International Nuclear Information System (INIS)
Close, F.E.
1993-06-01
When the new data on polarised lepton nucleon scattering are compared at the same value of Q 2 and with a common set of assumptions, a consistent picture of the spin content of the nucleon begins to emerge. Higher order effects in O(α s ), higher twist effects, modern data on unpolarised structure functions and an updated value for F/D are all important in analysing the data. The detailed x dependences of the polarisation asymmetry in the valence quark region are shown to confirm 20 year old predictions of the quark model and I argue that these are an important ingredient in decoding the nucleon spin puzzle. (author)
International Nuclear Information System (INIS)
Close, F.E.
1994-01-01
When the new data on polarised lepton nucleon scattering are compared at the same value of Q 2 and with a common set of assumptions, a consistent picture of the spin content of the nucleon begins to emerge. Higher order effects in 0(α s ), higher twist effects, modern data on unpolarized structure functions and an updated value for F/D are all important in analysing the data. The detailed x dependences of the polarisation asymmetry in the valence quark region are shown to confirm 20 year old predictions of the quark model and I argue that these are an important ingredient in decoding the nucleon spin puzzle. (author)
Energy Technology Data Exchange (ETDEWEB)
Close, F.E.
1993-06-01
When the new data on polarised lepton nucleon scattering are compared at the same value of Q{sup 2} and with a common set of assumptions, a consistent picture of the spin content of the nucleon begins to emerge. Higher order effects in O({alpha}{sub s}), higher twist effects, modern data on unpolarised structure functions and an updated value for F/D are all important in analysing the data. The detailed x dependences of the polarisation asymmetry in the valence quark region are shown to confirm 20 year old predictions of the quark model and I argue that these are an important ingredient in decoding the nucleon spin puzzle. (author).
The spin structure of the nucleon
International Nuclear Information System (INIS)
Deur, A.
2008-02-01
This document describes the recent experimental results on the spin structure of the nucleon obtained with the electron accelerator Thomas Jefferson National Facility (Jefferson Lab), Virginia. We first discuss the goal of studying the nucleon spin structure and give the basis and phenomenology of high energy lepton scattering. Then, we discuss with some details a few sum rules concerning the spin structure of the nucleon. Those are important tools for studying the nucleon spin structure at Jefferson Lab. We then describe the present experimental situation and analyze the results. We have been able to determine an effective coupling constant for the strong interaction for any regime of quantum chromodynamics which proves that QCD is an approximately conformal theory. We conclude on the perspectives for this field of research, in particular with the 12 GeV energy upgrade of Jefferson Lab. The top priority will be the measurement of generalised parton distributions. The only issue that will stay misunderstood is the role of the very low x domain on the spin structure of the nucleon
NUCLEON SPIN: Enigma confirmed
International Nuclear Information System (INIS)
Anon.
1994-01-01
In 1987 the European Muon Collaboration (EMC - June 1988, page 9) reported results from a polarized muon-proton scattering experiment at CERN which puzzled the particle and nuclear physics communities. Contrary to the prediction of the naive quark model, the EMC found that little of the proton spin seemed to be carried by the spins of the quarks. An extensive experimental programme was therefore immediately proposed at CERN, SLAC (Stanford) and DESY (Hamburg) to measure the spin structure function of the neutron and to repeat the proton measurement with improved accuracy
International Nuclear Information System (INIS)
Ramachandran, R.
1994-09-01
The object of this brief review is to reconcile different points of view on how the spin of proton is made up from its constituents. On the basis of naive quark model with flavour symmetry such as isospin or SU(3) one finds a static description. On the contrary the local SU(3) colour symmetry gives a dynamical view. Both these views are contrasted and the role of U(1) axial anomaly and the ambiguity for the measurable spin content is discussed. (author). 16 refs, 1 fig
Nucleon Spin Structure: Longitudinal and Transverse
International Nuclear Information System (INIS)
Chen, Jian-Ping
2011-01-01
Inclusive Deep-Inelastic Scattering (DIS) experiments have provided us with the most extensive information on the unpolarized and longitudinal polarized parton (quark and gluon) distributions in the nucleon. It has becoming clear that transverse spin and transverse momentum dependent distributions (TMDs) study are crucial for a more complete understanding of the nucleon structure and the dynamics of the strong interaction. The transverse spin structure and the TMDs are the subject of increasingly intense theoretical and experimental study recently. With a high luminosity electron beam facility, JLab has played a major role in the worldwide effort to study both the longitudinal and transverse spin structure. Highlights of recent results will be presented. With 12-GeV energy upgrade, JLab will provide the most precise measurements in the valence quark region to close a chapter in longitudinal spin study. JLab will also perform a multi-dimensional mapping of the transverse spin structure and TMDs in the valence quark region through Semi-Inclusive DIS (SIDIS) experiments, providing a 3-d partonic picture of the nucleon in momentum space and extracting the u and d quark tensor charges of the nucleon. The precision mapping of TMDs will also allow a detailed study of the quark orbital motion and its dynamics.
Nucleon spin structure functions
International Nuclear Information System (INIS)
Close, F.E.
1989-01-01
There has been recent excitement arising from the claim by the EMC collaboration that none of the proton's spin is carried by quarks. There are many textbooks, including those written by some members of this audience which assert that the proton's spin is carried by quarks. I will review the history of deep inelastic scattering of polarized leptons from polarized protons, culminating in this most recent dramatic claim. I will show that, for the last decade, data have appeared consistent with predictions of the quark model and highlight what the new and potentially exciting data are. I will conclude with suggestions for the future, and discuss the polarization dependence of inclusive hadron production. 35 refs
Where does the nucleon spin come from?
International Nuclear Information System (INIS)
Frois, B.; CEA Centre d'Etudes de Saclay, 91 - Gif-sur-Yvette; Karliner, M.
1994-01-01
This article describes current thinking on exactly how quarks form neutrons and protons, and where nucleon spin is derived. The European Muon Collaboration has recently shown that, contrary to previous thinking, little of the proton spin is carried by quarks, rather that virtual strange quarks in a sea contribute to nucleon spin. Thus a fundamental gap is revealed in our understanding of nucleon structure which is explored in this article, by looking at several ways of accounting for these surprising results using the ''axiaanomaly'' and the idea of gluon polarization. Future experiments already planned, on polarized scattering, should resolve the enigma of proton spin. (UK)
Spin-polarized high-energy scattering of charged leptons on nucleons
Energy Technology Data Exchange (ETDEWEB)
Burkardt, Matthias; Nowak, Wolf-Dieter; MILLER, A.
2009-01-01
The proton is a composite object with spin one-half, understood to contain highly relativistic spin one-half quarks exchanging spin-one gluons, each possibly with significant orbital angular momenta. While their fundamental interactions are well described by Quantum ChromoDynamics (QCD), our standard theory of the strong interaction, nonperturbative calculations of the internal structure of the proton based directly on QCD are beginning to provide reliable results. Most of our present knowledge of the structure of the proton is based on experimental measurements interpreted within the rich framework of QCD. An area presently attracting intense interest, both experimental and theoretical, is the relationship between the spin of the proton and the spins and orbital angular momenta of its constituents. While remarkable progress has been made, especially in the last decade, the discovery and investigation of new concepts have revealed that much more remains to be learned. This progress i
Internal spin structure of the nucleon
International Nuclear Information System (INIS)
Hughes, V.W.; Kuti, J.
1983-01-01
The study of the structure of the proton and neutron through deep inelastic scattering, initially with electrons but subsequently with muons and neutrinos as well, has played a central role in establishing the quark-parton theory of the composition of hadrons and of quantum chromodynamics (QCD). One important aspect of these theoretical and experimental developments is the two spin-dependent structure functions, which are independent of the two spin-averaged structure functions and define the internal spin structure of the nucleon. Since both quarks and gluons possess spin and the forces between them are spin dependent, we can expect important information on these forces and on nucleon structure to be obtained through the study of the spindependent aspects of the nucleon wave function, as has been the case before in atomic and nuclear physics
Spin structure of the nucleon and polarization
International Nuclear Information System (INIS)
Prescott, C.Y.
1994-09-01
Recent experiments at CERN and SLAC have added new knowledge about the spin structure of the proton and the deuteron. A brief historical background is presented, the status of experiments is discussed, and progress in the understanding of the spin of the nucleon in the context of the quark parton model is summarized
Spin-polarized high-energy scattering of charged leptons on nucleons
Energy Technology Data Exchange (ETDEWEB)
Burkardt, M. [New Mexico State Univ., Las Cruces, NM (United States). Dept. of Physics; Miller, C.A. [TRIUMF, Vancouver, BC (Canada); Nowak, W.D. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany)
2009-08-15
The proton is a composite object with spin one-half, understood to contain highly relativistic spin one-half quarks exchanging spin-one gluons, each possibly with significant orbital angular momenta. While their fundamental interactions are well described by Quantum ChromoDynamics (QCD), our standard theory of the strong interaction, nonperturbative calculations of the internal structure of the proton based directly on QCD are beginning to provide reliable results. Most of our present knowledge of the structure of the proton is based on experimental measurements interpreted within the rich framework of QCD. An area presently attracting intense interest, both experimental and theoretical, is the relationship between the spin of the proton and the spins and orbital angular momenta of its constituents. While remarkable progress has been made, especially in the last decade, the discovery and investigation of new concepts have revealed that much more remains to be learned. This progress is reviewed and an outlook for the future is offered. (orig.)
Spin-polarized high-energy scattering of charged leptons on nucleons
International Nuclear Information System (INIS)
Burkardt, M.; Nowak, W.D.
2009-08-01
The proton is a composite object with spin one-half, understood to contain highly relativistic spin one-half quarks exchanging spin-one gluons, each possibly with significant orbital angular momenta. While their fundamental interactions are well described by Quantum ChromoDynamics (QCD), our standard theory of the strong interaction, nonperturbative calculations of the internal structure of the proton based directly on QCD are beginning to provide reliable results. Most of our present knowledge of the structure of the proton is based on experimental measurements interpreted within the rich framework of QCD. An area presently attracting intense interest, both experimental and theoretical, is the relationship between the spin of the proton and the spins and orbital angular momenta of its constituents. While remarkable progress has been made, especially in the last decade, the discovery and investigation of new concepts have revealed that much more remains to be learned. This progress is reviewed and an outlook for the future is offered. (orig.)
Spin of two-nucleon system and nucleon-antinucleon combination in the S-state
International Nuclear Information System (INIS)
Baranik, A.T.; El-Naghy, A.; Ramadan, S.
1988-08-01
The spin of the two nucleon combination was studied. It was found that the resultant combination could be treated as a boson with spin one or zero, and the spin one state is more stable than the spin zero state. In the case of nucleon-antinucleon combination the spin zero state is more stable than the spin one state. The approach succeeded in describing the general features of the nucleon-nucleon and nucleon antinucleon scattering and polarization. (author). 3 refs, 4 figs
Spin observables in nucleon-nucleus scattering
International Nuclear Information System (INIS)
Moss, J.M.
1982-01-01
The curse of inelastic nucleon scattering and charge exchange has always been the enormous complexity of the nucleon-nucleon (N-N) interaction. This complexity, however, can also be viewed as the ultimate promise of nucleons as probes of nuclear structure. Given an adequate theoretical basis, inelastic nucleon scattering is capable of providing information not obtainable with other probes. Recently a revolution of experimental technique has taken place that makes it desirable to re-examine the question of what physics is ultimately obtainable from inelastic nucleon scattering. It is now feasible to perform complete polarization transfer (PT) experiments for inelastic proton scattering with high efficiency and excellent energy resolution. Programs to measure PT obsevables are underway at several laboratories, and results are beginning to appear. Objectives of this presentation are to examine how such experiments are done, and what physics is presently obtained and may ultimately be learned from them
The spin structure of the nucleon
International Nuclear Information System (INIS)
Le Goff, J.M.
2005-02-01
The nucleon is a spin 1/2 particle. This spin can be decomposed into the contributions of its constituents: 1/2 equals 1/2*ΔΣ + Δg + L q + L g where the first term is the contribution from the spin of the quarks, the second term is the contribution from the spin of the gluons and L q and L g are the orbital momentum of the quark and the gluon respectively. The ΔΣ contribution of the spin of quarks can be studied through polarized deep inelastic scattering (DIS). We introduce DIS and the so-called parton model and then turn to the case of polarized DIS in the inclusive and semi-inclusive cases. We also discuss how a third parton distribution, called transversity, appears together with the unpolarized and the longitudinally polarized (or helicity) ones. We show how the longitudinally polarized gluon distribution can be measured. Then we focus on the SMC and COMPASS experiments performed at CERN. SMC confirmed a previous result by showing that the contribution of the spin of the quark to the spin of the nucleon was small. SMC also performed a measurement on the deuterium in order to test, for the first time, the Bjorker sum rules, which is a fundamental prediction of quantum chromodynamics. The COMPASS experiment started collecting data in 2002. Its main objectives are the gluon polarization Δg/g and the so-called transversity. (A.C.)
Nucleon Form Factors Using Spin Degrees of Freedom
International Nuclear Information System (INIS)
Jones, Mark
2002-01-01
An overview of recent measurements of the neutron and proton electromagnetic form factors from double polarization experiments. Spin observables are sensitive to the product of nucleon form factor which allows access to the small nucleon electric form factors
The spin structure of the nucleon
Energy Technology Data Exchange (ETDEWEB)
Le Goff, J.M
2005-02-15
The nucleon is a spin 1/2 particle. This spin can be decomposed into the contributions of its constituents: 1/2 equals 1/2*{delta}{sigma} + {delta}g + L{sub q} + L{sub g} where the first term is the contribution from the spin of the quarks, the second term is the contribution from the spin of the gluons and L{sub q} and L{sub g} are the orbital momentum of the quark and the gluon respectively. The {delta}{sigma} contribution of the spin of quarks can be studied through polarized deep inelastic scattering (DIS). We introduce DIS and the so-called parton model and then turn to the case of polarized DIS in the inclusive and semi-inclusive cases. We also discuss how a third parton distribution, called transversity, appears together with the unpolarized and the longitudinally polarized (or helicity) ones. We show how the longitudinally polarized gluon distribution can be measured. Then we focus on the SMC and COMPASS experiments performed at CERN. SMC confirmed a previous result by showing that the contribution of the spin of the quark to the spin of the nucleon was small. SMC also performed a measurement on the deuterium in order to test, for the first time, the Bjorker sum rules, which is a fundamental prediction of quantum chromodynamics. The COMPASS experiment started collecting data in 2002. Its main objectives are the gluon polarization {delta}g/g and the so-called transversity. (A.C.)
Internal Spin Structure of the Nucleon in Polarized Deep Inelastic Muon-Nucleon Scattering
International Nuclear Information System (INIS)
Wislicki, W.
1998-01-01
We present the study of the internal spin structure of the nucleon in spin-dependent deep inelastic scattering of muons on nucleons. The data were taken by the NA47 experiment of the Spin Muon Collaboration (SMC) on the high energy muon beam at CERN. The experiment used the polarized proton and deuteron targets. The structure function g 1 p (x) and g 1 d (x) were determined from the asymmetries of the spin-dependent event rates in the range of 0.003 2 >=10 GeV 2 . Using the first moments of these structure functions an agreement with the Bjorken sum rule prediction was found within one standard deviation. The first moments of g 1 (x), for both proton and deuteron, are smaller than the Ellis-Jaffe sum rule prediction. This disagreement can be interpreted in terms of negative polarization of the strange sea in the nucleon. The singlet part of the axial current matrix element can be interpreted as an overall spin carried by quarks in the nucleon. Its value is significantly smaller than nucleon spin. Semi-inclusive asymmetries of yields of positive and negative hadrons produced on both targets were also measured and analysed in term of quark-parton model, together with inclusive asymmetries. From this analysis the quark spin distributions were determined, separately for valence u and d quarks and for non-strange sea quarks. Valence u quarks are positively polarized and their polarization increases with x. Valence d quarks are negatively polarized and their polarization does not exhibit any x-dependence. The non-strange sea is unpolarized in the whole measured range of x. The first moments of the valance quark spin distributions were found consistent with the values obtained from weak decay constants F and D and their second moments are consistent with lattice QCD calculations. In the QCD analysis of the world data the first moment of the gluon spin distribution was found with a large error. Also, a search for a non-perturbative anomaly at high x was done on the world
The nucleon-nucleon spin-orbit interaction in the Skyrme model
International Nuclear Information System (INIS)
Riska, D.O.; Dannbom, K.
1987-01-01
The spin-orbit and quadratic spin-orbit components of the nucleon-nucleon interaction are derived in the Skyrme model at the classical level. These interaction components arise from the orbital and rotational motion of the soliton fields that form the nucleons. The isospin dependent part of the spin-orbit interaction is similar to the corresponding component obtained from boson exchange mechanisms at long distances although at short distances it is weaker. The isospin independent spin-orbit component is however different from the prediction of boson exchange mechanisms and has the opposite sign. The quadratic spin-orbit interaction is weak and has only an isospin dependent component
Structure and spin of the nucleon
Directory of Open Access Journals (Sweden)
Avakian H.
2014-03-01
Great progress has been made since then in measurements of different Single Spin Asymmetries (SSAs in semi-inclusive and hard exclusive processes providing access to TMDs and GPDs, respectively. Facilities world-wide involved in studies of the 3D structure of nucleon include HERMES, COMPASS, BELLE, BaBar, Halls A, B, and C at JLab, and PHENIX and STAR at RHIC (BNL. TMD studies in the Drell-Yan process are also becoming an important part of the program of hadron scattering experiments. Studies of TMDs are also among the main driving forces of the JLab 12-GeV upgrade project, several of the forward upgrade proposals of STAR and PHENIX at RHIC, and future facilities, such as the Electron Ion Collider (EIC, FAIR in Germany, and NICA in Russia. In this contribution we present an overview of the latest developments in studies of parton distributions and discuss newly released results, ongoing activities, as well as some future measurements.
Jets in high energy nucleon-nucleon collisions
International Nuclear Information System (INIS)
Strugalski, Z.
1982-01-01
From the experimental studies of high-energy hardon-nucleon and nucleon-nucleon collisions, by means of nuclear targets applied as detectors, it follows that particles are produced via intermediate objects created first in a 2 → 2 type endoergic reaction. These objects, called generons, decay in flight into finally observed particles and resonances after their lifetime tausub(g) > or approximately 10 - 22 s. The jet structure of the outcome in nucleon-nucleon collisions is a simple and indispensable consequence of this particle production mechanism. The picture of the jet structure in the collision outcome observed in the CMS of the colliding nucleons depends on the energy of these nUcleons. New particle production scheme is proposed, which can be tested experimentally; corresponding simple relations between characteristics of colliding nucleons and of produced jets are proposed for a testing
Spin-dependent parton distributions in the nucleon
Energy Technology Data Exchange (ETDEWEB)
Cloet, I.C. [Special Research Centre for the Subatomic Structure of Matter and Department of Physics and Mathematical Physics, University of Adelaide, SA 5005 (Australia); Bentz, W. [Department of Physics, School of Science, Tokai University Hiratsuka-shi, Kanagawa 259-1292 (Japan); Thomas, A.W. [Jefferson Lab, 12000 Jefferson Avenue, Newport News, VA 23606 (United States)
2005-04-15
Spin-dependent quark light-cone momentum distributions are calculated for a nucleon in the nuclear medium. We utilize a modified NJL model where the nucleon is described as a composite quark-diquark state. Scalar and vector mean fields are incorporated in the nuclear medium and these fields couple to the confined quarks in the nucleon. The effect of these fields on the spin-dependent distributions and consequently the axial charges is investigated. Our results for the 'spin-dependent EMC effect' are also discussed.
Spin structure of nucleon in QCD: inclusive and exclusive processes
International Nuclear Information System (INIS)
Teryaev, O.V.
2001-01-01
There are two basically independent ways to describe the nucleon spin structure. One is related to quark and gluon spins and another one to their total angular momenta. The latter spin structure may be studied, in principle, in hard exclusive processes
Spin symmetry in the Dirac sea derived from the bare nucleon-nucleon interaction
Shen, Shihang; Liang, Haozhao; Meng, Jie; Ring, Peter; Zhang, Shuangquan
2018-06-01
The spin symmetry in the Dirac sea has been investigated with relativistic Brueckner-Hartree-Fock theory using the bare nucleon-nucleon interaction. Taking the nucleus 16O as an example and comparing the theoretical results with the data, the definition of the single-particle potential in the Dirac sea is studied in detail. It is found that if the single-particle states in the Dirac sea are treated as occupied states, the ground state properties are in better agreement with experimental data. Moreover, in this case, the spin symmetry in the Dirac sea is better conserved and it is more consistent with the findings using phenomenological relativistic density functionals.
Experimental study of the nucleon spin structure
Energy Technology Data Exchange (ETDEWEB)
Litmaath, M.F.
1996-05-07
After introducing the theoretical framework, which includes DIS, the Quark Parton Model (QPM) and QCD, we describe the implementation of the experiment. The SMC uses a beam of 190 GeV naturally polarized muons, scattering off nucleons in a large cryogenic target containing protons or deuterons that are polarized through Dynamic Nuclear Polarization (DNP). The target material is located in two cells in a row, with opposite polarizations. Every 5 hours the polarizations of both cells are reversed. The target polarization is measured by an NMR system. The polarization of the beam is measured in a polarimeter, located downstream of the main experimental setup. (orig.).
Experimental study of the nucleon spin structure
International Nuclear Information System (INIS)
Litmaath, M.F.
1996-01-01
After introducing the theoretical framework, which includes DIS, the Quark Parton Model (QPM) and QCD, we describe the implementation of the experiment. The SMC uses a beam of 190 GeV naturally polarized muons, scattering off nucleons in a large cryogenic target containing protons or deuterons that are polarized through Dynamic Nuclear Polarization (DNP). The target material is located in two cells in a row, with opposite polarizations. Every 5 hours the polarizations of both cells are reversed. The target polarization is measured by an NMR system. The polarization of the beam is measured in a polarimeter, located downstream of the main experimental setup. (orig.)
Spin-dependent Nucleon Structure Studies at MIT/Bates
International Nuclear Information System (INIS)
Botto, T.
2005-01-01
We present preliminary results from recent measurements of the proton, neutron and deuterium electro-magnetic form factors obtained by the BLAST collaboration at the MIT/Bates Linear Accelerator Facility. BLAST (Bates Large Acceptance Spectrometer Toroid) is a large-acceptance multi-purpose detector dedicated to studies of exclusive spin-dependent electron scattering from internal polarized targets. BLAST makes use of stored electron beam currents in excess of 150 mA with a 60-70% polarization. The electron beam is let through a 15 mm diameter, 60 cm long open-ended storage cell which is fed with ultra-pure, high-polarization H1,D1 gas from an Atomic Beam Source. The target polarization can be rapidly reversed between different vector and tensor target states, thus minimizing systematic uncertainties. The target spin can be oriented to any in-plane direction via a set of Helmholtz coils. Target polarizations in the storage cell of up to 80% (vector) and 70% (tensor) have been routinely achieved over a period of several months. Our data on the D-vector(e-vector,e'n) reaction off vector polarized deuterium allow for a unique extraction of the neutron charge form factor G E n . At same time, complementary measurements of G M n , T20 and the spin-dependent nucleon momentum distributions in deuterium are obtained via the D-vector(e-vector,e'), D (e-vector,e'd) and D (e-vector,e'p) reactions. In addition, BLAST data on vector polarized hydrogen will provide novel measurements of the GE/GM form-factor ratio on the proton as well as of the spin-dependent electro-excitation of the Δ(1232) resonance. Such comprehensive program on few body physics is now well underway and preliminary data will be presented
Nucleon spin and quark content at the physical point
International Nuclear Information System (INIS)
Alexandrou, Constantia
2016-12-01
We present results on the spin and quark content of the nucleon using N_f=2 twisted mass clover-improved fermion simulations with a pion mass close to its physical value. We use recently developed methods to obtain accurate results for both connected and disconnected contributions. We provide results for the axial charge, quark and gluon momentum fraction as well as the light, strange and charm σ-terms.
Nucleon spin and quark content at the physical point
Energy Technology Data Exchange (ETDEWEB)
Alexandrou, Constantia [Cyprus Univ., Nicosia (Cyprus). Dept. of Physics; The Cyprus Institute, Nicosia (Cyprus). Computation-based Science and Technology Research Center; Constantinou, Martha; Hadjiyiannakou, Kyriakos; Kallidonis, Christos; Koutsou, Giannis [The Cyprus Institute, Nicosia (Cyprus). Computation-based Science and Technology Research Center; Jansen, Karl; Wiese, Christian [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Vaquero Aviles-Casco, Alejandro [INFN Sezione di Milano-Bicocca, Milano (Italy)
2016-12-15
We present results on the spin and quark content of the nucleon using N{sub f}=2 twisted mass clover-improved fermion simulations with a pion mass close to its physical value. We use recently developed methods to obtain accurate results for both connected and disconnected contributions. We provide results for the axial charge, quark and gluon momentum fraction as well as the light, strange and charm σ-terms.
Picture book of nucleon--nucleon scattering: amplitudes, models, double- and triple-spin observables
International Nuclear Information System (INIS)
Field, R.D.; Stevens, P.R.
1975-01-01
A comprehensive study of nucleon-nucleon scattering is presented with particular emphasis on the underlying amplitude structure. The five complex NN amplitudes are determined as a function of energy and momentum transfer from existing pp, anti pp, and np elastic scattering data and np and anti pp CHEX data. Some constraints determined from meson-baryon fits are imposed. The resulting amplitudes are used to make predictions of forthcoming double- and triple-spin measurements, and are also compared with the model amplitudes of Kane and Seidl. In addition, the usefulness of transversity amplitudes in NN scattering is discussed, the status of our present knowledge concerning them is examined, and model predictions of these amplitudes are displayed. The paper is presented in a ''picture book'' form so that the reader can get a good overview of NN scattering by studying the figures and reading the tables and figure captions
International Nuclear Information System (INIS)
Robinet, F.
2008-09-01
The 1/2 spin of the nucleon decomposes into 3 contributions: the quark and the gluon spin and their angular momenta. It is known that the fraction of the nucleon spin carried by the quark is small. Nowadays, a series of measurements aims to determine the contribution of the gluon spin in order, perhaps, to recover the totality of the nucleon spin. This is one of the main goals of the COMPASS experiment at CERN where spin asymmetries are measured using a polarized muon beam on a polarized nucleon target. The photon-gluon fusion processes, sensitive to the gluon polarization, are selected by detecting D 0 in the final state. This method offers a very clean selection of the desired signal but is statistically limited. The work presented in this thesis is primarily focused on the development of an analysis method maximizing the statistics. In particular, the D 0 mesons reconstruction is submitted to a high combinatorial background. Parameterizing the probability for an event to signal the statistical error is significantly reduced. The momentum resolution, associated with the particle detection, is an important factor allowing to minimize the combinatorial background. This thesis presents the characteristics of drift chamber-type detectors contributing to the performances of the COMPASS spectrometer. Finally, the results joined by the systematic errors study, are presented along with their implications on the contribution of the gluon spin to the nucleon spin. (author)
SANE Of Jefferson Lab: Spin Asymmetries on the Nucleon Experiment
International Nuclear Information System (INIS)
Ahmidouch, Abdellah
2011-01-01
The Spin Asymmetry on the Nucleon Experiment (SANE) at Jefferson Lab measures proton spin observables A 1 p , A 2 p and structure functions g 1 p and g 2 p over a broad range of Bjorken scaling variable x from 0.3 to 0.8, for four-momentum transfers ranging from 2.5 GeV 2 to 6.5 GeV 2 . Inclusive double spin asymmetries were measured by scattering 4.7 and 5.9-GeV longitudinally polarized electron beam off a polarized solid NH 3 target, in both parallel and near-perpendicular configuration. Scattered electrons were detected using a novel non-magnetic detector array with 194-msr acceptance. This paper presents the physics motivation for the experiment, the detector performance, and the latest status of the ongoing data analysis.
The nucleon spin and momentum decomposition using lattice QCD simulations
International Nuclear Information System (INIS)
Alexandrou, C.; Cyprus Univ., Nicosia; Constantinou, M.; Hadjiyiannakou, K.; Kallidonis, C.; Koutsou, G.; Jansen, K.; Wiese, K.; Vaquero Aviles-Casco, A.
2017-11-01
We determine within lattice QCD, the nucleon spin carried by valence and sea quarks, and gluons. The calculation is performed using an ensemble of gauge configurations with two degenerate light quarks with mass fixed to approximately reproduce the physical pion mass. We find that the total angular momentum carried by the quarks in the nucleon is J u+d+s =0.408(61) stat. (48) syst. and the gluon contribution is J g =0.133(11) stat. (14) syst. giving a total of J N =0.54(6) stat. (5) syst. consistent with the spin sum. For the quark intrinsic spin contribution we obtain (1)/(2)ΔΣ u+d+s =0.201(17) stat. (5) syst. All quantities are given in the MS scheme at 2 GeV. The quark and gluon momentum fractions are also computed and add up to left angle x right angle u+d+s + left angle x right angle g =0.804(121) stat. (95) syst. +0.267(12) stat. (10) syst. =1.07(12) stat. (10) syst. satisfying the momentum sum.
The nucleon spin and momentum decomposition using lattice QCD simulations
Energy Technology Data Exchange (ETDEWEB)
Alexandrou, C. [The Cyprus Institute, Nicosia (Cyprus). Computation-based Science and Technology Research Center; Cyprus Univ., Nicosia (Cyprus). Dept. of Physics; Constantinou, M. [Temple Univ., Philadelphia, PA (United States). Dept. of Physics; Hadjiyiannakou, K.; Kallidonis, C.; Koutsou, G. [The Cyprus Institute, Nicosia (Cyprus). Computation-based Science and Technology Research Center; Jansen, K.; Wiese, K. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Vaquero Aviles-Casco, A. [Utah Univ., Salt Lake City, UT (United States). Dept. of Physics and Astronomy
2017-11-15
We determine within lattice QCD, the nucleon spin carried by valence and sea quarks, and gluons. The calculation is performed using an ensemble of gauge configurations with two degenerate light quarks with mass fixed to approximately reproduce the physical pion mass. We find that the total angular momentum carried by the quarks in the nucleon is J{sub u+d+s}=0.408(61){sub stat.}(48){sub syst.} and the gluon contribution is J{sub g}=0.133(11){sub stat.}(14){sub syst.} giving a total of J{sub N}=0.54(6){sub stat.}(5){sub syst.} consistent with the spin sum. For the quark intrinsic spin contribution we obtain (1)/(2)ΔΣ{sub u+d+s}=0.201(17){sub stat.}(5){sub syst.} All quantities are given in the MS scheme at 2 GeV. The quark and gluon momentum fractions are also computed and add up to left angle x right angle {sub u+d+s}+ left angle x right angle {sub g}=0.804(121){sub stat.}(95){sub syst.}+0.267(12){sub stat.}(10){sub syst.}=1.07(12) {sub stat.}(10){sub syst.} satisfying the momentum sum.
Chiral effective-field theory of the nucleon spin structure
Pascalutsa, Vladimir
2017-01-01
I will review the recent chiral EFT calculations of the nucleon (spin) structure functions at low Q2, confronted with the Jefferson Lab measurements. The moments of the structure functions correspond with various polarizabilities, and I will explain why one of them - δLT - is especially interesting. I will also discuss how the spin structure functions at low Q enter in the atomic calculations of the hyperfine splittings and how they are impacting the ongoing experimental program at PSI (Switzerland) to measure the ground-state hyperfine splitting of muonic hydrogen. Partially supported by the Deutsche Forschungsgemeinschaft (DFG) through the Collaborative Research Center SFB 1044 [The Low-Energy Frontier of the Standard Model].
Towards the solution of the nucleon spin problem
International Nuclear Information System (INIS)
Moroz, Z.
1994-01-01
Experimental confirmation of the nucleon quark structure is usually identified with the results of MIT-SLAC inelastic scattering program. In particular, measurements of the cross-sections for the deep inelastic scattering (DIS) of electrons: e + p → e'+X allowed to study a matter granularity of the order of λ < 0.5 fermis. From very beginning DIS of polarized leptons off polarized protons was recognized as an excellent tool for studying of the internal spin structure of nucleons. Already the first studies of the deep inelastic scattering (DIS) of polarized leptons off polarized protons (EMC/CERN and SLAC/Stanford, 1987-88) have shown, that an amount of the proton spin carried by quarks is surprisingly small. This phenomenon was named ''the proton spin crisis''. In this lecture the present status of this subject is reviewed. After an introduction to the polarized DIS, the experimental aspects of the proton spin crisis are discussed. Then, some theoretical explanation of this phenomenon are listed. Recent progress in the obtaining polarized particles inside the storage rings as well as development of the polarized internal gas targets made possible to start new generation of experiments. Two such projects using polarized electrons, namely HERMES and SLAC E-143 as well as the proposed studies of polarized p + p DIS in the storage ring RHIC are presented. Some ideas about future extensions of such experiments are also discussed. Many facts concerning the subject were learned by the author during his participation in FILTEX/HERMES project in Heidelberg. Therefore, all members of this group are warmly acknowledged for many discussions of the problems raised in this lecture. (author). 31 refs, 1 fig., 1 tab
Local quark-hadron duality of nucleon spin structure functions with target mass corrections
International Nuclear Information System (INIS)
Dong, Y.B. . E-mail dongyb@mail.ihep.ac.cn; Chen, D.Y.
2007-01-01
Target mass corrections to nucleon spin structure functions are analyzed. Our results show that the corrections are important to the structure functions in a large x region. Moreover, they play a remarkable role to the local quark-hadron duality of the nucleon spin structure functions in three individual inelastic resonance production regions
International Nuclear Information System (INIS)
Hassan, M.Y.; Ramadan, S.
1978-01-01
The binding energy of nuclear matter with an excess of neutrons, with spin-up neutrons and spin-up protons (characterized by the corresponding parameters αsub(tau)=(N-Z)/A, αsub(n)=(N(up)-N(down))/A, and αsub(p)=(Z(up)-Z(down))/A) contains three symmetry energies: the isospin symmetry energy epsilon sub(tau), the spin symmetry energy epsilon sub(sigma) and the spin-isospin symmetry energy epsilon sub(sigma tau). These energies are calculated using velocity-dependent effective potential of s-wave interaction, which was developed by Dzhibuti and Mamasakhlisov. The spin, isospin and spin-isospin dependent parts of the single-particle potential in nuclear matter are also calculated using the same effective nucleon-nucleon potentials. The spin-spin part of the optical model potential is estimated. (author)
Light-cone quark model with spin force for the nucleon and Δ(1232)
International Nuclear Information System (INIS)
Weber, H.J.
1992-01-01
Electromagnetic structure functions for the nucleon, static observables for the nucleon and N→D(1232) transition form factors are calculated in a relativistic constituent quark model on the light cone. The model simulates the main effect of the spin force between quarks in terms of smaller (and lighter) scalar ud diquarks in the nucleon. The polarized proton structure function is found to agree with the EMC data. (orig.)
Sum rule measurements of the spin-dependent compton amplitude (nucleon spin structure at Q2 = 0)
International Nuclear Information System (INIS)
Babusci, D.; Giordano, G.; Baghaei, H.; Cichocki, A.; Blecher, M.; Breuer, M.; Commeaux, C.; Didelez, J.P.; Caracappa, A.; Fan, Q.
1995-01-01
Energy weighted integrals of the difference in helicity-dependent photo-production cross sections (σ 1/2 - σ 3/2 ) provide information on the nucleon's Spin-dependent Polarizability (γ), and on the spin-dependent part of the asymptotic forward Compton amplitude through the Drell-Hearn-Gerasimov (DHG) sum rule. (The latter forms the Q 2 =0 limit of recent spin-asymmetry experiments in deep-inelastic lepton-scattering.) There are no direct measurements of σ 1/2 or σ 3/2 , for either the proton or the neutron. Estimates from current π-photo-production multipole analyses, particularly for the proton-neutron difference, are in good agreement with relativistic-l-loop Chiral calculations (χPT) for γ but predict large deviations from the DHG sum rule. Either (a) both the 2-loop corrections to the Spin-Polarizability are large and the existing multipoles are wrong, or (b) modifications to the Drell-Hearn-Gerasimov sum rule are required to fully describe the isospin structure of the nucleon. The helicity-dependent photo-reaction amplitudes, for both the proton and the neutron, will be measured at LEGS from pion-threshold to 470 MeV. In these double-polarization experiments, circularly polarized photons from LEGS will be used with SPHICE, a new frozen-spin target consisting of rvec H · rvec D in the solid phase. Reaction channels will be identified in SASY, a large detector array covering about 80% of 4π. A high degree of symmetry in both target and detector will be used to minimize systematic uncertainties
Constituent quarks and the gluonic contribution to the spin of the nucleon
International Nuclear Information System (INIS)
Eldahoumi, Gamal
2009-01-01
The internal structure of the nucleon is more complicated than expected in a simple quark model. In particular, the portion of the nucleon spin carried by the spins of the quarks is not, as expected, of the order of one, but according to the experimental data much smaller. In this thesis we study the spin structure of the proton in quantum chromodynamics. The constituent quark model, based on SU(6), predicts that the spin of the proton should be carried by the quarks, in disagreement with the experiments. It appears strange, that the theoretical model works so well for the magnetic moments of the nucleons, but not for the spin, although the spin and the magnetic moments are closely related to each other. We shall resolve this problem by assuming that the constituent quarks have an internal structure on their own. Thus a constituent quark has a dynamical structure, and we can introduce notions like the quark or gluon distributions inside a constituent quark. In the light of new experimental data from HERMES, COMPASS, JLab, and RHIC-spin, the current status of our knowledge of the spin structure is discussed in the two theoretical frameworks: the naive parton model, and the QCD evolved parton model. QCD a is successful theory, both in perturbative and non-perturbative regions, but the spin of the nucleon still needs to be explained within QCD. (orig.)
Constituent quarks and the gluonic contribution to the spin of the nucleon
Energy Technology Data Exchange (ETDEWEB)
Eldahoumi, Gamal
2009-01-15
The internal structure of the nucleon is more complicated than expected in a simple quark model. In particular, the portion of the nucleon spin carried by the spins of the quarks is not, as expected, of the order of one, but according to the experimental data much smaller. In this thesis we study the spin structure of the proton in quantum chromodynamics. The constituent quark model, based on SU(6), predicts that the spin of the proton should be carried by the quarks, in disagreement with the experiments. It appears strange, that the theoretical model works so well for the magnetic moments of the nucleons, but not for the spin, although the spin and the magnetic moments are closely related to each other. We shall resolve this problem by assuming that the constituent quarks have an internal structure on their own. Thus a constituent quark has a dynamical structure, and we can introduce notions like the quark or gluon distributions inside a constituent quark. In the light of new experimental data from HERMES, COMPASS, JLab, and RHIC-spin, the current status of our knowledge of the spin structure is discussed in the two theoretical frameworks: the naive parton model, and the QCD evolved parton model. QCD a is successful theory, both in perturbative and non-perturbative regions, but the spin of the nucleon still needs to be explained within QCD. (orig.)
International Nuclear Information System (INIS)
Babaev, Z.R.; Shchelkachev, A.V.
1991-01-01
Prospects of decribing polarization effects within the framework of quark-parton models (QPM) using a density matrix in order to describe the parton spin states in hadrons are discussed. Such an approach allows one to get rid of contradictions occuring when describing the QPM of reactions of hadrons polarized in perpendicular to the scattering plane in case of applying spin distribution functions. Different model predictions for the observed one- and two-spin correlations in elastic nucleon-nucleon scattering are analyzed. 12 refs., 2 tabs
International Nuclear Information System (INIS)
Khan, H.
1990-01-01
This thesis explores deep inelastic scattering of a lepton beam from a polarized nuclear target with spin J=1. After reviewing the formation for spin-1/2, the structure functions for a spin-1 target are defined in terms of the helicity amplitudes for forward compton scattering. A version of the convolution model, which incorporates relativistic and binding energy corrections is used to calculate the structure functions of a neutron target. A simple parameterization of these structure functions is given in terms of a few neutron wave function parameters and the free nucleon structure functions. This allows for an easy comparison of structure functions calculated using different neutron models. (author)
Recent COMPASS results on the nucleon longitudinal spin structure and QCD fits
Directory of Open Access Journals (Sweden)
Andrieux Vincent
2014-01-01
Full Text Available The latest measurements of the proton longitudinal spin structure function, ɡ1p, in the deep inelastic (DIS regime are presented. They improve the statistical accuracy of the existing data and extend the kinematic domain to a lower value of x and higher values of Q2. A global NLO QCD fit of all ɡ1 world data on the proton, deuteron and neutron has been achieved. The results give a quantification of the quark spin contribution to the nucleon spin, 0.26 < ΔΣ < 0.34 at 3 (GeV/c2 in M̅S̅ scheme. The errors are dominated by the uncertainty on the shape of the functional forms assumed in the fit. A new verification of the fundamental Bjorken sum rule is obtained at a 9% level, using only COMPASS ɡ1 proton and deuteron measurements. Preliminary results of a reevaluation of the gluon polarization Δɡ/ɡ are presented. The analysis is based on double spin asymmetry of high-pT hadron production cross-sections in the DIS regime. A positive value of 〈Δɡ/ɡ〉 = 0.113 ± 0.038 ± 0.035 is obtained at leading order at x ~ 0.1. In parallel, the double spin asymmetry in the photoproduction regime is also studied. Finally, preliminary results on quark fragmentation functions into pions extracted from a LO fit of pion multiplicities in semi-inclusive DIS are presented.
Proceedings of RIKEN BNL Research Center Workshop: Brookhaven Summer Program on Nucleon Spin Physics
Energy Technology Data Exchange (ETDEWEB)
Aschenauer, A.; Qiu, Jianwei; Vogelsang, W.; Yuan, F.
2011-08-02
Understanding the structure of the nucleon is of fundamental importance in sub-atomic physics. Already the experimental studies on the electro-magnetic form factors in the 1950s showed that the nucleon has a nontrivial internal structure, and the deep inelastic scattering experiments in the 1970s revealed the partonic substructure of the nucleon. Modern research focuses in particular on the spin and the gluonic structure of the nucleon. Experiments using deep inelastic scattering or polarized p-p collisions are carried out in the US at the CEBAF and RHIC facilities, respectively, and there are other experimental facilities around the world. More than twenty years ago, the European Muon Collaboration published their first experimental results on the proton spin structure as revealed in polarized deep inelastic lepton-nucleon scattering, and concluded that quarks contribute very little to the proton's spin. With additional experimental and theoretical investigations and progress in the following years, it is now established that, contrary to naive quark model expectations, quarks and anti-quarks carry only about 30% of the total spin of the proton. Twenty years later, the discovery from the polarized hadron collider at RHIC was equally surprising. For the phase space probed by existing RHIC experiments, gluons do not seem to contribute any to the proton's spin. To find out what carries the remaining part of proton's spin is a key focus in current hadronic physics and also a major driving force for the new generation of spin experiments at RHIC and Jefferson Lab and at a future Electron Ion Collider. It is therefore very important and timely to organize a series of annual spin physics meetings to summarize the status of proton spin physics, to focus the effort, and to layout the future perspectives. This summer program on 'Nucleon Spin Physics' held at Brookhaven National Laboratory (BNL) on July 14-27, 2010 [http://www.bnl.gov/spnsp/] is the
Resonance estimates for single spin asymmetries in elastic electron-nucleon scattering
International Nuclear Information System (INIS)
Barbara Pasquini; Marc Vanderhaeghen
2004-01-01
We discuss the target and beam normal spin asymmetries in elastic electron-nucleon scattering which depend on the imaginary part of two-photon exchange processes between electron and nucleon. We express this imaginary part as a phase space integral over the doubly virtual Compton scattering tensor on the nucleon. We use unitarity to model the doubly virtual Compton scattering tensor in the resonance region in terms of γ* N → π N electroabsorption amplitudes. Taking those amplitudes from a phenomenological analysis of pion electroproduction observables, we present results for beam and target normal single spin asymmetries for elastic electron-nucleon scattering for beam energies below 1 GeV and in the 1-3 GeV region, where several experiments are performed or are in progress
International Nuclear Information System (INIS)
Kaliambos, L.A.
