Nucleon structure study by virtual compton scattering
International Nuclear Information System (INIS)
Berthot, J.; Bertin, P.Y.; Breton, V.; Fonvielle, H.; Hyde-Wright, C.; Quemener, G.; Ravel, O.; Braghieri, A.; Pedroni, P.; Boeglin, W.U.; Boehm, R.; Distler, M.; Edelhoff, R.; Friedrich, J.; Geiges, R.; Jennewein, P.; Kahrau, M.; Korn, M.; Kramer, H.; Krygier, K.W.; Kunde, V.; Liesenfeld, A.; Merle, K.; Neuhausen, R.; Offermann, E.A.J.M.; Pospischil, T.; Rosner, G.; Sauer, P.; Schmieden, H.; Schardt, S.; Tamas, G.; Wagner, A.; Walcher, T.; Wolf, S.
1995-01-01
We propose to study nucleon structure by Virtual Compton Scattering using the reaction p(e,e'p)γ with the MAMI facility. We will detect the scattered electron and the recoil proton in coincidence in the high resolution spectrometers of the hall A1. Compton events will be separated from the other channels (principally π 0 production) by missing-mass reconstruction. We plan to investigate this reaction near threshold. Our goal is to measure new electromagnetic observables which generalize the usual magnetic and electric polarizabilities. (authors). 9 refs., 18 figs., 7 tabs
Energy Technology Data Exchange (ETDEWEB)
Bertini, M
1995-05-12
This thesis is devoted to the study of the deep inelastic scattering. Its purpose is the development of phenomenological models describing experimental results on unpolarized (F{sub 2}) and polarized (g{sub 1}) nucleon structure functions in the wide range of the kinematical domain. Special attention is paid to the small-x behaviour of F{sub 2} and to the link between deep inelastic scattering and photoproduction process. The investigation of the Pomeron in deep inelastic scattering shows that one single Pomeron compatible with the Froissard-Martin limit can account for all the present HERA data. A phenomenological model of the proton structure function is developed, based on a two-component structure including various features expected from both perturbative quantum chromodynamics and non perturbative Regge theory. A link with the photoproduction process is provided. A detailed analysis of the perturbative components, based on the Gribov-Lipatov-Altarelli-Parisi evolution equations is presented. Taking into account the different parton distribution, this approach allows to describe data on proton and neutron structure functions, on deep inelastic neutrino scattering, and to reproduce the gluons distribution extracted by the ZEUS collaboration. The model is applied to the polarized deep inelastic scattering and the axial anomaly effect appearing both in the description of results on the spin dependent structure functions g{sup p,n,d} and in the interpretation of the nucleon spin structure is discussed. (J.S.). 260 refs., 34 figs., 8 tabs., 6 appends.
Experimental study of the nucleon spin structure
Energy Technology Data Exchange (ETDEWEB)
Litmaath, M.F.
1996-05-07
After introducing the theoretical framework, which includes DIS, the Quark Parton Model (QPM) and QCD, we describe the implementation of the experiment. The SMC uses a beam of 190 GeV naturally polarized muons, scattering off nucleons in a large cryogenic target containing protons or deuterons that are polarized through Dynamic Nuclear Polarization (DNP). The target material is located in two cells in a row, with opposite polarizations. Every 5 hours the polarizations of both cells are reversed. The target polarization is measured by an NMR system. The polarization of the beam is measured in a polarimeter, located downstream of the main experimental setup. (orig.).
Experimental study of the nucleon spin structure
International Nuclear Information System (INIS)
Litmaath, M.F.
1996-01-01
After introducing the theoretical framework, which includes DIS, the Quark Parton Model (QPM) and QCD, we describe the implementation of the experiment. The SMC uses a beam of 190 GeV naturally polarized muons, scattering off nucleons in a large cryogenic target containing protons or deuterons that are polarized through Dynamic Nuclear Polarization (DNP). The target material is located in two cells in a row, with opposite polarizations. Every 5 hours the polarizations of both cells are reversed. The target polarization is measured by an NMR system. The polarization of the beam is measured in a polarimeter, located downstream of the main experimental setup. (orig.)
Studies of nucleon resonance structure in exclusive meson electroproduction
International Nuclear Information System (INIS)
Aznauryan, I.G.; Bashir, A.; Braun, V.M.
2013-01-01
Studies of the structure of excited baryons are key factors to the N* program at Jefferson Lab (JLab). Within the first year of data taking with the Hall B CLAS12 detector following the 12 GeV upgrade, a dedicated experiment will aim to extract the N* electrocouplings at high photon virtualities Q 2 . This experiment will allow exploration of the structure of N* resonances at the highest photon virtualities ever achieved, with a kinematic reach up to Q 2 = 12 GeV 2 . This high-Q 2 reach will make it possible to probe the excited nucleon structures at distance scales ranging from where effective degrees of freedom, such as constituent quarks, are dominant through the transition to where nearly massless bare-quark degrees of freedom are relevant. In this document, we present a detailed description of the physics that can be addressed through N* structure studies in exclusive meson electroproduction. The discussion includes recent advances in reaction theory for extracting N* electrocouplings from meson electroproduction off protons, along with Quantum Chromodynamics (QCD)-based approaches to the theoretical interpretation of these fundamental quantities. This program will afford access to the dynamics of the nonperturbative strong interaction responsible for resonance formation, and will be crucial in understanding the nature of confinement and dynamical chiral symmetry breaking in baryons, and how excited nucleons emerge from QCD. (author)
Nucleon electromagnetic structure studies in the spacelike and timelike regions
Energy Technology Data Exchange (ETDEWEB)
Guttmann, Julia
2013-07-23
The thesis investigates the nucleon structure probed by the electromagnetic interaction. One of the most basic observables, reflecting the electromagnetic structure of the nucleon, are the form factors, which have been studied by means of elastic electron-proton scattering with ever increasing precision for several decades. In the timelike region, corresponding with the proton-antiproton annihilation into a electron-positron pair, the present experimental information is much less accurate. However, in the near future high-precision form factor measurements are planned. About 50 years after the first pioneering measurements of the electromagnetic form factors, polarization experiments stirred up the field since the results were found to be in striking contradiction to the findings of previous form factor investigations from unpolarized measurements. Triggered by the conflicting results, a whole new field studying the influence of two-photon exchange corrections to elastic electron-proton scattering emerged, which appeared as the most likely explanation of the discrepancy. The main part of this thesis deals with theoretical studies of two-photon exchange, which is investigated particularly with regard to form factor measurements in the spacelike as well as in the timelike region. An extraction of the two-photon amplitudes in the spacelike region through a combined analysis using the results of unpolarized cross section measurements and polarization experiments is presented. Furthermore, predictions of the two-photon exchange effects on the e{sup +}p/e{sup -}p cross section ratio are given for several new experiments, which are currently ongoing. The two-photon exchange corrections are also investigated in the timelike region in the process p anti p → e{sup +}e{sup -} by means of two factorization approaches. These corrections are found to be smaller than those obtained for the spacelike scattering process. The influence of the two-photon exchange corrections on
Nucleon electromagnetic structure studies in the spacelike and timelike regions
International Nuclear Information System (INIS)
Guttmann, Julia
2013-01-01
The thesis investigates the nucleon structure probed by the electromagnetic interaction. One of the most basic observables, reflecting the electromagnetic structure of the nucleon, are the form factors, which have been studied by means of elastic electron-proton scattering with ever increasing precision for several decades. In the timelike region, corresponding with the proton-antiproton annihilation into a electron-positron pair, the present experimental information is much less accurate. However, in the near future high-precision form factor measurements are planned. About 50 years after the first pioneering measurements of the electromagnetic form factors, polarization experiments stirred up the field since the results were found to be in striking contradiction to the findings of previous form factor investigations from unpolarized measurements. Triggered by the conflicting results, a whole new field studying the influence of two-photon exchange corrections to elastic electron-proton scattering emerged, which appeared as the most likely explanation of the discrepancy. The main part of this thesis deals with theoretical studies of two-photon exchange, which is investigated particularly with regard to form factor measurements in the spacelike as well as in the timelike region. An extraction of the two-photon amplitudes in the spacelike region through a combined analysis using the results of unpolarized cross section measurements and polarization experiments is presented. Furthermore, predictions of the two-photon exchange effects on the e + p/e - p cross section ratio are given for several new experiments, which are currently ongoing. The two-photon exchange corrections are also investigated in the timelike region in the process p anti p → e + e - by means of two factorization approaches. These corrections are found to be smaller than those obtained for the spacelike scattering process. The influence of the two-photon exchange corrections on cross section
International Nuclear Information System (INIS)
Virchaux, M.
1992-11-01
The present status of experimental measurements of the nucleon structure functions is reviewed. The results from nearly all deep inelastic experiments are in good mutual agreement. Principles of the analysis of these structure function data in the framework of QCD are described. The specific features of the perturbative QCD predictions are observed in the data. This provides quantitative tests of the validity of QCD as well as determinations of the various parton distributions in the nucleon and some of the most precise measurements of the strong coupling constant αs. The future of this field of experimental physics is sketched
The multidimensional nucleon structure
Directory of Open Access Journals (Sweden)
Pasquini Barbara
2016-01-01
Full Text Available We discuss different kinds of parton distributions, which allow one to obtain a multidimensional picture of the internal structure of the nucleon. We use the concept of generalized transverse momentum dependent parton distributions and Wigner distributions, which combine the features of transverse-momentum dependent parton distributions and generalized parton distributions. We show examples of these functions within a phenomenological quark model, with focus on the role of the spin-spin and spin-orbit correlations of quarks.
Axial structure of the nucleon
Energy Technology Data Exchange (ETDEWEB)
Veronique Bernard; Latifa Elouadrhiri; Ulf-G Meissner
2002-01-01
We review the current status of experimental and theoretical understanding of the axial nucleon structure at low and moderate energies. Topics considered include (quasi)elastic (anti)neutrino-nucleon scattering, charged pion electroproduction off nucleons and ordinary as well as radiative muon capture on the proton.
Spin-dependent Nucleon Structure Studies at MIT/Bates
International Nuclear Information System (INIS)
Botto, T.
2005-01-01
We present preliminary results from recent measurements of the proton, neutron and deuterium electro-magnetic form factors obtained by the BLAST collaboration at the MIT/Bates Linear Accelerator Facility. BLAST (Bates Large Acceptance Spectrometer Toroid) is a large-acceptance multi-purpose detector dedicated to studies of exclusive spin-dependent electron scattering from internal polarized targets. BLAST makes use of stored electron beam currents in excess of 150 mA with a 60-70% polarization. The electron beam is let through a 15 mm diameter, 60 cm long open-ended storage cell which is fed with ultra-pure, high-polarization H1,D1 gas from an Atomic Beam Source. The target polarization can be rapidly reversed between different vector and tensor target states, thus minimizing systematic uncertainties. The target spin can be oriented to any in-plane direction via a set of Helmholtz coils. Target polarizations in the storage cell of up to 80% (vector) and 70% (tensor) have been routinely achieved over a period of several months. Our data on the D-vector(e-vector,e'n) reaction off vector polarized deuterium allow for a unique extraction of the neutron charge form factor G E n . At same time, complementary measurements of G M n , T20 and the spin-dependent nucleon momentum distributions in deuterium are obtained via the D-vector(e-vector,e'), D (e-vector,e'd) and D (e-vector,e'p) reactions. In addition, BLAST data on vector polarized hydrogen will provide novel measurements of the GE/GM form-factor ratio on the proton as well as of the spin-dependent electro-excitation of the Δ(1232) resonance. Such comprehensive program on few body physics is now well underway and preliminary data will be presented
Studies of the nucleon structure in back-to-back SIDIS
Energy Technology Data Exchange (ETDEWEB)
Avakian, Harut [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)
2016-03-01
The Deep Inelastic Scattering (DIS) proved to be a great tool in testing of the theory of strong interactions, which was a major focus in last decades. Semi-Inclusive DIS (SIDIS), with detection of an additional hadron allowed first studies of 3D structure of the nucleon, moving the main focus from testing the QCD to understanding of strong interactions and quark gluon dynamics to address a number of puzzles accumulated in recent years. Detection of two hadrons in SIDIS, which is even more complicated, provides access to details of quark gluon interactions inaccessible in single-hadron SIDIS, providing a new avenue to study the complex nucleon structure. Large acceptance of the Electron Ion Collider, allowing detection of two hadrons, produced back-to-back in the current and target fragmentation regions, combined with clear separation of two regions, would provide a unique possibility to study the nucleon structure in target fragmentation region, and correlations of target and current fragmentation regions.
Experimental Studies of Quark-Gluon Structure of Nucleons and Nuclei
International Nuclear Information System (INIS)
Kyle, Gary
2004-01-01
The NMSU group has a lengthy history in the study of the nucleon structure and in particular its spin structure in terms of its fundamental constituents. This line of research is continuing in our current involvement in experiments at Brookhaven National Lab and the Thomas Jefferson National Accelerator Facility
Nucleon structure from lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Dinter, Simon
2012-11-13
In this thesis we compute within lattice QCD observables related to the structure of the nucleon. One part of this thesis is concerned with moments of parton distribution functions (PDFs). Those moments are essential elements for the understanding of nucleon structure and can be extracted from a global analysis of deep inelastic scattering experiments. On the theoretical side they can be computed non-perturbatively by means of lattice QCD. However, since the time lattice calculations of moments of PDFs are available, there is a tension between these lattice calculations and the results from a global analysis of experimental data. We examine whether systematic effects are responsible for this tension, and study particularly intensively the effects of excited states by a dedicated high precision computation. Moreover, we carry out a first computation with four dynamical flavors. Another aspect of this thesis is a feasibility study of a lattice QCD computation of the scalar quark content of the nucleon, which is an important element in the cross-section of a heavy particle with the nucleon mediated by a scalar particle (e.g. Higgs particle) and can therefore have an impact on Dark Matter searches. Existing lattice QCD calculations of this quantity usually have a large error and thus a low significance for phenomenological applications. We use a variance-reduction technique for quark-disconnected diagrams to obtain a precise result. Furthermore, we introduce a new stochastic method for the calculation of connected 3-point correlation functions, which are needed to compute nucleon structure observables, as an alternative to the usual sequential propagator method. In an explorative study we check whether this new method is competitive to the standard one. We use Wilson twisted mass fermions at maximal twist in all our calculations, such that all observables considered here have only O(a{sup 2}) discretization effects.
Nucleon structure from lattice QCD
International Nuclear Information System (INIS)
Dinter, Simon
2012-01-01
In this thesis we compute within lattice QCD observables related to the structure of the nucleon. One part of this thesis is concerned with moments of parton distribution functions (PDFs). Those moments are essential elements for the understanding of nucleon structure and can be extracted from a global analysis of deep inelastic scattering experiments. On the theoretical side they can be computed non-perturbatively by means of lattice QCD. However, since the time lattice calculations of moments of PDFs are available, there is a tension between these lattice calculations and the results from a global analysis of experimental data. We examine whether systematic effects are responsible for this tension, and study particularly intensively the effects of excited states by a dedicated high precision computation. Moreover, we carry out a first computation with four dynamical flavors. Another aspect of this thesis is a feasibility study of a lattice QCD computation of the scalar quark content of the nucleon, which is an important element in the cross-section of a heavy particle with the nucleon mediated by a scalar particle (e.g. Higgs particle) and can therefore have an impact on Dark Matter searches. Existing lattice QCD calculations of this quantity usually have a large error and thus a low significance for phenomenological applications. We use a variance-reduction technique for quark-disconnected diagrams to obtain a precise result. Furthermore, we introduce a new stochastic method for the calculation of connected 3-point correlation functions, which are needed to compute nucleon structure observables, as an alternative to the usual sequential propagator method. In an explorative study we check whether this new method is competitive to the standard one. We use Wilson twisted mass fermions at maximal twist in all our calculations, such that all observables considered here have only O(a 2 ) discretization effects.
International Nuclear Information System (INIS)
Dueren, M.
2001-01-01
The spin and flavor structure of quarks and gluons in nucleons and nuclei is more complicated than expected in the original naive quark model. Recent results which show some of the key failures of the naive picture are summarized here with emphasis on recent results from the HERMES experiment. Some future options to study the quarks structure in exclusive processes in electroproduction, photoproduction and pp annihilation are presented. (orig.)
Probing nuclear structure with nucleons
International Nuclear Information System (INIS)
Bauge, E.
2007-01-01
The goal of this lecture is to show how nucleon scattering can be used to probe the structure of target nuclei, and how nucleon scattering observables can be interpreted in terms of nuclear structure using microscopic optical potentials. After a brief overview of the specificities of nucleon-nucleus scattering, and a quick reminder on scattering theory, the main part of this lecture is devoted to the construction of optical potentials in which the target nuclei structure information is folded with an effective interaction. Several examples of such microscopic optical model potentials are given. (author)
Diquarks and nucleon structure functions
International Nuclear Information System (INIS)
Linkevich, A.D.; Savrin, V.I.; Skachkov, N.B.
1982-01-01
Formulae for structure functions of the deep-inelastic lepton-nucleon scattering are obtained through relativistic wave functions of systems composed of particles with spins 0, 1/2 and 1, 1/2. These wave functions are solutions of covariant two-particle single-time equations describing the nucleon as a system formed out of a quark and a diquark. Diquark is considered as a boson with the spin 0 and 1. The expressions for the nucleon structure functions are obtained by using the matrix elements of the current operator corresponding to the elastic scattering of the photon on a quark and on a diquark [ru
Studies of the nucleon structure in back-to-back SIDIS
International Nuclear Information System (INIS)
Avakian, H.
2016-01-01
The Deep Inelastic Scattering (DIS) proved to be a great tool in testing of the theory of strong interactions, which was a major focus in last decades. Semi-Inclusive DIS (SIDIS), with detection of an additional hadron allowed first studies of 3D structure of the nucleon, moving the main focus from testing the QCD to understanding of strong interactions and quark gluon dynamics to address a number of puzzles accumulated in recent years. Detection of two hadrons in SIDIS, which is even more complicated, provides access to details of quark gluon interactions inaccessible in single-hadron SIDIS, providing a new avenue to study the complex nucleon structure. Large acceptance of the Electron Ion Collider, allowing detection of two hadrons, produced back-to-back in the current and target fragmentation regions, combined with clear separation of two regions, would provide a unique possibility to study the nucleon structure in target fragmentation region, and correlations of target and current fragmentation regions. (authors)
Calculations of nucleon structure functions
International Nuclear Information System (INIS)
Signal, A.I.
1990-01-01
We present a method of calculating deep inelastic nucleon structure functions using bag model wavefunctions. Our method uses the Peierls - Yoccoz projection to form translation invariant bag states. We obtain the correct support for the structure functions and satisfy the positivity requirements for quark and anti-quark distribution functions. (orig.)
Internal spin structure of the nucleon
International Nuclear Information System (INIS)
Hughes, V.W.; Kuti, J.
1983-01-01
The study of the structure of the proton and neutron through deep inelastic scattering, initially with electrons but subsequently with muons and neutrinos as well, has played a central role in establishing the quark-parton theory of the composition of hadrons and of quantum chromodynamics (QCD). One important aspect of these theoretical and experimental developments is the two spin-dependent structure functions, which are independent of the two spin-averaged structure functions and define the internal spin structure of the nucleon. Since both quarks and gluons possess spin and the forces between them are spin dependent, we can expect important information on these forces and on nucleon structure to be obtained through the study of the spindependent aspects of the nucleon wave function, as has been the case before in atomic and nuclear physics
The spin structure of the nucleon
International Nuclear Information System (INIS)
Deur, A.
2008-02-01
This document describes the recent experimental results on the spin structure of the nucleon obtained with the electron accelerator Thomas Jefferson National Facility (Jefferson Lab), Virginia. We first discuss the goal of studying the nucleon spin structure and give the basis and phenomenology of high energy lepton scattering. Then, we discuss with some details a few sum rules concerning the spin structure of the nucleon. Those are important tools for studying the nucleon spin structure at Jefferson Lab. We then describe the present experimental situation and analyze the results. We have been able to determine an effective coupling constant for the strong interaction for any regime of quantum chromodynamics which proves that QCD is an approximately conformal theory. We conclude on the perspectives for this field of research, in particular with the 12 GeV energy upgrade of Jefferson Lab. The top priority will be the measurement of generalised parton distributions. The only issue that will stay misunderstood is the role of the very low x domain on the spin structure of the nucleon
International Nuclear Information System (INIS)
Simon, G.G.
1978-01-01
In this thesis results of measurements of the differential cross sections of the elastic and inelastic electron deuteron scattering are presented. The data were taken at several scattering angles and in the electron energy range of 150 MeV up to 320 MeV. The extracted form factors and structure functions are compared with theoretical results which are sensitive to details of nucleon structure and of the nucleon-nucleon forces. (FKS)
Nucleon Spin Structure: Longitudinal and Transverse
International Nuclear Information System (INIS)
Chen, Jian-Ping
2011-01-01
Inclusive Deep-Inelastic Scattering (DIS) experiments have provided us with the most extensive information on the unpolarized and longitudinal polarized parton (quark and gluon) distributions in the nucleon. It has becoming clear that transverse spin and transverse momentum dependent distributions (TMDs) study are crucial for a more complete understanding of the nucleon structure and the dynamics of the strong interaction. The transverse spin structure and the TMDs are the subject of increasingly intense theoretical and experimental study recently. With a high luminosity electron beam facility, JLab has played a major role in the worldwide effort to study both the longitudinal and transverse spin structure. Highlights of recent results will be presented. With 12-GeV energy upgrade, JLab will provide the most precise measurements in the valence quark region to close a chapter in longitudinal spin study. JLab will also perform a multi-dimensional mapping of the transverse spin structure and TMDs in the valence quark region through Semi-Inclusive DIS (SIDIS) experiments, providing a 3-d partonic picture of the nucleon in momentum space and extracting the u and d quark tensor charges of the nucleon. The precision mapping of TMDs will also allow a detailed study of the quark orbital motion and its dynamics.
Study of the spin structure functions of the nucleon: the E143 experiment at SLAC
International Nuclear Information System (INIS)
Grenier, Philippe
1995-01-01
In this thesis, we present the results of the E143 experiment of deep inelastic scattering of 29 GeV polarized electrons from polarized NH 3 and ND 3 targets, at SLAC. The goal of the experiment is the measurement of the spin structure functions g 1 and g 2 of the nucleon which provide information on its internal spin structure. Experimentally, the structure functions are extracted from the measurement of cross section asymmetries. Our measured values of the first moment of g 1 are two and three standard deviations below the Ellis-Jaffe sum rule predictions, for the proton and for the deuteron, respectively. The Bjoerken sum rule, a QCD fundamental prediction, has been confirmed. We find the quark contribution to the nucleon spin to be around 30 pc. Our results on g 2 are well described by the Wandzura-Wilczek expression. (author) [fr
Study of the nucleon spin structure functions: the E154 experiment at SLAC
International Nuclear Information System (INIS)
Sabatie, Franck
1998-01-01
In experiment E154 at SLAC, the spin dependent structure function g 1 n was measured by scattering longitudinally polarized 50 GeV electrons off a longitudinally polarized helium 3 target. We report the integral over the measured x range to be ∫ 0.014 0.7 g 1 n (x,5 GeV 2 )dx = -0.0348 ± 0.0033 ± 0.0043 ± 0.0014. We observe relatively large values of g 1 n at low x, calling into question the reliability of the data extrapolation down to x equal 0. Such a divergent behavior seems to disagree with the prediction of the Regge theory but can be quantitatively explained by perturbative QCD. Moreover, we have performed a NLO perturbative QCD analysis of the world data on g 1 , paying careful attention to both the theoretical hypothesis and the calculation of errors. Using a parametrization of the polarized parton distribution at a low scale, we can access the fraction of spin carried by quarks: ΔΣ = 29 ± 6 pc in the MS-bar scheme, and ΔΣ = 37 ± 7 pc in the AB scheme. The gluon contribution to the nucleon spin is not well enough constrained by the current data, but seems to lie between 0 and 2. This study allows us to extract the first moment of the g 1 structure function and we find agreement with the Bjorken sum rule expectations. (author) [fr
Study of the compressibility of the nucleon
Energy Technology Data Exchange (ETDEWEB)
Morsch, P.H. [Forschungszentrum Juelich GmbH (Germany). Inst. fuer Kernphysik]|[Laboratoire National Saturne, Centre d`Etudes de Saclay, 91 - Gif-sur-Yvette (France)
1996-12-31
A brief discussion of the theoretical and experimental situation in baryon spectroscopy is given. Then, the radial structure is discussed, related to the ground state form factors and the compressibility. The compressibility derived from experimental data is compared with results from different nucleon models. From the study of the Roper resonance in nuclei information on the dynamical radius of the nucleon can be obtained. Experiments have been performed on deuteron and {sup 12}C which show no shift of the Roper resonance in these systems. This indicates no sizeable `swelling` or `shrinking` of the nucleon in the nuclear medium. (K.A.). 25 refs.
Study of the compressibility of the nucleon
International Nuclear Information System (INIS)
Morsch, P.H.
1996-01-01
A brief discussion of the theoretical and experimental situation in baryon spectroscopy is given. Then, the radial structure is discussed, related to the ground state form factors and the compressibility. The compressibility derived from experimental data is compared with results from different nucleon models. From the study of the Roper resonance in nuclei information on the dynamical radius of the nucleon can be obtained. Experiments have been performed on deuteron and 12 C which show no shift of the Roper resonance in these systems. This indicates no sizeable 'swelling' or 'shrinking' of the nucleon in the nuclear medium. (K.A.)
Chiral nucleon-nucleon forces in nuclear structure calculations
Directory of Open Access Journals (Sweden)
Coraggio L.
2016-01-01
Full Text Available Realistic nuclear potentials, derived within chiral perturbation theory, are a major breakthrough in modern nuclear structure theory, since they provide a direct link between nuclear physics and its underlying theory, namely the QCD. As a matter of fact, chiral potentials are tailored on the low-energy regime of nuclear structure physics, and chiral perturbation theory provides on the same footing two-nucleon forces as well as many-body ones. This feature fits well with modern advances in ab-initio methods and realistic shell-model. Here, we will review recent nuclear structure calculations, based on realistic chiral potentials, for both finite nuclei and infinite nuclear matter.
Study of nuclear effects in the determination of nucleon structure functions with heavy targets
International Nuclear Information System (INIS)
Benvenuti, A.S.; Bollini, D.; Camporesi, T.
1984-01-01
Results of the experiment on deep inelastic scattering of 280 GeV muons on deuterium, nitrogen and iron nuclei are presented. The purpose of the measurements was to compare the Bjorken variable dependence of nucleon structure functions obtained in experiments on different nuclei and also Q 2 -dependence (Q- four-momentum transfer) of structure functions. The results of the experiments do not indicate any Q 2 -dependence of the Fsub(2)sup(Fe)/Fsub(2)sup(Dsub(2)) and Fsub(2)sup(Nsub(2))Fsub(2)sup(Dsub(2)) ratios. These ratios depend linearly on the parameter x: R=a+bx. The parameters of the linear fit for the iron/deuterium ratio are a=1.16+-0.03, b=-0.56+-0.08; and for the. ni;rogen/deuterium ratio, a=1.10+-0.04, anti b=-0.39+-0.09
A detailed study of nucleon structure function in nuclei in the valence quark region
Energy Technology Data Exchange (ETDEWEB)
Bianchi, N. [INFN-Laboratori, Nazionali di Frascati (Italy)
1994-04-01
The so called {open_quotes}EMC effect{close_quotes} discovered during the 1980`s, has caused a big controversy in the community of nuclear and high energy physicists; during the last ten years, five experiments have been performed in different laboratories and several hundreds of papers about the possible interpretation of the modification of the nucleon structure function inside nuclei have been published. However, from the experimental point of view, the main goal of four experiments (EMC, BCDMS, NMC, FNAL) has been to emphasize the region of low x{sub b}, where shadowing effects appear. In the region of valence quarks and nuclear effects (x{sub b} > 0.1 - 0.2) the most reliable data presently available are from the SLAC E139 experiment performed in 1983 with only 80 hours of beam time. New precise data in the valence quark region are necessary to measure separate structure functions F{sub 2}(x{sub b}, Q{sup 2}) and R{sup lt}(x{sub b},Q{sup 2}) = {sigma}{sub l}/{sigma}{sub t}, and to investigate the real A-dependence of the ratio between bound and free-nucleon structure functions which is not completely defined by the SLAC data. Moreover, from the nuclear physics point of view, a measurement on some unexplored nuclei, like {sup 3}He and {sup 48}Ca, would be of great interest. The intermediate scaling region (0.1 < x{sub b} < 0.7) would be accessible at CEBAF if the machine energy will reach 6-8 GeV, as suggested by all the tests performed on the RF cavities. This physics program has been already presented in two letter of intents.
International Nuclear Information System (INIS)
1996-01-01
This report summarizes the work on experimental research in intermediate energy nuclear physics carried out by New Mexico State University from April 1, 1994, through March 31, 1996 under a grant from the US Department of Energy. During this period we began phasing out our programs of study of pion-nucleus and pion-nucleon interaction and of nucleon-nucleus charge-exchange reactions, which have been our major focus of the past two or three years. At the same time we continued moving in a new direction of research on studies of the internal structure of nucleons and nuclei in terms of quarks and gluons. The pion and nucleon work has been aimed at improving our understanding of the nature of pion and proton interactions in the nuclear medium and of various aspects of nuclear structure. The studies of the quark-gluon structure of nucleons are aimed at clarifying such problems as the nature of the quark sea and the relation of the nucleon spin to the spins of the quarks within the nucleon, questions which are of a very fundamental nature
Insight into nucleon structure from generalized parton distributions
International Nuclear Information System (INIS)
J.W. Negele; R.C. Brower; P. Dreher; R. Edwards; G. Fleming; Ph. Hagler; Th. Lippert; A.V.Pochinsky; D.B. Renner; D. Richards; K. Schilling; W. Schroers
2004-01-01
The lowest three moments of generalized parton distributions are calculated in full QCD and provide new insight into the behavior of nucleon electromagnetic form factors, the origin of the nucleon spin, and the transverse structure of the nucleon
Nucleon structure and properties of dense matter
International Nuclear Information System (INIS)
Kutschera, M.; Pethick, C.J.; Illinois Univ., Urbana, IL
1988-01-01
We consider the properties of dense matter in a framework of the Skyrme soliton model and the chiral bag model. The influence of the nucleon structure on the equation of state of dense matter is emphasized. We find that in both models the energy per unit volume is proportional to n 4/3 , n being the baryon number density. We discuss the properties of neutron stars with a derived equation of state. The role of many-body effects is investigated. The effect of including higher order terms in the chiral lagrangian is examined. The phase transition to quark matter is studied. 29 refs., 6 figs. (author)
Electromagnetic structure of a bound nucleon
International Nuclear Information System (INIS)
Nogami, Y.
1977-01-01
The effect of binding on the electromagnetic (e.m.) structure of a nucleon in a nucleus is examined by means of a model consisting of a single nucleon which is bound in a harmonic oscillator potential and also coupled to the pion field through the Chew-Low interaction. The 'two-pion contribution' to the e.m. structure is considered. This is the part which is probably most susceptible to the binding effect. By the binding effect it is meant the one which arises because the nucleon wave functions, in the intermediate state as well as in the initial and final states, are distorted by the potential in which the nucleon is bound. This may be compared to a similar correction to the impulse approximation for pion-nucleus scattering. Unlike the latter which is likely to be quite appreciable, the binding correction to the e.m. structure of the nucleon is found to be negligibly small. The so-called quenching effect due to the Pauli principle when there are other nucleons is also discussed [pt
Recent Studies of Nucleon Electromagnetic Form Factors
International Nuclear Information System (INIS)
Gilad, Shalev
2010-01-01
The electromagnetic form factors of nucleons are fundamental quantities in nucleon structure. As such, they have been studied extensively both theoretically and experimentally. Significant progress has been made with new measurements at Jlab, MAMI and MIT-Bates, with emphases on expanding the momentum-transfer range and on higher precision. In this paper, we describe the status of this field and present new results from measurements at both low and high momentum transfers. We also compare the experimental data to model predictions, and mention possible implications of the new results to other fields.
Nucleon quark structure and strong meson-nucleon form factors
International Nuclear Information System (INIS)
Efimov, G.V.; Ivanov, M.A.
1987-01-01
The nucleon is considered as a three-quark system in virton-quark model. The main statistic properties of proton and neutron are calculated: magnetic moments, electromagnetic radii, G A /G V ratio in weak neutron decay. Strong meson-nucleon form factors which determine nucleon-nucleon potential are obtained as a function of squared transfer momentum of mesons. The results are compared with phenomenological form factors used for description of phases of NN-scattering in the one-boson-, exchange model
A no extensive statistical model for the nucleon structure function
International Nuclear Information System (INIS)
Trevisan, Luis A.; Mirez, Carlos
2013-01-01
We studied an application of nonextensive thermodynamics to describe the structure function of nucleon, in a model where the usual Fermi-Dirac and Bose-Einstein energy distribution were replaced by the equivalent functions of the q-statistical. The parameters of the model are given by an effective temperature T, the q parameter (from Tsallis statistics), and two chemical potentials given by the corresponding up (u) and down (d) quark normalization in the nucleon.
Jet structure in lepton-nucleon scattering
International Nuclear Information System (INIS)
Kitazoe, T.; Morii, T.
1980-01-01
Materialization processes are studied in lepton-nucleon scattering on the assumption that all incoming and outgoing hadrons have a localized space-time structure described in terms of the Bethe-Salpeter (BS) amplitude. It is shown on the basis of loop diagrams that a coordination of strongly Lorentz contracted BS amplitudes has a key role in deriving two-jet structure. The formalism manifests two distinct models, depending on the parameters which represent the ranges of a BS amplitude. One is a strongly ordered cascade model which is in accordance with a naive quark cascade model. The other is an uncorrelated jet model which corresponds to an uncorrelated Monte Carlo calculation and it fails to be described as a cascade process. The former model predicts an equal spacing momentum distribution in rapidity space. The latter predicts symmetrical distributions in Feynman x-space. Several observable quantities are presented to discriminate between these two models. (orig.)
Structure and spin of the nucleon
Directory of Open Access Journals (Sweden)
Avakian H.
2014-03-01
Great progress has been made since then in measurements of different Single Spin Asymmetries (SSAs in semi-inclusive and hard exclusive processes providing access to TMDs and GPDs, respectively. Facilities world-wide involved in studies of the 3D structure of nucleon include HERMES, COMPASS, BELLE, BaBar, Halls A, B, and C at JLab, and PHENIX and STAR at RHIC (BNL. TMD studies in the Drell-Yan process are also becoming an important part of the program of hadron scattering experiments. Studies of TMDs are also among the main driving forces of the JLab 12-GeV upgrade project, several of the forward upgrade proposals of STAR and PHENIX at RHIC, and future facilities, such as the Electron Ion Collider (EIC, FAIR in Germany, and NICA in Russia. In this contribution we present an overview of the latest developments in studies of parton distributions and discuss newly released results, ongoing activities, as well as some future measurements.
Probing nuclear structure with nucleons; Sonder la structure nucleaire avec des nucleons
Energy Technology Data Exchange (ETDEWEB)
Bauge, E. [CEA Bruyeres-le-Chatel, Service de Physique Nucl aire, 91 (France)
2007-07-01
The goal of this lecture is to show how nucleon scattering can be used to probe the structure of target nuclei, and how nucleon scattering observables can be interpreted in terms of nuclear structure using microscopic optical potentials. After a brief overview of the specificities of nucleon-nucleus scattering, and a quick reminder on scattering theory, the main part of this lecture is devoted to the construction of optical potentials in which the target nuclei structure information is folded with an effective interaction. Several examples of such microscopic optical model potentials are given. (author)
Spin structure of the nucleon and polarization
International Nuclear Information System (INIS)
Prescott, C.Y.
1994-09-01
Recent experiments at CERN and SLAC have added new knowledge about the spin structure of the proton and the deuteron. A brief historical background is presented, the status of experiments is discussed, and progress in the understanding of the spin of the nucleon in the context of the quark parton model is summarized
Microscopic nuclear structure with sub-nucleonic degrees of freedom
International Nuclear Information System (INIS)
Sauer, P.U.
1986-01-01
The paper reviews microscopic theories of nuclear structure. The subject is discussed under the topic headings: microscopic nuclear structure with nucleons only; microscopic nuclear structure with nucleons, isobars and mesons; and microscopic nuclear structure with nucleons, mesons and dibaryons. (U.K.)
Spin structure of nucleon in QCD: inclusive and exclusive processes
International Nuclear Information System (INIS)
Teryaev, O.V.
2001-01-01
There are two basically independent ways to describe the nucleon spin structure. One is related to quark and gluon spins and another one to their total angular momenta. The latter spin structure may be studied, in principle, in hard exclusive processes
Nucleon Structure from Lattice QCD
International Nuclear Information System (INIS)
Zanotti, J. M.
2011-01-01
Lattice simulations of hadronic structure are now reaching a level where they are able to not only complement, but also provide guidance to current and forthcoming experimental programmes.By considering new simulations at low quark masses and on large volumes, we review the recent progress that has been made in this area by the QCDSF/UKQCD collaboration. In particular, results obtained close to the physical point for several quantities, including electromagnetic form factors and moments of parton distribution functions, show some indication of approaching their phenomenological values.
Chiral symmetry and nucleon structure: Low energy aspects
International Nuclear Information System (INIS)
Weise, W.
1989-01-01
The symmetries and currents of QCD at low energy and long wavelength are realized in the form of mesons, rather than quarks and gluons. In this talk I summarize the merits, but also the limits, of chiral non-linear meson theories and their soliton solutions, in descriptions of nucleon structure and the nucleon-nucleon interaction. (orig.)
Calculation of the nucleon structure function from the nucleon wave function
Hussar, Paul E.
1993-01-01
Harmonic oscillator wave functions have played an historically important role in our understanding of the structure of the nucleon, most notably by providing insight into the mass spectra of the low-lying states. High energy scattering experiments are known to give us a picture of the nucleon wave function at high-momentum transfer and in a frame in which the nucleon is traveling fast. A simple model that crosses the twin bridges of momentum scale and Lorentz frame that separate the pictures of the nucleon wave function provided by the deep inelastic scattering data and by the oscillator model is presented.
International Nuclear Information System (INIS)
Vallee, C.
1984-03-01
We have studied the nuclear effects on high energy antineutrino charged current interactions by comparing the data which were taken in the Bubble Chamber BEBC filled with Neon and Deuterium. On the one hand, the study of nuclear reinteractions gave us the possibility to estimate the formation time of hadrons. On the other hand, the comparison of structure functions does not show any significant difference between Neon and Deuterium. Though this result does not contradict the effects observed with charged leptons by the EMC and SLAC experiments, it is strongly incompatible with certain theoretical interpretations which implied a stronger effect in antineutrino interactions [fr
Survey of structures revealed in nucleon-nucleon scattering experiments and dibaryon resonances
International Nuclear Information System (INIS)
Hidaka, K.; Yokosawa, A.
1979-01-01
Structures appearing in various experimental data (particularly those with polarized beams) in nucleon-nucleon systems are reviewed. Evidence is presented for the existence of dibaryon resonances with an emphasis on a diproton resonance in 3 F 3 (J/sup P/ = 3 - ) state. 38 references
Nucleon structure functions, resonance form factors, and duality
International Nuclear Information System (INIS)
Davidovsky, V.V.; Struminsky, B.V.
2003-01-01
The behavior of nucleon structure functions in the resonance region is explored. For form factors that describe resonance production, expressions are obtained that are dependent on the photon virtuality Q 2 , which have a correct threshold behavior, and which take into account available experimental data on resonance decay. Resonance contributions to nucleon structure functions are calculated. The resulting expressions are used to investigate quark-hadron duality in electron-nucleon scattering by taking the example of the structure function F 2
Lattice QCD Calculation of Nucleon Structure
International Nuclear Information System (INIS)
Liu, Keh-Fei; Draper, Terrence
2016-01-01
It is emphasized in the 2015 NSAC Long Range Plan that 'understanding the structure of hadrons in terms of QCD's quarks and gluons is one of the central goals of modern nuclear physics.' Over the last three decades, lattice QCD has developed into a powerful tool for ab initio calculations of strong-interaction physics. Up until now, it is the only theoretical approach to solving QCD with controlled statistical and systematic errors. Since 1985, we have proposed and carried out first-principles calculations of nucleon structure and hadron spectroscopy using lattice QCD which entails both algorithmic development and large-scale computer simulation. We started out by calculating the nucleon form factors -- electromagnetic, axial-vector, ?NN, and scalar form factors, the quark spin contribution to the proton spin, the strangeness magnetic moment, the quark orbital angular momentum, the quark momentum fraction, and the quark and glue decomposition of the proton momentum and angular momentum. The first round of calculations were done with Wilson fermions in the 'quenched' approximation where the dynamical effects of the quarks in the sea are not taken into account in the Monte Carlo simulation to generate the background gauge configurations. Beginning in 2000, we have started implementing the overlap fermion formulation into the spectroscopy and structure calculations. This is mainly because the overlap fermion honors chiral symmetry as in the continuum. It is going to be more and more important to take the symmetry into account as the simulations move closer to the physical point where the u and d quark masses are as light as a few MeV only. We began with lattices which have quark masses in the sea corresponding to a pion mass at ~ 300 MeV and obtained the strange form factors, charm and strange quark masses, the charmonium spectrum and the D_s meson decay constant f_D__s, the strangeness and charmness, the meson mass decomposition and the strange quark spin from the
Lattice QCD Calculation of Nucleon Structure
Energy Technology Data Exchange (ETDEWEB)
Liu, Keh-Fei [University of Kentucky, Lexington, KY (United States). Dept. of Physics and Astronomy; Draper, Terrence [University of Kentucky, Lexington, KY (United States). Dept. of Physics and Astronomy
2016-08-30
It is emphasized in the 2015 NSAC Long Range Plan that "understanding the structure of hadrons in terms of QCD's quarks and gluons is one of the central goals of modern nuclear physics." Over the last three decades, lattice QCD has developed into a powerful tool for ab initio calculations of strong-interaction physics. Up until now, it is the only theoretical approach to solving QCD with controlled statistical and systematic errors. Since 1985, we have proposed and carried out first-principles calculations of nucleon structure and hadron spectroscopy using lattice QCD which entails both algorithmic development and large-scale computer simulation. We started out by calculating the nucleon form factors -- electromagnetic, axial-vector, πNN, and scalar form factors, the quark spin contribution to the proton spin, the strangeness magnetic moment, the quark orbital angular momentum, the quark momentum fraction, and the quark and glue decomposition of the proton momentum and angular momentum. The first round of calculations were done with Wilson fermions in the `quenched' approximation where the dynamical effects of the quarks in the sea are not taken into account in the Monte Carlo simulation to generate the background gauge configurations. Beginning in 2000, we have started implementing the overlap fermion formulation into the spectroscopy and structure calculations. This is mainly because the overlap fermion honors chiral symmetry as in the continuum. It is going to be more and more important to take the symmetry into account as the simulations move closer to the physical point where the u and d quark masses are as light as a few MeV only. We began with lattices which have quark masses in the sea corresponding to a pion mass at ~ 300 MeV and obtained the strange form factors, charm and strange quark masses, the charmonium spectrum and the D_{s} meson decay constant f_{Ds}, the strangeness and charmness, the meson mass
Structure functions of nucleons and nuclei
Energy Technology Data Exchange (ETDEWEB)
Bentz, Wolfgang; Ito, Takuya [Department of Physics, Tokai University, Kanagawa (Japan); Cloet, Ian [Department of Physics, University of Washington, Seattle (United States); Thomas, Anthony [Jefferson Lab., Newport News, VA (United States); Yazaki, Koichi [RIKEN, Wako-shi, Saitama (Japan)
2009-07-01
We use an effective chiral quark theory to calculate the quark distributions and structure functions of nucleons and nuclei. The description of the single nucleon is based on the Faddeev framework, and nuclear systems are described in the mean field approximation. Particular amphasis is put on the prediction of the polarized EMC effect in nuclei, and on applications to deep inelastic neutrino-nucleus scattering. Concerning the polarized EMC effect, we discuss the quenching of the quark spin sum in nuclei and its implications for the spin dependent nuclear structure functions, and present results for several nuclei where an experimental observation is feasible. Concerning the case of deep inelastic neutrino-nucleus scattering, we estimate the effect of medium modifications of the quark distribution functions on the measured cross sections, and discuss an interesting resolution of the so called NuTeV anomaly. Finally, we discuss extensions of our model to describe fragmentation functions for semi-inclusive processes. The connection between our effective quark model description and the jet model of Field and Feynman is discussed.
Internal Spin Structure of the Nucleon in Polarized Deep Inelastic Muon-Nucleon Scattering
International Nuclear Information System (INIS)
Wislicki, W.
1998-01-01
We present the study of the internal spin structure of the nucleon in spin-dependent deep inelastic scattering of muons on nucleons. The data were taken by the NA47 experiment of the Spin Muon Collaboration (SMC) on the high energy muon beam at CERN. The experiment used the polarized proton and deuteron targets. The structure function g 1 p (x) and g 1 d (x) were determined from the asymmetries of the spin-dependent event rates in the range of 0.003 2 >=10 GeV 2 . Using the first moments of these structure functions an agreement with the Bjorken sum rule prediction was found within one standard deviation. The first moments of g 1 (x), for both proton and deuteron, are smaller than the Ellis-Jaffe sum rule prediction. This disagreement can be interpreted in terms of negative polarization of the strange sea in the nucleon. The singlet part of the axial current matrix element can be interpreted as an overall spin carried by quarks in the nucleon. Its value is significantly smaller than nucleon spin. Semi-inclusive asymmetries of yields of positive and negative hadrons produced on both targets were also measured and analysed in term of quark-parton model, together with inclusive asymmetries. From this analysis the quark spin distributions were determined, separately for valence u and d quarks and for non-strange sea quarks. Valence u quarks are positively polarized and their polarization increases with x. Valence d quarks are negatively polarized and their polarization does not exhibit any x-dependence. The non-strange sea is unpolarized in the whole measured range of x. The first moments of the valance quark spin distributions were found consistent with the values obtained from weak decay constants F and D and their second moments are consistent with lattice QCD calculations. In the QCD analysis of the world data the first moment of the gluon spin distribution was found with a large error. Also, a search for a non-perturbative anomaly at high x was done on the world
An approach to the structure function for nucleon
International Nuclear Information System (INIS)
Long Ming
1986-01-01
The structure function for nucleon is discussed by using the method given in a previous paper. The formula are compared with the experimental data from low Q 2 to high Q 2 . The results show that the way that the structure function for nucleon can be obtained from the hadronic wavefunction is a possible approach of investigating structure functions for hadron
International Nuclear Information System (INIS)
Mora Espi, Maria Carmen
2012-10-01
The availability of a high-intensity antiproton beam with momentum up to 15 GeV/c at the future Facility for Antiproton and Ion Research (FAIR) will open a unique opportunity to investigate wide areas of nuclear physics with the PANDA (antiProton ANnihilations at DArmstadt) detector. Part of these investigations concern the Electromagnetic Form Factors of the proton in the time-like region and the study of the transition distribution amplitudes, for which feasibility studies have been performed in this thesis. Moreover, simulations to study the efficiency and the energy resolution of the backward endcap of the electromagnetic calorimeter of PANDA are presented. This detector is crucial especially for the reconstruction of processes like anti pp→e + e - π 0 , investigated in this work. Different arrangements of dead material were studied. The results show that both, the efficiency and the energy resolution of the backward endcap of the electromagnetic calorimeter fulfill the requirements for the detection of backward particles, and that this detector is necessary for the reconstruction of the channels of interest. The study of the annihilation channel anti pp→e + e - will improve the knowledge of the electromagnetic form factors in the time-like region, and will help to understand their connection with the electromagnetic form factors in the space-like region. In this thesis the feasibility of a measurement of the anti pp→e + e - cross section with PANDA is studied using Monte-Carlo simulations. The major background channel anti pp→π + π - is taken into account. The results show a 10 9 background suppression factor, which assure a sufficiently clean signal with less than 0.1 % background contamination. The signal can be measured with an efficiency greater than 30 % up to s=14 (GeV/c) 2 . The Electromagnetic Form Factors are extracted from the reconstructed signal and corrected angular distribution. Above this s limit, the low cross section will not allow
Energy Technology Data Exchange (ETDEWEB)
Mora Espi, Maria Carmen
2012-10-15
The availability of a high-intensity antiproton beam with momentum up to 15 GeV/c at the future Facility for Antiproton and Ion Research (FAIR) will open a unique opportunity to investigate wide areas of nuclear physics with the PANDA (antiProton ANnihilations at DArmstadt) detector. Part of these investigations concern the Electromagnetic Form Factors of the proton in the time-like region and the study of the transition distribution amplitudes, for which feasibility studies have been performed in this thesis. Moreover, simulations to study the efficiency and the energy resolution of the backward endcap of the electromagnetic calorimeter of PANDA are presented. This detector is crucial especially for the reconstruction of processes like anti pp{yields}e{sup +}e{sup -}{pi}{sup 0}, investigated in this work. Different arrangements of dead material were studied. The results show that both, the efficiency and the energy resolution of the backward endcap of the electromagnetic calorimeter fulfill the requirements for the detection of backward particles, and that this detector is necessary for the reconstruction of the channels of interest. The study of the annihilation channel anti pp{yields}e{sup +}e{sup -} will improve the knowledge of the electromagnetic form factors in the time-like region, and will help to understand their connection with the electromagnetic form factors in the space-like region. In this thesis the feasibility of a measurement of the anti pp{yields}e{sup +}e{sup -} cross section with PANDA is studied using Monte-Carlo simulations. The major background channel anti pp{yields}{pi}{sup +}{pi}{sup -} is taken into account. The results show a 10{sup 9} background suppression factor, which assure a sufficiently clean signal with less than 0.1 % background contamination. The signal can be measured with an efficiency greater than 30 % up to s=14 (GeV/c){sup 2}. The Electromagnetic Form Factors are extracted from the reconstructed signal and corrected
Structure of 26Al studied by one - nucleon transfer reaction 27Al(d,t
Directory of Open Access Journals (Sweden)
Srivastava Vishal
2015-01-01
Full Text Available The excited states of 26Al have been produced and studied using 27Al(d,t reaction with 25 MeV deuteron as projectile. Optical model potential parameters were extracted from the measured elastic scattering angular distribution. Zero range distorted wave Born approximation analysis for the ground and 0.223 MeV states of 26Al have been done. The spectroscopic factors calculated for these states are found to be in good agreement with the previously reported values.
Equidistant structure and effective nucleon mass in nuclear matter
International Nuclear Information System (INIS)
Tezuka, Hirokazu.
1981-11-01
The effective nucleon mass of the Equidistant Multi-Layer Structure (EMULS) is discussed self-consistently. In the density region where the Fermi gas state in nuclear matter is unstable against the density fluctuation, the EMULS gives lower binding energy. It is, however, shown that such a structure with an ordinary nucleon mass collapses due to too strong attraction. We point out that such a collapse can be avoided by taking account of an effective nucleon mass affected by the localization of nucleons. (author)
The spin structure of the nucleon
International Nuclear Information System (INIS)
Le Goff, J.M.
2005-02-01
The nucleon is a spin 1/2 particle. This spin can be decomposed into the contributions of its constituents: 1/2 equals 1/2*ΔΣ + Δg + L q + L g where the first term is the contribution from the spin of the quarks, the second term is the contribution from the spin of the gluons and L q and L g are the orbital momentum of the quark and the gluon respectively. The ΔΣ contribution of the spin of quarks can be studied through polarized deep inelastic scattering (DIS). We introduce DIS and the so-called parton model and then turn to the case of polarized DIS in the inclusive and semi-inclusive cases. We also discuss how a third parton distribution, called transversity, appears together with the unpolarized and the longitudinally polarized (or helicity) ones. We show how the longitudinally polarized gluon distribution can be measured. Then we focus on the SMC and COMPASS experiments performed at CERN. SMC confirmed a previous result by showing that the contribution of the spin of the quark to the spin of the nucleon was small. SMC also performed a measurement on the deuterium in order to test, for the first time, the Bjorker sum rules, which is a fundamental prediction of quantum chromodynamics. The COMPASS experiment started collecting data in 2002. Its main objectives are the gluon polarization Δg/g and the so-called transversity. (A.C.)
Exploring the nucleon helicity structure with pp collisions
International Nuclear Information System (INIS)
Deshpande, Abhay
2007-01-01
After a brief history of nucleon spin crisis I will motivate the need for a high energy polarized proton collider. I will then describe the distinct advantages of this new facility to study the spin structure of the proton. I will highlight the recent achievements of the RHIC Spin program from the experimental side, and review the achievements in terms of physics impact now and in near future
International Nuclear Information System (INIS)
Schroers, W.
2007-01-01
This review focuses on the discussion of three key results of nucleon structure calculations on the lattice. These three results are the quark contribution to the nucleon spin, J q , the nucleon-Δ transition form factors, and the nucleon axial coupling, g A . The importance for phenomenology and experiment is discussed and the requirements for future simulations are pointed out. (orig.)
Future exploration of the nucleon structure at COMPASS
International Nuclear Information System (INIS)
Marchand, Claude
2011-01-01
Up to now, COMPASS experiment essentially focussed, in it's program with muon beams, on studying aspects of the longitudinal momentum structure of the nucleon in the collinear approximation, like Δq(x) and ΔG/G(x). However, quarks can also have intrinsic transverse momentum in the nucleon, which give rise to a new class of Transverse Momentum Distribution (TMD) Parton Distribution Functions. As an example, Sievers function has been measured by both COMPASS and HERMES to be non zero on the proton, paving thus the way for more precise investigations. It is precisely the goal of the new COMPASS phase II proposal to investigate in more detail new transverse description of the nucleon structure. Deeply Virtual Compton Scattering (DVCS) will allow studies in the transverse space via Generalized Parton Distributions (GPDs). Transverse Mometum Dependent PDFs will essentially be studied in Drell-Yan (DY) reaction and SIDIS, and some universality arguments in QCD imply different signs for Sievers and Boer-Mulders functions in DY and SIDIS.
The spin structure of the nucleon
Energy Technology Data Exchange (ETDEWEB)
Le Goff, J.M
2005-02-15
The nucleon is a spin 1/2 particle. This spin can be decomposed into the contributions of its constituents: 1/2 equals 1/2*{delta}{sigma} + {delta}g + L{sub q} + L{sub g} where the first term is the contribution from the spin of the quarks, the second term is the contribution from the spin of the gluons and L{sub q} and L{sub g} are the orbital momentum of the quark and the gluon respectively. The {delta}{sigma} contribution of the spin of quarks can be studied through polarized deep inelastic scattering (DIS). We introduce DIS and the so-called parton model and then turn to the case of polarized DIS in the inclusive and semi-inclusive cases. We also discuss how a third parton distribution, called transversity, appears together with the unpolarized and the longitudinally polarized (or helicity) ones. We show how the longitudinally polarized gluon distribution can be measured. Then we focus on the SMC and COMPASS experiments performed at CERN. SMC confirmed a previous result by showing that the contribution of the spin of the quark to the spin of the nucleon was small. SMC also performed a measurement on the deuterium in order to test, for the first time, the Bjorker sum rules, which is a fundamental prediction of quantum chromodynamics. The COMPASS experiment started collecting data in 2002. Its main objectives are the gluon polarization {delta}g/g and the so-called transversity. (A.C.)
Measurement of the nucleon structure functions
International Nuclear Information System (INIS)
Gordon, B.A.; Loomis, W.A.; Pipkin, F.M.; Pordes, S.H.; Sessoms, A.L.; Shambroom, W.D.; Tao, C.; Verhey, L.J.; Wilson, R.; Anderson, H.L.; Fine, R.M.; Heisterberg, R.H.; Kinnison, W.W.; Matis, H.S.; Mo, L.W.; Myrianthopoulos, L.C.; Wright, S.C.; Francis, W.R.; Hicks, R.G.; Kirk, T.B.W.; Quirk, T.W.; Bharadwaj, V.K.; Booth, N.E.; Kirkbride, G.I.; Proudfoot, J.; Skuja, A.; Staton, M.A.; Williams, W.S.C.
