libraries, in combination with a novel sequence alignment and assembly approach. Here, we describe the development and validation of a panel of 1114 single-nucleotide polymorphisms in hexaploid bread wheat using competitive allele-specific polymerase chain reaction genotyping technology. We report the genotyping results of these markers on 23 wheat varieties, selected to represent a broad cross-section of wheat germplasm including a number of elite UK varieties. Finally, we show that, using relatively simple technology, it is possible to rapidly generate a linkage map containing several hundred single-nucleotide polymorphism markers in the doubled haploid mapping population of Avalon × Cadenza. © 2011 The Authors. Plant Biotechnology Journal © 2011 Society for Experimental Biology, Association of Applied Biologists and Blackwell Publishing Ltd.

  6. [Natural nucleotide polymorphism of the Srlk gene that determines salt stress tolerance in alfalfa (Medicago sativa L)].

    Science.gov (United States)

    Vishnevskaia, M S; Pavlov, A V; Dziubenko, E A; Dziubenko, N I; Potokina, E K

    2014-04-01

    Based on legume genome syntheny, the nucleotide sequence of Srlk gene, key role of which in response to salt stress was demonstrated for the model species Medicago truncatula, was identified in the major forage and siderate crop alfalfa (Medicago sativa). In twelve alfalfa samples originating from regions with contrasting growing conditions, 19 SNPs were revealed in the Srlk gene. For two nonsynonymous SNPs, molecular markers were designed that could be further used to analyze the association between Srlk gene nucleotide polymorphism and the variability in salt stress tolerance among alfalfa cultivars.

  7. High-throughput genotyping of single nucleotide polymorphisms with rolling circle amplification

    Directory of Open Access Journals (Sweden)

    Sun Zhenyu

    2001-08-01

    Full Text Available Abstract Background Single nucleotide polymorphisms (SNPs are the foundation of powerful complex trait and pharmacogenomic analyses. The availability of large SNP databases, however, has emphasized a need for inexpensive SNP genotyping methods of commensurate simplicity, robustness, and scalability. We describe a solution-based, microtiter plate method for SNP genotyping of human genomic DNA. The method is based upon allele discrimination by ligation of open circle probes followed by rolling circle amplification of the signal using fluorescent primers. Only the probe with a 3' base complementary to the SNP is circularized by ligation. Results SNP scoring by ligation was optimized to a 100,000 fold discrimination against probe mismatched to the SNP. The assay was used to genotype 10 SNPs from a set of 192 genomic DNA samples in a high-throughput format. Assay directly from genomic DNA eliminates the need to preamplify the target as done for many other genotyping methods. The sensitivity of the assay was demonstrated by genotyping from 1 ng of genomic DNA. We demonstrate that the assay can detect a single molecule of the circularized probe. Conclusions Compatibility with homogeneous formats and the ability to assay small amounts of genomic DNA meets the exacting requirements of automated, high-throughput SNP scoring.

  8. Comprehensive identification of single nucleotide polymorphisms associated with beta-lactam resistance within pneumococcal mosaic genes.

    Directory of Open Access Journals (Sweden)

    Claire Chewapreecha

    2014-08-01

    Full Text Available Traditional genetic association studies are very difficult in bacteria, as the generally limited recombination leads to large linked haplotype blocks, confounding the identification of causative variants. Beta-lactam antibiotic resistance in Streptococcus pneumoniae arises readily as the bacteria can quickly incorporate DNA fragments encompassing variants that make the transformed strains resistant. However, the causative mutations themselves are embedded within larger recombined blocks, and previous studies have only analysed a limited number of isolates, leading to the description of "mosaic genes" as being responsible for resistance. By comparing a large number of genomes of beta-lactam susceptible and non-susceptible strains, the high frequency of recombination should break up these haplotype blocks and allow the use of genetic association approaches to identify individual causative variants. Here, we performed a genome-wide association study to identify single nucleotide polymorphisms (SNPs and indels that could confer beta-lactam non-susceptibility using 3,085 Thai and 616 USA pneumococcal isolates as independent datasets for the variant discovery. The large sample sizes allowed us to narrow the source of beta-lactam non-susceptibility from long recombinant fragments down to much smaller loci comprised of discrete or linked SNPs. While some loci appear to be universal resistance determinants, contributing equally to non-susceptibility for at least two classes of beta-lactam antibiotics, some play a larger role in resistance to particular antibiotics. All of the identified loci have a highly non-uniform distribution in the populations. They are enriched not only in vaccine-targeted, but also non-vaccine-targeted lineages, which may raise clinical concerns. Identification of single nucleotide polymorphisms underlying resistance will be essential for future use of genome sequencing to predict antibiotic sensitivity in clinical microbiology.

  9. Microarray Beads for Identifying Blood Group Single Nucleotide Polymorphisms.

    Science.gov (United States)

    Drago, Francesca; Karpasitou, Katerina; Poli, Francesca

    2009-01-01

    We have developed a high-throughput system for single nucleotide polymorphism (SNP) genotyping of alleles of diverse blood group systems exploiting Luminex technology. The method uses specific oligonucleotide probes coupled to a specific array of fluorescent microspheres and is designed for typing Jk(a)/Jk(b), Fy(a)/Fy(b), S/s, K/k, Kp(a)/Kp(b), Js(a)/Js(b), Co(a)/Co(b) and Lu(a)/Lu(b) alleles. Briefly, two multiplex PCR reactions (PCR I and PCR II) according to the laboratory specific needs are set up. PCR I amplifies the alleles tested routinely, namely Jk(a)/Jk(b), Fy(a)/Fy(b), S/s, and K/k. PCR II amplifies those alleles that are typed less frequently. Biotinylated PCR products are hybridized in a single multiplex assay with the corresponding probe mixture. After incubation with R-phycoerythrin-conjugated streptavidin, the emitted fluorescence is analyzed with Luminex 100. So far, we have typed more than 2,000 subjects, 493 of whom with multiplex assay, and there have been no discrepancies with the serology results other than null and/or weak phenotypes. The cost of consumables and reagents for typing a single biallelic pair per sample is less than EUR 3.-, not including DNA extraction costs. The capability to perform multiplexed reactions makes the method markedly suitable for mass screening of red blood cell alleles. This genotyping approach represents an important tool in transfusion medicine.

  10. Screening of a Brassica napus bacterial artificial chromosome library using highly parallel single nucleotide polymorphism assays

    Science.gov (United States)

    2013-01-01

    Background Efficient screening of bacterial artificial chromosome (BAC) libraries with polymerase chain reaction (PCR)-based markers is feasible provided that a multidimensional pooling strategy is implemented. Single nucleotide polymorphisms (SNPs) can be screened in multiplexed format, therefore this marker type lends itself particularly well for medium- to high-throughput applications. Combining the power of multiplex-PCR assays with a multidimensional pooling system may prove to be especially challenging in a polyploid genome. In polyploid genomes two classes of SNPs need to be distinguished, polymorphisms between accessions (intragenomic SNPs) and those differentiating between homoeologous genomes (intergenomic SNPs). We have assessed whether the highly parallel Illumina GoldenGate® Genotyping Assay is suitable for the screening of a BAC library of the polyploid Brassica napus genome. Results A multidimensional screening platform was developed for a Brassica napus BAC library which is composed of almost 83,000 clones. Intragenomic and intergenomic SNPs were included in Illumina’s GoldenGate® Genotyping Assay and both SNP classes were used successfully for screening of the multidimensional BAC pools of the Brassica napus library. An optimized scoring method is proposed which is especially valuable for SNP calling of intergenomic SNPs. Validation of the genotyping results by independent methods revealed a success of approximately 80% for the multiplex PCR-based screening regardless of whether intra- or intergenomic SNPs were evaluated. Conclusions Illumina’s GoldenGate® Genotyping Assay can be efficiently used for screening of multidimensional Brassica napus BAC pools. SNP calling was specifically tailored for the evaluation of BAC pool screening data. The developed scoring method can be implemented independently of plant reference samples. It is demonstrated that intergenomic SNPs represent a powerful tool for BAC library screening of a polyploid genome

  11. Uninformative polymorphisms bias genome scans for signatures of selection

    Directory of Open Access Journals (Sweden)

    Roesti Marius

    2012-06-01

    Full Text Available Abstract Background With the establishment of high-throughput sequencing technologies and new methods for rapid and extensive single nucleotide (SNP discovery, marker-based genome scans in search of signatures of divergent selection between populations occupying ecologically distinct environments are becoming increasingly popular. Methods and Results On the basis of genome-wide SNP marker data generated by RAD sequencing of lake and stream stickleback populations, we show that the outcome of such studies can be systematically biased if markers with a low minor allele frequency are included in the analysis. The reason is that these ‘uninformative’ polymorphisms lack the adequate potential to capture signatures of drift and hitchhiking, the focal processes in ecological genome scans. Bias associated with uninformative polymorphisms is not eliminated by just avoiding technical artifacts in the data (PCR and sequencing errors, as a high proportion of SNPs with a low minor allele frequency is a general biological feature of natural populations. Conclusions We suggest that uninformative markers should be excluded from genome scans based on empirical criteria derived from careful inspection of the data, and that these criteria should be reported explicitly. Together, this should increase the quality and comparability of genome scans, and hence promote our understanding of the processes driving genomic differentiation.

  12. Assessment of Genetic Diversity in Faba Bean Based on Single Nucleotide Polymorphism

    Directory of Open Access Journals (Sweden)

    Sukhjiwan Kaur

    2014-01-01

    Full Text Available Detection of genetic diversity is important for characterisation of crop plant collections in order to detect the presence of valuable trait variation for use in breeding programs. A collection of faba bean (Vicia faba L. genotypes was evaluated for intra- and inter-population diversity using a set of 768 genome-wide distributed single nucleotide polymorphism (SNP markers, of which 657 obtained successful amplification and detected polymorphisms. Gene diversity and polymorphism information content (PIC values varied between 0.022–0.500 and 0.023–1.00, with averages of 0.363 and 0.287, respectively. The genetic structure of the germplasm collection was analysed and a neighbour-joining (NJ dendrogram was constructed. The faba bean accessions grouped into two major groups, with several additional smaller sub-groups, predominantly on the basis of geographical origin. These results were further supported by principal co-ordinate analysis (PCoA, deriving two major groupings which were differentiated on the basis of site of origin and pedigree relationships. In general, high levels of heterozygosity were observed, presumably due to the partially allogamous nature of the species. The results will facilitate targeted crossing strategies in future faba bean breeding programs in order to achieve genetic gain.

  13. CLC-2 single nucleotide polymorphisms (SNPs) as potential modifiers of cystic fibrosis disease severity

    Science.gov (United States)

    Blaisdell, Carol J; Howard, Timothy D; Stern, Augustus; Bamford, Penelope; Bleecker, Eugene R; Stine, O Colin

    2004-01-01

    Background Cystic fibrosis (CF) lung disease manifest by impaired chloride secretion leads to eventual respiratory failure. Candidate genes that may modify CF lung disease severity include alternative chloride channels. The objectives of this study are to identify single nucleotide polymorphisms (SNPs) in the airway epithelial chloride channel, CLC-2, and correlate these polymorphisms with CF lung disease. Methods The CLC-2 promoter, intron 1 and exon 20 were examined for SNPs in adult CF dF508/dF508 homozygotes with mild and severe lung disease (forced expiratory volume at one second (FEV1) > 70% and < 40%). Results PCR amplification of genomic CLC-2 and sequence analysis revealed 1 polymorphism in the hClC -2 promoter, 4 in intron 1, and none in exon 20. Fisher's analysis within this data set, did not demonstrate a significant relationship between the severity of lung disease and SNPs in the CLC-2 gene. Conclusions CLC-2 is not a key modifier gene of CF lung phenotype. Further studies evaluating other phenotypes associated with CF may be useful in the future to assess the ability of CLC-2 to modify CF disease severity. PMID:15507145

  14. CLC-2 single nucleotide polymorphisms (SNPs as potential modifiers of cystic fibrosis disease severity

    Directory of Open Access Journals (Sweden)

    Bleecker Eugene R

    2004-10-01

    Full Text Available Abstract Background Cystic fibrosis (CF lung disease manifest by impaired chloride secretion leads to eventual respiratory failure. Candidate genes that may modify CF lung disease severity include alternative chloride channels. The objectives of this study are to identify single nucleotide polymorphisms (SNPs in the airway epithelial chloride channel, CLC-2, and correlate these polymorphisms with CF lung disease. Methods The CLC-2 promoter, intron 1 and exon 20 were examined for SNPs in adult CF dF508/dF508 homozygotes with mild and severe lung disease (forced expiratory volume at one second (FEV1 > 70% and Results PCR amplification of genomic CLC-2 and sequence analysis revealed 1 polymorphism in the hClC -2 promoter, 4 in intron 1, and none in exon 20. Fisher's analysis within this data set, did not demonstrate a significant relationship between the severity of lung disease and SNPs in the CLC-2 gene. Conclusions CLC-2 is not a key modifier gene of CF lung phenotype. Further studies evaluating other phenotypes associated with CF may be useful in the future to assess the ability of CLC-2 to modify CF disease severity.

  15. SINGLE NUCLEOTIDE POLYMORPHISMS OF LIPOPROTEIN LIPASE GENE AND ITS ASSOCIATION WITH MARBLING QUALITY IN LOCAL SHEEPS

    Directory of Open Access Journals (Sweden)

    H. Hidayati

    2015-09-01

    Full Text Available Lipoprotein lipase (LPL is a key enzyme that plays in metabolism and transport lipoprotein andtherefore has an influence on blood triglyceride levels. LPL controls triacylglycerol partitioning betweenadipose tissue and muscle that increases fat storage or provides energy in the form of fatty acids formuscle growth. The research was aimed to explore Single Nucleotide Polymorphisms of LPL gene andto associate SNP with marbling quality. A total of 66 genomic DNAs consisted of sumatera thin-tail edsheep (50 heads and garut sheep (16 heads were used in this study. Polymerase Chain Reaction wasused to amplify genomic DNA and direct sequencing method was to identify polymorphism sequences.The sequences were analyzed with Bio Edit and MEGA 5.2. The BLAST sequence was obtained fromgene bank X.68308.1. The association between the genotype and marbling quality was analyze by oneway ANOVA and further between mean differences were tested using least sgnificant difference. Theresults showed that 3 novel SNPs i.e. insertion g.26>C; insertion g.27> G and c.192T>C on garut sheepand a SNP insertion g.26>C/G on sumatera thin-tail ed sheep. The diversity of LPL gene at c.192T>Cwas associated with heneicosanoic acid, whereas TT genotype (0.04% was higher than CC (0.03% andCT (0.02%.

  16. Pro-inflammatory cytokine single nucleotide polymorphisms in Kawasaki disease.

    Science.gov (United States)

    Assari, Raheleh; Aghighi, Yahya; Ziaee, Vahid; Sadr, Maryam; Rahmani, Farzaneh; Rezaei, Arezou; Sadr, Zeinab; Moradinejad, Mohammad Hassan; Raeeskarami, Seyed Reza; Rezaei, Nima

    2016-07-25

    Kawasaki disease (KD) is a systemic vasculitis of children associated with cardiovascular sequelae. Proinflammatory cytokines play a major role in KD pathogenesis. However, their role is both influenced and modified by regulatory T-cells. IL-1 gene cluster, IL-6 and TNF-α polymorphisms have shown significant associations with some vasculitides. Herein we investigated their role in KD. Fifty-five patients with KD who were randomly selected from referrals to the main pediatric hospital were enrolled in this case-control study. Single nucleotide polymorphisms (SNPs) of the following genes were assessed in patients and 140 healthy subjects as control group: IL-1α at -889 (rs1800587), IL-1β at -511 (rs16944), IL-1β at +3962 (rs1143634), IL-1R at Pst-I 1970 (rs2234650), IL-1RN/A at Mspa-I 11100 (rs315952), TNF-α at -308 (rs1800629), TNF-α at -238, IL-6 at -174 (rs1800795) and IL-6 at +565. Twenty-one percent of the control group had A allele at TNF-α -238 while only 8% of KD patients had A allele at this position (P = 0.003, OR [95%CI] = 0.32 [0.14-0.71]). Consistently, TNF-α genotype GG at -238 had significant association with KD (OR [95% CI] = 4.31 [1.79-10.73]). Most controls carried the CG genotype at IL-6 -174 (n = 93 [66.9%]) while GG genotype was the most common genotype (n = 27 [49%]) among patients. Carriers of the GG haplotype at TNF-α (-308, -238) were significantly more prevalent among the KD group. No association was found between IL-1 gene cluster, allelic or haplotypic variants and KD. TNF-α GG genotype at -238 and GG haplotype at positions -308 and -238 were associated with KD in an Iranian population. © 2016 Asia Pacific League of Associations for Rheumatology and John Wiley & Sons Australia, Ltd.

  17. Single-nucleotide polymorphism discovery by high-throughput sequencing in sorghum

    Directory of Open Access Journals (Sweden)

    White Frank F

    2011-07-01

    Full Text Available Abstract Background Eight diverse sorghum (Sorghum bicolor L. Moench accessions were subjected to short-read genome sequencing to characterize the distribution of single-nucleotide polymorphisms (SNPs. Two strategies were used for DNA library preparation. Missing SNP genotype data were imputed by local haplotype comparison. The effect of library type and genomic diversity on SNP discovery and imputation are evaluated. Results Alignment of eight genome equivalents (6 Gb to the public reference genome revealed 283,000 SNPs at ≥82% confirmation probability. Sequencing from libraries constructed to limit sequencing to start at defined restriction sites led to genotyping 10-fold more SNPs in all 8 accessions, and correctly imputing 11% more missing data, than from semirandom libraries. The SNP yield advantage of the reduced-representation method was less than expected, since up to one fifth of reads started at noncanonical restriction sites and up to one third of restriction sites predicted in silico to yield unique alignments were not sampled at near-saturation. For imputation accuracy, the availability of a genomically similar accession in the germplasm panel was more important than panel size or sequencing coverage. Conclusions A sequence quantity of 3 million 50-base reads per accession using a BsrFI library would conservatively provide satisfactory genotyping of 96,000 sorghum SNPs. For most reliable SNP-genotype imputation in shallowly sequenced genomes, germplasm panels should consist of pairs or groups of genomically similar entries. These results may help in designing strategies for economical genotyping-by-sequencing of large numbers of plant accessions.

  18. Single nucleotide polymorphism discovery in rainbow trout by deep sequencing of a reduced representation library

    Directory of Open Access Journals (Sweden)

    Salem Mohamed

    2009-11-01

    Full Text Available Abstract Background To enhance capabilities for genomic analyses in rainbow trout, such as genomic selection, a large suite of polymorphic markers that are amenable to high-throughput genotyping protocols must be identified. Expressed Sequence Tags (ESTs have been used for single nucleotide polymorphism (SNP discovery in salmonids. In those strategies, the salmonid semi-tetraploid genomes often led to assemblies of paralogous sequences and therefore resulted in a high rate of false positive SNP identification. Sequencing genomic DNA using primers identified from ESTs proved to be an effective but time consuming methodology of SNP identification in rainbow trout, therefore not suitable for high throughput SNP discovery. In this study, we employed a high-throughput strategy that used pyrosequencing technology to generate data from a reduced representation library constructed with genomic DNA pooled from 96 unrelated rainbow trout that represent the National Center for Cool and Cold Water Aquaculture (NCCCWA broodstock population. Results The reduced representation library consisted of 440 bp fragments resulting from complete digestion with the restriction enzyme HaeIII; sequencing produced 2,000,000 reads providing an average 6 fold coverage of the estimated 150,000 unique genomic restriction fragments (300,000 fragment ends. Three independent data analyses identified 22,022 to 47,128 putative SNPs on 13,140 to 24,627 independent contigs. A set of 384 putative SNPs, randomly selected from the sets produced by the three analyses were genotyped on individual fish to determine the validation rate of putative SNPs among analyses, distinguish apparent SNPs that actually represent paralogous loci in the tetraploid genome, examine Mendelian segregation, and place the validated SNPs on the rainbow trout linkage map. Approximately 48% (183 of the putative SNPs were validated; 167 markers were successfully incorporated into the rainbow trout linkage map. In

  19. Single nucleotide polymorphism discovery in rainbow trout by deep sequencing of a reduced representation library.

    Science.gov (United States)

    Sánchez, Cecilia Castaño; Smith, Timothy P L; Wiedmann, Ralph T; Vallejo, Roger L; Salem, Mohamed; Yao, Jianbo; Rexroad, Caird E

    2009-11-25

    To enhance capabilities for genomic analyses in rainbow trout, such as genomic selection, a large suite of polymorphic markers that are amenable to high-throughput genotyping protocols must be identified. Expressed Sequence Tags (ESTs) have been used for single nucleotide polymorphism (SNP) discovery in salmonids. In those strategies, the salmonid semi-tetraploid genomes often led to assemblies of paralogous sequences and therefore resulted in a high rate of false positive SNP identification. Sequencing genomic DNA using primers identified from ESTs proved to be an effective but time consuming methodology of SNP identification in rainbow trout, therefore not suitable for high throughput SNP discovery. In this study, we employed a high-throughput strategy that used pyrosequencing technology to generate data from a reduced representation library constructed with genomic DNA pooled from 96 unrelated rainbow trout that represent the National Center for Cool and Cold Water Aquaculture (NCCCWA) broodstock population. The reduced representation library consisted of 440 bp fragments resulting from complete digestion with the restriction enzyme HaeIII; sequencing produced 2,000,000 reads providing an average 6 fold coverage of the estimated 150,000 unique genomic restriction fragments (300,000 fragment ends). Three independent data analyses identified 22,022 to 47,128 putative SNPs on 13,140 to 24,627 independent contigs. A set of 384 putative SNPs, randomly selected from the sets produced by the three analyses were genotyped on individual fish to determine the validation rate of putative SNPs among analyses, distinguish apparent SNPs that actually represent paralogous loci in the tetraploid genome, examine Mendelian segregation, and place the validated SNPs on the rainbow trout linkage map. Approximately 48% (183) of the putative SNPs were validated; 167 markers were successfully incorporated into the rainbow trout linkage map. In addition, 2% of the sequences from the

  20. Nucleotide diversity maps reveal variation in diversity among wheat genomes and chromosomes

    Directory of Open Access Journals (Sweden)

    McGuire Patrick E

    2010-12-01

    Full Text Available Abstract Background A genome-wide assessment of nucleotide diversity in a polyploid species must minimize the inclusion of homoeologous sequences into diversity estimates and reliably allocate individual haplotypes into their respective genomes. The same requirements complicate the development and deployment of single nucleotide polymorphism (SNP markers in polyploid species. We report here a strategy that satisfies these requirements and deploy it in the sequencing of genes in cultivated hexaploid wheat (Triticum aestivum, genomes AABBDD and wild tetraploid wheat (Triticum turgidum ssp. dicoccoides, genomes AABB from the putative site of wheat domestication in Turkey. Data are used to assess the distribution of diversity among and within wheat genomes and to develop a panel of SNP markers for polyploid wheat. Results Nucleotide diversity was estimated in 2114 wheat genes and was similar between the A and B genomes and reduced in the D genome. Within a genome, diversity was diminished on some chromosomes. Low diversity was always accompanied by an excess of rare alleles. A total of 5,471 SNPs was discovered in 1791 wheat genes. Totals of 1,271, 1,218, and 2,203 SNPs were discovered in 488, 463, and 641 genes of wheat putative diploid ancestors, T. urartu, Aegilops speltoides, and Ae. tauschii, respectively. A public database containing genome-specific primers, SNPs, and other information was constructed. A total of 987 genes with nucleotide diversity estimated in one or more of the wheat genomes was placed on an Ae. tauschii genetic map, and the map was superimposed on wheat deletion-bin maps. The agreement between the maps was assessed. Conclusions In a young polyploid, exemplified by T. aestivum, ancestral species are the primary source of genetic diversity. Low effective recombination due to self-pollination and a genetic mechanism precluding homoeologous chromosome pairing during polyploid meiosis can lead to the loss of diversity from large

  1. Development of a single nucleotide polymorphism barcode to genotype Plasmodium vivax infections.

    Directory of Open Access Journals (Sweden)

    Mary Lynn Baniecki

    2015-03-01

    Full Text Available Plasmodium vivax, one of the five species of Plasmodium parasites that cause human malaria, is responsible for 25-40% of malaria cases worldwide. Malaria global elimination efforts will benefit from accurate and effective genotyping tools that will provide insight into the population genetics and diversity of this parasite. The recent sequencing of P. vivax isolates from South America, Africa, and Asia presents a new opportunity by uncovering thousands of novel single nucleotide polymorphisms (SNPs. Genotyping a selection of these SNPs provides a robust, low-cost method of identifying parasite infections through their unique genetic signature or barcode. Based on our experience in generating a SNP barcode for P. falciparum using High Resolution Melting (HRM, we have developed a similar tool for P. vivax. We selected globally polymorphic SNPs from available P. vivax genome sequence data that were located in putatively selectively neutral sites (i.e., intergenic, intronic, or 4-fold degenerate coding. From these candidate SNPs we defined a barcode consisting of 42 SNPs. We analyzed the performance of the 42-SNP barcode on 87 P. vivax clinical samples from parasite populations in South America (Brazil, French Guiana, Africa (Ethiopia and Asia (Sri Lanka. We found that the P. vivax barcode is robust, as it requires only a small quantity of DNA (limit of detection 0.3 ng/μl to yield reproducible genotype calls, and detects polymorphic genotypes with high sensitivity. The markers are informative across all clinical samples evaluated (average minor allele frequency > 0.1. Population genetic and statistical analyses show the barcode captures high degrees of population diversity and differentiates geographically distinct populations. Our 42-SNP barcode provides a robust, informative, and standardized genetic marker set that accurately identifies a genomic signature for P. vivax infections.

  2. Development of a Single Nucleotide Polymorphism Barcode to Genotype Plasmodium vivax Infections

    Science.gov (United States)

    Baniecki, Mary Lynn; Faust, Aubrey L.; Schaffner, Stephen F.; Park, Daniel J.; Galinsky, Kevin; Daniels, Rachel F.; Hamilton, Elizabeth; Ferreira, Marcelo U.; Karunaweera, Nadira D.; Serre, David; Zimmerman, Peter A.; Sá, Juliana M.; Wellems, Thomas E.; Musset, Lise; Legrand, Eric; Melnikov, Alexandre; Neafsey, Daniel E.; Volkman, Sarah K.; Wirth, Dyann F.; Sabeti, Pardis C.

    2015-01-01

    Plasmodium vivax, one of the five species of Plasmodium parasites that cause human malaria, is responsible for 25–40% of malaria cases worldwide. Malaria global elimination efforts will benefit from accurate and effective genotyping tools that will provide insight into the population genetics and diversity of this parasite. The recent sequencing of P. vivax isolates from South America, Africa, and Asia presents a new opportunity by uncovering thousands of novel single nucleotide polymorphisms (SNPs). Genotyping a selection of these SNPs provides a robust, low-cost method of identifying parasite infections through their unique genetic signature or barcode. Based on our experience in generating a SNP barcode for P. falciparum using High Resolution Melting (HRM), we have developed a similar tool for P. vivax. We selected globally polymorphic SNPs from available P. vivax genome sequence data that were located in putatively selectively neutral sites (i.e., intergenic, intronic, or 4-fold degenerate coding). From these candidate SNPs we defined a barcode consisting of 42 SNPs. We analyzed the performance of the 42-SNP barcode on 87 P. vivax clinical samples from parasite populations in South America (Brazil, French Guiana), Africa (Ethiopia) and Asia (Sri Lanka). We found that the P. vivax barcode is robust, as it requires only a small quantity of DNA (limit of detection 0.3 ng/μl) to yield reproducible genotype calls, and detects polymorphic genotypes with high sensitivity. The markers are informative across all clinical samples evaluated (average minor allele frequency > 0.1). Population genetic and statistical analyses show the barcode captures high degrees of population diversity and differentiates geographically distinct populations. Our 42-SNP barcode provides a robust, informative, and standardized genetic marker set that accurately identifies a genomic signature for P. vivax infections. PMID:25781890

  3. Identification and analysis of Single Nucleotide Polymorphisms (SNPs in the mosquito Anopheles funestus, malaria vector

    Directory of Open Access Journals (Sweden)

    Hemingway Janet

    2007-01-01

    Full Text Available Abstract Background Single nucleotide polymorphisms (SNPs are the most common source of genetic variation in eukaryotic species and have become an important marker for genetic studies. The mosquito Anopheles funestus is one of the major malaria vectors in Africa and yet, prior to this study, no SNPs have been described for this species. Here we report a genome-wide set of SNP markers for use in genetic studies on this important human disease vector. Results DNA fragments from 50 genes were amplified and sequenced from 21 specimens of An. funestus. A third of specimens were field collected in Malawi, a third from a colony of Mozambican origin and a third form a colony of Angolan origin. A total of 494 SNPs including 303 within the coding regions of genes and 5 indels were identified. The physical positions of these SNPs in the genome are known. There were on average 7 SNPs per kilobase similar to that observed in An. gambiae and Drosophila melanogaster. Transitions outnumbered transversions, at a ratio of 2:1. The increased frequency of transition substitutions in coding regions is likely due to the structure of the genetic code and selective constraints. Synonymous sites within coding regions showed a higher polymorphism rate than non-coding introns or 3' and 5'flanking DNA with most of the substitutions in coding regions being observed at the 3rd codon position. A positive correlation in the level of polymorphism was observed between coding and non-coding regions within a gene. By genotyping a subset of 30 SNPs, we confirmed the validity of the SNPs identified during this study. Conclusion This set of SNP markers represents a useful tool for genetic studies in An. funestus, and will be useful in identifying candidate genes that affect diverse ranges of phenotypes that impact on vector control, such as resistance insecticide, mosquito behavior and vector competence.

  4. Impact of IL28B-Related Single Nucleotide Polymorphisms on Liver Histopathology in Chronic Hepatitis C Genotype 2 and 3

    DEFF Research Database (Denmark)

    Rembeck, Karolina; Alsiö, Asa; Christensen, Peer Brehm

    2012-01-01

    Recently, several genome-wide association studies have revealed that single nucleotide polymorphisms (SNPs) in proximity to IL28B predict spontaneous clearance of HCV infection as well as outcome following peginterferon and ribavirin therapy among HCV genotype 1 infected patients. The present stu...

  5. Spontaneous preterm birth and single nucleotide gene polymorphisms: a recent update.

    Science.gov (United States)

    Sheikh, Ishfaq A; Ahmad, Ejaz; Jamal, Mohammad S; Rehan, Mohd; Assidi, Mourad; Tayubi, Iftikhar A; AlBasri, Samera F; Bajouh, Osama S; Turki, Rola F; Abuzenadah, Adel M; Damanhouri, Ghazi A; Beg, Mohd A; Al-Qahtani, Mohammed

    2016-10-17

    Preterm birth (PTB), birth at PTBs are spontaneous with about a half without any apparent cause and the other half associated with a number of risk factors. Genetic factors are one of the significant risks for PTB. The focus of this review is on single nucleotide gene polymorphisms (SNPs) that are reported to be associated with PTB. A comprehensive evaluation of studies on SNPs known to confer potential risk of PTB was done by performing a targeted PubMed search for the years 2007-2015 and systematically reviewing all relevant studies. Evaluation of 92 studies identified 119 candidate genes with SNPs that had potential association with PTB. The genes were associated with functions of a wide spectrum of tissue and cell types such as endocrine, tissue remodeling, vascular, metabolic, and immune and inflammatory systems. A number of potential functional candidate gene variants have been reported that predispose women for PTB. Understanding the complex genomic landscape of PTB needs high-throughput genome sequencing methods such as whole-exome sequencing and whole-genome sequencing approaches that will significantly enhance the understanding of PTB. Identification of high risk women, avoidance of possible risk factors, and provision of personalized health care are important to manage PTB.

  6. Nucleotide, cytogenetic and expression impact of the human chromosome 8p23.1 inversion polymorphism.

    Science.gov (United States)

    Bosch, Nina; Morell, Marta; Ponsa, Immaculada; Mercader, Josep Maria; Armengol, Lluís; Estivill, Xavier

    2009-12-14

    The human chromosome 8p23.1 region contains a 3.8-4.5 Mb segment which can be found in different orientations (defined as genomic inversion) among individuals. The identification of single nucleotide polymorphisms (SNPs) tightly linked to the genomic orientation of a given region should be useful to indirectly evaluate the genotypes of large genomic orientations in the individuals. We have identified 16 SNPs, which are in linkage disequilibrium (LD) with the 8p23.1 inversion as detected by fluorescent in situ hybridization (FISH). The variability of the 8p23.1 orientation in 150 HapMap samples was predicted using this set of SNPs and was verified by FISH in a subset of samples. Four genes (NEIL2, MSRA, CTSB and BLK) were found differentially expressed (pinversion occurred. Moreover, an impact of 8p23.1 inversion on gene expression levels cannot be ruled out, since four genes from this region have statistically significant different expression levels depending on the inversion status. FISH results in lymphoblastoid cell lines suggest the presence of mosaicism regarding the 8p23.1 inversion.

  7. Twelve single nucleotide polymorphisms on chromosome 19q13.2-13.3

    DEFF Research Database (Denmark)

    Yin, Jiaoyang; Vogel, Ulla; Gerdes, Lars Ulrik

    2003-01-01

    The genetic susceptibility to basal cell carcinoma (BCC) among Danish psoriatic patients was investigated in association studies with 12 single nucleotide polymorphisms on chromosome 19q13.2-3. The results show a significant association between BCC and the A-allele of a polymorphism in ERCCI exon4...

  8. Multi-locus genotyping of bottom fermenting yeasts by single nucleotide polymorphisms indicative of brewing characteristics.

    Science.gov (United States)

    Ikushima, Shigehito; Tateishi, Yoshiyuki; Kanai, Keiko; Shimada, Emiko; Tanaka, Misa; Ishiguro, Tatsuji; Mizutani, Satoru; Kobayashi, Osamu

    2012-04-01

    Yeast plays a capital role in brewing fermentation and has a direct impact on flavor and aroma. For the evaluation of competent brewing strains during quality control or development of novel strains it is standard practice to perform fermentation tests, which are costly and time-consuming. Here, we have categorized DNA markers which enable to distinguish and to screen brewing strains more efficiently than ever before. Sequence analysis at 289 loci in the genomes of six bottom fermenting Saccharomyces pastorianus strains revealed that 30 loci contained single nucleotide polymorphisms (SNPs). By determining the nucleotide sequences at the SNP-loci in 26 other S. pastorianus strains and 20 strains of the top fermenting yeast Saccharomyces cerevisiae, almost all these strains could be discriminated solely on the basis of the SNPs. By comparing the fermentative phenotypes of these strains we found that some DNA markers showed a strong association with brewing characteristics, such as the production of ethyl acetate and hydrogen sulphide (H2S). Therefore, the DNA markers we identified will facilitate quality control and the efficient development of brewing yeast strains. Copyright © 2011 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  9. Identification of single nucleotide polymorphism of growth hormone ...

    African Journals Online (AJOL)

    Yurnalis

    TCG, TGG, CTT, GGG, CCC, and CTG to TCG, TGG, CTG, GGC, CCT. These data provide evidence that. GH gene of this breed is slightly different from other breeds. This polymorphic source can be used to refer to performance and to investigate whether these polymorphics are responsible for quantitative variation in growth ...

  10. Caveolin-1 single nucleotide polymorphism in antineutrophil cytoplasmic antibody associated vasculitis.

    Directory of Open Access Journals (Sweden)

    Sourabh Chand

    Full Text Available Immunosuppression is cornerstone treatment of antineutrophil cytoplasmic antibody associated vasculitis (AAV but is later complicated by infection, cancer, cardiovascular and chronic kidney disease. Caveolin-1 is an essential structural protein for small cell membrane invaginations known as caveolae. Its functional role has been associated with these complications. For the first time, caveolin-1 (CAV1 gene variation is studied in AAV.CAV1 single nucleotide polymorphism rs4730751 was analysed in genomic DNA from 187 white patients with AAV from Birmingham, United Kingdom. The primary outcome measure was the composite endpoint of time to all-cause mortality or renal replacement therapy. Secondary endpoints included time to all-cause mortality, death from sepsis or vascular disease, cancer and renal replacement therapy. Validation of results was sought from 589 white AAV patients, from two European cohorts.The primary outcome occurred in 41.7% of Birmingham patients. In a multivariate model, non-CC genotype variation at the studied single nucleotide polymorphism was associated with increased risk from: the primary outcome measure [HR 1.86; 95% CI: 1.14-3.04; p=0.013], all-cause mortality [HR:1.83; 95% CI: 1.02-3.27; p=0.042], death from infection [HR:3.71; 95% CI: 1.28-10.77; p=0.016], death from vascular disease [HR:3.13; 95% CI: 1.07-9.10; p=0.037], and cancer [HR:5.55; 95% CI: 1.59-19.31; p=0.007]. In the validation cohort, the primary outcome rate was far lower (10.4%; no association between genotype and the studied endpoints was evident.The presence of a CC genotype in Birmingham is associated with protection from adverse outcomes of immunosuppression treated AAV. Lack of replication in the European cohort may have resulted from low clinical event rates. These findings are worthy of further study in larger cohorts.

  11. Nucleotide Excision Repair in Cellular Chromatin: Studies with Yeast from Nucleotide to Gene to Genome

    Directory of Open Access Journals (Sweden)

    Simon Reed

    2012-09-01

    Full Text Available Here we review our development of, and results with, high resolution studies on global genome nucleotide excision repair (GGNER in Saccharomyces cerevisiae. We have focused on how GGNER relates to histone acetylation for its functioning and we have identified the histone acetyl tranferase Gcn5 and acetylation at lysines 9/14 of histone H3 as a major factor in enabling efficient repair. We consider results employing primarily MFA2 as a model gene, but also those with URA3 located at subtelomeric sequences. In the latter case we also see a role for acetylation at histone H4. We then go on to outline the development of a high resolution genome-wide approach that enables one to examine correlations between histone modifications and the nucleotide excision repair (NER of UV-induced cyclobutane pyrimidine dimers throughout entire genomes. This is an approach that will enable rapid advances in understanding the complexities of how compacted chromatin in chromosomes is processed to access DNA damage and then returned to its pre-damaged status to maintain epigenetic codes.

  12. Association between Single Nucleotide Polymorphisms in Vitamin D Receptor Gene Polymorphisms and Permanent Tooth Caries Susceptibility to Permanent Tooth Caries in Chinese Adolescent

    Directory of Open Access Journals (Sweden)

    Miao Yu

    2017-01-01

    Full Text Available Purpose. Dental caries is a multifactorial infectious disease. In this study, we investigated whether single nucleotide polymorphisms (SNPs in vitamin D receptor (VDR gene were associated with susceptibility to permanent tooth caries in Chinese adolescents. Method. A total of 200 dental caries patients and 200 healthy controls aged 12 years were genotyped for VDR gene polymorphisms using the PCR-restriction fragment length polymorphism (PCR-RFLP assay. All of them were examined for their oral and dental status with the WHO criteria, and clinical information such as the Decayed Missing Filled Teeth Index (DMFT was evaluated. Genomic DNA was extracted from the buccal epithelial cells. The four polymorphic SNPs (Bsm I, Taq I, Apa I, and Fok I in VDR were assessed for both genotypic and phenotypic susceptibilities. Results. Among the four examined VDR gene polymorphisms, the increased frequency of the CT and CC genotype of the Fok I VDR gene polymorphism was associated with dental caries in 12-year-old adolescent, compared with the controls (X2 = 17.813, p≤0.001. Moreover, Fok I polymorphic allele C frequency was significantly increased in the dental caries cases, compared to the controls (X2 = 14.144, p≤0.001, OR = 1.730, 95% CI = 1.299–2.303. However, the other three VDR gene polymorphisms (Bsm I, Taq I, and Apa I showed no statistically significant differences in the caries groups compared with the controls. Conclusion. VDR-Fok I gene polymorphisms may be associated with susceptibility to permanent tooth caries in Chinese adolescent.

  13. Genotypic distribution of single nucleotide polymorphisms in oral cancer: global scene.

    Science.gov (United States)

    Multani, Shaleen; Saranath, Dhananjaya

    2016-11-01

    Globocan 2012 reports the global oral cancer incidence of 300,373 new oral cancer cases annually, contributing to 2.1 % of the world cancer burden. The major well-established risk factors for oral cancer include tobacco, betel/areca nut, alcohol and high-risk oncogenic human papilloma virus (HPV) 16/18. However, only 5-10 % of individuals with high-risk lifestyle develop oral cancer. Thus, genomic variants in individuals represented as single nucleotide polymorphisms (SNPs) influence susceptibility to oral cancer. With a view to understanding the role of genomic variants in oral cancer, we reviewed SNPs in case-control studies with a minimum of 100 cases and 100 controls. PubMed and HuGE navigator search engines were used to obtain data published from 1990 to 2015, which identified 67 articles investigating the role of SNPs in oral cancer. Single publications reported 93 SNPs in 55 genes, with 34 SNPs associated with a risk of oral cancer. Meta-analysis of data in multiple studies defined nine SNPs associated with a risk of oral cancer. The genes were associated with critical functions deregulated in cancers, including cell proliferation, immune function, inflammation, transcription, DNA repair and xenobiotic metabolism.

  14. Single nucleotide polymorphism analysis of Korean native chickens using next generation sequencing data.

    Science.gov (United States)

    Seo, Dong-Won; Oh, Jae-Don; Jin, Shil; Song, Ki-Duk; Park, Hee-Bok; Heo, Kang-Nyeong; Shin, Younhee; Jung, Myunghee; Park, Junhyung; Jo, Cheorun; Lee, Hak-Kyo; Lee, Jun-Heon

    2015-02-01

    There are five native chicken lines in Korea, which are mainly classified by plumage colors (black, white, red, yellow, gray). These five lines are very important genetic resources in the Korean poultry industry. Based on a next generation sequencing technology, whole genome sequence and reference assemblies were performed using Gallus_gallus_4.0 (NCBI) with whole genome sequences from these lines to identify common and novel single nucleotide polymorphisms (SNPs). We obtained 36,660,731,136 ± 1,257,159,120 bp of raw sequence and average 26.6-fold of 25-29 billion reference assembly sequences representing 97.288 % coverage. Also, 4,006,068 ± 97,534 SNPs were observed from 29 autosomes and the Z chromosome and, of these, 752,309 SNPs are the common SNPs across lines. Among the identified SNPs, the number of novel- and known-location assigned SNPs was 1,047,951 ± 14,956 and 2,948,648 ± 81,414, respectively. The number of unassigned known SNPs was 1,181 ± 150 and unassigned novel SNPs was 8,238 ± 1,019. Synonymous SNPs, non-synonymous SNPs, and SNPs having character changes were 26,266 ± 1,456, 11,467 ± 604, 8,180 ± 458, respectively. Overall, 443,048 ± 26,389 SNPs in each bird were identified by comparing with dbSNP in NCBI. The presently obtained genome sequence and SNP information in Korean native chickens have wide applications for further genome studies such as genetic diversity studies to detect causative mutations for economic and disease related traits.

  15. Single nucleotide polymorphism markers for low-dose aspirin-associated peptic ulcer and ulcer bleeding.

    Science.gov (United States)

    Shiotani, Akiko; Murao, Takahisa; Fujita, Yoshihiko; Fujimura, Yoshinori; Sakakibara, Takashi; Nishio, Kazuto; Haruma, Ken

    2014-12-01

    In our previous study, the SLCO1B1 521TT genotype and the SLCO1B1*1b haplotype were significantly associated with the risk of peptic ulcer in patients taking low-dose aspirin (LDA). The aim of the present study was to investigate pharmacogenomic profile of LDA-induced peptic ulcer and ulcer bleeding. Patients taking 100 mg of enteric-coated aspirin for cardiovascular diseases and with a peptic ulcer or ulcer bleeding and patients who also participated in endoscopic surveillance were studied. Genome-wide analysis of single nucleotide polymorphisms (SNPs) was performed using the Affymetrix DME Plus Premier Pack. SLCO1B1*1b haplotype and candidate genotypes of genes associated with ulcer bleeding or small bowel bleeding identified by genome-wide analysis were determined using TaqMan SNP Genotyping Assay kits, polymerase chain reaction-restriction fragment length polymorphism, and direct sequencing. Of 593 patients enrolled, 111 patients had a peptic ulcer and 45 had ulcer bleeding. The frequencies of the SLCO1B1*1b haplotype and CHST2 2082 T allele were significantly greater in patients with peptic ulcer and ulcer bleeding compared to the controls. After adjustment for significant factors, the SLCO1B1*1b haplotype was associated with peptic ulcer (OR 2.20, 95% CI 1.24-3.89) and CHST2 2082 T allele with ulcer bleeding (2.57, 1.07-6.17). The CHST2 2082 T allele as well as SLCO1B1*1b haplotype may identify patients at increased risk for aspirin-induced peptic ulcer or ulcer bleeding. © 2014 Journal of Gastroenterology and Hepatology Foundation and Wiley Publishing Asia Pty Ltd.

  16. Effects of Single Nucleotide Polymorphism Marker Density on Haplotype Block Partition

    Directory of Open Access Journals (Sweden)

    Sun Ah Kim

    2016-12-01

    Full Text Available Many researchers have found that one of the most important characteristics of the structure of linkage disequilibrium is that the human genome can be divided into non-overlapping block partitions in which only a small number of haplotypes are observed. The location and distribution of haplotype blocks can be seen as a population property influenced by population genetic events such as selection, mutation, recombination and population structure. In this study, we investigate the effects of the density of markers relative to the full set of all polymorphisms in the region on the results of haplotype partitioning for five popular haplotype block partition methods: three methods in Haploview (confidence interval, four gamete test, and solid spine, MIG++ implemented in PLINK 1.9 and S-MIG++. We used several experimental datasets obtained by sampling subsets of single nucleotide polymorphism (SNP markers of chromosome 22 region in the 1000 Genomes Project data and also the HapMap phase 3 data to compare the results of haplotype block partitions by five methods. With decreasing sampling ratio down to 20% of the original SNP markers, the total number of haplotype blocks decreases and the length of haplotype blocks increases for all algorithms. When we examined the marker-independence of the haplotype block locations constructed from the datasets of different density, the results using below 50% of the entire SNP markers were very different from the results using the entire SNP markers. We conclude that the haplotype block construction results should be used and interpreted carefully depending on the selection of markers and the purpose of the study.

  17. Gene-based single nucleotide polymorphism markers for genetic and association mapping in common bean.

    Science.gov (United States)

    Galeano, Carlos H; Cortés, Andrés J; Fernández, Andrea C; Soler, Álvaro; Franco-Herrera, Natalia; Makunde, Godwill; Vanderleyden, Jos; Blair, Matthew W

    2012-06-26

    In common bean, expressed sequence tags (ESTs) are an underestimated source of gene-based markers such as insertion-deletions (Indels) or single-nucleotide polymorphisms (SNPs). However, due to the nature of these conserved sequences, detection of markers is difficult and portrays low levels of polymorphism. Therefore, development of intron-spanning EST-SNP markers can be a valuable resource for genetic experiments such as genetic mapping and association studies. In this study, a total of 313 new gene-based markers were developed at target genes. Intronic variation was deeply explored in order to capture more polymorphism. Introns were putatively identified after comparing the common bean ESTs with the soybean genome, and the primers were designed over intron-flanking regions. The intronic regions were evaluated for parental polymorphisms using the single strand conformational polymorphism (SSCP) technique and Sequenom MassARRAY system. A total of 53 new marker loci were placed on an integrated molecular map in the DOR364 × G19833 recombinant inbred line (RIL) population. The new linkage map was used to build a consensus map, merging the linkage maps of the BAT93 × JALO EEP558 and DOR364 × BAT477 populations. A total of 1,060 markers were mapped, with a total map length of 2,041 cM across 11 linkage groups. As a second application of the generated resource, a diversity panel with 93 genotypes was evaluated with 173 SNP markers using the MassARRAY-platform and KASPar technology. These results were coupled with previous SSR evaluations and drought tolerance assays carried out on the same individuals. This agglomerative dataset was examined, in order to discover marker-trait associations, using general linear model (GLM) and mixed linear model (MLM). Some significant associations with yield components were identified, and were consistent with previous findings. In short, this study illustrates the power of intron-based markers for linkage and association mapping in

  18. NU-IN: Nucleotide evolution and input module for the EvolSimulator genome simulation platform

    Directory of Open Access Journals (Sweden)

    Barker Michael S

    2010-08-01

    Full Text Available Abstract Background There is increasing demand to test hypotheses that contrast the evolution of genes and gene families among genomes, using simulations that work across these levels of organization. The EvolSimulator program was developed recently to provide a highly flexible platform for forward simulations of amino acid evolution in multiple related lineages of haploid genomes, permitting copy number variation and lateral gene transfer. Synonymous nucleotide evolution is not currently supported, however, and would be highly advantageous for comparisons to full genome, transcriptome, and single nucleotide polymorphism (SNP datasets. In addition, EvolSimulator creates new genomes for each simulation, and does not allow the input of user-specified sequences and gene family information, limiting the incorporation of further biological realism and/or user manipulations of the data. Findings We present modified C++ source code for the EvolSimulator platform, which we provide as the extension module NU-IN. With NU-IN, synonymous and non-synonymous nucleotide evolution is fully implemented, and the user has the ability to use real or previously-simulated sequence data to initiate a simulation of one or more lineages. Gene family membership can be optionally specified, as well as gene retention probabilities that model biased gene retention. We provide PERL scripts to assist the user in deriving this information from previous simulations. We demonstrate the features of NU-IN by simulating genome duplication (polyploidy in the presence of ongoing copy number variation in an evolving lineage. This example is initiated with real genomic data, and produces output that we analyse directly with existing bioinformatic pipelines. Conclusions The NU-IN extension module is a publicly available open source software (GNU GPLv3 license extension to EvolSimulator. With the NU-IN module, users are now able to simulate both drift and selection at the nucleotide

  19. Infectious mononucleosis-linked HLA class I single nucleotide polymorphism is associated with multiple sclerosis.

    Science.gov (United States)

    Jafari, Naghmeh; Broer, Linda; Hoppenbrouwers, Ilse A; van Duijn, Cornelia M; Hintzen, Rogier Q

    2010-11-01

    Multiple sclerosis is a presumed autoimmune disease associated with genetic and environmental risk factors such as infectious mononucleosis. Recent research has shown infectious mononucleosis to be associated with a specific HLA class I polymorphism. Our aim was to test if the infectious mononucleosis-linked HLA class I single nucleotide polymorphism (rs6457110) is also associated with multiple sclerosis. Genotyping of the HLA-A single nucleotide polymorphism rs6457110 using TaqMan was performed in 591 multiple sclerosis cases and 600 controls. The association of multiple sclerosis with the HLA-A single nucleotide polymorphism was tested using logistic regression adjusted for age, sex and HLA-DRB1*1501. HLA-A minor allele (A) is associated with multiple sclerosis (OR = 0.68; p = 4.08 × 10( -5)). After stratification for HLA-DRB1*1501 risk allele (T) carrier we showed a significant OR of 0.70 (p = 0.003) for HLA-A. HLA class I single nucleotide polymorphism rs6457110 is associated with infectious mononucleosis and multiple sclerosis, independent of the major class II allele, supporting the hypothesis that shared genetics may contribute to the association between infectious mononucleosis and multiple sclerosis.

  20. Identification of a single nucleotide polymorphism of the pituitary ...

    African Journals Online (AJOL)

    Pit-1 is a pituitary-specific transcriptional factor that has been shown to play a critical role both in cell differentiation during organogenesis of the anterior pituitary and as a transcriptional activator for pituitary gene transcription. This study was designed to investigate the associations of Pit-1 gene polymorphism on chicken ...

  1. Identification of novel single nucleotide polymorphisms (SNPs in deer (Odocoileus spp. using the BovineSNP50 BeadChip.

    Directory of Open Access Journals (Sweden)

    Gwilym D Haynes

    Full Text Available Single nucleotide polymorphisms (SNPs are growing in popularity as a genetic marker for investigating evolutionary processes. A panel of SNPs is often developed by comparing large quantities of DNA sequence data across multiple individuals to identify polymorphic sites. For non-model species, this is particularly difficult, as performing the necessary large-scale genomic sequencing often exceeds the resources available for the project. In this study, we trial the Bovine SNP50 BeadChip developed in cattle (Bos taurus for identifying polymorphic SNPs in cervids Odocoileus hemionus (mule deer and black-tailed deer and O. virginianus (white-tailed deer in the Pacific Northwest. We found that 38.7% of loci could be genotyped, of which 5% (n = 1068 were polymorphic. Of these 1068 polymorphic SNPs, a mixture of putatively neutral loci (n = 878 and loci under selection (n = 190 were identified with the F(ST-outlier method. A range of population genetic analyses were implemented using these SNPs and a panel of 10 microsatellite loci. The three types of deer could readily be distinguished with both the SNP and microsatellite datasets. This study demonstrates that commercially developed SNP chips are a viable means of SNP discovery for non-model organisms, even when used between very distantly related species (the Bovidae and Cervidae families diverged some 25.1-30.1 million years before present.

  2. Spontaneous preterm birth and single nucleotide gene polymorphisms: a recent update

    Directory of Open Access Journals (Sweden)

    Ishfaq A. Sheikh

    2016-10-01

    Full Text Available Abstract Background Preterm birth (PTB, birth at <37 weeks of gestation, is a significant global public health problem. World-wide, about 15 million babies are born preterm each year resulting in more than a million deaths of children. Preterm neonates are more prone to problems and need intensive care hospitalization. Health issues may persist through early adulthood and even be carried on to the next generation. Majority (70 % of PTBs are spontaneous with about a half without any apparent cause and the other half associated with a number of risk factors. Genetic factors are one of the significant risks for PTB. The focus of this review is on single nucleotide gene polymorphisms (SNPs that are reported to be associated with PTB. Results A comprehensive evaluation of studies on SNPs known to confer potential risk of PTB was done by performing a targeted PubMed search for the years 2007–2015 and systematically reviewing all relevant studies. Evaluation of 92 studies identified 119 candidate genes with SNPs that had potential association with PTB. The genes were associated with functions of a wide spectrum of tissue and cell types such as endocrine, tissue remodeling, vascular, metabolic, and immune and inflammatory systems. Conclusions A number of potential functional candidate gene variants have been reported that predispose women for PTB. Understanding the complex genomic landscape of PTB needs high-throughput genome sequencing methods such as whole-exome sequencing and whole-genome sequencing approaches that will significantly enhance the understanding of PTB. Identification of high risk women, avoidance of possible risk factors, and provision of personalized health care are important to manage PTB.

  3. The low single nucleotide polymorphism heritability of plasma and saliva cortisol levels.

    Science.gov (United States)

    Neumann, Alexander; Direk, Nese; Crawford, Andrew A; Mirza, Saira; Adams, Hieab; Bolton, Jennifer; Hayward, Caroline; Strachan, David P; Payne, Erin K; Smith, Jennifer A; Milaneschi, Yuri; Penninx, Brenda; Hottenga, Jouke J; de Geus, Eco; Oldehinkel, Albertine J; van der Most, Peter J; de Rijke, Yolanda; Walker, Brian R; Tiemeier, Henning

    2017-11-01

    Cortisol is an important stress hormone affected by a variety of biological and environmental factors, such as the circadian rhythm, exercise and psychological stress. Cortisol is mostly measured using blood or saliva samples. A number of genetic variants have been found to contribute to cortisol levels with these methods. While the effects of several specific single genetic variants is known, the joint genome-wide contribution to cortisol levels is unclear. Our aim was to estimate the amount of cortisol variance explained by common single nucleotide polymorphisms, i.e. the SNP heritability, using a variety of cortisol measures, cohorts and analysis approaches. We analyzed morning plasma (n=5705) and saliva levels (n=1717), as well as diurnal saliva levels (n=1541), in the Rotterdam Study using genomic restricted maximum likelihood estimation. Additionally, linkage disequilibrium score regression was fitted on the results of genome-wide association studies (GWAS) performed by the CORNET consortium on morning plasma cortisol (n=12,597) and saliva cortisol (n=7703). No significant SNP heritability was detected for any cortisol measure, sample or analysis approach. Point estimates ranged from 0% to 9%. Morning plasma cortisol in the CORNET cohorts, the sample with the most power, had a 6% [95%CI: 0-13%] SNP heritability. The results consistently suggest a low SNP heritability of these acute and short-term measures of cortisol. The low SNP heritability may reflect the substantial environmental and, in particular, situational component of these cortisol measures. Future GWAS will require very large sample sizes. Alternatively, more long-term cortisol measures such as hair cortisol samples are needed to discover further genetic pathways regulating cortisol concentrations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Single nucleotide polymorphisms for assessing genetic diversity in castor bean (Ricinus communis

    Directory of Open Access Journals (Sweden)

    Rabinowicz Pablo D

    2010-01-01

    Full Text Available Abstract Background Castor bean (Ricinus communis is an agricultural crop and garden ornamental that is widely cultivated and has been introduced worldwide. Understanding population structure and the distribution of castor bean cultivars has been challenging because of limited genetic variability. We analyzed the population genetics of R. communis in a worldwide collection of plants from germplasm and from naturalized populations in Florida, U.S. To assess genetic diversity we conducted survey sequencing of the genomes of seven diverse cultivars and compared the data to a reference genome assembly of a widespread cultivar (Hale. We determined the population genetic structure of 676 samples using single nucleotide polymorphisms (SNPs at 48 loci. Results Bayesian clustering indicated five main groups worldwide and a repeated pattern of mixed genotypes in most countries. High levels of population differentiation occurred between most populations but this structure was not geographically based. Most molecular variance occurred within populations (74% followed by 22% among populations, and 4% among continents. Samples from naturalized populations in Florida indicated significant population structuring consistent with local demes. There was significant population differentiation for 56 of 78 comparisons in Florida (pairwise population ϕPT values, p Conclusion Low levels of genetic diversity and mixing of genotypes have led to minimal geographic structuring of castor bean populations worldwide. Relatively few lineages occur and these are widely distributed. Our approach of determining population genetic structure using SNPs from genome-wide comparisons constitutes a framework for high-throughput analyses of genetic diversity in plants, particularly in species with limited genetic diversity.

  5. Supplementary data: Analysis of single nucleotide polymorphisms of ...

    Indian Academy of Sciences (India)

    twenty-four ethnic groups of India. Mainak Sengupta, Amrita Chakraborty, Indian Genome Variation Consortium and Kunal Ray. J. Genet. ... The frequency of the allele majorily represented (i.e., major allele) in maximum Indian population is.

  6. Complete nucleotide sequences of avian metapneumovirus subtype B genome.

    Science.gov (United States)

    Sugiyama, Miki; Ito, Hiroshi; Hata, Yusuke; Ono, Eriko; Ito, Toshihiro

    2010-12-01

    Complete nucleotide sequences were determined for subtype B avian metapneumovirus (aMPV), the attenuated vaccine strain VCO3/50 and its parental pathogenic strain VCO3/60616. The genomes of both strains comprised 13,508 nucleotides (nt), with a 42-nt leader at the 3'-end and a 46-nt trailer at the 5'-end. The genome contains eight genes in the order 3'-N-P-M-F-M2-SH-G-L-5', which is the same order shown in the other metapneumoviruses. The genes are flanked on either side by conserved transcriptional start and stop signals and have intergenic sequences varying in length from 1 to 88 nt. Comparison of nt and predicted amino acid (aa) sequences of VCO3/60616 with those of other metapneumoviruses revealed higher homology with aMPV subtype A virus than with other metapneumoviruses. A total of 18 nt and 10 deduced aa differences were seen between the strains, and one or a combination of several differences could be associated with attenuation of VCO3/50.

  7. A single-nucleotide polymorphism of human neuropeptide s gene originated from Europe shows decreased bioactivity.

    Directory of Open Access Journals (Sweden)

    Cheng Deng

    Full Text Available Using accumulating SNP (Single-Nucleotide Polymorphism data, we performed a genome-wide search for polypeptide hormone ligands showing changes in the mature regions to elucidate genotype/phenotype diversity among various human populations. Neuropeptide S (NPS, a brain peptide hormone highly conserved in vertebrates, has diverse physiological effects on anxiety, fear, hyperactivity, food intake, and sleeping time through its cognate receptor-NPSR. Here, we report a SNP rs4751440 (L(6-NPS causing non-synonymous substitution on the 6(th position (V to L of the NPS mature peptide region. L(6-NPS has a higher allele frequency in Europeans than other populations and probably originated from European ancestors ~25,000 yrs ago based on haplotype analysis and Approximate Bayesian Computation. Functional analyses indicate that L(6-NPS exhibits a significant lower bioactivity than the wild type NPS, with ~20-fold higher EC50 values in the stimulation of NPSR. Additional evolutionary and mutagenesis studies further demonstrate the importance of the valine residue in the 6(th position for NPS functions. Given the known physiological roles of NPS receptor in inflammatory bowel diseases, asthma pathogenesis, macrophage immune responses, and brain functions, our study provides the basis to elucidate NPS evolution and signaling diversity among human populations.

  8. Quantitative Trait Loci Analysis of Seed Quality Characteristics in Lentil using Single Nucleotide Polymorphism Markers

    Directory of Open Access Journals (Sweden)

    Michael J. Fedoruk

    2013-11-01

    Full Text Available Seed shape, color, and pattern of lentil ( Medik. subsp. are important quality traits as they determine market class and possible end uses. A recombinant inbred line population was phenotyped for seed dimensions over multiple site–years and classified according to cotyledon and seed coat color and pattern. The objectives were to determine the heritability of seed dimensions, identify genomic regions controlling these dimensions, and map seed coat and cotyledon color genes. A genetic linkage map consisting of 563 single nucleotide polymorphisms, 10 simple sequence repeats, and four seed color loci was developed for quantitative trait loci (QTL analysis. Loci for seed coat color and pattern mapped to linkage groups 2 (, 3 (, and 6 ( while the cotyledon color locus ( mapped to linkage group 1. The broad sense heritability estimates were high for seed diameter (broad-sense heritability [] = 0.92 and seed plumpness ( = 0.94 while seed thickness ( = 0.60 and days to flowering ( = 0.45 were more moderate. There were significant seed dimension QTL on six of the seven linkage groups. The most significant QTL for diameter and plumpness was found at the cotyledon color locus (. The markers identified in this study can be used to help enrich breeding populations for desired seed quality characteristics, thereby increasing efficiency in the lentil breeding program.