2008-01-01
Fundamental interactions of spinning electrons at an interelectron separation less than 578.8 fm yield attractive electromagnetic forces with S = 0 creating vibrations under a motional emf. They explain the indistinguishability of electrons and give a vibration energy able for calculating the ground-state energies of many-electron atoms without using any perturbative approximation. Such forces create two-electron orbitals able to account for the exclusion principal and the mechanism of covalent bonds. In the outer subshells of atoms the penetrating orbitals interact also as pair-pair systems and deform drastically the probability densities of the quantum mechanical electron clouds. Such a dynamics of deformation removes the degeneracy and leads to the deviation from the shell scheme. However in the interior of atoms the large nuclear charge leads to a spherically symmetric potential with non-interacting pairs for creating shells of degenerate states giving an accurate explanation of the X-ray lines. On the other hand, considerable charge distributions in nucleons as multiples of 2e/3 and - e/3 determined by the magnetic moments, interact for creating the nuclear structure with p-n bonds. Such spin-spin interactions show that the dominant concept of the untisymmetric wave function for fermions is inapplicable not only in the simple p-n, p-p, and n-n systems but also in the LS coupling of atoms in which the electrons interact from different quantum states giving either S = 0 or S = l. (author)
Study of the spin structure functions of the nucleon: the E143 experiment at SLAC
International Nuclear Information System (INIS)
Grenier, Philippe
1995-01-01
In this thesis, we present the results of the E143 experiment of deep inelastic scattering of 29 GeV polarized electrons from polarized NH 3 and ND 3 targets, at SLAC. The goal of the experiment is the measurement of the spin structure functions g 1 and g 2 of the nucleon which provide information on its internal spin structure. Experimentally, the structure functions are extracted from the measurement of cross section asymmetries. Our measured values of the first moment of g 1 are two and three standard deviations below the Ellis-Jaffe sum rule predictions, for the proton and for the deuteron, respectively. The Bjoerken sum rule, a QCD fundamental prediction, has been confirmed. We find the quark contribution to the nucleon spin to be around 30 pc. Our results on g 2 are well described by the Wandzura-Wilczek expression. (author) [fr
Moments of nucleon spin-dependent generalized parton distributions
International Nuclear Information System (INIS)
Schroers, W.; Brower, R.C.; Dreher, P.; Edwards, R.; Fleming, G.; Haegler, Ph.; Heller, U.M.; Lippert, Th.; Negele, J.W.; Pochinsky, A.V.; Renner, D.B.; Richards, D.; Schilling, K.
2004-01-01
We present a lattice measurement of the first two moments of the spin-dependent GPD H∼(x, ξ, t). From these we obtain the axial coupling constant and the second moment of the spin-dependent forward parton distribution. The measurements are done in full QCD using Wilson fermions. In addition, we also present results from a first exploratory study of full QCD using Asqtad sea and domain-wall valence fermions
High energy nucleonic component of cosmic rays at mountain altitudes
Stora, Raymond Félix
The diffusion equations describing the unidimensional propagation of .the high energy nucleonic component of cosmic rays throughout the atmosphere are sol"V'ed under two assumptions: (l) The nucleon-nucleon collisions are described according to Fermi's therlnOdynamical model involving completely inelastic pion and.nucleon-antinucleon pair production. (2) A somewhat opposite assumption is made assuming partially elastic collisions without nucleon-anti.nucleon pair production. Due to the present inaccuracy of experiments, we are able to derive only tentati v.e conclusions. The values computed under both hypotheses for the absorption mean free path and the charged to neutral particles ratio are found in acceptable ranges when compared to experimental data. The diffeential energy spectrum at a given depth is always found steeper than the primary, and steeper than indicated by experimental values if the primary is taken proportional to the 2.5 inverse power of energy.
Quark-hadron duality of nucleon spin structure function
International Nuclear Information System (INIS)
Dong, Y.B.
2005-01-01
Bloom-Gilman quark-hadron duality of nuclear spin structure function is studied by comparing the integral of g 1 from perturbative QCD prediction in the scaling region to the moment of g 1 in the resonance region. The spin structure function in the resonance region is estimated by the parametrization forms of non-resonance background and of resonance contributions. The uncertainties of our calculations due to those parametrization forms are discussed. Moreover, the effect of the Δ(1232)-resonance in the first resonance region and the role of the resonances in the second resonance region are explicitly shown. Elastic peak contribution to the duality is also analyzed. (orig.)
Effect of Δ-isobar excitation on spin-dependent observables of elastic nucleon-deuteron scattering
International Nuclear Information System (INIS)
Nemoto, S.; Oryu, S.; Chmielewski, K.; Sauer, P.U.
2000-01-01
Δ-isobar excitation in the nuclear medium yields an effective three-nucleon force. A coupled-channel formulation with Δ-isobar excitation developed previously is used. The three-particle scattering equations are solved by a separable expansion of the two-baryon transition matrix for elastic nucleon-deuteron scattering. The effect of Δ-isobar excitation on the spin-dependent observables is studied at energies above 50 MeV nucleon lab energy. (author)
Nucleon electric dipole moments in high-scale supersymmetric models
International Nuclear Information System (INIS)
Hisano, Junji; Kobayashi, Daiki; Kuramoto, Wataru; Kuwahara, Takumi
2015-01-01
The electric dipole moments (EDMs) of electron and nucleons are promising probes of the new physics. In generic high-scale supersymmetric (SUSY) scenarios such as models based on mixture of the anomaly and gauge mediations, gluino has an additional contribution to the nucleon EDMs. In this paper, we studied the effect of the CP-violating gluon Weinberg operator induced by the gluino chromoelectric dipole moment in the high-scale SUSY scenarios, and we evaluated the nucleon and electron EDMs in the scenarios. We found that in the generic high-scale SUSY models, the nucleon EDMs may receive the sizable contribution from the Weinberg operator. Thus, it is important to compare the nucleon EDMs with the electron one in order to discriminate among the high-scale SUSY models.
Nucleon electric dipole moments in high-scale supersymmetric models
Energy Technology Data Exchange (ETDEWEB)
Hisano, Junji [Kobayashi-Maskawa Institute for the Origin of Particles and the Universe (KMI),Nagoya University,Nagoya 464-8602 (Japan); Department of Physics, Nagoya University,Nagoya 464-8602 (Japan); Kavli IPMU (WPI), UTIAS, University of Tokyo,Kashiwa, Chiba 277-8584 (Japan); Kobayashi, Daiki; Kuramoto, Wataru; Kuwahara, Takumi [Department of Physics, Nagoya University,Nagoya 464-8602 (Japan)
2015-11-12
The electric dipole moments (EDMs) of electron and nucleons are promising probes of the new physics. In generic high-scale supersymmetric (SUSY) scenarios such as models based on mixture of the anomaly and gauge mediations, gluino has an additional contribution to the nucleon EDMs. In this paper, we studied the effect of the CP-violating gluon Weinberg operator induced by the gluino chromoelectric dipole moment in the high-scale SUSY scenarios, and we evaluated the nucleon and electron EDMs in the scenarios. We found that in the generic high-scale SUSY models, the nucleon EDMs may receive the sizable contribution from the Weinberg operator. Thus, it is important to compare the nucleon EDMs with the electron one in order to discriminate among the high-scale SUSY models.
Spin polarization of 34Al fragments produced by nucleon pickup at intermediate energies
International Nuclear Information System (INIS)
Turzo, K.; Himpe, P.; Borremans, D.; Mallion, S.; Neyens, G.; Vermeulen, N.; Yordanov, D.; Balabanski, D.L.; Belier, G.; Daugas, J.M.; Georgiev, G.; Oliveira de Santos, F.; Matea, I.; Stodel, Ch.; Penionzhkevich, Yu. E.
2006-01-01
The polarization of 34 Al fragments, produced by single neutron pickup from a 9 Be target by a 36 S projectile at 77.5 MeV/nucleon, have been observed at GANIL via the detection of resonantly destroyed β-asymmetry. The reaction-induced polarization is deduced using a tentative spin/parity assignment for the 34 Al ground state. A positive polarization was measured near the peak of the 34 Al yield curve. A kinematical model based on the spectator-participant model for projectile fragmentation reactions has been extended in order to take into account the features of pickup reactions, i.e., the picked-up nucleon having an average momentum equal to the Fermi momentum and aligned along the incident beam direction. The trend-line in the observed spin-orientation is very well reproduced by this model
High spin spectroscopy of 70Ge
International Nuclear Information System (INIS)
Kumar Raju, M.; Sugathan, P.; Seshi Reddy, T.; Thirumala Rao, B.V.; Madhusudhana Rao, P.V.; Muralithar, S.; Singh, R.P.; Bhowmik, R.K.
2011-01-01
Structure of nuclei in mass 70 region is of interest due to presence of a variety of complex phenomenon. In these nuclei rapid change of nuclear shape with proton and neutron numbers, spin and excitation energy. Valance nucleons in f-p-g shell configuration will drive the nuclei towards high deformations. Relatively large values of quadrupole deformation are evident in the even-even nuclei in this region. Present study is aimed to explore the high spin structure of the 70 Ge nucleus. A negative parity structure was reported in an earlier study
International Nuclear Information System (INIS)
Tsan, U.C.; Agard, M.; Bruandet, J.F.; Dauchy, A.; Giorni, A.; Glasser, F.; Morand, C.; Chambon, B.; Drain, D.
1981-04-01
The 60 Cu nucleus has been studied via the 58 Ni(α, pnγ) reaction using different in-beam γ spectroscopy techniques. As for the other odd-odd Cu, the gsub(9/2) shell plays an important role for the explanation of observed high-spin states. Some of them (in particular 6 - and 9 + states) could be interpreted as two-nucleon states in the framework of a crude shell model
Lepton-nucleon scattering at high energies
International Nuclear Information System (INIS)
Buchmueller, W.
1993-12-01
Recent theoretical developments in the field of inelastic lepton-nucleon scattering are reviewed with emphasis on physics at HERA. Structure functions at small Bjorken-x are discussed in detail. Further topics are photoproduction of jets, the gluon densities in proton and photon, charm physics, electroweak processes and the search for new particles and interactions. (orig.)
91Mo and 89Nb high-spin states
International Nuclear Information System (INIS)
Baktybaev, K.; Kojlyk, N.; Ramankulov, K.E.
2003-01-01
In the work the shell-model calculation for 91 Mo and 89 Nb nuclei high-spin states with several valente nucleons is worked out. The nucleons have been arranged in the {2p 1/2 1g 9 / 2 } configurations above the 88 Sr twice magic frame. Using of formalism of generalized quasi-spin with H=H 0 +H pp +H nn +H pn Hamiltonian in which H pp , H nn , H pn the residual nucleon interactions have being written through generalized quasi-spin operators. The obtained scheme well reproduces experimental data for examined nuclei up to 31/2 + , 33/2 - levels with seniority ν=3.5. Similarity of the spectroscopic structures of the nucleus levels with different protons and neutrons numbers above inert frame shows independence of nucleon-nucleon interactions from isotope spins of particles. There are analogous comparison of some negative yrast bands parity levels. The theory well transmits intensity values for electromagnet transitions between states. Besides the observed nuclei's properties does not give any indication on presence of valent nucleons collective motion in the both nuclei
Limits on Spin-Dependent WIMP-Nucleon Cross Section Obtained from the Complete LUX Exposure
Akerib, D. S.; Alsum, S.; Araújo, H. M.; Bai, X.; Bailey, A. J.; Balajthy, J.; Beltrame, P.; Bernard, E. P.; Bernstein, A.; Biesiadzinski, T. P.; Boulton, E. M.; Brás, P.; Byram, D.; Cahn, S. B.; Carmona-Benitez, M. C.; Chan, C.; Chiller, A. A.; Chiller, C.; Currie, A.; Cutter, J. E.; Davison, T. J. R.; Dobi, A.; Dobson, J. E. Y.; Druszkiewicz, E.; Edwards, B. N.; Faham, C. H.; Fallon, S. R.; Fiorucci, S.; Gaitskell, R. J.; Gehman, V. M.; Ghag, C.; Gilchriese, M. G. D.; Hall, C. R.; Hanhardt, M.; Haselschwardt, S. J.; Hertel, S. A.; Hogan, D. P.; Horn, M.; Huang, D. Q.; Ignarra, C. M.; Jacobsen, R. G.; Ji, W.; Kamdin, K.; Kazkaz, K.; Khaitan, D.; Knoche, R.; Larsen, N. A.; Lee, C.; Lenardo, B. G.; Lesko, K. T.; Lindote, A.; Lopes, M. I.; Manalaysay, A.; Mannino, R. L.; Marzioni, M. F.; McKinsey, D. N.; Mei, D.-M.; Mock, J.; Moongweluwan, M.; Morad, J. A.; Murphy, A. St. J.; Nehrkorn, C.; Nelson, H. N.; Neves, F.; O'Sullivan, K.; Oliver-Mallory, K. C.; Palladino, K. J.; Pease, E. K.; Reichhart, L.; Rhyne, C.; Shaw, S.; Shutt, T. A.; Silva, C.; Solmaz, M.; Solovov, V. N.; Sorensen, P.; Stephenson, S.; Sumner, T. J.; Szydagis, M.; Taylor, D. J.; Taylor, W. C.; Tennyson, B. P.; Terman, P. A.; Tiedt, D. R.; To, W. H.; Tripathi, M.; Tvrznikova, L.; Uvarov, S.; Velan, V.; Verbus, J. R.; Webb, R. C.; White, J. T.; Whitis, T. J.; Witherell, M. S.; Wolfs, F. L. H.; Xu, J.; Yazdani, K.; Young, S. K.; Zhang, C.; LUX Collaboration
2017-06-01
We present experimental constraints on the spin-dependent WIMP-nucleon elastic cross sections from the total 129.5 kg yr exposure acquired by the Large Underground Xenon experiment (LUX), operating at the Sanford Underground Research Facility in Lead, South Dakota (USA). A profile likelihood ratio analysis allows 90% C.L. upper limits to be set on the WIMP-neutron (WIMP-proton) cross section of σn=1.6 ×10-41 cm2 (σp=5 ×10-40 cm2 ) at 35 GeV c-2 , almost a sixfold improvement over the previous LUX spin-dependent results. The spin-dependent WIMP-neutron limit is the most sensitive constraint to date.
16th Workshop on High Energy Spin Physics
2016-01-01
The Workshop will cover a wide range of spin phenomena at high and intermediate energies such as: recent experimental data on spin physics the nucleon spin structure and GPD's spin physics and QCD spin physics in the Standard Model and beyond T-odd spin effects polarization and heavy ion physics spin in gravity and astrophysics the future spin physics facilities spin physics at NICA polarimeters for high energy polarized beams acceleration and storage of polarized beams the new polarization technology related subjects The Workshop will be held in the Bogoliubov Laboratory of Theoretical Physics of the Joint Institute for Nuclear Research, 141980 Dubna, Moscow Region, Russia. The program of the workshop will include plenary and parallel (if necessary) sessions. Plenary sessions will be held in the Conference Hall. Parallel sections will take place in the same building. There will be invited talks (up to 40 min) and original reports (20 min). The invited speakers will present new experimental and theoretical re...
An overview of recent nucleon spin structure measurements at Jefferson Lab
Energy Technology Data Exchange (ETDEWEB)
Allada, Kalyan [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)
2016-02-01
Jefferson Lab have made significant contributions to improve our knowledge of the longitudinal spin structure by measuring polarized structure functions, g1 and g2, down to Q2 = 0.02 GeV2. The low Q2 data is especially useful in testing the Chiral Perturbation theory (cPT) calculations. The spin-dependent sum rules and the spin polarizabilities, constructed from the moments of g1 and g2, provide an important tool to study the longitudinal spin structure. We will present an overview of the experimental program to measure these structure functions at Jefferson Lab, and present some recent results on the neutron polarizabilities, proton g1 at low Q2, and proton and neutron d2 measurement. In addition to this, we will discuss the transverse spin structure of the nucleon which can be accessed using chiral-odd transversity distribution (h1), and show some results from measurements done on polarized 3He target in Hall A.
Reduction of weak interaction rates in neutron stars by nucleon spin fluctuations: Degenerate case
International Nuclear Information System (INIS)
Raffelt, G.; Strobel, T.
1997-01-01
Nucleon spin fluctuations in a dense medium reduce the open-quotes naiveclose quotes values of weak interaction rates (neutrino opacities, neutrino emissivities). We extend previous studies of this effect to the degenerate case which is appropriate for neutron stars a few ten seconds after formation. If neutron-neutron interactions by a one-pion exchange potential are the dominant cause of neutron spin fluctuations, a perturbative calculation of weak interaction rates is justified for T approx-lt 3m/(4πα π 2 )∼1MeV, where m is the neutron mass and α π ∼15 the pion fine-structure constant. At higher temperatures, the application of Landau close-quote s theory of Fermi liquids is no longer justified; i.e., the neutrons cannot be viewed as simple quasiparticles in any obvious sense. copyright 1997 The American Physical Society
LISS: Planning for spin physics with multi-GeV nucleon beams at IUCF
International Nuclear Information System (INIS)
Vigdor, S.E.
1995-01-01
The technology developed in recent years to facilitate experiments with stored, cooled polarized beams bombarding internal targets (including polarized gaseous targets) has natural and novel applications at multi-GeV energies. At IUCF we are preparing a proposal for a Light-Ion Spin Synchrotron (LISS) that would adapt this technology to the exploration of nucleon spin physics in the non-perturbative QCD regime from 1 endash 20 GeV. I will describe the research goals of such a facility, with emphasis on a few contemplated experiments, chosen to illustrate both the range of physics issues to be addressed and the considerable advantages offered by storage ring techniques. copyright 1995 American Institute of Physics
Gluon polarization in the nucleon from quasi-real photoproduction of high-pT hadron pairs
Czech Academy of Sciences Publication Activity Database
Ageev, E.; Alexakhin, V.; Alexandrov, Y.; Alexeev, G.; Amoroso, A.; Badelek, B.; Balestra, F.; Ball, J.; Baum, G.; Bedfer, Y.; Berglund, P.; Bernet, C.; Bertini, R.; Birsa, R.; Bisplinghoff, J.; Bordalo, P.; Bradamante, F.; Bravar, A.; Bressan, A.; Burtin, E.; Bussa, M.; Bytchkov, V.; Cerini, L.; Chapiro, A.; Cicuttin, A.; Colantoni, M.; Colavita, A.; Costa, S.; Crespo, M.; d'Hose, N.; Dalla Torre, S.; Dasgupta, S. S.; De Masi, R.; Dedek, N.; Denisov, O.; Dhara, L.; Diaz Kavka, V.; Dinkelbach, A.; Dolgopolov, A.; Donskov, S.; Dorofeev, V.; Doshita, N.; Duic, V.; Dünnweber, W.; Ehlers, J.; Eversheim, P.; Eyrich, W.; Fabro, M.; Faessler, M.; Falaleev, V.; Fauland, P.; Ferrero, A.; Ferrero, L.; Finger, M.; Finger jr., M.; Fischer, H.; Franz, J.; Friedrich, J.; Frolov, V.; Fuchs, U.; Garfagnini, R.; Gautheron, F.; Gavrichtchouk, O.; Gerassimov, S.; Geyer, R.; Giorgi, M.; Gobbo, B.; Goertz, S.; Gorin, A.; Grajek, O.; Grasso, A.; Grube, B.; Grünemaier, A.; Hannappel, J.; von Harrach, D.; Hasegawa, T.; Hedicke, S.; Heinsius, F.; Hermann, R.; Hess, C.; Hinterberger, F.; von Hodenberg, M.; Horikawa, N.; Horikawa, S.; Ijaduola, R.; Ilgner, C.; Ioukaev, A.; Ishimoto, S.; Ivanov, O.; Iwata, T.; Jahn, R.; Janata, A.; Joosten, R.; Jouravlev, N. I.; Kabuss, E.; Kalinnikov, V.; Kang, D.; Karstens, F.; Kastaun, W.; Ketzer, B.; Khaustov, G.; Khokhlov, Y.; Khomutov, N.; Kisselev, Y.; Klein, F.; Koblitz, S.; Koivuniemi, J.; Kolosov, V.; Komissarov, E.; Kondo, K.; Königsmann, K.; Konoplyannikov, A.; Konorov, I.; Konstantinov, V.; Korentchenko, A.; Korzenev, A.; Kotzinian, A.; Koutchinski, N.; Kowalik, K.; Kravchuk, N.; Krivokhizhin, G.; Kroumchtein, Z.; Kuhn, R.; Kunne, F.; Kurek, K.; Ladygin, M.; Lamanna, M.; Le Goff, J.; Leberig, M.; Lichtenstadt, J.; Liska, T.; Ludwig, I.; Maggiora, A.; Maggiora, M.; Magnon, A.; Mallot, G.; Manuilov, I.; Marchand, C.; Marroncle, J.; Martin, A.; Marzec, J.; Matsuda, T.; Maximov, A.; Medved, K.; Meyer, W.; Mielech, A.; Mikhailov, Y.; Moinester, M.; Nähle, O.; Nassalski, J.; Neliba, S.; Neyret, D.; Nikolaenko, V.; Nozdrin, A.; Obraztsov, V.; Olshevsky, A.; Ostrick, M.; Padee, A.; Pagano, P.; Panebianco, S.; Panzieri, D.; Paul, S.; Pereira, H.; Peshekhonov, D.; Peshekhonov, V.; Piragino, G.; Platchkov, S.; Platzer, K.; Pochodzalla, J.; Polyakov, V.; Popov, A.; Pretz, J.; Quintans, C.; Ramos, S.; Rebourgeard, P.; Reicherz, G.; Reymann, J.; Rith, K.; Rozhdestvensky, A.; Rondio, E.; Sadovski, A.; Saller, E.; Samoylenko, V.; Sandacz, A.; Sans, M.; Sapozhnikov, M.; Savin, I.; Schiavon, P.; Schill, C.; Schmidt, T.; Schmitt, H.; Schmitt, L.; Shevchenko, O.; Shishkin, A.; Siebert, H.; Sinha, L.; Sissakian, A.; Skachkova, A.; Slunecka, M.; Smirnov, G.; Sozzi, F.; Sugonyaev, V.; Srnka, Aleš; Stinzing, F.; Stolarski, M.; Sulc, M.; Sulej, R.; Takabayashi, N.; Tchalishev, V.; Tassarotto, F.; Teufel, A.; Thers, D.; Tkatchev, L.; Toeda, T.; Tretyak, V.; Trousov, S.; Varanda, M.; Virius, M.; Vlassov, N.; Wagner, M.; Webb, R.; Weise, E.; Weitzel, Q.; Wiedner, U.; Wiesmann, M.; Windmolders, R.; Wirth, S.; Wislicki, W.; Zanetti, A.; Zaremba, K.; Zhao, J.; Ziegler, R.; Zvyagin, A.
2006-01-01
Roč. 633, č. 1 (2006), s. 25-32 ISSN 0370-2693 R&D Projects: GA MŠk(CZ) ME 492 Institutional research plan: CEZ:AV0Z20650511 Keywords : nucleon * spin * gluon * polarization * asymmetry * deep inelastic scattering Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 5.043, year: 2006
Polarized lepton-nucleon scattering
International Nuclear Information System (INIS)
Hughes, E.
1994-01-01
The author provides a summary of the proposed and published statistical (systematic) uncertainties from the world experiments on nucleon spin structure function integrals. By the time these programs are complete, there will be a vast resource of data on nucleon spin structure functions. Each program has quite different experimental approaches regarding the beams, targets, and spectrometers thus ensuring systematically independent tests of the spin structure function measurements. Since the field of spin structure function measurements began, there has been a result appearing approximately every five years. With advances in polarized target technology and high polarization in virtually all of the lepton beams, results are now coming out each year; this is a true signature of the growth in the field. Hopefully, the experiments will provide a consistent picture of nucleon spin structure at their completion. In summary, there are still many open questions regarding the internal spin structure of the nucleon. Tests of QCD via the investigation of the Bjorken sum rule is a prime motivator for the field, and will continue with the next round of precision experiments. The question of the origin of spin is still a fundamental problem. Researchers hope is that high-energy probes using spin will shed light on this intriguing mystery, in addition to characterizing the spin structure of the nucleon
Polarized lepton-nucleon scattering
Energy Technology Data Exchange (ETDEWEB)
Hughes, E. [Stanford Univ., CA (United States)
1994-12-01
The author provides a summary of the proposed and published statistical (systematic) uncertainties from the world experiments on nucleon spin structure function integrals. By the time these programs are complete, there will be a vast resource of data on nucleon spin structure functions. Each program has quite different experimental approaches regarding the beams, targets, and spectrometers thus ensuring systematically independent tests of the spin structure function measurements. Since the field of spin structure function measurements began, there has been a result appearing approximately every five years. With advances in polarized target technology and high polarization in virtually all of the lepton beams, results are now coming out each year; this is a true signature of the growth in the field. Hopefully, the experiments will provide a consistent picture of nucleon spin structure at their completion. In summary, there are still many open questions regarding the internal spin structure of the nucleon. Tests of QCD via the investigation of the Bjorken sum rule is a prime motivator for the field, and will continue with the next round of precision experiments. The question of the origin of spin is still a fundamental problem. Researchers hope is that high-energy probes using spin will shed light on this intriguing mystery, in addition to characterizing the spin structure of the nucleon.
Spin structure in high energy processes: Proceedings
Energy Technology Data Exchange (ETDEWEB)
DePorcel, L.; Dunwoodie, C. [eds.
1994-12-01
This report contains papers as the following topics: Spin, Mass, and Symmetry; physics with polarized Z{sup 0}s; spin and precision electroweak physics; polarized electron sources; polarization phenomena in quantum chromodynamics; polarized lepton-nucleon scattering; polarized targets in high energy physics; spin dynamics in storage rings and linear accelerators; spin formalism and applications to new physics searches; precision electroweak physics at LEP; recent results on heavy flavor physics from LEP experiments using 1990--1992 data; precise measurement of the left-right cross section asymmetry in Z boson production by electron-positron collisions; preliminary results on heavy flavor physics at SLD; QCD tests with SLD and polarized beams; recent results from TRISTAN at KEK; recent B physics results from CLEO; searching for the H dibaryon at Brookhaven; recent results from the compton observatory; the spin structure of the deuteron; spin structure of the neutron ({sup 3}HE) and the Bjoerken sum rule; a consumer`s guide to lattice QCD results; top ten models constrained by b {yields} sy; a review of the Fermilab fixed target program; results from the D0 experiment; results from CDF at FNAL; quantum-mechanical suppression of bremsstrahlung; report from the ZEUS collaboration at HERA; physics from the first year of H1 at HERA, and hard diffraction. These papers have been cataloged separately elsewhere.
Spin structure in high energy processes: Proceedings
International Nuclear Information System (INIS)
DePorcel, L.; Dunwoodie, C.
1994-12-01
This report contains papers as the following topics: Spin, Mass, and Symmetry; physics with polarized Z 0 s; spin and precision electroweak physics; polarized electron sources; polarization phenomena in quantum chromodynamics; polarized lepton-nucleon scattering; polarized targets in high energy physics; spin dynamics in storage rings and linear accelerators; spin formalism and applications to new physics searches; precision electroweak physics at LEP; recent results on heavy flavor physics from LEP experiments using 1990--1992 data; precise measurement of the left-right cross section asymmetry in Z boson production by electron-positron collisions; preliminary results on heavy flavor physics at SLD; QCD tests with SLD and polarized beams; recent results from TRISTAN at KEK; recent B physics results from CLEO; searching for the H dibaryon at Brookhaven; recent results from the compton observatory; the spin structure of the deuteron; spin structure of the neutron ( 3 HE) and the Bjoerken sum rule; a consumer's guide to lattice QCD results; top ten models constrained by b → sy; a review of the Fermilab fixed target program; results from the D0 experiment; results from CDF at FNAL; quantum-mechanical suppression of bremsstrahlung; report from the ZEUS collaboration at HERA; physics from the first year of H1 at HERA, and hard diffraction. These papers have been cataloged separately elsewhere
Study of the nucleon spin structure functions: the E154 experiment at SLAC
International Nuclear Information System (INIS)
Sabatie, Franck
1998-01-01
In experiment E154 at SLAC, the spin dependent structure function g 1 n was measured by scattering longitudinally polarized 50 GeV electrons off a longitudinally polarized helium 3 target. We report the integral over the measured x range to be ∫ 0.014 0.7 g 1 n (x,5 GeV 2 )dx = -0.0348 ± 0.0033 ± 0.0043 ± 0.0014. We observe relatively large values of g 1 n at low x, calling into question the reliability of the data extrapolation down to x equal 0. Such a divergent behavior seems to disagree with the prediction of the Regge theory but can be quantitatively explained by perturbative QCD. Moreover, we have performed a NLO perturbative QCD analysis of the world data on g 1 , paying careful attention to both the theoretical hypothesis and the calculation of errors. Using a parametrization of the polarized parton distribution at a low scale, we can access the fraction of spin carried by quarks: ΔΣ = 29 ± 6 pc in the MS-bar scheme, and ΔΣ = 37 ± 7 pc in the AB scheme. The gluon contribution to the nucleon spin is not well enough constrained by the current data, but seems to lie between 0 and 2. This study allows us to extract the first moment of the g 1 structure function and we find agreement with the Bjorken sum rule expectations. (author) [fr
The MONSTER solves nuclear structure problems at low and high spins
International Nuclear Information System (INIS)
Hammaren, E.; Schmid, K.W.; Gruemmer, F.
1984-01-01
A microscopic, particle-number and spin conserving nuclear structure model is discussed. Within a unique theory the model can describe excitation energies, moments, transitions and spectroscopic factors at low and high spins of odd-mass and doubly-even nuclei in all mass regions. With a realistic two-body Hamiltonian extracted via a G-matric description from nucleon-nucleon scattering data. The model is here applied to nuclei in the A=130 region
New ways to access the transverse spin content of the nucleon
International Nuclear Information System (INIS)
Beiyad, M El; Pire, B; Szymanowski, L; Wallon, S
2011-01-01
We first describe a new way to access the chiral odd transversity parton distribution in the proton through the photoproduction of lepton pairs. The basic ingredient is the interference of the usual Bethe-Heitler or Drell-Yan amplitudes with the amplitude of a process, where the photon couples to quarks through its chiral-odd distribution amplitude, which is normalized to the magnetic susceptibility of the QCD vacuum. We also show how the chiral-odd transversity generalized parton distributions (GPDs) of the nucleon can be accessed experimentally through the exclusive electro - or photoproduction process of a meson pair with a large invariant mass and when the final nucleon has a small transverse momentum. We calculate perturbatively the scattering amplitude at leading order, both in the high energy domain which may be accessed in electron-ion colliders and in the medium energy range. Estimated rates are encouraging.
Current status of high energy nucleon-meson transport code
Energy Technology Data Exchange (ETDEWEB)
Takada, Hiroshi; Sasa, Toshinobu [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment
1998-03-01
Current status of design code of accelerator (NMTC/JAERI code), outline of physical model and evaluation of accuracy of code were reported. To evaluate the nuclear performance of accelerator and strong spallation neutron origin, the nuclear reaction between high energy proton and target nuclide and behaviors of various produced particles are necessary. The nuclear design of spallation neutron system used a calculation code system connected the high energy nucleon{center_dot}meson transport code and the neutron{center_dot}photon transport code. NMTC/JAERI is described by the particle evaporation process under consideration of competition reaction of intranuclear cascade and fission process. Particle transport calculation was carried out for proton, neutron, {pi}- and {mu}-meson. To verify and improve accuracy of high energy nucleon-meson transport code, data of spallation and spallation neutron fragment by the integral experiment were collected. (S.Y.)
Radial excitations in nucleon-nucleon scattering
International Nuclear Information System (INIS)
Silvestre-Brac, B.; Carbonell, J.; Gignoux, C.
1986-01-01
In the non-relativistic constituent quark model, the role of the radial excitations of the nucleon is studied within a resonating group approach of the nucleon-nucleon scattering. It is shown that, rather than the inclusion of new channels, it is important to include mixed-symmetry spin-isospin components in the nucleon wave function. It is also found that during the collision there is no significant deformation of the nucleon. (orig.)
Pi-nucleon phenomenology at high energies
International Nuclear Information System (INIS)
Kogitz, S.
1973-01-01
A brief introduction to the phenomenology of strong interactions at high energy is presented. This includes discussion of the topics including absorption, finite energy sum rules, and duality. The application of these ideas to two-particle inelastic reactions is examined. (author)
Inelastic nucleon diffraction at high energy
International Nuclear Information System (INIS)
Goggi, G.
1975-01-01
Experiments carried out at ISR and at FNAL which have yielded a substantial amount of data on double diffraction processes, which were unambiguously indentified and measured and which provide new tools to study the dynamical properties shared by different classes of diffractive reactions are identified. In this review interest is focused on the experimental aspects of inclusive and exclusive results both on single and double diffraction and on the problems arising from their comparison. Problems covered include; inclusive and semi-inclusive diffraction, multiparticle inclusive studies, single-particle inclusive studies, resonance region, high mass region, exclusive single diffractive reactions, mass spectra, cross sections, t-dependence, decay angular properties, and double diffraction. (U.K.)
On the Faddeev-Yacubovsky model of four nucleon scattering problem with account of spin and isospin
International Nuclear Information System (INIS)
Sharma, V.K.
1976-01-01
The Faddeev-Yacubovsky model of four nucleons taking into account their spin and isospin with the two-channel resonating group approximation, is considered. In this approximation, one employs a completely antisymmetric wave function which can be written as the clustering of d + d and n+He 3 (or p+H 3 ) systems with antisymmetric spin isospin states. The two-nucleon interactions used are of the separable Yamaguchi form in Ssub(1)sup(3) and Ssub(0)sup(3) states. The equations for the states with quantum numbers S=0,1,2 T=0 are obtained. It is shown that with subsequent separable representation of two-particle t-matrix reduces the equations to a set of one-dimensional coupled integral equations. (author)
Effect of two-pion exchange in nucleon-nucleon scattering in high partial waves
International Nuclear Information System (INIS)
Harun ar Rashid, A.M.; Chaudhury, T.K.
1983-01-01
The work of Brown and Durso (Phys. Lett. 35B, 120 (1971)) on the soft-pion determination of the intermediate range nucleon-nucleon interaction is extended by using the most general form of the ΔNπ interaction which involves an arbitrary parameter Z. It is shown that both the annihilation channel helicity amplitude fsub(+)sup((O))(t) as well as peripheral proton-proton scattering phase shifts seem to favour Z=1/2. (author)
Nucleon spin-averaged forward virtual Compton tensor at large {Q}^{2}
Energy Technology Data Exchange (ETDEWEB)
Hill, Richard J.; Paz, Gil
2017-05-01
The nucleon spin-averaged forward virtual Compton tensor determines important physical quantities such as electromagnetically-induced mass differences of nucleons, and two-photon exchange contributions in hydrogen spectroscopy. It depends on two kinematic variables: $\
Theoretical aspects of high energy elastic nucleon scattering
Kundrat, Vojtech; Lokajicek, Milos
2010-01-01
The eikonal model must be denoted as strongly preferable for the analysis of elastic high-energy hadron collisions. The given approach allows to derive corresponding impact parameter profiles that characterize important physical features of nucleon collisions, e.g., the range of different forces. The contemporary phenomenological analysis of experimental data is, however, not able to determine these profiles unambiguously, i.e., it cannot give the answer whether the elastic hadron collisions are more central or more peripheral than the inelastic ones. However, in the collisions of mass objects (like protons) the peripheral behavior of elastic collisions should be preferred.
Describing the nucleon electromagnetic form factors at high momentum transfers
International Nuclear Information System (INIS)
Theussl, L.; Desplanques, B.; Silvestre-Brac, B.; Varga, K.
1999-01-01
Electromagnetic form factors of the nucleon are calculated within the framework of a non-relativistic constituent-quark model. The emphasis is put on the reliability and accuracy of present day numerical methods used to solve the three-body problem. The high-q 2 behaviour of the form factors is determined by the form of the wave function at short distances and, due to the small absolute values that one deals with, an accurate solution is essential. Refs. 5, figs. 2 (author)
International Nuclear Information System (INIS)
Stephens, F.S.
1980-03-01
The present talk has three parts: first, a discussion of current ideas about the physics of very high spin states; second, some comments about noncollective behavior up to the highest spins where it is known, approx. 40 h; and finally, a presentation of the newest method for studying collective behavior up to spins of 60 to 70 h. The intention is that the overview presented in the first part will be sufficiently broad to indicate the relationship of the noncollective and collective behavior discussed in the other parts, and to provide some understanding of the compromise in behavior that seems to occur at the very highest spins. 13 figures
Constructing Nucleon Operators on a Lattice for Form Factors with High Momentum Transfer
Energy Technology Data Exchange (ETDEWEB)
Syritsyn, Sergey [Stony Brook Univ., NY (United States); Gambhir, Arjun S. [College of William and Mary, Williamsburg, VA (United States); Musch, Bernhard U. [Univ. of Regensburg (Germany); Orginos, Konstantinos [College of William and Mary, Williamsburg, VA (United States); Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)
2017-05-01
We present preliminary results of computing nucleon form factor at high momentum transfer using the 'boosted' or 'momentum' smearing. We use gauge configurations generated with N f = 2 + 1dynamical Wilson-clover fermions and study the connected as well as disconnected contributions to the nucleon form factors. Our initial results indicate that boosted smearing helps to improve the signal for nucleon correlators at high momentum. However, we also find evidence for large excited state contributions, which will likely require variational analysis to isolate the boosted nucleon ground state.
Spin degrees of freedom in electron nucleon scattering in the resonance region
International Nuclear Information System (INIS)
Burkert, V.D.
1987-01-01
Some aspects of using polarized electrons and/or polarized targets in electron-nucleon scattering experiments are discussed. Polarization measurements can be used to extend the knowledge of nucleon form-factor measurements to higher Q 2 and are indispensable for a model-independent extraction of the helicity amplitudes of exclusive meson production. Measurements of polarization asymmetries may also help in revealing the excitation of weaker resonances
IV. Workshop on High Energy Spin Physics
International Nuclear Information System (INIS)
Nurushev, S.
1992-01-01
In this proceedings the results on high energy spin physics are summarized. The theory of spin phenomenon and the experimental results at intermediate energy and at high energy spin physics and new technical developments in polarization experiments are presented
Axial charge of the weak nucleon current extracted from the β decays of spin aligned 12B and 12N
International Nuclear Information System (INIS)
Yamaguchi, Takayuki
1998-01-01
The alignment correlation terms in the β-ray angular distributions of the 12 B and 12 N mirror nuclei have been precisely measured, in order to investigate the mesonic effect in the axial charge matrix element. The spin alignments were created with the spin manipulation technique in the β-NMR method, which has been improved based on the recent studies of hyperfine interactions of 12 B and 12 N in a Mg crystal. From the sum of the alignment correlation terms, the ratio of the axial charge to the Gamow-Teller term was determined to be y = 4.66 ± 0.06(stat) ± 0.13(syst). The present result gives clear evidence of the mesonic effect in the axial charge and even more shows 16 ± 6% enhancement over the full calculation which includes the meson exchange effect and the core polarization effect. A possible mass renormalization for the decaying nucleon in a finite nucleon density explains this enhancement. (author)
On the angular distribution of spectator nucleons in high-energy collisions with deuterium nuclei
International Nuclear Information System (INIS)
Bartke, J.
1975-01-01
Angular distributions of spectator nucleons in collisions of high-energy particles with deuterium nuclei are discussed in the framework of the impulse model. Comparison with experimental data shows that predictions following from this simple theoretical model are verified by experiment. Some general remarks on the study of angular distributions of spectator nucleons are given. (author)
Nucleon currents and frictional forces between highly excited nuclei
International Nuclear Information System (INIS)
Barranco, M.; Pi, M.; Vinas, X.; Ngo, C.; Tomasi, E.
1983-01-01
A finite temperature Thomas-Fermi method has been used to study the nucleon transfer between two hot slabs of symmetric nuclear matter. Special attention has been paid to temperature effects neglected in earlier calculations. As a result, closed and ready-to-use formulas for the exchange and transfer nucleon flux at zero relative momentum are given as a function of the temperature T. We also present a rather detailed discussion of thermal properties of the semi-infinite slabs
High-spin nuclear spectroscopy
International Nuclear Information System (INIS)
Diamond, R.M.
1986-07-01
High-spin spectroscopy is the study of the changes in nuclear structure, properties, and behavior with increasing angular momentum. It involves the complex interplay between collective and single-particle motion, between shape and deformation changes, particle alignments, and changes in the pairing correlations. A review of progress in theory, experimentation, and instrumentation in this field is given
Ellis, Jonathan Richard; Ellis, John; Flores, Ricardo A
1996-01-01
Supersymmetric model contributions to the neutron electric dipole moment arise via quark electric dipole moment operators, whose matrix elements are usually calculated using the Naive Quark Model (NQM). However, experiments indicate that the NQM does not describe well the quark contributions \\Delta q to the nucleon spin, and so may provide misleading estimates of electric dipole operator matrix elements. Taking the \\Delta q from experiment, we indeed find consistently smaller estimates of the neutron electric dipole moment for given values of the supersymmetric model parameters. This weakens previous constraints on CP violation in supersymmetric models, which we exemplify analytically in the case where the lightest supersymmetric particle (LSP) is a U(1) gaugino \\tilde{B}, and display numerically for other LSP candidates.
Nucleon strangeness: present and future
Sapozhnikov, M G
2010-01-01
A review of experimental results for the measurement of the strange quark distributions in the nucleon, is given. Contributions of the strange quarks to the nucleon mass, electromagnetic form factors and spin, are discussed.
High spin levels populated in multinucleon transfer reaction with 480 MeV 12C
International Nuclear Information System (INIS)
Kraus, L.; Boucenna, A.; Linck, I.
1988-01-01
Two- and three-nucleon stripping reactions induced by 480 MeV 12 C have been studied on 12 C, 16 O, 28 Si, 40 Ca and 54 Fe target nuclei. Discrete levels are fed with cross sections up to 1 mb/sr for d-transfer reactions and one order and two orders of magnitude less for 2p- and 3 He-transfer reactions, respectively. These reactions preferentially populate high spin states with stretched configurations. Several spin assignments were known from transfer reactions induced by lighter projectiles at incident energies well above the Coulomb barrier. In the case of two-nucleon transfer reactions, the energy of these states is well reproduced by crude shell model calculations. Such estimates are of use in proposing spins of newly observed states especially as the shapes of the measured angular distributions are independent of the final spin of the residual nucleus
HETFIS: High-Energy Nucleon-Meson Transport Code with Fission
International Nuclear Information System (INIS)
Barish, J.; Gabriel, T.A.; Alsmiller, F.S.; Alsmiller, R.G. Jr.