1979-01-01
Measurements have been made of the inclusive scattering of 96, 147, and 219 GeV muons from hydrogen, and of 147 GeV muons from deuterium. Results are presented for the nucleon structure function F 2 (x,Q 2 ) [equivalentνW 2 (x,Q 2 )] for 10 2 2 . The value of F 2 rises with Q 2 at small x, and falls with Q 2 at large x, in agreement with the ideas of quantum chromodynamics. An average value of the ratio sigma/sub L//sigma/sub T/ equivalent R = 0.52 +- 0.35 has been obtained for the region 0.003 2 2 . The values of F 2 from this experiment have been combined with those from other charged-lepton scattering experiments to determine moments of the structure functions. The variation with Q 2 of these moments is used to derive values for Λ, taking into account corrections up to second order in α/sub s/. The fit to the data is very good
Insights into nucleon structure from parton distributions
Energy Technology Data Exchange (ETDEWEB)
Melnitchouk, Wally [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)
2017-05-01
We review recent progress in understanding the substructure of the nucleon from global QCD analysis of parton distribution functions (PDFs). New high-precision data onW-boson production in p ¯ p collisions have significantly reduced the uncertainty on the d=u PDF ratio at large values of x, indirectly constraining models of the medium modification of bound nucleons. Drell-Yan data from pp and pd scattering reveal new information on the d¯-u¯ asymmetry, clarifying the role of chiral symmetry breaking in the nucleon. In the strange sector, a new chiral SU(3) analysis finds a valence-like component of the strange-quark PDF, giving rise to a nontrivial s- ¯ s asymmetry at moderate x values. We also review recent analyses of charm in the nucleon, which have found conflicting indications of the size of the nonperturbative charm component.
3D Animations for Exploring Nucleon Structure
Gorman, Waverly; Burkardt, Matthias
2016-09-01
Over the last few years many intuitive pictures have been developed for the interpretation of electron hadron scattering experiments, such as a mechanism for transverse single-spin asymmetries in semi-inclusive deep-inelastic scattering experiments. While Dr. Burkardt's pictures have been helpful for many researchers in the field, they are still difficult to visualize for broader audiences since they rely mostly on 2-dimensional static images. In order to make more accessible for a broader audience what can be learned from Jefferson Lab experiments, we have started to work on developing 3-dimensional animations for these processes. The goal is to enable the viewer to repeatedly look at the same microscopic mechanism for a specific reaction, with the viewpoint of the observer changing. This should help an audience that is not so familiar with these reactions to better understand what can be learned from various experiments at Jefferson Lab aimed at exploring the nucleon structure. Jefferson Lab Minority/Female Undergraduate Research Assistantship.
Di-nucleon structures in homogeneous nuclear matter based on two- and three-nucleon interactions
Energy Technology Data Exchange (ETDEWEB)
Arellano, Hugo F. [University of Chile, Department of Physics - FCFM, Santiago (Chile); CEA, DAM, DIF, Arpajon (France); Isaule, Felipe [University of Chile, Department of Physics - FCFM, Santiago (Chile); Rios, Arnau [University of Surrey, Department of Physics, Faculty of Engineering and Physical Sciences, Guildford (United Kingdom)
2016-09-15
We investigate homogeneous nuclear matter within the Brueckner-Hartree-Fock (BHF) approach in the limits of isospin-symmetric nuclear matter (SNM) as well as pure neutron matter at zero temperature. The study is based on realistic representations of the internucleon interaction as given by Argonne v{sub 18}, Paris, Nijmegen I and II potentials, in addition to chiral N{sup 3}LO interactions, including three-nucleon forces up to N{sup 2}LO. Particular attention is paid to the presence of di-nucleon bound states structures in {sup 1}S{sub 0} and {sup 3}SD{sub 1} channels, whose explicit account becomes crucial for the stability of self-consistent solutions at low densities. A characterization of these solutions and associated bound states is discussed. We confirm that coexisting BHF single-particle solutions in SNM, at Fermi momenta in the range 0.13-0.3 fm{sup -1}, is a robust feature under the choice of realistic internucleon potentials. (orig.)
Boson-exchange nucleon-nucleon potential and nuclear structure
International Nuclear Information System (INIS)
Grange, Pierre.
1976-01-01
A fully momentum-dependent one-boson-exchange potential is derived which takes into account the mesons, π, eta, sigma, rho, ω and phi. Scattering bound states and nuclear matter properties are studied in momentum space. The use of such potential is shown to be as easy as the use of more simple phenomenological interactions. In nuclear matter the formalism of Bethe-Goldstone is chosen to compute the binding energy versus density in the approximation of two-body and three-body correlations. The three-body correlated wave function obtained is then used [fr
Nucleon structure by Lattice QCD computations with twisted mass fermions
International Nuclear Information System (INIS)
Harraud, P.A.
2010-11-01
Understanding the structure of the nucleon from quantum chromodynamics (QCD) is one of the greatest challenges of hadronic physics. Only lattice QCD allows to determine numerically the values of the observables from ab-initio principles. This thesis aims to study the nucleon form factors and the first moments of partons distribution functions by using a discretized action with twisted mass fermions. As main advantage, the discretization effects are suppressed at first order in the lattice spacing. In addition, the set of simulations allows a good control of the systematical errors. After reviewing the computation techniques, the results obtained for a wide range of parameters are presented, with lattice spacings varying from 0.0056 fm to 0.089 fm, spatial volumes from 2.1 up to 2.7 fm and several pion masses in the range of 260-470 MeV. The vector renormalization constant was determined in the nucleon sector with improved precision. Concerning the electric charge radius, we found a finite volume effect that provides a key towards an explanation of the chiral dependence of the physical point. The results for the magnetic moment, the axial charge, the magnetic and axial charge radii, the momentum and spin fractions carried by the quarks show no dependence on the lattice spacing nor volume. In our range of pion masses, their values show a deviation from the experimental values. Their chiral behaviour do not exhibit the curvature predicted by the chiral perturbation theory which could explain the apparent discrepancy. (author)
Towards a lattice calculation of the nucleon structure functions
International Nuclear Information System (INIS)
Goeckeler, M.; Ilgenfritz, M.; Perlt, H.; Rakow, P.; Schierholz, G.; Forschungszentrum Juelich GmbH; Schiller, A.
1994-12-01
We have initiated a programme to compute the lower moments of the unpolarised and polarised deep inelastic structure functions of the nucleon in the quenched approxiation. We review our progress to date. (orig.)
Structure functions in electron-nucleon deep inelastic scattering
Energy Technology Data Exchange (ETDEWEB)
Saleem, M.; Fazal-E-Aleem (University of the Punjab, Lahore (Pakistan). Dept. of Physics)
1982-06-26
The phenomenological expressions for the structure functions in electron-nucleon deep inelastic scattering are proposed and are shown to satisfy the experimental data as well as a number of sum rules.
International Nuclear Information System (INIS)
Burleson, G.R.
1987-01-01
We are applying for a three-year grant from the US Department of Energy to New Mexico State University to continue its support of our work on experimental studies of nucleon-nucleon and pion-nucleus interactions at intermediate energies, which has been carried out in collaboration with groups from various laboratories and universities. The nucleon-nucleon work is aimed at making measurements that will contribute to a determination of the isospin-zero amplitudes, as well as continuing our investigations of evidence for dibaryon resonances. It is based at the LAMPF accelerator in Los Alamos, New Mexico. Current and planned experiments include measurements of total cross-section differences in pure spin states and of spin parameters in neutron-proton scattering. The pion-nucleus work is aimed at improving our understanding both of the nature of the pion-nucleus interaction and of nuclear structure. It consists of two programs, one based at LAMPF and one based principally at the SIN laboratory in Switzerland. The LAMPF-based work involves studies of large-angle scattering, double-charge-exchange scattering, including measurements at a new energy range above 300 MeV, and a new program of experiments with polarized nuclear targets. The SIN-based work involves studies of quasielastic scattering and absorption, including experiments with a new large-acceptance detector system planned for construction there. We are requesting support to continue the LAMPF-based work at its current level and to expand the SIN-based work to allow for increased involvement in experiments with the new detector system. 57 refs
Studies of the nucleon-nucleus and the nucleon-nucleon interactions using polarized neutron beams
International Nuclear Information System (INIS)
Walter, R.L.; Howell, C.R.; Tornow, W.
1988-01-01
The results o four scattering measurements using beams of polarized neutrons are described. Results for the analyzing power A y (θ) for elastic scattering of neutrons from protons and deuterons are compared to calculations based on the Paris and the Bonn nucleon-nucleon interactions. Deficiencies particularly in the Bonn model are indicated. A nucleon-nucleus potential is derived from σ(θ) and A y (θ) data for n + 28 Si and p + 28 Si and the Coulomb correction terms are derived according to two approaches. A Fourier-Bessel expansion is used to investigate the form factors of the terms of the n + 208 Pb potential which are necessary to describe σ(θ) and A y (θ) data from 6 to 10 MeV. The nature of the spin-orbit term is also presented. (author)
The Jlab Upgrade - Nucleon Studies with CLAS12
International Nuclear Information System (INIS)
Volker Burkert
2007-01-01
An overview is presented on the program to study the nucleon structure at the 12 GeV Jlab Upgrade using the CLAS12 detector. The focus is on deeply virtual exclusive processes to access the generalized parton distributions, semi-inclusive processes to study transveresx momentum-dependent distributions functions, and inclusive spin structure functions and resonance transition form factors at high Q 2 and with high precision
A personal view of nucleon structure as revealed by electron scattering
International Nuclear Information System (INIS)
Hofstadter, R.
1989-01-01
In this article the author charts his scientific career from graduation in 1935. His work on the No I (T1) scintillator detector developed a widely used tool for particle physicists. He later used these detectors in experiments to study nucleon structure via inelastic electron scattering, working mainly with deuterium, alpha particles and beryllium. Proton and neutron ''size'' were early successes of the fifties, with nucleon form factors following after several years' more work. (UK)
International Nuclear Information System (INIS)
Smotritskij, L.M.
2001-01-01
Application of resonance phase for two quasi-stationary states with similar spin and unlike parity is shown to enable to coordinate the experimentally observed signed dependence of P-odd effects in neutron reactions with the theory. The developed approach enables to obtain information on isospin structure of a weak nucleon-nucleon interaction [ru
Diquark contributions to the nucleon deep inelastic structure functions
International Nuclear Information System (INIS)
Anselmino, M.; Leader, E.; Soares, J.
1990-01-01
The contributions of diquarks to the nucleon structure functions are discussed in the framework of the parton model and in the most general case of both vector and scalar diquarks inside unpolarized and polarized nucleons. The vector diquark anomalous magnetic moment and the scalar-vector and vector-scalar diquark transitions are also taken into account. The properties of the diquarks and of their form factors, required in order for the resulting scaling violations to be compatible with the observed ones, are discussed. (author)
pp Elastic Scattering at LHC and Nucleon Structure
Islam, M M; Prokudin, A V
2003-01-01
High energy elastic pp differential cross section at LHC at the c.m. energy 14 TeV is predicted using the asymptotic behavior of tot(s) and (s), and the measured p differential cross section at =546 GeV. The phenomenological investigation has progressively led to an effective field theory model that describes the nucleon as a chiral bag embedded in a quark-antiquark condensed ground state. The measurement of pp elastic scattering at LHC up to large |t| 10 GeV2 by the TOTEM group will be crucial to test this structure of the nucleon.
$pp$ Elastic Scattering at LHC and Nucleon Structure
Islam, M M; Prokudin, A V
2003-01-01
High energy elastic pp differential cross section at LHC at the c.m. energy 14 TeV is predicted using the asymptotic behavior of sigma-tot(s) and rho(s), and the measured pbar-p differential cross section at sqrt{s}=546 GeV. The phenomenological investigation has progressively led to an effective field theory model that describes the nucleon as a chiral bag embedded in a quark-antiquark condensed ground state. The measurement of pp elastic scattering at LHC up to large |t| >~ 10 GeV^2 by the TOTEM group will be crucial to test this structure of the nucleon.
Nucleon Structure on a Lattice at the Physical Point
International Nuclear Information System (INIS)
Syritsyn, Sergey
2015-01-01
We report initial nucleon structure results computed on lattices with 2+1 dynamical Mobius domain wall fermions at the physical point generated by the RBC and UKQCD collaborations. At this stage, we evaluate only connected quark contributions. In particular, we discuss the nucleon vector and axial-vector form factors, nucleon axial charge and the isovector quark momentum fraction. From currently available statistics, we estimate the stochastic accuracy of the determination of g A and 〈x〉 u-d to be around 10%, and we expect to reduce that to 5% within the next year. To reduce the computational cost of our calculations, we extensively use acceleration techniques such as low-eigenmode deflation and all-mode-averaging (AMA). We present a method for choosing optimal AMA parameters. (paper)
Preliminary Results on the Experimental Investigation of the Structure Functions of Bound Nucleons
Energy Technology Data Exchange (ETDEWEB)
Bodek, Arie [Univ. of Rochester, NY (United States); Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)
2016-08-01
We present preliminary results on an experimental study of the nuclear modification of the longitudinal ($\\sigma_L$) and transverse ($\\sigma_T$) structure functions of nucleons bound in nuclear targets. The origin of these modifications (commonly referred as as the EMC effect) is not fully understood. Our measurements of R= $\\sigma_L / \\sigma_T$ for nuclei ($R_A$) and for deuterium ($R_D$) indicate that nuclear modifications of the structure functions of bound nucleons are different for the longitudinal and transverse structure functions, and that contrary to expectation from several theoretical models, $R_A< R_D$.
Energy Technology Data Exchange (ETDEWEB)
Zheng, Xiaochao [Univ. of Virginia, Charlottesville, VA (United States). Jesse Beams Lab.
2016-03-10
spectrometer, called “SoLID”. Once built, SoLID can be used for other topics such as using PVDIS on a proton target to measure the valence quark distributions, using PVDIS on a polarized target to measure new electro-weak interference structure functions of the nucleon, and semi-inclusive deep inelastic scattering experiments. SoLID will greatly enhance the exploration potential of JLab. The proposed program will first focus on completion of the 6 GeV PVDIS experiment, its data analysis and publishing physics results. This 6 GeV experiment will explore whether precision PVDIS measurements are feasible, will set limits on the hadronic physics effects, and will improve our knowledge on the quark neutral weak couplings, optimally by a factor of six. Starting early 2010, efforts will be spent on preparation for the 11 GeV program, focusing on simulations of SoLID, optimization and construction of the SoLID detector package, and studies of the polarized ^{3}He target and its improvements. Funding support for the whole program is requested here.
Exploring the nucleon structure from first principles of QCD
Energy Technology Data Exchange (ETDEWEB)
Bietenholz, W. [Universidad Nacional Autonoma de Mexico (Mexico). Inst. de Ciencias Nucleares; Cundy, N.; Goeckeler, M. [Regensburg Univ. (DE). Inst. fuer Theoretische Physik] (and others)
2010-04-15
Quantum Chromodynamics (QCD) is generally assumed to be the fundamental theory underlying nuclear physics. In recent years there is progress towards investigating the nucleon structure from first principles of QCD. Although this structure is best revealed in Deep Inelastic Scattering, a consistent analysis has to be performed in a fully non-perturbative scheme. The only known method for this purpose are lattice simulations. We first sketch the ideas of Monte Carlo simulations in lattice gauge theory. Then we comment in particular on the issues of chiral symmetry and operator mixing. Finally we present our results for the Bjorken variable of a single quark, and for the second Nachtmann moment of the nucleon structure functions. (orig.)
Exploring the nucleon structure from first principles of QCD
International Nuclear Information System (INIS)
Bietenholz, W.; Cundy, N.; Goeckeler, M.
2010-04-01
Quantum Chromodynamics (QCD) is generally assumed to be the fundamental theory underlying nuclear physics. In recent years there is progress towards investigating the nucleon structure from first principles of QCD. Although this structure is best revealed in Deep Inelastic Scattering, a consistent analysis has to be performed in a fully non-perturbative scheme. The only known method for this purpose are lattice simulations. We first sketch the ideas of Monte Carlo simulations in lattice gauge theory. Then we comment in particular on the issues of chiral symmetry and operator mixing. Finally we present our results for the Bjorken variable of a single quark, and for the second Nachtmann moment of the nucleon structure functions. (orig.)
Nucleon structure functions in noncommutative space-time
Energy Technology Data Exchange (ETDEWEB)
Rafiei, A.; Rezaei, Z.; Mirjalili, A. [Yazd University, Physics Department, Yazd (Iran, Islamic Republic of)
2017-05-15
In the context of noncommutative space-time we investigate the nucleon structure functions which play an important role in identifying the internal structure of nucleons. We use the corrected vertices and employ new vertices that appear in two approaches of noncommutativity and calculate the proton structure functions in terms of the noncommutative tensor θ{sub μν}. To check our results we plot the nucleon structure function (NSF), F{sub 2}(x), and compare it with experimental data and the results from the GRV, GJR and CT10 parametrization models. We show that with the new vertex that arises the noncommutativity correction will lead to a better consistency between theoretical results and experimental data for the NSF. This consistency will be better for small values of the Bjorken variable x. To indicate and confirm the validity of our calculations we also act conversely. We obtain a lower bound for the numerical values of Λ{sub NC} scale which correspond to recent reports. (orig.)
Detailed measurements of structure functions from nucleons and nuclei
2002-01-01
The experiment will study deep inelastic muon nucleon scattering in a wide range of $Q^{2}$(1-200 (GeV/c)$^{2}$) and $x(0.005-0.75)$. The main aims of the experiment are: \\\\\\\\ a) Detailed measurements of the nuclear dependence of the structure function $F_{2}^{A}$, of $R = \\sigma_/\\sigma_{T}$ and of the cross-section for $J/\\psi$ production. They will provide a basis for the understanding of the EMC effect: the modification of quark and gluon distributions due to the nuclear environment. \\\\b) A simultaneous high luminosity measurement of the structure function $F_{2}$ on hydrogen and deuterium. This will provide substantially improved accuracy in the knowledge of the neutron structure function $F_{2}^{n}$, of $F_{2}^{p}-F_{2}^{n}$ and $F_{2}^{n}/F_{2}^{p}$ and their $Q^{2}$ dependence. Furthermore, the data will allow a determination of the strong coupling constant $\\alpha_{S}(Q^{2})$ with reduced experimental and theoretical uncertainties as well as of the ratio of the down to up quark distributions in the v...
Nucleon structure in view of recent developments
International Nuclear Information System (INIS)
Martin, A.D.
1993-01-01
We review the present knowledge of the parton structure of the proton. We discuss recent developments concerning deep-inelastic scattering and parton distributions at small x, with emphasis on the predictions of perturbative QCD that are relevant to the experiment at HERA. (author). 37 refs, 16 figs, 1 tab
Electromagnetic Studies of Mesons, Nucleons, and Nuclei
Energy Technology Data Exchange (ETDEWEB)
Baker, Oliver K.
2013-08-20
Professor Baker was a faculty member at Hampton University in Hampton, Virginia, and, jointly, a Staff Physicist at Jefferson Lab in nearby Newport News from September 1989 to July 2006. The Department of Energy (DOE) funded the grant DE-FG02-97ER41035 Electromagnetic Studies of Mesons, Nucleons, and Nuclei, while Baker was in this joint appointment. Baker sent a closeout report on these activities to Hampton University’s Sponsored Research Office some years ago, shortly after joining Yale University in 2006. In the period around 2001, the research grant with Baker as the Principal Investigator (PI) was put under the supervision of Professor Liguang Tang at Hampton University. Baker continued to pursue the research while in this join appointment, however the administrative responsibilities with the DOE and with Hampton University rested with Professor Tang after 2001, to my recollection. What is written in this document is from Baker’s memory of the research activities, which he has not pursued since joining the Yale University faculty.
Nucleon structure function at small χ
International Nuclear Information System (INIS)
Levin, E.M.
1991-09-01
This is a status report on the behaviour of deeply inelastic scattering in the low x region, where a new physics to be expected. It is bound to be theoretical review, since there is no data available at truely small values of x, say x -3 . New data from HERA are anticipated and I am viewing on this talk as summary of the theoretical situation in the region of small x, as is just before this new area of physics will be studied experimentally. This is an extended version of the talk which was presented at EP-HEP 91 Conference. (orig.)
Effect of nucleon and hadron structure changes in-medium and its impact on observables
Energy Technology Data Exchange (ETDEWEB)
K. Saito; K. Tsushima; A.W. Thomas
2005-07-05
We study the effect of hadron structure changes in a nuclear medium using the quark-meson coupling (QMC) model. The QMC model is based on a mean field description of non-overlapping nucleon (or baryon) bags bound by the self-consistent exchange of scalar and vector mesons in the isoscalar and isovector channels. The model is extended to investigate the properties of finite nuclei, in which, using the Born-Oppenheimer approximation to describe the interacting quark-meson system, one can derive the effective equation of motion for the nucleon (or baryon), as well as the self-consistent equations for the meson mean fields.
Chiral symmetry, scalar field and confinement: from nucleon structure to nuclear matter
International Nuclear Information System (INIS)
Chanfray, Guy; Ericson, Magda
2010-01-01
We discuss the relevance of the scalar modes appearing in chiral theories with spontaneous symmetry breaking such as the NJL model for nuclear matter studies. We show that it depends on the relative role of chiral symmetry breaking and confinement in the nucleon mass origin. It is only in the case of a mixed origin that nuclear matter can be stable and reach saturation. We describe models of nucleon structure where this balance is achieved. We show how chiral constarints and confinement modify the QCD sum rules for the mass evolution in nuclear matter.
Nucleon structure functions from lattice operator product expansion
Energy Technology Data Exchange (ETDEWEB)
Chambers, A.J.; Somfleth, K.; Young, R.D.; Zanotti, J.M. [Adelaide Univ., SA (Australia). CSSM, Dept. of Physics; Horsley, R. [Edinburgh Univ. (United Kingdom). School of Physics and Astronomy; Nakamura, Y. [RIKEN Advanced Institute for Computational Science, Kobe (Japan); Perlt, H.; Schiller, A. [Leipzig Univ. (Germany). Inst. fuer Theoretische Physik; Rakow, P.E.L. [Liverpool Univ. (United Kingdom). Theoretical Physics Div.; Schierholz, G. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)
2017-03-15
Deep-inelastic scattering, in the laboratory and on the lattice, is most instructive for understanding how the nucleon is built from quarks and gluons. The long-term goal is to compute the associated structure functions from first principles. So far this has been limited to model calculations. In this Letter we propose a new method to compute the structure functions directly from the virtual, all-encompassing Compton amplitude, utilizing the operator product expansion. This overcomes issues of renormalization and operator mixing, which so far have hindered lattice calculations of power corrections and higher moments.
Nucleon structure functions from lattice operator product expansion
International Nuclear Information System (INIS)
Chambers, A.J.; Somfleth, K.; Young, R.D.; Zanotti, J.M.; Perlt, H.; Schiller, A.
2017-03-01
Deep-inelastic scattering, in the laboratory and on the lattice, is most instructive for understanding how the nucleon is built from quarks and gluons. The long-term goal is to compute the associated structure functions from first principles. So far this has been limited to model calculations. In this Letter we propose a new method to compute the structure functions directly from the virtual, all-encompassing Compton amplitude, utilizing the operator product expansion. This overcomes issues of renormalization and operator mixing, which so far have hindered lattice calculations of power corrections and higher moments.
Nucleon Structure Functions from Operator Product Expansion on the Lattice.
Chambers, A J; Horsley, R; Nakamura, Y; Perlt, H; Rakow, P E L; Schierholz, G; Schiller, A; Somfleth, K; Young, R D; Zanotti, J M
2017-06-16
Deep-inelastic scattering, in the laboratory and on the lattice, is most instructive for understanding how the nucleon is built from quarks and gluons. The long-term goal is to compute the associated structure functions from first principles. So far this has been limited to model calculations. In this Letter we propose a new method to compute the structure functions directly from the virtual, all-encompassing Compton amplitude, utilizing the operator product expansion. This overcomes issues of renormalization and operator mixing, which so far have hindered lattice calculations of power corrections and higher moments.
Photonuclear studies in the few nucleon system
International Nuclear Information System (INIS)
Weiss, M.S.
1975-02-01
A brief review of photonuclear reactions in few nucleon systems is presented with comparison of theory with experiment. Discrepancies are examined and recent and current research aimed at resolving these problems are discussed. Emphasis is placed on two and three body photodisintegration. (33 figures) (U.S.)
Nucleon Structure and Hyperon Form Factors from Lattice QCD.
Energy Technology Data Exchange (ETDEWEB)
Lin,H.W.
2007-06-11
In this work, I report the latest lattice QCD calculations of nucleon and hyperon structure from chiral fermions in 2+1-flavor dynamical simulations. All calculations are done with a chirally symmetric fermion action, domain-wall fermions, for valence quarks. I begin with the latest lattice results on the nucleon structure, focusing on results from RBC/UKQCD using 2+1-flavor chiral fermion actions. We find the chiral-extrapolated axial coupling constant at physical pion mass point. to be 1.23(5), consistent with experimental value. The renormalization constants for the structure functions are obtained from RI/MOM-scheme non-perturbative renormalization. We find first moments of the polarized and unpolarized nucleon structure functions at zero transfer momentum to be 0.133(13) and 0.203(23) respectively, using continuum chiral extrapolation. These are consistent with the experimental values, unlike previous calculations which have been 50% larger. We also have a prediction for the transversity, which we find to be 0.56(4). The twist-3 matrix element is consistent with zero which agrees with the prediction of the Wandzura-Wilczek relation. In the second half of this work, I report an indirect dynamical estimation of the strangeness proton magnetic moments using mixed actions. With the analysis of hyperon form factors and using charge symmetry, the strangeness of proton is found to be -0.066(2G), consistent with the Adelaide-JLab Collaboration's result. The hyperon {Sigma} and {Xi} axial coupling constants are also performed for the first time in a lattice calculation, g{sub {Sigma}{Sigma}} = 0.441(14) and g{sub {Xi}{Xi}} = -0.277(11).
Nucleon Structure and hyperon form factors from lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Lin, Huey-Wen
2007-06-11
In this work, I report the latest lattice QCD calculations of nucleon and hyperon structure from chiral fermions in 2+1-flavor dynamical simulations. All calculations are done with a chirally symmetric fermion action, domain-wall fermions, for valence quarks. I begin with the latest lattice results on the nucleon structure, focusing on results from RBC/UKQCD using 2+1-flavor chiral fermion actions. We find the chiral-extrapolated axial coupling constant at physical pion mass point to be 1.23(5), consistant with experimental value. The renormalization constants for the structure functions are obtained from RI/MOM-scheme non-perturbative renormalization. We find first moments of the polarized and unpolarized nucleon structure functions at zero transfer momentum to be 0.133(13) and 0.203(23) respectively, using continuum chiral extrapolation. These are consistent with the experimental values, unlike previous calculations which have been 50% larger. We also have a prediction for the transversity, which we find to be 0.56(4). The twist-3 matrix element is consistent with zero which agrees with the prediction of the Wandzura-Wilczek relation. In the second half of this work, I report an indirect dynamical estimation of the strangeness proton magnetic moments using mixed actions. With the analysis of hyperon form factors and using charge symmetry, the strangeness of proton is found to be -0.066(26), consistent with the Adelaide-JLab Collaboration's result. The hyperon Sigma and Xi axial coupling constants are also performed for the first time in a lattice calculation, g_SigmaSigma = 0.441(14) and g_XiXi = -0.277(11).
International Nuclear Information System (INIS)
Pita, S.
2000-09-01
The structure of the neutron rich light nuclei 11 Be and 10 Li has been investigated by means of one nucleon transfer reactions. The experiments have been carried out at GANIL in inverse kinematics using 11 Be secondary beams. The 11 Be(p,d) 10 Be reaction bas been studied at 35.3 MeV/u. The 10 Be ejectiles were analyzed by the spectrometer SPEG, and coincident deuterons were detected in the position sensitive silicon detector CHARISSA. Transfer cross sections to 0 + 1 and 2 + 1 , states in 10 Be were measured up to θ CM = 16 deg. and compared to DWBA and CRC predictions. The effects of neutron-cure couplings on reaction form factors have been studied by solving coupled equations in the framework of a vibrational model. It is shown that the rate of core excitation 10 Be 2+ in the 11 Be gs wave function is overestimated by a standard analysis with form factors given by the usual Separation Energy prescription. The former model predicts a rate of core excitation of 16% and leads to theoretical cross sections which are in good agreement with the experimental data. The aim of the 11 Be(d, 3 He) 10 Li experiment, realized at 37 MeV/u, was to measure the distribution of the 2s neutron strength in the unbound nucleus 10 Li. The energy spectrum was deduced from the 3 He energy and angle measured by the silicon strip detector array MUST. An asymmetric peak is clearly observed near the threshold, with a maximum at -S n = 130 keV. This constitutes a direct proof of the inversion of 2s and 1p 1/2 shells in 10 Li, which was until now a controversial question in spite of many experimental efforts. On the other band the analysis of the 11 Be(d,t) 10 Be reaction studied in the same experiment confirms the results obtained in the 11 Be(p,d) 10 Be reaction concerning the 11 Be gs structure. This work shows the interest and feasibility of studies of the shell properties of exotic nuclei using transfer reactions induced by radioactive beams and constitutes the beginning of a program
Jets in high energy nucleon-nucleon collisions
International Nuclear Information System (INIS)
Strugalski, Z.
1982-01-01
From the experimental studies of high-energy hardon-nucleon and nucleon-nucleon collisions, by means of nuclear targets applied as detectors, it follows that particles are produced via intermediate objects created first in a 2 → 2 type endoergic reaction. These objects, called generons, decay in flight into finally observed particles and resonances after their lifetime tausub(g) > or approximately 10 - 22 s. The jet structure of the outcome in nucleon-nucleon collisions is a simple and indispensable consequence of this particle production mechanism. The picture of the jet structure in the collision outcome observed in the CMS of the colliding nucleons depends on the energy of these nUcleons. New particle production scheme is proposed, which can be tested experimentally; corresponding simple relations between characteristics of colliding nucleons and of produced jets are proposed for a testing
The gluon contribution to polarised nucleon structure functions
International Nuclear Information System (INIS)
Ross, G.G.; Roberts, R.G.
1990-08-01
As with all parton distributions in quantum chromodynamics (QCD) the separation of polarised nucleon structure functions into gluon and quark contributions must be specified. We consider a definition of the gluon contribution to polarised nucleon structure functions based on exclusive processes which is explicitly gauge invariant, has no regularisation ambiguities, is insensitive to infrared singularities and can be related to other polarised scattering processes. We discuss the relationship of this gluon definition to others that have recently been used and to the estimates that have been made of the gluon contribution using current algebra and other methods. A quantitative analysis of the structure function g 1 (x,Q 2 ) for polarised deep inelastic scattering is carried out, with the aim of examining the importance of the gluon contribution. Using the positivity of parton distributions the magnitude of Δg(x,Q 2 ) is constrained by a realistic estimate of the unpolarised glue. With the appropriate choice of the hard scattering cross-section, Δσ γg , we find that even with a maximally polarised glue (for x > 0.1), some polarised strange quark contribution is still needed by the data of the EMC. (author)
Chiral effective-field theory of the nucleon spin structure
Pascalutsa, Vladimir
2017-01-01
I will review the recent chiral EFT calculations of the nucleon (spin) structure functions at low Q2, confronted with the Jefferson Lab measurements. The moments of the structure functions correspond with various polarizabilities, and I will explain why one of them - δLT - is especially interesting. I will also discuss how the spin structure functions at low Q enter in the atomic calculations of the hyperfine splittings and how they are impacting the ongoing experimental program at PSI (Switzerland) to measure the ground-state hyperfine splitting of muonic hydrogen. Partially supported by the Deutsche Forschungsgemeinschaft (DFG) through the Collaborative Research Center SFB 1044 [The Low-Energy Frontier of the Standard Model].
Local quark-hadron duality of nucleon spin structure functions with target mass corrections
International Nuclear Information System (INIS)
Dong, Y.B. . E-mail dongyb@mail.ihep.ac.cn; Chen, D.Y.
2007-01-01
Target mass corrections to nucleon spin structure functions are analyzed. Our results show that the corrections are important to the structure functions in a large x region. Moreover, they play a remarkable role to the local quark-hadron duality of the nucleon spin structure functions in three individual inelastic resonance production regions
Experimental studies of nucleon-nucleon and pion-nucleus interactions at intermediate energies
International Nuclear Information System (INIS)
1990-01-01
This report summarizes the work on experimental research in intermediate energy nuclear and particle physics carried out by New Mexico State University in 1988--91. Most of these studies have involved investigations of neutron-proton and pion-nucleus interactions. The neutron-proton research is part of a program of studies of interactions between polarized nucleons that we have been involved with for more than ten years. Its purpose has been to help complete the determination of the full set of ten complex nucleon-nucleon amplitudes at energies up to 800 MeV, as well as to continue investigating the possibility of the existence of dibaryon resonances. The give complex isospin-one amplitudes have been fairly well determined, partly as a result of this work. Our work in this period has involved measurements and analysis of data on elastic scattering and total cross sections for polarized neutrons on polarized protons. The pion-nucleus research continues our studies of this interaction in regions where it has not been well explored. One set of experiments includes studies of pion elastic and double-charge-exchange scattering at energies between 300 and 550 MeV, where our data is unique. Another involves elastic and single-charge-exchange scattering of pions from polarized nuclear targets, a new field of research which will give the first extensive set of information on spin-dependent pion-nucleus amplitudes. Still another involves the first set of detailed studies of the kinematic correlations among particles emitted following pion absorption in nuclei
Relativistic Faddeev description of baryons and nucleon structure function in the NJL model
Energy Technology Data Exchange (ETDEWEB)
Bentz, W.; Mineo, H.; Asami, H.; Yazaki, K
2000-05-08
In this work we use the Nambu-Jona-Lasinio (NJL) model as an effective quark theory based on QCD to describe the structure of baryons. Based on the solutions of the relativistic 3-quark Faddeev equation in the ladder approximation, we discuss the masses of the nucleon and the delta, the static properties of the nucleon, and the quark light cone momentum distributions in the nucleon.
In-medium NN interactions and nucleon and meson masses studied with nucleon knockout reactions
Noro, T; Akiyoshi, H; Daito, I; Fujimura, H; Hatanaka, K; Ihara, F; Ishikawa, T; Ito, M; Kawabata, M; Kawabata, T; Maeda, Y; Matsuoka, N; Morinobu, S; Nakamura, M; Obayashi, E; Okihana, A; Sagara, K; Sakaguchi, H; Takeda, H; Taki, T; Tamii, A; Tamura, K; Yamazaki, H; Yoshida, H; Yoshimura, M; Yosoi, M
2000-01-01
Spin observables have been measured for (p, 2p) reactions aiming at studying medium effects on NN interactions in nuclear field. Observed strong density-dependent reduction of the analyzing power is consistent with a model calculation where reduction of nucleon and meson masses are taken into account. On the other hand, calculations with g-matrices in the Shroedinger framework does not predict the reduction. The spin-transfer coefficients, which data are not reproduced by the model calculation, are found to be sensitive to reduction rate of each meson mass and have a possibility to test scaling lows in mass reductions.
Bound nucleon structure function in the picture of relativistic constituent quarks
International Nuclear Information System (INIS)
Grigoryan, L.A.; Shakhbazyan, V.A.
1987-01-01
The structure function F 2N of nucleons in the deuterium, carbon and iron nuclei is calculated as a function of Q 2 in two approaches: taking into account the nucleon swelling in nuclei due to the partial deconfinement of quarks in nuclear medium; in the conventional approach of nuclear physics, taking into account the getting off the mass shell of the bound nucleon and Fermi motion in nucleons. It is shown that the conventional approach of nuclear physics does not explain the EMC effect in the region of small x
International Nuclear Information System (INIS)
1988-01-01
This report summarizes the work on experimental research in intermediate energy nuclear and particle physics carried out by New Mexico State University in 1988 under a grant from the US Department of Energy. The nucleon-nucleon research has involved studies of interactions between polarized neutrons and polarized protons. Its purpose is to help complete the determination of the nucleon-nucleon amplitudes at energies up to 800 MeV, as part of a program currently in progress at LAMPF, as well as to investigate the possibility of the existence of dibaryon resonances. The pion-nucleus research involves studies of this interaction in regions where it has not been adequately explored. These include experiments on elastic and double charge exchange scattering at energies above the /Delta/(1232) resonance, interactions with polarized nuclear targets, and investigations of pion absorption using a detector covering nearly the full solid angle region. 21 refs., 4 figs
Nucleon-nucleon scattering studies at small angles at COSY-ANKE
Energy Technology Data Exchange (ETDEWEB)
Bagdasarian, Zara [Forschungszentrum Juelich, Juelich (Germany); Tbilisi State University, Tbilisi (Georgia); Collaboration: ANKE-Collaboration
2015-07-01
The most accepted approach to describe nucleon-nucleon (NN) interaction is the partial wave analysis (PWA). The SAID database and analysis program comprise various experimental observables at different energies over the full angular range and express them in the partial waves. The goal of the experiments held at COSY-Juelich is to provide SAID with new valuable measurements. Scattering data was taken at small angles for six beam energies between 0.8 and 2.4 GeV with polarized proton beam incident on both proton and deuteron unpolarized targets using the ANKE spectrometer. First, the results of the proton-proton (pp) scattering analyzing power and cross section are presented. While pp data closes a very important gap at small angles in the database, proton-neutron (pn) data is a crucial contribution to the almost non-explored pn database above 800 MeV. Therefore, the talk will mainly concentrate on the proton-deuteron (pd) scattering studies, which includes the overview of the older COSY experiments with polarized deuteron beam, and the abovementioned new experiment with polarized proton beam and unpolarized deuteron target. The presentation will show the most recent results of the analyzing powers of pd elastic and pn scattering.
International Nuclear Information System (INIS)
Didenko, L.A.; Grishin, V.G.; Kuznetsov, A.A.
1991-01-01
The effective mass spectra of nucleon clusters, produced in p, d, He and C collisions with carbon nuclei at P=4.2xA GeV/c are studied. The results obtained show that clusters with proton multiplicity n p =2 and 3 can be interpreted as decay products of nucleon resonances with a width from a few MeV to a few tens MeV. 11 refs.; 6 figs.; 4 tabs
Results on nucleon structure functions in quantum chromodynamics
International Nuclear Information System (INIS)
Martin, F.
1979-01-01
Gluon bremsstrahlung processes inside the nucleon are investigated using the standard renormalization-group analysis. A new method of inverting the moments is applied which leads to analytic results for the parton distributions near x = 1 and x = 0. The nucleon is considered as a bound state of three quarks subsequently ''renormalized'' by gluon bremsstrahlung and quark-antiquark pair production. An ''unrenormalized'' valance quark distribution peaked at x = 1/3, with a width related to the nucleon radius, leads to good agreement with deep-inelastic data. However, the gluon distribution obtained seems too steep near x = 0
Nuclear structure effects in multi-nucleon transfer and sequential fission reactions
International Nuclear Information System (INIS)
Biswas, D.C.
2001-01-01
The role of the nuclear structure in multi-nucleon transfer and sequential fission reactions has been discussed. The recent results on multi-nucleon transfer and transfer induced fission reaction, have brought out many interesting features in understanding the reaction mechanism and collective dynamics of heavy ion reactions. The structure of the projectile nucleus has strong influence on the transfer of multi-nucleons and/or clusters from the projectile to the target. The mechanism of multi-nucleon transfer between two heavy nuclei is a complex process which has a strong dependence on the ground state Q-value of the reaction as well as on the number of transferred nucleons
Parity violation in nuclei: studies of the weak nucleon-nucleon interaction
International Nuclear Information System (INIS)
Mcdonald, A.B.
1980-03-01
The Weinberg-Salam Unified Model of weak and electromagnetic interactions has been very successful in explaining parity violation and neutral current effects in neutrino-nucleon, electron-nucleon and neutrino-electron interactions. A wide variety of nuclear physics parity violation experiments are in progress to measure effects of the weak nucleon-nucleon interaction in few nucleon systems and certain heavier nuclei where enhancements are expected. The current status of these experiments will be reviewed, including details of an experiment at Chalk River to search for parity violation in the photodisintegration of deuterium and an extension of our previous measurements of parity mixing in 21 Ne. The interpretation of results in terms of basic models of the weak interaction will be discussed. (Auth)
The study of the cumulative effect in meson and nucleonic system production
International Nuclear Information System (INIS)
Pentia, M.
1984-01-01
Relativistic nuclear reactions with protons (deuterons) 8.0 GeV/c in the limiting fraamentation region (4-momentum transfer Q >= 1 GeV), with the particle production energy exceeding the nucleon-nucleon kinematical limit, were studied. The data acqusition, processing and analysis methods are presented along with experimental results like enerqy, angular distributions and A-mass dependence, carried out on DISC-2 Spectrometer (Dubna). Scale invariance character of the meson production, tells about local, pointlike interactions, interpreted like violent quark collisions. The quark structure functions of nuclei was obtained, proving the existence of multiquark states in nuclei. (author)
Results of searches for the nucleon structure displays in high energy hadron-nucleus collisions
International Nuclear Information System (INIS)
Strugalski, Z.
1984-01-01
Hadron-nucleus collision data at projectile energy from a few GeV up to about eight thousand GeV were analysed in order to find effects in which a nucleon structure manifests itself. It was found that some nucleon structure displays in incident hadron deflection in its passage through atomic nuclei and in multiple production process, at energies above about 2 GeV. The distribution of the deflection angles consists of two components, the mean free path for multiparticle production is about three times larger than the expected one. These effects may be interpreted as caused by a nucleon structure
Measurement of the nucleon structure function using high energy muons
International Nuclear Information System (INIS)
Meyers, P.D.
1983-12-01
We have measured the inclusive deep inelastic scattering of muons on nucleons in iron using beams of 93 and 215 GeV muons. To perform this measurement, we have built and operated the Multimuon Spectrometer (MMS) in the muon beam at Fermilab. The MMS is a magnetized iron target/spectrometer/calorimeter which provides 5.61 kg/cm 2 of target, 9% momentum resolution on scattered muons, and a direct measure of total hadronic energy with resolution sigma/sub nu/ = 1.4√nu(GeV). In the distributed target, the average beam energies at the interaction are 88.0 and 209 GeV. Using the known form of the radiatively-corrected electromagnetic cross section, we extract the structure function F 2 (x,Q 2 ) with a typical precision of 2% over the range 5 2 2 /c 2 . We compare our measurements to the predictions of lowest order quantum chromodynamics (QCD) and find a best fit value of the QCD scale parameter Λ/sub LO/ = 230 +- 40/sup stat/ +- 80/sup syst/ MeV/c, assuming R = 0 and without applying Fermi motion corrections. Comparing the cross sections at the two beam energies, we measure R = -0.06 +- 0.06/sup stat/ +- 0.11/sup syst/. Our measurements show qualitative agreement with QCD, but quantitative comparison is hampered by phenomenological uncertainties. The experimental situation is quite good, with substantial agreement between our measurements and those of others. 86 references
Comparative study of various methods of primary energy estimation in nucleon-nucleon interactions
International Nuclear Information System (INIS)
Goyal, D.P.; Yugindro Singh, K.; Singh, S.
1986-01-01
The various available methods for the estimation of primary energy in nucleon-nucleon interactions have been examined by using the experimental data on angular distributions of shower particles from p-N interactions at two accelerator energies, 67 and 400 GeV. Three different groups of shower particle multiplicities have been considered for interactions at both energies. It is found that the different methods give quite different estimates of primary energy. Moreover, each method is found to give different values of energy according to the choice of multiplicity groups. It is concluded that the E ch method is relatively the better method among all the methods available, and that within this method, the consideration of the group of small multiplicities gives a much better result. The method also yields plausible estimates of inelasticity in high energy nucleon-nucleon interactions. (orig.)
Moments of unpolarized nucleon structure functions in chirally improved lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Goeckeler, Meinulf; Maurer, Thilo; Schaefer, Andreas [University of Regensburg (Germany); Lang, Christian B.; Limmer, Markus [University of Graz (Austria)
2008-07-01
We present our results for the lowest moments of unpolarized nucleon structure functions at leading twist. We employ lattice quantum chromodynamics using chirally improved fermions in quenched as well as dynamical simulations.
International Nuclear Information System (INIS)
Wang Fan; Sun Weimin; Chen Xiangsong; Lu Xiaofu; Goldman, T.
2009-01-01
It is unavoidable to deal with the quark and gluon momentum and angular momentum contributions to the nucleon momentum and spin in the study of nucleon internal structure. However we never have the quark and gluon momentum, orbital angular momentum and gluon spin operators which satisfy both the gauge invariance and the canonical momentum and angular momentum commutation relation. The conflicts between the gauge invariance and canonical quantization requirement of these operators are discussed. A new set of quark and gluon momentum, orbital angular momentum and spin operators, which satisfy both the gauge invariance and canonical momentum and angular momentum commutation relation, are proposed. The key point to achieve such a proper decomposition is to separate the gauge field into the pure gauge and the gauge covariant parts. The same conflicts also exist in QED and quantum mechanics and have been solved in the same manner. The impacts of this new decomposition to the nucleon internal structure are discussed. (authors)
Measurement of the nucleon structure function using high energy muons
Energy Technology Data Exchange (ETDEWEB)
Meyers, P.D.
1983-12-01
We have measured the inclusive deep inelastic scattering of muons on nucleons in iron using beams of 93 and 215 GeV muons. To perform this measurement, we have built and operated the Multimuon Spectrometer (MMS) in the muon beam at Fermilab. The MMS is a magnetized iron target/spectrometer/calorimeter which provides 5.61 kg/cm/sup 2/ of target, 9% momentum resolution on scattered muons, and a direct measure of total hadronic energy with resolution sigma/sub nu/ = 1.4..sqrt..nu(GeV). In the distributed target, the average beam energies at the interaction are 88.0 and 209 GeV. Using the known form of the radiatively-corrected electromagnetic cross section, we extract the structure function F/sub 2/(x,Q/sup 2/) with a typical precision of 2% over the range 5 < Q/sup 2/ < 200 GeV/sup 2//c/sup 2/. We compare our measurements to the predictions of lowest order quantum chromodynamics (QCD) and find a best fit value of the QCD scale parameter ..lambda../sub LO/ = 230 +- 40/sup stat/ +- 80/sup syst/ MeV/c, assuming R = 0 and without applying Fermi motion corrections. Comparing the cross sections at the two beam energies, we measure R = -0.06 +- 0.06/sup stat/ +- 0.11/sup syst/. Our measurements show qualitative agreement with QCD, but quantitative comparison is hampered by phenomenological uncertainties. The experimental situation is quite good, with substantial agreement between our measurements and those of others. 86 references.
Studying the Puzzle of the Pion Nucleon Sigma Term
Kane, Christopher; Lin, Huey-Wen
2017-09-01
The pion nucleon sigma term (σπN) is a fundamental parameter of QCD and is integral in the experimental search for dark matter particles as it is used to calculate the cross section of interactions between potential dark matter candidates and nucleons. Recent calculations of this term from lattice-QCD data disagree with calculations done using phenomenological data. This disparity is large enough to cause concern in the dark matter community as it would change the constraints on their experiments. We investigate one potential source of this disparity by studying the flavor dependence on LQCD data used to calculate σπN. To calculate σπN, we study the nucleon mass dependence on the pion mass and implement the Hellmann-Feynman Theorem. Previous calculations only consider LQCD data that accounted for 2 and 3 of the lightest quarks in the quark sea. We extend this study by using new high statistic data that considers 2, 3, and 4 quarks in the quark sea to see if the exclusion of the heavier quarks can account for this disparity. National Science Foundation.
International Nuclear Information System (INIS)
Rekalo, M.P.; Tomasi-Gustafsson, E.
1996-01-01
The microscopic structure of the nucleon N and its excited states N* can be determined through the (elastic or inelastic) electromagnetic form factors. These form factors should help to understand the nature of the transition regime from soft physics of the confinement region to the hard physics of the perturbative QCD. The authors show that hadron induced reactions with isospin zero projectiles, could be an effective method for the study of the nucleon structure, in particular through the measurement of polarization observables. They analyzed the properties of the inclusive d + p reactions, with particular interest in the domain of nucleonic resonances excitation. The calculated cross section and polarization observables show that it is possible to disentangle the different reaction mechanisms (omega, sigma and eta exchange) and bring new information about the electromagnetic form factors of the deuteron as well as of the nucleonic resonances. Existing data on the tensor analyzing power are in agreement with the prediction based on the omega exchange model. (authors)
International Nuclear Information System (INIS)
Druce, C.H.; Moszkowski, S.A.
1986-01-01
The surface delta interaction is used as an effective nucleon-nucleon interaction to investigate the structure and interaction of the bosons in the interacting boson model. We have obtained analytical expressions for the coefficients of a multipole expansion of the neutron-boson-proton-boson interaction for the case of degenerate orbits. A connection is made between these coefficients and the parameters of the interaction boson model Hamiltonian. A link between the latter parameters and the single boson energies is suggested
Energy Technology Data Exchange (ETDEWEB)
Druce, C.H.; Moszkowski, S.A.
1986-01-01
The surface delta interaction is used as an effective nucleon-nucleon interaction to investigate the structure and interaction of the bosons in the interacting boson model. We have obtained analytical expressions for the coefficients of a multipole expansion of the neutron-boson-proton-boson interaction for the case of degenerate orbits. A connection is made between these coefficients and the parameters of the interaction boson model Hamiltonian. A link between the latter parameters and the single boson energies is suggested.
High-Energy antipp and pp Elastic Scattering and Nucleon Structure
International Nuclear Information System (INIS)
Islam, M.M.; Innocente, V.; Fearnley, T.; Sanguinetti, G.
1987-01-01
High-energy antipp and pp elastic data from the CERN Collider and the ISR are analyzed in the nucleon valence core model. Diffraction is described by a profile function that incorporates crossing symmetry and saturation of Froissart-Martin bound. The model is found to provide a very satisfactory description of the elastic scattering over the whole range of energy and momentum transfer. Implications of the analysis on QCD models of nucleon structure are pointed out
High-Energy antipp and pp Elastic Scattering and Nucleon Structure
Energy Technology Data Exchange (ETDEWEB)
Islam, M.M.; Innocente, V.; Fearnley, T.; Sanguinetti, G.
1987-07-15
High-energy antipp and pp elastic data from the CERN Collider and the ISR are analyzed in the nucleon valence core model. Diffraction is described by a profile function that incorporates crossing symmetry and saturation of Froissart-Martin bound. The model is found to provide a very satisfactory description of the elastic scattering over the whole range of energy and momentum transfer. Implications of the analysis on QCD models of nucleon structure are pointed out.
Study of the baryon-baryon interaction in nucleon-nucleon and pion-deuteron scattering
International Nuclear Information System (INIS)
Fuchs, M.
1993-01-01
After the definition of the Hamiltonian in general form by meson production and absorption the transition to operators pursued, which connect only spaces with definite meson numbers. In this approximation first the self-energy of a single baryon was calculated in its full energy and momentum dependence. Then the formal expressions for the T matrices of nucleon-nucleon and pion-deuteron scattering were derived. The essential components of these expressions are the baryon-baryon T matrix ant transition amplitudes from pion-deuteron channels to baryon-baryon states. The central chapter dealt with the calculation of the baryon-baryon interaction for the general form of the vertices, with the solution of the binding problem and the baryon-baryon T matrix. Finally followed the results on the nucleon-nucleon and pion-deuteron scattering. For this first the transition amplitudes from pion-deuteron states to intermediate baryon-baryon states and the Born graphs of the pion-deuteron scattering had to be calculated. After some remarks to the transition from partial-wave decomposed T matrices to scattering observables an extensive representation of the total, partial, and differential cross sections and a series of spin observables (analyzing powers and spin correlations) for the elastic proton-proton, neutron-proton, and pion-deuteron scattering as well for the fusion reaction pp→πd and the breakup reaction πd→pp follows. Thereby the energies reached from the nucleon-nucleon respectively pion-deuteron threshold up to 100 MeV above the delta resonance
Energy Technology Data Exchange (ETDEWEB)
Pita, S
2000-09-01
The structure of the neutron rich light nuclei {sup 11}Be and {sup 10}Li has been investigated by means of one nucleon transfer reactions. The experiments have been carried out at GANIL in inverse kinematics using {sup 11}Be secondary beams. The {sup 11}Be(p,d){sup 10}Be reaction bas been studied at 35.3 MeV/u. The {sup 10}Be ejectiles were analyzed by the spectrometer SPEG, and coincident deuterons were detected in the position sensitive silicon detector CHARISSA. Transfer cross sections to 0{sup +}{sub 1} and 2{sup +}{sub 1}, states in {sup 10}Be were measured up to {theta}{sub CM} = 16 deg. and compared to DWBA and CRC predictions. The effects of neutron-cure couplings on reaction form factors have been studied by solving coupled equations in the framework of a vibrational model. It is shown that the rate of core excitation {sup 10}Be{sub 2+} in the {sup 11}Be{sub gs} wave function is overestimated by a standard analysis with form factors given by the usual Separation Energy prescription. The former model predicts a rate of core excitation of 16% and leads to theoretical cross sections which are in good agreement with the experimental data. The aim of the {sup 11}Be(d,{sup 3}He){sup 10}Li experiment, realized at 37 MeV/u, was to measure the distribution of the 2s neutron strength in the unbound nucleus {sup 10}Li. The energy spectrum was deduced from the {sup 3}He energy and angle measured by the silicon strip detector array MUST. An asymmetric peak is clearly observed near the threshold, with a maximum at -S{sub n} = 130 keV. This constitutes a direct proof of the inversion of 2s and 1p{sub 1/2} shells in {sup 10}Li, which was until now a controversial question in spite of many experimental efforts. On the other band the analysis of the {sup 11}Be(d,t){sup 10}Be reaction studied in the same experiment confirms the results obtained in the {sup 11}Be(p,d){sup 10}Be reaction concerning the {sup 11}Be{sub gs} structure. This work shows the interest and feasibility
Radial excitations in nucleon-nucleon scattering
International Nuclear Information System (INIS)
Silvestre-Brac, B.; Carbonell, J.; Gignoux, C.
1986-01-01
In the non-relativistic constituent quark model, the role of the radial excitations of the nucleon is studied within a resonating group approach of the nucleon-nucleon scattering. It is shown that, rather than the inclusion of new channels, it is important to include mixed-symmetry spin-isospin components in the nucleon wave function. It is also found that during the collision there is no significant deformation of the nucleon. (orig.)
The Structure of the Nucleon and its Excited States
International Nuclear Information System (INIS)
None
1995-01-01
The past year has been an exciting and productive one for particle physics research at Abilene Christian University. The thrust of our experimental investigations is the study of the nucleon and its excited states. Laboratories where these investigations are presently being conducted are the AGS at Brookhaven, Fermilab and LAMPF. Some analysis of the data for experiments at the Petersburg Nuclear Physics Institute (Gatchina, Russia) is still in progress. Scheduling of activities at different laboratories inevitably leads to occasional conflicts. This likelihood is increased by the present budget uncertainties at the laboratories that make long-term scheduling difficult. For the most part, the investigators have been able to avoid such conflicts. Only one experiment received beam time in 1994 (E890 at the AGS). The situation for 1995-1996 also appears manageable at this point. E890 and another AGS experiment (E909) will run through May, 1995. El 178 at LAMPF is presently scheduled for August/September 1995. E866 at Fermilab is scheduled to start in Spring/Summer 1996. Undergraduate student involvement has been a key element in this research contract since its inception. Summer students participated at all of the above laboratories in 1994 and the same is planned in 1995. A transition to greater involvement by graduate students will provide cohesiveness to ACU involvement at a given laboratory and full-time on-site involvement in the longer running experiments at FNAL and BNL. Funds to support a full-time graduate student are requested this year. Finally, collaboration by Russian, Croatian and Bosnian scientists has proven to be mutually beneficial to these experimental programs and to the overall programs at the institutions involved. Past support has been augmented by other grants from government agencies and from the Research Council at Abilene Christian University. Additional funds are requested in this renewal to enable more programmatic support for these
International Nuclear Information System (INIS)
Tezuka, Hirokazu.
1984-10-01
Scattering of a particle by bound nucleons is discussed. Effects of nucleons that are bound in a nucleus are taken as a structure function. The way how to calculate the structure function is given. (author)
Low-energy antikaon nucleon and nucleus interaction studies
Marton, Johann; Leannis Collaboration
2011-04-01
The antikaon (K-) interaction on nucleons and nuclei at low energy is neither simple nor well understood. Kaonic hydrogen is a very interesting case where the strong interaction of K- with the proton leads to an energy shift and a broadening of the 1s ground state. These two observables can be precisely studied with x-ray spectroscopy. The behavior at threshold is influenced strongly by the elusive Lambda(1405) resonance. In Europe the DAFNE electron-positron collider at Laboratori Nazionali di Frascati (LNF) provides an unique source of monoenergetic kaons emitted in the Phi meson decay. Recently the experiment SIDDHARTA on kaonic hydrogen and helium isotopes was successfully performed at LNF. A European network LEANNIS with an outreach to J-PARC in Japan was set up which is promoting the research on the antikaon interactions with nucleons and nuclei. This talk will give an overview of LEANNIS research tasks, the present status and an outlook to future perspectives. Financial support by the EU project HadronPhysics2 is gratefully acknowledged.