  9. From Single Nucleotide Polymorphisms to Constant Immunosuppression: Mesenchymal Stem Cell Therapy for Autoimmune Diseases

    Directory of Open Access Journals (Sweden)

    Raghavan Chinnadurai

    2013-01-01

    Full Text Available The regenerative abilities and the immunosuppressive properties of mesenchymal stromal cells (MSCs make them potentially the ideal cellular product of choice for treatment of autoimmune and other immune mediated disorders. Although the usefulness of MSCs for therapeutic applications is in early phases, their potential clinical use remains of great interest. Current clinical evidence of use of MSCs from both autologous and allogeneic sources to treat autoimmune disorders confers conflicting clinical benefit outcomes. These varied results may possibly be due to MSC use across wide range of autoimmune disorders with clinical heterogeneity or due to variability of the cellular product. In the light of recent genome wide association studies (GWAS, linking predisposition of autoimmune diseases to single nucleotide polymorphisms (SNPs in the susceptible genetic loci, the clinical relevance of MSCs possessing SNPs in the critical effector molecules of immunosuppression is largely undiscussed. It is of further interest in the allogeneic setting, where SNPs in the target pathway of MSC's intervention may also modulate clinical outcome. In the present review, we have discussed the known critical SNPs predisposing to disease susceptibility in various autoimmune diseases and their significance in the immunomodulatory properties of MSCs.

  10. SNPer: an R library for quantitative variant analysis on single nucleotide polymorphisms among influenza virus populations.

    Directory of Open Access Journals (Sweden)

    Unitsa Sangket

    Full Text Available Influenza virus (IFV can evolve rapidly leading to genetic drifts and shifts resulting in human and animal influenza epidemics and pandemics. The genetic shift that gave rise to the 2009 influenza A/H1N1 pandemic originated from a triple gene reassortment of avian, swine and human IFVs. More minor genetic alterations in genetic drift can lead to influenza drug resistance such as the H274Y mutation associated with oseltamivir resistance. Hence, a rapid tool to detect IFV mutations and the potential emergence of new virulent strains can better prepare us for seasonal influenza outbreaks as well as potential pandemics. Furthermore, identification of specific mutations by closely examining single nucleotide polymorphisms (SNPs in IFV sequences is essential to classify potential genetic markers associated with potentially dangerous IFV phenotypes. In this study, we developed a novel R library called "SNPer" to analyze quantitative variants in SNPs among IFV subpopulations. The computational SNPer program was applied to three different subpopulations of published IFV genomic information. SNPer queried SNPs data and grouped the SNPs into (1 universal SNPs, (2 likely common SNPs, and (3 unique SNPs. SNPer outperformed manual visualization in terms of time and labor. SNPer took only three seconds with no errors in SNP comparison events compared with 40 hours with errors using manual visualization. The SNPer tool can accelerate the capacity to capture new and potentially dangerous IFV strains to mitigate future influenza outbreaks.

  11. Associations between single nucleotide polymorphisms in iron-related genes and iron status in multiethnic populations.

    Directory of Open Access Journals (Sweden)

    Christine E McLaren

    Full Text Available The existence of multiple inherited disorders of iron metabolism suggests genetic contributions to iron deficiency. We previously performed a genome-wide association study of iron-related single nucleotide polymorphisms (SNPs using DNA from white men aged ≥ 25 y and women ≥ 50 y in the Hemochromatosis and Iron Overload Screening (HEIRS Study with serum ferritin (SF ≤ 12 µg/L (cases and controls (SF >100 µg/L in men, SF >50 µg/L in women. We report a follow-up study of white, African-American, Hispanic, and Asian HEIRS participants, analyzed for association between SNPs and eight iron-related outcomes. Three chromosomal regions showed association across multiple populations, including SNPs in the TF and TMPRSS6 genes, and on chromosome 18q21. A novel SNP rs1421312 in TMPRSS6 was associated with serum iron in whites (p = 3.7 × 10(-6 and replicated in African Americans (p = 0.0012.Twenty SNPs in the TF gene region were associated with total iron-binding capacity in whites (p<4.4 × 10(-5; six SNPs replicated in other ethnicities (p<0.01. SNP rs10904850 in the CUBN gene on 10p13 was associated with serum iron in African Americans (P = 1.0 × 10(-5. These results confirm known associations with iron measures and give unique evidence of their role in different ethnicities, suggesting origins in a common founder.

  12. Short communication: relationship of call rate and accuracy of single nucleotide polymorphism genotypes in dairy cattle.

    Science.gov (United States)

    Cooper, T A; Wiggans, G R; VanRaden, P M

    2013-05-01

    Call rates on both a single nucleotide polymorphism (SNP) basis and an animal basis are used as measures of data quality and as screening tools for genomic studies and evaluations of dairy cattle. To investigate the relationship of SNP call rate and genotype accuracy for individual SNP, the correlation between percentages of missing genotypes and parent-progeny conflicts for each SNP was calculated for 103,313 Holsteins. Correlations ranged from 0.14 to 0.38 for the BovineSNP50 and BovineLD (Illumina Inc., San Diego, CA) and GeneSeek Genomic Profiler (Neogen Corp., Lincoln, NE) chips, with lower correlations for newer chips. For US genomic evaluations, genotypes are excluded for animals with a call rate of call rate for 220,175 Holstein, Jersey, and Brown Swiss genotypes was 99.6%. Animal genotypes with a call rate of ≤99% were examined from the US Department of Agriculture genotype database to determine how genotype call rate is related to accuracy of calls on an animal basis. Animal call rate was determined from SNP used in genomic evaluation and is the number of called autosomal and X-specific SNP genotypes divided by the number of SNP from that type of chip. To investigate the relationship of animal call rate and parentage validation, conflicts between a genotyped animal and its sire or dam were determined through a duo test (opposite homozygous SNP genotypes between sire and progeny; 1,374 animal genotypes) and a trio test (also including conflicts with dam and heterozygous SNP genotype for the animal when both parents are the same homozygote; 482 animal genotypes). When animal call rate was ≤ 80%, parentage validation was no longer reliable with the duo test. With the trio test, parentage validation was no longer reliable when animal call rate was ≤ 90%. To investigate how animal call rate was related to genotyping accuracy for animals with multiple genotypes, concordance between genotypes for 1,216 animals that had a genotype with a call rate of ≤ 99

  13. Sirtuin 1 gene rs2273773 C >T single nucleotide polymorphism and ...

    African Journals Online (AJOL)

    Background: Sirtuin-1 (SIRT-1), a protein has been found to protect the cells against oxidative stress due to its deacetylase activity. In this investigation, we aimed to study SIRT-1 gene rs2273773 C >T single nucleotide polymorphism and markers of serum protein oxidation (protein carbonyl and sulfhydryl groups) in ...

  14. Single nucleotide polymorphism discovery in bovine liver using RNA-seq technology

    DEFF Research Database (Denmark)

    Pareek, Chandra Shekhar; Błaszczyk, Paweł; Dziuba, Piotr

    2017-01-01

    Background RNA-seq is a useful next-generation sequencing (NGS) technology that has been widely used to understand mammalian transcriptome architecture and function. In this study, a breed-specific RNA-seq experiment was utilized to detect putative single nucleotide polymorphisms (SNPs) in liver...

  15. Development and characterization of 35 single nucleotide polymorphism markers for the brown alga Fucus vesiculosus

    NARCIS (Netherlands)

    Canovas, Fernando; Mota, Catarina; Ferreira-Costa, Joana; Serrao, Ester; Coyer, Jim; Olsen, Jeanine; Pearson, Gareth

    2011-01-01

    We characterized 35 single nucleotide polymorphism (SNP) markers for the brown alga Fucus vesiculosus. Based on existing Fucus Expressed Sequence Tag libraries for heat and desiccation-stressed tissue, SNPs were developed and confirmed by re-sequencing cDNA from a diverse panel of individuals. SNP

  16. A lateral flow biosensor for detection of single nucleotide polymorphism by circular strand displacement reaction.

    Science.gov (United States)

    Xiao, Zhuo; Lie, Puchang; Fang, Zhiyuan; Yu, Luxin; Chen, Junhua; Liu, Jie; Ge, Chenchen; Zhou, Xuemeng; Zeng, Lingwen

    2012-09-04

    A lateral flow biosensor for detection of single nucleotide polymorphism based on circular strand displacement reaction (CSDPR) has been developed. Taking advantage of high fidelity of T4 DNA ligase, signal amplification by CSDPR, and the optical properties of gold nanoparticles, this assay has reached a detection limit of 0.01 fM.

  17. Analysis of multiple single nucleotide polymorphisms (SNP) on DNA traces from plasma and dried blood samples

    NARCIS (Netherlands)

    Catsburg, Arnold; van der Zwet, Wil C.; Morre, Servaas A.; Ouburg, Sander; Vandenbroucke-Grauls, Christina M. J. E.; Savelkoul, Paul H. M.

    2007-01-01

    Reliable analysis of single nucleotide polymorphisms (SNPs) in DNA derived from samples containing low numbers of cells or from suboptimal sources can be difficult. A new procedure to characterize multiple SNPs in traces of DNA from plasma and old dried blood samples was developed. Six SNPs in the

  18. Transmembrane Domain Single-Nucleotide Polymorphisms Impair Expression and Transport Activity of ABC Transporter ABCG2

    NARCIS (Netherlands)

    Sjostedt, N.; Heuvel, J.J.M.W. van den; Koenderink, J.B.; Kidron, H.

    2017-01-01

    PURPOSE: To study the function and expression of nine naturally occurring single-nucleotide polymorphisms (G406R, F431L, S441N, P480L, F489L, M515R, L525R, A528T and T542A) that are predicted to reside in the transmembrane regions of the ABC transporter ABCG2. METHODS: The transport activity of the

  19. Single-nucleotide polymorphism of INS, INSR, IRS1, IRS2, PPAR-G ...

    Indian Academy of Sciences (India)

    2017-03-02

    Mar 2, 2017 ... Abstract. Polycystic ovary syndrome (PCOS) is the most common and a complex female endocrine disorder, and is one of the leading cause of female infertility. Here, we aimed to investigate the association of single-nucleotide polymorphism of INS, INSR,. IRS1, IRS2, PPAR-G and CAPN10 gene in the ...

  20. Analyzing a single nucleotide polymorphism in schizophrenia: a meta-analysis approach

    Directory of Open Access Journals (Sweden)

    Falola O

    2017-08-01

    Full Text Available Oluwadamilare Falola,1 Victor Chukwudi Osamor,1,2 Marion Adebiyi,1,2 Ezekiel Adebiyi1,2 1Covenant University Bioinformatics Research (CUBRe, 2Department of Computer and Information Sciences, College of Science and Technology, Covenant University, Ota, Ogun State, Nigeria Background: Schizophrenia is a severe mental disorder affecting >21 million people worldwide. Some genetic studies reported that single nucleotide polymorphism (SNP involving variant rs1344706 from the ZNF804A gene in human beings is associated with the risk of schizophrenia in several populations. Similar results tend to conflict with other reports in literature, indicating that no true significant association exists between rs1344706 and schizophrenia. We seek to determine the level of association of this SNP with schizophrenia in the Asian population using more recent genome-wide association study (GWAS datasets. Methods: Applying a computational approach with inclusion of more recent GWAS datasets, we conducted a meta-analysis to examine the level of association of SNP rs1344706 and the risk of schizophrenia disorder among the Asian population constituting Chinese, Indonesians, Japanese, Kazakhs and Singaporeans. For a total of 21 genetic studies, including a total of 28,842 cases and 35,630 controls, regression analysis, publication bias, Cochran’s Q and I2 tests were performed. The DerSimonian and Laird random-effects model was used to assess the association of the genetic variant to schizophrenia. Leave-one-out sensitivity analysis was also conducted to determine the influence of each study on the final outcome of the association study. Results: Our summarized analysis for Asian population revealed a pooled odds ratio of 1.06, 95% confidence interval of 1.01–1.11 and two-tailed P-value of 0.0228. Our test for heterogeneity showed the presence of large heterogeneity (I2=53.44%, P =0.00207 and Egger’s regression test (P =0.8763 and Begg’s test (P =0

  1. Identification of sixteen single-nucleotide polymorphism markers in ...

    Indian Academy of Sciences (India)

    our knowledge, although the draft genome of P. fucata has been established which could ... four bases of the 3 end is also added to improve the allele specificity. ... sequences (no less than 100 bp) and of good quality (no unknown bases) ...

  2. Unique nucleotide polymorphism of ankyrin gene cluster in ...

    Indian Academy of Sciences (India)

    gene order is nonrandomly distributed in eukaryote genomes. (Lercher et al. 2002 ... Birth in a birth-and-death process relates to the origin of paralogues, presumably ... are small, or the rate of concerted evolution is very slow (Nei et al. 2000).

  3. SNPchiMp v.3: integrating and standardizing single nucleotide polymorphism data for livestock species.

    Science.gov (United States)

    Nicolazzi, Ezequiel L; Caprera, Andrea; Nazzicari, Nelson; Cozzi, Paolo; Strozzi, Francesco; Lawley, Cindy; Pirani, Ali; Soans, Chandrasen; Brew, Fiona; Jorjani, Hossein; Evans, Gary; Simpson, Barry; Tosser-Klopp, Gwenola; Brauning, Rudiger; Williams, John L; Stella, Alessandra

    2015-04-10

    In recent years, the use of genomic information in livestock species for genetic improvement, association studies and many other fields has become routine. In order to accommodate different market requirements in terms of genotyping cost, manufacturers of single nucleotide polymorphism (SNP) arrays, private companies and international consortia have developed a large number of arrays with different content and different SNP density. The number of currently available SNP arrays differs among species: ranging from one for goats to more than ten for cattle, and the number of arrays available is increasing rapidly. However, there is limited or no effort to standardize and integrate array- specific (e.g. SNP IDs, allele coding) and species-specific (i.e. past and current assemblies) SNP information. Here we present SNPchiMp v.3, a solution to these issues for the six major livestock species (cow, pig, horse, sheep, goat and chicken). Original data was collected directly from SNP array producers and specific international genome consortia, and stored in a MySQL database. The database was then linked to an open-access web tool and to public databases. SNPchiMp v.3 ensures fast access to the database (retrieving within/across SNP array data) and the possibility of annotating SNP array data in a user-friendly fashion. This platform allows easy integration and standardization, and it is aimed at both industry and research. It also enables users to easily link the information available from the array producer with data in public databases, without the need of additional bioinformatics tools or pipelines. In recognition of the open-access use of Ensembl resources, SNPchiMp v.3 was officially credited as an Ensembl E!mpowered tool. Availability at http://bioinformatics.tecnoparco.org/SNPchimp.

  4. A high throughput single nucleotide polymorphism multiplex assay for parentage assignment in New Zealand sheep.

    Directory of Open Access Journals (Sweden)

    Shannon M Clarke

    Full Text Available Accurate pedigree information is critical to animal breeding systems to ensure the highest rate of genetic gain and management of inbreeding. The abundance of available genomic data, together with development of high throughput genotyping platforms, means that single nucleotide polymorphisms (SNPs are now the DNA marker of choice for genomic selection studies. Furthermore the superior qualities of SNPs compared to microsatellite markers allows for standardization between laboratories; a property that is crucial for developing an international set of markers for traceability studies. The objective of this study was to develop a high throughput SNP assay for use in the New Zealand sheep industry that gives accurate pedigree assignment and will allow a reduction in breeder input over lambing. This required two phases of development--firstly, a method of extracting quality DNA from ear-punch tissue performed in a high throughput cost efficient manner and secondly a SNP assay that has the ability to assign paternity to progeny resulting from mob mating. A likelihood based approach to infer paternity was used where sires with the highest LOD score (log of the ratio of the likelihood given parentage to likelihood given non-parentage are assigned. An 84 "parentage SNP panel" was developed that assigned, on average, 99% of progeny to a sire in a problem where there were 3,000 progeny from 120 mob mated sires that included numerous half sib sires. In only 6% of those cases was there another sire with at least a 0.02 probability of paternity. Furthermore dam information (either recorded, or by genotyping possible dams was absent, highlighting the SNP test's suitability for paternity testing. Utilization of this parentage SNP assay will allow implementation of progeny testing into large commercial farms where the improved accuracy of sire assignment and genetic evaluations will increase genetic gain in the sheep industry.

  5. High-throughput single nucleotide polymorphism genotyping using nanofluidic Dynamic Arrays

    Directory of Open Access Journals (Sweden)

    Crenshaw Andrew

    2009-01-01

    Full Text Available Abstract Background Single nucleotide polymorphisms (SNPs have emerged as the genetic marker of choice for mapping disease loci and candidate gene association studies, because of their high density and relatively even distribution in the human genomes. There is a need for systems allowing medium multiplexing (ten to hundreds of SNPs with high throughput, which can efficiently and cost-effectively generate genotypes for a very large sample set (thousands of individuals. Methods that are flexible, fast, accurate and cost-effective are urgently needed. This is also important for those who work on high throughput genotyping in non-model systems where off-the-shelf assays are not available and a flexible platform is needed. Results We demonstrate the use of a nanofluidic Integrated Fluidic Circuit (IFC - based genotyping system for medium-throughput multiplexing known as the Dynamic Array, by genotyping 994 individual human DNA samples on 47 different SNP assays, using nanoliter volumes of reagents. Call rates of greater than 99.5% and call accuracies of greater than 99.8% were achieved from our study, which demonstrates that this is a formidable genotyping platform. The experimental set up is very simple, with a time-to-result for each sample of about 3 hours. Conclusion Our results demonstrate that the Dynamic Array is an excellent genotyping system for medium-throughput multiplexing (30-300 SNPs, which is simple to use and combines rapid throughput with excellent call rates, high concordance and low cost. The exceptional call rates and call accuracy obtained may be of particular interest to those working on validation and replication of genome- wide- association (GWA studies.

  6. The Studies of Decision Tree in Estimation of Breast Cancer Risk by Using Polymorphism Nucleotide

    Directory of Open Access Journals (Sweden)

    Frida Seyedmir

    2017-07-01

    Full Text Available Abstract Introduction:   Decision tree is the data mining tools to collect, accurate prediction and sift information from massive amounts of data that are used widely in the field of computational biology and bioinformatics. In bioinformatics can be predict on diseases, including breast cancer. The use of genomic data including single nucleotide polymorphisms is a very important factor in predicting the risk of diseases. The number of seven important SNP among hundreds of thousands genetic markers were identified as factors associated with breast cancer. The objective of this study is to evaluate the training data on decision tree predictor error of the risk of breast cancer by using single nucleotide polymorphism genotype. Methods: The risk of breast cancer were calculated associated with the use of SNP formula:xj = fo * In human,  The decision tree can be used To predict the probability of disease using single nucleotide polymorphisms .Seven SNP with different odds ratio associated with breast cancer considered and coding and design of decision tree model, C4.5, by  Csharp2013 programming language were done. In the decision tree created with the coding, the four important associated SNP was considered. The decision tree error in two case of coding and using WEKA were assessment and percentage of decision tree accuracy in prediction of breast cancer were calculated. The number of trained samples was obtained with systematic sampling. With coding, two scenarios as well as software WEKA, three scenarios with different sets of data and the number of different learning and testing, were evaluated. Results: In both scenarios of coding, by increasing the training percentage from 66/66 to 86/42, the error reduced from 55/56 to 9/09. Also by running of WEKA on three scenarios with different sets of data, the number of different education, and different tests by increasing records number from 81 to 2187, the error rate decreased from 48/15 to 13

  7. Single Nucleotide Polymorphism Markers for Genetic Mapping in Drosophila melanogaster

    OpenAIRE

    Hoskins, Roger A.; Phan, Alexander C.; Naeemuddin, Mohammed; Mapa, Felipa A.; Ruddy, David A.; Ryan, Jessica J.; Young, Lynn M.; Wells, Trent; Kopczynski, Casey; Ellis, Michael C.

    2001-01-01

    For nearly a century, genetic analysis in Drosophila melanogaster has been a powerful tool for analyzing gene function, yet Drosophila lacks the molecular genetic mapping tools that recently have revolutionized human, mouse, and plant genetics. Here, we describe the systematic characterization of a dense set of molecular markers in Drosophila by using a sequence tagged site-based physical map of the genome. We identify 474 biallelic markers in standard laboratory strains of Drosophila that sp...

  8. Single nucleotide polymorphism discovery in bovine liver using RNA-seq technology.

    Science.gov (United States)

    Pareek, Chandra Shekhar; Błaszczyk, Paweł; Dziuba, Piotr; Czarnik, Urszula; Fraser, Leyland; Sobiech, Przemysław; Pierzchała, Mariusz; Feng, Yaping; Kadarmideen, Haja N; Kumar, Dibyendu

    2017-01-01

    RNA-seq is a useful next-generation sequencing (NGS) technology that has been widely used to understand mammalian transcriptome architecture and function. In this study, a breed-specific RNA-seq experiment was utilized to detect putative single nucleotide polymorphisms (SNPs) in liver tissue of young bulls of the Polish Red, Polish Holstein-Friesian (HF) and Hereford breeds, and to understand the genomic variation in the three cattle breeds that may reflect differences in production traits. The RNA-seq experiment on bovine liver produced 107,114,4072 raw paired-end reads, with an average of approximately 60 million paired-end reads per library. Breed-wise, a total of 345.06, 290.04 and 436.03 million paired-end reads were obtained from the Polish Red, Polish HF, and Hereford breeds, respectively. Burrows-Wheeler Aligner (BWA) read alignments showed that 81.35%, 82.81% and 84.21% of the mapped sequencing reads were properly paired to the Polish Red, Polish HF, and Hereford breeds, respectively. This study identified 5,641,401 SNPs and insertion and deletion (indel) positions expressed in the bovine liver with an average of 313,411 SNPs and indel per young bull. Following the removal of the indel mutations, a total of 195,3804, 152,7120 and 205,3184 raw SNPs expressed in bovine liver were identified for the Polish Red, Polish HF, and Hereford breeds, respectively. Breed-wise, three highly reliable breed-specific SNP-databases (SNP-dbs) with 31,562, 24,945 and 28,194 SNP records were constructed for the Polish Red, Polish HF, and Hereford breeds, respectively. Using a combination of stringent parameters of a minimum depth of ≥10 mapping reads that support the polymorphic nucleotide base and 100% SNP ratio, 4,368, 3,780 and 3,800 SNP records were detected in the Polish Red, Polish HF, and Hereford breeds, respectively. The SNP detections using RNA-seq data were successfully validated by kompetitive allele-specific PCR (KASPTM) SNP genotyping assay. The comprehensive

  9. Single nucleotide polymorphism discovery in bovine liver using RNA-seq technology.

    Directory of Open Access Journals (Sweden)

    Chandra Shekhar Pareek

    Full Text Available RNA-seq is a useful next-generation sequencing (NGS technology that has been widely used to understand mammalian transcriptome architecture and function. In this study, a breed-specific RNA-seq experiment was utilized to detect putative single nucleotide polymorphisms (SNPs in liver tissue of young bulls of the Polish Red, Polish Holstein-Friesian (HF and Hereford breeds, and to understand the genomic variation in the three cattle breeds that may reflect differences in production traits.The RNA-seq experiment on bovine liver produced 107,114,4072 raw paired-end reads, with an average of approximately 60 million paired-end reads per library. Breed-wise, a total of 345.06, 290.04 and 436.03 million paired-end reads were obtained from the Polish Red, Polish HF, and Hereford breeds, respectively. Burrows-Wheeler Aligner (BWA read alignments showed that 81.35%, 82.81% and 84.21% of the mapped sequencing reads were properly paired to the Polish Red, Polish HF, and Hereford breeds, respectively. This study identified 5,641,401 SNPs and insertion and deletion (indel positions expressed in the bovine liver with an average of 313,411 SNPs and indel per young bull. Following the removal of the indel mutations, a total of 195,3804, 152,7120 and 205,3184 raw SNPs expressed in bovine liver were identified for the Polish Red, Polish HF, and Hereford breeds, respectively. Breed-wise, three highly reliable breed-specific SNP-databases (SNP-dbs with 31,562, 24,945 and 28,194 SNP records were constructed for the Polish Red, Polish HF, and Hereford breeds, respectively. Using a combination of stringent parameters of a minimum depth of ≥10 mapping reads that support the polymorphic nucleotide base and 100% SNP ratio, 4,368, 3,780 and 3,800 SNP records were detected in the Polish Red, Polish HF, and Hereford breeds, respectively. The SNP detections using RNA-seq data were successfully validated by kompetitive allele-specific PCR (KASPTM SNP genotyping assay. The

  10. Assessment of single nucleotide polymorphisms in screening 52 DNA repair and cell cycle control genes in Fanconi anemia patients

    Directory of Open Access Journals (Sweden)

    Petrović Sandra

    2015-01-01

    Full Text Available Fanconi anemia (FA is a rare genetically heterogeneous disorder associated with bone marrow failure, birth defects and cancer susceptibility. Apart from the disease- causing mutations in FANC genes, the identification of specific DNA variations, such as single nucleotide polymorphisms (SNPs, in other candidate genes may lead to a better clinical description of this condition enabling individualized treatment with improvement of the prognosis. In this study, we have assessed 95 SNPs located in 52 key genes involved in base excision repair (BER, nucleotide excision repair (NER, mismatch repair (MMR, double strand break (DSB repair and cell cycle control using a DNA repair chip (Asper Biotech, Estonia which includes most of the common variants for the candidate genes. The SNP genotyping was performed in five FA-D2 patients and in one FA-A patient. The polymorphisms studied were synonymous (n=10, nonsynonymous (missense (n=52 and in non-coding regions of the genome (introns and 5 ‘and 3’ untranslated regions (UTR (n=33. Polymorphisms found at the homozygous state are selected for further analysis. Our results have shown a significant inter-individual variability among patients in the type and the frequency of SNPs and also elucidate the need for further studies of polymorphisms located in ATM, APEX APE 1, XRCC1, ERCC2, MSH3, PARP4, NBS1, BARD1, CDKN1B, TP53 and TP53BP1 which may be of great importance for better clinical description of FA. In addition, the present report recommends the use of SNPs as predictive and prognostic genetic markers to individualize therapy of FA patients. [Projekat Ministarstva nauke Republike Srbije, br. 173046

  11. [A population genetic study of 22 autosomal loci of single nucleotide polymorphisms].

    Science.gov (United States)

    Tang, Jian-pin; Jiang, Feng-hui; Shi, Mei-sen; Xu, Chuan-chao; Chen, Rui; Lai, Xiao-pin

    2012-12-01

    To evaluate polymorphisms and forensic efficiency of 22 non-binary single nucleotide polymorphism (SNP) loci. One hundred ethnic Han Chinese individuals were recruited from Dongguan, Guangdong. The 22 loci were genotyped with matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS). Nine loci were found with a single allele, 4 loci were found to be biallelic, whilst 9 loci were found to have 3 alleles. For 13 polymorphic loci, the combined discrimination power and power of exclusion were 0.999 98 and 0.9330, respectively. For the 9 non-biallelic loci, the combined discrimination power and power of exclusion were 0.9998 and 0.8956, respectively. For motherless cases, the combined power of exclusion was 0.6405 for 13 polymorphic SNPs and 0.6405 for 9 non-binary SNPs. Non-binary loci have a greater discrimination power and exclusion power per SNP.

  12. Identification and Evaluation of Single-Nucleotide Polymorphisms in Allotetraploid Peanut (Arachis hypogaea L.) Based on Amplicon Sequencing Combined with High Resolution Melting (HRM) Analysis.

    Science.gov (United States)

    Hong, Yanbin; Pandey, Manish K; Liu, Ying; Chen, Xiaoping; Liu, Hong; Varshney, Rajeev K; Liang, Xuanqiang; Huang, Shangzhi

    2015-01-01

    The cultivated peanut (Arachis hypogaea L.) is an allotetraploid (AABB) species derived from the A-genome (Arachis duranensis) and B-genome (Arachis ipaensis) progenitors. Presence of two versions of a DNA sequence based on the two progenitor genomes poses a serious technical and analytical problem during single nucleotide polymorphism (SNP) marker identification and analysis. In this context, we have analyzed 200 amplicons derived from expressed sequence tags (ESTs) and genome survey sequences (GSS) to identify SNPs in a panel of genotypes consisting of 12 cultivated peanut varieties and two diploid progenitors representing the ancestral genomes. A total of 18 EST-SNPs and 44 genomic-SNPs were identified in 12 peanut varieties by aligning the sequence of A. hypogaea with diploid progenitors. The average frequency of sequence polymorphism was higher for genomic-SNPs than the EST-SNPs with one genomic-SNP every 1011 bp as compared to one EST-SNP every 2557 bp. In order to estimate the potential and further applicability of these identified SNPs, 96 peanut varieties were genotyped using high resolution melting (HRM) method. Polymorphism information content (PIC) values for EST-SNPs ranged between 0.021 and 0.413 with a mean of 0.172 in the set of peanut varieties, while genomic-SNPs ranged between 0.080 and 0.478 with a mean of 0.249. Total 33 SNPs were used for polymorphism detection among the parents and 10 selected lines from mapping population Y13Zh (Zhenzhuhei × Yueyou13). Of the total 33 SNPs, nine SNPs showed polymorphism in the mapping population Y13Zh, and seven SNPs were successfully mapped into five linkage groups. Our results showed that SNPs can be identified in allotetraploid peanut with high accuracy through amplicon sequencing and HRM assay. The identified SNPs were very informative and can be used for different genetic and breeding applications in peanut.

  13. Cohort analysis of a single nucleotide polymorphism on DNA chips.

    Science.gov (United States)

    Schwonbeck, Susanne; Krause-Griep, Andrea; Gajovic-Eichelmann, Nenad; Ehrentreich-Förster, Eva; Meinl, Walter; Glatt, Hansrüdi; Bier, Frank F

    2004-11-15

    A method has been developed to determine SNPs on DNA chips by applying a flow-through bioscanner. As a practical application we demonstrated the fast and simple SNP analysis of 24 genotypes in an array of 96 spots with a single hybridisation and dissociation experiment. The main advantage of this methodical concept is the parallel and fast analysis without any need of enzymatic digestion. Additionally, the DNA chip format used is appropriate for parallel analysis up to 400 spots. The polymorphism in the gene of the human phenol sulfotransferase SULT1A1 was studied as a model SNP. Biotinylated PCR products containing the SNP (The SNP summary web site: ) (mutant) and those containing no mutation (wild-type) were brought onto the chips coated with NeutrAvidin using non-contact spotting. This was followed by an analysis which was carried out in a flow-through biochip scanner while constantly rinsing with buffer. After removing the non-biotinylated strand a fluorescent probe was hybridised, which is complementary to the wild-type sequence. If this probe binds to a mutant sequence, then one single base is not fully matching. Thereby, the mismatched hybrid (mutant) is less stable than the full-matched hybrid (wild-type). The final step after hybridisation on the chip involves rinsing with a buffer to start dissociation of the fluorescent probe from the immobilised DNA strand. The online measurement of the fluorescence intensity by the biochip scanner provides the possibility to follow the kinetics of the hybridisation and dissociation processes. According to the different stability of the full-match and the mismatch, either visual discrimination or kinetic analysis is possible to distinguish SNP-containing sequence from the wild-type sequence.

  14. A genome-wide scan study identifies a single nucleotide substitution in ASIP associated with white versus non-white coat-colour variation in sheep (Ovis aries)

    OpenAIRE

    Li, M-H; Tiirikka, T; Kantanen, J

    2013-01-01

    In sheep, coat colour (and pattern) is one of the important traits of great biological, economic and social importance. However, the genetics of sheep coat colour has not yet been fully clarified. We conducted a genome-wide association study of sheep coat colours by genotyping 47 303 single-nucleotide polymorphisms (SNPs) in the Finnsheep population in Finland. We identified 35 SNPs associated with all the coat colours studied, which cover genomic regions encompassing three kno...

  15. Candidate gene analysis using imputed genotypes: cell cycle single-nucleotide polymorphisms and ovarian cancer risk

    DEFF Research Database (Denmark)

    Goode, Ellen L; Fridley, Brooke L; Vierkant, Robert A

    2009-01-01

    Polymorphisms in genes critical to cell cycle control are outstanding candidates for association with ovarian cancer risk; numerous genes have been interrogated by multiple research groups using differing tagging single-nucleotide polymorphism (SNP) sets. To maximize information gleaned from......, and rs3212891; CDK2 rs2069391, rs2069414, and rs17528736; and CCNE1 rs3218036. These results exemplify the utility of imputation in candidate gene studies and lend evidence to a role of cell cycle genes in ovarian cancer etiology, suggest a reduced set of SNPs to target in additional cases and controls....

  16. Identification of single nucleotide polymorphisms associated with hyperproduction of alpha-toxin in Staphylococcus aureus.

    Directory of Open Access Journals (Sweden)

    Xudong Liang

    2011-04-01

    Full Text Available The virulence factor α-toxin (hla is needed by Staphylococcus aureus in order to cause infections in both animals and humans. Although the complicated regulation of hla expression has been well studied in human S. aureus isolates, the mechanisms of of hla regulation in bovine S. aureus isolates remain undefined. In this study, we found that many bovine S. aureus isolates, including the RF122 strain, generate dramatic amounts of α-toxin in vitro compared with human clinical S. aureus isolates, including MRSA WCUH29 and MRSA USA300. To elucidate potential regulatory mechanisms, we analyzed the hla promoter regions and identified predominant single nucleotide polymorphisms (SNPs at positions -376, -483, and -484 from the start codon in α-toxin hyper-producing isolates. Using site-directed mutagenesis and hla promoter-gfp-luxABCDE dual reporter approaches, we demonstrated that the SNPs contribute to the differential control of hla expression among bovine and human S. aureus isolates. Using a DNA affinity assay, gel-shift assays and a null mutant, we identified and revealed that an hla positive regulator, SarZ, contributes to the involvement of the SNPs in mediating hla expression. In addition, we found that the bovine S. aureus isolate RF122 exhibits higher transcription levels of hla positive regulators, including agrA, saeR, arlR and sarZ, but a lower expression level of hla repressor rot compared to the human S. aureus isolate WCUH29. Our results indicate α-toxin hyperproduction in bovine S. aureus is a multifactorial process, influenced at both the genomic and transcriptional levels. Moreover, the identification of predominant SNPs in the hla promoter region may provide a novel method for genotyping the S. aureus isolates.

  17. Identification of novel single nucleotide polymorphisms associated with acute respiratory distress syndrome by exome-seq.

    Directory of Open Access Journals (Sweden)

    Katherine Shortt

    Full Text Available Acute respiratory distress syndrome (ARDS is a lung condition characterized by impaired gas exchange with systemic release of inflammatory mediators, causing pulmonary inflammation, vascular leak and hypoxemia. Existing biomarkers have limited effectiveness as diagnostic and therapeutic targets. To identify disease-associating variants in ARDS patients, whole-exome sequencing was performed on 96 ARDS patients, detecting 1,382,399 SNPs. By comparing these exome data to those of the 1000 Genomes Project, we identified a number of single nucleotide polymorphisms (SNP which are potentially associated with ARDS. 50,190SNPs were found in all case subgroups and controls, of which89 SNPs were associated with susceptibility. We validated three SNPs (rs78142040, rs9605146 and rs3848719 in additional ARDS patients to substantiate their associations with susceptibility, severity and outcome of ARDS. rs78142040 (C>T occurs within a histone mark (intron 6 of the Arylsulfatase D gene. rs9605146 (G>A causes a deleterious coding change (proline to leucine in the XK, Kell blood group complex subunit-related family, member 3 gene. rs3848719 (G>A is a synonymous SNP in the Zinc-Finger/Leucine-Zipper Co-Transducer NIF1 gene. rs78142040, rs9605146, and rs3848719 are associated significantly with susceptibility to ARDS. rs3848719 is associated with APACHE II score quartile. rs78142040 is associated with 60-day mortality in the overall ARDS patient population. Exome-seq is a powerful tool to identify potential new biomarkers for ARDS. We selectively validated three SNPs which have not been previously associated with ARDS and represent potential new genetic biomarkers for ARDS. Additional validation in larger patient populations and further exploration of underlying molecular mechanisms are warranted.

  18. Single nucleotide polymorphism isolated from a novel EST dataset in garden asparagus (Asparagus officinalis L.).

    Science.gov (United States)

    Mercati, Francesco; Riccardi, Paolo; Leebens-Mack, Jim; Abenavoli, Maria Rosa; Falavigna, Agostino; Sunseri, Francesco

    2013-04-01

    Single nucleotide polymorphisms (SNPs) and simple sequence repeats (SSR) are abundant and evenly distributed co-dominant molecular markers in plant genomes. SSRs are valuable for marker assisted breeding and positional cloning of genes associated traits of interest. Although several high throughput platforms have been developed to identify SNP and SSR markers for analysis of segregant plant populations, breeding in garden asparagus (Asparagus officinalis L.) has been limited by a low content of such markers. In this study massively parallel GS-FLX pyro-sequencing technology (454 Life Sciences) has been used to sequence and compare transcriptome from two genotypes: a rust tolerant male (1770) and a susceptible female (G190). A total of 122,963 and 99,368 sequence reads, with an average length of 245.7bp, have been recovered from accessions 1770 and 190 respectively. A computational pipeline has been used to predict and visually inspect putative SNPs and SSR sequences. Analysis of Gene Ontology (GO) slim annotation assignments for all assembled uniscripts indicated that the 24,403 assemblies represent genes from a broad array of functions. Further, over 1800 putative SNPs and 1000 SSRs were detected. One hundred forty-four SNPs together with 60 selected SSRs were validated and used to develop a preliminary genetic map by using a large BC(1) population, derived from 1770 and G190. The abundance of SNPs and SSRs provides a foundation for the development of saturated genetic maps and their utilization in assisted asparagus breeding programs. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  19. Detecting high-order interactions of single nucleotide polymorphisms using genetic programming.

    Science.gov (United States)

    Nunkesser, Robin; Bernholt, Thorsten; Schwender, Holger; Ickstadt, Katja; Wegener, Ingo

    2007-12-15

    Not individual single nucleotide polymorphisms (SNPs), but high-order interactions of SNPs are assumed to be responsible for complex diseases such as cancer. Therefore, one of the major goals of genetic association studies concerned with such genotype data is the identification of these high-order interactions. This search is additionally impeded by the fact that these interactions often are only explanatory for a relatively small subgroup of patients. Most of the feature selection methods proposed in the literature, unfortunately, fail at this task, since they can either only identify individual variables or interactions of a low order, or try to find rules that are explanatory for a high percentage of the observations. In this article, we present a procedure based on genetic programming and multi-valued logic that enables the identification of high-order interactions of categorical variables such as SNPs. This method called GPAS cannot only be used for feature selection, but can also be employed for discrimination. In an application to the genotype data from the GENICA study, an association study concerned with sporadic breast cancer, GPAS is able to identify high-order interactions of SNPs leading to a considerably increased breast cancer risk for different subsets of patients that are not found by other feature selection methods. As an application to a subset of the HapMap data shows, GPAS is not restricted to association studies comprising several 10 SNPs, but can also be employed to analyze whole-genome data. Software can be downloaded from http://ls2-www.cs.uni-dortmund.de/~nunkesser/#Software

  20. The cardiovascular implication of single nucleotide polymorphisms of chromosome 9p21 locus among Arab population

    Directory of Open Access Journals (Sweden)

    Ayman A El-Menyar

    2015-01-01

    Full Text Available Background: Based on several reports including genome-wide association studies, genetic variability has been linked with higher (nearly half susceptibility toward coronary artery disease (CAD. We aimed to evaluate the association of chromosome 9p21 single nucleotide polymorphisms (SNPs: rs2383207, rs10757278, and rs10757274 with the risk and severity of CAD among Arab population. Materials and Methods: A prospective observational case-control study was conducted between 2011 and 2012, in which 236 patients with CAD were recruited from the Heart Hospital in Qatar. Patients were categorized according to their coronary angiographic findings. Also, 152 healthy volunteers were studied to determine if SNPs are associated with risk of CAD. All subjects were genotyped for SNPs (rs2383207, rs2383206, rs10757274 and rs10757278 using allele-specific real-time polymerase chain reaction. Results: Patients with CAD had a mean age of 57 ± 10; of them 77% were males, 54% diabetics, and 25% had family history of CAD. All SNPs were in Hardy-Weinberg equilibrium except rs2383206, with call rate >97%. After adjusting for age, sex and body mass index, the carriers of GG genotype for rs2383207 have increased the risk of having CAD with odds ratio (OR of 1.52 (95% confidence interval [CI] = 1.01-2.961, P = 0.046. Also, rs2383207 contributed to CAD severity with adjusted OR 1.80 (95% CI = 1.04-3.12, P = 0.035 based on the dominant genetic model. The other SNPs (rs10757274 and rs10757278 showed no significant association with the risk of CAD or its severity. Conclusion: Among Arab population in Qatar, only G allele of rs2483207 SNP is significantly associated with risk of CAD and its severity.

  1. Single nucleotide polymorphism discovery from expressed sequence tags in the waterflea Daphnia magna

    Directory of Open Access Journals (Sweden)

    Souche Erika L

    2011-06-01

    Full Text Available Abstract Background Daphnia (Crustacea: Cladocera plays a central role in standing aquatic ecosystems, has a well known ecology and is widely used in population studies and environmental risk assessments. Daphnia magna is, especially in Europe, intensively used to study stress responses of natural populations to pollutants, climate change, and antagonistic interactions with predators and parasites, which have all been demonstrated to induce micro-evolutionary and adaptive responses. Although its ecology and evolutionary biology is intensively studied, little is known on the functional genomics underpinning of phenotypic responses to environmental stressors. The aim of the present study was to find genes expressed in presence of environmental stressors, and target such genes for single nucleotide polymorphic (SNP marker development. Results We developed three expressed sequence tag (EST libraries using clonal lineages of D. magna exposed to ecological stressors, namely fish predation, parasite infection and pesticide exposure. We used these newly developed ESTs and other Daphnia ESTs retrieved from NCBI GeneBank to mine for SNP markers targeting synonymous as well as non synonymous genetic variation. We validate the developed SNPs in six natural populations of D. magna distributed at regional scale. Conclusions A large proportion (47% of the produced ESTs are Daphnia lineage specific genes, which are potentially involved in responses to environmental stress rather than to general cellular functions and metabolic activities, or reflect the arthropod's aquatic lifestyle. The characterization of genes expressed under stress and the validation of their SNPs for population genetic study is important for identifying ecologically responsive genes in D. magna.

  2. Population Genomics of Inversion Polymorphisms in Drosophila melanogaster

    Science.gov (United States)

    Corbett-Detig, Russell B.; Hartl, Daniel L.

    2012-01-01

    Chromosomal inversions have been an enduring interest of population geneticists since their discovery in Drosophila melanogaster. Numerous lines of evidence suggest powerful selective pressures govern the distributions of polymorphic inversions, and these observations have spurred the development of many explanatory models. However, due to a paucity of nucleotide data, little progress has been made towards investigating selective hypotheses or towards inferring the genealogical histories of inversions, which can inform models of inversion evolution and suggest selective mechanisms. Here, we utilize population genomic data to address persisting gaps in our knowledge of D. melanogaster's inversions. We develop a method, termed Reference-Assisted Reassembly, to assemble unbiased, highly accurate sequences near inversion breakpoints, which we use to estimate the age and the geographic origins of polymorphic inversions. We find that inversions are young, and most are African in origin, which is consistent with the demography of the species. The data suggest that inversions interact with polymorphism not only in breakpoint regions but also chromosome-wide. Inversions remain differentiated at low levels from standard haplotypes even in regions that are distant from breakpoints. Although genetic exchange appears fairly extensive, we identify numerous regions that are qualitatively consistent with selective hypotheses. Finally, we show that In(1)Be, which we estimate to be ∼60 years old (95% CI 5.9 to 372.8 years), has likely achieved high frequency via sex-ratio segregation distortion in males. With deeper sampling, it will be possible to build on our inferences of inversion histories to rigorously test selective models—particularly those that postulate that inversions achieve a selective advantage through the maintenance of co-adapted allele complexes. PMID:23284285

  3. Robust embryo identification using first polar body single nucleotide polymorphism microarray-based DNA fingerprinting.

    Science.gov (United States)

    Treff, Nathan R; Su, Jing; Kasabwala, Natasha; Tao, Xin; Miller, Kathleen A; Scott, Richard T

    2010-05-01

    This study sought to validate a novel, minimally invasive system for embryo tracking by single nucleotide polymorphism microarray-based DNA fingerprinting of the first polar body. First polar body-based assignments of which embryos implanted and were delivered after multiple ET were 100% consistent with previously validated embryo DNA fingerprinting-based assignments. Copyright 2010 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  4. Single nucleotide polymorphism in Egyptian cattle insulin-like growth factor binding protein-3 gene

    Directory of Open Access Journals (Sweden)

    Othman E. Othman

    2014-12-01

    It is concluded that the IGFBP-3/HaeIII polymorphism may be utilized as a good marker for genetic differentiation between cattle animals for different body functions such as growth, metabolism, reproduction, immunity and energy balance. The nucleotide sequences of Egyptian cattle IGFBP-3 A and C alleles were submitted to GenBank with the accession numbers KF899893 and KF899894, respectively.

  5. High-resolution genetic map for understanding the effect of genome-wide recombination rate on nucleotide diversity in watermelon.

    Science.gov (United States)

    Reddy, Umesh K; Nimmakayala, Padma; Levi, Amnon; Abburi, Venkata Lakshmi; Saminathan, Thangasamy; Tomason, Yan R; Vajja, Gopinath; Reddy, Rishi; Abburi, Lavanya; Wehner, Todd C; Ronin, Yefim; Karol, Abraham

    2014-09-15

    We used genotyping by sequencing to identify a set of 10,480 single nucleotide polymorphism (SNP) markers for constructing a high-resolution genetic map of 1096 cM for watermelon. We assessed the genome-wide variation in recombination rate (GWRR) across the map and found an association between GWRR and genome-wide nucleotide diversity. Collinearity between the map and the genome-wide reference sequence for watermelon was studied to identify inconsistency and chromosome rearrangements. We assessed genome-wide nucleotide diversity, linkage disequilibrium (LD), and selective sweep for wild, semi-wild, and domesticated accessions of Citrullus lanatus var. lanatus to track signals of domestication. Principal component analysis combined with chromosome-wide phylogenetic study based on 1563 SNPs obtained after LD pruning with minor allele frequency of 0.05 resolved the differences between semi-wild and wild accessions as well as relationships among worldwide sweet watermelon. Population structure analysis revealed predominant ancestries for wild, semi-wild, and domesticated watermelons as well as admixture of various ancestries that were important for domestication. Sliding window analysis of Tajima's D across various chromosomes was used to resolve selective sweep. LD decay was estimated for various chromosomes. We identified a strong selective sweep on chromosome 3 consisting of important genes that might have had a role in sweet watermelon domestication. Copyright © 2014 Reddy et al.

  6. Approach to analysis of single nucleotide polymorphisms by automated constant denaturant capillary electrophoresis

    International Nuclear Information System (INIS)

    Bjoerheim, Jens; Abrahamsen, Torveig Weum; Kristensen, Annette Torgunrud; Gaudernack, Gustav; Ekstroem, Per O.

    2003-01-01

    Melting gel techniques have proven to be amenable and powerful tools in point mutation and single nucleotide polymorphism (SNP) analysis. With the introduction of commercially available capillary electrophoresis instruments, a partly automated platform for denaturant capillary electrophoresis with potential for routine screening of selected target sequences has been established. The aim of this article is to demonstrate the use of automated constant denaturant capillary electrophoresis (ACDCE) in single nucleotide polymorphism analysis of various target sequences. Optimal analysis conditions for different single nucleotide polymorphisms on ACDCE are evaluated with the Poland algorithm. Laboratory procedures include only PCR and electrophoresis. For direct genotyping of individual SNPs, the samples are analyzed with an internal standard and the alleles are identified by co-migration of sample and standard peaks. In conclusion, SNPs suitable for melting gel analysis based on theoretical thermodynamics were separated by ACDCE under appropriate conditions. With this instrumentation (ABI 310 Genetic Analyzer), 48 samples could be analyzed without any intervention. Several institutions have capillary instrumentation in-house, thus making this SNP analysis method accessible to large groups of researchers without any need for instrument modification

  7. Heated oligonucleotide ligation assay (HOLA): an affordable single nucleotide polymorphism assay.

    Science.gov (United States)

    Black, W C; Gorrochotegui-Escalante, N; Duteau, N M

    2006-03-01

    Most single nucleotide polymorphism (SNP) detection requires expensive equipment and reagents. The oligonucleotide ligation assay (OLA) is an inexpensive SNP assay that detects ligation between a biotinylated "allele-specific detector" and a 3' fluorescein-labeled "reporter" oligonucleotide. No ligation occurs unless the 3' detector nucleotide is complementary to the SNP nucleotide. The original OLA used chemical denaturation and neutralization. Heated OLA (HOLA) instead uses a thermal stable ligase and cycles of denaturing and hybridization for ligation and SNP detection. The cost per genotype is approximately US$1.25 with two-allele SNPs or approximately US$1.75 with three-allele SNPs. We illustrate the development of HOLA for SNP detection in the Early Trypsin and Abundant Trypsin loci in the mosquito Aedes aegypti (L.) and at the a-glycerophosphate dehydrogenase locus in the mosquito Anopheles gambiae s.s.

  8. Comparative Analysis of Disease-Linked Single Nucleotide Polymorphic Markers from Brassica rapa for Their Applicability to Brassica oleracea

    Science.gov (United States)

    Cho, Young-Il; Ahn, Yul-Kyun; Tripathi, Swati; Kim, Jeong-Ho; Lee, Hye-Eun; Kim, Do-Sun

    2015-01-01

    Numerous studies using single nucleotide polymorphisms (SNPs) have been conducted in humans, and other animals, and in major crops, including rice, soybean, and Chinese cabbage. However, the number of SNP studies in cabbage is limited. In this present study, we evaluated whether 7,645 SNPs previously identified as molecular markers linked to disease resistance in the Brassica rapa genome could be applied to B. oleracea. In a BLAST analysis using the SNP sequences of B. rapa and B. oleracea genomic sequence data registered in the NCBI database, 256 genes for which SNPs had been identified in B. rapa were found in B. oleracea. These genes were classified into three functional groups: molecular function (64 genes), biological process (96 genes), and cellular component (96 genes). A total of 693 SNP markers, including 145 SNP markers [BRH—developed from the B. rapa genome for high-resolution melt (HRM) analysis], 425 SNP markers (BRP—based on the B. rapa genome that could be applied to B. oleracea), and 123 new SNP markers (BRS—derived from BRP and designed for HRM analysis), were investigated for their ability to amplify sequences from cabbage genomic DNA. In total, 425 of the SNP markers (BRP-based on B. rapa genome), selected from 7,645 SNPs, were successfully applied to B. oleracea. Using PCR, 108 of 145 BRH (74.5%), 415 of 425 BRP (97.6%), and 118 of 123 BRS (95.9%) showed amplification, suggesting that it is possible to apply SNP markers developed based on the B. rapa genome to B. oleracea. These results provide valuable information that can be utilized in cabbage genetics and breeding programs using molecular markers derived from other Brassica species. PMID:25790283

  9. Effect of BCHE single nucleotide polymorphisms on lipid metabolism markers in women

    Directory of Open Access Journals (Sweden)

    Jéssica de Oliveira

    2017-05-01

    Full Text Available Abstract Butyrylcholinesterase (BChE activity and polymorphisms in its encoding gene had previously been associated with metabolic traits of obesity. This study investigated the association of three single nucleotide polymorphisms (SNPs in the BCHE gene: -116G > A (rs1126680, 1615GA (rs1803274, 1914A 0.05. The dominant and recessive models were tested, and different effects were found. The -116A allele showed a dominant effect in BChE activity reduction in both non-obese and obese women (p = 0.045 and p G and 1615GA SNPs influenced the TG levels only in obese women. The 1914G and the 1615A alleles were associated with decreased plasma levels of TG. Thus, our results suggest that the obesity condition, characterized by loss of energy homeostasis, is modulated by BCHE polymorphisms.

  10. Prevalence of single nucleotide polymorphism among 27 diverse alfalfa genotypes as assessed by transcriptome sequencing

    Directory of Open Access Journals (Sweden)

    Li Xuehui

    2012-10-01

    Full Text Available Abstract Background Alfalfa, a perennial, outcrossing species, is a widely planted forage legume producing highly nutritious biomass. Currently, improvement of cultivated alfalfa mainly relies on recurrent phenotypic selection. Marker assisted breeding strategies can enhance alfalfa improvement efforts, particularly if many genome-wide markers are available. Transcriptome sequencing enables efficient high-throughput discovery of single nucleotide polymorphism (SNP markers for a complex polyploid species. Result The transcriptomes of 27 alfalfa genotypes, including elite breeding genotypes, parents of mapping populations, and unimproved wild genotypes, were sequenced using an Illumina Genome Analyzer IIx. De novo assembly of quality-filtered 72-bp reads generated 25,183 contigs with a total length of 26.8 Mbp and an average length of 1,065 bp, with an average read depth of 55.9-fold for each genotype. Overall, 21,954 (87.2% of the 25,183 contigs represented 14,878 unique protein accessions. Gene ontology (GO analysis suggested that a broad diversity of genes was represented in the resulting sequences. The realignment of individual reads to the contigs enabled the detection of 872,384 SNPs and 31,760 InDels. High resolution melting (HRM analysis was used to validate 91% of 192 putative SNPs identified by sequencing. Both allelic variants at about 95% of SNP sites identified among five wild, unimproved genotypes are still present in cultivated alfalfa, and all four US breeding programs also contain a high proportion of these SNPs. Thus, little evidence exists among this dataset for loss of significant DNA sequence diversity from either domestication or breeding of alfalfa. Structure analysis indicated that individuals from the subspecies falcata, the diploid subspecies caerulea, and the tetraploid subspecies sativa (cultivated tetraploid alfalfa were clearly separated. Conclusion We used transcriptome sequencing to discover large numbers of SNPs

  11. Geography and genography: prediction of continental origin using randomly selected single nucleotide polymorphisms

    Directory of Open Access Journals (Sweden)

    Ramoni Marco F

    2007-03-01

    Full Text Available Abstract Background Recent studies have shown that when individuals are grouped on the basis of genetic similarity, group membership corresponds closely to continental origin. There has been considerable debate about the implications of these findings in the context of larger debates about race and the extent of genetic variation between groups. Some have argued that clustering according to continental origin demonstrates the existence of significant genetic differences between groups and that these differences may have important implications for differences in health and disease. Others argue that clustering according to continental origin requires the use of large amounts of genetic data or specifically chosen markers and is indicative only of very subtle genetic differences that are unlikely to have biomedical significance. Results We used small numbers of randomly selected single nucleotide polymorphisms (SNPs from the International HapMap Project to train naïve Bayes classifiers for prediction of ancestral continent of origin. Predictive accuracy was tested on two independent data sets. Genetically similar groups should be difficult to distinguish, especially if only a small number of genetic markers are used. The genetic differences between continentally defined groups are sufficiently large that one can accurately predict ancestral continent of origin using only a minute, randomly selected fraction of the genetic variation present in the human genome. Genotype data from only 50 random SNPs was sufficient to predict ancestral continent of origin in our primary test data set with an average accuracy of 95%. Genetic variations informative about ancestry were common and widely distributed throughout the genome. Conclusion Accurate characterization of ancestry is possible using small numbers of randomly selected SNPs. The results presented here show how investigators conducting genetic association studies can use small numbers of arbitrarily

  12. Mouse SNP Miner: an annotated database of mouse functional single nucleotide polymorphisms

    Directory of Open Access Journals (Sweden)

    Ramensky Vasily E

    2007-01-01

    Full Text Available Abstract Background The mapping of quantitative trait loci in rat and mouse has been extremely successful in identifying chromosomal regions associated with human disease-related phenotypes. However, identifying the specific phenotype-causing DNA sequence variations within a quantitative trait locus has been much more difficult. The recent availability of genomic sequence from several mouse inbred strains (including C57BL/6J, 129X1/SvJ, 129S1/SvImJ, A/J, and DBA/2J has made it possible to catalog DNA sequence differences within a quantitative trait locus derived from crosses between these strains. However, even for well-defined quantitative trait loci ( Description To help identify functional DNA sequence variations within quantitative trait loci we have used the Ensembl annotated genome sequence to compile a database of mouse single nucleotide polymorphisms (SNPs that are predicted to cause missense, nonsense, frameshift, or splice site mutations (available at http://bioinfo.embl.it/SnpApplet/. For missense mutations we have used the PolyPhen and PANTHER algorithms to predict whether amino acid changes are likely to disrupt protein function. Conclusion We have developed a database of mouse SNPs predicted to cause missense, nonsense, frameshift, and splice-site mutations. Our analysis revealed that 20% and 14% of missense SNPs are likely to be deleterious according to PolyPhen and PANTHER, respectively, and 6% are considered deleterious by both algorithms. The database also provides gene expression and functional annotations from the Symatlas, Gene Ontology, and OMIM databases to further assess candidate phenotype-causing mutations. To demonstrate its utility, we show that Mouse SNP Miner successfully finds a previously identified candidate SNP in the taste receptor, Tas1r3, that underlies sucrose preference in the C57BL/6J strain. We also use Mouse SNP Miner to derive a list of candidate phenotype-causing mutations within a previously

  13. Identification of Single Nucleotide Polymorphisms and analysis of Linkage Disequilibrium in sunflower elite inbred lines using the candidate gene approach

    Directory of Open Access Journals (Sweden)

    Heinz Ruth A

    2008-01-01

    Full Text Available Abstract Background Association analysis is a powerful tool to identify gene loci that may contribute to phenotypic variation. This includes the estimation of nucleotide diversity, the assessment of linkage disequilibrium structure (LD and the evaluation of selection processes. Trait mapping by allele association requires a high-density map, which could be obtained by the addition of Single Nucleotide Polymorphisms (SNPs and short insertion and/or deletions (indels to SSR and AFLP genetic maps. Nucleotide diversity analysis of randomly selected candidate regions is a promising approach for the success of association analysis and fine mapping in the sunflower genome. Moreover, knowledge of the distance over which LD persists, in agronomically meaningful sunflower accessions, is important to establish the density of markers and the experimental design for association analysis. Results A set of 28 candidate genes related to biotic and abiotic stresses were studied in 19 sunflower inbred lines. A total of 14,348 bp of sequence alignment was analyzed per individual. In average, 1 SNP was found per 69 nucleotides and 38 indels were identified in the complete data set. The mean nucleotide polymorphism was moderate (θ = 0.0056, as expected for inbred materials. The number of haplotypes per region ranged from 1 to 9 (mean = 3.54 ± 1.88. Model-based population structure analysis allowed detection of admixed individuals within the set of accessions examined. Two putative gene pools were identified (G1 and G2, with a large proportion of the inbred lines being assigned to one of them (G1. Consistent with the absence of population sub-structuring, LD for G1 decayed more rapidly (r2 = 0.48 at 643 bp; trend line, pooled data than the LD trend line for the entire set of 19 individuals (r2 = 0.64 for the same distance. Conclusion Knowledge about the patterns of diversity and the genetic relationships between breeding materials could be an invaluable aid in crop

  14. Single nucleotide polymorphism analysis of ubiquitin extension protein genes (ubq) of gossypium arboreum and gossypium herbaceum in comparison with arabidopsis thaliana

    International Nuclear Information System (INIS)

    Shaheen, T.; Zafar, Y.; Rahman, M.

    2014-01-01

    Single nucleotide polymorphism analysis is an expedient way to study polymorphisms at genomic level. In the present study we have explored Ubiquitin extension protein gene of G. arboreum (A2) and G. herbaceum (A1) of cotton which is a multiple copy gene. We have found SNPs at 16 positions in 200 bp region within A genome of cotton indicating frequency of SNPs 1/13 bp. Both sequences from cotton have shown maximum similarity with UBQ5 and UBQ6 of Arabidopsis thaliana. Sequence obtained from G. arboreum has shown SNPs at 28 positions in comparison with each UBQ5 and UBQ6 of Arabidopsis thaliana while sequence obtained from G. herbaceum has shown SNPs at 31 positions in comparison with each UBQ5 and UBQ6 of Arabidopsis thaliana. In conclusion although during pace of evolution ubiquitin extension protein genes of both A genome species have got some mutations from nature but still most of their sequence is similar. Single nucleotide polymorphism study can prove a vital tool to identify gene type in case of Multicopy genes. (author)

  15. Sequence based polymorphic (SBP marker technology for targeted genomic regions: its application in generating a molecular map of the Arabidopsis thaliana genome

    Directory of Open Access Journals (Sweden)

    Sahu Binod B

    2012-01-01

    Full Text Available Abstract Background Molecular markers facilitate both genotype identification, essential for modern animal and plant breeding, and the isolation of genes based on their map positions. Advancements in sequencing technology have made possible the identification of single nucleotide polymorphisms (SNPs for any genomic regions. Here a sequence based polymorphic (SBP marker technology for generating molecular markers for targeted genomic regions in Arabidopsis is described. Results A ~3X genome coverage sequence of the Arabidopsis thaliana ecotype, Niederzenz (Nd-0 was obtained by applying Illumina's sequencing by synthesis (Solexa technology. Comparison of the Nd-0 genome sequence with the assembled Columbia-0 (Col-0 genome sequence identified putative single nucleotide polymorphisms (SNPs throughout the entire genome. Multiple 75 base pair Nd-0 sequence reads containing SNPs and originating from individual genomic DNA molecules were the basis for developing co-dominant SBP markers. SNPs containing Col-0 sequences, supported by transcript sequences or sequences from multiple BAC clones, were compared to the respective Nd-0 sequences to identify possible restriction endonuclease enzyme site variations. Small amplicons, PCR amplified from both ecotypes, were digested with suitable restriction enzymes and resolved on a gel to reveal the sequence based polymorphisms. By applying this technology, 21 SBP markers for the marker poor regions of the Arabidopsis map representing polymorphisms between Col-0 and Nd-0 ecotypes were generated. Conclusions The SBP marker technology described here allowed the development of molecular markers for targeted genomic regions of Arabidopsis. It should facilitate isolation of co-dominant molecular markers for targeted genomic regions of any animal or plant species, whose genomic sequences have been assembled. This technology will particularly facilitate the development of high density molecular marker maps, essential for

  16. Single nucleotide polymorphism in genome-wide association of ...

    African Journals Online (AJOL)

    Mohd Fareed

    2012-09-25

    Sep 25, 2012 ... Codeine, Tramadol, Acetaminophen. CYP2C9. Celecoxib .... Pharmacogenet- ics of acute azathioprine toxicity: relationship to thiopurine ... Martinez C, Cueto R,. Garcia-Martin E. Pharmacogenomics in drug induced liver.