1981-07-01
A model that includes fission for predicting particle production spectra from medium-energy nucleon and pion collisions with nuclei (Z greater than or equal to 91) has been incorporated into the nucleon-meson transport code, HETC. This report is primarily concerned with the programming aspects of HETFIS (High-Energy Nucleon-Meson Transport Code with Fission). A description of the program data and instructions for operating the code are given. HETFIS is written in FORTRAN IV for the IBM computers and is readily adaptable to other systems
Atomic Nuclei Utter Disintegration into Nucleons by High Energy Nuclear Projectiles
International Nuclear Information System (INIS)
Strugalski, Z.
1994-01-01
The disintegration process of atomic nuclei by high energy nuclear projectiles is described. The physical basis for this process is the passage of hadrons through layers of intranuclear matter accompanied by the nucleon emission from the target nuclei observed in experiments; kinetic energies of the nucleons are from about 20 up to about 400 MeV - in the target nucleus reference system. 22 refs., 3 tabs
High-Energy antipp and pp Elastic Scattering and Nucleon Structure
International Nuclear Information System (INIS)
Islam, M.M.; Innocente, V.; Fearnley, T.; Sanguinetti, G.
1987-01-01
High-energy antipp and pp elastic data from the CERN Collider and the ISR are analyzed in the nucleon valence core model. Diffraction is described by a profile function that incorporates crossing symmetry and saturation of Froissart-Martin bound. The model is found to provide a very satisfactory description of the elastic scattering over the whole range of energy and momentum transfer. Implications of the analysis on QCD models of nucleon structure are pointed out
High-Energy antipp and pp Elastic Scattering and Nucleon Structure
Energy Technology Data Exchange (ETDEWEB)
Islam, M.M.; Innocente, V.; Fearnley, T.; Sanguinetti, G.
1987-07-15
High-energy antipp and pp elastic data from the CERN Collider and the ISR are analyzed in the nucleon valence core model. Diffraction is described by a profile function that incorporates crossing symmetry and saturation of Froissart-Martin bound. The model is found to provide a very satisfactory description of the elastic scattering over the whole range of energy and momentum transfer. Implications of the analysis on QCD models of nucleon structure are pointed out.
Development of high-spin isomer beams
International Nuclear Information System (INIS)
Zhou Xiaohong
2000-01-01
The physical motivations with high-spin isomer beams were introduced. Taking HSIB of RIKEN as an example, the methods to produce, separate, transport and purity high-spin isomer beams were described briefly, and the detection of γ rays emitted from the reactions induced by the high-spin isomer beams was presented. Finally, the progress to develop the high-spin isomers in the N = 83 isotones as second beams was stressed
Concerning moderate seniority mixing and the high spin states of some N=50 isotones
International Nuclear Information System (INIS)
Amusa, A.
1987-11-01
The high spin states of some N=50 isotones are studied in a shell model scheme involving the restriction of the valence nucleons to 2p 1/2 and 1g 9/2 orbits as well as the use of an interaction that has slight seniority non-conservation. Our results indicate that the high spin states of these nuclei, in direct contrast to their low spin states, have extra-(2p 1/2 ,1g 9/2 ) n space contributions that support violation of seniority conservation. (author). 17 refs, 2 figs, 1 tab
Three-nucleon scattering by using chiral perturbation theory potential
International Nuclear Information System (INIS)
Kamata, Hiroyuki
2003-01-01
Three-nucleon scattering problems are studied by using two-nucleon and three-nucleon potentials derived from chiral perturbation theory. The three-nucleon term is shown to appear in the effective potential of the rank of next-to-next-to-leading order (NNLO). New three-nucleon forces are taken into consideration in addition to the conventional Fujita-Miyazawa (FM) type three-nucleon potential. Two-nucleon potential of the chiral perturbation theory is as precise as the conventional ones in low energy region. The FM type three-nucleon force which explains Sagara discrepancy in high energy region is introduced automatically. Concerning the Ay puzzle, the results seems to behave as if the puzzle has been solved at the level of NLO, but at the NNLO (without three-nucleon force) level the result is similar to the cases of conventional potential indicating the need of three-nucleon force. In contrast to the FM type three-nucleon force, five free parameters exist in the new D and E type three-nucleon forces introduced by the NNLO, but they are reduced to two independent parameters by antisymmetrization, which are found to be sensitive to the coupling energy of tritons and to the nd scattering length (spin doublet state). Parameters determined from them cannot give satisfactory answer to the A y puzzle. It seems, however, too hasty to conclude that A y puzzle cannot be solved by the chiral perturbation theory. (S. Funahashi)
Alekseev, M; Alexandrov, Yu; Alexeev, G D; Amoroso, A; Austregisilio, A; Badelek, B; Balestra, F; Ball, J; Barth, J; Baum, G; Bedfer, Y; Bernhard, J; Bertini, R; Bettinelli, M; Birsa, R; Bisplinghoff, J; Bordalo, P; Bradamante, F; Bravar, A; Bressan, A; Brona, G; Burtin, E; Bussa, M P; Chapiro, A; Chiosso, M; Chung, S U; Cicuttin, A; Colantoni, M; Crespo, M L; Dalla Torre, S; Dafni, T; Das, S; Dasgupta, S S; Denisov, O.Yu; Dhara, L; Diaz, V; Dinkelbach, A M; Donskov, S V; Doshita, N; Duic, V; Dunnweber, W; Efremov, A; El Alaoui, A; Eversheim, P D; Eyrich, W; Faessler, M; Ferrero, A; Finger, M; Finger, M., jr; Fischer, H; Franco, C; Friedrich, J M; Garfagnini, R; Gautheron, F; Gavrichtchouk, O P; Gazda, R; Gerassimov, S; Geyer, R; Giorgi, M; Gobbo, B; Goertz, S; Grabmuller, S; Grajek, O A; Grasso, A; Grube, B; Gushterski, R; Guskov, A; Haas, F; Hagemann, R; von Harrach, D; Hasegawa, T; Heckmann, J; Heinsius, F H; Hermann, R; Herrmann, F; Hess, C; Hinterberger, F; von Hodenberg, M; Horikawa, N; Hoppner, Ch; d'Hose, N; Ilgner, C; Ishimoto, S; Ivanov, O; Ivanshin, Yu; Iwata, T; Jahn, R; Jasinski, P; Jegou, G; Joosten, R; Kabuss, E; Kafer, W; Kang, D; Ketzer, B; Khaustov, G V; Khokhlov, Yu.A; Kiefer, J; Kisselev, Yu; Klein, F; Klimaszewski, K; Koblitz, S; Koivuniemi, J H; Kolosov, V N; Komissarov, E V; Kondo, K; Konigsmann, Kay; Konorov, I; Konstantinov, V F; Korzenev, A; Kotzinian, A M; Kouznetsov, O; Kowalik, K; Kramer, M; Kral, A; Kroumchtein, Z V; Kuhn, R; Kunne, F; Kurek, K; Le Goff, J M; Lednev, A A; Lehmann, A; Levorato, S; Lichtenstadt, J; Liska, T; Maggiora, A; Maggiora, M; Magnon, A; Mallot, G K; Mann, A; Marchand, C; Marroncle, J; Martin, A; Marzec, J; Massmann, F; Matsuda, T; Maximov, A N; Meyer, W; Michigami, T; Mikhailov, Yu.V; Moinester, M A; Mutter, A; Nagaytsev, A; Nagel, T; Nassalski, J; Negrini, S; Nerling, F; Neubert, S; Neyret, D; Nikolaenko, V I; Olshevsky, A G; Ostrick, M; Padee, A; Panknin, R; Panebianco, S; Panzieri, D; Parsamyan, B; Paul, S; Pawlukiewicz-Kaminska, B; Perevalova, E; Pesaro, G; Peshekhonov, D V; Piragino, G; Platchkov, S; Pochodzalla, J; Polak, J; Polyakov, V A; Pontecorvo, G; Pretz, J; Quintans, C; Rajotte, J.-F; Ramos, S; Rapatsky, V; Reicherz, G; Reggiani, D; Richter, A; Robinet, F; Rocco, E; Rondio, E; Ryabchikov, D I; Samoylenko, V D; Sandacz, A; Santos, H; Sapozhnikov, M G; Sarkar, S; Savin, Igor A; Sbrizza, G; Schiavon, P; Schill, C; Schmitt, L; Schroder, W; Shevchenko, O.Yu; Siebert, H.-W; Silva, L; Sinha, L; Sissakian, A N; Slunecka, M; Smirnov, G I; Sosio, S; Sozzi, F; Srnka, A; Stolarski, M; Sulc, M; Sulej, R; Takekawa, S; Tessaro, S; Tessarotto, F; Teufel, A; Tkatchev, L G; Venugopal, G; Virius, M; Vlassov, N V; Vossen, A; Weitzel, Q; Wenzl, K; Windmolders, R; Wislicki, W; Wollny, H; Zaremba, K; Zavertyaev, M; Zemlyanichkina, E; Ziembicki, M; Zhao, J; Zhuravlev, N; Zvyagin, A
2009-01-01
The gluon polarisation in the nucleon has been determined by detecting charm production via D0 meson decay to charged K and pi in polarised muon scattering off a longitudinally polarised deuteron target. The data were taken by the COMPASS Collaboration at CERN between 2002 and 2006 and corresponds to an integrated luminosity of 2.8 fb^-1. The dominant underlying process of charm production is the photon-gluon fusion to a cc-bar pair. A leading order QCD approach gives an average gluon polarisation of (Delta g/g)_x= -0.49 +- 0.27(stat) +- 0.11(syst) at a scale mu^2 ~ 13 (GeV/c)^2 and at an average gluon momentum fraction (x) ~ 0.11. The longitudinal cross-section asymmetry for D0 production is presented in bins of the transverse momentum and the energy of the D0 meson.
Minamisono, K; Sumikama, T; Nagatomo, T; Matsuta, K; Minamisono, T; Fukuda, M; Koshigiri, K; Morita, M
2000-01-01
The beta-ray angular distributions from purely spin aligned sup 1 sup 2 B and sup 1 sup 2 N were precisely measured to determine a new limit of the G-parity irregular induced tensor form factor in weak nucleon axial vector currents and to study the in-medium mass renormalization of nucleons through the axial charge. Since the major systematic error in the previous result which originated from the intensity fluctuation of the incident beam used for the production of the nuclei was removed in the present measurement, the more reliable result was obtained: 0.01 <= 2M f sub T /f sub A <= 0.34 (90 % CL). The result is consistent with the theoretical prediction in the framework of which induced tensor form factor is proportional to the mass difference between the up and down quarks. We also determined the axial charge of the weak nucleon current to be y = 4.66 +- 0.12, which may disclose an in-medium mass reduction of the decaying nucleon of 11 +- 4 %.
Roles of quarks and gluons in the spin structure of nucleons
International Nuclear Information System (INIS)
Modarres, M.; Amir-Kabir Univ., Teheran; Ghafoori-Tabrizi, K.; Shahid-Beheshti Univ., Teheran
1992-01-01
The spin structure of protons will be discussed by using MIT-bag model and considering constituent quarks to be combined from current quarks and gluons. It will be shown that the gluonic degrees of freedom play an important role in prediction of the recent EMC results. (orig.)
Czech Academy of Sciences Publication Activity Database
Alekseev, M.; Alexakhin, V. Yu.; Alexandrov, Yu.; Alexeev, G. D.; Amoroso, A.; Austregisilio, A.; Badelek, B.; Balestra, F.; Ball, J.; Barth, J.; Baum, G.; Bedfer, Y.; Bernhard, J.; Bertini, R.; Bettinelli, M.; Birsa, R.; Bisplinghoff, J.; Bordalo, P.; Bradamante, F.; Bravar, A.; Bressan, A.; Brona, G.; Burtin, E.; Bussa, M.; Chapiro, A.; Chiosso, M.; Chung, S.U.; Cicuttin, A.; Colantoni, M.; Crespo, M.; Dalla Torre, S.; Dafni, T.; Das, S.; Dasgupta, S. S.; Denisov, O.; Dhara, L.; Diaz, V.; Dinkelbach, A.; Donskov, S.; Doshita, N.; Duic, V.; Dünnweber, W.; Efremov, A.V.; El Alaoui, A.; Eversheim, P.; Eyrich, W.; Faessler, M.; Ferrero, A.; Finger, M.; Finger jr., M.; Fischer, H.; Franco, C.; Friedrich, J.; Garfagnini, R.; Gautheron, F.; Gavrichtchouk, O.; Gazda, R.; Gerassimov, S.; Geyer, R.; Giorgi, M.; Gobbo, B.; Goertz, S.; Grabmüller, S.; Grajek, O.; Grasso, A.; Grube, B.; Gushterski, R.; Guskov, A.; Haas, F.; Hagemann, R.; von Harrach, D.; Hasegawa, T.; Heckmann, J.; Heinsius, F.; Hermann, R.; Herrmann, F.; Hess, C.; Hinterberger, F.; von Hodenberg, M.; Horikawa, N.; Höppner, Ch.; d'Hose, N.; Ilgner, C.; Ishimoto, S.; Ivanov, O.; Ivanshin, Yu.; Iwata, T.; Jahn, R.; Jasinski, P.; Jegou, G.; Joosten, R.; Kabuss, E.; Käfer, W.; Kang, D.; Ketzer, B.; Khaustov, G.; Khokhlov, Y.; Kiefer, J.; Kisselev, Y.; Klein, F.; Klimaszewski, K.; Koblitz, S.; Koivuniemi, J.; Kolosov, V.; Komissarov, E.; Kondo, K.; Königsmann, K.; Konorov, I.; Konstantinov, V.; Korzenev, A.; Kotzinian, A.; Kouznetsov, O.; Kowalik, K.; Krämer, M.; Kral, A.; Kroumchtein, Z.; Kuhn, R.; Kunne, F.; Kurek, K.; Le Goff, J.; Lednev, A.; Lehmann, A.; Levorato, S.; Lichtenstadt, J.; Liska, T.; Maggiora, A.; Maggiora, M.; Magnon, A.; Mallot, G.; Mann, A.; Marchand, C.; Marroncle, J.; Martin, A.; Marzec, J.; Massmann, F.; Matsuda, T.; Maximov, A.; Meyer, W.; Michigami, T.; Mikhailov, Y.; Moinester, M.; Mutter, A.; Nagaytsev, A.; Nagel, T.; Nassalski, J.; Negrini, S.; Nerling, F.; Neubert, S.; Neyret, D.; Nikolaenko, V.; Olshevsky, A.; Ostrick, M.; Padee, A.; Panebianco, S.; Panknin, R.; Panzieri, D.; Parsamyan, B.; Paul, S.; Pawlukiewicz-Kaminska, B.; Perevalova, E.; Pesaro, G.; Peshekhonov, D.; Piragino, G.; Platchkov, S.; Pochodzalla, J.; Polak, J.; Polyakov, V.; Pontecorvo, G.; Pretz, J.; Quintans, C.; Rajotte, J.; Ramos, S.; Rapatsky, V.; Reicherz, G.; Reggiani, D.; Richter, A.; Robinet, F.; Rocco, E.; Rondio, E.; Ryabchikov, D.; Samoylenko, V.; Sandacz, A.; Santos, H.; Sapozhnikov, M.; Sarkar, S.; Savin, I.; Sbrizzai, G.; Schiavon, P.; Schill, C.; Schmitt, L.; Schröder, W.; Shevchenko, O.; Siebert, H.; Silva, L.; Sinha, L.; Sissakian, A.; Slunecka, M.; Smirnov, G.; Sosio, S.; Sozzi, F.; Srnka, Aleš; Stolarski, M.; Sulc, M.; Sulej, R.; Takekawa, S.; Tessaro, S.; Tessarotto, F.; Teufel, A.; Tkatchev, L.; Venugopal, G.; Virius, M.; Vlassov, N.; Vossen, A.; Weitzel, Q.; Wenzl, K.; Windmolders, R.; Wislicki, W.; Wollny, H.; Zaremba, K.; Zavertyaev, M.; Zemlyanichkina, E.; Ziembicki, M.; Zhao, J.; Zhuravlev, N.; Zvyagin, A.
2009-01-01
Roč. 676, 1-3 (2009), s. 31-38 ISSN 0370-2693 R&D Projects: GA MŠk ME 492 Institutional research plan: CEZ:AV0Z20650511 Keywords : inelastic muon scattering * spin * asymmetry * gluon polarisation Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 5.083, year: 2009
The phenomenon of nucleon emission at high angular momentum states of fused compound systems
Rajasekaran, T R; Santhosh-Kumar, S
2003-01-01
Nucleon emission from high spin fused compound systems is analyzed in the framework of the statistical theory of hot rotating (STHR) nuclei. This is an elaborate version of our earlier work and we present our results for sup 1 sup 5 sup 6 Er, sup 1 sup 6 sup 6 Er, sup 1 sup 6 sup 8 Yb and sup 1 sup 8 sup 8 Hg. We predict an increase in neutron emission for sup 1 sup 6 sup 6 Er due to the abrupt decrease in neutron separation energy around I approx 55h. Since the drop in the separation energy is closely associated with the structural changes in the rotating nuclei, relative increase in neutron emission probability around certain values of angular momentum may be construed as evidence for the shape transition. A similar effect is predicted for sup 1 sup 6 sup 8 Yb around I approx 55h. We also extend the microscopic cranked Nilsson method (CNM) to hot nuclear systems and compare the results with that of the STHR method. The two methods yield different results for triaxially deformed nuclei although for biaxial d...
Energy Technology Data Exchange (ETDEWEB)
Dobretsov, Yu; Dolgoshein, B; Kirillov-Ugryumov, V
1980-12-01
The properties and formation are described of ..mu..-nucleon atoms, the Larmor method of muon spin precession is discussed and the experimental confirmation of the existence of ..mu..-nucleon atoms is shown. The prospects of their use are indicated.
International Nuclear Information System (INIS)
Dobretsov, Yu.; Dolgoshejn, B.; Kirillov-Ugryumov, V.
1980-01-01
The properties and formation are described of μ-nucleon atoms, the Larmor method of muon spin precession is discussed and the experimental confirmation of the existence of μ-nucleon atoms is shown. The prospects of their use are indicated. (J.P.)
Nucleon spin-flavor structure in the SU(3)-breaking chiral quark model
International Nuclear Information System (INIS)
Song, X.; McCarthy, J.S.; Weber, H.J.
1997-01-01
The SU(3) symmetric chiral quark model, which describes interactions between quarks, gluons, and the Goldstone bosons, explains reasonably well many aspects of the flavor and spin structure of the proton, except for the values of f 3 /f 8 and Δ 3 /Δ 8 . Introducing the SU(3)-breaking effect suggested by the mass difference between the strange and nonstrange quarks, we find that this discrepancy can be removed and better overall agreement obtained. copyright 1997 The American Physical Society
High spin isomer beam line at RIKEN
Energy Technology Data Exchange (ETDEWEB)
Kishida, T.; Ideguchi, E.; Wu, H.Y. [Institute of Physical and Chemical Research, Saitama (Japan)] [and others
1996-12-31
Nuclear high spin states have been the subject of extensive experimental and theoretical studies. For the production of high spin states, fusion reactions are usually used. The orbital angular momentum brought in the reaction is changed into the nuclear spin of the compound nucleus. However, the maximum induced angular momentum is limited in this mechanism by the maximum impact parameter of the fusion reaction and by the competition with fission reactions. It is, therefore, difficult to populate very high spin states, and as a result, large {gamma}-detector arrays have been developed in order to detect subtle signals from such very high spin states. The use of high spin isomers in the fusion reactions can break this limitation because the high spin isomers have their intrinsic angular momentum, which can bring the additional angular momentum without increasing the excitation energy. There are two methods to use the high spin isomers for secondary reactions: the use of the high spin isomers as a target and that as a beam. A high spin isomer target has already been developed and used for several experiments. But this method has an inevitable shortcoming that only {open_quotes}long-lived{close_quotes} isomers can be used for a target: {sup 178}Hf{sup m2} (16{sup +}) with a half-life of 31 years in the present case. By developing a high spin isomer beam, the authors can utilize various short-lived isomers with a short half-life around 1 {mu}s. The high spin isomer beam line of RIKEN Accelerator Facility is a unique apparatus in the world which provides a high spin isomer as a secondary beam. The combination of fusion-evaporation reaction and inverse kinematics are used to produce high spin isomer beams; in particular, the adoption of `inverse kinematics` is essential to use short-lived isomers as a beam.
Energy Technology Data Exchange (ETDEWEB)
Kravchenko, Polina
2010-10-15
The thesis focuses on two aspects of the HERMES data analysis: the measurement of the semi-inclusive double spin asymmetries and the extraction of quark helicity distributions and quark polarizations of the nucleon from deep-inelastic scattering, as a possible interpretation of the HERMES data. The asymmetries are presented using all possible and accessible information about the HERMES data, including the latest systematic studies provided during the last years by HERMES collaboration. (orig.)
High energy spin isospin modes in nuclei
International Nuclear Information System (INIS)
Chanfray, G.; Ericson, M.
1984-01-01
The high energy response of nuclei to a spin-isospin excitation is investigated. We show the existence of a strong contrast between the spin transverse and spin longitudinal responses. The second one undergoes a shadow effect in the Δ region and displays the occurrence of the pionic branch
International Nuclear Information System (INIS)
Lebedenko, V. N.; Bewick, A.; Currie, A.; Davidge, D.; Dawson, J.; Horn, M.; Howard, A. S.; Jones, W. G.; Joshi, M.; Liubarsky, I.; Lyons, K.; Quenby, J. J.; Sumner, T. J.; Thorne, C.; Walker, R. J.; Araujo, H. M.; Edwards, B.; Barnes, E. J.; Ghag, C.; Murphy, A. StJ.
2009-01-01
We present new experimental constraints on the WIMP-nucleon spin-dependent elastic cross sections using data from the first science run of ZEPLIN-III, a two-phase xenon experiment searching for galactic dark matter weakly interacting massive particles based at the Boulby mine. Analysis of ∼450 kg·days fiducial exposure allow us to place a 90%-confidence upper limit on the pure WIMP-neutron cross section of σ n =1.9x10 -2 pb at 55 GeV/c 2 WIMP mass. Recent calculations of the nuclear spin structure based on the Bonn charge-dependent nucleon-nucleon potential were used for the odd-neutron isotopes 129 Xe and 131 Xe. These indicate that the sensitivity of xenon targets to the spin-dependent WIMP-proton interaction could be much lower than implied by previous calculations, whereas the WIMP-neutron sensitivity is impaired only by a factor of ∼2.
High-field spin dynamics of antiferromagnetic quantum spin chains
DEFF Research Database (Denmark)
Enderle, M.; Regnault, L.P.; Broholm, C.
2000-01-01
present recent work on the high-field spin dynamics of the S = I antiferromagnetic Heisenberg chains NENP (Haldane ground state) and CsNiCl3 (quasi-1D HAF close to the quantum critical point), the uniform S = 1/2 chain CTS, and the spin-Peierls system CuGeO3. (C) 2000 Elsevier Science B,V. All rights...
Polarised quark distributions in the nucleon from semi-inclusive spin asymmetries
Adeva, B; Arik, E; Arvidson, A; Badelek, B; Bardin, G; Baum, G; Berglund, P; Betev, L; Birsa, R; De Botton, N R; Bradamante, Franco; Bravar, A; Bressan, A; Bültmann, S; Burtin, E; Crabb, D; Cranshaw, J; Çuhadar-Dönszelmann, T; Dalla Torre, S; Van Dantzig, R; Derro, B R; Deshpande, A A; Dhawan, S K; Dulya, C M; Eichblatt, S; Fasching, D; Feinstein, F; Fernández, C; Forthmann, S; Frois, Bernard; Gallas, A; Garzón, J A; Gilly, H; Giorgi, M A; von Goeler, E; Görtz, S; Gracia, G; De Groot, N; Grosse-Perdekamp, M; Haft, K; Von Harrach, D; Hasegawa, T; Hautle, P; Hayashi, N; Heusch, C A; Horikawa, N; Hughes, V W; Igo, G; Ishimoto, S; Iwata, S; Kabuss, E M; Kageya, T; Karev, A G; Kessler, H J; Ketel, T; Kiryluk, J; Kiselev, Yu F; Krämer, Dietrich; Krivokhizhin, V G; Kröger, W; Kukhtin, V V; Kurek, K; Kyynäräinen, J; Lamanna, M; Landgraf, U; Le Goff, J M; Lehár, F; de Lesquen, A; Lichtenstadt, J; Litmaath, M; Magnon, A; Mallot, G K; Marie, F; Martin, A; Martino, J; Matsuda, T; Mayes, B W; McCarthy, J S; Medved, K S; Meyer, W T; Van Middelkoop, G; Miller, D; Miyachi, Y; Mori, K; Moromisato, J H; Nassalski, J P; Naumann, Lutz; Niinikoski, T O; Oberski, J; Ogawa, A; Ozben, C; Pereira, H; Perrot-Kunne, F; Peshekhonov, V D; Pinsky, L; Platchkov, S K; Pló, M; Pose, D; Postma, H; Pretz, J; Puntaferro, R; Rädel, G; Rijllart, A; Reicherz, G; Roberts, J; Rodríguez, M; Rondio, Ewa; Roscherr, B; Sabo, I; Saborido, J; Sandacz, A; Savin, I A; Schiavon, R P; Schiller, A; Sichtermann, E P; Simeoni, F; Smirnov, G I; Staude, A; Steinmetz, A; Stiegler, U; Stuhrmann, H B; Szleper, M; Tessarotto, F; Thers, D; Tlaczala, W; Tripet, A; Ünel, G; Velasco, M; Vogt, J; Voss, Rüdiger; Whitten, C; Windmolders, R; Willumeit, R; Wislicki, W; Witzmann, A; Ylöstalo, J; Zanetti, A M; Zaremba, K; Zhao, J
1998-01-01
We present a measurement of semi-inclusive spin asymmetries for positively and negatively charged hadrons from deep inelastic scattering of polarised muons on polarised protons and deuterons in the range $0.003$1~GeV$^2$. Compared to our previous publication on this subject, with the new data the statistical errors have been reduced by nearly a factor of two. From these asymmetries and our inclusive spin asymmetries we determine the polarised quark distributions of valence quarks and non-strange sea quarks at $Q^2$=10~GeV$^2$. The polarised $u$ valence quark distribution, $\\Delta u_v(x)$, is positive and the polarisation increases with $x$. The polarised $d$ valence quark distribution, $\\Delta d_v(x)$, is negative and the non-strange sea distribution, $\\Delta \\bar q(x)$, is consistent with zero over the measured range of $x$. We find for the first moments $\\int_0^1 \\Delta u_v(x) {\\rm d}x = 0.77 \\pm 0.10 \\pm 0.08$, $\\int_0^1 \\Delta d_v(x) {\\rm d}x = -0.52 \\pm 0.14 \\pm 0.09$ and $\\int_0^1 \\Delta \\bar q(x) {\\rm ...
International Nuclear Information System (INIS)
Procureur, S.
2006-07-01
The main goal of the COMPASS experiment at CERN is the determination of the gluon polarisation in the nucleon, V. For this, the helicity asymmetry of the photon gluon fusion process is measured, in the scattering of polarized muons on a polarised deuteron target. This process can be tagged by the production of hadrons with high transverse momentum (pT), that allows to get a large statistics. On the other hand, a physical background remains and complicates the extraction of V. This PhD thesis presents different studies performed to optimize the determination of c in this channel. In particular, a study of the alignment of the 200 detection planes is presented, leading to an improvement of the spectrometer resolution. Performances of the 12 Micromegas detectors have also been determined during 2004 run. Then, the asymmetries obtained in the analysis of 2002 to 2004 data are calculated, for various high PT selections: production of 1 or 2 hadrons, at low or high Q2. An optimization of the selection, based on a neural network, has also been developed, and a detailed study of the experimental false asymmetry has been performed. V extraction is then described, based on Monte Carlo simulations (using PYTHIA or LEPTO). For the first time, the asymmetry of the so-called resolved photon processes is estimated. An improvement on the reconstruction of nucleon momentum fraction carried by the gluon is also proposed, by reconstructing pseudo-jets. Finally, small values obtained for GG are discussed, in terms of constraints on the gluon contribution to the nucleon spin. (author)
A lattice calculation of the nucleon's spin-dependent structure function g2 revisited
International Nuclear Information System (INIS)
Goeckeler, M.; Rakow, P.E.L.; Schaefer, A.; Schierholz, G.
2000-11-01
Our previous calculation of the spin-dependent structure function g 2 is revisited. The interest in this structure function is to a great extent motivated by the fact that it receives contributions from twist-two as well as from twist-three operators already in leading order of 1/Q 2 thus offering the unique possibility of directly assessing higher-twist effects. In our former calculation the lattice operators were renormalized perturbatively and mixing with lower-dimensional operators was ignored. However, the twist-three operator which gives rise to the matrix element d 2 mixes non-perturbatively with an operator of lower dimension. Taking this effect into account leads to a considerably smaller value of d 2 , which is consistent with the experimental data. (orig.)
Nuclear structure at high and very high spin theoretical description
International Nuclear Information System (INIS)
Szymanski, Z.
1983-11-01
When the existence of nuclear shell structure is ignored and nuclear motion is assumed to be classical we may expect that the nuclear rotation resembles that of a liquid drop. Energy of the nucleus can be thus considered as a sum of three terms: surface energy, Coulomb energy and rotational energy. Nuclear moment of inertia is assumed to be that of a rigid-body. The results of a calculation of the energy surfaces in rotating nuclei by Cohen, Plasil and Swiatecki are discussed. Cranking procedure is analysed as a tool to investigate nucleonic orbits in a rotating nuclear potential. Some predictions concerning the possible onset of a superdeformed phase are given. The structure of nuclear rotation is examined in the presence of the short-range pairing forces that generate the superfluid correlations in the nucleus. Examples of the Bengtsson-Frauendorf plots (quasiparticle energies versus angular velocity of rotation) are given and discussed. The backbending phenomenon is analysed in terms of band crossing. The dependence of the crossing frequency on the pairing-force strength is discussed. Possibilities of the role of new components in the two-body force (quadrupole-pairing) are considered. Possibilities of the phase transition from superfluid to normal states in the nucleus are analysed. The role of the second (dynamic) moment of inertia I(2) in this analysis is discussed. In spherical weekly deformed nuclei (mostly oblate) angular momentum is aligned parallel to the nuclear symmetry axis. Rotation is of non collective origin in this case. Examples of the analysis of nuclear spectra in this case (exhibiting also the isomeric states called yrast (traps)) are given. Possible forms of the collective excitations superimposed on top of the high-spin states are discussed. In particular, the giant resonance excitations formed on top of the high-spin states are considered and their properties discussed
Measurement of the nucleon structure function using high energy muons
International Nuclear Information System (INIS)
Meyers, P.D.
1983-12-01
We have measured the inclusive deep inelastic scattering of muons on nucleons in iron using beams of 93 and 215 GeV muons. To perform this measurement, we have built and operated the Multimuon Spectrometer (MMS) in the muon beam at Fermilab. The MMS is a magnetized iron target/spectrometer/calorimeter which provides 5.61 kg/cm 2 of target, 9% momentum resolution on scattered muons, and a direct measure of total hadronic energy with resolution sigma/sub nu/ = 1.4√nu(GeV). In the distributed target, the average beam energies at the interaction are 88.0 and 209 GeV. Using the known form of the radiatively-corrected electromagnetic cross section, we extract the structure function F 2 (x,Q 2 ) with a typical precision of 2% over the range 5 2 2 /c 2 . We compare our measurements to the predictions of lowest order quantum chromodynamics (QCD) and find a best fit value of the QCD scale parameter Λ/sub LO/ = 230 +- 40/sup stat/ +- 80/sup syst/ MeV/c, assuming R = 0 and without applying Fermi motion corrections. Comparing the cross sections at the two beam energies, we measure R = -0.06 +- 0.06/sup stat/ +- 0.11/sup syst/. Our measurements show qualitative agreement with QCD, but quantitative comparison is hampered by phenomenological uncertainties. The experimental situation is quite good, with substantial agreement between our measurements and those of others. 86 references
Studies of high energy lepton-nucleon scattering
International Nuclear Information System (INIS)
Ingelman, G.
1982-05-01
The first part of this thesis is related to the problem of detecting charmed particles. A new technique for observing very short decay paths in nuclear emulsions is developed and applied on a sample of neutrino induced reactions. Techniques for producing thick pellicles of nuclear track emulsion are also developed. In the second part, phenomenological investigations of deep inelastic lepton-nucleon scattering are made. Monte Carlo computer programs, based on the parton model and perturbative QCD for the initial hard process and the Lund model for the following soft hadronization, are used to simulate these reactions and thereby obtain explicit results. Generally good agreement is found when comparing these with experimental data, thus supporting this basic framework. Predictions to test QCD are made. Transverse momentum properties are studied in detail, in particular effects from soft gluon emission. The properties of a model for baryon production, both from the target remnant and the colour force field, are discussed and the results found to agree with data. It is shown that, at the presently available energies, the observable energy flow is not due to QCD, but arises from the baryon production in the target fragmentation. In a model to explain the observed Λ polarization, a connection between the confinement of quarks and these polarization phenomena is suggested. (Auth.)
High spin rotations of nuclei with the harmonic oscillator potential
International Nuclear Information System (INIS)
Cerkaski, M.; Szymanski, Z.
1978-01-01
Calculations of the nuclear properties at high angular momentum have been performed recently. They are based on the liquid drop model of a nucleus and/or on the assumption of the single particle shell structure of the nucleonic motion. The calculations are usually complicated and involve long computer codes. In this article we shall discuss general trends in fast rotating nuclei in the approximation of the harmonic oscillator potential. We shall see that using the Bohr Mottelson simplified version of the rigorous solution of Valatin one can perform a rather simple analysis of the rotational bands, structure of the yrast line, moments of inertia etc. in the rotating nucleus. While the precision fit to experimental data in actual nuclei is not the purpose of this paper, one can still hope to reach some general understanding within the model of the simple relations resulting in nuclei at high spin. (author)
On the A dependence in the process of dilepton production by high-energy nucleons
International Nuclear Information System (INIS)
Gevorkyan, S.R.; Zhamkochyan, V.M.
1978-01-01
The process of lepton pair production in nucleon-nucleus collisions for high energies is considered. It is shown, that with due regard for the N → π → μ + μ - inelastic transitions the experimentally observed A dependence of the cross section of the NA → μ + μ - X process can be explained in the framework of the multiple scattering theory
Measurement of the nucleon structure function using high energy muons
Energy Technology Data Exchange (ETDEWEB)
Meyers, P.D.
1983-12-01
We have measured the inclusive deep inelastic scattering of muons on nucleons in iron using beams of 93 and 215 GeV muons. To perform this measurement, we have built and operated the Multimuon Spectrometer (MMS) in the muon beam at Fermilab. The MMS is a magnetized iron target/spectrometer/calorimeter which provides 5.61 kg/cm/sup 2/ of target, 9% momentum resolution on scattered muons, and a direct measure of total hadronic energy with resolution sigma/sub nu/ = 1.4..sqrt..nu(GeV). In the distributed target, the average beam energies at the interaction are 88.0 and 209 GeV. Using the known form of the radiatively-corrected electromagnetic cross section, we extract the structure function F/sub 2/(x,Q/sup 2/) with a typical precision of 2% over the range 5 < Q/sup 2/ < 200 GeV/sup 2//c/sup 2/. We compare our measurements to the predictions of lowest order quantum chromodynamics (QCD) and find a best fit value of the QCD scale parameter ..lambda../sub LO/ = 230 +- 40/sup stat/ +- 80/sup syst/ MeV/c, assuming R = 0 and without applying Fermi motion corrections. Comparing the cross sections at the two beam energies, we measure R = -0.06 +- 0.06/sup stat/ +- 0.11/sup syst/. Our measurements show qualitative agreement with QCD, but quantitative comparison is hampered by phenomenological uncertainties. The experimental situation is quite good, with substantial agreement between our measurements and those of others. 86 references.
Abrupt relaxation in high-spin molecules
International Nuclear Information System (INIS)
Chang, C.-R.; Cheng, T.C.
2000-01-01
Mean-field model suggests that the rate of resonant quantum tunneling in high-spin molecules is not only field-dependent but also time-dependent. The relaxation-assisted resonant tunneling in high-spin molecules produces an abrupt magnetization change during relaxation. When the applied field is very close to the resonant field, a time-dependent interaction field gradually shifts the energies of different collective spin states, and magnetization tunneling is observed as two energies of the spin states coincide
FERMILAB: High energy spin effects
Energy Technology Data Exchange (ETDEWEB)
Anon.
1991-03-15
While many physicists would agree that it is important to study interactions of different isospin states (for example comparing proton and neutron data), many of them also accept as normal data averaged or integrated over ordinary spin. However an ongoing programme at Brookhaven studying elastic scattering (where the incoming particles 'bounce' off each other) produced marked spin effects which are not well understood. Our understanding of particle interactions should not be influenced by which observables are easy to measure and which aren't, and until a clear understanding of spin effects emerges, it is important to continue and extend these studies.
Insight into nucleon structure from generalized parton distributions
International Nuclear Information System (INIS)
J.W. Negele; R.C. Brower; P. Dreher; R. Edwards; G. Fleming; Ph. Hagler; Th. Lippert; A.V.Pochinsky; D.B. Renner; D. Richards; K. Schilling; W. Schroers
2004-01-01
The lowest three moments of generalized parton distributions are calculated in full QCD and provide new insight into the behavior of nucleon electromagnetic form factors, the origin of the nucleon spin, and the transverse structure of the nucleon
Experimental status of high-spin states
International Nuclear Information System (INIS)
Stephens, F.S.
1975-09-01
Changes occurring in high spin nuclear states are discussed. Experimental methods for studying reduction and eventual quenching of pairing interactions, changes in nuclear shapes, and alignment of individual particle angular momenta with increasing spin are reviewed. Emphasis is placed on the study of continuum gamma rays following heavy ion reactions. (12 figures)
The study of very high spin states
International Nuclear Information System (INIS)
Nolan, P.J.
1992-01-01
Some examples are given of the study of very high spin states that decay by discrete line gamma-ray emission. States up to spin 70(h/2π) have been seen in superdeformed bands. In other bands with normal deformation the limit is near 50(h/2π). (Author)
International Nuclear Information System (INIS)
Bresson, S.; Morjean, M.; Jastrzebski, J.; Skulski, W.; Kordyasz, A.; Lott, B.
1992-01-01
Binary fission of projectile-like nuclei was investigated in the interaction of 29 MeV/nucleon Pb on Au, together with the associated neutron multiplicity. Fission is only observed in rather peripheral collisions and represents approximately 20% of the total reaction cross-section. The fission process occurs after collisions in which up to 550 MeV have been dissipated. The angular and energy distribution of the fragments can be accounted for by assuming a noticeable spin alignment of the fissioning nuclei. (author) 18 refs.; 3 figs
QCD SPIN PHYSICS IN HADRONIC INTERACTIONS.
Energy Technology Data Exchange (ETDEWEB)
VOGELSANG,W.
2007-06-19
We discuss spin phenomena in high-energy hadronic scattering, with a particular emphasis on the spin physics program now underway at the first polarized proton-proton collider, RHIC. Experiments at RHIC unravel the spin structure of the nucleon in new ways. Prime goals are to determine the contribution of gluon spins to the proton spin, to elucidate the flavor structure of quark and antiquark polarizations in the nucleon, and to help clarify the origin of transverse-spin phenomena in QCD. These lectures describe some aspects of this program and of the associated physics.
QMD and JAM calculations for high energy nucleon-nucleus collisions
International Nuclear Information System (INIS)
Niita, Koji
2002-01-01
We describe the two simulation codes, QMD and JAM (Jet AA Microscopic Transport Model), for high energy nuclear reactions. QMD can treat the nucleus-nucleus reactions as well as nucleon-nucleus reactions based on the molecular dynamics. We have applied the QMD code intensively to nucleon-nucleus reactions and checked its validity. The cross sections obtained by the QMD are now used for evaluation of high energy nuclear data in JAERI. JAM is a hadronic cascade code including the resonance and string model for the hadron-hadron collisions at high energy up to 200 GeV. We have developed a high energy particle transport code NMTC/JAM by including the JAM code for the intra-nuclear cascade part. (author)
The multidimensional nucleon structure
Directory of Open Access Journals (Sweden)
Pasquini Barbara
2016-01-01
Full Text Available We discuss different kinds of parton distributions, which allow one to obtain a multidimensional picture of the internal structure of the nucleon. We use the concept of generalized transverse momentum dependent parton distributions and Wigner distributions, which combine the features of transverse-momentum dependent parton distributions and generalized parton distributions. We show examples of these functions within a phenomenological quark model, with focus on the role of the spin-spin and spin-orbit correlations of quarks.
Akerib, D. S.; Araújo, H. M.; Bai, X.; Bailey, A. J.; Balajthy, J.; Beltrame, P.; Bernard, E. P.; Bernstein, A.; Biesiadzinski, T. P.; Boulton, E. M.; Bradley, A.; Bramante, R.; Cahn, S. B.; Carmona-Benitez, M. C.; Chan, C.; Chapman, J. J.; Chiller, A. A.; Chiller, C.; Currie, A.; Cutter, J. E.; Davison, T. J. R.; de Viveiros, L.; Dobi, A.; Dobson, J. E. Y.; Druszkiewicz, E.; Edwards, B. N.; Faham, C. H.; Fiorucci, S.; Gaitskell, R. J.; Gehman, V. M.; Ghag, C.; Gibson, K. R.; Gilchriese, M. G. D.; Hall, C. R.; Hanhardt, M.; Haselschwardt, S. J.; Hertel, S. A.; Hogan, D. P.; Horn, M.; Huang, D. Q.; Ignarra, C. M.; Ihm, M.; Jacobsen, R. G.; Ji, W.; Kazkaz, K.; Khaitan, D.; Knoche, R.; Larsen, N. A.; Lee, C.; Lenardo, B. G.; Lesko, K. T.; Lindote, A.; Lopes, M. I.; Malling, D. C.; Manalaysay, A.; Mannino, R. L.; Marzioni, M. F.; McKinsey, D. N.; Mei, D.-M.; Mock, J.; Moongweluwan, M.; Morad, J. A.; Murphy, A. St. J.; Nehrkorn, C.; Nelson, H. N.; Neves, F.; O'Sullivan, K.; Oliver-Mallory, K. C.; Ott, R. A.; Palladino, K. J.; Pangilinan, M.; Pease, E. K.; Phelps, P.; Reichhart, L.; Rhyne, C.; Shaw, S.; Shutt, T. A.; Silva, C.; Solovov, V. N.; Sorensen, P.; Stephenson, S.; Sumner, T. J.; Szydagis, M.; Taylor, D. J.; Taylor, W.; Tennyson, B. P.; Terman, P. A.; Tiedt, D. R.; To, W. H.; Tripathi, M.; Tvrznikova, L.; Uvarov, S.; Verbus, J. R.; Webb, R. C.; White, J. T.; Whitis, T. J.; Witherell, M. S.; Wolfs, F. L. H.; Yazdani, K.; Young, S. K.; Zhang, C.; LUX Collaboration
2016-04-01
We present experimental constraints on the spin-dependent WIMP (weakly interacting massive particle)-nucleon elastic cross sections from LUX data acquired in 2013. LUX is a dual-phase xenon time projection chamber operating at the Sanford Underground Research Facility (Lead, South Dakota), which is designed to observe the recoil signature of galactic WIMPs scattering from xenon nuclei. A profile likelihood ratio analysis of 1.4 ×104 kg day of fiducial exposure allows 90% C.L. upper limits to be set on the WIMP-neutron (WIMP-proton) cross section of σn=9.4 ×10-41 cm2 (σp=2.9 ×10-39 cm2 ) at 33 GeV /c2 . The spin-dependent WIMP-neutron limit is the most sensitive constraint to date.