Nuclear matter studies with density-dependent meson-nucleon coupling constants
International Nuclear Information System (INIS)
Banerjee, M.K.; Tjon, J.A.; Banerjee, M.K.; Tjon, J.A.
1997-01-01
Due to the internal structure of the nucleon, we should expect, in general, that the effective meson nucleon parameters may change in nuclear medium. We study such changes by using a chiral confining model of the nucleon. We use density-dependent masses for all mesons except the pion. Within a Dirac-Brueckner analysis, based on the relativistic covariant structure of the NN amplitude, we show that the effect of such a density dependence in the NN interaction on the saturation properties of nuclear matter, while not large, is quite significant. Due to the density dependence of the g σNN , as predicted by the chiral confining model, we find, in particular, a looping behavior of the binding energy at saturation as a function of the saturation density. A simple model is described, which exhibits looping and which is shown to be mainly caused by the presence of a peak in the density dependence of the medium modified σN coupling constant at low density. The effect of density dependence of the coupling constants and the meson masses tends to improve the results for E/A and density of nuclear matter at saturation. From the present study we see that the relationship between binding energy and saturation density may not be as universal as found in nonrelativistic studies and that more model dependence is exhibited once medium modifications of the basic nuclear interactions are considered. copyright 1997 The American Physical Society
Structure of the real part of the nucleon optical potential
International Nuclear Information System (INIS)
Kadmensky, S.G.; Lyuboshitz, V.V.; Shaikina, A.A.
1995-01-01
The components of the nucleon optical potential V(l, E) in the 208 Pb and 40 Ca nuclei are calculated on the basis of the generalized Hartree-Fock potential and using typical sets of vacuum NN forces. The parameters of the isoscalar component of V(1, E) are found to agree well with those of phenomenological optical potentials and of the optical potentials in the Skyrme model. The isovector component of V(1, E) strongly depends on energy, and its value at E = 0 is considerably less than the corresponding values of the phenomenological and Skyrme optical potentials. This points to the necessity of additional tests of the underlying pair NN potentials. The radial distribution of V(1, E) is more complicated than the radial dependence of phenomenological optical potentials. 6 refs., 5 figs
International Nuclear Information System (INIS)
Abbas, Afsar
1992-01-01
The surprising answer to this question Is nucleon deformed? is : Yes. The evidence comes from a study of the quark model of the single nucleon and when it is found in a nucleus. It turns out that many of the long standing problems of the Naive Quark Model are taken care of if the nucleon is assumed to be deformed. Only one value of the parameter P D ∼1/4 (which specifies deformation) fits g A (the axial vector coupling constant) for all the semileptonic decay of baryons, the F/D ratio, the pion-nucleon-delta coupling constant fsub(πNΔ), the double delta coupling constant 1 fsub(πΔΔ), the Ml transition moment μΔN and g 1 p the spin structure function of proton 2 . All this gives strong hint that both neutron and proton are deformed. It is important to look for further signatures of this deformation. When this deformed nucleon finds itself in a nuclear medium its deformation decreases. So much that in a heavy nucleus the nucleons are actually spherical. We look into the Gamow-Teller strengths, magnetic moments and magnetic transition strengths in nuclei to study this property. (author). 15 refs
Nucleon structure in the chiral regime with domain wall fermions on an improved staggered sea
International Nuclear Information System (INIS)
R.G. Edwards; G. Fleming; Ph. Hagler; J.W. Negele; K. Orginos; A.V. Pochinsky; D.B. Renner; D.G. Richards; W. Schroers
2006-01-01
Moments of unpolarized, helicity, and transversity distributions, electromagnetic form factors, and generalized form factors of the nucleon are presented from a preliminary analysis of lattice results using pion masses down to 359 MeV. The twist two matrix elements are calculated using a mixed action of domain wall valence quarks and asqtad staggered sea quarks and are renormalized perturbatively. Several observables are extrapolated to the physical limit using chiral perturbation theory. Results are compared with experimental moments of quark distributions and electromagnetic form factors and phenomenologically determined generalized form factors, and the implications on the transverse structure and spin content of the nucleon are discussed
Imploding-liner reactor nucleonic studies: the LINUS blanket
International Nuclear Information System (INIS)
Dudziak, D.J.
1977-09-01
Scoping nucleonic studies have been performed for a small imploding-liner fusion reactor concept. Tritium breeding ratio and time-dependent energy deposition rates were the primary parameters of interest in the study. Alloys of Pb and LiPb were considered for the liquid liner (blanket), and tritium breeding was found to be more than adequate with blankets less than 1 m thick. However, neutron leakages into the solid cylinder block surrounding the liquid liner are generally quite high, so considerable effort was concentrated on minimizing these values. Time-dependent calculations reveal that 89% of the energy is deposited in the blanket within 2 μs. Thus, LINUS's blanket should remain intact for the requisite neutron and gamma-ray lifetimes
Test of determination of nucleon structure functions in the hypothesis of scalar di-quark existence
International Nuclear Information System (INIS)
Tavernier, P.; Dugne, J.J.
1992-01-01
The authors present the nucleon structure functions that have been obtained in the hypothesis of existence of a scalar di-quark, progressively broken by increasing energy of electromagnetic probe (Stockolm model). Comparisons with other models and experimental results are presented. 20 figs
Quark-hadron duality of nucleon spin structure function
International Nuclear Information System (INIS)
Dong, Y.B.
2005-01-01
Bloom-Gilman quark-hadron duality of nuclear spin structure function is studied by comparing the integral of g 1 from perturbative QCD prediction in the scaling region to the moment of g 1 in the resonance region. The spin structure function in the resonance region is estimated by the parametrization forms of non-resonance background and of resonance contributions. The uncertainties of our calculations due to those parametrization forms are discussed. Moreover, the effect of the Δ(1232)-resonance in the first resonance region and the role of the resonances in the second resonance region are explicitly shown. Elastic peak contribution to the duality is also analyzed. (orig.)
International Nuclear Information System (INIS)
Guiasu, I.
1978-01-01
The goals of this work are: a) to examine and turn to account in the study of γ-proton elastic scattering the possibility of using a dispersion representation assumed for the amplitude set Asub(i), free of singularities and kinematic zeroes. This is achieved through a direct calculation of the effective unpolarized differential section of the Compton effect on the proton, at various scattering angles in an energy range of 0 β which agrees with current experimental data. c) to establish a law regarding low ω 5 order energies for the helicity amplitudes and for the unpolarized differential effective section of the process γ + p → γ' + p'. We believe this law to be necessary on one hand for a more accurate determination of the α, β variables out of existent experiments and, on the other hand, for the opportunity to define within the Compton effect on the nucleon new structure constants of the nucleon such as the quadrupolar electromagnetic polarizabilities. By fitting the formula of the unpolarized differential effective section in order ω 5 to the experimental data we obtained modified values of α, β, but still in accordance with the order α > β. d) to establish an inequality based upon the analyticity properties of the Compton invariant amplitudes between expressions that include measurable physical variables, static properties of the nucleon and integrals on the effective differential section for the process γ + p → γ' + p'. (author)
Study of the nucleon-induced preequilibrium reactions by the quantum molecular dynamics
International Nuclear Information System (INIS)
Chiba, Satoshi; Chadwick, M.B.; Niita, Koji; Maruyama, Toshiki; Maruyama, Tomoyuki; Iwamoto, Akira
1996-01-01
The preequilibrium (nucleon-in, nucleon-out) angular distributions have been analyzed in the energy region around 100 to 200 MeV in terms of the Quantum Molecular Dynamics (QMD) theory. The step-wise contribution to the angular distribution, the effects of momentum distribution and surface refraction/reflection to the quasifree scattering have been studied. (author)
Nucleon deep-inelastic structure functions in a quark model with factorizability assumptions
International Nuclear Information System (INIS)
Linkevich, A.D.; Skachkov, N.B.
1979-01-01
Formula for structure functions of deep-inelastic electron scattering on nucleon is derived. For this purpose the dynamic model of factorizing quark amplitudes is used. It has been found that with increase of Q 2 transferred pulse square at great values of x kinemastic variable the decrease of structure function values is observed. At x single values the increase of structure function values is found. The comparison With experimental data shows a good agreement of the model with experiment
Study of single-nucleon spectroscopic characteristics in light nuclei
International Nuclear Information System (INIS)
Zhusupova, K.A.
1998-01-01
Single-nucleon characteristics of 1 p-shell nuclei are investigated in the thesis. These characteristics are necessary for describing nuclear processes leaded to separation of target nuclei or to addition of one nucleon to it. Multi-particle shell model and three-body cluster model (for 6 L i and 9 Be) are used. It is shown that shell model explains well spectroscopic S-factors for stripping and pick-up reactions of nucleon. Three body α2 N-model reproduces well S-factors and momentum distribution extracted from (e, e p) reactions for separation of proton from ground state of 6 L i nucleus accompanied by appearance of ground and high exited states of 5 He nucleolus. The classification and explanation for small value nucleon partial widths for high lying states for odd nuclei 1 p-shell with isospin T=3/2 are given. (author)
An overview of recent nucleon spin structure measurements at Jefferson Lab
Energy Technology Data Exchange (ETDEWEB)
Allada, Kalyan [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)
2016-02-01
Jefferson Lab have made significant contributions to improve our knowledge of the longitudinal spin structure by measuring polarized structure functions, g1 and g2, down to Q2 = 0.02 GeV2. The low Q2 data is especially useful in testing the Chiral Perturbation theory (cPT) calculations. The spin-dependent sum rules and the spin polarizabilities, constructed from the moments of g1 and g2, provide an important tool to study the longitudinal spin structure. We will present an overview of the experimental program to measure these structure functions at Jefferson Lab, and present some recent results on the neutron polarizabilities, proton g1 at low Q2, and proton and neutron d2 measurement. In addition to this, we will discuss the transverse spin structure of the nucleon which can be accessed using chiral-odd transversity distribution (h1), and show some results from measurements done on polarized 3He target in Hall A.
Linear estimates of structure functions from deep inelastic lepton-nucleon scattering data. Part 1
International Nuclear Information System (INIS)
Anikeev, V.B.; Zhigunov, V.P.
1991-01-01
This paper concerns the linear estimation of structure functions from muon(electron)-nucleon scattering. The expressions obtained for the structure functions estimate provide correct analysis of the random error and the bias The bias arises because of the finite number of experimental data and the finite resolution of experiment. The approach suggested may become useful for data handling from experiments at HERA. 9 refs
International Nuclear Information System (INIS)
Kuprikov, V. I.; Pilipenko, V. V.; Soznik, A. P.; Tarasov, V. N.; Shlyakhov, N. A.
2009-01-01
The possibility of constructing such new versions of effective nucleon-nucleon forces that would make it possible to describe simultaneously the cross sections for nucleon-nucleus scattering and quantities characterizing nuclear matter and the structure of finite even-even nuclei is investigated on the basis of a microscopic nucleon-nucleus optical potential that is calculated by using effective Skyrme interaction. A procedure for optimizing the parameters of Skyrme forces by employing fits to specific angular distributions for neutron-nucleus scattering and by simultaneously testing the features of nuclear matter, the binding energy of the target nucleus, and its proton root-mean-square radius is proposed. A number of versions of modified Skyrme forces that ensure a reasonable description of both nucleon-nucleus scattering and the properties of nuclear structure are found on the basis of this procedure.
Once more on the radiative corrections to the nucleon structure functions in QCD
International Nuclear Information System (INIS)
Stamenov, D.B.
1994-09-01
A new representation of the next to leading QCD corrections to the nucleon structure functions is given in terms of parton distributions. All O(α s ) corrections to the leading logarithmic approximation (LLA) are included. In contrast to the similar representations in the literature terms of order O(α 2 s ) do not attend in our expressions for the nucleon structure functions taken in the next to leading logarithmic approximation. This result is generalized for any order in α s beyond the LLA. Terms of order O(α n s ) which belong only tot he approximation in consideration are present in such a representation for the structure functions. (author). 11 refs
Structure of the nucleon's low-lying excitations
Chen, Chen; El-Bennich, Bruno; Roberts, Craig D.; Schmidt, Sebastian M.; Segovia, Jorge; Wan, Shaolong
2018-02-01
A continuum approach to the three valence-quark bound-state problem in quantum field theory is used to perform a comparative study of the four lightest (I =1 /2 ,JP=1 /2±) baryon isospin doublets in order to elucidate their structural similarities and differences. Such analyses predict the presence of nonpointlike, electromagnetically active quark-quark (diquark) correlations within all baryons; and in these doublets, isoscalar-scalar, isovector-pseudovector, isoscalar-pseudoscalar, and vector diquarks can all play a role. In the two lightest (1 /2 ,1 /2+) doublets, however, scalar and pseudovector diquarks are overwhelmingly dominant. The associated rest-frame wave functions are largely S -wave in nature; and the first excited state in this 1 /2+ channel has the appearance of a radial excitation of the ground state. The two lightest (1 /2 ,1 /2-) doublets fit a different picture: accurate estimates of their masses are obtained by retaining only pseudovector diquarks; in their rest frames, the amplitudes describing their dressed-quark cores contain roughly equal fractions of even- and odd-parity diquarks; and the associated wave functions are predominantly P -wave in nature, but possess measurable S -wave components. Moreover, the first excited state in each negative-parity channel has little of the appearance of a radial excitation. In quantum field theory, all differences between positive- and negative-parity channels must owe to chiral symmetry breaking, which is overwhelmingly dynamical in the light-quark sector. Consequently, experiments that can validate the contrasts drawn herein between the structure of the four lightest (1 /2 ,1 /2±) doublets will prove valuable in testing links between emergent mass generation and observable phenomena and, plausibly, thereby revealing dynamical features of confinement.
Studies of high energy lepton-nucleon scattering
International Nuclear Information System (INIS)
Ingelman, G.
1982-05-01
The first part of this thesis is related to the problem of detecting charmed particles. A new technique for observing very short decay paths in nuclear emulsions is developed and applied on a sample of neutrino induced reactions. Techniques for producing thick pellicles of nuclear track emulsion are also developed. In the second part, phenomenological investigations of deep inelastic lepton-nucleon scattering are made. Monte Carlo computer programs, based on the parton model and perturbative QCD for the initial hard process and the Lund model for the following soft hadronization, are used to simulate these reactions and thereby obtain explicit results. Generally good agreement is found when comparing these with experimental data, thus supporting this basic framework. Predictions to test QCD are made. Transverse momentum properties are studied in detail, in particular effects from soft gluon emission. The properties of a model for baryon production, both from the target remnant and the colour force field, are discussed and the results found to agree with data. It is shown that, at the presently available energies, the observable energy flow is not due to QCD, but arises from the baryon production in the target fragmentation. In a model to explain the observed Λ polarization, a connection between the confinement of quarks and these polarization phenomena is suggested. (Auth.)
SU(6)-strong breaking: structure functions and small momentum transfer properties of the nucleon
International Nuclear Information System (INIS)
Le Yaouanc, A.; Oliver, L.; Pene, O.; Raynal, J.C.
1975-01-01
A new approach in the study of the SU(6) symmetry breaking (in particular in deep inelastic electron-nucleon scattering) is presented. It is shown that there is a connection between deep inelastic and low momentum transfer or static properties of the nucleon, which extends much beyond the common SU(6) 56-assignments of the nucleon in both cases. This connection is provided by the realistic quark model (in which quarks are considered as real entities moving inside the hadron). Using this connection it is shown that the breaking of the prediction Fsub(2)sup(en)/Fsub(2)sup(ep)=2/3 is not truly related to chiral configuration mixings. An alternative solution, based on a true modification of the 56-assignment of the nucleon to a (56,L=0)+(70,L=0) mixing (called SU(6) strong mixing) is proposed. It is shown that the 'good' predictions of SU(6) are not much changed by this mixing. A complete description of the deep inelastic scattering including gluons and pairs is presented
Towards the results of global analysis of data on nucleon electromagnetic structure
International Nuclear Information System (INIS)
Bilen'kaya, S.I.; Dubnicka, S.; Dubnickova, A.Z.; Strizenec, P.
1991-01-01
Peculiar features of the recent global analysis of data on the nucleon electromagnetic structure are discussed on the detail in order to reconsider reliability of the predicted result that the electron-positron annihilation into a neutron-antineutron cross-section is considerably larger that the cross-section of the electron-positron annihilation into a proton-antiproton pair. 14 refs.; 3 figs.; 3 tabs
Nucleon Structure Studies with Electromagnetic Probes
International Nuclear Information System (INIS)
Vineyard, Michael F.
2011-01-01
Summarized in this report is the progress achieved during the period from March 1, 2008 to June 14, 2009 under contract number DE-FG02-03ER41252. This is the final technical report under this contract. The experimental work described here is part of the electromagnetic nuclear physics program of the CEBAF Large Acceptance Spectrometer (CLAS) Collaboration at the Thomas Jefferson National Accelerator Facility (Jefferson Lab) that published 17 journal articles during the period of this report. One of these journal articles reported on the results of precise measurements of the neutron magnetic form factor. I was a spokesperson on this experiment and the publication of these results is the culmination of years of effort by a small subset of the CLAS Collaboration. As usual, undergraduate students were involved in all aspects of this work. Three Union College students participated in this program during the window of this report and one presented a paper on his work at the 2009 National Conference on Undergraduate Research (NCUR22). In this report, I discuss recent progress on the measurements of the neutron magnetic form factor and describe my service work for the CLAS Collaboration.
International Nuclear Information System (INIS)
1987-01-01
This report summarizes the work on experimental research in intermediate energy nuclear and particle physics carried out by New Mexico State University in 1985-87. These studies have involved investigations of nucleon-nucleon and pion-nucleus interactions. They have been carried out at the LAMPF accelerator at the Los Alamos National Laboratory, at the SIN laboratory near Zurich, Switzerland, and at the TRIUMF accelerator in Vancouver, Canada. 86 refs., 5 figs
A two component model describing nucleon structure functions in the low-x region
Energy Technology Data Exchange (ETDEWEB)
Bugaev, E.V. [Institute for Nuclear Research of the Russian Academy of Sciences, 7a, 60th October Anniversary prospect, Moscow 117312 (Russian Federation); Mangazeev, B.V. [Irkutsk State University, 1, Karl Marx Street, Irkutsk 664003 (Russian Federation)
2009-12-15
A two component model describing the electromagnetic nucleon structure functions in the low-x region, based on generalized vector dominance and color dipole approaches is briefly described. The model operates with the mesons of rho-family having the mass spectrum of the form m{sub n}{sup 2}=m{sub r}ho{sup 2}(1+2n) and takes into account the nondiagonal transitions in meson-nucleon scattering. The special cut-off factors are introduced in the model, to exclude the gamma-qq-bar-V transitions in the case of narrow qq-bar-pairs. For the color dipole part of the model the well known FKS-parameterization is used.
Lensky, Vadim; Hagelstein, Franziska; Pascalutsa, Vladimir; Vanderhaeghen, Marc
2018-04-01
We derive two new sum rules for the unpolarized doubly virtual Compton scattering process on a nucleon, which establish novel low-Q2 relations involving the nucleon's generalized polarizabilities and moments of the nucleon's unpolarized structure functions F1(x ,Q2) and F2(x ,Q2). These relations facilitate the determination of some structure constants which can only be accessed in off-forward doubly virtual Compton scattering, not experimentally accessible at present. We perform an empirical determination for the proton and compare our results with a next-to-leading-order chiral perturbation theory prediction. We also show how these relations may be useful for a model-independent determination of the low-Q2 subtraction function in the Compton amplitude, which enters the two-photon-exchange contribution to the Lamb shift of (muonic) hydrogen. An explicit calculation of the Δ (1232 )-resonance contribution to the muonic-hydrogen 2 P -2 S Lamb shift yields -1 ±1 μ eV , confirming the previously conjectured smallness of this effect.
Lattice investigation of nucleon structure at light quark masses
International Nuclear Information System (INIS)
Zanotti, James M.
2010-01-01
Lattice simulations of hadronic structure are now reaching a level where they are able to not only complement, but also provide guidance to current and forthcoming experimental programmes at, e.g. Jefferson Lab, COMPASS/CERN and FAIR/GSI. By considering new simulations at low quark masses and on large volumes, we review the recent progress that has been made in this exciting area by the QCDSF/UKQCD collaboration. In particular, results obtained close to the physical point for several quantities, including electromagnetic form factors and moments of ordinary parton distribution functions, show some indication of approaching their phenomenological values.
Polarized and unpolarized nucleon structure functions from lattice QCD
International Nuclear Information System (INIS)
Goeckeler, M.; Technische Hochschule Aachen; Horsley, R.; Humboldt-Universitaet, Berlin; Ilgenfritz, E.M.; Perlt, H.; Rakow, P.; Schierholz, G.; Forschungszentrum Juelich GmbH; Schiller, A.
1995-06-01
We report on a high statistics quenched lattice QCD calculation of the deep-inelastic structure functions F 1 , F 2 , g 1 and g 2 of the proton and neutron. The theoretical basis for the calculation is the operator product expansion. We consider the moments of the leading twist operators up to spin four. Using Wilson fermions the calculation is done for three values of K, and we perform the extrapolation to the chiral limit. The renormalization constants, which lead us from lattice to continuum operators, are calculated in perturbation theory to one loop order. (orig.)
International Nuclear Information System (INIS)
Sauer, P.U.
2014-01-01
In this paper, the role of three-nucleon forces in ab initio calculations of nuclear systems is investigated. The difference between genuine and induced many-nucleon forces is emphasized. Induced forces arise in the process of solving the nuclear many-body problem as technical intermediaries toward calculationally converged results. Genuine forces make up the Hamiltonian. They represent the chosen underlying dynamics. The hierarchy of contributions arising from genuine two-, three- and many-nucleon forces is discussed. Signals for the need of the inclusion of genuine three-nucleon forces are studied in nuclear systems, technically best under control, especially in three-nucleon and four-nucleon systems. Genuine three-nucleon forces are important for details in the description of some observables. Their contributions to observables are small on the scale set by two-nucleon forces. (author)
International Nuclear Information System (INIS)
Ghodsi, O. N.; Mahmodi, M.; Ariai, J.; O. N. Ghodsi)
2007-01-01
In this paper, the cross-sections of fusion reactions 16 O + 208 Pb, 28 Si + 208 Pb, 40 C + 40 Ca, 40 Ca + 48 Ca, 58 Ni + 58 Ni, and 16 O + 154 Sm at bombarding energies above and near the fusion barrier have been investigated. The fusion cross-sections have been studied by means of the Monte Carlo method and effective soft-core nucleon-nucleon interaction. One adjustable parameter was used in these calculations. This parameter can change the strength and repulsive parts of soft-core potential values. It has to be adjusted, so that the analytical results are in acceptable agreement with the experimental data. In our calculations, we have taken the range of the nucleon-nucleon soft-core interaction to be constant and equal to that of the M3Y-Raid potential. Results show that the higher values for the diffusion parameter in the Woods-Saxon potential obtained from a careful analysis of 16 O + 208 Pb and 28 Si + 208 Pb reactions are due to the many particle effects on the nucleon-nucleon potential. (author)
Directory of Open Access Journals (Sweden)
Ghodsi Omid N.
2007-01-01
Full Text Available In this paper, the cross-sections of fusion reactions 16O + 208Pb, 28Si + 208Pb, 40C + + 40Ca, 40Ca + 48Ca, 58Ni + 58Ni, and 16O + 154Sm at bombarding energies above and near the fusion barrier have been investigated. The fusion cross-sections have been studied by means of the Monte Carlo method and effective soft-core nucleon-nucleon interaction. One adjustable parameter was used in these calculations. This parameter can change the strength and repulsive parts of soft-core potential values. It has to be adjusted, so that the analytical results are in acceptable agreement with the experimental data. In our calculations, we have taken the range of the nucleon-nucleon soft-core interaction to be constant and equal to that of the M3Y-Raid potential. Results show that the higher values for the diffusion parameter in the Woods-Saxon potential obtained from a careful analysis of 16O + 208Pb and 28Si + 208Pb reactions are due to the many particle effects on the nucleon-nucleon potential.
Recent COMPASS results on the nucleon longitudinal spin structure and QCD fits
Directory of Open Access Journals (Sweden)
Andrieux Vincent
2014-01-01
Full Text Available The latest measurements of the proton longitudinal spin structure function, ɡ1p, in the deep inelastic (DIS regime are presented. They improve the statistical accuracy of the existing data and extend the kinematic domain to a lower value of x and higher values of Q2. A global NLO QCD fit of all ɡ1 world data on the proton, deuteron and neutron has been achieved. The results give a quantification of the quark spin contribution to the nucleon spin, 0.26 < ΔΣ < 0.34 at 3 (GeV/c2 in M̅S̅ scheme. The errors are dominated by the uncertainty on the shape of the functional forms assumed in the fit. A new verification of the fundamental Bjorken sum rule is obtained at a 9% level, using only COMPASS ɡ1 proton and deuteron measurements. Preliminary results of a reevaluation of the gluon polarization Δɡ/ɡ are presented. The analysis is based on double spin asymmetry of high-pT hadron production cross-sections in the DIS regime. A positive value of 〈Δɡ/ɡ〉 = 0.113 ± 0.038 ± 0.035 is obtained at leading order at x ~ 0.1. In parallel, the double spin asymmetry in the photoproduction regime is also studied. Finally, preliminary results on quark fragmentation functions into pions extracted from a LO fit of pion multiplicities in semi-inclusive DIS are presented.
Exclusive electroproduction of lepton pairs as a probe of nucleon structure
International Nuclear Information System (INIS)
Belitsky, A.V.; Mueller, D.
2003-01-01
We suggest the measurement of exclusive electroproduction of lepton pairs as a tool to study interparton correlations in the nucleon via generalized parton distributions in the kinematical region where this process is light-cone dominated. We demonstrate how the single beam-spin asymmetry allows one to perform such a kind of analysis and give a number of predictions for several experimental setups. We comment on other observables which allow for a clean separation of different species of generalized parton distributions
The study of nucleon-nucleon interaction from the 3 nucleon interaction D(n,nnp) at 14 MeV
International Nuclear Information System (INIS)
Gondrand, Jean-Claude
1970-01-01
The n-p spectrum for the neutron-proton final state interaction in a complete D(n,nnp) experiment at 14 MeV was measured with a two-dimensional time-of-flight spectrometer. A previously measured n-n spectrum, and the n-p spectrum are compared with theoretical convoluted spectra obtained from Faddeev equations (AMADO Model) for three nucleon-nucleon potentials. The cross-sections σ(E 1 ,Ω 1 ,Ω 2 ) are extracted from the two experimental spectra by a simulation method. (author) [fr
Parity doubling structure of nucleon at non-zero density in the holographic mean field theory
Directory of Open Access Journals (Sweden)
He Bing-Ran
2014-06-01
Full Text Available We summarize our recent work in which we develope the holographic mean field approach to study the dense baryonic matter in a bottom-up holographic QCD model including baryons and scalar mesons in addition to vector mesons. We first show that, at zero density, the rate of the chiral invariant mass of nucleon is controlled by the ratio of the infrared boundary values of two baryon fields included in the model. Then, at non-zero density, we find that the chiral condensate decreases with the increasing density indicating the partial restoration of the chiral symmetry. Our result shows that the more amount of the proton mass comes from the chiral symmetry breaking, the faster the effective nucleon mass decrease with density.
International Nuclear Information System (INIS)
Ngo, H.
1984-01-01
Several models, performed within a mean field theory, are developed for the calculation of nucleon-nucleus interaction potentials. The first part of the thesis deals with the nucleon-nucleus average interaction. It is mainly devoted to the calculation of dynamical corrections to the Hartree-Fock approximation. Two approaches are used: a microscopic model performed in the framework of the nuclear structure approach and a semi-phenomenological one, based on the application of the dispersion relations to the empirical imaginary potential. Both models take into account finite size effects like collectivity or threshold effects which are important at low energy. The Green's function properties are used for both models. The second part of this work is devoted to the interaction potential between two heavy ions. This calculation, which is performed in the framework of the sudden approximation, uses the energy density formalism (Thomas-Fermi approximation). It has been extended to finite temperature. At T=0 the experimental fusion barriers of heavy systems are reproduced within 4%. Their temperature dependence is studied. The proximity scaling is checked and a universal function is obtained at T=0 and at finite temperature. It is found that the proximity theorem is well satisfied on the average. The dispersion around the mean behaviour increases with increasing temperature. At last, P+A* and α+A* interaction potentials are calculated within a double folding model using a schematic effective interaction [fr
Quark-diquark approximation of the three-quark structure of a nucleon and the NN phase shifts
International Nuclear Information System (INIS)
Efimov, G.V.; Ivanov, M.A.
1988-01-01
The quark-diquark approximations of the three-quark structure of a nucleon are considered in the framework of the quark confinement model (QCM) based on definite concepts of the hadronization and quark confinement. The static nucleon characteristics (magnetic moments, ratio G A /G V and strong meson-nucleon coupling constants) are calculated. The behaviour of the electromagnetic and strong nucleon form factors is obtained at the low energy (0≤0 2 =-q 2 2 , where q is a transfer momentum). The one-boson exchange potential is constructed and the NN-phase-shifts are computed. Our results are compared with experiment and the Bonn potential model. 45 refs.; 7 figs.; 3 tabs
Nucleon form factors and structure functions from Nf=2 Clover fermions
International Nuclear Information System (INIS)
Collins, S.; Goeckeler, M.; Haegler, P.
2010-12-01
We give an update on our ongoing efforts to compute the nucleon's form factors and moments of structure functions using N f =2 flavours of non-perturbatively improved Clover fermions. We focus on new results obtained on gauge configurations where the pseudo-scalar meson mass is in the range of 170-270 MeV. We compare our results with various estimates obtained from chiral effective theories since we have some overlap with the quark mass region where results from such theories are believed to be applicable. (orig.)
Strangeness content and structure function of the nucleon in a statistical quark model
Trevisan, L A; Tomio, L
1999-01-01
The strangeness content of the nucleon is determined from a statistical model using confined quark levels, and is shown to have a good agreement with the corresponding values extracted from experimental data. The quark levels are generated in a Dirac equation that uses a linear confining potential (scalar plus vector). With the requirement that the result for the Gottfried sum rule violation, given by the new muon collaboration (NMC), is well reproduced, we also obtain the difference between the structure functions of the proton and neutron, and the corresponding sea quark contributions. (27 refs).
Study ω and φ photoproduction in the nucleon isotopic channels
International Nuclear Information System (INIS)
Zhao, Q.
2002-01-01
We present results for the photoproduction of ω and φ meson in the nucleon isotopic channels. A recently developed quark model with an effective Lagrangian is employed to account for the non-diffractive s- and u-channel processes; the diffractive feature arising from the natural parity exchange is accounted for by the t-channel pomeron exchange, while the unnatural parity exchange is accounted for by the t-channel pion exchange. In the ω production, the isotopic effects could provide more information concerning the search of 'missing resonances', while in the φ production, the isotopic effects could highlight non-diffractive resonance excitation mechanisms at large angles. (author)
Contribution to the study of the antinucleon-nucleon interactions
International Nuclear Information System (INIS)
Moussallam, B.
1985-01-01
A potential for the antinucleon-nucleon system is constructed. It has an imaginary part of very short range, respecting theoretical constraints. This implies a significant dependence on spin and isospin, and also on the energy. The spectrum of resonances is computed using an original method. One state (I=0 j PC =0 ++ ) could be easily detected. A model is proposed for a class of inelastic reactions: NantiN #-> # 2 mesons. Using a distorted-wave-Born approximation, comparisons with experiment are made. Finally, we consider some aspects of the atomic pantip system (protonium) [fr
Structure function measurements in the deep inelastic muon-nucleon scattering
International Nuclear Information System (INIS)
Peschel, H.
1990-03-01
Measurements of deep inelastic scattering events on a combined copper and deuterium target were performed by the European Muon Collaboration (EMC) using a muon beam at CERN's SPS with energies at 100 GeV and 280 GeV. The data are analysed and compared with a detailed Monte-Carlo simulation and allow the determination of structure functions from both targets. In the light of the present discrepancy between EMC's and BCDMS's structure functions, stringend cuts were applied to the data. The results confirm the EMC structure function measurements on unbound nucleons. The comparison between the copper structure function from this experiment and the NA2 iron structure function shows a trend to lower values at low x Bj . (orig.) [de
Excitation of Nucleon Resonances
International Nuclear Information System (INIS)
Burkert, Volker D.
2001-01-01
I discuss developments in the area of nucleon resonance excitation, both necessary and feasible, that would put our understanding of nucleon structure in the regime of strong QCD on a qualitatively new level. They involve the collection of high quality data in various channels, a more rigorous approach in the search for ''missing'' resonances, an effort to compute some critical quantities in nucleon resonance excitations from first principles, i.e. QCD, and a proposal focused to obtain an understanding of a fundamental quantity in nucleon structure
Comparative study of three-nucleon potentials in nuclear matter
Lovato, Alessandro; Benhar, Omar; Fantoni, Stefano; Schmidt, Kevin E.
2012-02-01
A new generation of local three-body potentials providing an excellent description of the properties of light nuclei, as well as of the neutron-deuteron doublet scattering length, has been recently derived. We have performed a comparative analysis of the equations of state of both pure neutron matter (PNM) and symmetric nuclear matter (SNM) at zero temperature obtained using these models of three-nucleon forces. In particular, we have carried out both variational and auxiliary field diffusion Monte Carlo calculations of the equation of state of PNM, while in the case of SNM we have only the variational approach has been considered. None of the considered potentials simultaneously explains the empirical equilibrium density and binding energy of symmetric nuclear matter. However, two of them provide reasonable values of the saturation density. The ambiguity concerning the treatment of the contact term of the chiral inspired potentials is discussed.
Structure of the neutral current coupling in high energy neutrino--nucleon interactions
International Nuclear Information System (INIS)
Merritt, F.S.
1977-01-01
The primary objective of this experiment was to determine the Lorentz structure of the neutral current coupling--that is, to determine what combination of V-A and V+A (or possibly S, P, and T) components make up the neutral coupling. The experiment used the Fermilab narrow band neutrino beam to provide separated neutrino and antineutrino fluxes, each consisting of two energy bands at approximately equal to 55 and approximately equal to 150 GeV. Deep inelastic inclusive neutrino-nucleon interactions of the form ν(anti ν) + N = μ - (μ + ) + hadrons (CC event) ν(anti ν) + N = ν(anti ν) + hadrons (NC event) were observed in an instrumented steel target-calorimeter, which measured the total energy of the hadrons produced in each event. The neutral current coupling was determined by comparing the hadron energy distributions of neutrino and antineutrino neutral current events. An analysis of the charged-current data was carried out in order to determine the background of charged-current events with unobserved muons, and to provide a normalization for the neutral current data. Various parameterizations of the CC interaction were tested, and their effects on the neutral current analysis were studied in detail. The neutral current analysis indicates that, if only vector and axial-vector components exist, then the neutral current coupling lies between V and V-A. A pure scalar coupling is excluded. The data were compared to the Weinberg--Salam theory (extended to semileptonic interactions), and are in very good agreement with its predictions. Comparison of these data to the low energy Gargamelle data indicates consistency with a scaling hypothesis
Three-nucleon transfer reactions and cluster structure in the A = 15 to A = 19 nuclei
International Nuclear Information System (INIS)
Martz, L.M.
1978-01-01
The ( 6 Li,t) and ( 6 Li, 3 He) reactions were studied on targets of 12 C, 13 C, 14 N, 15 N, and 16 O at E/sub Li/ approx. = 44 MeV and theta/sub lab/ approx. = 15 0 . A preferential population of final states was exhibited in spectra for the A = 15 to A = 19 nuclei. The strong forward peaking of angular distributions in the 13 C( 6 Li,t) 16 O and 13 C( 6 Li, 3 He) 16 N reactions can be reproduced by DWBA calculations but not by the Hauser-Feshbach model. Such indications of a primarily direct mechanism at forward angles suggest use of these three-nucleon-transfer reactions to identify candidates for 3p-nh states. A comparison with other multinucleon transfer data, e.g., those from ( 7 Li,α) and ( 7 Li,t) reactions on 13 C and 15 N targets, further tests dominant particle-hole configurations. The relationship between ( 6 Li,t) and ( 6 Li, 3 He) spectra reveals analog states, notably T = 1, T/sub z/ = 0 levels at high excitation in 16 O. Nuclear theory is used to investigate the role of triton clustering in such structure. The 2N + L = 6 band predicted by a folded-potential model of 18 O = 15 N + t shows an underlying correspondence to the experimental levels in triton-transfer data. Triton spectroscopic factors calculated from the SU(3) shell model further suggest the broad influence of clustering phenomena in this mass region. Experimental evidence of systematic behavior in the triton binding energies of proposed p/sup -n/(sd) 3 configurations was found
Low x Double ln2(1/x) Resummation Effects at the Sum Rules for Nucleon Structure Function g1
International Nuclear Information System (INIS)
Ziaja, B.
2001-01-01
We have estimated the contributions to the moments of polarized nucleon structure function g 1 (x,Q 2 ) coming from the region of the very low x (10 -5 2 (1/x) resummation. The Q 2 evolution of g 1 was described by the unified evolution equations incorporating both the leading order Altarelli-Parisi evolution at large and moderate x, and the double ln 2 (1/x) resummation at small x. The moments were obtained by integrating out the extrapolated nucleon structure function in the region 10 -5 < x<1. (author)
Nucleon-nucleon scattering and different meson exchanges
International Nuclear Information System (INIS)
Osman, A.
1985-10-01
The iterative and noniterative diagrams with different meson exchange are investigated. The α, πβ and πγ meson exchange, (where α=π, rho, σ, ω, eta and delta; β=π, rho, σ and ω; γ=π and rho), are considered. These diagrams are taken to involve the nucleon-nucleon, the nucleon-isobar and the isobar-isobar intermediate states. The diagrams are calculated in momentum space following the noncovariant perturbation theory. The role of each of these diagrams is examined by calculating its contribution to the nucleon-nucleon interaction. The potential model is taken to include one-boson-exchange terms in addition to these diagrams. The nucleon-nucleon scattering phase shifts are described successfully showing the importance of tensor force. The contributions of the different parts are studied in the nucleon-nucleon scattering. (author)
PROBING THE STANDARD MODEL AND NUCLEON STRUCTURE VIA PARITY VIOLATING ELECTRON SCATTERING
Energy Technology Data Exchange (ETDEWEB)
Humensky, T
2003-10-28
Parity-violating electron scattering has developed over the last 25 years into a tool to study both the structure of electroweak interactions and the structure of nucleons. Work on two parity-violation experiments is reported in this thesis. They are the Hall A Proton Parity EXperiment (HAPPEX), which ran at Jefferson Laboratory in 1998-1999, and SLAC E-158, which had its first physics running in 2002. HAPPEX measured the parity-violating asymmetry in elastic e-p scattering at a momentum transfer squared of Q{sup 2} = 0.477 GeV{sup 2} and a scattering angle of 12{sup o}. This asymmetry is sensitive to the presence of strange sea quarks in the proton. In particular, it is sensitive to the proton's strange elastic form factors. An asymmetry of A{sub LR}{sup ep} = -15.05 {+-} 0.98 {+-} 0.56 ppm was measured, where the first error is statistical and the second error is systematic. Combining this asymmetry measurement with existing measurements of the electromagnetic form factors of the proton and neutron allowed HAPPEX to set new constraints on the strange elastic form factors of the proton G{sub E}{sup s} + 0.392G{sub M}{sup s} = 0.025 {+-} 0.020 {+-} 0.014, where G{sub E}{sup s} and G{sub M}{sup s} are the strange electric and magnetic form factors of the proton, respectively. The first error is the quadrature sum of the experimental errors and the second error is due to uncertainty in the electromagnetic form factors. This result is consistent with the absence of a contribution from strange quarks. This thesis reports an analysis of the 1999 data set, with a particular focus on the determination of the raw asymmetry and the corrections to the raw asymmetry to account for helicity-correlated asymmetries in properties of the electron beam.
Gauge invariance and quantization applied to atom and nucleon internal structure
International Nuclear Information System (INIS)
Wang Fan; Sun Weimin; Chen Xiangsong; LU Xiaofu; Goldman, T.
2010-01-01
The prevailing theoretical quark and gluon momentum,orbital angular momentum and spin operators, satisfy either gauge invariance or the corresponding canonical commutation relation, but one never has these operators which satisfy both except the quark spin. The conflicts between gauge invariance and the canonical quantization requirement of these operators are discussed. A new set of quark and gluon momentum, orbital angular momentum and spin operators, which satisfy both gauge invariance and canonical momentum and angular momentum commutation relation, are proposed.To achieve such a proper decomposition the key point is to separate the gauge field into the pure gauge and the gauge covariant parts. The same conflicts also exist in QED and quantum mechanics, and have been solved in the same manner. The impacts of this new decomposition to the nucleon internal structure are discussed. (authors)
International Nuclear Information System (INIS)
Williams, A.G.
1998-01-01
There is a need for covariant solutions of bound state equations in order to construct realistic QCD based models of mesons and baryons. Furthermore, we ideally need to know the structure of these bound states in all kinematical regimes, which makes a direct solution in Minkowski space (without any 3-dimensional reductions) desirable. The Bethe-Salpeter equation (BSE) for bound states in scalar theories is reformulated and solved for arbitrary scattering kernels in terms of a generalized spectral representation directly in Minkowski space. This differs from the conventional Euclidean approach, where the BSE can only be solved in ladder approximation after a Wick rotation. An application of covariant Bethe-Salpeter solutions to a quark-diquark model of the nucleon is also briefly discussed. (orig.)
Study of the Hyperon-Nucleon Interaction in Exclusive Λ Photoproduction off the Deuteron
Zachariou, Nicholas; CLAS Collaboration
2014-09-01
Understanding the nature of the nuclear force in terms of the fundamental degrees of freedom of the theory of strong interaction, Quantum Chromodynamics (QCD), is one of the primary goals of modern nuclear physics. While the nucleon-nucleon (NN) interaction has been studied for decades, a systematic description of the NN potential has been achieved only recently with the development of low-energy Effective Field Theories (EFT). To obtain a comprehensive understanding of the strong interaction, dynamics involving strange baryons must be studied. Currently, little is known about the properties of the hyperon-nucleon (YN) and the hyperon-hyperon (YY) interactions. In this talk I will describe our current research of the Λn interaction using the E06-103 experiment performed with the CLAS detector in Hall B at Jefferson Lab. The large kinematic coverage of the CLAS combined with the exceptionally high quality of the experimental data allows to identify and select final-state interaction events in the reaction γd -->K+ Λn and to establish their kinematical dependencies. The large set of observables we aim to obtain will provide tight constraints on modern YN potentials. I will present the current status of the project and will discuss future incentives. Understanding the nature of the nuclear force in terms of the fundamental degrees of freedom of the theory of strong interaction, Quantum Chromodynamics (QCD), is one of the primary goals of modern nuclear physics. While the nucleon-nucleon (NN) interaction has been studied for decades, a systematic description of the NN potential has been achieved only recently with the development of low-energy Effective Field Theories (EFT). To obtain a comprehensive understanding of the strong interaction, dynamics involving strange baryons must be studied. Currently, little is known about the properties of the hyperon-nucleon (YN) and the hyperon-hyperon (YY) interactions. In this talk I will describe our current research of the
Study of actinides fission induced by multi-nucleon transfer reactions in inverse kinematics
International Nuclear Information System (INIS)
Derkx, X.
2010-10-01
The study of actinide fission encounters two major issues. On one hand, measurements of the fission fragment distributions and the fission probabilities allow a better understanding of the fission process itself and the discrimination among the models of nuclear structure and dynamics. On the other hand, new measurements are required to improve nuclear data bases, which are a key component for the design of new generation reactors and radio-toxic waste incinerators. This thesis is in line with different French and American experimental projects using the surrogate method, i.e. transfer reactions leading to the same compound nuclei as in neutron irradiation, allowing the study of fission of actinides which are inaccessible by conventional techniques, whereas they are important for applications. The experiment is based on multi-nucleon transfer reactions between a 238 U beam and a 12 C target, using the inverse kinematics technique to measure, for each transfer channel, the complete isotopic distributions of the fission fragments with the VAMOS spectrometer. The work presented in this dissertation is focused on the identification of the transfer channels and their properties, as their angular distributions and the distributions of the associated excitation energy, using the SPIDER telescope to identify the target recoil nuclei. This work of an exploratory nature aims to generalize the surrogate method to heavy transfers and to measure, for the first time, the fission probabilities in inverse kinematics. The obtained results are compared with available direct kinematics and neutron irradiation measurements. (author)
Unveiling the nucleon tensor charge at Jefferson Lab: A study of the SoLID case
Energy Technology Data Exchange (ETDEWEB)
Ye, Zhihong; Sato, Nobuo; Allada, Kalyan; Liu, Tianbo; Chen, Jian-Ping; Gao, Haiyan; Kang, Zhong-Bo; Prokudin, Alexei; Sun, Peng; Yuan, Feng
2017-04-01
© 2017 The Authors Future experiments at the Jefferson Lab 12 GeV upgrade, in particular, the Solenoidal Large Intensity Device (SoLID), aim at a very precise data set in the region where the partonic structure of the nucleon is dominated by the valence quarks. One of the main goals is to constrain the quark transversity distributions. We apply recent theoretical advances of the global QCD extraction of the transversity distributions to study the impact of future experimental data from the SoLID experiments. Especially, we develop a simple strategy based on the Hessian matrix analysis that allows one to estimate the uncertainties of the transversity quark distributions and their tensor charges extracted from SoLID data simulation. We find that the SoLID measurements with the proton and the effective neutron targets can improve the precision of the u- and d-quark transversity distributions up to one order of magnitude in the range 0.05 < x < 0.6.
Direct study of the lifetime and acceleration of a coloured nucleon
International Nuclear Information System (INIS)
Busza, W.; Massachusetts Inst. of Tech., Cambridge; Dreyer, T.; Erdmann, M.
1990-01-01
We propose a method of studying directly the confinement part of the force due to the coloured field, and the time that a coloured hadron remains coloured. Applying the method to pp→pX data we find that the mean time for colour neutralization of a coloured nucleon is 1.2±0.1 fm/c or (3.9±0.3)x10 -24 s. (orig.)
International Nuclear Information System (INIS)
Teterson, G.A.; Hicks, R.S.; Dubach, J.F.; Miskimen, R.A.
1987-06-01
This paper discusses the experimental electron scattering studies at SLAC and Bates Accelerator Center. Some theoretical work on nucleon-nucleon interactions, electromagnetic interactions, weak interactions and nuclear structure are also discussed
Nucleon-nucleon scattering data
International Nuclear Information System (INIS)
Bystricky, J.; Lehar, F.
1981-01-01
The present review contains a compilation of p-p, n-n, n-p and p-n elastic scattering data, total cross sections for elastic and inelastic nucleon-nucleon processes as well as the slope parameters and the ratios of the real to the imaginary part of the forward scattering amplitude measured at all energies. The data are given in detailed tables with comments on each measurement. Summary tables, nucleon-nucleon kinematics formulae, transformation tables for kinematics, a detailed list of references and an author index complete the paper. (orig.)
International Nuclear Information System (INIS)
Barik, N.; Mishra, R.N.
2001-01-01
Considering the nucleon as consisting entirely of its valence quarks confined independently in a scalar-vector harmonic potential; unpolarized structure functions F 1 (x, μ 2 ) and F 2 (x, μ 2 ) are derived in the Bjorken limit under certain simplifying assumptions; from which valence quark distribution functions u v (x, μ 2 ) and d v (x, μ 2 ) are appropriately extracted satisfying the normalization constraints. QCD-evolution of these input distributions from a model scale of μ 2 = 0.07 GeV 2 to a higher Q 2 scale of Q 0 2 = 15 GeV 2 yields xu v (x, Q 0 2 ) and xd v (x, Q 0 2 ) in good agreement with experimental data. The gluon and sea-quark distributions such as G (x, Q 0 2 ) and q s (x, Q 0 2 ) are dynamically generated with a reasonable qualitative agreement with the available data; using the leading order renormalization group equations with appropriate valence-quark distributions as the input. (author)
Energy Technology Data Exchange (ETDEWEB)
Barik, N [Dept. of Physics, Utkal Univ., Bhubaneswar (India); Mishra, R N [Dept. of Physics, Dhenkanal College, Dhenkanal (India)
2001-04-01
Considering the nucleon as consisting entirely of its valence quarks confined independently in a scalar-vector harmonic potential; unpolarized structure functions F{sub 1} (x, {mu}{sup 2}) and F{sub 2} (x, {mu}{sup 2}) are derived in the Bjorken limit under certain simplifying assumptions; from which valence quark distribution functions u{sub v} (x, {mu}{sup 2}) and d{sub v} (x, {mu}{sup 2}) are appropriately extracted satisfying the normalization constraints. QCD-evolution of these input distributions from a model scale of {mu}{sup 2} = 0.07 GeV{sup 2} to a higher Q{sup 2} scale of Q{sub 0}{sup 2} = 15 GeV{sup 2} yields xu{sub v} (x, Q{sub 0}{sup 2}) and xd{sub v} (x, Q{sub 0}{sup 2}) in good agreement with experimental data. The gluon and sea-quark distributions such as G (x, Q{sub 0}{sup 2}) and q{sub s} (x, Q{sub 0}{sup 2}) are dynamically generated with a reasonable qualitative agreement with the available data; using the leading order renormalization group equations with appropriate valence-quark distributions as the input. (author)
International Nuclear Information System (INIS)
Kaliambos, L.A.
2008-01-01
Fundamental interactions of spinning electrons at an interelectron separation less than 578.8 fm yield attractive electromagnetic forces with S = 0 creating vibrations under a motional emf. They explain the indistinguishability of electrons and give a vibration energy able for calculating the ground-state energies of many-electron atoms without using any perturbative approximation. Such forces create two-electron orbitals able to account for the exclusion principal and the mechanism of covalent bonds. In the outer subshells of atoms the penetrating orbitals interact also as pair-pair systems and deform drastically the probability densities of the quantum mechanical electron clouds. Such a dynamics of deformation removes the degeneracy and leads to the deviation from the shell scheme. However in the interior of atoms the large nuclear charge leads to a spherically symmetric potential with non-interacting pairs for creating shells of degenerate states giving an accurate explanation of the X-ray lines. On the other hand, considerable charge distributions in nucleons as multiples of 2e/3 and - e/3 determined by the magnetic moments, interact for creating the nuclear structure with p-n bonds. Such spin-spin interactions show that the dominant concept of the untisymmetric wave function for fermions is inapplicable not only in the simple p-n, p-p, and n-n systems but also in the LS coupling of atoms in which the electrons interact from different quantum states giving either S = 0 or S = l. (author)
International Nuclear Information System (INIS)
Bond, A.
1977-01-01
The present position of nucleonic techniques for process measurements, is considered from the technical and cost viewpoints. Systems considered include level, density, thickness (including coating thickness), moisture, and sulphur in hydrocarbons gauges and also belt weighers. The advantages of such systems are discussed and the cost-benefit position considered. The combination of nucleonic measuring equipment with a microcomputer is examined. (U.K.)
International Nuclear Information System (INIS)
Ono, A.; Horiuchi, H.
1995-01-01
Collective transverse momentum flow of nucleons and fragments in intermediate energy 40 Ar+ 27 Al collisions is calculated with the antisymmetrized molecular dynamics (AMD). The observed flow and its balance energy are reproduced well by calculation with the Gogny force which corresponds to the soft equation of state (EOS) of nuclear matter. The calculated absolute value of the fragment flow is larger than that of the nucleon flow in the negative flow region, which can be explained by the existence of two components of flow. In addition to many similarities, the difference in the deuteron flow is found between 12 C+ 12 C and 40 Ar+ 27 Al collisions, and its origin is investigated by studying the production mechanism of light fragments. We also investigate the dependence of the flow of nucleons and fragments on the stochastic collision cross section and the effective interaction, and conclude that the stiff EOS without momentum dependence of the mean field is not consistent with the experimental data
Nucleon-nucleon correlations in dense nuclear matter
International Nuclear Information System (INIS)
Alm, T.
1993-02-01
In this thesis new results on the problematics of the formation of nucleon-nucleon correlations in nuclear matter could be presented. Starting from a general study of the two-particle problem in matter we studied the occurrence of a suprafluid phase (pair condensate of nucleons). The Gorkov decoupling by means of anomalous Green functions was generalized, so that also Cooper pairs with spin 1 (triplet pairing) can be described. A generalized gap equation resulted, which permits to determine the order parameters of the suprafluied phase in arbitrary channels of the nucleon-nucleon scattering states. This equation was solvd in the 1 S 0 -, in the 3 P 2 - 3 F 2 , and in the 3 S 1 - 3 D 1 channel under application of realistic nucleon-nucleon potentials. The behaviour of the resulting gap parameters in the single channels was studied as function of density and temperature. (orig.) [de
Nucleon structure in lattice QCD with dynamical domain-wall fermions quarks
International Nuclear Information System (INIS)
Huey-Wen Lin; Shigemi Ohta
2006-01-01
We report RBC and RBC/UKQCD lattice QCD numerical calculations of nucleon electroweak matrix elements with dynamical domain-wall fermions (DWF) quarks. The first, RBC, set of dynamical DWF ensembles employs two degenerate flavors of DWF quarks and the DBW2 gauge action. Three sea quark mass values of 0.04, 0.03 and 0.02 in lattice units are used with about 200 gauge configurations each. The lattice cutoff is about 1.7 GeV and the spatial volume is about (1.9 fm) 3 . Despite the small volume, the ratio of the isovector vector and axial charges g A /g V and that of structure function moments u-d / Δ u-Δ d are in agreement with experiment, and show only very mild quark mass dependence. The second, RBC/UK, set of ensembles employs one strange and two degenerate (up and down) dynamical DWF quarks and Iwasaki gauge action. The strange quark mass is set at 0.04, and three up/down mass values of 0.03, 0.02 and 0.01 in lattice units are used. The lattice cutoff is about 1.6 GeV and the spatial volume is about (3.0 fm) 3 . Even with preliminary statistics of 25-30 gauge configurations, the ratios g A /g V and u-d / Δu - Δd are consistent with experiment and show only very mild quark mass dependence. Another structure function moment, d 1 , though yet to be renormalized, appears small in both sets
NUCLEON STRUCTURE IN LATTICE QCD WITH DYNAMICAL DOMAIN--WALL FERMIONS QUARKS
International Nuclear Information System (INIS)
LIN, H.W.; OHTA, S.
2006-01-01
We report RBC and RBC/UKQCD lattice QCD numerical calculations of nucleon electroweak matrix elements with dynamical domain-wall fermions (DWF) quarks. The first, RBC, set of dynamical DWF ensembles employs two degenerate flavors of DWF quarks and the DBW2 gauge action. Three sea quark mass values of 0.04, 0.03 and 0.02 in lattice units are used with 220 gauge configurations each. The lattice cutoff is a -1 ∼ 1.7GeV and the spatial volume is about (1.9fm) 3 . Despite the small volume, the ratio of the isovector vector and axial charges g A /g V and that of structure function moments u-d / Δu-Δd are in agreement with experiment, and show only very mild quark mass dependence. The second, RBC/UK, set of ensembles employs one strange and two degenerate (up and down) dynamical DWF quarks and Iwasaki gauge action. The strange quark mass is set at 0.04, and three up/down mass values of 0.03, 0.02 and 0.01 in lattice units are used. The lattice cutoff is a -1 ∼ 1.6GeV and the spatial volume is about (3.0fm) 3 . Even with preliminary statistics of 25-30 gauge configurations, the ratios g A /g V and u-d / Δu-Δd are consistent with experiment and show only very mild quark mass dependence. Another structure function moment, d 1 , though yet to be renormalized, appears small in both sets
Axial vector diquark correlations in the nucleon: structure functions and static properties
Energy Technology Data Exchange (ETDEWEB)
Mineo, H. E-mail: mineo@nt.phys.s.u-tokyo.ac.jp; Bentz, W.; Ishii, N.; Yazaki, K
2002-06-03
In order to extract information on the strength of quark-quark correlations in the axial vector (a.v.) diquark channel (J{sup P}=1{sup +},T=1), we analyze the quark light cone momentum distributions in the nucleon, in particular their flavor dependencies, and the static properties of the nucleon. To construct the nucleon as a relativistic 3-quark bound state, we use a simple 'static' approximation to the full Faddeev equation in the Nambu-Jona-Lasinio model, including correlations in the scalar (J{sup P}=0{sup +},T=0) and a.v. diquark channels. It is shown that the a.v. diquark correlations should be rather weak compared to the scalar ones. From our analysis we extract information on the strength of the correlations as well as on the probability of the a.v. diquark channel.