  17. Generation of Transcript Assemblies and Identification of Single Nucleotide Polymorphisms from Seven Lowland and Upland Cultivars of Switchgrass

    Directory of Open Access Journals (Sweden)

    Kevin L. Childs

    2014-07-01

    Full Text Available Switchgrass is a North American perennial prairie species that has been used as a rangeland and forage crop and has recently been targeted as a potential biofuel feedstock species. Switchgrass, which occurs as tetraploid and octoploid forms, is classified into lowland or upland ecotypes that differ in growth phenotypes and adaptation to distinct habitats. Using RNA-sequencing (RNA-seq reads derived from crown, young shoot, and leaf tissues, we generated sequence data from seven switchgrass cultivars, three lowland and four upland, to enable comparative analyses between switchgrass cultivars and to identify single nucleotide polymorphisms (SNPs for use in breeding and genetic analysis. We also generated individual transcript assemblies for each of the cultivars. Transcript data indicate that subgenomes of octoploid switchgrass are not substantially different from subgenomes of tetraploids as expected for an autopolyploid origin of switchgrass octoploids. Using RNA-seq reads aligned to the switchgrass Release 0 AP13 reference genome, we identified 1,305,976 high-confidence SNPs. Of these SNPs, 438,464 were unique to lowland cultivars, but only 12,002 were found in all lowlands. Conversely, 723,678 SNPs were unique to upland cultivars, with only 34,665 observed in all uplands. Comparison of our high-confidence transcriptome-derived SNPs with SNPs previously identified in a genotyping-by-sequencing (GBS study of an association panel revealed limited overlap between the two methods, highlighting the utility of transcriptome-based SNP discovery in augmenting genome diversity polymorphism datasets. The transcript and SNP data described here provide a useful resource for switchgrass gene annotation and marker-based analyses of the switchgrass genome.

  18. Single nucleotide polymorphism discovery via genotyping by sequencing to assess population genetic structure and recurrent polyploidization in Andropogon gerardii.

    Science.gov (United States)

    McAllister, Christine A; Miller, Allison J

    2016-07-01

    Autopolyploidy, genome duplication within a single lineage, can result in multiple cytotypes within a species. Geographic distributions of cytotypes may reflect the evolutionary history of autopolyploid formation and subsequent population dynamics including stochastic (drift) and deterministic (differential selection among cytotypes) processes. Here, we used a population genomic approach to investigate whether autopolyploidy occurred once or multiple times in Andropogon gerardii, a widespread, North American grass with two predominant cytotypes. Genotyping by sequencing was used to identify single nucleotide polymorphisms (SNPs) in individuals collected from across the geographic range of A. gerardii. Two independent approaches to SNP calling were used: the reference-free UNEAK pipeline and a reference-guided approach based on the sequenced Sorghum bicolor genome. SNPs generated using these pipelines were analyzed independently with genetic distance and clustering. Analyses of the two SNP data sets showed very similar patterns of population-level clustering of A. gerardii individuals: a cluster of A. gerardii individuals from the southern Plains, a northern Plains cluster, and a western cluster. Groupings of individuals corresponded to geographic localities regardless of cytotype: 6x and 9x individuals from the same geographic area clustered together. SNPs generated using reference-guided and reference-free pipelines in A. gerardii yielded unique subsets of genomic data. Both data sets suggest that the 9x cytotype in A. gerardii likely evolved multiple times from 6x progenitors across the range of the species. Genomic approaches like GBS and diverse bioinformatics pipelines used here facilitate evolutionary analyses of complex systems with multiple ploidy levels. © 2016 Botanical Society of America.

  19. A Lateral Flow Biosensor for the Detection of Single Nucleotide Polymorphisms.

    Science.gov (United States)

    Zeng, Lingwen; Xiao, Zhuo

    2017-01-01

    A lateral flow biosensor (LFB) is introduced for the detection of single nucleotide polymorphisms (SNPs). The assay is composed of two steps: circular strand displacement reaction and lateral flow biosensor detection. In step 1, the nucleotide at SNP site is recognized by T4 DNA ligase and the signal is amplified by strand displacement DNA polymerase, which can be accomplished at a constant temperature. In step 2, the reaction product of step 1 is detected by a lateral flow biosensor, which is a rapid and cost effective tool for nuclei acid detection. Comparing with conventional methods, it requires no complicated machines. It is suitable for the use of point of care diagnostics. Therefore, this simple, cost effective, robust, and promising LFB detection method of SNP has great potential for the detection of genetic diseases, personalized medicine, cancer related mutations, and drug-resistant mutations of infectious agents.

  20. [Correlation analysis between single nucleotide polymorphism of FGF5 gene and wool yield in rabbits].

    Science.gov (United States)

    Li, Chun-Xiao; Jiang, Mei-Shan; Chen, Shi-Yi; Lai, Song-Jia

    2008-07-01

    Single nucleotide polymorphism (SNP) in exon 1 and 3 of fibroblast growth factor (FGF5) gene was studied by DNA sequencing in Yingjing angora rabbit, Tianfu black rabbit and California rabbit. A frameshift mutation (TCT insert) at base position 217 (site A) of exon 1 and a T/C missense mutation at base position 59 (site B) of exon 3 were found in Yingjing angora rabbit with a high frequency; a T/C same-sense mutation at base position 3 (site C) of exon 3 was found with similar frequency in three rabbit breeds. Least square analysis showed that different genotypes had no significant association with wool yield in site A, and had high significant association with wool yield in site B (Plink with the major gene, and polymorphic loci B and C may be used as molecular markers for im-proving wool yield in angora rabbits.

  1. Reinvestigations of six unusual paternity cases by typing of autosomal single-nucleotide polymorphisms

    DEFF Research Database (Denmark)

    Børsting, Claus; Morling, Niels

    2012-01-01

    and published as case work examples in forensic journals. Here, the cases were reinvestigated by typing the samples for 49 autosomal single-nucleotide polymorphisms (SNPs) using the SNPforID multiplex assay. RESULTS: Three cases were solved by the SNP investigation without the need for any additional testing....... In two cases, the SNP results supported the conclusions based on STRs. In the last case, the SNP results spoke in favor of paternity, and the combined paternity index based on autosomal STRs and SNPs was 12.3 billion. Nevertheless, the alleged father was excluded by X-chromosome typing. CONCLUSION...

  2. LNA-enhanced detection of single nucleotide polymorphisms in the apolipoprotein E

    DEFF Research Database (Denmark)

    Jacobsen, Nana; Bentzen, Joan; Meldgaard, Michael

    2002-01-01

    Genotyping of single nucleotide polymorphisms (SNPs) in large populations presents a great challenge, especially if the SNPs are embedded in GC-rich regions, such as the codon 112 SNP in the human apolipoprotein E (apoE). In the present study, we have used immobilized locked nucleic acid (LNA...... was applied to a panel of patient samples with simultaneous genotyping of the patients by DNA sequencing. The apoE genotyping assays for the codons 112 and 158 SNPs resulted in unambiguous results for all patient samples, concurring with those obtained by DNA sequencing....

  3. Influence of the MDM2 single nucleotide polymorphism SNP309 on tumour development in BRCA1 mutation carriers

    Directory of Open Access Journals (Sweden)

    Johnson Peter W

    2006-03-01

    Full Text Available Abstract Background The MDM2 gene encodes a negative regulator of the p53 tumour suppressor protein. A single nucleotide polymorphism (SNP in the MDM2 promoter (a T to G exchange at nucleotide 309 has been reported to produce accelerated tumour formation in individuals with inherited p53 mutations. We have investigated the effect of the MDM2 SNP309 on clinical outcome in a cohort of patients with germline mutations of BRCA1. Methods Genomic DNA was obtained for 102 healthy controls and 116 patients with established pathogenic mutations of BRCA1 and Pyrosequencing technology™ was used to determine the genotype at the MDM2 SNP309 locus. Results The polymorphism was present in 52.9% of the controls (G/T in 37.3% and G/G in 15.6% and 58.6% of the BRCA1 mutation carriers (47.4% G/T and 11.2% G/G. Incidence of malignancy in female BRCA1 carriers was not significantly higher in SNP309 carriers than in wildtype (T/T individuals (72.7% vs. 75.6%, p = 1.00. Mean age of diagnosis of first breast cancer was 41.2 years in the SNP309 G/G genotype carriers, 38.6 years in those with the SNP309 G/T genotype and 39.0 years in wildtype subjects (p = 0.80. Conclusion We found no evidence that the MDM2 SNP309 accelerates tumour development in carriers of known pathogenic germline mutations of BRCA1.

  4. Mitochondrial DNA single nucleotide polymorphism associated with weight estimated breeding values in Nelore cattle (Bos indicus

    Directory of Open Access Journals (Sweden)

    Fernando Henrique Biase

    2007-01-01

    Full Text Available We sampled 119 Nelore cattle (Bos indicus, 69 harboring B. indicus mtDNA plus 50 carrying Bos taurus mtDNA, to estimate the frequencies of putative mtDNA single nucleotide polymorphisms (SNPs and investigate their association with Nelore weight and scrotal circumference estimated breeding values (EBVs. The PCR restriction fragment length polymorphism (PCR-RFLP method was used to detect polymorphisms in the mitochondrial asparagine, cysteine, glycine, leucine and proline transporter RNA (tRNA genes (tRNAasn, tRNAcys, tRNAgly, tRNAleu and tRNApro. The 50 cattle carrying B. taurus mtDNA were monomorphic for all the tRNA gene SNPs analyzed, suggesting that they are specific to mtDNA from B. indicus cattle. No tRNAcys or tRNAgly polymorphisms were detected in any of the cattle but we did detect polymorphic SNPs in the tRNAasn, tRNAleu and tRNApro genes in the cattle harboring B. indicus mtDNA, with the same allele observed in the B. taurus sequence being present in the following percentage of cattle harboring B. indicus mtDNA: 72.46% for tRNAasn, 95.23% for tRNAleu and 90.62% for tRNApro. Analyses of variance using the tRNAasn SNP as the independent variable and EBVs as the dependent variable showed that the G -> T SNP was significantly associated (p < 0.05 with maternal EBVs for weight at 120 and 210 days (p < 0.05 and animal's EBVs for weight at 210, 365 and 455 days. There was no association of the tRNAasn SNP with the scrotal circumference EBVs. These results confirm that mtDNA can affect weight and that mtDNA polymorphisms can be a source of genetic variation for quantitative traits.

  5. Germline contamination and leakage in whole genome somatic single nucleotide variant detection.

    Science.gov (United States)

    Sendorek, Dorota H; Caloian, Cristian; Ellrott, Kyle; Bare, J Christopher; Yamaguchi, Takafumi N; Ewing, Adam D; Houlahan, Kathleen E; Norman, Thea C; Margolin, Adam A; Stuart, Joshua M; Boutros, Paul C

    2018-01-31

    The clinical sequencing of cancer genomes to personalize therapy is becoming routine across the world. However, concerns over patient re-identification from these data lead to questions about how tightly access should be controlled. It is not thought to be possible to re-identify patients from somatic variant data. However, somatic variant detection pipelines can mistakenly identify germline variants as somatic ones, a process called "germline leakage". The rate of germline leakage across different somatic variant detection pipelines is not well-understood, and it is uncertain whether or not somatic variant calls should be considered re-identifiable. To fill this gap, we quantified germline leakage across 259 sets of whole-genome somatic single nucleotide variant (SNVs) predictions made by 21 teams as part of the ICGC-TCGA DREAM Somatic Mutation Calling Challenge. The median somatic SNV prediction set contained 4325 somatic SNVs and leaked one germline polymorphism. The level of germline leakage was inversely correlated with somatic SNV prediction accuracy and positively correlated with the amount of infiltrating normal cells. The specific germline variants leaked differed by tumour and algorithm. To aid in quantitation and correction of leakage, we created a tool, called GermlineFilter, for use in public-facing somatic SNV databases. The potential for patient re-identification from leaked germline variants in somatic SNV predictions has led to divergent open data access policies, based on different assessments of the risks. Indeed, a single, well-publicized re-identification event could reshape public perceptions of the values of genomic data sharing. We find that modern somatic SNV prediction pipelines have low germline-leakage rates, which can be further reduced, especially for cloud-sharing, using pre-filtering software.

  6. PSSRdb: a relational database of polymorphic simple sequence repeats extracted from prokaryotic genomes.

    Science.gov (United States)

    Kumar, Pankaj; Chaitanya, Pasumarthy S; Nagarajaram, Hampapathalu A

    2011-01-01

    PSSRdb (Polymorphic Simple Sequence Repeats database) (http://www.cdfd.org.in/PSSRdb/) is a relational database of polymorphic simple sequence repeats (PSSRs) extracted from 85 different species of prokaryotes. Simple sequence repeats (SSRs) are the tandem repeats of nucleotide motifs of the sizes 1-6 bp and are highly polymorphic. SSR mutations in and around coding regions affect transcription and translation of genes. Such changes underpin phase variations and antigenic variations seen in some bacteria. Although SSR-mediated phase variation and antigenic variations have been well-studied in some bacteria there seems a lot of other species of prokaryotes yet to be investigated for SSR mediated adaptive and other evolutionary advantages. As a part of our on-going studies on SSR polymorphism in prokaryotes we compared the genome sequences of various strains and isolates available for 85 different species of prokaryotes and extracted a number of SSRs showing length variations and created a relational database called PSSRdb. This database gives useful information such as location of PSSRs in genomes, length variation across genomes, the regions harboring PSSRs, etc. The information provided in this database is very useful for further research and analysis of SSRs in prokaryotes.

  7. Association of the polymorphism of codon 121 in the ecto-nucleotide pyrophosphatase/phosphodiesterase 1 gene with polycystic ovary syndrome in Chinese woman

    International Nuclear Information System (INIS)

    Shi, Y.; Chen, Z.; Zhang, P.; Zhao, Y.; You, L.; Sun, X.

    2008-01-01

    Objective was to determine the association of polymorphism of codon 121 in the ecto-nucleotide pyrophosphastase/phosphodiesterase 1 (E-NPP1/PC-1) gene in Chinese women with polycystic ovary syndrome (PCOS). A total of 51 PCOS patients and 61 healthy women from Chinese Han population from the Center Reproductive Medicine of Provincial Hospital affiliated to Shandong University from June 2005 to July 2006 were recruited for the determination of the polymorphism of the E-NPP/PC-1 gene. Genomic DNA was extracted from peripheral blood monocytes of patients and controls and genotyping of the gene was performed by using polymerase chain reaction, which was followed by sequencing. The frequency of the 121Q allele was 13 and 18%, respectively, in PCOS patients and healthy women, while the frequency of the 121K allele was 87 and 82% in the 2 groups. There is no significant difference in the E-NPP1/PC-1 polymorphism between PCOS patients and healthy controls among Chinese Han women. ecto-nucleotide pyrophosphatase/phosphodiesterase 1 polymorphism has no association with PCOS. Further studies are still needed to elucidate whether or not the E-NPP1/PC-1 gene has a functional role in PCOS. (author)

  8. Development and Applications of a High Throughput Genotyping Tool for Polyploid Crops: Single Nucleotide Polymorphism (SNP Array

    Directory of Open Access Journals (Sweden)

    Qian You

    2018-02-01

    Full Text Available Polypoid species play significant roles in agriculture and food production. Many crop species are polyploid, such as potato, wheat, strawberry, and sugarcane. Genotyping has been a daunting task for genetic studies of polyploid crops, which lags far behind the diploid crop species. Single nucleotide polymorphism (SNP array is considered to be one of, high-throughput, relatively cost-efficient and automated genotyping approaches. However, there are significant challenges for SNP identification in complex, polyploid genomes, which has seriously slowed SNP discovery and array development in polyploid species. Ploidy is a significant factor impacting SNP qualities and validation rates of SNP markers in SNP arrays, which has been proven to be a very important tool for genetic studies and molecular breeding. In this review, we (1 discussed the pros and cons of SNP array in general for high throughput genotyping, (2 presented the challenges of and solutions to SNP calling in polyploid species, (3 summarized the SNP selection criteria and considerations of SNP array design for polyploid species, (4 illustrated SNP array applications in several different polyploid crop species, then (5 discussed challenges, available software, and their accuracy comparisons for genotype calling based on SNP array data in polyploids, and finally (6 provided a series of SNP array design and genotype calling recommendations. This review presents a complete overview of SNP array development and applications in polypoid crops, which will benefit the research in molecular breeding and genetics of crops with complex genomes.

  9. No association between a common single nucleotide polymorphism, rs4141463, in the MACROD2 gene and autism spectrum disorder.

    Science.gov (United States)

    Curran, Sarah; Bolton, Patrick; Rozsnyai, Kinga; Chiocchetti, Andreas; Klauck, Sabine M; Duketis, Eftichia; Poustka, Fritz; Schlitt, Sabine; Freitag, Christine M; Lee, Irene; Muglia, Pierandrea; Poot, Martin; Staal, Wouter; de Jonge, Maretha V; Ophoff, Roel A; Lewis, Cathryn; Skuse, David; Mandy, Will; Vassos, Evangelos; Fossdal, Ragnheidur; Magnusson, Páll; Hreidarsson, Stefan; Saemundsen, Evald; Stefansson, Hreinn; Stefansson, Kari; Collier, David

    2011-09-01

    The Autism Genome Project (AGP) Consortium recently reported genome-wide significant association between autism and an intronic single nucleotide polymorphism marker, rs4141463, within the MACROD2 gene. In the present study we attempted to replicate this finding using an independent case-control design of 1,170 cases with autism spectrum disorder (ASD) (874 of which fulfilled narrow criteria for Autism (A)) from five centers within Europe (UK, Germany, the Netherlands, Italy, and Iceland), and 35,307 controls. The combined sample size gave us a non-centrality parameter (NCP) of 11.9, with 93% power to detect allelic association of rs4141463 at an alpha of 0.05 with odds ratio of 0.84 (the best odds ratio estimate of the AGP Consortium data), and for the narrow diagnosis of autism, an NCP of 8.9 and power of 85%. Our case-control data were analyzed for association, stratified by each center, and the summary statistics were combined using the meta-analysis program, GWAMA. This resulted in an odds ratio (OR) of 1.03 (95% CI 0.944-1.133), with a P-value of 0.5 for ASD and OR of 0.99 (95% CI 0.88-1.11) with P-value = 0.85 for the Autism (A) sub-group. Therefore, this study does not provide support for the reported association between rs4141463 and autism. Copyright © 2011 Wiley-Liss, Inc.

  10. Genetic homogeneity of the invasive lionfish across the Northwestern Atlantic and the Gulf of Mexico based on Single Nucleotide Polymorphisms.

    Science.gov (United States)

    Pérez-Portela, R; Bumford, A; Coffman, B; Wedelich, S; Davenport, M; Fogg, A; Swenarton, M K; Coleman, F; Johnston, M A; Crawford, D L; Oleksiak, M F

    2018-03-22

    Despite the devastating impact of the lionfish (Pterois volitans) invasion on NW Atlantic ecosystems, little genetic information about the invasion process is available. We applied Genotyping by Sequencing techniques to identify 1,220 single nucleotide polymorphic sites (SNPs) from 162 lionfish samples collected between 2013 and 2015 from two areas chronologically identified as the first and last invaded areas in US waters: the east coast of Florida and the Gulf of Mexico. We used population genomic analyses, including phylogenetic reconstruction, Bayesian clustering, genetic distances, Discriminant Analyses of Principal Components, and coalescence simulations for detection of outlier SNPs, to understand genetic trends relevant to the lionfish's long-term persistence. We found no significant differences in genetic structure or diversity between the two areas (F ST p-values > 0.01, and t-test p-values > 0.05). In fact, our genomic analyses showed genetic homogeneity, with enough gene flow between the east coast of Florida and Gulf of Mexico to erase previous signals of genetic divergence detected between these areas, secondary spreading, and bottlenecks in the Gulf of Mexico. These findings suggest rapid genetic changes over space and time during the invasion, resulting in one panmictic population with no signs of divergence between areas due to local adaptation.

  11. Larva-mediated chalkbrood resistance-associated single nucleotide polymorphism markers in the honey bee Apis mellifera.

    Science.gov (United States)

    Liu, Y; Yan, L; Li, Z; Huang, W-F; Pokhrel, S; Liu, X; Su, S

    2016-06-01

    Chalkbrood is a disease affecting honey bees that seriously impairs brood growth and productivity of diseased colonies. Although honey bees can develop chalkbrood resistance naturally, the details underlying the mechanisms of resistance are not fully understood, and no easy method is currently available for selecting and breeding resistant bees. Finding the genes involved in the development of resistance and identifying single nucleotide polymorphisms (SNPs) that can be used as molecular markers of resistance is therefore a high priority. We conducted genome resequencing to compare resistant (Res) and susceptible (Sus) larvae that were selected following in vitro chalkbrood inoculation. Twelve genomic libraries, including 14.4 Gb of sequence data, were analysed using SNP-finding algorithms. Unique SNPs derived from chromosomes 2 and 11 were analysed in this study. SNPs from resistant individuals were confirmed by PCR and Sanger sequencing using in vitro reared larvae and resistant colonies. We found strong support for an association between the C allele at SNP C2587245T and chalkbrood resistance. SNP C2587245T may be useful as a genetic marker for the selection of chalkbrood resistance and high royal jelly production honey bee lines, thereby helping to minimize the negative effects of chalkbrood on managed honey bees. © 2016 The Royal Entomological Society.

  12. Single Nucleotide Polymorphism Detection Using Au-Decorated Single-Walled Carbon Nanotube Field Effect Transistors

    Directory of Open Access Journals (Sweden)

    Keum-Ju Lee

    2011-01-01

    Full Text Available We demonstrate that Au-cluster-decorated single-walled carbon nanotubes (SWNTs may be used to discriminate single nucleotide polymorphism (SNP. Nanoscale Au clusters were formed on the side walls of carbon nanotubes in a transistor geometry using electrochemical deposition. The effect of Au cluster decoration appeared as hole doping when electrical transport characteristics were examined. Thiolated single-stranded probe peptide nucleic acid (PNA was successfully immobilized on Au clusters decorating single-walled carbon nanotube field-effect transistors (SWNT-FETs, resulting in a conductance decrease that could be explained by a decrease in Au work function upon adsorption of thiolated PNA. Although a target single-stranded DNA (ssDNA with a single mismatch did not cause any change in electrical conductance, a clear decrease in conductance was observed with matched ssDNA, thereby showing the possibility of SNP (single nucleotide polymorphism detection using Au-cluster-decorated SWNT-FETs. However, a power to discriminate SNP target is lost in high ionic environment. We can conclude that observed SNP discrimination in low ionic environment is due to the hampered binding of SNP target on nanoscale surfaces in low ionic conditions.

  13. Single Nucleotide Polymorphism Discovery in Bovine Pituitary Gland Using RNA-Seq Technology.

    Science.gov (United States)

    Pareek, Chandra Shekhar; Smoczyński, Rafał; Kadarmideen, Haja N; Dziuba, Piotr; Błaszczyk, Paweł; Sikora, Marcin; Walendzik, Paulina; Grzybowski, Tomasz; Pierzchała, Mariusz; Horbańczuk, Jarosław; Szostak, Agnieszka; Ogluszka, Magdalena; Zwierzchowski, Lech; Czarnik, Urszula; Fraser, Leyland; Sobiech, Przemysław; Wąsowicz, Krzysztof; Gelfand, Brian; Feng, Yaping; Kumar, Dibyendu

    2016-01-01

    Examination of bovine pituitary gland transcriptome by strand-specific RNA-seq allows detection of putative single nucleotide polymorphisms (SNPs) within potential candidate genes (CGs) or QTLs regions as well as to understand the genomics variations that contribute to economic trait. Here we report a breed-specific model to successfully perform the detection of SNPs in the pituitary gland of young growing bulls representing Polish Holstein-Friesian (HF), Polish Red, and Hereford breeds at three developmental ages viz., six months, nine months, and twelve months. A total of 18 bovine pituitary gland polyA transcriptome libraries were prepared and sequenced using the Illumina NextSeq 500 platform. Sequenced FastQ databases of all 18 young bulls were submitted to NCBI-SRA database with NCBI-SRA accession numbers SRS1296732. For the investigated young bulls, a total of 113,882,3098 raw paired-end reads with a length of 156 bases were obtained, resulting in an approximately 63 million paired-end reads per library. Breed-wise, a total of 515.38, 215.39, and 408.04 million paired-end reads were obtained for Polish HF, Polish Red, and Hereford breeds, respectively. Burrows-Wheeler Aligner (BWA) read alignments showed 93.04%, 94.39%, and 83.46% of the mapped sequencing reads were properly paired to the Polish HF, Polish Red, and Hereford breeds, respectively. Constructed breed-specific SNP-db of three cattle breeds yielded at 13,775,885 SNPs. On an average 765,326 breed-specific SNPs per young bull were identified. Using two stringent filtering parameters, i.e., a minimum 10 SNP reads per base with an accuracy ≥ 90% and a minimum 10 SNP reads per base with an accuracy = 100%, SNP-db records were trimmed to construct a highly reliable SNP-db. This resulted in a reduction of 95,7% and 96,4% cut-off mark of constructed raw SNP-db. Finally, SNP discoveries using RNA-Seq data were validated by KASP™ SNP genotyping assay. The comprehensive QTLs/CGs analysis of 76 QTLs

  14. Single Nucleotide Polymorphism Discovery in Bovine Pituitary Gland Using RNA-Seq Technology.

    Directory of Open Access Journals (Sweden)

    Chandra Shekhar Pareek

    Full Text Available Examination of bovine pituitary gland transcriptome by strand-specific RNA-seq allows detection of putative single nucleotide polymorphisms (SNPs within potential candidate genes (CGs or QTLs regions as well as to understand the genomics variations that contribute to economic trait. Here we report a breed-specific model to successfully perform the detection of SNPs in the pituitary gland of young growing bulls representing Polish Holstein-Friesian (HF, Polish Red, and Hereford breeds at three developmental ages viz., six months, nine months, and twelve months. A total of 18 bovine pituitary gland polyA transcriptome libraries were prepared and sequenced using the Illumina NextSeq 500 platform. Sequenced FastQ databases of all 18 young bulls were submitted to NCBI-SRA database with NCBI-SRA accession numbers SRS1296732. For the investigated young bulls, a total of 113,882,3098 raw paired-end reads with a length of 156 bases were obtained, resulting in an approximately 63 million paired-end reads per library. Breed-wise, a total of 515.38, 215.39, and 408.04 million paired-end reads were obtained for Polish HF, Polish Red, and Hereford breeds, respectively. Burrows-Wheeler Aligner (BWA read alignments showed 93.04%, 94.39%, and 83.46% of the mapped sequencing reads were properly paired to the Polish HF, Polish Red, and Hereford breeds, respectively. Constructed breed-specific SNP-db of three cattle breeds yielded at 13,775,885 SNPs. On an average 765,326 breed-specific SNPs per young bull were identified. Using two stringent filtering parameters, i.e., a minimum 10 SNP reads per base with an accuracy ≥ 90% and a minimum 10 SNP reads per base with an accuracy = 100%, SNP-db records were trimmed to construct a highly reliable SNP-db. This resulted in a reduction of 95,7% and 96,4% cut-off mark of constructed raw SNP-db. Finally, SNP discoveries using RNA-Seq data were validated by KASP™ SNP genotyping assay. The comprehensive QTLs/CGs analysis

  15. Nucleotide composition of the Zika virus RNA genome and its codon usage

    NARCIS (Netherlands)

    van Hemert, Formijn; Berkhout, Ben

    2016-01-01

    RNA viruses have genomes with a distinct nucleotide composition and codon usage. We present the global characteristics of the RNA genome of Zika virus (ZIKV), an emerging pathogen within the Flavivirus genus. ZIKV was first isolated in 1947 in Uganda, caused a widespread epidemic in South and

  16. Australian wild rice reveals pre-domestication origin of polymorphism deserts in rice genome.

    Directory of Open Access Journals (Sweden)

    Gopala Krishnan S

    Full Text Available BACKGROUND: Rice is a major source of human food with a predominantly Asian production base. Domestication involved selection of traits that are desirable for agriculture and to human consumers. Wild relatives of crop plants are a source of useful variation which is of immense value for crop improvement. Australian wild rices have been isolated from the impacts of domestication in Asia and represents a source of novel diversity for global rice improvement. Oryza rufipogon is a perennial wild progenitor of cultivated rice. Oryza meridionalis is a related annual species in Australia. RESULTS: We have examined the sequence of the genomes of AA genome wild rices from Australia that are close relatives of cultivated rice through whole genome re-sequencing. Assembly of the resequencing data to the O. sativa ssp. japonica cv. Nipponbare shows that Australian wild rices possess 2.5 times more single nucleotide polymorphisms than in the Asian wild rice and cultivated O. sativa ssp. indica. Analysis of the genome of domesticated rice reveals regions of low diversity that show very little variation (polymorphism deserts. Both the perennial and annual wild rice from Australia show a high degree of conservation of sequence with that found in cultivated rice in the same 4.58 Mbp region on chromosome 5, which suggests that some of the 'polymorphism deserts' in this and other parts of the rice genome may have originated prior to domestication due to natural selection. CONCLUSIONS: Analysis of genes in the 'polymorphism deserts' indicates that this selection may have been due to biotic or abiotic stress in the environment of early rice relatives. Despite having closely related sequences in these genome regions, the Australian wild populations represent an invaluable source of diversity supporting rice food security.

  17. Australian wild rice reveals pre-domestication origin of polymorphism deserts in rice genome.

    Science.gov (United States)

    Krishnan S, Gopala; Waters, Daniel L E; Henry, Robert J

    2014-01-01

    Rice is a major source of human food with a predominantly Asian production base. Domestication involved selection of traits that are desirable for agriculture and to human consumers. Wild relatives of crop plants are a source of useful variation which is of immense value for crop improvement. Australian wild rices have been isolated from the impacts of domestication in Asia and represents a source of novel diversity for global rice improvement. Oryza rufipogon is a perennial wild progenitor of cultivated rice. Oryza meridionalis is a related annual species in Australia. We have examined the sequence of the genomes of AA genome wild rices from Australia that are close relatives of cultivated rice through whole genome re-sequencing. Assembly of the resequencing data to the O. sativa ssp. japonica cv. Nipponbare shows that Australian wild rices possess 2.5 times more single nucleotide polymorphisms than in the Asian wild rice and cultivated O. sativa ssp. indica. Analysis of the genome of domesticated rice reveals regions of low diversity that show very little variation (polymorphism deserts). Both the perennial and annual wild rice from Australia show a high degree of conservation of sequence with that found in cultivated rice in the same 4.58 Mbp region on chromosome 5, which suggests that some of the 'polymorphism deserts' in this and other parts of the rice genome may have originated prior to domestication due to natural selection. Analysis of genes in the 'polymorphism deserts' indicates that this selection may have been due to biotic or abiotic stress in the environment of early rice relatives. Despite having closely related sequences in these genome regions, the Australian wild populations represent an invaluable source of diversity supporting rice food security.

  18. Single nucleotide polymorphisms (SNPs in coding regions of canine dopamine- and serotonin-related genes

    Directory of Open Access Journals (Sweden)

    Lingaas Frode

    2008-01-01

    Full Text Available Abstract Background Polymorphism in genes of regulating enzymes, transporters and receptors of the neurotransmitters of the central nervous system have been associated with altered behaviour, and single nucleotide polymorphisms (SNPs represent the most frequent type of genetic variation. The serotonin and dopamine signalling systems have a central influence on different behavioural phenotypes, both of invertebrates and vertebrates, and this study was undertaken in order to explore genetic variation that may be associated with variation in behaviour. Results Single nucleotide polymorphisms in canine genes related to behaviour were identified by individually sequencing eight dogs (Canis familiaris of different breeds. Eighteen genes from the dopamine and the serotonin systems were screened, revealing 34 SNPs distributed in 14 of the 18 selected genes. A total of 24,895 bp coding sequence was sequenced yielding an average frequency of one SNP per 732 bp (1/732. A total of 11 non-synonymous SNPs (nsSNPs, which may be involved in alteration of protein function, were detected. Of these 11 nsSNPs, six resulted in a substitution of amino acid residue with concomitant change in structural parameters. Conclusion We have identified a number of coding SNPs in behaviour-related genes, several of which change the amino acids of the proteins. Some of the canine SNPs exist in codons that are evolutionary conserved between five compared species, and predictions indicate that they may have a functional effect on the protein. The reported coding SNP frequency of the studied genes falls within the range of SNP frequencies reported earlier in the dog and other mammalian species. Novel SNPs are presented and the results show a significant genetic variation in expressed sequences in this group of genes. The results can contribute to an improved understanding of the genetics of behaviour.

  19. Analysis of single nucleotide variants of HFE gene and association to survival in The Cancer Genome Atlas GBM data.

    Science.gov (United States)

    Lee, Sang Y; Zhu, Junjia; Salzberg, Anna C; Zhang, Bo; Liu, Dajiang J; Muscat, Joshua E; Langan, Sara T; Connor, James R

    2017-01-01

    Human hemochromatosis protein (HFE) is involved in iron metabolism. Two major HFE polymorphisms, H63D and C282Y, have been associated with an increased risk of cancers. Previously, we reported decreased gender effects in overall survival based on H63D or C282Y HFE polymorphisms patients with glioblastoma multiforme (GBM). However, the effect of other single nucleotide variation (SNV) in the HFE gene on the cancer development and progression has not been systematically studied. To expand our finding in a larger sample, and to identify other HFE SNV, we analyzed the frequency of somatic SNV in HFE gene and its relationship to survival in GBM patients using The Cancer Genome Atlas (TCGA) GBM (Caucasian only) database. We found 9 SNVs with increased frequency in blood normal of TCGA GBM patients compared to the 1000Genome. Among 9 SNVs, 7 SNVs were located in the intron and 2 SNVs (i.e., H63D, C282Y) in the exon of HFE gene. The statistical analysis demonstrated that blood normal samples of TCGA GBM have more H63D (p = 0.0002, 95% Confidence interval (CI): 0.2119-0.3223) or C282Y (p = 0.0129, 95% CI: 0.0474-0.1159) HFE polymorphisms than 1000Genome. The Kaplan-Meier survival curve for the 264 GBM samples revealed no difference between wild type (WT) HFE and H63D, and WT HFE and C282Y GBM patients. In addition, there was no difference in the survival of male/female GBM patients based on HFE genotype. There was no correlation between HFE expression and survival. In conclusion, the current results suggest that somatic HFE polymorphisms do not impact GBM patients' survival in the TCGA data set of GBM.

  20. Analysis of single nucleotide variants of HFE gene and association to survival in The Cancer Genome Atlas GBM data.

    Directory of Open Access Journals (Sweden)

    Sang Y Lee

    Full Text Available Human hemochromatosis protein (HFE is involved in iron metabolism. Two major HFE polymorphisms, H63D and C282Y, have been associated with an increased risk of cancers. Previously, we reported decreased gender effects in overall survival based on H63D or C282Y HFE polymorphisms patients with glioblastoma multiforme (GBM. However, the effect of other single nucleotide variation (SNV in the HFE gene on the cancer development and progression has not been systematically studied. To expand our finding in a larger sample, and to identify other HFE SNV, we analyzed the frequency of somatic SNV in HFE gene and its relationship to survival in GBM patients using The Cancer Genome Atlas (TCGA GBM (Caucasian only database. We found 9 SNVs with increased frequency in blood normal of TCGA GBM patients compared to the 1000Genome. Among 9 SNVs, 7 SNVs were located in the intron and 2 SNVs (i.e., H63D, C282Y in the exon of HFE gene. The statistical analysis demonstrated that blood normal samples of TCGA GBM have more H63D (p = 0.0002, 95% Confidence interval (CI: 0.2119-0.3223 or C282Y (p = 0.0129, 95% CI: 0.0474-0.1159 HFE polymorphisms than 1000Genome. The Kaplan-Meier survival curve for the 264 GBM samples revealed no difference between wild type (WT HFE and H63D, and WT HFE and C282Y GBM patients. In addition, there was no difference in the survival of male/female GBM patients based on HFE genotype. There was no correlation between HFE expression and survival. In conclusion, the current results suggest that somatic HFE polymorphisms do not impact GBM patients' survival in the TCGA data set of GBM.

  1. Analysis of the intronic single nucleotide polymorphism rs#466452 of the nephrin gene in patients with diabetic nephropathy

    Directory of Open Access Journals (Sweden)

    RODRIGO GONZÁLEZ

    2009-01-01

    Full Text Available We present the analysis of an intronic polymorphism of the nephrin gene and its relationship to the development of diabetic nephropathy in a study of diabetes type 1 and type 2 patients. The frequency of the single nucleotide polymorphism rs#466452 in the nephrin gene was determined in 231 patients and control subjects. The C/T status of the polymorphism was assessed using restriction enzyme digestions and the nephrin transcript from a kidney biopsy was examined. Association between the polymorphism and clinical parameters was evaluated using multivaríate correspondence analysis. A bioinformatics analysis of the single nucleotide polymorphism rs#466452 suggested the appearance of a splicing enhancer sequence in intron 24 of the nephrin gene and a modification of proteins that bind to this sequence. However, no change in the splicing of a nephrin transcript from a renal biopsy was found. No association was found between the polymorphism and diabetes or degree of renal damage in diabetes type 1 or 2 patients. The single nucleotide polymorphism rs#466452 of the nephrin gene seems to be neutral in relation to diabetes and the development of diabetic nephropathy, and does not affect the splicing of a nephrin transcript, in spite of a splicing enhancer site.

  2. Draft genome of the sea cucumber Apostichopus japonicus and genetic polymorphism among color variants.

    Science.gov (United States)

    Jo, Jihoon; Oh, Jooseong; Lee, Hyun-Gwan; Hong, Hyun-Hee; Lee, Sung-Gwon; Cheon, Seongmin; Kern, Elizabeth M A; Jin, Soyeong; Cho, Sung-Jin; Park, Joong-Ki; Park, Chungoo

    2017-01-01

    The Japanese sea cucumber (Apostichopus japonicus Selenka 1867) is an economically important species as a source of seafood and ingredient in traditional medicine. It is mainly found off the coasts of northeast Asia. Recently, substantial exploitation and widespread biotic diseases in A. japonicus have generated increasing conservation concern. However, the genomic knowledge base and resources available for researchers to use in managing this natural resource and to establish genetically based breeding systems for sea cucumber aquaculture are still in a nascent stage. A total of 312 Gb of raw sequences were generated using the Illumina HiSeq 2000 platform and assembled to a final size of 0.66 Gb, which is about 80.5% of the estimated genome size (0.82 Gb). We observed nucleotide-level heterozygosity within the assembled genome to be 0.986%. The resulting draft genome assembly comprising 132 607 scaffolds with an N50 value of 10.5 kb contains a total of 21 771 predicted protein-coding genes. We identified 6.6-14.5 million heterozygous single nucleotide polymorphisms in the assembled genome of the three natural color variants (green, red, and black), resulting in an estimated nucleotide diversity of 0.00146. We report the first draft genome of A. japonicus and provide a general overview of the genetic variation in the three major color variants of A. japonicus. These data will help provide a comprehensive view of the genetic, physiological, and evolutionary relationships among color variants in A. japonicus, and will be invaluable resources for sea cucumber genomic research. © The Author 2017. Published by Oxford University Press.

  3. A Long-Read Transcriptome Assembly of Cotton (Gossypium hirsutum L. and Intraspecific Single Nucleotide Polymorphism Discovery

    Directory of Open Access Journals (Sweden)

    Hamid Ashrafi

    2015-07-01

    Full Text Available Upland cotton ( L. has a narrow germplasm base, which constrains marker development and hampers intraspecific breeding. A pressing need exists for high-throughput single nucleotide polymorphism (SNP markers that can be readily applied to germplasm in breeding and breeding-related research programs. Despite progress made in developing new sequencing technologies during the past decade, the cost of sequencing remains substantial when one is dealing with numerous samples and large genomes. Several strategies have been proposed to lower the cost of sequencing for multiple genotypes of large-genome species like cotton, such as transcriptome sequencing and reduced-representation DNA sequencing. This paper reports the development of a transcriptome assembly of the inbred line Texas Marker-1 (TM-1, a genetic standard for cotton, its usefulness as a reference for RNA sequencing (RNA-seq-based SNP identification, and the availability of transcriptome sequences of four other cotton cultivars. An assembly of TM-1 was made using Roche 454 transcriptome reads combined with an assembly of all available public expressed sequence tag (EST sequences of TM-1. The TM-1 assembly consists of 72,450 contigs with a total of 70 million bp. Functional predictions of the transcripts were estimated by alignment to selected protein databases. Transcriptome sequences of the five lines, including TM-1, were obtained using an Illumina Genome Analyzer-II, and the short reads were mapped to the TM-1 assembly to discover SNPs among the five lines. We identified >14,000 unfiltered allelic SNPs, of which ∼3,700 SNPs were retained for assay development after applying several rigorous filters. This paper reports availability of the reference transcriptome assembly and shows its utility in developing intraspecific SNP markers in upland cotton.

  4. Identification of mitochondrial DNA sequence variation and development of single nucleotide polymorphic markers for CMS-D8 in cotton.

    Science.gov (United States)

    Suzuki, Hideaki; Yu, Jiwen; Wang, Fei; Zhang, Jinfa

    2013-06-01

    Cytoplasmic male sterility (CMS), which is a maternally inherited trait and controlled by novel chimeric genes in the mitochondrial genome, plays a pivotal role in the production of hybrid seed. In cotton, no PCR-based marker has been developed to discriminate CMS-D8 (from Gossypium trilobum) from its normal Upland cotton (AD1, Gossypium hirsutum) cytoplasm. The objective of the current study was to develop PCR-based single nucleotide polymorphic (SNP) markers from mitochondrial genes for the CMS-D8 cytoplasm. DNA sequence variation in mitochondrial genes involved in the oxidative phosphorylation chain including ATP synthase subunit 1, 4, 6, 8 and 9, and cytochrome c oxidase 1, 2 and 3 subunits were identified by comparing CMS-D8, its isogenic maintainer and restorer lines on the same nuclear genetic background. An allelic specific PCR (AS-PCR) was utilized for SNP typing by incorporating artificial mismatched nucleotides into the third or fourth base from the 3' terminus in both the specific and nonspecific primers. The result indicated that the method modifying allele-specific primers was successful in obtaining eight SNP markers out of eight SNPs using eight primer pairs to discriminate two alleles between AD1 and CMS-D8 cytoplasms. Two of the SNPs for atp1 and cox1 could also be used in combination to discriminate between CMS-D8 and CMS-D2 cytoplasms. Additionally, a PCR-based marker from a nine nucleotide insertion-deletion (InDel) sequence (AATTGTTTT) at the 59-67 bp positions from the start codon of atp6, which is present in the CMS and restorer lines with the D8 cytoplasm but absent in the maintainer line with the AD1 cytoplasm, was also developed. A SNP marker for two nucleotide substitutions (AA in AD1 cytoplasm to CT in CMS-D8 cytoplasm) in the intron (1,506 bp) of cox2 gene was also developed. These PCR-based SNP markers should be useful in discriminating CMS-D8 and AD1 cytoplasms, or those with CMS-D2 cytoplasm as a rapid, simple, inexpensive, and

  5. AFLP fragment isolation technique as a method to produce random sequences for single nucleotide polymorphism discovery in the green turtle, Chelonia mydas.

    Science.gov (United States)

    Roden, Suzanne E; Dutton, Peter H; Morin, Phillip A

    2009-01-01

    The green sea turtle, Chelonia mydas, was used as a case study for single nucleotide polymorphism (SNP) discovery in a species that has little genetic sequence information available. As green turtles have a complex population structure, additional nuclear markers other than microsatellites could add to our understanding of their complex life history. Amplified fragment length polymorphism technique was used to generate sets of random fragments of genomic DNA, which were then electrophoretically separated with precast gels, stained with SYBR green, excised, and directly sequenced. It was possible to perform this method without the use of polyacrylamide gels, radioactive or fluorescent labeled primers, or hybridization methods, reducing the time, expense, and safety hazards of SNP discovery. Within 13 loci, 2547 base pairs were screened, resulting in the discovery of 35 SNPs. Using this method, it was possible to yield a sufficient number of loci to screen for SNP markers without the availability of prior sequence information.

  6. Detecting deletions, insertions, and single nucleotide substitutions in cloned β-globin genes and new polymorphic nucleotide substitutions in β-globin genes in a Japanese population using ribonuclease cleavage at mismatches in RNA: DNA duplexes

    International Nuclear Information System (INIS)

    Hiyama, Keiko; Kodaira, Mieko; Satoh, Chiyoko.

    1990-08-01

    The applicability of ribonuclease (RNase) cleavage at mismatches in RNA:DNA duplexes (the RNase cleavage method) for determining nucleotide variant rates was examined in a Japanese population. DNA segments of various lengths obtained from four different regions of one normal and three thalassemic cloned human β-globin genes were inserted into transcription vectors. Sense and antisense RNA probes uniformly labeled with 32 P were prepared. When RNA probes of 771 nucleotides (nt) or less were hybridized with cloned DNAs and the resulting duplexes were treated with a mixture of RNases A and T1, the length of products agreed with theoretical values. Twelve possible mismatches were examined. Since both sense and antisense probes were used, uncleavable mismatches such as G:T and G:G which were made from one combination of RNA and DNA strands could be converted to the cleavable C:A and C:C mismatches, respectively, by using the opposite combination. Deletions and insertions of one (G), four(TTCT), five (ATTTT), and 10 (ATTTTATTTT) nt were easily detected. A polymorphic substitution of T to C at position 666 of the second intervening sequence (IVS2-666) of the β-globin gene was detected using genomic DNAs from cell lines established from the peripheral B lymphocytes of 59 unrelated Japanese from Hiroshima or those amplified by polymerase chain reaction (PCR). The frequency of the gene with C at the IVS2-666 (allele C) was 0.48 and that of the gene with T (allene T) was 0.52. Two new polymorphic substitutions of C to A and A to T were detected at nucleotide positions 1789 and 1945 from the capping site, respectively, using genomic DNAs amplified by PCR. We conclude that it would be feasible to use the RNase cleavage method combined with PCR for large-scale screening of variation in chromosomal DNA. (J.P.N.)

  7. A Locked Nucleic Acid Probe Based on Selective Salt-Induced Effect Detects Single Nucleotide Polymorphisms

    Directory of Open Access Journals (Sweden)

    Jing Zhang

    2015-01-01

    Full Text Available Detection of single based genetic mutation by using oligonucleotide probes is one of the common methods of detecting single nucleotide polymorphisms at known loci. In this paper, we demonstrated a hybridization system which included a buffer solution that produced selective salt-induced effect and a locked nucleic acid modified 12 nt oligonucleotide probe. The hybridization system is suitable for hybridization under room temperature. By using magnetic nanoparticles as carriers for PCR products, the SNPs (MDR1 C3435T/A from 45 volunteers were analyzed, and the results were consistent with the results from pyrophosphoric acid sequencing. The method presented in this paper differs from the traditional method of using molecular beacons to detect SNPs in that it is suitable for research institutions lacking real-time quantitative PCR detecting systems, to detect PCR products at room temperature.

  8. Assessing patterns of hybridization between North Atlantic eels using diagnostic single-nucleotide polymorphisms

    DEFF Research Database (Denmark)

    Pujolar, José Martin; Jacobsen, M.W.; Als, Thomas Damm

    2014-01-01

    The two North Atlantic eel species, the European eel (Anguilla anguilla) and the American eel (Anguilla rostrata), spawn in partial sympatry in the Sargasso Sea, providing ample opportunity to interbreed. In this study, we used a RAD (Restriction site Associated DNA) sequencing approach to identify...... species-specific diagnostic single-nucleotide polymorphisms (SNPs) and design a low-density array that combined with screening of a diagnostic mitochondrial DNA marker. Eels from Iceland (N=159) and from the neighboring Faroe Islands (N=29) were genotyped, along with 94 larvae (49 European and 45 American...... eel male crosses, backcrosses were also detected, including a first-generation backcross (F1 hybrid × pure European eel) and three individuals identified as second-generation backcrosses originating from American eel × F1 hybrid backcrosses interbreeding with pure European eels. In comparison...

  9. Whole-genome sequencing identifies genomic heterogeneity at a nucleotide and chromosomal level in bladder cancer

    Science.gov (United States)

    Morrison, Carl D.; Liu, Pengyuan; Woloszynska-Read, Anna; Zhang, Jianmin; Luo, Wei; Qin, Maochun; Bshara, Wiam; Conroy, Jeffrey M.; Sabatini, Linda; Vedell, Peter; Xiong, Donghai; Liu, Song; Wang, Jianmin; Shen, He; Li, Yinwei; Omilian, Angela R.; Hill, Annette; Head, Karen; Guru, Khurshid; Kunnev, Dimiter; Leach, Robert; Eng, Kevin H.; Darlak, Christopher; Hoeflich, Christopher; Veeranki, Srividya; Glenn, Sean; You, Ming; Pruitt, Steven C.; Johnson, Candace S.; Trump, Donald L.

    2014-01-01

    Using complete genome analysis, we sequenced five bladder tumors accrued from patients with muscle-invasive transitional cell carcinoma of the urinary bladder (TCC-UB) and identified a spectrum of genomic aberrations. In three tumors, complex genotype changes were noted. All three had tumor protein p53 mutations and a relatively large number of single-nucleotide variants (SNVs; average of 11.2 per megabase), structural variants (SVs; average of 46), or both. This group was best characterized by chromothripsis and the presence of subclonal populations of neoplastic cells or intratumoral mutational heterogeneity. Here, we provide evidence that the process of chromothripsis in TCC-UB is mediated by nonhomologous end-joining using kilobase, rather than megabase, fragments of DNA, which we refer to as “stitchers,” to repair this process. We postulate that a potential unifying theme among tumors with the more complex genotype group is a defective replication–licensing complex. A second group (two bladder tumors) had no chromothripsis, and a simpler genotype, WT tumor protein p53, had relatively few SNVs (average of 5.9 per megabase) and only a single SV. There was no evidence of a subclonal population of neoplastic cells. In this group, we used a preclinical model of bladder carcinoma cell lines to study a unique SV (translocation and amplification) of the gene glutamate receptor ionotropic N-methyl D-aspertate as a potential new therapeutic target in bladder cancer. PMID:24469795

  10. Developing single nucleotide polymorphism markers for the identification of pineapple (Ananas comosus) germplasm.

    Science.gov (United States)

    Zhou, Lin; Matsumoto, Tracie; Tan, Hua-Wei; Meinhardt, Lyndel W; Mischke, Sue; Wang, Boyi; Zhang, Dapeng

    2015-01-01

    Pineapple (Ananas comosus [L.] Merr.) is the third most important tropical fruit in the world after banana and mango. As a crop with vegetative propagation, genetic redundancy is a major challenge for efficient genebank management and in breeding. Using expressed sequence tag and nucleotide sequences from public databases, we developed 213 single nucleotide polymorphism (SNP) markers and validated 96 SNPs by genotyping the United States Department of Agriculture - Agricultural Research Service pineapple germplasm collection, maintained in Hilo, Hawaii. The validation resulted in designation of a set of 57 polymorphic SNP markers that revealed a high rate of duplicates in this pineapple collection. Twenty-four groups of duplicates were detected, encompassing 130 of the total 170 A cosmos accessions. The results show that somatic mutation has been the main source of intra-cultivar variations in pineapple. Multivariate clustering and a model-based population stratification suggest that the modern pineapple cultivars are comprised of progenies that are derived from different wild Ananas botanical varieties. Parentage analysis further revealed that both A. comosus var. bracteatus and A. comosus var. ananassoides are likely progenitors of pineapple cultivars. However, the traditional classification of cultivated pineapple into horticultural groups (e.g. 'Cayenne', 'Spanish', 'Queen') was not well supported by the present study. These SNP markers provide robust and universally comparable DNA fingerprints; thus, they can serve as an efficient genotyping tool to assist pineapple germplasm management, propagation of planting material, and pineapple cultivar protection. The high rate of genetic redundancy detected in this pineapple collection suggests the potential impact of applying this technology on other clonally propagated perennial crops.

  11. Single nucleotide polymorphism discrimination with and without an ethidium bromide intercalator.

    Science.gov (United States)

    Fenati, Renzo A; Connolly, Ashley R; Ellis, Amanda V

    2017-02-15

    Single nucleotide polymorphism (SNP) genotyping is an important aspect in understanding genetic variations. Here, we discriminate SNPs using toe-hold mediated displacement reactions. The biological target is an 80 nucleotide long double-stranded-DNA from the mtDNA HV1 region, associated with maternal ancestry. This target has been specially designed with a pendant toehold and a cationic fluorophore, ATTO 647N, as a reporter, produced in a polymerase chain reaction. Rates of reaction for the toehold-polymerase chain reaction products (TPPs) with their corresponding complementary displacing sequences, labelled with a Black Hole Quencher 1, followed the order TPP-Cytosine > TPP-Thymine > TPP-Adenine ≥ TPP-Guanine. Non-complementary rates were the slowest with mismatches involving cytosine. These reactions, operating in a static/or contact mode, gave averaged readouts between SNPs within 15 min (with 80-90% quenching), compared to 25-30 min in previous studies involving fluorescence resonance energy transfer. Addition of an intercalating agent, ethidium bromide, retarded the rate of reaction in which cytosine was involved, presumably through stabilization of the base pairing, which resulted in markedly improved discrimination of cytosine containing SNPs. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Ewing's sarcoma: analysis of single nucleotide polymorphism in the EWS gene.

    Science.gov (United States)

    Silva, Deborah S B S; Sawitzki, Fernanda R; De Toni, Elisa C; Graebin, Pietra; Picanco, Juliane B; Abujamra, Ana Lucia; de Farias, Caroline B; Roesler, Rafael; Brunetto, Algemir L; Alho, Clarice S

    2012-11-10

    We aimed to investigate single nucleotide polymorphisms (SNPs) in the EWS gene breaking region in order to analyze Ewing's sarcoma susceptibility. The SNPs were investigated in a healthy subject population and in Ewing's sarcoma patients from Southern Brazil. Genotyping was performed by TaqMan® assay for allelic discrimination using Real-Time PCR. The analysis of incidence of SNPs or different SNP-arrangements revealed a higher presence of homozygote TT-rs4820804 in Ewing's sarcoma patients (p=0.02; Chi Square Test). About 300 bp from the rs4820804 SNP lies a palindromic hexamer (5'-GCTAGC-3') and three nucleotides (GTC), which were previously identified to be in close vicinity of the breakpoint junction in both EWS and FLI1 genes. This DNA segment surrounding the rs4820804 SNP is likely to indicate a breakpoint region. If the T-rs4820804 allele predisposes a DNA fragment to breakage, homozygotes (TT-rs4820804) would have double the chance of having a chromosome break, increasing the chances for a translocation to occur. In conclusion, the TT-rs4820804 EWS genotype can be associated with Ewing's sarcoma and the SNP rs4820804 can be a candidate marker to understand Ewing's sarcoma susceptibility. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Whole Blood PCR Amplification with Pfu DNA Polymerase and Its Application in Single-Nucleotide Polymorphism Analysis.

    Science.gov (United States)

    Liu, Er-Ping; Wang, Yan; He, Xiao-Hui; Guan, Jun-Jie; Wang, Jin; Qin, Zheng-Hong; Sun, Wan-Ping

    2015-11-01

    Point-of-care genetic analysis may require polymerase chain reaction (PCR) to be carried out on whole blood. However, human blood contains natural inhibitors of PCR such as hemoglobin, immunoglobulin G, lactoferrin, and proteases, as well as anticoagulant agents, including EDTA and heparin that can reduce whole blood PCR efficiency. Our purpose was to develop a highly specific, direct whole blood single-nucleotide polymorphism (SNP) analysis method based on allele-specific (AS) PCR that is mediated by Pfu DNA polymerase and phosphorothioate-modified AS primers. At high Mg(2+) concentrations, Pfu DNA polymerase efficiently amplified genomic DNA in a reaction solution containing up to 14% whole blood. Among the three anticoagulants tested, Pfu DNA polymerase showed the highest activity with sodium citrate. Meanwhile, Triton X-100 and betaine inhibited Pfu DNA polymerase activity in whole blood PCR, whereas trehalose had virtually no effect. These findings provided for the development of a low-cost, simple, and fast direct whole blood genotyping method that uses Pfu DNA polymerase combined with phosphorothioate AS primers for CYP2C9*3 and VKORC1(-1639) loci. With its high DNA amplification efficiency and tolerance of various blood conditions, Pfu DNA polymerase can be used in clinical laboratories to analyze SNPs in whole blood samples.

  14. Single nucleotide polymorphism typing of Mycobacterium ulcerans reveals focal transmission of buruli ulcer in a highly endemic region of Ghana.

    Directory of Open Access Journals (Sweden)

    Katharina Röltgen

    Full Text Available Buruli ulcer (BU is an emerging necrotizing disease of the skin and subcutaneous tissue caused by Mycobacterium ulcerans. While proximity to stagnant or slow flowing water bodies is a risk factor for acquiring BU, the epidemiology and mode of M. ulcerans transmission is poorly understood. Here we have used high-throughput DNA sequencing and comparisons of the genomes of seven M. ulcerans isolates that appeared monomorphic by existing typing methods. We identified a limited number of single nucleotide polymorphisms (SNPs and developed a real-time PCR SNP typing method based on these differences. We then investigated clinical isolates of M. ulcerans on which we had detailed information concerning patient location and time of diagnosis. Within the Densu river basin of Ghana we observed dominance of one clonal complex and local clustering of some of the variants belonging to this complex. These results reveal focal transmission and demonstrate, that micro-epidemiological analyses by SNP typing has great potential to help us understand how M. ulcerans is transmitted.

  15. DEFLATE Compression Algorithm Corrects for Overestimation of Phylogenetic Diversity by Grantham Approach to Single-Nucleotide Polymorphism Classification

    Directory of Open Access Journals (Sweden)

    Arran Schlosberg

    2014-05-01

    Full Text Available Improvements in speed and cost of genome sequencing are resulting in increasing numbers of novel non-synonymous single nucleotide polymorphisms (nsSNPs in genes known to be associated with disease. The large number of nsSNPs makes laboratory-based classification infeasible and familial co-segregation with disease is not always possible. In-silico methods for classification or triage are thus utilised. A popular tool based on multiple-species sequence alignments (MSAs and work by Grantham, Align-GVGD, has been shown to underestimate deleterious effects, particularly as sequence numbers increase. We utilised the DEFLATE compression algorithm to account for expected variation across a number of species. With the adjusted Grantham measure we derived a means of quantitatively clustering known neutral and deleterious nsSNPs from the same gene; this was then used to assign novel variants to the most appropriate cluster as a means of binary classification. Scaling of clusters allows for inter-gene comparison of variants through a single pathogenicity score. The approach improves upon the classification accuracy of Align-GVGD while correcting for sensitivity to large MSAs. Open-source code and a web server are made available at https://github.com/aschlosberg/CompressGV.

  16. Gene therapy for the circumvention of inborn errors of metabolism (IEM) caused by single-nucleotide-polymorphisms (SNPs).

    Science.gov (United States)

    Wiseman, Alan

    2004-01-01

    Single nucleotide polymorphisms (SNPs) are the result of point mutations in nuclear (and mitochondrial) DNA. Such localised damage to DNA (and its replicative mechanisms) may not be excised fully by the DNA repair mechanism in the genome: and therefore can become inheritable; subsequently to manifest later as an inborn error of metabolism (IEM). Causes of mutagenic damage to the DNA can include background radiation (such as emitted by radon gas), and by reactive oxygen species (ROS): and also by mutagenic chemicals that occur naturally (inter alia in the diet). Other causes of DNA damage are variable environmental hazards such as solar-derived short wave ultraviolet light A. Gene therapy involves the placement of missing genes into particular tissues by the harnessing of suitable vectors (originally these were animal viruses such as SV40). For example, gene therapy in the rat for diabetes has succeeded by liver-production of insulin (using genes obtained from pancreatic Islets of Langerhans cells). Many inborn errors of metabolism could be treated in this way: examples may include 100 haemoglobinopathies (such as sickle cell anaemia), phenylketonuria; and other diseases caused by lack of tissue-production of a particular enzyme (in its catalytically-active conformation).

  17. Single Nucleotide Polymorphisms Can Create Alternative Polyadenylation Signals and Affect Gene Expression through Loss of MicroRNA-Regulation

    Science.gov (United States)

    Thomas, Laurent F.; Sætrom, Pål

    2012-01-01

    Alternative polyadenylation (APA) can for example occur when a protein-coding gene has several polyadenylation (polyA) signals in its last exon, resulting in messenger RNAs (mRNAs) with different 3′ untranslated region (UTR) lengths. Different 3′UTR lengths can give different microRNA (miRNA) regulation such that shortened transcripts have increased expression. The APA process is part of human cells' natural regulatory processes, but APA also seems to play an important role in many human diseases. Although altered APA in disease can have many causes, we reasoned that mutations in DNA elements that are important for the polyA process, such as the polyA signal and the downstream GU-rich region, can be one important mechanism. To test this hypothesis, we identified single nucleotide polymorphisms (SNPs) that can create or disrupt APA signals (APA-SNPs). By using a data-integrative approach, we show that APA-SNPs can affect 3′UTR length, miRNA regulation, and mRNA expression—both between homozygote individuals and within heterozygote individuals. Furthermore, we show that a significant fraction of the alleles that cause APA are strongly and positively linked with alleles found by genome-wide studies to be associated with disease. Our results confirm that APA-SNPs can give altered gene regulation and that APA alleles that give shortened transcripts and increased gene expression can be important hereditary causes for disease. PMID:22915998

  18. Prediction by graph theoretic measures of structural effects in proteins arising from non-synonymous single nucleotide polymorphisms.