Exploring the nucleon helicity structure with pp collisions
International Nuclear Information System (INIS)
Deshpande, Abhay
2007-01-01
After a brief history of nucleon spin crisis I will motivate the need for a high energy polarized proton collider. I will then describe the distinct advantages of this new facility to study the spin structure of the proton. I will highlight the recent achievements of the RHIC Spin program from the experimental side, and review the achievements in terms of physics impact now and in near future
High PT electronuclear reactions and spin observables
International Nuclear Information System (INIS)
Laget, J.M.
1990-01-01
The main arguments of the following topics are reviewed: the high transverse momentum exclusive reactions, the determination of various spin observables and the production of different flavours in reactions induced by real and virtual photons
Energy Technology Data Exchange (ETDEWEB)
Jung, Chang Kee [State University of New York at Stony Brook; Douglas, Michaek [State University of New York at Stony Brook; Hobbs, John [State University of New York at Stony Brook; McGrew, Clark [State University of New York at Stony Brook; Rijssenbeek, Michael [State University of New York at Stony Brook
2013-07-29
This is the final report of the DOE grant DEFG0292ER40697 that supported the research activities of the Stony Brook High Energy Physics Group from November 15, 1991 to April 30, 2013. During the grant period, the grant supported the research of three Stony Brook particle physics research groups: The Nucleon Decay and Neutrino group, the Hadron Collider Group, and the Theory Group.
Energy Technology Data Exchange (ETDEWEB)
Keppel, C. [Virginia Union Univ., Richmond, VA (United States)
1994-04-01
Nucleon resonance electroproduction results from SLAC Experiment E14OX are presented. A CEBAF facility with doubled energy would enable similar high momentum transfer measurements to be made with greater accuracy. Of particular interest are the Delta P{sub 33}(1232) resonance form factor and R = {sigma}{sub L}/{sigma}{sub T}, the ratio of the longitudinal and transverse components of the cross section. A suggestion is made to study these quantities in conjunction with Bloom-Gilman duality.
High-Precision Determination of the Pion-Nucleon σ Term from Roy-Steiner Equations
Hoferichter, Martin; Ruiz de Elvira, Jacobo; Kubis, Bastian; Meißner, Ulf-G.
2015-08-01
We present a determination of the pion-nucleon (π N ) σ term σπ N based on the Cheng-Dashen low-energy theorem (LET), taking advantage of the recent high-precision data from pionic atoms to pin down the π N scattering lengths as well as of constraints from analyticity, unitarity, and crossing symmetry in the form of Roy-Steiner equations to perform the extrapolation to the Cheng-Dashen point in a reliable manner. With isospin-violating corrections included both in the scattering lengths and the LET, we obtain σπ N=(59.1 ±1.9 ±3.0 ) MeV =(59.1 ±3.5 ) MeV , where the first error refers to uncertainties in the π N amplitude and the second to the LET. Consequences for the scalar nucleon couplings relevant for the direct detection of dark matter are discussed.
High energy nuclear collisions in the few GeV/nucleon region: projectile and target fragmentation
International Nuclear Information System (INIS)
Schroeder, L.S.
1980-06-01
A general review of nucleon-nucleus and nucleus-nucleus collisions for incident energies <10 GeV/nucleon is presented. The division of these interactions into peripheral and central collisions is briefly discussed. Subjects treated include the following: target and projectile fragmentation systematics, production of exotic nuclear fragments, studies of multiparticle final states, total cross section measurements, results from an experiment that indicate the production of projectile fragments with an anomalously short reaction mean free path, high-energy particle production at backward angles beyond simple N-N kinematic limits, and recent results on backward particle emission in studies with the Berkeley streamer chamber. Both the particle and nuclear physics aspects that are present are considered. A brief discussion of future trends in this energy range ends the presentation. 65 references, 37 figures
Nucleon-nucleon correlations in dense nuclear matter
International Nuclear Information System (INIS)
Alm, T.
1993-02-01
In this thesis new results on the problematics of the formation of nucleon-nucleon correlations in nuclear matter could be presented. Starting from a general study of the two-particle problem in matter we studied the occurrence of a suprafluid phase (pair condensate of nucleons). The Gorkov decoupling by means of anomalous Green functions was generalized, so that also Cooper pairs with spin 1 (triplet pairing) can be described. A generalized gap equation resulted, which permits to determine the order parameters of the suprafluied phase in arbitrary channels of the nucleon-nucleon scattering states. This equation was solvd in the 1 S 0 -, in the 3 P 2 - 3 F 2 , and in the 3 S 1 - 3 D 1 channel under application of realistic nucleon-nucleon potentials. The behaviour of the resulting gap parameters in the single channels was studied as function of density and temperature. (orig.) [de
High resolution study of nucleonic cosmic rays with Z >= 34
International Nuclear Information System (INIS)
Fowler, P.H.; Alexander, C.; Clapham, V.M.; Henshaw, D.L.; O'Ceallaigh, C.; O'Sullivan, D.; Thompson, A.
1976-01-01
Preliminary results of the analysis of large area lexan polycarbonate and nuclear emulsion sandwich stacks flown from Sioux Falls between 1971 and 1974 are given. The total exposure was approximately 120 m 2 days at approximately 3.8 g cm -2 atmospheric depth and 284 tracks of nuclei with Z >= 34 have been found to date, of which 97 have Z >= 65. The charge distribution features a platinum peak, a marked actinide gap and a high uranium group flux, but no example of a super heavy nucleus was observed. The energy spectrum of nuclei with Z >= 65 is 'normal' confirming our earlier results. (orig.) [de
High energy hadron spin-flip amplitude
International Nuclear Information System (INIS)
Selyugin, O.V.
2016-01-01
The high-energy part of the hadron spin-flip amplitude is examined in the framework of the new high-energy general structure (HEGS) model of the elastic hadron scattering at high energies. The different forms of the hadron spin-flip amplitude are compared in the impact parameter representation. It is shown that the existing experimental data of the proton-proton and proton-antiproton elastic scattering at high energy in the region of the diffraction minimum and at large momentum transfer give support in the presence of the energy-independent part of the hadron spin-flip amplitude with the momentum dependence proposed in the works by Galynskii-Kuraev. [ru
In-medium scaling law and electron scattering from high-spin states in 208Pb
International Nuclear Information System (INIS)
Arias de Saavedra, F.; Lallena, A.M.
1994-01-01
The effects of the environment modifications in the structure of the low-lying high-spin states of 208 Pb are studied by analyzing how the in-medium scaling law works on the excitation energies, wave functions, and electron scattering form factors corresponding to these states. It is shown that the consideration of f π * in addition to the effective ρ-meson mass does not affect too much most of the states analyzed. However, some of them appear to be extremely sensitive to its inclusion in the residual nucleon-nucleon interaction. As a result, a value of m ρ * /m ρ ∼f π * /f π ∼0.91 gives a good description of the (e,e') form factors of these particular states without any quenching factor. This value is in agreement with the one found for 48 Ca in a similar analysis performed in a previous work
International Nuclear Information System (INIS)
Glagolev, V.V.; Lyuboshits, V.L.; Lyuboshits, V.V.; Piskunov, N.M.
1999-01-01
In the framework of the impulse approximation, the relation between the effective cross section of the charge-exchange breakup of a fast deuteron d + a → (pp) + b and the effective cross section of the charge transfer process n + a → p + b is discussed. In doing so, the effects of the proton identity (Fermi-statistics) and of the Coulomb and strong interactions of protons in the final state are taken into account. The distribution over relative momenta of the protons, produced in the charge-exchange process d + p → (pp) + n in the forward direction, is investigated. At the transfer momenta being close to zero the effective cross section of the charge-exchange breakup of a fast deuteron, colliding with the proton target, is determined only by the spin-flip part of the amplitude of the charge transfer reaction n + p → p + n at the zero angle. It is shown that the study of the process d + p → (pp) + n in a beam of the polarized (aligned) deuterons allows one, in principle, to separate two spin-dependent terms in the amplitude of the charge transfer reaction n + p → p + n, one of which does not conserve and the other one conserves the projection of the nucleon spin onto the direction of momentum at the transition of the neutron into the proton
Excitation of Nucleon Resonances
International Nuclear Information System (INIS)
Burkert, Volker D.
2001-01-01
I discuss developments in the area of nucleon resonance excitation, both necessary and feasible, that would put our understanding of nucleon structure in the regime of strong QCD on a qualitatively new level. They involve the collection of high quality data in various channels, a more rigorous approach in the search for ''missing'' resonances, an effort to compute some critical quantities in nucleon resonance excitations from first principles, i.e. QCD, and a proposal focused to obtain an understanding of a fundamental quantity in nucleon structure
High spin studies with radioactive ion beams
International Nuclear Information System (INIS)
Garrett, J.D.
1992-01-01
The variety of new research possibilities afforded by the culmination of the two frontier areas of nuclear structure: high spin and studies far from nuclear stability (utilizing intense radioactive ion beams) are discussed. Topics presented include: new regions of exotic nuclear shape (e.g. superdeformation, hyperdeformation, and reflection-asymmetric shapes); the population of and consequences of populating exotic nuclear configurations; and complete spectroscopy (i.e. the overlap of state of the art low-and high-spin studies in the same nucleus)
High spin studies with radioactive ion beams
Energy Technology Data Exchange (ETDEWEB)
Garrett, J D [Oak Ridge National Lab., TN (United States)
1992-08-01
The variety of new research possibilities afforded by the culmination of the two frontier areas of nuclear structure: high spin and studies far from nuclear stability (utilizing intense radioactive ion beams) are discussed. Topics presented include: new regions of exotic nuclear shape (e.g. superdeformation, hyperdeformation, and reflection-asymmetric shapes); the population of and consequences of populating exotic nuclear configurations; and, complete spectroscopy (i.e. the overlap of state of the art low- and high-spin studies in the same nucleus). (author). 47 refs., 8 figs.
International Nuclear Information System (INIS)
Windmolders, R.
1989-01-01
In this paper the following topics are reviewed: 1. the structure functions measured in deep inelastic e-N, μ-N and ν-N scattering; 2. nuclear effects on the structure functions; 3. nuclear effects on the fragmentation functions; 4. the spin dependent structure functions and their interpretation in terms of nucleon constituents. (orig./HSI)
International Nuclear Information System (INIS)
Singh, Amandeep; Kaur, Navneet; Kumar, A.; Singh, Varinderjit; Sandal, Rohit; Kaur, Rajbir; Behera, B.R.; Singh, K.P.; Singh, G.; Shukla, Aaradhya; Sharma, H.P.; Kumar, Suresh; Kumar Raja, M.; Madhusudan Rao, P.V.; Muralithar, S.; Singh, R.P.; Kumar, Rakesh; Madhvan, M.; Bhowmik, R.K.
2009-01-01
Nuclei with mass A ∼130 has been of great interest to experimental studies on high spin states. This is particularly so for the nuclei in the A∼130 region which exhibit a softness to γ. Evidence for characteristics such as shape coexistence and γ-softness has been gathered during the last two decades for many nuclei from Xe to Nd. Another interesting feature of this mass region is the existence of a regular M1 band which has been considered to be a promising candidate for magnetic rotation. In several nuclei of the A ∼130 mass region M1 bands like those observed in the A < 200 mass region are known. One signature of magnetic rotation is the decrease of the B (M1) values with increasing spin. The aim of the work is to study the high spin states and lifetime measurements using the DSAM technique
AUTHOR|(CDS)2067425; Arvidson, A; Badelek, B; Ballintijn, M K; Bardin, G; Baum, G; Berglund, P; Betev, L; Bird, I G; Birsa, R; Björkholm, P; Bonner, B E; De Botton, N R; Bradamante, Franco; Bressan, A; Bültmann, S; Burtin, E; Cavata, C; Crabb, D; Cranshaw, J; Çuhadar-Dönszelmann, T; Dalla Torre, S; Van Dantzig, R; Deshpande, A A; Dhawan, S K; Dulya, C M; Dyring, A; Eichblatt, S; Faivre, Jean-Claude; Fasching, D; Feinstein, F; Fernández, C; Frois, Bernard; Garzón, J A; Gaussiran, T; Giorgi, M A; von Goeler, E; Gómez, A; Gracia, G; De Groot, N; Grosse-Perdekamp, M; Gülmez, E; Von Harrach, D; Hasegawa, T; Hautle, P; Hayashi, N; Heusch, C A; Horikawa, N; Hughes, V W; Igo, G; Ishimoto, S; Iwata, T; Kabuss, E M; Kageya, T; Karev, A G; Ketel, T; Kessler, H J; Kishi, A; Kiselev, Yu F; Klostermann, L; Krämer, Dietrich; Krivokhizhin, V G; Kröger, W; Kyynäräinen, J; Lamanna, M; Layda, T; Landgraf, U; Le Goff, J M; Lehár, F; de Lesquen, A; Lichtenstadt, J; Litmaath, M; López-Ponte, S; Loewe, M; Magnon, A; Mallot, G K; Marie, F; Martin, A; Martino, J; Matsuda, T; Mayes, B W; McCarthy, J S; Medved, K S; Van Middelkoop, G; Miller, D; Mori, K; Moromisato, J H; Nagaitsev, A P; Nassalski, J P; Naumann, Lutz; Niinikoski, T O; Oberski, J; Ogawa, A; Ozben, C; Penzo, Aldo L; Pérez, C; Perrot-Kunne, F; Peshekhonov, V D; Piegaia, R; Pinsky, L; Platchkov, S K; Pló, M; Pose, D; Postma, H; Pretz, J; Pussieux, T; Pyrlik, J; Reyhancan, I; Rijllart, A; Roberts, J B; Rock, S E; Rodríguez, M; Rondio, Ewa; Rosado, A; Dabo, I; Saborido, J; Sandacz, A; Savin, I A; Schiavon, R P; Schüler, K P; Segel, R E; Seitz, R; Semertzidis, Y K; Sergeev, S; Sever, F; Shanahan, P; Sichtermann, E P; Smirnov, G I; Staude, A; Steinmetz, A; Stiegler, U; Stuhrmann, H B; Szleper, M; Teichert, K M; Tessarotto, F; Velasco, M; Vogt, J; Voss, Rüdiger; Weinstein, R; Whitten, C; Windmolders, R; Willumeit, R; Wislicki, W; Witzmann, A; Zanetti, A M; Zhao, J; Torre, S Dalla
1996-01-01
We present a measurement of semi-inclusive spin asymmetries for positively and negatively charged hadrons from deep inelastic scattering of polarised muons on polarised protons and deuterons in the range 0.003
Diquarks and nucleon structure functions
International Nuclear Information System (INIS)
Linkevich, A.D.; Savrin, V.I.; Skachkov, N.B.
1982-01-01
Formulae for structure functions of the deep-inelastic lepton-nucleon scattering are obtained through relativistic wave functions of systems composed of particles with spins 0, 1/2 and 1, 1/2. These wave functions are solutions of covariant two-particle single-time equations describing the nucleon as a system formed out of a quark and a diquark. Diquark is considered as a boson with the spin 0 and 1. The expressions for the nucleon structure functions are obtained by using the matrix elements of the current operator corresponding to the elastic scattering of the photon on a quark and on a diquark [ru
High spin effects in superdense matter
International Nuclear Information System (INIS)
Bowers, R.L.; Gleeson, A.M.; Pedigo, R.D.
1978-04-01
A model of relativistic interacting superdense matter with vector, scalar and symmetric second rank tensor exchange is developed. The Green's functions of the model are solved in the self consistent Hartree approximation. The contributions of the symmetric second rank tensor are emphasized. It is found that these high spin contributions effect the superdense matter at densities just beyond those predicted to occur in neutron star matter or nuclear collisions. The spin-two effects do produce an unusual asymptotic dependence, p = - 1 / 3 epsilon. This effect is examined in a simple model of the early universe
International Nuclear Information System (INIS)
Fotiades, N.; Vlastou, R.; Serris, M.; Sharpey-Schafer, J.F.; Fallon, P.; Riley, M.A.; Clark, R.M.; Hauschild, K.; Wadsworth, R.
1996-01-01
High spin states in the isotope 194 Hg were populated using the 150 Nd( 48 Ca,4n) reaction at a beam energy of 213 MeV. The analysis of γ-γ coincidences has revealed two new structures at excitation energies above 6 MeV and at moderate spin. The two structures are a manifestation of the deviation of nucleus from the collective rotation which dominates its lower excitation behaviour. A comparison with similar structures in the neighbouring Hg isotopes is also attempted. (orig.)
International Nuclear Information System (INIS)
Gizon, J.; Gizon, A.; Andre, S.; Genevey, J.; Jastrzebski, J.; Kossakowski, R.; Moszinski, M.; Preibisz, Z.
1981-02-01
We report here on the first study of the level structure of 151 Ho. High spin levels in 151 Ho have been populated in the 141 Pr + 16 O and 144 Sm + 12 C reactions. The level structure has been established up to 6.6 MeV energy and the spins and particles determined up to 49/2 - . Most of the proposed level configurations can be explained by the coupling of hsub(11/2) protons to fsub(7/2) and/or hsub(9/2) neutrons. An isomer with 14 +- 3 ns half-life and a delayed gamma multiplicity equal to 17 +- 2 has been found. Its spin is larger than 57/2 h units
International Nuclear Information System (INIS)
Baktash, C.; Halper, M.L.; Garcia Bermudez, G.J.
1989-01-01
As recent theoretical calculations that predicted the onset of superdeformation in the A ≅ 80 region, the 52 Cr( 34 S,2p2n) reaction at 130 MeV beam energy was employed to populate the high-spin states in 82 Sr. The detection system consisted of the ORNL Compton-Suppression Spectrometer System (18 Ge detectors), the Spin Spectrometer, and the 4 φ CsI Dwarf Ball of Washington University. Off-line analysis of the proton-gated data resulted in nearly 170 million Ge-Ge pairs, which were mostly due to the 2p2n channel. A decay scheme extending to spin I=27h has been established. No strong evidence for the presence of superdeformed states in 82 Sr was found in a preliminary analysis of the data. (Author) [es
Energy Technology Data Exchange (ETDEWEB)
Zheng, Xiaochao [Univ. of Virginia, Charlottesville, VA (United States). Jesse Beams Lab.
2016-03-10
The program proposed contains two ingredients which aim to address aspects of two of the three research frontiers of nuclear science as identified in the 2007 NSAC Long Range Plan. The first topic, a test of the current Standard Model, is an ongoing project focusing on measurements of the parity-violating asymmetry in ~e-2H deep inelastic scattering (PVDIS). The PVDIS measurement is complementary to other completed or ongoing low- to medium-energy tests of the Standard Model. As the first, exploratory, step, an experiment using a 6 GeV electron beam will be carried out from October to December 2009 at the Thomas Jefferson National Accelerator Facility (JLab). Meanwhile, a program using the upgraded JLab 11 GeV beam is being planned. The PVDIS program as a whole will provide the first precision data on the axial quark neutral-weak coupling constants. This will either put the current Standard Model to a test that has never been done before, or reveal information on where to look for New Physics beyond the current Standard Model. The PVDIS program will also provide results on hadronic physics effects such as charge symmetry violation. The second part of the proposed program uses spin observables to address the research frontier concerning QCD and structure of the nucleon. An experiment using the JLab 6 GeV beam in 2001 showed that, contrary to predictions from perturbative quantum chromodynamics (pQCD), while the valence up quark’s spin is parallel to the nucleon’s spin, the valence down quark’s spin is not. In order to test the limit of QCD in describing the nucleon spin structure to a region beyond the 6 GeV kinematics, this measurement will be extended to a more energetic, “deeper” valence quark region using the upgraded JLab 11 GeV beam with a polarized ^{3}He target. Although the two topics of the proposed program appear to focus on different physics, for the upgraded JLab 11 GeV beam, both will utilize a new, yet-to-be-built large acceptance
International Nuclear Information System (INIS)
Abbas, Afsar
1992-01-01
The surprising answer to this question Is nucleon deformed? is : Yes. The evidence comes from a study of the quark model of the single nucleon and when it is found in a nucleus. It turns out that many of the long standing problems of the Naive Quark Model are taken care of if the nucleon is assumed to be deformed. Only one value of the parameter P D ∼1/4 (which specifies deformation) fits g A (the axial vector coupling constant) for all the semileptonic decay of baryons, the F/D ratio, the pion-nucleon-delta coupling constant fsub(πNΔ), the double delta coupling constant 1 fsub(πΔΔ), the Ml transition moment μΔN and g 1 p the spin structure function of proton 2 . All this gives strong hint that both neutron and proton are deformed. It is important to look for further signatures of this deformation. When this deformed nucleon finds itself in a nuclear medium its deformation decreases. So much that in a heavy nucleus the nucleons are actually spherical. We look into the Gamow-Teller strengths, magnetic moments and magnetic transition strengths in nuclei to study this property. (author). 15 refs
Nucleon form factors at high q2 within constituent quark models
International Nuclear Information System (INIS)
Desplanques, B.; Silvestre-Brac, B.; Cano, F.; Noguera, S.; Gonzalez, P.; .
2000-01-01
The nucleon form factors are calculated using a non-relativistic description in terms of constituent quarks. The emphasis is put on present numerical methods used to solve the three-body problem in order to reliably predict the expected asymptotic behavior of form factors. Nucleon wave functions obtained in the hyperspherical formalism or employing Faddeev equations have been considered. While a q -8 behavior is expected at high q for a quark-quark force behaving like 1/r at short distances, it is found that the hyper central approximation in the hyperspherical formalism (K = 0) leads to a q -7 behavior. An infinite set of waves would be required to get the correct behavior. Solutions of the Faddeev equations lead to the q -8 behavior. The coefficient of the corresponding term, however, depends on the number of partial waves retained in the Faddeev amplitude. The convergence to the asymptotic behavior has also been studied. Approximate expressions characterizing this one have been derived. From the comparison with the most complete Faddeev calculation, a validity range is inferred for restricted calculations. Refs. 46 (author)
Extended sudden approximation model for high-energy nucleon removal reactions
Energy Technology Data Exchange (ETDEWEB)
Carstoiu, F.; Sauvan, E.; Orr, N.A. [Caen Univ., Lab. de Physique Corpusculaire, Institut des Sciences de la Matiere et du Rayonnement, IN2P3-CNRS ISMRA, 14 (France); Carstoiu, F. [IFIN-HH, Bucharest-Magurele (Romania); Bonaccorso, A. [Istituto Nazionale di Fisica Nucleare, Pisa (Italy)
2004-04-01
A model based on the sudden approximation has been developed to describe high energy single nucleon removal reactions. Within this approach, which takes as its starting point the formalism of Hansen, the nucleon-removal cross section and the full 3-dimensional momentum distributions of the core fragments including absorption, diffraction, Coulomb and nuclear-Coulomb interference amplitudes, have been calculated. The Coulomb breakup has been treated to all orders for the dipole interaction. The model has been compared to experimental data for a range of light, neutron-rich psd-shell nuclei. Good agreement was found for both the inclusive cross sections and momentum distributions. In the case of {sup 17}C, comparison is also made with the results of calculations using the transfer-to-the-continuum model. The calculated 3-dimensional momentum distributions exhibit longitudinal and transverse momentum components that are strongly coupled by the reaction for s-wave states, whilst no such effect is apparent for d-waves. Incomplete detection of transverse momenta arising from limited experimental acceptances thus leads to a narrowing of the longitudinal distributions for nuclei with significant s-wave valence neutron configurations, as confirmed by the data. Asymmetries in the longitudinal momentum distributions attributed to diffractive dissociation are also explored. (authors)
Extended sudden approximation model for high-energy nucleon removal reactions
International Nuclear Information System (INIS)
Carstoiu, F.; Sauvan, E.; Orr, N.A.; Carstoiu, F.; Bonaccorso, A.
2004-04-01
A model based on the sudden approximation has been developed to describe high energy single nucleon removal reactions. Within this approach, which takes as its starting point the formalism of Hansen, the nucleon-removal cross section and the full 3-dimensional momentum distributions of the core fragments including absorption, diffraction, Coulomb and nuclear-Coulomb interference amplitudes, have been calculated. The Coulomb breakup has been treated to all orders for the dipole interaction. The model has been compared to experimental data for a range of light, neutron-rich psd-shell nuclei. Good agreement was found for both the inclusive cross sections and momentum distributions. In the case of 17 C, comparison is also made with the results of calculations using the transfer-to-the-continuum model. The calculated 3-dimensional momentum distributions exhibit longitudinal and transverse momentum components that are strongly coupled by the reaction for s-wave states, whilst no such effect is apparent for d-waves. Incomplete detection of transverse momenta arising from limited experimental acceptances thus leads to a narrowing of the longitudinal distributions for nuclei with significant s-wave valence neutron configurations, as confirmed by the data. Asymmetries in the longitudinal momentum distributions attributed to diffractive dissociation are also explored. (authors)
International Nuclear Information System (INIS)
Yong Gaochan; Li Baoan; Chen Liewen
2007-01-01
Within a transport model it is shown that the neutron/proton ratio of squeezed-out nucleons perpendicular to the reaction plane, especially at high transverse momenta, in heavy-ion reactions induced by high energy neutron-rich nuclei can be a useful tool for studying the high density behavior of the nuclear symmetry energy
Spin Filters as High-Performance Spin Polarimeters
International Nuclear Information System (INIS)
Rougemaille, N.; Lampel, G.; Peretti, J.; Drouhin, H.-J.; Lassailly, Y.; Filipe, A.; Wirth, T.; Schuhl, A.
2003-01-01
A spin-dependent transport experiment in which hot electrons pass through a ferromagnetic metal / semiconductor Schottky diode has been performed. A spin-polarized free-electron beam, emitted in vacuum from a GaAs photocathode, is injected into the thin metal layer with an energy between 5 and 1000 eV above to the Fermi level. The transmitted current collected in the semiconductor substrate increases with injection energy because of secondary - electron multiplication. The spin-dependent part of the transmitted current is first constant up to about 100 eV and then increases by 4 orders of magnitude. As an immediate application, the solid-state hybrid structure studied here leads to a very efficient and compact device for spin polarization detection
EXPLORING THE POLARIZATION OF GLUONS IN THE NUCLEON.
Energy Technology Data Exchange (ETDEWEB)
STRATMANN,M.; VOGELSANG,W.
2007-10-22
We give an overview of the current status of investigations of the polarization of gluons in the nucleon. We describe some of the physics of the spin-dependent gluon parton distribution and its phenomenology in high-energy polarized hadronic scattering. We also review the recent experimental results.
Nucleon Compton Scattering with Two Space-Like Photons
International Nuclear Information System (INIS)
Andrei Afanasev; I. Akushevich; N.P. Merenkov
2002-01-01
We calculate two-photon exchange effects for elastic electron-proton scattering at high momentum transfers. The corresponding nucleon Compton amplitude is defined by two space-like virtual photons that appear to have significant virtualities. We make predictions for (a) a single-spin beam asymmetry, and (b) a single-spin target asymmetry or recoil proton polarization caused by an unpolarized electron beam
Energy Technology Data Exchange (ETDEWEB)
KUMANO,S.; SHIBATA,T.A.; YAZAKI,K.
2000-06-28
The Circum-Pan-Pacific Riken Symposium on High Energy Spin Physics was held at Oukouchi Memorial Hall in Riken from November 3 through 6, 1999. It was held as a joint meeting of the 2nd Circum-Pan-Pacific Symposium on High Energy Spin Physics and the 3rd of the series of Riken Symposia related to the RHIC-SPIN. The 1st Circum-Pan-Pacific Symposium on High Energy Spin Physics was held at Kobe in 1996 and the RHIC-SPIN Riken Symposia had been held every two years since 1995. As Prof. Ozaki mentioned in his talk at the beginning of this meeting, the RHIC was ready for the first beam, physics experiments scheduled in 2000, and the RHIC-SPIN would start in 2001. It was therefore considered to be very timely for the researchers in the field of high energy spin physics to get together, clarifying the present status of the field and discussing interesting and important topics as well as experimental subjects to be pursued. It is especially important for the success of the RHIC-SPIN project that the researchers in the neighboring countries surrounding the Pacific are actively involved in it. This is why the above two series were joined in this. symposium. The subjects discussed in the symposium include: Hard processes probing spin-structure functions, polarization mechanisms in high energy reactions, lattice studies of polarized structure functions, theoretical models for the nucleon and its spin structure, RHIC and RHIC-SPIN projects, results and future projects of existing experimental facilities. Totally 73 scientists participated in the symposium, 27 from abroad and 46 from Japan. it consisted of 13 main sessions, with 33 invited and contributed talks, and 4 discussion sessions covering recent experimental and theoretical developments and important topics in high energy spin physics and closely related fields.
The nucleon- nucleon interaction and symmetries
International Nuclear Information System (INIS)
Van Oers, W.T.H.
1992-11-01
With the advent of the possibility to study nucleon-nucleon scattering at medium energies, its extension to investigate fundamental symmetries was recognized early on. It was precisely the introduction of rotational invariance, parity conservation, time reversal invariance, and isotopic spin conversation that led to the description of the N - N scattering matrix in terms of five complex amplitudes: one set of five for proton-proton scattering and one set of five for neutron-proton scattering, or alternatively, one set for the isotopic spin state ι=ο and the other for the isotopic spin state ι=1. Clearly, if one or more of the above constraints are removed, there are additional amplitudes that need to be considered. To be meaningful, experiment requires observables that are particularly sensitive to the violation of a conservation law or symmetry principle. During the last decade a series of precision experiments has been performed to measure charge- symmetry breaking in n - p elastic scattering (corresponding to isotopic spin non-conservation), and to measure parity violation in p-p scattering. For a particle-anti-particle system,like the pp or λλ system one can raise the question of CP violation in a system other than the neutral kaon system may become possible in the near future through pp →λλ and pp→ ≡ ≡. A description is given of the ongoing efforts to measure charge symmetry breaking, parity violation and CP violation.(author). 42 refs., 6 figs
Energy Technology Data Exchange (ETDEWEB)
Ye, Zhenyu
2007-02-15
In this thesis we report on the rst results on the transverse target-spin asymmetry associated with deeply virtual Compton scattering on the proton. It is shown that this asymmetry can provide one of the rare possibilities to access the Generalized Parton Distribution (GPD) E of the nucleon, and thus, through models for E, also to the total angular momentum of u and d quarks in the nucleon. The measurement was performed using the 27.6 GeV positron beam of the HERA storage ring and the transversely polarized hydrogen target of the HERMES experiment at DESY. The two leading azimuthal amplitudes of the asymmetry are extracted from the HERMES 2002-2004 data, corresponding to an integrated luminosity of 65.3 pb.1. By comparing the results obtained at HERMES and theoretical predictions based on a phenomenological model of GPDs, we obtain a model-dependent constraint on the total angular momentum of quarks in the nucleon. (orig.)
International Nuclear Information System (INIS)
Ye, Zhenyu
2007-02-01
In this thesis we report on the rst results on the transverse target-spin asymmetry associated with deeply virtual Compton scattering on the proton. It is shown that this asymmetry can provide one of the rare possibilities to access the Generalized Parton Distribution (GPD) E of the nucleon, and thus, through models for E, also to the total angular momentum of u and d quarks in the nucleon. The measurement was performed using the 27.6 GeV positron beam of the HERA storage ring and the transversely polarized hydrogen target of the HERMES experiment at DESY. The two leading azimuthal amplitudes of the asymmetry are extracted from the HERMES 2002-2004 data, corresponding to an integrated luminosity of 65.3 pb.1. By comparing the results obtained at HERMES and theoretical predictions based on a phenomenological model of GPDs, we obtain a model-dependent constraint on the total angular momentum of quarks in the nucleon. (orig.)
Future directions for high-spin studies
International Nuclear Information System (INIS)
Stephens, F.S.
1982-11-01
Some future directions for experimental high-spin studies are discussed, concentrating mainly on the region above I -- 30h, where the γ-ray spectra are currently unresolvable. The 4π NaI balls offer a means to exploit the temperature effects recently shown to exist in such spectra. Large arrays of Compton-suppressed Ge detectors, on the other and, lead to higher effective resolution as it becomes possible to study triple and quadruple coincident events
High-precision calculation of the strange nucleon electromagnetic form factors
Energy Technology Data Exchange (ETDEWEB)
Green, Jeremy [Johannes Gutenberg Univ., Mainz (Germany); Meinel, Stefan [Univ. of Arizona, Tucson, AZ (United States); Brookhaven National Lab. (BNL), Upton, NY (United States); Engelhardt, Michael G. [New Mexico State Univ., Las Cruces, NM (United States); Krieg, Stefan [Bergische Univ., Wuppertal (Germany); Julich Supercomputing Centre, Julich (Germany); Laeuchli, Jesse [College of William and Mary, Williamsburg, VA (United States); Negele, John W. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Orginos, Kostas [College of William and Mary, Williamsburg, VA (United States); Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Pochinsky, Andrew [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Syritsyn, Sergey [Brookhaven National Lab. (BNL), Upton, NY (United States)
2015-08-26
We report a direct lattice QCD calculation of the strange nucleon electromagnetic form factors G^{s}_{E} and G^{s}_{M} in the kinematic range 0 ≤ Q^{2} ≤ 1.2GeV^{2}. For the first time, both G^{s}_{E} and G^{s}_{M} are shown to be nonzero with high significance. This work uses closer-to-physical lattice parameters than previous calculations, and achieves an unprecented statistical precision by implementing a recently proposed variance reduction technique called hierarchical probing. We perform model-independent fits of the form factor shapes using the z-expansion and determine the strange electric and magnetic radii and magnetic moment. As a result, we compare our results to parity-violating electron-proton scattering data and to other theoretical studies.
International Nuclear Information System (INIS)
Raut, R.; Ganguly, S.; Kshetri, R.; Banerjee, P.; Bhattacharya, S.; Dasmahapatra, B.; Mukherjee, A.; Mukherjee, G.; Sarkar, M. Saha; Goswami, A.; Gangopadhyay, G.; Mukhopadhyay, S.; Krishichayan,; Chakraborty, A.; Ghughre, S. S.; Bhattacharjee, T.; Basu, S. K.
2006-01-01
The high spin states of 143 Sm have been studied by in-beam γ-spectroscopy following the reaction 130 Te( 20 Ne,7n) 143 Sm at E lab =137 MeV, using a Clover detector array. More than 50 new gamma transitions have been placed above the previously known J π =23/2 - , 30 ms isomer at 2795 keV. The level scheme of 143 Sm has been extended up to 12 MeV and spin-parity assignments have been made to most of the newly proposed level. Theoretical calculation with the relativistic mean field approach using blocked BCS method, has been performed. A sequence of levels connected by M1 transitions have been observed at an excitation energy ∼8.6 MeV. The sequence appears to be a magnetic rotational band from systematics
Spin Hall magnetoresistance at high temperatures
International Nuclear Information System (INIS)
Uchida, Ken-ichi; Qiu, Zhiyong; Kikkawa, Takashi; Iguchi, Ryo; Saitoh, Eiji
2015-01-01
The temperature dependence of spin Hall magnetoresistance (SMR) in Pt/Y 3 Fe 5 O 12 (YIG) bilayer films has been investigated in a high temperature range from room temperature to near the Curie temperature of YIG. The experimental results show that the magnitude of the magnetoresistance ratio induced by the SMR monotonically decreases with increasing the temperature and almost disappears near the Curie temperature. We found that, near the Curie temperature, the temperature dependence of the SMR in the Pt/YIG film is steeper than that of a magnetization curve of the YIG; the critical exponent of the magnetoresistance ratio is estimated to be 0.9. This critical behavior of the SMR is attributed mainly to the temperature dependence of the spin-mixing conductance at the Pt/YIG interface
Bhattacharyya, Sarmishtha; Chanda, Somen; Bhattacharjee, Tumpa; Basu, Swapan Kumar; Bhowmik, R. K.; Muralithar, S.; Singh, R. P.; Ghugre, S. S.
2004-01-01
The high spin states in the N=80 odd- A141Pm nucleus have been investigated by in-beam γ-spectroscopic techniques following the reaction 133Cs( 12C, 4n) 141Pm at E=65 MeV using a modest γ detector array, consisting of seven Compton-suppressed high purity germanium detectors and a multiplicity ball of 14 bismuth germanate elements. Thirty new γ rays have been assigned to 141Pm on the basis of γ-ray singles and γγ-coincidence data. The level scheme of 141Pm has been extended upto an excitation energy of 5.2 MeV and spin {35}/{2}ℏ and 16 new levels have been proposed. Spin-parity assignments for most of the newly proposed levels have been made on the basis of the deduced directional correlation orientation ratios for strong transitions. The meanlives of a few excited states have been determined from the pulsed beam- γγ coincidence data using the generalised centroid-shift method. The level structure is discussed in the light of known systematics of neighbouring N=80 isotonic nuclei.
Nucleon-nucleon scattering data
International Nuclear Information System (INIS)
Bystricky, J.; Lehar, F.
1981-01-01
The present review contains a compilation of p-p, n-n, n-p and p-n elastic scattering data, total cross sections for elastic and inelastic nucleon-nucleon processes as well as the slope parameters and the ratios of the real to the imaginary part of the forward scattering amplitude measured at all energies. The data are given in detailed tables with comments on each measurement. Summary tables, nucleon-nucleon kinematics formulae, transformation tables for kinematics, a detailed list of references and an author index complete the paper. (orig.)
International Nuclear Information System (INIS)
Bond, A.
1977-01-01
The present position of nucleonic techniques for process measurements, is considered from the technical and cost viewpoints. Systems considered include level, density, thickness (including coating thickness), moisture, and sulphur in hydrocarbons gauges and also belt weighers. The advantages of such systems are discussed and the cost-benefit position considered. The combination of nucleonic measuring equipment with a microcomputer is examined. (U.K.)
International Nuclear Information System (INIS)
Zagrebelnyy, Vitaly
2015-02-01
In this work the beam single spin asymmetries (BSA) in SIDIS were extracted for charged pions, charged kaons and (anti)protons. The analyzed data was collected at the HERMES experiment during the years 1996-2007 with a longitudinally polarized beam on hydrogen and deuterium targets. The here presented analysis extends previously published results. The coincidence of newly extracted results with previously published results and the independent crosscheck of each step of analysis confirms the accuracy of this work.
Evolution of nuclear shapes at high spins
International Nuclear Information System (INIS)
Johnson, N.R.
1985-01-01
The dynamic electric quadrupole (E2) moments are a direct reflection of the collective aspects of the nuclear wave functions. For this, Doppler-shift lifetime measurements have been done utilizing primarily the recoil-distance technique. The nuclei with neutron number N approx. 90 possess many interesting properties. These nuclei have very shallow minima in their potential energy surfaces, and thus, are very susceptible to deformation driving influences. It is the evolution of nuclear shapes as a function of spin or rotational frequency for these nuclei that has commanded much interest in the lifetime measurements discussed here. There is growing evidence that many deformed nuclei which have prolate shapes in their ground states conform to triaxial or oblate shapes at higher spins. Since the E2 matrix elements along the yrast line are sensitive indicators of deformation changes, measurements of lifetimes of these states to provide the matrix elements has become the major avenue for tracing the evolving shape of a nucleus at high spin. Of the several nuclei we have studied with N approx. 90, those to be discussed here are /sup 160,161/Yb and 158 Er. In addition, the preliminary, but interesting and surprising results from our recent investigation of the N = 98 nucleus, 172 W are briefly discussed. 14 refs., 5 figs
Electromagnetic properties of nuclei at high spins
International Nuclear Information System (INIS)
Leander, G.A.
1986-01-01
A photon emitted by an excited state is likely to carry away, at most, 1 or 2 h-bar of angular momentum. Therefore, a profusion of photons is needed to deexcite the rapidly rotating states of nuclei formed by heavy-ion reactions. The study of electromagnetic properties has become the primary source of information on nuclear structure at high spins and, also, at the warm temperatures present in the initial stage of the electromagnetic cascade process. The purpose of this paper is a review of the E1, M1, and E2 properties of such highly excited states. 42 refs., 5 figs
Nuclear moments of inertia at high spin
International Nuclear Information System (INIS)
Deleplanque, M.A.
1982-10-01
The competition between collective motion and alignment at high spin can be evaluated by measuring two complementary dynamic moments of inertia. The first, I band, measured in γ-γ correlation experiments, relates to the collective properties of the nucleus. A new moment of inertia I/sub eff/ is defined here, which contains both collective and alignment effects. Both of these can be measured in continuum γ-ray spectra of rotational nuclei up to high frequencies. The evolution of γ-ray spectra for Er nuclei from mass 160 to 154 shows that shell effects can directly be observed in the spectra of the lighter nuclei
Identification of high-spin states in 235U
International Nuclear Information System (INIS)
Lorenz, A.; Makarenko, V.E.; Chukreev, F.E.
1994-02-01
The results of a 235 U high spin states study are analysed. A new way to assign newly observed gamma ray transitions is proposed. Such assignments deals with low spin parts of the level scheme without introducing high spin level states. (author)
Why do nucleons cling. [Meson theory
Energy Technology Data Exchange (ETDEWEB)
Kumar, N [Hindu Coll., Delhi (India)
1976-10-01
The nature of the forces which bind nucleons together within the nucleus of an atom have been discussed in detail. The characteristic properties of the nucleons, such as spin, interaction range etc. and the meson theory of nuclear forces are described. The present researches indicate that the force between two nucleons in a many-nucleon system is not very different from the force between two free nucleons. Researches related to the origin of nuclear forces based on the meson theory are now mainly concerned with the role played by the heavier mesons and the two pion exchanges in the middle region around 0.7 fm. (10/sup -13/ cm).