Study of hyperon-nucleon interactions with d(e,e'K) reactions
International Nuclear Information System (INIS)
Lee, T.-S. H.
1998-01-01
The dependence of the d(e,eprimeK + ) reaction cross sections on the hyperon-nucleon interactions is investigated. It is shown that the data obtained with Longitudinal-Transverse separation or polarized photons can distinguish a class of Nijmegen models of hyperon-nucleon interactions which are χ 2 -equivalent in fitting the existing 35 data points of hyperon-nucleon reactions
International Nuclear Information System (INIS)
Vallage, B.
1987-01-01
570 000 neutrino-iron and 370 000 antineutrino-iron charged-current events were obtained from the Wide Band Beam exposure of the CDHS detector at CERN in 1983, at energies ranging from 20 to 400 GeV. These large statistics allowed a precise measurement of the charged-current differential cross-sections and a detailed study of systematic effects. The nucleon structure functions have been determined in the framework of the quark-parton model, in the kinematic range: 0.015 2 2 /c 2 . The longitudinal structure function F L (x) is in good agreement with the QCD predicted shape. Deviations from scale invariance are clearly seen from the functions F 2 and xF 3 . The Q 2 evolution of the valence quark distribution has been compared with the QCD prediction in order to measure the scale parameter Λ. A good agreement is obtained only if the low Q 2 points are removed from the comparison. Our experiment favours a value of Λ between 50 and 250 MeV [fr
International Nuclear Information System (INIS)
Guegan, B.
2012-11-01
The Generalized Parton Distributions (GPDs) provide a new description of the nucleon structure in terms of its elementary constituents, the quarks and the gluons. The GPDs give access to a unified picture of the nucleon, correlating the information obtained from the measurements of the Form Factors and the Parton Distribution Functions. They describe the correlation between the transverse position and the longitudinal momentum fraction of the partons in the nucleon. Deeply Virtual Compton Scattering (DVCS), the electroproduction of a real photon on a single quark of the nucleon eN → e'N'γ, is the most straightforward exclusive process allowing access to the GPDs. A dedicated experiment to study DVCS with the CLAS detector of Jefferson Lab has been carried out using a 5.883 GeV polarized electron beam and an unpolarized hydrogen target, allowing to collect DVCS events in the widest kinematic range ever explored in the valence region: 1 2 2 , 0.1 B 2 . In this work, we present the extraction of three different DVCS observables: the unpolarized cross section, the difference of polarized cross sections and the beam spin asymmetry. We present comparisons with GPD model. We show a preliminary extraction of the GPDs using the latest fitting code procedure on our data, and a preliminary interpretation of the results in terms of parton density. (author)
Energy Technology Data Exchange (ETDEWEB)
Chatrchyan, Serguei [Yerevan Physics Inst. (Armenia); et al.
2011-08-01
Jet production in PbPb collisions at a nucleon-nucleon center-of-mass energy of 2.76 TeV was studied with the CMS detector at the LHC, using a data sample corresponding to an integrated luminosity of 6.7 inverse microbarns. Jets are reconstructed using the energy deposited in the CMS calorimeters and studied as a function of collision centrality. With increasing collision centrality, a striking imbalance in dijet transverse momentum is observed, consistent with jet quenching. The observed effect extends from the lower cut-off used in this study (jet transverse momentum = 120 GeV/c) up to the statistical limit of the available data sample (jet transverse momentum approximately 210 GeV/c). Correlations of charged particle tracks with jets indicate that the momentum imbalance is accompanied by a softening of the fragmentation pattern of the second most energetic, away-side jet. The dijet momentum balance is recovered when integrating low transverse momentum particles distributed over a wide angular range relative to the direction of the away-side jet.
International Nuclear Information System (INIS)
Windmolders, R.
1989-01-01
In this paper the following topics are reviewed: 1. the structure functions measured in deep inelastic e-N, μ-N and ν-N scattering; 2. nuclear effects on the structure functions; 3. nuclear effects on the fragmentation functions; 4. the spin dependent structure functions and their interpretation in terms of nucleon constituents. (orig./HSI)
Energy Technology Data Exchange (ETDEWEB)
Burkert, Volker D.
2016-07-25
Recent results of meson photo-production at the existing electron machines with polarized real photon beams and the measurement of polarization observables of the final state baryons have provided high precision data that led to the discovery of new excited nucleon and $\\Delta$ states using multi-channel partial wave analyses procedures. The internal structure of several prominent excited states has been revealed employing meson electroproduction processes. On the theoretical front, lattice QCD is now predicting the baryon spectrum with very similar characteristics as the constituent quark model, and continuum QCD, such as is represented in the Dyson-Schwinger Equations approach and in light front relativistic quark models, describes the non-perturbative behavior of resonance excitations at photon virtuality of $Q^2 > 1.5GeV^2$. In this talk I discuss the need to continue a vigorous program of nucleon spectroscopy and the study of the internal structure of excited states as a way to reveal the effective degrees of freedom underlying the excited states and their dependence on the distance scale probed.
Coupled channels Marchenko inversion for nucleon-nucleon potentials
International Nuclear Information System (INIS)
Kohlhoff, H.; Geramb, H.V. von
1994-01-01
Marchenko inversion is used to determine local energy independent but channel dependent potential matrices from optimum sets of experimental phase shifts. 3 SD 1 and 3 PF 2 channels of nucleon-nucleon systems contain in their off-diagonal potential matrices explicitly the tensor force for T = 0 and 1 isospin. We obtain, together with single channels, complete sets of quantitative nucleon-nucleon potential results which are ready for application in nuclear structure and reaction analyses. The historic coupled channels inversion result of Newton and Fulton is revisited. (orig.)
Conflicting Coupling of Unpaired Nucleons and the Structure of Collective Bands in Odd-Odd Nuclei
International Nuclear Information System (INIS)
Levon, A.I.; Pasternak, A.A.
2011-01-01
The conflicting coupling of unpaired nucleons in odd-odd nuclei is discussed. A very simple explanation is suggested for the damping of the energy spacing of the lowest levels in the rotational bands in odd-odd nuclei with the 'conflicting' coupling of an odd proton and an odd neutron comparative to those of the bands based on the state of a strongly coupled particle in the neighboring odd nucleus entering the 'conflicting' configuration.
Color oscillations of nucleons in a nucleus
International Nuclear Information System (INIS)
Petrov, V.A.; Smirnov, A.Yu.
1987-01-01
Possibility of nucleus description as an object consisting of quarks and gluons is considered. A model of two-nucleon interaction in a nucleus is presented and analytical expressions for the nucleus nucleon ground state wave functions and also for nuclear nucleon structure functions are obtained. The carried out analysis shows that the suggested model permits to express the nucleus structure functions at quark level only by means of nucleon and Δ-isobaric degrees of freedom
International Nuclear Information System (INIS)
Flottmann, T.
1982-01-01
In this thesis the nucleon structure function xF 3 is determined from the inclusive measurement of the deep inelastic neutrino nucleon charged current interaction. The data were taken in the CERN wide band neutrino beam using the detector of the CERN-Dortmund-Heidelberg-Saclay collaboration. This detector serves at the same time as target, as hadron energy calorimeter and as muon spectrometer. One major aspect of this work was to study the possibility of using high statistics wide band beam data for structure function analysis. The systematic errors specific to this kind of beam are investigated. To obtain the differential cross sections about 100000 neutrino and 75000 antineutrino events in the energy range 20-200 GeV are analysed. The differential cross sections are normalized to the total cross sections, as measured in the narrow band beam by the same collaboration. The calculated structure function xF 3 shows significant deviations from scaling. These scaling violations are compared quantitatively with the predictions of quantum chromodynamics. (orig.) [de
Leading order relativistic chiral nucleon-nucleon interaction
Ren, Xiu-Lei; Li, Kai-Wen; Geng, Li-Sheng; Long, Bingwei; Ring, Peter; Meng, Jie
2018-01-01
Motivated by the successes of relativistic theories in studies of atomic/molecular and nuclear systems and the need for a relativistic chiral force in relativistic nuclear structure studies, we explore a new relativistic scheme to construct the nucleon-nucleon interaction in the framework of covariant chiral effective field theory. The chiral interaction is formulated up to leading order with covariant power counting and a Lorentz invariant chiral Lagrangian. We find that the relativistic scheme induces all six spin operators needed to describe the nuclear force. A detailed investigation of the partial wave potentials shows a better description of the {}1S0 and {}3P0 phase shifts than the leading order Weinberg approach, and similar to that of the next-to-leading order Weinberg approach. For the other partial waves with angular momenta J≥slant 1, the relativistic results are almost the same as their leading order non-relativistic counterparts. )
International Nuclear Information System (INIS)
1993-01-01
This report summarizes the work on experimental research in intermediate energy nuclear physics carried out at New Mexico State University in 1991-94 under a grant from the U.S. Department of Energy. Most of these studies involved investigations of various pion-nucleus interactions and nucleon-nucleus charge-exchange reactions. The work was carried out with the LAMPF accelerator at the Los Alamos National Laboratory and the cyclotrons at the Paul Scherrer Institute (PSI) near Zurich, Switzerland, at Indiana University (IUCF), and at TRIUMF in Vancouver, Canada, as collaborative efforts among several laboratories and universities. We have also worked on plans and preparations for new experiments involving studies of the quark structure of nucleons and nuclei, which would be carried out at Fermilab (FNAL), near Chicago, and at the HERA facility at the DESY laboratory in Hamburg, Germany. The NMSU personnel included two faculty members, five postdoctoral research associates, nine graduate students, and one undergraduate student
Nucleon-nucleon momentum correlation function for light nuclei
International Nuclear Information System (INIS)
Ma, Y.G.; Cai, X.Z.; Chen, J.G.; Fang, D.Q.; Guo, W.; Liu, G.H.; Ma, C.W.; Ma, E.J.; Shen, W.Q.; Shi, Y.; Su, Q.M.; Tian, W.D.; Wang, H.W.; Wang, K.; Wei, Y.B.; Yan, T.Z.
2007-01-01
Nucleon-nucleon momentum correlation function have been presented for nuclear reactions with neutron-rich or proton-rich projectiles using a nuclear transport theory, namely Isospin-Dependent Quantum Molecular Dynamics model. The relationship between the binding energy of projectiles and the strength of proton-neutron correlation function at small relative momentum has been explored, while proton-proton correlation function shows its sensitivity to the proton density distribution. Those results show that nucleon-nucleon correlation function is useful to reflect some features of the neutron- or proton-halo nuclei and therefore provide a potential tool for the studies of radioactive beam physics
de Araújo, W. R. B.; de Melo, J. P. B. C.; Tsushima, K.
2018-02-01
We study the nucleon electromagnetic (EM) form factors in symmetric nuclear matter as well as in vacuum within a light-front approach using the in-medium inputs calculated by the quark-meson coupling model. The same in-medium quark properties are used as those used for the study of in-medium pion properties. The zero of the proton EM form factor ratio in vacuum, the electric to magnetic form factor ratio μpGEp (Q2) /GMp (Q2) (Q2 = -q2 > 0 with q being the four-momentum transfer), is determined including the latest experimental data by implementing a hard constituent quark component in the nucleon wave function. A reasonable fit is achieved for the ratio μpGEp (Q2) /GMp (Q2) in vacuum, and we predict that the Q02 value to cross the zero of the ratio to be about 15 GeV2. In addition the double ratio data of the proton EM form factors in 4He and H nuclei, [GEp4He (Q2) /G4HeMp (Q2) ] / [GEp1H (Q2) /GMp1H (Q2) ], extracted by the polarized (e → ,e‧ p →) scattering experiment on 4He at JLab, are well described. We also predict that the Q02 value satisfying μpGEp (Q02) /GMp (Q0 2) = 0 in symmetric nuclear matter, shifts to a smaller value as increasing nuclear matter density, which reflects the facts that the faster falloff of GEp (Q2) as increasing Q2 and the increase of the proton mean-square charge radius. Furthermore, we calculate the neutron EM form factor double ratio in symmetric nuclear matter for 0.1 neutron double ratio is enhanced relative to that in vacuum, while for the proton it is quenched, and agrees with an existing theoretical prediction.
Hard probes of short-range nucleon-nucleon correlations
Energy Technology Data Exchange (ETDEWEB)
J. Arrington, D. W. Higinbotham, G. Rosner, M. Sargsian
2012-10-01
The strong interaction of nucleons at short distances leads to a high-momentum component to the nuclear wave function, associated with short-range correlations between nucleons. These short-range, high-momentum structures in nuclei are one of the least well understood aspects of nuclear matter, relating to strength outside of the typical mean-field approaches to calculating the structure of nuclei. While it is difficult to study these short-range components, significant progress has been made over the last decade in determining how to cleanly isolate short-range correlations in nuclei. We have moved from asking if such structures exist, to mapping out their strength in nuclei and studying their microscopic structure. A combination of several different measurements, made possible by high-luminosity and high-energy accelerators, coupled with an improved understanding of the reaction mechanism issues involved in studying these structures, has led to significant progress, and provided significant new information on the nature of these small, highly-excited structures in nuclei. We review the general issues related to short-range correlations, survey recent experiments aimed at probing these short-range structures, and lay out future possibilities to further these studies.
International Nuclear Information System (INIS)
Kroeger, B.
1981-01-01
In the dechromatic neutron beam of the CERN-SPS results obtained with the CHARM detector from the deep inelastic inclusive neutrino-nucleon scattering were analyzed according to following reactions: #betta#sub(μ)(anti #betta#sub(μ))+N->μ - (μ + ) + hadrons and #betta#sub(μ)(anti #betta#sub(μ))+N->#betta#sub(μ)(anti #betta#sub(μ)) + hadrons. The aim of these studies was the determination of the coupling of neutral currents in the weak interaction. All data can be well described by the standard model for the unification of the electrogmagnetic and weak interaction in connection with the quarkparton model, if a Weinberg angle of sin 2 deltasub(w)=0.222+-0.016 is assumed. (orig./HSI) [de
Spectroscopic study of 228-234Th nuclei using multi-nucleon transfer reactions
International Nuclear Information System (INIS)
Amzal, N.; Butler, P.A.; Cann, K.J.; Greenlees, P.T.; Jones, G.D.; Cocks, J.F.C.; Asztalos, S.; Clark, R.M.; Deleplanque, M.A.; Diamond, R.M.; Fallon, P.; Lees, I.Y.; Machiavelli, A.O.; MacLeod, R.W.; Stephens, F.S.; Jones, P.M.; Julin, R.; Broda, R.; Fornal, B.; Smith, J.F.; Lauritsen, T.; Bhattacharyya, P.; Zhang, C.T.
1999-01-01
Light-actinide nuclei in the octupole deformed region have been populated using multi-nucleon transfer from 232 Th. The energy level schemes of several thorium isotopes with A=228-234 have been extended up to I∼24ℎ and negative parity states have been observed for the first time in 234 Th. A systematic study of the difference in alignment between the positive- and negative-parity bands in thorium nuclei in this mass region shows that 228,230,234 Th behave like octupole vibrators, in contrast with 224,226 Th, which are octupole-deformed in character. An intrinsic electric dipole moment has been measured for the first time in 234 Th. The small value obtained is consistent with the vibrational description of this nucleus. (author)
Three-nucleon system dynamics studied via deuteron-proton breakup
International Nuclear Information System (INIS)
Kistryn, S.
2011-01-01
Nucleon-nucleon (NN) interaction is a basis for vast fields of fundamental nuclear physics and its application, therefore a detailed knowledge of the dynamics of few-nucleon systems has been a subject of intensive quest over several decades. Modern NN potential models can be probed quantitatively in the three-nucleon environment by comparing predictions based on rigorous solutions of the Faddeev equations with the measured observables. Proper description of the experimental data can be achieved only if the dynamical models include subtle effects of suppressed degrees of freedom, effectively introduced by means of genuine three-nucleon forces. A large set of high precision, exclusive cross-section data for the "1H(d,pp)n breakup reaction at 130 MeV, acquired in a first new-generation experiment at KVI Groningen, contributes significantly to constrain the physical assumptions underlying the theoretical interaction models. Comparison of nearly 1800 cross-section data points with the predictions using nuclear interactions generated in various ways, allowed to establish for the first time a clear evidence of importance of the three-nucleon forces in the breakup process. Moreover, the results, supplemented by a set of cross-sections from another dedicated experiment at FZ Juelich, confirmed predictions of sizable Coulomb force influences in this reaction. Following further, comparably rich and precise data sets, encompassing also polarization observables, will form a database to validate the theoretical models of few-nucleon system dynamics. (author)
Ciofi degli Atti, Claudio; Mezzetti, Chiara Benedetta; Morita, Hiko
2017-04-01
Background: Two-nucleon (2 N ) short-range correlations (SRC) in nuclei have been recently thoroughly investigated, both theoretically and experimentally and the study of three-nucleon (3 N ) SRC, which could provide important information on short-range hadronic structure, is underway. Novel theoretical ideas concerning 2 N and 3 N SRC are put forward in the present paper. Purpose: The general features of a microscopic one-nucleon spectral function which includes the effects of both 2 N and 3 N SRC and its comparison with ab initio spectral functions of the three-nucleon systems are illustrated. Methods: A microscopic and parameter-free one-nucleon spectral function expressed in terms of a convolution integral involving ab initio relative and center-of-mass (c.m.) momentum distributions of a 2 N pair and aimed at describing two- and three-nucleon short-range correlations, is obtained by using: (i) the two-nucleon momentum distributions obtained within ab initio approaches based upon nucleon-nucleon interactions of the Argonne family; (ii) the exact relation between one- and two-nucleon momentum distributions; (iii) the fundamental property of factorization of the nuclear wave function at short internucleon ranges. Results: The comparison between the ab initio spectral function of 3He and the one based upon the convolution integral shows that when the latter contains only two-nucleon short-range correlations the removal energy location of the peaks and the region around them exhibited by the ab initio spectral function are correctly predicted, unlike the case of the high and low removal energy tails; the inclusion of the effects of three-nucleon correlations brings the convolution model spectral function in much better agreement with the ab initio one; it is also found that whereas the three-nucleon short-range correlations dominate the high energy removal energy tail of the spectral function, their effects on the one-nucleon momentum distribution are almost one
International Nuclear Information System (INIS)
Yongguang Liang; Michael Christy; Abdellah Ahmidouch; Christopher Armstrong; John Arrington; Arshak Asaturyan; Steven Avery; Baker, O.; Douglas Beck; Henk Blok; Bochna, C.W.; Werner Boeglin; Peter Bosted; Maurice Bouwhuis; Herbert Breuer; Daniel Brown; Antje Bruell; Roger Carlini; Jinseok Cha; Nicholas Chant; Anthony Cochran; Leon Cole; Samuel Danagoulian; Donal Day; James Dunne; Dipangkar Dutta; Rolf Ent; Howard Fenker; Fox, B.; Liping Gan; Haiyan Gao; Kenneth Garrow; David Gaskell; Ashot Gasparian; Don Geesaman; Ronald Gilman; Paul Gueye; Mark Harvey; Roy Holt; Xiaodong Jiang; Mark Jones; Cynthia Keppel; Edward Kinney; Wolfgang Lorenzon; Allison Lung; David Mack; Pete Markowitz; Martin, J.W.; Kevin McIlhany; Daniella Mckee; David Meekins; Miller, M.A.; Richard Milner; Joseph Mitchell; Hamlet Mkrtchyan; Robert Mueller; Alan Nathan; Gabriel Niculescu; Maria-Ioana Niculescu; Thomas O'neill; Vassilios Papavassiliou; Stephen Pate; Rodney Piercey; David Potterveld; Ronald Ransome; Joerg Reinhold; Rollinde, E.; Oscar Rondon-Aramayo; Philip Roos; Adam Sarty; Reyad Sawafta; Elaine Schulte; Edwin Segbefia; Smith, C.; Samuel Stepanyan; Steffen Strauch; Vardan Tadevosyan; Liguang Tang; Raphael Tieulent; Vladas Tvaskis; Alicia Uzzle; William Vulcan; Stephen Wood; Feng Xiong; Lulin Yuan; Markus Zeier; Benedikt Zihlmann; Vitaliy Ziskin
2004-01-01
We report on a detailed study of longitudinal strength in the nucleon resonance region, presenting new results from inclusive electron-proton cross sections measured at Jefferson Lab Hall C in the four-momentum transfer range 0.2 2 2 . The data have been used to accurately perform over 170 Rosenbluth-type longitudinal/transverse separations. The precision R σ L /σ T data are presented here, along with the first separate values of the inelastic structure functions F 1 and F L in this regime. The resonance longitudinal component is found to be significant. With the new data, quark-hadron duality is observed above Q 2 = 1 GeV 2 in the separated structure functions independently
Energy Technology Data Exchange (ETDEWEB)
Bartels, Jochen [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Golec-Biernat, Krzysztof [Rzeszow Univ. (Poland). Inst. of Physics; Polish Academy of Sciences, Krakow (Poland). Inst. of Nuclear Physics; Motkyka, Leszek [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Uniwersytet Jagiellonski, Krakow (Poland). Inst. Fizyki
2009-11-15
Higher twist effects in the deeply inelastic scattering are studied. We start with a short review of the theoretical results on higher twists in QCD. Within the saturation model we perform a twist analysis of the nucleon structure functions F{sub T} and F{sub L} at small value of the Bjorken variable x. The parameters of the model are fitted to the HERA F{sub 2} data, and we derive a prediction for the longitudinal structure function F{sub L}. We conclude that for F{sub L} the higher twist corrections are sizable whereas for F{sub 2}=F{sub T}+F{sub L} there is a nearly complete cancellation of twist-4 corrections in F{sub T} and F{sub L}. We discuss a few consequences for future LHC measurements. (orig.)
Solitary wave exchange potential and nucleon-nucleon interaction
International Nuclear Information System (INIS)
Prema, K.; Raghavan, S.S.; Sekhar Raghavan
1986-11-01
Nucleon-nucleon interaction is studied using a phenomenological potential model called solitary wave exchange potential model. It is shown that this simple model reproduces the singlet and triplet scattering data and the deuteron parameters reasonably well. (author). 6 refs, 2 figs, 1 tab
Use of a finite range nucleon-nucleon interaction in the continuum shell model
International Nuclear Information System (INIS)
Faes, Jean-Baptiste
2007-01-01
The unification of nuclear structure and nuclear reactions was always a great challenge of nuclear physics. The extreme complexity of finite quantum systems lead in the past to a separate development of the nuclear structure and the nuclear reactions. A unified description of structure and reactions is possible within the continuum shell model. All previous applications of this model used the zero-range residual interaction and the finite depth local potential to generate the single-particle basis. In the thesis, we have presented an extension of the continuum shell model for finite-range nucleon-nucleon interaction and an arbitrary number of nucleons in the scattering continuum. The great advantage of the present formulation is the same two-body interaction used both to generate the single-particle basis and to describe couplings to the continuum states. This formulation opens a possibility for an ab initio continuum shell model studies with the same nucleon-nucleon interaction generating the nuclear mean field, the configuration mixing and the coupling to the scattering continuum. First realistic applications of the above model has been shown for spectra of "1"7F and "1"7O, and elastic phase-shifts in the reaction "1"6O(p, p)"1"6O. (author)
International Nuclear Information System (INIS)
Schwamb, M.
2006-01-01
An overview over present achievements and future challenges in the field of few-nucleon systems is presented. Special emphasis is laid on the construction of a unified approach to hadronic and electromagnetic reactions on few-nucleon systems, necessary for studying the borderline between quark-gluon and effective descriptions. (orig.) (orig.)
NN → NN π: the new frontier in nucleon-nucleon interactions
International Nuclear Information System (INIS)
Silbar, R.R.
1986-01-01
The torch in nucleon-nucleon scattering has been passed to experimental and theoretical studies of pion production. Comparing two unitary models shows that most of the structures predicted for spin observables in NN → NNπ are model independent and roughly in agreement with the data. The contribution of rho- exchange is small, indicating the reaction is largely ''peripheral''. The energy dependence of these isobar models is smooth. The largely unstudied reactions producing neutral and negatively-charged pions show richer structure than positively-charged pion production. 6 refs
International Nuclear Information System (INIS)
Grange, P.; Mathiot, J.F.; Roy-Stephan, M.; Frascaria, R.; Gales, S.
1990-01-01
The topics presented at the 1989 Joliot-Curie Lectures are reported. Two main subjects were retained: a simplified description of the N-body motion of particles in the quasi-particle configuration; study of the dynamics of nuclear components which are not described by nucleons in their ground state. The following themes were presented: quasiparticles and the Green functions, relativistic aspects of the quasiparticle concept, the dimensions of nucleons in the nuclei and the EMC effect, quarks and gluons in the nuclei, the delta in the nuclei, the strangeness, quasiparticles far from the Fermi sea, diffusion of electrons, stellar evolution and nucleosynthesis [fr
Evaluation of the three-nucleon analyzing power puzzle
International Nuclear Information System (INIS)
Tornow, W.; Witala, H.
1998-01-01
The current status of the three-nucleon analyzing power puzzle is reviewed. Applying tight constraints on the allowed deviations between calculated predictions and accepted values for relevant nucleon-nucleon observables reveals that energy independent correction factors applied to the 3 P j nucleon-nucleon interactions can not solve the puzzle. Furthermore, using the same constraints, charge-independence breaking in the 3 P j nucleon-nucleon interactions can be ruled out as a possible tool to improve the agreement between three-nucleon calculations and data. The study of the energy dependence of the three-nucleon analyzing power puzzle gives clear evidence that the 3 P j nucleon-nucleon interaction obtained from phase-shift analyses and used in potential models are correct above about 25 MeV, i.e., the 3 P j nucleon-nucleon interactions have to be modified only at lower energies in order to solve the three-nucleon analyzing power puzzle, unless new three-nucleon forces can be found that account for the three-nucleon analyzing power puzzle without destroying the beautiful agreement between rigorous three-nucleon calculations and a large body of accurate three-nucleon data. (orig.)
Evaluation of the three-nucleon analyzing power puzzle
Energy Technology Data Exchange (ETDEWEB)
Tornow, W. [Duke Univ., Durham, NC (United States). Dept. of Physics]|[Triangle Univ. Nuclear Lab., Durham, NC (United States); Witala, H. [Uniwersytet Jagiellonski, Cracow (Poland). Inst. Fizyki
1998-07-20
The current status of the three-nucleon analyzing power puzzle is reviewed. Applying tight constraints on the allowed deviations between calculated predictions and accepted values for relevant nucleon-nucleon observables reveals that energy independent correction factors applied to the {sup 3}P{sub j} nucleon-nucleon interactions can not solve the puzzle. Furthermore, using the same constraints, charge-independence breaking in the {sup 3}P{sub j} nucleon-nucleon interactions can be ruled out as a possible tool to improve the agreement between three-nucleon calculations and data. The study of the energy dependence of the three-nucleon analyzing power puzzle gives clear evidence that the {sup 3}P{sub j} nucleon-nucleon interaction obtained from phase-shift analyses and used in potential models are correct above about 25 MeV, i.e., the {sup 3}P{sub j} nucleon-nucleon interactions have to be modified only at lower energies in order to solve the three-nucleon analyzing power puzzle, unless new three-nucleon forces can be found that account for the three-nucleon analyzing power puzzle without destroying the beautiful agreement between rigorous three-nucleon calculations and a large body of accurate three-nucleon data. (orig.) 18 refs.
International Nuclear Information System (INIS)
Close, F.E.
1993-06-01
When the new data on polarised lepton nucleon scattering are compared at the same value of Q 2 and with a common set of assumptions, a consistent picture of the spin content of the nucleon begins to emerge. Higher order effects in O(α s ), higher twist effects, modern data on unpolarised structure functions and an updated value for F/D are all important in analysing the data. The detailed x dependences of the polarisation asymmetry in the valence quark region are shown to confirm 20 year old predictions of the quark model and I argue that these are an important ingredient in decoding the nucleon spin puzzle. (author)
International Nuclear Information System (INIS)
Close, F.E.
1994-01-01
When the new data on polarised lepton nucleon scattering are compared at the same value of Q 2 and with a common set of assumptions, a consistent picture of the spin content of the nucleon begins to emerge. Higher order effects in 0(α s ), higher twist effects, modern data on unpolarized structure functions and an updated value for F/D are all important in analysing the data. The detailed x dependences of the polarisation asymmetry in the valence quark region are shown to confirm 20 year old predictions of the quark model and I argue that these are an important ingredient in decoding the nucleon spin puzzle. (author)
International Nuclear Information System (INIS)
Guiasu, I.
1978-01-01
The elastic γ-nucleon scattering represents an indirect powerful method for the nucleon structure investigation. Some theoretical aspects of this problem are treated in the presented thesis. After a general introduction into the subject and a short review of the up-to-date literature, the first chapter contains kinematics and dynamical preliminaries of reaction γ+N→γ+N. In chapter II, the low energy theorems are discussed and extended up to six power in the photon laboratory energies, ω; the six structure dependent constants which appear in the differential cross section in this order are defined and computed, and an extraction for the proton electromagnetic polarizabilities α,β from the experimental data is performed. A new dispersive analysis of the γ+N→γ+N process at photon laboratory energies lower than 450 Mev is introduced and used for numerical calculation in chapter III; some improvements are obtained in the comparison with the experimental data, with respect to other previous calculations. In the last chapter, two different sum rules for the difference (α-β) are established and numerically computed - these theoretical predictions agree with the values extracted from experience; based on the analyticity properties of the invariant amplitudes, an inequality is written down connecting an integral over the differential cross section of the process and the static properties of the nucleon (mass, charge, anomalous magnetic moment). (author)
Study of the spallation residues in the reaction Au (800 MeV/nucleon) + p
International Nuclear Information System (INIS)
Mustapha, Brahim
1999-01-01
As a neutron source, the spallation reaction is of importance for different fields of research and for a possible hybrid reactor. The study of spallation residues, their cross sections and their energetic properties, is necessary for such applications and for a better understanding of this process. Several studies of spallation products were done using spectroscopic methods. Only radioactive nuclides were detected. Aiming at a more precise measurement, covering the whole range of spallation residues, this study was done using the reverse kinematics method. A liquid hydrogen target was irradiated by an 800 MeV/nucleon gold beam. The produced nuclei were detected in flight before any radioactive decay with about 10% precision. Independent cross section were then obtained. Velocity distributions were completely reconstructed. In their present forms, the theoretical calculations based upon the two-step model, 'intra-nuclear cascade' + 'evaporation', are unable to reproduce the whole set of experimental aspects. An inter-comparison using different INC/EVA combinations permitted to identify the more significant points in these calculations. The important behaviour of this codes were examined. Due to compensation effects between both steps, cascade and evaporation, this study did not lead to a definite conclusion. (author)
Sum rule measurements of the spin-dependent compton amplitude (nucleon spin structure at Q2 = 0)
International Nuclear Information System (INIS)
Babusci, D.; Giordano, G.; Baghaei, H.; Cichocki, A.; Blecher, M.; Breuer, M.; Commeaux, C.; Didelez, J.P.; Caracappa, A.; Fan, Q.
1995-01-01
Energy weighted integrals of the difference in helicity-dependent photo-production cross sections (σ 1/2 - σ 3/2 ) provide information on the nucleon's Spin-dependent Polarizability (γ), and on the spin-dependent part of the asymptotic forward Compton amplitude through the Drell-Hearn-Gerasimov (DHG) sum rule. (The latter forms the Q 2 =0 limit of recent spin-asymmetry experiments in deep-inelastic lepton-scattering.) There are no direct measurements of σ 1/2 or σ 3/2 , for either the proton or the neutron. Estimates from current π-photo-production multipole analyses, particularly for the proton-neutron difference, are in good agreement with relativistic-l-loop Chiral calculations (χPT) for γ but predict large deviations from the DHG sum rule. Either (a) both the 2-loop corrections to the Spin-Polarizability are large and the existing multipoles are wrong, or (b) modifications to the Drell-Hearn-Gerasimov sum rule are required to fully describe the isospin structure of the nucleon. The helicity-dependent photo-reaction amplitudes, for both the proton and the neutron, will be measured at LEGS from pion-threshold to 470 MeV. In these double-polarization experiments, circularly polarized photons from LEGS will be used with SPHICE, a new frozen-spin target consisting of rvec H · rvec D in the solid phase. Reaction channels will be identified in SASY, a large detector array covering about 80% of 4π. A high degree of symmetry in both target and detector will be used to minimize systematic uncertainties
Large scale nuclear structure studies
International Nuclear Information System (INIS)
Faessler, A.
1985-01-01
Results of large scale nuclear structure studies are reported. The starting point is the Hartree-Fock-Bogoliubov solution with angular momentum and proton and neutron number projection after variation. This model for number and spin projected two-quasiparticle excitations with realistic forces yields in sd-shell nuclei similar good results as the 'exact' shell-model calculations. Here the authors present results for a pf-shell nucleus 46 Ti and results for the A=130 mass region where they studied 58 different nuclei with the same single-particle energies and the same effective force derived from a meson exchange potential. They carried out a Hartree-Fock-Bogoliubov variation after mean field projection in realistic model spaces. In this way, they determine for each yrast state the optimal mean Hartree-Fock-Bogoliubov field. They apply this method to 130 Ce and 128 Ba using the same effective nucleon-nucleon interaction. (Auth.)
International Nuclear Information System (INIS)
Engel, A.
1995-01-01
Delta excitation plays a prominent role in intermediate heavy reactions. In this paper, comment is made on the calculations done for pion-, photon- and nucleon-nucleus reactions using the Boltzmann-Uehling-Uhlenbeck (BUU) model and the antisymmetrized molecular dynamics (AMD) model. First, it is recalled how to include delta degrees in microscopic models in general. Then, the comparison of the microscopic calculation performed by the author with the experimental data is presented. Deltas in microscopic models are discussed. Pion-nucleus reactions have been studied since pion beams became available, especially for exploring the delta resonance in a nuclear medium. The dependence of pion absorption cross section on incident pion energy is shown. The photon-induced pion production in the resonance energy region was studied with the BUU model. The calculated results of neutral pion photo-production are shown. In both inelastic proton scattering and (p,n) charge exchange reaction, the excitation of delta resonance can be observed clearly in the experimental data. The results of the AMD calculation for 12 C(p,p') reaction are shown. (K.I.)
Few-Nucleon Research at TUNL: Probing Two- and Three-Nucleon Interactions with Neutrons
Howell, C. R.; Tornow, W.; Witała, H.
2016-03-01
The central goal of few-nucleon research at the Triangle Universities Nuclear Laboratory (TUNL) is to perform measurements that contribute to advancing ab-initio calculations of nuclear structure and reactions. The program aims include evaluating theoretical treatments of few-nucleon reaction dynamics through strategically comparing theory predictions to data, determining properties of the neutron-neutron interaction that are not accessible in two-nucleon reactions, and searching for evidence of longrange features of three-nucleon interactions, e.g., spin and isospin dependence. This paper will review studies of three- and four-nucleon systems at TUNL conducted using unpolarized and polarized neutron beams. Measurements of neutron-induced reactions performed by groups at TUNL over the last six years are described in comparison with theory predictions. The results are discussed in the context of the program goals stated above. Measurements of vector analyzing powers for elastic scattering in A=3 and A=4 systems, differential cross sections for neutron-deuteron elastic scattering and neutrondeuteron breakup in several final-state configurations are described. The findings from these studies and plans for the coming three years are presented in the context of worldwide activities in this front, in particular, research presented in this session.
Few-Nucleon Research at TUNL: Probing Two- and Three-Nucleon Interactions with Neutrons
Directory of Open Access Journals (Sweden)
Howell C.R.
2016-01-01
Full Text Available The central goal of few-nucleon research at the Triangle Universities Nuclear Laboratory (TUNL is to perform measurements that contribute to advancing ab-initio calculations of nuclear structure and reactions. The program aims include evaluating theoretical treatments of few-nucleon reaction dynamics through strategically comparing theory predictions to data, determining properties of the neutron-neutron interaction that are not accessible in two-nucleon reactions, and searching for evidence of longrange features of three-nucleon interactions, e.g., spin and isospin dependence. This paper will review studies of three- and four-nucleon systems at TUNL conducted using unpolarized and polarized neutron beams. Measurements of neutron-induced reactions performed by groups at TUNL over the last six years are described in comparison with theory predictions. The results are discussed in the context of the program goals stated above. Measurements of vector analyzing powers for elastic scattering in A=3 and A=4 systems, differential cross sections for neutron-deuteron elastic scattering and neutrondeuteron breakup in several final-state configurations are described. The findings from these studies and plans for the coming three years are presented in the context of worldwide activities in this front, in particular, research presented in this session.
Experimental studies and microscopic analysis of the elastic scattering of low energy nucleons
International Nuclear Information System (INIS)
Tarrats-Saugnac, Annie.
1982-05-01
Data on the elastic scattering of low energy nucleons (between 20 and 40 MeV) by nuclei distributed throughout the entire mass table are examined in the framework of a microscopic approach. Two major problems occur at these low energies which do not occur at higher energies: the Pauli principle limits the interaction possibilities of projectiles with bound nucleons in the nucleus; it is not possible to neglect the antisymmetrization between projectiles and nucleon targets resulting in the addition of a nonlocal term to the potential. A quadratic moment approximation is used. As regards the inhibition of reactions inside the nucleus by the Pauli principle, an effective interaction with a relatively simple analytical form and easy to use for systematic analyses was determined [fr
Study of peripheral heavy ion reactions at 84 MeV/nucleon
International Nuclear Information System (INIS)
Rabe, H.J.
1986-01-01
In peripheral heavy ion reactions between 18 O and 58,64 Ni, 18 O and u97 Au, as well as between 12 C and 197 Au at an incident energy of 84 MeV/nucleon azimutal angular correlations between projectile fragments and light particles (p,d,t,α) were studied. By the selection of heavy projectile fragments Z p ≥6 and small multiplicity of the light particles from the target or from the reaction zone peripheral reactions between the heavy ions were selected. The data analysis showed that the emission of light particles under ΔΦ=180 0 , i.e. on the side lying relative to the beam axis opposite to the projectile fragment, is distinctly increased. The counting-rate ratio N(ΔΦ=180 0 )/N(ΔΦ=0 0 ) can amount up to 3.5:1. A detailed analysis yields the result that the anisotropy is closely correlated to the transverse momentum p t of the projectile fragments, whereby the connection for p t 600 MeV/c is nearly linear. The absolute cross section for these processes with small multiplicity of the light particles in coincidence with heavy projectile fragments (Z p ≥6) lies in the order of magnitude of 200 mb. (orig./HSI) [de
Energy Technology Data Exchange (ETDEWEB)
Rebreyend, D
2006-10-15
The photoproduction of mesons on the nucleon gives a direct access to its spectroscopy and is a promising way for the study of the structure of the nucleon. The GRAAL experiment uses a tagged and polarized photon beam produced through the Compton diffusion of laser photons on the electrons circulating in the ESRF storage ring. The combination of this photon beam and an efficient detection system has allowed a series of measurements concerning the photoproduction of light mesons on the proton and on the neutron. The first 4 chapters are dedicated to the nucleon spectroscopy: the nucleon models and their consequences on the excited levels are recalled, the experimental technique used is described and the difficulties due to the extraction of relevant data are presented. Highly accurate measurements of cross-sections, {sigma} asymmetry beams and resonance parameters have been performed. The last part is dedicated to the principle of the measurement of the electric dipole momentum of the neutron. (A.C.)
Fusion reactor nucleonics: status and needs
International Nuclear Information System (INIS)
Lee, J.D.; Engholm, B.A.; Dudziak, D.J.; Haight, R.C.
1980-01-01
The national fusion technology effort has made a good start at addressing the basic nucleonics issues, but only a start. No fundamental nucleonics issues are seen as insurmountable barriers to the development of commercial fusion power. To date the fusion nucleonics effort has relied almost exclusively on other programs for nuclear data and codes. But as we progress through and beyond ETF type design studies the fusion program will need to support a broad based nucleonics effort including code development, sensitivity studies, integral experiments, data acquisition etc. It is clear that nucleonics issues are extremely important to fusion development and that we have only scratched the surface
Study of the Nuclear Transparency in $\\alpha$ + A Reactions at Energies $\\geq$ 12 GeV/nucleon
2002-01-01
The question about transparency is crucial for heavy ion reaction studies. If the transparency is low at 10-15 GeV per nucleon then very large baryon densities can be achieved in this energy range, maybe enough to produce quark-gluon plasma in U+U collisions. We propose to measure, event by event, pseudo-rapidity and multiplicity distributions of singly charged relativistic particles (@b~$>$~0.7) globally and in selected regions of rapidity as well as multiplicities of recoiling protons (30-400~Me charged nuclear fragments. These studies will explore general features of @a+A reactions at energies @$>$~12~GeV/nucleon. The main goal of the experiment is to measure the transparency of nuclear matter in this energy range. The detector will be nuclear emulsion.
Recent Progresses in Ab-Initio Studies of Low-Energy Few-Nucleon Reactions of Astrophysical Interest
Marcucci, Laura E.
2017-03-01
We review the most recent theoretical studies of nuclear reactions of astrophysical interest involving few-nucleon systems. In particular, we focus on the radiative capture of protons by deuterons in the energy range of interest for Big Bang Nucleosynthesis. Related to this, we will discuss also the most recent calculation of tritium β -decay. Two frameworks will be considered, the conventional and the chiral effective field theory approach.
Complementarity between neutron capture and heavy-ion reactions in nuclear structure studies
International Nuclear Information System (INIS)
Schult, O.W.B.
1978-01-01
The study of the complementarity of certain nuclear reactions in nuclear structure studies includes spectroscopic methods, nuclear rotation and coupling of nucleons to the core, and the de-excitation and structure of high lying states. 23 references
Nucleon Resonance Structure from Exclusive Meson Electroproduction with CLAS and CLAS12
Energy Technology Data Exchange (ETDEWEB)
Cole, P.L. [Idaho State University, Department of Physics, Pocatello, Idaho 83209-8106 (United States); Burkert, V.D. [Jefferson Lab., 12000 Jefferson Ave., Newport News, VA 23606 (United States); Gothe, R.W. [University of South Carolina, Department of Physics, Columbia, South Carolina 29208 (United States); Mokeev, V.I. [Jefferson Lab., 12000 Jefferson Ave., Newport News, VA 23606 (United States); Skobeltsyn Nuclear Physics Institute, Moscow State University, 119899 Moscow (Russian Federation)
2012-12-15
The CLAS detector at Jefferson Lab is a unique instrument, which has provided the lion's share of the world's data on meson photo- and electroproduction in the resonance excitation region. The electroexcitation amplitudes for the low-lying resonances P{sub 33}(1232), P{sub 11}(1440), D{sub 13}(1520), and S{sub 11}(1535) were determined over a wide range of Q{sup 2}<5.0GeV{sup 2} in a comprehensive analysis of exclusive single-meson (π{sup +}n,π{sup 0}p) reactions in the electroproduction off protons. Further, CLAS was able to precisely measure π{sup +}π{sup −}p electroproduction differential cross sections provided by the nearly full kinematic coverage of the detector. The electrocouplings of the P{sub 11}(1440) and D{sub 13}(1520) excited states are determined from the exclusive-π{sup +}π{sup −}p reaction. Consistent results on the electrocouplings from two-independent analyses (single- and double-pion electroproduction) have provided compelling evidence for the reliable extraction of the N{sup ⁎} electrocouplings. Preliminary results on the electrocouplings of the S{sub 31}(1620), S{sub 11}(1650), D{sub 33}(1700), and P{sub 13}(1720) states have recently become available. Theoretical analyses of these results have revealed that there are two major contributions to the resonance structure: a) an internal quark core and b) an external meson-baryon cloud. These CLAS results have had considerable impact on QCD-based studies on N{sup ⁎} structure and in the search for manifestations of the dynamical masses of the dressed quarks. Future CLAS12 N{sup ⁎} structure studies at high photon virtualities will considerably extend our capabilities in exploring the nature of confinement in baryons.
Modifications of nucleons in nuclei in quasi-elastic electron-nucleus scattering
International Nuclear Information System (INIS)
Mulders, P.J.
1988-01-01
In inelastic electron scattering two scaling regions are observed in which the scattering is dominated by quasi-elastic scattering. For large momentum transfers, √Q 2 > 2 GeV/c, the scattering process is dominated by quasi-elastic scattering off quarks, whereas for √Q 2 ≅ 0.5 GeV/c the dominant contribution is quasi-elastic scattering off nucleons. This corresponds nicely to our first order picture of the nucleus consisting of nucleons, which in turn are composed of quarks. In the nucleon-scaling region, possible modifications of nucleon properties show up through a study of the Q 2 dependence and the relative strength of the transverse and longitudinal cross sections. Results of both inclusive (e,e') and exclusive (e,e'p) experiments in the quasi-elastic scattering region indeed show a behavior that could indicate modifications of intrinsic properties of individual nucleons in the nucleus, although the question remains if one has correctly disentangled the effects of the (long range) interactions between nucleons and those connected to the internal structure of nucleons. Even so, a simple (one-parameter) size rescaling for nucleons appears to be inconsistent with the data and also with some known conventional nuclear physics observables. Therefore the inclusion of two-nucleon correlations appears necessary in order to be able to understand the data. Such correlations can for instance be due to the effect of the Pauli principle on the quark level. (orig.)
Studies of the Three-Nucleon System Dynamics in the Deuteron-Proton Breakup Reaction
Ciepał, I.; Kłos, B.; Stephan, E.; Kistryn, St.; Biegun, A.; Bodek, K.; Deltuva, A.; Epelbaum, E.; Eslami-Kalantari, M.; Fonseca, A. C.; Golak, J.; Jha, V.; Kalantar-Nayestanaki, N.; Kamada, H.; Khatri, G.; Kirillov, Da.; Kirillov, Di.; Kliczewski, St.; Kozela, A.; Kravcikova, M.; Machner, H.; Magiera, A.; Martinska, G.; Messchendorp, J.; Nogga, A.; Parol, W.; Ramazani-Moghaddam-Arani, A.; Roy, B. J.; Sakai, H.; Sekiguchi, K.; Sitnik, I.; Siudak, R.; Skibiński, R.; Sworst, R.; Urban, J.; Witała, H.; Zejma, J.
2014-03-01
One of the most important goals of modern nuclear physics is to contruct nuclear force model which properly describes the experimental data. To develop and test predictions of current models the breakup 1H(overrightarrow d, pp)n reaction was investigated experimentally at 100 and 130 MeV deuteron beam energies. Rich set of data for cross section, vector and tensor analyzing powers was obtained with the use of the SALAD and BINA detectors at KVI and Germanium Wall setup at FZ-Jülich. Results are compared with various theoretical approaches which describe the three-nucleon (3N) system dynamics. For correct description of the cross section data both, three-nucleon force (3NF) and Coulomb force, have to be included into calculations and influence of those ingredients is seizable at specific parts of the phase space. In case of the vector analyzing powers very low sensitivity to any effects beyond nucleon-nucleon interaction was found. At 130 MeV, the Axy data are not correctly described when 3NF models are included into calculations.
Microscopic study of multichannel processes in a six nucleon system. 1
International Nuclear Information System (INIS)
Vasilevskij, V.S.; Filippov, G.F.; Chopovskij, L.L.; Velaskes, H.
1986-01-01
The algorithm used to calculate the matrix elements of the potential energy operator of nucleons central interaction on cluster model functions describing the interaction of 3 H+ 3 H, 3 H+ 3 He and 3 He+ 3 He systems is given a detailed treatment. The explicit form of matrix elements is presented for the states with spin S=0, 1 and isospin T=1
Nucleon-nucleon theory and phenomenology
International Nuclear Information System (INIS)
Signell, P.
1981-03-01
This project involves five inter-related subprojects: (1) derivation of the intermediate range nucleon-nucleon interaction using a new method that utilizes much shorter and simpler analytic continuation through the unphysical region that lies between the πN and ππ physical regions of the N anti N → ππ amplitude (with significantly improved accuracy for the nucleon-nucleon interaction); (2) construction of a short range phenomenological potential that, with the theoretical part mentioned above, gives a precise fit to the nucleon-nucleon data and is parameterized for easy use in nucleon calculations; (3) phase shift analyses of the world data below 400 MeV, especially the large amount of very precise data below 20 MeV and the new data near 55 MeV that have never been analyzed properly; (4) the introduction of a K-matrix formulation of the Optimal Polynomial Expansion in order to accelerate convergence of the partial wave series at LAMPF energies; and (5) setting up of a cooperatively evaluated permanent nucleon-nucleon data bank in the 0-1200 MeV range that can be used by all nucleon-nucleon reseachers
Polarized lepton-nucleon scattering
International Nuclear Information System (INIS)
Hughes, E.
1994-01-01
The author provides a summary of the proposed and published statistical (systematic) uncertainties from the world experiments on nucleon spin structure function integrals. By the time these programs are complete, there will be a vast resource of data on nucleon spin structure functions. Each program has quite different experimental approaches regarding the beams, targets, and spectrometers thus ensuring systematically independent tests of the spin structure function measurements. Since the field of spin structure function measurements began, there has been a result appearing approximately every five years. With advances in polarized target technology and high polarization in virtually all of the lepton beams, results are now coming out each year; this is a true signature of the growth in the field. Hopefully, the experiments will provide a consistent picture of nucleon spin structure at their completion. In summary, there are still many open questions regarding the internal spin structure of the nucleon. Tests of QCD via the investigation of the Bjorken sum rule is a prime motivator for the field, and will continue with the next round of precision experiments. The question of the origin of spin is still a fundamental problem. Researchers hope is that high-energy probes using spin will shed light on this intriguing mystery, in addition to characterizing the spin structure of the nucleon
Polarized lepton-nucleon scattering
Energy Technology Data Exchange (ETDEWEB)
Hughes, E. [Stanford Univ., CA (United States)
1994-12-01
The author provides a summary of the proposed and published statistical (systematic) uncertainties from the world experiments on nucleon spin structure function integrals. By the time these programs are complete, there will be a vast resource of data on nucleon spin structure functions. Each program has quite different experimental approaches regarding the beams, targets, and spectrometers thus ensuring systematically independent tests of the spin structure function measurements. Since the field of spin structure function measurements began, there has been a result appearing approximately every five years. With advances in polarized target technology and high polarization in virtually all of the lepton beams, results are now coming out each year; this is a true signature of the growth in the field. Hopefully, the experiments will provide a consistent picture of nucleon spin structure at their completion. In summary, there are still many open questions regarding the internal spin structure of the nucleon. Tests of QCD via the investigation of the Bjorken sum rule is a prime motivator for the field, and will continue with the next round of precision experiments. The question of the origin of spin is still a fundamental problem. Researchers hope is that high-energy probes using spin will shed light on this intriguing mystery, in addition to characterizing the spin structure of the nucleon.
Collective flow studies in central collisions between nuclei at several hundreds of MeV per nucleon
International Nuclear Information System (INIS)
Demoulins, M.
1990-02-01
The main purpose for studying collisions between heavy nuclei, in the 200-2000 MeV per nucleon energy range, is to determine the equation of state and the properties of dense and hot nuclear matter. The insensitiveness of the inclusive data to the equation of state has led experimental physicists to build large solid angle detectors capable of detecting simultaneously the tens of particles emitted in each event. Such measurements allow to estimate the impact parameter, the reaction plane on an event-by-event basis, and to calculate various global variables involving all particles emitted in each event. In this thesis, we study global variables which characterize the nuclear matter collective flow in a direction which is different from the direction of incident motion, for argon-nucleus collisions at 400 and 600 MeV by nucleon and for neon-nucleus collisions at 400 and 800 MeV by nucleon. The measurements have been performed with the DIOGENE detector installed at SATURNE. For the argon-beam experiments, two parallel plate avalanche counters have been used to locate the interaction point of each incoming ion with the target, which improves the reconstruction of the particle tracks in the DIOGENE central chamber. Double differential cross-sections, in the reaction plane and in the plane orthogonal to the reaction plane, are fitted with two-dimensional Gaussian distributions. Through this procedure, we get rid of geometrical acceptance effects. Several quantities, related to the collective flow (flow angle, aspect ratios, flow parameter), are thus extracted and corrected for the fluctuations of the estimated reaction plane. For argon-nucleus collisions at 400 MeV by nucleon, our results are in agreement with results obtained by other groups with different methods. For argon-nucleus collisions, the discrepancy between our experimental results and predictions of intranuclear cascade calculations is increasing with the mass asymmetry of the colliding system [fr
Collective flow studies in central collisions between nuclei at several hundreds of MeV per nucleon
International Nuclear Information System (INIS)
Demoulins, M.
1989-01-01
The main purpose for studying collisions between heavy nuclei, in the 200-2000 MeV per nucleon energy range, is to determine the equation of state and the properties of dense and hot nuclear matter. The insensitiveness of the inclusive data to the equation of state has led experimental physicists to build large solid angle detectors capable of detecting simultaneously the tens of particles emitted in each event. Such measurements allow to estimate the impact parameter, the reaction plane on an event-by-event basis, and to calculate various global variables involving all particles emitted in each event. In this thesis, we study global variables which characterize the nuclear matter collective flow in a direction which is different from the direction of incident motion, for argon-nucleus collisions at 400 and 600 MeV by nucleon and for neon-nucleus collisions at 400 and 800 MeV by nucleon. The measurements have been performed with the DIOGENE detector installed at SATURNE. For the argon-beam experiments, two parallel plate avalanche counters have been used to locate the interaction point of each incoming ion with the target, which improves the reconstruction of the particle tracks in the DIOGENE central chamber. Double differential cross sections, in the reaction plane and in the plane orthogonal to the reaction plane, are fitted with two-dimensional Gaussian distributions. Through this procedure, we get rid of geometrical acceptance effects. Several quantities, related to the collective flow (flow angle, aspect ratios, flow parameter), are thus extracted and corrected for the fluctuations of the estimated reaction plane. For the argon-nucleus collisions at 400 MeV by nucleon, our results are in agreement with results obtained by other groups with different methods. For argon-nucleus collisions, the discrepancy between our experimental results and predictions of intranuclear cascade calculations is increasing with the mass asymmetry of the colliding system [fr
Energy Technology Data Exchange (ETDEWEB)
Farag, M.Y.H.; Esmael, E.H. [Cairo University, Physics Department, Faculty of Science, Giza (Egypt); Maridi, H.M. [Cairo University, Physics Department, Faculty of Science, Giza (Egypt); Taiz University, Physics Department, Faculty of Applied Science, Taiz (Yemen)
2012-11-15
The proton elastic scattering data on some light exotic nuclei, namely, {sup 6,} {sup 8}He, {sup 9,} {sup 11}Li, and {sup 10,} {sup 11,} {sup 12}Be, at energies below than 100MeV/nucleon are analyzed using the single folding optical model. The real, imaginary, and spin-orbit parts of the optical potential (OP) are constructed only from the folded potentials and their derivatives using M3Y effective nucleon-nucleon interaction. These OP parts, their renormalization factors and their volume integrals are studied. The surface and spin-orbit potentials are important to fit the experimental data. Three model densities for halo nuclei are used and the sensitivity of the cross-sections to these densities is tested. The imaginary OP within high-energy approximation is used and compared with the single folding OP. This OP with few and limited fitting parameters, which have systematic behavior with incident energy, successfully describes the proton elastic scattering data with exotic nuclei. (orig.)
From nucleons to quarks in nuclei
International Nuclear Information System (INIS)
Laget, J.M.
1984-07-01
Nuclear Physics has now evolved from the study of the many nucleon problem, to the study of the interplay of the degrees of freedom of such a complex system and the internal degrees of freedom of each of its hadronic constituents. Extensive studies of electronuclear reactions have allowed us to disentangle the basic mechanisms of the interaction between two baryons in a nucleus. The pion exchange mechanism, which dominates at large distance has been singled out. The NΔ interaction, which enter the description of the intermediate range part, has been studied. Evidences for effects due to the quark structure of the nucleon have been found. They involve the short distance structure of the nucleus
Nucleons II: cryopreservation and metabolic activity.
Reyes, R; Flores-Alonso, J C; Rodríguez-Hernández, H M; Merchant-Larios, H M; Delgado, N M
2001-01-01
The establishment of intracytoplasmatic sperm injection (ICSI) as a routine procedure in assisted fertilization has been used in the treatment of male infertility. The major technical problem that has arisen with the use of immotile sperm for ICSI has been differentiating between live and dead cells. Nucleons from human, pig, hamster, mouse, rat, and bull have been able to induce their chromatin decondensation by the action of heparin/GSH. Cryopreservation is deleterious to sperm function, killing more than 50% of the spermatozoa during the process. Nucleon cryostorage was performed at 5 and -5 degrees C and analyzed for total area (mu2), perimeter (mu), width (mu), and length (mu), using Metamorph Imaging System software. On the other hand, fluorescein diacetate (FDA) is hydrolyzed by intracellular estereases to produce fluorescein, which exhibits green fluorescence when excited by blue light. This fact is a striking result since the presence of this metabolic activity opens the possibility to select the nucleons for ICSI. In the present study, the authors decided to search for a suitable metabolic test, which might reflect the metabolism and viability of these chromatin structures. This is a simple cryostorage technique that after months of cryopreservation, allow the use of nucleons for ICSI with suitable fertilization and pregnancies rates.