    Directory of Open Access Journals (Sweden)

    Tammy M K Cheng

    Full Text Available Recent analyses of human genome sequences have given rise to impressive advances in identifying non-synonymous single nucleotide polymorphisms (nsSNPs. By contrast, the annotation of nsSNPs and their links to diseases are progressing at a much slower pace. Many of the current approaches to analysing disease-associated nsSNPs use primarily sequence and evolutionary information, while structural information is relatively less exploited. In order to explore the potential of such information, we developed a structure-based approach, Bongo (Bonds ON Graph, to predict structural effects of nsSNPs. Bongo considers protein structures as residue-residue interaction networks and applies graph theoretical measures to identify the residues that are critical for maintaining structural stability by assessing the consequences on the interaction network of single point mutations. Our results show that Bongo is able to identify mutations that cause both local and global structural effects, with a remarkably low false positive rate. Application of the Bongo method to the prediction of 506 disease-associated nsSNPs resulted in a performance (positive predictive value, PPV, 78.5% similar to that of PolyPhen (PPV, 77.2% and PANTHER (PPV, 72.2%. As the Bongo method is solely structure-based, our results indicate that the structural changes resulting from nsSNPs are closely associated to their pathological consequences.

  19. Gut metagenomes of type 2 diabetic patients have characteristic single-nucleotide polymorphism distribution in Bacteroides coprocola.

    Science.gov (United States)

    Chen, Yaowen; Li, Zongcheng; Hu, Shuofeng; Zhang, Jian; Wu, Jiaqi; Shao, Ningsheng; Bo, Xiaochen; Ni, Ming; Ying, Xiaomin

    2017-02-01

    Gut microbes play a critical role in human health and disease, and researchers have begun to characterize their genomes, the so-called gut metagenome. Thus far, metagenomics studies have focused on genus- or species-level composition and microbial gene sets, while strain-level composition and single-nucleotide polymorphism (SNP) have been overlooked. The gut metagenomes of type 2 diabetes (T2D) patients have been found to be enriched with butyrate-producing bacteria and sulfate reduction functions. However, it is not known whether the gut metagenomes of T2D patients have characteristic strain patterns or SNP distributions. We downloaded public gut metagenome datasets from 170 T2D patients and 174 healthy controls and performed a systematic comparative analysis of their metagenome SNPs. We found that Bacteroides coprocola, whose relative abundance did not differ between the groups, had a characteristic distribution of SNPs in the T2D patient group. We identified 65 genes, all in B. coprocola, that had remarkably different enrichment of SNPs. The first and sixth ranked genes encode glycosyl hydrolases (GenBank accession EDU99824.1 and EDV02301.1). Interestingly, alpha-glucosidase, which is also a glycosyl hydrolase located in the intestine, is an important drug target of T2D. These results suggest that different strains of B. coprocola may have different roles in human gut and a specific set of B. coprocola strains are correlated with T2D.

  20. Association analysis of two single-nucleotide polymorphisms of the RELN gene with autism in the South African population

    KAUST Repository

    Sharma, Jyoti Rajan

    2013-02-01

    Background: Autism (MIM209850) is a neurodevelopmental disorder characterized by a triad of impairments, namely impairment in social interaction, impaired communication skills, and restrictive and repetitive behavior. A number of family and twin studies have demonstrated that genetic factors play a pivotal role in the etiology of autistic disorder. Various reports of reduced levels of reelin protein in the brain and plasma in autistic patients highlighted the role of the reelin gene (RELN) in autism. There is no such published study on the South African (SA) population. Aims: The aim of the present study was to find the genetic association of intronic rs736707 and exonic rs362691 (single-nucleotide polymorphisms [SNPs] of the RELN gene) with autism in a SA population. Methods: Genomic DNA was isolated from cheek cell swabs from autistic (136) as well as control (208) subjects. The TaqMan ® Real-Time polymerase chain reaction and genotyping assay was utilized to determine the genotypes. Results: A significant association of SNP rs736707, but not for SNP rs362691, with autism in the SA population is observed. Conclusion: There might be a possible role of RELN in autism, especially for SA populations. The present study represents the first report on genetic association studies on the RELN gene in the SA population. © 2013, Mary Ann Liebert, Inc.

  1. A comprehensive experiment for molecular biology: Determination of single nucleotide polymorphism in human REV3 gene using PCR-RFLP.

    Science.gov (United States)

    Zhang, Xu; Shao, Meng; Gao, Lu; Zhao, Yuanyuan; Sun, Zixuan; Zhou, Liping; Yan, Yongmin; Shao, Qixiang; Xu, Wenrong; Qian, Hui

    2017-07-08

    Laboratory exercise is helpful for medical students to understand the basic principles of molecular biology and to learn about the practical applications of molecular biology. We have designed a lab course on molecular biology about the determination of single nucleotide polymorphism (SNP) in human REV3 gene, the product of which is a subunit of DNA polymerase ζ and SNPs in this gene are associated with altered susceptibility to cancer. This newly designed experiment is composed of three parts, including genomic DNA extraction, gene amplification by PCR, and genotyping by RFLP. By combining these activities, the students are not only able to learn a series of biotechniques in molecular biology, but also acquire the ability to link the learned knowledge with practical applications. This comprehensive experiment will help the medical students improve the conceptual understanding of SNP and the technical understanding of SNP detection. © 2017 by The International Union of Biochemistry and Molecular Biology, 45(4):299-304, 2017. © 2017 The International Union of Biochemistry and Molecular Biology.

  2. Single nucleotide polymorphisms in ZNF208 are associated with increased risk for HBV in Chinese people.

    Science.gov (United States)

    Li, Hengxin; Chen, Jun; Zhang, RuiZhi; Xu, Ran; Zhang, Zhe; Ren, Le; Yang, Qi; Tian, Yumei; Li, Daxu

    2017-12-22

    Single nucleotide polymorphisms (SNPs) in ZNF208 may be associated with susceptibility to Hepatitis B virus (HBV). In the current study, we analyzed the association between ZNF208 SNPs and risk of HBV in 242 HBV patients and 300 healthy subjects from the Xi'an area of Chinese Han Population. Of the five SNPs examined, rs2188971 (OR: 1.36, 95% CI: 1.04-1.76, P = 0.022), rs8103163 (OR: 1.40, 95% CI: 1.08-1.82, P = 0.010) and rs7248488 (OR: 1.38, 95% CI: 1.07-1.79, P = 0.014) were correlated with HBV susceptibility based on Chi-square tests. After the P -values were adjusted by Bonferroni correction, there only rs8103163 ( P = 0.050) was slightly with increased HBV risk. Additionally, haplotype A rs2188972 T rs2188971 A rs8103163 A rs7248488 (OR = 1.42; 95% C I, 1.10-1.85; P = 0.008) was found to increase susceptibility of suffering from HBV. These findings suggest that ZNF208 polymorphisms may contribute to the development of HBV.

  3. A STAT6 Intronic Single-Nucleotide Polymorphism is Associated with Clinical Malaria in Ghanaian Children

    Directory of Open Access Journals (Sweden)

    Daniel Amoako-Sakyi

    2016-01-01

    Full Text Available Malaria pathogenesis may be influenced by IgE responses and cytokine cross-regulation. Several mutations in the IL-4/STAT6 signaling pathway can alter cytokine cross-regulation and IgE responses during a Plasmodium falciparum malarial infection. This study investigated the relationship between a STAT6 intronic single-nucleotide polymorphism (rs3024974, total IgE, cytokines, and malaria severity in 238 Ghanaian children aged between 0.5 and 13 years. Total IgE and cytokine levels were measured by ELISA, while genotyping was done by polymerase chain reaction-restriction fragment length polymorphism (RFLP. Compared with healthy controls, heterozygosity protected against clinical malaria: uncomplicated malaria (odds ratios [OR] = 0.13, P < 0.001, severe malarial anemia (OR = 0.18, P < 0.001, and cerebral malaria (OR = 0.39, P = 0.022. Levels of total IgE significantly differed among malaria phenotypes (P = 0.044 and rs3024974 genotypes (P = 0.037. Neither cytokine levels nor IL-6/IL-10 ratios were associated with malaria phenotypes or rs3024974 genotypes. This study suggests a role for rs3024974 in malaria pathogenesis and offers further insights into an IL-4/STAT6 pathway mutation in malaria pathogenesis.

  4. Differentiation of drug and non-drug Cannabis using a single nucleotide polymorphism (SNP) assay.

    Science.gov (United States)

    Rotherham, D; Harbison, S A

    2011-04-15

    Cannabis sativa is both an illegal drug and a legitimate crop. The differentiation of illegal drug Cannabis from non-drug forms of Cannabis is relevant in the context of the growth of fibre and seed oil varieties of Cannabis for commercial purposes. This differentiation is currently determined based on the levels of tetrahydrocannabinol (THC) in adult plants. DNA based methods have the potential to assay Cannabis material unsuitable for analysis using conventional means including seeds, pollen and severely degraded material. The purpose of this research was to develop a single nucleotide polymorphism (SNP) assay for the differentiation of "drug" and "non-drug"Cannabis plants. An assay was developed based on four polymorphisms within a 399 bp fragment of the tetrahydrocannabinolic acid (THCA) synthase gene, utilising the snapshot multiplex kit. This SNP assay was tested on 94 Cannabis plants, which included 10 blind samples, and was able to differentiate between "drug" and "non-drug"Cannabis in all cases, while also differentiating between Cannabis and other species. Non-drug plants were found to be homozygous at the four sites assayed while drug Cannabis plants were either homozygous or heterozygous. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  5. Identification of Diagnostic Mitochondrial DNA Single Nucleotide Polymorphisms Specific to Sumatran Orangutan (Pongo abelii Populations

    Directory of Open Access Journals (Sweden)

    Puji Rianti

    2015-10-01

    Full Text Available The hypervariable region I of mitochondrial DNA has frequently been used to distinguish among populations, in particular in species with strong female philopatry. In such cases, populations are expected to diverge rapidly for hypervariable region I markers because of the smaller effective population size and thus increased genetic drift. This rapid divergence leads to the accumulation of mutations exclusively found in one population, which may serve as diagnostic single nucleotide polymorphisms (SNPs. To date, diagnostic SNPs distinctive to Sumatran orangutan populations have not yet been described. However, given the continuously declining numbers of Sumatran orangutans, this information can be vital for effective conservation measures, especially regarding reintroductions of orangutans in rehabilitation centers. Phylogenetic analyses of 54 samples of Sumatran orangutans from nine sampling sites with good provenance, we found five major clades and a total of 20 haplotypes. We propose a total of 52 diagnostic SNPs that are specific to Sumatran orangutan populations. Data can be used to develop restriction fragment length polymorphism assays to carry out genetic assignments using basic laboratory equipment to assign Sumatran orangutan to their population of origin.

  6. The Role of Vitamin D Level and Related Single Nucleotide Polymorphisms in Crohn’s Disease

    Directory of Open Access Journals (Sweden)

    Wen J. Lam

    2013-09-01

    Full Text Available New Zealand has one of the highest rates of Crohn’s Disease (CD in the world, and there is much speculation as to why this might be. A high risk of CD has been associated with deficient or insufficient levels of Vitamin D (Vit D, lifestyle as well as various genetic polymorphisms. In this study we sought to analyse the relevance of serum Vit D levels, lifestyle and genotype to CD status. Serum samples were analysed for 25-OH-Vitamin D levels. DNA was isolated from blood and cheek-swabs, and Sequenom and ImmunoChip techniques were used for genotyping. Serum Vit D levels were significantly lower in CD patients (mean = 49.5 mg/L than those found in controls (mean = 58.9 mg/L, p = 4.74 × 10−6. A total of seven single nucleotide polymorphisms were examined for effects on serum Vit D levels, with adjustment for confounding variables. Two variants: rs731236[A] (VDR and rs732594[A] (SCUBE3 showed a significant association with serum Vit D levels in CD patients. Four variants: rs7975232[A] (VDR, rs732594[A] (SCUBE3, and rs2980[T] and rs2981[A] (PHF-11 showed a significant association with serum Vit D levels in the control group. This study demonstrates a significant interaction between Vit D levels and CD susceptibility, as well as a significant association between Vit D levels and genotype.

  7. Single nucleotide polymorphism array analysis of bone marrow failure patients reveals characteristic patterns of genetic changes.

    Science.gov (United States)

    Babushok, Daria V; Xie, Hongbo M; Roth, Jacquelyn J; Perdigones, Nieves; Olson, Timothy S; Cockroft, Joshua D; Gai, Xiaowu; Perin, Juan C; Li, Yimei; Paessler, Michele E; Hakonarson, Hakon; Podsakoff, Gregory M; Mason, Philip J; Biegel, Jaclyn A; Bessler, Monica

    2014-01-01

    The bone marrow failure syndromes (BMFS) are a heterogeneous group of rare blood disorders characterized by inadequate haematopoiesis, clonal evolution, and increased risk of leukaemia. Single nucleotide polymorphism arrays (SNP-A) have been proposed as a tool for surveillance of clonal evolution in BMFS. To better understand the natural history of BMFS and to assess the clinical utility of SNP-A in these disorders, we analysed 124 SNP-A from a comprehensively characterized cohort of 91 patients at our BMFS centre. SNP-A were correlated with medical histories, haematopathology, cytogenetic and molecular data. To assess clonal evolution, longitudinal analysis of SNP-A was performed in 25 patients. We found that acquired copy number-neutral loss of heterozygosity (CN-LOH) was significantly more frequent in acquired aplastic anaemia (aAA) than in other BMFS (odds ratio 12·2, P < 0·01). Homozygosity by descent was most common in congenital BMFS, frequently unmasking autosomal recessive mutations. Copy number variants (CNVs) were frequently polymorphic, and we identified CNVs enriched in neutropenia and aAA. Our results suggest that acquired CN-LOH is a general phenomenon in aAA that is probably mechanistically and prognostically distinct from typical CN-LOH of myeloid malignancies. Our analysis of clinical utility of SNP-A shows the highest yield of detecting new clonal haematopoiesis at diagnosis and at relapse. © 2013 John Wiley & Sons Ltd.

  8. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff

    Science.gov (United States)

    Cingolani, Pablo; Platts, Adrian; Wang, Le Lily; Coon, Melissa; Nguyen, Tung; Wang, Luan; Land, Susan J.; Lu, Xiangyi; Ruden, Douglas M.

    2012-01-01

    We describe a new computer program, SnpEff, for rapidly categorizing the effects of variants in genome sequences. Once a genome is sequenced, SnpEff annotates variants based on their genomic locations and predicts coding effects. Annotated genomic locations include intronic, untranslated region, upstream, downstream, splice site, or intergenic regions. Coding effects such as synonymous or non-synonymous amino acid replacement, start codon gains or losses, stop codon gains or losses, or frame shifts can be predicted. Here the use of SnpEff is illustrated by annotating ~356,660 candidate SNPs in ~117 Mb unique sequences, representing a substitution rate of ~1/305 nucleotides, between the Drosophila melanogaster w1118; iso-2; iso-3 strain and the reference y1; cn1 bw1 sp1 strain. We show that ~15,842 SNPs are synonymous and ~4,467 SNPs are non-synonymous (N/S ~0.28). The remaining SNPs are in other categories, such as stop codon gains (38 SNPs), stop codon losses (8 SNPs), and start codon gains (297 SNPs) in the 5′UTR. We found, as expected, that the SNP frequency is proportional to the recombination frequency (i.e., highest in the middle of chromosome arms). We also found that start-gain or stop-lost SNPs in Drosophila melanogaster often result in additions of N-terminal or C-terminal amino acids that are conserved in other Drosophila species. It appears that the 5′ and 3′ UTRs are reservoirs for genetic variations that changes the termini of proteins during evolution of the Drosophila genus. As genome sequencing is becoming inexpensive and routine, SnpEff enables rapid analyses of whole-genome sequencing data to be performed by an individual laboratory. PMID:22728672

  9. Functional single nucleotide polymorphisms within the cyclin-dependent kinase inhibitor 2A/2B region affect pancreatic cancer risk

    Czech Academy of Sciences Publication Activity Database

    Campa, D.; Pastore, M.; Gentiluomo, M.; Talar-Wojnarowska, R.; Kupcinskas, J.; Malecka-Panas, E.; Neoptolemos, J. P.; Niesen, W.; Vodička, Pavel; Delle Fave, G.; Bueno-de-Mesquita, H. B.; Gazouli, M.; Pacetti, P.; Di Leo, M.; Ito, H.; Klüter, H.; Souček, P.; Corbo, V.; Yamao, K.; Hosono, S.; Kaaks, R.; Vashist, Y.; Gioffreda, D.; Strobel, O.; Shimizu, Y.; Dijk, F.; Andriulli, A.; Ivanauskas, A.; Bugert, P.; Tavano, F.; Vodičková, L.; Zambon, C.F.; Lovecek, M.; Landi, S.; Key, T. J.; Boggi, U.; Pezzilli, R.; Jamroziak, K.; Mohelníková-Duchoňová, B.; Mambrini, A.; Bambi, F.; Busch, O.; Pazienza, V.; Valente, R.; Theodoropoulos, G.E.; Hackert, T.; Capurso, G.; Cavestro, G.M.; Pasquali, C.; Basso, D.; Sperti, C.; Matsuo, K.; Büchler, M.; Khaw, K. T.; Izbicki, J.; Costello, E.; Katzke, V.; Michalski, Ch.; Stepien, A.; Rizzato, C.; Canzian, F.

    2016-01-01

    Roč. 7, č. 35 (2016), s. 57011-57020 ISSN 1949-2553 R&D Projects: GA ČR GAP301/12/1734 Institutional support: RVO:68378041 Keywords : pancreatic cancer * CDKN2A * single nucleotide polymorphisms Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 5.168, year: 2016

  10. Effect of secondary structure on single nucleotide polymorphism detection with a porous microarray matrix; implications for probe selection

    NARCIS (Netherlands)

    Anthony, R. M.; Schuitema, A. R. J.; Chan, A. B.; Boender, P. J.; Klatser, P. R.; Oskam, L.

    2003-01-01

    Oligonucleotide arrays capable of detecting single nucleotide polymorphisms (SNPs) from amplified nucleic acid have many applications. The expected SNP is usually placed approximately in the center of the probe to ensure the maximum shift in Tm between complementary and SNP sequences. Unfortunately,

  11. A Comprehensive Experiment for Molecular Biology: Determination of Single Nucleotide Polymorphism in Human REV3 Gene Using PCR-RFLP

    Science.gov (United States)

    Zhang, Xu; Shao, Meng; Gao, Lu; Zhao, Yuanyuan; Sun, Zixuan; Zhou, Liping; Yan, Yongmin; Shao, Qixiang; Xu, Wenrong; Qian, Hui

    2017-01-01

    Laboratory exercise is helpful for medical students to understand the basic principles of molecular biology and to learn about the practical applications of molecular biology. We have designed a lab course on molecular biology about the determination of single nucleotide polymorphism (SNP) in human REV3 gene, the product of which is a subunit of…

  12. Finding the right coverage : The impact of coverage and sequence quality on single nucleotide polymorphism genotyping error rates

    NARCIS (Netherlands)

    Fountain, Emily D.; Pauli, Jonathan N.; Reid, Brendan N.; Palsboll, Per J.; Peery, M. Zachariah

    Restriction-enzyme-based sequencing methods enable the genotyping of thousands of single nucleotide polymorphism (SNP) loci in nonmodel organisms. However, in contrast to traditional genetic markers, genotyping error rates in SNPs derived from restriction-enzyme-based methods remain largely unknown.

  13. Correlation of matrix metalloproteinase-2 single nucleotide polymorphisms with the risk of small vessel disease (SVD).

    Science.gov (United States)

    Zhang, Min; Zhu, Wusheng; Yun, Wenwei; Wang, Qizhang; Cheng, Maogang; Zhang, Zhizhong; Liu, Xinfeng; Zhou, Xianju; Xu, Gelin

    2015-09-15

    Maladjustment of matrix metalloproteinases (MMPs) results in cerebral vasculature and blood-brain barrier dysfunction, which is associated with small vessel disease (SVD). This study was to aim at evaluating correlations between matrix metalloproteinase-2 and 9 single nucleotide polymorphisms and the risk of SVD. A total of 178 patients with SVD were enrolled into this study via Nanjing Stroke Registry Program (NSRP) from January 2010 to November 2011. SVD patients were further subtyped as isolated lacunar infarction (ILI, absent or with mild leukoaraiosis) and ischemic leukoaraiosis (ILA, with moderate or severe leukoaraiosis) according to the Fazekas scale. 100 age- and gender-matched individuals from outpatient medical examination were recruited as the control group. The genotypes of MMP-2-1306 T/C and MMP-9-1562 C/T were determined by the TaqMan method. Of 178 SVD patients, 86 and 92 patients were classified as ILI and ILA, respectively. Comparison analysis between SVD patients and controls revealed a significant correlation between SVD and hypertension, as well as a prevalence of hypertension in ILA. Further genotype analysis showed that the frequency of MMP-2-1306 CC genotype was higher in ILA patients than in controls (P=0.009, χ(2) test; P=0.027, the multiple test with Bonferroni correction). Finally, logistic regression analysis with adjustment of age, sex and vascular risk factors showed that the MMP-2-1306 T/C polymorphism was an independent predictor for ILA (OR: 2.605; 95% confidence interval [CI], 1.067-6.364; P=0.036). Our findings suggest that the MMP-2-1306 T/C polymorphism is a direct risk factor for ILA. Copyright © 2015. Published by Elsevier B.V.

  14. Single nucleotide polymorphism of the growth hormone (GH encoding gene in inbred and outbred domestic rabbits

    Directory of Open Access Journals (Sweden)

    Deyana Gencheva Hristova

    2018-03-01

    Full Text Available Taking into consideration that the growth hormone (GH gene in rabbits is a candidate for meat production, understanding the genetic diversity and variation in this locus is of particular relevance. The present study comprised 86 rabbits (Oryctolagus cuniculus divided into 3 groups: New Zealand White (NZW outbred rabbits; first-generation inbred rabbits (F1 and second-generation inbred rabbits (F2. They were analysed by polymerase chain reaction-based restriction fragment length polymorphism method. A 231 bp fragment of the polymorphic site of the GH gene was digested with Bsh1236 restriction enzyme. Single nucleotide polymorphisms for the studied GH locus corresponding to 3 genotypes were detected in the studied rabbit populations: CC, CT and TT. In the synthetic inbred F1 and F2 populations, the frequency of the heterozygous genotype CT was 0.696 and 0.609, respectively, while for the homozygous CC genotype the frequency was lower (0.043 and 0.000, and respective values for the homozygous TT genotype were 0.261 and 0.391. This presumed a preponderance of the T allele (0.609 and 0.696 over the C allele (0.391 and 0.304 in these groups. In outbred rabbits, the allele frequencies were 0.613 (allele C and 0.387 (allele Т; consequently, the frequency of the homozygous CC genotype was higher than that of the homozygous TT genotype (0.300 vs. 0.075. Observed heterozygosity for the GH gene was higher than expected, and the result was therefore a negative inbreeding coefficient (Fis=–0.317 for outbred NZW rabbits; –0.460 for inbred F1 and –0.438 for inbred F2, indicating a sufficient number of heterozygous forms in all studied groups of rabbits. The application of narrow inbreeding by breeding full sibs in the synthetic population did not cause a rapid increase in homozygosity.

  15. Mango (Mangifera indica L.) germplasm diversity based on single nucleotide polymorphisms derived from the transcriptome.

    Science.gov (United States)

    Sherman, Amir; Rubinstein, Mor; Eshed, Ravit; Benita, Miri; Ish-Shalom, Mazal; Sharabi-Schwager, Michal; Rozen, Ada; Saada, David; Cohen, Yuval; Ophir, Ron

    2015-11-14

    Germplasm collections are an important source for plant breeding, especially in fruit trees which have a long duration of juvenile period. Thus, efforts have been made to study the diversity of fruit tree collections. Even though mango is an economically important crop, most of the studies on diversity in mango collections have been conducted with a small number of genetic markers. We describe a de novo transcriptome assembly from mango cultivar 'Keitt'. Variation discovery was performed using Illumina resequencing of 'Keitt' and 'Tommy Atkins' cultivars identified 332,016 single-nucleotide polymorphisms (SNPs) and 1903 simple-sequence repeats (SSRs). Most of the SSRs (70.1%) were of trinucleotide with the preponderance of motif (GGA/AAG)n and only 23.5% were di-nucleotide SSRs with the mostly of (AT/AT)n motif. Further investigation of the diversity in the Israeli mango collection was performed based on a subset of 293 SNPs. Those markers have divided the Israeli mango collection into two major groups: one group included mostly mango accessions from Southeast Asia (Malaysia, Thailand, Indonesia) and India and the other with mainly of Floridian and Israeli mango cultivars. The latter group was more polymorphic (FS=-0.1 on the average) and was more of an admixture than the former group. A slight population differentiation was detected (FST=0.03), suggesting that if the mango accessions of the western world apparently was originated from Southeast Asia, as has been previously suggested, the duration of cultivation was not long enough to develop a distinct genetic background. Whole-transcriptome reconstruction was used to significantly broaden the mango's genetic variation resources, i.e., SNPs and SSRs. The set of SNP markers described in this study is novel. A subset of SNPs was sampled to explore the Israeli mango collection and most of them were polymorphic in many mango accessions. Therefore, we believe that these SNPs will be valuable as they recapitulate and

  16. Genome-wide DNA polymorphisms in Kavuni, a traditional rice cultivar with nutritional and therapeutic properties.

    Science.gov (United States)

    Rathinasabapathi, Pasupathi; Purushothaman, Natarajan; Parani, Madasamy

    2016-05-01

    Although rice genome was sequenced in the year 2002, efforts in resequencing the large number of available accessions, landraces, traditional cultivars, and improved varieties of this important food crop are limited. We have initiated resequencing of the traditional cultivars from India. Kavuni is an important traditional rice cultivar from South India that attracts premium price for its nutritional and therapeutic properties. Whole-genome sequencing of Kavuni using Illumina platform and SNPs analysis using Nipponbare reference genome identified 1 150 711 SNPs of which 377 381 SNPs were located in the genic regions. Non-synonymous SNPs (62 708) were distributed in 19 251 genes, and their number varied between 1 and 115 per gene. Large-effect DNA polymorphisms (7769) were present in 3475 genes. Pathway mapping of these polymorphisms revealed the involvement of genes related to carbohydrate metabolism, translation, protein-folding, and cell death. Analysis of the starch biosynthesis related genes revealed that the granule-bound starch synthase I gene had T/G SNPs at the first intron/exon junction and a two-nucleotide combination, which were reported to favour high amylose content and low glycemic index. The present study provided a valuable genomics resource to study the rice varieties with nutritional and medicinal properties.

  17. Plastid: nucleotide-resolution analysis of next-generation sequencing and genomics data.

    Science.gov (United States)

    Dunn, Joshua G; Weissman, Jonathan S

    2016-11-22

    Next-generation sequencing (NGS) informs many biological questions with unprecedented depth and nucleotide resolution. These assays have created a need for analytical tools that enable users to manipulate data nucleotide-by-nucleotide robustly and easily. Furthermore, because many NGS assays encode information jointly within multiple properties of read alignments - for example, in ribosome profiling, the locations of ribosomes are jointly encoded in alignment coordinates and length - analytical tools are often required to extract the biological meaning from the alignments before analysis. Many assay-specific pipelines exist for this purpose, but there remains a need for user-friendly, generalized, nucleotide-resolution tools that are not limited to specific experimental regimes or analytical workflows. Plastid is a Python library designed specifically for nucleotide-resolution analysis of genomics and NGS data. As such, Plastid is designed to extract assay-specific information from read alignments while retaining generality and extensibility to novel NGS assays. Plastid represents NGS and other biological data as arrays of values associated with genomic or transcriptomic positions, and contains configurable tools to convert data from a variety of sources to such arrays. Plastid also includes numerous tools to manipulate even discontinuous genomic features, such as spliced transcripts, with nucleotide precision. Plastid automatically handles conversion between genomic and feature-centric coordinates, accounting for splicing and strand, freeing users of burdensome accounting. Finally, Plastid's data models use consistent and familiar biological idioms, enabling even beginners to develop sophisticated analytical workflows with minimal effort. Plastid is a versatile toolkit that has been used to analyze data from multiple NGS assays, including RNA-seq, ribosome profiling, and DMS-seq. It forms the genomic engine of our ORF annotation tool, ORF-RATER, and is readily

  18. Novel Single-Nucleotide Polymorphism Markers Predictive of Pathologic Response to Preoperative Chemoradiation Therapy in Rectal Cancer Patients

    International Nuclear Information System (INIS)

    Kim, Jin C.; Ha, Ye J.; Roh, Seon A.; Cho, Dong H.; Choi, Eun Y.; Kim, Tae W.; Kim, Jong H.; Kang, Tae W.; Kim, Seon Y.; Kim, Yong S.

    2013-01-01

    Purpose: Studies aimed at predicting individual responsiveness to preoperative chemoradiation therapy (CRT) are urgently needed, especially considering the risks associated with poorly responsive patients. Methods and Materials: A 3-step strategy for the determination of CRT sensitivity is proposed based on (1) the screening of a human genome-wide single-nucleotide polymorphism (SNP) array in correlation with histopathologic tumor regression grade (TRG); (2) clinical association analysis of 113 patients treated with preoperative CRT; and (3) a cell-based functional assay for biological validation. Results: Genome-wide screening identified 9 SNPs associated with preoperative CRT responses. Positive responses (TRG 1-3) were obtained more frequently in patients carrying the reference allele (C) of the SNP CORO2A rs1985859 than in those with the substitution allele (T) (P=.01). Downregulation of CORO2A was significantly associated with reduced early apoptosis by 27% (P=.048) and 39% (P=.023) in RKO and COLO320DM colorectal cancer cells, respectively, as determined by flow cytometry. Reduced radiosensitivity was confirmed by colony-forming assays in the 2 colorectal cancer cells (P=.034 and .015, respectively). The SNP FAM101A rs7955740 was not associated with radiosensitivity in the clinical association analysis. However, downregulation of FAM101A significantly reduced early apoptosis by 29% in RKO cells (P=.047), and it enhanced colony formation in RKO cells (P=.001) and COLO320DM cells (P=.002). Conclusion: CRT-sensitive SNP markers were identified using a novel 3-step process. The candidate marker CORO2A rs1985859 and the putative marker FAM101A rs7955740 may be of value for the prediction of radiosensitivity to preoperative CRT, although further validation is needed in large cohorts

  19. Alternative transcription of sodium/bicarbonate transporter SLC4A7 gene enhanced by single nucleotide polymorphisms.

    Science.gov (United States)

    Park, Hae Jeong; Lee, Soojung; Ju, Eunji; Jones, Jayre A; Choi, Inyeong

    2017-03-01

    Genome-wide association studies have identified the single nucleotide polymorphism (SNP) rs3278 in the human SLC4A7 gene as one of the marker loci for addiction vulnerability. This marker is located in an intron of the gene, and its genomic role has been unknown. In this study, we examined rs3278 and three adjacent SNPs prevalent in alcoholics for their effects on an alternative promoter that would lead to the production of the NH 2 -terminally truncated protein NBCn1ΔN450, missing the first 450 amino acids. Analysis of the transcription start site database and a promoter prediction algorithm identified a cluster of three promoters in intron 7 and two short CpG-rich sites in intron 6. The promoter closest to rs3278 showed strong transcription activity in luciferase reporter gene assays. Major-to-minor allele substitution at rs3278 resulted in increased transcription activity. Equivalent substitutions at adjacent rs3772723 (intron 7) and rs13077400 (exon 8) had negligible effect; however, the substitution at nonsynonymous rs3755652 (exon 8) increased the activity by more than twofold. The concomitant substitution at rs3278/rs3755652 produced an additive effect. The rs3755652 had more profound effects on the promoter than the upstream regulatory CpG sites. The amino acid change E326K caused by rs3755652 had negligible effect on transporter function. In HEK 293 cells, NBCn1ΔN450 was expressed in plasma membranes, but at significantly lower levels than the nontruncated NBCn1-E. The pH change mediated by NBCn1ΔN450 was also low. We conclude that rs3278 and rs3755652 stimulate an alternative transcription of the SLC4A7 gene, increasing the production of a defective transporter. Copyright © 2017 the American Physiological Society.

  20. Highly significant association between two common single nucleotide polymorphisms in CORIN gene and preeclampsia in Caucasian women.

    Directory of Open Access Journals (Sweden)

    Alain Stepanian

    Full Text Available Preeclampsia is a frequent medical complication during pregnancy. Corin, a serine protease which activates pro-atrial natriuretic peptide, has recently been shown to be involved in the pathophysiology of preeclampsia. The aim of this study was to search for CORIN gene variations and their association to preeclampsia in Caucasian and African women. Our study population was composed of 571 pregnant women (295 with preeclampsia and 276 normotensive controls matched for maternal and gestational age, and ethnic origin. The 22 exons of the CORIN gene were sequenced in a discovery sample (n = 260, where 31 single nucleotide polymorphisms were identified. In a replication sample (n = 311, 4 single nucleotide polymorphisms were tested. Two minor alleles (C for rs2271036 and G for rs2271037 were significantly associated to preeclampsia. Adjusted odds ratios [95% confidence interval] were 2.5 [1.2-3.8] (p = 0.007 and 2.3 [1.5-3.5] (p = 1.3 × 10(-4, respectively. These associations were ethnic-specific, as only found in the Caucasian of subjects (odds ratio = 3.5 [1.8-6.6], p = 1.1 × 10(-4; odds ratio = 3.1 [1.7-5.8], p = 2.1 × 10(-4, for each single nucleotide polymorphism, respectively. The two single nucleotide polymorphisms are in almost perfect linkage disequilibrium (r(2 = 0.93. No specific association was found with severe preeclampsia, early-onset preeclampsia nor fetal growth retardation. In conclusion, this is the first report of a highly significant association between these two single nucleotide polymorphisms in CORIN gene and preeclampsia. Our findings further support the probability of a critical role of corin in preeclamspia pathophysiology at the uteroplacental interface.

  1. Genomic patterns of nucleotide diversity in divergent populations of U.S. weedy rice

    Directory of Open Access Journals (Sweden)

    Olsen Kenneth M

    2010-06-01

    Full Text Available Abstract Background Weedy rice (red rice, a conspecific weed of cultivated rice (Oryza sativa L., is a significant problem throughout the world and an emerging threat in regions where it was previously absent. Despite belonging to the same species complex as domesticated rice and its wild relatives, the evolutionary origins of weedy rice remain unclear. We use genome-wide patterns of single nucleotide polymorphism (SNP variation in a broad geographic sample of weedy, domesticated, and wild Oryza samples to infer the origin and demographic processes influencing U.S. weedy rice evolution. Results We find greater population structure than has been previously reported for U.S. weedy rice, and that the multiple, genetically divergent populations have separate origins. The two main U.S. weedy rice populations share genetic backgrounds with cultivated O. sativa varietal groups not grown commercially in the U.S., suggesting weed origins from domesticated ancestors. Hybridization between weedy groups and between weedy rice and local crops has also led to the evolution of distinct U.S. weedy rice populations. Demographic simulations indicate differences among the main weedy groups in the impact of bottlenecks on their establishment in the U.S., and in the timing of divergence from their cultivated relatives. Conclusions Unlike prior research, we did not find unambiguous evidence for U.S. weedy rice originating via hybridization between cultivated and wild Oryza species. Our results demonstrate the potential for weedy life-histories to evolve directly from within domesticated lineages. The diverse origins of U.S. weedy rice populations demonstrate the multiplicity of evolutionary forces that can influence the emergence of weeds from a single species complex.

  2. Association of Interleukin-1 Gene Single Nucleotide Polymorphisms with Keratoconus in Chinese Han Population.

    Science.gov (United States)

    Wang, Yani; Wei, Wei; Zhang, Changning; Zhang, XueHui; Liu, Ming; Zhu, Xiuping; Xu, Kun

    2016-05-01

    To investigate whether interleukin-1 alpha (IL1A) and interleukin-1 beta (IL1B) polymorphisms are associated with keratoconus (KC) in unrelated Chinese Han patients. The IL1A (rs2071376) and IL1B (rs1143627, rs16944) polymorphisms were genotyped in 115 unrelated Chinese Han KC patients and 101 healthy Chinese Han volunteers with the Sequenom MassARRAY RS1000. Sequenom Typer 4.0 software, PLINK 1.07, Haploview 4.0 software platform were used to analyze the allelic variants of IL1A and IL1B genes, and their association with KC risk factors were assessed. Among the variants, the three SNPs (rs2071376 in IL1A, rs1143627 and rs16944 in the promoter region of IL1B) were different between the two groups. The A allele of rs2071376 (A > C, p = 0.017, OR = 1.968, 95% C.I. 1.313-3.425), the C allele of rs1143627 (C > T, p rs16944 (A > G, p = 0.002, OR = 2.401, 95% C.I. 1.396-4.161) were associated with a increased risk of KC in Chinese Han patients. This study showed that rs2071376, rs1143627 and rs16944 had significant differences in associations between KC patients and the control group when different genotypes were analyzed in three models (dominant, recessive, and additive). In the haplotype analysis, the two single nucleotide polymorphisms (SNPs), rs1143627 and rs16944 showed strong linkage disequilibrium. In addition, Haplotype "ACA" was found to be associated with a higher risk of developing KC (OR = 12.91, p < 0.001). Keratocyte apoptosis is an initiating event in the pathogenesis of KC which could be induced by the altered levels of IL1 gene. These findings confirmed that polymorphisms in IL1 genes were associated with risk of KC in the Chinese Han population, which help us to gain insight into the pathogenesis of KC.

  3. Fitness consequences of polymorphic inversions in the zebra finch genome.

    Science.gov (United States)

    Knief, Ulrich; Hemmrich-Stanisak, Georg; Wittig, Michael; Franke, Andre; Griffith, Simon C; Kempenaers, Bart; Forstmeier, Wolfgang

    2016-09-29

    Inversion polymorphisms constitute an evolutionary puzzle: they should increase embryo mortality in heterokaryotypic individuals but still they are widespread in some taxa. Some insect species have evolved mechanisms to reduce the cost of embryo mortality but humans have not. In birds, a detailed analysis is missing although intraspecific inversion polymorphisms are regarded as common. In Australian zebra finches (Taeniopygia guttata), two polymorphic inversions are known cytogenetically and we set out to detect these two and potentially additional inversions using genomic tools and study their effects on embryo mortality and other fitness-related and morphological traits. Using whole-genome SNP data, we screened 948 wild zebra finches for polymorphic inversions and describe four large (12-63 Mb) intraspecific inversion polymorphisms with allele frequencies close to 50 %. Using additional data from 5229 birds and 9764 eggs from wild and three captive zebra finch populations, we show that only the largest inversions increase embryo mortality in heterokaryotypic males, with surprisingly small effect sizes. We test for a heterozygote advantage on other fitness components but find no evidence for heterosis for any of the inversions. Yet, we find strong additive effects on several morphological traits. The mechanism that has carried the derived inversion haplotypes to such high allele frequencies remains elusive. It appears that selection has effectively minimized the costs associated with inversions in zebra finches. The highly skewed distribution of recombination events towards the chromosome ends in zebra finches and other estrildid species may function to minimize crossovers in the inverted regions.

  4. On the biased nucleotide composition of the human coronavirus RNA genome

    NARCIS (Netherlands)

    Berkhout, Ben; van Hemert, Formijn

    2015-01-01

    We investigated the nucleotide composition of the RNA genome of the six human coronaviruses. Some general coronavirus characteristics were apparent (e.g. high U, low C count), but we also detected species-specific signatures. Most strikingly, the high U and low C proportions are quite variable and

  5. VCS: Tool for Visualizing Copy Number Variation and Single Nucleotide Polymorphism

    Directory of Open Access Journals (Sweden)

    HyoYoung Kim

    2014-12-01

    Full Text Available Copy number variation (CNV or single nucleotide phlyorphism (SNP is useful genetic resource to aid in understanding complex phenotypes or deseases susceptibility. Although thousands of CNVs and SNPs are currently avaliable in the public databases, they are somewhat difficult to use for analyses without visualization tools. We developed a web-based tool called the VCS (visualization of CNV or SNP to visualize the CNV or SNP detected. The VCS tool can assist to easily interpret a biological meaning from the numerical value of CNV and SNP. The VCS provides six visualization tools: i the enrichment of genome contents in CNV; ii the physical distribution of CNV or SNP on chromosomes; iii the distribution of log2 ratio of CNVs with criteria of interested; iv the number of CNV or SNP per binning unit; v the distribution of homozygosity of SNP genotype; and vi cytomap of genes within CNV or SNP region.

  6. Base-By-Base: single nucleotide-level analysis of whole viral genome alignments.

    Science.gov (United States)

    Brodie, Ryan; Smith, Alex J; Roper, Rachel L; Tcherepanov, Vasily; Upton, Chris

    2004-07-14

    With ever increasing numbers of closely related virus genomes being sequenced, it has become desirable to be able to compare two genomes at a level more detailed than gene content because two strains of an organism may share the same set of predicted genes but still differ in their pathogenicity profiles. For example, detailed comparison of multiple isolates of the smallpox virus genome (each approximately 200 kb, with 200 genes) is not feasible without new bioinformatics tools. A software package, Base-By-Base, has been developed that provides visualization tools to enable researchers to 1) rapidly identify and correct alignment errors in large, multiple genome alignments; and 2) generate tabular and graphical output of differences between the genomes at the nucleotide level. Base-By-Base uses detailed annotation information about the aligned genomes and can list each predicted gene with nucleotide differences, display whether variations occur within promoter regions or coding regions and whether these changes result in amino acid substitutions. Base-By-Base can connect to our mySQL database (Virus Orthologous Clusters; VOCs) to retrieve detailed annotation information about the aligned genomes or use information from text files. Base-By-Base enables users to quickly and easily compare large viral genomes; it highlights small differences that may be responsible for important phenotypic differences such as virulence. It is available via the Internet using Java Web Start and runs on Macintosh, PC and Linux operating systems with the Java 1.4 virtual machine.

  7. Single nucleotide polymorphism discrimination with and without an ethidium bromide intercalator

    International Nuclear Information System (INIS)

    Fenati, Renzo A.; Connolly, Ashley R.; Ellis, Amanda V.

    2017-01-01

    Single nucleotide polymorphism (SNP) genotyping is an important aspect in understanding genetic variations. Here, we discriminate SNPs using toe-hold mediated displacement reactions. The biological target is an 80 nucleotide long double-stranded–DNA from the mtDNA HV1 region, associated with maternal ancestry. This target has been specially designed with a pendant toehold and a cationic fluorophore, ATTO 647N, as a reporter, produced in a polymerase chain reaction. Rates of reaction for the toehold-polymerase chain reaction products (TPPs) with their corresponding complementary displacing sequences, labelled with a Black Hole Quencher 1, followed the order TPP–Cytosine > TPP–Thymine > TPP–Adenine ≥ TPP–Guanine. Non-complementary rates were the slowest with mismatches involving cytosine. These reactions, operating in a static/or contact mode, gave averaged readouts between SNPs within 15 min (with 80–90% quenching), compared to 25–30 min in previous studies involving fluorescence resonance energy transfer. Addition of an intercalating agent, ethidium bromide, retarded the rate of reaction in which cytosine was involved, presumably through stabilization of the base pairing, which resulted in markedly improved discrimination of cytosine containing SNPs. - Highlights: • Fluorophores and DNA intercalators effect the rate of toehold-mediated strand displacement. • Ethidium bromide had a destabilizing effect on mismatches that contained cytosine. • A cationic fluorophore and Black Hole Quencher 1 strand displacement system was 2–3 times faster than a FRET system. • This enabled SNP detection using toehold-mediated strand displacement in 15 min.

  8. Single nucleotide polymorphism discrimination with and without an ethidium bromide intercalator

    Energy Technology Data Exchange (ETDEWEB)

    Fenati, Renzo A.; Connolly, Ashley R. [Flinders Centre for Nanoscale Science and Technology, Flinders University, Sturt Road, Bedford Park, Adelaide, South Australia 5042 (Australia); Ellis, Amanda V., E-mail: amanda.ellis@flinders.edu.au [Flinders Centre for Nanoscale Science and Technology, Flinders University, Sturt Road, Bedford Park, Adelaide, South Australia 5042 (Australia); Chemical and Biomolecular Engineering, The University of Melbourne, Parkville, VIC 3010 (Australia)

    2017-02-15

    Single nucleotide polymorphism (SNP) genotyping is an important aspect in understanding genetic variations. Here, we discriminate SNPs using toe-hold mediated displacement reactions. The biological target is an 80 nucleotide long double-stranded–DNA from the mtDNA HV1 region, associated with maternal ancestry. This target has been specially designed with a pendant toehold and a cationic fluorophore, ATTO 647N, as a reporter, produced in a polymerase chain reaction. Rates of reaction for the toehold-polymerase chain reaction products (TPPs) with their corresponding complementary displacing sequences, labelled with a Black Hole Quencher 1, followed the order TPP–Cytosine > TPP–Thymine > TPP–Adenine ≥ TPP–Guanine. Non-complementary rates were the slowest with mismatches involving cytosine. These reactions, operating in a static/or contact mode, gave averaged readouts between SNPs within 15 min (with 80–90% quenching), compared to 25–30 min in previous studies involving fluorescence resonance energy transfer. Addition of an intercalating agent, ethidium bromide, retarded the rate of reaction in which cytosine was involved, presumably through stabilization of the base pairing, which resulted in markedly improved discrimination of cytosine containing SNPs. - Highlights: • Fluorophores and DNA intercalators effect the rate of toehold-mediated strand displacement. • Ethidium bromide had a destabilizing effect on mismatches that contained cytosine. • A cationic fluorophore and Black Hole Quencher 1 strand displacement system was 2–3 times faster than a FRET system. • This enabled SNP detection using toehold-mediated strand displacement in 15 min.

  9. Method: a single nucleotide polymorphism genotyping method for Wheat streak mosaic virus

    Science.gov (United States)

    2012-01-01

    Background The September 11, 2001 attacks on the World Trade Center and the Pentagon increased the concern about the potential for terrorist attacks on many vulnerable sectors of the US, including agriculture. The concentrated nature of crops, easily obtainable biological agents, and highly detrimental impacts make agroterrorism a potential threat. Although procedures for an effective criminal investigation and attribution following such an attack are available, important enhancements are still needed, one of which is the capability for fine discrimination among pathogen strains. The purpose of this study was to develop a molecular typing assay for use in a forensic investigation, using Wheat streak mosaic virus (WSMV) as a model plant virus. Method This genotyping technique utilizes single base primer extension to generate a genetic fingerprint. Fifteen single nucleotide polymorphisms (SNPs) within the coat protein and helper component-protease genes were selected as the genetic markers for this assay. Assay optimization and sensitivity testing was conducted using synthetic targets. WSMV strains and field isolates were collected from regions around the world and used to evaluate the assay for discrimination. The assay specificity was tested against a panel of near-neighbors consisting of genetic and environmental near-neighbors. Result Each WSMV strain or field isolate tested produced a unique SNP fingerprint, with the exception of three isolates collected within the same geographic location that produced indistinguishable fingerprints. The results were consistent among replicates, demonstrating the reproducibility of the assay. No SNP fingerprints were generated from organisms included in the near-neighbor panel, suggesting the assay is specific for WSMV. Using synthetic targets, a complete profile could be generated from as low as 7.15 fmoles of cDNA. Conclusion The molecular typing method presented is one tool that could be incorporated into the forensic

  10. Method: a single nucleotide polymorphism genotyping method for Wheat streak mosaic virus.

    Science.gov (United States)

    Rogers, Stephanie M; Payton, Mark; Allen, Robert W; Melcher, Ulrich; Carver, Jesse; Fletcher, Jacqueline

    2012-05-17

    The September 11, 2001 attacks on the World Trade Center and the Pentagon increased the concern about the potential for terrorist attacks on many vulnerable sectors of the US, including agriculture. The concentrated nature of crops, easily obtainable biological agents, and highly detrimental impacts make agroterrorism a potential threat. Although procedures for an effective criminal investigation and attribution following such an attack are available, important enhancements are still needed, one of which is the capability for fine discrimination among pathogen strains. The purpose of this study was to develop a molecular typing assay for use in a forensic investigation, using Wheat streak mosaic virus (WSMV) as a model plant virus. This genotyping technique utilizes single base primer extension to generate a genetic fingerprint. Fifteen single nucleotide polymorphisms (SNPs) within the coat protein and helper component-protease genes were selected as the genetic markers for this assay. Assay optimization and sensitivity testing was conducted using synthetic targets. WSMV strains and field isolates were collected from regions around the world and used to evaluate the assay for discrimination. The assay specificity was tested against a panel of near-neighbors consisting of genetic and environmental near-neighbors. Each WSMV strain or field isolate tested produced a unique SNP fingerprint, with the exception of three isolates collected within the same geographic location that produced indistinguishable fingerprints. The results were consistent among replicates, demonstrating the reproducibility of the assay. No SNP fingerprints were generated from organisms included in the near-neighbor panel, suggesting the assay is specific for WSMV. Using synthetic targets, a complete profile could be generated from as low as 7.15 fmoles of cDNA. The molecular typing method presented is one tool that could be incorporated into the forensic science tool box after a thorough

  11. Single nucleotide polymorphisms and unacceptable late toxicity in breast cancer adjuvant radiotherapy: a case report

    Directory of Open Access Journals (Sweden)

    Lazzari G

    2017-05-01

    Full Text Available Grazia Lazzari,1 Maria Iole Natalicchio,2 Angela Terlizzi,3 Francesco Perri,4 Giovanni Silvano1 1Radiation Oncology Unit, San Giuseppe Moscati Hospital, Taranto, 2Molecular Biology Laboratory, Pathological Anatomy Department, Ospedali Riuniti, Foggia, 3Medical Physic Unit, San Giuseppe Moscati Hospital, 4Medical Oncology Unit, Presidio Ospedaliero Centrale - Santissima Annunziata, Taranto, Italy Background: There has recently been a strong interest in the inter-individual variation in normal tissue and tumor response to radiotherapy (RT, because tissue radiosensitivity seems to be under genetic control. Evidence is accumulating on the role of polymorphic genetic variants, such as single nucleotide polymorphisms (SNPs that could influence normal tissue response after radiation. The most studied SNPs include those in genes involved in DNA repair (single- and double-strand breaks, and base excision and those active in the response to oxidative stress.Case report: We present the case report of a 60-year-old woman with early breast cancer who underwent adjuvant hormone therapy and conventional radiotherapy, and subsequently developed unacceptable cosmetic toxicities of the irradiated breast requiring a genetic test of genes involved in DNA repair mechanisms. The patient was found to be heterozygous for G28152A (T/C and C18067T (A/G mutations in X-ray repair cross-complementing group 1 (XRCC1 and 3 (XRCC3, respectively, homozygous for A313G (G/G mutation in glutathione S transferase Pi 1 (GSTP1, and wild-type for A4541G (A/A in XRCC3 and G135C (G/G in RAD51 recombinase.Conclusion: The role of SNPs should be taken into account when a severe phenomenon appears in normal tissues after radiation treatment, because understanding the molecular basis of individual radiosensitivity may be useful for identifying moderately or extremely radiosensitive patients who may need tailored therapeutic strategies. Keywords: radiosensitivity, SNPs, fibrosis, DNA repair

  12. Cancer protection elicited by a single nucleotide polymorphism close to the adrenomedullin gene.

    Science.gov (United States)

    Martínez-Herrero, Sonia; Martínez, Alfredo

    2013-04-01

    The risk of developing cancer is regulated by genetic variants, including polymorphisms. Characterizing such variants may help in developing protocols for personalized medicine. Adrenomedullin is a regulatory peptide involved in cancer promotion and progression. Carriers of a single nucleotide polymorphism (SNP) in the proximity of the adrenomedullin gene have lower levels of circulating peptide. The aim of the present work was to investigate whether carriers of this SNP (rs4910118) are protected against cancer. This was a retrospective study. DNA samples were obtained from the Carlos III DNA National Bank (University of Salamanca, Salamanca, Spain). Samples represent a variety of donors and patients from Spain. DNA from patients with breast cancer (n = 238), patients with lung cancer (n = 348), patients with cardiac insufficiency (n = 474), and healthy donors of advanced age (n = 500) was used. All samples were genotyped using double-mismatch PCR, and confirmation was achieved by direct sequencing. The minor allele frequency was calculated in all groups. The Pearson χ(2) was used to compare SNP frequencies. Of 1560 samples, 14 had the minor allele, with a minor allele frequency in healthy donors of 0.90%. Patients with cancer had a statistically significantly lower frequency than healthy donors (odds ratio = 0.216, 95% confidence interval = 0.048-0.967, P = .028). Carriers of the minor allele have a 4.6-fold lower risk of developing cancer than homozygotes for the major allele. Knowledge of the rs4910118 genotype may be useful for stratifying patients in clinical trials and for designing prevention strategies.

  13. Endothelial nitric oxide synthase single nucleotide polymorphism and left ventricular function in early chronic kidney disease.

    Directory of Open Access Journals (Sweden)

    Sourabh Chand

    Full Text Available Chronic kidney disease (CKD is associated with accelerated cardiovascular disease and heart failure. Endothelial nitric oxide synthase (eNOS Glu298Asp single nucleotide polymorphism (SNP genotype has been associated with a worse phenotype amongst patients with established heart failure and in patients with progression of their renal disease. The association of a cardiac functional difference in non-dialysis CKD patients with no known previous heart failure, and eNOS gene variant is investigated.140 non-dialysis CKD patients, who had cardiac magnetic resonance (CMR imaging and tissue doppler echocardiography as part of two clinical trials, were genotyped for eNOS Glu298Asp SNP retrospectively.The median estimated glomerular filtration rate (eGFR was 50 mls/min and left ventricular ejection fraction (LVEF was 74% with no overt diastolic dysfunction in this cohort. There were significant differences in LVEF across eNOS genotypes with GG genotype being associated with a worse LVEF compared to other genotypes (LVEF: GG 71%, TG 76%, TT 73%, p = 0.006. After multivariate analysis, (adjusting for age, eGFR, baseline mean arterial pressure, contemporary CMR heart rate, total cholesterol, high sensitive C-reactive protein, body mass index and gender GG genotype was associated with a worse LVEF, and increased LV end-diastolic and systolic index (p = 0.004, 0.049 and 0.009 respectively.eNOS Glu298Asp rs1799983 polymorphism in CKD patients is associated with relevant sub-clinical cardiac remodelling as detected by CMR. This gene variant may therefore represent an important genetic biomarker, and possibly highlight pathways for intervention, in these patients who are at particular risk of worsening cardiac disease as their renal dysfunction progresses.

  14. Prediction of peripheral neuropathy in multiple myeloma patients receiving bortezomib and thalidomide: a genetic study based on a single nucleotide polymorphism array.

    Science.gov (United States)

    García-Sanz, Ramón; Corchete, Luis Antonio; Alcoceba, Miguel; Chillon, María Carmen; Jiménez, Cristina; Prieto, Isabel; García-Álvarez, María; Puig, Noemi; Rapado, Immaculada; Barrio, Santiago; Oriol, Albert; Blanchard, María Jesús; de la Rubia, Javier; Martínez, Rafael; Lahuerta, Juan José; González Díaz, Marcos; Mateos, María Victoria; San Miguel, Jesús Fernando; Martínez-López, Joaquín; Sarasquete, María Eugenia

    2017-12-01

    Bortezomib- and thalidomide-based therapies have significantly contributed to improved survival of multiple myeloma (MM) patients. However, treatment-induced peripheral neuropathy (TiPN) is a common adverse event associated with them. Risk factors for TiPN in MM patients include advanced age, prior neuropathy, and other drugs, but there are conflicting results about the role of genetics in predicting the risk of TiPN. Thus, we carried out a genome-wide association study based on more than 300 000 exome single nucleotide polymorphisms in 172 MM patients receiving therapy involving bortezomib and thalidomide. We compared patients developing and not developing TiPN under similar treatment conditions (GEM05MAS65, NCT00443235). The highest-ranking single nucleotide polymorphism was rs45443101, located in the PLCG2 gene, but no significant differences were found after multiple comparison correction (adjusted P = .1708). Prediction analyses, cytoband enrichment, and pathway analyses were also performed, but none yielded any significant findings. A copy number approach was also explored, but this gave no significant results either. In summary, our study did not find a consistent genetic component associated with TiPN under bortezomib and thalidomide therapies that could be used for prediction, which makes clinical judgment essential in the practical management of MM treatment. Copyright © 2016 John Wiley & Sons, Ltd.

  15. Allele specific LAMP- gold nanoparticle for characterization of single nucleotide polymorphisms

    Directory of Open Access Journals (Sweden)

    Fábio Ferreira Carlos

    2017-12-01

    Full Text Available Due to their relevance as disease biomarkers and for diagnostics, screening of single nucleotide polymorphism (SNPs requires simple and straightforward strategies capable to provide results in medium throughput settings. Suitable approaches relying on isothermal amplification techniques have been evolving to substitute the cumbersome and highly specialized PCR amplification detection schemes. Nonetheless, identification of an individual’s genotype still requires sophisticated equipment and laborious methods.Here, we present a low-cost and reliable approach based on the allele specific loop-mediated isothermal amplification (AS-LAMP coupled to ssDNA functionalized gold nanoparticle (Au-nanoprobe colorimetric sequence discrimination. The Au-nanoprobe integration allows for the colorimetric detection of AS-LAMP amplification product that can be easily interpreted in less than 15 min. We targeted a clinical relevant SNP responsible for lactose intolerance (-13910C/T dbSNP rs#: 4988235 to demonstrate its proof of concept and full potential of this novel approach. Keywords: SNP, Isothermal amplification, Gold nanoparticles, Gold nanoprobes, Lactose intolerance

  16. Population structure of pigs determined by single nucleotide polymorphisms observed in assembled expressed sequence tags.

    Science.gov (United States)

    Matsumoto, Toshimi; Okumura, Naohiko; Uenishi, Hirohide; Hayashi, Takeshi; Hamasima, Noriyuki; Awata, Takashi

    2012-01-01

    We have collected more than 190000 porcine expressed sequence tags (ESTs) from full-length complementary DNA (cDNA) libraries and identified more than 2800 single nucleotide polymorphisms (SNPs). In this study, we tentatively chose 222 SNPs observed in assembled ESTs to study pigs of different breeds; 104 were selected by comparing the cDNA sequences of a Meishan pig and samples of three-way cross pigs (Landrace, Large White, and Duroc: LWD), and 118 were selected from LWD samples. To evaluate the genetic variation between the chosen SNPs from pig breeds, we determined the genotypes for 192 pig samples (11 pig groups) from our DNA reference panel with matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Of the 222 reference SNPs, 186 were successfully genotyped. A neighbor-joining tree showed that the pig groups were classified into two large clusters, namely, Euro-American and East Asian pig populations. F-statistics and the analysis of molecular variance of Euro-American pig groups revealed that approximately 25% of the genetic variations occurred because of intergroup differences. As the F(IS) values were less than the F(ST) values(,) the clustering, based on the Bayesian inference, implied that there was strong genetic differentiation among pig groups and less divergence within the groups in our samples. © 2011 The Authors. Animal Science Journal © 2011 Japanese Society of Animal Science.

  17. A molecular beacon microarray based on a quantum dot label for detecting single nucleotide polymorphisms.

    Science.gov (United States)

    Guo, Qingsheng; Bai, Zhixiong; Liu, Yuqian; Sun, Qingjiang

    2016-03-15

    In this work, we report the application of streptavidin-coated quantum dot (strAV-QD) in molecular beacon (MB) microarray assays by using the strAV-QD to label the immobilized MB, avoiding target labeling and meanwhile obviating the use of amplification. The MBs are stem-loop structured oligodeoxynucleotides, modified with a thiol and a biotin at two terminals of the stem. With the strAV-QD labeling an "opened" MB rather than a "closed" MB via streptavidin-biotin reaction, a sensitive and specific detection of label-free target DNA sequence is demonstrated by the MB microarray, with a signal-to-background ratio of 8. The immobilized MBs can be perfectly regenerated, allowing the reuse of the microarray. The MB microarray also is able to detect single nucleotide polymorphisms, exhibiting genotype-dependent fluorescence signals. It is demonstrated that the MB microarray can perform as a 4-to-2 encoder, compressing the genotype information into two outputs. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Role of the DGAT gene C79T single-nucleotide polymorphism in French obese subjects.

    Science.gov (United States)

    Coudreau, Sylvie Kipfer; Tounian, Patrick; Bonhomme, Geneviève; Froguel, Philippe; Girardet, Jean-Philippe; Guy-Grand, Bernard; Basdevant, Arnaud; Clément, Karine

    2003-10-01

    Acyl-coenzyme A, diacylglycerol acyltransferase (DGAT), is a key enzyme involved in adipose-cell triglyceride storage. A 79-bp T-to-C single-nucleotide polymorphism (SNP) on the 3' region of the DGAT transcriptional site has been reported to increase promoter activity and is associated with higher BMI in Turkish women. To validate the possible role of this genetic variant in obesity, as well as the variant's possible cellular-functional significance, we performed an association study between the T79C change and several obesity-related phenotypes in 1357 obese French adults and children. The prevalence of the T79C SNP was similar between obese adults and children when each group was compared with the controls. (CC genotype carrier frequencies were 0.25 to 0.29 in the obese groups and 0.21 in controls; p > 0.05.) In each of the obese adult and child groups studied, the T79C variant was not found to be associated with any of the obesity-related phenotypes tested. Although the T79C SNP of the DGAT gene was studied in several groups of white subjects, the association between this SNP and obesity-related phenotypes, previously described, was not confirmed in our population.

  19. EnsembleGASVR: A novel ensemble method for classifying missense single nucleotide polymorphisms

    KAUST Repository

    Rapakoulia, Trisevgeni

    2014-04-26

    Motivation: Single nucleotide polymorphisms (SNPs) are considered the most frequently occurring DNA sequence variations. Several computational methods have been proposed for the classification of missense SNPs to neutral and disease associated. However, existing computational approaches fail to select relevant features by choosing them arbitrarily without sufficient documentation. Moreover, they are limited to the problem ofmissing values, imbalance between the learning datasets and most of them do not support their predictions with confidence scores. Results: To overcome these limitations, a novel ensemble computational methodology is proposed. EnsembleGASVR facilitates a twostep algorithm, which in its first step applies a novel evolutionary embedded algorithm to locate close to optimal Support Vector Regression models. In its second step, these models are combined to extract a universal predictor, which is less prone to overfitting issues, systematizes the rebalancing of the learning sets and uses an internal approach for solving the missing values problem without loss of information. Confidence scores support all the predictions and the model becomes tunable by modifying the classification thresholds. An extensive study was performed for collecting the most relevant features for the problem of classifying SNPs, and a superset of 88 features was constructed. Experimental results show that the proposed framework outperforms well-known algorithms in terms of classification performance in the examined datasets. Finally, the proposed algorithmic framework was able to uncover the significant role of certain features such as the solvent accessibility feature, and the top-scored predictions were further validated by linking them with disease phenotypes. © The Author 2014.