The interaction of LAMBDA and nucleon in the LAMBDA hypernuclei
International Nuclear Information System (INIS)
Jin Xingnan
1988-01-01
The interaction of lambda particle and nucleon is discussed from phenomenological point of view. The effective interactions between the lambda particle and the nucleon in the hypernuclei are also presented in this paper. The structure effect of the hypernuclei will make influence to the effective interaction between the lambda particle and the nucleon in the hypernucei. The spin-orbital coupling of lambda particle in the lambda hypernucleus is much smaller than the spin-orbital coupling of nucleon in nucleus
High spin-filter efficiency and Seebeck effect through spin-crossover iron–benzene complex
Energy Technology Data Exchange (ETDEWEB)
Yan, Qiang; Zhou, Liping, E-mail: zhoulp@suda.edu.cn; Cheng, Jue-Fei; Wen, Zhongqian; Han, Qin; Wang, Xue-Feng [College of Physics, Optoelectronics and Energy and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006 (China)
2016-04-21
Electronic structures and coherent quantum transport properties are explored for spin-crossover molecule iron-benzene Fe(Bz){sub 2} using density functional theory combined with non-equilibrium Green’s function. High- and low-spin states are investigated for two different lead-molecule junctions. It is found that the asymmetrical T-shaped contact junction in the high-spin state behaves as an efficient spin filter while it has a smaller conductivity than that in the low-spin state. Large spin Seebeck effect is also observed in asymmetrical T-shaped junction. Spin-polarized properties are absent in the symmetrical H-shaped junction. These findings strongly suggest that both the electronic and contact configurations play significant roles in molecular devices and metal-benzene complexes are promising materials for spintronics and thermo-spintronics.
Results of searches for the nucleon structure displays in high energy hadron-nucleus collisions
International Nuclear Information System (INIS)
Strugalski, Z.
1984-01-01
Hadron-nucleus collision data at projectile energy from a few GeV up to about eight thousand GeV were analysed in order to find effects in which a nucleon structure manifests itself. It was found that some nucleon structure displays in incident hadron deflection in its passage through atomic nuclei and in multiple production process, at energies above about 2 GeV. The distribution of the deflection angles consists of two components, the mean free path for multiparticle production is about three times larger than the expected one. These effects may be interpreted as caused by a nucleon structure
International Nuclear Information System (INIS)
Babusci, D.; Blecher, M.; Breuer, M.; Caracappa, A.; Commeaux, C.; Didelez, J.; Fan, Q.; Giordano, G.; Hicks, K.; Hoblit, S.; Hoffmann-Rothe, P.; Honig, A.; Kistner, O.C.; Khandaker, M.; Li, Z.; Lucas, M.A.; Matone, G.; Miceli, L.; Preedom, B.M.; Rigney, M.; Sandorfi, A.M.; Schaerf, C.; Thorn, C.E.
1995-01-01
Frozen-spin HD polarized targets operating between 0.4 and 4K, used with cold-transfer (4K) techniques, provide great configurational flexibility. Their long depolarization times under target usage conditions assure reasonable match between polarization production and usage times, for weakly ionizing beam fluxes, and the very long relaxation times at fields above 7T (∼1 yr.) provide an economical storage mode and open-quote open-quote off-the-shelf close-quote close-quote availability. copyright 1995 American Institute of Physics
Adolph, C; Alexakhin, V Yu; Alexandrov, Yu; Alexeev, G D; Amoroso, A; Antonov, A A; Austregesilo, A; Badelek, B; Balestra, F; Barth, J; Baum, G; Bedfer, Y; Berlin, A; Bernhard, J; Bertini, R; Bettinelli, M; Bicker, K; Bieling, J; Birsa, R; Bisplinghoff, J; Bordalo, P; Bradamante, F; Braun, C; Bravar, A; Bressan, A; Buchele, M; Burtin, E; Capozza, L; Chiosso, M; Chung, S U; Cicuttin, A; Crespo, M L; Dalla Torre, S; Das, S; Dasgupta, S S; Dasgupta, S; Denisov, O Yu; Dhara, L; Donskov, S V; Doshita, N; Duic, V; Dunnweber, W; Dziewiecki, M; Efremov, A; Elia, C; Eversheim, P D; Eyrich, W; Faessler, M; Ferrero, A; Filin, A; Finger, M; Finger, M Jr; Fischer, H; Franco, C; du Fresne von Hohenesche, N; Friedrich, J M; Frolov, V; Garfagnini, R; Gautheron, F; Gavrichtchouk, O P; Gerassimov, S; Geyer, R; Giorgi, M; Gnesi, I; Gobbo, B; Goertz, S; Grabmuller, S; Grasso, A; Grube, B; Gushterski, R; Guskov, A; Guthorl, T; Haas, F; von Harrach, D; Heinsius, F H; Herrmann, F; Hess, C; Hinterberger, F; Horikawa, N; Hoppner, Ch; d'Hose, N; Huber, S; Ishimoto, S; Ivanov, O; Ivanshin, Yu; Iwata, T; Jahn, R; Jary, V; Jasinski, P; Joosten, R; Kabuss, E; Kang, D; Ketzer, B; Khaustov, G V; Khokhlov, Yu A; Kisselev, Yu; Klein, F; Klimaszewski, K; Koblitz, S; Koivuniemi, J H; Kolosov, V N; Kondo, K; Konigsmann, K; Konorov, I; Konstantinov, V F; Korzenev, A; Kotzinian, A M; Kouznetsov, O; Kramer, M; Kroumchtein, Z V; Kunne, F; Kurek, K; Lauser, L; Lednev, A A; Lehmann, A; Levorato, S; Lichtenstadt, J; Liska, T; Maggiora, A; Magnon, A; Makke, N; Mallot, G K; Mann, A; Marchand, C; Martin, A; Marzec, J; Matsuda, T; Meshcheryakov, G; Meyer, W; Michigami, T; Mikhailov, Yu V; Morreale, A; Mutter, A; Nagaytsev, A; Nagel, T; Nerling, F; Neubert, S; Neyret, D; Nikolaenko, V I; Nowak, W D; Nunes, A S; Olshevsky, A G; Ostrick, M; Padee, A; Panknin, R; Panzieri, D; Parsamyan, B; Paul, S; Perevalova, E; Pesaro, G; Peshekhonov, D V; Piragino, G; Platchkov, S; Pochodzalla, J; Polak, J; Polyakov, V A; Pretz, J; Quaresma, M; Quintans, C; Rajotte, J F; Ramos, S; Rapatsky, V; Reicherz, G; Rocco, E; Rondio, E; Rossiyskaya, N S; Ryabchikov, D I; Samoylenko, V D; Sandacz, A; Sapozhnikov, M G; Sarkar, S; Savin, I A; Sbrizzai, G; Schiavon, P; Schill, C; Schluter, T; Schmidt, A; Schmidt, K; Schmitt, L; Schmiden, H; Schonning, K; Schopferer, S; Schott, M; Shevchenko, O Yu; Silva, L; Sinha, L; Sissakian, A N; Slunecka, M; Smirnov, G I; Sosio, S; Sozzi, F; Srnka, A; Steiger, L; Stolarski, M; Sulc, M; Sulej, R; Suzuki, H; Sznajder, P; Takekawa, S; Ter Wolbeek, J; Tessaro, S; Tessarotto, F; Tkatchev, L G; Uhl, S; Uman, I; Vandenbroucke, M; Virius, M; Vlassov, N V; Wang, L; Weisrock, T; Wilfert, M; Windmolders, R; Wislicki, W; Wollny, H; Zaremba, K; Zavertyaev, M; Zemlyanichkina, E; Ziembicki, M; Zhuravlev, N; Zvyagin, A
2013-01-01
The gluon polarisation in the nucleon was measured using open charm production by scattering 160 GeV/c polarised muons off longitudinally polarised protons or deuterons. The data were taken by the COMPASS collaboration between 2002 and 2007. A detailed account is given of the analysis method that includes the application of neural networks. Several decay channels of $D^0$ mesons are investigated. Longitudinal spin asymmetries of the D meson production cross-sections are extracted in bins of $D^0$ transverse momentum and energy. At leading order QCD accuracy the average gluon polarisation is determined as $(\\Delta g/g)^{LO}=-0.06 \\pm 0.21 (stat.) \\pm 0.08 (syst.)$ at the scale $ \\approx 13$ (GeV/c)$^2$ and an average gluon momentum fraction $\\approx$ 0.11. The average gluon polarisation is also obtained at next-to-leading order QCD accuracy as $(\\Delta g/g) NLO = -0.13 \\pm 0.15 (stat.) \\pm 0.15 (syst.)$ at the scale $ \\approx $ 13 (GeV/c)$^2$ and $ \\approx $ 0.20.
High spin spectroscopy of 34Cl
International Nuclear Information System (INIS)
Bisoi, Abhijit; Ray, S.; Kshetri, R.; Goswami, A.; Saha Sarkar, M.; Pramanik, D.; Sarkar, S.; Nag, S.; Selva Kumar, K.; Singh, P.; Saha, S.; Sethi, J.; Trivedi, T.; Naidu, B.S.; Donthi, R.; Nanal, V.; Palit, R.
2011-01-01
Spectroscopic information for 34 Cl is of interest for understanding the large 33 S abundance observed in nova. This nucleus has been extensively studied using proton, light ions and alpha beams but there are few experiments where heavy ions were used. In the present work, heavy ion beams are used to extract spectroscopic data for high spin states above ∼ 5 MeV, important for astrophysical scenario. Spherical shell model calculations have been done to interpret the experimental data. Several options of truncation adopted have provided useful insight into the sd - fp cross-shell calculations
Physics of high spin nuclear states
Energy Technology Data Exchange (ETDEWEB)
Wyss, R [Joint Inst. for Heavy Ion Research, Oak Ridge, TN (United States); [MSI, Frescativ, Stockholm (Sweden)
1992-08-01
High spin physics is a vast topic addressing the variety of nuclear excitation modes. In the present paper, some general aspects related to recent highlights of nuclear spectroscopy are discussed. The relation between signature splitting and shape changes in the unique parity orbitals is elucidated. The relevance of the Pseudo SU(3) symmetry in the understanding of rotational band structure is addressed. Specific features of rotational bands of intruder configurations are viewed as a probe of the neutron-proton interaction. (author). 36 refs., 5 figs.
Spin crossover and high spin filtering behavior in Co-Pyridine and Co-Pyrimidine molecules
Wen, Zhongqian; Zhou, Liping; Cheng, Jue-Fei; Li, Shu-Jin; You, Wen-Long; Wang, Xuefeng
2018-03-01
We present a theoretical study on a series of cobalt complexes, which are constructed with cobalt atoms and pyridine/pyrimidine rings, using density functional theory. We investigate the structural and electric transport properties of spin crossover (SCO) Co complex with two spin states, namely low-spin configuration [LS] and high-spin configuration [HS]. Energy analyses of the two spin states imply that the SCO Co-Pyridine2 and Co-Pyrimidine2 complexes may display a spin transition process accompanied by a geometric modification driven by external stimuli. A nearly perfect spin filtering effect is observed in the Co-Pyrimidine2 complex with [HS] state. In addition, we also discover the contact-dependent transmission properties of Co-Pyridine2. These findings indicate that SCO Co complexes are promising materials for molecular spintronic devices.
High energy pp and anti-pp elastic scattering in nucleon valence core model
International Nuclear Information System (INIS)
Islam, M.M.; Fearnley, T.
1986-01-01
Connection between the valence core model and the effective QCD models of nucleon structure is pointed out. Also, implication of recent anti-pp differential cross section measurements at 53 GeV on our previous calculations is discussed
Nuclear moments of inertia at high spins
International Nuclear Information System (INIS)
Deleplanque, M.A.
1984-01-01
For nuclei in high spin states a yrast-like part of a continuum γ-ray spectrum shows naturally how angular momentum is generated as a function of frequency. In rotational nuclei, the rotational frequency is omega = dE/dI approx. E/sub γ/2, half the collective E2 transition energy. The height of the spectrum for a rotor is proportional to dN/dE/sub γ/ = dI/4d omega. dI/d omega is a dynamic (second derivative of energy with spin) moment of inertia. It contains both alignments and collective effects and is therefore an effective moment of inertia J/sub eff//sup (2)/. It shows how much angular momentum is generated at each frequency. If the collective moment of inertia J/sub band//sup (2)/(omega) is measured (from γ-γ correlation experiments) for the same system, the collective and aligned (Δi) contributions to the increase of angular momentum ΔI in a frequency interval Δ omega can be separated: Δi/ΔI = 1 - J/sub band//sup (2)//J/sub eff//sup (2)/. This is at present the only way to extract such detailed information at the highest spin states where discrete lines cannot be resolved. An example of the spectra obtained in several Er nuclei is shown. They are plotted in units of the moment of inertia J/sub eff//sup (2)/. The high-energy part of the spectra has been corrected for incomplete feeding at these frequencies
Using spin to probe hadronic structure
International Nuclear Information System (INIS)
Ramsey, G.P.; Argonne National Lab., IL
1994-01-01
The theoretical and experimental status of high energy spin phenomena is summarized, with emphasis on the spin properties of nucleons. It is stressed that crucial tests of the Standard Model can be made with polarization experiments. By performing the experiments discussed here, the authors will reveal important constituent and composite properties of protons and neutrons. The future prospects for planned polarization experiments are discussed
International Nuclear Information System (INIS)
Marshall, J.A.; Barlett, M.L.; Fergerson, R.W.; Hoffmann, G.W.; Milner, E.C.; Ray, L.; Amann, J.F.; Bonner, B.E.; McClelland, J.B.
1986-01-01
500 MeV p-arrow-right+p elastic and quasielastic, and p-arrow-right+n quasielastic, analyzing powers (A/sub y/) and spin-rotation-depolarization parameters (D/sub S//sub S/, D/sub S//sub L/, D/sub L//sub S/, D/sub L//sub L/, D/sub N//sub N/) were determined for center-of-momentum angular ranges 6.8 0 -55.4 0 (elastic) and 22.4 0 -55.4 0 (quasielastic); liquid hydrogen and deuterium targets were used. The p-arrow-right+p elastic and quasielastic results are in good agreement; both the p-arrow-right+p and p-arrow-right+n parameters are well described by current phase shift solutions
Spin effects in high energy quark-quark scattering
International Nuclear Information System (INIS)
Goloskokov, S.V.; Selyugin, O.V.
1993-01-01
The spin amplitudes in high-energy quark-quark scattering at /t/>1 GeV 2 are analyzed. It is shown that the gluon contributions in the QCDα s 3 order lead to the spin-flip amplitude growing as s. This means the existence of the spin-flip part in pomeron exchange. The resulting T f is about few per cent of the spin-non-flip contribution. The factorization of the large-distance and high-energy effects in the spin-flip amplitude is obtained. 13 refs.; 2 figs.; 1 tab
The nucleon- nucleon interaction and symmetries
Energy Technology Data Exchange (ETDEWEB)
Van Oers, W T.H.
1992-11-01
With the advent of the possibility to study nucleon-nucleon scattering at medium energies, its extension to investigate fundamental symmetries was recognized early on. It was precisely the introduction of rotational invariance, parity conservation, time reversal invariance, and isotopic spin conversation that led to the description of the N - N scattering matrix in terms of five complex amplitudes: one set of five for proton-proton scattering and one set of five for neutron-proton scattering, or alternatively, one set for the isotopic spin state {iota}={omicron} and the other for the isotopic spin state {iota}=1. Clearly, if one or more of the above constraints are removed, there are additional amplitudes that need to be considered. To be meaningful, experiment requires observables that are particularly sensitive to the violation of a conservation law or symmetry principle. During the last decade a series of precision experiments has been performed to measure charge- symmetry breaking in n - p elastic scattering (corresponding to isotopic spin non-conservation), and to measure parity violation in p-p scattering. For a particle-anti-particle system,like the pp or {lambda}{lambda} system one can raise the question of CP violation in a system other than the neutral kaon system may become possible in the near future through pp {yields}{lambda}{lambda} and pp{yields} {identical_to} {identical_to}. A description is given of the ongoing efforts to measure charge symmetry breaking, parity violation and CP violation.(author). 42 refs., 6 figs.
Spin asymmetries for events with high pT hadrons in DIS and an evaluation of the gluon polarization
International Nuclear Information System (INIS)
Adeva, B.; Gallas, A.; Gracia, G.; Plo, M.; Saborido, J.; Arik, E.; Ozben, C.; Unel, G.; Arvidson, A.; Rodriguez, M.; Badelek, B.; Baum, G.; Bueltmann, S.; Tripet, A.; Berglund, P.; Betev, L.; Haft, K.; Staude, A.; Vogt, J.; Birsa, R.
2004-01-01
We present a measurement of the longitudinal spin cross section asymmetry for deep-inelastic muon-nucleon interactions with two high transverse momentum hadrons in the final state. Two methods of event classification are used to increase the contribution of the photon-gluon fusion process to above 30%. The most effective one, based on a neural network approach, provides the asymmetries A p = 0.030±0.057(stat)±0.010(syst) and A d =0.070±0.076(stat)±0.010(syst). From these values we derive an averaged gluon polarization ΔG/G=-0.20±0.28(stat)±0.10(syst) at an average fraction of nucleon momentum carried by gluons =0.07
High-spin excitations of atomic nuclei
International Nuclear Information System (INIS)
Xu Furong; National Laboratory of Heavy Ion Physics, Lanzhou; Chinese Academy of Sciences, Beijing
2004-01-01
The authors used the cranking shell model to investigate the high-spin motions and structures of atomic nuclei. The authors focus the collective rotations of the A∼50, 80 and 110 nuclei. The A∼50 calculations show complicated g spectroscopy, which can have significant vibration effects. The A≅80 N≅Z nuclei show rich shape coexistence with prolate and oblate rotational bands. The A≅110 nuclei near the r-process path can have well-deformed oblate shapes that become yrast and more stable with increasing rotational frequency. As another important investigation, the authors used the configuration-constrained adiabatic method to calculate the multi-quasiparticle high-K states in the A∼130, 180 and superheavy regions. The calculations show significant shape polarizations due to quasi-particle excitations for soft nuclei, which should be considered in the investigations of high-K states. The authors predicted some important high-K isomers, e.g., the 8 - isomers in the unstable nuclei of 140 Dy and 188 Pb, which have been confirmed in experiments. In superheavy nuclei, our calculations show systematic existence of high-K states. The high-K excitations can increase the productions of synthesis and the survival probabilities of superheavy nuclei. (authors)
Cucinotta, Francis A.; Hajnal, Ferenc; Wilson, John W.
1990-01-01
The transport of nuclear fragmentation recoils produced by high-energy nucleons in the region of the bone-tissue interface is considered. Results for the different flux and absorbed dose for recoils produced by 1 GeV protons are presented in a bidirectional transport model. The energy deposition in marrow cavities is seen to be enhanced by recoils produced in bone. Approximate analytic formulae for absorbed dose near the interface region are also presented for a simplified range-energy model.
Yrast and high spin states in 22Ne
International Nuclear Information System (INIS)
Szanto, E.M.; Toledo, A.S. de
1982-08-01
High spin states in 22 Ne have been investigated by the reactions 11 B( 13 C,d) 22 Ne and 13 C( 11 B,d) 22 Ne up to E* approximately=19 MeV. Yrast states were observed at 11.02 MeV (8 + ) and 15.46 MeV (10 + ) excitation energy. A backbending in 22 Ne is observed around spin 8 + . The location of high spin states I [pt
SPIN SUSCEPTIBILITY IN HIGH - TC SUPERCONDUCTIVITY
African Journals Online (AJOL)
USER
2012-07-05
Jul 5, 2012 ... remains unchanged as a result of which the oxygen site will remain deficient ... kinetic energy, a hole's spin hooks up with the random Cu moment to form a ... reach out to each other magnetically to form spin singlet pairs with ...
Energy Technology Data Exchange (ETDEWEB)
Price, C E; Shepard, J R [Colorado Univ., Boulder (USA). Dept. of Physics
1991-04-18
We compute properties of the nucleon in a hybrid chiral model based on the linear {sigma}-model with quark degrees of freedom treated explicity. In contrast to previous calculations, we do not use the hedgehog ansatz. Instead we solve self-consistently for a state with well defined spin and isospin projections. We allow this state to be deformed and find that, although d- and g-state admixtures in the predominantly s-state single quark wave functions are not large, they have profound effects on many nucleon properties including magnetic moments and g{sub A}. Our best fit parameters provide excellent agreement with experiment but are much different from those determined in hedgehog calculations. (orig.).
Spin Dynamics in Highly Spin Polarized Co1-xFexS2
Hoch, Michael J. R.; Kuhns, Philip L.; Moulton, William G.; Reyes, Arneil P.; Lu, Jun; Wang, Lan; Leighton, Chris
2006-09-01
Highly spin polarized or half-metallic systems are of considerable current interest because of their potential for spin injection in spintronics applications. The ferromagnet (FM) CoS2 is close to being a half-metal. Recent theoretical and experimental work has shown that the alloys Co1-xFexS2 (0.07 < x < 0.9) are highly spin polarized at low temperatures. The Fe concentration may be used to tune the spin polarization. Using 59Co FM- NMR we have investigated the spin dynamics in this family of alloys and have obtained information on the evolution of the d-band density of states at the Fermi level with x in the range 0 to 0.3. The results are compared with available theoretical predictions.
International Nuclear Information System (INIS)
Strugalski, Z.
1982-01-01
Asymmetry in nucleon emission intensity angular distributions relatively to the hadron deflection plane and to two planes normal to it and related to it uniquely is analyzed, using appropriate experimental data on pion-xenon nucleus collisions at 3.5 GeV/c momentum. Quantative characteristics of the asymmetries found are presented in tables and on figures
Angular distributions of nucleons emitted in high energy hadron-nucleus collisions
International Nuclear Information System (INIS)
Strugalski, Z.
1983-01-01
Angular distributions of ''fast'' protons, of kinetic energy from about 20 to about 400 MeV, emitted in pion-xenon nucleus collisions at 3.5 GeV/c momentum were studied in two groups of events - when particles are produced and when particle production does not occur. The distributions are practically the same in both the groups of events and in subgroups of events with various multiplicities of emitted protons. Comparison of angular distributions of protons emitted in pion-xenon nucleus collisions at 3.5 GeV/c momentum with corresponding angular distributions of protons emitted in proton-emulsion collisions at 300-400 GeV/c momentum is performed. Results obtained allow to conclude that average value of the nucleon emission angle and the nucleon angular distributions do not depend practically on the nuclear matter layer thickness the incident hadron collided with. Fast nucleons emitted from the target nucleus seem did not interact inside the parent nucleus. Fast nucleon angular distributions do not depend on the energy of incident hadron, they are the same for pion-nucleus and for proton-nucleus collisions as well
International Nuclear Information System (INIS)
Tullney, Kathlynne
2014-01-01
Xe then correspond to ω He = γ He . B 0 = 11.4 Hz and ω Xe = γ Xe . B 0 = 4.7 Hz. By means of the weighted frequency difference Δω = ω He - (γ He /γ Xe ) . ω Xe , magnetic field drifts can be eliminated (Zeeman-term). Thus, the co-magnetometer is only sensitive to non-magnetic interactions. Based on the long spin coherence times of several hours, frequency shifts due to non-magnetic interactions in the order of a few nHz can be measured. The general idea of this experiment was to place an unpolarized matter close to the spin polarized samples, which is then removed to a distant position or vice versa. If the spin-dependent short-range interaction exists, the unpolarized matter causes a shift in the spin precession frequencies of 3 He and 129 Xe for the unpolarized matter close to the polarized gases. For 3 He as well as for 129 Xe this frequency shift essentially is stemming from the coupling of the axion to the spin of the valence neutron. Hence it is approximately equal for 3 He and 129 Xe and therefore does not drop out in the weighted frequency difference. Due to the high sensitivity of the co-magnetometer, the upper limit of this frequency shift could be determined to be 7.1 nHz. With this value, an upper limit of the scalar-pseudoscalar coupling of the axion to the spin of a bound neutron could be deduced within the axion mass window. For axion masses between 2 μeV and 500 μeV, the laboratory upper bounds were improved by up to 4 orders of magnitude.
High-spin states in sd-shell nuclei
International Nuclear Information System (INIS)
Poel, C.J. van der.
1982-01-01
A systematic picture of the structure of high-spin states in the mass range A = 29 - 41 is developed on the basis of experimental results for the nuclei 34 Cl, 38 K and 39 K. It is shown that for 34 Cl the difficulties induced by the relatively low cross section can be overcome. Combination of the data obtained from a γ-γ coincidence experiment with the 24 Mg + 12 C reaction, using the LACSS, and from threshold measurements in the 31 P + α reaction, establishes an unambiguous level scheme. By means of accurate angular-distribution measurements unambiguous spin and parity assignments are made to the high-spin levels. From the results a rather simple shell-model picture for the structure of the high-spin states evolves. Several authors have published experimental work on high-spin states in 39 K, with seriously conflicting conclusions, however, for the spin-parity assignments. The powerful coincidence set-up with the LACSS enables a discrimination between the conflicting results from the previous studies. In this way, unambiguous, model-independent, spin-parity assignments to the high-spin levels are established. Highly selective experimental methods are used to identify the high-spin states of 38 K. It is shown that with a pulsed beam in the reaction 24 Mg + 16 O advantage can be taken of the presence of a long-lived high-spin isomeric level in this nucleus. The gamma-decay of the isomer is extensively studied. With the pulsed beam, also some states above the isomer could be located. The subsequent use of two Compton-suppression spectrometers in a γ-γ coincidence experiment reveals a number of high-spin levels at higher excitation energies. (Auth.)
The Jlab Upgrade - Nucleon Studies with CLAS12
International Nuclear Information System (INIS)
Volker Burkert
2007-01-01
An overview is presented on the program to study the nucleon structure at the 12 GeV Jlab Upgrade using the CLAS12 detector. The focus is on deeply virtual exclusive processes to access the generalized parton distributions, semi-inclusive processes to study transveresx momentum-dependent distributions functions, and inclusive spin structure functions and resonance transition form factors at high Q 2 and with high precision
International Nuclear Information System (INIS)
Byrski, T.; Beck, F.A.; Sharpey-Schafer, J.F.
1987-01-01
High-spin states of 159,160 Yb have been studied using the escape-suppressed array TESSA 2. Extensions of yrast and lateral bands have been found up to I ∼40. Experimental data suggest strong correlations between maximum alignment configurations of the valence nucleons and related collective states. Theoretical analysis fully supports the idea of prolate-collective vs. oblate-non-collective correlations. Band termination interpretation is discussed
Structure of high-spin states in A {approx} 60 region
Energy Technology Data Exchange (ETDEWEB)
Nakada, Hitoshi [Chiba Univ. (Japan); Furutaka, K; Hatsukawa, Y [and others
1998-03-01
High-spin states in the proton-rich Cu-Zn nuclei are investigated by the experiments at JAERI. New levels and {gamma}-rays are identified by the particle-{gamma}-{gamma} coincidence, and J{sup P} assignments are made via the DCO ratio analysis. Yrast sequences are observed up to J {approx} 18 for {sup 62}Zn, and {sup 64}Zn, J {approx} 27/2 for {sup 61}Cu and J {approx} 23/2 for {sup 63}Cu. Though we cannot settle new J{sup P} values for {sup 61,63}Zn, their yrast sequence is also extended. In {sup 64}Zn, a doublet of {gamma}-rays is discovered at 1315 keV, clarifying the similarity in the level scheme between {sup 62}Zn and {sup 64}Zn. We reproduce the yrast levels by a shell-model calculation, by which structure of the high-spin states is further studied. A parity change in the yrast sequence is established, in which the unique-parity orbit 0g{sub 9/2} plays an essential role; one nucleon excitation to g{sub 9/2} gains high angular momentum with low seniority, at the cost of the single-parity energy. Second parity-change is also suggested by the calculation. Such parity change seems characteristic to spherical or nearly spherical nuclei. In {sup 61}Cu, concentration of the {gamma}-ray intensity is observed. This happens because a stretched 3-quasiparticle configuration including 0g{sub 9/2} is relatively stable, similarly to some isomers. Thus, by studying the structure of the high-spin states of the A {approx} 60 nuclei, we have clarified the role of unique-parity orbit in high-spin states, which may be generic to spherical and nearly spherical nuclei. (J.P.N.)
International Nuclear Information System (INIS)
Schill, Christian
2012-01-01
The COMPASS experiment is a fixed target experiment at the CERN SPS using muon and hadron beams for the investigation of the spin structure of the nucleon and hadron spectroscopy. The main objective of the muon physics program is the study of the spin of the nucleon in terms of its constituents, quarks and gluons. COMPASS has accumulated data during 6 years scattering polarized muons off longitudinally or transversely polarized deuteron ( 6 LiD) or proton (NH 3 ) targets. Results for the gluon polarization are obtained from longitudinal double spin cross section asymmetries using two different channels, open charm production and high transverse momentum hadron pairs, both proceeding through the photon-gluon fusion process. Also, the longitudinal spin structure functions of the proton and the deuteron were measured in parallel as well as the helicity distributions for the three lightest quark flavours. With a transversely polarized target, results were obtained with proton and deuteron targets for the Collins and Sivers asymmetries for charged hadrons as well as for identified kaons and pions. The Collins asymmetry is sensitive to the transverse spin structure of the nucleon, while the Sivers asymmetry reflects correlations between the quark transverse momentum and the nucleon spin. Recently, a new proposal for the COMPASS II experiment was accepted by the CERN SPS which includes two new topics: Exclusive reactions like DVCS and DVMP using the muon beam and a hydrogen target to study generalized parton distributions and Drell-Yan measurements using a pion beam and a polarized NH 3 target to study transverse momentum dependent distributions.
Electrical spin injection into high mobility 2D systems.
Oltscher, M; Ciorga, M; Utz, M; Schuh, D; Bougeard, D; Weiss, D
2014-12-05
We report on spin injection into a high mobility 2D electron system confined at an (Al,Ga)As/GaAs interface, using (Ga,Mn)As Esaki diode contacts as spin aligners. We measured a clear nonlocal spin valve signal, which varies nonmonotonically with the applied bias voltage. The magnitude of the signal cannot be described by the standard spin drift-diffusion model, because at maximum this would require the spin polarization of the injected current to be much larger than 100%, which is unphysical. A strong correlation of the spin signal with contact width and electron mean free path suggests that ballistic transport in the 2D region below ferromagnetic contacts should be taken into account to fully describe the results.
International Nuclear Information System (INIS)
Gel'fand, E.K.; Man'ko, B.V.; Serov, A.Ya.; Sychev, B.S.
1979-01-01
A complex of programs for modelling various radiation situations at high energy proton accelerators is considered. The programs are divided into there main groups according to their purposes. The first group includes programs for preparing constants describing the processes of different particle interaction with a substanc The second group of programs calculates the complete function of particle distribution arising in shields under irradiation by high energy nucleons. Concrete radiation situations arising at high energy proton accelerators are calculated by means of the programs of the third group. A list of programs as well as their short characteristic are given
On the nucleon effective mass role to the high energy proton spallation reactions
Energy Technology Data Exchange (ETDEWEB)
Santos, B.M., E-mail: biank_ce@if.uff.br [Instituto de Física, Universidade Federal Fluminense, Av. Gal. Milton Tavares de Souza, 24210-346 Niterói, RJ (Brazil); Instituto Militar de Engenharia, Praça General Tibúrcio 80, 22290-270 Rio de Janeiro, RJ (Brazil); Pinheiro, A.R.C. [Centro Brasileiro de Pesquisas Físicas, Rua Dr. Xavier Sigaud 150, 22290-180 Rio de Janeiro, RJ (Brazil); Universidade Federal do Acre, BR 364 km 04, 69920-900 Rio Branco, AC (Brazil); Gonçalves, M. [Comissão Nacional de Energia Nuclear, Rua General Severiano 90, 22290-901 Rio de Janeiro, RJ (Brazil); Duarte, S.B. [Centro Brasileiro de Pesquisas Físicas, Rua Dr. Xavier Sigaud 150, 22290-180 Rio de Janeiro, RJ (Brazil); Cabral, R.G. [Instituto Militar de Engenharia, Praça General Tibúrcio 80, 22290-270 Rio de Janeiro, RJ (Brazil)
2016-04-15
We explore the effect of the nucleon effective mass to the dynamic evolution of the rapid phase of proton–nucleus spallation reactions. The analysis of the relaxation time for the non-equilibrium phase is studied by variations in the effective mass parameter. We determine the final excitation energy of the hot residual nucleus at the end of cascade phase and the de-excitation of the nuclear system is carried out considering the competition of particle evaporation and fission processes. It was shown that the excitation energy depends of the hot compound residual nucleus at the end of the rapid phase on the changing effective mass. The multiplicity of particles was also analyzed in cascade and evaporation phase of the reaction. The use of nucleon effective mass during cascade phase can be considered as an effect of the many-body nuclear interactions not included explicitly in a treatment to the nucleon–nucleon interaction inside the nucleus. This procedure represents a more realistic scenario to obtain the neutron multiplicity generated in this reaction, which is a benchmark for the calculation of the neutronic in the ADS reactors.
Spin structure function measurements with polarized protons and electrons at HERA
International Nuclear Information System (INIS)
Ball, R.D.; Deshpande, A.; Forte, S.; Hughes, V.W.; Lichtenstadt, J.; Ridolfi, G.
1995-01-01
Useful insights into the spin structure functions of the nucleon can be achieved by measurements of spin-dependent asymmetries in inclusive scattering of high energy polarized electrons by high energy polarized protons at HERA. Such an experiment would be a natural extension of the polarized lepton-nucleon scattering experiments presently carried out at CERN and SLAC. We present here estimates of possible data in the extended kinematic range of HERA and associated statistical errors. (orig.)
Nucleon quark distributions in a covariant quark-diquark model
Energy Technology Data Exchange (ETDEWEB)
Cloet, I.C. [Special Research Centre for the Subatomic Structure of Matter and Department of Physics and Mathematical Physics, University of Adelaide, SA 5005 (Australia) and Jefferson Lab, 12000 Jefferson Avenue, Newport News, VA 23606 (United States)]. E-mail: icloet@physics.adelaide.edu.au; Bentz, W. [Department of Physics, School of Science, Tokai University, Hiratsuka-shi, Kanagawa 259-1292 (Japan)]. E-mail: bentz@keyaki.cc.u-tokai.ac.jp; Thomas, A.W. [Jefferson Lab, 12000 Jefferson Avenue, Newport News, VA 23606 (United States)]. E-mail: awthomas@jlab.org
2005-08-18
Spin-dependent and spin-independent quark light-cone momentum distributions and structure functions are calculated for the nucleon. We utilize a modified Nambu-Jona-Lasinio model in which confinement is simulated by eliminating unphysical thresholds for nucleon decay into quarks. The nucleon bound state is obtained by solving the Faddeev equation in the quark-diquark approximation, where both scalar and axial-vector diquark channels are included. We find excellent agreement between our model results and empirical data.
International Nuclear Information System (INIS)
Burkardt, M.
2013-01-01
Definitions of orbital angular momentum based on Wigner distributions are used as a framework to discuss the connection between the Ji definition of the quark orbital angular momentum and that of Jaffe and Manohar. We find that the difference between these two definitions can be interpreted as the change in the quark orbital angular momentum due to final state interactions as it leaves the target in a DIS experiment.
Three-nucleon forces and their importance in three-nucleon sys- tems and heavier nuclei
Kalantar-Nayestanaki, N.
2014-01-01
Abstract In the past two decades, several laboratories have produced a large amount of data for cross sections, analyzing powers, and other spin observables from various reactions in the three-nucleon system. The experimental results are moderately described by only using the two-nucleon potentials
International Nuclear Information System (INIS)
Schroers, W.
2007-01-01
This review focuses on the discussion of three key results of nucleon structure calculations on the lattice. These three results are the quark contribution to the nucleon spin, J q , the nucleon-Δ transition form factors, and the nucleon axial coupling, g A . The importance for phenomenology and experiment is discussed and the requirements for future simulations are pointed out. (orig.)
Correlation between observable of four nucleon system in two-body model
International Nuclear Information System (INIS)
Barlette, V.E.
1988-01-01
The four nucleon system with effective nucleon-trinucleon interaction for s waves in states of spin Y = 0 and isospin Y = 0, is studied. The correlations between four nucleon systemn and scattering wavelength, binding energies and, coulomb energy of four nucleons are investigated by N/D method considering only the excited state. (M.C.K.)
High-spin {gamma}-ray spectroscopy of {sup 124}Ba, {sup 124}Xe and {sup 125}Xe
Energy Technology Data Exchange (ETDEWEB)
Al-Khatib, Ali
2008-08-18
Rotational spectra had been observed for the first time in excited atomic nuclei in 1938. This observation was attributed to the deviation from spherical shape. In quantum mechanics, when a perfectly spherical system rotates, it appears identical when it is viewed from any direction and no point of reference exists to which the change in position can be identified. Therefore, rotation cannot be defined for spherical nuclei. If the shape deviates from spherical symmetry, the nucleus can rotate and rotational spectra are observed. Many nucleons contribute to the rotation which is referred to as collective excitation. Depending on the mass region, nuclei have different deformations and, therefore, different shapes. Many nuclei show larger deformation with increasing excitation energy. Transitional nuclei between spherical and strongly deformed regions of the nuclear chart are usually soft with respect to deformation changes. In the mass region around A{proportional_to}125, which is the subject of this thesis, nuclei are predicted to be soft with respect to deformation. Rotational motion leads to Coriolis-induced alignments of high-j nucleons, which are in this mass region predominantly protons and neutrons from the h{sub 11/2} unique-parity intruder subshells. The proton Fermi level lies in the lower part of the h{sub 11/2} subshell which favours prolate shape whereas the neutron Fermi level lies in the upper part of the h{sub 11/2} subshell which favours oblate shape. According to the opposite shape-driving forces of protons and neutrons, shape co-existence is expected and the interplay between the h{sub 11/2} proton and neutron orbitals is of great interest for spectroscopic investigations. In addition, superdeformation has been established in this mass region. An interesting observation in this mass region is that nuclei undergo a shape-change from collective prolate to non-collective oblate states at high spins. In this spin range the transitions within the
High spin rotational bands in 65 Zn
Indian Academy of Sciences (India)
The nucleus 30 65 Zn was studied using the 52Cr(16O, 2)65Zn reaction at a beam energy of 65 MeV. The level scheme is extended up to an excitation energy of 10.57 MeV for spin-parity (41/2ħ) with several newly observed transitions placed in it.
International Nuclear Information System (INIS)
Bruandet, J.-F.; Berthet, B.; Morand, C.; Gironi, A.; Longequeue, J.-P.; Tsan Ung Chan.
1976-01-01
Yrast levels of 68 Zn have been investigated via measurements of excitation functions and angular distributions of single γ-rays and of γ-γ coincidences. Following the 65 Cu(α,pγ) 68 Zn reaction with α particle energies between 12-21MeV. Spin up to J=8 were assigned to observed states [fr
International Nuclear Information System (INIS)
Bruandet, J.F.; Agard, M.; Giorni, A.; Longequeue, J.P.; Morand, C.; Tsan Ung Chan.
1975-01-01
The structure of 66 Zn has been investigated by studying the yield functions, angular distributions and coincidence relationships of the γ-rays emitted during bombardment of an enriched 64 Ni foil by α particles of medium energy 27MeV. Spins up to 10 h were assigned to observed states [fr
High spin rotational bands in Zn
Indian Academy of Sciences (India)
We present here some preliminary results from our studies in the. ~ ¼ region in which we have observed an yrast band structure in Zn extending to spin (41/2 ). ... gaps implies that nuclei may exhibit different shapes at different excitation energies. .... uration, identifying previously unobserved states up to an excitation energy ...
Indian Academy of Sciences (India)
the proton-rich mass-80 nuclei shows considerable variation in going from one nucleus to ... shell gaps at N, Z = 34, 36 and 38 at large deformation. ... systematic increase of the B(E2) values for spins up to I = 14-h has been observed [2] in. 72.
Nucleon-antinucleon interaction
International Nuclear Information System (INIS)
Dover, C.B.
1983-01-01
The current status of our understanding of the low energy nucleon-antinucleon (N anti N) interaction is reviewed. We compare several phenomenological models which fit the available N anti N cross section data. The more realistic of these models employ an annihilation potential W(r) which is spin, isospin and energy dependent. The microscopic origins for these dependences are discussed in terms of quark rearrangement and annihilation processes. It is argued that the study of N anti N annihilation offers a powerful means of studying quark dynamics at short distances. We also discuss how one may try to isolate coherent meson exchange contributions to the medium and long range part of the N anti N potential. These pieces of the N anti N interaction are calculable via the G-parity transformation from a model for the NN potential; their effects are predicted to be seen in N anti N spin observables, to be measured at LEAR. The possible existence of quasi-stable bound states or resonances of the anti N plus one or more nucleons is discussed, with emphasis on few-body systems. 42 references
International Nuclear Information System (INIS)
Raut, R.; Ganguly, S.; Kshetri, R.; Mukherjee, G.; Mukherjee, A.; Banerjee, P.; Saha Sarkar, M.; Bhattacharya, S.; Goswami, A.; Bhattacharjee, T.; Basu, S.K.; Mukhopadhyaya, S.; Krishichayan; Chakraborty, A.; Gangopadhyay, G.
2004-01-01
Large amount of experimental data has been obtained in the recent past on several Nd (Z=60) and Pm (Z=61) isotopes near N=82 shell closure which exhibits an irregular yrast sequence, typical of a non-spherical shape at low spins. The nucleus 143 Sm (Z=62) with a single neutron hole in the N=82 closed shell was investigated as a part of this proposed study
'Static' octupole deformation at high spin
International Nuclear Information System (INIS)
Nazarewicz, W.
1985-01-01
Rotational bands characterized by spin states of alternating parity p=(-1) I connected by enhanced E1 transitions have recently been observed in several nuclei from the Ra-Th region. They can be interpreted by means of a reflection asymmetric mean field theory. The interplay between octupole deformation and rotation is briefly discussed. For nuclei with ground state octupole deformation a transition to a reflection symmetric shape is expected around I=22. (orig.)
Studies of the nucleon-nucleus and the nucleon-nucleon interactions using polarized neutron beams
International Nuclear Information System (INIS)
Walter, R.L.; Howell, C.R.; Tornow, W.
1988-01-01
The results o four scattering measurements using beams of polarized neutrons are described. Results for the analyzing power A y (θ) for elastic scattering of neutrons from protons and deuterons are compared to calculations based on the Paris and the Bonn nucleon-nucleon interactions. Deficiencies particularly in the Bonn model are indicated. A nucleon-nucleus potential is derived from σ(θ) and A y (θ) data for n + 28 Si and p + 28 Si and the Coulomb correction terms are derived according to two approaches. A Fourier-Bessel expansion is used to investigate the form factors of the terms of the n + 208 Pb potential which are necessary to describe σ(θ) and A y (θ) data from 6 to 10 MeV. The nature of the spin-orbit term is also presented. (author)
High spin {gamma}-ray spectroscopy of {sup 121,122}Xe
Energy Technology Data Exchange (ETDEWEB)
Timmers, H [Liverpool Univ. (United Kingdom). Oliver Lodge Lab.; [Department of Physics, SUNY at Stony Brook, NY (United States); Riley, M A; Hanna, F; Mullins, S M; Sharpey-Schafer, J F [Liverpool Univ. (United Kingdom). Oliver Lodge Lab.; Hughes, J R; Fossan, D B; Liang, Y; Ma, R; Xu, N [Department of Physics, SUNY at Stony Brook, NY (United States); Simpson, J; Bentley, M A [Daresbury Lab. (United Kingdom); Bengtsson, T [Lund Univ. (Sweden). Dept. of Mathematical Physics; Wyss, R [Institute for Heavy Ion Research, Oak Ridge, TN (United States)
1992-08-01
High-spin states have been populated in {sup 121,122}Xe using the reactions {sup 108}Pd({sup 16}O,3n){sup 121}Xe at 65 MeV and {sup 96}Zr({sup 30}Si,4n/5n){sup 122}Xe/{sup 121}Xe at 135 MeV. Coincident {gamma} rays following the neutron evaporation were detected by six Compton-suppressed Ge detectors and the TESSA3 array respectively. The level structure of {sup 121}Xe and {sup 122}Xe has been extended up to 47/2 {Dirac_h} and 32 {Dirac_h} respectively. In {sup 121}Xe a coupled band was found feeding the 19/2{sup -} level. In {sup 122}Xe several decays are suggested to be a sequence of stretched E2 quadrupole transitions connecting states of positive parity. While in {sup 121}Xe this phenomenon was not observed, at high spin a phase transition from prolate collective rotation to oblate single particle excitation was detected in {sup 122}Xe. For the new, probably positive parity side band in{sup 122}Xe a four quasi-neutron or a two quasi-proton configuration of h{sub 11/2} quasi-nucleons might be considered. The positive parity high spin structure in {sup 122}Xe contains three I{sup {pi}} = 22{sup +} states of different character. This is predicted by TRS (total Routhian surface) calculations, which identify these states as two shapes with predominantly prolate collective characteristic and the third as an oblate single particle configuration. 12 refs., 3 figs.