Study of pheripheral heavy ion reactions at 84 MeV/nucleon
International Nuclear Information System (INIS)
Rabe, H.J.
1986-04-01
In peripheral heavy ion collisions between 18 O and sup(58,64)Ni, 18 O and 197 Au, as well as between 12 C and 197 Au at an incident energy of 84 MeV/nucleon azimutal angular correlations between projectile fragments and light particles (p,d,t,α) were studied. For the detection of the projectile fragments a 54-fold segmented in theta and phi space-resolving and Z-insensitive scintillator hodoscope was developed and constructed. The particle identification is aimed in the angular range 2 0 0 only by a ΔE measurement because the fragments exhibit a narrow velocity distribution around the beam velocity. The theta and phi resolution is 1.5 0 and 60 0 . In the external angular range 6.5 0 0 the particle identification is performed by simultaneous measurement of ΔE abd Esub(rest) in phoswich detectors with a theta and phi resolution of 4.5 0 respectively 30 0 . The light particles were detected in a large-area space-resolving scintillator hodoscope. Because this hodoscope possesses no particle identification and thus does not allow energy measurement, the coincidence measurement was supplemented by the detection of the light particles in semiconductor telescopes with good energy and particle resolution. By the selection of heavy projectile fragments Zsub(p)>=6 and low multiplicity of the light particle from the target or from the reaction zone peripheral reactions between the heavy ions were selected. (orig./HSI) [de
Sensitivity to properties of the phi-meson in the nucleon structure in the chiral soliton model
Energy Technology Data Exchange (ETDEWEB)
Mukhopadhyay, N.C.; Zhang, L. [Rensselaer Polytechnic Inst., Troy, NY (United States)
1994-04-01
The influence of the {phi}-meson on the nucleon properties in the chiral soliton model is discussed. Properties of the {phi}-meson and its photo- and electroproduction are of fundamental interest to CEBAF and its possible future extension. The quark model assigns {phi} an s{bar s} structure, thus forbidding the radiative decay {phi}{yields}{pi}{sup 0}{gamma}. Experimentally it is also found to be suppressed, yielding a branching fraction of 1.3{times}10{sup {minus}3}. However, {phi}{yields}{rho}{pi} and {phi}{yields}{pi}{sup +}{pi}{sup {minus}}{pi}{sup 0} are not suppressed at all. Thus, it is possible to incorporate the widths of these decays into the framework of the chiral soliton model, by making use of a specific model for the compliance with OZI rule. Such a model is for example, the {omega}-{phi} mixing model. Consequence of this in the context of a chiral soliton model, which builds on the {pi}{rho}{omega}a{sub 1}(f{sub 1}) meson effective Lagrangian, is the context of this report.
Pion and nucleon structure as probed in the reaction π/sup +-/N → μ+μ-X at 253 GeV
International Nuclear Information System (INIS)
McDonald, K.T.
1988-01-01
New results are presented from Fermilab experiment E615, in which hadroproduction of muon pairs allows a determination of the quark structure of the initial-state hadrons in the context of a Drell-Yan model. Comparison of muon-pair production by π + and π - beams shows the cross-section ratio follows Drell-Yan model expectations, except for a dip in σ(π + )/σ(π - ) near x/sub π/ near 1. The same data are also used to extract the ratio of the sea to valence quark distributions in the nucleon, with improved accuracy for x/sub N/ 2 for the π - data sample. This provides stronger evidence of a rise in the nucleon structure function for x/sub N/ < 0.06 compared to that extracted in deep-inelastic lepton scattering. The issue is raised of the nonuniqueness of the definition of x/sub π/ and x/sub N/ used in the Drell-Yan analysis. A definition proposed by Soper has superior invariance properties to that commonly used. An analysis based on this definition yields generally similar results for the pion and nucleon structure function, compared to use of the common definition. However, the pion structure function shows a larger intercept at x/sub π/ = 1 when the definition of Soper is used. 21 refs., 6 figs
Energy Technology Data Exchange (ETDEWEB)
Jossten, Sylvester Johannes
2013-10-15
Multiplicities for the semi-inclusive production of each charge state of {pi}{sup {+-}} and K{sup {+-}} mesons in deep-inelastic scattering are presented as a function of the kinematic quantities x, Q{sup 2}, z and P{sub h} {sub perpendicular} {sub to}. The multiplicities were extracted from data collected by the HERMES experiment at the HERA storage ring using 27.6 GeV electron and positron beams on a hydrogen or deuterium gas target. These results for identified hadrons constitute the most precise measurement to date, and will significantly enhance our understanding of the proton structure, as well as the fragmentation process in deep-inelastic scattering. Furthermore, the 3D binning at an unprecedented level of precision provides a handle to help disentangle the transverse momentum structure of both. The high level of precision coupled with an intermediate energy regime requires a careful study of the complex interaction between the experimental systematics, theoretical uncertainties, and the applicability of the factorization theorem within the standard framework of leading-twist collinear QCD. This is illustrated by the extraction of the valence quark ratio d{sub {nu}}/u{sub {nu}} at leading-order in {alpha}{sub s}. These results show a strong z-dependence below z {approx} 0.30, which could be interpreted as evidence for factorization breaking. This evidence weakens somewhat when isospin invariance of the fragmentation functions is assumed to be broken. Additionally, the multiplicities for the semi-inclusive production of {pi}{sup 0} mesons in deep-inelastic scattering are presented as a function of z. These multiplicities were extracted from the same data sample as used for the charged meson results. The neutral pion multiplicity is the same as the average charged pion multiplicity, up to z {approx} 0.70. This is consistent with isospin invariance below z {approx} 0.70. The results at high values of z show strong signs of isospin symmetry breaking.
Low-energy kaon-nucleon/nuclei interaction studies at DAΦNE by AMADEUS
Directory of Open Access Journals (Sweden)
Tucaković Ivana
2015-01-01
Full Text Available The AMADEUS experiment deals with the investigation of the low-energy kaon-nuclei hadronic interaction at the DAΦNE collider at LNF-INFN, fundamental to respond to longstanding open questions in the non-perturbative QCD in the strangeness sector. One of the most interesting aspects is to understand how hadron masses and interactions change in the nuclear environment. The antikaon-nucleon potential is investigated searching for signals from possible bound kaonic clusters, which would imply a strongly attractive antikaon-nucleon potential. AMADEUS step 0 consists in the analysis of 2004/2005 KLOE data, exploring K− absorptions in H, 4He, 9Be and 12C present in setup materials. The status of the various preliminary analyses is presented, together with future perspectives.
Spin observables in nucleon-nucleus scattering
International Nuclear Information System (INIS)
Moss, J.M.
1982-01-01
The curse of inelastic nucleon scattering and charge exchange has always been the enormous complexity of the nucleon-nucleon (N-N) interaction. This complexity, however, can also be viewed as the ultimate promise of nucleons as probes of nuclear structure. Given an adequate theoretical basis, inelastic nucleon scattering is capable of providing information not obtainable with other probes. Recently a revolution of experimental technique has taken place that makes it desirable to re-examine the question of what physics is ultimately obtainable from inelastic nucleon scattering. It is now feasible to perform complete polarization transfer (PT) experiments for inelastic proton scattering with high efficiency and excellent energy resolution. Programs to measure PT obsevables are underway at several laboratories, and results are beginning to appear. Objectives of this presentation are to examine how such experiments are done, and what physics is presently obtained and may ultimately be learned from them
Roles of quarks and gluons in the spin structure of nucleons
International Nuclear Information System (INIS)
Modarres, M.; Amir-Kabir Univ., Teheran; Ghafoori-Tabrizi, K.; Shahid-Beheshti Univ., Teheran
1992-01-01
The spin structure of protons will be discussed by using MIT-bag model and considering constituent quarks to be combined from current quarks and gluons. It will be shown that the gluonic degrees of freedom play an important role in prediction of the recent EMC results. (orig.)
Charge structure of the hadronic final state in deep-inelastic muon-nucleon scattering
International Nuclear Information System (INIS)
Arneodo, M.; Ferrero, M.I.; Peroni, C.; Beaufays, J.; Jacholkowska, A.; Kellner, G.; Osborne, A.M.; Bee, C.P.; Bird, I.; Coughlan, J.; Sloan, T.; Braun, H.; Brueck, H.; Drees, J.; Edwards, A.; Krueger, J.; Montgomery, H.E.; Peschel, H.; Pietrzyk, U.; Poetsch, M.; Schneider, A.; Combley, F.; Foster, J.; Whalley, M.; Wheeler, S.; Dreyer, T.; Ernst, T.; Haas, J.; Kabuss, E.M.; Landgraf, U.; Mohr, W.; Rith, K.; Schlagboehmer, A.; Schroeder, T.; Stier, H.E.; Wallucks, W.; Figiel, J.; Gajewski, J.; Janata, F.; Poensgen, B.; Schiemann, H.; Studt, M.; Torre, A. de la; Geddes, N.; Johnson, A.S.; Loken, J.; Long, K.; Renton, P.; Taylor, G.N.; Williams, W.S.C.; Grard, F.; Windmolders, R.
1988-01-01
The general charge properties of the hadronic final state produced in μ + p and μ + d interactions at 280 GeV are investigated. Quark charge retention and local charge compensation is observed. The ratio F 2 n /F 2 p of the neutron to proton structure function is derived from the measurement of the average hadronic charge in μd interactions. (orig.)
Granier, Thierry
Dans ce mémoire est présentée l'analyse, dans le but de l'extraction des fonctions de structure, d'une partie des données de diffusion profondément inélastique de muons sur cibles fixes d'hydrogène et de detérium obtenues dans l'expérience NMC (New Muon Collaboration) du CERN. Les fonctions de structure, à partir desquelles s'exprime la probabilité de diffusion à un certain angle et une certaine énergie, contiennent de l'information sur la structure interne du nucléon, plus précisément sur la distribution en énergie des quarks à l'intérieur de celui-ci. L'étude de la variation des fonctions de structure avec le degré d'inélasticité de la diffusion permet de tester la validité de la chromodynamique quantique, la théorie de jauge des interactions fortes
Theoretical studies in nuclear reactions and nuclear structure. Progress report
Energy Technology Data Exchange (ETDEWEB)
1992-05-01
Research in the Maryland Nuclear Theory Group focusses on problems in four basic areas of current relevance. Hadrons in nuclear matter; the structure of hadrons; relativistic nuclear physics and heavy ion dynamics and related processes. The section on hadrons in nuclear matter groups together research items which are aimed at exploring ways in which the properties of nucleons and the mesons which play a role in the nuclear force are modified in the nuclear medium. A very interesting result has been the finding that QCD sum rules supply a new insight into the decrease of the nucleon`s mass in the nuclear medium. The quark condensate, which characterizes spontaneous chiral symmetry breaking of the late QCD vacuum, decreases in nuclear matter and this is responsible for the decrease of the nucleon`s mass. The section on the structure of hadrons contains progress reports on our research aimed at understanding the structure of the nucleon. Widely different approaches are being studied, e.g., lattice gauge calculations, QCD sum rules, quark-meson models with confinement and other hedgehog models. A major goal of this type of research is to develop appropriate links between nuclear physics and QCD. The section on relativistic nuclear physics represents our continuing interest in developing an appropriate relativistic framework for nuclear dynamics. A Lorentz-invariant description of the nuclear force suggests a similar decrease of the nucleon`s mass in the nuclear medium as has been found from QCD sum rules. Work in progress extends previous successes in elastic scattering to inelastic scattering of protons by nuclei. The section on heavy ion dynamics and related processes reports on research into the e{sup +}e{sup {minus}} problem and heavy ion dynamics.
The nucleon- nucleon interaction and symmetries
International Nuclear Information System (INIS)
Van Oers, W.T.H.
1992-11-01
With the advent of the possibility to study nucleon-nucleon scattering at medium energies, its extension to investigate fundamental symmetries was recognized early on. It was precisely the introduction of rotational invariance, parity conservation, time reversal invariance, and isotopic spin conversation that led to the description of the N - N scattering matrix in terms of five complex amplitudes: one set of five for proton-proton scattering and one set of five for neutron-proton scattering, or alternatively, one set for the isotopic spin state ι=ο and the other for the isotopic spin state ι=1. Clearly, if one or more of the above constraints are removed, there are additional amplitudes that need to be considered. To be meaningful, experiment requires observables that are particularly sensitive to the violation of a conservation law or symmetry principle. During the last decade a series of precision experiments has been performed to measure charge- symmetry breaking in n - p elastic scattering (corresponding to isotopic spin non-conservation), and to measure parity violation in p-p scattering. For a particle-anti-particle system,like the pp or λλ system one can raise the question of CP violation in a system other than the neutral kaon system may become possible in the near future through pp →λλ and pp→ ≡ ≡. A description is given of the ongoing efforts to measure charge symmetry breaking, parity violation and CP violation.(author). 42 refs., 6 figs
A lattice calculation of the nucleon's spin-dependent structure function g2 revisited
International Nuclear Information System (INIS)
Goeckeler, M.; Rakow, P.E.L.; Schaefer, A.; Schierholz, G.
2000-11-01
Our previous calculation of the spin-dependent structure function g 2 is revisited. The interest in this structure function is to a great extent motivated by the fact that it receives contributions from twist-two as well as from twist-three operators already in leading order of 1/Q 2 thus offering the unique possibility of directly assessing higher-twist effects. In our former calculation the lattice operators were renormalized perturbatively and mixing with lower-dimensional operators was ignored. However, the twist-three operator which gives rise to the matrix element d 2 mixes non-perturbatively with an operator of lower dimension. Taking this effect into account leads to a considerably smaller value of d 2 , which is consistent with the experimental data. (orig.)
Structure in K--nucleon total cross sections below 1.1 GeV/c
International Nuclear Information System (INIS)
Carroll, A.S.; Chiang, I.; Kycia, T.F.; Li, K.K.; Mazur, P.O.; Michael, D.N.; Mockett, P.M.; Rahm, D.C.; Rubinstein, R.
1976-01-01
Total cross sections of K - p and K - d have been measured between 410 and 1070 MeV/c with high statistical precision. In addition to the well known Λ (1520), Λ (1820), and Σ (1769), we confirmed the presence of the Λ (1692) and the Σ (1670). We have also observed several structures which could be Y* resonances: Λ (1646), Λ (1735), Σ (1583), Σ (1608), Σ (1633), and Σ (1715)
Nucleon spin-flavor structure in the SU(3)-breaking chiral quark model
International Nuclear Information System (INIS)
Song, X.; McCarthy, J.S.; Weber, H.J.
1997-01-01
The SU(3) symmetric chiral quark model, which describes interactions between quarks, gluons, and the Goldstone bosons, explains reasonably well many aspects of the flavor and spin structure of the proton, except for the values of f 3 /f 8 and Δ 3 /Δ 8 . Introducing the SU(3)-breaking effect suggested by the mass difference between the strange and nonstrange quarks, we find that this discrepancy can be removed and better overall agreement obtained. copyright 1997 The American Physical Society
Experimental results on polarized structure functions in deep inelastic lepton-nucleon scattering
International Nuclear Information System (INIS)
Stuart, L.
1994-08-01
A summary is given of experimental results on spin structure functions of the proton g 1 p (x,Q 2 ), deuteron g 1 d (x,Q 2 ), and neutron g 1 n (x,Q 2 ) as measured in deep inelastic scattering of polarized leptons from a polarized target. All results are consistent with the Bjorken sum rule predictions at the Q 2 of each experiment. The data do not support the Ellis-Jaffe sum rule prediction for the proton which implies that the hencity carried by the strange quark may be nonzero and that the net quark helicity is smaller than expected from simple quark models
International Nuclear Information System (INIS)
Babaev, Z.R.; Shchelkachev, A.V.
1991-01-01
Prospects of decribing polarization effects within the framework of quark-parton models (QPM) using a density matrix in order to describe the parton spin states in hadrons are discussed. Such an approach allows one to get rid of contradictions occuring when describing the QPM of reactions of hadrons polarized in perpendicular to the scattering plane in case of applying spin distribution functions. Different model predictions for the observed one- and two-spin correlations in elastic nucleon-nucleon scattering are analyzed. 12 refs., 2 tabs
Spin of two-nucleon system and nucleon-antinucleon combination in the S-state
International Nuclear Information System (INIS)
Baranik, A.T.; El-Naghy, A.; Ramadan, S.
1988-08-01
The spin of the two nucleon combination was studied. It was found that the resultant combination could be treated as a boson with spin one or zero, and the spin one state is more stable than the spin zero state. In the case of nucleon-antinucleon combination the spin zero state is more stable than the spin one state. The approach succeeded in describing the general features of the nucleon-nucleon and nucleon antinucleon scattering and polarization. (author). 3 refs, 4 figs
Low-energy pion double charge exchange and nucleon-nucleon correlations in nuclei
International Nuclear Information System (INIS)
Leitch, M.J.
1989-01-01
Recent measurements of pion double-charge exchange (DCX) at energies 20 to 70 MeV are providing a new means for studying nucleon-nucleon correlations in nuclei. At these energies the nucleus is relatively transparent, allowing simpler theoretical models to be used in interpreting the data and leading to a clearer picture. Also the contribution to DCX of sequential charge-exchange scattering through the intermediate analog state is suppressed near 50 MeV and transitions through non-analog intermediate states become very important. Recent theoretical studies by several groups have shown that while transitions through the analog route involve relatively long nucleon-nucleon distances, those through non-analog intermediate states obtain nearly half their strength from nucleon pairs with less than 1 fermi separation. Thus DCX near 50 MeV is an excellent way to study short-range nucleon-nucleon correlations. 31 refs., 29 figs., 4 tabs
Study of three nucleon mechanisms in the photodisintegration of 3 He
International Nuclear Information System (INIS)
Audit, G.; D'Hose, N.; Isbert, V.; Kerhoas, S.; Laget, J.M.; Mac Cormick, M.; Murphy, L.Y.; Tamas, G.; Panzeri, A.; Pinelli, T.; Ahrens, J.; Annand, J.R.M.; Crawford, R.; Hall, S.J.; Kellie, J.D.; Murphy, L.Y.
1996-01-01
The cross section of the 3 He (γ,pp)n reaction has been measured for the first time over a wide photon energy and proton angular range (200 MeV ≤ Eγ ≤ 800 MeV; 20 deg ≤ v lab p ≤ 160 deg) using the large acceptance detector DAPHNE at the tagged photon facility of the microtron in Mainz. The wide kinematical coverage of the measurement has allowed a detailed analysis of three nucleon absorption mechanisms. A model developed by Laget explains the main characteristics of the data in the Δ resonance region. (authors)
Nucleon Mass from a Covariant Three-Quark Faddeev Equation
International Nuclear Information System (INIS)
Eichmann, G.; Alkofer, R.; Krassnigg, A.; Nicmorus, D.
2010-01-01
We report the first study of the nucleon where the full Poincare-covariant structure of the three-quark amplitude is implemented in the Faddeev equation. We employ an interaction kernel which is consistent with contemporary studies of meson properties and aspects of chiral symmetry and its dynamical breaking, thus yielding a comprehensive approach to hadron physics. The resulting current-mass evolution of the nucleon mass compares well with lattice data and deviates only by ∼5% from the quark-diquark result obtained in previous studies.
Energy Technology Data Exchange (ETDEWEB)
Guillon, B
2005-10-15
In the framework of the Quantum Chromodynamics (QCD), the nucleon is described as being composed of three valence quarks surrounded by a sea of virtual quark-antiquark pairs and gluons. If the role of this virtual sea in the nucleon properties is inferred to be important, this contribution is still poorly understood. In this context, we study the role of the strange quarks in the nucleon since this is the lightest quark flavor of the sea with no valence contribution. We are determining its contribution to the charge and magnetization distributions in the nucleon via parity violation experiments. The measurement is performed by elastically scattering polarized electrons from nucleon target. A world wide program in which the G0 experiment takes place has been performing for a decade. The G0 experiment and the analysis of the results from its forward angles phase are the topics of this thesis. This document presents the physics case of the strangeness content of the nucleon (mass, spin, impulsion). It describes also the formalism related to the electroweak probe and the form factors, and then the principle of parity violating asymmetry measurement. The G0 experimental setup, which was built and installed in the Hall C of the Jefferson Laboratory (Usa), is detailed. This set-up was designed for the measurement of asymmetries of the order of 10{sup -6} with an overall relative uncertainty better than 10 %, over a momentum transfer range 0.1-1 (GeV/c){sup 2}. The various steps of the data analysis are exposed. They have allowed us to start from measured counting rates to reach parity violating physics asymmetries. This required a careful treatment of the various sources of systematical errors which is discussed extensively. Finally the results from the G0 forward angle measurement, its comparison with others experiments and with theoretical models, are presented. They support a non null strange quark contribution. (author)
Dispersion-theoretical analysis of the nucleon electromagnetic form factors
Energy Technology Data Exchange (ETDEWEB)
Belushkin, M.
2007-09-29
The structure of the proton and the neutron is of fundamental importance for the study of the strong interaction dynamics over a wide range of momentum transfers. The nucleon form factors encode information on the internal structure of the nucleon as probed by the electromagnetic interaction, and, to a certain extent, reflect the charge and magnetisation distributions within the proton and the neutron. In this thesis we report on our investigation of the electromagnetic form factors of the proton and the neutron with dispersion relation techniques, including known experimental input on the {pi}{pi}, K anti K and the {rho}{pi} continua and perturbative QCD constraints. We include new experimental data on the pion form factor and the nucleon form factors in our simultaneous analysis of all four form factors in both the space- and the timelike regions for all momentum transfers, and perform Monte- Carlo sampling in order to obtain theoretical uncertainty bands. Finally, we discuss the implications of our results on the pion cloud of the nucleon, the nucleon radii and the Okubo-Zweig-Iizuka rule, and present our results of a model-independent approach to estimating two-photon effects in elastic electron-proton scattering. (orig.)
Dispersion-theoretical analysis of the nucleon electromagnetic form factors
International Nuclear Information System (INIS)
Belushkin, M.
2007-01-01
The structure of the proton and the neutron is of fundamental importance for the study of the strong interaction dynamics over a wide range of momentum transfers. The nucleon form factors encode information on the internal structure of the nucleon as probed by the electromagnetic interaction, and, to a certain extent, reflect the charge and magnetisation distributions within the proton and the neutron. In this thesis we report on our investigation of the electromagnetic form factors of the proton and the neutron with dispersion relation techniques, including known experimental input on the ππ, K anti K and the ρπ continua and perturbative QCD constraints. We include new experimental data on the pion form factor and the nucleon form factors in our simultaneous analysis of all four form factors in both the space- and the timelike regions for all momentum transfers, and perform Monte- Carlo sampling in order to obtain theoretical uncertainty bands. Finally, we discuss the implications of our results on the pion cloud of the nucleon, the nucleon radii and the Okubo-Zweig-Iizuka rule, and present our results of a model-independent approach to estimating two-photon effects in elastic electron-proton scattering. (orig.)
Idier, D.; Farine, M.; Remaud, B.; Sébille, F.
For one decade, several fields in physics as well microscopic as macroscopic benefit from the computational particle-models (astrophysics, electronics, fluids mechanics...). In particular, the nuclear matter offers an interesting challenge as many body problem, owing to the quantal nature of its components and the complexity of the in-medium interaction. Using a model derived from semi-classical Vlasov equation and the projection of the Wigner function on a Gaussian coherent states basis (pseudo-particles), static and dynamical properties of nuclear matter are studied, featuring the growing of bulk instabilities in dilute matter. Using different zero and finite range effective interactions, the effect of the model parameters upon the relation total energy - density - temperature and surface energy of the pseudo-particles fluid is pointed out. The dynamical feature is first based upon a model of the 2-body Uehling-Ulhenbeck collisionnal term. A study of the relaxation of a nucleonic system is performed. At last, the pseudo-particle model is used in order to extract time scale for the growing of density fluctuations. This process is supposed to be a possible way to clusterization during heavy nuclei collisions. Depuis une dizaine d'années, plusieurs domaines de la physique aussi bien microscopiques que macroscopiques bénéficient des modèles à particules pour ordinateurs (astrophysique, électronique, plasmas...). En particulier, la matière nucléaire constitue un objet intéressant pour le problème à N corps ; tant par la nature quantique des nucléons que par la complexité des interactions dans ce milieu. A travers un modèle dérivant de l'équation de Vlasov semi-classique et de la projection de la fonction de Wigner sur une base d'état cohérents gaussiens (les pseudo-particules), on étudie les propriétés statiques et dynamiques de la matière nucléaire dont en particulier le développement des instabilités de volume en milieu dilué. Pour diff
First measurement of the gluon polarisation in the nucleon using D mesons at COMPASS
von Hodenberg, Martin
2005-01-01
The complicated structure of the nucleon has been studied with great success in deep-inelastic lepton-nucleon scattering (DIS) experiments at CERN, SLAC and DESY. As a result the unpolarised structure functions have been measured accurately over a wide kinematic range. From these measurements it is possible to determine the gluon density in the nucleon with good accuracy via a so-called QCD fit. In the case of the spin structure of the nucleon the situation is different. Even after decades of experimental and theoretical efforts it remains to be understood how the spin of the nucleon of 1/2 in units of h-bar is to be accounted for in terms of contributions from the quarks and gluons inside the nucleon. Of particular interest is the question whether the polarised gluon density can explain the unexpected smallness of the quark contribution to the nucleon spin. The QCD fit, which worked well in the unpolarised case, yields a polarised gluon density Delta G which is only badly constrained. This is due to the fact...
International Nuclear Information System (INIS)
Liu Jianye; Xing Yongzhong; Guo Wenjun
2003-01-01
We study the isospin effects of the mean field and two-body collision on the nucleon emissions at the intermediate energy heavy-ion collisions by using an isospin-dependent transport theory. The calculated results show that the nucleon emission number N n depends sensitively on the isospin effect of nucleon-nucleon cross section and weakly on the isospin-dependent mean field for neutron-poor system in higher beam energy region. In particular, the correlation between the medium correction of two-body collision and the momentum-dependent interaction enhances the dependence of nucleon emission number N n on the isospin effect of nucleon-nucleon cross section. On the contrary, the ratio of the neutron-proton ratio of the gas phase to the neutron-proton ratio of the liquid phase, i.e., the degree of isospin fractionation [(N/Z) gas ] b /[(N/Z) liq ] b depends sensitively on the isospin-dependent mean field and weakly on the isospin effect of two-body collision for neutron-rich system in the lower beam energy region. In this case, N n and [(N/Z) gas ] b /[(N/Z) liq ] b are the probes for extracting the information about the isospin-dependent nucleon-nucleon cross section in the medium and the isospin-dependent mean field, respectively
Energy Technology Data Exchange (ETDEWEB)
Close, F.E.
1993-06-01
When the new data on polarised lepton nucleon scattering are compared at the same value of Q{sup 2} and with a common set of assumptions, a consistent picture of the spin content of the nucleon begins to emerge. Higher order effects in O({alpha}{sub s}), higher twist effects, modern data on unpolarised structure functions and an updated value for F/D are all important in analysing the data. The detailed x dependences of the polarisation asymmetry in the valence quark region are shown to confirm 20 year old predictions of the quark model and I argue that these are an important ingredient in decoding the nucleon spin puzzle. (author).
Study of multi nucleon transfer in "9","1"1Li + "2"0"8Pb reactions
International Nuclear Information System (INIS)
Vinodkumar, A.M.
2014-01-01
One of the most active areas of research with radioactive beams is the study of the fusion of weakly bound nuclei, such as the halo nuclei. The central issue is whether the fusion cross section will be enhanced due to the large nuclear size of the halo nucleus or whether fusion-limiting breakup of the weakly bound valence nucleons will lead to a decreased fusion cross section. The fusion of "9","1"1Li with "2"0"8Pb were reported. These measurements were carried out at TRIUMF, Canada. These measurements suggests at above barrier energies, fusion hindrance is taking place in the case of "1"1Li projectile. However, sub barrier fusion measurement need a lower energy measurement. These measurements also suggest need for further measurement of transfer and breakup channels in these reactions. So we suggest a measurement of multi nucleon transfer in the case of "9Li + "2"0"8Pb. Also, these measurement will be able to produce the same nuclei as suggested in the ISOLDE experiment by, where "2"1"2","2"1"4Pb and "2"0"8","2"1"0Hg nuclei for studying the spectroscopy of these nuclei. (author)
The interaction of LAMBDA and nucleon in the LAMBDA hypernuclei
International Nuclear Information System (INIS)
Jin Xingnan
1988-01-01
The interaction of lambda particle and nucleon is discussed from phenomenological point of view. The effective interactions between the lambda particle and the nucleon in the hypernuclei are also presented in this paper. The structure effect of the hypernuclei will make influence to the effective interaction between the lambda particle and the nucleon in the hypernucei. The spin-orbital coupling of lambda particle in the lambda hypernucleus is much smaller than the spin-orbital coupling of nucleon in nucleus
Nucleon spin structure functions
International Nuclear Information System (INIS)
Close, F.E.
1989-01-01
There has been recent excitement arising from the claim by the EMC collaboration that none of the proton's spin is carried by quarks. There are many textbooks, including those written by some members of this audience which assert that the proton's spin is carried by quarks. I will review the history of deep inelastic scattering of polarized leptons from polarized protons, culminating in this most recent dramatic claim. I will show that, for the last decade, data have appeared consistent with predictions of the quark model and highlight what the new and potentially exciting data are. I will conclude with suggestions for the future, and discuss the polarization dependence of inclusive hadron production. 35 refs
Soudan 2 nucleon decay experiment
International Nuclear Information System (INIS)
Thron, J.L.
1986-01-01
The Soudan 2 nucleon decay experiment consists of a 1.1 Kton fine grained iron tracking calorimeter. It has a very isotropic detection structure which along with its flexible trigger will allow detection of multiparticle and neutrino proton decay modes. The detector has now entered its construction stage
The nucleon- nucleon interaction and symmetries
Energy Technology Data Exchange (ETDEWEB)
Van Oers, W T.H.
1992-11-01
With the advent of the possibility to study nucleon-nucleon scattering at medium energies, its extension to investigate fundamental symmetries was recognized early on. It was precisely the introduction of rotational invariance, parity conservation, time reversal invariance, and isotopic spin conversation that led to the description of the N - N scattering matrix in terms of five complex amplitudes: one set of five for proton-proton scattering and one set of five for neutron-proton scattering, or alternatively, one set for the isotopic spin state {iota}={omicron} and the other for the isotopic spin state {iota}=1. Clearly, if one or more of the above constraints are removed, there are additional amplitudes that need to be considered. To be meaningful, experiment requires observables that are particularly sensitive to the violation of a conservation law or symmetry principle. During the last decade a series of precision experiments has been performed to measure charge- symmetry breaking in n - p elastic scattering (corresponding to isotopic spin non-conservation), and to measure parity violation in p-p scattering. For a particle-anti-particle system,like the pp or {lambda}{lambda} system one can raise the question of CP violation in a system other than the neutral kaon system may become possible in the near future through pp {yields}{lambda}{lambda} and pp{yields} {identical_to} {identical_to}. A description is given of the ongoing efforts to measure charge symmetry breaking, parity violation and CP violation.(author). 42 refs., 6 figs.
A study of wrong-sign single muon production in νμ-nucleon interaction
International Nuclear Information System (INIS)
Mishra, S.R.; Auchincloss, P.S.; Blair, R.; Haber, C.; Ruiz, M.; Oltman, E.; Sciulli, F.J.; Shaevitz, M.H.; Smith, W.H.; Merritt, F.S.; Oreglia, M.; Reutens, P.; Coleman, R.; Fisk, H.E.; Lamm, M.J.; Levinthal, D.; Yovanovitch, D.D.; Marsh, W.; Rapidis, P.A.; White, H.B.; Bodek, A.; Borcherding, F.; Giokaris, N.; Lang, K.; Stockdale, I.E.
1989-01-01
We report on a search for ν μ -induced events where the single emerging muon carries lepton number opposite that of the incident neutrino. The rate and kinematic quantities of the candidate events are compared with known backgrounds from anti ν μ -induced charged current interactions and ν-induced interactions that produce dileptons. We derive an upper limit on the rate of wrong-sign single muon production relative to the rate of ν μ charged current interactions to be 1.6x10 -4 for y -4 for y>0.5 (90% CL). These upper limits enable us to constrain exotic sources of wrong-sign muons such as the charm component of the nucleon sea, flavor changing neutral currents and lepton number violating processes. Finally, the rate and kinematic properties of these events are compared with those of the neutrino-induced opposite-sign dimuon events. (orig.)
Silva, António; Urbano, Diana; Kim, Hyun-Chul
2018-02-01
We investigate the flavor decomposition of the electromagnetic form factors of the nucleon, based on the chiral quark-soliton model (χQSM) with symmetry-conserving quantization. We consider the rotational 1/N_c and linear strange-quark mass (ms) corrections. We discuss the results of the flavor-decomposed electromagnetic form factors in comparison with the recent experimental data. In order to see the effects of the strange quark, we compare the SU(3) results with those of SU(2). Finally, we discuss the transverse charge densities for both unpolarized and polarized nucleons. The transverse charge density inside a neutron turns out to be negative in the vicinity of the center within the SU(3) χQSM, which can be explained by the contribution of the strange quark.
Search for few-nucleon correlations in doubly inclusive processes
International Nuclear Information System (INIS)
Strikman, M.I.; Frankfurt, L.L.
1981-01-01
Earlier work showed that the few-nucleon correlation model is useful in calculation of the inclusive production of cumulative particles at high energies. Certain integrated characteristics of doubly inclusive spectra in high-energy processes are investigated and permit direct information to be obtained on the structure of the correlations. Scattering of a high-energy lepton by a light nucleus with production of a cumulative nucleon is studied, with particular attention to the average transverse momentum of the hadrons recorded, and the doubly inclusive cross section averaged over the transverse momenta of the particles emitted in the forward hemisphere. Expressions are obtained for the integrated cross sections
Pionic background for nucleon-nucleon observables
International Nuclear Information System (INIS)
Ballot, J.L.; Robilotta, M.R.
1992-01-01
A method is presented that allows the unambiguous definition of the one pion exchange contribution to nucleon-nucleon scattering observables and then use it to determine those waves where values of phase shifts and mixing parameters may be understood as sums of pionic and non-pionic dynamical effects. This helps the assessment of the explicative power of the various existing phenomenological potentials and may eventually lead to ways of discriminating their effectiveness. (author) 16 refs.; 19 figs.; 2 tabs
International Nuclear Information System (INIS)
Brown, V.R.
1990-01-01
Nucleon-nucleon bremsstrahlung, NNγ, is a fundamental process, which involves the strong and electromagnetic fields acting simultaneously. Since the electromagnetic interaction is well known, NNγ provides a calculable tool for comparing off-energy-shell effects from different two-nucleon potentials compared to experiment and also provides a simple testing ground, which is sensitive to meson-exchange-current contributions that are so important in electronuclear physics. Historically, experimental studies have focused on ppγ, with only a few measurements of npγ. The present workshop was organized primarily to investigate the interest in, the value of, and the feasibility of doing an npγ experiment using the neutron white source at LANL. An increasing amount of US nuclear physics dollars are being spent on electronuclear physics. npγ is a fundamental process with large meson-exchange currents. In the npγ calculations of Brown and Franklin, the meson-exchange contributions increase the cross section by a factor of roughly two and later the angular distribution of the emitted photon dramatically. The details of these calculated effects have never been verified experimentally, but the proper quantum-mechanical inclusion of meson-exchange contributions, using the methods of brown and Franklin, has proved to be essential in understanding the heavy-ion results. The understanding of the importance of such terms is extremely important inelectronuclear processes, such as are presently under investigation or being planned at Bates, SLAC, and CEBAF. Just one example is in the electrodisintegration of the deuteron, where meson-exchange contributions must be included properly before any conclusions about nuclear models, such as QCD versus meson-exchange potentials can be made
p-wave pion production from nucleon-nucleon collisions
International Nuclear Information System (INIS)
Baru, V.; Epelbaum, E.; Haidenbauer, J.; Hanhart, C.; Kudryavtsev, A. E.; Lensky, V.; Meissner, U.-G.
2009-01-01
We investigate p-wave pion production in nucleon-nucleon collisions up to next-to-next-to-leading order in chiral effective field theory. In particular, we show that it is possible to describe simultaneously the p-wave amplitudes in the pn→ppπ - , pp→pnπ + , pp→dπ + channels by adjusting a single low-energy constant accompanying the short-range operator that is available at this order. This study provides a nontrivial test of the applicability of chiral effective field theory to reactions of the type NN→NNπ.
Nucleon-antinucleon interaction
International Nuclear Information System (INIS)
Dover, C.B.
1983-01-01
The current status of our understanding of the low energy nucleon-antinucleon (N anti N) interaction is reviewed. We compare several phenomenological models which fit the available N anti N cross section data. The more realistic of these models employ an annihilation potential W(r) which is spin, isospin and energy dependent. The microscopic origins for these dependences are discussed in terms of quark rearrangement and annihilation processes. It is argued that the study of N anti N annihilation offers a powerful means of studying quark dynamics at short distances. We also discuss how one may try to isolate coherent meson exchange contributions to the medium and long range part of the N anti N potential. These pieces of the N anti N interaction are calculable via the G-parity transformation from a model for the NN potential; their effects are predicted to be seen in N anti N spin observables, to be measured at LEAR. The possible existence of quasi-stable bound states or resonances of the anti N plus one or more nucleons is discussed, with emphasis on few-body systems. 42 references
Study of atmospheric neutrino interactions and search for nucleon decay in Soudan 2
Energy Technology Data Exchange (ETDEWEB)
Leeson, William R. [Tufts Univ., Medford, MA (United States)
1995-12-14
Contained event samples, including 30 single-track muon-like events, 35 single-shower electron-like events, and 34 multiprong events, have been obtained from a 1.0 kiloton-year exposure of the Soudan 2 detector. A sample of 15 multiprong events which are partially contained has also been isolated. Properties of these events are used to examine the verity of the atmospheric neutrino flavor ratio anomaly as reported by the Kamiokande and IMB-3 water Cherenkov experiments. The compatibility of the Soudan data with each of two `new physics` explanations for the anomaly, namely proton decay and neutrino oscillations, is investigated. We examine background processes which have not been explicitly treated by the water Cherenkov detectors. Chapters discuss underground non-accelerator particle physics, the atmospheric neutrino anomaly and its interpretation, the Soudan 2 detector and event selection, reconstruction of neutrino events, rock event contamination in Soudan `quasi-elastic` samples, contained multiprong events in Soudan 2, neutrino flavor composition of the multiprong sample, partially contained events in Soudan 2, nucleon decay in Soudan 2, and a summary and discussion.
Study of atmospheric neutrino interactions and search for nucleon decay in Soudan 2
International Nuclear Information System (INIS)
Leeson, W.R.
1995-01-01
Contained event samples, including 30 single-track muon-like events, 35 single-shower electron-like events, and 34 multiprong events, have been obtained from a 1.0 kiloton-year exposure of the Soudan 2 detector. A sample of 15 multiprong events which are partially contained has also been isolated. Properties of these events are used to examine the verity of the atmospheric neutrino flavor ratio anomaly as reported by the Kamiokande and IMB-3 water Cherenkov experiments. The compatibility of the Soudan data with each of two 'new physics' explanations for the anomaly, namely proton decay and neutrino oscillations, is investigated. We examine background processes which have not been explicitly treated by the water Cherenkov detectors. Chapters discuss underground non-accelerator particle physics, the atmospheric neutrino anomaly and its interpretation, the Soudan 2 detector and event selection, reconstruction of neutrino events, rock event contamination in Soudan 'quasi-elastic' samples, contained multiprong events in Soudan 2, neutrino flavor composition of the multiprong sample, partially contained events in Soudan 2, nucleon decay in Soudan 2, and a summary and discussion. 12 refs., 124 figs., 28 tabs., 7 appendices
Unveiling the strangeness secrets: low-energy kaon-nucleon/nuclei interactions studies at DAΦNE
Directory of Open Access Journals (Sweden)
Curceanu C.
2014-03-01
Full Text Available The DAΦNE electron-positron collider at the Laboratori Nazionali di Frascati of INFN, Italy has made available a unique quality low-energy negatively charged kaons “beam”, which is used to unveil the secrets of the kaon-nucleon/nuclei interactions at low energies by the SIDDHARTA-2 and AMADEUS experiments. SIDDHARTA has already performed unprecedented precision measurements of kaonic atoms, and is being presently upgraded, as SIDDHARTA-2, to approach new frontiers. The AMADEUS experiment plans to perform in the coming years precision measurements on kaon-nuclei interactions at low-energies, to study the possible formation of kaonic nuclei, of the Λ(1405 and of many other processes involving strangeness.
Picture book of nucleon--nucleon scattering: amplitudes, models, double- and triple-spin observables
International Nuclear Information System (INIS)
Field, R.D.; Stevens, P.R.
1975-01-01
A comprehensive study of nucleon-nucleon scattering is presented with particular emphasis on the underlying amplitude structure. The five complex NN amplitudes are determined as a function of energy and momentum transfer from existing pp, anti pp, and np elastic scattering data and np and anti pp CHEX data. Some constraints determined from meson-baryon fits are imposed. The resulting amplitudes are used to make predictions of forthcoming double- and triple-spin measurements, and are also compared with the model amplitudes of Kane and Seidl. In addition, the usefulness of transversity amplitudes in NN scattering is discussed, the status of our present knowledge concerning them is examined, and model predictions of these amplitudes are displayed. The paper is presented in a ''picture book'' form so that the reader can get a good overview of NN scattering by studying the figures and reading the tables and figure captions
International Nuclear Information System (INIS)
Knyaz'kov, O.M.; Kukhtina, I.N.
1989-01-01
The integral characteristics of the potential distribution in nuclei, namely the volume integrals, moments and mean square radii are studied in the framework of the semimicroscopic approach to the interaction of low energy nucleons with nuclei on the base of the exchange nucleon-nucleon correlations and the density dependence of effective forces. The ratio of the normalized multipole moments of potential and matter distributions is investigated. The energy dependence of the integral characteristics is analyzed. 15 refs.; 2 tabs
Chiral perturbation theory with nucleons
International Nuclear Information System (INIS)
Meissner, U.G.
1991-09-01
I review the constraints posed on the interactions of pions, nucleons and photons by the spontaneously broken chiral symmetry of QCD. The framework to perform these calculations, chiral perturbation theory, is briefly discussed in the meson sector. The method is a simultaneous expansion of the Greens functions in powers of external moments and quark masses around the massless case, the chiral limit. To perform this expansion, use is made of a phenomenological Lagrangian which encodes the Ward-identities and pertinent symmetries of QCD. The concept of chiral power counting is introduced. The main part of the lectures of consists in describing how to include baryons (nucleons) and how the chiral structure is modified by the fact that the nucleon mass in the chiral limit does not vanish. Particular emphasis is put on working out applications to show the strengths and limitations of the methods. Some processes which are discussed are threshold photopion production, low-energy compton scattering off nucleons, πN scattering and the σ-term. The implications of the broken chiral symmetry on the nuclear forces are briefly described. An alternative approach, in which the baryons are treated as very heavy fields, is touched upon
Hupin, Guillaume; Quaglioni, Sofia; Navrátil, Petr
2015-05-29
We provide a unified ab initio description of the ^{6}Li ground state and elastic scattering of deuterium (d) on ^{4}He (α) using two- and three-nucleon forces from chiral effective field theory. We analyze the influence of the three-nucleon force and reveal the role of continuum degrees of freedom in shaping the low-lying spectrum of ^{6}Li. The calculation reproduces the empirical binding energy of ^{6}Li, yielding an asymptotic D- to S-state ratio of the ^{6}Li wave function in the d+α configuration of -0.027, in agreement with a determination from ^{6}Li-^{4}He elastic scattering, but overestimates the excitation energy of the 3^{+} state by 350 keV. The bulk of the computed differential cross section is in good agreement with data. These results endorse the application of the present approach to the evaluation of the ^{2}H(α,γ)^{6}Li radiative capture, responsible for the big-bang nucleosynthesis of ^{6}Li.
Where does the nucleon spin come from?
International Nuclear Information System (INIS)
Frois, B.; CEA Centre d'Etudes de Saclay, 91 - Gif-sur-Yvette; Karliner, M.
1994-01-01
This article describes current thinking on exactly how quarks form neutrons and protons, and where nucleon spin is derived. The European Muon Collaboration has recently shown that, contrary to previous thinking, little of the proton spin is carried by quarks, rather that virtual strange quarks in a sea contribute to nucleon spin. Thus a fundamental gap is revealed in our understanding of nucleon structure which is explored in this article, by looking at several ways of accounting for these surprising results using the ''axiaanomaly'' and the idea of gluon polarization. Future experiments already planned, on polarized scattering, should resolve the enigma of proton spin. (UK)
In medium modification of nucleon electromagnetic properties
International Nuclear Information System (INIS)
Khanna, F.; Rakhimov, A.; Yakhsiev, U.
1997-01-01
Since nucleons are composite objects, their internal structure is expected to be changed by nuclear environment. A Skyrme like Lagrangian is proposed to consider such effects, namely the modification of electromagnetic (EM) properties of the nucleon. The static properties and EM form factors were obtained. It was shown that the charge radius of the nucleon increased in medium and the mass and axial coupling constant are reduced. The enhancement of magnetic moment of proton is smaller than that obtained in non-topological soliton model.Obtained results may be useful in electron nucleus scattering analysis.(A.A.D.)
Energy Technology Data Exchange (ETDEWEB)
Dobretsov, Yu; Dolgoshein, B; Kirillov-Ugryumov, V
1980-12-01
The properties and formation are described of ..mu..-nucleon atoms, the Larmor method of muon spin precession is discussed and the experimental confirmation of the existence of ..mu..-nucleon atoms is shown. The prospects of their use are indicated.
International Nuclear Information System (INIS)
Dobretsov, Yu.; Dolgoshejn, B.; Kirillov-Ugryumov, V.
1980-01-01
The properties and formation are described of μ-nucleon atoms, the Larmor method of muon spin precession is discussed and the experimental confirmation of the existence of μ-nucleon atoms is shown. The prospects of their use are indicated. (J.P.)
Nucleon-nucleon scattering phase shifts
International Nuclear Information System (INIS)
Bryan, R.
1978-01-01
Here are presented 0 to 800 MeV nucleon-nucleon elastic and inelastic phase parameters derived by several groups: Arndt and Roper; Hoshizaki; Bugg; Bystricky, Lechanoine, and Lehar; and Bryan, Clark, and VerWest. Resonant-like behavior appears in the 1 D 2 and 3 F 3 states above the inelastic threshold in Hoshizaki's analysis but not in Arndt and Roper's. The np data are inadequate to permit determination of the I = O phase parameters above 600 MeV. 27 references
Three-nucleon scattering by using chiral perturbation theory potential
International Nuclear Information System (INIS)
Kamata, Hiroyuki
2003-01-01
Three-nucleon scattering problems are studied by using two-nucleon and three-nucleon potentials derived from chiral perturbation theory. The three-nucleon term is shown to appear in the effective potential of the rank of next-to-next-to-leading order (NNLO). New three-nucleon forces are taken into consideration in addition to the conventional Fujita-Miyazawa (FM) type three-nucleon potential. Two-nucleon potential of the chiral perturbation theory is as precise as the conventional ones in low energy region. The FM type three-nucleon force which explains Sagara discrepancy in high energy region is introduced automatically. Concerning the Ay puzzle, the results seems to behave as if the puzzle has been solved at the level of NLO, but at the NNLO (without three-nucleon force) level the result is similar to the cases of conventional potential indicating the need of three-nucleon force. In contrast to the FM type three-nucleon force, five free parameters exist in the new D and E type three-nucleon forces introduced by the NNLO, but they are reduced to two independent parameters by antisymmetrization, which are found to be sensitive to the coupling energy of tritons and to the nd scattering length (spin doublet state). Parameters determined from them cannot give satisfactory answer to the A y puzzle. It seems, however, too hasty to conclude that A y puzzle cannot be solved by the chiral perturbation theory. (S. Funahashi)
Kistryn, St.; Stephan, E.; Kalantar-Nayestanaki, N.; Biegun, A.; Bodek, K.; Ciepal, I.; Deltuva, A.; Epelbaum, E.; Fonseca, A. C.; Gloeckle, W.; Golak, J.; Kamada, H.; Kis, M.; Klos, B.; Kozela, A.; Nogga, A.; Mahjour-Shafiei, M.; Micherdzinska, A.; Sauer, P. U.; Skibinski, R.; Sworst, R.; Witala, H.; Zejma, J.; Zipper, W.
2008-01-01
The three-nucleon system is the simplest non-trivial testing ground in which the quality of modern nucleon-nucleon interaction models, as well as additional dynamical ingredients referred to as three-nucleon forces, can be probed quantitatively by means of a rigorous technique of solving the Faddeev
Electromagnetic and axial-vector form factors of the quarks and nucleon
Dahiya, Harleen; Randhawa, Monika
2017-11-01
In light of the improved precision of the experimental measurements and enormous theoretical progress, the nucleon form factors have been evaluated with an aim to understand how the static properties and dynamical behavior of nucleons emerge from the theory of strong interactions between quarks. We have analyzed the vector and axial-vector nucleon form factors (GE,Mp,n(Q2) and GAp,n(Q2)) using the spin observables in the chiral constituent quark model (χCQM) which has made a significant contribution to the unraveling of the internal structure of the nucleon in the nonperturbative regime. We have also presented a comprehensive analysis of the flavor decomposition of the form factors (GEq(Q2), GMq(Q2) and GAq(Q2) for q = u,d,s) within the framework of χCQM with emphasis on the extraction of the strangeness form factors which are fundamental to determine the spin structure and test the chiral symmetry breaking effects in the nucleon. The Q2 dependence of the vector and axial-vector form factors of the nucleon has been studied using the conventional dipole form of parametrization. The results are in agreement with the available experimental data.
International Nuclear Information System (INIS)
Eletsky, V.L.
1991-01-01
The problem of temperature dependence of nucleon mass is addressed by considering a retarded correlator of two currents with quantum numbers of a nucleon at finite temperature T π in the chiral limit. It is shown that at Euclidean momenta the leading one-loop corrections arise from direct interaction of thermal pions with the currents. A dispersive representation for the correlator shows that this interaction smears the nucleon pole over frequency interval with width ∼ T. This interaction does not change the exponential fall-off of the correlator in Euclidean space but gives an O(T 2 /F π 2 ) contribution to the pre-exponential factor. 11 refs. (author)
Energy Technology Data Exchange (ETDEWEB)
EN YO,H.; SAITO,N.; SHIBATA,T.A.; YAZAKI,K.; BUNCE,G.
2002-03-29
The RIKEN School on ''Quark-Gluon Structure of the Nucleon and QCD'' was held from March 29th through 31st at the Nishina Memorial Hall of RIKEN, Wako, Saitama, Japan, sponsored by RIKEN (the Institute of Physical and Chemical Research). The school was the second of a new series with a broad perspective of hadron and nuclear physics. The purpose of the school was to offer young researchers an opportunity to learn theoretical aspects of hadron physics based on QCD and related experimental programs being or to be carried out by Japanese groups. We had 3 theoretical courses, each consisting of 3 one-hour lectures, and 6 experimental courses, each consisting of a one-hour lecture.
Study of heavy ion fusion reaction of 58Ni + 24Mg at 11 MeV/nucleon
International Nuclear Information System (INIS)
Shea, J.Y.
1991-01-01
This thesis presents a study of the heavy ion fusion reaction in which a 58 Ni projectile bombards a 24 Mg target at 11 MeV/nucleon. The incident projectile energy was purposefully chosen so as the system studied to be at the onset of the more complex and interesting phenomenon of incomplete fusion. The physics motivation is to probe the central collision of a heavy, energetic, and asymmetric system by means of both inclusive and exclusive experimental measurements. The experiment was performed at HHIRF (Holifield Heavy Ion Research Facility) by using the coupled accelerators at Oak Ridge National Laboratory. The reaction products were measured by the new open-quotes HILI-Ringclose quotes large solid angle detector system at Oak Ridge National Laboratory. The thesis discusses the physics motivation and the systematics of heavy ion fusion reactions. Details of the design and construction of a new CsI(T1) Ring detector is given. Since this is the first such study performed on the Heavy Ion Light Ion (HILI) detector, an extensive discussion of the calibration procedures and the data reduction methods are given. The fusion reaction data were analyzed in both inclusive and exclusive modes with the result that a valuable new perspective on the deconvolution of the reaction mechanism has been achieved
Radical conservatism and nucleon decay
International Nuclear Information System (INIS)
Wilczek, Frank
2000-01-01
Unification of couplings, observation of neutrino masses in the expected range, and several other considerations confirm central implications of straightforward gauge unification based on SO(10) or a close relative and incorporating low-energy supersymmetry. The remaining outstanding consequence of this circle of ideas, yet to be observed, is nucleon instability. Clearly, we should aspire to be as specific as possible regarding the rate and form of such instability. I argue that not only esthetics, but also the observed precision of unification of couplings, favors an economical symmetry-breaking (Higgs) structure. Assuming this, one can exploit its constraints to build reasonably economical, overconstrained yet phenomenologically viable models of quark and lepton masses. Putting it all together, one arrives at reasonably concrete, hopeful expectations regarding nucleon decay. These expectations are neither ruled out by existing experiments, nor hopelessly inaccessible. Furthermore, the branching fractions can discriminate among different possibilities for physics at the unification scale
Correlation between observable of four nucleon system in two-body model
International Nuclear Information System (INIS)
Barlette, V.E.
1988-01-01
The four nucleon system with effective nucleon-trinucleon interaction for s waves in states of spin Y = 0 and isospin Y = 0, is studied. The correlations between four nucleon systemn and scattering wavelength, binding energies and, coulomb energy of four nucleons are investigated by N/D method considering only the excited state. (M.C.K.)
Induced hyperon-nucleon-nucleon interactions and the hyperon puzzle
Energy Technology Data Exchange (ETDEWEB)
Wirth, Roland; Roth, Robert [Institut fuer Kernphysik, TU Darmstadt (Germany)
2016-07-01
There is a strong experimental and theoretical interest in determining the structure of hypernuclei and the effect of strangeness in strongly interacting many-body systems. Recently, we presented the first calculations of hypernuclei in the p shell from first principles. However, these calculations showed either slow convergence with respect to model-space size or, when the hyperon-nucleon potential is transformed via the Similarity Renormalization Group, strong induced three-body terms. By including these induced hyperon-nucleon-nucleon (YNN) terms explicitly, we get precise binding and excitation energies. We present first results for p-shell hypernuclei and discuss the origin of the YNN terms, which are mainly driven by the evolution of the Λ-Σ conversion terms. We find that they are tightly connected to the hyperon puzzle, a long-standing issue where the appearance of hyperons in models of neutron star matter lowers the predicted maximum neutron star mass below the bound set by the heaviest observed objects.
Four-nucleon system with Δ-isobar excitation
International Nuclear Information System (INIS)
Deltuva, A.; Fonseca, A.C.; Sauer, P.U.
2008-01-01
The four-nucleon bound state and scattering below three-body breakup threshold are described based on the realistic coupled-channel potential CD Bonn+Δ which allows the excitation of a single nucleon to a Δ isobar. The Coulomb repulsion between protons is included. In the four-nucleon system the two-baryon coupled-channel potential yields effective two-, three- and four-nucleon forces, mediated by the Δ isobar and consistent with each other and with the underlying two-nucleon force. The effect of the four-nucleon force on the studied observables is much smaller than the effect of the three-nucleon force. The inclusion of the Δ isobar is unable to resolve the existing discrepancies with the experimental data
International Nuclear Information System (INIS)
Scott, D.K.
1978-03-01
Some initial experiments in the intermediate energy region between 10 and 200 MeV/nucleon, which is largely unexplored and poorly understood is considered as regards some initial experiments in this energy region. Included are the emission of complex fragments, localization in heavy ion reactions, coincidence experiments between light and heavy fragments, and the emission of light particles in heavy ion collisions. Some initial results in the region between 20 and 100 MeV/nucleon are presented. 41 references
Two-current nucleon observables in Skyrme model
International Nuclear Information System (INIS)
Chemtob, M.