  20. Mining the transcriptomes of four commercially important shellfish species for single nucleotide polymorphisms within biomineralization genes.

    Science.gov (United States)

    Vendrami, David L J; Shah, Abhijeet; Telesca, Luca; Hoffman, Joseph I

    2016-06-01

    Transcriptional profiling not only provides insights into patterns of gene expression, but also generates sequences that can be mined for molecular markers, which in turn can be used for population genetic studies. As part of a large-scale effort to better understand how commercially important European shellfish species may respond to ocean acidification, we therefore mined the transcriptomes of four species (the Pacific oyster Crassostrea gigas, the blue mussel Mytilus edulis, the great scallop Pecten maximus and the blunt gaper Mya truncata) for single nucleotide polymorphisms (SNPs). Illumina data for C. gigas, M. edulis and P. maximus and 454 data for M. truncata were interrogated using GATK and SWAP454 respectively to identify between 8267 and 47,159 high quality SNPs per species (total=121,053 SNPs residing within 34,716 different contigs). We then annotated the transcripts containing SNPs to reveal homology to diverse genes. Finally, as oceanic pH affects the ability of organisms to incorporate calcium carbonate, we honed in on genes implicated in the biomineralization process to identify a total of 1899 SNPs in 157 genes. These provide good candidates for biomarkers with which to study patterns of selection in natural or experimental populations. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. The regulated secretory pathway and human disease: insights from gene variants and single nucleotide polymorphisms

    Directory of Open Access Journals (Sweden)

    Stephen eSalton

    2013-08-01

    Full Text Available The regulated secretory pathway provides critical control of peptide, growth factor, and hormone release from neuroendocrine and endocrine cells, and neurons, maintaining physiological homeostasis. Propeptides and prohormones are packaged into dense core granules (DCGs, where they frequently undergo tissue-specific processing as the DCG matures. Proteins of the granin family are DCG components, and although their function is not fully understood, data suggest they are involved in DCG formation and regulated protein/peptide secretion, in addition to their role as precursors of bioactive peptides. Association of gene variation, including single nucleotide polymorphisms (SNPs, with neuropsychiatric, endocrine and metabolic diseases, has implicated specific secreted proteins and peptides in disease pathogenesis. For example, a SNP at position 196 (G/A of the human brain-derived neurotrophic factor (BDNF gene dysregulates protein processing and secretion and leads to cognitive impairment. This suggests more generally that variants identified in genes encoding secreted growth factors, peptides, hormones, and proteins involved in DCG biogenesis, protein processing, and the secretory apparatus, could provide insight into the process of regulated secretion as well as disorders that result when it is impaired.

  2. DNA Three-Way Junction for Differentiation of Single-Nucleotide Polymorphisms with Fluorescent Copper Nanoparticles.

    Science.gov (United States)

    Sun, Feifei; You, Ying; Liu, Jie; Song, Quanwei; Shen, Xiaotong; Na, Na; Ouyang, Jin

    2017-05-23

    A label- and enzyme-free fluorescent sensor for the detection of single-nucleotide polymorphisms (SNPs) at room temperature is proposed, using new copper nanoparticles (CuNPs) as fluorescent reporters. The CuNPs were constructed by using a DNA three-way junction (3WJ) template. In this assay, two complementary adenine/thymine-rich probes can hybridize with the wild-type target simultaneously to construct a 3WJ structure, serving as an efficient scaffold for the generation of CuNPs. However, the CuNPs produce weak fluorescence when the probes bind with a mutant-type target. SNPs can be identified by the difference in fluorescence intensity of the CuNPs. This SNPs detection strategy is straightforward, cost-effective, and avoids the complicated procedures of labeling or enzymatic reactions. The fluorescent sensor is versatile and can be applied to all types of mutation because the probes are programmable. Moreover, the sensor exhibits good detection performance in biological samples. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. The Influence of Single Nucleotide Polymorphism Microarray-Based Molecular Karyotype on Preimplantation Embryonic Development Potential.

    Directory of Open Access Journals (Sweden)

    Gang Li

    Full Text Available In order to investigate the influence of the molecular karyotype based on single nucleotide polymorphism (SNP microarray on embryonic development potential in preimplantation genetic diagnosis (PGD, we retrospectively analyzed the clinical data generated by PGD using embryos retrieved from parents with chromosome rearrangements in our center. In total, 929 embryos from 119 couples had exact diagnosis and development status. The blastocyst formation rate of balanced molecular karyotype embryos was 56.6% (276/488, which was significantly higher than that of genetic imbalanced embryos 24.5% (108/441 (P35 respectively. Blastocyst formation rates of male and female embryos were 44.5% (183/411 and 38.8% (201/518 respectively, with no significant difference between them (P>0.05. The rates of balanced molecular karyotype embryos vary from groups of embryos with different cell numbers at 68 hours after insemination. The blastocyst formation rate of embryos with 6-8 cells (48.1% was significantly higher than that of embryos with 8 cells (42.9% (P8 cells, embryos with 6-8 blastomeres have higher rate of balanced molecular karyotype and blastocyst formation.

  4. Single nucleotide polymorphisms in obesity-related genes and the risk of esophageal cancers.

    Science.gov (United States)

    Doecke, James D; Zhao, Zhen Zhen; Stark, Mitchell S; Green, Adèle C; Hayward, Nicholas K; Montgomery, Grant W; Webb, Penelope M; Whiteman, David C

    2008-04-01

    Rates of adenocarcinoma of the esophagus (EAC) and esophagogastric junction (EGJAC) have been rising rapidly in recent decades, in contrast to the declining rates of esophageal squamous cell carcinomas (ESCC). Obesity is a major risk factor for both EAC and EGJAC, but not ESCC, and there is speculation that obesity promotes adenocarcinoma development through endocrine and related pathways. We therefore compared the prevalence of 12 single nucleotide polymorphisms (SNPs) in nine candidate genes previously implicated in obesity pathways (LEP, LEPR, ADIPOQ, POMC, PPARalpha, PPARgamma, RXRgamma, GHRL, and INSIG2) in a large Australian case-control study comprising DNA samples from 260 EAC cases, 301 EGJAC cases, 213 ESCC cases, and 1,352 population controls. No SNPs were associated with EGJAC or ESCC. Although several SNPs seemed to be associated with EAC on crude analysis [ADIPOQ (rs1501299), LEP (5'-untranslated region), PPARgamma (H447H), and GHRL (M72L)], effect sizes were modest and none of the associations was significant after correcting for multiple comparisons. Further, we found no consistent evidence that any of the genotypes were associated with risk of EAC or EGJAC within strata of body mass index (30 kg/m(2)). In conclusion, our data suggest that these SNPs do not play a major role in esophageal carcinogenesis.

  5. FUNCTIONAL IMPLICATIONS OF THE CLOCK 3111T/C SINGLE-NUCLEOTIDE POLYMORPHISM

    Directory of Open Access Journals (Sweden)

    Angela Renee Ozburn

    2016-04-01

    Full Text Available Circadian rhythm disruptions are prominently associated with Bipolar Disorder (BD. Circadian rhythms are regulated by the molecular clock, a family of proteins that function together in a transcriptional-translational feedback loop. The CLOCK protein is a key transcription factor of this feedback loop, and previous studies have found that manipulations of the Clock gene are sufficient to produce manic-like behavior in mice (Roybal et al., 2007. The Clock 3111T/C single-nucleotide polymorphism (SNP; rs1801260 is a genetic variation of the human Clock gene that is significantly associated with increased frequency of manic episodes in BD patients (Benedetti et al., 2003. The 3111T/C SNP is located in the 3’ untranslated region of the Clock gene. In this study, we sought to examine the functional implications of the human Clock 3111T/C SNP by transfecting a mammalian cell line (mouse embryonic fibroblasts isolated from Clock -/- knockout mice with pcDNA plasmids containing the human Clock gene with either the T or C SNP at position 3111. We then measured circadian gene expression over a 24 hour time period. We found that the Clock3111C SNP resulted in higher mRNA levels than the Clock 3111T SNP. Further, we found that Per2, a transcriptional target of CLOCK, was also more highly expressed with Clock 3111C expression, indicating the 3’UTR SNP affects the expression, function and stability of Clock mRNA.

  6. Bayesian pedigree inference with small numbers of single nucleotide polymorphisms via a factor-graph representation.

    Science.gov (United States)

    Anderson, Eric C; Ng, Thomas C

    2016-02-01

    We develop a computational framework for addressing pedigree inference problems using small numbers (80-400) of single nucleotide polymorphisms (SNPs). Our approach relaxes the assumptions, which are commonly made, that sampling is complete with respect to the pedigree and that there is no genotyping error. It relies on representing the inferred pedigree as a factor graph and invoking the Sum-Product algorithm to compute and store quantities that allow the joint probability of the data to be rapidly computed under a large class of rearrangements of the pedigree structure. This allows efficient MCMC sampling over the space of pedigrees, and, hence, Bayesian inference of pedigree structure. In this paper we restrict ourselves to inference of pedigrees without loops using SNPs assumed to be unlinked. We present the methodology in general for multigenerational inference, and we illustrate the method by applying it to the inference of full sibling groups in a large sample (n=1157) of Chinook salmon typed at 95 SNPs. The results show that our method provides a better point estimate and estimate of uncertainty than the currently best-available maximum-likelihood sibling reconstruction method. Extensions of this work to more complex scenarios are briefly discussed. Published by Elsevier Inc.

  7. The single-nucleotide polymorphisms in CHD5 affect the prognosis of patients with hepatocellular carcinoma

    Science.gov (United States)

    Zhu, Xiao; Kong, Qingming; Xie, Liwei; Chen, Zhihong; Li, Hongmei; Zhu, Zhu; Huang, Yongmei; Lan, Feifei; Luo, Haiqing; Zhan, Jingting; Ding, Hongrong; Lei, Jinli; Xiao, Qin; Fu, Weiming; Fan, Wenguo; Zhang, Jinfang; Luo, Hui

    2018-01-01

    Previous studies showed that the low expressions of chromodomain-helicase-DNA-binding protein 5 (CHD5) were intensively associated with deteriorative biologic and clinical characteristics as well as outcomes in many tumors. The aim of this study is to determine whether CHD5 single nucleotide polymorphisms (SNPs) contribute to the prognosis of hepatocellular carcima (HCC). The SNPs were selected according to their linkage disequilibrium (LD) in the targeted next-generation sequencing (NGS) and then genotyped with TaqMan probers. We revealed a rare haplotype AG in CHD5 (SNPs: rs12564469-rs9434711) was markedly associated with HCC prognosis. The univariate and multivariate regression analyses revealed the patients with worse overall survival time were those with tumor metastasis and haplotype AG, as well as cirrhosis, poor differentiation and IV-TNM stage. Based on the available public databases, we discovered the significant association between haplotype AG and CHD5 mRNA expressions only existed in Chinese. These data proposed that the potentially genetic haplotype might functionally contribute to HCC prognosis and CHD5 mRNA expressions. PMID:29568352

  8. Single-nucleotide polymorphisms of TNFA and IL1 in allergic rhinitis.

    Science.gov (United States)

    Nasiri, R; Amirzargar, A Akbar; Movahedi, M; Hirbod-Mobarakeh, A; Farhadi, E; Behniafard, N; Tavakkol, M; Ansaripour, B; Moradi, B; Zare, A; Rezaei, N

    2013-01-01

    Allergic rhinitis is a complex polygenic disorder of the upper respiratory tract. Given that proinflammatory cytokines such as tumor necrosis factor (TNF) and interleukin (IL) 1 seem to play a role in the development of allergic rhinitis, we evaluated the associations between various single-nucleotide polymorphisms (SNPs) of the TNF and IL1 genes in a case-control study. The study population comprised 98 patients with allergic rhinitis. Genotyping was performed using polymerase chain reaction with sequence-specific primers for 2 TNFA promoter variants (rs1800629 and rs361525), 1 variant in the promoter region of IL1A (rs1800587), 2 SNPs in the IL1B gene (rs16944 and rs1 143634), 1 variant in the IL1 receptor (rs2234650), and 1 in IL1RA (rs315952). Patients who were homozygous for the T allele of rs16944 in IL1B had an 8.1-fold greater risk of allergic rhinitis than those with the C allele. In TNFA, a significant relationship was also detected between rs1800629 and rs361525 and allergic rhinitis. Except for rs1800587 in IL1A and rs315952 in IL1RA, significant differences were found between the patient and control groups for all other SNPs. We found that allelic variants in the TNFA and IL1 genes were not only associated with the risk of developing allergic rhinitis, but also affected disease course and severity.

  9. A Single Nucleotide Polymorphism in Human APOBEC3C Enhances Restriction of Lentiviruses.

    Directory of Open Access Journals (Sweden)

    Cristina J Wittkopp

    2016-10-01

    Full Text Available Humans express seven human APOBEC3 proteins, which can inhibit viruses and endogenous retroelements through cytidine deaminase activity. The seven paralogs differ in the potency of their antiviral effects, as well as in their antiviral targets. One APOBEC3, APOBEC3C, is exceptional as it has been found to only weakly block viruses and endogenous retroelements compared to other APOBEC3s. However, our positive selection analyses suggest that APOBEC3C has played a role in pathogen defense during primate evolution. Here, we describe a single nucleotide polymorphism in human APOBEC3C, a change from serine to isoleucine at position 188 (I188 that confers potent antiviral activity against HIV-1. The gain-of-function APOBEC3C SNP results in increased enzymatic activity and hypermutation of target sequences when tested in vitro, and correlates with increased dimerization of the protein. The I188 is widely distributed in human African populations, and is the ancestral primate allele, but is not found in chimpanzees or gorillas. Thus, while other hominids have lost activity of this antiviral gene, it has been maintained, or re-acquired, as a more active antiviral gene in a subset of humans. Taken together, our results suggest that APOBEC3C is in fact involved in protecting hosts from lentiviruses.

  10. HIV-1 Promoter Single Nucleotide Polymorphisms Are Associated with Clinical Disease Severity.

    Directory of Open Access Journals (Sweden)

    Michael R Nonnemacher

    Full Text Available The large majority of human immunodeficiency virus type 1 (HIV-1 markers of disease progression/severity previously identified have been associated with alterations in host genetic and immune responses, with few studies focused on viral genetic markers correlate with changes in disease severity. This study presents a cross-sectional/longitudinal study of HIV-1 single nucleotide polymorphisms (SNPs contained within the viral promoter or long terminal repeat (LTR in patients within the Drexel Medicine CNS AIDS Research and Eradication Study (CARES Cohort. HIV-1 LTR SNPs were found to associate with the classical clinical disease parameters CD4+ T-cell count and log viral load. They were found in both defined and undefined transcription factor binding sites of the LTR. A novel SNP identified at position 108 in a known COUP (chicken ovalbumin upstream promoter/AP1 transcription factor binding site was significantly correlated with binding phenotypes that are potentially the underlying cause of the associated clinical outcome (increase in viral load and decrease in CD4+ T-cell count.

  11. Assignment of Streptococcus agalactiae isolates to clonal complexes using a small set of single nucleotide polymorphisms.

    Science.gov (United States)

    Honsa, Erin; Fricke, Thomas; Stephens, Alex J; Ko, Danny; Kong, Fanrong; Gilbert, Gwendolyn L; Huygens, Flavia; Giffard, Philip M

    2008-08-19

    Streptococcus agalactiae (Group B Streptococcus (GBS)) is an important human pathogen, particularly of newborns. Emerging evidence for a relationship between genotype and virulence has accentuated the need for efficient and well-defined typing methods. The objective of this study was to develop a single nucleotide polymorphism (SNP) based method for assigning GBS isolates to multilocus sequence typing (MLST)-defined clonal complexes. It was found that a SNP set derived from the MLST database on the basis of maximization of Simpsons Index of Diversity provided poor resolution and did not define groups concordant with the population structure as defined by eBURST analysis of the MLST database. This was interpreted as being a consequence of low diversity and high frequency horizontal gene transfer. Accordingly, a different approach to SNP identification was developed. This entailed use of the "Not-N" bioinformatic algorithm that identifies SNPs diagnostic for groups of known sequence variants, together with an empirical process of SNP testing. This yielded a four member SNP set that divides GBS into 10 groups that are concordant with the population structure. A fifth SNP was identified that increased the sensitivity for the clinically significant clonal complex 17 to 100%. Kinetic PCR methods for the interrogation of these SNPs were developed, and used to genotype 116 well characterized isolates. A five SNP method for dividing GBS into biologically valid groups has been developed. These SNPs are ideal for high throughput surveillance activities, and combining with more rapidly evolving loci when additional resolution is required.

  12. Lack of Association between STAT4 Single Nucleotide Polymorphisms and Iranian Juvenile Rheumatoid Arthritis Patients.

    Science.gov (United States)

    Aslani, Saeed; Mahmoudi, Mahdi; Salmaninejad, Arash; Poursani, Shiva; Ziaee, Vahid; Rezaei, Nima

    2017-06-01

    Juvenile rheumatoid arthritis (JRA) is a common chronic systemic autoimmune disease in children. Single nucleotide polymorphisms (SNPs) of signal transducer and activator of transcription 4 (STAT4) gene are suspected to have association with the risk of autoimmune diseases. Previous investigations have indicated that the STAT4 rs7574865 T allele was significantly associated with rheumatoid arthritis. In this study, we aimed to evaluate the association of STAT4 SNPs with JRA in Iranian population. T allele of STAT4 rs7574865 SNP was less frequent in patients than in controls, and the difference was not significant (p = 0.19, OR = 0.72, 95% CI: 0.44 -1.17). In addition, G allele of this SNP was frequent but not significant in JRA patients (p = 0.19, OR = 1.38, 95% CI: 0.85-2.25). Neither alleles nor genotypes of rs7601754 SNP of STAT4 gene demonstrated associations with JRA. We recognize that gene variants of STAT4 did not affect JRA susceptibility in Iranian population.

  13. Genotyping of Single Nucleotide Polymorphisms in DNA Isolated from Serum Using Sequenom MassARRAY Technology.

    Directory of Open Access Journals (Sweden)

    Tess V Clendenen

    Full Text Available Large epidemiologic studies have the potential to make valuable contributions to the assessment of gene-environment interactions because they prospectively collected detailed exposure data. Some of these studies, however, have only serum or plasma samples as a low quantity source of DNA.We examined whether DNA isolated from serum can be used to reliably and accurately genotype single nucleotide polymorphisms (SNPs using Sequenom multiplex SNP genotyping technology. We genotyped 81 SNPs using samples from 158 participants in the NYU Women's Health Study. Each participant had DNA from serum and at least one paired DNA sample isolated from a high quality source of DNA, i.e. clots and/or cell precipitates, for comparison.We observed that 60 of the 81 SNPs (74% had high call frequencies (≥95% using DNA from serum, only slightly lower than the 85% of SNPs with high call frequencies in DNA from clots or cell precipitates. Of the 57 SNPs with high call frequencies for serum, clot, and cell precipitate DNA, 54 (95% had highly concordant (>98% genotype calls across all three sample types. High purity was not a critical factor to successful genotyping.Our results suggest that this multiplex SNP genotyping method can be used reliably on DNA from serum in large-scale epidemiologic studies.

  14. Compilation of a panel of informative single nucleotide polymorphisms for bovine identification in the Northern Irish cattle population

    Directory of Open Access Journals (Sweden)

    Hartshorne David

    2010-01-01

    Full Text Available Abstract Background Animal identification is pivotal in governmental agricultural policy, enabling the management of subsidy payments, movement of livestock, test scheduling and control of disease. Advances in bovine genomics have made it possible to utilise inherent genetic variability to uniquely identify individual animals by DNA profiling, much as has been achieved with humans over the past 20 years. A DNA profiling test based on bi-allelic single nucleotide polymorphism (SNP markers would offer considerable advantages over current short tandem repeat (STR based industry standard tests, in that it would be easier to analyse and interpret. In this study, a panel of 51 genome-wide SNPs were genotyped across panels of semen DNA from 6 common breeds for the purposes of ascertaining allelic frequency. For SNPs on the same chromosome, the extent of linkage disequilbrium was determined from genotype data by Expectation Maximization (EM algorithm. Minimum probabilities of unique identification were determined for each breed panel. The usefulness of this SNP panel was ascertained by comparison to the current bovine STR Stockmarks II assay. A statistically representative random sampling of bovine animals from across Northern Ireland was assembled for the purposes of determining the population allele frequency for these STR loci and subsequently, the minimal probability of unique identification they conferred in sampled bovine animals from Northern Ireland. Results 6 SNPs exhibiting a minor allele frequency of less than 0.2 in more than 3 of the breed panels were excluded. 2 Further SNPs were found to reside in coding areas of the cattle genome and were excluded from the final panel. The remaining 43 SNPs exhibited genotype frequencies which were in Hardy Weinberg Equilibrium. SNPs on the same chromosome were observed to have no significant linkage disequilibrium/allelic association. Minimal probabilities of uniquely identifying individual animals from

  15. Single Nucleotide Polymorphisms in the HIRA Gene Affect Litter Size in Small Tail Han Sheep

    Directory of Open Access Journals (Sweden)

    Mei Zhou

    2018-05-01

    Full Text Available Maintenance of appropriate levels of fecundity is critical for efficient sheep production. Opportunities to increase sheep litter size include identifying single gene mutations with major effects on ovulation rate and litter size. Whole-genome sequencing (WGS data of 89 Chinese domestic sheep from nine different geographical locations and ten Australian sheep were analyzed to detect new polymorphisms affecting litter size. Comparative genomic analysis of sheep with contrasting litter size detected a novel set of candidate genes. Two SNPs, g.71874104G>A and g.71833755T>C, were genotyped in 760 Small Tail Han sheep and analyzed for association with litter size. The two SNPs were significantly associated with litter size, being in strong linkage disequilibrium in the region 71.80–71.87 Mb. This haplotype block contains one gene that may affect litter size, Histone Cell Cycle Regulator (HIRA. HIRA mRNA levels in sheep with different lambing ability were significantly higher in ovaries of Small Tail Han sheep (high fecundity than in Sunite sheep (low fecundity. Moreover, the expression levels of HIRA in eight tissues of uniparous Small Tail Han sheep were significantly higher than in multiparous Small Tail Han sheep (p < 0.05. HIRA SNPs significantly affect litter size in sheep and are useful as genetic markers for litter size.

  16. Predictive single nucleotide polymorphism markers for acute oral mucositis in patients with nasopharyngeal carcinoma treated with radiotherapy

    Science.gov (United States)

    Le, Ziyu; Niu, Xiaoshuang; Chen, Ying; Ou, Xiaomin; Zhao, Guoqi; Liu, Qi; Tu, Wenzhi; Hu, Chaosu; Kong, Lin; Liu, Yong

    2017-01-01

    The aim of this study was to investigate the association between the susceptibility of severe oral mucositis (OM) in Chinese nasopharyngeal carcinoma (NPC) patients treated with radiotherapy and single nucleotide polymorphisms (SNPs) across the whole genome. SNPs were screened in a total of 24 patients with NPC and an additional 6 were subjected to mRNA expression analysis. Patients were subdivided into CTC 0-2 (CTC toxicity grade 0, 1, and 2) and CTC 3+ (CTC toxicity grade 3 and above) groups according to their CTC (common toxicity criteria) scores. The GTEx dataset was used to performed eQTL analyses and in-vitro functional assays were performed for eQTL-associated genes. Our data identified 7 functional SNPs associated with the development of OM. We observed that rs11081899-A, located in the 5′-UTR of the ZNF24 gene, was significantly correlated with a higher risk of severe mucositis (OR = 14.631, 95% CI = 2.61-105.46, p = 1.2 × 10−4), and positively associated with ZNF24 mRNA expression (p = 4.1 × 10−6) from GTEx dataset. In addition, high ZNF24 mRNA expression was associated with severe OM in patients with NPC (p = 0.02). Further functional assays revealed that ZNF24 knockdown reduced p65 expression and suppressed TNF-α-induced NF-κB activation and pro-inflammatory cytokines release. These findings suggested that rs11081899-A may be a genetic susceptibility factor for radiation-induced OM in patients with NPC, although its value in clinical application needs to be further verified in a large cohort. Also, we suggested that downregulation of ZNF24 may attenuate the development of mucositis by suppressing NF-κB activation. PMID:28968968

  17. Identification of field caught Anopheles gambiae s.s. and Anopheles arabiensis by TaqMan single nucleotide polymorphism genotyping

    Directory of Open Access Journals (Sweden)

    Bayoh Nabie M

    2007-02-01

    Full Text Available Abstract Background Identification of Anopheles gambiae s.s. and Anopheles arabiensis from field-collected Anopheles gambiae s.l. is often necessary in basic and applied research, and in operational control programmes. The currently accepted method involves use of standard polymerase chain reaction amplification of ribosomal DNA (rDNA from the 3' 28S to 5' intergenic spacer region of the genome, and visual confirmation of amplicons of predicted size on agarose gels, after electrophoresis. This report describes development and evaluation of an automated, quantitative PCR method based upon TaqMan™ single nucleotide polymorphism (SNP genotyping. Methods Standard PCR, and TaqMan SNP genotyping with newly designed primers and fluorophore-labeled probes hybridizing to sequences of complementary rDNA specific for either An. gambiae s.s. or An. arabiensis, were conducted in three experiments involving field-collected An. gambiae s.l. from western Kenya, and defined laboratory strains. DNA extraction was from a single leg, sonicated for five minutes in buffer in wells of 96-well PCR plates. Results TaqMan SNP genotyping showed a reaction success rate, sensitivity, and species specificity comparable to that of standard PCR. In an extensive field study, only 29 of 3,041 (0.95% were determined to be hybrids by TaqMan (i.e., having rDNA sequences from both species, however, all but one were An. arabiensis by standard PCR, suggesting an acceptably low (ca. 1% error rate for TaqMan genotyping in mistakenly identifying species hybrids. Conclusion TaqMan SNP genotyping proved to be a sensitive and rapid method for identification of An. gambiae s.l. and An. arabiensis, with a high success rate, specific results, and congruence with the standard PCR method.

  18. An Improved Consensus Linkage Map of Barley Based on Flow-Sorted Chromosomes and Single Nucleotide Polymorphism Markers

    Directory of Open Access Journals (Sweden)

    María Muñoz-Amatriaín

    2011-11-01

    Full Text Available Recent advances in high-throughput genotyping have made it easier to combine information from different mapping populations into consensus genetic maps, which provide increased marker density and genome coverage compared to individual maps. Previously, a single nucleotide polymorphism (SNP-based genotyping platform was developed and used to genotype 373 individuals in four barley ( L. mapping populations. This led to a 2943 SNP consensus genetic map with 975 unique positions. In this work, we add data from six additional populations and more individuals from one of the original populations to develop an improved consensus map from 1133 individuals. A stringent and systematic analysis of each of the 10 populations was performed to achieve uniformity. This involved reexamination of the four populations included in the previous map. As a consequence, we present a robust consensus genetic map that contains 2994 SNP loci mapped to 1163 unique positions. The map spans 1137.3 cM with an average density of one marker bin per 0.99 cM. A novel application of the genotyping platform for gene detection allowed the assignment of 2930 genes to flow-sorted chromosomes or arms, confirmed the position of 2545 SNP-mapped loci, added chromosome or arm allocations to an additional 370 SNP loci, and delineated pericentromeric regions for chromosomes 2H to 7H. Marker order has been improved and map resolution has been increased by almost 20%. These increased precision outcomes enable more optimized SNP selection for marker-assisted breeding and support association genetic analysis and map-based cloning. It will also improve the anchoring of DNA sequence scaffolds and the barley physical map to the genetic map.

  19. Wheat in the Mediterranean revisited--tetraploid wheat landraces assessed with elite bread wheat Single Nucleotide Polymorphism markers.

    Science.gov (United States)

    Oliveira, Hugo R; Hagenblad, Jenny; Leino, Matti W; Leigh, Fiona J; Lister, Diane L; Penã-Chocarro, Leonor; Jones, Martin K

    2014-05-08

    Single Nucleotide Polymorphism (SNP) panels recently developed for the assessment of genetic diversity in wheat are primarily based on elite varieties, mostly those of bread wheat. The usefulness of such SNP panels for studying wheat evolution and domestication has not yet been fully explored and ascertainment bias issues can potentially affect their applicability when studying landraces and tetraploid ancestors of bread wheat. We here evaluate whether population structure and evolutionary history can be assessed in tetraploid landrace wheats using SNP markers previously developed for the analysis of elite cultivars of hexaploid wheat. We genotyped more than 100 tetraploid wheat landraces and wild emmer wheat accessions, some of which had previously been screened with SSR markers, for an existing SNP panel and obtained publically available genotypes for the same SNPs for hexaploid wheat varieties and landraces. Results showed that quantification of genetic diversity can be affected by ascertainment bias but that the effects of ascertainment bias can at least partly be alleviated by merging SNPs to haplotypes. Analyses of population structure and genetic differentiation show strong subdivision between the tetraploid wheat subspecies, except for durum and rivet that are not separable. A more detailed population structure of durum landraces could be obtained than with SSR markers. The results also suggest an emmer, rather than durum, ancestry of bread wheat and with gene flow from wild emmer. SNP markers developed for elite cultivars show great potential for inferring population structure and can address evolutionary questions in landrace wheat. Issues of marker genome specificity and mapping need, however, to be addressed. Ascertainment bias does not seem to interfere with the ability of a SNP marker system developed for elite bread wheat accessions to detect population structure in other types of wheat.

  20. Accurate prediction of the functional significance of single nucleotide polymorphisms and mutations in the ABCA1 gene.

    Directory of Open Access Journals (Sweden)

    Liam R Brunham

    2005-12-01

    Full Text Available The human genome contains an estimated 100,000 to 300,000 DNA variants that alter an amino acid in an encoded protein. However, our ability to predict which of these variants are functionally significant is limited. We used a bioinformatics approach to define the functional significance of genetic variation in the ABCA1 gene, a cholesterol transporter crucial for the metabolism of high density lipoprotein cholesterol. To predict the functional consequence of each coding single nucleotide polymorphism and mutation in this gene, we calculated a substitution position-specific evolutionary conservation score for each variant, which considers site-specific variation among evolutionarily related proteins. To test the bioinformatics predictions experimentally, we evaluated the biochemical consequence of these sequence variants by examining the ability of cell lines stably transfected with the ABCA1 alleles to elicit cholesterol efflux. Our bioinformatics approach correctly predicted the functional impact of greater than 94% of the naturally occurring variants we assessed. The bioinformatics predictions were significantly correlated with the degree of functional impairment of ABCA1 mutations (r2 = 0.62, p = 0.0008. These results have allowed us to define the impact of genetic variation on ABCA1 function and to suggest that the in silico evolutionary approach we used may be a useful tool in general for predicting the effects of DNA variation on gene function. In addition, our data suggest that considering patterns of positive selection, along with patterns of negative selection such as evolutionary conservation, may improve our ability to predict the functional effects of amino acid variation.

  1. Association of Single Nucleotide Polymorphisms in the ST3GAL4 Gene with VWF Antigen and Factor VIII Activity.

    Directory of Open Access Journals (Sweden)

    Jaewoo Song

    Full Text Available VWF is extensively glycosylated with biantennary core fucosylated glycans. Most N-linked and O-linked glycans on VWF are sialylated. FVIII is also glycosylated, with a glycan structure similar to that of VWF. ST3GAL sialyltransferases catalyze the transfer of sialic acids in the α2,3 linkage to termini of N- and O-glycans. This sialic acid modification is critical for VWF synthesis and activity. We analyzed genetic and phenotypic data from the Atherosclerosis Risk in Communities (ARIC study for the association of single nucleotide polymorphisms (SNPs in the ST3GAL4 gene with plasma VWF levels and FVIII activity in 12,117 subjects. We also analyzed ST3GAL4 SNPs found in 2,535 subjects of 26 ethnicities from the 1000 Genomes (1000G project for ethnic diversity, SNP imputation, and ST3GAL4 haplotypes. We identified 14 and 1,714 ST3GAL4 variants in the ARIC GWAS and 1000G databases respectively, with 46% being ethnically diverse in their allele frequencies. Among the 14 ST3GAL4 SNPs found in ARIC GWAS, the intronic rs2186717, rs7928391, and rs11220465 were associated with VWF levels and with FVIII activity after adjustment for age, BMI, hypertension, diabetes, ever-smoking status, and ABO. This study illustrates the power of next-generation sequencing in the discovery of new genetic variants and a significant ethnic diversity in the ST3GAL4 gene. We discuss potential mechanisms through which these intronic SNPs regulate ST3GAL4 biosynthesis and the activity that affects VWF and FVIII.

  2. Association of Single Nucleotide Polymorphisms in the ST3GAL4 Gene with VWF Antigen and Factor VIII Activity.

    Science.gov (United States)

    Song, Jaewoo; Xue, Cheng; Preisser, John S; Cramer, Drake W; Houck, Katie L; Liu, Guo; Folsom, Aaron R; Couper, David; Yu, Fuli; Dong, Jing-Fei

    2016-01-01

    VWF is extensively glycosylated with biantennary core fucosylated glycans. Most N-linked and O-linked glycans on VWF are sialylated. FVIII is also glycosylated, with a glycan structure similar to that of VWF. ST3GAL sialyltransferases catalyze the transfer of sialic acids in the α2,3 linkage to termini of N- and O-glycans. This sialic acid modification is critical for VWF synthesis and activity. We analyzed genetic and phenotypic data from the Atherosclerosis Risk in Communities (ARIC) study for the association of single nucleotide polymorphisms (SNPs) in the ST3GAL4 gene with plasma VWF levels and FVIII activity in 12,117 subjects. We also analyzed ST3GAL4 SNPs found in 2,535 subjects of 26 ethnicities from the 1000 Genomes (1000G) project for ethnic diversity, SNP imputation, and ST3GAL4 haplotypes. We identified 14 and 1,714 ST3GAL4 variants in the ARIC GWAS and 1000G databases respectively, with 46% being ethnically diverse in their allele frequencies. Among the 14 ST3GAL4 SNPs found in ARIC GWAS, the intronic rs2186717, rs7928391, and rs11220465 were associated with VWF levels and with FVIII activity after adjustment for age, BMI, hypertension, diabetes, ever-smoking status, and ABO. This study illustrates the power of next-generation sequencing in the discovery of new genetic variants and a significant ethnic diversity in the ST3GAL4 gene. We discuss potential mechanisms through which these intronic SNPs regulate ST3GAL4 biosynthesis and the activity that affects VWF and FVIII.

  3. A survey of endogenous retrovirus (ERV) sequences in the vicinity of multiple sclerosis (MS)-associated single nucleotide polymorphisms (SNPs).

    Science.gov (United States)

    Brütting, Christine; Emmer, Alexander; Kornhuber, Malte; Staege, Martin S

    2016-08-01

    Although multiple sclerosis (MS) is one of the most common central nervous system diseases in young adults, little is known about its etiology. Several human endogenous retroviruses (ERVs) are considered to play a role in MS. We are interested in which ERVs can be identified in the vicinity of MS associated genetic marker to find potential initiators of MS. We analysed the chromosomal regions surrounding 58 single nucleotide polymorphisms (SNPs) that are associated with MS identified in one of the last major genome wide association studies. We scanned these regions for putative endogenous retrovirus sequences with large open reading frames (ORFs). We observed that more retrovirus-related putative ORFs exist in the relatively close vicinity of SNP marker indices in multiple sclerosis compared to control SNPs. We found very high homologies to HERV-K, HCML-ARV, XMRV, Galidia ERV, HERV-H/env62 and XMRV-like mouse endogenous retrovirus mERV-XL. The associated genes (CYP27B1, CD6, CD58, MPV17L2, IL12RB1, CXCR5, PTGER4, TAGAP, TYK2, ICAM3, CD86, GALC, GPR65 as well as the HLA DRB1*1501) are mainly involved in the immune system, but also in vitamin D regulation. The most frequently detected ERV sequences are related to the multiple sclerosis-associated retrovirus, the human immunodeficiency virus 1, HERV-K, and the Simian foamy virus. Our data shows that there is a relation between MS associated SNPs and the number of retroviral elements compared to control. Our data identifies new ERV sequences that have not been associated with MS, so far.

  4. [Single nucleotide polymorphisms of HIV coreceptor CCR5 gene in Chinese Yi ethnic group and its association with HIV infection].

    Science.gov (United States)

    Ma, Li-ying; Hong, Kun-xue; Lu, Xiao-zhi; Qin, Guang-ming; Chen, Jian-ping; Chen, Kang-lin; Ruan, Yu-hua; Xing, Hui; Zhu, Jia-hong; Shao, Yi-ming

    2005-11-30

    To investigate the single nucleotide polymorphism (SNP) of HIV-1 coreceptor CCR5 gene in Chinese Yi ethnic group and the association between these SNPs and HIV/AIDS. Peripheral blood samples of 102 HIV negative persons of Chinese Yi nationality, 87 males amd 15 females, aged 23 (12-37), and 68 HIV carriers, 61 males and 7 females, aged 27 (17-51). The regulatory and structural regions of the HIV coreceptor CCR5 gene were amplified from the genomic DNA by nested PCR, each of the two regions was divided into three gene fragments which were overlapped. High throughput DHPLC was used for screening of unknown mutations in each gene fragment. The PCR products showing different peak traces from wild types in DHPLC were sequenced by forward and reverse primers respectively. The sequences were analyzed with the help of Sequence Navigator software to search for SNP loci. Statistical analysis by SPSS and PPAP softwares were made to study the association between these SNPs and HIV infection. Five SNPs (A77G, G316A, T532C, C921T, and G668A) and a AGA deletion of the 686-688 nucleotides were discovered in the coding region of this gene in Chinese Yi ethnic group. C921T mutation was a nonsense mutation, and the other SNPs (A77G, G316A, T532C, and G668A) are sense mutation, with the amino acid changes of K26R, G106R, C178R, and R223Q. Only the frequency of R223Q allelic gene was high (0.08) but those of the others were low (less than 0.01). There was no significant difference in the allele frequency between the HIV negative and HIV positive groups (all P > 0.05). Five SNP loci (T58934G, G59029A, T59353C, G59402A, and C59653T) were found in the regulatory region of CCR5 gene with high allelic frequencies of 0.1912-0.2941. Between the HIV negative and HIV positive groups, there were no differences in the SNP loc (all P > 0.05). Statistical analysis of the association between the linkage of mutation loci with HIV infection suggested a significant difference in the haplotype frequency

  5. Correcting estimators of theta and Tajima's D for ascertainment biases caused by the single-nucleotide polymorphism discovery process

    DEFF Research Database (Denmark)

    Ramírez-Soriano, Anna; Nielsen, Rasmus

    2009-01-01

    Most single-nucleotide polymorphism (SNP) data suffer from an ascertainment bias caused by the process of SNP discovery followed by SNP genotyping. The final genotyped data are biased toward an excess of common alleles compared to directly sequenced data, making standard genetic methods of analysis...... the variances and covariances of these estimators and provide a corrected version of Tajima's D statistic. We reanalyze a human genomewide SNP data set and find substantial differences in the results with or without ascertainment bias correction....

  6. A single-nucleotide polymorphism of GRIN1 in heroin and methamphetamine addicts at a rehabilitation sanatorium in Markazi province, Iran

    Directory of Open Access Journals (Sweden)

    Ahmad Hamta

    2017-03-01

    Full Text Available Introduction: Using addictive drugs can change the amount of neurotransmitters, especially dopamine and glutamate. Glutamate has been known to trigger the relapse and tendency toward addictive drugs. The glutamate receptor ionotropic NMDA type subunit 1 (GRIN1 contains the single- nucleotide polymorphism C1001G (rs11146020 and encodes N-methyl-D-aspartic acid (NDMA receptor subunit 1 (NR1. The present study was conducted to investigate the relationship between the rs11146020 polymorphism in GRIN1 and addiction to heroin and methamphetamine. Methods: The present case-control study recruited 90 male heroin and methamphetamine addicts treated with methadone and 100 healthy men. Genomic DNA was extracted from peripheral blood using Iraizol kits. Four pairs of specific primers were designed using AlleleID 7.5, and the T-ARMS PCR was optimized. Results: The genotype distribution of GG, GC and CC was respectively found to be 66%, 31% and 3% in the control group and 58%, 31% and 11% in the patient group. The statistical analysis suggested no significant differences between these two groups. Conclusion: No significant relationships were observed between the C1001G polymorphism in GRIN1 and addiction to heroin and methamphetamine.

  7. Genome-based polymorphic microsatellite development and validation in the mosquito Aedes aegypti and application to population genetics in Haiti

    Directory of Open Access Journals (Sweden)

    Streit Thomas G

    2009-12-01

    Full Text Available Abstract Background Microsatellite markers have proven useful in genetic studies in many organisms, yet microsatellite-based studies of the dengue and yellow fever vector mosquito Aedes aegypti have been limited by the number of assayable and polymorphic loci available, despite multiple independent efforts to identify them. Here we present strategies for efficient identification and development of useful microsatellites with broad coverage across the Aedes aegypti genome, development of multiplex-ready PCR groups of microsatellite loci, and validation of their utility for population analysis with field collections from Haiti. Results From 79 putative microsatellite loci representing 31 motifs identified in 42 whole genome sequence supercontig assemblies in the Aedes aegypti genome, 33 microsatellites providing genome-wide coverage amplified as single copy sequences in four lab strains, with a range of 2-6 alleles per locus. The tri-nucleotide motifs represented the majority (51% of the polymorphic single copy loci, and none of these was located within a putative open reading frame. Seven groups of 4-5 microsatellite loci each were developed for multiplex-ready PCR. Four multiplex-ready groups were used to investigate population genetics of Aedes aegypti populations sampled in Haiti. Of the 23 loci represented in these groups, 20 were polymorphic with a range of 3-24 alleles per locus (mean = 8.75. Allelic polymorphic information content varied from 0.171 to 0.867 (mean = 0.545. Most loci met Hardy-Weinberg expectations across populations and pairwise FST comparisons identified significant genetic differentiation between some populations. No evidence for genetic isolation by distance was observed. Conclusion Despite limited success in previous reports, we demonstrate that the Aedes aegypti genome is well-populated with single copy, polymorphic microsatellite loci that can be uncovered using the strategy developed here for rapid and efficient

  8. Multiple-strand displacement and identification of single nucleotide polymorphisms as markers of genotypic variation of Pasteuria penetrans biotypes infecting root-knot nematodes.

    Science.gov (United States)

    Nong, Guang; Chow, Virginia; Schmidt, Liesbeth M; Dickson, Don W; Preston, James F

    2007-08-01

    Pasteuria species are endospore-forming obligate bacterial parasites of soil-inhabiting nematodes and water-inhabiting cladocerans, e.g. water fleas, and are closely related to Bacillus spp. by 16S rRNA gene sequence. As naturally occurring bacteria, biotypes of Pasteuria penetrans are attractive candidates for the biocontrol of various Meloidogyne spp. (root-knot nematodes). Failure to culture these bacteria outside their hosts has prevented isolation of genomic DNA in quantities sufficient for identification of genes associated with host recognition and virulence. We have applied multiple-strand displacement amplification (MDA) to generate DNA for comparative genomics of biotypes exhibiting different host preferences. Using the genome of Bacillus subtilis as a paradigm, MDA allowed quantitative detection and sequencing of 12 marker genes from 2000 cells. Meloidogyne spp. infected with P. penetrans P20 or B4 contained single nucleotide polymorphisms (SNPs) in the spoIIAB gene that did not change the amino acid sequence, or that substituted amino acids with similar chemical properties. Individual nematodes infected with P. penetrans P20 or B4 contained SNPs in the spoIIAB gene sequenced in MDA-generated products. Detection of SNPs in the spoIIAB gene in a nematode indicates infection by more than one genotype, supporting the need to sequence genomes of Pasteuria spp. derived from single spore isolates.

  9. Association between single nucleotide polymorphisms of the interleukin-4 gene and atopic dermatitis.

    Science.gov (United States)

    Gharagozlou, Mohammad; Behniafard, Nasrin; Amirzargar, Ali Akbar; Hosseinverdi, Sima; Sotoudeh, Soheila; Farhadi, Elham; Khaledi, Mojdeh; Aryan, Zahra; Moghaddam, Zahra Gholizadeh; Mahmoudi, Maryam; Aghamohammadi, Asghar; Rezaei, Nima

    2015-01-01

    Atopic dermatitis (AD) is an inflammatory skin disease in which both genetic and environmental factors seem to be involved. Several studies investigated the association of certain genetic factors with AD in different ethnic groups, but conflicting data were obtained. This study was performed to check the possible association between single nucleotide polymorphisms (SNPs) of interleukin 4 (IL-4) and the IL-4 receptor α chain (IL-4Rα) and AD in a group of Iranian patients. The allele and genotype frequencies of genes encoding for IL-4 and IL-4Rα were investigated in 89 patients with AD in comparison with 139 healthy controls, using methods based on polymerase chain reaction sequence-specific primers. The most frequent alleles of IL-4 in patients were T at -1098 (P<0.001, odds ratio (OR)=2.35), C at -590 (P<0.001, OR=4.84) and C at -33 (P=0.002, OR=2.08). The most frequent genotypes of IL-4 in patients were TT, CC, and CC at positions -1098 (P<0.001, OR=3.59), -590 (P<0.001, OR=31.25) and -33 (P<0.001, OR=3.46), respectively. We found a significant lower frequency of GT at -1098 GT, TC at -590, and TC at -33 in patients. There were no statistically significant differences in the frequency of alleles and genotypes of IL-4Rα gene at position +1902. A strong positive association was seen between TCC haplotype and AD (68% in patients vs. 23.4% in controls, P<0.001, OR=8.91). We detected a significantly lower frequency of TTC, GCC, and TTT haplotypes (P<0.001, OR=0.02, P<0.001, OR=0.40, P<0.001, OR=0.39, respectively) in patients compared to controls. A significant association between the polymorphisms of the IL-4 gene promoter at positions -1098, -590, and -33 and AD was detected in the Iranian population.

  10. Correlating single nucleotide polymorphisms in the myostatin gene with performance traits in rabbit

    Directory of Open Access Journals (Sweden)

    E.M. Abdel-Kafy

    2016-09-01

    Full Text Available The Myostatin (MSTN, or Growth and Differentiation Factor 8 (GDF8, gene has been implicated in the double muscling phenomenon, in which a series of mutations render the gene inactive and unable to properly regulate muscle fibre deposition. Single nucleotide polymorphisms (SNPs in the MSTN gene have been correlated to production traits, making it a candidate target gene to enhance livestock and fowl productivity. This study aimed to assess any association of three SNPs in the rabbit MSTN gene (c.713T>A in exon 2, c.747+34C>T in intron 2, and c.*194A>G in 3’-untranslated region and their combinations, with carcass, production and reproductive traits. The investigated traits included individual body weight, daily body weight gain, carcass traits and reproductive traits. The 3 SNPs were screened using PCR-restriction fragment length polymorphism (RFLP-based analysis and the effects of the different SNP genotypes and their combinations were estimated in a rabbit population. Additionally, additive and dominance effects were estimated for significant traits. The results found no significant association between the c.713 T>A SNP and all the examined traits. Allele T at the c.747+34C>T SNP was only significantly associated (PG, allele G was significantly associated (PG SNP also had positive effects on most carcass traits. The estimated additive genetic effect for the c.*194A>G SNP was significant (PA and c.747+34C>T, GG at the c.*194A>G SNP correlated with highest values in body weight and daily weight gain. In conclusion, the ‘G’ allele at the c.*194A>G SNP had positive effects on growth and carcass traits and so could be used as a favourable allele in planning rabbit selection. Further population-wide studies are necessary to test the association of the c.*194A>G SNP with carcass traits. We also recommend evaluation of the potential effects of the c.*194A>G SNP on MSTN gene expression.

  11. Spatial distribution of single-nucleotide polymorphisms related to fungicide resistance and implications for sampling.

    Science.gov (United States)

    Van der Heyden, H; Dutilleul, P; Brodeur, L; Carisse, O

    2014-06-01

    Spatial distribution of single-nucleotide polymorphisms (SNPs) related to fungicide resistance was studied for Botrytis cinerea populations in vineyards and for B. squamosa populations in onion fields. Heterogeneity in this distribution was characterized by performing geostatistical analyses based on semivariograms and through the fitting of discrete probability distributions. Two SNPs known to be responsible for boscalid resistance (H272R and H272Y), both located on the B subunit of the succinate dehydrogenase gene, and one SNP known to be responsible for dicarboximide resistance (I365S) were chosen for B. cinerea in grape. For B. squamosa in onion, one SNP responsible for dicarboximide resistance (I365S homologous) was chosen. One onion field was sampled in 2009 and another one was sampled in 2010 for B. squamosa, and two vineyards were sampled in 2011 for B. cinerea, for a total of four sampled sites. Cluster sampling was carried on a 10-by-10 grid, each of the 100 nodes being the center of a 10-by-10-m quadrat. In each quadrat, 10 samples were collected and analyzed by restriction fragment length polymorphism polymerase chain reaction (PCR) or allele specific PCR. Mean SNP incidence varied from 16 to 68%, with an overall mean incidence of 43%. In the geostatistical analyses, omnidirectional variograms showed spatial autocorrelation characterized by ranges of 21 to 1 m. Various levels of anisotropy were detected, however, with variograms computed in four directions (at 0°, 45°, 90°, and 135° from the within-row direction used as reference), indicating that spatial autocorrelation was prevalent or characterized by a longer range in one direction. For all eight data sets, the β-binomial distribution was found to fit the data better than the binomial distribution. This indicates local aggregation of fungicide resistance among sampling units, as supported by estimates of the parameter θ of the β-binomial distribution of 0.09 to 0.23 (overall median value = 0

  12. The importance of -460 C/T and +405 G/C single nucleotide polymorphisms to the function of vascular endothelial growth factor A in colorectal cancer

    DEFF Research Database (Denmark)

    Hansen, Torben F; Spindler, Karen-Lise G; Lorentzen, Karen A

    2010-01-01

    collected from 113 patients surgically resected for colorectal cancer. SNPs were analysed from genomic DNA by PCR, the VEGF-A gene expression analysis was performed by RT-PCR and protein analysis by ELISA. RESULTS: The T-allele in the -460 C/T SNP and the C-allele in the +405 G/C SNP were associated...... with significantly lower VEGF-A protein levels in normal colorectal tissue. There were no differences in protein levels in the malignant tissue according to genotypes. No differences were observed at the gene expression levels either. CONCLUSION: The results indicate that the two SNPs have a functional influence......PURPOSE: The present study investigated the functional influence of the single nucleotide polymorphisms (SNPs) -460 C/T and +405 G/C at vascular endothelial growth factor A (VEGF-A), mRNA and protein levels in colorectal cancer (CRC) and normal colorectal tissue. METHODS: Blood and tissue were...

  13. Nucleotide compositional asymmetry between the leading and lagging strands of eubacterial genomes

    KAUST Repository

    Qu, Hongzhu; Wu, Hao; Zhang, Tongwu; Zhang, Zhang; Hu, Songnian; Yu, Jun

    2010-01-01

    Nucleotide compositional asymmetry (NCA) between leading and lagging strands (LeS and LaS) is dynamic and diverse among eubacterial genomes due to different mutation and selection forces. A thorough investigation is needed in order to study the relationship between nucleotide composition dynamics and gene distribution biases. Based on a collection of 364 eubacterial genomes that were grouped according to a DnaE-based scheme (DnaE1-DnaE1, DnaE2-DnaE1, and DnaE3-PolC), we investigated NCA and nucleotide composition gradients at three codon positions and found that there was universal G-enrichment on LeS among all groups. This was due to a strong selection for G-heading (codon position1 or cp1) codons and mutation pressure that led to more G-ending (cp3) codons. Moreover, a slight T-enrichment of LeS due to the mutation of cytosine deamination at cp3 was universal among DnaE1-DnaE1 and DnaE2-DnaE1 genomes, but was not clearly seen among DnaE3-PolC genomes, in which A-enrichment of LeS was proposed to be the effect of selections unique to polC and a mutation bias toward A-richness at cp1 that may be a result of transcription-coupled DNA repair mechanisms. Furthermore, strand-biased gene distribution enhances the purine-richness of LeS for DnaE3-PolC genomes and T-richness of LeS for DnaE1-DnaE1 and DnaE2-dnaE1 genomes. © 2010 Institut Pasteur.

  14. Nucleotide compositional asymmetry between the leading and lagging strands of eubacterial genomes

    KAUST Repository

    Qu, Hongzhu

    2010-12-01

    Nucleotide compositional asymmetry (NCA) between leading and lagging strands (LeS and LaS) is dynamic and diverse among eubacterial genomes due to different mutation and selection forces. A thorough investigation is needed in order to study the relationship between nucleotide composition dynamics and gene distribution biases. Based on a collection of 364 eubacterial genomes that were grouped according to a DnaE-based scheme (DnaE1-DnaE1, DnaE2-DnaE1, and DnaE3-PolC), we investigated NCA and nucleotide composition gradients at three codon positions and found that there was universal G-enrichment on LeS among all groups. This was due to a strong selection for G-heading (codon position1 or cp1) codons and mutation pressure that led to more G-ending (cp3) codons. Moreover, a slight T-enrichment of LeS due to the mutation of cytosine deamination at cp3 was universal among DnaE1-DnaE1 and DnaE2-DnaE1 genomes, but was not clearly seen among DnaE3-PolC genomes, in which A-enrichment of LeS was proposed to be the effect of selections unique to polC and a mutation bias toward A-richness at cp1 that may be a result of transcription-coupled DNA repair mechanisms. Furthermore, strand-biased gene distribution enhances the purine-richness of LeS for DnaE3-PolC genomes and T-richness of LeS for DnaE1-DnaE1 and DnaE2-dnaE1 genomes. © 2010 Institut Pasteur.

  15. Single nucleotide polymorphisms in CRTC1 and BARX1 are associated with esophageal adenocarcinoma

    Directory of Open Access Journals (Sweden)

    Anna M. J. van Nistelrooij

    2015-01-01

    Full Text Available Objective: Recently, single nucleotide polymorphisms (SNPs associated with esophageal adenocarcinoma (EAC and Barrett′s esophagus (BE were identified; rs10419226 (CRTC10, rs11789015 (BARX1, rs2687201 (FOXP10, rs2178146 (FOXF1, rs3111601 (FOXF10, and rs9936833 (FOXF1. These findings indicate that genetic susceptibility could play a role in the initiation of EAC in BE patients. The aim of this study was to validate the association between these previously identified SNPs and the risk of EAC in an independent and large case-control study. Design: Six SNPs found to be associated with EAC and BE were genotyped by a multiplex SNaPshot analysis in 1071 EAC patients diagnosed and treated in the Netherlands. Allele frequencies were compared to a control group derived from the Rotterdam Study, a population-based prospective cohort study (n = 6206. Logistic regression analysis and meta-analysis were performed to calculate odds ratios (OR. Results: Rs10419226 (CRTC1 showed a significantly increased EAC risk for the minor allele (OR = 1.17, P = 0.001, and rs11789015 (BARX1 showed a significantly decreased risk for the minor allele (OR = 0.85, P = 0.004 in the logistic regression analysis. The meta-analysis of the original GWAS and the current study revealed an improved level of significance for rs10419226 (CRTC1 (OR = 1.18, P = 6.66 × 10–10 and rs11789015 (BARX1 (OR = 0.83, P = 1.13 × 10–8 . Conclusions: This independent and large Dutch case-control study confirms the association of rs10419226 (CRTC1 and rs11789015 (BARX1 with the risk of EAC. These findings suggest a contribution of the patient genetic make-up to the development of EAC and might contribute to gain more insight in the etiology of this cancer.

  16. Analysis of healthy cohorts for single nucleotide polymorphisms in C1q gene cluster

    Directory of Open Access Journals (Sweden)

    MARIA A. RADANOVA

    2015-12-01

    Full Text Available C1q is the first component of the classical pathway of complement activation. The coding region for C1q is localized on chromosome 1p34.1–36.3. Mutations or single nucleotide polymorphisms (SNPs in C1q gene cluster can cause developing of Systemic lupus erythematosus (SLE because of C1q deficiency or other unknown reason. We selected five SNPs located in 7.121 kbp region on chromosome 1, which were previously associated with SLE and/or low C1q level, but not causing C1q deficiency and analyzed them in terms of allele frequencies and genotype distribution in comparison with Hispanic, Asian, African and other Caucasian cohorts. These SNPs were: rs587585, rs292001, rs172378, rs294179 and rs631090. One hundred eighty five healthy Bulgarian volunteers were genotyped for the selected five C1q SNPs by quantative real-time PCR methods. International HapMap Project has been used for information about genotype distribution and allele frequencies of the five SNPs in, Hispanics, Asians, Africans and others Caucasian cohorts. Bulgarian healthy volunteers and another pooled Caucasian cohort had similar frequencies of genotypes and alleles of rs587585, rs292001, rs294179 and rs631090 SNPs. Nevertheless, genotype AA of rs172378 was significantly overrepresented in Bulgarians when compared to other healthy Caucasians from USA and UK (60% vs 31%. Genotype distribution of rs172378 in Bulgarians was similar to Greek-Cyriot Caucasians. For all Caucasians the major allele of rs172378 was A. This is the first study analyzing the allele frequencies and genotype distribution of C1q gene cluster SNPs in Bulgarian healthy population.

  17. Association of single nucleotide polymorphisms with carcass traits in Nellore cattle.

    Science.gov (United States)

    Ferraz, J B S; Pinto, L F B; Meirelles, F V; Eler, J P; de Rezende, F M; Oliveira, E C M; Almeida, H B; Woodward, B; Nkrumah, D

    2009-11-17

    The association between two single nucleotide polymorphisms (SNPs), T945M and UCP1SNP1, with hot carcass weight (HCW, kg, N = 618), longissimus dorsi muscle area (REA, cm(2), N = 633), and backfat thickness (BF, mm, N = 625), measured in Nellore cattle in Brazil, was evaluated. Likelihood ratio tests were used to evaluate reduced (fixed effects of general mean, contemporary group, yearling weight, age at slaughter, and random effect of infinitesimal genetic value) and full model (reduced model effects plus quantitative trait locus effects). Additive and dominance effects were tested for each SNP. Genotypic and gene frequencies were also obtained for the SNPs and a descriptive phenotype analysis was made. Mean values for HCW, REA and BF were equal to 288.13 +/- 0.55 kg, 73.14 +/- 0.27 cm(2), and 4.28 +/- 0.07 mm, respectively; the coefficients of variation were 4.74, 9.24, and 42.43%, respectively. Gene frequencies for T945M and UCP1SNP1 were f(C) = 0.89, f(T) = 0.11, f(C) = 0.81, and f(G) = 0.19. The SNP T945M had a genotypic frequency of only three animals for TT genotype. Additive effects were observed for T945M on REA and BF, while UCP1SNP1 affected HCW and BF. Based on the significant additive effects of the SNPs and the gene frequencies that we found, we can expect genetic gains with marker assisted selection.

  18. Single nucleotide polymorphism barcoding to evaluate oral cancer risk using odds ratio-based genetic algorithms

    Directory of Open Access Journals (Sweden)

    Cheng-Hong Yang

    2012-07-01

    Full Text Available Cancers often involve the synergistic effects of gene–gene interactions, but identifying these interactions remains challenging. Here, we present an odds ratio-based genetic algorithm (OR-GA that is able to solve the problems associated with the simultaneous analysis of multiple independent single nucleotide polymorphisms (SNPs that are associated with oral cancer. The SNP interactions between four SNPs—namely rs1799782, rs2040639, rs861539, rs2075685, and belonging to four genes (XRCC1, XRCC2, XRCC3, and XRCC4—were tested in this study, respectively. The GA decomposes the SNPs sets into different SNP combinations with their corresponding genotypes (called SNP barcodes. The GA can effectively identify a specific SNP barcode that has an optimized fitness value and uses this to calculate the difference between the case and control groups. The SNP barcodes with a low fitness value are naturally removed from the population. Using two to four SNPs, the best SNP barcodes with maximum differences in occurrence between the case and control groups were generated by GA algorithm. Subsequently, the OR provides a quantitative measure of the multiple SNP synergies between the oral cancer and control groups by calculating the risk related to the best SNP barcodes and others. When these were compared to their corresponding non-SNP barcodes, the estimated ORs for oral cancer were found to be great than 1 [approx. 1.72–2.23; confidence intervals (CIs: 0.94–5.30, p < 0.03–0.07] for various specific SNP barcodes with two to four SNPs. In conclusion, the proposed OR-GA method successfully generates SNP barcodes, which allow oral cancer risk to be evaluated and in the process the OR-GA method identifies possible SNP–SNP interactions.

  19. Both COMT Val158Met single nucleotide polymorphism and sex-dependent differences influence response inhibition

    Directory of Open Access Journals (Sweden)

    Valentina eMione

    2015-05-01

    Full Text Available Reactive and proactive control of actions are cognitive abilities that allow to deal with a continuously changing environment by adjusting already programmed actions. They also set forthcoming acts by evaluating the outcome of the previous ones. Earlier studies highlighted sex related differences in the strategies and in the pattern of brain activation during cognitive tasks involving reactive and proactive control. To further identify sex-dependent characteristics in the cognitive control of actions, in this study we have assessed whether/how differences in reactive and proactive control were modulated by the COMT Val158Met single nucleotide polymorphism, a genetic factor known to influence the functionality of the dopaminergic system, in particular at the level of prefrontal cortex. Two groups of male and female participants were further sorted according to their genotype (Val/Met, Val/Val and Met/Met and tested in a stop signal task, a consolidated tool to measure reactive and proactive control in experimental and clinical settings. In each group of participants we estimated both a measure of the capacity to react to unexpected events and the ability of monitoring their performance. The between groups comparison of these measures indicated a poorer ability of male individuals carrying the Val/Val genotype in error-monitoring, suggesting that differences between sexes could be influenced by the efficiency of COMT and that other sex-specific factors have to be considered. The comprehension of inter-groups behavioral and physiological correlates of cognitive control will provide more accurate diagnostic tools for predicting the incidence and the development of pathologies like ADHD or deviant behaviors as drug or alcohol abuse.