International Nuclear Information System (INIS)
Tsan Ung Chan; Agard, M.; Bruandet, J.F.; Giorni, A.; Glasser, F.; Longequeue, J.P.; Morand, C.
1977-06-01
The 62 Cu nucleus has been studied via the reactions 60 Ni(α,pnγ), 63 Cu(p,pnγ), 52 Cr( 14 N,2p2nγ) using different in beam γ-spectroscopy techniques. The intensity of the principal γ-lines observed in different reactions leading to the 62 Cu has been compared. A brief discussion is made in terms of the independent particle model. A level scheme including levels with spin up to 9 + is proposed [fr
Double Polarized Neutron-Proton Scattering and Meson-Exchange Nucleon-Nucleon Potential Models
International Nuclear Information System (INIS)
Raichle, B.W.; Gould, C.R.; Haase, D.G.; Seely, M.L.; Walston, J.R.; Tornow, W.; Wilburn, W.S.; Raichle, B.W.; Gould, C.R.; Haase, D.G.; Seely, M.L.; Walston, J.R.; Tornow, W.; Wilburn, W.S.; Penttilae, S.I.; Hoffmann, G.W.
1999-01-01
We report on polarized beam - polarized target measurements of the spin-dependent neutron-proton total cross-section differences in longitudinal and transverse geometries (Δσ L and Δσ T , respectively) between E n =5 and 20MeV. Single-parameter phase-shift analyses were performed to extract the phase-shift mixing parameter var-epsilon 1 , which characterizes the strength of the nucleon-nucleon tensor interaction at low energies. Consistent with the trend of previous determinations at E n =25 and 50MeV, our values for var-epsilon 1 imply a stronger tensor force than predicted by meson-exchange nucleon-nucleon potential models and nucleon-nucleon phase-shift analyses. copyright 1999 The American Physical Society
Observational signature of high spin at the Event Horizon Telescope
Gralla, Samuel E.; Lupsasca, Alexandru; Strominger, Andrew
2018-04-01
We analytically compute the observational appearance of an isotropically emitting point source on a circular, equatorial orbit near the horizon of a rapidly spinning black hole. The primary image moves on a vertical line segment, in contrast to the primarily horizontal motion of the spinless case. Secondary images, also on the vertical line, display a rich caustic structure. If detected, this unique signature could serve as a `smoking gun' for a high spin black hole in nature.
Demonstrating multibit magnetic memory in the Fe8 high-spin molecule by muon spin rotation
Shafir, Oren; Keren, Amit; Maegawa, Satoru; Ueda, Miki; Amato, Alex; Baines, Chris
2005-09-01
We develop a method to detect the quantum nature of high-spin molecules using muon spin rotation and a three-step field cycle ending always with the same field. We use this method to demonstrate that the Fe8 molecule can remember six (possibly eight) different histories (bits). A wide range of fields can be used to write a particular bit, and the information is stored in discrete states. Therefore, Fe8 can be used as a model compound for multibit magnetic memory. Our experiment also paves the way for magnetic quantum tunneling detection in films.
International Nuclear Information System (INIS)
Dueren, M.
2001-01-01
The spin and flavor structure of quarks and gluons in nucleons and nuclei is more complicated than expected in the original naive quark model. Recent results which show some of the key failures of the naive picture are summarized here with emphasis on recent results from the HERMES experiment. Some future options to study the quarks structure in exclusive processes in electroproduction, photoproduction and pp annihilation are presented. (orig.)
International Nuclear Information System (INIS)
Bensafa, I.K.
2006-05-01
The first part of this work presents the analysis and results of the VCS-SSA (virtual Compton scattering - single spin asymmetry) experiment at MAMI (Mainz). It was carried out with beam energy 883 MeV and longitudinal polarization (about 80%), at virtual photon four-momentum transfer squared (Q 2 = 0.35 GeV 2 ) to measure the beam asymmetry in the ep → epγ and ep → epπ 0 reactions. The asymmetry obtained in photon (resp. pion) electro-production is between 0-15% (resp. 0-2%). The dispersion relation model for virtual Compton scattering and MAID model (for π 0 ) reproduce the amplitude globally but not completely the shape of the asymmetry. Perhaps this discrepancy is due to an imperfect parameterization of some pion production multipoles (γ * N → πN). The second part is dedicated to the study of the nucleon energy spectrum in ground-state L=0 and excited-state L=1 in the quark model, using the Coulomb + linear potential type (CL) and a relativistic correction. The hyperfine correction is applied to discriminate the nucleon masses. The values of the mass found for the proton and the Δ(1232) are respectively equal to (968 MeV, 1168 MeV), and the masses of the excited states are between 1564 - 1607 MeV. This part is completed by an application of the CL model to an approximate calculation of generalized polarizabilities of the proton. (author)
Nucleon-nucleon theory and phenomenology
International Nuclear Information System (INIS)
Signell, P.
1981-03-01
This project involves five inter-related subprojects: (1) derivation of the intermediate range nucleon-nucleon interaction using a new method that utilizes much shorter and simpler analytic continuation through the unphysical region that lies between the πN and ππ physical regions of the N anti N → ππ amplitude (with significantly improved accuracy for the nucleon-nucleon interaction); (2) construction of a short range phenomenological potential that, with the theoretical part mentioned above, gives a precise fit to the nucleon-nucleon data and is parameterized for easy use in nucleon calculations; (3) phase shift analyses of the world data below 400 MeV, especially the large amount of very precise data below 20 MeV and the new data near 55 MeV that have never been analyzed properly; (4) the introduction of a K-matrix formulation of the Optimal Polynomial Expansion in order to accelerate convergence of the partial wave series at LAMPF energies; and (5) setting up of a cooperatively evaluated permanent nucleon-nucleon data bank in the 0-1200 MeV range that can be used by all nucleon-nucleon reseachers
International Nuclear Information System (INIS)
Masaike, Akira
1993-01-01
Despite playing a major role in today's Standard Model, spin - the intrinsic angular momentum carried by particles - is sometimes dismissed as an inessential complication. However several major spin questions with important implications for the Standard Model remain unanswered, and recent results and new technological developments made the 10th International Symposium on High Energy Spin Physics, held in Nagoya, Japan, in November, highly topical. The symposium covered a wide range of physics, reflecting the diversity of spin effects, however four main themes were - the spin content of the nucleon, tests of symmetries and physics beyond standard models, intermediate energy physics, and spin technologies. Opening the meeting, T. Kinoshita reviewed the status of measurements of the anomalous magnetic moment (g-2) of the electron and the muon. The forthcoming experiment at Brookhaven (September 1991, page 23) will probe beyond the energy ranges open to existing electronpositron colliders. For example muon substructure will be opened up to 5 TeV and Ws to 2 TeV. R.L. Jaffe classified quark-parton distributions in terms of their spin dependence, pointing out their leftright attributes, and emphasized the importance of measuring transverse spin distributions through lepton pair production
High Transverse Momentum Hadron Production in 400-GeV/c and 800-GeV/c Proton - Nucleon Collisions
Energy Technology Data Exchange (ETDEWEB)
Jaffe, David Edward [SUNY, Stony Brook
1987-08-01
Results of high transverse momentum hadron production in 400 Gev/c proton-proton and proton-deuteron and 800 Gev /c proton-proton collisions are presented in this dissertation. The transverse momentum range of the data was from 5.2 to 9.0 Gev/c for the 400 Gev/c collisions and from 3.6 to 11.0 Gev /c for the 800 Gev /c collisions; the data were centered around the proton-nucleon center-of-momentum production angle of 90°. Single pion invariant cross sections and particle ratios were measured at both energies and the unlike-sign dihadron correlation function was measured at the higher energy. The results are compared to previous experiments and the Lund model.
SLAC workshop on high energy electroproduction and spin physics
International Nuclear Information System (INIS)
1992-01-01
These Proceedings contain copies of the transparencies presented at the Workshop on High Energy Electroproduction and Spin Physics held at SLAC on February 5--8, 1992. The purpose of this Workshop was to bring people together to discuss the possibilities for new experiments using the SLAC high intensity electron and photon beams and the facilities of End Station A
El strength function at high spin and excitation energy
International Nuclear Information System (INIS)
Barrette, J.
1983-04-01
Recently giant dipole resonance-like concentration of the dipole strength function in nuclei was observed at both high excitation energies and high spins. This observation raises the possibility of obtaining new information on the shape of rapidly rotating heated nuclei. Recent experimental results on this subject are reviewed
International Nuclear Information System (INIS)
Gupta, S.L.; Pancholi, S.C.; Juneja, P.; Mehta, D.; Kumar, A.; Bhowmik, R.K.; Muralithar, S.; Rodrigues, G.; Singh, R.P.
1997-01-01
An experimental investigation of the odd-odd 162 Lu nucleus, following the 148 Sm( 19 F,5n) reaction at beam energy E lab =112MeV, has been performed through in-beam gamma-ray spectroscopy. It revealed three signature-split bands. The yrast band based on πh 11/2 circle-times νi 13/2 configuration exhibits anomalous signature splitting (the unfavored signature Routhian lying lower than the favored one) whose magnitude Δe ' ∼25keV, is considerably reduced in contrast to sizable normal signature splitting Δe ' ∼125 and 60 keV observed in the yrast πh 11/2 bands of the neighboring odd-A 161,163 Lu nuclei, respectively. The signature inversion in this band occurs at spin ∼20ℎ (frequency=0.37MeV). The second signature-split band, observed above the band crossing associated with the alignment of a pair of i 13/2 quasineutrons, is a band based on the four-quasiparticle [πh 11/2 [523]7/2 - times νh 9/2 [521]3/2 - times(νi 13/2 ) 2 ], i.e., EABA p (B p ), configuration. The third signature-split band is also likely to be a four-quasiparticle band with configuration similar to the second band but involving F quasineutron, i.e., FABA p (B p ). The experimental results are discussed in comparison with the existing data in the neighboring nuclei and in the framework of the cranking shell model. copyright 1997 The American Physical Society
Backbending in high spin states of 80Kr
International Nuclear Information System (INIS)
Kaushik, M.; Saxena, G.
2014-01-01
The study of high-spin states in Kr isotopes near A = 80 region has attracted a considerable interest in recent years. A variety of shapes, shape coexistence as well as backbending phenomenon have been studied in the many of Kr isotopes. In the case of 80 Kr, the high spin structure has been studied by Doring et al. rather extensively and has provided considerable insight into the structure of f-p-g shell nuclei and the competition between single-particle and collective degrees of freedom. Backbending phenomenon is reported in 80 Kr at ω = 0.5 MeV
Theory of high-resolution tunneling spin transport on a magnetic skyrmion
Palotás, Krisztián; Rózsa, Levente; Szunyogh, László
2018-01-01
Tunneling spin transport characteristics of a magnetic skyrmion are described theoretically in magnetic scanning tunneling microscopy (STM). The spin-polarized charge current in STM (SP-STM) and tunneling spin transport vector quantities, the longitudinal spin current and the spin transfer torque are calculated in high spatial resolution within the same theoretical framework. A connection between the conventional charge current SP-STM image contrasts and the magnitudes of the spin transport v...
Nucleon Polarisabilities and Effective Field Theories
Griesshammer, Harald W.
2017-09-01
Low-energy Compton scattering probes the nucleon's two-photon response to electric and magnetic fields at fixed photon frequency and multipolarity. It tests the symmetries and strengths of the interactions between constituents, and with photons. For convenience, this energy-dependent information is often compressed into the two scalar dipole polarisabilities αE 1 and βM 1 at zero photon energy. These are fundamental quantities, and important for the proton charge radius puzzle and the Lamb shift of muonic hydrogen. Combined with emerging lattice QCD computations, they provide stringent tests for our understanding of hadron structure. Extractions of the proton and neutron polarisabilities from all published elastic data below 300 MeV in Chiral Effective Field Theory with explicit Δ (1232) are now available. This talk emphasises χEFT as natural bridge between lattice QCD and ongoing or approved efforts at HI γS, MAMI and MAX-lab. Chiral lattice extrapolations from mπ > 200 MeV to the physical point compare well to lattice computations. Combining χEFT with high-intensity experiments with polarised targets and polarised beams will extract not only scalar polarisabilities, but in particular the four so-far poorly explored spin-polarisabilities. These parametrise the stiffness of the spin in external electro-magnetic fields (nucleonic bi-refringence/Faraday effect). New chiral predictions for proton, deuteron and 3He observables show intriguing sensitivities on spin and neutron polarisabilities. Data consistency and a model-independent quantification of residual theory uncertainties by Bayesian analysis are also discussed. Proton-neutron differences explore the interplay between chiral symmetry breaking and short-distance Physics. Finally, I address their impact on the neutron-proton mass difference, big-bang nucleosynthesis, and their relevance for anthropic arguments. Supported in part by DOE DE-SC0015393 and George Washington University.
Structure of the neutral current coupling in high energy neutrino--nucleon interactions
International Nuclear Information System (INIS)
Merritt, F.S.
1977-01-01
The primary objective of this experiment was to determine the Lorentz structure of the neutral current coupling--that is, to determine what combination of V-A and V+A (or possibly S, P, and T) components make up the neutral coupling. The experiment used the Fermilab narrow band neutrino beam to provide separated neutrino and antineutrino fluxes, each consisting of two energy bands at approximately equal to 55 and approximately equal to 150 GeV. Deep inelastic inclusive neutrino-nucleon interactions of the form ν(anti ν) + N = μ - (μ + ) + hadrons (CC event) ν(anti ν) + N = ν(anti ν) + hadrons (NC event) were observed in an instrumented steel target-calorimeter, which measured the total energy of the hadrons produced in each event. The neutral current coupling was determined by comparing the hadron energy distributions of neutrino and antineutrino neutral current events. An analysis of the charged-current data was carried out in order to determine the background of charged-current events with unobserved muons, and to provide a normalization for the neutral current data. Various parameterizations of the CC interaction were tested, and their effects on the neutral current analysis were studied in detail. The neutral current analysis indicates that, if only vector and axial-vector components exist, then the neutral current coupling lies between V and V-A. A pure scalar coupling is excluded. The data were compared to the Weinberg--Salam theory (extended to semileptonic interactions), and are in very good agreement with its predictions. Comparison of these data to the low energy Gargamelle data indicates consistency with a scaling hypothesis
High-quality two-nucleon potentials up to fifth order of the chiral expansion
Entem, D. R.; Machleidt, R.; Nosyk, Y.
2017-08-01
We present NN potentials through five orders of chiral effective field theory ranging from leading order (LO) to next-to-next-to-next-to-next-to-leading order (N4LO ). The construction may be perceived as consistent in the sense that the same power counting scheme as well as the same cutoff procedures are applied in all orders. Moreover, the long-range parts of these potentials are fixed by the very accurate π N low-energy constants (LECs) as determined in the Roy-Steiner equations analysis by Hoferichter, Ruiz de Elvira, and coworkers. In fact, the uncertainties of these LECs are so small that a variation within the errors leads to effects that are essentially negligible, reducing the error budget of predictions considerably. The NN potentials are fit to the world NN data below the pion-production threshold of the year 2016. The potential of the highest order (N4LO ) reproduces the world NN data with the outstanding χ2/datum of 1.15, which is the highest precision ever accomplished for any chiral NN potential to date. The NN potentials presented may serve as a solid basis for systematic ab initio calculations of nuclear structure and reactions that allow for a comprehensive error analysis. In particular, the consistent order by order development of the potentials will make possible a reliable determination of the truncation error at each order. Our family of potentials is nonlocal and, generally, of soft character. This feature is reflected in the fact that the predictions for the triton binding energy (from two-body forces only) converges to about 8.1 MeV at the highest orders. This leaves room for three-nucleon-force contributions of moderate size.
Consistent, high-quality two-nucleon potentials up to fifth order of the chiral expansion
Machleidt, R.
2018-02-01
We present N N potentials through five orders of chiral effective field theory ranging from leading order (LO) to next-to-next-to-next-to-next-to-leading order (N4LO). The construction may be perceived as consistent in the sense that the same power counting scheme as well as the same cutoff procedures are applied in all orders. Moreover, the long-range parts of these potentials are fixed by the very accurate πN low-energy constants (LECs) as determined in the Roy-Steiner equations analysis by Hoferichter, Ruiz de Elvira and coworkers. In fact, the uncertainties of these LECs are so small that a variation within the errors leads to effects that are essentially negligible, reducing the error budget of predictions considerably. The N N potentials are fit to the world N N data below pion-production threshold of the year of 2016. The potential of the highest order (N4LO) reproduces the world N N data with the outstanding χ 2/datum of 1.15, which is the highest precision ever accomplished for any chiral N N potential to date. The N N potentials presented may serve as a solid basis for systematic ab initio calculations of nuclear structure and reactions that allow for a comprehensive error analysis. In particular, the consistent order by order development of the potentials will make possible a reliable determination of the truncation error at each order. Our family of potentials is non-local and, generally, of soft character. This feature is reflected in the fact that the predictions for the triton binding energy (from two-body forces only) converges to about 8.1 MeV at the highest orders. This leaves room for three-nucleon-force contributions of moderate size.
Electron and Nucleon Localization Functions of Oganesson: Approaching the Thomas-Fermi Limit
Jerabek, Paul; Schuetrumpf, Bastian; Schwerdtfeger, Peter; Nazarewicz, Witold
2018-02-01
Fermion localization functions are used to discuss electronic and nucleonic shell structure effects in the superheavy element oganesson, the heaviest element discovered to date. Spin-orbit splitting in the 7 p electronic shell becomes so large (˜10 eV ) that Og is expected to show uniform-gas-like behavior in the valence region with a rather large dipole polarizability compared to the lighter rare gas elements. The nucleon localization in Og is also predicted to undergo a transition to the Thomas-Fermi gas behavior in the valence region. This effect, particularly strong for neutrons, is due to the high density of single-particle orbitals.
High spin states in the f-p shell
International Nuclear Information System (INIS)
Delaunay, J.
1975-01-01
The high spin states (HSS) in Fe, Co, Ni (Z=26,27,28) isotopes exhibit features characteristics of soft or transition nuclei, 56 Fe being as well deformed prolate nucleus and the Ni isotopes often throught of as spherical. The methodology used to identify these HSS is the so called DCO (directional correlation of oriented nuclei) or ratio method which, by combining the angular distribution data plus one point of a triple γ-γ correlation in an asymmetric geometry, gives result that is found equivalent to a complete angular correlation to assign spin and mixing ratios. Some results collected with this methodology are presented [fr
Spins in the vortices of a high-temperature superconductor
DEFF Research Database (Denmark)
Lake, B.; Aeppli, G.; Clausen, K.N.
2001-01-01
Neutron scattering is used to characterize the magnetism of the vortices for the optimally doped high-temperature superconductor La2-xSrxCuO4 (x = 0.163) in an applied magnetic field. As temperature is reduced, Low-frequency spin fluctuations first disappear with the loss of vortex mobility......, but then reappear. We find that the vortex state can be regarded as an inhomogeneous mixture of a superconducting spin fluid and a material containing a nearly ordered antiferromagnet. These experiments show that as for many other properties of cuprate superconductors, the important underlying microscopic forces...
Gross shell structure at high spin in heavy nuclei
International Nuclear Information System (INIS)
Deleplanque, Marie-Agnes; Frauendorf, Stefan; Pashkevich, Vitaly V.; Chu, S.Y.; Unzhakova, Anja
2003-01-01
Experimental nuclear moments of inertia at high spins along the yrast line have been determined systematically and found to differ from the rigid-body values. The difference is attributed to shell effect and these have been calculated microscopically. The data and quantal calculations are interpreted by means of the semiclassical Periodic Orbit Theory. From this new perspective, features in the moments of inertia as a function of neutron number and spin, as well as their relation to the shell energies can be understood. Gross shell effects persist up to the highest angular momenta observed
Level Structure of 103Ag at high spins
Ray, S.; Pattabiraman, N. S.; Krishichayan; Chakraborty, A.; Mukhopadhyay, S.; Ghugre, S. S.; Chintalapudi, S. N.; Sinha, A. K.; Garg, U.; Zhu, S.; Kharraja, B.; Almehed, D.
2007-01-01
High spin states in $^{103}$Ag were investigated with the Gammasphere array, using the $^{72}$Ge($^{35}$Cl,$2p2n$)$^{103}$Ag reaction at an incident beam energy of 135 MeV. A $\\Delta J$=1 sequence with predominantly magnetic transitions and two nearly-degenerate $\\Delta J=1$ doublet bands have been observed. The dipole band shows a decreasing trend in the $B(M1)$ strength as function of spin, a well established feature of magnetic bands. The nearly-degenerate band structures satisfy the three...
International Nuclear Information System (INIS)
Agarwal, R.; Mishra, R.K.; Tiwari, S.; or rm_jbp@yahoo.co.in
2008-01-01
One of the most striking features of solar wind is its organization into high- and low- speed streams. It is now well established that the passage over the Earth of high-speed solar wind streams leads to geomagnetic disturbances. The high-speed plasma streams are thus a key element in the complex chain of events that link geomagnetic activity to the solar activity and are therefore of great interest to the solar terrestrial physics. Two types of high-speed solar wind streams - coronal-hole-associated (or corotating) and flare-generated - were studied based on magnetic field and solar wind plasma parameters. In the work, the dependence was obtained for cosmic ray (CR) depressions due to high-speed solar wind streams during low-amplitude days. The CR nucleonic intensity data were subjected to the superposed epoch analysis with respect to the start time of high-speed solar wind streams. It was found that streams of both types produce significant deviations in the CR intensity during low-amplitude anisotropic wave train events. At the onset of such streams the CR intensity reaches its minimum during low-amplitude events and then increases statistically. (Authors)
Significance of high energy spin effects in constituent pictures
International Nuclear Information System (INIS)
Chen, C.K.
1977-01-01
The spin information about high energy hadronic reactions is important for further understanding of the nature and the behavior of hadronic constituents. The usefulness of the information is discussed in the cases of dilepton production from hadronic collisions, large P/sub T/ inclusive and elastic scatterings, and small angle elastic scattering and quantum number exchanged reactions
High-spin structure of neutron-rich Dy isotopes
Indian Academy of Sciences (India)
Neutron-rich Dy isotopes; high-spin states; g-factors; cranked HFB theory. ... for 164Dy marking a clear separation in the behaviour as a function of neutron ... cipal x-axis as the cranking axis) in this mass region we have planned to make a sys-.
Experimental evidence for shape changes at high spin
International Nuclear Information System (INIS)
Twin, P.J.
1985-01-01
Recent experimental evidence obtained with TESSA for shape changes at high spin is presented. Continuum γ-ray spectroscopy data indicates the co-existence of both prolate and oblate shapes in N = 90 nuclei and lifetime data in 152 Dy shows that the super deformed decays are very enhanced. (orig.)
3 QP plus rotor model and high spin states
International Nuclear Information System (INIS)
Mathur, Tripti
1995-01-01
Nuclear models are approximate methods to describe certain properties of a large number of nuclei. In this paper details of 3 QP (three quasi particle) plus rotor model and high spin state are discussed. The band head energies for the 3 QP rotational bands for 157 Ho and 159 Tm are also given. 5 refs., 8 figs
Moments of inertia in 162Yb at very high spins
International Nuclear Information System (INIS)
Simon, R.S.; Banaschik, M.V.; Colombani, P.; Soroka, D.P.; Stephens, F.S.; Diamond, R.M.
1976-01-01
Two methods have been used to obtain values of the effective moment of inertia of very-high-spin (20h-bar--50h-bar) states populated in heavy-ion compound-nucleus reactions. The 162 Yb nucleus studied has effective moments of inertia smaller than, but approaching, the rigid-body estimate
Lifetimes of high-spin states in {sup 162}Yb
Energy Technology Data Exchange (ETDEWEB)
Carpenter, M.P.; Janssens, R.V.F.; Henry, R.G. [and others
1995-08-01
A measurement on lifetimes of high-spin states in the yrast and near-yrast rotational bands in {sup 162}Yb was carried out at ATLAS in order to determine the evolution of collectivity as a function of angular momentum using the {sup 126}Te({sup 40}Ar,4n){sup 162}Yb reaction at 170 MeV. Previous lifetime measurements in the {sup 164,166,168}Yb isotopes showed a dramatic decrease in the transition quadrupole moment Q{sub t} with increasing spin. It was suggested that this decrease in Q{sub t} is brought about by the rotationally-induced deoccupation of high-j configurations, mainly i{sub 13/2} neutrons. If this interpretation is correct, the heavier isotopes should have a larger decrease in Q{sub t} than the lighter mass nuclides due to the position of the Fermi surface in the i{sub 13/2} subshell. Indeed, {sup 160}Yb does not show a clear decrease in Q{sub t} at high spin. No high spin lifetime information exists for {sup 162}Yb, thus this experiment fills the gap of measured Q{sub t}`s in the light Yb series. The data is currently being analyzed.
Observation of high spin levels in Cs from Ba decay
Indian Academy of Sciences (India)
physics pp. 1157–1162. Observation of high spin levels in. 131. Cs from. 131. Ba decay. M SAINATH, DWARAKA RANI RAO*, K VENKATARAMANIAH and P C SOOD. Department of Physics, Sri Sathya Sai Institute of Higher Learning, Prasanthinilayam 515 134, India. £Permanent address: Department of Physics, ...
Contribution of nucleonic degrees of freedom to the EMC effect
International Nuclear Information System (INIS)
Anisovich, V.V.; Sarantsev, A.V.; Starodubskii, V.E.
1987-01-01
The dispersion-integration method has been used to calculate the contribution of nucleonic degrees of freedom to the EMC effect. The structure of the amplitude of deep inelastic scattering is discussed for a nucleus with spin one half. The question of the functional form of the structure function of a nucleon off the mass shell is discussed
Leading order relativistic chiral nucleon-nucleon interaction
Ren, Xiu-Lei; Li, Kai-Wen; Geng, Li-Sheng; Long, Bingwei; Ring, Peter; Meng, Jie
2018-01-01
Motivated by the successes of relativistic theories in studies of atomic/molecular and nuclear systems and the need for a relativistic chiral force in relativistic nuclear structure studies, we explore a new relativistic scheme to construct the nucleon-nucleon interaction in the framework of covariant chiral effective field theory. The chiral interaction is formulated up to leading order with covariant power counting and a Lorentz invariant chiral Lagrangian. We find that the relativistic scheme induces all six spin operators needed to describe the nuclear force. A detailed investigation of the partial wave potentials shows a better description of the {}1S0 and {}3P0 phase shifts than the leading order Weinberg approach, and similar to that of the next-to-leading order Weinberg approach. For the other partial waves with angular momenta J≥slant 1, the relativistic results are almost the same as their leading order non-relativistic counterparts. )
Murani, A.; Chepelianskii, A.; Guéron, S.; Bouchiat, H.
2017-10-01
In order to point out experimentally accessible signatures of spin-orbit interaction, we investigate numerically the Andreev spectrum of a multichannel mesoscopic quantum wire (N) with high spin-orbit interaction coupled to superconducting electrodes (S), contrasting topological and nontopological behaviors. In the nontopological case (square lattice with Rashba interactions), we find that the Kramers degeneracy of Andreev levels is lifted by a phase difference between the S reservoirs except at multiples of π , when the normal quantum wires can host several conduction channels. The level crossings at these points invariant by time-reversal symmetry are not lifted by disorder. Whereas the dc Josephson current is insensitive to these level crossings, the high-frequency admittance (susceptibility) at finite temperature reveals these level crossings and the lifting of their degeneracy at π by a small Zeeman field. We have also investigated the hexagonal lattice with intrinsic spin-orbit interaction in the range of parameters where it is a two-dimensional topological insulator with one-dimensional helical edges protected against disorder. Nontopological superconducting contacts can induce topological superconductivity in this system characterized by zero-energy level crossing of Andreev levels. Both Josephson current and finite-frequency admittance carry then very specific signatures at low temperature of this disorder-protected Andreev level crossing at π and zero energy.
Toroidal high-spin isomers in the nucleus 304120
Staszczak, A.; Wong, Cheuk-Yin; Kosior, A.
2017-05-01
Background: Strongly deformed oblate superheavy nuclei form an intriguing region where the toroidal nuclear structures may bifurcate from the oblate spheroidal shape. The bifurcation may be facilitated when the nucleus is endowed with a large angular moment about the symmetry axis with I =Iz . The toroidal high-K isomeric states at their local energy minima can be theoretically predicted using the cranked self-consistent Skyrme-Hartree-Fock method. Purpose: We use the cranked Skyrme-Hartree-Fock method to predict the properties of the toroidal high-spin isomers in the superheavy nucleus 120304184. Method: Our method consists of three steps: First, we use the deformation-constrained Skyrme-Hartree-Fock-Bogoliubov approach to search for the nuclear density distributions with toroidal shapes. Next, using these toroidal distributions as starting configurations, we apply an additional cranking constraint of a large angular momentum I =Iz about the symmetry z axis and search for the energy minima of the system as a function of the deformation. In the last step, if a local energy minimum with I =Iz is found, we perform at this point the cranked symmetry- and deformation-unconstrained Skyrme-Hartree-Fock calculations to locate a stable toroidal high-spin isomeric state in free convergence. Results: We have theoretically located two toroidal high-spin isomeric states of 120304184 with an angular momentum I =Iz=81 ℏ (proton 2p-2h, neutron 4p-4h excitation) and I =Iz=208 ℏ (proton 5p-5h, neutron 8p-8h) at the quadrupole moment deformations Q20=-297.7 b and Q20=-300.8 b with energies 79.2 and 101.6 MeV above the spherical ground state, respectively. The nuclear density distributions of the toroidal high-spin isomers 120304184(Iz=81 ℏ and 208 ℏ ) have the maximum density close to the nuclear matter density, 0.16 fm-3, and a torus major to minor radius aspect ratio R /d =3.25 . Conclusions: We demonstrate that aligned angular momenta of Iz=81 ℏ and 208 ℏ arising from
International Nuclear Information System (INIS)
Smotritskij, L.M.
2001-01-01
Application of resonance phase for two quasi-stationary states with similar spin and unlike parity is shown to enable to coordinate the experimentally observed signed dependence of P-odd effects in neutron reactions with the theory. The developed approach enables to obtain information on isospin structure of a weak nucleon-nucleon interaction [ru
DEFF Research Database (Denmark)
Rusakov, Yury Yu; Krivdin, Leonid B.; Østerstrøm, Freja From
2013-01-01
This paper documents a very first example of a high-level correlated calculation of spin-spin coupling constants involving tellurium taking into account relativistic effects, vibrational corrections and solvent effects for the medium sized organotellurium molecules. The 125Te-1H spin-spin coupling...... constants of tellurophene and divinyl telluride were calculated at the SOPPA and DFT levels in a good agreement with experiment. A new full-electron basis set av3z-J for tellurium derived from the "relativistic" Dyall's basis set, dyall.av3z, and specifically optimized for the correlated calculations...... of spin-spin coupling constants involving tellurium, was developed. The SOPPA methods show much better performance as compared to 15 those of DFT, if relativistic effects calculated within the ZORA scheme are taken into account. Vibrational and solvent corrections are next to negligible, while...
International Nuclear Information System (INIS)
Bendiscioli, G.; Bressani, T.; Lavezzi, L.; Panzarasa, A.; Salvini, P.
2009-01-01
The dependence of the K + and K - production on the number of nucleons involved in the annihilation process is investigated experimentally in the p-bar annihilation at rest on hydrogen, deuterium, 3 He and 4 He gas targets. Annihilations with any number of prongs (charged pions and kaons, protons and deuterons) are analyzed. Events with and without production of neutral mesons and with and without emission of fast neutrons (that is neutrons involved in the annihilation process) are recognized. The results are consistent with our previous ones on a more restricted sample of annihilation reactions and put in evidence that the strangeness production is lower or higher depending on the reaction channel. As a general trend, the strangeness production is higher in events without neutral mesons and still higher in events with the involvement of a higher number of nucleons. Both K + and K - productions increase with the number of involved nucleons, but K + much more. The maximum K + production is observed in the reaction K + 2π + 2π - 3n on 4 He (with the involvement of 3-4 nucleons); compared with the production on hydrogen in the reaction K + π + 2π - , the production on 4 He is higher by a factor of 31.7±5.5. In the light of some theoretical speculations, this enhancement factor is too high to be explainable in terms of hadronic interactions and could be interpreted as a signature of quark deconfinement and of formation of a quark-gluon plasma
Spin polarization in high density quark matter
DEFF Research Database (Denmark)
Bohr, Henrik; Panda, Prafulla K.; Providênci, Constanca
2013-01-01
We investigate the occurrence of a ferromagnetic phase transition in high density hadronic matter (e.g., in the interior of a neutron star). This could be induced by a four-fermion interaction analogous to the one which is responsible for chiral symmetry breaking in the Nambu-Jona-Lasinio model, ...... the so-called 2 flavor super-conducting phase to the ferromagnetic phase arises. The color-flavor-locked phase may be completely hidden by the FP....
High precision pulsar timing and spin frequency second derivatives
Liu, X. J.; Bassa, C. G.; Stappers, B. W.
2018-05-01
We investigate the impact of intrinsic, kinematic and gravitational effects on high precision pulsar timing. We present an analytical derivation and a numerical computation of the impact of these effects on the first and second derivative of the pulsar spin frequency. In addition, in the presence of white noise, we derive an expression to determine the expected measurement uncertainty of a second derivative of the spin frequency for a given timing precision, observing cadence and timing baseline and find that it strongly depends on the latter (∝t-7/2). We show that for pulsars with significant proper motion, the spin frequency second derivative is dominated by a term dependent on the radial velocity of the pulsar. Considering the data sets from three Pulsar Timing Arrays, we find that for PSR J0437-4715 a detectable spin frequency second derivative will be present if the absolute value of the radial velocity exceeds 33 km s-1. Similarly, at the current timing precision and cadence, continued timing observations of PSR J1909-3744 for about another eleven years, will allow the measurement of its frequency second derivative and determine the radial velocity with an accuracy better than 14 km s-1. With the ever increasing timing precision and observing baselines, the impact of the, largely unknown, radial velocities of pulsars on high precision pulsar timing can not be neglected.
Theory of high-resolution tunneling spin transport on a magnetic skyrmion
Palotás, Krisztián; Rózsa, Levente; Szunyogh, László
2018-05-01
Tunneling spin transport characteristics of a magnetic skyrmion are described theoretically in magnetic scanning tunneling microscopy (STM). The spin-polarized charge current in STM (SP-STM) and tunneling spin transport vector quantities, the longitudinal spin current and the spin transfer torque, are calculated in high spatial resolution within the same theoretical framework. A connection between the conventional charge current SP-STM image contrasts and the magnitudes of the spin transport vectors is demonstrated that enables the estimation of tunneling spin transport properties based on experimentally measured SP-STM images. A considerable tunability of the spin transport vectors by the involved spin polarizations is also highlighted. These possibilities and the combined theory of tunneling charge and vector spin transport pave the way for gaining deep insight into electric-current-induced tunneling spin transport properties in SP-STM and to the related dynamics of complex magnetic textures at surfaces.
Very high-spin states in nuclei
International Nuclear Information System (INIS)
Diamond, R.M.
1977-03-01
The continuum γ-ray spectrum following emission in a (HI,xn) reaction consists of a high-energy tail, the statistical cascade, and a lower-energy bump, the yrast cascade, which contains most of the intensity and consists mostly of stretched E2 transitions. Thus, a good approximation to the average angular momentum carried by the γ-ray is 2Nsub(γ). Under favourable conditions, effective moments of inertia can be deduced for states up to the top of the γ-ray cascade. The maximum angular momentum in the cascades is probably limited by α-emission for nuclei with A 150. (Author)
International Nuclear Information System (INIS)
Tezuka, Hirokazu.
1984-10-01
Scattering of a particle by bound nucleons is discussed. Effects of nucleons that are bound in a nucleus are taken as a structure function. The way how to calculate the structure function is given. (author)
International Nuclear Information System (INIS)
Sauer, P.U.
2014-01-01
In this paper, the role of three-nucleon forces in ab initio calculations of nuclear systems is investigated. The difference between genuine and induced many-nucleon forces is emphasized. Induced forces arise in the process of solving the nuclear many-body problem as technical intermediaries toward calculationally converged results. Genuine forces make up the Hamiltonian. They represent the chosen underlying dynamics. The hierarchy of contributions arising from genuine two-, three- and many-nucleon forces is discussed. Signals for the need of the inclusion of genuine three-nucleon forces are studied in nuclear systems, technically best under control, especially in three-nucleon and four-nucleon systems. Genuine three-nucleon forces are important for details in the description of some observables. Their contributions to observables are small on the scale set by two-nucleon forces. (author)
Island of high-spin isomers near N = 82
International Nuclear Information System (INIS)
Pedersen, J.; Back, B.B.; Bernthal, F.M.; Bjornholm, S.; Borggreen, J.; Christensen, O.; Folkmann, F.; Herskind, B.; Khoo, T.L.; Neiman, M.; Puehlhofer, F.; Sletten, G.
1977-01-01
Experiments aimed at testing for the existence of yrast traps are reported. A search for delayed γ radiation of lifetimes longer than approx. 10 ns and of high multiplicity has been performed by producing more than 100 compound nuclei between Ba and Pb in bombardments with 40 Ar, 50 Ti, and 65 Cu projectiles. An island of high-spin isomers is found to exist in the region 64 or approx. = 71 and N < or approx. = 82
High temperature resistant nanofiber by bubbfil-spinning
Directory of Open Access Journals (Sweden)
Li Ya
2015-01-01
Full Text Available Heat-resisting nanofibers have many potential applications in various industries, and the bubbfil spinning is the best candidate for mass-production of such materials. Polyether sulfone/zirconia solution with a bi-solvent system is used in the experiment. Experimental result reveals that polyether sulfone/zirconia nanofibers have higher resistance to high temperature than pure polyether sulfone fibers, and can be used as high-temperature-resistant filtration materials.
Very high-spin states in nuclei
International Nuclear Information System (INIS)
Diamond, R.M.
1977-01-01
The continuum γ-ray spectrum following neutron emission in a (HI,xn) reaction consists of a high-energy tail, the statistical cascade, and a lower-energy bump, the yrast cascade, which contains most of the intensity and consists mostly of stretched E2 transitions. Thus, a good approximation to the average angular momentum carried by the γ-rays is 2N/sub γ/-bar. Under favourable conditions, effective moments of inertia can be deduced for states up to the top of the γ-ray cascade. The maximum angular momentum in the cascades is probably limited by α-emission for nuclei with A 150. 17 figures
High and highest spin states in nuclei
International Nuclear Information System (INIS)
Ploszajczak, M.
1977-06-01
A study of the following phenomena in rotating nuclei is presented, namely: 1) the destruction of the pair-correlation between the protons and the neutrons as well as decoupling and orientation of the particles along the rotation axis; 2) the formation of a nucleus with axial symmetry rotating around the symmetry axis, caused by the strong centrifugal and Coriolis forces; 3) the shell effects at low angular momentum, which led in some Pb, Hg and Pt isotopes to the formation of a prolate nucleus, rotating around the symmetry axis; 4) the formation of longliving states at very high angular momenta ('Yrast-traps'). At low angular momenta the nucleus is described by the Cranking-Hartree-Fock-Bogolyubov theory (CHFB) with the pair-(P), quadrupole-(QQ) and hexade coupole force (HH) as residual interaction. (orig.) [de
Spin-polarons and high-Tc superconductivity
International Nuclear Information System (INIS)
Wood, R.F.
1994-03-01
The spin-polaron concept is introduced in analogy to ionic and electronic polarons and the assumptions underlying the author's approach to spin-polaron mediated high-T c superconductivity are discussed. Elementary considerations about the spin-polaron formation energy are reviewed and the possible origin of the pairing mechanism illustrated schematically. The electronic structure of the CuO 2 planes is treated from the standpoint of antiferromagnetic band calculations that lead directly to the picture of holes predominantly on the oxygen sublattice in a Mott-Hubbard/charge transfer insulator. Assuming the holes to be described in a Bloch representation but with the effective mass renormalized by spin-polaron formation, equations for the superconducting gap, Δ, and transition temperature, T c , are developed and the symmetry of Δ discussed. After further simplifications, T c is calculated as a function of the carrier concentration, x. It is shown that the calculated behavior of T c (x) follows the experimental results closely and leads to a natural explanation of the effects of under- and over-doping. The paper concludes with a few remarks about the evidence for the carriers being fermions (polarons) or bosons (bipolarons)
Nuclear spin relaxation in a spin-1/2 antiferromagnetic Heisenberg chain at high fields
International Nuclear Information System (INIS)
Lyo, S.K.