1987-01-01
Three independent two-current nucleon observables are studied within the two-flavor Skyrme model for the πρω system. The effecive lagrangian is that of the gauged chiral symmetry approach, consistent with the vector meson dominance, in the linear realization (for the vector mesons) of the global chiral symmetry. The first application deals with the nucleon electric polarizability and magnetic susceptibility. Both seagull and dispersive contributions appear and we evaluate the latter in terms of the sums over intermediate states. The results are compared with existing quark model results as well as with empirical determinations. The second application concerns the zero-point quantum correction to the skyrmion mass. We apply a chiral perturbation theory approach to evaluate the ion loop contribution to the nucleon mass. The comparison with the conventional Skyrme model result reveals an important sensitivity to the stabilization mechanism. The third application is to lepton-nucleon deep inelastic scattering in the Bjorken scaling limit. The structure tensor is calculated in terms of the representation as a commutator product of two currents. Numerical results are presented for the scaling function F 2 (x). An essential use is made of the large N c (number of colors) approximation in all these applications. In the numerical computations we ignore the distortion effects, relative to the free plane wave limit, on the pionic fluctuations. (orig.)
Nucleon quark distributions in a covariant quark-diquark model
Energy Technology Data Exchange (ETDEWEB)
Cloet, I.C. [Special Research Centre for the Subatomic Structure of Matter and Department of Physics and Mathematical Physics, University of Adelaide, SA 5005 (Australia) and Jefferson Lab, 12000 Jefferson Avenue, Newport News, VA 23606 (United States)]. E-mail: icloet@physics.adelaide.edu.au; Bentz, W. [Department of Physics, School of Science, Tokai University, Hiratsuka-shi, Kanagawa 259-1292 (Japan)]. E-mail: bentz@keyaki.cc.u-tokai.ac.jp; Thomas, A.W. [Jefferson Lab, 12000 Jefferson Avenue, Newport News, VA 23606 (United States)]. E-mail: awthomas@jlab.org
2005-08-18
Spin-dependent and spin-independent quark light-cone momentum distributions and structure functions are calculated for the nucleon. We utilize a modified Nambu-Jona-Lasinio model in which confinement is simulated by eliminating unphysical thresholds for nucleon decay into quarks. The nucleon bound state is obtained by solving the Faddeev equation in the quark-diquark approximation, where both scalar and axial-vector diquark channels are included. We find excellent agreement between our model results and empirical data.
Contribution of nucleonic degrees of freedom to the EMC effect
International Nuclear Information System (INIS)
Anisovich, V.V.; Sarantsev, A.V.; Starodubskii, V.E.
1987-01-01
The dispersion-integration method has been used to calculate the contribution of nucleonic degrees of freedom to the EMC effect. The structure of the amplitude of deep inelastic scattering is discussed for a nucleus with spin one half. The question of the functional form of the structure function of a nucleon off the mass shell is discussed
International Nuclear Information System (INIS)
Turumov, Eh.
2001-03-01
Processes of nucleons, γ-quanta and neutral strange particles in pp- and pn-interactions at 300 GeV in 4π-geometry were studied by the use of neon-hydrogen bubble chamber. The average multiplicity of γ-quanta, fast neutrons, K 0 s -mesons and λ 0 ( λ 0 bar)-hyperons were defined and their energy spectra were analyzed. Experimental results were compared with Lund and dual parton model predictions. (author)
Collective properties of nucleons in the abnormal-parity states
International Nuclear Information System (INIS)
Bhatt, K. H.; Kahane, S.; Raman, S.
2000-01-01
In the first part of this work, we study the quadrupole collective properties of N a =2, 4, 6, and 8 nucleons occupying the abnormal-parity intruder single-particle states with high angular momenta j a =(9/2), (11/2), (13/2), and (15/2). This study is essential for a detailed understanding of the contribution made by these nucleons to the quadrupole collectivity of the yrast states of deformed nuclei. The properties studied include (i) the distribution of the angular momenta J contained in the intrinsic state of N a particles in the |j a k a > states, (ii) the relationship between the quadrupole moment Q 0 (j a ,N a ) of such an intrinsic state and the maximum angular momentum J max contained in it, (iii) the complete set of reduced quadrupole matrix elements (J ' ||Q||J) for transitions between all the states |J> and |J ' > projected from the intrinsic state, (iv) the B(E2:J→J-2) values, (v) the transition moments Q t (J), and (vi) the spectroscopic quadrupole moment Q(J). We compare these properties with similar properties of an intrinsic state having SU(3) symmetry which contains the same set of angular momenta as contained in the intrinsic state of a particular number of nucleons in a specific j a configuration. In the second part, we use the input from the first part to study the collective properties of the coupled system of protons and neutrons in abnormal-parity states. We show that the SU(3)-like features observed for the individual groups of abnormal-parity nucleons become stronger for the coupled system. Finally, in the third part, we consider the yrast bands of well-deformed nuclei projected from their Nilsson intrinsic states of valence nucleons in a major shell. We specify the structure of the wave function of each projected yrast state |J> in terms of the nucleons in both normal- and abnormal-parity states. These wave functions can be used to determine the individual contributions of the nucleons in normal- and abnormal-parity states to any
Coloured quarks and the short range nucleon nucleon interaction
International Nuclear Information System (INIS)
Ribeiro, J.E.F.T.
1978-02-01
The strong repulsive core that exists in the scattering of two nucleons is studied with the help of the Resonating Group Method (R.G.M.), where the Pauli Principle of fermion antisymmetry is taken explicitly into account. The quark-quark potential is described in terms of colour (long range confining potential) and hyperfine interactions alone. The mass differences N*(1688) - N(938) and Δ(1236) = N(938) are used to fit the two free constants of the assumed quark potential. It is shown that although the Pauli Principle does not exclude ab initio a S state of two nucleons, a strong repulsive potential is, nevertheless, found. Two cases are studied in detail: The Isosinglet case (neutron proton scattering) and the Isotriplet one (identical nucleons). Phase shifts for each case are presented and the obtained relative wave functions are found consistent with the observed experimental features for the repulsive potential. Some formal results concerning an important class of operators characteristic of the present R.G.M. calculations are also presented. (author)
Nucleon parton distributions in chiral perturbation theory
International Nuclear Information System (INIS)
Moiseeva, Alena
2013-01-01
Properties of the chiral expansion of nucleon light-cone operators have been studied. In the framework of the chiral perturbation theory we have demonstrated that convergency of the chiral expansion of nucleon parton distributions strongly depends on the value of the variable x. Three regions in x with essentially different analytical properties of the resulting chiral expansion for parton distributions were found. For each of the regions we have elaborated special power counting rules corresponding to the partial resummation of the chiral series. The nonlocal effective operators for the vector and the axial nucleon parton distributions have been constructed at the zeroth and the first chiral order. Using the derived nonlocal operators and the derived power counting rules we have obtained the second order expressions for the nucleon GPDs H(x,ξ,Δ 2 ), H(x,ξ,Δ 2 ),E(x,ξ,Δ 2 ) valid in the region x>or similar a 2 χ .
Three nucleon interaction and nuclear composition
International Nuclear Information System (INIS)
Pandharipande, V.R.
1983-01-01
The author discusses results of some of the calculations carried out by J. Carlson, I. Lagaris, J. Lomnitz-Adler, R.A. Smith, R.B. Wiringa and himself to study the three nucleon interaction. The group has attempted to calculate the wavefunctions and binding energies of 3 H, 3 He, 4 He and nuclear matter, with the variational method, from a nonrelativistic Hamiltonian. Only nucleon degrees of freedom are retained in this Hamiltonian; the effects of other degrees of freedom are implicit in the two and three nucleon potentials. The author discusses further the calculations carried out, in collaboration with B. Friman, and R.B. Wiringa, to study the composition of nuclei. Nucleons interact by many processes including exchange of pions with or without excitation to isobar (Δ) states. Thus the nucleus contains pions being exchanged, and some nucleons in the Δ state. The group attempts to calculate the number and momentum distribution of these exchanged pions, and the fraction of time a nucleon in the nucleus is in the Δ state. 21 references, 4 figures
Toy model for pion production in nucleon-nucleon collisions
International Nuclear Information System (INIS)
Hanhart, C.; Miller, G. A.; Myhrer, F.; Sato, T.; Kolck, U. van
2001-01-01
We develop a toy model for pion production in nucleon-nucleon collisions that reproduces some of the features of the chiral Lagrangian calculations. We calculate the production amplitude and examine some common approximations
Energy Technology Data Exchange (ETDEWEB)
Mustapha, Brahim [Inst. de Physique Nucleaire, Paris-11 Univ., 91 - Orsay (France)
1999-09-09
As a neutron source, the spallation reaction is of importance for different fields of research and for a possible hybrid reactor. The study of spallation residues, their cross sections and their energetic properties, is necessary for such applications and for a better understanding of this process. Several studies of spallation products were done using spectroscopic methods. Only radioactive nuclides were detected. Aiming at a more precise measurement, covering the whole range of spallation residues, this study was done using the reverse kinematics method. A liquid hydrogen target was irradiated by an 800 MeV/nucleon gold beam. The produced nuclei were detected in flight before any radioactive decay with about 10% precision. Independent cross section were then obtained. Velocity distributions were completely reconstructed. In their present forms, the theoretical calculations based upon the two-step model, 'intra-nuclear cascade' + 'evaporation', are unable to reproduce the whole set of experimental aspects. An inter-comparison using different INC/EVA combinations permitted to identify the more significant points in these calculations. The important behaviour of this codes were examined. Due to compensation effects between both steps, cascade and evaporation, this study did not lead to a definite conclusion. (author)
A novel nuclear dependence of nucleon–nucleon short-range correlations
Energy Technology Data Exchange (ETDEWEB)
Dai, Hongkai [College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070 (China); Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Wang, Rong, E-mail: rwang@impcas.ac.cn [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Lanzhou University, Lanzhou 730000 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Huang, Yin [Lanzhou University, Lanzhou 730000 (China); Chen, Xurong [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China)
2017-06-10
A linear correlation is found between the magnitude of nucleon–nucleon short-range correlations and the nuclear binding energy per nucleon with pairing energy removed. By using this relation, the strengths of nucleon–nucleon short-range correlations of some unmeasured nuclei are predicted. Discussions on nucleon–nucleon pairing energy and nucleon–nucleon short-range correlations are made. The found nuclear dependence of nucleon–nucleon short-range correlations may shed some lights on the short-range structure of nucleus.
Pion-nucleon vertex function with one nucleon off shell
International Nuclear Information System (INIS)
Mizutani, T.; Rochus, P.
1979-01-01
The pion-nucleon vertex function with an off-mass-shell nucleon is obtained through sideways dispersion relations with the P 11 and S 11 pion-nucleon phase shifts as only input. Contrary to the recent calculation of Nutt and Shakin, we find that the proper and improper vertex functions behave quite differently, indicating the importance of the nucleon propagator dressing. In particular the proper vertex function is found to have two poles in the unphysical region
A new form for the nucleon-nucleon potential
International Nuclear Information System (INIS)
Agarwal, B.K.
1976-01-01
The form of the internucleon force is considered. It is assumed that the nucleon-nucleon potential depends, in general, both on the distance ν and the angle theta. It is also assumed that the potential V(ν,ω) admits an analytic continuation into the complex ω-plane so that when ω=costheta is real it denotes the direction in which the potential is being determined. The analysis leads to a new parametryzation of the nucleon-nucleon potential
Studying the ωN elastic and inelastic cross section with nucleons
International Nuclear Information System (INIS)
Golubeva, Ye.S.; Kondratyuk, L.A.; Buescher, M.
2000-01-01
We explore the possibility to measure the elastic and inelastic ωN cross section in p+d→d+ω+p sp and p+A reactions. Our studies indicate that the elastic scattering cross sections can be determined for ω momenta above 1 GeV/c in p+d reactions by gating on high proton spectator momenta whereas the ωN absorption cross section down to low relative ω momenta is most effectively studied in p+A reactions at beam energies 2.0-2.7 GeV. (orig.)
Parity violation in the nucleon-nucleon interaction
International Nuclear Information System (INIS)
Haxton, W.C.
1989-01-01
I discuss the present status of our understanding of parity nonconservation (PNC) in the nucleon-nucleon interaction, and some of the difficulties inherent in nuclear tests of PNC. I also discuss the nucleon/nuclear anapole moment, the parity violating coupling of the photon, and its relation to the PNC NN interaction. 13 refs., 1 fig., 2 tabs
Theoretical studies in nuclear reactions and nuclear structure
Energy Technology Data Exchange (ETDEWEB)
1992-05-01
Research in the Maryland Nuclear Theory Group focusses on problems in four basic areas of current relevance. Hadrons in nuclear matter; the structure of hadrons; relativistic nuclear physics and heavy ion dynamics and related processes. The section on hadrons in nuclear matter groups together research items which are aimed at exploring ways in which the properties of nucleons and the mesons which play a role in the nuclear force are modified in the nuclear medium. A very interesting result has been the finding that QCD sum rules supply a new insight into the decrease of the nucleon's mass in the nuclear medium. The quark condensate, which characterizes spontaneous chiral symmetry breaking of the late QCD vacuum, decreases in nuclear matter and this is responsible for the decrease of the nucleon's mass. The section on the structure of hadrons contains progress reports on our research aimed at understanding the structure of the nucleon. Widely different approaches are being studied, e.g., lattice gauge calculations, QCD sum rules, quark-meson models with confinement and other hedgehog models. A major goal of this type of research is to develop appropriate links between nuclear physics and QCD. The section on relativistic nuclear physics represents our continuing interest in developing an appropriate relativistic framework for nuclear dynamics. A Lorentz-invariant description of the nuclear force suggests a similar decrease of the nucleon's mass in the nuclear medium as has been found from QCD sum rules. Work in progress extends previous successes in elastic scattering to inelastic scattering of protons by nuclei. The section on heavy ion dynamics and related processes reports on research into the e{sup +}e{sup {minus}} problem and heavy ion dynamics.
Theoretical studies in nuclear reactions and nuclear structure
International Nuclear Information System (INIS)
1992-05-01
Research in the Maryland Nuclear Theory Group focusses on problems in four basic areas of current relevance. Hadrons in nuclear matter; the structure of hadrons; relativistic nuclear physics and heavy ion dynamics and related processes. The section on hadrons in nuclear matter groups together research items which are aimed at exploring ways in which the properties of nucleons and the mesons which play a role in the nuclear force are modified in the nuclear medium. A very interesting result has been the finding that QCD sum rules supply a new insight into the decrease of the nucleon's mass in the nuclear medium. The quark condensate, which characterizes spontaneous chiral symmetry breaking of the late QCD vacuum, decreases in nuclear matter and this is responsible for the decrease of the nucleon's mass. The section on the structure of hadrons contains progress reports on our research aimed at understanding the structure of the nucleon. Widely different approaches are being studied, e.g., lattice gauge calculations, QCD sum rules, quark-meson models with confinement and other hedgehog models. A major goal of this type of research is to develop appropriate links between nuclear physics and QCD. The section on relativistic nuclear physics represents our continuing interest in developing an appropriate relativistic framework for nuclear dynamics. A Lorentz-invariant description of the nuclear force suggests a similar decrease of the nucleon's mass in the nuclear medium as has been found from QCD sum rules. Work in progress extends previous successes in elastic scattering to inelastic scattering of protons by nuclei. The section on heavy ion dynamics and related processes reports on research into the e + e - problem and heavy ion dynamics
The study of multichannel processes in a six-nucleon system
International Nuclear Information System (INIS)
Rybkin, I.Yu.; Vasilevskij, V.S.; Velazques, H.
1987-01-01
Within the framework of the two-channel approximation of the resonating group method with binary channels 3+3 and 4+2 the reactions t(t,α)2n and 3 He( 3 He,α)2p in the low-energy region are studied. The reactions are shown to proceed mainly through the head-on collision of two 3 H or 3 He nuclei. The obtained theoretical energy dependences of the reaction cross-sections and astrophysical S-factors are in satisfactory agreement with the available experimental data. 14 refs.; 4 figs
Study of one-nucleon transfer reactions with polarized deuterons of 20 MeV
International Nuclear Information System (INIS)
Seichert, N.
1983-01-01
In this thesis the results of the study of (d vector,p), (d vector,t), and (d vector, 3 He) reactions at Esub(d)approx.=20 MeV on the target nuclei 16 O, 18 O, 28 Si, 36 Ar, 40 Ca, 48 Ca, 54 Cr, 65 Cu, 90 Zr, 144 Sm, and 208 Pb in the framework of a DWBA analysis are presented. The collection of the results of the analysis over this wide mass range shall permit a survey, how well the conventional DWBA describes the measured angular distributions of dsigma/dΩ(theta) and iT 11 (theta). Furthermore in justified cases the contribution of higher order processes (inelastic transfer) are studied by means of a CCBA analysis. The spectroscopical possibilities given by the measurement of the analyzing power iT 11 (theta) are presented in detail on the example of the reaction 144 Sm (d vector,p) 145 Sm. The analysis of the tensor analyzing power T 21 (theta) in the framework of a finite range DWBA in the last part of the thesis permits quantitative statements about the D state amplitude in the relative wave function of the deuteron, the triton, and of 3 He. (orig./HSI) [de
Medium corrections to nucleon-nucleon interactions
International Nuclear Information System (INIS)
Dortmans, P.J.; Amos, K.
1990-01-01
The Bethe-Goldstone equations have been solved for both negative and positive energies to specify two nucleon G-matrices fully off of the energy shell. Medium correction effects of Pauli blocking and of the auxiliary potential are included in infinite matter systems characterized by fermi momenta in the range 0.5 fm -1 to 1.8 fm -1 . The Paris interaction is used as the starting potential in most calculations. Medium corrections are shown to be very significant over a large range of energies and densities. On the energy shell values of G-matrices vary markedly from those of free two nucleon (NN) t-matrices which have been solved by way of the Lippmann-Schwinger equation. Off of the energy shell, however, the free and medium corrected Kowalski-Noyes f-ratios rate are quite similar suggesting that a useful model of medium corrected G-matrices are appropriately scaled free NN t-matrices. The choice of auxiliary potential form is also shown to play a decisive role in the negative energy regime, especially when the saturation of nuclear matter is considered. 30 refs., 7 tabs., 7 figs
Nucleon strangeness: present and future
Sapozhnikov, M G
2010-01-01
A review of experimental results for the measurement of the strange quark distributions in the nucleon, is given. Contributions of the strange quarks to the nucleon mass, electromagnetic form factors and spin, are discussed.
Block, Martin M
2002-01-01
Using an eikonal structure for the scattering amplitude, factorization theorems for nucleon-nucleon, gamma p and gamma gamma scattering at high energies have been derived, using only some very general assumptions. Using a QCD-inspired eikonal analysis of nucleon-nucleon scattering, we present here experimental confirmation for factorization of cross sections, nuclear slope parameters B and rho -values (ratio of real to imaginary portion of forward scattering amplitudes), showing that: 1) the three factorization theorems of Block and Kaidalov [2000] hold, 2) the additive quark model holds to approximately=1%, and 3) vector dominance holds to better than approximately=4%. Predictions for the total cross section, elastic cross section and other forward scattering parameters at the LHC (14 TeV) are given. (12 refs).
Interacting boson model with surface delta interaction between nucleons
International Nuclear Information System (INIS)
Druce, C.; Moszkowski, S.A.
1984-01-01
The surface delta interaction is used as an effective nucleon-nucleon interaction to investigate the structure and interaction of the bosons in the interacting boson model. The authors have obtained analytical expressions for the coefficients of a multipole expansion of the neutron-boson proton-boson interaction for the case of degenerate orbits
Nucleon color oscillations in nuclei and the EMC-effect
International Nuclear Information System (INIS)
Smirnov, A.Yu.
1984-01-01
The problem of the EMC-effect is discussed. It is shown that the existence of long-range six-quark clusters in nuclei allows to understand why the nucleon structure function in a nucleus differs from that of a free nucleon
International Nuclear Information System (INIS)
Chbihi, A.; Galin; Guerreau, D.; Lewitowicz, M.; Morjean, M.; Pouthas, J.; Piasecki, E.; Kordyasz, A.; Iwanicki, J.; Jastrzebski, J.; Pienkowski, L.; Crema, E.; Gatty, B.; Jacquet, D.; Muchorowska, M.
1994-01-01
Nuclear reaction mechanisms for system characterized by very different asymmetries (U+C, Si, Ni, Au) have been investigated at 24.3 MeV/nucleon, using as observables both the fission products and the neutron multiplicity. It is clearly observed that the fusion process-whatever its completeness- can only occur with rather light target nuclei, indicating the persistence of potential energy effects much above the interaction barrier. (authors). 22 refs., 1 fig
The quark model and the nature of the repulsive core of the nucleon-nucleon interaction
International Nuclear Information System (INIS)
Faessler, A.; Fernandez, F.; Luebeck, G.; Shimizu, K.
1982-01-01
The nature of the repulsive core of the nucleon-nucleon is studied in the quark model. The resonating group equation for nucleon-nucleon scattering is solved with the colour Fermi-Breit interaction including further a linear or quadratic confinement potential. It is shown that the colour magnetic interaction which is adjusted to the Δ-nucleon mass splitting favours the orbital symmetry and disfavours the completely symmetric orbital state. For the important orbital symmetry the relative S wave function between the two nucleons has to have a node. In the framework of the resonating group including the NN, ΔΔ and the hidden colour (CC) channels it is shown that this node produces a 3 S and 1 S phase shift which is identical to a hard core phase shift with a hard core radius γ 0 between 0.3 and 0.6 fm depending on the assumed root mean square radius of the quark part of the nucleon. (orig./HSI)
Influence of nucleon density distribution in nucleon emission probability
International Nuclear Information System (INIS)
Paul, Sabyasachi; Nandy, Maitreyee; Mohanty, A.K.; Sarkar, P.K.; Gambhir, Y.K.
2014-01-01
Different decay modes are observed in heavy ion reactions at low to intermediate energies. It is interesting to study total neutron emission in these reactions which may be contributed by all/many of these decay modes. In an attempt to understand the importance of mean field and the entrance channel angular momentum, we study their influence on the emission probability of nucleons in heavy ion reactions in this work. This study owes its significance to the fact that once population of different states are determined, emission probability governs the double differential neutron yield
Energy Technology Data Exchange (ETDEWEB)
Nasseripour, Rakhsha; Raue, Brian; Ambrozewicz, Pawel; Carman, Daniel; Amaryan, Moscov; Amaryan, Moskov; Anciant, Eric; Anghinolfi, Marco; Asavapibhop, Burin; Asryan, Gegham; Audit, Gerard; Auger, Thierry; Avagyan, Harutyun; Baghdasaryan, Hovhannes; Baillie, Nathan; Ball, J.P.; Ball, Jacques; Ball, J.P.; Ball, Jacques; Ball, J.P.; Ball, Jacques; Ball, J.P.; Ball, Jacques; Baltzell, Nathan; Barrow, Steve; Battaglieri, Marco; Beard, Kevin; Bedlinskiy, Ivan; Bektasoglu, Mehmet; Bellis, Matthew; Benmouna, Nawal; Berman, Barry; Biselli, Angela; Blaszczyk, Lukasz; Bonner, Billy; Bouchigny, Sylvain; Boyarinov, Sergey; Bradford, Robert; Branford, Derek; Briscoe, William; Brooks, William; Burkert, Volker; Butuceanu, Cornel; Calarco, John; Careccia, Sharon; Casey, Liam; Cetina, Catalina; Chen, Shifeng; Cheng, Lu; Cole, Philip; Collins, Patrick; Coltharp, Philip; Cords, Dieter; Corvisiero, Pietro; Crabb, Donald; Crede, Volker; Dale, Daniel; Dashyan, Natalya; De Masi, Rita; De Vita, Raffaella; De Sanctis, Enzo; Degtiarenko, Pavel; Dennis, Lawrence; Deur, Alexandre; Dhuga, Kalvir; Dickson, Richard; Djalali, Chaden; Dodge, Gail; Doughty, David; Dragovitsch, Peter; Dugger, Michael; Dytman, Steven; Dzyubak, Oleksandr; Egiyan, Hovanes; Egiyan, Kim; Elfassi, Lamiaa; Elouadrhiri, Latifa; Eugenio, Paul; Fatemi, Renee; Fedotov, Gleb; Feldman, Gerald; Feuerbach, Robert; Forest, Tony; Fradi, Ahmed; Funsten, Herbert; Garcon, Michel; Gavalian, Gagik; Gevorgyan, Nerses; Gilfoyle, Gerard; Giovanetti, Kevin; Girard, Pascal; Girod, Francois-Xavier; Goetz, John; Gothe, Ralf; Gothe, Ralf; Griffioen, Keith; Guidal, Michel; Guillo, Matthieu; Guler, Nevzat; Guo, Lei; Gyurjyan, Vardan; Hafidi, Kawtar; Hakobyan, Hayk; Hanretty, Charles; Hardie, John; Heddle, David; Hersman, F.; Hicks, Kenneth; Hleiqawi, Ishaq; Holtrop, Maurik; Hu, Jicun; Hyde, Charles; Ilieva, Yordanka; Ireland, David; Ishkhanov, Boris; Isupov, Evgeny; Ito, Mark; Jenkins, David; Jo, Hyon-Suk; Johnstone, John; Joo, Kyungseon; Juengst, Henry; Kalantarians, Narbe; Kellie, James; Khandaker, Mahbubul; Kim, Kui; Kim, Kyungmo; Kim, Wooyoung; Klein, Andreas; Klein, Franz; Kossov, Mikhail; Krahn, Zebulun; Kramer, Laird; Kubarovsky, Valery; Kuhn, Joachim; Kuhn, Sebastian; Kuleshov, Sergey; Kuznetsov, Viacheslav; Lachniet, Jeff; Laget, Jean; Langheinrich, Jorn; Lawrence, David; Livingston, Kenneth; Lu, Haiyun; Lukashin, Konstantin; MacCormick, Marion; Manak, Joseph; Markov, Nikolai; Mattione, Paul; McAleer, Simeon; McKinnon, Bryan; McNabb, John; Mecking, Bernhard; Mestayer, Mac; Meyer, Curtis; Mibe, Tsutomu; Mikhaylov, Konstantin; Minehart, Ralph; Mirazita, Marco; Miskimen, Rory; Mokeev, Viktor; Moreno, Brahim; Moriya, Kei; Morrow, Steven; Moteabbed, Maryam; Mueller, James; Munevar Espitia, Edwin; Mutchler, Gordon; Nadel-Turonski, Pawel; Niccolai, Silvia; Niculescu, Gabriel; Niculescu, Maria-Ioana; Niczyporuk, Bogdan; Niroula, Megh; Niyazov, Rustam; Nozar, Mina; Osipenko, Mikhail; Ostrovidov, Alexander; Park, Kijun; Pasyuk, Evgueni; Paterson, Craig; Pereira, Sergio; Peterson, Gerald; Philips, Sasha; Pierce, Joshua; Pivnyuk, Nikolay; Pocanic, Dinko; Pogorelko, Oleg; Pozdnyakov, Sergey; Preedom, Barry; Price, John; Procureur, Sebastien; Prok, Yelena; Protopopescu, Dan; Qin, Liming; Riccardi, Gregory; Ricco, Giovanni; Ripani, Marco; Ritchie, Barry; Rosner, Guenther; Rossi, Patrizia; Rubin, Philip; Sabatie, Franck; Salamanca, Julian; Salgado, Carlos; Santoro, Joseph; Sapunenko, Vladimir; Sayre, Donald; Schumacher, Reinhard; Serov, Vladimir; Shafi, Aziz; Sharabian, Youri; Sharov, Dmitri; Shvedunov, Nikolay; Simionatto, Sebastio; Skabelin, Alexander; Smith, Elton; Smith, Lee; Sober, Daniel; Sokhan, Daria; Stavinsky, Aleksey; Stepanyan, Samuel; Stepanyan, Stepan; Stokes, Burnham; Stoler, Paul; Strakovski, Igor; Strauch, Steffen; Taiuti, Mauro; Taylor, Shawn; Tedeschi, David; Thoma, Ulrike; Thompson, Richard; Tkabladze, Avtandil; Tkachenko, Svyatoslav; Ungaro, Maurizio; Vineyard, Michael; Vlassov, Alexander; Wang,
2008-06-01
The first measurements of the polarized structure function $\\sigma_{LT'}$ for the reaction $p(\\vec e,e'K^+)\\Lambda$ in the nucleon resonance region are reported. Measurements are included from threshold up to $W$=2.05 GeV for central values of $Q^2$ of 0.65 and 1.00 GeV$^2$, and nearly the entire kaon center-of-mass angular range. $\\sigma_{LT'}$ is the imaginary part of the longitudinal-transverse response and is expected to be sensitive to interferences between competing intermediate s-channel resonances, as well as resonant and non-resonant processes. The results for $\\sigma_{LT'}$ are comparable in magnitude to previously reported results from CLAS for $\\sigma_{LT}$, the real part of the same response. An intriguing sign change in $\\sigma_{LT'}$ is observed in the high $Q^2$ data at $W\\approx 1.9$ GeV. Comparisons to several existing model predictions are shown.
Nowak, M A; Zahed, I
1989-01-01
The issue of the strangeness content of the proton in relation to a large σ π N term is examined using the instanton-antiinstanton description of the QCD ground state. Modulo plausible assumptions, our results indicate no strangeness admixture in the nucleon state at zero momentum transfer.
International Nuclear Information System (INIS)
Anon.
1978-01-01
The design and operation of a nucleonic weighing machine fabricated for continuous weighing of material over conveyor belt are described. The machine uses a 40 mCi cesium-137 line source and a 10 litre capacity ionization chamber. It is easy to maintain as there are no moving parts. It can also be easily removed and reinstalled. (M.G.B.)
A survey of the alpha-nucleon interaction
International Nuclear Information System (INIS)
Ali, S.; Ahmad, A.A.Z.; Ferdous, N.
1984-10-01
A survey of the alpha-nucleon interaction is made. The experimental work on angular distributions of differential scattering cross-sections and polarizations in proton-alpha and neutron-alpha scattering is described. The phenomenological approach which includes the study of both local and non-local potentials reproducing the experimental alpha-nucleon scattering data, is discussed. Basic studies of the alpha-nucleon interaction attempting to build an interaction between an alpha particle and a nucleon from first principles are then described. A critical discussion of the results with some concluding remarks suggesting the direction for further investigation is made. (author)
11th Workshop on The Physics of Excited Nucleons
Hammer, Hans-Werner; Thoma, Ulrike; Schmieden, Hartmut; NSTAR 2007
2008-01-01
The excitation spectrum of the nucleon promises to offer important insights into the non-perturbative regime of QCD. Dedicated experimental programs at various laboratories exist to perform accurate measurements of meson photo- and electroproduction off the nucleon, studying its excitation. The NStar workshops are a well-established series of meetings that bring together experimenters and theoreticians working on baryon resonances and related areas to discuss New results on pseudoscalar and vector meson production; Partial wave analysis and resonance parameters; Baryon resonance structure and quark models; Dynamical models and coupled channel analysis; Baryon resonances in lattice QCD; Chiral symmetry and baryon resonances; Laboratory reports and future projects. The refereed and edited proceedings constitute an indispensable archival record of the progress in the field.
Nucleon form factors, generalized parton distributions and quark angular momentum
Energy Technology Data Exchange (ETDEWEB)
Diehl, Markus [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Kroll, Peter [Bergische Univ., Wuppertal (Germany). Fachbereich Physik; Regensburg Univ. (Germany). Institut fuer Theoretische Physik
2013-02-15
We extract the individual contributions from u and d quarks to the Dirac and Pauli form factors of the proton, after a critical examination of the available measurements of electromagnetic nucleon form factors. From this data we determine generalized parton distributions for valence quarks, assuming a particular form for their functional dependence. The result allows us to study various aspects of nucleon structure in the valence region. In particular, we evaluate Ji's sum rule and estimate the total angular momentum carried by valence quarks at the scale {mu}=2 GeV to be J{sup u}{sub v}=0.230{sup +0.009}{sub -0.024} and J{sup d}{sub v}=-0.004{sup +0.010}{sub -0.016}.
Nucleon form factors, generalized parton distributions and quark angular momentum
International Nuclear Information System (INIS)
Diehl, Markus; Kroll, Peter; Regensburg Univ.
2013-02-01
We extract the individual contributions from u and d quarks to the Dirac and Pauli form factors of the proton, after a critical examination of the available measurements of electromagnetic nucleon form factors. From this data we determine generalized parton distributions for valence quarks, assuming a particular form for their functional dependence. The result allows us to study various aspects of nucleon structure in the valence region. In particular, we evaluate Ji's sum rule and estimate the total angular momentum carried by valence quarks at the scale μ=2 GeV to be J u v =0.230 +0.009 -0.024 and J d v =-0.004 +0.010 -0.016 .
Experimental study of the slowing down of heavy ions at 20 to 100 MeV per nucleon in matter
International Nuclear Information System (INIS)
Herault, J.
1988-01-01
The measurements of typical parameters on heavy ions penetration through matter presented in this work have been performed at the GANIL accelerator facility, using the LISE magnetic spectrometer from 20 to 100 MeV per nucleon. Two magnetic optical configurations of the spectrometer LISE corresponding respectively to energy and angle analysis, have been used. In the first configuration, the analysis of the energy loss distribution, caused by the interaction of the heavy ions beam with the target material, permit to determine the stopping power and the energy straggling. The stopping power is defined experimentally by the ratio of the average energy loss in the target to the thickness of this one. This quantity has been measured for a set of heavy ions ( 17 O, 40 Ar, 86 Kr and 132 Xe) in gaseous media (H 2 , He, N 2 , Ne, Ar, Kr, Xe, CH 4 , C 4 H 10 , CO 2 and CF 4 ) and compared to semi-empirical tabulations. These determinations are compared to those obtained in solid media to study the evolution of the solid-gas difference. This effect vanishes progressively when the projectile tends to be totally stripped (the charge state becomes identical to the atomic number). The heavy ion energy distributions at the exit of degraders and particularly their full width at half maximum have been measured for various projectiles ( 16 O, 40 Ar, 84 Kr, 86 Kr, 100 Mo and 132 Xe) in solid (Be, C, Al, Si, Ti, Ni, Cu, Ag, Ta, Au and Mylar) and gaseous media (the same as for stopping power determinations). A significant contribution of charge exchange straggling to the energy loss straggling is observed for partially stripped ions. A second optical configuration of the beam line LISE has been used, to obtain an image of heavy ions beams passing through targets for various heavy ions ( 16 O, 17 O, 40 Ar, 86 Kr and 100 Mo) in gaseous and solid media. The scaling law for angular straggling is confirmed and extended over five orders of magnitude [fr
Alpha-clustering in dilute nucleonic sea
International Nuclear Information System (INIS)
Tohsaki, Akihiro
1999-01-01
α-clusters are expected to come out here and there in nucleonic sea owing to energetic benefit as its density is diluted. We propose a precise treatment to elucidate α-clusterized process in nucleonic sea after the breakdown of the uniformness. In order to do this, an infinite number of nucleons are considered by taking account of both the Pauli exclusion principle and effective internucleon forces. This method is called a microscopic approach, which has been successful in an α-cluster structure in light nuclei. In particular, we shed light on overcoming difficulties in a static model within the microscopic framework. This improvement is verified by using the empirical value in Weizaecker's mass formula. (author)
Three-nucleon problem with phase equivalent potentials
International Nuclear Information System (INIS)
Pushkash, O.M.; Shapoval, D.V.; Simenog, I.V.
1991-01-01
The effect of the t-matrix off-shell variations with nonlocal phase equivalent N-N potentials on the three-nucleon parameters is studied. The variations, which lower or increase the tritium binding energy, are revealed. We show that under certain conditions, the three-nucleon low-energy observables are almost insensitive to the high energy behaviour of the negative parts of the scattering phase shifts. The inverse problem method is applied to reconstruct simple S-wave potentials which to provide a unified description of the two-nucleon and low-energy three-nucleon data. 22 refs.; 6 figs. (author)
Forward pion-nucleon charge exchange reaction and Regge constraints
International Nuclear Information System (INIS)
Huang Fei; Sibirtsev, A.; Krewald, S.; Hanhart, C.; Haidenbauer, J.; Meibner, U.-G.
2009-01-01
We present our recent study of pion-nucleon charge exchange amplitudes above 2 GeV. We analyze the forward pion-nucleon charge exchange reaction data in a Regge model and compare the resulting amplitudes with those from the Karlsruhe-Helsinki and George-Washington-University partial-wave analyses. We explore possible high-energy constraints for theoretical baryon resonance analyses in the energy region above 2 GeV. Our results show that for the pion-nucleon charge exchange reaction, the appropriate energy region for matching meson-nucleon dynamics to diffractive scattering should be around 3 GeV for the helicity flip amplitude. (authors)
International Nuclear Information System (INIS)
Lipkin, H.J.
1991-11-01
The title of this lecture series raises two questions: (1) what is the OZI rule? (2) what is a nucleon. In the lectures both questions were addressed in parallel and the material moved back and forth between them. In a written version it seems more appropriate to treat the two question separately, begining with trying to understand the structure of the nucleon. Experimental evidence for the symmetry and quark structure of hadrons is reviewed with a historical introduction and updated by presenting constituent quark model relation for hadron masses and magnetic moments.Three definitions of the OZI rule are presented, all which forbid decay like φ->ρπ but making different selection rules for more complicate reactions. All suffer from the higer order paradox that a forbidden process can take place via two-step transition in which each step is allowed; e.g. φ-> KK-bar -> ρπ. No prescription is given for estimating the strength of forbidden processes. The role of cancellations between different higer order diagrams is discussed. (author)
Lepton-nucleon scattering at high energies
International Nuclear Information System (INIS)
Buchmueller, W.
1993-12-01
Recent theoretical developments in the field of inelastic lepton-nucleon scattering are reviewed with emphasis on physics at HERA. Structure functions at small Bjorken-x are discussed in detail. Further topics are photoproduction of jets, the gluon densities in proton and photon, charm physics, electroweak processes and the search for new particles and interactions. (orig.)
Study of the dissipative binary channels in the {sup 107}Ag + {sup 58}Ni reaction at 52 MeV/nucleon
Energy Technology Data Exchange (ETDEWEB)
Steckmeyer, J.C. [Caen Univ., 14 (France). Lab. de Physique Corpusculaire; Aiello, S. [Catania Univ., INFN (Italy); Anzalone, A. [Catania Univ., LNS (Italy)] [and others
2002-03-01
The binary dissipative channels are characterized by the presence of two main fragments in the exit channel. They have been studied in the {sup 107}Ag+{sup 58}Ni reaction at 52 MeV/nucleon of bombarding energy. For that purpose a modified version of the Indra multidetector has been used in conjunction with a part of the Chimera multidetector. Preliminary results on the excitation energy and intrinsic angular momentum of the quasi-projectile are reported and compared to a dynamical calculation. (authors)
International Nuclear Information System (INIS)
Scharenberg, R.P.; Hirsch, A.S.; Tincknell, M.L.
1992-01-01
An experiment to search for the production of quark endash gluon plasma in proton endash antiproton interactions is described with emphasis on 1992 results. Next, a search for critical phenomena using the EOS Time Projection Chamber is similarly described, including the results of 1992 test runs, nucleus endash nucleus collision simulations, and the extraction of critical indices from small percolation lattices. Analysis of results from experiments to detect the possible production of anomalous photons in the central rapidity region with transverse momentum between 5 and 50 MeV/c are discussed. Initial work on an experiment to study the high-density, high-temperature state of matter formed in collisions of heavy nuclei at relativistic energies, planned to begin in fall 1997, is related. Finally, work on a research and development project to investigate silicon avalanche diodes as time-of-flight detectors for nuclear and particle physics applications is reviewed. The principle is to detect the ionization of charged particles directly in the Si; feasibility has been demonstrated
Bollini, D; Benvenuti, Alberto C; Bozzo, M; Brun, R; Cvach, J; Dobrowolski, T; Fadeev, N G; Feltesse, J; Frabetti, P L; Gennow, H; Golutvin, I A; Goossens, M; Heiman, G; Jamnik, D; Kiryushin, Yu T; Kisselev, V S; Klein, M; Kopp, R; Krivokhizhin, V G; Kukhtin, V V; Maillard, J; Malasoma, J M; Meyer-Berkhout, U; Milsztajn, A; Monari, L; Navach, F; Navarria, Francesco Luigi; Nowak, Wolf-Dieter; Piemontese, L; Pilcher, J E; Renardy, J F; Sacquin, Yu; Savin, I A; Schinzel, D; Smadja, G; Smirnov, G I; Staude, A; Teichert, K M; Tirler, R; Verrecchia, P; Vesztergombi, G; Virchaux, M; Volodko, A G; Voss, R; Zácek, J; Zupancic, Crtomir
1981-01-01
Deep inelastic scattering cross sections have been measured with the CERN SPS muon beam at incident energies of 120 and 200 GeV. Approximately 10000 events at each energy used to obtain the structure function F/sub 2/(x, Q/sup 2/) in the kinematic region 0.3
International Nuclear Information System (INIS)
Glagolev, V.V.; Lyuboshits, V.L.; Lyuboshits, V.V.; Piskunov, N.M.
1999-01-01
In the framework of the impulse approximation, the relation between the effective cross section of the charge-exchange breakup of a fast deuteron d + a → (pp) + b and the effective cross section of the charge transfer process n + a → p + b is discussed. In doing so, the effects of the proton identity (Fermi-statistics) and of the Coulomb and strong interactions of protons in the final state are taken into account. The distribution over relative momenta of the protons, produced in the charge-exchange process d + p → (pp) + n in the forward direction, is investigated. At the transfer momenta being close to zero the effective cross section of the charge-exchange breakup of a fast deuteron, colliding with the proton target, is determined only by the spin-flip part of the amplitude of the charge transfer reaction n + p → p + n at the zero angle. It is shown that the study of the process d + p → (pp) + n in a beam of the polarized (aligned) deuterons allows one, in principle, to separate two spin-dependent terms in the amplitude of the charge transfer reaction n + p → p + n, one of which does not conserve and the other one conserves the projection of the nucleon spin onto the direction of momentum at the transition of the neutron into the proton
Nucleon deformation from lattice QCD
International Nuclear Information System (INIS)
Tsapalis, A.
2008-01-01
The issue of nucleon and Delta(1232) deformation is discussed through the evaluation of the N to Delta electromagnetic transition and Delta electromagnetic form factors in Lattice QCD. The momentum dependence of the form factors is studied using 2+1 staggered dynamical flavors at pion masses as low as 350 MeV and compared to results obtained in the Wilson quenched and two-flavor dynamical theory at similar pion masses. The measurement of small non-zero quadrupole amplitudes, in agreement to recent experiments, establishes the existence of deformation in the N and Delta states. (author)
Energy Technology Data Exchange (ETDEWEB)
Price, C E; Shepard, J R [Colorado Univ., Boulder (USA). Dept. of Physics
1991-04-18
We compute properties of the nucleon in a hybrid chiral model based on the linear {sigma}-model with quark degrees of freedom treated explicity. In contrast to previous calculations, we do not use the hedgehog ansatz. Instead we solve self-consistently for a state with well defined spin and isospin projections. We allow this state to be deformed and find that, although d- and g-state admixtures in the predominantly s-state single quark wave functions are not large, they have profound effects on many nucleon properties including magnetic moments and g{sub A}. Our best fit parameters provide excellent agreement with experiment but are much different from those determined in hedgehog calculations. (orig.).
Quark cluster model in the three-nucleon system
International Nuclear Information System (INIS)
Osman, A.
1986-11-01
The quark cluster model is used to investigate the structure of the three-nucleon systems. The nucleon-nucleon interaction is proposed considering the colour-nucleon clusters and incorporating the quark degrees of freedom. The quark-quark potential in the quark compound bag model agrees with the central force potentials. The confinement potential reduces the short-range repulsion. The colour van der Waals force is determined. Then, the probability of quark clusters in the three-nucleon bound state systems are numerically calculated using realistic nuclear wave functions. The results of the present calculations show that quarks cluster themselves in three-quark systems building the quark cluster model for the trinucleon system. (author)
Experiments on few-nucleon systems at MAMI
International Nuclear Information System (INIS)
Distler, M.O. . Author
2008-01-01
The experimental effort at the Mainz Microtron with respect to few-body physics is focused on a number of selected topics. The structure of 3 He has been studied in the reactions 3 He(ε, εn) and 3 He(ε, ε'p) with large (transversal) missing momenta and in quasi-elastic electron scattering. Experiments to determine the neutron electric form factor G en have been performed - a measurement at a four-momentum transfer Q 2 ∼ 1.5(GeV/c) 2 took place in July 2007. Electromagnetically induced two-nucleon knockout has been investigated in order to study the role of correlated nucleon-nucleon motion in the nucleus. Measurements of the (e,e' pn) reaction on 3 He and 16 O were performed for the first time. A triple-polarization experiment of type 3 He(ε, ε'p)d has been performed in August 2007, where, in addition, the spin of the knocked-out proton is analyzed. This measurement provides information on the spin-dependent momentum distribution of proton-deuteron clusters in the 3 He nucleus. By using this deuteron-tagging method spin-polarized 3 He might also serve as an effective polarized proton target for electron scattering experiments. Presented at the 20th Few-Body Conference, Pisa, Italy, 10-14 September 2007. (author)
International Nuclear Information System (INIS)
Teller, S.
1977-01-01
Nucleonic weighing systems utilize the principle of the absorption or the scattering of nuclear radiation for a contactless measurement of the weight of material per unit length, the loading, of a conveyor. The load signal is processed in an electronic unit with a tachometer signal for the conveyor velocity to indicate the flow rate and the integrated flow of material. The different sources of error in nucleonic weighing using transmitted and forward scattered radiation are discussed, and the design of two nucleonic weighing systems is described. One is a conventional transmission gauge particularly suited for measuring rapid variation in belt loading due to a fast detection and linearizing unit. The other system consists of a forward scattering gauge, particularly suitable for measuring light inhomogeneous materials due to the linear relationship between the weight per unit area and the gauge response. Results from on-line trials with different materials are presented, and experiences from more than one year of operation for a batch weighing system for quick lime and a continuous weighing system for mineral wool are reported. (author)
International Nuclear Information System (INIS)
Ono, A.; Horiuchi, H.
1996-01-01
Statistical properties of antisymmetrized molecular dynamics (AMD) are classical in the case of nucleon-emission processes, while they are quantum mechanical for the processes without nucleon emission. In order to understand this situation, we first clarify that there coexist mutually opposite two statistics in the AMD framework: One is the classical statistics of the motion of wave packet centroids and the other is the quantum statistics of the motion of wave packets which is described by the AMD wave function. We prove the classical statistics of wave packet centroids by using the framework of the microcanonical ensemble of the nuclear system with a realistic effective two-nucleon interaction. We show that the relation between the classical statistics of wave packet centroids and the quantum statistics of wave packets can be obtained by taking into account the effects of the wave packet spread. This relation clarifies how the quantum statistics of wave packets emerges from the classical statistics of wave packet centroids. It is emphasized that the temperature of the classical statistics of wave packet centroids is different from the temperature of the quantum statistics of wave packets. We then explain that the statistical properties of AMD for nucleon-emission processes are classical because nucleon-emission processes in AMD are described by the motion of wave packet centroids. We further show that when we improve the description of the nucleon-emission process so as to take into account the momentum fluctuation due to the wave packet spread, the AMD statistical properties for nucleon-emission processes change drastically into quantum statistics. Our study of nucleon-emission processes can be conversely regarded as giving another kind of proof of the fact that the statistics of wave packets is quantum mechanical while that of wave packet centroids is classical. copyright 1996 The American Physical Society
International Nuclear Information System (INIS)
Margetis, S.
1991-02-01
The interactions of heavy nuclei at ultra relativistic energies is a recently opened field of accelerator physics, not being any longer a rare privilege of cosmic ray experiments. After the first 16 O ions were accelerated at the BNL-AGS (14.5 GeV/nucleon) and the CERN-SPS (200 GeV/nucleon) in 1986 (Sto85), heavier projectiles like 28 Si (BNL) and 32 S (CERN) have been used later on. A large amount of information has been collected with almost every possible detector technique, each of them designed for different physics observables. Some of the experiments were designed to study several different signals from the same event whereas others were dedicated to a specific signal. The experiment NA 35 is an example of a large acceptance, 'multi-particle' experiment. Its aim is a survey study of the reaction mechanisms involved in collisions between heavy nuclei and a search for new phenomena. The calorimetric part of NA 35 is the subject of this study. (orig.) [de
Constituent quarks and the gluonic contribution to the spin of the nucleon
International Nuclear Information System (INIS)
Eldahoumi, Gamal
2009-01-01
The internal structure of the nucleon is more complicated than expected in a simple quark model. In particular, the portion of the nucleon spin carried by the spins of the quarks is not, as expected, of the order of one, but according to the experimental data much smaller. In this thesis we study the spin structure of the proton in quantum chromodynamics. The constituent quark model, based on SU(6), predicts that the spin of the proton should be carried by the quarks, in disagreement with the experiments. It appears strange, that the theoretical model works so well for the magnetic moments of the nucleons, but not for the spin, although the spin and the magnetic moments are closely related to each other. We shall resolve this problem by assuming that the constituent quarks have an internal structure on their own. Thus a constituent quark has a dynamical structure, and we can introduce notions like the quark or gluon distributions inside a constituent quark. In the light of new experimental data from HERMES, COMPASS, JLab, and RHIC-spin, the current status of our knowledge of the spin structure is discussed in the two theoretical frameworks: the naive parton model, and the QCD evolved parton model. QCD a is successful theory, both in perturbative and non-perturbative regions, but the spin of the nucleon still needs to be explained within QCD. (orig.)
Constituent quarks and the gluonic contribution to the spin of the nucleon
Energy Technology Data Exchange (ETDEWEB)
Eldahoumi, Gamal
2009-01-15
The internal structure of the nucleon is more complicated than expected in a simple quark model. In particular, the portion of the nucleon spin carried by the spins of the quarks is not, as expected, of the order of one, but according to the experimental data much smaller. In this thesis we study the spin structure of the proton in quantum chromodynamics. The constituent quark model, based on SU(6), predicts that the spin of the proton should be carried by the quarks, in disagreement with the experiments. It appears strange, that the theoretical model works so well for the magnetic moments of the nucleons, but not for the spin, although the spin and the magnetic moments are closely related to each other. We shall resolve this problem by assuming that the constituent quarks have an internal structure on their own. Thus a constituent quark has a dynamical structure, and we can introduce notions like the quark or gluon distributions inside a constituent quark. In the light of new experimental data from HERMES, COMPASS, JLab, and RHIC-spin, the current status of our knowledge of the spin structure is discussed in the two theoretical frameworks: the naive parton model, and the QCD evolved parton model. QCD a is successful theory, both in perturbative and non-perturbative regions, but the spin of the nucleon still needs to be explained within QCD. (orig.)
Quark bags, P-matrix and nucleon-nucleon scattering
International Nuclear Information System (INIS)
Narodetskij, I.M.
1984-01-01
This paper is an extended version of the talk given at IX European Conference on Few Body Problems in Physics, Tbilisi, 1984. It reviews recent developments of the quark compound bag (QCB) model including explicit examples of the QCB nucleon-nucleon potentials, description of the deuteron properties, calculation of the six quark admixture in the deuteron and applications to the three-nucleon system
Counter terms for low momentum nucleon-nucleon interactions
International Nuclear Information System (INIS)
Holt, Jason D.; Kuo, T.T.S.; Brown, G.E.; Bogner, Scott K.
2004-01-01
There is much current interest in treating low energy nuclear physics using the renormalization group (RG) and effective field theory (EFT). Inspired by this RG-EFT approach, we study a low-momentum nucleon-nucleon (NN) interaction, V low-k , obtained by integrating out the fast modes down to the scale Λ∼2 fm -1 . Since NN experiments can only determine the effective interaction in this low momentum region, our chief purpose is to find such an interaction for complex nuclei whose typical momenta lie below this scale. In this paper we find that V low-k can be highly satisfactorily accounted for by the counter terms corresponding to a short range effective interaction. The coefficients C n of the power series expansion ΣC n q n for the counter terms have been accurately determined, and results derived from several meson-exchange NN interaction models are compared. The counter terms are found to be important only for the S, P and D partial waves. Scaling behavior of the counter terms is studied. Finally we discuss the use of these methods for computing shell model matrix elements
The nucleon-nucleon interaction from a realistic pseudoscalar-vector chiral lagrangian
International Nuclear Information System (INIS)
Kaiser, N.; Meissner, U.G.; Massachusetts Inst. of Tech., Cambridge
1990-01-01
We investigate the static nucleon-nucleon potential in the framework of a non-linear chiral meson theory. The model includes pions as well as the vector mesons ρ and ω. All parameters are fixed in the meson sector and predictions about the nucleon-nucleon interaction follow without adjusting any parameters. We use an S-matrix approach to calculate correlated two-pion exchange between two solitons. The most prominent feature of this two-pion exchange is that it leads very natural to attraction in the scalar-isoscalar channel. We also discuss the effect of πp correlations on the central potential, and present the spectral function related to the correlated two-pion exchange. Furthermore, we study the form factors of the nucleon sources related to the two-pion exchange and find that they are of dipole type with typical cutoff scales Λ D ≅ 700 MeV. We also discuss the destructive interference of π- and ρ-exchange in the isovector tensor potential. Altogether, we present a unified treatment of meson exchange phenomenology based on a serious model of the nucleon. Finally, we point out the limitations of the model and discuss some further applications. (orig.)
Study of the partonic structure of the helium nucleus
International Nuclear Information System (INIS)
Perrin, Y.
2012-01-01
The structure of the nucleons and of the nuclei was actively studied during the twentieth century through electron elastic scattering (measuring the electromagnetic form factors) and deep inelastic electron scattering (measuring the parton distributions). The formalism of generalized parton distributions (GPD) achieved the unification of the form factors and the parton distributions. This link gives a source of information about parton dynamics, such as the distribution of nuclear forces and orbital momentum inside hadrons. The easiest experimental access to the GPD is the deeply virtual Compton scattering (DVCS), which corresponds to the hard electroproduction of a real photon. While several experiments focussed on DVCS off the nucleon, only a few experiments studied DVCS off a nuclear target. This thesis deals with the study of the coherent channel of DVCS off helium 4, with the aim of extracting the real and imaginary parts of the Compton form factor thanks to the beam spin asymmetry. (author)
International Nuclear Information System (INIS)
Braunn, B.
2010-11-01
A study of the 12 C fragmentation at 95 MeV per nucleon on thick PMMA targets is presented on this document. This study is motivated by the development of a new technique for irradiation of malignant tumours: the carbon ion therapy. The purpose of this work is to compare experimental data against nuclear models used in GEANT4 tool-kit. The aim is to determine if the models are sufficiently predictive to the criteria of hadron-therapy. To achieve this goal, a first experiment was performed at GANIL with a 12 C beam at 95 MeV/u and thick PMMA targets. This experiment has achieved the production rates, angular and energy distributions of different fragments produced in nuclear collisions. Comparisons between experimental data and simulated results obtained using the binary intra-nuclear cascade (BIC) and quantum molecular dynamics model (QMD) available in GEANT4 have been performed. These comparisons show the inability of the tested models to reproduce carbon fragmentation at 95 MeV per nucleon with the accuracy required in hadron-therapy. (author)
Semi-phenomenological model of the nucleon-nucleon interaction
International Nuclear Information System (INIS)
Houriet, A.; Bagnoud, Y.
1977-01-01
A nucleon with isobars is used to elaborate a model of the nucleon-nucleon interaction at low energy (Esub(CM) 2 sub(r), the pion-nucleon renormalized coupling constant. The model establishes a very good coordination for deuteron and p-p scattering-polarization measurements ( 1 K 0 , 1 D 2 , 1 G 4 phase shifts), and permits the determination of f 2 sub(r) for every independent experimental value. For 21 such values, the mean value 2 sub(r)>=0.0785 with Δf 2 sub(r)=0.0024(3%) is obtained. (Auth.)
The nucleon-nucleon potential in the chromodielectric soliton model
International Nuclear Information System (INIS)
Koepf, W.; Wilets, L.; Pepin, S.; Stancu, F.