  20. Evaluation of single-nucleotide polymorphisms as internal controls in prenatal diagnosis of fetal blood groups.

    Science.gov (United States)

    Doescher, Andrea; Petershofen, Eduard K; Wagner, Franz F; Schunter, Markus; Müller, Thomas H

    2013-02-01

    Determination of fetal blood groups in maternal plasma samples critically depends on adequate amplification of fetal DNA. We evaluated the routine inclusion of 52 single-nucleotide polymorphisms (SNPs) as internal reference in our polymerase chain reaction (PCR) settings to obtain a positive internal control for fetal DNA. DNA from 223 plasma samples of pregnant women was screened for RHD Exons 3, 4, 5, and 7 in a multiplex PCR including 52 SNPs divided into four primer pools. Amplicons were analyzed by single-base extension and the GeneScan method in a genetic analyzer. Results of D screening were compared to standard RHD genotyping of amniotic fluid or real-time PCR of fetal DNA from maternal plasma. The vast majority of all samples (97.8%) demonstrated differences in maternal and fetal SNP patterns when tested with four primer pools. These differences were not observed in less than 2.2% of the samples most probably due to an extraction failure for adequate amounts of fetal DNA. Comparison of the fetal genotypes with independent results did not reveal a single false-negative case among samples (n = 42) with positive internal control and negative fetal RHD typing. Coamplification of 52 SNPs with RHD-specific sequences for fetal blood group determination introduces a valid positive control for the amplification of fetal DNA to avoid false-negative results. This new approach does not require a paternal blood sample. It may also be applicable to other assays for fetal genotyping in maternal blood samples. © 2012 American Association of Blood Banks.

  1. Relationships between Single Nucleotide Polymorphism Markers and Meat Quality Traits of Duroc Breeding Stocks in Korea

    Directory of Open Access Journals (Sweden)

    J. S. Choi

    2016-09-01

    Full Text Available This study was conducted to determine the relationships of five intragenic single nucleotide polymorphism (SNP markers (protein kinase adenosine monophosphate-activated γ3 subunit [PRKAG3], fatty acid synthase [FASN], calpastatin [CAST], high mobility group AT-hook 1 [HMGA1], and melanocortin-4 receptor [MC4R] and meat quality traits of Duroc breeding stocks in Korea. A total of 200 purebred Duroc gilts from 8 sires and 40 dams at 4 pig breeding farms from 2010 to 2011 reaching market weight (110 kg were slaughtered and their carcasses were chilled overnight. Longissimus dorsi muscles were removed from the carcass after 24 h of slaughter and used to determine pork properties including carcass weight, backfat thickness, moisture, intramuscular fat, pH24h, shear force, redness, texture, and fatty acid composition. The PRKAG3, FASN, CAST, and MC4R gene SNPs were significantly associated with the meat quality traits (p<0.003. The meats of PRKAG3 (A 0.024/G 0.976 AA genotype had higher pH, redness and texture than those from PRKAG3 GG genotype. Meats of FASN (C 0.301/A 0.699 AA genotype had higher backfat thickness, texture, stearic acid, oleic acid and polyunsaturated fatty acid than FASN CC genotype. While the carcasses of CAST (A 0.373/G 0.627 AA genotype had thicker backfat, and lower shear force, palmitoleic acid and oleic acid content, they had higher stearic acid content than those from the CAST GG genotype. The MC4R (G 0.208/A 0.792 AA genotype were involved in increasing backfat thickness, carcass weight, moisture and saturated fatty acid content, and decreasing unsaturated fatty acid content in Duroc meat. These results indicated that the five SNP markers tested can be a help to select Duroc breed to improve carcass and meat quality properties in crossbred pigs.

  2. Real time hybridization studies by resonant waveguide gratings using nanopattern imaging for Single Nucleotide Polymorphism detection

    KAUST Repository

    Bougot-Robin, Kristelle

    2013-12-20

    2D imaging of biochips is particularly interesting for multiplex biosensing. Resonant properties allow label-free detection using the change of refractive index at the chip surface. We demonstrate a new principle of Scanning Of Resonance on Chip by Imaging (SORCI) based on spatial profiles of nanopatterns of resonant waveguide gratings (RWGs) and its embodiment in a fluidic chip for real-time biological studies. This scheme allows multiplexing of the resonance itself by providing nanopattern sensing areas in a bioarray format. Through several chip designs we discuss resonance spatial profiles, dispersion and electric field distribution for optimal light-matter interaction with biological species of different sizes. Fluidic integration is carried out with a black anodized aluminum chamber, advantageous in term of mechanical stability, multiple uses of the chip, temperature control and low optical background. Real-time hybridization experiments are illustrated by SNP (Single Nucleotide Polymorphism) detection in gyrase A of E. coli K12, observed in evolution studies of resistance to the antibiotic ciprofloxacin. We choose a 100 base pairs (bp) DNA target (∼30 kDa) including the codon of interest and demonstrate the high specificity of our technique for probes and targets with close affinity constants. This work validates the safe applicability of our unique combination of RWGs and simple instrumentation for real-time biosensing with sensitivity in buffer solution of ∼10 pg/mm2. Paralleling the success of RWGs sensing for cells sensing, our work opens new avenues for a large number of biological studies. © 2013 Springer Science+Business Media.

  3. Association of the Single Nucleotide Polymorphisms in , , and with Blood Related Traits in Pigs

    Directory of Open Access Journals (Sweden)

    Jae-Bong Lee

    2016-12-01

    Full Text Available The aim of this study was to detect positional candidate genes located within the support interval (SI regions based on the results of red blood cell, mean corpuscular volume (MCV, and mean corpuscular hemoglobin quantitative trait locus (QTL in Sus scrofa chromosome 13, and to verify the correlation between specific single-nucleotide polymorphisms (SNPs located in the exonic region of the positional candidate gene and the three genetic traits. The flanking markers of the three QTL SI regions are SW38 and S0215. Within the QTL SI regions, 44 genes were located, and runt-related transcription factor 1, dual-specificity tyrosine-(Y-phosphorylation regulated kinase 1A (DYRK1A, and potassium inwardly-rectifying channel, subfamily J, member 15 KCNJ15–which are reported to be related to the hematological traits and clinical features of Down syndrome–were selected as positional candidate genes. The ten SNPs located in the exonic region of the three genes were detected by next generation sequencing. A total of 1,232 pigs of an F2 resource population between Landrace and Korean native pigs were genotyped. To investigate the effects of the three genes on each genotype, a mixed-effect model which is the considering family structure model was used to evaluate the associations between the SNPs and three genetic traits in the F2 intercross population. Among them, the MCV level was highly significant (nominal p = 9.8×10−9 in association with the DYRK1A-SNP1 (c.2989 G

  4. Assignment of Streptococcus agalactiae isolates to clonal complexes using a small set of single nucleotide polymorphisms

    Directory of Open Access Journals (Sweden)

    Gilbert Gwendolyn L

    2008-08-01

    Full Text Available Abstract Background Streptococcus agalactiae (Group B Streptococcus (GBS is an important human pathogen, particularly of newborns. Emerging evidence for a relationship between genotype and virulence has accentuated the need for efficient and well-defined typing methods. The objective of this study was to develop a single nucleotide polymorphism (SNP based method for assigning GBS isolates to multilocus sequence typing (MLST-defined clonal complexes. Results It was found that a SNP set derived from the MLST database on the basis of maximisation of Simpsons Index of Diversity provided poor resolution and did not define groups concordant with the population structure as defined by eBURST analysis of the MLST database. This was interpreted as being a consequence of low diversity and high frequency horizontal gene transfer. Accordingly, a different approach to SNP identification was developed. This entailed use of the "Not-N" bioinformatic algorithm that identifies SNPs diagnostic for groups of known sequence variants, together with an empirical process of SNP testing. This yielded a four member SNP set that divides GBS into 10 groups that are concordant with the population structure. A fifth SNP was identified that increased the sensitivity for the clinically significant clonal complex 17 to 100%. Kinetic PCR methods for the interrogation of these SNPs were developed, and used to genotype 116 well characterized isolates. Conclusion A five SNP method for dividing GBS into biologically valid groups has been developed. These SNPs are ideal for high throughput surveillance activities, and combining with more rapidly evolving loci when additional resolution is required.

  5. Incorporating Single-nucleotide Polymorphisms Into the Lyman Model to Improve Prediction of Radiation Pneumonitis

    Energy Technology Data Exchange (ETDEWEB)

    Tucker, Susan L., E-mail: sltucker@mdanderson.org [Department of Bioinformatics and Computational Biology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Li Minghuan [Department of Radiation Oncology, Shandong Cancer Hospital, Jinan, Shandong (China); Xu Ting; Gomez, Daniel [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Yuan Xianglin [Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan (China); Yu Jinming [Department of Radiation Oncology, Shandong Cancer Hospital, Jinan, Shandong (China); Liu Zhensheng; Yin Ming; Guan Xiaoxiang; Wang Lie; Wei Qingyi [Department of Epidemiology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Mohan, Radhe [Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Vinogradskiy, Yevgeniy [University of Colorado School of Medicine, Aurora, Colorado (United States); Martel, Mary [Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Liao Zhongxing [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States)

    2013-01-01

    Purpose: To determine whether single-nucleotide polymorphisms (SNPs) in genes associated with DNA repair, cell cycle, transforming growth factor-{beta}, tumor necrosis factor and receptor, folic acid metabolism, and angiogenesis can significantly improve the fit of the Lyman-Kutcher-Burman (LKB) normal-tissue complication probability (NTCP) model of radiation pneumonitis (RP) risk among patients with non-small cell lung cancer (NSCLC). Methods and Materials: Sixteen SNPs from 10 different genes (XRCC1, XRCC3, APEX1, MDM2, TGF{beta}, TNF{alpha}, TNFR, MTHFR, MTRR, and VEGF) were genotyped in 141 NSCLC patients treated with definitive radiation therapy, with or without chemotherapy. The LKB model was used to estimate the risk of severe (grade {>=}3) RP as a function of mean lung dose (MLD), with SNPs and patient smoking status incorporated into the model as dose-modifying factors. Multivariate analyses were performed by adding significant factors to the MLD model in a forward stepwise procedure, with significance assessed using the likelihood-ratio test. Bootstrap analyses were used to assess the reproducibility of results under variations in the data. Results: Five SNPs were selected for inclusion in the multivariate NTCP model based on MLD alone. SNPs associated with an increased risk of severe RP were in genes for TGF{beta}, VEGF, TNF{alpha}, XRCC1 and APEX1. With smoking status included in the multivariate model, the SNPs significantly associated with increased risk of RP were in genes for TGF{beta}, VEGF, and XRCC3. Bootstrap analyses selected a median of 4 SNPs per model fit, with the 6 genes listed above selected most often. Conclusions: This study provides evidence that SNPs can significantly improve the predictive ability of the Lyman MLD model. With a small number of SNPs, it was possible to distinguish cohorts with >50% risk vs <10% risk of RP when they were exposed to high MLDs.

  6. Association Study between Folate Pathway Gene Single Nucleotide Polymorphisms and Gastric Cancer in Koreans

    Directory of Open Access Journals (Sweden)

    Jae-Young Yoo

    2012-09-01

    Full Text Available Gastric cancer is ranked as the most common cancer in Koreans. A recent molecular biological study about the folate pathway gene revealed the correlation with a couple of cancer types. In the folate pathway, several genes are involved, including methylenetetrahydrofolate reductase (MTHFR, methyltetrahydrofolate-homocysteine methyltransferase reductase (MTRR, and methyltetrahydrofolate-homocysteine methyltransferase (MTR. The MTHFR gene has been reported several times for the correlation with gastric cancer risk. However, the association of the MTRR or MTR gene has not been reported to date. In this study, we investigated the association between the single nucleotide polymorphisms (SNPs of the MTHFR, MTRR, and MTR genes and the risk of gastric cancer in Koreans. To identify the genetic association with gastric cancer, we selected 17 SNPs sites in folate pathway-associated genes of MTHFR, MTR, and MTRR and tested in 1,261 gastric cancer patients and 375 healthy controls. By genotype analysis, estimating odds ratios and 95% confidence intervals (CI, rs1801394 in the MTRR gene showed increased risk for gastric cacner, with statistical significance both in the codominant model (odds ratio [OR], 1.39; 95% CI, 1.04 to 1.85 and dominant model (OR, 1.34; 95% CI, 1.02 to 1.75. Especially, in the obese group (body mass index ≥ 25 kg/m2, the codominant (OR, 9.08; 95% CI, 1.01 to 94.59 and recessive model (OR, 3.72; 95% CI, 0.92 to 16.59 showed dramatically increased risk (p < 0.05. In conclusion, rs1801394 in the MTRR gene is associated with gastric cancer risk, and its functional significance need to be validated.

  7. Identification of Functional Single-Nucleotide Polymorphisms Affecting Leaf Hair Number in Brassica rapa.

    Science.gov (United States)

    Zhang, Wenting; Mirlohi, Shirin; Li, Xiaorong; He, Yuke

    2018-06-01

    Leaf traits affect plant agronomic performance; for example, leaf hair number provides a morphological indicator of drought and insect resistance. Brassica rapa crops have diverse phenotypes, and many B. rapa single-nucleotide polymorphisms (SNPs) have been identified and used as molecular markers for plant breeding. However, which SNPs are functional for leaf hair traits and, therefore, effective for breeding purposes remains unknown. Here, we identify a set of SNPs in the B. rapa ssp. pekinenesis candidate gene BrpHAIRY LEAVES1 ( BrpHL1 ) and a number of SNPs of BrpHL1 in a natural population of 210 B. rapa accessions that have hairy, margin-only hairy, and hairless leaves. BrpHL1 genes and their orthologs and paralogs have many SNPs. By intensive mutagenesis and genetic transformation, we selected the functional SNPs for leaf hairs by the exclusion of nonfunctional SNPs and the orthologous and paralogous genes. The residue tryptophan-92 of BrpHL1a was essential for direct interaction with GLABROUS3 and, thus, necessary for the formation of leaf hairs. The accessions with the functional SNP leading to substitution of the tryptophan-92 residue had hairless leaves. The orthologous BrcHL1b from B. rapa ssp. chinensis regulates hair formation on leaf margins rather than leaf surfaces. The selected SNP for the hairy phenotype could be adopted as a molecular marker for insect resistance in Brassica spp. crops. Moreover, the procedures optimized here can be used to explain the molecular mechanisms of natural variation and to facilitate the molecular breeding of many crops. © 2018 American Society of Plant Biologists. All rights reserved.

  8. Non-invasive prenatal detection of trisomy 21 using tandem single nucleotide polymorphisms.

    Directory of Open Access Journals (Sweden)

    Sujana Ghanta

    Full Text Available BACKGROUND: Screening tests for Trisomy 21 (T21, also known as Down syndrome, are routinely performed for the majority of pregnant women. However, current tests rely on either evaluating non-specific markers, which lead to false negative and false positive results, or on invasive tests, which while highly accurate, are expensive and carry a risk of fetal loss. We outline a novel, rapid, highly sensitive, and targeted approach to non-invasively detect fetal T21 using maternal plasma DNA. METHODS AND FINDINGS: Highly heterozygous tandem Single Nucleotide Polymorphism (SNP sequences on chromosome 21 were analyzed using High-Fidelity PCR and Cycling Temperature Capillary Electrophoresis (CTCE. This approach was used to blindly analyze plasma DNA obtained from peripheral blood from 40 high risk pregnant women, in adherence to a Medical College of Wisconsin Institutional Review Board approved protocol. Tandem SNP sequences were informative when the mother was heterozygous and a third paternal haplotype was present, permitting a quantitative comparison between the maternally inherited haplotype and the paternally inherited haplotype to infer fetal chromosomal dosage by calculating a Haplotype Ratio (HR. 27 subjects were assessable; 13 subjects were not informative due to either low DNA yield or were not informative at the tandem SNP sequences examined. All results were confirmed by a procedure (amniocentesis/CVS or at postnatal follow-up. Twenty subjects were identified as carrying a disomy 21 fetus (with two copies of chromosome 21 and seven subjects were identified as carrying a T21 fetus. The sensitivity and the specificity of the assay was 100% when HR values lying between 3/5 and 5/3 were used as a threshold for normal subjects. CONCLUSIONS: In summary, a targeted approach, based on calculation of Haplotype Ratios from tandem SNP sequences combined with a sensitive and quantitative DNA measurement technology can be used to accurately detect fetal

  9. Single nucleotide polymorphisms of ADH1B, ADH1C and ALDH2 genes and esophageal cancer: A population-based case-control study in China

    NARCIS (Netherlands)

    Wu, M.; Chang, S.; Kampman, E.; Kok, F.J.

    2013-01-01

    Alcohol drinking is a major risk factor for esophageal cancer (EC) and the metabolism of ethanol has been suggested to play an important role in esophageal carcinogenesis. Epidemiologic studies, including genomewide association studies (GWAS), have identified single nucleotide polymorphisms (SNPs)

  10. Dissecting tocopherols content in maize (Zea mays L.), using two segregating populations and high-density single nucleotide polymorphism markers

    Science.gov (United States)

    2012-01-01

    Background Tocopherols, which are vitamin E compounds, play an important role in maintaining human health. Compared with other staple foods, maize grains contain high level of tocopherols. Results Two F2 populations (K22/CI7 and K22/Dan340, referred to as POP-1 and POP-2, respectively), which share a common parent (K22), were developed and genotyped using a GoldenGate assay containing 1,536 single nucleotide polymorphism (SNP) markers. An integrated genetic linkage map was constructed using 619 SNP markers, spanning a total of 1649.03 cM of the maize genome with an average interval of 2.67 cM. Seventeen quantitative trait loci (QTLs) for all the traits were detected in the first map and 13 in the second. In these two maps, QTLs for different traits were localized to the same genomic regions and some were co-located with candidate genes in the tocopherol biosynthesis pathway. Single QTL was responsible for 3.03% to 52.75% of the phenotypic variation and the QTLs in sum explained23.4% to 66.52% of the total phenotypic variation. A major QTL (qc5-1/qd5-1) affecting α-tocopherol (αT) was identified on chromosome 5 between the PZA03161.1 and PZA02068.1 in the POP-2. The QTL region was narrowed down from 18.7 Mb to 5.4 Mb by estimating the recombination using high-density markers of the QTL region. This allowed the identification of the candidate gene VTE4 which encodes γ-tocopherol methyltransferase, an enzyme that transforms γ-tocopherol (γT)to αT. Conclusions These results demonstrate that a few QTLs with major effects and several QTLs with medium to minor effects might contribute to the natural variation of tocopherols in maize grain. The high-density markers will help to fine map and identify the QTLs with major effects even in the preliminary segregating populations. Furthermore, this study provides a simple guide line for the breeders to improve traits that minimize the risk of malnutrition, especially in developing countries. PMID:23122295

  11. Base-By-Base: Single nucleotide-level analysis of whole viral genome alignments

    Directory of Open Access Journals (Sweden)

    Tcherepanov Vasily

    2004-07-01

    Full Text Available Abstract Background With ever increasing numbers of closely related virus genomes being sequenced, it has become desirable to be able to compare two genomes at a level more detailed than gene content because two strains of an organism may share the same set of predicted genes but still differ in their pathogenicity profiles. For example, detailed comparison of multiple isolates of the smallpox virus genome (each approximately 200 kb, with 200 genes is not feasible without new bioinformatics tools. Results A software package, Base-By-Base, has been developed that provides visualization tools to enable researchers to 1 rapidly identify and correct alignment errors in large, multiple genome alignments; and 2 generate tabular and graphical output of differences between the genomes at the nucleotide level. Base-By-Base uses detailed annotation information about the aligned genomes and can list each predicted gene with nucleotide differences, display whether variations occur within promoter regions or coding regions and whether these changes result in amino acid substitutions. Base-By-Base can connect to our mySQL database (Virus Orthologous Clusters; VOCs to retrieve detailed annotation information about the aligned genomes or use information from text files. Conclusion Base-By-Base enables users to quickly and easily compare large viral genomes; it highlights small differences that may be responsible for important phenotypic differences such as virulence. It is available via the Internet using Java Web Start and runs on Macintosh, PC and Linux operating systems with the Java 1.4 virtual machine.

  12. Genome-Wide Association of Copy Number Polymorphisms and Kidney Function.

    Directory of Open Access Journals (Sweden)

    Man Li

    Full Text Available Genome-wide association studies (GWAS using single nucleotide polymorphisms (SNPs have identified more than 50 loci associated with estimated glomerular filtration rate (eGFR, a measure of kidney function. However, significant SNPs account for a small proportion of eGFR variability. Other forms of genetic variation have not been comprehensively evaluated for association with eGFR. In this study, we assess whether changes in germline DNA copy number are associated with GFR estimated from serum creatinine, eGFRcrea. We used hidden Markov models (HMMs to identify copy number polymorphic regions (CNPs from high-throughput SNP arrays for 2,514 African (AA and 8,645 European ancestry (EA participants in the Atherosclerosis Risk in Communities (ARIC study. Separately for the EA and AA cohorts, we used Bayesian Gaussian mixture models to estimate copy number at regions identified by the HMM or previously reported in the HapMap Project. We identified 312 and 464 autosomal CNPs among individuals of EA and AA, respectively. Multivariate models adjusted for SNP-derived covariates of population structure identified one CNP in the EA cohort near genome-wide statistical significance (Bonferroni-adjusted p = 0.067 located on chromosome 5 (876-880kb. Overall, our findings suggest a limited role of CNPs in explaining eGFR variability.

  13. Association of polycystic ovary syndrome susceptibility single nucleotide polymorphism rs2479106 and PCOS in Caucasian patients with PCOS or hirsutism as referral diagnosis

    DEFF Research Database (Denmark)

    Eriksen, Mette B; Brusgaard, Klaus; Andersen, Marianne

    2012-01-01

    Polycystic ovary syndrome (PCOS) is the most common endocrine disease among premenopausal women. A recent study found association between three single nucleotide polymorphisms (SNPs) and PCOS in a cohort of Han Chinese women.......Polycystic ovary syndrome (PCOS) is the most common endocrine disease among premenopausal women. A recent study found association between three single nucleotide polymorphisms (SNPs) and PCOS in a cohort of Han Chinese women....

  14. A barcode of organellar genome polymorphisms identifies the geographic origin of Plasmodium falciparum strains

    KAUST Repository

    Preston, Mark D.; Campino, Susana; Assefa, Samuel A.; Echeverry, Diego F.; Ocholla, Harold; Amambua-Ngwa, Alfred; Stewart, Lindsay B.; Conway, David J.; Borrmann, Steffen; Michon, Pascal; Zongo, Issaka; Oué draogo, Jean-Bosco; Djimde, Abdoulaye A.; Doumbo, Ogobara K.; Nosten, Francois; Pain, Arnab; Bousema, Teun; Drakeley, Chris J.; Fairhurst, Rick M.; Sutherland, Colin J.; Roper, Cally; Clark, Taane G.

    2014-01-01

    Malaria is a major public health problem that is actively being addressed in a global eradication campaign. Increased population mobility through international air travel has elevated the risk of re-introducing parasites to elimination areas and dispersing drug-resistant parasites to new regions. A simple genetic marker that quickly and accurately identifies the geographic origin of infections would be a valuable public health tool for locating the source of imported outbreaks. Here we analyse the mitochondrion and apicoplast genomes of 711 Plasmodium falciparum isolates from 14 countries, and find evidence that they are non-recombining and co-inherited. The high degree of linkage produces a panel of relatively few single-nucleotide polymorphisms (SNPs) that is geographically informative. We design a 23-SNP barcode that is highly predictive (?92%) and easily adapted to aid case management in the field and survey parasite migration worldwide. 2014 Macmillan Publishers Limited. All rights reserved.

  15. A barcode of organellar genome polymorphisms identifies the geographic origin of Plasmodium falciparum strains

    KAUST Repository

    Preston, Mark D.

    2014-06-13

    Malaria is a major public health problem that is actively being addressed in a global eradication campaign. Increased population mobility through international air travel has elevated the risk of re-introducing parasites to elimination areas and dispersing drug-resistant parasites to new regions. A simple genetic marker that quickly and accurately identifies the geographic origin of infections would be a valuable public health tool for locating the source of imported outbreaks. Here we analyse the mitochondrion and apicoplast genomes of 711 Plasmodium falciparum isolates from 14 countries, and find evidence that they are non-recombining and co-inherited. The high degree of linkage produces a panel of relatively few single-nucleotide polymorphisms (SNPs) that is geographically informative. We design a 23-SNP barcode that is highly predictive (?92%) and easily adapted to aid case management in the field and survey parasite migration worldwide. 2014 Macmillan Publishers Limited. All rights reserved.

  16. Polymorphic microsatellites in the human bloodfluke, Schistosoma japonicum, identified using a genomic resource

    Directory of Open Access Journals (Sweden)

    Spear Robert

    2011-02-01

    Full Text Available Abstract Re-emergence of schistosomiasis in regions of China where control programs have ceased requires development of molecular-genetic tools to track gene flow and assess genetic diversity of Schistosoma populations. We identified many microsatellite loci in the draft genome of Schistosoma japonicum using defined search criteria and selected a subset for further analysis. From an initial panel of 50 loci, 20 new microsatellites were selected for eventual optimization and application to a panel of worms from endemic areas. All but one of the selected microsatellites contain simple tri-nucleotide repeats. Moderate to high levels of polymorphism were detected. Numbers of alleles ranged from 6 to 14 and observed heterozygosity was always >0.6. The loci reported here will facilitate high resolution population-genetic studies on schistosomes in re-emergent foci.

  17. Nucleotide Interdependency in Transcription Factor Binding Sites in the Drosophila Genome.

    Science.gov (United States)

    Dresch, Jacqueline M; Zellers, Rowan G; Bork, Daniel K; Drewell, Robert A

    2016-01-01

    A long-standing objective in modern biology is to characterize the molecular components that drive the development of an organism. At the heart of eukaryotic development lies gene regulation. On the molecular level, much of the research in this field has focused on the binding of transcription factors (TFs) to regulatory regions in the genome known as cis-regulatory modules (CRMs). However, relatively little is known about the sequence-specific binding preferences of many TFs, especially with respect to the possible interdependencies between the nucleotides that make up binding sites. A particular limitation of many existing algorithms that aim to predict binding site sequences is that they do not allow for dependencies between nonadjacent nucleotides. In this study, we use a recently developed computational algorithm, MARZ, to compare binding site sequences using 32 distinct models in a systematic and unbiased approach to explore nucleotide dependencies within binding sites for 15 distinct TFs known to be critical to Drosophila development. Our results indicate that many of these proteins have varying levels of nucleotide interdependencies within their DNA recognition sequences, and that, in some cases, models that account for these dependencies greatly outperform traditional models that are used to predict binding sites. We also directly compare the ability of different models to identify the known KRUPPEL TF binding sites in CRMs and demonstrate that a more complex model that accounts for nucleotide interdependencies performs better when compared with simple models. This ability to identify TFs with critical nucleotide interdependencies in their binding sites will lead to a deeper understanding of how these molecular characteristics contribute to the architecture of CRMs and the precise regulation of transcription during organismal development.

  18. Polymorphism and mutation analysis of genomic DNA on cancer

    International Nuclear Information System (INIS)

    Ohta, Tsutomu

    2003-01-01

    DNA repair is a universal process in living cells that maintains the structural integrity of chromosomal DNA molecules in face of damage. A deficiency in DNA damage repair is associated with an increased cancer risk by increasing a mutation frequency of cancer-related genes. Variation in DNA repair capacity may be genetically determined. Therefore, we searched single-nucleotide polymorphisms (SNPs) in major DNA repair genes. This led to the finding of 600 SNPs and mutations including many novel SNPs in Japanese population. Case-control studies to explore the contribution of the SNPs in DNA repair genes to the risk of lung cancer revealed that five SNPs are associated with lung carcinogenesis. One of these SNPs is found in RAD54L gene, which is involved in double-strand DNA repair. We analyzed and reported activities of Rad54L protein with SNP and mutations. (authors)

  19. Frequency of single nucleotide polymorphisms of some immune response genes in a population sample from São Paulo, Brazil

    Directory of Open Access Journals (Sweden)

    Léa Campos de Oliveira

    2011-09-01

    Full Text Available Objective: To present the frequency of single nucleotide polymorphismsof a few immune response genes in a population sample from SãoPaulo City (SP, Brazil. Methods: Data on allele frequencies ofknown polymorphisms of innate and acquired immunity genes werepresented, the majority with proven impact on gene function. Datawere gathered from a sample of healthy individuals, non-HLA identicalsiblings of bone marrow transplant recipients from the Hospital dasClínicas da Faculdade de Medicina da Universidade de São Paulo,obtained between 1998 and 2005. The number of samples variedfor each single nucleotide polymorphism analyzed by polymerasechain reaction followed by restriction enzyme cleavage. Results:Allele and genotype distribution of 41 different gene polymorphisms,mostly cytokines, but also including other immune response genes,were presented. Conclusion: We believe that the data presentedhere can be of great value for case-control studies, to define whichpolymorphisms are present in biologically relevant frequencies and toassess targets for therapeutic intervention in polygenic diseases witha component of immune and inflammatory responses.

  20. Single nucleotide polymorphisms of cathepsin S and the risks of asthma attack induced by acaroid mites.

    Science.gov (United States)

    Li, Chaopin; Chen, Qi; Jiang, Yuxin; Liu, Zhiming

    2015-01-01

    To investigate association between the three single nucleotide polymorphisms (SNPs, rs146456111, rs143154304 and rs147260142) in cathepsin S (Cat S) and the risks of allergic asthma attack induced by the acaroid mites in the Chinese population. A case-control study was performed in 412 cases and 454 volunteers/controls to evaluate the effects of three SNPs in Cat S on the risks of asthma attack. The genotypes were determined using polymerase chain reaction (PCR) and cleaved amplification polymorphism sequence-tagged sites (PCR-RFLP). The frequencies of genotypes and alleles in these SNPs in the asthmatic group were also analyzed between the two groups. The locus of rs146456111 in Cat S gene, the allele frequency of A and C in asthmatic group were significantly different from the control group (χ(2) = 184.425, P = 0.000), and the difference was significant regarding the distribution of the genotypes (AA, AC, and CC) between asthmatic subjects and normal controls (χ(2) = 177.915, P = 0.000). Logistic regression analysis revealed that the AC, CC, and AC + CC genotypes were significantly increased with the risk of asthma (AC vs. AA, OR = 4.013, 95% CI = 2.989-4.751, P = 0.000; CC vs. AA, OR = 3.167, 95% CI = 2.483-3.785, P = 0.000; AC + CC vs. AA, OR = 3.418, 95% CI = 2.381-4.214, P = 0.000, respectively), compared with AA genotype. Moreover, by comparison with allele A, allele C (OR = 2.187, 95% CI = 1.743-2.281, P asthma; For the locus of rs143154304, compared with the allele frequency G with A in control group, there was no difference (χ(2) = 1.434, P = 0.231) in that of asthmatic group, as well as the distributions of the genotypes (AA, AG, and GG) between asthmatic subjects and normal controls (χ(2) = 1.997, P = 0.369); Logistic regression analysis showed that the AG, GG, and AG + GG genotypes were no risk to asthma (AG vs. AA, OR = 0.991, 95% CI = 0.625-1.507, P = 0.968; GG vs. AA, OR = 0.812, 95% CI = 0.525-1.258, P = 0.352; AG + GG vs. AA, OR = 0.914, 95

  1. Single nucleotide polymorphisms associated with thermoregulation in lactating dairy cows exposed to heat stress.

    Science.gov (United States)

    Dikmen, S; Wang, X-z; Ortega, M S; Cole, J B; Null, D J; Hansen, P J

    2015-12-01

    Dairy cows with increased rectal temperature experience lower milk yield and fertility. Rectal temperature during heat stress is heritable, so genetic selection for body temperature regulation could reduce effects of heat stress on production. One aim of the study was to validate the relationship between genotype and heat tolerance for single nucleotide polymorphisms (SNPs) previously associated with resistance to heat stress. A second aim was to identify new SNPs associated with heat stress resistance. Thermotolerance was assessed in lactating Holsteins during the summer by measuring rectal temperature (a direct measurement of body temperature regulation; n = 435), respiration rate (an indirect measurement of body temperature regulation, n = 450) and sweating rate (the major evaporative cooling mechanism in cattle, n = 455). The association between genotype and thermotolerance was evaluated for 19 SNPs previously associated with rectal temperature from a genomewide analysis study (GWAS), four SNPs previously associated with change in milk yield during heat stress from GWAS, 2 candidate gene SNPs previously associated with rectal temperature and respiration rate during heat stress (ATPA1A and HSP70A) and 66 SNPs in genes previously shown to be associated with reproduction, production or health traits in Holsteins. For SNPs previously associated with heat tolerance, regions of BTA4, BTA6 and BTA24 were associated with rectal temperature; regions of BTA6 and BTA24 were associated with respiration rate; and regions of BTA5, BTA26 and BTA29 were associated with sweating rate. New SNPs were identified for rectal temperature (n = 12), respiration rate (n = 8) and sweating rate (n = 3) from among those previously associated with production, reproduction or health traits. The SNP that explained the most variation were PGR and ASL for rectal temperature, ACAT2 and HSD17B7 for respiration rate, and ARL6IP1 and SERPINE2 for sweating rate. ARL6IP1 was associated with all three

  2. Polymorphisms of Tumor Necrosis Factor Alpha in Moroccan Patients with Gastric Pathology: New Single-Nucleotide Polymorphisms in TNF-α−193 (G/A

    Directory of Open Access Journals (Sweden)

    A. Essadik

    2015-01-01

    Full Text Available Polymorphisms in tumor necrosis factor alpha (TNF-α gene are emerging as key determinants of gastric diseases. The TNF-α−308 (G/A and TNF-α−238 (G/A single-nucleotide polymorphisms SNPs are the most extensively studied. However, all these studies are conducted in Caucasian and Asian populations. Thus, for the first time in Africa, we sought to investigate whether polymorphisms in TNF-α gene were associated with the development of gastric pathology in Morocco. Two SNPs located in the promoter region (positions −308 and −238 in TNF-α gene were genotyped in 244 individuals (170 patients and 74 healthy controls. Odds ratios (ORs and 95% confidence intervals (CI were estimated using logistic regression analysis. The TNF-α−238 (G/A genotype was significantly associated with a high risk of gastritis and gastric cancer (GC (P=0.001 and P=0.002, resp.. Furthermore, a new polymorphism located in the promoter region at position −193 in TNF-α gene was identified. The distribution of this SNP was markedly different in patients suffering from ulcers. The association between TNF-α−193 (G/A genotype and high risk of ulcer was significant (P=0.03. These results suggest that the TNF-α−193 (G/A allele has a protective function against gastric cancer by developing ulcer.

  3. Integrative analysis of single nucleotide polymorphisms and gene expression efficiently distinguishes samples from closely related ethnic populations

    Directory of Open Access Journals (Sweden)

    Yang Hsin-Chou

    2012-07-01

    Full Text Available Abstract Background Ancestry informative markers (AIMs are a type of genetic marker that is informative for tracing the ancestral ethnicity of individuals. Application of AIMs has gained substantial attention in population genetics, forensic sciences, and medical genetics. Single nucleotide polymorphisms (SNPs, the materials of AIMs, are useful for classifying individuals from distinct continental origins but cannot discriminate individuals with subtle genetic differences from closely related ancestral lineages. Proof-of-principle studies have shown that gene expression (GE also is a heritable human variation that exhibits differential intensity distributions among ethnic groups. GE supplies ethnic information supplemental to SNPs; this motivated us to integrate SNP and GE markers to construct AIM panels with a reduced number of required markers and provide high accuracy in ancestry inference. Few studies in the literature have considered GE in this aspect, and none have integrated SNP and GE markers to aid classification of samples from closely related ethnic populations. Results We integrated a forward variable selection procedure into flexible discriminant analysis to identify key SNP and/or GE markers with the highest cross-validation prediction accuracy. By analyzing genome-wide SNP and/or GE markers in 210 independent samples from four ethnic groups in the HapMap II Project, we found that average testing accuracies for a majority of classification analyses were quite high, except for SNP-only analyses that were performed to discern study samples containing individuals from two close Asian populations. The average testing accuracies ranged from 0.53 to 0.79 for SNP-only analyses and increased to around 0.90 when GE markers were integrated together with SNP markers for the classification of samples from closely related Asian populations. Compared to GE-only analyses, integrative analyses of SNP and GE markers showed comparable testing

  4. Species trees from consensus single nucleotide polymorphism (SNP) data: Testing phylogenetic approaches with simulated and empirical data.

    Science.gov (United States)

    Schmidt-Lebuhn, Alexander N; Aitken, Nicola C; Chuah, Aaron

    2017-11-01

    Datasets of hundreds or thousands of SNPs (Single Nucleotide Polymorphisms) from multiple individuals per species are increasingly used to study population structure, species delimitation and shallow phylogenetics. The principal software tool to infer species or population trees from SNP data is currently the BEAST template SNAPP which uses a Bayesian coalescent analysis. However, it is computationally extremely demanding and tolerates only small amounts of missing data. We used simulated and empirical SNPs from plants (Australian Craspedia, Asteraceae, and Pelargonium, Geraniaceae) to compare species trees produced (1) by SNAPP, (2) using SVD quartets, and (3) using Bayesian and parsimony analysis with several different approaches to summarising data from multiple samples into one set of traits per species. Our aims were to explore the impact of tree topology and missing data on the results, and to test which data summarising and analyses approaches would best approximate the results obtained from SNAPP for empirical data. SVD quartets retrieved the correct topology from simulated data, as did SNAPP except in the case of a very unbalanced phylogeny. Both methods failed to retrieve the correct topology when large amounts of data were missing. Bayesian analysis of species level summary data scoring the two alleles of each SNP as independent characters and parsimony analysis of data scoring each SNP as one character produced trees with branch length distributions closest to the true trees on which SNPs were simulated. For empirical data, Bayesian inference and Dollo parsimony analysis of data scored allele-wise produced phylogenies most congruent with the results of SNAPP. In the case of study groups divergent enough for missing data to be phylogenetically informative (because of additional mutations preventing amplification of genomic fragments or bioinformatic establishment of homology), scoring of SNP data as a presence/absence matrix irrespective of allele

  5. A mixed integer linear programming model to reconstruct phylogenies from single nucleotide polymorphism haplotypes under the maximum parsimony criterion

    Science.gov (United States)

    2013-01-01

    Background Phylogeny estimation from aligned haplotype sequences has attracted more and more attention in the recent years due to its importance in analysis of many fine-scale genetic data. Its application fields range from medical research, to drug discovery, to epidemiology, to population dynamics. The literature on molecular phylogenetics proposes a number of criteria for selecting a phylogeny from among plausible alternatives. Usually, such criteria can be expressed by means of objective functions, and the phylogenies that optimize them are referred to as optimal. One of the most important estimation criteria is the parsimony which states that the optimal phylogeny T∗for a set H of n haplotype sequences over a common set of variable loci is the one that satisfies the following requirements: (i) it has the shortest length and (ii) it is such that, for each pair of distinct haplotypes hi,hj∈H, the sum of the edge weights belonging to the path from hi to hj in T∗ is not smaller than the observed number of changes between hi and hj. Finding the most parsimonious phylogeny for H involves solving an optimization problem, called the Most Parsimonious Phylogeny Estimation Problem (MPPEP), which is NP-hard in many of its versions. Results In this article we investigate a recent version of the MPPEP that arises when input data consist of single nucleotide polymorphism haplotypes extracted from a population of individuals on a common genomic region. Specifically, we explore the prospects for improving on the implicit enumeration strategy of implicit enumeration strategy used in previous work using a novel problem formulation and a series of strengthening valid inequalities and preliminary symmetry breaking constraints to more precisely bound the solution space and accelerate implicit enumeration of possible optimal phylogenies. We present the basic formulation and then introduce a series of provable valid constraints to reduce the solution space. We then prove

  6. Genetic association of marbling score with intragenic nucleotide variants at selection signals of the bovine genome.

    Science.gov (United States)

    Ryu, J; Lee, C

    2016-04-01

    Selection signals of Korean cattle might be attributed largely to artificial selection for meat quality. Rapidly increased intragenic markers of newly annotated genes in the bovine genome would help overcome limited findings of genetic markers associated with meat quality at the selection signals in a previous study. The present study examined genetic associations of marbling score (MS) with intragenic nucleotide variants at selection signals of Korean cattle. A total of 39 092 nucleotide variants of 407 Korean cattle were utilized in the association analysis. A total of 129 variants were selected within newly annotated genes in the bovine genome. Their genetic associations were analyzed using the mixed model with random polygenic effects based on identical-by-state genetic relationships among animals in order to control for spurious associations produced by population structure. Genetic associations of MS were found (Pdirectional selection for greater MS and remain selection signals in the bovine genome. Further studies of fine mapping would be useful to incorporate favorable alleles in marker-assisted selection for MS of Korean cattle.

  7. ERCC1 and XRCC1 but not XPA single nucleotide polymorphisms correlate with response to chemotherapy in endometrial carcinoma

    Directory of Open Access Journals (Sweden)

    Chen L

    2016-11-01

    Full Text Available Liang Chen,1 Mei-Mei Liu,1 Hui Liu,1 Dan Lu,2 Xiao-Dan Zhao,3 Xue-Jing Yang4 1Department of Gynecology and Obstetrics, 2Department of Oncology, 3Department of Clinical Laboratory, The 2nd Affiliated Hospital, Harbin Medical University, 4Nursing Department, Harbin Chest Hospital, Harbin, People’s Republic of China Abstract: Our study aimed to investigate the correlation between single nucleotide polymorphisms of ERCC1/XRCC1/XPA genes and postoperative chemotherapy efficacy and prognosis of endometrial carcinoma. Our study included 108 patients with endometrial carcinoma and 100 healthy participants. ERCC1 rs11615/XRCC1 rs25487/XPA rs1800975 gene polymorphisms were detected by polymerase chain reaction–restriction fragment length polymorphism. Then the chemotherapy efficacy and toxic effects of the patients were assessed. The genotype and allele frequency of ERCC1 rs11615/XRCC1 rs25487 in the case group were significantly different from that in the control group (all P<0.05. The patients with AA + GA in ERCC1 rs11615 had an increased risk of endometrial carcinoma than those with GG, and the risk of endometrial carcinoma for patients with AA + GA was also higher in comparison with patients with GG genotype in XRCC1 rs25487 (all P<0.05. GG on both ERCC1 rs11615/XRCC1 rs25487 had a higher effective rate of chemotherapy than GA + AA (all P<0.05. ERCC1 rs11615/XRCC1 rs25487 gene polymorphisms were linked with toxic effects in liver, kidney, and nervous system. ERCC1 rs11615/XRCC1 rs25487, muscular invasion, and tumor stage were independent risk factors for the prognosis of endometrial carcinoma (all P<0.05. However, no significant associations were observed between XPA rs1800975 polymorphism and chemotherapy efficacy and prognosis of endometrial carcinoma (all P>0.05. These results indicated that ERCC1 and XRCC1 but not XPA polymorphisms correlate with response to chemotherapy in endometrial carcinoma. Keywords: ERCC1, XRCC1, XPA, single nucleotide

  8. Single Nucleotide Polymorphisms in Growth Hormone Gene and Their Association with Growth Traits in Siniperca chuatsi (Basilewsky

    Directory of Open Access Journals (Sweden)

    Changxu Tian

    2014-04-01

    Full Text Available Growth hormone (GH has been considered as a candidate gene for growth traits in fish. In this study, polymorphisms of the GH gene were evaluated for associations with growth traits in 282 Siniperca chuatsi individuals. Using directly sequencing, four single nucleotide polymorphisms (SNPs were identified in GH gene, with two mutations in intron 4 (g.4940A>C, g.4948A>T, one mutation in exon 5 (g.5045T>C and one in intron 5 (g.5234T>G. Notably, three of them were significantly associated with growth performance, particularly for g.4940A>C which was highly correlated with all the four growth traits. In conclusion, our results demonstrated that these SNPs in GH gene could influence growth performance of S.chuatsi and could be used for marker-assisted selection (MAS in this species.

  9. Relationship between single nucleotide polymorphism of glycogen synthase gene of Pacific oyster Crassostrea gigas and its glycogen content

    Science.gov (United States)

    Liu, Siwei; Li, Qi; Yu, Hong; Kong, Lingfeng

    2017-02-01

    Glycogen is important not only for the energy supplementary of oysters, but also for human consumption. High glycogen content can improve the stress survival of oyster. A key enzyme in glycogenesis is glycogen synthase that is encoded by glycogen synthase gene GYS. In this study, the relationship between single nucleotide polymorphisms (SNPs) in coding regions of Crassostrea gigas GYS (Cg-GYS) and individual glycogen content was investigated with 321 individuals from five full-sib families. Single-strand conformation polymorphism (SSCP) procedure was combined with sequencing to confirm individual SNP genotypes of Cg-GYS. Least-square analysis of variance was performed to assess the relationship of variation in glycogen content of C. gigas with single SNP genotype and SNP haplotype. As a consequence, six SNPs were found in coding regions to be significantly associated with glycogen content ( P glycogen content ( P glycogen content and provided molecular biological information for the selective breeding of good quality traits of C. gigas.

  10. The polydeoxyadenylate tract of Alu repetitive elements is polymorphic in the human genome

    International Nuclear Information System (INIS)

    Economou, E.P.; Bergen, A.W.; Warren, A.C.; Antonarakis, S.E.

    1990-01-01

    To identify DNA polymorphisms that are abundant in the human genome and are detectable by polymerase chain reaction amplification of genomic DNA, the authors hypothesize that the polydeoxyadenylate tract of the Alu family of repetitive elements is polymorphic among human chromosomes. Analysis of the 3' ends of three specific Alu sequences showed two occurrences, one in the adenosine deaminase gene and other in the β-globin pseudogene, were polymorphic. This novel class of polymorphism, termed AluVpA [Alu variable poly(A)] may represent one of the most useful and informative group of DNA markers in the human genome

  11. Background selection as baseline for nucleotide variation across the Drosophila genome.

    Directory of Open Access Journals (Sweden)

    Josep M Comeron

    2014-06-01

    Full Text Available The constant removal of deleterious mutations by natural selection causes a reduction in neutral diversity and efficacy of selection at genetically linked sites (a process called Background Selection, BGS. Population genetic studies, however, often ignore BGS effects when investigating demographic events or the presence of other types of selection. To obtain a more realistic evolutionary expectation that incorporates the unavoidable consequences of deleterious mutations, we generated high-resolution landscapes of variation across the Drosophila melanogaster genome under a BGS scenario independent of polymorphism data. We find that BGS plays a significant role in shaping levels of variation across the entire genome, including long introns and intergenic regions distant from annotated genes. We also find that a very large percentage of the observed variation in diversity across autosomes can be explained by BGS alone, up to 70% across individual chromosome arms at 100-kb scale, thus indicating that BGS predictions can be used as baseline to infer additional types of selection and demographic events. This approach allows detecting several outlier regions with signal of recent adaptive events and selective sweeps. The use of a BGS baseline, however, is particularly appropriate to investigate the presence of balancing selection and our study exposes numerous genomic regions with the predicted signature of higher polymorphism than expected when a BGS context is taken into account. Importantly, we show that these conclusions are robust to the mutation and selection parameters of the BGS model. Finally, analyses of protein evolution together with previous comparisons of genetic maps between Drosophila species, suggest temporally variable recombination landscapes and, thus, local BGS effects that may differ between extant and past phases. Because genome-wide BGS and temporal changes in linkage effects can skew approaches to estimate demographic and

  12. Novel single-nucleotide polymorphisms in the calsequestrin-1 gene are associated with Graves’ ophthalmopathy and Hashimoto’s thyroiditis

    Directory of Open Access Journals (Sweden)

    Lahooti H

    2015-09-01

    Full Text Available Hooshang Lahooti,1,2 Daniele Cultrone,1,2 Senarath Edirimanne,1,2 John P Walsh,3,4 Leigh Delbridge,5,6 Patrick Cregan,1,2 Bernard Champion,1,2 Jack R Wall1,21Thyroid Research Laboratory, Sydney Medical School – Nepean Clinical School, The University of Sydney, 2Nepean Blue Mountains Local Health District, Nepean Hospital, Kingswood, NSW, 3Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Nedlands, 4School of Medicine and Pharmacology, The University of Western Australia, Crawley, WA, 5Department of Surgery, Royal North Shore Hospital, 6Sydney Medical School – Northern Clinical School, The University of Sydney, St Leonards, NSW, AustraliaBackground: The eye disorder associated with Graves’ disease, called Graves’ ophthalmopathy (GO, greatly reduces the quality of life in affected patients. Expression of the calsequestrin (CASQ1 protein in thyroid tissue may be the trigger for the development of eye muscle damage in patients with GO. We determined the prevalence of rs74123279, rs3747673, and rs2275703 single-nucleotide polymorphism (SNPs in patients with autoimmune thyroid disorders, GO, Graves’ hyperthyroidism (GH, or Hashimoto’s thyroiditis (HT and control subjects with no personal or family history of autoimmune thyroid disorders. Furthermore, we measured the concentration of the CASQ1 protein in normal and Graves’ thyroid tissue, correlating levels with parameters of the eye signs, CASQ1 antibody levels, and the CASQ1 gene polymorphism rs74123279 and rs2275703.Methods: High-quality genomic DNA was isolated from fresh blood samples, assayed for identification of rs74123279, rs3747673, and rs2275703 SNPs in CASQ1 gene by MassARRAY SNP analysis using iPLEX technology of SEQUENOM.Results: DNA samples from 300 patients and 106 control subjects (100 males, 306 females with GO (n=74, GH (n=130, HT (n=96 and control subjects (n=106 were genotyped for the SNPs rs74123279, rs3747673 (n=405, and rs2275703 (n=407. The

  13. First High-Density Linkage Map and Single Nucleotide Polymorphisms Significantly Associated With Traits of Economic Importance in Yellowtail Kingfish Seriola lalandi

    Directory of Open Access Journals (Sweden)

    Nguyen H. Nguyen

    2018-04-01

    Full Text Available The genetic resources available for the commercially important fish species Yellowtail kingfish (YTK (Seriola lalandi are relative sparse. To overcome this, we aimed (1 to develop a linkage map for this species, and (2 to identify markers/variants associated with economically important traits in kingfish (with an emphasis on body weight. Genetic and genomic analyses were conducted using 13,898 single nucleotide polymorphisms (SNPs generated from a new high-throughput genotyping by sequencing platform, Diversity Arrays Technology (DArTseqTM in a pedigreed population comprising 752 animals. The linkage analysis enabled to map about 4,000 markers to 24 linkage groups (LGs, with an average density of 3.4 SNPs per cM. The linkage map was integrated into a genome-wide association study (GWAS and identified six variants/SNPs associated with body weight (P < 5e-8 when a multi-locus mixed model was used. Two out of the six significant markers were mapped to LGs 17 and 23, and collectively they explained 5.8% of the total genetic variance. It is concluded that the newly developed linkage map and the significantly associated markers with body weight provide fundamental information to characterize genetic architecture of growth-related traits in this population of YTK S. lalandi.

  14. First High-Density Linkage Map and Single Nucleotide Polymorphisms Significantly Associated With Traits of Economic Importance in Yellowtail Kingfish Seriola lalandi.

    Science.gov (United States)

    Nguyen, Nguyen H; Rastas, Pasi M A; Premachandra, H K A; Knibb, Wayne

    2018-01-01

    The genetic resources available for the commercially important fish species Yellowtail kingfish (YTK) ( Seriola lalandi) are relative sparse. To overcome this, we aimed (1) to develop a linkage map for this species, and (2) to identify markers/variants associated with economically important traits in kingfish (with an emphasis on body weight). Genetic and genomic analyses were conducted using 13,898 single nucleotide polymorphisms (SNPs) generated from a new high-throughput genotyping by sequencing platform, Diversity Arrays Technology (DArTseq TM ) in a pedigreed population comprising 752 animals. The linkage analysis enabled to map about 4,000 markers to 24 linkage groups (LGs), with an average density of 3.4 SNPs per cM. The linkage map was integrated into a genome-wide association study (GWAS) and identified six variants/SNPs associated with body weight ( P 5e -8 ) when a multi-locus mixed model was used. Two out of the six significant markers were mapped to LGs 17 and 23, and collectively they explained 5.8% of the total genetic variance. It is concluded that the newly developed linkage map and the significantly associated markers with body weight provide fundamental information to characterize genetic architecture of growth-related traits in this population of YTK S. lalandi .

  15. Inflammatory single nucleotide polymorphisms and the risk of atrial fibrillation: a case control study

    DEFF Research Database (Denmark)

    Henningsen, Kristoffer M; Olesen, Morten S; Ravn, Lasse S

    2011-01-01

    Systemic inflammation is associated with atrial fibrillation (AF) and inflammatory processes are involved in the pathophysiology of AF. We hypothesized that genetic polymorphisms, which determine the rate of inflammatory cytokines, are associated with increased risk of AF.......Systemic inflammation is associated with atrial fibrillation (AF) and inflammatory processes are involved in the pathophysiology of AF. We hypothesized that genetic polymorphisms, which determine the rate of inflammatory cytokines, are associated with increased risk of AF....

  16. Gene-gene, gene-environment, gene-nutrient interactions and single nucleotide polymorphisms of inflammatory cytokines.

    Science.gov (United States)

    Nadeem, Amina; Mumtaz, Sadaf; Naveed, Abdul Khaliq; Aslam, Muhammad; Siddiqui, Arif; Lodhi, Ghulam Mustafa; Ahmad, Tausif

    2015-05-15

    Inflammation plays a significant role in the etiology of type 2 diabetes mellitus (T2DM). The rise in the pro-inflammatory cytokines is the essential step in glucotoxicity and lipotoxicity induced mitochondrial injury, oxidative stress and beta cell apoptosis in T2DM. Among the recognized markers are interleukin (IL)-6, IL-1, IL-10, IL-18, tissue necrosis factor-alpha (TNF-α), C-reactive protein, resistin, adiponectin, tissue plasminogen activator, fibrinogen and heptoglobins. Diabetes mellitus has firm genetic and very strong environmental influence; exhibiting a polygenic mode of inheritance. Many single nucleotide polymorphisms (SNPs) in various genes including those of pro and anti-inflammatory cytokines have been reported as a risk for T2DM. Not all the SNPs have been confirmed by unifying results in different studies and wide variations have been reported in various ethnic groups. The inter-ethnic variations can be explained by the fact that gene expression may be regulated by gene-gene, gene-environment and gene-nutrient interactions. This review highlights the impact of these interactions on determining the role of single nucleotide polymorphism of IL-6, TNF-α, resistin and adiponectin in pathogenesis of T2DM.

  17. High-density single nucleotide polymorphism (SNP) array mapping in Brassica oleracea: identification of QTL associated with carotenoid variation in broccoli florets.

    Science.gov (United States)

    Brown, Allan F; Yousef, Gad G; Chebrolu, Kranthi K; Byrd, Robert W; Everhart, Koyt W; Thomas, Aswathy; Reid, Robert W; Parkin, Isobel A P; Sharpe, Andrew G; Oliver, Rebekah; Guzman, Ivette; Jackson, Eric W

    2014-09-01

    A high-resolution genetic linkage map of B. oleracea was developed from a B. napus SNP array. The work will facilitate genetic and evolutionary studies in Brassicaceae. A broccoli population, VI-158 × BNC, consisting of 150 F2:3 families was used to create a saturated Brassica oleracea (diploid: CC) linkage map using a recently developed rapeseed (Brassica napus) (tetraploid: AACC) Illumina Infinium single nucleotide polymorphism (SNP) array. The map consisted of 547 non-redundant SNP markers spanning 948.1 cM across nine chromosomes with an average interval size of 1.7 cM. As the SNPs are anchored to the genomic reference sequence of the rapid cycling B. oleracea TO1000, we were able to estimate that the map provides 96 % coverage of the diploid genome. Carotenoid analysis of 2 years data identified 3 QTLs on two chromosomes that are associated with up to half of the phenotypic variation associated with the accumulation of total or individual compounds. By searching the genome sequences of the two related diploid species (B. oleracea and B. rapa), we further identified putative carotenoid candidate genes in the region of these QTLs. This is the first description of the use of a B. napus SNP array to rapidly construct high-density genetic linkage maps of one of the constituent diploid species. The unambiguous nature of these markers with regard to genomic sequences provides evidence to the nature of genes underlying the QTL, and demonstrates the value and impact this resource will have on Brassica research.

  18. Exploring single nucleotide polymorphisms previously related to obesity and metabolic traits in pediatric-onset type 2 diabetes.

    Science.gov (United States)

    Miranda-Lora, América Liliana; Cruz, Miguel; Aguirre-Hernández, Jesús; Molina-Díaz, Mario; Gutiérrez, Jorge; Flores-Huerta, Samuel; Klünder-Klünder, Miguel

    2017-07-01

    To evaluate the association of 64 obesity-related polymorphisms with pediatric-onset type 2 diabetes and other glucose- and insulin-related traits in Mexican children. Case-control and case-sibling designs were followed. We studied 99 patients with pediatric-onset type 2 diabetes, their siblings (n = 101) without diabetes, 83 unrelated pediatric controls and 137 adult controls. Genotypes were determined for 64 single nucleotide polymorphisms, and a possible association was examined between those genotypes and type 2 diabetes and other quantitative traits, after adjusting for age, sex and body mass index. In the case-pediatric control and case-adult control analyses, five polymorphisms were associated with increased likelihood of pediatric-onset type 2 diabetes; only one of these polymorphisms (CADM2/rs1307880) also showed a consistent effect in the case-sibling analysis. The associations in the combined analysis were as follows: ADORA1/rs903361 (OR 1.9, 95% CI 1.2; 3.0); CADM2/rs13078807 (OR 2.2, 95% CI 1.2; 4.0); GNPDA2/rs10938397 (OR 2.2, 95% CI 1.4; 3.7); VEGFA/rs6905288 (OR 1.4, 95% CI 1.1; 2.1) and FTO/rs9939609 (OR 1.8, 95% CI 1.0; 3.2). We also identified 16 polymorphisms nominally associated with quantitative traits in participants without diabetes. ADORA/rs903361, CADM2/rs13078807, GNPDA2/rs10938397, VEGFA/rs6905288 and FTO/rs9939609 are associated with an increased risk of pediatric-onset type 2 diabetes in the Mexican population.

  19. IL10 single nucleotide polymorphisms are related to upregulation of constitutive IL-10 production and susceptibility to Helicobacter pylori infection.

    Science.gov (United States)

    Assis, Shirleide; Marques, Cintia Rodrigues; Silva, Thiago Magalhães; Costa, Ryan Santos; Alcantara-Neves, Neuza Maria; Barreto, Mauricio Lima; Barnes, Kathleen Carole; Figueiredo, Camila Alexandrina

    2014-06-01

    Helicobacter pylori infection is a strong risk factor for gastric cancer, likely due to the extensive inflammation in the stomach mucosa caused by these bacteria. Many studies have reported an association between IL10 polymorphisms, the risk of gastric cancer, and IL-10 production. The aim of the study was to evaluate the association between IL10 genetic variants, Helicobacter pylori infection, and IL-10 production by peripheral blood leukocytes in children. We genotyped a total of 12 single nucleotide polymorphisms in IL10 in 1259 children aged 4-11 years living in a poor urban area in Salvador, Brazil, using TaqMan probe based, 5' nuclease assay minor groove binder chemistry. Association tests were performed by logistic regression for Helicobacter pylori infection and linear regression for IL-10 spontaneous production (whole-blood cultures) including sex, age, and principal components for informative ancestry markers as covariates, using PLINK. Our results shown that IL10 single nucleotide polymorphisms rs1800896 (OR = 1.63; 95% CI = 1.11-2.39), rs3024491 (OR = 1.71; 95% CI = 1.14-2.57), rs1878672 (OR = 1.79; 95% CI = 1.19-2.68), and rs3024496 (OR = 1.48; 95% CI = 1.05-2.08) were positively associated with Helicobacter pylori infection. Eight single nucleotide polymorphisms were associated with spontaneous production of IL-10 in culture, of which three (rs1800896 and rs1878672, p = .04; rs3024491, p = .01) were strongly associated with infection by Helicobacter pylori. Our results indicate that IL10 variants rs1800896, rs3024491, rs1878672, and rs3024496 are more consistently associated with the presence of anti-H. pylori IgG by inducing increased production of IL-10. Further studies are underway to elucidate the role of additional genetic variants and to investigate their impact on the occurrence of gastric cancer. © 2014 John Wiley & Sons Ltd.

  20. High-throughput SNP genotyping in the highly heterozygous genome of Eucalyptus: assay success, polymorphism and transferability across species

    Science.gov (United States)

    2011-01-01

    Background High-throughput SNP genotyping has become an essential requirement for molecular breeding and population genomics studies in plant species. Large scale SNP developments have been reported for several mainstream crops. A growing interest now exists to expand the speed and resolution of genetic analysis to outbred species with highly heterozygous genomes. When nucleotide diversity is high, a refined diagnosis of the target SNP sequence context is needed to convert queried SNPs into high-quality genotypes using the Golden Gate Genotyping Technology (GGGT). This issue becomes exacerbated when attempting to transfer SNPs across species, a scarcely explored topic in plants, and likely to become significant for population genomics and inter specific breeding applications in less domesticated and less funded plant genera. Results We have successfully developed the first set of 768 SNPs assayed by the GGGT for the highly heterozygous genome of Eucalyptus from a mixed Sanger/454 database with 1,164,695 ESTs and the preliminary 4.5X draft genome sequence for E. grandis. A systematic assessment of in silico SNP filtering requirements showed that stringent constraints on the SNP surrounding sequences have a significant impact on SNP genotyping performance and polymorphism. SNP assay success was high for the 288 SNPs selected with more rigorous in silico constraints; 93% of them provided high quality genotype calls and 71% of them were polymorphic in a diverse panel of 96 individuals of five different species. SNP reliability was high across nine Eucalyptus species belonging to three sections within subgenus Symphomyrtus and still satisfactory across species of two additional subgenera, although polymorphism declined as phylogenetic distance increased. Conclusions This study indicates that the GGGT performs well both within and across species of Eucalyptus notwithstanding its nucleotide diversity ≥2%. The development of a much larger array of informative SNPs across

  1. The complete nucleotide sequences of the 5 genetically distinct plastid genomes of Oenothera, subsection Oenothera: II. A microevolutionary view using bioinformatics and formal genetic data.