1981-01-01
The proton spin relaxation rate is calculated in the one-dimensional spin-1/2 Heisenberg antiferromagnet α-bis (N-methylsalicylaldiminato)-copper (II), α-CuNSal by using a fermion representation for magnons above the critical field where the magnon spectrum develops a gap. The one-magnon process which is dominant below the critical field is shown to be absent in the presence of a gap in contrast to a previous theory. Instead, we find that the three-magnon rate is large enough to explain the data at low fields. The two-magnon off-resonance damping which enters the expression for the three-magnon rate is calculated by solving the two-magnon scattering exactly, leading to a much smaller value of the rate than that predicted by the Born approximation. Also, in an unsuccessful attempt to resolve the discrepancy between the recently calculated two-magnon rate (dominant at high fields) and the data of α-CuNSal reported by Azevedo et al., we carry out the vertex correction for the spin-density correlation function by summing the RPA series as well as the exchange ladders for the polarization part. We find that, although the exchange enhancement is significantly large, it is nearly canceled out by the RPA correction, and the net effect of the vertex correction is small. This result agrees with the recent data of the similar spin-1/2 antiferromagnetic Heisenberg chain system CuSO 4 x5H 2 O reported by Groen et al. On the other hand, it disagrees with a recent calculation of the two-magnon rate based on a boson representation of spins. To resolve this discrepancy we examine the effect of the boson self-energy correction on the two-magnon rate. The boson spectral shift is found to be quite large in the region where the cited two-boson rate deviates from the two-fermion rate. As a result the two-boson rate is significantly reduced, leading to reasonable agreement with the two-fermion rate
Energy Technology Data Exchange (ETDEWEB)
Bensafa, I.K
2006-05-15
The first part of this work presents the analysis and results of the VCS-SSA (virtual Compton scattering - single spin asymmetry) experiment at MAMI (Mainz). It was carried out with beam energy 883 MeV and longitudinal polarization (about 80%), at virtual photon four-momentum transfer squared (Q{sup 2} = 0.35 GeV{sup 2}) to measure the beam asymmetry in the ep {yields} ep{gamma} and ep {yields} ep{pi}{sup 0} reactions. The asymmetry obtained in photon (resp. pion) electro-production is between 0-15% (resp. 0-2%). The dispersion relation model for virtual Compton scattering and MAID model (for {pi}{sup 0}) reproduce the amplitude globally but not completely the shape of the asymmetry. Perhaps this discrepancy is due to an imperfect parameterization of some pion production multipoles ({gamma}{sup *}N {yields} {pi}N). The second part is dedicated to the study of the nucleon energy spectrum in ground-state L=0 and excited-state L=1 in the quark model, using the Coulomb + linear potential type (CL) and a relativistic correction. The hyperfine correction is applied to discriminate the nucleon masses. The values of the mass found for the proton and the {delta}(1232) are respectively equal to (968 MeV, 1168 MeV), and the masses of the excited states are between 1564 - 1607 MeV. This part is completed by an application of the CL model to an approximate calculation of generalized polarizabilities of the proton. (author)
Longitudinal double spin asymmetries in single hadron quasi-real photoproduction at high pT
Directory of Open Access Journals (Sweden)
C. Adolph
2016-02-01
Full Text Available We measured the longitudinal double spin asymmetries ALL for single hadron muoproduction off protons and deuterons at photon virtuality Q2<1(GeV/c2 for transverse hadron momenta pT in the range 1 GeV/c to 4 GeV/c. They were determined using COMPASS data taken with a polarised muon beam of 160 GeV/c or 200 GeV/c impinging on polarised 6LiD or NH3 targets. The experimental asymmetries are compared to next-to-leading order pQCD calculations, and are sensitive to the gluon polarisation ΔG inside the nucleon in the range of the nucleon momentum fraction carried by gluons 0.05
Longitudinal double spin asymmetries in single hadron quasi-real photoproduction at high $p_T$
Adolph, C; Alexeev, M G; Alexeev, G D; Amoroso, A; Andrieux, V; Anosov, V; Augustyniak, W; Austregesilo, A; Azevedo, C D R; Badełek, B; Balestra, F; Barth, J; Beck, R; Bedfer, Y; Bernhard, J; Bicker, K; Bielert, E R; Birsa, R; Bisplinghoff, J; Bodlak, M; Boer, M; Bordalo, P; Bradamante, F; Braun, C; Bressan, A; Büchele, M; Burtin, E; Chang, W-C; Chiosso, M; Choi, I; Chung, S U; Cicuttin, A; Crespo, M L; Curiel, Q; Dalla Torre, S; Dasgupta, S S; Dasgupta, S; Denisov, O Yu; Dhara, L; Donskov, S V; Doshita, N; Duic, V; Dünnweber, W; Dziewiecki, M; Efremov, A; Eversheim, P D; Eyrich, W; Faessler, M; Ferrero, A; Finger, M; Finger jr , M; Fischer, H; Franco, C; du Fresne von Hohenesche, N; Friedrich, J M; Frolov, V; Fuchey, E; Gautheron, F; Gavrichtchouk, O P; Gerassimov, S; Giordano, F; Gnesi, I; Gorzellik, M; Grabmüller, S; Grasso, A; Grosse Perdekamp, M; Grube, B; Grussenmeyer, T; Guskov, A; Haas, F; Hahne, D; von Harrach, D; Hashimoto, R; Heinsius, F H; Herrmann, F; Hinterberger, F; Horikawa, N; d'Hose, N; Hsieh, C-Y; Huber, S; Ishimoto, S; Ivanov, A; Ivanshin, Yu; Iwata, T; Jahn, R; Jary, V; Joosten, R; Jörg, P; Kabuß, E; Ketzer, B; Khaustov, G V; Khokhlov, Yu A; Kisselev, Yu; Klein, F; Klimaszewski, K; Koivuniemi, J H; Kolosov, V N; Kondo, K; Königsmann, K; Konorov, I; Konstantinov, V F; Kotzinian, A M; Kouznetsov, O; Krämer, M; Kremser, P; Krinner, F; Kroumchtein, Z V; Kuchinski, N; Kuhn, R; Kunne, F; Kurek, K; Kurjata, R P; Lednev, A A; Lehmann, A; Levillain, M; Levorato, S; Lichtenstadt, J; Longo, R; Maggiora, A; Magnon, A; Makins, N; Makke, N; Mallot, G K; Marchand, C; Marianski, B; Martin, A; Marzec, J; Matoušek, J; Matsuda, H; Matsuda, T; Meshcheryakov, G; Meyer, W; Michigami, T; Mikhailov, Yu V; Miyachi, Y; Montuenga, P; Nagaytsev, A; Nerling, F; Neyret, D; Nikolaenko, V I; Nový, J; Nowak, W-D; Nukazuka, G; Nunes, A S; Olshevsky, A G; Orlov, I; Ostrick, M; Panzieri, D; Parsamyan, B; Paul, S; Peng, J-C; Pereira, F; Pešek, M; Peshekhonov, D V; Platchkov, S; Pochodzalla, J; Polyakov, V A; Pretz, J; Quaresma, M; Quintans, C; Ramos, S; Regali, C; Reicherz, G; Riedl, C; Rossiyskaya, N S; Ryabchikov, D I; Rychter, A; Samoylenko, V D; Sandacz, A; Santos, C; Sarkar, S; Savin, I A; Sbrizzai, G; Schiavon, P; Schmidt, K; Schmieden, H; Schönning, K; Schopferer, S; Selyunin, A; Shevchenko, O Yu; Silva, L; Sinha, L; Sirtl, S; Slunecka, M; Sozzi, F; Srnka, A; Stolarski, M; Sulc, M; Suzuki, H; Szabelski, A; Szameitat, T; Sznajder, P; Takekawa, S; Tessaro, S; Tessarotto, F; Thibaud, F; Tosello, F; Tskhay, V; Uhl, S; Veloso, J; Virius, M; Weisrock, T; Wilfert, M; ter Wolbeek, J; Zaremba, K; Zavertyaev, M; Zemlyanichkina, E; Ziembicki, M; Zink, A
2016-01-01
We measured the longitudinal double spin asymmetries $A_{LL}$ for single hadron muo-production off protons and deuterons at photon virtuality $Q^2$ < 1(GeV/$\\it c$)$^2$ for transverse hadron momenta $p_T$ in the range 0.7 GeV/$\\it c$ to 4 GeV/$\\it c$ . They were determined using COMPASS data taken with a polarised muon beam of 160 GeV/$\\it c$ or 200 GeV/$\\it c$ impinging on polarised $\\mathrm{{}^6LiD}$ or $\\mathrm{NH_3}$ targets. The experimental asymmetries are compared to next-to-leading order pQCD calculations, and are sensitive to the gluon polarisation $\\Delta G$ inside the nucleon in the range of the nucleon momentum fraction carried by gluons $0.05 < x_g < 0.2$.
3D parton imaging of the nucleon in high-energy p p and p A collisions
Frankfurt, L; Weiss, C
2004-01-01
We discuss several examples of how the transverse spatial distribution of partons in the nucleon, as well as multiparton correlations, can be probed by observing hard processes (dijets) in high-energy pp(pp) and pA(dA) collisions. Such studies can complement the information gained from measurements of hard exclusive processes in ep scattering. The transverse spatial distribution of partons determines the distribution over pp impact parameters of events with hard dijet production. Correlations in the transverse positions of partons can be studied in multiple dijet production. We find that the correlation cross section measured by the CDF Collaboration, sigma//e //f//f = 14.5 plus or minus 1.7//-//2//.//3**+**1**.**7 mb, can be explained by "constituent quark" type quark-gluon correlations with r //q approximately equals r//N/3, as suggested by the instanton liquid model of the QCD vacuum. Longitudinal and transverse multiparton correlations can be separated in a model-independent way by comparing multiple dije...
Improvements in centrifugal nucleon disintegration of CND reactors
International Nuclear Information System (INIS)
Pedrick, A.P.
1976-01-01
Reference is made to the so-called 'Centrifugal Nucleon Disintegrator Reactor' (CND) in which it is proposed to release the binding energy between nucleons of high atomic number by applying a violent spin to the nuclei. The reactor described comprises means for producing atomic nuclei that have been stripped of their electrons by heating to form a high temperature plasma. A number of laser beams are directed on to a cylinder having a polished bore and reflected therefrom so as to create tangentially a cylindrical wall or surface having a high concentration of photons moving unidirectionally, together with means for introducing nuclei into the cylindrical wall or surface of photons. A high electrostatic charge is applied to urge the nuclei against the cylindrical wall or surface. The nuclei are discharged into the space between the cylinder and the photon wall. Nucleons that have been separated from their nuclei are carried upwards in a flow of plasma, which can be arranged to produce an electrical output by interaction with an electromagnetic field. (U.K.)
Fluid dynamics of giant resonances on high spin states
International Nuclear Information System (INIS)
Di Nardo, M.; Di Toro, M.; Giansiracusa, G.; Lombardo, U.; Russo, G.
1983-01-01
We describe giant resonances built on high spin states along the yrast line as scaling solutions of a linearized Vlasov equation in a rotating frame obtained from a TDHF theory in phase space. For oblate cranked solutions we get a shift and a splitting of the isoscalar giant resonances in terms of the angular velocity. Results are shown for 40 Ca and 168 Er. The relative CM strengths are also calculated. (orig.)
Nuclear data for the high-spin community
Energy Technology Data Exchange (ETDEWEB)
Firestone, R B [Lawrence Berkeley Lab., CA (United States); Singh, B [McMaster Univ., Hamilton, ON (Canada). Tandem Accelerator Lab.
1992-08-01
The Isotopes Project at Berkeley is developing the Evaluated High-Spin Data File, a subset of the Evaluated Nuclear Structure Data File (ENSDF). The following products were under development at the time of the conference: eighth edition of the Table of Isotopes, electronic table of isotopes, data bases, nuclear charts, nuclear wallet cards, nuclear CD-ROM, FAX data services, on-line data services.
High spin states and backbending in the light tungsten isotopes
International Nuclear Information System (INIS)
Walker, P.M.; Dracoulis, G.D.; Johnston, A.; Leigh, J.R.; Slocombe, M.G.; Wright, I.F.
1976-09-01
High spin states in 172 W, 174 W, 175 W and 176 W have been studied with ( 16 O,xn) reactions. The ground state bands in 174 W and 176 W backbend in contrast to the more regular gsb in the N = 98 nucleus 172 W. This behaviour and the anomalies in the odd nucleus 175 W are discussed in terms of the influence of neutrons on backbending. (author)
STUDY OF THE HIGH-SPIN STRUCTURE OF PM-146
RZACAURBAN, T; DURELL, JL; PHILLIPS, WR; VARLEY, BJ; HESS, CP; PEARSON, CJ; VERMEER, WJ; VIEU, C; DIONISIO, JS; PAUTRAT, M; Urban, W
1995-01-01
Excited states in Pm-146 have been investigated through the Xe-136(N-15,5n) and the Nd-146(d,xn) compound-nucleus reactions. A level scheme extending up to 6.9 MeV of excitation energy and (I = 25HBAR) is proposed. Most of the high-spin levels are interpreted in terms of multi-particle-hole states
pp spin correlations at high p/sub T/
International Nuclear Information System (INIS)
Auer, I.P.; Colton, E.; Ditzler, W.R.
1980-01-01
New data are presented for measurements of the spin correlation in pp reactions with longitudinally polarized beam and target. Data were obtained at 11.75 GeV/c for both elastic scattering and for π + - and π - -production at high p/sub T/ in pp reactions at 11.75 GeV/c. A comparison is made with recent predictions of quark-parton models
Compound nucleus effects in spin-spin cross sections
International Nuclear Information System (INIS)
Thompson, W.J.
1976-01-01
By comparison with recent data, it is shown that spin-spin cross sections for low-energy neutrons may be dominated by a simple compound-elastic level-density effect, independent of spin-spin terms in the nucleon-nucleus optical-model potential. (Auth.)
Energy Technology Data Exchange (ETDEWEB)
Biselli, Angela; Burkert, Volker; Amaryan, Moscov; Amaryan, Moskov; Asryan, Gegham; Avagyan, Harutyun; Baghdasaryan, Hovhannes; Baillie, Nathan; Ball, J.P.; Ball, Jacques; Baltzell, Nathan; Battaglieri, Marco; Bedlinskiy, Ivan; Bellis, Matthew; Benmouna, Nawal; Berman, Barry; Blaszczyk, Lukasz; Bookwalter, Craig; Boyarinov, Sergey; Bosted, Peter; Bradford, Robert; Branford, Derek; Briscoe, William; Brooks, William; Bultmann, S.; Bueltmann, Stephen; Butuceanu, Cornel; Calarco, John; Careccia, Sharon; Carman, Daniel; Casey, Liam; Chen, Shifeng; Cheng, Lu; Cole, Philip; Collins, Patrick; Coltharp, Philip; Crabb, Donald; Crede, Volker; Dale, Daniel; Dashyan, Natalya; De Masi, Rita; De Vita, Raffaella; De Sanctis, Enzo; Degtiarenko, Pavel; Deur, Alexandre; Dhamija, Seema; Dickson, Richard; Djalali, Chaden; Dodge, Gail; Doughty, David; Dugger, Michael; Dzyubak, Oleksandr; Egiyan, Hovanes; Elfassi, Lamiaa; Elouadrhiri, Latifa; Eugenio, Paul; Fedotov, Gleb; Feuerbach, Robert; Fersch, Robert; Forest, Tony; Fradi, Ahmed; Garcon, Michel; Gavalian, Gagik; Gevorgyan, Nerses; Gilfoyle, Gerard; Giovanetti, Kevin; Girod, Francois-Xavier; Goetz, John; Gohn, Wesley; Gothe, Ralf; Graham, Lewis; Griffioen, Keith; Guidal, Michel; Guler, Nevzat; Guo, Lei; Gyurjyan, Vardan; Hafidi, Kawtar; Hakobyan, Hayk; Hanretty, Charles; Hassall, Neil; Hicks, Kenneth; Hleiqawi, Ishaq; Holtrop, Maurik; Hyde, Charles; Ilieva, Yordanka; Ireland, David; Ishkhanov, Boris; Isupov, Evgeny; Ito, Mark; Jenkins, David; Jo, Hyon-Suk; Johnstone, John; Joo, Kyungseon; Juengst, Henry; Kalantarians, Narbe; Keller, Dustin; Kellie, James; Khandaker, Mahbubul; Kim, Wooyoung; Klein, Andreas; Klein, Franz; Kossov, Mikhail; Krahn, Zebulun; Kubarovsky, Valery; Kuhn, Joachim; Kuhn, Sebastian; Kuleshov, Sergey; Kuznetsov, Viacheslav; Lachniet, Jeff; Laget, Jean; Langheinrich, Jorn; Lawrence, David; Livingston, Kenneth; Lu, Haiyun; MacCormick, Marion; Markov, Nikolai; Mattione, Paul; McKinnon, Bryan; McNabb, John; Mecking, Bernhard; Mestayer, Mac; Meyer, Curtis; Mibe, Tsutomu; Mikhaylov, Konstantin; Mirazita, Marco; Mokeev, Viktor; Moreno, Brahim; Moriya, Kei; Morrow, Steven; Moteabbed, Maryam; Munevar Espitia, Edwin; Mutchler, Gordon; Nadel-Turonski, Pawel; Nasseripour, Rakhsha; Niccolai, Silvia; Niculescu, Gabriel; Niculescu, Maria-Ioana; Niczyporuk, Bogdan; Niroula, Megh; Niyazov, Rustam; Nozar, Mina; Osipenko, Mikhail; Ostrovidov, Alexander; Park, Kil; Park, Seungkyung; Pasyuk, Evgueni; Paterson, Craig; Pereira, Sergio; Pierce, Joshua; Pivnyuk, Nikolay; Pogorelko, Oleg; Pozdnyakov, Sergey; Price, John; Prok, Yelena; Protopopescu, Dan; Raue, Brian; Ricco, Giovanni; Ripani, Marco; Ritchie, Barry; Rosner, Guenther; Rossi, Patrizia; Sabatie, Franck; Saini, Mukesh; Salamanca, Julian; Salgado, Carlos; Santoro, Joseph; Sapunenko, Vladimir; Schott, Diane; Schumacher, Reinhard; Serov, Vladimir; Sharabian, Youri; Sharov, Dmitri; Shvedunov, Nikolay; Smith, Elton; Sober, Daniel; Sokhan, Daria; Stavinskiy, Aleksey; Stepanyan, Samuel; Stepanyan, Stepan; Stokes, Burnham; Stoler, Paul; Strakovski, Igor; Strauch, Steffen; Taiuti, Mauro; Tedeschi, David; Tkabladze, Avtandil; Tkachenko, Svyatoslav; Todor, Luminita; Ungaro, Maurizio; Vineyard, Michael; Vlassov, Alexander; Watts, Daniel; Weinstein, Lawrence; Weygand, Dennis; Williams, M.; Wolin, Elliott; Wood, Michael; Yegneswaran, Amrit; Yurov, Mikhail; Zana, Lorenzo; Zhang, Jixie; Zhao, Bo; Zhao, Zhiwen
2008-10-01
DOI: http://dx.doi.org/10.1103/PhysRevC.78.045204
The exclusive channel polarized proton(polarized e,e prime p)pi0 was studied in the first and second nucleon resonance regions in the Q2 range from 0.187 to 0.770 GeV2 at Jefferson Lab using the CEBAF Large Acceptance Spectrometer (CLAS). Longitudinal target and beam-target asymmetries were extracted over a large range of center-of-mass angles of the pi0 and compared to the unitary isobar model MAID, the dynamic model by Sato and Lee, and the dynamic model DMT. A strong sensitivity to individual models was observed, in particular for the target asymmetry and in the higher invariant mass region. This data set, once included in the global fits of the above models, is expected to place strong constraints on the electrocoupling amplitudes A_{1/2} and S_{1/2} for the Roper resonance N(1400)P11, and the N(1535)S11 and N(1520)D13 states.
Quenching of weak interactions in nucleon matter
International Nuclear Information System (INIS)
Cowell, S.; Pandharipande, V.R.
2003-01-01
We have calculated the one-body Fermi and Gamow-Teller charge-current and vector and axial-vector neutral-current nuclear matrix elements in nucleon matter at densities of 0.08, 0.16, and 0.24 fm -3 and proton fractions ranging from 0.2 to 0.5. The correlated states for nucleon matter are obtained by operating on Fermi-gas states by a symmetrized product of pair correlation operators determined from variational calculations with the Argonne-v18 and Urbana-IX two- and three-nucleon interactions. The squares of the charge- current matrix elements are found to be quenched by 20-25 % by the short-range correlations in nucleon matter. Most of the quenching is due to spin-isospin correlations induced by the pion exchange interactions which change the isospins and spins of the nucleons. A large part of it can be related to the probability for a spin-up proton quasiparticle to be a bare spin-up/down proton/neutron. Within the interval considered, the charge-current matrix elements do not have significant dependence on the matter density, proton fraction, and magnitudes of nucleon momenta; however, they do depend on momentum transfer. The neutral-current matrix elements have a significant dependence on the proton fraction. We also calculate the matrix elements of the nuclear Hamiltonian in the same correlated basis. These provide relatively mild effective interactions that give the variational energies in the Hartree-Fock approximation. The calculated two-nucleon effective interaction describes the spin-isospin susceptibilities of nuclear and neutron matter fairly accurately. However terms greater than or equal to three-body terms are necessary to reproduce the compressibility. Realistic calculations of weak interaction rates in nucleon matter can presumably be carried out using the effective operators and interactions studied here. All presented results use the simple two-body cluster approximation to calculate the correlated basis matrix elements. This allows for a clear
High-mobility ultrathin semiconducting films prepared by spin coating.
Mitzi, David B; Kosbar, Laura L; Murray, Conal E; Copel, Matthew; Afzali, Ali
2004-03-18
The ability to deposit and tailor reliable semiconducting films (with a particular recent emphasis on ultrathin systems) is indispensable for contemporary solid-state electronics. The search for thin-film semiconductors that provide simultaneously high carrier mobility and convenient solution-based deposition is also an important research direction, with the resulting expectations of new technologies (such as flexible or wearable computers, large-area high-resolution displays and electronic paper) and lower-cost device fabrication. Here we demonstrate a technique for spin coating ultrathin (approximately 50 A), crystalline and continuous metal chalcogenide films, based on the low-temperature decomposition of highly soluble hydrazinium precursors. We fabricate thin-film field-effect transistors (TFTs) based on semiconducting SnS(2-x)Se(x) films, which exhibit n-type transport, large current densities (>10(5) A cm(-2)) and mobilities greater than 10 cm2 V(-1) s(-1)--an order of magnitude higher than previously reported values for spin-coated semiconductors. The spin-coating technique is expected to be applicable to a range of metal chalcogenides, particularly those based on main group metals, as well as for the fabrication of a variety of thin-film-based devices (for example, solar cells, thermoelectrics and memory devices).
High-mobility ultrathin semiconducting films prepared by spin coating
Mitzi, David B.; Kosbar, Laura L.; Murray, Conal E.; Copel, Matthew; Afzali, Ali
2004-03-01
The ability to deposit and tailor reliable semiconducting films (with a particular recent emphasis on ultrathin systems) is indispensable for contemporary solid-state electronics. The search for thin-film semiconductors that provide simultaneously high carrier mobility and convenient solution-based deposition is also an important research direction, with the resulting expectations of new technologies (such as flexible or wearable computers, large-area high-resolution displays and electronic paper) and lower-cost device fabrication. Here we demonstrate a technique for spin coating ultrathin (~50Å), crystalline and continuous metal chalcogenide films, based on the low-temperature decomposition of highly soluble hydrazinium precursors. We fabricate thin-film field-effect transistors (TFTs) based on semiconducting SnS2-xSex films, which exhibit n-type transport, large current densities (>105Acm-2) and mobilities greater than 10cm2V-1s-1-an order of magnitude higher than previously reported values for spin-coated semiconductors. The spin-coating technique is expected to be applicable to a range of metal chalcogenides, particularly those based on main group metals, as well as for the fabrication of a variety of thin-film-based devices (for example, solar cells, thermoelectrics and memory devices).
Orientation estimation algorithm applied to high-spin projectiles
International Nuclear Information System (INIS)
Long, D F; Lin, J; Zhang, X M; Li, J
2014-01-01
High-spin projectiles are low cost military weapons. Accurate orientation information is critical to the performance of the high-spin projectiles control system. However, orientation estimators have not been well translated from flight vehicles since they are too expensive, lack launch robustness, do not fit within the allotted space, or are too application specific. This paper presents an orientation estimation algorithm specific for these projectiles. The orientation estimator uses an integrated filter to combine feedback from a three-axis magnetometer, two single-axis gyros and a GPS receiver. As a new feature of this algorithm, the magnetometer feedback estimates roll angular rate of projectile. The algorithm also incorporates online sensor error parameter estimation performed simultaneously with the projectile attitude estimation. The second part of the paper deals with the verification of the proposed orientation algorithm through numerical simulation and experimental tests. Simulations and experiments demonstrate that the orientation estimator can effectively estimate the attitude of high-spin projectiles. Moreover, online sensor calibration significantly enhances the estimation performance of the algorithm. (paper)
Orientation estimation algorithm applied to high-spin projectiles
Long, D. F.; Lin, J.; Zhang, X. M.; Li, J.
2014-06-01
High-spin projectiles are low cost military weapons. Accurate orientation information is critical to the performance of the high-spin projectiles control system. However, orientation estimators have not been well translated from flight vehicles since they are too expensive, lack launch robustness, do not fit within the allotted space, or are too application specific. This paper presents an orientation estimation algorithm specific for these projectiles. The orientation estimator uses an integrated filter to combine feedback from a three-axis magnetometer, two single-axis gyros and a GPS receiver. As a new feature of this algorithm, the magnetometer feedback estimates roll angular rate of projectile. The algorithm also incorporates online sensor error parameter estimation performed simultaneously with the projectile attitude estimation. The second part of the paper deals with the verification of the proposed orientation algorithm through numerical simulation and experimental tests. Simulations and experiments demonstrate that the orientation estimator can effectively estimate the attitude of high-spin projectiles. Moreover, online sensor calibration significantly enhances the estimation performance of the algorithm.
Nuclear high-spin data for A = 174, 176 and 184
Energy Technology Data Exchange (ETDEWEB)
Junde, Huo [Jilin Univ. (China). Dept. of Physics
1996-06-01
Nuclear high-spin data are important in the frontier areas of nuclear structure physics. The information on A = 174, 176 and 184 mass chains from various reaction experiments together with their adopted high-spin levels and gamma transition properties are presented and discussed. High-spin data for A = 174, 176 and 184 mass chains were evaluated in 1995.
High spin cycles: topping the spin record for a single molecule verging on quantum criticality
Baniodeh, Amer; Magnani, Nicola; Lan, Yanhua; Buth, Gernot; Anson, Christopher E.; Richter, Johannes; Affronte, Marco; Schnack, Jürgen; Powell, Annie K.
2018-03-01
The cyclisation of a short chain into a ring provides fascinating scenarios in terms of transforming a finite array of spins into a quasi-infinite structure. If frustration is present, theory predicts interesting quantum critical points, where the ground state and thus low-temperature properties of a material change drastically upon even a small variation of appropriate external parameters. This can be visualised as achieving a very high and pointed summit where the way down has an infinity of possibilities, which by any parameter change will be rapidly chosen, in order to reach the final ground state. Here we report a mixed 3d/4f cyclic coordination cluster that turns out to be very near or even at such a quantum critical point. It has a ground state spin of S = 60, the largest ever observed for a molecule (120 times that of a single electron). [Fe10Gd10(Me-tea)10(Me-teaH)10(NO3)10].20MeCN forms a nano-torus with alternating gadolinium and iron ions with a nearest neighbour Fe-Gd coupling and a frustrating next-nearest neighbour Fe-Fe coupling. Such a spin arrangement corresponds to a cyclic delta or saw-tooth chain, which can exhibit unusual frustration effects. In the present case, the quantum critical point bears a `flatland' of tens of thousands of energetically degenerate states between which transitions are possible at no energy costs with profound caloric consequences. Entropy-wise the energy flatland translates into the pointed summit overlooking the entropy landscape. Going downhill several target states can be reached depending on the applied physical procedure which offers new prospects for addressability.
Light hypernuclei and hyperon-nucleon interaction
International Nuclear Information System (INIS)
Carlson, J.; Gibson, B.F.
1990-01-01
Light Hypernuclei are a vital testing ground for our understanding of the Hyperon-Nucleon interaction. We have performed microscopic calculations of four and five-body hypernuclei using the Nijmegen nucleon-nucleon and hyperon-nucleon interactions. Our calculations include explicit Sigma degrees of freedom. These degrees of freedom are quite important since, in contrast to the Δ - N mass difference of ∼ 300 MeV, the Σ resonance is only about 80 MeV above the Λ. In addition, although there is no one-pion-exchange in the ΛN diagonal channel, this longest-range term does contribute to the transition ΛN - ΣN interaction. Our variational calculations show that the A=4 spin 0 ground state binding energy is well reproduced by the Nijmegen HN integration, a one-boson exchange model fit to the available scattering data. The spin 1 excited state and the A=5 ground state are strongly underbound, however. We demonstrate the importance of the strong tensor terms of the Nijmegen model, particularly those in the transition channel, in obtaining this result. The limited data currently available for hyperon-nucleon scattering must be greatly improved in order to place reasonable constraints on the interaction. 12 refs., 3 figs., 3 tabs
Light hypernuclei and hyperon-nucleon interaction
Energy Technology Data Exchange (ETDEWEB)
Carlson, J.; Gibson, B.F.
1990-01-01
Light Hypernuclei are a vital testing ground for our understanding of the Hyperon-Nucleon interaction. We have performed microscopic calculations of four and five-body hypernuclei using the Nijmegen nucleon-nucleon and hyperon-nucleon interactions. Our calculations include explicit Sigma degrees of freedom. These degrees of freedom are quite important since, in contrast to the {Delta} {minus} N mass difference of {approx} 300 MeV, the {Sigma} resonance is only about 80 MeV above the {Lambda}. In addition, although there is no one-pion-exchange in the {Lambda}N diagonal channel, this longest-range term does contribute to the transition {Lambda}N {minus} {Sigma}N interaction. Our variational calculations show that the A=4 spin 0 ground state binding energy is well reproduced by the Nijmegen HN integration, a one-boson exchange model fit to the available scattering data. The spin 1 excited state and the A=5 ground state are strongly underbound, however. We demonstrate the importance of the strong tensor terms of the Nijmegen model, particularly those in the transition channel, in obtaining this result. The limited data currently available for hyperon-nucleon scattering must be greatly improved in order to place reasonable constraints on the interaction. 12 refs., 3 figs., 3 tabs.
High Frequency QPOs due to Black Hole Spin
Kazanas, Demos; Fukumura, K.
2009-01-01
We present detailed computations of photon orbits emitted by flares at the innermost stable circular orbit (ISCO) of accretion disks around rotating black holes. We show that for sufficiently large spin parameter, i.e. a > 0.94 M, flare a sufficient number of photons arrive at an observer after multiple orbits around the black hole, to produce an "photon echo" of constant lag, i.e. independent of the relative phase between the black hole and the observer, of T approximates 14 M. This constant time delay, then, leads to a power spectrum with a QPO at a frequency nu approximates 1/14M, even for a totally random ensemble of such flares. Observation of such a QPO will provide incontrovertible evidence for the high spin of the black hole and a very accurate, independent, measurement of its mass.
High spin structure in 130,131Ba
International Nuclear Information System (INIS)
Kaur, Navneet; Kumar, A.; Singh, Amandeep; Kumar, S.; Kaur, Rajbir; Singh, Varinderjit; Behera, B.R.; Singh, K.P.; Singh, G.; Mukherjee, G.; Sharma, H.P.; Kumar, Suresh; Kumar Raju, M.; Madhusudhan Rao, P.V.; Muralithar, S.; Singh, R.P.; Kumar, Rakesh; Madhvan, N.; Bhowmik, R.K.
2014-01-01
High spin states of 130,131 Ba have been investigated via fusion evaporation reactions 122 Sn( 13 C,4n) 131 Ba and 122 Sn( 13 C, 5n) 130 Ba at E beam =65 MeV. The level schemes of 130,131 Ba have been extended by placing several new γ transitions. A few interband transitions connecting two negative-parity bands, which are the experimental fingerprints of signature partners, have been established in 130 Ba. Spin and parity of a side band have been assigned in 131 Ba and this dipole band is proposed to have a three-quasiparticle configuration, νh 11/2 x πh 11/2 x πg 7/2 . The observed band structures and nuclear shape evolution as a function of the angular momentum have been discussed in the light of Total-Routhian-Surface calculations. (orig.)
Fully aligned high-spin states in 86Zr
International Nuclear Information System (INIS)
Doring, J.; Hohns, G.D.; Sylvan, G.N.
1995-01-01
To study multi-quasiparticle excitations and their interplay with collective degrees of freedom at very high spins, a new in-beam investigation of the even-even 86 Zr has been performed via the 58 Ni( 32 S,4p) reaction at 135 MeV using the early implementation of GAMMASPHERE combined with the 47π charged particle detector system MICROBALL. The yrast positive- and negative-parity sequences have been extended up to 30 + and 27 - levels, respectively. Calculations within the configuration-dependent shell-correction method using a cranked Nilsson potential have shown that the highest spins are built from the six g 9 /2 neutrons and at most four protons excited from the p 1/2 , p 3/2 , f 5/2 subshells to the g 9 /2 subshell at a small deformation. The 30 + and 27 - states are the highest possible fully-aligned states based on holes in the N = 3 shell. Higher spins can be built by promotion of one neutron from the g 9 /2 to the g 7 /2 subshell but with a quite high energy cost
Collectivity of high spin states in {sup 84}Zr
Energy Technology Data Exchange (ETDEWEB)
Lister, C.J.; Blumenthal, D.; Crowell, B. [and others
1995-08-01
{sup 84}Zr is one of the most extensively studied of the A {approximately} 80 rotors, both from theoretical and experimental approaches. It was predicted to be a good candidate to support superdeformation, and to show interesting spectroscopic properties including saturation of its shell-model space at lower spin. We performed an experiment using Gammasphere in its early implementation phase. The reaction of {sup 29}Si on {sup 58}Ni was used to strongly populate {sup 84}Zr at high spin. Thin and thick targets were used to allow the extraction of transitional matrix elements at very high spin, and to allow a sensitive search for superdeformed states. Data analysis is in progress. The large data set allowed us to extend the previously known bands considerably. Candidates for a staggered M1-band, found previously {sup 86}Zr, were located. To date, no evidence for superdeformed bands was found. Analysis was slowed by the relocation of all the participants in this experiment, but we hope to complete the lifetime analysis this year. This analysis has become especially topical, due to reported measurements of superdeformation in this region.
High frequency spin torque oscillators with composite free layer spin valve
International Nuclear Information System (INIS)
Natarajan, Kanimozhi; Arumugam, Brinda; Rajamani, Amuda
2016-01-01
We report the oscillations of magnetic spin components in a composite free layer spin valve. The associated Landau–Lifshitz–Gilbert–Slonczewski (LLGS) equation is studied by stereographically projecting the spin on to a complex plane and the spin components were found. A fourth order Runge–Kutta numerical integration on LLGS equation also confirms the similar trajectories of the spin components. This study establishes the possibility of a Spin Torque Oscillator in a composite free layer spin valve, where the exchange coupling is ferromagnetic in nature. In-plane and out-of-plane precessional modes of magnetization oscillations were found in zero applied magnetic field and the frequencies of the oscillations were calculated from Fast Fourier Transform of the components of magnetization. Behavior of Power Spectral Density for a range of current density is studied. Finally our analysis shows the occurrence of highest frequency 150 GHz, which is in the second harmonics for the specific choice of system parameters.
High frequency spin torque oscillators with composite free layer spin valve
Energy Technology Data Exchange (ETDEWEB)
Natarajan, Kanimozhi; Arumugam, Brinda; Rajamani, Amuda
2016-07-15
We report the oscillations of magnetic spin components in a composite free layer spin valve. The associated Landau–Lifshitz–Gilbert–Slonczewski (LLGS) equation is studied by stereographically projecting the spin on to a complex plane and the spin components were found. A fourth order Runge–Kutta numerical integration on LLGS equation also confirms the similar trajectories of the spin components. This study establishes the possibility of a Spin Torque Oscillator in a composite free layer spin valve, where the exchange coupling is ferromagnetic in nature. In-plane and out-of-plane precessional modes of magnetization oscillations were found in zero applied magnetic field and the frequencies of the oscillations were calculated from Fast Fourier Transform of the components of magnetization. Behavior of Power Spectral Density for a range of current density is studied. Finally our analysis shows the occurrence of highest frequency 150 GHz, which is in the second harmonics for the specific choice of system parameters.
Summary of the 9th international symposium on high energy spin-physics
International Nuclear Information System (INIS)
Prescott, C.Y.
1990-11-01
Summarizing an international conference in high energy spin physics is never an easy task, because of the wide-ranging subjects in physics and technology that are involved. I have chosen to organize the topics of this conference into three broad categories relating to spin; intrinsic spin; composite spin; and spin, the experimental tool. In the first category, I will briefly revisit some historical and recent developments to set a background. In the second category, composite spin, I will discuss the status and developments in several areas, including magnetic moments of baryons, hyperon polarization in high energy high p perpendicular production, transverse polarization and asymmetries from transversely polarized targets in high p perpendicular scattering, spin structure of the proton, and the Bjorken sum rule. In the third category, I will discuss the steady, and at times rapid, progress in spin technology. In this part I include recent progress in high energy facilities, and comment on the highlights of the Workshops
International Nuclear Information System (INIS)
Ziaja, Beata
2002-01-01
Theoretical predictions show that at low values of Bjorken x the spin structure function g 1 is influenced by large logarithmic corrections ln 2 (1/x), which may be predominant in this region. These corrections are also partially contained in the next leading order (NLO) part of the standard Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) evolution. Here we calculate the nonsinglet component of the nucleon structure function, g 1 NS =g 1 p -g 1 n , and its first moment, using a unified evolution equation. This equation incorporates the terms describing the NLO DGLAP evolution and the terms contributing to the ln 2 (1/x) resummation. In order to avoid double counting in the overlapping regions of the phase space, a unique way of including the NLO terms into the unified evolution equation is proposed. The scheme-independent results obtained from this unified evolution are compared to the NLO fit to experimental data, GRSV2000. An analysis of the first moments of g 1 NS shows that the unified evolution including the ln 2 (1/x) resummation goes beyond the NLO DGLAP analysis. Corrections generated by double logarithms at low x influence the Q 2 dependence of the first moments strongly
Zheng, X.; Adhikari, K. P.; Bosted, P.; Deur, A.; Drozdov, V.; El Fassi, L.; Kang, Hyekoo; Kovacs, K.; Kuhn, S.; Long, E.; Phillips, S. K.; Ripani, M.; Slifer, K.; Smith, L. C.; Adikaram, D.; Akbar, Z.; Amaryan, M. J.; Anefalos Pereira, S.; Asryan, G.; Avakian, H.; Badui, R. A.; Ball, J.; Baltzell, N. A.; Battaglieri, M.; Batourine, V.; Bedlinskiy, I.; Biselli, A. S.; Briscoe, W. J.; Bültmann, S.; Burkert, V. D.; Carman, D. S.; Celentano, A.; Chandavar, S.; Charles, G.; Chen, J.-P.; Chetry, T.; Choi, Seonho; Ciullo, G.; Clark, L.; Colaneri, L.; Cole, P. L.; Compton, N.; Contalbrigo, M.; Crede, V.; D'Angelo, A.; Dashyan, N.; De Vita, R.; De Sanctis, E.; Djalali, C.; Dodge, G. E.; Dupre, R.; Egiyan, H.; El Alaoui, A.; Elouadrhiri, L.; Eugenio, P.; Fanchini, E.; Fedotov, G.; Fersch, R.; Filippi, A.; Fleming, J. A.; Gevorgyan, N.; Ghandilyan, Y.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F. X.; Gleason, C.; Golovach, E.; Gothe, R. W.; Griffioen, K. A.; Guidal, M.; Guler, N.; Guo, L.; Hanretty, C.; Harrison, N.; Hattawy, M.; Hicks, K.; Holtrop, M.; Hughes, S. M.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Isupov, E. L.; Jenkins, D.; Jiang, H.; Jo, H. S.; Joosten, S.; Keller, D.; Khachatryan, G.; Khandaker, M.; Kim, A.; Kim, W.; Klein, F. J.; Kubarovsky, V.; Lanza, L.; Lenisa, P.; Livingston, K.; MacGregor, I. J. D.; Markov, N.; McKinnon, B.; Mirazita, M.; Mokeev, V.; Movsisyan, A.; Munevar, E.; Munoz Camacho, C.; Murdoch, G.; Nadel-Turonski, P.; Net, L. A.; Ni, A.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Osipenko, M.; Ostrovidov, A. I.; Paolone, M.; Paremuzyan, R.; Park, K.; Pasyuk, E.; Peng, P.; Pisano, S.; Pogorelko, O.; Price, J. W.; Puckett, A. J. R.; Raue, B. A.; Rizzo, A.; Rosner, G.; Rossi, P.; Roy, P.; Sabatié, F.; Salgado, C.; Schumacher, R. A.; Sharabian, Y. G.; Skorodumina, Iu.; Smith, G. D.; Sokhan, D.; Sparveris, N.; Stankovic, I.; Strakovsky, I. I.; Strauch, S.; Taiuti, M.; Tian, Ye; Ungaro, M.; Voskanyan, H.; Voutier, E.; Walford, N. K.; Watts, D. P.; Wei, X.; Weinstein, L. B.; Wood, M. H.; Zachariou, N.; Zhang, J.; Zonta, I.; CLAS Collaboration
2016-10-01
We report measurements of target- and double-spin asymmetries for the exclusive channel e ⃗p ⃗→e π+(n ) in the nucleon resonance region at Jefferson Lab using the CEBAF Large Acceptance Spectrometer (CLAS). These asymmetries were extracted from data obtained using a longitudinally polarized NH3 target and a longitudinally polarized electron beam with energies 1.1, 1.3, 2.0, 2.3, and 3.0 GeV. The new results are consistent with previous CLAS publications but are extended to a low Q2 range from 0.0065 to 0.35 (GeV/c ) 2 . The Q2 access was made possible by a custom-built Cherenkov detector that allowed the detection of electrons for scattering angles as low as 6∘. These results are compared with the unitary isobar models JANR and MAID, the partial-wave analysis prediction from SAID, and the dynamic model DMT. In many kinematic regions our results, in particular results on the target asymmetry, help to constrain the polarization-dependent components of these models.
Nucleon-nucleon interaction in the soliton bag model
International Nuclear Information System (INIS)
Schuh, A.
1985-01-01
In the framework of the Soliton Bag Model introduced by Friedberg and Lee we treat S-wave nucleon-nucleon scattering. Our system consists of six quarks and the nontopological soliton field which represents an average colorfree interaction between the quarks and yields their (relative) confinement. The dynamical problem is treated by means of the Generator coordinate Method (GCM) where the total wave function is the weighted sum over static configurations of prescribed bag deformation. The static configurations needed for the GCM ansatz are generated starting from a potential well of prescribed deformation wherein we solve the Dirac equation for the quarks. The single particle quark orbitals are properly coupled with respect to orbital, color, spin, and isospin quantum numbers to form a totally antisymmetric 6-quark state. A mean field solution for the soliton field is then calculated and turned into a quantum mechanical state by a coherent state approximation. Since these static configurations are only to be seen as wave function generators for the GCM no selfconsistency between quark and soliton solution is enforced. With these configurations we then evaluate the norm and Hamiltonian kernels appearing in the GCM treatment. The Hill-Wheeler integral equation for the weight functions is transformed into a Schroedinger-type differential equation by an expansion into symmetric moments of up to second order. This equation is brought into a form where we can identify the interaction potential unambiguously. We find an intermediate range attraction of about 120 MeV and no attraction in the vicinity of the spherically symmetric shape of the system, in contradiction to the naive adiabatic potentials widely used in quark models for the nucleon-nucleon interaction up to now. (orig./HSI) [de
High-energy electroweak neutrino-nucleon deeply virtual Compton scattering
International Nuclear Information System (INIS)
Machado, Magno V. T.
2007-01-01
In this work we estimate the differential and total cross sections for the high-energy deeply virtual Compton scattering in the weak sector. In the weak neutral sector one considers neutrino scattering off an unpolarized proton target through the exchange of Z 0 . We numerically compute the process Z*p→γp within the QCD color dipole formalism, which successfully describes the current high-energy electromagnetic DVCS experimental data. We also discuss possible applications for the weak charged sector and perform predictions for scattering on nuclear targets
Pionic background for nucleon-nucleon observables
International Nuclear Information System (INIS)
Ballot, J.L.; Robilotta, M.R.