1993-01-01
The short- and medium-range parts of the nucleon-nucleon interaction are being studied in the framework of the chromodielectric soliton model. The model consists of current quarks, gluons in the abelian approximation, and a scalar σ field which simulates the nonabelian interactions of the gluons and governs the medium through the dielectric function κ(σ). Absolute color confinement is effected by the vanishing of the dielectric in vacuum; this also removes the troublesome van der Waals problem. The authors distinguish between spatial confinement, which arises from the self energy of the quarks in medium (excluding MFA contributions), and color confinement which is effected through OGE in the MFA (including the corresponding self energy contributions). The static (adiabatic) energies are computed as a function of deformation (generalized bag separation) in a constrained MFA. Six quark molecular-type wave functions in all important space-spin-isospin-color configurations are included. The gluon propagator is solved in the deformed dielectric medium. The resultant Hamiltonian matrix is diagonalized. Dynamics are handled in the Generator Coordinate Method, which leads to the Hill-Wheeler integral equation. In the present case, this yields a set of coupled equations corresponding to the various configurations. Although this can be approximated by a set of differential equations, they propose to solve the integral equations with some regularization scheme
Technical data on nucleonic gauges
International Nuclear Information System (INIS)
2005-07-01
This nucleonic gauge manual and directory provides a reference database of nucleonic control systems available to potential users in the fields of exploration, exploitation and processing of natural resources and in the manufacturing industries. It starts with background information an the general principals of nucleonic gauges, followed by portable nuclear analysis systems (PNAS), computer tomography, cost-benefit on NCS (Nucleonic Control Systems) applications and trends and transfer of NCS technology. It continues with radiation protection and safety, discusses nucleonic gauges with low radioactivity sources and ends with typical models of nucleonic gauges. The basic principles of the most popular techniques are reviewed and reference data links to suppliers are provided. Information sheets on many typical commercial devices are also included. It will help end-users to select the most suitable alternative to solve a particular problem or to measure a certain parameter in a specific process
International Nuclear Information System (INIS)
Wang Fan; Chen Xiangsong; Lue Xiaofu; Sun Weiming; Goldman, T.
2010-01-01
It is unavoidable to deal with the quark and gluon momentum and angular momentum contributions to the nucleon momentum and spin in the study of nucleon internal structure. However, we never have the quark and gluon momentum, orbital angular momentum and gluon spin operators which satisfy both the gauge invariance and the canonical momentum and angular momentum commutation relations. The conflicts between the gauge invariance and canonical quantization requirement of these operators are discussed. A new set of quark and gluon momentum, orbital angular momentum and spin operators, which satisfy both the gauge invariance and canonical momentum and angular momentum commutation relations, are proposed. The key point to achieve such a proper decomposition is to separate the gauge field into the pure gauge and the gauge covariant parts. The same conflicts also exist in QED and quantum mechanics and have been solved in the same manner. The impacts of this new decomposition to the nucleon internal structure are discussed.
Energy Technology Data Exchange (ETDEWEB)
Comas, V.F.; Heinz, S.; Ackermann, D.; Heredia, J.A.; Hessberger, F.P.; Khuyagbaatar, J.; Kindler, B.; Lommel, B.; Mann, R. [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany); Hofmann, S. [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany); Goethe-Universitaet Frankfurt, Institut fuer Physik, Frankfurt (Germany)
2013-09-15
We investigated multi-nucleon transfer reactions in collisions of {sup 58}Ni + {sup 207}Pb and {sup 64}Ni + {sup 207}Pb at Coulomb barrier energies. The new aspect is that we used a velocity filter (SHIP at GSI) for the separation of the heavy target-like transfer products from background events. The isotopic identification was performed via the {alpha} decay properties of the reaction products. The goal of the experiment was to study the characteristics of multi-nucleon transfer reactions in the region of heavy nuclei and the applicability of existing separation and detection techniques, which are usually used for identification of heavy fusion-evaporation residues, to heavy transfer products. This was motivated by recent theoretical results from macroscopic-microscopic models which suggest deep inelastic transfer reactions in heavy systems as a means to produce new neutron-rich isotopes in the region of N = 126 and in the region of superheavy nuclei. In this paper we present the isotopic yields, the excitation functions and the excitation energies of the heavy transfer products with Z > 82 as well as the influence of shell effects on the reaction products. The influence of the different neutron numbers of the projectiles is also discussed. (orig.)
On the sensitivity of nucleon-nucleon correlations to the form of short-range potential
International Nuclear Information System (INIS)
Gmitro, M.; Kvasil, J.; Lednicky, R.; Lyuboshitz, V.L.
1986-01-01
Nucleon-nucleon correlation characteristics are calculated for several phenomenological and realistic strong potentials. The results show that a square-well potential reasonably well approximates the nucleon-nucleon interaction if one calculates the correlations between nucleons generated in a region with an r.m.s. radius larger than 1.5-2 fm. Vice versa, the correlations of nucleons emitted from a smaller generation region are sensitive to the form of the assumed nucleon-nucleon potential. (author)
Study of fission cross sections induced by nucleons and pions using the cascade-exciton model CEM95
International Nuclear Information System (INIS)
Yasin, Z.; Shahzad, M. I.
2007-01-01
Nucleon and pion-induced fission cross sections at intermediate and at higher energies are important in current nuclear applications, such as accelerator driven-systems (ADS), in medicine, for effects on electronics etc. In the present work, microscopic fission cross sections induced by nucleons and pions are calculated using the cascade-exciton model code CEM95 for different projectile-target combinations; at various energies and the computed cross sections are compared with the experimental data found in literature. A new approach is used to compute the fission cross sections in which a change of the ratio of the level density parameter in fission to neutron emission channels was taken into account with the change in the incident energy of the projectile. We are unable to describe well the fission cross sections without using this new approach. Proton induced fission cross sections are calculated for targets 1 97Au, 2 08Pb, 2 09Bi, 2 38U and 2 39Pu in the energy range from 20 MeV to 2000 MeV. Neutron induced fission cross sections are computed for 2 38U and 2 39Pu in the energy range from 20 MeV to 200 MeV. Negative pion induced cross sections for fission are calculated for targets 1 97Au and 2 08Pb from 50 MeV to 2500 MeV energy range. The calculated cross sections are essential to build a data library file for accelerator driven systems just like was built for conventional nuclear reactors. The computed values exhibited reasonable agreement with the experimental values found in the literature across a wide range of beam energies
Description of a nucleon in nuclear matter
International Nuclear Information System (INIS)
Bunatian, G.G.
1992-01-01
The nonlinear cloudy bag model, CBM, is generalized to describe a nucleon in nuclear matter at various densities ρ and temperatures T. The influence of the nuclear medium on the bag-nucleon in the framework of CBM is due to the modification of the equation describing the CBM pion field π. These changes are accounted for in the CBM by including in the CBM lagrangian the pion polarization operator π(ρ,T). The free pion propagator D is replaced in a nuclear medium by D(ρ,T). The changing of the pion field π and propagator D leads via the CBM equations to the modification of the bag size R and quark momentum p, determined simultaneously from these equations, and then to modifications of other bag-nucleon characteristics: the total energy E, r.m.s. radii, magnetic moment μ, polarizability α and so on, which all are expressed as the expectation values of the corresponding operators in the bag-nucleon state. The quantity π(ρ,T) was studied in the works whose results are used in this investigation. The nucleon size R in the nuclear matter at normal density ρ o and zero temperature decreases by 5% and the quarks momentum p also decreases, however, insignificantly, by 1-2%. On the other hand, the values of the r.m.s. radii increases by 15% for a proton and by 100% for a neutron. The author has also found that the polarizability of a nucleon in nuclear matter is roughly two times as much as in free space
International Nuclear Information System (INIS)
Krebs, H.; Epelbaum, E.; Meissner, U.G.
2007-01-01
We study the two-nucleon force at next-to-next-to-leading order in a chiral effective field theory with explicit Δ degrees of freedom. Fixing the appearing low-energy constants from a next-to-leading-order calculation of pion-nucleon threshold parameters, we find an improved convergence of most peripheral nucleon-nucleon phases compared to the theory with pions and nucleons only. In the delta-full theory, the next-to-leading-order corrections are dominant in most partial waves considered. (orig.)
Model of homogeneous nucleus. Total and inelastic cross sections of nucleon-nucleus scattering
International Nuclear Information System (INIS)
Ponomarev, L.A.; Smorodinskaya, N.Ya.
1985-01-01
It is shown that the nucleon-nuckleus scattering amplitude at high energy can be easily calculated by generalization of the nucleon-nucleon scattering amplitude and satisfies a simple factorization relation. As distinct from the Glauber model, the suggested approach makes no use of the nucleonic structure of the nucleus and the hadron-nucleus scattering amplitude is not expressed in terms of hadron-nucleon scattering amplitudes. The energy dependence of total and inelastic cross sections is successfully described for a number of nuclei
Impact of nucleon mass shift on the freeze-out process
International Nuclear Information System (INIS)
Zschocke, Sven; Csernai, Laszlo Pal; Molnar, Etele; Nyiri, Agnes; Manninen, Jaakko
2005-01-01
The freeze-out of a massive nucleon gas through a finite layer with a timelike normal is studied. The impact of the in-medium nucleon mass shift on the freeze-out process is investigated. A considerable modification of the thermodynamic variables of temperature, flow velocity, energy density, and particle density has been found. Because of the nucleon mass shift the freeze-out particle distribution functions are changed noticeably in comparison with the evaluations, which use the vacuum nucleon mass
Chiral symmetry and the nucleon--nucleon interaction
International Nuclear Information System (INIS)
Brown, G.E.
1977-01-01
The nucleon--nucleon interaction is understood in terms of a dynamic model, the sigma model. The anti NN → ππ helicity amplitudes are assumed to be physical data, and the dynamical model must reproduce these data, more or less. 14 references
Nucleon-nucleon forces in the quark compound bag model and few-nucleon systems
International Nuclear Information System (INIS)
Kalashnikova, Yu.S.; Narodetskij, I.M.
1984-01-01
Role of quark-gluon degrees of freedom is discussed in nucleon-nucleon scattering at low and intermediate energies. It is shown that the existence of six-quark hags fixes the form of NN potential at small distances, which leads to the P-matrix satisfying the criterion of Jaffe and Low. The dynamical model of three-nucleon system is discussed taking into accoint the contribution of six-quark bags
Quenching of weak interactions in nucleon matter
International Nuclear Information System (INIS)
Cowell, S.; Pandharipande, V.R.
2003-01-01
We have calculated the one-body Fermi and Gamow-Teller charge-current and vector and axial-vector neutral-current nuclear matrix elements in nucleon matter at densities of 0.08, 0.16, and 0.24 fm -3 and proton fractions ranging from 0.2 to 0.5. The correlated states for nucleon matter are obtained by operating on Fermi-gas states by a symmetrized product of pair correlation operators determined from variational calculations with the Argonne-v18 and Urbana-IX two- and three-nucleon interactions. The squares of the charge- current matrix elements are found to be quenched by 20-25 % by the short-range correlations in nucleon matter. Most of the quenching is due to spin-isospin correlations induced by the pion exchange interactions which change the isospins and spins of the nucleons. A large part of it can be related to the probability for a spin-up proton quasiparticle to be a bare spin-up/down proton/neutron. Within the interval considered, the charge-current matrix elements do not have significant dependence on the matter density, proton fraction, and magnitudes of nucleon momenta; however, they do depend on momentum transfer. The neutral-current matrix elements have a significant dependence on the proton fraction. We also calculate the matrix elements of the nuclear Hamiltonian in the same correlated basis. These provide relatively mild effective interactions that give the variational energies in the Hartree-Fock approximation. The calculated two-nucleon effective interaction describes the spin-isospin susceptibilities of nuclear and neutron matter fairly accurately. However terms greater than or equal to three-body terms are necessary to reproduce the compressibility. Realistic calculations of weak interaction rates in nucleon matter can presumably be carried out using the effective operators and interactions studied here. All presented results use the simple two-body cluster approximation to calculate the correlated basis matrix elements. This allows for a clear
Nucleon electric dipole moments in high-scale supersymmetric models
International Nuclear Information System (INIS)
Hisano, Junji; Kobayashi, Daiki; Kuramoto, Wataru; Kuwahara, Takumi
2015-01-01
The electric dipole moments (EDMs) of electron and nucleons are promising probes of the new physics. In generic high-scale supersymmetric (SUSY) scenarios such as models based on mixture of the anomaly and gauge mediations, gluino has an additional contribution to the nucleon EDMs. In this paper, we studied the effect of the CP-violating gluon Weinberg operator induced by the gluino chromoelectric dipole moment in the high-scale SUSY scenarios, and we evaluated the nucleon and electron EDMs in the scenarios. We found that in the generic high-scale SUSY models, the nucleon EDMs may receive the sizable contribution from the Weinberg operator. Thus, it is important to compare the nucleon EDMs with the electron one in order to discriminate among the high-scale SUSY models.
Pauli blocking and medium effects in nucleon knockout reactions
International Nuclear Information System (INIS)
Bertulani, C. A.; De Conti, C.
2010-01-01
We study medium modifications of the nucleon-nucleon (NN) cross sections and their influence on the nucleon knockout reactions. Using the eikonal approximation, we compare the results obtained with free NN cross sections with those obtained with a purely geometrical treatment of Pauli blocking and with NN obtained with more elaborated Dirac-Bruecker methods. The medium effects are parametrized in terms of the baryon density. We focus on symmetric nuclear matter, although the geometrical Pauli blocking also allows for the treatment of asymmetric nuclear matter. It is shown that medium effects can change the nucleon knockout cross sections and momentum distributions up to 10% in the energy range E lab =50-300 MeV/nucleon. The effect is more evident in reactions involving halo nuclei.
Nucleon electric dipole moments in high-scale supersymmetric models
Energy Technology Data Exchange (ETDEWEB)
Hisano, Junji [Kobayashi-Maskawa Institute for the Origin of Particles and the Universe (KMI),Nagoya University,Nagoya 464-8602 (Japan); Department of Physics, Nagoya University,Nagoya 464-8602 (Japan); Kavli IPMU (WPI), UTIAS, University of Tokyo,Kashiwa, Chiba 277-8584 (Japan); Kobayashi, Daiki; Kuramoto, Wataru; Kuwahara, Takumi [Department of Physics, Nagoya University,Nagoya 464-8602 (Japan)
2015-11-12
The electric dipole moments (EDMs) of electron and nucleons are promising probes of the new physics. In generic high-scale supersymmetric (SUSY) scenarios such as models based on mixture of the anomaly and gauge mediations, gluino has an additional contribution to the nucleon EDMs. In this paper, we studied the effect of the CP-violating gluon Weinberg operator induced by the gluino chromoelectric dipole moment in the high-scale SUSY scenarios, and we evaluated the nucleon and electron EDMs in the scenarios. We found that in the generic high-scale SUSY models, the nucleon EDMs may receive the sizable contribution from the Weinberg operator. Thus, it is important to compare the nucleon EDMs with the electron one in order to discriminate among the high-scale SUSY models.
Isospin breaking in the pion-nucleon coupling constant and the nucleon-nucleon scattering length
Directory of Open Access Journals (Sweden)
V. A. Babenko
2016-08-01
Full Text Available Charge independence breaking (CIB in the pion-nucleon coupling constant and the nucleon-nucleon scattering length is considered on the basis of the Yukawa meson theory. CIB effect in these quantities is almost entirely explained by the mass difference between the charged and the neutral pions. Therewith charge splitting of the pion-nucleon coupling constant is almost the same as charge splitting of the pion mass. Calculated difference between the proton-proton and the neutron-proton scattering length in this case comprises ∼90% of the experimental value.
Microscopic description of nuclear structure
International Nuclear Information System (INIS)
Girod, M.; Berger, J.F.; Peru, S.; Dancer, H.
2002-01-01
After briefly recalling the formalism of the mean field approach with an effective nucleon-nucleon interaction, the theoretical framework of the nuclear structure studies performed at CEA-DAM, applications of this theory to various nuclear systems: shape and spin isomeric states, neutron and proton rich nuclei, superheavy and hyper-heavy nuclei, and to the fission process are presented. (authors)
Dressing the nucleon propagator
International Nuclear Information System (INIS)
Fishman, S.; Gersten, A.
1976-01-01
The nucleon propagator in the ''nested bubbles'' approximation is analyzed. The approximation is built from the minimal set of diagrams which is needed to maintain the unitarity condition under two-pion production threshold in the two-nucleon Bethe--Salpeter equation. Recursive formulas for subsets of ''nested bubbles'' diagrams calculated in the framework of the pseudoscalar interaction are obtained by the use of dispersion relations. We prove that the sum of all the ''nested bubbles'' diverges. Moreover, the successive iterations are plagued with ghost poles. We prove that the first approximation--which is the so-called chain approximation--has ghost poles for any nonvanishing coupling constant. In an earlier paper we have shown that ghost poles lead to ghost cuts. These cuts are present in the ''nested bubbles.'' Ghost elimination procedures are discussed. Modifications of the ''nested bubbles'' approximation are introduced in order to obtain convergence and in order to eliminate the ghost poles and ghost cuts. In a similar way as in the Lee model, cutoff functions are introduced in order to eliminate the ghost poles. The necessary and sufficient conditions for the absence of ghost poles are formulated and analyzed. The spectral functions of the modified ''nested bubbles'' are analyzed and computed. Finally, we present a theorem, similar in its form to Levinson's theorem in scattering theory, which enables one to compute in a simple way the number of ghost poles
International Nuclear Information System (INIS)
Wells, T.B.
1978-01-01
The charge dependence and charge asymmetry of the nucleon-nucleon force arising from the exchange of a pion and a photon with the excitation of a nucleon resonance [Δ(1236)] is calculated. This charge dependence and asymmetry is studied through its effects on the 1 S nucleon-nucleon scattering lengths. The complexity of the calculation forces the use of approximations. The calculation is performed first with a pole approximation for the resonance and a second time with a Chew-Low description of the resonance. Both calculations neglect nuclear recoil. Estimates of this effect are made. The changes in the scattering lengths are small ( +- / 2 = 1.0225 G/sub π 0 / 2 will explain the proton-neutron scattering length
Pion distribution in the nucleon
International Nuclear Information System (INIS)
Lee, T.-S.H.
1989-01-01
A model is presented for calculating the pion wave function inside the nucleon. By assuming that all pions around a core of the nucleon are in the lowest eigenstate of the system, it is shown that both the bound state and πN scattering amplitude can be consistently described by an exactly soluble model defined in the subspace spanned by the core state and the physical πN state. The parameters of the model are determined by fitting the data of the nucleon mass, πNN coupling constant and low energy πN scattering phase shifts. The model predicts that the probability of finding the pion component inside the nucleon is about 20%. The calculated πNN form factor differs significantly from the conventional monopole form. The dynamical consequences of the differences are demonstrated in a calculation of electromagnetic production of pions from the nucleon and the deuteron. 7 refs., 4 figs., 1 tab
Nucleon-pair approximation to the nuclear shell model
Energy Technology Data Exchange (ETDEWEB)
Zhao, Y.M., E-mail: ymzhao@sjtu.edu.cn [Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); Arima, A. [Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); Musashi Gakuen, 1-26-1 Toyotamakami Nerima-ku, Tokyo 176-8533 (Japan)
2014-12-01
Atomic nuclei are complex systems of nucleons–protons and neutrons. Nucleons interact with each other via an attractive and short-range force. This feature of the interaction leads to a pattern of dominantly monopole and quadrupole correlations between like particles (i.e., proton–proton and neutron–neutron correlations) in low-lying states of atomic nuclei. As a consequence, among dozens or even hundreds of possible types of nucleon pairs, very few nucleon pairs such as proton and neutron pairs with spin zero, two (in some cases spin four), and occasionally isoscalar spin-aligned proton–neutron pairs, play important roles in low-energy nuclear structure. The nucleon-pair approximation therefore provides us with an efficient truncation scheme of the full shell model configurations which are otherwise too large to handle for medium and heavy nuclei in foreseeable future. Furthermore, the nucleon-pair approximation leads to simple pictures in physics, as the dimension of nucleon-pair subspace is always small. The present paper aims at a sound review of its history, formulation, validity, applications, as well as its link to previous approaches, with the focus on the new developments in the last two decades. The applicability of the nucleon-pair approximation and numerical calculations of low-lying states for realistic atomic nuclei are demonstrated with examples. Applications of pair approximations to other problems are also discussed.
The two-nucleon system above pion threshold
International Nuclear Information System (INIS)
Poepping, H.; Sauer, P.U.; Zhang Xizhen
1987-01-01
A force model is presented for the description of the two-nucleon system below and above pion threshold and its coupled inelastic channels with one pion. It uses Δ-isobar and pion degrees of freedom in addition to the nucleonic one. The force model is based on a hamiltonian approach within the framework of noncovariant quantum mechanics. It extends the traditional approach with purely nucleonic potentials in isospin-triplet partial waves. It is constructed to remain valid up to 500 MeV c.m. energy. The characteristics of the force model is its mechanism for pion production and pion absorption which is mediated by the Δ-isobar. Even without any fit of phenomenological parameters the force model is able to account for the experimental data of elastic nucleon-nucleon scattering' of the inelastic reactions pp ↔ π + d and of elastic pion-deuteron scattering with satisfactory accuracy. No need for the introduction of dibaryon degrees of freedom has been found yet. The force model is a realistic one in the two-nucleon system. In many-nucleon systems it forms the unifying basis for a microscopic description of nuclear structure and nuclear reactions at low and intermediate energies. (orig.)
Nucleon decay in a realistic SO(10) SUSY GUT
International Nuclear Information System (INIS)
Lucas, V.; Raby, S.
1997-01-01
In this paper, we calculate neutron and proton decay rates and branching ratios in a predictive SO(10) SUSY GUT which agrees well with low energy data. We show that the nucleon lifetimes are consistent with the experimental bounds. The nucleon decay rates are calculated using all one-loop chargino and gluino-dressed diagrams regardless of their chiral structure. We show that the four-fermion operator C jk (u R d jR )(d kL ν τL ), commonly neglected in previous nucleon decay calculations, not only contributes significantly to nucleon decay, but, for many values of the initial GUT parameters and for large tanβ, actually dominates the decay rate. As a consequence, we find that τ p /τ n is often substantially larger than the prediction obtained in small tanβ models. We also find that gluino-dressed diagrams, often neglected in nucleon decay calculations, contribute significantly to nucleon decay. In addition we find that the branching ratios obtained from this realistic SO(10) SUSY GUT differ significantly from the predictions obtained from open-quotes genericclose quotes SU(5) SUSY GUT close-quote s. Thus, nucleon decay branching ratios, when observed, can be used to test theories of fermion masses. copyright 1997 The American Physical Society
Properties of simultaneous and sequential two-nucleon transfer
International Nuclear Information System (INIS)
Pinkston, W.T.; Satchler, G.R.
1982-01-01
Approximate forms of the first- and second-order distorted-wave Born amplitudes are used to study the overall structure, particularly the selection rules, of the amplitudes for simultaneous and sequential transfer of two nucleons. The role of the spin-state assumed for the intermediate deuterons in sequential (t, p) reactions is stressed. The similarity of one-step and two-step amplitudes for (α, d) reactions is exhibited, and the consequent absence of any obvious J-dependence in their interference is noted. (orig.)
Nucleon pairs as the building blocks of a nucleus
International Nuclear Information System (INIS)
Trajdos, M.; Zajac, K.
1989-01-01
The effects induced by the interplay isovesctor and isoscalar components of the residual nucleon interactions were studied in the model based on six bosons: s μ + with J=0, T=1, μ=O,±1 and p μ + with J=1, μ=0, ±1, T=0. Low-lying energy levels, E2-transitions, p-boson structure of eigenstates, percentage of α clusters, (p,t) reactions and α elastic scattering were searched in even-even 156-166 Dy and N=92, Z=56-58 nuclei. 18 refs.; 8 figs.; 1 tab
Quarks and gluons in the nucleon: Proceedings. Volume 6
Energy Technology Data Exchange (ETDEWEB)
NONE
1997-12-31
The purpose of the symposium was to discuss the quark and gluon structure of the nucleon as probed experimentally by hard processes with lepton and hadron beams and studied theoretically by perturbative QCD, lattice QCD and effective models on the one hand and to stimulate research activities in the fields related to RHIC and RHIC-SPIN projects on the other hand. There were 18 talks and 2 discussion sessions. About 50, including 5 from abroad participated in the symposium. An excellent summary in the form of 5 most important transparencies and a one-page explanation is included for each of the invited talks.
Quarks and gluons in the nucleon: Proceedings. Volume 6
International Nuclear Information System (INIS)
1997-01-01
The purpose of the symposium was to discuss the quark and gluon structure of the nucleon as probed experimentally by hard processes with lepton and hadron beams and studied theoretically by perturbative QCD, lattice QCD and effective models on the one hand and to stimulate research activities in the fields related to RHIC and RHIC-SPIN projects on the other hand. There were 18 talks and 2 discussion sessions. About 50, including 5 from abroad participated in the symposium. An excellent summary in the form of 5 most important transparencies and a one-page explanation is included for each of the invited talks
International Nuclear Information System (INIS)
Anikina, M.; Golokhvastov, A.; Goncharova, L.
1983-01-01
Transverse momenta and rapidities of Λ particles produced in central nucleus-nucleus collisions at 4.5 GeV/c per nucleon (cC, CNe, ONe, CCu, CZr, CPb, OPb) have been studied and compared with those from ineiolastic He-Li interactns at the same incident momentum. Polarization of Λ hyperons was found to be consistent (within the errors) with zero (αP=-0.06+-0.11) for 224 Λ particles from central collisions. The upper limit of anti Λ/Λ production ratio was estimated to be less than 10 -2 at a 90% confidence level. The analyzed experimental data were obtained using the triggered 2 m streamer spectrometer SKM-200
Nucleon in nuclei from quasi-elastic electron scattering
International Nuclear Information System (INIS)
Gerard, A.
1987-04-01
One challenging problem in modern nuclear physics is to understand how the internal structure of the nucleon interferes with the dynamics of nucleons in a nucleus. The purpose of this paper is to review the present status of data in quasi-elastic electron scattering, to connect them with recent theoretical developments and to outline some future directions of research not accessible to present electron facilities
International Nuclear Information System (INIS)
Gorbinet, T.
2011-11-01
The collision of 136 Xe with a proton and with 12 C at 1 GeV per nucleon of projectile kinetic energy in the center of mass has been studied in inverse kinematics using the SPALADIN experimental setup at the GSI facility. This manuscript describes the analysis of these collisions realized in spring 2009. The detection in coincidence of the final state fragments (projectile residues, neutrons and light charged fragments) with a large geometrical efficiency is provided by the inverse kinematics combined with a large aperture dipole magnet and large detectors. Such a coincidence, measured on an event basis, allows selecting, in a model independent way, the pre-fragment, the excited nuclear system formed after the intranuclear cascade as a function of its excitation energy. Hence, we were able to study the evolution of the pre-fragment deexcitation mechanism (evaporation of light particles, asymmetric binary decay, multiple fragmentation..) as a function of its excitation energy. The data of the 136 Xe + p reaction have been compared mainly to three deexcitation models (SMM, GEMINI++ and ABLA07) coupled to the intranuclear cascade code INCL4. Despite the relatively good and global agreement between these models and our data, significant discrepancies appeared concerning in particular the production of intermediate mass fragments (IMF). Comparison between the 136 Xe + 12 C and the 136 Xe + p data exhibits an important similarity in the deexcitation of the pre-fragments. This suggests that the nuclear cascade leads, for both targets, to similar pre-fragment types in the range of excitation energy (0 to 4 MeV per nucleon) common to both reactions. Higher excitation energies, reached only in the 136 Xe + 12 C reaction, show a qualitative difference in the deexcitation of the pre-fragment, with much higher multiplicities of IMF per event, increasing with the excitation energy. (author)
Nucleon electromagnetic form factors with Wilson fermions
International Nuclear Information System (INIS)
Goeckeler, M.; Haegler, P.; Horsley, R.
2007-10-01
The nucleon electromagnetic form factors continue to be of major interest for experimentalists and phenomenologists alike. They provide important insights into the structure of nuclear matter. For a range of interesting momenta they can be calculated on the lattice. The limiting factor continues to be the value of the pion mass. We present the latest results of the QCDSF collaboration using gauge configurations with two dynamical, non-perturbatively improved Wilson fermions at pion masses as low as 350 MeV. (orig.)
Nucleon electromagnetic form factors with Wilson fermions
Energy Technology Data Exchange (ETDEWEB)
Goeckeler, M. [Regensburg Univ. (Germany). Inst. fuer Theoretische Physik; Haegler, P. [Technische Univ. Muenchen, Garching (Germany). Inst. fuer Theoretische Physik; Horsley, R. [Edinburgh Univ. (GB). School of Physics] (and others)
2007-10-15
The nucleon electromagnetic form factors continue to be of major interest for experimentalists and phenomenologists alike. They provide important insights into the structure of nuclear matter. For a range of interesting momenta they can be calculated on the lattice. The limiting factor continues to be the value of the pion mass. We present the latest results of the QCDSF collaboration using gauge configurations with two dynamical, non-perturbatively improved Wilson fermions at pion masses as low as 350 MeV. (orig.)
Effective nucleon-nucleon interaction in the RPA
International Nuclear Information System (INIS)
Batista, E.F.; Carlson, B.V.; Conti, C. de; Frederico, T.
2001-01-01
The purpose of the present work is to study the properties of the effective nucleon-nucleon interaction, in a infinite system of mesons and baryons , using the relativistic Hartree-Fock-Bogoliubov approximation. To derive the RHFB equations in a systematic fashion, we use Dyson's equation to sum to all orders the self-consistent tadpole and exchange contributions to the extended baryon Green's function (the Gorkov propagator). The meson propagator is computed as a sum over ring diagrams which consist in repeated insertions of the lowest-order proper polarization graph. The sum is the diagrammatic equivalent of the relativistic random phase approximation (RPA) that describes the well-known collective modes. In the nuclear medium, the σ and ω propagators are linked because of scalar-vector mixing, a density-dependent effect that generates a coupling between the Dyson's equation for the meson propagators. We use the dressed meson propagator to obtain the effective interaction and investigate its effect on the 1 S 0 pairing in nuclear matter. The effective interaction has title effect on the self-energy mean field, since the latter is dominated by the Hartree contribution, which is determined by the free meson propagators. The pairing field, however, is obtained from an exchange term, in which the effective interaction can play an important role. As the polarization corrections to the meson propagators tend to increase the σ-meson mass and decrease the ω-meson mass, they result in an effective interaction which is more repulsive than the bare one. We would expect this to result in a decrease in the 1 S 0 pairing, similar to that seen in nonrelativistic calculations. (author)
International Nuclear Information System (INIS)
Holben, B.C.; Bach, R.E.
1975-01-01
A nucleonic measuring instrument is described wherein a housing contains a radiation source and has an aperture controlled by a shutter which is spring loaded to a closed position for confining and shielding the radiation and is movable by a motor to an open position for releasing the radiation, the motor being supplied with power through a heat sensitive element so that it is deenergized and the shutter closes in response to a predetermined high ambient temperature such as may be caused by a fire, and including an explosive blank cartridge positioned in relation to the shutter guide which explodes in response to a still higher ambient temperature, deforming the guide and thereby locking the shutter in the closed position. (auth)
Nucleon Electromagnetic Form Factors
Energy Technology Data Exchange (ETDEWEB)
Marc Vanderhaeghen; Charles Perdrisat; Vina Punjabi
2007-10-01
There has been much activity in the measurement of the elastic electromagnetic proton and neutron form factors in the last decade, and the quality of the data has greatly improved by performing double polarization experiments, in comparison with previous unpolarized data. Here we review the experimental data base in view of the new results for the proton, and neutron, obtained at JLab, MAMI, and MIT-Bates. The rapid evolution of phenomenological models triggered by these high-precision experiments will be discussed, including the recent progress in the determination of the valence quark generalized parton distributions of the nucleon, as well as the steady rate of improvements made in the lattice QCD calculations.
Light-cone quark model with spin force for the nucleon and Δ(1232)
International Nuclear Information System (INIS)
Weber, H.J.
1992-01-01
Electromagnetic structure functions for the nucleon, static observables for the nucleon and N→D(1232) transition form factors are calculated in a relativistic constituent quark model on the light cone. The model simulates the main effect of the spin force between quarks in terms of smaller (and lighter) scalar ud diquarks in the nucleon. The polarized proton structure function is found to agree with the EMC data. (orig.)
Proceedings of RIKEN BNL Research Center Workshop: Brookhaven Summer Program on Nucleon Spin Physics
Energy Technology Data Exchange (ETDEWEB)
Aschenauer, A.; Qiu, Jianwei; Vogelsang, W.; Yuan, F.
2011-08-02
Understanding the structure of the nucleon is of fundamental importance in sub-atomic physics. Already the experimental studies on the electro-magnetic form factors in the 1950s showed that the nucleon has a nontrivial internal structure, and the deep inelastic scattering experiments in the 1970s revealed the partonic substructure of the nucleon. Modern research focuses in particular on the spin and the gluonic structure of the nucleon. Experiments using deep inelastic scattering or polarized p-p collisions are carried out in the US at the CEBAF and RHIC facilities, respectively, and there are other experimental facilities around the world. More than twenty years ago, the European Muon Collaboration published their first experimental results on the proton spin structure as revealed in polarized deep inelastic lepton-nucleon scattering, and concluded that quarks contribute very little to the proton's spin. With additional experimental and theoretical investigations and progress in the following years, it is now established that, contrary to naive quark model expectations, quarks and anti-quarks carry only about 30% of the total spin of the proton. Twenty years later, the discovery from the polarized hadron collider at RHIC was equally surprising. For the phase space probed by existing RHIC experiments, gluons do not seem to contribute any to the proton's spin. To find out what carries the remaining part of proton's spin is a key focus in current hadronic physics and also a major driving force for the new generation of spin experiments at RHIC and Jefferson Lab and at a future Electron Ion Collider. It is therefore very important and timely to organize a series of annual spin physics meetings to summarize the status of proton spin physics, to focus the effort, and to layout the future perspectives. This summer program on 'Nucleon Spin Physics' held at Brookhaven National Laboratory (BNL) on July 14-27, 2010 [http://www.bnl.gov/spnsp/] is the
Nucleon-nucleon interaction with quark exchange and prediction of the color van der Waals potential
International Nuclear Information System (INIS)
Osman, A.
1988-01-01
The nucleon-nucleon interaction is considered by including the color nucleon clusters. The nucleon-nucleon system is treated as a six-quark system. The obtained local potentials reduce the short-range repulsion. The resulting nucleon-nucleon potential, using a quark-quark potential, agress well with the central-force potentials. The phase shifts calculated by using these local potentials are in good agreement with those obtained from other methods. Introducing the quark-quark potential in the nucleon-nucleon interaction leads to a color van der Waals potential much stronger than that implied by experiments
Nucleon-nucleon interaction with quark exchanges and prediction to colour van der Waals potential
International Nuclear Information System (INIS)
Osman, A.
1985-11-01
The nucleon-nucleon interaction is considered by including the colour nucleon clusters. The nucleon-nucleon system is treated as a six-quark system. The obtained local potentials reduce the short-range repulsion. The resulted nucleon-nucleon potential by using a quark-quark potential well agrees with the central-force potentials. The phase shifts calculated by using these local potentials are in good agreement with those obtained from other methods. Introducing the quark-quark potential in the nucleon-nucleon interaction, leads to a colour van der Waals potential very strong compared with that predicted by experiments. (author)
Nucleon-Nucleon Potentials and Computation of Scattering Phase Shifts
Directory of Open Access Journals (Sweden)
Jhasaketan Bhoi
2015-12-01
Full Text Available By judicious exploitation of supersymmetry formalism of quantum mechanics higher partial wave nucleon-nucleon potentials are generated from its ground state interactions. The nuclear Hulthen potential and the corresponding ground state wave function with the parameters of Arnold and MacKellar are used as the starting point of our calculation. We compute the scattering phase shifts for our constructed potentials through Phase Function Method to examine the merit of our approach to the problem.
Elastic and inelastic pion reactions on few nucleon systems
International Nuclear Information System (INIS)
Lensky, V.
2007-01-01
In the present work, we are studying elastic and inelastic pion reactions on few-body systems within the framework of chiral effective theory. We consider two specific reactions involving pions on few-nucleon systems, namely pion production in nucleon-nucleon collisions, and incoherent pion photoproduction on the deuteron. These two reactions are closely related to the issue of dispersive and absorptive corrections to the pion-deuteron scattering length, which we also consider in our analysis. The incoherent pion photoproduction is also considered as the possible source for a high-precision determination of the neutron-neutron scattering length. (orig.)
Elastic and inelastic pion reactions on few nucleon systems
Energy Technology Data Exchange (ETDEWEB)
Lensky, V.
2007-09-29
In the present work, we are studying elastic and inelastic pion reactions on few-body systems within the framework of chiral effective theory. We consider two specific reactions involving pions on few-nucleon systems, namely pion production in nucleon-nucleon collisions, and incoherent pion photoproduction on the deuteron. These two reactions are closely related to the issue of dispersive and absorptive corrections to the pion-deuteron scattering length, which we also consider in our analysis. The incoherent pion photoproduction is also considered as the possible source for a high-precision determination of the neutron-neutron scattering length. (orig.)
Spin symmetry in the Dirac sea derived from the bare nucleon-nucleon interaction
Shen, Shihang; Liang, Haozhao; Meng, Jie; Ring, Peter; Zhang, Shuangquan
2018-06-01
The spin symmetry in the Dirac sea has been investigated with relativistic Brueckner-Hartree-Fock theory using the bare nucleon-nucleon interaction. Taking the nucleus 16O as an example and comparing the theoretical results with the data, the definition of the single-particle potential in the Dirac sea is studied in detail. It is found that if the single-particle states in the Dirac sea are treated as occupied states, the ground state properties are in better agreement with experimental data. Moreover, in this case, the spin symmetry in the Dirac sea is better conserved and it is more consistent with the findings using phenomenological relativistic density functionals.
Effective nucleon-nucleon t matrix in the (p,2p) reaction
International Nuclear Information System (INIS)
Kudo, Y.; Kanayama, N.; Wakasugi, T.
1989-01-01
The cross sections and the analyzing powers for the /sup 40/Ca(p-arrow-right,2p) reactions at E/sub p/ = 76.1, 101.3, and 200 MeV are calculated in the distorted-wave impulse approximation using the Love-Franey effective nucleon-nucleon interaction. It is shown that the calculated individual contributions of the central, spin-orbit, and tensor parts in the Love-Franey interaction to the cross sections and the analyzing powers strongly depend on the incident proton energies. The spectroscopic factors extracted are consistent with the other reaction studies
International Nuclear Information System (INIS)
Goodman, M. C.
1999-01-01
The Soudan 2 detector is used to search for evidence of nucleon decay. Particular emphasis is put on searches for modes with multiple-charged particles in the final state, and for modes suggested by super-symmetric theories
Pion-nucleon scattering: from chiral perturbation theory to Roy-Steiner equations
Kubis, Bastian; Hoferichter, Martin; de Elvira, Jacobo Ruiz; Meißner, Ulf-G.
2016-11-01
Ever since Weinberg's seminal predictions of the pion-nucleon scattering amplitudes at threshold, this process has been of central interest for the study of chiral dynamics involving nucleons. The scattering lengths or the pion-nucleon σ-term are fundamental quantities characterizing the explicit breaking of chiral symmetry by means of the light quark masses. On the other hand, pion-nucleon dynamics also strongly affects the long-range part of nucleon-nucleon potentials, and hence has a far-reaching impact on nuclear physics. We discuss the fruitful combination of dispersion-theoretical methods, in the form of Roy-Steiner equations, with chiral dynamics to determine pion-nucleon scattering amplitudes at low energies with high precision.*
Energy Technology Data Exchange (ETDEWEB)
Braun, R.T. [Department of Physics, Duke University, Durham, NC 27708-0308 (United States); Triangle Universities Nuclear Laboratory, Durham, NC 27708-0308 (United States); Tornow, W. [Department of Physics, Duke University, Durham, NC 27708-0308 (United States); Triangle Universities Nuclear Laboratory, Durham, NC 27708-0308 (United States)], E-mail: tornow@tunl.duke.edu; Howell, C.R.; Gonzalez Trotter, D.E.; Roper, C.D.; Salinas, F.; Setze, H.R.; Walter, R.L. [Department of Physics, Duke University, Durham, NC 27708-0308 (United States); Triangle Universities Nuclear Laboratory, Durham, NC 27708-0308 (United States); Weisel, G.J. [Department of Physics, Penn State Altoona, Altoona, PA 16601 (United States)
2008-02-21
We present the most accurate and complete data set for the analyzing power A{sub y}({theta}) in neutron-proton scattering. The experimental data were corrected for the effects of multiple scattering, both in the center detector and in the neutron detectors. The final data at E{sub n}=12.0 MeV deviate considerably from the predictions of nucleon-nucleon phase-shift analyses and potential models. The impact of the new data on the value of the charged pion-nucleon coupling constant is discussed in a model study.
International Nuclear Information System (INIS)
Braun, R.T.; Tornow, W.; Howell, C.R.; Gonzalez Trotter, D.E.; Roper, C.D.; Salinas, F.; Setze, H.R.; Walter, R.L.; Weisel, G.J.
2008-01-01
We present the most accurate and complete data set for the analyzing power A y (θ) in neutron-proton scattering. The experimental data were corrected for the effects of multiple scattering, both in the center detector and in the neutron detectors. The final data at E n =12.0 MeV deviate considerably from the predictions of nucleon-nucleon phase-shift analyses and potential models. The impact of the new data on the value of the charged pion-nucleon coupling constant is discussed in a model study
International Nuclear Information System (INIS)
Hoffmann, G.W.
1986-12-01
A major part of the work done this past year was associated with research conducted at the Los Alamos Clinton P. Anderson Meson Physics Facility (LAMPF) using the High Resolution Spectrometer (HRS) and the External Proton Beam (EPB). The research focussed on (1) providing p + nucleus data which test nonrelativistic and relativistic models of the medium energy proton + nucleus interaction, (2) providing (p,p) and (p,n) data which are to be analyzed to provide new nuclear structure information (both ground state and excited state), (3) providing nucleon + nucleon data to aid in the systematic study of the fundamental nucleon-nucleon interaction, (4) developing and improving the pA models themselves, and (5) initiating new experimental programs whose goals are to search for new phenomena in nuclear physics
Energy Technology Data Exchange (ETDEWEB)
Cavata, Ch
1998-10-01
Recent experiments have confirmed the importance of strange quarks in the description of the spin structure of the proton. This unexpected fact has spurred an intense experimental activity to study the contribution of strange quarks to other aspects of the nucleon. In this framework experiments have been designed to weigh up this contribution to the charge distribution and the magnetization of the nucleon. The experimental way that leads to the measuring of the s-quark contribution is presented. The strange form factor can be deduced from the weak form factor of the proton combined with its electromagnetic form factors. The weak form factor can be measured by studying parity violation in ep elastic scattering. One of the chapters reviews the experimental equipment required to perform parity breaking measurements.The preliminary results of 2 experiments: SAMPLE and HAPPEX are given. (A.C.)
Three-nucleon force contribution in the distorted-wave theory of (d ,p ) reactions
Timofeyuk, N. K.
2018-05-01
The distorted-wave theory of A (d ,p )B reactions, widely used to analyze experimental data, is based on a Hamiltonian that includes only two-nucleon interactions. However, numerous studies of few-nucleon systems and many modern developments in nuclear structure theory show the importance of the three-nucleon (3 N ) force. The purpose of this paper is to study the contribution of the 3 N force of the simplest possible form to the A (d ,p )B reaction amplitude. This contribution is given by a new term that accounts for the interaction of the neutron and proton in the incoming deuteron with one of the target nucleons. This term involves a new type of nuclear matrix elements containing an infinite number of target excitations in addition to the main part associated with the traditional overlap function between A and B . The nuclear matrix elements are calculated for double-closed shell targets within a mean field theory where target excitations are shown to be equivalent to exchanges between valence and core nucleons. These matrix elements can be readily incorporated into available reaction codes if the 3 N interaction has a spin-independent zero-range form. Distorted-wave calculations are presented for a contact 3 N force with the volume integral fixed by the chiral effective field theory at the next-to-next-to-leading order. For this particular choice, the 3 N contribution is noticeable, especially at high deuteron incident energies. No 3 N effects are seen for incident energies below the Coulomb barrier. The finite range can significantly affect the 3 N contribution to the (d ,p ) cross sections. Finite-range studies require new formal developments and, therefore, their contribution is preliminarily assessed within the plane-wave Born approximation, together with sensitivity to the choice of the deuteron model.
Phase variation of nucleon-nucleon amplitude for proton-12C elastic scattering
International Nuclear Information System (INIS)
Deng Yibing; Wang Shilai; Yin Gaofang
2006-01-01
Franco and Yin studied for α- 4 He, 3 He, 2 He, 1 He elastic-scattering by using the phase of the nucleon-nucleon elastic-scattering amplitude varies with momentum transfer in the framework of Glauber multiple scattering theory at intermediate energy. The phase variation leads to large changes in the differential cross sections, and brings the Glauber theory into agreement with experimental data. Later Lombard and Maillet is based on the suggestion by Franco and Yin studied for the p- 4 He elastic-scattering in the framework of Glauber theory, and found this phase to be actually important for the description of spin observables. Recently Wang Shilai and Deng Yibing et al studied for the p- 4 He elastic-scattering in the framework of KMT multiple scattering theory at intermediate energy, and found this phase lead to differential cross sections and polarization, which are in better agreement with experimental data. This paper is based on the suggestion by Franco and Yin that the phase of the nucleon-nucleon scattering amplitude should vary with momentum transfer. The proton elastic scattering on 12 C is studied in the KMT multiple scattering theory with microscopic momentum space first term optical potential. The Coulomb interactions are taken into account in our calculation. The theoretical calculation results show that the phase leads to differential cross section and polarization are in better agreement with experimental data. In conclusion this phase is actually important in the framework of KMT theory. (authors)
International Nuclear Information System (INIS)
Le Goff, Jean-Marc
1991-01-01
A recent experiment has shown that it was possible to scatter inelastically on a pair of nucleons interacting at short distance inside a 3-Helium nucleus without interacting with the third nucleon. In order to study the same process in a more compact nucleus, 4-Helium, we have measured the cross section of the 4 He(e,e'p)x reaction for recoil momenta between 225 and 500 MeV/c. This experiment clearly exhibits a pair of nucleons interacting inside the 4-helium nucleus. From the kinematical point of view, the continuum shows a 'bumpy' shape, this bump shifts with increasing recoil momentum in a characteristic way. From the dynamical point of view, an overall agreement is observed between the data and a microscopic calculation, this calculation predicts that scattering on an interacting pair is the dominant process. Furthermore, above 250 MeV/c, the momentum distribution in the continuum appears very close to the momentum distribution of deuterium. In order to get a better understanding of the reaction mechanism in these measurements of high momentum, we have performed a transverse longitudinal separation of the 3 He(e,e'p)x cross section at the highest possible recoil momentum, 260 MeV/c. Since the two responses involve different couplings (respectively magnetic and coulomb coupling), this technique provides us with a very good test of our understanding of the reaction. The experimental responses have been compared to a microscopic calculation. This calculation cannot reproduce simultaneously the two responses. According to the wave function, it either slightly overestimates the longitudinal and strongly underestimates the transverse, or it clearly overestimates the longitudinal and slightly underestimates the transverse. It is interesting to consider the ratio between the integral of the longitudinal and the transverse one, since it is independent of the wave function: its theoretical value is 0.429, whereas a ratio of 0.175±0.046±0.049 is
Nucleon currents and frictional forces between highly excited nuclei
International Nuclear Information System (INIS)
Barranco, M.; Pi, M.; Vinas, X.; Ngo, C.; Tomasi, E.
1983-01-01
A finite temperature Thomas-Fermi method has been used to study the nucleon transfer between two hot slabs of symmetric nuclear matter. Special attention has been paid to temperature effects neglected in earlier calculations. As a result, closed and ready-to-use formulas for the exchange and transfer nucleon flux at zero relative momentum are given as a function of the temperature T. We also present a rather detailed discussion of thermal properties of the semi-infinite slabs
The swelling of nucleons in nuclei and the Roper resonance
International Nuclear Information System (INIS)
Desplanques, B.
1988-01-01
Conditions where some swelling of the nucleon occurs, and, in particular the relation of this effect with the attractive character of the force acting on it, are studied. It is found that short range repulsive correlations can turn the swelling into a shrinking, in spite of a globally attractive interaction, whereas repulsive velocity dependent forces can lead to some swelling. The role of the Roper resonance in this nucleon change of size is considered in some detail
[Measurements of observables of pion-nucleon reactions]. Progress report
International Nuclear Information System (INIS)
Sadler, M.E.
1985-01-01
This document reports the progress of the research of pion reactions. These include (1) a study to measure observables in the pion-nucleon system in the momentum interval 400 to 700 MeV/c, (2) differential cross section measurements at low energy for pion-nucleon charge exchange, and (3) elastic and inelastic scattering of π +- on 3 H and 3 He. Individual experiments will be indexed separately
Nucleon exchange and excitation energy division in damped collisions
International Nuclear Information System (INIS)
Viola, V.E.; Planeta, R.; Kwiatkowski, K.; Zhou, S.H.; Breuer, H.
1989-01-01
In this paper we will examine both the dependence of nucleon exchange on target-projectile properties and the question of temperature equilibration and heat partition during scission. Primary emphasis will be placed on the results of a recent study of the 74 Ge + 165 Ho system, which allows us to address these two questions simultaneously. The results can thus be directly compared with the predictions of the nucleon-exchange model. (author)
Calculations on nucleon-deuteron scattering with realistic potentials
International Nuclear Information System (INIS)
Stolk, C.
1978-01-01
The purpose of this study is to find out how the three-nucleon observables are affected by details of the two-nucleon force. The theory of the perturbational treatment of the Faddeev equations for the three-particle transition matrix, for both elastic and breakup scattering is dealt with. Some details of the numerical treatment are discussed, results for the elastic and breakup scattering presented and conclusions drawn. (C.F.)
Transverse momentum distributions inside the nucleon from lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Musch, Bernhard Ulrich
2009-05-29
Nucleons, i.e., protons and neutrons, are composed of quarks and gluons, whose interactions are described by the theory of quantum chromodynamics (QCD), part of the standard model of particle physics. This work applies lattice QCD to compute quark momentum distributions in the nucleon. The calculations make use of lattice data generated on supercomputers that has already been successfully employed in lattice studies of spatial quark distributions (''nucleon tomography''). In order to be able to analyze transverse momentum dependent parton distribution functions, this thesis explores a novel approach based on non-local operators. One interesting observation is that the transverse momentum dependent density of polarized quarks in a polarized nucleon is visibly deformed. A more elaborate operator geometry is required to enable a quantitative comparison to high energy scattering experiments. First steps in this direction are encouraging. (orig.)
Parity violation in two-nucleon systems
Energy Technology Data Exchange (ETDEWEB)
Liu, C.-P., E-mail: cpliu@mail.ndhu.edu.tw [National Dong Hwa University, Department of Physics (China)
2013-03-15
Nuclear few-body systems become attractive avenues for the study of low-energy parity violation because experiments start to meet the precision requirements and theoretical calculations can be performed reliably. In this talk, an attempt of parametrizing low-energy parity-violating observables by the Danilov parameters will be introduced. Analyses of two-nucleon observables, based on the modern phenomenological potentials or the one of effective field theory, will be discussed.
Selected topics in nuclear structure
International Nuclear Information System (INIS)
Faessler, A.
1990-01-01
Today's dream of nuclear structure physics is to calculate the properties of nuclei starting from Quantum-Chromodynamics (QCD). However, we are definitely not able to do that today and may be even in the future one would wish only to show in principle that this is possible. It probably will never be a daily approach to study excitation energies, transitions probabilities and other properties of nuclei. This paper discusses the possibility of coming from the shore of QCD to the other side of the river, to nuclear structure, not in one great arch buy like medieval bridges in several arches grounded each solidly on pillars going down to the river floor and by that connecting theory with the solid ground of experiments. The first arch is meant to connect QCD and the nucleon-nucleon phase shifts with the help to the nucleon-nucleon phase shifts with the experimentally fitted effective interactions for the final model spaces used in nuclear structure calculations. This is at the moment still by far the weakest arch although a large amount of work and ideas have been invested since about the middle of the 60's to derive a theory of effective interactions and to establish the connection of the effective interaction fitted to nuclear structure data with the bare interaction between nucleons in the vacuum. The last arch is connecting the effective nucleon-nucleon interaction with nuclear structure properties
Energy dissipation process for 100-MeV protons and the nucleon-nucleon interactions in nuclei
International Nuclear Information System (INIS)
Cowley, A.A.; Chang, C.C.; Holmgren, H.D.; Silk, J.D.; Hendrie, D.L.; Koontz, R.W.; Roos, P.G.; Samanta, C.; Wu, J.R.
1980-01-01
Coincidence studies of two protons emitted from p+ 58 Ni at 100 MeV have been carried out. The proton spectra in coincidence with scattered protons suffering an average energy loss of 60 MeV are similar to those resulting from 60-MeV incident protons. This suggests that the initial interaction of the incident proton is with a bound nucleon and that one or both of these nucleons are emitted or initiates a cascade leading to more complex states
Strange quark content in the nucleon and the strange quark vector current form factors
International Nuclear Information System (INIS)
Dubnicka, S.; Dubnickova, A.Z.
1996-12-01
A behaviour of the form factors of the nucleon matrix element of the strange quark vector current in the momentum range of the planned measurements in MIT/Bates and CEBAF is predicted theoretically without using any of the experimental information on the nucleon electromagnetic structure. The corresponding leading nonvanishing moments of the nucleon vector strangeness distribution are comparable with the values obtained by other authors in the framework of the method based on the vector meson pole fit of the isoscalar electromagnetic form factors of the nucleon. (author). 16 refs, 2 figs
Structure functions from chiral soliton models
International Nuclear Information System (INIS)
Weigel, H.; Reinhardt, H.; Gamberg, L.
1997-01-01
We study nucleon structure functions within the bosonized Nambu-Jona-Lasinio (NJL) model where the nucleon emerges as a chiral soliton. We discuss the model predictions on the Gottfried sum rule for electron-nucleon scattering. A comparison with a low-scale parametrization shows that the model reproduces the gross features of the empirical structure functions. We also compute the leading twist contributions of the polarized structure functions g 1 and g 2 in this model. We compare the model predictions on these structure functions with data from the E143 experiment by GLAP evolving them from the scale characteristic for the NJL-model to the scale of the data
Constructional requirements and classification of nucleonic gauges
Energy Technology Data Exchange (ETDEWEB)
Gomes, J.D.R.L.; Costa, M.L.L.; Gomes, R.S.; Costa, E.L.C.; Caldas, G.H.F., E-mail: rogeriog@cnen.gov.br, E-mail: jlopes@cnen.gov.br, E-mail: mara@cnen.gov.br, E-mail: evaldo@cnen.gov.br, E-mail: gcaldas@cnen.gov.br [Comissão Nacional de Energia Nuclear (CNEN), Rio de Janeiro, RJ (Brazil). Diretoria de Radioproteção e Segurança Nuclear; Thomé, Z.D., E-mail: zielithome@gmail.com [Instituto Militar de Engenharia (IME), Rio de Janeiro, RJ (Brazil). Seção de Engenharia Nuclear
2017-07-01
There are several hundred of nucleonic gauges installed in at least 500 industrial facilities in Brazil. In recent years, several standards have been issued by different international committees in order to specify requirements for the design of nucleonic gauges taking into account issues related to radiological protection. The aspects of design and manufacturing of these devices using radioactive sources should be treated as an important feature to an adequate safety approach during the whole operational life, mainly taking into account the extreme conditions of the places where the devices are installed. Thus, the agreement with these standards should be included as part of the equipment specification to the licensing process, however, most nucleonic gauges were installed in the period prior to the issuance of these international standards. In this work was studied the performance of shielding design taking into account international standards concerning the constructional requirements and classification of gauges. In view of the specific operational conditions found at reference facilities, the measurements obtained will be used for validation of a Monte Carlo code based on GEANT4 to allow extrapolations for other operational conditions. The results obtained in this study can enable the establishment of a safety indicator tool to industrial facilities, taking into account different designs, so that this additional parameter can be used to determine and to optimize the frequency of regulatory inspections. (author)
Constructional requirements and classification of nucleonic gauges
International Nuclear Information System (INIS)
Gomes, J.D.R.L.; Costa, M.L.L.; Gomes, R.S.; Costa, E.L.C.; Caldas, G.H.F.; Thomé, Z.D.
2017-01-01
There are several hundred of nucleonic gauges installed in at least 500 industrial facilities in Brazil. In recent years, several standards have been issued by different international committees in order to specify requirements for the design of nucleonic gauges taking into account issues related to radiological protection. The aspects of design and manufacturing of these devices using radioactive sources should be treated as an important feature to an adequate safety approach during the whole operational life, mainly taking into account the extreme conditions of the places where the devices are installed. Thus, the agreement with these standards should be included as part of the equipment specification to the licensing process, however, most nucleonic gauges were installed in the period prior to the issuance of these international standards. In this work was studied the performance of shielding design taking into account international standards concerning the constructional requirements and classification of gauges. In view of the specific operational conditions found at reference facilities, the measurements obtained will be used for validation of a Monte Carlo code based on GEANT4 to allow extrapolations for other operational conditions. The results obtained in this study can enable the establishment of a safety indicator tool to industrial facilities, taking into account different designs, so that this additional parameter can be used to determine and to optimize the frequency of regulatory inspections. (author)
Inequalities and bounds for nucleon-nucleon scattering
International Nuclear Information System (INIS)
Ramandurai, K.S.