    Science.gov (United States)

    Greiner, Stephan; Wang, Xi; Herrmann, Reinhold G; Rauwolf, Uwe; Mayer, Klaus; Haberer, Georg; Meurer, Jörg

    2008-09-01

    A unique combination of genetic features and a rich stock of information make the flowering plant genus Oenothera an appealing model to explore the molecular basis of speciation processes including nucleus-organelle coevolution. From representative species, we have recently reported complete nucleotide sequences of the 5 basic and genetically distinguishable plastid chromosomes of subsection Oenothera (I-V). In nature, Oenothera plastid genomes are associated with 6 distinct, either homozygous or heterozygous, diploid nuclear genotypes of the 3 basic genomes A, B, or C. Artificially produced plastome-genome combinations that do not occur naturally often display interspecific plastome-genome incompatibility (PGI). In this study, we compare formal genetic data available from all 30 plastome-genome combinations with sequence differences between the plastomes to uncover potential determinants for interspecific PGI. Consistent with an active role in speciation, a remarkable number of genes have high Ka/Ks ratios. Different from the Solanacean cybrid model Atropa/tobacco, RNA editing seems not to be relevant for PGIs in Oenothera. However, predominantly sequence polymorphisms in intergenic segments are proposed as possible sources for PGI. A single locus, the bidirectional promoter region between psbB and clpP, is suggested to contribute to compartmental PGI in the interspecific AB hybrid containing plastome I (AB-I), consistent with its perturbed photosystem II activity.

  2. Ascertainment bias in studies of human genome-wide polymorphism

    DEFF Research Database (Denmark)

    Clark, Andrew G.; Hubisz, Melissa J.; Bustamente, Carlos D.

    2005-01-01

    of the SNPs that are found are influenced by the discovery sampling effort. The International HapMap project relied on nearly any piece of information available to identify SNPs-including BAC end sequences, shotgun reads, and differences between public and private sequences-and even made use of chimpanzee...... was a resequencing-by-hybridization effort using the 24 people of diverse origin in the Polymorphism Discovery Resource. Here we take these two data sets and contrast two basic summary statistics, heterozygosity and FST, as well as the site frequency spectra, for 500-kb windows spanning the genome. The magnitude...... of disparity between these samples in these measures of variability indicates that population genetic analysis on the raw genotype data is ill advised. Given the knowledge of the discovery samples, we perform an ascertainment correction and show how the post-correction data are more consistent across...

  3. Study on Association between Single Nucleotide Polymorphisms in Murine Double Minute 2 and Susceptibility of Hepatocellular Carcinoma

    Directory of Open Access Journals (Sweden)

    Xia Wang

    2014-03-01

    Full Text Available Objective: To investigate the relationship between single nucleotide polymorphisms (SNP in murine double minute 2 (MDM2 and susceptibility and biological behavior of hepatocellularcarcinoma (HCC. Methods: MDM2 (rs2279744 site polymorphism in peripheral blood from 166 patients with HCC and 157 healthy controls were detected by SYBR GREEN PCR method and the relationship between MDM2 polymorphism and susceptibility and biological behavior of HCC was analyzed by comparing the differences of genotypes in two populations. Results: There was no statistical significance between two groups in terms of MDM2 allele distribution in research population (P = 0.753. The risk of HCC onset in individuals with GG+ TG genotype was 1.698 times of those with TT genotype in case group (95%CI = 1.027 -2.808. MDM2 SNP was associated with HBV infection and the degree of tumor differentiation (P< 0.05. The incidence of alleles in experimental group (T, 0.49; G, 0.51 was very different from that in control group (T, 0.59; G, 0.41 (P = 0.015. The incidence of GG genotype in patients with HCC (22.29% was significantly higher than those without HCC (13.38%. Compared with TT genotype, G allele or GG genotype had more correlation with HCC onset. Conclusion: Compared with TT genotype, MDM2 promoter SNP309 G allele or GG genotype is more associated with HCC onset in Chinese population.

  4. Relationship between polymorphisms of nucleotide excision repair genes and oral cancer risk in Taiwan: evidence for modification of smoking habit.

    Science.gov (United States)

    Bau, Da-Tian; Tsai, Ming-Hsui; Huang, Chih-Yang; Lee, Cheng-Chun; Tseng, Hsien-Chang; Lo, Yen-Li; Tsai, Yuhsin; Tsai, Fuu-Jen

    2007-12-31

    Inherited polymorphisms in DNA repair genes may be associated with differences in the repair capacity and contribute to individual's susceptibility to smoking-related cancers. Both XPA and XPD encode proteins that are part of the nucleotide excision repair (NER) pathway. In a hospital-based case-control study, we have investigated the influence of XPA A-23G and XPD Lys751Gln polymorphisms on oral cancer risk in a Taiwanese population. In total, 154 patients with oral cancer, and 105 age-matched controls recruited from the Chinese Medical Hospital in Central Taiwan were genotyped. No significant association was found between the heterozygous variant allele (AG), the homozygous variant allele (AA) at XPA A-23G, the heterozygous variant allele (AC), the homozygous variant allele (CC) at XPD Lys751Gln, and oral cancer risk. There was no significant joint effect of XPA A-23G and XPD Lys751Gln on oral cancer risk either. Since XPA and XPD are both NER genes, which are very important in removing tobacco-induced DNA adducts, further stratified analyses of both genotype and smoking habit were performed. We found a synergistic effect of variant genotypes of both XPA and XPD, and smoking status on oral cancer risk. Our results suggest that the genetic polymorphisms are modified by environmental carcinogen exposure status, and combined analyses of both genotype and personal habit record are a better access to know the development of oral cancer and useful for primary prevention and early intervention.

  5. Association of single nucleotide polymorphism in CD28(C/T-I3 + 17) and CD40 (C/T-1) genes with the Graves' disease.

    Science.gov (United States)

    Mustafa, Saima; Fatima, Hira; Fatima, Sadia; Khosa, Tafheem; Akbar, Atif; Shaikh, Rehan Sadiq; Iqbal, Furhan

    2018-01-01

    To find out a correlation between the single nucleotide polymorphisms in cluster of differentiation 28 and cluster of differentiation 40 genes with Graves' disease, if any. This case-control study was conducted at the Multan Institute of Nuclear Medicine and Radiotherapy, Multan, Pakistan, and comprised blood samples of Graves' disease patients and controls. Various risk factors were also correlated either with the genotype at each single-nucleotide polymorphism or with various combinations of genotypes studied during present investigation. Of the 160 samples, there were 80(50%) each from patients and controls. Risk factor analysis revealed that gender (p=0.008), marital status (pGraves' disease. Both single-nucleotide polymorphisms in both genes were not associated with Graves' disease, either individually or in any combined form.

  6. Unraveling the genetic architecture of environmental variance of somatic cell score using high-density single nucleotide polymorphism and cow data from experimental farms.

    Science.gov (United States)

    Mulder, H A; Crump, R E; Calus, M P L; Veerkamp, R F

    2013-01-01

    In recent years, it has been shown that not only is the phenotype under genetic control, but also the environmental variance. Very little, however, is known about the genetic architecture of environmental variance. The main objective of this study was to unravel the genetic architecture of the mean and environmental variance of somatic cell score (SCS) by identifying genome-wide associations for mean and environmental variance of SCS in dairy cows and by quantifying the accuracy of genome-wide breeding values. Somatic cell score was used because previous research has shown that the environmental variance of SCS is partly under genetic control and reduction of the variance of SCS by selection is desirable. In this study, we used 37,590 single nucleotide polymorphism (SNP) genotypes and 46,353 test-day records of 1,642 cows at experimental research farms in 4 countries in Europe. We used a genomic relationship matrix in a double hierarchical generalized linear model to estimate genome-wide breeding values and genetic parameters. The estimated mean and environmental variance per cow was used in a Bayesian multi-locus model to identify SNP associated with either the mean or the environmental variance of SCS. Based on the obtained accuracy of genome-wide breeding values, 985 and 541 independent chromosome segments affecting the mean and environmental variance of SCS, respectively, were identified. Using a genomic relationship matrix increased the accuracy of breeding values relative to using a pedigree relationship matrix. In total, 43 SNP were significantly associated with either the mean (22) or the environmental variance of SCS (21). The SNP with the highest Bayes factor was on chromosome 9 (Hapmap31053-BTA-111664) explaining approximately 3% of the genetic variance of the environmental variance of SCS. Other significant SNP explained less than 1% of the genetic variance. It can be concluded that fewer genomic regions affect the environmental variance of SCS than the

  7. Precise detection of de novo single nucleotide variants in human genomes.

    Science.gov (United States)

    Gómez-Romero, Laura; Palacios-Flores, Kim; Reyes, José; García, Delfino; Boege, Margareta; Dávila, Guillermo; Flores, Margarita; Schatz, Michael C; Palacios, Rafael

    2018-05-07

    The precise determination of de novo genetic variants has enormous implications across different fields of biology and medicine, particularly personalized medicine. Currently, de novo variations are identified by mapping sample reads from a parent-offspring trio to a reference genome, allowing for a certain degree of differences. While widely used, this approach often introduces false-positive (FP) results due to misaligned reads and mischaracterized sequencing errors. In a previous study, we developed an alternative approach to accurately identify single nucleotide variants (SNVs) using only perfect matches. However, this approach could be applied only to haploid regions of the genome and was computationally intensive. In this study, we present a unique approach, coverage-based single nucleotide variant identification (COBASI), which allows the exploration of the entire genome using second-generation short sequence reads without extensive computing requirements. COBASI identifies SNVs using changes in coverage of exactly matching unique substrings, and is particularly suited for pinpointing de novo SNVs. Unlike other approaches that require population frequencies across hundreds of samples to filter out any methodological biases, COBASI can be applied to detect de novo SNVs within isolated families. We demonstrate this capability through extensive simulation studies and by studying a parent-offspring trio we sequenced using short reads. Experimental validation of all 58 candidate de novo SNVs and a selection of non-de novo SNVs found in the trio confirmed zero FP calls. COBASI is available as open source at https://github.com/Laura-Gomez/COBASI for any researcher to use. Copyright © 2018 the Author(s). Published by PNAS.

  8. Targeted Metabolic Engineering Guided by Computational Analysis of Single-Nucleotide Polymorphisms (SNPs)

    DEFF Research Database (Denmark)

    Udatha, D B R K Gupta; Rasmussen, Simon; Sicheritz-Pontén, Thomas

    2013-01-01

    The non-synonymous SNPs, the so-called non-silent SNPs, which are single-nucleotide variations in the coding regions that give "birth" to amino acid mutations, are often involved in the modulation of protein function. Understanding the effect of individual amino acid mutations on a protein...

  9. Typing of canine parvovirus isolates using mini-sequencing based single nucleotide polymorphism analysis.

    Science.gov (United States)

    Naidu, Hariprasad; Subramanian, B Mohana; Chinchkar, Shankar Ramchandra; Sriraman, Rajan; Rana, Samir Kumar; Srinivasan, V A

    2012-05-01

    The antigenic types of canine parvovirus (CPV) are defined based on differences in the amino acids of the major capsid protein VP2. Type specificity is conferred by a limited number of amino acid changes and in particular by few nucleotide substitutions. PCR based methods are not particularly suitable for typing circulating variants which differ in a few specific nucleotide substitutions. Assays for determining SNPs can detect efficiently nucleotide substitutions and can thus be adapted to identify CPV types. In the present study, CPV typing was performed by single nucleotide extension using the mini-sequencing technique. A mini-sequencing signature was established for all the four CPV types (CPV2, 2a, 2b and 2c) and feline panleukopenia virus. The CPV typing using the mini-sequencing reaction was performed for 13 CPV field isolates and the two vaccine strains available in our repository. All the isolates had been typed earlier by full-length sequencing of the VP2 gene. The typing results obtained from mini-sequencing matched completely with that of sequencing. Typing could be achieved with less than 100 copies of standard plasmid DNA constructs or ≤10¹ FAID₅₀ of virus by mini-sequencing technique. The technique was also efficient for detecting multiple types in mixed infections. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Single nucleotide polymorphisms in the HIF-1α gene and chemoradiotherapy of locally advanced rectal cancer

    DEFF Research Database (Denmark)

    Havelund, Birgitte Mayland; Spindler, Karen-Lise Garm; Ploen, John

    2012-01-01

    The aim of this study was to investigate the predictive impact of polymorphisms in the HIF-1α gene on the response to chemoradiotherapy (CRT) in rectal cancer. This study included two cohorts of patients with locally advanced rectal cancer receiving long-course CRT. The HIF-1α C1772T (rs11549465...... tumour response (P=0.03) in the validation cohort. In conclusion, these results suggest that HIF-1α polymorphisms have no value as predictors of response to neoadjuvant CRT in rectal cancer. The results of the HIF-1α c(*)191T>C in two cohorts differ and emphasise the importance of biomarker validation....

  11. Using PCR-RFLP Technology to Teach Single Nucleotide Polymorphism for Undergraduates

    Science.gov (United States)

    Zhang, Bo; Wang, Yan; Xu, Xiaofeng; Guan, Xingying; Bai, Yun

    2013-01-01

    Recent studies indicated that the aberrant gene expression of peroxiredoxin-6 (prdx6) was found in various kinds of cancers. Because of its biochemical function and gene expression pattern in cancer cells, the association between genetic polymorphism of Prdx6 and cancer onset is interesting. In this report, we have developed and implemented a…

  12. IL-13 R130Q single nucleotide polymorphism in asthmatic Egyptian ...

    African Journals Online (AJOL)

    Background: Asthma and its associated phenotypes are under a substantial degree of genetic control. The common variant IL-13 gene polymorphism R130Q is reported to be associated with the risk of development of asthma in some populations. Objective: We sought to study the association of IL-13 genetic variant R130Q ...

  13. Single nucleotide polymorphisms in the TP53 region and susceptibility to invasive epithelial ovarian cancer

    DEFF Research Database (Denmark)

    Schildkraut, Joellen M; Goode, Ellen L; Clyde, Merlise A

    2009-01-01

    The p53 protein is critical for multiple cellular functions including cell growth and DNA repair. We assessed whether polymorphisms in the region encoding TP53 were associated with risk of invasive ovarian cancer. The study population includes a total of 5,206 invasive ovarian cancer cases (2,829...

  14. Cytokine single-nucleotide polymorphisms and risk of non-small-cell lung cancer.

    Science.gov (United States)

    Pérez-Ramírez, Cristina; Alnatsha, Ahmed; Cañadas-Garre, Marisa; Villar, Eduardo; Valdivia-Bautista, Javier; Faus-Dáder, María J; Calleja-Hernández, Miguel Á

    2017-12-01

    Lung cancer, particularly the non-small-cell lung cancer (NSCLC) subtype, is the leading cause of cancer-related death worldwide. Several functional polymorphisms in inflammatory cytokine genes, such as IL1B, IL6, IL12A, IL13 and IL16, have been associated with the risk of NSCLC. The aim of this study was to evaluate the association between ILs gene polymorphisms and the risk of developing NSCLC. A retrospective case-control study was carried out, including 174 NSCLC cases and 298 controls of Spanish origin. IL1B (rs1143634), IL1B (rs12621220), IL1B (rs1143623), IL1B (rs16944), IL1B (rs1143627), IL12A (rs662959), IL13 (rs1881457), IL6 (rs1800795) and IL16 (rs7170924) gene polymorphisms were analysed by TaqMan. The genotypic logistic regression model adjusted by smoking status showed that the IL1B rs1143634-TT genotype was associated with a lower risk of NSCLC (P=0.04312; odds ratio=0.226; 95% confidence interval=0.044-0.840). No other gene polymorphisms showed an association with NSCLC in any of the models tested. In conclusion, IL1B rs1143634 was significantly associated with a higher risk of NSCLC. No influence of IL1B rs12621220, rs1143623, rs16944, rs1143627, IL12A rs662959, IL13 rs1881457 and IL16 rs7170924 on the risk of developing NSCLC was found in our study.

  15. T-786C single-nucleotide polymorphism (SNP) of endothelial nitric ...

    African Journals Online (AJOL)

    The study was designed to investigate the frequency of T-786C polymorphism of the gene in patients suffering from coronary artery disease (CAD) in North West of Iran. One hundred and twenty (120) subjects including 60 patients with angiographically diagnosed CAD and 60 age and sex matched CAD-free subjects as ...

  16. Analysis of single nucleotide polymorphisms of CRYGA and CRYGB genes in control population of western Indian origin

    Directory of Open Access Journals (Sweden)

    Kapur Suman

    2009-01-01

    Full Text Available Aim: Polymorphisms in γ-crystallins ( CRYG can serve as markers for lens differentiation and eye disorders leading to cataract. Several investigators have reported the presence of sequence variations within crystallin genes, with or without apparent effects on the function of the proteins both in mice and humans. Delineation of these polymorphic sites may explain the differences observed in the susceptibility to cataract observed among various ethnic groups. An easier Restriction Fragment Length Polymorphism (RFLP-based method has been used to detect the frequency of four single nucleotide polymorphisms (SNPs in CRYGA / CRYGB genes in control subjects of western Indian origin. Materials and Methods: A total of 137 healthy volunteers from western India were studied. Examination was performed to exclude volunteers with any ocular defects. Polymerase chain reaction (PCR-RFLP based method was developed for genotyping of G198A (Intron A, T196C (Exon 3 of CRYGA and T47C (Promoter, G449T (Exon 2 of CRYGB genes. Results: The exonic SNPs in CRYGA and CRYGB were found to have an allele frequency 0.03 and 1.00 for ancestral allele respectively, while frequency of non-coding SNP in CRYGA was 0.72. Allele frequency of T90C of CRYGB varied significantly ( P = 0.02 among different age groups. An in-silico analysis reveals that this sequence variation in CRYGB promoter impacts the binding of two transcription factors, ACE2 (Member of CLB2 cluster and Progesterone Receptor (PR which may impact the expression of CRYGB gene. Conclusions: This study establishes baseline frequency data for four SNPs in CRYGA and CRYGB genes for future case control studies on the role of these SNPs in the genetic basis of cataract.

  17. Association of single nucleotide polymorphisms in the MVP gene with platinum resistance and survival in patients with epithelial ovarian cancer.

    Science.gov (United States)

    Zhao, Ya-Nan; He, Dong-Ning; Wang, Ya-DI; Li, Jun-Jie; Ha, Min-Wen

    2016-04-01

    The human major vault protein (MVP) has been linked to the development of multidrug resistance in cancer cells, and overexpression of MVP has been observed in ovarian cancer tissues. The aim of the present study was to investigate the association between single nucleotide polymorphisms (SNPs) in the MVP gene and the tumor response to platinum-based chemotherapy and survival of patients affected by epithelial ovarian cancer (EOC), in addition to confirm whether tetra-primer amplification-refractory mutation system (ARMS)-polymerase chain reaction (PCR) is an accurate genotyping method. For this purpose, two polymorphisms in the MVP gene, namely reference SNP (rs)1057451 and rs4788186, were selected from the data obtained by the International haplotype map (HapMap) Project regarding Chinese Han population, and were evaluated by tetra-primer ARMS-PCR. Upon validation by DNA sequencing, the association of these polymorphisms with platinum resistance, progression-free survival (PFS) and overall survival (OS) in patients with EOC was assessed. The results of tetra-primer ARMS-PCR were in agreement with those derived from DNA sequencing. No significant differences were observed between platinum-sensitive and platinum-resistant cohorts in terms of allele and genotype distribution of these two polymorphisms in the MVP gene, which were not associated with PFS or OS. However, a trend toward prolonged PFS was observed in patients carrying the heterozygous AG allele at the rs4788186 locus. These results suggest that rs1057451 and rs4788186 variants in the MVP gene are not associated with favorable therapeutic response to platinum or longer survival in Chinese Han patients affected by EOC. In addition, the data of the present study confirm that tetra-primer ARMS-PCR is a trustworthy and economical genotyping method.

  18. A Single Nucleotide Polymorphism in the Bax Gene Promoter Affects Transcription and Influences Retinal Ganglion Cell Death

    Directory of Open Access Journals (Sweden)

    Sheila J Semaan

    2010-03-01

    Full Text Available Pro-apoptotic Bax is essential for RGC (retinal ganglion cell death. Gene dosage experiments in mice, yielding a single wild-type Bax allele, indicated that genetic background was able to influence the cell death phenotype. DBA/2J Bax+/− mice exhibited complete resistance to nerve damage after 2 weeks (similar to Bax −/− mice, but 129B6 Bax+/− mice exhibited significant cell loss (similar to wild-type mice. The different cell death phenotype was associated with the level of Bax expression, where 129B6 neurons had twice the level of endogenous Bax mRNA and protein as DBA/2J neurons. Sequence analysis of the Bax promoters between these strains revealed a single nucleotide polymorphism (T129B6 to CDBA/2J at position −515. A 1.5- to 2.5-fold increase in transcriptional activity was observed from the 129B6 promoter in transient transfection assays in a variety of cell types, including RGC5 cells derived from rat RGCs. Since this polymorphism occurred in a p53 half-site, we investigated the requirement of p53 for the differential transcriptional activity. Differential transcriptional activity from either 129B6 or DBA/2J Bax promoters were unaffected in p53−/− cells, and addition of exogenous p53 had no further effect on this difference, thus a role for p53 was excluded. Competitive electrophoretic mobility-shift assays identified two DNA-protein complexes that interacted with the polymorphic region. Those forming Complex 1 bound with higher affinity to the 129B6 polymorphic site, suggesting that these proteins probably comprised a transcriptional activator complex. These studies implicated quantitative expression of the Bax gene as playing a possible role in neuronal susceptibility to damaging stimuli.

  19. Single-Nucleotide Polymorphism-Microarray Ploidy Analysis of Paraffin-Embedded Products of Conception in Recurrent Pregnancy Loss Evaluations.

    Science.gov (United States)

    Maslow, Bat-Sheva L; Budinetz, Tara; Sueldo, Carolina; Anspach, Erica; Engmann, Lawrence; Benadiva, Claudio; Nulsen, John C

    2015-07-01

    To compare the analysis of chromosome number from paraffin-embedded products of conception using single-nucleotide polymorphism (SNP) microarray with the recommended screening for the evaluation of couples presenting with recurrent pregnancy loss who do not have previous fetal cytogenetic data. We performed a retrospective cohort study including all women who presented for a new evaluation of recurrent pregnancy loss over a 2-year period (January 1, 2012, to December 31, 2013). All participants had at least two documented first-trimester losses and both the recommended screening tests and SNP microarray performed on at least one paraffin-embedded products of conception sample. Single-nucleotide polymorphism microarray identifies all 24 chromosomes (22 autosomes, X, and Y). Forty-two women with a total of 178 losses were included in the study. Paraffin-embedded products of conception from 62 losses were sent for SNP microarray. Single-nucleotide polymorphism microarray successfully diagnosed fetal chromosome number in 71% (44/62) of samples, of which 43% (19/44) were euploid and 57% (25/44) were noneuploid. Seven of 42 (17%) participants had abnormalities on recurrent pregnancy loss screening. The per-person detection rate for a cause of pregnancy loss was significantly higher in the SNP microarray (0.50; 95% confidence interval [CI] 0.36-0.64) compared with recurrent pregnancy loss evaluation (0.17; 95% CI 0.08-0.31) (P=.002). Participants with one or more euploid loss identified on paraffin-embedded products of conception were significantly more likely to have an abnormality on recurrent pregnancy loss screening than those with only noneuploid results (P=.028). The significance remained when controlling for age, number of losses, number of samples, and total pregnancies. These results suggest that SNP microarray testing of paraffin-embedded products of conception is a valuable tool for the evaluation of recurrent pregnancy loss in patients without prior fetal

  20. Lack of replication of thirteen single-nucleotide polymorphisms implicated in Parkinson’s disease: a large-scale international study

    Science.gov (United States)

    Elbaz, Alexis; Nelson, Lorene M; Payami, Haydeh; Ioannidis, John P A; Fiske, Brian K; Annesi, Grazia; Belin, Andrea Carmine; Factor, Stewart A; Ferrarese, Carlo; Hadjigeorgiou, Georgios M; Higgins, Donald S; Kawakami, Hideshi; Krüger, Rejko; Marder, Karen S; Mayeux, Richard P; Mellick, George D; Nutt, John G; Ritz, Beate; Samii, Ali; Tanner, Caroline M; Van Broeckhoven, Christine; Van Den Eeden, Stephen K; Wirdefeldt, Karin; Zabetian, Cyrus P; Dehem, Marie; Montimurro, Jennifer S; Southwick, Audrey; Myers, Richard M; Trikalinos, Thomas A

    2013-01-01

    Summary Background A genome-wide association study identified 13 single-nucleotide polymorphisms (SNPs) significantly associated with Parkinson’s disease. Small-scale replication studies were largely non-confirmatory, but a meta-analysis that included data from the original study could not exclude all SNP associations, leaving relevance of several markers uncertain. Methods Investigators from three Michael J Fox Foundation for Parkinson’s Research-funded genetics consortia—comprising 14 teams—contributed DNA samples from 5526 patients with Parkinson’s disease and 6682 controls, which were genotyped for the 13 SNPs. Most (88%) participants were of white, non-Hispanic descent. We assessed log-additive genetic effects using fixed and random effects models stratified by team and ethnic origin, and tested for heterogeneity across strata. A meta-analysis was undertaken that incorporated data from the original genome-wide study as well as subsequent replication studies. Findings In fixed and random-effects models no associations with any of the 13 SNPs were identified (odds ratios 0·89 to 1·09). Heterogeneity between studies and between ethnic groups was low for all SNPs. Subgroup analyses by age at study entry, ethnic origin, sex, and family history did not show any consistent associations. In our meta-analysis, no SNP showed significant association (summary odds ratios 0·95 to 1.08); there was little heterogeneity except for SNP rs7520966. Interpretation Our results do not lend support to the finding that the 13 SNPs reported in the original genome-wide association study are genetic susceptibility factors for Parkinson’s disease. PMID:17052658

  1. Transcriptional and Posttranslational Regulation of Nucleotide Excision Repair: The Guardian of the Genome against Ultraviolet Radiation

    Directory of Open Access Journals (Sweden)

    Jeong-Min Park

    2016-11-01

    Full Text Available Ultraviolet (UV radiation from sunlight represents a constant threat to genome stability by generating modified DNA bases such as cyclobutane pyrimidine dimers (CPD and pyrimidine-pyrimidone (6-4 photoproducts (6-4PP. If unrepaired, these lesions can have deleterious effects, including skin cancer. Mammalian cells are able to neutralize UV-induced photolesions through nucleotide excision repair (NER. The NER pathway has multiple components including seven xeroderma pigmentosum (XP proteins (XPA to XPG and numerous auxiliary factors, including ataxia telangiectasia and Rad3-related (ATR protein kinase and RCC1 like domain (RLD and homologous to the E6-AP carboxyl terminus (HECT domain containing E3 ubiquitin protein ligase 2 (HERC2. In this review we highlight recent data on the transcriptional and posttranslational regulation of NER activity.

  2. Identification of rheumatoid arthritis biomarkers based on single nucleotide polymorphisms and haplotype blocks: A systematic review and meta-analysis

    Directory of Open Access Journals (Sweden)

    Mohamed N. Saad

    2016-01-01

    Full Text Available Genetics of autoimmune diseases represent a growing domain with surpassing biomarker results with rapid progress. The exact cause of Rheumatoid Arthritis (RA is unknown, but it is thought to have both a genetic and an environmental bases. Genetic biomarkers are capable of changing the supervision of RA by allowing not only the detection of susceptible individuals, but also early diagnosis, evaluation of disease severity, selection of therapy, and monitoring of response to therapy. This review is concerned with not only the genetic biomarkers of RA but also the methods of identifying them. Many of the identified genetic biomarkers of RA were identified in populations of European and Asian ancestries. The study of additional human populations may yield novel results. Most of the researchers in the field of identifying RA biomarkers use single nucleotide polymorphism (SNP approaches to express the significance of their results. Although, haplotype block methods are expected to play a complementary role in the future of that field.

  3. Single Nucleotide Polymorphisms in IL1B and the Risk of Acute Coronary Syndrome: A Danish Case-Cohort Study

    DEFF Research Database (Denmark)

    Stegger, Jakob Gerhard; Schmidt, Erik Berg; Tjonneland, Anne

    2012-01-01

    Background: Interleukin-1B (IL-1B) is a key pro-inflammatory cytokine that has been associated with the development of atherosclerosis and myocardial infarction. However, the prospective associations between functional single nucleotide polymorphisms (SNPs) in IL1B and incident acute coronary...... and 234 women). All cases were validated by review of medical records, and information on covariates was collected by study technicians. The study was conducted according to a case-cohort study design including ACS cases and a sex-stratified sub cohort of 1663 participants drawn randomly from the entire...... IL1B haplotypes and risk factors, respectively. Conclusions/Significance: Genetic variation in the promoter region of IL1B may not be associated with incident ACS in men or women above the age of 50 years....

  4. A common single nucleotide polymorphism can exacerbate long-QT type 2 syndrome leading to sudden infant death

    DEFF Research Database (Denmark)

    Nof, Eyal; Cordeiro, Jonathan M; Pérez, Guillermo J

    2010-01-01

    the mother (both asymptomatic), led to 2 cases of sudden infant death. METHODS AND RESULTS: KCNQ1, KCNH2, SCN5A, KCNE1, KCNE2, CACNA1c, CACNB2b, and KCNJ2 genes were amplified and analyzed by direct sequencing. Functional electrophysiological studies were performed with the single nucleotide polymorphism...... and mutation expressed singly and in combination in Chinese ovary (CHO-K1) and COS-1 cells. An asymptomatic woman presenting after the death of her 2-day-old infant and spontaneous abortion of a second baby in the first trimester was referred for genetic analysis. The newborn infant had nearly incessant...... ventricular tachycardia while in utero and a prolonged QTc (560 ms). The mother was asymptomatic but displayed a prolonged QTc. Genetic screening of the mother revealed a heterozygous nonsense mutation (P926AfsX14) in KCNH2, predicting a stop codon. The father was asymptomatic with a normal QTc but had...

  5. A gold nanoparticles-based colorimetric test to detect single nucleotide polymorphisms for improvement of personalized therapy of psoriasis

    Science.gov (United States)

    Marsella, Alessandra; Valentini, Paola; Tarantino, Paolo; Congedo, Maurizio; Pompa, Pier Paolo

    2016-04-01

    We report a simple, rapid and low-cost test, based on gold nanoparticles, for the naked-eye colorimetric detection of a signature of single nucleotide polymorphisms (SNPs) relevant for the personalized medicine of psoriasis patients. We validated the colorimetric assay on real-world DNA samples from a cohort of 30 psoriasis patients and we compared the results, in double-blind, with those obtained with two state-of-the-art instrumental techniques, namely reverse dot blotting and direct sequencing, finding 100% agreement. We demonstrated high accuracy, sensitivity and specificity of the colorimetric test that can be easily adapted for the genotypization of different SNPs, important for the pharmacogenomics of various diseases, and in other fields, such as food traceability and population structure analysis.

  6. A false single nucleotide polymorphism generated by gene duplication compromises meat traceability.

    Science.gov (United States)

    Sanz, Arianne; Ordovás, Laura; Zaragoza, Pilar; Sanz, Albina; de Blas, Ignacio; Rodellar, Clementina

    2012-07-01

    Controlling meat traceability using SNPs is an effective method of ensuring food safety. We have analyzed several SNPs to create a panel for bovine genetic identification and traceability studies. One of these was the transversion g.329C>T (Genbank accession no. AJ496781) on the cytochrome P450 17A1 gene, which has been included in previously published panels. Using minisequencing reactions, we have tested 701 samples belonging to eight Spanish cattle breeds. Surprisingly, an excess of heterozygotes was detected, implying an extreme departure from Hardy-Weinberg equilibrium (PT SNP is a false positive polymorphism, which allows us to explain the inflated heterozygotic value. We recommend that this ambiguous SNP, as well as other polymorphisms located in this region, should not be used in identification, traceability or disease association studies. Annotation of these false SNPs should improve association studies and avoid misinterpretations. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Polymorphisms in miRNA binding sites of nucleotide excision repair genes and colorectal cancer risk

    Czech Academy of Sciences Publication Activity Database

    Naccarati, Alessio; Pardini, Barbara; Landi, S.; Landi, D.; Slyšková, Jana; Novotný, J.; Levý, M.; Poláková, Veronika; Lipská, L.; Vodička, Pavel

    2012-01-01

    Roč. 33, č. 7 (2012), s. 1346-1351 ISSN 0143-3334 R&D Projects: GA ČR GAP304/10/1286; GA ČR GP305/09/P194 Institutional research plan: CEZ:AV0Z50390703 Keywords : DNA repair * polymorphisms * miRNA binding sites Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 5.635, year: 2012

  8. Association of STAT4 gene single nucleotide polymorphisms with Iranian juvenile-onset systemic lupus erythematosus patients.

    Science.gov (United States)

    Salmaninejad, Arash; Mahmoudi, Mahdi; Aslani, Saeed; Poursani, Shiva; Ziaee, Vahid; Rezaei, Nima

    2017-01-01

    Salmaninejad A, Mahmoudi M, Aslani S, Poursani S, Ziaee V, Rezaei N. Association of STAT4 gene single nucleotide polymorphisms with Iranian juvenile-onset systemic lupus erythematosus patients. Turk J Pediatr 2017; 59: 144-149. Juvenile-onset systemic lupus erythematosus (JSLE) is a complex autoimmune disease, characterized by multi-organ involvement. Single nucleotide polymorphisms (SNPs) of signal transducer and activator of transcription 4 (STAT4) gene have been reported to have relationship with the risk of several autoimmune diseases. Studies have provided evidence that STAT4 may participate in the pathogenesis of JSLE. Therefore, we aimed to evaluate the association of STAT4 SNPs with JSLE in Iranian population. In this case-control study, two SNPs of STAT4 gene, including rs7574865 and rs7601754 were genotyped in 50 Iranian JSLE patients and 281 matched healthy individuals using real-time PCR allelic discrimination approach. Our experiments demonstrated that G and T alleles of rs7574865 SNP had similar distribution between patients and controls (P = 0.16). Additionally, differences in frequency of GG, GT, and TT genotypes (P = 0.14, 0.29, and 0.54, respectively) were not significant. Likewise, A and G alleles, as well as genotypes of rs7601754 SNP did not show significant differences between JSLE patients and healthy individuals. Lack of association of rs7574865 and rs7601754 SNPs in STAT4 gene with susceptibility to JSLE in Iranian population, despite their association with the risk of adult SLE in the same population, implicates on difference of genetic background of JSLE and SLE.

  9. DELISHUS: an efficient and exact algorithm for genome-wide detection of deletion polymorphism in autism

    Science.gov (United States)

    Aguiar, Derek; Halldórsson, Bjarni V.; Morrow, Eric M.; Istrail, Sorin

    2012-01-01

    Motivation: The understanding of the genetic determinants of complex disease is undergoing a paradigm shift. Genetic heterogeneity of rare mutations with deleterious effects is more commonly being viewed as a major component of disease. Autism is an excellent example where research is active in identifying matches between the phenotypic and genomic heterogeneities. A considerable portion of autism appears to be correlated with copy number variation, which is not directly probed by single nucleotide polymorphism (SNP) array or sequencing technologies. Identifying the genetic heterogeneity of small deletions remains a major unresolved computational problem partly due to the inability of algorithms to detect them. Results: In this article, we present an algorithmic framework, which we term DELISHUS, that implements three exact algorithms for inferring regions of hemizygosity containing genomic deletions of all sizes and frequencies in SNP genotype data. We implement an efficient backtracking algorithm—that processes a 1 billion entry genome-wide association study SNP matrix in a few minutes—to compute all inherited deletions in a dataset. We further extend our model to give an efficient algorithm for detecting de novo deletions. Finally, given a set of called deletions, we also give a polynomial time algorithm for computing the critical regions of recurrent deletions. DELISHUS achieves significantly lower false-positive rates and higher power than previously published algorithms partly because it considers all individuals in the sample simultaneously. DELISHUS may be applied to SNP array or sequencing data to identify the deletion spectrum for family-based association studies. Availability: DELISHUS is available at http://www.brown.edu/Research/Istrail_Lab/. Contact: Eric_Morrow@brown.edu and Sorin_Istrail@brown.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:22689755

  10. Methylation-sensitive amplified polymorphism-based genome-wide analysis of cytosine methylation profiles in Nicotiana tabacum cultivars.

    Science.gov (United States)

    Jiao, J; Wu, J; Lv, Z; Sun, C; Gao, L; Yan, X; Cui, L; Tang, Z; Yan, B; Jia, Y

    2015-11-26

    This study aimed to investigate cytosine methylation profiles in different tobacco (Nicotiana tabacum) cultivars grown in China. Methylation-sensitive amplified polymorphism was used to analyze genome-wide global methylation profiles in four tobacco cultivars (Yunyan 85, NC89, K326, and Yunyan 87). Amplicons with methylated C motifs were cloned by reamplified polymerase chain reaction, sequenced, and analyzed. The results show that geographical location had a greater effect on methylation patterns in the tobacco genome than did sampling time. Analysis of the CG dinucleotide distribution in methylation-sensitive polymorphic restriction fragments suggested that a CpG dinucleotide cluster-enriched area is a possible site of cytosine methylation in the tobacco genome. The sequence alignments of the Nia1 gene (that encodes nitrate reductase) in Yunyan 87 in different regions indicate that a C-T transition might be responsible for the tobacco phenotype. T-C nucleotide replacement might also be responsible for the tobacco phenotype and may be influenced by geographical location.

  11. A Study of Single Nucleotide Polymorphisms of the SLC19A1/RFC1 Gene in Subjects with Autism Spectrum Disorder

    Directory of Open Access Journals (Sweden)

    Naila Al Mahmuda

    2016-05-01

    Full Text Available Autism Spectrum Disorder (ASD is a group of neurodevelopmental disorders with complex genetic etiology. Recent studies have indicated that children with ASD may have altered folate or methionine metabolism, suggesting that the folate–methionine cycle may play a key role in the etiology of ASD. SLC19A1, also referred to as reduced folate carrier 1 (RFC1, is a member of the solute carrier group of transporters and is one of the key enzymes in the folate metabolism pathway. Findings from multiple genomic screens suggest the presence of an autism susceptibility locus on chromosome 21q22.3, which includes SLC19A1. Therefore, we performed a case-control study in a Japanese population. In this study, DNA samples obtained from 147 ASD patients at the Kanazawa University Hospital in Japan and 150 unrelated healthy Japanese volunteers were examined by the sequence-specific primer-polymerase chain reaction method pooled with fluorescence correlation spectroscopy. p < 0.05 was considered to represent a statistically significant outcome. Of 13 single nucleotide polymorphisms (SNPs examined, a significant p-value was obtained for AA genotype of one SNP (rs1023159, OR = 0.39, 95% CI = 0.16–0.91, p = 0.0394; Fisher’s exact test. Despite some conflicting results, our findings supported a role for the polymorphism rs1023159 of the SLC19A1 gene, alone or in combination, as a risk factor for ASD. However, the findings were not consistent after multiple testing corrections. In conclusion, although our results supported a role of the SLC19A1 gene in the etiology of ASD, it was not a significant risk factor for the ASD samples analyzed in this study.

  12. Novel Single Nucleotide Polymorphisms of the Insulin-Like Growth Factor-I Gene and Their Associations with Growth Traits in Common Carp (Cyprinus carpio L.

    Directory of Open Access Journals (Sweden)

    Xiu Feng

    2014-12-01

    Full Text Available Insulin-like growth factor-I (IGF-I plays an important role in the growth and development of vertebrates. To study polymorphisms of IGF-I, we screened a total of 4555 bp of genomic sequences in four exons and partial introns for the discovery of single nucleotide polymorphism (SNP in common carp (Cyprinus carpio. Three SNPs (g.3759T>G, g.7627T>A and g.7722T>C in intron 2 and a nonsynonymous SNP (g.7892C>T in exon 3 were identified in a pilot population including random parents and their progenies. 289 progenies were further genotyped for studying possible associations between genotypes or combined genotypes and growth traits. The results showed that the locus g.7627T>A was significantly associated with body weight and body length, and fish with genotype AA had a mean body weight 5.9% higher than those with genotype TT. No significant associations were observed between genotypes of other loci and growth traits. However, when both g.7627T>A and g.7722T>C were considered, the combined genotype TT/TT was extremely associated with the lowest values of body length and body weight and the highest K value in comparison with other diplotypes (p < 0.01. These results suggest that genotype AA at g.7627T>A and its combined genotypes with alleles from another locus have positive effects on growth traits, which would be a candidate molecular marker for further studies in marker-assisted selection in common carp.

  13. Single nucleotide polymorphism analysis of the enterocin P structural gene of Enterococcus faecium strains isolated from nonfermented animal foods.

    Science.gov (United States)

    Arlindo, Samuel; Calo, Pilar; Franco, Carlos; Prado, Marta; Cepeda, Alberto; Barros-Velázquez, Jorge

    2006-12-01

    The bacteriocins produced by two lactic acid bacteria isolated from nonfermented fresh meat and fish, respectively, and exhibiting a remarkable antilisterial activity, were characterized. Bacteriocinogenic strains were identified as Enterococcus faecium and the maximum bacteriocin production by both strains was detected in the stationary phase of growth. The activity against Listeria monocytogenes was maintained in pH range of 3-7 and was stable in both strains after heating at 100 or 121 degrees C. The genes coding for enterocin P were detected, isolated, and sequenced in both E. faecium strains. They exhibited DNA/DNA homology in the 87.1-97.2% range with respect to the other four enterocin P genes reported so far. Three single nucleotide polymorphism events, silent at the amino acid level, were detected at nucleotide positions 45 (G/A), 75 (A/G), and 90 (T/C) in E. faecium LHICA 28-4 and may explain the differences reported for those loci in other enterocin P-producing E. faecium strains. This work provides the first description of enterocin P-producing E. faecium strains in nonfermented foodstuffs and, in the case of E. faecium LHICA 51, the first report of an enterocin P-producing strain isolated from fish so far.

  14. Multiple single nucleotide polymorphism analysis and association of specific genotypes in FHIT, SAMD4A, and ANKRD17 in Indian patients with oral cancer.

    Science.gov (United States)

    D'Souza, Wendy; Pradhan, Sultan; Saranath, Dhananjaya

    2017-08-01

    Oral cancer has a high incidence primarily because of tobacco chewing habits. However, a small proportion of habitués develop oral cancer, implying a role for genomic variants in its susceptibility. Thirteen single nucleotide polymorphisms (SNPs) in an Indian cohort comprising patients with oral cancer (n = 500) and healthy controls (n = 500) were genotyped using allelic discrimination real-time polymerase chain reaction (PCR). Prevalence of SNPs rs11130760, rs1957358, rs2306058, rs4883543, rs12637722, rs1457115, rs2353292, rs709821, rs2194861, rs4789378, rs3827538, rs2667552, and rs2886093 was determined in the Indian cohort. A significant association of rs11130760 GG (odds ratio [OR] 1.41; 95% confidence interval [CI] 1.08-1.84) and rs1957358 TT (OR 1.44; 95% CI 1.10-1.90) indicated increased risk; whereas rs1957358 TC (OR 0.67; 95% CI 0.53-0.87) and rs2306058 CT (OR 0.72; 95% CI 0.56-0.93) reflected decreased risk. The SNP rs11130760 wild-type (WT) allele G indicated an increased risk for oral cancer (OR 1.38; 95% CI 1.09-1.73), whereas SNP allele T indicated a decreased risk (OR 0.73; 95% CI 0.58-0.92) for oral cancer. Our study identified SNPs with susceptibility to oral cancer in high-risk populations. © 2017 Wiley Periodicals, Inc.

  15. OryzaGenome: Genome Diversity Database of Wild Oryza Species

    KAUST Repository

    Ohyanagi, Hajime; Ebata, Toshinobu; Huang, Xuehui; Gong, Hao; Fujita, Masahiro; Mochizuki, Takako; Toyoda, Atsushi; Fujiyama, Asao; Kaminuma, Eli; Nakamura, Yasukazu; Feng, Qi; Wang, Zi Xuan; Han, Bin; Kurata, Nori

    2015-01-01

    . Portable VCF (variant call format) file or tabdelimited file download is also available. Following these SNP (single nucleotide polymorphism) data, reference pseudomolecules/ scaffolds/contigs and genome-wide variation information for almost all

  16. Single Nucleotide Polymorphisms of the GJB2 and GJB6 Genes Are Associated with Autosomal Recessive Nonsyndromic Hearing Loss

    Directory of Open Access Journals (Sweden)

    Ana Paula Grillo

    2015-01-01

    Full Text Available Single nucleotide polymorphisms (SNPs are important markers in many studies that link DNA sequence variations to phenotypic changes; such studies are expected to advance the understanding of human physiology and elucidate the molecular basis of diseases. The DFNB1 locus, which contains the GJB2 and GJB6 genes, plays a key role in nonsyndromic hearing loss. Previous studies have identified important mutations in this locus, but the contribution of SNPs in the genes has not yet been much investigated. The aim of this study was to investigate the association of nine polymorphisms located within the DFNB1 locus with the occurrence of autosomal recessive nonsyndromic hearing loss (ARNSHL. The SNPs rs3751385 (C/T, rs7994748 (C/T, rs7329857 (C/T, rs7987302 (G/A, rs7322538 (G/A, rs9315400 (C/T, rs877098 (C/T, rs945369 (A/C, and rs7333214 (T/G were genotyped in 122 deaf patients and 132 healthy controls using allele-specific PCR. There were statistically significant differences between patients and controls, in terms of allelic frequencies in the SNPs rs3751385, rs7994748, rs7329857, rs7987302, rs945369, and rs7333214 (P<0.05. No significant differences between the two groups were observed for rs7322538, rs9315400, and rs877098. Our results suggest that SNPs present in the GJB2 and GJB6 genes may have an influence on ARNSHL in humans.

  17. CARD15 single nucleotide polymorphisms 8, 12 and 13 are not increased in ethnic Danes with sarcoidosis

    DEFF Research Database (Denmark)

    Milman, Nils; Nielsen, Ole Haagen; Hviid, Thomas Vauvert F

    2007-01-01

    and SNP13, respectively, were performed by capillary electrophoresis single-strand confirmation polymorphism in 53 patients with histologically verified sarcoidosis and in 103 healthy controls. RESULTS: The frequencies of CARD15 mutations in sarcoidosis patients were: SNP8, 4/106 chromosomes (3.8%); SNP12...... with Crohn's disease. OBJECTIVES: To evaluate whether ethnic Danes with sarcoidosis have an increased frequency of CARD15 mutations compared to healthy control subjects. METHODS: Genotyping for CARD15 mutations R702W, G908R, and L1007fsinsC, also designated single nucleotide polymorphism (SNP) SNP8, SNP12......, 2/106 chromosomes (1.9%); SNP13, 2/106 chromosomes (1.9%); SNP8+SNP12+SNP13, 8/106 chromosomes (7.6%). All 8 patients were heterozygous. The frequencies in controls were: SNP8, 9/206 chromosomes (4.4%); SNP12, 2/206 chromosomes (1.0%); SNP13, 4/206 chromosomes (1.9%); SNP8+SNP12+SNP13, 15...

  18. A Caenorhabditis elegans wild type defies the temperature-size rule owing to a single nucleotide polymorphism in tra-3.

    Directory of Open Access Journals (Sweden)

    Jan E Kammenga

    2007-03-01

    Full Text Available Ectotherms rely for their body heat on surrounding temperatures. A key question in biology is why most ectotherms mature at a larger size at lower temperatures, a phenomenon known as the temperature-size rule. Since temperature affects virtually all processes in a living organism, current theories to explain this phenomenon are diverse and complex and assert often from opposing assumptions. Although widely studied, the molecular genetic control of the temperature-size rule is unknown. We found that the Caenorhabditis elegans wild-type N2 complied with the temperature-size rule, whereas wild-type CB4856 defied it. Using a candidate gene approach based on an N2 x CB4856 recombinant inbred panel in combination with mutant analysis, complementation, and transgenic studies, we show that a single nucleotide polymorphism in tra-3 leads to mutation F96L in the encoded calpain-like protease. This mutation attenuates the ability of CB4856 to grow larger at low temperature. Homology modelling predicts that F96L reduces TRA-3 activity by destabilizing the DII-A domain. The data show that size adaptation of ectotherms to temperature changes may be less complex than previously thought because a subtle wild-type polymorphism modulates the temperature responsiveness of body size. These findings provide a novel step toward the molecular understanding of the temperature-size rule, which has puzzled biologists for decades.

  19. Analysis of Horse Myostatin Gene and Identification of Single Nucleotide Polymorphisms in Breeds of Different Morphological Types

    Science.gov (United States)

    Dall'Olio, Stefania; Fontanesi, Luca; Nanni Costa, Leonardo; Tassinari, Marco; Minieri, Laura; Falaschini, Adalberto

    2010-01-01

    Myostatin (MSTN) is a negative modulator of muscle mass. We characterized the horse (Equus caballus) MSTN gene and identified and analysed single nucleotide polymorphisms (SNPs) in breeds of different morphological types. Sequencing of coding, untranslated, intronic, and regulatory regions of MSTN gene in 12 horses from 10 breeds revealed seven SNPs: two in the promoter, four in intron 1, and one in intron 2. The SNPs of the promoter (GQ183900:g.26T>C and GQ183900:g.156T>C, the latter located within a conserved TATA-box like motif) were screened in 396 horses from 16 breeds. The g.26C and the g.156C alleles presented higher frequency in heavy (brachymorphic type) than in light breeds (dolichomorphic type such as Italian Trotter breed). The significant difference of allele frequencies for the SNPs at the promoter and analysis of molecular variance (AMOVA) on haplotypes indicates that these polymorphisms could be associated with variability of morphology traits in horse breeds. PMID:20706663

  20. Analysis of Horse Myostatin Gene and Identification of Single Nucleotide Polymorphisms in Breeds of Different Morphological Types

    Directory of Open Access Journals (Sweden)

    Stefania Dall'Olio

    2010-01-01

    Full Text Available Myostatin (MSTN is a negative modulator of muscle mass. We characterized the horse (Equus caballus MSTN gene and identified and analysed single nucleotide polymorphisms (SNPs in breeds of different morphological types. Sequencing of coding, untranslated, intronic, and regulatory regions of MSTN gene in 12 horses from 10 breeds revealed seven SNPs: two in the promoter, four in intron 1, and one in intron 2. The SNPs of the promoter (GQ183900:g.26T>C and GQ183900:g.156T>C, the latter located within a conserved TATA-box like motif were screened in 396 horses from 16 breeds. The g.26C and the g.156C alleles presented higher frequency in heavy (brachymorphic type than in light breeds (dolichomorphic type such as Italian Trotter breed. The significant difference of allele frequencies for the SNPs at the promoter and analysis of molecular variance (AMOVA on haplotypes indicates that these polymorphisms could be associated with variability of morphology traits in horse breeds.

  1. Previously Unidentified Single Nucleotide Polymorphisms in HIV/AIDS Cases Associate with Clinical Parameters and Disease Progression

    Directory of Open Access Journals (Sweden)

    Vladimir V. Anokhin

    2016-01-01

    Full Text Available The genetic background of an individual plays an important role in the progression of HIV infection to AIDS. Identifying previously unknown or uncharacterized single nucleotide polymorphisms (SNPs that associate with disease progression may reveal important therapeutic targets and provide a greater understanding of disease pathogenesis. In the present study, we employed ultra-high multiplex PCR on an Ion Torrent next-generation sequencing platform to sequence 23 innate immune genes from 94 individuals with HIV/AIDS. This data was used to identify potential associations of SNPs with clinical parameters and disease progression. SNPs that associated with an increased viral load were identified in the genes for the interleukin 15 receptor (IL15RA, toll-like receptor 7 (TLR7, tripartite motif-containing protein 5 (TRIM5, and two killer-cell immunoglobulin-like receptors (KIR2DL1 and KIR2DL3. Additionally, SNPs that associated with progression from HIV infection to AIDS were identified in two 2′-5′-oligoadenylate synthetase genes (OAS2 and OAS3. In contrast, other SNPs identified in OAS2 and OAS3 genes, as well as in the TRIM5 and KIR2DS4 genes, were associated with a slower progression of disease. Taken together, our data demonstrates the utility of ultra-high multiplex PCR in identifying polymorphisms of potential clinical significance and further,identifies SNPs that may play a role in HIV pathogenesis.

  2. Highlights from the Functional Single Nucleotide Polymorphisms Associated with Human Muscle Size and Strength or FAMuSS Study

    Directory of Open Access Journals (Sweden)

    Linda S. Pescatello

    2013-01-01

    Full Text Available The purpose of the Functional Single Nucleotide Polymorphisms Associated with Human Muscle Size and Strength study or FAMuSS was to identify genetic factors that dictated the response of health-related fitness phenotypes to resistance exercise training (RT. The phenotypes examined were baseline muscle strength and muscle, fat, and bone volume and their response to RT. FAMuSS participants were 1300 young (24 years, healthy men (42% and women (58% that were primarily of European-American descent. They were genotyped for ~500 polymorphisms and completed the Paffenbarger Physical Activity Questionnaire to assess energy expenditure and time spent in light, moderate, and vigorous intensity habitual physical activity and sitting. Subjects then performed a 12-week progressive, unilateral RT program of the nondominant arm with the dominant arm used as a comparison. Before and after RT, muscle strength was measured with the maximum voluntary contraction and one repetition maximum, while MRI measured muscle, fat, and bone volume. We will discuss the history of how FAMuSS originated, provide a brief overview of the FAMuSS methods, and summarize our major findings regarding genotype associations with muscle strength and size, body composition, cardiometabolic biomarkers, and physical activity.

  3. Association between Single Nucleotide Polymorphism rs1044925 and the Risk of Coronary Artery Disease and Ischemic Stroke

    Directory of Open Access Journals (Sweden)

    Dong-Feng Wu

    2014-02-01

    Full Text Available The present study was performed to clarify the association between the acyl-CoA:cholesterol acyltransferase-1 (ACAT-1 single nucleotide polymorphism (SNP rs1044925 and the risk of coronary artery disease (CAD and ischemic stroke (IS in the Guangxi Han population. Polymerase chain reaction and restriction fragment length polymorphism was performed to determine the genotypes of the ACAT-1 SNP rs1044925 in 1730 unrelated subjects (CAD, 587; IS, 555; and healthy controls; 588. The genotypic and allelic frequencies of rs1044925 were significantly different between the CAD patients and controls (p = 0.015 and borderline different between the IS patients and controls (p = 0.05. The AC/CC genotypes and C allele were associated with a decreased risk of CAD and IS (CAD: p = 0.014 for AC/CC vs. AA, p = 0.022 for C vs. A; IS: p = 0.014 for AC/CC vs. AA; p = 0.017 for C vs. A. The AC/CC genotypes in the healthy controls, but not in CAD or IS patients, were associated with an increased serum high-density lipoprotein cholesterol (HDL-C concentration. The present study shows that the C allele carriers of ACAT-1 rs1044925 were associated with an increased serum HDL-C level in the healthy controls and decreased risk in CAD and IS patients.

  4. Assembling a dual purpose TaqMan-based panel of single-nucleotide polymorphism markers in rainbow trout and steelhead (Oncorhynchus mykiss) for association mapping and population genetics analysis

    DEFF Research Database (Denmark)

    Hansen, Mette H H; Young, Sewall; Jørgensen, Hanne Birgitte Hede

    2011-01-01

    We establish a TaqMan-based assay panel for genotyping single-nucleotide polymorphisms in rainbow trout and steelhead (Oncorhynchus mykiss). We develop 22 novel single-nucleotide polymorphism markers based on new steelhead sequence data and on assays from sister taxa. Additionally, we adapt 154 p...

  5. Global-genome Nucleotide Excision Repair Controlled by Ubiquitin/Sumo Modifiers

    Directory of Open Access Journals (Sweden)

    Peter eRuethemann

    2016-04-01

    Full Text Available Global-genome nucleotide excision repair (GG-NER prevents genome instability by excising a wide range of structurally unrelated DNA base adducts and crosslinks induced by chemical carcinogens, ultraviolet (UV radiation or intracellular metabolic by-products. As a versatile damage sensor, xeroderma pigmentosum group C (XPC protein initiates this generic defense reaction by locating the damage and recruiting the subunits of a large lesion demarcation complex that, in turn, triggers the excision of aberrant DNA by endonucleases. In the very special case of a DNA repair response to UV radiation, the function of this XPC initiator is tightly controlled by the dual action of cullin-type CRL4DDB2 and sumo-targeted RNF111 ubiquitin ligases. This twofold protein ubiquitination system promotes GG-NER reactions by spatially and temporally regulating the interaction of XPC protein with damaged DNA across the nucleosome landscape of chromatin. In the absence of either CRL4DDB2 or RNF111, the DNA excision repair of UV lesions is inefficient, indicating that these two ubiquitin ligases play a critical role in mitigating the adverse biological effects of UV light in the exposed skin.

  6. Surfactant protein D (SP-D) deficiency is attenuated in humanised mice expressing the Met(11)Thr short nucleotide polymorphism of SP-D

    DEFF Research Database (Denmark)

    Knudsen, Lars; Ochs, Katharina; Boxler, Laura

    2013-01-01

    Surfactant protein D (SP-D) is part of the innate immune system involved in lung homeostasis. SP-D knockout mice show accumulations of foamy alveolar macrophages, alveolar lipoproteinosis and pulmonary emphysema. Three single nucleotide polymorphisms (SNPs) have been described in the coding...

  7. The single-nucleotide polymorphism 309 in the MDM2 gene contributes to the Li-Fraumeni syndrome and related phenotypes

    NARCIS (Netherlands)

    Ruijs, Mariëlle W. G.; Schmidt, Marjanka K.; Nevanlinna, Heli; Tommiska, Johanna; Aittomäki, Kristiina; Pruntel, Roelof; Verhoef, Senno; van 't Veer, L. J.

    2007-01-01

    Li-Fraumeni syndrome (LFS) is an autosomal-dominant cancer predisposition syndrome of which the majority is caused by TP53 germline mutations and is characterised by different tumour types occurring at relatively young age. Recently, it was shown that a single-nucleotide polymorphism (SNP) in the

  8. Exploration of pathomechanisms triggered by a single-nucleotide polymorphism in titin's I-band: the cardiomyopathy-linked mutation T2580I

    NARCIS (Netherlands)

    Bogomolovas, J.; Fleming, J.R.; Anderson, B.R.; Williams, R.; Lange, S.; Simon, B.; Khan, M.M.; Rudolf, R.; Franke, B.; Bullard, B.; Rigden, D.J.; Granzier, H.; Labeit, S.; Mayans, O.

    2016-01-01

    Missense single-nucleotide polymorphisms (mSNPs) in titin are emerging as a main causative factor of heart failure. However, distinguishing between benign and disease-causing mSNPs is a substantial challenge. Here, we research the question of whether a single mSNP in a generic domain of titin can

  9. Correlations between clinical normal tissue radiosensitivity and single nucleotide polymorphisms in ATM, XRCC1, XRCC3, APEX, SOD2, and TGF-B1

    DEFF Research Database (Denmark)

    Alsner, Jan; Andreassen, Christian Nicolaj; Overgaard, Marie

    in biological pathways suspected to underlie phenotypes of interest. These variants can be either common alterations like single nucleotide polymorphisms, SNPs, or rare variants in potential susceptibility loci like ATM. In parallel, we are using microarray analysis on normal fibroblasts isolated from patients...

  10. [Meta-analysis on relationship between single nucleotide polymorphism of rs2231142 in ABCG2 gene and gout in East Asian population].

    Science.gov (United States)

    Wu, Lei; He, Yao; Zhang, Di

    2015-11-01

    To systematically evaluate the association between single nucleotide polymorphism of rs2231142 genetic susceptibility and gout in East Asian population. The literature retrieval was conducted by using English databases (Medline, EMbase), Chinese databases (CNKI, Vip, Wanfang, SinaMed) and others to collect the published papers on the association between single nucleotide polymorphism of rs2231142 genetic susceptibility and gout by the end of December 2014. Meta-analysis was performed with software Stata 12.0. Nine studies were included. There were significant associations between increased risk of gout and single nucleotide polymorphism of rs2231142, the combined OR was 2.04 (95%CI: 1.82-2.28) for A allele and C allele, 1.97 (95%CI: 1.57-2.48) for CA and CC, 3.71 (95%CI: 3.07-4.47) for AA and CC. Sex and region specific subgroup analysis showed less heterogeneity. There is significant association between gout and single nucleotide polymorphism of rs2231142 in East Asian population, and A allele is a high risk gene for gout.

  11. A single nucleotide polymorphism within the acetyl-coenzyme A carboxylase beta gene is associated with proteinuria in patients with type 2 diabetes

    DEFF Research Database (Denmark)

    Maeda, Shiro; Kobayashi, Masa-aki; Araki, Shin-ichi

    2010-01-01

    It has been suggested that genetic susceptibility plays an important role in the pathogenesis of diabetic nephropathy. A large-scale genotyping analysis of gene-based single nucleotide polymorphisms (SNPs) in Japanese patients with type 2 diabetes identified the gene encoding acetyl-coenzyme A ca...

  12. A single nucleotide polymorphism in the promoter of the LOXL1 gene and its relationship to pelvic organ prolapse and preterm premature rupture of membranes.

    Science.gov (United States)

    Ferrell, Georgia; Lu, Minyan; Stoddard, Paul; Sammel, Mary D; Romero, Roberto; Strauss, Jerome F; Matthews, Catherine A

    2009-05-01

    Pelvic organ prolapse and preterm premature rupture of membranes, the 2 conditions which have in common weakening of the tensile strength of tissues, are thought to be caused, in part, by abnormal extracellular matrix synthesis and/or catabolism. We identified a new single nucleotide polymorphism (NT_010194(LOXL1):g.45008784A>C) in the promoter of the LOXL1 gene, which is essential for elastin synthesis. Promoter studies showed that the minor "C'' allele had significantly greater activity than the major "A'' allele. Case-control studies examined the association of the alleles of this single nucleotide polymorphism with pelvic organ prolapse and preterm premature rupture of membranes. When comparing allele frequencies and genotypes in pelvic organ prolapse cases versus controls, no significant associations were found. A case-control study conducted in African American neonates also found no significant associations between the promoter alleles and preterm premature rupture of membranes. We conclude that a functional single nucleotide polymorphism exists in the promoter region of the LOXL1 gene. Association studies suggest that the promoter single nucleotide polymorphism does not contribute significantly to risk of pelvic organ prolapse or preterm premature rupture of membranes.