1979-08-01
The objective of this work is to derive model-independent inequalities and bounds for nucleon-nucleon elastic scattering amplitudes based on well-established theoretical principles and symmetries. Two classes of methods are used: algebraic and variational. In the algebraic part, the author derives inequalities and bounds for NN amplitudes and observables using their mutual relations and x symmetries. In the variational part, he employs Lagrange's method of undetermined multipliers to evaluate the bounds. He tests the predictions of a sample of proposed phase shifts at three different energies using the results obtained
Charge dependence of the pion-nucleon coupling constant
Directory of Open Access Journals (Sweden)
V. A. Babenko
2015-07-01
Full Text Available On the basis of the Yukawa potential we study the pion-nucleon coupling constants for the neutral and charged pions assuming that nuclear forces at low energies are mainly determined by the exchange of virtual pions. We obtain the charged pseudovector pion-nucleon coupling constant f2π± = 0.0804(7 by making the use of experimental low-energy scattering parameters for the singlet pp- and np-scattering, and also by use of the neutral pseudovector pion-nucleon coupling constant f2π0 = 0.0749(7. Corresponding value of the charged pseudoscalar pion-nucleon coupling constant g2π0 / 4π = 14.55(13 is also determined. This calculated value of the charged pseudoscalar pion-nucleon coupling constant is in fully agreement with the experimental constant g2π0 / 4π = 14.52(26 obtained by the Uppsala Neutron Research Group. Our results show considerable charge splitting of the pion-nucleon coupling constant.
Schuetrumpf, B.; Nazarewicz, W.; Reinhard, P.-G.
2017-08-01
Background: The central depression of nucleonic density, i.e., a reduction of density in the nuclear interior, has been attributed to many factors. For instance, bubble structures in superheavy nuclei are believed to be due to the electrostatic repulsion. In light nuclei, the mechanism behind the density reduction in the interior has been discussed in terms of shell effects associated with occupations of s orbits. Purpose: The main objective of this work is to reveal mechanisms behind the formation of central depression in nucleonic densities in light and heavy nuclei. To this end, we introduce several measures of the internal nucleonic density. Through the statistical analysis, we study the information content of these measures with respect to nuclear matter properties. Method: We apply nuclear density functional theory with Skyrme functionals. Using the statistical tools of linear least square regression, we inspect correlations between various measures of central depression and model parameters, including nuclear matter properties. We study bivariate correlations with selected quantities as well as multiple correlations with groups of parameters. Detailed correlation analysis is carried out for 34Si for which a bubble structure has been reported recently, 48Ca, and N =82 , 126, and 184 isotonic chains. Results: We show that the central depression in medium-mass nuclei is very sensitive to shell effects, whereas for superheavy systems it is firmly driven by the electrostatic repulsion. An appreciable semibubble structure in proton density is predicted for 294Og, which is currently the heaviest nucleus known experimentally. Conclusion: Our correlation analysis reveals that the central density indicators in nuclei below 208Pb carry little information on parameters of nuclear matter; they are predominantly driven by shell structure. On the other hand, in the superheavy nuclei there exists a clear relationship between the central nucleonic density and symmetry energy.
International Nuclear Information System (INIS)
Miller, G.A.
1984-01-01
In the Cloudy Bag Model hadrons are treated as quarks confined in an M.I.T. bag that is surrounded by a cloud of pions. Computations of the charge and magnetism distributions of nucleons and baryons, pion-nucleon scattering, and the strong and electromagnetic decays of mesons are discussed. Agreement with experimental results is excellent if the nucleon bag radius is in the range between 0.8 and 1.1 fm. Underlying qualitative reasons which cause the pionic corrections to be of the obtained sizes are analyzed. If bags are of such reasonably large sizes, nucleon bags in nuclei will often come into contact. As a result one needs to consider whether explicit quark degrees of freedom are relevant for Nuclear Physics. To study such possibilities a model which treats a nucleus as a collection of baryons, pions and six-quark bags is discussed. In particular, the short distance part of a nucleon-nucleon wave function is treated as six quarks confined in a bag. This approach is used to study the proton-proton weak interaction, the asymptotic D to S state ratio of the deuteron, the pp → dπ reaction, the charge density of /sup 3/He, magnetic moments of /sup 3/He and /sup 3/H and, the /sup 3/He-/sup 3/H binding energy difference. It is found that quark effects are very relevant for understanding nuclear properties
One-nucleon pickup reactions and compound-nuclear decays
Escher, J. E.; Burke, J. T.; Casperson, R. J.; Hughes, R. O.; Scielzo, N. D.
2018-05-01
One-nucleon transfer reactions, long used as a tool to study the structure of nuclei, are potentially valuable for determining reaction cross sections indirectly. This is significant, as many reactions of interest to astrophysics and other applications involve short-lived isotopes and cannot be measured directly. We describe a procedure for obtaining constraints for calculations of neutron capture cross sections using observables from experiments with transfer reactions. As a first step toward demonstrating the method, we outline the theory developments used to properly describe the production of the compound nucleus 88Y* via the one-nucleon pickup reaction 89Y(p,d)88Y* and test the description with data from a recent experiment. We indicate how this development can be used to extract the unknown 87Y(n,γ) cross section from 89Y(p,dγ) data. The example illustrates a more generally applicable method for determining unknown cross sections via a combination of theory and transfer (or inelastic scattering) experiments.
The hyperon-nucleon interaction
International Nuclear Information System (INIS)
Haidenbauer, J.
2007-01-01
Results of two recent hyperon-nucleon interaction potentials, both developed by the Bonn-Juelich group, are presented that are derived either in the conventional meson-exchange picture or within leading order chiral effective field theory. The chiral potential consists of one-pseudoscalar-meson exchanges and non-derivative four-baryon contact terms. The most salient feature of the new meson-exchange hyperon-nucleon model is that the contributions in the scalar-isoscalar (σ) and vector-isovector (ρ) exchange channels are constrained by a microscopic model of correlated ππ and KK-bar exchange
Nucleon transfer between heavy nuclei
International Nuclear Information System (INIS)
Von Oertzen, W.
1984-02-01
Nucleon transfer reactions between heavy nuclei are characterized by the classical behaviour of the scattering orbits. Thus semiclassical concepts are well suited for the description of these reactions. In the present contribution the characteristics of single and multinucleon transfer reactions at energies below and above the Coulomb barrier are shown for systems like Sn+Sn, Xe+U and Ni+Pb. The role of the pairing interaction in the transfer of nucleon pairs is illustrated. For strong transitions the coupling of channels and the absorption into more complicated channels is taken into account in a coupled channels calculation
Perspectives of lepton-nucleon scattering
International Nuclear Information System (INIS)
Eisele, F.
1987-01-01
Present day lepton-nucleon scattering experiments will find a continuation at the HERA e-p collider in the near future. HERA experiments will be complementary and in concurrence to other colliders (e/sup +/e/sup -/, p-barp) which will work in a similar energy range at a similar time. HERA has a rewarding unique program of ''standard'' physics. If new physics should show up in the new energy domain, HERA will be an excellent machine to help reveiling its structure. Depending on luck and time scale, HERA offers also the chance of original discoveries in fields where it is unique
Induced Hyperon-Nucleon-Nucleon Interactions and the Hyperon Puzzle.
Wirth, Roland; Roth, Robert
2016-10-28
We present the first ab initio calculations for p-shell hypernuclei including hyperon-nucleon-nucleon (YNN) contributions induced by a similarity renormalization group transformation of the initial hyperon-nucleon interaction. The transformation including the YNN terms conserves the spectrum of the Hamiltonian while drastically improving model-space convergence of the importance-truncated no-core model, allowing a precise extraction of binding and excitation energies. Results using a hyperon-nucleon interaction at leading order in chiral effective field theory for lower- to mid-p-shell hypernuclei show a good reproduction of experimental excitation energies while hyperon separation energies are typically overestimated. The induced YNN contributions are strongly repulsive and we show that they are related to a decoupling of the Σ hyperons from the hypernuclear system, i.e., a suppression of the Λ-Σ conversion terms in the Hamiltonian. This is linked to the so-called hyperon puzzle in neutron-star physics and provides a basic mechanism for the explanation of strong ΛNN three-baryon forces.
On the unified system of the nucleons in nuclei
International Nuclear Information System (INIS)
Sharafiddinov, R.S.
2005-01-01
Full text: One of an innate features of the interaction of neutrons and protons in nuclei is the connection between these phenomena and character of the structure of nucleons themselves. At the same time a question about the appearance of the united system of massive fermions of the different nature requires the special investigation. Our study of the behavior of massive Dirac neutrinos in a nucleus field shows clearly that the mass and charge of a particle correspond to two form of the unified regularity of the ultimate structure of this field. Thereby such a mass - charge duality of matter explains the coexistence of the united force, mass and charge. In the present work, we discuss the problem of the unified system of the structural particles in nuclei investigating the most diverse symmetries of Dirac fermions at the interaction of massive neutrinos with nuclei of electroweak charges. It is assumed that the neutrino has the longitudinal as well as the transversal polarization. In this connection appears of principle possibility to directly look at the nature of an incoming lepton and the united system of hadrons themselves. With the use of the studied processes cross sections a proof has been obtained regardless of a particle type, the appearance of the connected system of massive fermions can be explained by the interference of their currents of the different symmetrically. Findings allow to establish at the fundamental level the compound structure of the interaction of nucleons in nuclei elucidating the inter-ratio of intranuclear forces and the nature of invariance of these types of the actions concerning C, P and T, and also their combinations CP and CPT which open up new possibilities for solution of the problem of elementary particle chiral and isotopic symmetries
On the nucleon renormalization in many nucleon problems due to pionic degrees of freedom
International Nuclear Information System (INIS)
Sauer, P.U.; Sawicki, M.; Furui, Sadataka.
1985-01-01
Conceptual problems of unified two-nucleon force models are discussed. The force models are based on the pion-nucleon vertex and attempt a description of the nucleon-nucleon interaction below and above pion threshold. The conceptual problems arise from the nucleon renormalization due to pionic degrees of freedom. Keeping channels with a single pion only no renormalization procedure can be given which is consistent in the one-nucleon and in the many-nucleon systems. The medium dependence of the one-pion exchange potential is illustrated. (author)
Nucleon-nucleon scattering in the functional quantum theory of the non-linear spinor field
International Nuclear Information System (INIS)
Philipp, W.
1975-01-01
The nucleon-nucleon and nucleon-antinucleon scattering cross sections are calculated in the frame of the functional quantum field theory by means of two different approximation methods: averaging by integration of indefinite integrals and pulse averaging. The results for nucleon-nucleon scattering are compared with experimental data, with calculations using a modified functional scalar product and with results in first order perturbation theory (V-A-coupling). As for elastic nucleon-antinucleon scattering, the S matrix is investigated for crossing symmetry. Scattering of 'nucleons' of different mass results in different cross sections even in the lowest-order approximation. (BJ) [de
Investigation of the nucleon-nucleon tensor force in three-nucleon system
Energy Technology Data Exchange (ETDEWEB)
Clajus, M.; Egun, P.M.; Gruebler, W.; Hautle, P. (Eidgenoessische Technische Hochschule, Zurich (Switzerland). Inst. fuer Mittelenergiephysik); Slaus, I. (Institut Rudjer Boskovic, Zagreb (Yugoslavia)); Vuaridel, B. (Michigan Univ., Ann Arbor (USA) Brookhaven National Lab., Upton, NY (USA)); Sperisen, F. (Indiana Univ., Bloomington (USA). Cyclotron Facility); Kretschmer, W.; Rauscher, A.; Schuster, W.; Weidmann, R.; Haller, M. (Erlangen-Nuernberg Univ., Erlangen (Germany, F.R.)); Bruno, M.; Cannata, F.; D' Agostino, M. (Istituto Nazionale di Fisica Nucleare, Bologna (Italy)); Witala, H.; Cornelius, T.; Gloeckle, W. (Bochum Univ. (Germany, F.R.)); Schmelzbach, P.A. (Paul Scherrer Inst., Villigen (Switzerland))
1990-08-16
Proton-deuteron elastic scattering has been investigated at E{sub p}=22.7 MeV by comparison of rigorous Faddeev calculations with experimental results. The observable most sensitive to the tensor force is the nucleon-nucleon polarization transfer coefficient K{sub y}sup(y'). The new angular distribution of K{sub y}sup(y') clearly favours the tensor force of the Bonn A potential, which is weaker than the one of the Paris potential. (orig.).
Extraction of the pion-nucleon sigma-term from the spectrum of exotic baryons
International Nuclear Information System (INIS)
Schweitzer, P.
2004-01-01
The pion-nucleon sigma-term is extracted on the basis of the soliton picture of the nucleon from the mass spectrum of usual and the recently observed exotic baryons, assuming that they have positive parity. The value found is consistent with that inferred by means of conventional methods from pion-nucleon scattering data. The study can also be considered as a phenomenological consistency check of the soliton picture of baryons. (orig.)
Multi-nucleon transfer: a probe to investigate the reaction mechanism around the barrier
International Nuclear Information System (INIS)
Mandal, Samit K.
2014-01-01
The investigation of multi-nucleon transfer mechanism offers valuable information on the pairing interactions that enhance the transfer of nucleon pairs across heavy ions involved in the reaction. These reactions are also a useful tool to study exotic nuclei far from the stability line, which can be explored with the new generation radioactive beam facility. In this talk, multi-nucleon transfer reaction mechanisms between heavy ions and their effect on the reaction dynamics around the coulomb barrier energies have been discussed. Experimental results will be presented with a semi classical description of multi nucleon transfer reaction calculation. One and two nucleon transfer cross sections reproduced using a quantum mechanical coupled channel calculations will also be discussed. A feasibility of investigation of multi-nucleon transfer mechanism to explore the pairing correlation at moderate spin states with radioactive beams will be discussed. (author)
Pion–nucleon scattering: from chiral perturbation theory to Roy–Steiner equations
International Nuclear Information System (INIS)
Kubis, Bastian; Hoferichter, Martin; Elvira, Jacobo Ruiz de; Meißner, Ulf-G.
2016-01-01
Ever since Weinberg’s seminal predictions of the pion–nucleon scattering amplitudes at threshold, this process has been of central interest for the study of chiral dynamics involving nucleons. The scattering lengths or the pion–nucleon σ-term are fundamental quantities characterizing the explicit breaking of chiral symmetry by means of the light quark masses. On the other hand, pion–nucleon dynamics also strongly affects the long-range part of nucleon–nucleon potentials, and hence has a far-reaching impact on nuclear physics. We discuss the fruitful combination of dispersion-theoretical methods, in the form of Roy–Steiner equations, with chiral dynamics to determine pion–nucleon scattering amplitudes at low energies with high precision.
Flavor asymmetry of the nucleon
International Nuclear Information System (INIS)
Bijker, R.; Santopinto, E.
2008-01-01
The flavor asymmetry of the nucleon sea is discussed in an unquenched quark model for baryons in which the effects of quark-antiquark pairs (uu, dd and ss) are taken into account in an explicit form. The inclusion of qq pairs leads automatically to an excess of d over u quarks in the proton, in agreement with experimental data. (Author)
Flavor asymmetry of the nucleon
Energy Technology Data Exchange (ETDEWEB)
Bijker, R. [Instituto de Ciencias Nucleares, UNAM, Apartado Postal 70-543, 04510 Mexico D. F. (Mexico); Santopinto, E. [INFN and Dipartimento di Fisica, Via Dodecaneso 33, I-16146 Genova (Italy)]. e-mail: bijker@nucleares.unam.mx
2008-12-15
The flavor asymmetry of the nucleon sea is discussed in an unquenched quark model for baryons in which the effects of quark-antiquark pairs (uu, dd and ss) are taken into account in an explicit form. The inclusion of qq pairs leads automatically to an excess of d over u quarks in the proton, in agreement with experimental data. (Author)
International Nuclear Information System (INIS)
Oubahadou, Ahmed
1986-01-01
The detection of numerous light particles forwardly emitted in nuclear reactions with heavy ions intermediate energies has originated the building of a scintillator multidetector (96 detectors) called the 'hodoscope' in G.A.N.I.L. (the largest national accelerator of heavy ions). The main problem of these multidetectors is the extraction of data. We have therefore established a simple technique to extract the charge and speed values from the amount of detected light and from the times of flight. The multidetector combined with a telescope has allowed us to carry out semi-exclusive measurements of the reaction products in Ar+Au system at 35 MeV per nucleon. This work is limited to detection through a telescope of the light fragments (quasi-projectiles); the analysis of energy spectra at different angles shows that the fragments seem to be emitted from two sources: one with a speed close to that of the projectile, the other with a half of that speed. For the study of coincidences we have grouped together the light particles of hodoscope into 4 classes according to their charge numbers and we have considered two special domains (the central part and the outer part). For the telescope we group too the incidents according to their charge (4 classes) and their speed ('rapid' or 'relaxed'). The multiplicity in each case is calculated and eventually allocated according to the speed measured in the telescope. The spectra are analysed in the framework of evaporation by moved Boltzmann hot sources. The origin of 'relaxed' fragments is studied in the context of different theoretical models. (author) [fr
The effect of including tensor forces in nucleon-nucleon interaction on three-nucleon binding energy
International Nuclear Information System (INIS)
Osman, A.; Ramadan, S.
1986-01-01
Separable two-body interactions are used in considering the three-nucleon problem. The nucleon-nucleon potentials are taken to include attraction and repulsion as well as tensor forces. The separable approximation is used in order to investigate the effect of the tensor forces. The separable expansion is introduced in the three-nucleon problem, by which the Faddeev equations are reduced to a well-behaved set of coupled integral equations. Numerical calculations are carried out for the obtained integral equations using potential functions of the Yamaguchi, Gaussian, Takabin, Mongan and Reid forms. The present calculated values of the binding energies of the 3 H and 3 He nuclei are in good agreement with the experimental values. The effect of including the tensor forces in the nucleon-nucleon interactions is found to improve the three-nucleon binding energy by about 4.490% to 8.324%. 37 refs., 2 tabs. (author)
Fragmentation of deuterons on nucleons in the infinite momentum frame
International Nuclear Information System (INIS)
Dolidze, M.G.; Lykasov, G.I.
1989-01-01
A method for the analysis of interactions between fast deuterons and nucleons is developed taking into account both the relativistic effects in the deuteron and the mechanism of their interaction. The inclusive proton spectra and the polarization characteristics are investigated on the example of the fragmentation type processes of deuterons on nucleons. A strong sensitivity of the deuteron polarization tensor component T 20 both to the reaction mechanisms and to the relativistic structure of the deuteron is shown. The probable existence of the 6q-state in the deuteron in those reactions is discussed. 24 refs.; 3 figs
Why do nucleons cling. [Meson theory
Energy Technology Data Exchange (ETDEWEB)
Kumar, N [Hindu Coll., Delhi (India)
1976-10-01
The nature of the forces which bind nucleons together within the nucleus of an atom have been discussed in detail. The characteristic properties of the nucleons, such as spin, interaction range etc. and the meson theory of nuclear forces are described. The present researches indicate that the force between two nucleons in a many-nucleon system is not very different from the force between two free nucleons. Researches related to the origin of nuclear forces based on the meson theory are now mainly concerned with the role played by the heavier mesons and the two pion exchanges in the middle region around 0.7 fm. (10/sup -13/ cm).
Constructing Nucleon Operators on a Lattice for Form Factors with High Momentum Transfer
Energy Technology Data Exchange (ETDEWEB)
Syritsyn, Sergey [Stony Brook Univ., NY (United States); Gambhir, Arjun S. [College of William and Mary, Williamsburg, VA (United States); Musch, Bernhard U. [Univ. of Regensburg (Germany); Orginos, Konstantinos [College of William and Mary, Williamsburg, VA (United States); Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)
2017-05-01
We present preliminary results of computing nucleon form factor at high momentum transfer using the 'boosted' or 'momentum' smearing. We use gauge configurations generated with N f = 2 + 1dynamical Wilson-clover fermions and study the connected as well as disconnected contributions to the nucleon form factors. Our initial results indicate that boosted smearing helps to improve the signal for nucleon correlators at high momentum. However, we also find evidence for large excited state contributions, which will likely require variational analysis to isolate the boosted nucleon ground state.
Motornenko, A.; Bravina, L.; Gorenstein, M. I.; Magner, A. G.; Zabrodin, E.
2018-03-01
Properties of equilibrated nucleon system are studied within the ultra-relativistic quantum molecular dynamics (UrQMD) transport model. The UrQMD calculations are done within a finite box with periodic boundary conditions. The system achieves thermal equilibrium due to nucleon-nucleon elastic scattering. For the UrQMD-equilibrium state, nucleon energy spectra, equation of state, particle number fluctuations, and shear viscosity η are calculated. The UrQMD results are compared with both, statistical mechanics and Chapman-Enskog kinetic theory, for a classical system of nucleons with hard-core repulsion.
Towards the solution of the nucleon spin problem
International Nuclear Information System (INIS)
Moroz, Z.
1994-01-01
Experimental confirmation of the nucleon quark structure is usually identified with the results of MIT-SLAC inelastic scattering program. In particular, measurements of the cross-sections for the deep inelastic scattering (DIS) of electrons: e + p → e'+X allowed to study a matter granularity of the order of λ < 0.5 fermis. From very beginning DIS of polarized leptons off polarized protons was recognized as an excellent tool for studying of the internal spin structure of nucleons. Already the first studies of the deep inelastic scattering (DIS) of polarized leptons off polarized protons (EMC/CERN and SLAC/Stanford, 1987-88) have shown, that an amount of the proton spin carried by quarks is surprisingly small. This phenomenon was named ''the proton spin crisis''. In this lecture the present status of this subject is reviewed. After an introduction to the polarized DIS, the experimental aspects of the proton spin crisis are discussed. Then, some theoretical explanation of this phenomenon are listed. Recent progress in the obtaining polarized particles inside the storage rings as well as development of the polarized internal gas targets made possible to start new generation of experiments. Two such projects using polarized electrons, namely HERMES and SLAC E-143 as well as the proposed studies of polarized p + p DIS in the storage ring RHIC are presented. Some ideas about future extensions of such experiments are also discussed. Many facts concerning the subject were learned by the author during his participation in FILTEX/HERMES project in Heidelberg. Therefore, all members of this group are warmly acknowledged for many discussions of the problems raised in this lecture. (author). 31 refs, 1 fig., 1 tab
International Nuclear Information System (INIS)
Gmuca, S.; Antalik, R.; Kristiak, J.
1988-01-01
The collection contains full texts of 37 contributions; all fall within the INIS Subject Scope. The topics treated include some unsolved problems of nuclear reactions and relevant problems of nuclear structure at low and intermediate energies. (Z.S.)
Proceedings of the workshop on π, K, η-nucleon interactions
International Nuclear Information System (INIS)
1992-04-01
This workshop was held at the Research Center for Nuclear Physics, Osaka University, from February 18 to 20, 1991. This is the first attempt on this theme. The understanding of atomic nuclei as nucleon many body system is inseparable from the deeper understanding on the structures of nucleons and mesons and their interaction. It is considered that the physical experiment on medium energy atomic nuclei which is positively advanced at present in various places aims at the understanding of the hadron many body system of nucleons and mesons through the phenomena to which various degrees of freedom are related. This workshop is going to study on such hadron physics of atomic nuclei centering around the research including the elementary processes of various problems in the interactions of π and nuclei, K and nuclei and η and nuclei, taking the problems of the internal structures of hadrons themselves into the field of view. More than 50 people took part in the workshop, and also the reports from experiment side were carried out. In this book, 22 papers are collected. (K.I.)
Study of lambda production in Au+Au collisions at 11.5 GeV/c per nucleon
International Nuclear Information System (INIS)
Qi, Yujin
2000-01-01
Lambda production in central Au+Au collisions at 11.5 A·GeV/c has been studied at forward rapidities (y > 2.2) using the upgraded E877 experimental setup at the AGS. Lambdas are measured via the charged decay channel: Λ →pπ - and identified from the pπ - invariant mass spectra with the aids of a set of pair cuts. A comprehensive Monte Carlo simulation is made to extensively study the lambda reconstruction. The details of the data analysis for lambda identification are presented. The consistence of data analysis is examined by detailed comparison of the constructed proton and pion spectra with the previous results from the E877 1993 data set. The double differential multiplicities for lambda as a function of collision centrality are presented. Lambda rapidity distribution dN/dy is also studied. A pure thermal model is used to characterize the lambda spectra. The experimental results are compared to the predictions of the RQMD model (v2.3) in its cascade version and in the mode that takes into account the effect of mean-field. We also present the first measurement of the lambda directed flow at the AGS. In spite of limited statistics, a strong positive directed flow for lambda, which is comparable to the amplitude of the proton flow, is observed at forward rapidities (2.8 t , v 1 (p t ), is in agreement with the predictions of the RQMD model. (author)
Nucleon-nucleon correlations and the Coulomb Displacement Energy
International Nuclear Information System (INIS)
Van Neck, D.; Waroquier, M.; Heyde, K.
1997-01-01
Coulomb Displacement Energies (CDE) are accurately known for a wide range of nuclear masses. Assuming isospin independence in the nuclear Hamiltonian, the CDE can in first instance be interpreted as the Coulomb interaction energy between the density of the excess neutrons and the proton charge density in the parent nucleus. However, when using reasonable mean-field models for the proton and neutron density one underestimates the CDE by about 8% on average. This discrepancy is known as the Nolen-Schiffer anomaly, and various explanations have been put forward in the past. In this work the role of nucleon-nucleon correlations are re-examined. Calculations for the pair density functions in various nuclei are presented. Preliminary results suggest that the modifications to the mean-field pair density functions cause an enhancement of the CDE in the order of 4%, which is rather A-independent. (author)
Coherent generation of mesons in nucleon-nucleon interactions
Takibaev, Z S; Zaitsev, K G
1974-01-01
The authors have at an experiment conducted at CERN searched for events of 0 four-prong type which satisfy coherent pion production. The 2-meter hydrogen bubble chamber at CERN was bombarded by 19.07 GeV protons. The cross-section for four final state particle events was 13.04 mb. the cross-section for the process pp to pp pi /sup +/ pi /sup -/ was 1.1 mb and the cross section for coherent pion production was found to vary according to the criteria used between 0.044 mb. and 0.2 mb. Some theoretical work is given using the Glauber formalism in which it is assumed that the nucleon behaves like a nucleus and contains sub-particles. From the theory and data an upper limit of 10 is put on the number of subparticles in the nucleon. (9 refs).
International Nuclear Information System (INIS)
Herbach, C.M.; Hilscher, D.; Jahnke, U.; Tishchenko, V.G.; Galin, J.; Lott, B.; Letourneau, A.; Peghaire, A.; Filges, D.; Goldenbaum, F.; Nuenighoff, K.; Schaal, H.; Sterzenbach, G.; Wohlmuther, M.; Pienkowski, L.; Kostecke, D.; Schroeder, W.U.; Toke, J.
2003-01-01
NESSI, a 4π-detector for neutrons and charged particles, was used in studies of proton-induced spallation reactions at the COSY facility. Due to the high detection efficiency of NESSI for particles evaporated from excited nuclei, measured particle multiplicities provide event-by-event information on the nuclear excitation energy. Data obtained for proton-induced reactions on thin targets ranging from Al to U and proton energies from 0.8 to 2.5 GeV are compared with model predictions. (orig.)
International Nuclear Information System (INIS)
Chiba, Satoshi; Niita, Koji; Maruyama, Toshiki; Fukahori, Tokio; Takada, Hiroshi; Iwamoto, Akira
1995-01-01
The double-differential (p,xp') and (p,xn) reaction cross sections of 58 Ni and 90 Zr in the energy range from 120 to 200 MeV have been studied in terms of the Quantum Molecular Dynamics. It was found that the present calculation could give a quantitative explanation of experimentally observed values of both channels simultaneously without adjusting any parameter, showing the usefulness of the QMD approach to study the pre-equilibrium process in this energy region. Comparisons were also made with prediction of other theories such as Antisymmetrized Molecular Dynamics (AMD) and semiclassical distorted wave theory. Effect of the anti-symmetrization, which is in AMD but not in QMD, was found surprisingly small, being the result of QMD even slightly better. At the same time, it was found that the present calculation does not give the quasi-free peak of the 1-step cross sections similar to the semiclassical model, due probably to different treatment of the refraction and acceleration effects caused by the mean field. (author)
Nucleon-nucleon interaction in the soliton bag model
International Nuclear Information System (INIS)
Schuh, A.
1985-01-01
In the framework of the Soliton Bag Model introduced by Friedberg and Lee we treat S-wave nucleon-nucleon scattering. Our system consists of six quarks and the nontopological soliton field which represents an average colorfree interaction between the quarks and yields their (relative) confinement. The dynamical problem is treated by means of the Generator coordinate Method (GCM) where the total wave function is the weighted sum over static configurations of prescribed bag deformation. The static configurations needed for the GCM ansatz are generated starting from a potential well of prescribed deformation wherein we solve the Dirac equation for the quarks. The single particle quark orbitals are properly coupled with respect to orbital, color, spin, and isospin quantum numbers to form a totally antisymmetric 6-quark state. A mean field solution for the soliton field is then calculated and turned into a quantum mechanical state by a coherent state approximation. Since these static configurations are only to be seen as wave function generators for the GCM no selfconsistency between quark and soliton solution is enforced. With these configurations we then evaluate the norm and Hamiltonian kernels appearing in the GCM treatment. The Hill-Wheeler integral equation for the weight functions is transformed into a Schroedinger-type differential equation by an expansion into symmetric moments of up to second order. This equation is brought into a form where we can identify the interaction potential unambiguously. We find an intermediate range attraction of about 120 MeV and no attraction in the vicinity of the spherically symmetric shape of the system, in contradiction to the naive adiabatic potentials widely used in quark models for the nucleon-nucleon interaction up to now. (orig./HSI) [de
Two-body Dirac equations for nucleon-nucleon scattering
International Nuclear Information System (INIS)
Liu Bin; Crater, Horace
2003-01-01
We investigate the nucleon-nucleon interaction by using the meson exchange model and the two-body Dirac equations of constraint dynamics. This approach to the two-body problem has been successfully tested for QED and QCD relativistic bound states. An important question we wish to address is whether or not the two-body nucleon-nucleon scattering problem can be reasonably described in this approach as well. This test involves a number of related problems. First we must reduce our two-body Dirac equations exactly to a Schroedinger-like equation in such a way that allows us to use techniques to solve them already developed for Schroedinger-like systems in nonrelativistic quantum mechanics. Related to this, we present a new derivation of Calogero's variable phase shift differential equation for coupled Schroedinger-like equations. Then we determine if the use of nine meson exchanges in our equations gives a reasonable fit to the experimental scattering phase shifts for n-p scattering. The data involve seven angular momentum states including the singlet states 1 S 0 , 1 P 1 , 1 D 2 and the triplet states 3 P 0 , 3 P 1 , 3 S 1 , 3 D 1 . Two models that we have tested give us a fairly good fit. The parameters obtained by fitting the n-p experimental scattering phase shift give a fairly good prediction for most of the p-p experimental scattering phase shifts examined (for the singlet states 1 S 0 , 1 D 2 and triplet states 3 P 0 , 3 P 1 ). Thus the two-body Dirac equations of constraint dynamics present us with a fit that encourages the exploration of a more realistic model. We outline generalizations of the meson exchange model for invariant potentials that may possibly improve the fit
Hybrid-bubble-chamber study of nucleon diffractive dissociation in 14-GeV/c π+-p collisions
International Nuclear Information System (INIS)
Chadwick, G.B.; Carroll, J.T.; Chaloupka, V.; Ballam, J.; Bouchez, J.; Herquet, P.; Linglin, D.; Moffeit, K.C.; Stevens, R.; Davidson, V.; Firestone, A.; Nagy, F.; Peck, C.; Rosenfeld, L.; Ely, R.; Grether, D.; Oddone, P.
1978-01-01
Two experiments to study the low-mass diffractive enhancement recoiling against a fast forward pion from π + p and π - p collisions at 14 GeV/c are described. Photographs of the SLAC 40-in. hydrogen bubble chamber were triggered by a downstream spectrometer when the missing mass, calculated on-line, was above 1.1 GeV. Evidence for a nonresonant mass peak at 1.35 GeV is presented, as well as for production of resonances at about 1.5 and 1.68 GeV. The data are presented as distributions in mass and momentum transfer, as well as moments and isocline plots of the decay angular distributions. Model-independent features are emphasized
International Nuclear Information System (INIS)
1996-01-01
Coherent diffractive production reactions p+C→[Σ(1385)0K+]+C and p+C→[Σ0K+]+C on carbon nuclei were investigated in experiments at the SPHINX facility in a 70-GeV proton beam from the IHEP accelerator. A large body of evidence for new baryon states was obtained in the study of hyperon-kaon effective-mass spectra in these two reactions: X(2050) with mass M=2052±6 MeV and width Γ=35+22-35 MeV in M[Σ(1385)0K+] and X(2000) with M=1999±6 MeV and Γ=91±17 MeV in M[Σ0K+]. The unusual features of these massive states (comparatively small decay widths and anomalously large branching ratios for decays with strange-particle emission) make them very serious candidates for cryptoexotic pentaquark baryons with hidden strangeness. Preliminary data on the reactions p+N→[pη]+N and p+N→[pη']+N, as well as first results for M[Σ0K+], M(pη'), and M(pη') effective mass spectra in nonperipheral region (with p2T(greater-or-similar sign)0.3 GeV2), are presented
Energy Technology Data Exchange (ETDEWEB)
Iio, M., E-mail: masami.iio@kek.jp [RIKEN Nishina Center, RIKEN, Saitama 351-0198 (Japan); High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Ishimoto, S. [High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Sato, M. [Department of Physics, The University of Tokyo, Tokyo 113-0033 (Japan); Enomoto, S. [Department of Physics, Osaka University, Osaka 560-0043 (Japan); Hashimoto, T. [Department of Physics, The University of Tokyo, Tokyo 113-0033 (Japan); Suzuki, S. [High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Iwasaki, M. [RIKEN Nishina Center, RIKEN, Saitama 351-0198 (Japan); Department of Physics, Tokyo Institute of Technology, Tokyo 152-8551 (Japan); Hayano, R.S. [Department of Physics, The University of Tokyo, Tokyo 113-0033 (Japan)
2012-09-21
A liquid {sup 3}He target system was developed for experimental studies of kaonic atoms and kaonic nuclei at J-PARC. {sup 3}He gas is liquefied in a heat exchanger cooled below 3.2 K by decompression of liquid {sup 4}He. To maintain a large acceptance of the cylindrical detector system for decay particles of kaonic nuclei, efficient heat transport between the separate target cell and the main unit is realized using circulation of liquid {sup 3}He. To minimize the amount of material, a vacuum vessel containing a carbon fiber reinforced plastic cylinder having an inside diameter of 150 mm and a thickness of 1 mm was produced. A target cell made of pure beryllium and beryllium-aluminum alloy was developed not only to minimize the amount of material but also to obtain high X-ray transmission. During a cooling test, the target cell was kept at 1.3 K at a pressure of 33 mbar. The total estimated heat load to the components including the target cell and heat exchanger cooled by liquid {sup 4}He decompression, was 0.21 W, and the liquid {sup 4}He consumption rate was 50 L/day.
International Nuclear Information System (INIS)
St. Kistryn; E. Stephan; A. Biegun; K. Bodek; A. Deltuva; E. Epelbaum; K. Ermisch; W. Gloeckle; J. Golak; N. Kalantar-Nayestanaki; H. Kamada; M. Kis; B. Klos; A. Kozela; J. Kuros-Zolnierczuk; M. Mahjour-Shafiei; U.-G. Meissner; A. Micherdzinska; A. Nogga; P. U. Sauer; R. Skibinski; R. Sworst; H. Witala; J. Zejma; W. Zipper
2005-01-01
High precision cross-section data of the deuteron-proton breakup reaction at 130 MeV are presented for 72 kinematically complete configurations. The data cover a large region of the available phase space, divided into a systematic grid of kinematical variables. They are compared with theoretical predictions, in which the full dynamics of the three-nucleon (3N) system is obtained in three different ways: realistic nucleon-nucleon (NN) potentials are combined with model 3N forces (3NF's) or with an effective 3NF resulting from explicit treatment of the Delta-isobar excitation. Alternatively, the chiral perturbation theory approach is used at the next-to-next-to-leading order with all relevant NN and 3N contributions taken into account. The generated dynamics is then applied to calculate cross-section values by rigorous solution of the 3N Faddeev equations. The comparison of the calculated cross sections with the experimental data shows a clear preference for the predictions in which the 3NF's are included. The majority of the experimental data points is well reproduced by the theoretical predictions. The remaining discrepancies are investigated by inspecting cross sections integrated over certain kinematical variables. The procedure of global comparisons leads to establishing regularities in disagreements between the experimental data and the theoretically predicted values of the cross sections. They indicate deficiencies still present in the assumed models of the 3N system dynamics
Flavor asymmetry of the nucleon sea and the five-quark components of the nucleons.
Chang, Wen-Chen; Peng, Jen-Chieh
2011-06-24
The existence of the five-quark Fock states for the intrinsic charm quark in the nucleons was suggested some time ago, but conclusive evidence is still lacking. We generalize the previous theoretical approach to the light-quark sector and study possible experimental signatures for such five-quark states. In particular, we compare the d-ū and ū + d-s-s data with the calculations based on the five-quark Fock states. The qualitative agreement between the data and the calculations is interpreted as evidence for the existence of the intrinsic light-quark sea in the nucleons. The probabilities for the |uuduū and |uuddd Fock states are also extracted.
Energy Technology Data Exchange (ETDEWEB)
Chand, Ramesh
1963-10-15
Total scattering and absorption cross sections for anti K-nucleon collisions in I = 1, p_{3/2} - channel are given as functions of the two sets of energy dependent anti KN scattering parameters solutions, called solution A' and solution B'. These scattering parameters are obtained by linear interpolations between Watson's amplitudes around 400 MeV/c and the amplitude at the position of the pole in the anti KN scattering amplitude corresponding to the p_{3/2}-wave 1385 MeV Y_{1}-resonance with 50 MeV width. The zero-range expansion for p-wave anti K-nucleon phase shift and the scattering parameters of Watson's solution B are found to be in violation of the requirements of causality and of positive definiteness of transition probabilities. (auth)
Nucleon resonance production in electromagnetic interactions
International Nuclear Information System (INIS)
Mukhtarov, A.I.; Sadykhov, F.S.; Vasil'ev, O.A.; Abdullaev, S.K.; Mustafaev, V.Z.
1977-01-01
The results of investigation into nucleon resonance production (NR) in the ep → eNsup(*)(eNsup(*)γ) and eantie → antipNsup(*)(antipNsup(*)γ) processes, where Nsup(*) is a nucleon resonance of the 3/2 or 5/2 spin are presented. The calculation of the NR structure functions with the mass M and 3/2 or 5/2 spin is carried out. The Δ(1236), N(1688) and Δ(2160) NR production was observed in the ep → eNsup(*) and eantie → antipNsup(*) processes. For the ep-interaction the energy dependence of the NR production differential cross section at the electron scattering angle THETA = 6 dea and the angular dependence of the longitudinal polarization degree of the scattered electrons at the electron energy of 6 GeV are presented. The energy dependence of the total cross section of the NR production for eantie → antipNsup(*) is obtained. The ep → eNsup(*)γ radiative electron scattering on a proton is investigated only in case of the Δ(1236)NR production. The dependence of the effective cross section of the Δ(1236) radiative production process on THETA for the energies of an incident and scattered electron of 6 and 2.5 GeV, respectively, and the dependence of the cross section on the scattered electron energy at the initial energy of 6 GeV and THETA = 15 deg are presented
Study on structural integrity in box structures
International Nuclear Information System (INIS)
Asano, Masayuki; Ueta, Masahiro; Kanaoka, Tadashi; Ikeuchi, Toshiaki; Kodama, Tetsuhiro.
1991-01-01
This study was carried out to give an experimental foundation to the structural integrity of a box structure. Crack growth tests were performed on the reduced scale models, simulating typical portions of the box structure, in air at room temperature. The results show that the amount of crack growth is too small to injure the structural integrity of the models for the postulated loading cycle, and make clear the effective structure against crack growth. (author)
Antinucleon-nucleon annihilation dynamics
International Nuclear Information System (INIS)
Myhrer, F.; Massachusetts Inst. of Tech., Cambridge
1989-01-01
The antinucleon-nucleon annihilation is predominantly described by a hot-fireball process where the many final quantum numbers are distributed in a statistical fashion. It is argued that caution must be used in employing the long-range meson-exchange forces to describe the protonium atomic states. The simplest processes of two final mesons do show puzzling behavior which might be a reflection of quark dynamics, but no guiding principles for these quark calculations have been established yet. (orig.)
International Nuclear Information System (INIS)
Osman, A.; Ramadan, S.
1989-01-01
Faddeev equations of bound three-nucleon system are presented as a set of integral equations. To solve them, a sutable form of the nucleon-nucleon interactions is used: with the exchange of a scalar meson, a pseudoscalar meson and a massless vector meson. Higher orders of these different meson exchanges in the nucleon-nucleon interactions have been taken into account. With these nuclear forces and nucleon-nucleon interactions, the three-nucleon binding energy is calculated by solving the Faddeev integral equations. The obtained value of the three-nucleon binding energy is 8.441 MeV. The inclusion of the higher order terms of the different meson exchange in the nuclear nucleon-nucleon interaction is found to affect the three-nucleon binding by about 3.92%. 3 figs., 16 refs
International Nuclear Information System (INIS)
Ziaja, Beata
2002-01-01
Theoretical predictions show that at low values of Bjorken x the spin structure function g 1 is influenced by large logarithmic corrections ln 2 (1/x), which may be predominant in this region. These corrections are also partially contained in the next leading order (NLO) part of the standard Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) evolution. Here we calculate the nonsinglet component of the nucleon structure function, g 1 NS =g 1 p -g 1 n , and its first moment, using a unified evolution equation. This equation incorporates the terms describing the NLO DGLAP evolution and the terms contributing to the ln 2 (1/x) resummation. In order to avoid double counting in the overlapping regions of the phase space, a unique way of including the NLO terms into the unified evolution equation is proposed. The scheme-independent results obtained from this unified evolution are compared to the NLO fit to experimental data, GRSV2000. An analysis of the first moments of g 1 NS shows that the unified evolution including the ln 2 (1/x) resummation goes beyond the NLO DGLAP analysis. Corrections generated by double logarithms at low x influence the Q 2 dependence of the first moments strongly
General aspects of the nucleon-nucleon interaction and nuclear matter properties
Energy Technology Data Exchange (ETDEWEB)
Plohl, Oliver
2008-07-25
The subject of the present thesis is at first the investigation of model independent properties of the nucleon-nucleon (NN) interaction in the vacuum concerning the relativistic structure and the implications for nuclear matter properties. Relativistic and non-relativistic meson-exchange potentials, phenomenological potentials s well as potentials based on effective field theory (EFT) are therefore mapped on a relativistic operator basis given by the Clifford Algebra. This allows to compare the various approaches at the level of covariant amplitudes where a remarkable agreement is found. Furthermore, the relativistic self-energy is determined in the Hartree-Fock (HF) approximation. The appearance of a scalar and vector field of several hundred MeV magnitude is a general feature of relativistic descriptions of nuclear matter. Within QCD sum rules these fields arise due to the density dependence of chiral condensates. We find that independent of the applied NN interaction large scalar and vector fields are generated when the symmetries of the Lorentz group are restored. In the framework of chiral EFT (chEFT) it is shown, that these fields are generated by short-range next-to-leading order (NLO) contact terms, which are connected to the spin-orbit interaction. To estimate the effect arising from NN correlations the equation of state of nuclear and neutron matter is calculated in the Brueckner-HF (BHF) approximation applying chEFT. Although, as expected, a clear over-binding is found (at NLO a saturating behavior is observed), the symmetry energy shows realistic properties when compared to phenomenological potentials (within the same approximation) and other approaches. The investigation of the pion mass dependence within chEFT at NLO shows that the magnitude of the scalar and vector fields persists in the chiral limit - nuclear matter is still bound. In contrast to the case of a pion mass larger than the physical one the binding energy and saturation density are
General aspects of the nucleon-nucleon interaction and nuclear matter properties
International Nuclear Information System (INIS)
Plohl, Oliver
2008-01-01
The subject of the present thesis is at first the investigation of model independent properties of the nucleon-nucleon (NN) interaction in the vacuum concerning the relativistic structure and the implications for nuclear matter properties. Relativistic and non-relativistic meson-exchange potentials, phenomenological potentials s well as potentials based on effective field theory (EFT) are therefore mapped on a relativistic operator basis given by the Clifford Algebra. This allows to compare the various approaches at the level of covariant amplitudes where a remarkable agreement is found. Furthermore, the relativistic self-energy is determined in the Hartree-Fock (HF) approximation. The appearance of a scalar and vector field of several hundred MeV magnitude is a general feature of relativistic descriptions of nuclear matter. Within QCD sum rules these fields arise due to the density dependence of chiral condensates. We find that independent of the applied NN interaction large scalar and vector fields are generated when the symmetries of the Lorentz group are restored. In the framework of chiral EFT (chEFT) it is shown, that these fields are generated by short-range next-to-leading order (NLO) contact terms, which are connected to the spin-orbit interaction. To estimate the effect arising from NN correlations the equation of state of nuclear and neutron matter is calculated in the Brueckner-HF (BHF) approximation applying chEFT. Although, as expected, a clear over-binding is found (at NLO a saturating behavior is observed), the symmetry energy shows realistic properties when compared to phenomenological potentials (within the same approximation) and other approaches. The investigation of the pion mass dependence within chEFT at NLO shows that the magnitude of the scalar and vector fields persists in the chiral limit - nuclear matter is still bound. In contrast to the case of a pion mass larger than the physical one the binding energy and saturation density are
NUCLEON SPIN: Enigma confirmed
International Nuclear Information System (INIS)
Anon.
1994-01-01
In 1987 the European Muon Collaboration (EMC - June 1988, page 9) reported results from a polarized muon-proton scattering experiment at CERN which puzzled the particle and nuclear physics communities. Contrary to the prediction of the naive quark model, the EMC found that little of the proton spin seemed to be carried by the spins of the quarks. An extensive experimental programme was therefore immediately proposed at CERN, SLAC (Stanford) and DESY (Hamburg) to measure the spin structure function of the neutron and to repeat the proton measurement with improved accuracy
International Nuclear Information System (INIS)
Roy, B.J.; Jha, V.; Biswas, D.C.; Parmar, A.; Mohanty, Biraja; Oswal, M.; Jhingan, Akhil; Nandi, T.
2013-01-01
With a motivation to understand the reaction mechanism aspects, systematic study of multi-nucleon transfer in different projectile + target combinations has been made. Data taken at the BARC-TIFR Pelletron - LINAC facility, Mumbai for the systems 18 O+ 206 Pb and 18 O+ 12 C both studied at an incident energy of E( 18 O) = 140.4 MeV are reported in different communications to this proceedings. The present communication reports the measurements for 58 Ni( 12 C, x) and 56 Fe( 12 C, x) at incident 12 C energies of E( 12 C) = 45 and 60 MeV carried out at the pelletron accelerator facility, IUAC, Delhi
Nucleon-nucleon optical model for energies to 3 GeV
International Nuclear Information System (INIS)
Funk, A.; Von Geramb, H.V.; University of Melbourne, VIC; Amos, K.A.
2001-01-01
Several nucleon-nucleon potentials, Paris, Nijmegen, Argonne, and those derived by quantum inversion, which describe the NN interaction for T Lab ≤ 300 MeV are extended in their range of application as NN optical models. Extensions are made in r-space using complex separable potentials definable with a wide range of form factor options including those of boundary condition models. We use the latest phase shift analyses SP00 (FA00, WI00) of Arndt et al. from 300 MeV to 3 GeV to determine these extensions. The imaginary parts of the optical model interactions account for loss of flux into direct or resonant production processes. The optical potential approach is of particular value as it permits one to visualize fusion, and subsequent fission, of nucleons when T Lab > 2 GeV. We do so by calculating the scattering wave functions to specify the energy and radial dependences of flux losses and of probability distributions. Furthermore, half-off the energy shell t-matrices are presented as they are readily deduced with this approach. Such t-matrices are required for studies of few- and many-body nuclear reactions
The problem of nucleon production in the quark parton model
International Nuclear Information System (INIS)
Ranft, J.; Ranft, G.
1977-06-01
Quark fragmentation into hadrons, esp. nucleons, is studied fitting empirical fragmentation functions to e + e - annihilation data. We find fragmentation functions deviating from counting rule predictions as well as from scaling due to the threshold in kaon and nucleon production. Using these fragmentation functions we study particle production ratios in ep and large transverse momentum hadronic reactions. In both cases we find the ratios p/π + and antip/π - to agree roughly in magnitude with the measured ratios. The model is however inconsistent with the transverse momentum -12 behaviour of large transverse momentum proton spectra. (author)
Theoretical advancements and applications of the low-momentum nucleon-nucleon interaction
Holt, Jason Davidson
One of the most fundamental problems in low-energy nuclear physics is how to calculate nuclear structure observables from the most basic microscopic elements available. The low-momentum nucleon-nucleon interaction Vlow k provides a nearly-unique microscopic starting point for calculations involving finite nuclei. We first discuss the Renormalization Group and Effective Field Theory ideas behind the development of Vlow k and show that Vlow k is expressible as a bare interaction supplemented by a series of counter terms representing a short range interaction. One drawback of Vlow k is that it is necessarily non-Hermitian, and, as such not immediately suited for use in shell model calculations. To remedy this, we present a new method, based on Schmidt orthogonalization, that generates a family of Hermitian low-momentum interactions, and show it is a generalization of several well-known Hermitian transformations. Moreover, this transformation is shown to preserve phase shifts and deuteron properties. To get an effective interaction which takes into account the complicated processes taking place in the nuclear many-body system, Vlow k must be supplemented by the effects of core polarization. Typically calculated to second order, the higher order properties of core polarization have been long-debated. We develop a new method for calculating core polarization diagrams to all order, which, when applied to nuclei in the sd-shell region, is shown to be quite close to the second-order results. In the second part of the Dissertation, we study how the shell model effective interaction derived from Vlow k can predict and explain complex nuclear properties. In particular we will study in depth mixed-symmetry (MS) structures: collective nuclear excitations in which protons and neutrons move out of phase. After a basic theoretical description of these states in terms of the Interacting Boson Model and a discussion of the most important experimental studies, we show that shell model
Mechanisms of photon scattering on nucleons at intermediate energies
International Nuclear Information System (INIS)
L'vov, A.I.
1992-01-01
The principal question for studies of photon scattering by nucleons and nuclei is the following: Can photon scattering say something new about the structure of these objects in comparisons with photo- and electroproduction investigations? There is a general reason to believe that it is indeed the case. The Hamiltonian of the electromagnetic interaction has, in general, a piece quadratic in the electromagnetic field (the so-called two-photon seagull) which is seen only in two-photon processes, such as Compton scattering. Although the longitudnal part of this seagull is constrained by the gauge invariance, its transverse part is decoupled from the electromagnetic current and cannot be found in photoabsorption processes. The seagull S μν depends on explicit degrees of freedom included into the Hamiltonian. E.g. the non-relativisitic Schroedinger equation has an effective seagull due to the kinetic energy (p - eA) 2 /2M. Its parent relativistic Dirac equation has no seagull at all but has the same low-energy consequences due to additional degrees of freedom (antiparticles). In low-energy nuclear physics, with explicit meson exchanges and meson clouds (i.e. internal polarizability of the nucleons). By explicitly including the mesons into the Hamiltonian one can remove part of the seagulls. Then the rest of them will be a signal for degrees of freedom invisible in photoabsorption at energies of the considered scale. Some seagulls are related with t-channel exchanges in Compton scattering. The π o -exchange is seen in γp-scattering but has no counterpart in photoproduction off the proton. Thus, a complementary study of one- and two-photon reactions provides a way to look in a region of higher energies where direct studies via photoproduction processes may be hard
Δ-excitations and the three-nucleon force
International Nuclear Information System (INIS)
Epelbaum, E.; Krebs, H.; Meissner, Ulf-G.
2008-01-01
We study the three-nucleon force in chiral effective field theory with explicit Δ-resonance degrees of freedom. We show that up to next-to-next-to-leading order, the only contribution to the isospin symmetric three-nucleon force involving the spin-3/2 degrees of freedom is given by the two-pion-exchange diagram with an intermediate delta, frequently called the Fujita-Miyazawa force. We also analyze the leading isospin-breaking corrections due to the delta. For that, we give the first quantitative analysis of the delta quartet mass splittings in chiral effective field theory including the leading electromagnetic corrections. The charge-symmetry breaking three-nucleon force due to an intermediate delta excitation is small, of the order of a few keV
On the angular distribution of spectator nucleons in high-energy collisions with deuterium nuclei
International Nuclear Information System (INIS)
Bartke, J.
1975-01-01
Angular distributions of spectator nucleons in collisions of high-energy particles with deuterium nuclei are discussed in the framework of the impulse model. Comparison with experimental data shows that predictions following from this simple theoretical model are verified by experiment. Some general remarks on the study of angular distributions of spectator nucleons are given. (author)
On single nucleon wave functions in nuclei
International Nuclear Information System (INIS)
Talmi, Igal
2011-01-01
The strong and singular interaction between nucleons, makes the nuclear many body theory very complicated. Still, nuclei exhibit simple and regular features which are simply described by the shell model. Wave functions of individual nucleons may be considered just as model wave functions which bear little resemblance to the real ones. There is, however, experimental evidence for the reality of single nucleon wave functions. There is a simple method of constructing such wave functions for valence nucleons. It is shown that this method can be improved by considering the polarization of the core by the valence nucleon. This gives rise to some rearrangement energy which affects the single valence nucleon energy within the nucleus.
High energy pp and anti-pp elastic scattering in nucleon valence core model
International Nuclear Information System (INIS)
Islam, M.M.; Fearnley, T.
1986-01-01
Connection between the valence core model and the effective QCD models of nucleon structure is pointed out. Also, implication of recent anti-pp differential cross section measurements at 53 GeV on our previous calculations is discussed
Database of Nucleon-Nucleon Scattering Cross Sections by Stochastic Simulation, Phase I
National Aeronautics and Space Administration — A database of nucleon-nucleon elastic differential and total cross sections will be generated by stochastic simulation of the quantum Liouville equation in the...
Theoretical aspects of the nucleon-nucleon workshop
International Nuclear Information System (INIS)
Silbar, R.R.
1984-01-01
This report concentrates on the inelastic NN system from 300 to 1500 MeV. Topics covered include the visibility of quark signals, dibaryons, the model dependence of predicted NN inelasticities, and a review of how well present conventional models compare with a rapidly expanding database. The general conclusion is that there is so far no clear evidence in the NN system at intermediate energies for unconventional dibaryon resonances. Short remarks are also made concerning one theoretical contribution on elastic scattering and on new experimental results for deuteron photo-disintegration and pion-nucleon charge exchange. 11 references
Nuclear friction calculated from nucleon currents
International Nuclear Information System (INIS)
Pi, M.; Vinas, X.; Barranco, M.; La Rana, G.; Leray, S.; Lucas, R.; Ngo, C.; Tomasi, E.
1984-01-01
Nuclear friction can be connected to the number of nucleons exchanged between two interacting nuclei. The proximity scaling allows to reduce this problem to a calculation of the nucleon current between two semi infinite slabs of nuclear matter facing each other. In this paper we review the approximations and the results concerning this problem with a special emphasis on the physical ideas. Applications of nucleons currents to Fermi jets and to the calculation of a part of the imaginary potential are also discussed
Theoretical interpretation of medium energy nucleon nucleus inelastic scattering
International Nuclear Information System (INIS)
Lagrange, Christian
1970-06-01
A theoretical study is made of the medium energy nucleon-nucleus inelastic scattering (direct interaction), by applying the distorted wave Born approximation such as can be deduced from the paired equation method. It is applied to the interpretation of the inelastic scattering of 12 MeV protons by 63 Cu; this leads us to make use of different sets of wave functions to describe the various states of the target nucleus. We analyze the nature of these states and the shape of the nucleon-nucleus interaction potential, and we compare the results with those obtained from other theoretical and experimental work. (author) [fr