  13. The association between single nucleotide polymorphism in interleukin-27 gene and recurrent pregnancy loss in Iranian women

    Directory of Open Access Journals (Sweden)

    Zeinab Nematollahi

    2015-03-01

    Full Text Available Background: Recurrent pregnancy loss (RPL has been defined as two or more miscarriages before 20th week of gestation. It seems that IL-27 may reduce inflammatory responses and affect the survival of the embryo during human pregnancy. IL-27 polymorphisms may influence RPL by altering the levels or the activity of gene product. Objective: We studied for the first time the association of IL-27 -964 A>G single nucleotide polymorphism (SNP with RPL in Iranian women. Materials and Methods: A case-controlled study was performed on two groups consisting of 150 healthy women with at least one delivery (control group and 150 women with two or more primary RPLs history (RPL group. The -964 A>G SNP in IL-27 gene was determined by PCR-RFLP technique. Genotype and allele frequencies were compared using 2 tests between two groups. Results: There was no difference between the two groups regarding age of women (29±4.4 [control] vs. 30.84±5.2 years [case]. In the RPL group, the genotype frequencies of -964 A>G polymorphism were AG (49.3%, AA (40%, and GG (10.7%, and in the control group, they were AG (43.3%, AA (48.7%, and GG (8%. There was no significant difference between the genotypes of AA, AG, and GG in two groups (p=0.23. As the frequency of allele A was 64.7% in the RPL group and 70.3% in the control group, the difference in frequency of allele A in -964 A>G between two groups was not significant (p=0.19. Conclusion: Our findings indicate that SNP of -964 A>G in IL-27 gene is not a risk factor for RPL in Iranian women.

  14. Single Nucleotide Polymorphism in Gene Encoding Transcription Factor Prep1 Is Associated with HIV-1-Associated Dementia

    Science.gov (United States)

    van Manen, Daniëlle; Bunnik, Evelien M.; van Sighem, Ard I.; Sieberer, Margit; Boeser-Nunnink, Brigitte; de Wolf, Frank; Schuitemaker, Hanneke; Portegies, Peter; Kootstra, Neeltje A.; van 't Wout, Angélique B.

    2012-01-01

    Background Infection with HIV-1 may result in severe cognitive and motor impairment, referred to as HIV-1-associated dementia (HAD). While its prevalence has dropped significantly in the era of combination antiretroviral therapy, milder neurocognitive disorders persist with a high prevalence. To identify additional therapeutic targets for treating HIV-associated neurocognitive disorders, several candidate gene polymorphisms have been evaluated, but few have been replicated across multiple studies. Methods We here tested 7 candidate gene polymorphisms for association with HAD in a case-control study consisting of 86 HAD cases and 246 non-HAD AIDS patients as controls. Since infected monocytes and macrophages are thought to play an important role in the infection of the brain, 5 recently identified single nucleotide polymorphisms (SNPs) affecting HIV-1 replication in macrophages in vitro were also tested. Results The CCR5 wt/Δ32 genotype was only associated with HAD in individuals who developed AIDS prior to 1991, in agreement with the observed fading effect of this genotype on viral load set point. A significant difference in genotype distribution among all cases and controls irrespective of year of AIDS diagnosis was found only for a SNP in candidate gene PREP1 (p = 1.2×10−5). Prep1 has recently been identified as a transcription factor preferentially binding the −2,518 G allele in the promoter of the gene encoding MCP-1, a protein with a well established role in the etiology of HAD. Conclusion These results support previous findings suggesting an important role for MCP-1 in the onset of HIV-1-associated neurocognitive disorders. PMID:22347417

  15. Single nucleotide polymorphism in gene encoding transcription factor Prep1 is associated with HIV-1-associated dementia.

    Directory of Open Access Journals (Sweden)

    Sebastiaan M Bol

    Full Text Available BACKGROUND: Infection with HIV-1 may result in severe cognitive and motor impairment, referred to as HIV-1-associated dementia (HAD. While its prevalence has dropped significantly in the era of combination antiretroviral therapy, milder neurocognitive disorders persist with a high prevalence. To identify additional therapeutic targets for treating HIV-associated neurocognitive disorders, several candidate gene polymorphisms have been evaluated, but few have been replicated across multiple studies. METHODS: We here tested 7 candidate gene polymorphisms for association with HAD in a case-control study consisting of 86 HAD cases and 246 non-HAD AIDS patients as controls. Since infected monocytes and macrophages are thought to play an important role in the infection of the brain, 5 recently identified single nucleotide polymorphisms (SNPs affecting HIV-1 replication in macrophages in vitro were also tested. RESULTS: The CCR5 wt/Δ32 genotype was only associated with HAD in individuals who developed AIDS prior to 1991, in agreement with the observed fading effect of this genotype on viral load set point. A significant difference in genotype distribution among all cases and controls irrespective of year of AIDS diagnosis was found only for a SNP in candidate gene PREP1 (p = 1.2 × 10(-5. Prep1 has recently been identified as a transcription factor preferentially binding the -2,518 G allele in the promoter of the gene encoding MCP-1, a protein with a well established role in the etiology of HAD. CONCLUSION: These results support previous findings suggesting an important role for MCP-1 in the onset of HIV-1-associated neurocognitive disorders.

  16. Single nucleotide polymorphisms in MLH1 predict poor prognosis of hepatocellular carcinoma in a Chinese population.

    Science.gov (United States)

    Zhu, Xiaonian; Liu, Wei; Qiu, Xiaoqiang; Wang, Zhigang; Tan, Chao; Bei, Chunhua; Qin, Linyuan; Ren, Yuan; Tan, Shengkui

    2017-10-03

    Hepatocellular carcinoma (HCC) is a malignant cancer causing deleterious health effect worldwide, especially in China. So far clinical cure rate and long-term survival rate of HCC remains low. Most HCC patients after cancer resection have recurrence or metastasis within 5 years. This study aims to explore the genetic association of mutL homolog 1 ( MLH1 ) polymorphisms with HCC risk and prognosis. Four candidate MLH1 polymorphisms, rs1800734, rs10849, rs3774343 and rs1540354 were studied from a hospital-based case-control study including 1,036 cases (HCC patients) and 1,036 controls (non-HCC patients) in Guangxi, China. All these SNPs interacted with environmental risk factors, such as HBV infection, alcohol intake and smoking in the pathogenesis of HCC. However, only rs1800734 had significant difference between cases and controls. Compared to the AA genotype, patients with AG, GG and AG/GG genotype of rs1800734 had an increased risk of HCC [ORs (95% CI) = 1.217 (1.074∼1.536), 1.745 (1.301∼2.591) and 1.291 (1.126∼1.687)] and a decreased survival time [co-dominant, HR (95% CI) = 1.553 (1.257∼1.920); dominant, HR (95% CI) = 2.207 (1.572∼3.100)]. Furthermore, we found that tumor number, tumor staging, metastasis and rs1800734 were associated with the overall survival of HCC patients by multivariate COX regression analysis. No significant difference was found between the other three MLH1 polymorphisms with HCC risk and prognosis. Our study suggests MLH1 SNP, rs1800734 as a new predictor for poor prognosis of HCC patients.

  17. The unusual nucleotide content of the HIV RNA genome results in a biased amino acid composition of HIV proteins

    NARCIS (Netherlands)

    Berkhout, B.; van Hemert, F. J.

    1994-01-01

    Extremely high frequencies of the A nucleotide are found in the RNA genomes of the lentivirus group of retroviruses. It is presently unknown what molecular force is responsible for this A-pressure. In this manuscript, we demonstrate a correlation between this 'A-pressure' and the amino acid-usage of

  18. Mapping of Micro-Tom BAC-End Sequences to the Reference Tomato Genome Reveals Possible Genome Rearrangements and Polymorphisms

    Science.gov (United States)

    Asamizu, Erika; Shirasawa, Kenta; Hirakawa, Hideki; Sato, Shusei; Tabata, Satoshi; Yano, Kentaro; Ariizumi, Tohru; Shibata, Daisuke; Ezura, Hiroshi

    2012-01-01

    A total of 93,682 BAC-end sequences (BESs) were generated from a dwarf model tomato, cv. Micro-Tom. After removing repetitive sequences, the BESs were similarity searched against the reference tomato genome of a standard cultivar, “Heinz 1706.” By referring to the “Heinz 1706” physical map and by eliminating redundant or nonsignificant hits, 28,804 “unique pair ends” and 8,263 “unique ends” were selected to construct hypothetical BAC contigs. The total physical length of the BAC contigs was 495, 833, 423 bp, covering 65.3% of the entire genome. The average coverage of euchromatin and heterochromatin was 58.9% and 67.3%, respectively. From this analysis, two possible genome rearrangements were identified: one in chromosome 2 (inversion) and the other in chromosome 3 (inversion and translocation). Polymorphisms (SNPs and Indels) between the two cultivars were identified from the BLAST alignments. As a result, 171,792 polymorphisms were mapped on 12 chromosomes. Among these, 30,930 polymorphisms were found in euchromatin (1 per 3,565 bp) and 140,862 were found in heterochromatin (1 per 2,737 bp). The average polymorphism density in the genome was 1 polymorphism per 2,886 bp. To facilitate the use of these data in Micro-Tom research, the BAC contig and polymorphism information are available in the TOMATOMICS database. PMID:23227037

  19. Modelling the contribution of family history and variation in single nucleotide polymorphisms to risk of schizophrenia

    DEFF Research Database (Denmark)

    Agerbo, Esben; Mortensen, Preben Bo; Wiuf, Carsten

    2012-01-01

    Epidemiological studies indicate that having any family member with schizophrenia increases the risk of schizophrenia in the probands. However, genome-wide association studies (GWAS) have accounted for little of this variation. The aim of this study was to use a population-based sample to explore...

  20. Single nucleotide polymorphism (SNP) panels for rapid positional cloning in zebrafish

    NARCIS (Netherlands)

    Clark, M.D.; Guryev, V.; de Bruijn, E.; Nijman, I.J.; Tada, M.; Wilson, C.; Deloukas, P.; Postlethwait, J.H.; Cuppen, E.; Stemple, D.L.

    2011-01-01

    Despite considerable genetic and genomic resources the positional cloning of forward mutations remains a slow and manually intensive task, typically using gel based genotyping and sequential rounds of mapping. We have used the latest genetic resources and genotyping technologies to develop two

  1. Association study in Alzheimer’s disease of single nucleotide polymorphisms implicated with coffee consumption

    Directory of Open Access Journals (Sweden)

    Victor Junji Yamamoto

    2015-06-01

    Full Text Available Background There is evidence from animal and in vitro models of the protective effects of caffeine in Alzheimer’s disease. The suggested mechanisms through which caffeine may protect neurons against Alzheimer’s disease pathology include the facilitation of beta-amyloid clearance, upregulation of cholinergic transmission, and increased neuronal plasticity and survival. Epidemiological studies support that Alzheimer’s disease patients consume smaller amounts of coffee beverages throughout their lives as compared to age-matched cognitively healthy individuals. Objective The aim of the present study was to determine whether the negative association between Alzheimer’s disease and coffee consumption may be influenced by a common genetic predisposition, given the fact that the pattern of coffee consumption is determined by both environmental and genetic factors. Method We conducted an in silico search addressing the association between genetic polymorphisms related to coffee consumption and the diagnosis of Alzheimer’s disease. We further investigated the interactions between genes located in regions bearing these polymorphisms. Results Our analysis revealed no evidence for a genetic association (nor interaction between related proteins involving coffee consumption and Alzheimer’s disease. Discussion The negative association between Alzheimer’s disease and coffee consumption suggested by epidemiological studies is most likely due to environmental factors that are not necessarily regulated by genetic background.

  2. Single nucleotide polymorphisms in an Indian cohort and association of CNTN4, MMP2 and SNTB1 variants with oral cancer.

    Science.gov (United States)

    Yete, Subuhi; Pradhan, Sultan; Saranath, Dhananjaya

    2017-08-01

    Oral cancer is a high incidence cancer in India primarily due to the prevalent tobacco/areca nut chewing habits and hence a major health concern. India constitutes 26% of the global oral cancer burden. Besides the well-established risk factors, the genomic constitution of an individual plays a role in oral cancer. The aim of the current study was to analyse genomic variants represented as single nucleotide polymorphisms (SNPs), analyse their prevalence and investigate risk association of allelotypes/genotypes to oral cancers. Eleven SNPs in genes associated with biological functions were analysed in an Indian cohort (n = 1000) comprising 500 oral cancer patients and 500 long term tobacco habitués as controls, using Allelic discrimination Real-Time PCR assay with SYBR Green dye. Fisher's exact test and Odds Ratio were used for statistical analysis. Increased risk was observed for rs9849237 CC [P = 0.008; OR 1.412 (1.09-1.82)] and rs243865 CT [P = 0.004; OR 1.469 (1.13-1.90)] genotypes, whereas rs9849237 CT [P = 0.034; OR 0.755 (0.58-0.97)], rs243865 CC [P = 0.002; OR 0.669 (0.51-0.86)] and rs10090787 CC [P = 0.049; OR 0.774 (0.60-0.99)] genotypes indicated decreased risk to oral cancer. The other SNPs showed equidistribution in both groups. Our data indicated genotypes and alleles in specific SNPs rs9849237, rs243865 and rs10090787 with increased/decreased risk to oral cancer. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Nucleotide polymorphisms in a pine ortholog of the Arabidopsis degrading enzyme cellulase KORRIGAN are associated with early growth performance in Pinus pinaster.

    Science.gov (United States)

    Cabezas, José Antonio; González-Martínez, Santiago C; Collada, Carmen; Guevara, María Angeles; Boury, Christophe; de María, Nuria; Eveno, Emmanuelle; Aranda, Ismael; Garnier-Géré, Pauline H; Brach, Jean; Alía, Ricardo; Plomion, Christophe; Cervera, María Teresa

    2015-09-01

    We have carried out a candidate-gene-based association genetic study in Pinus pinaster Aiton and evaluated the predictive performance for genetic merit gain of the most significantly associated genes and single nucleotide polymorphisms (SNPs). We used a second generation 384-SNP array enriched with candidate genes for growth and wood properties to genotype mother trees collected in 20 natural populations covering most of the European distribution of the species. Phenotypic data for total height, polycyclism, root-collar diameter and biomass were obtained from a replicated provenance-progeny trial located in two sites with contrasting environments (Atlantic vs Mediterranean climate). General linear models identified strong associations between growth traits (total height and polycyclism) and four SNPs from the korrigan candidate gene, after multiple testing corrections using false discovery rate. The combined genomic breeding value predictions assessed for the four associated korrigan SNPs by ridge regression-best linear unbiased prediction (RR-BLUP) and cross-validation accounted for up to 8 and 15% of the phenotypic variance for height and polycyclic growth, respectively, and did not improve adding SNPs from other growth-related candidate genes. For root-collar diameter and total biomass, they accounted for 1.6 and 1.1% of the phenotypic variance, respectively, but increased to 15 and 4.1% when other SNPs from lp3.1, lp3.3 and cad were included in RR-BLUP models. These results point towards a desirable integration of candidate-gene studies as a means to pre-select relevant markers, and aid genomic selection in maritime pine breeding programs. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. Genome-wide analysis of intraspecific DNA polymorphism in 'Micro-Tom', a model cultivar of tomato (Solanum lycopersicum).

    Science.gov (United States)

    Kobayashi, Masaaki; Nagasaki, Hideki; Garcia, Virginie; Just, Daniel; Bres, Cécile; Mauxion, Jean-Philippe; Le Paslier, Marie-Christine; Brunel, Dominique; Suda, Kunihiro; Minakuchi, Yohei; Toyoda, Atsushi; Fujiyama, Asao; Toyoshima, Hiromi; Suzuki, Takayuki; Igarashi, Kaori; Rothan, Christophe; Kaminuma, Eli; Nakamura, Yasukazu; Yano, Kentaro; Aoki, Koh

    2014-02-01

    Tomato (Solanum lycopersicum) is regarded as a model plant of the Solanaceae family. The genome sequencing of the tomato cultivar 'Heinz 1706' was recently completed. To accelerate the progress of tomato genomics studies, systematic bioresources, such as mutagenized lines and full-length cDNA libraries, have been established for the cultivar 'Micro-Tom'. However, these resources cannot be utilized to their full potential without the completion of the genome sequencing of 'Micro-Tom'. We undertook the genome sequencing of 'Micro-Tom' and here report the identification of single nucleotide polymorphisms (SNPs) and insertion/deletions (indels) between 'Micro-Tom' and 'Heinz 1706'. The analysis demonstrated the presence of 1.23 million SNPs and 0.19 million indels between the two cultivars. The density of SNPs and indels was high in chromosomes 2, 5 and 11, but was low in chromosomes 6, 8 and 10. Three known mutations of 'Micro-Tom' were localized on chromosomal regions where the density of SNPs and indels was low, which was consistent with the fact that these mutations were relatively new and introgressed into 'Micro-Tom' during the breeding of this cultivar. We also report SNP analysis for two 'Micro-Tom' varieties that have been maintained independently in Japan and France, both of which have served as standard lines for 'Micro-Tom' mutant collections. Approximately 28,000 SNPs were identified between these two 'Micro-Tom' lines. These results provide high-resolution DNA polymorphic information on 'Micro-Tom' and represent a valuable contribution to the 'Micro-Tom'-based genomics resources.

  5. Orthology Guided Transcriptome Assembly of Italian Ryegrass and Meadow Fescue for Single-Nucleotide Polymorphism Discovery

    Czech Academy of Sciences Publication Activity Database

    Stočes, Štěpán; Ruttink, T.; Bartoš, Jan; Studer, B.; Yates, S.; Zwierzykowski, Z.; Abrouk, Michael; Roldán-Ruiz, I.; Książczyk, T.; Rey, Elodie; Doležel, Jaroslav; Kopecký, David

    2016-01-01

    Roč. 9, č. 3 (2016) ISSN 1940-3372 R&D Projects: GA ČR GAP501/11/05043; GA MŠk(CZ) LO1204 Institutional support: RVO:61389030 Keywords : festuca-pratensis huds. * dna-sequencing data * lolium-perenne l. * rna-seq data * genome * cultivars * festulolium * multiflorum * hybrid * recombination Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.736, year: 2016

  6. Main: Nucleotide Analysis [KOME

    Lifescience Database Archive (English)

    Full Text Available Nucleotide Analysis Japonica genome blast search result Result of blastn search against jap...onica genome sequence kome_japonica_genome_blast_search_result.zip kome_japonica_genome_blast_search_result ...

  7. Overlapping Genomic Sequences: A Treasure Trove of Single-Nucleotide Polymorphisms

    Science.gov (United States)

    Taillon-Miller, Patricia; Gu, Zhijie; Li, Qun; Hillier, LaDeana; Kwok, Pui-Yan

    1998-01-01

    An efficient strategy to develop a dense set of single-nucleotide polymorphism (SNP) markers is to take advantage of the human genome sequencing effort currently under way. Our approach is based on the fact that bacterial artificial chromosomes (BACs) and P1-based artificial chromosomes (PACs) used in long-range sequencing projects come from diploid libraries. If the overlapping clones sequenced are from different lineages, one is comparing the sequences from 2 homologous chromosomes in the overlapping region. We have analyzed in detail every SNP identified while sequencing three sets of overlapping clones found on chromosome 5p15.2, 7q21–7q22, and 13q12–13q13. In the 200.6 kb of DNA sequence analyzed in these overlaps, 153 SNPs were identified. Computer analysis for repetitive elements and suitability for STS development yielded 44 STSs containing 68 SNPs for further study. All 68 SNPs were confirmed to be present in at least one of the three (Caucasian, African-American, Hispanic) populations studied. Furthermore, 42 of the SNPs tested (62%) were informative in at least one population, 32 (47%) were informative in two or more populations, and 23 (34%) were informative in all three populations. These results clearly indicate that developing SNP markers from overlapping genomic sequence is highly efficient and cost effective, requiring only the two simple steps of developing STSs around the known SNPs and characterizing them in the appropriate populations. [The sequence data described in this paper have been submitted to the GenBank data library under accession nos. AC003015 (for GS113423), AC002380 (GS330J10), AC000066 (RG293F11), AC003086 (RG104F04), AC002525 (257C22A), and U73331 (96A18A).] PMID:9685323

  8. In silico analysis of single nucleotide polymorphism (SNPs in human β-globin gene.

    Directory of Open Access Journals (Sweden)

    Mohammed Alanazi

    Full Text Available Single amino acid substitutions in the globin chain are the most common forms of genetic variations that produce hemoglobinopathies--the most widespread inherited disorders worldwide. Several hemoglobinopathies result from homozygosity or compound heterozygosity to beta-globin (HBB gene mutations, such as that producing sickle cell hemoglobin (HbS, HbC, HbD and HbE. Several of these mutations are deleterious and result in moderate to severe hemolytic anemia, with associated complications, requiring lifelong care and management. Even though many hemoglobinopathies result from single amino acid changes producing similar structural abnormalities, there are functional differences in the generated variants. Using in silico methods, we examined the genetic variations that can alter the expression and function of the HBB gene. Using a sequence homology-based Sorting Intolerant from Tolerant (SIFT server we have searched for the SNPs, which showed that 200 (80% non-synonymous polymorphism were found to be deleterious. The structure-based method via PolyPhen server indicated that 135 (40% non-synonymous polymorphism may modify protein function and structure. The Pupa Suite software showed that the SNPs will have a phenotypic consequence on the structure and function of the altered protein. Structure analysis was performed on the key mutations that occur in the native protein coded by the HBB gene that causes hemoglobinopathies such as: HbC (E→K, HbD (E→Q, HbE (E→K and HbS (E→V. Atomic Non-Local Environment Assessment (ANOLEA, Yet Another Scientific Artificial Reality Application (YASARA, CHARMM-GUI webserver for macromolecular dynamics and mechanics, and Normal Mode Analysis, Deformation and Refinement (NOMAD-Ref of Gromacs server were used to perform molecular dynamics simulations and energy minimization calculations on β-Chain residue of the HBB gene before and after mutation. Furthermore, in the native and altered protein models, amino acid

  9. Single nucleotide polymorphism barcoding of cytochrome c oxidase I sequences for discriminating 17 species of Columbidae by decision tree algorithm.

    Science.gov (United States)

    Yang, Cheng-Hong; Wu, Kuo-Chuan; Dahms, Hans-Uwe; Chuang, Li-Yeh; Chang, Hsueh-Wei

    2017-07-01

    DNA barcodes are widely used in taxonomy, systematics, species identification, food safety, and forensic science. Most of the conventional DNA barcode sequences contain the whole information of a given barcoding gene. Most of the sequence information does not vary and is uninformative for a given group of taxa within a monophylum. We suggest here a method that reduces the amount of noninformative nucleotides in a given barcoding sequence of a major taxon, like the prokaryotes, or eukaryotic animals, plants, or fungi. The actual differences in genetic sequences, called single nucleotide polymorphism (SNP) genotyping, provide a tool for developing a rapid, reliable, and high-throughput assay for the discrimination between known species. Here, we investigated SNPs as robust markers of genetic variation for identifying different pigeon species based on available cytochrome c oxidase I (COI) data. We propose here a decision tree-based SNP barcoding (DTSB) algorithm where SNP patterns are selected from the DNA barcoding sequence of several evolutionarily related species in order to identify a single species with pigeons as an example. This approach can make use of any established barcoding system. We here firstly used as an example the mitochondrial gene COI information of 17 pigeon species (Columbidae, Aves) using DTSB after sequence trimming and alignment. SNPs were chosen which followed the rule of decision tree and species-specific SNP barcodes. The shortest barcode of about 11 bp was then generated for discriminating 17 pigeon species using the DTSB method. This method provides a sequence alignment and tree decision approach to parsimoniously assign a unique and shortest SNP barcode for any known species of a chosen monophyletic taxon where a barcoding sequence is available.

  10. Single Nucleotide Polymorphisms of Gene and Association with Non-specific Digestive Disorder in Rabbit

    Directory of Open Access Journals (Sweden)

    Yun-Fu Liu

    2013-08-01

    Full Text Available The NLRP12 (NLR family, pyrin domain containing 12 serves as a suppressor factor in the inflammatory response and protects the host against inflammation-induced damage. In the present study, we aimed to study the polymorphisms of NLRP12 gene and its association with susceptibility to non-specific digestive disorder (NSDD in rabbits. We re-sequenced the entire coding region of the rabbit NLRP12 gene and detected a total of 19 SNPs containing 14 synonymous and five non-synonymous variations. Among them, the coding SNP (c.1682A>G, which would carry a potential functional implication, was subsequently subjected to genotyping for case-control association study (272 cases and 267 controls. The results revealed that allele A was significantly protective against NSDD with an odds ratio value of 0.884 (95% confidence interval, 0.788 to 0.993; p = 0.038. We also experimentally induced NSDD in growing rabbits by feeding a fibre-deficient diet and subsequently investigated NLRP12 mRNA expression. The mRNA expression of NLRP12 in healthy status was significantly higher than that in severe NSDD (p = 0.0016. The highest expression was observed in individuals carrying the protective genotype AA (p = 0.0108. These results suggested that NLRP12 was significantly associated with the NSDD in rabbits. However, the precise molecular mechanism of NLRP12 involving in the development of rabbit NSDD requires further research.

  11. Prediction of the damage-associated non-synonymous single nucleotide polymorphisms in the human MC1R gene.

    Science.gov (United States)

    Hepp, Diego; Gonçalves, Gislene Lopes; de Freitas, Thales Renato Ochotorena

    2015-01-01

    The melanocortin 1 receptor (MC1R) is involved in the control of melanogenesis. Polymorphisms in this gene have been associated with variation in skin and hair color and with elevated risk for the development of melanoma. Here we used 11 computational tools based on different approaches to predict the damage-associated non-synonymous single nucleotide polymorphisms (nsSNPs) in the coding region of the human MC1R gene. Among the 92 nsSNPs arranged according to the predictions 62% were classified as damaging in more than five tools. The classification was significantly correlated with the scores of two consensus programs. Alleles associated with the red hair color (RHC) phenotype and with the risk of melanoma were examined. The R variants D84E, R142H, R151C, I155T, R160W and D294H were classified as damaging by the majority of the tools while the r variants V60L, V92M and R163Q have been predicted as neutral in most of the programs The combination of the prediction tools results in 14 nsSNPs indicated as the most damaging mutations in MC1R (L48P, R67W, H70Y, P72L, S83P, R151H, S172I, L206P, T242I, G255R, P256S, C273Y, C289R and R306H); C273Y showed to be highly damaging in SIFT, Polyphen-2, MutPred, PANTHER and PROVEAN scores. The computational analysis proved capable of identifying the potentially damaging nsSNPs in MC1R, which are candidates for further laboratory studies of the functional and pharmacological significance of the alterations in the receptor and the phenotypic outcomes.

  12. Cell Line Controls for the Genotyping of a Spectrum of Human Single Nucleotide Polymorphisms in the Clinical Laboratory.

    Science.gov (United States)

    Kimbacher, Christine; Paar, Christian; Freystetter, Andrea; Berg, Joerg

    2018-05-01

    Genotyping for clinically important single nucleotide polymorphisms (SNPs) is performed by many clinical routine laboratories. To support testing, quality controls and reference materials are needed. Those may be derived from residual patient samples, left over samples of external quality assurance schemes, plasmid DNA or DNA from cell lines. DNAs from cell lines are commutable and available in large amounts. DNA from 38 cell lines were examined for suitability as controls in 11 SNP assays that are frequently used in a clinical routine laboratory: FV (1691G>A), FII (20210G>A), PAI-1 4G/5G polymorphism, MTHFR (677C>T, 1298A>C), HFE (H63D, S65C, C282Y), APOE (E2, E3, E4), LPH (-13910C>T), UGT1A1 (*28, *36, *37), TPMT (*2, *3A, *3B, *3C), VKORC1 (-1639G>A, 1173C>T), CYP2C9 (*2, *3, *5). Genotyping was performed by real-time PCR with melting curve analysis and confirmed by bi-directional sequencing. We find an almost complete spectrum of genotypic constellations within these 38 cell lines. About 12 cell lines appear sufficient as genotypic controls for the 11 SNP assays by covering almost all of the genotypes. However, hetero- and homozygous genotypes for FII and the alleles TPMT*2, UGT1A1*37 and CYP2C9*5 were not detected in any of the cell lines. DNA from most of the examined cell lines appear suitable as quality controls for these SNP assays in the laboratory routine, as to the implementation of those assays or to prepare samples for quality assurance schemes. Our study may serve as a pilot to further characterize these cell lines to arrive at the status of reference materials.

  13. Prediction of the damage-associated non-synonymous single nucleotide polymorphisms in the human MC1R gene.

    Directory of Open Access Journals (Sweden)

    Diego Hepp

    Full Text Available The melanocortin 1 receptor (MC1R is involved in the control of melanogenesis. Polymorphisms in this gene have been associated with variation in skin and hair color and with elevated risk for the development of melanoma. Here we used 11 computational tools based on different approaches to predict the damage-associated non-synonymous single nucleotide polymorphisms (nsSNPs in the coding region of the human MC1R gene. Among the 92 nsSNPs arranged according to the predictions 62% were classified as damaging in more than five tools. The classification was significantly correlated with the scores of two consensus programs. Alleles associated with the red hair color (RHC phenotype and with the risk of melanoma were examined. The R variants D84E, R142H, R151C, I155T, R160W and D294H were classified as damaging by the majority of the tools while the r variants V60L, V92M and R163Q have been predicted as neutral in most of the programs The combination of the prediction tools results in 14 nsSNPs indicated as the most damaging mutations in MC1R (L48P, R67W, H70Y, P72L, S83P, R151H, S172I, L206P, T242I, G255R, P256S, C273Y, C289R and R306H; C273Y showed to be highly damaging in SIFT, Polyphen-2, MutPred, PANTHER and PROVEAN scores. The computational analysis proved capable of identifying the potentially damaging nsSNPs in MC1R, which are candidates for further laboratory studies of the functional and pharmacological significance of the alterations in the receptor and the phenotypic outcomes.

  14. Identification and genotyping of feline infectious peritonitis-associated single nucleotide polymorphisms in the feline interferon-γ gene.

    Science.gov (United States)

    Hsieh, Li-En; Chueh, Ling-Ling

    2014-05-21

    Feline infectious peritonitis (FIP) is an immune-mediated, highly lethal disease caused by feline coronavirus (FCoV) infection. Currently, no protective vaccine or effective treatment for the disease is available. Studies have found that some cats survive the challenge of virulent FCoV isolates. Since cellular immunity is thought to be critical in preventing FIP and because diseased cats often show a significant decrease in interferon-γ (IFN-γ) production, we investigated whether single nucleotide polymorphisms (SNP) in the feline IFN-γ gene (fIFNG) are associated with the outcome of infection. A total of 82 asymptomatic and 63 FIP cats were analyzed, and 16 SNP were identified in intron 1 of fIFNG. Among these SNP, the fFING + 428 T allele was shown to be a FIP-resistant allele (p = 0.03), and the heterozygous genotypes 01C/T and +408C/T were found to be FIP-susceptible factors (p = 0.004). Furthermore, an fIFNG + 428 resistant allele also showed a clear correlation with the plasma level of IFN-γ in FIP cats. For the identification of these three FIP-related SNP, genotyping methods were established using amplification refractory mutation system PCR (ARMS-PCR) and restriction fragment length polymorphisms (RFLP), and the different genotypes could easily be identified without sequencing. The identification of additional FIP-related SNP will allow the selection of resistant cats and decrease the morbidity of the cat population to FIP.

  15. Association of the multidrug resistance-1 gene single-nucleotide polymorphisms with the tacrolimus dose requirements in renal transplant recipients.

    Science.gov (United States)

    Anglicheau, Dany; Verstuyft, Céline; Laurent-Puig, Pierre; Becquemont, Laurent; Schlageter, Marie-Hélène; Cassinat, Bruno; Beaune, Philippe; Legendre, Christophe; Thervet, Eric

    2003-07-01

    The immunosuppressive drug tacrolimus, whose pharmacokinetic characteristics display large interindividual variations, is a substrate for P-glycoprotein (P-gp), the product of the multidrug resistance-1 (MDR1) gene. Some of the single nucleotide polymorphisms (SNP) of MDR1 reported correlated with the in vivo activity of P-gp. Because P-gp is known to control tacrolimus intestinal absorption, it was postulated that these polymorphisms are associated with tacrolimus pharmacokinetic variations in renal transplant recipients. The objective of this study was to evaluate in a retrospective study of 81 renal transplant recipients the effect on tacrolimus dosages and concentration/dose ratio of four frequent MDR1 SNP possibly associated with P-gp function (T-129C in exon 1b, 1236C>T in exon 12, 2677G>T,A in exon 21, and 3435C>T in exon 26). As in the general population, the SNP in exons 12, 21, and 26 were frequent (16, 17.3, and 22.2% for the variant homozygous genotype, respectively) and exhibited incomplete linkage disequilibrium. One month after tacrolimus introduction, exon 21 SNP correlated significantly with the daily tacrolimus dose (P < or = 0.05) and the concentration/dose ratio (P < or = 0.02). Tacrolimus dose requirements were 40% higher in homozygous than wild-type patients for this SNP. The concentration/dose ratio was 36% lower in the wild-type patients, suggesting that, for a given dose, their tacrolimus blood concentration is lower. Haplotype analysis substantiated these results and suggested that exons 26 and 21 SNP may be associated with tacrolimus dose requirements. Genotype monitoring of the MDR1 gene reliably predicts the optimal dose of tacrolimus in renal transplant recipients and may predict the initial daily dose needed by individual patients to obtain adequate immunosuppression.

  16. Potential relationship between single nucleotide polymorphisms used in forensic genetics and diseases or other traits in European population.

    Science.gov (United States)

    Pombar-Gomez, Maria; Lopez-Lopez, Elixabet; Martin-Guerrero, Idoia; Garcia-Orad Carles, Africa; de Pancorbo, Marian M

    2015-05-01

    Single nucleotide polymorphisms (SNPs) are an interesting option to facilitate the analysis of highly degraded DNA by allowing the reduction of the size of the DNA amplicons. The SNPforID 52-plex panel is a clear example of the use of non-coding SNPs in forensic genetics. However, nonstop advances in studies of genetic polymorphisms are leading to the discovery of new associations between SNPs and diseases. The aim of this study was to perform a comprehensive review of the state of association between the 52 SNPs in the 52-plex panel and diseases or other traits related to their treatment, such as drug response characters. In order to achieve this goal, we have conducted a bioinformatic search for each SNP included in the panel and the SNPs in linkage disequilibrium (LD) with them in the European population (r (2)  > 0.8). A total of 424 SNPs (52 in the panel and 372 in LD) were investigated in PubMed, Scopus, and dbSNP databases. Our results show that three SNPs in the SNPforID 52-plex panel (rs2107612, rs1979255, rs1463729) have been associated with diseases such as hypertension or macular degeneration, as well as drug response. Similarly, three out of the 372 SNPs in LD (rs2107614, r (2)  = 0.859; rs765250, r (2)  = 0.858; rs11064560, r (2)  = 0,887) are also associated with various pathologies. In view of these results, we propose the need for a periodic review of the SNPs used in forensic genetics in order to keep their associations with diseases or related phenotypes updated and to evaluate their continuity in forensic panels for avoiding legal and ethical conflicts.

  17. Associations between Single-Nucleotide Polymorphisms in Corticotropin-Releasing Hormone-Related Genes and Irritable Bowel Syndrome.

    Directory of Open Access Journals (Sweden)

    Ayaka Sasaki

    Full Text Available Irritable bowel syndrome (IBS is a common functional disorder with distinct features of stress-related pathophysiology. A key mediator of the stress response is corticotropin-releasing hormone (CRH. Although some candidate genes have been identified in stress-related disorders, few studies have examined CRH-related gene polymorphisms. Therefore, we tested our hypothesis that single-nucleotide polymorphisms (SNPs in CRH-related genes influence the features of IBS.In total, 253 individuals (123 men and 130 women participated in this study. They comprised 111 IBS individuals and 142 healthy controls. The SNP genotypes in CRH (rs28364015 and rs6472258 and CRH-binding protein (CRH-BP (rs10474485 were determined by direct sequencing and real-time polymerase chain reaction. The emotional states of the subjects were evaluated using the State-Trait Anxiety Inventory, Perceived Stress Scale, and the Self-rating Depression Scale.Direct sequencing of the rs28364015 SNP of CRH revealed no genetic variation among the study subjects. There was no difference in the genotype distributions and allele frequencies of rs6472258 and rs10474485 between IBS individuals and controls. However, IBS subjects with diarrhea symptoms without the rs10474485 A allele showed a significantly higher emotional state score than carriers.These results suggest that the CRH and CRH-BP genes have no direct effect on IBS status. However, the CRH-BP SNP rs10474485 has some effect on IBS-related emotional abnormalities and resistance to psychosocial stress.

  18. Genome Wide Analysis of Nucleotide-Binding Site Disease Resistance Genes in Brachypodium distachyon

    Directory of Open Access Journals (Sweden)

    Shenglong Tan

    2012-01-01

    Full Text Available Nucleotide-binding site (NBS disease resistance genes play an important role in defending plants from a variety of pathogens and insect pests. Many R-genes have been identified in various plant species. However, little is known about the NBS-encoding genes in Brachypodium distachyon. In this study, using computational analysis of the B. distachyon genome, we identified 126 regular NBS-encoding genes and characterized them on the bases of structural diversity, conserved protein motifs, chromosomal locations, gene duplications, promoter region, and phylogenetic relationships. EST hits and full-length cDNA sequences (from Brachypodium database of 126 R-like candidates supported their existence. Based on the occurrence of conserved protein motifs such as coiled-coil (CC, NBS, leucine-rich repeat (LRR, these regular NBS-LRR genes were classified into four subgroups: CC-NBS-LRR, NBS-LRR, CC-NBS, and X-NBS. Further expression analysis of the regular NBS-encoding genes in Brachypodium database revealed that these genes are expressed in a wide range of libraries, including those constructed from various developmental stages, tissue types, and drought challenged or nonchallenged tissue.

  19. A multistep damage recognition mechanism for global genomic nucleotide excision repair.

    Science.gov (United States)

    Sugasawa, K; Okamoto, T; Shimizu, Y; Masutani, C; Iwai, S; Hanaoka, F

    2001-03-01

    A mammalian nucleotide excision repair (NER) factor, the XPC-HR23B complex, can specifically bind to certain DNA lesions and initiate the cell-free repair reaction. Here we describe a detailed analysis of its binding specificity using various DNA substrates, each containing a single defined lesion. A highly sensitive gel mobility shift assay revealed that XPC-HR23B specifically binds a small bubble structure with or without damaged bases, whereas dual incision takes place only when damage is present in the bubble. This is evidence that damage recognition for NER is accomplished through at least two steps; XPC-HR23B first binds to a site that has a DNA helix distortion, and then the presence of injured bases is verified prior to dual incision. Cyclobutane pyrimidine dimers (CPDs) were hardly recognized by XPC-HR23B, suggesting that additional factors may be required for CPD recognition. Although the presence of mismatched bases opposite a CPD potentiated XPC-HR23B binding, probably due to enhancement of the helix distortion, cell-free excision of such compound lesions was much more efficient than expected from the observed affinity for XPC-HR23B. This also suggests that additional factors and steps are required for the recognition of some types of lesions. A multistep mechanism of this sort may provide a molecular basis for ensuring the high level of damage discrimination that is required for global genomic NER.

  20. Nucleotide sequences of two genomic DNAs encoding peroxidase of Arabidopsis thaliana.

    Science.gov (United States)

    Intapruk, C; Higashimura, N; Yamamoto, K; Okada, N; Shinmyo, A; Takano, M

    1991-02-15

    The peroxidase (EC 1.11.1.7)-encoding gene of Arabidopsis thaliana was screened from a genomic library using a cDNA encoding a neutral isozyme of horseradish, Armoracia rusticana, peroxidase (HRP) as a probe, and two positive clones were isolated. From the comparison with the sequences of the HRP-encoding genes, we concluded that two clones contained peroxidase-encoding genes, and they were named prxCa and prxEa. Both genes consisted of four exons and three introns; the introns had consensus nucleotides, GT and AG, at the 5' and 3' ends, respectively. The lengths of each putative exon of the prxEa gene were the same as those of the HRP-basic-isozyme-encoding gene, prxC3, and coded for 349 amino acids (aa) with a sequence homology of 89% to that encoded by prxC3. The prxCa gene was very close to the HRP-neutral-isozyme-encoding gene, prxC1b, and coded for 354 aa with 91% homology to that encoded by prxC1b. The aa sequence homology was 64% between the two peroxidases encoded by prxCa and prxEa.

  1. Features of genomic organization in a nucleotide-resolution molecular model of the Escherichia coli chromosome.

    Science.gov (United States)

    Hacker, William C; Li, Shuxiang; Elcock, Adrian H

    2017-07-27

    We describe structural models of the Escherichia coli chromosome in which the positions of all 4.6 million nucleotides of each DNA strand are resolved. Models consistent with two basic chromosomal orientations, differing in their positioning of the origin of replication, have been constructed. In both types of model, the chromosome is partitioned into plectoneme-abundant and plectoneme-free regions, with plectoneme lengths and branching patterns matching experimental distributions, and with spatial distributions of highly-transcribed chromosomal regions matching recent experimental measurements of the distribution of RNA polymerases. Physical analysis of the models indicates that the effective persistence length of the DNA and relative contributions of twist and writhe to the chromosome's negative supercoiling are in good correspondence with experimental estimates. The models exhibit characteristics similar to those of 'fractal globules,' and even the most genomically-distant parts of the chromosome can be physically connected, through paths combining linear diffusion and inter-segmental transfer, by an average of only ∼10 000 bp. Finally, macrodomain structures and the spatial distributions of co-expressed genes are analyzed: the latter are shown to depend strongly on the overall orientation of the chromosome. We anticipate that the models will prove useful in exploring other static and dynamic features of the bacterial chromosome. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  2. Complete nucleotide sequence and genome organization of a Chinese isolate of Tobacco vein distorting virus.

    Science.gov (United States)

    Mo, Xiao-han; Chen, Zheng-bin; Chen, Jian-ping

    2010-12-01

    Tobacco bushy top disease is caused by tobacco bushy top virus (TBTV, a member of the genus Umbravirus) which is dependent on tobacco vein-distorting virus (TVDV) to act as a helper virus encapsidating TBTV and enabling its transmission by aphids. Isometric virions from diseased tobacco plants were purified and disease symptoms were reproduced after experimental aphid transmission. The complete genome of TVDV was determined from cloned RT-PCR products derived from viral RNA. It was 5,920 nucleotides (nts) long and had the six major open reading frames (ORFs) typical of a member of the genus Polerovirus. Sequence comparisons showed that it differed significantly from any of the other species in the genus and this was confirmed by phylogenetic analyses of the RdRp and coat protein. SDS-PAGE analysis of purified virions gave two protein bands of about 26 and 59 kDa both of which reacted strongly in Western blots with antiserum produced to prokaryotically expressed TVDV CP showing that the two forms of the TVDV CP were the only protein components of the capsid.

  3. Association of udder traits with single nucleotide polymorphisms in crossbred Bos indicus-Bos taurus cows.

    Science.gov (United States)

    Tolleson, M W; Gill, C A; Herring, A D; Riggs, P K; Sawyer, J E; Sanders, J O; Riley, D G

    2017-06-01

    The size, support, and health of udders limit the productive life of beef cows, especially those with background, because, in general, such cows have a reputation for problems with udders. Genomic association studies of bovine udder traits have been conducted in dairy cattle and recently in Continental European beef breeds but not in cows with background. The objective of this study was to determine associations of SNP and udder support scores, teat length, and teat diameter in half (Nellore), half (Angus) cows. Udders of cows ( = 295) born from 2003 to 2007 were evaluated for udder support and teat length and diameter ( = 1,746 records) from 2005 through 2014. These included a subjective score representing udder support (values of 1 indicated poorly supported, pendulous udders and values of 9 indicated very well-supported udders) and lengths and diameters of individual teats in the 4 udder quarters as well as the average. Cows were in full-sibling or half-sibling families. Residuals for each trait were produced from repeated records models with cow age category nested within birth year of cows. Those residuals were averaged to become the dependent variables for genomewide association analyses. Regression analyses of those dependent variables included genotypic values as explanatory variables for 34,980 SNP from a commercially available array and included the genomic relationship matrix. Fifteen SNP loci on BTA 5 were associated (false discovery rate controlled at 0.05) with udder support score. One of those was also detected as associated with average teat diameter. Three of those 15 SNP were located within genes, including one each in (), (), and (). These are notable for their functional role in some aspect of mammary gland formation or health. Other candidate genes for these traits in the vicinity of the SNP loci include () and (). Because these were detected in Nellore-Angus crossbred cows, which typically have very well-formed udders with excellent support

  4. Single nucleotide polymorphisms of Helicobacter pylori dupA that lead to premature stop codons.

    Science.gov (United States)

    Moura, Sílvia B; Costa, Rafaella F A; Anacleto, Charles; Rocha, Gifone A; Rocha, Andreia M C; Queiroz, Dulciene M M

    2012-06-01

     The detection of the putative disease-specific Helicobacter pylori marker duodenal ulcer promoting gene A (dupA) is currently based on PCR detection of jhp0917 and jhp0918 that form the gene. However, mutations that lead to premature stop codons that split off the dupA leading to truncated products cannot be evaluated by PCR. We directly sequence the complete dupA of 75 dupA-positive strains of H. pylori isolated from patients with gastritis (n = 26), duodenal ulcer (n = 29), and gastric carcinoma (n = 20), to search for frame-shifting mutations that lead to stop codon. Thirty-four strains had single nucleotide mutations in dupA that lead to premature stop codon creating smaller products than the predicted 1839 bp product and, for this reason, were considered as dupA-negative. Intact dupA was more frequently observed in strains isolated from duodenal ulcer patients (65.5%) than in patients with gastritis only (46.2%) or with gastric carcinoma (50%). In logistic analysis, the presence of the intact dupA independently associated with duodenal ulcer (OR = 5.06; 95% CI = 1.22-20.96, p = .02).  We propose the primer walking methodology as a simple technique to sequence the gene. When we considered as dupA-positive only those strains that carry dupA gene without premature stop codons, the gene was associated with duodenal ulcer and, therefore, can be used as a marker for this disease in our population. © 2012 Blackwell Publishing Ltd.

  5. Meta-analysis of the relationship between single nucleotide polymorphism of IL-10-1082G/A and rheumatic heart disease.

    Science.gov (United States)

    Dai, Weiran; Ye, Ziliang; Lu, Haili; Su, Qiang; Li, Hui; Li, Lang

    2018-02-23

    The results showed that there was a certain correlation between the single nucleotide polymorphism of IL-10-1082G/A and rheumatic heart disease, but there was no systematic study to verify this conclusion. Systematic review of the association between single nucleotide polymorphism of IL-10-1082G/A locus and rheumatic heart disease. Computer retrieval PubMed, EMbase, Cochrane Library, CBM, CNKI, VIP and Data WanFang, the retrieval time limit from inception to June 2017. A case control study of single nucleotide polymorphisms and rheumatic heart disease in patients with rheumatic heart disease in the IL-10-1082G/A was collected. Two researchers independently screened the literature, extracted data and evaluated the risk of bias in the study, and using RevMan5.3 software for data analysis. A total of 3 case control studies were included, including 318 patients with rheumatic heart disease and 502 controls. Meta-analysis showed that there was no correlation between IL-10-1082G/A gene polymorphism and rheumatic heart disease [AA+AG VS GG: OR = 0.62, 95% CI (0.28, 1.39), P = 0.25; AA VS AG+GG: OR = 0.73, 95% CI (0.54, 1.00), P = 0.05; AA VS GG: OR = 0.70, 95% CI(0.47, 1.05), P = 0.08; AG VS GG: OR = 0.65, 95% CI (0.22, 1.92), P = 0.43; A VS G: OR = 0.87, 95% CI (0.71, 1.06), P = 0.17]. When AA is a recessive gene, the single nucleotide polymorphism of IL-10-1082G/A is associated with the presence of rheumatic heart disease. Due to the limitations of the quantity and quality of the included literatures, the further research results were still needed.

  6. Single Nucleotide Polymorphisms Associated with Reading Ability Show Connection to Socio-Economic Outcomes.

    Science.gov (United States)

    Luciano, Michelle; Hagenaars, Saskia P; Cox, Simon R; Hill, William David; Davies, Gail; Harris, Sarah E; Deary, Ian J; Evans, David M; Martin, Nicholas G; Wright, Margaret J; Bates, Timothy C

    2017-09-01

    Impairments in reading and in language have negative consequences on life outcomes, but it is not known to what extent genetic effects influence this association. We constructed polygenic scores for difficulties with language and learning to read from genome-wide data in ~6,600 children, adolescents and young adults, and tested their association with health, socioeconomic outcomes and brain structure measures collected in adults (maximal N = 111,749). Polygenic risk of reading difficulties was associated with reduced income, educational attainment, self-rated health and verbal-numerical reasoning (p intelligence) and 0.70 (educational attainment) with reading ability. Mendelian randomization approaches will be important to dissociate any causal and moderating effects of reading and related traits on social outcomes.

  7. An Investigation of Modifying Effects of Metallothionein Single-Nucleotide Polymorphisms on the Association between Mercury Exposure and Biomarker Levels

    Science.gov (United States)

    Wang, Yi; Goodrich, Jaclyn M.; Gillespie, Brenda; Werner, Robert; Basu, Niladri

    2012-01-01

    Background: Recent studies have suggested that several genes that mediate mercury metabolism are polymorphic in humans. Objective: We hypothesized that single-nucleotide polymorphisms (SNPs) in metallothionein (MT) genes may underlie interindividual differences in mercury biomarker levels. We studied the potential modifying effects of MT SNPs on mercury exposure–biomarker relationships. Methods: We measured total mercury in urine and hair samples of 515 dental professionals. We also surveyed occupational and personal exposures to dental amalgam and dietary fish consumption, from which daily methylmercury (MeHg) intake was estimated. Log-transformed urine and hair levels were modeled in multivariable linear regression separately against respective exposure surrogates, and the effect modification of 13 MT SNPs on exposure was investigated. Results: The mean mercury levels in urine (1.06 μg/L) and hair (0.51 μg/g) were not significantly different from the U.S. general population (0.95 μg/L and 0.47 μg/g, respectively). The mean estimated daily MeHg intake was 0.084 μg/kg/day (range, 0–0.98 μg/kg/day), with 25% of study population intakes exceeding the current U.S. Environmental Protection Agency reference dose of 0.1 μg/kg/day. Multivariate regression analysis showed that subjects with the MT1M (rs2270837) AA genotype (n = 10) or the MT2A (rs10636) CC genotype (n = 42) had lower urinary mercury levels than did those with the MT1M or MT2A GG genotype (n = 329 and 251, respectively) after controlling for exposure and potential confounders. After controlling for MeHg intake, subjects with MT1A (rs8052394) GA and GG genotypes (n = 24) or the MT1M (rs9936741) TT genotype (n = 459) had lower hair mercury levels than did subjects with MT1A AA (n = 113) or MT1M TC and CC genotypes (n = 15), respectively. Conclusion: Our findings suggest that some MT genetic polymorphisms may influence mercury biomarker concentrations at levels of exposure relevant to the general

  8. Single Nucleotide Polymorphism TGFβ1 R25P Correlates with Acute Toxicity during Neoadjuvant Chemoradiotherapy in Rectal Cancer Patients

    International Nuclear Information System (INIS)

    Smith, J. Joshua; Wasserman, Isaac; Milgrom, Sarah A.; Chow, Oliver S.; Chen, Chin-Tung; Patil, Sujata; Goodman, Karyn A.; Garcia-Aguilar, Julio

    2017-01-01

    Purpose: To validate the finding of an association between single nucleotide polymorphisms (SNPs) and toxicity during chemoradiotherapy (CRT) in rectal cancer patients, in an independent population. Methods and Materials: The cohort consisted of 165 patients who received CRT for rectal cancer from 2006 to 2012. Prospectively recorded toxicity information, graded according to the Common Terminology Criteria for Adverse Events version 3.0, was retrieved from the medical record. Additionally, a subset of 52 patients recorded their gastrointestinal symptoms weekly during CRT, using the 7-item Bowel Problems Scale. Deoxyribonucleic acid was extracted from normal tissue in the proctectomy specimens and screened for 3 SNPs: XRCC1 R399Q, XPD K751Q, and TGFβ1 R25P. Univariable and multivariable logistic regression models were constructed. Results: The median radiation dose was 50.4 Gy, and all patients received concurrent chemotherapy. Toxicities measured by the Common Terminology Criteria for Adverse Events were closely associated with patient-reported outcomes for the patients who completed the 7-item Bowel Problems Scale. Grade ≥3 toxicity occurred during CRT in 14 patients (8%). All 14 patients had either XRCC1 R399Q or TGFβ1 R25P polymorphisms. The TGFβ1 R25P polymorphism was significantly associated with grade ≥3 toxicity (odds ratio [OR] 3.47, P=.04) and, in patients who completed the Bowel Problems Scale, with grade ≥4 toxicity (OR 5.61, P=.02). The latter finding persisted in a multivariable logistic regression model controlling for ethnicity, age, and sex (adjusted OR 1.83, P=.02). Conclusions: We have validated the correlation between the TGFβ1 R25P SNP and acute toxicity during CRT in an independent cohort using both clinician- and patient-reported toxicity. The information from our study could be used as a basis to formulate a prospective trial testing the utility of this SNP as a biomarker of acute toxicity during neoadjuvant treatment in locally

  9. Single nucleotide polymorphisms of one-carbon metabolism and cancers of the esophagus, stomach, and liver in a Chinese population.

    Directory of Open Access Journals (Sweden)

    Shen-Chih Chang

    Full Text Available One-carbon metabolism (folate metabolism is considered important in carcinogenesis because of its involvement in DNA synthesis and biological methylation reactions. We investigated the associations of single nucleotide polymorphisms (SNPs in folate metabolic pathway and the risk of three GI cancers in a population-based case-control study in Taixing City, China, with 218 esophageal cancer cases, 206 stomach cancer cases, 204 liver cancer cases, and 415 healthy population controls. Study participants were interviewed with a standardized questionnaire, and blood samples were collected after the interviews. We genotyped SNPs of the MTHFR, MTR, MTRR, DNMT1, and ALDH2 genes, using PCR-RFLP, SNPlex, or TaqMan assays. To account for multiple comparisons and reduce the chances of false reports, we employed semi-Bayes (SB shrinkage analysis. After shrinkage and adjusting for potential confounding factors, we found positive associations between MTHFR rs1801133 and stomach cancer (any T versus C/C, SB odds-ratio [SBOR]: 1.79, 95% posterior limits: 1.18, 2.71 and liver cancer (SBOR: 1.51, 95% posterior limits: 0.98, 2.32. There was an inverse association between DNMT1 rs2228612 and esophageal cancer (any G versus A/A, SBOR: 0.60, 95% posterior limits: 0.39, 0.94. In addition, we detected potential heterogeneity across alcohol drinking status for ORs relating MTRR rs1801394 to esophageal (posterior homogeneity P = 0.005 and stomach cancer (posterior homogeneity P = 0.004, and ORs relating MTR rs1805087 to liver cancer (posterior homogeneity P = 0.021. Among non-alcohol drinkers, the variant allele (allele G of these two SNPs was inversely associated with the risk of these cancers; while a positive association was observed among ever-alcohol drinkers. Our results suggest that genetic polymorphisms related to one-carbon metabolism may be associated with cancers of the esophagus, stomach, and liver. Heterogeneity across alcohol consumption status of

  10. Single Nucleotide Polymorphism TGFβ1 R25P Correlates with Acute Toxicity during Neoadjuvant Chemoradiotherapy in Rectal Cancer Patients

    Energy Technology Data Exchange (ETDEWEB)

    Smith, J. Joshua [Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York (United States); Wasserman, Isaac [Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York (United States); Icahn School of Medicine at Mount Sinai, New York, New York (United States); Milgrom, Sarah A. [Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York (United States); Chow, Oliver S.; Chen, Chin-Tung [Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York (United States); Patil, Sujata [Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York (United States); Goodman, Karyn A. [Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York (United States); Garcia-Aguilar, Julio, E-mail: garciaaj@mskcc.org [Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York (United States)

    2017-04-01

    Purpose: To validate the finding of an association between single nucleotide polymorphisms (SNPs) and toxicity during chemoradiotherapy (CRT) in rectal cancer patients, in an independent population. Methods and Materials: The cohort consisted of 165 patients who received CRT for rectal cancer from 2006 to 2012. Prospectively recorded toxicity information, graded according to the Common Terminology Criteria for Adverse Events version 3.0, was retrieved from the medical record. Additionally, a subset of 52 patients recorded their gastrointestinal symptoms weekly during CRT, using the 7-item Bowel Problems Scale. Deoxyribonucleic acid was extracted from normal tissue in the proctectomy specimens and screened for 3 SNPs: XRCC1 R399Q, XPD K751Q, and TGFβ1 R25P. Univariable and multivariable logistic regression models were constructed. Results: The median radiation dose was 50.4 Gy, and all patients received concurrent chemotherapy. Toxicities measured by the Common Terminology Criteria for Adverse Events were closely associated with patient-reported outcomes for the patients who completed the 7-item Bowel Problems Scale. Grade ≥3 toxicity occurred during CRT in 14 patients (8%). All 14 patients had either XRCC1 R399Q or TGFβ1 R25P polymorphisms. The TGFβ1 R25P polymorphism was significantly associated with grade ≥3 toxicity (odds ratio [OR] 3.47, P=.04) and, in patients who completed the Bowel Problems Scale, with grade ≥4 toxicity (OR 5.61, P=.02). The latter finding persisted in a multivariable logistic regression model controlling for ethnicity, age, and sex (adjusted OR 1.83, P=.02). Conclusions: We have validated the correlation between the TGFβ1 R25P SNP and acute toxicity during CRT in an independent cohort using both clinician- and patient-reported toxicity. The information from our study could be used as a basis to formulate a prospective trial testing the utility of this SNP as a biomarker of acute toxicity during neoadjuvant treatment in locally

  11. Genetic basis of olfactory cognition: extremely high level of DNA sequence polymorphism in promoter regions of the human olfactory receptor genes revealed using the 1000 Genomes Project dataset.

    Science.gov (United States)

    Ignatieva, Elena V; Levitsky, Victor G; Yudin, Nikolay S; Moshkin, Mikhail P; Kolchanov, Nikolay A

    2014-01-01

    The molecular mechanism of olfactory cognition is very complicated. Olfactory cognition is initiated by olfactory receptor proteins (odorant receptors), which are activated by olfactory stimuli (ligands). Olfactory receptors are the initial player in the signal transduction cascade producing a nerve impulse, which is transmitted to the brain. The sensitivity to a particular ligand depends on the expression level of multiple proteins involved in the process of olfactory cognition: olfactory receptor proteins, proteins that participate in signal transduction cascade, etc. The expression level of each gene is controlled by its regulatory regions, and especially, by the promoter [a region of DNA about 100-1000 base pairs long located upstream of the transcription start site (TSS)]. We analyzed single nucleotide polymorphisms using human whole-genome data from the 1000 Genomes Project and revealed an extremely high level of single nucleotide polymorphisms in promoter regions of olfactory receptor genes and HLA genes. We hypothesized that the high level of polymorphisms in olfactory receptor promoters was responsible for the diversity in regulatory mechanisms controlling the expression levels of olfactory receptor proteins. Such diversity of regulatory mechanisms may cause the great variability of olfactory cognition of numerous environmental olfactory stimuli perceived by human beings (air pollutants, human body odors, odors in culinary etc.). In turn, this variability may provide a wide range of emotional and behavioral reactions related to the vast variety of olfactory stimuli.

  12. Genetic basis of olfactory cognition: extremely high level of DNA sequence polymorphism in promoter regions of the human olfactory receptor genes revealed using the 1000 Genomes Project dataset

    Directory of Open Access Journals (Sweden)

    Elena V. Ignatieva

    2014-03-01

    Full Text Available The molecular mechanism of olfactory cognition is very complicated. Olfactory cognition is initiated by olfactory receptor proteins (odorant receptors, which are activated by olfactory stimuli (ligands. Olfactory receptors are the initial player in the signal transduction cascade producing a nerve impulse, which is transmitted to the brain. The sensitivity to a particular ligand depends on the expression level of multiple proteins involved in the process of olfactory cognition: olfactory receptor proteins, proteins that participate in signal transduction cascade, etc. The expression level of each gene is controlled by its regulatory regions, and especially, by the promoter (a region of DNA about 100–1000 base pairs long located upstream of the transcription start site. We analyzed single nucleotide polymorphisms using human whole-genome data from the 1000 Genomes Project and revealed an extremely high level of single nucleotide polymorphisms in promoter regions of olfactory receptor genes and HLA genes. We hypothesized that the high level of polymorphisms in olfactory receptor promoters was responsible for the diversity in regulatory mechanisms controlling the expression levels of olfactory receptor proteins. Such diversity of regulatory mechanisms may cause the great variability of olfactory cognition of numerous environmental olfactory stimuli perceived by human beings (air pollutants, human body odors, odors in culinary etc.. In turn, this variability may provide a wide range of emotional and behavioral reactions related to the vast variety of olfactory stimuli.

  13. Single nucleotide polymorphism array lesions, TET2, DNMT3A, ASXL1 and CBL mutations are present in systemic mastocytosis.

    Directory of Open Access Journals (Sweden)

    Fabiola Traina

    Full Text Available We hypothesized that analysis of single nucleotide polymorphism arrays (SNP-A and new molecular defects may provide new insight in the pathogenesis of systemic mastocytosis (SM. SNP-A karyotyping was applied to identify recurrent areas of loss of heterozygosity and bidirectional sequencing was performed to evaluate the mutational status of TET2, DNMT3A, ASXL1, EZH2, IDH1/IDH2 and the CBL gene family. Overall survival (OS was analyzed using the Kaplan-Meier method. We studied a total of 26 patients with SM. In 67% of SM patients, SNP-A karyotyping showed new chromosomal abnormalities including uniparental disomy of 4q and 2p spanning TET2/KIT and DNMT3A. Mutations in TET2, DNMT3A, ASXL1 and CBL were found in 23%, 12%, 12%, and 4% of SM patients, respectively. No mutations were observed in EZH2 and IDH1/IDH2. Significant differences in OS were observed for