1992-01-01
A method is presented that allows the unambiguous definition of the one pion exchange contribution to nucleon-nucleon scattering observables and then use it to determine those waves where values of phase shifts and mixing parameters may be understood as sums of pionic and non-pionic dynamical effects. This helps the assessment of the explicative power of the various existing phenomenological potentials and may eventually lead to ways of discriminating their effectiveness. (author) 16 refs.; 19 figs.; 2 tabs
Electron spin polarization in high-energy storage rings
International Nuclear Information System (INIS)
Mane, S.R.
1987-01-01
In a high energy storage ring, a single photon emission has relatively little effect on the orbital motion, but it can produce a relatively large change in the electron spin state. Hence the unperturbed orbital motion can be satisfactorily described using classical mechanics, but the spin must be treated quantum mechanically. The electron motion is therefore treated semi-classically in this thesis. It is explained how to diagonalize the unperturbed Hamiltonian to the leading order in Planck's constant. The effects of perturbations are then included, and the relevant time-scales and ensemble averages are elucidated. The Derbenev-Kondratenko formula for the equilibrium degree of polarization is rederived. Mathematical details of the rederivation are given. Since the original authors used a different formalism, a proof is offered of the equivalence between their method and the one used in this thesis. An algorithm is also presented to evaluate the equilibrium polarization. It has a number of new features, which enable the polarization to be calculated to a higher degree of approximation than has hitherto been possible. This facilitates the calculation of so-called spin resonances, which are points at which the polarization almost vanishes. A computer program has been written to implement the above algorithm, in the approximation of linear orbital dynamics, and sample results are presented
Recent developments in high-spin calculations in atomic nuclei
International Nuclear Information System (INIS)
Szymanski, Z.
1980-01-01
A brief introduction to the recent achievements in the high-spin domain in nuclear physics is given. Results of the calculations in highly developed rotational bands in deformed nuclei, as well as the calculations in the structure of the yrast isomers are presented. The calculations fail in two aspects: local minima in the yrast line are not confirmed experimentally, the overall slope of the yrast line in 152 Dy is considerably overestimated. The calculations of the yrast line with new Woods-Saxon parameters are now in progress. The parameters are chosen to reproduce the large gap in the levels at proton number Z=64. (M.H.)
Spin transport at high temperatures in epitaxial Heusler alloy/n-GaAs lateral spin valves
Peterson, Timothy A.; Christie, Kevin D.; Patel, Sahil J.; Crowell, Paul A.; Palmstrøm, Chris J.
2015-03-01
We report on electrical injection and detection of spin accumulation in ferromagnet/ n-GaAs lateral spin-valve devices, observed up to and above room temperature. The ferromagnet in these measurements is the Heusler alloy Co2FeSi, and the semiconductor channel is GaAs doped at 3 ×1016 cm-3. The spin signal is enhanced by operating the detection contact under forward bias. The enhancement originates from drift effects at low-temperatures and an increase of the detection efficiency at all temperatures. The detector bias dependence of the observed spin-valve signal is interpreted by taking into account the quantum well (QW) which forms in the degenerately doped region immediately behind the Schottky tunnel barrier. In particular, we believe the QW is responsible for the minority spin accumulation (majority spin current) under large forward bias. The spin diffusion length and lifetime are determined by measuring the separation dependence of the non-local spin valve signal in a family of devices patterned by electron beam lithography. A spin diffusion length of 700 nm and lifetime of 46 picoseconds are found at a temperature of 295 K. This work was supported by the NSF under DMR-1104951, the NSF MRSEC program and C-SPIN, a SRC STARNET center sponsored by MARCO and DARPA.
Calculation of the nucleon structure function from the nucleon wave function
Hussar, Paul E.
1993-01-01
Harmonic oscillator wave functions have played an historically important role in our understanding of the structure of the nucleon, most notably by providing insight into the mass spectra of the low-lying states. High energy scattering experiments are known to give us a picture of the nucleon wave function at high-momentum transfer and in a frame in which the nucleon is traveling fast. A simple model that crosses the twin bridges of momentum scale and Lorentz frame that separate the pictures of the nucleon wave function provided by the deep inelastic scattering data and by the oscillator model is presented.
Two-proton radioactivity in proton-rich fp shell nuclei at high spin
Energy Technology Data Exchange (ETDEWEB)
Aggarwal, Mamta [Nuclear Science Centre, Aruna Asaf Ali Marg, Post Box 10502, New Delhi 110067 (India)
2006-07-15
Two-proton radioactivity in extremely proton-rich fp shell nuclei at high spins is investigated in a theoretical framework. Separation energy and entropy fluctuate with spin and hence affect the location of the proton drip line.
Two-proton radioactivity in proton-rich fp shell nuclei at high spin
International Nuclear Information System (INIS)
Aggarwal, Mamta
2006-01-01
Two-proton radioactivity in extremely proton-rich fp shell nuclei at high spins is investigated in a theoretical framework. Separation energy and entropy fluctuate with spin and hence affect the location of the proton drip line
Energy Technology Data Exchange (ETDEWEB)
Hooper, Dan; McDermott, Samuel D.
2018-02-08
Due to shielding, direct detection experiments are in some cases insensitive to dark matter candidates with very large scattering cross sections with nucleons. In this paper, we revisit this class of models, and derive a simple analytic criterion for conservative but robust direct detection limits. While large spin-independent cross sections seem to be ruled out, we identify potentially viable parameter space for dark matter with a spin-dependent cross section with nucleons in the range of $10^{-27} {\\rm cm}^2 < \\sigma_{{\\rm DM}-p} < 10^{-24} \\, {\\rm cm}^{2}$. With these parameters, cosmic-ray scattering with dark matter in the extended halo of the Milky Way could generate a novel and distinctive gamma-ray signal at high galactic latitudes. Such a signal could be observable by Fermi or future space-based gamma-ray telescopes.
The charge form factor of three-nucleon systems and the polarization of the bound nucleon
International Nuclear Information System (INIS)
Giannini, M.M.; Drechsel, D.; Arenhoevel, H.; Tornow, V.
1979-01-01
The discrepancy between theoretical calculations of the 3 He charge density and the results derived from elastic electron scattering may be due to the analysis of the experimental data in terms of spherical nucleons. A classical model with deformed nucleons gives qualitive agreement with experiment for an oblate quadrupole moment of -1.8 mb. Such a deformation of the bound nucleon can be described by the admixture of Δ(1232) and higher isobar components with spin >= 3/2. Since the admixture probabilities are small the dominant contributions stem from the transition quadrupole moments between free nucleon and isobar components. Taking into account the leading Δ(1232) components one can explain about half of the discrepancy. As this transition operator is isovector, the effects are opposite for 3 He and 3 H. (orig.)
Spin dynamics in relativistic ionization with highly charged ions in super-strong laser fields
International Nuclear Information System (INIS)
Klaiber, Michael; Yakaboylu, Enderalp; Bauke, Heiko; Hatsagortsyan, Karen Z; Müller, Carsten; Paulus, Gerhard G
2014-01-01
Spin dynamics and induced spin effects in above-threshold ionization of hydrogenlike highly charged ions in super-strong laser fields are investigated. Spin-resolved ionization rates in the tunnelling regime are calculated by employing two versions of a relativistic Coulomb-corrected strong-field approximation (SFA). An intuitive simpleman model is developed which explains the derived scaling laws for spin flip and spin asymmetry effects. The intuitive model as well as our ab initio numerical simulations support the analytical results for the spin effects obtained in the dressed SFA where the impact of the laser field on the electron spin evolution in the bound state is taken into account. In contrast, the standard SFA is shown to fail in reproducing spin effects in ionization even at a qualitative level. The anticipated spin-effects are expected to be measurable with modern laser techniques combined with an ion storage facility. (paper)
Studies of spin excitations with electromagnetic and hadronic probes
International Nuclear Information System (INIS)
Lindgren, R.A.; Petrovich, F.
1982-01-01
Excitation of unnatural parity states, predominantly of high spin, using electromagnetic and hadronic probes, is discussed. Spectroscopic strengths are deduced from studies of (e,e'), (p,p'), (π.π'), and (p,n) for states whose doorway is the stretched particle-hole configuration. These levels are excited primarily through the isovector electromagnetic-nucleon magnetization coupling, nucleon-nucleon tensor coupling, and pion-nucleon spin-orbit coupling. The extracted isovector spectroscopic strength is typically 38% of the extreme single particle-hole model and about 66% of that predicted by more realistic nuclear structure calculations. The observed isoscalar strength is only about one half of the isovector strength. The results obtained with the three different probes are quite consistent. The primary conclusion is that the missing strength for these high spin excitations is at least as large as for the low spin M1 and GT excitations. This implies the existence of other important quenching mechanisms since the Δ-N -1 mechanism involved in the discussion of the low spin excitation affects only the isovector transitions and contributes little to high spin excitations. A method for using (e,e') and π + /π - cross section ratios to separate and determine the absolute isoscalar and isovector spin densities for T 0 to T 0 transitions in N is not equal to Z nuclei is also discussed and some comments on extracting information from (e,e') and (p,p') studies at high q on low spin 1 + and 2 - levels are presented. 78 references
Highly spin-polarized materials and devices for spintronics∗.
Inomata, Koichiro; Ikeda, Naomichi; Tezuka, Nobuki; Goto, Ryogo; Sugimoto, Satoshi; Wojcik, Marek; Jedryka, Eva
2008-01-01
The performance of spintronics depends on the spin polarization of the current. In this study half-metallic Co-based full-Heusler alloys and a spin filtering device (SFD) using a ferromagnetic barrier have been investigated as highly spin-polarized current sources. The multilayers were prepared by magnetron sputtering in an ultrahigh vacuum and microfabricated using photolithography and Ar ion etching. We investigated two systems of Co-based full-Heusler alloys, Co 2 Cr 1 - x Fe x Al (CCFA( x )) and Co 2 FeSi 1 - x Al x (CFSA( x )) and revealed the structure and magnetic and transport properties. We demonstrated giant tunnel magnetoresistance (TMR) of up to 220% at room temperature and 390% at 5 K for the magnetic tunnel junctions (MTJs) using Co 2 FeSi 0.5 Al 0.5 (CFSA(0.5)) Heusler alloy electrodes. The 390% TMR corresponds to 0.81 spin polarization for CFSA(0.5) at 5 K. We also investigated the crystalline structure and local structure around Co atoms by x-ray diffraction (XRD) and nuclear magnetic resonance (NMR) analyses, respectively, for CFSA films sputtered on a Cr-buffered MgO (001) substrate followed by post-annealing at various temperatures in an ultrahigh vacuum. The disordered structures in CFSA films were clarified by NMR measurements and the relationship between TMR and the disordered structure was discussed. We clarified that the TMR of the MTJs with CFSA(0.5) electrodes depends on the structure, and is significantly higher for L2 1 than B2 in the crystalline structure. The second part of this paper is devoted to a SFD using a ferromagnetic barrier. The Co ferrite is investigated as a ferromagnetic barrier because of its high Curie temperature and high resistivity. We demonstrate the strong spin filtering effect through an ultrathin insulating ferrimagnetic Co-ferrite barrier at a low temperature. The barrier was prepared by the surface plasma oxidization of a CoFe 2 film deposited on a MgO (001) single crystal substrate, wherein the spinel
International Nuclear Information System (INIS)
Rubin, Joshua George
2009-11-01
The motivation for this work was to improve upon prior analyses that extracted the quark helicity distributions, Δ(x), of the proton. Chapter 4 contains several new double-spin asymmetries which are results in their own right. The ph? dependence is plotted for the first time with HERMES data which is uniquely hadron separated. The hadron charge difference asymmetry is presented which, in combination with the quark helicity densities can put limits on fragmentation symmetry breaking in semi-inclusive DIS. Additionally, a novel method of unfolding yields (reducing smearing effects from detector resolution limitations and QED radiation) was developed and presented here for the first time which potentially allows new kinds of asymmetries to be constructed which were unavailable before. Also, this chapter describes the method by which the first ever three dimensionally binned SIDIS double-spin asymmetries were produced. These asymmetries, which will be used as the data inputs for the Δ(x) extraction, are valuable inputs to world fits being performed by theorists. Chapter 5 further explores this idea of fragmentation symmetry breaking with Monte Carlo studies of fragmentation functions. These studies test assumptions which are frequently made in the interpretation of asymmetries like the hadron charge difference of the prior chapter and suggest that these assumptions should be approached with some caution. Also, a technique for tuning and more importantly propagating systematic uncertainty through non-analytic Monte Carlo models, like the Lund-String model which provides an essential input to the Δ(x) extraction, is developed (orig.)
Energy Technology Data Exchange (ETDEWEB)
Rubin, Joshua George
2009-11-15
The motivation for this work was to improve upon prior analyses that extracted the quark helicity distributions, {delta}(x), of the proton. Chapter 4 contains several new double-spin asymmetries which are results in their own right. The ph? dependence is plotted for the first time with HERMES data which is uniquely hadron separated. The hadron charge difference asymmetry is presented which, in combination with the quark helicity densities can put limits on fragmentation symmetry breaking in semi-inclusive DIS. Additionally, a novel method of unfolding yields (reducing smearing effects from detector resolution limitations and QED radiation) was developed and presented here for the first time which potentially allows new kinds of asymmetries to be constructed which were unavailable before. Also, this chapter describes the method by which the first ever three dimensionally binned SIDIS double-spin asymmetries were produced. These asymmetries, which will be used as the data inputs for the {delta}(x) extraction, are valuable inputs to world fits being performed by theorists. Chapter 5 further explores this idea of fragmentation symmetry breaking with Monte Carlo studies of fragmentation functions. These studies test assumptions which are frequently made in the interpretation of asymmetries like the hadron charge difference of the prior chapter and suggest that these assumptions should be approached with some caution. Also, a technique for tuning and more importantly propagating systematic uncertainty through non-analytic Monte Carlo models, like the Lund-String model which provides an essential input to the {delta}(x) extraction, is developed (orig.)
Energy Technology Data Exchange (ETDEWEB)
Burkert, Volker D.
2016-07-25
Recent results of meson photo-production at the existing electron machines with polarized real photon beams and the measurement of polarization observables of the final state baryons have provided high precision data that led to the discovery of new excited nucleon and $\\Delta$ states using multi-channel partial wave analyses procedures. The internal structure of several prominent excited states has been revealed employing meson electroproduction processes. On the theoretical front, lattice QCD is now predicting the baryon spectrum with very similar characteristics as the constituent quark model, and continuum QCD, such as is represented in the Dyson-Schwinger Equations approach and in light front relativistic quark models, describes the non-perturbative behavior of resonance excitations at photon virtuality of $Q^2 > 1.5GeV^2$. In this talk I discuss the need to continue a vigorous program of nucleon spectroscopy and the study of the internal structure of excited states as a way to reveal the effective degrees of freedom underlying the excited states and their dependence on the distance scale probed.
Energy Technology Data Exchange (ETDEWEB)
EDITED BY M.S. DAVIS
2002-02-01
By the end of this decade, the advancement of current and planned research into the fundamental structure of matter will require a new facility, the Electron Ion Collider (EIC). The EIC will collide high-energy beams of polarized electrons from polarized protons and neutrons, and unpolarized beams of electrons off atomic nuclei with unprecedented intensity. Research at the EIC will lead to a detailed understanding of the structure of the proton, neutron, and atomic nuclei as described by Quantum Chromo-Dynamics (QCD), the accepted theory of the strong interaction. The EIC will establish quantitative answers to important questions by delivering dramatically increased precision over existing and planned experiments and by providing completely new experimental capabilities. Indeed, the EIC will probe QCD in a manner not possible previously. This document presents the scientific case for the design, construction and operation of the EIC. While realization of the EIC requires a significant advance in the development of efficient means of producing powerful beams of energetic electrons, an important consideration for choosing the site of the EIC is the planned upgrade to the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory. The upgrade planned for RHIC will fully meet the requirements for the ion beam for the EIC, providing a distinct advantage in terms of cost, schedule and the final operation.
Kar, Uddipta; Panda, J; Nath, T K
2018-06-01
The low temperature spin accumulation in p-Si using Co2CrAl/SiO2 tunnel junction has been investigated in detail. The heterojunction has been fabricated using electron beam evaporation (EBE) technique. The 3-terminal contacts in Hanle geometry has been made for spin transport measurements. The electrical transport properties have been investigated at different isothermal conditions in the temperature range of 10-300 K. The current-voltage characteristics of the junction shows excellent rectifying magnetic diode like behaviour in lower temperature range (below 200 K). At higher temperature, the junction shows nonlinear behaviour without rectifying characteristics. We have observed spin accumulation signal in p-Si semiconductor using SiO2/Co2CrAl tunnel junction in the low temperature regime (30-100 K). Hence the highly spin polarized Full Heusler alloys compounds, like Co2CrAl etc., are very attractive and can act as efficient tunnel device for spin injection in the area of spintronics devices in near future. The estimated spin life time is τ = 54 pS and spin diffusion length inside p-Si is LSD = 289 nm at 30 K for this heterostructure.
Collective properties and shapes of nuclei at very high spins
International Nuclear Information System (INIS)
Johnson, N.R.
1991-01-01
A topic which has been of major interest to us for some years now involves the evolution of nuclear collectivity at high rotational frequencies and the accompanying changes in the shapes of nuclei in these extreme conditions. We carry out these studies by determining the dynamic electromagnetic multipole moments which are a reflection of the collective aspects of the nuclear wave functions. The most direct way to get these multipole moments is by measurements of excited-state lifetimes which provide the transition matrix elements in a fairly straightforward fashion. Although the primary emphasis of this paper is on the collectivity of the high-spin states in 160 Yb and 164 Yb, it is important to review briefly some work we began about ten years ago lifetime studies of moderately high spins in nuclei near N=90 using the recoil-distance (RD) method. These nuclei are just at the onset of permanent deformation and are known to be very soft with respect to deformation changes. This softness is clearly illustrated in contour diagrams of their potential-energy surfaces. For example, the potential energy surface of 160 Yb reveals that the minimum in the potential occurs around var-epsilon ∼ 0.2 and that it is very shallow in the γ degree of freedom. Because of their γ softness, we have studied several nuclei near N=90 to assess to what extent the polarization effects induced by rotation alignment of high-j quasiparticles affect their collectivity
International Nuclear Information System (INIS)
Yokosawa, A.
1992-01-01
Spin physics activities at medium and high energies became significantly active when polarized targets and polarized beams became accessible for hadron-hadron scattering experiments. My overview of spin physics will be inclined to the study of strong interaction using facilities at Argonne ZGS, Brookhaven AGS (including RHIC), CERN, Fermilab, LAMPF, an SATURNE. In 1960 accelerator physicists had already been convinced that the ZGS could be unique in accelerating a polarized beam; polarized beams were being accelerated through linear accelerators elsewhere at that time. However, there was much concern about going ahead with the construction of a polarized beam because (i) the source intensity was not high enough to accelerate in the accelerator, (ii) the use of the accelerator would be limited to only polarized-beam physics, that is, proton-proton interaction, and (iii) p-p elastic scattering was not the most popular topic in high-energy physics. In fact, within spin physics, π-nucleon physics looked attractive, since the determination of spin and parity of possible πp resonances attracted much attention. To proceed we needed more data beside total cross sections and elastic differential cross sections; measurements of polarization and other parameters were urgently needed. Polarization measurements had traditionally been performed by analyzing the spin of recoil protons. The drawbacks of this technique are: (i) it involves double scattering, resulting in poor accuracy of the data, and (ii) a carbon analyzer can only be used for a limited region of energy
Nucleon-pair approximation to the nuclear shell model
Energy Technology Data Exchange (ETDEWEB)
Zhao, Y.M., E-mail: ymzhao@sjtu.edu.cn [Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); Arima, A. [Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); Musashi Gakuen, 1-26-1 Toyotamakami Nerima-ku, Tokyo 176-8533 (Japan)
2014-12-01
Atomic nuclei are complex systems of nucleons–protons and neutrons. Nucleons interact with each other via an attractive and short-range force. This feature of the interaction leads to a pattern of dominantly monopole and quadrupole correlations between like particles (i.e., proton–proton and neutron–neutron correlations) in low-lying states of atomic nuclei. As a consequence, among dozens or even hundreds of possible types of nucleon pairs, very few nucleon pairs such as proton and neutron pairs with spin zero, two (in some cases spin four), and occasionally isoscalar spin-aligned proton–neutron pairs, play important roles in low-energy nuclear structure. The nucleon-pair approximation therefore provides us with an efficient truncation scheme of the full shell model configurations which are otherwise too large to handle for medium and heavy nuclei in foreseeable future. Furthermore, the nucleon-pair approximation leads to simple pictures in physics, as the dimension of nucleon-pair subspace is always small. The present paper aims at a sound review of its history, formulation, validity, applications, as well as its link to previous approaches, with the focus on the new developments in the last two decades. The applicability of the nucleon-pair approximation and numerical calculations of low-lying states for realistic atomic nuclei are demonstrated with examples. Applications of pair approximations to other problems are also discussed.
Spin dynamics in high-TC superconducting cuprates
International Nuclear Information System (INIS)
Bourges, Ph.
2003-07-01
This work is dedicated to the detailed investigations of the magnetic resonance peak in the superconducting state of cuprates. The existence of such a peak could be the signature of a mechanism linked to magnetism that could explain high critical temperature superconductivity. Inelastic neutron scattering is an adequate tool for the understanding of cuprate properties because it reveals magnetic fluctuations whose behaviour and variety depend strongly on temperature and on the level of doping. The last part of this work is dedicated to the study of spin dynamics in YBa 2 Cu 3 O 6+x system
Double polarized neutron-proton scattering and nucleon-nucleon tensor force: An alternative analysis
International Nuclear Information System (INIS)
Tornow, W.; Gould, C.R.; Haase, D.G.; Walston, J.R.; Raichle, B.W.
2002-01-01
Previous neutron-proton total cross-section difference measurements Δσ L and Δσ T between E n =7.43 and 17.1 MeV have been analyzed in a new way that reduces experimental systematic uncertainties. The results obtained for the 3 S 1 - 3 D 1 mixing parameter ε 1 are very similar to the published values, substantiating the previous conclusion that the nucleon-nucleon tensor force at low energies is stronger than predicted by the Nijmegen partial-wave analysis and, therefore, by all the recent high-precision nucleon-nucleon potential models as well
A chiral quark model of the nucleon
International Nuclear Information System (INIS)
Wakamatsu, M.; Yoshiki, H.
1991-01-01
The baryon-number-one extended solution of a chiral quark lagrangian is obtained in the stationary-phase approximation with full inclusion of the sea-quark degrees of freedom. The collective quantization method is then applied to this static solution to obtain the nucleon (and Δ) state with the definite spin and isospin. A fundamental quantity appearing in this quantization procedure is the moment of inertia of the soliton system. We evaluate this quantity without recourse to the derivative expansion, by performing the necessary double sum over all the positive- and negative-energy quark orbitals in the mean field potential. Closed formulas are-derived for the nucleon (and Δ) matrix elements of arbitrary quark bilinear operators. These formulas are then used for calculating various nucleon observables in a nonperturbative manner with inclusion of the sea-quark effects. An especially interesting observable is the spin expectation value of the proton related to the recent EMC experiment. We derive the proton spin sum rule, and then explicitly evaluate the detailed contents of this sum rule. The proton spin analysis is shown to be particularly useful for clarifying the underlying dynamical content of the Skyrme model at quark level, thereby providing us with valuable information about its utility and limitation. (orig.)
Stripping of 1.04 MeV per nucleon krypton ions in high molecular weight vapours
International Nuclear Information System (INIS)
Eastham, D.A.; Joy, T.; Clark, R.B.; King, R.
1976-01-01
Equilibrium charge state distributions have been measured for 1.04 MeV per nucleon krypton ions in heavy vapours with molecular weights from 462 to 6500. Non-equilibrium data are presented for the heaviest vapour. A maximum increase of 0.8 in the mean charge is found relative to a conventional diatomic gas but the pressures required are two orders of magnitude less. (Auth.)
International Nuclear Information System (INIS)
Raman, S.; Kahane, S.; Bhatt, K.H.
1999-01-01
Ever since the pioneering work of Elliott (Elliott J P 1958 London Series A 245 128, 562), quadrupole collectivity in deformed nuclei has been economically described in terms of SU 3 symmetry. Microscopic SU 3 symmetry is not present in the deformed intrinsic states of n nucleons in the abnormal-parity single-particle states j a . However, such (j a ) n states do possess some SU 3 -symmetry-like properties as shown in this work. (author)
Gluon polarization in the nucleon from quasi-real photoproduction of high-pT hadron pairs
Ageev, E S; Alexandrov, Yu A; Alexeev, G D; Amoroso, A; Badelek, B; Balestra, F; Ball, J; Baum, G; Bedfer, Y; Berglund, P; Bernet, C; Bertini, R; Birsa, R; Bisplinghoff, J; Bordalo, P; Bradamante, Franco; Bravar, A; Bressan, A; Brona, G; Burtin, E; Bussa, M P; Bychkov, V N; Cerini, L; Chapiro, A; Cicuttin, A; Colantoni, M L; Colavita, A A; Costa, S; Crespo, M L; Dalla Torre, S; Das-Gupta, S S; Dedek, N; De Masi, R; Denisov, O Yu; Dhara, L; Díaz, V; Dinkelbach, A M; Dolgopolov, A V; Donskov, S V; Dorofeev, V A; Doshita, N; Duic, V; Dünnweber, W; Ehlers, J; Eversheim, P D; Eyrich, W; Fabro, M; Faessler, Martin A; Falaleev, V; Fauland, P; Ferrero, A; Ferrero, L; Finger, Miroslav H; Finger, M Jr; Fischer, H; Franz, J; Friedrich, J M; Frolov, V; Garfagnini, R; Gautheron, F; Gavrichtchouk, O P; Gerassimov, S G; Geyer, R; Giorgi, M; Gobbo, B; Görtz, S; Gorin, A M; Grajek, O A; Grasso, A; Grube, B; Grünemaier, A; Hannappel, J; Von Harrach, D; Hasegawa, T; Hedicke, S; Heinsius, F H; Hermann, R; Hess, C; Hinterberger, F; Von Hodenberg, M; Horikawa, N; Horikawa, S; D'Hose, N; Ijaduola, R B; Ilgner, C; Ioukaev, A I; Ishimoto, S; Ivanov, O; Iwata, T; Jahn, R; Janata, A; Joosten, R; Jouravlev, N I; Kabuss, E M; Kalinnikov, V; Kang, D; Karstens, F; Kastaun, W; Ketzer, B; Khaustov, G V; Khokhlov, Yu A; Khomutov, N V; Kisselev, Yu V; Klein, F; Koblitz, S; Koivuniemi, J H; Kolosov, V N; Komissarov, E V; Kondo, K; Königsmann, K C; Konoplyannikov, A K; Konorov, I; Konstantinov, V F; Korentchenko, A S; Korzenev, A; Kotzinian, A M; Koutchinski, N A; Kowalik, K L; Kravchuk, N P; Krivokhizhin, V G; Krumshtein, Z; Kühn, R; Kunne, Fabienne; Kurek, K; Ladygin, M E; Lamanna, M; Leberig, M; Le Goff, J M; Lichtenstadt, J; Liska, T; Ludwig, I; Maggiora, A; Maggiora, M; Magnon, A; Mallot, G K; Manuilov, I V; Marchand, C; Marroncle, J; Martin, A; Marzec, J; Matsuda, T; Maksimov, A N; Medved, K S; Meyer, W; Mielech, A; Mikhailov, Yu V; Moinester, M A; Nahle, O; Nassalski, J P; Neliba, S; Neyret, D P; Nikolaenko, V I; Nozdrin, A A; Obraztsov, V F; Olshevskii, A G; Ostrick, M; Padee, A; Pagano, P; Panebianco, S; Panzieri, D; Paul, S; Pereira, H D; Peshekhonov, V D; Piragino, G; Platchkov, S; Platzer, K; Pochodzalla, J; Polyakov, V A; Popov, A A; Pretz, J; Procureur, S; Quintans, C; Ramos, S; Rebourgeard, P C; Reicherz, G; Reymann, J; Rith, K; Rondio, Ewa; Rozhdestvensky, A M; Sadovski, A B; Saller, E; Samoylenko, V D; Sandacz, A; Sans, M; Sapozhnikov, M G; Savin, I A; Schiavon, Paolo; Schill, C; Schmidt, T; Schmitt, H; Schmitt, L; Shevchenko, O Yu; Shishkin, A A; Siebert, H W; Sinha, L; Sissakian, A N; Skachkova, A N; Slunecka, M; Smirnov, G I; Sozzi, F; Srnka, A; Stinzing, F; Stolarski, M; Sugonyaev, V P; Sulc, M; Sulej, R; Takabayashi, N; Tchalishev, V V; Tessarotto, F; Teufel, A; Thers, D; Tkatchev, L G; Toeda, T; Tretyak, V I; Trousov, S; Varanda, M; Virius, M; Vlassov, N V; Wagner, M; Webb, R; Weise, E; Weitzel, Q; Wiedner, U; Wiesmann, M; Windmolders, R; Wirth, S; Wislicki, W; Zanetti, A M; Zaremba, K; Zhao, J; Ziegler, R; Zvyagin, A
2006-01-01
We present a determination of the gluon polarization Delta G/G in the nucleon, based on the helicity asymmetry of quasi-real photoproduction events, Q^2 = 0.002 +- 0.019(stat.) +- 0.003(syst.). From this value, we obtain in a leading-order QCD analysis Delta G/G=0.024 +- 0.089(stat.) +- 0.057(syst.) at x_g = 0.095 and mu^2 =~ 3 (GeV}/c)^2.
High-spin nuclear structure studies with radioactive ion beams
International Nuclear Information System (INIS)
Baktash, C.
1992-01-01
Two important developments in the sixties, namely the advent of heavy-ion accelerators and fabrication of Ge detectors, opened the way for the experimental studies of nuclear properties at high angular momentum. Addition of a new degree of freedom, namely spin, made it possible to observe such fascinating phenomena as occurrences and coexistence of a variety of novel shapes, rise, fall and occasionally rebirth of nuclear collectivity, and disappearance of pairing correlations. Today, with the promise of development of radioactive ion beams (RIB) and construction of the third-generation Ge-detection systems (GAMMASPHERE and EUROBALL), nuclear physicists are poised to explore new and equally fascinating phenomena that have been hitherto inaccessible. With the addition of yet another dimension, namely the isospin, they will be able to observe and verify predictions for exotic shapes as varied as rigid triaxiality, hyperdeformation and triaxial-octupole shapes, or to investigate the T=O pairing correlations. In this paper, the author reviews, separately for neutron-deficient and neutron-rich nuclei, these and a few other new high-spin physics opportunities that may be realized with RIB. Following this discussion, a list of the beam species, intensities and energies that are needed to fulfill these goals is presented. The paper concludes with a description of the experimental techniques and instrumentations that are required for these studies
Nucleon-nucleon scattering phase shifts
International Nuclear Information System (INIS)
Bryan, R.
1978-01-01
Here are presented 0 to 800 MeV nucleon-nucleon elastic and inelastic phase parameters derived by several groups: Arndt and Roper; Hoshizaki; Bugg; Bystricky, Lechanoine, and Lehar; and Bryan, Clark, and VerWest. Resonant-like behavior appears in the 1 D 2 and 3 F 3 states above the inelastic threshold in Hoshizaki's analysis but not in Arndt and Roper's. The np data are inadequate to permit determination of the I = O phase parameters above 600 MeV. 27 references
International Nuclear Information System (INIS)
Holben, B.C.; Bach, R.E.
1975-01-01
A nucleonic measuring instrument is described wherein a housing contains a radiation source and has an aperture controlled by a shutter which is spring loaded to a closed position for confining and shielding the radiation and is movable by a motor to an open position for releasing the radiation, the motor being supplied with power through a heat sensitive element so that it is deenergized and the shutter closes in response to a predetermined high ambient temperature such as may be caused by a fire, and including an explosive blank cartridge positioned in relation to the shutter guide which explodes in response to a still higher ambient temperature, deforming the guide and thereby locking the shutter in the closed position. (auth)
Nucleon Electromagnetic Form Factors
Energy Technology Data Exchange (ETDEWEB)
Marc Vanderhaeghen; Charles Perdrisat; Vina Punjabi
2007-10-01
There has been much activity in the measurement of the elastic electromagnetic proton and neutron form factors in the last decade, and the quality of the data has greatly improved by performing double polarization experiments, in comparison with previous unpolarized data. Here we review the experimental data base in view of the new results for the proton, and neutron, obtained at JLab, MAMI, and MIT-Bates. The rapid evolution of phenomenological models triggered by these high-precision experiments will be discussed, including the recent progress in the determination of the valence quark generalized parton distributions of the nucleon, as well as the steady rate of improvements made in the lattice QCD calculations.
Nuclear structure of 94,95Mo at high spins
International Nuclear Information System (INIS)
Kharraja, B.; Ghugre, S.S.; Garg, U.; Janssens, R.V.; Carpenter, M.P.; Crowell, B.; Khoo, T.L.; Lauritsen, T.; Nisius, D.; Reviol, W.; Mueller, W.F.; Riedinger, L.L.; Kaczarowski, R.
1998-01-01
The high-spin level structures of 94,95 Mo (N=52,53) have been investigated via the 65 Cu( 36 S, αp2n) 94 Mo and 65 Cu( 36 S, αpn) 95 Mo reactions at 142 MeV. The level schemes have been extended up to spin J∼19ℎ and excitation energies E x ∼12 MeV. Spherical shell-model calculations have been performed and compared with the experimental energy levels. The level structure of 94 Mo exhibits a single-particle nature and the higher-angular-momentum states are dominated by the excitation of a g 9/2 neutron across the N=50 shell gap. The level sequences observed in 95 Mo have been interpreted on the basis of the spherical shell model and weak coupling of a d 5/2 or a g 7/2 neutron to the 94 Mo core. copyright 1998 The American Physical Society
Long-lived high-spin isomers in the neutron-deficient 1g sub(9/2)-shell nuclei
International Nuclear Information System (INIS)
Ogawa, K.
1981-09-01
The neutron-deficient 1g sub(9/2)-shell nuclei are studied in the framework of the shell model with active nucleons occuping the 1g sub(9/2) and 2p sub(1/2) shells. The calculated result for 95 Pd shows good agreement with the recent experiment by Nolte and Hick. Many ''spin-gap'' Isomers are predicted in the region of A = 76 -- 84 and A = 95 -- 100. (author)
High-spin research with HERA [High Energy-Resolution Array
International Nuclear Information System (INIS)
Diamond, R.M.
1987-06-01
The topic of this report is high spin research with the High Energy Resolution Array (HERA) at Lawrence Berkeley Laboratory. This is a 21 Ge detector system, the first with bismuth germanate (BGO) Compton suppression. The array is described briefly and some of the results obtained during the past year using this detector facility are discussed. Two types of studies are described: observation of superdeformation in the light Nd isotopes, and rotational damping at high spin and excitation energy in the continuum gamma ray spectrum
Spin-polaron theory of high-Tc superconductivity: I, spin polarons and high-Tc pairing
International Nuclear Information System (INIS)
Wood, R.F.
1993-06-01
The concept of a spin polaron is introduced and contrasted with the more familiar ionic polaron picture. A brief review of aspects of ionic bipolaronic superconductivity is given with particular emphasis on the real-space pairing and true Bose condensation characteristics. The formation energy of spin polarons is then calculated in analogy with ionic polarons. The spin-flip energy of a Cu spin in an antiferromagnetically aligned CuO 2 plane is discussed. It is shown that the introduction of holes into the CuO 2 planes will always lead to the destruction of long-range AF ordering due to the formation of spin polarons. The pairing of two spin polarons can be expected because of the reestablishment of local (short-range) AF ordering; the magnitude of the pairing energy is estimated using a simplified model. The paper closes with a brief discussion of the formal theory of spin polarons
Relativistic impulse approximation and deuteron spin structure
International Nuclear Information System (INIS)
Tokarev, M.V.
1992-01-01
The fragmentation processes were considered of tensor- and vector-polarized deuterons to protons in the framework of the covariant approach in the light cone variables on the basis of the relativistic deuteron wave function with one nucleon on-mass shell. The experimental verification of predicted dependences of T 20 and K is of interest for the research of the momentum and spin distributions of high momentum deuteron constituents. 21 refs.; 6 figs
Nucleon structure from lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Dinter, Simon
2012-11-13
In this thesis we compute within lattice QCD observables related to the structure of the nucleon. One part of this thesis is concerned with moments of parton distribution functions (PDFs). Those moments are essential elements for the understanding of nucleon structure and can be extracted from a global analysis of deep inelastic scattering experiments. On the theoretical side they can be computed non-perturbatively by means of lattice QCD. However, since the time lattice calculations of moments of PDFs are available, there is a tension between these lattice calculations and the results from a global analysis of experimental data. We examine whether systematic effects are responsible for this tension, and study particularly intensively the effects of excited states by a dedicated high precision computation. Moreover, we carry out a first computation with four dynamical flavors. Another aspect of this thesis is a feasibility study of a lattice QCD computation of the scalar quark content of the nucleon, which is an important element in the cross-section of a heavy particle with the nucleon mediated by a scalar particle (e.g. Higgs particle) and can therefore have an impact on Dark Matter searches. Existing lattice QCD calculations of this quantity usually have a large error and thus a low significance for phenomenological applications. We use a variance-reduction technique for quark-disconnected diagrams to obtain a precise result. Furthermore, we introduce a new stochastic method for the calculation of connected 3-point correlation functions, which are needed to compute nucleon structure observables, as an alternative to the usual sequential propagator method. In an explorative study we check whether this new method is competitive to the standard one. We use Wilson twisted mass fermions at maximal twist in all our calculations, such that all observables considered here have only O(a{sup 2}) discretization effects.
Nucleon structure from lattice QCD
International Nuclear Information System (INIS)
Dinter, Simon
2012-01-01
In this thesis we compute within lattice QCD observables related to the structure of the nucleon. One part of this thesis is concerned with moments of parton distribution functions (PDFs). Those moments are essential elements for the understanding of nucleon structure and can be extracted from a global analysis of deep inelastic scattering experiments. On the theoretical side they can be computed non-perturbatively by means of lattice QCD. However, since the time lattice calculations of moments of PDFs are available, there is a tension between these lattice calculations and the results from a global analysis of experimental data. We examine whether systematic effects are responsible for this tension, and study particularly intensively the effects of excited states by a dedicated high precision computation. Moreover, we carry out a first computation with four dynamical flavors. Another aspect of this thesis is a feasibility study of a lattice QCD computation of the scalar quark content of the nucleon, which is an important element in the cross-section of a heavy particle with the nucleon mediated by a scalar particle (e.g. Higgs particle) and can therefore have an impact on Dark Matter searches. Existing lattice QCD calculations of this quantity usually have a large error and thus a low significance for phenomenological applications. We use a variance-reduction technique for quark-disconnected diagrams to obtain a precise result. Furthermore, we introduce a new stochastic method for the calculation of connected 3-point correlation functions, which are needed to compute nucleon structure observables, as an alternative to the usual sequential propagator method. In an explorative study we check whether this new method is competitive to the standard one. We use Wilson twisted mass fermions at maximal twist in all our calculations, such that all observables considered here have only O(a 2 ) discretization effects.
Nucleon-deuteron low energy parameters
International Nuclear Information System (INIS)
Zankel, H.; Mathelitsch, L.
1983-01-01
Momentum space Fadeev equations are solved for nucleon-deuteron scattering and effective range parameters are calculated. A reverse trend is found in the two spin states by 4 asub(nd) 4 asub(pd) and 2 asub(pd) 2 asub(nd) which is in agreement with a configuration space calculation, but in conflict with all existing experiments. The Coulomb contributions to the effective range are small in quartet but sizeable in doublet scattering. (Author)
Evolution of nuclear collectivity at high spins and temperatures
International Nuclear Information System (INIS)
Baktash, C.
1989-01-01
In the past few years, we have utilized the Spin Spectrometer and a variety of complementary probes (continuum γrays, proton-γ coincidence spectroscopy and γ decay of GDR) to study the nuclear response to the DIFFERENTIAL effects of increasing spin and temperature for constant values of excitation energy or spin, respectively. In this paper we shall describe two of the experiments that trace the properties of rapidly-rotating nuclei at small to moderate excitation energies. 22 refs., 7 figs
The nucleon-nucleon potential in the chromodielectric soliton model
International Nuclear Information System (INIS)
Koepf, W.; Wilets, L.; Pepin, S.; Stancu, F.
1993-01-01
The short- and medium-range parts of the nucleon-nucleon interaction are being studied in the framework of the chromodielectric soliton model. The model consists of current quarks, gluons in the abelian approximation, and a scalar σ field which simulates the nonabelian interactions of the gluons and governs the medium through the dielectric function κ(σ). Absolute color confinement is effected by the vanishing of the dielectric in vacuum; this also removes the troublesome van der Waals problem. The authors distinguish between spatial confinement, which arises from the self energy of the quarks in medium (excluding MFA contributions), and color confinement which is effected through OGE in the MFA (including the corresponding self energy contributions). The static (adiabatic) energies are computed as a function of deformation (generalized bag separation) in a constrained MFA. Six quark molecular-type wave functions in all important space-spin-isospin-color configurations are included. The gluon propagator is solved in the deformed dielectric medium. The resultant Hamiltonian matrix is diagonalized. Dynamics are handled in the Generator Coordinate Method, which leads to the Hill-Wheeler integral equation. In the present case, this yields a set of coupled equations corresponding to the various configurations. Although this can be approximated by a set of differential equations, they propose to solve the integral equations with some regularization scheme
Neutron spin echo and high resolution inelastic spectroscopy
International Nuclear Information System (INIS)
Mezei, F.; Hungarian Academy of Sciences, Budapest. Central Research Inst. for Physics)
1982-01-01
The principles of neutrons spin echo (NSE) technique are considered. It is shown that the basis of NSE principle is a single step measurement of the change of the neutron velocity in the scattering process. The backscattering soectroscopy and the NSE techniques are compared. The NSF spectrometer is described. It is shown that 0.5 MeV energy resolution achieved in the NSE experiment is about 40 times superior to those achieved by the other techniques. The NSE technique has the unique feature that provides high resolution in neutron energy change independently of the monochromatization of the beam. The NSE instrument not only covers a wider dynamic range on a pulsed source that on a continuous one, but also collects data more efficiently
International Nuclear Information System (INIS)
Hermkens, U.; Becker, F.; Eberth, J.; Freund, S.; Mylaeus, T.; Skoda, S.; Teichert, W.; Werth, A. v.d.
1992-01-01
High spin states of 66,68 Ge have been investigated at the FN Tandem accelerator of the University of Koeln via the reactions 40 Ca( 32 S,α2p,4p) 66,68 Ge at a beam energy of 100 MeV and 58 Ni( 16 O,α2p) 68 Ge at 65 MeV. The OSIRIS spectrometer with 12 escape suppressed Ge detectors was used to measure γγ coincidences and γ-ray angular distributions. In 66 Ge ( 68 Ge) 33 (22) new levels were found and 63 (62) new γ-transitions were placed in the level scheme. Both nuclei show a rather complicated but similar excitation pattern, ruled by the interplay of quasiparticle and collective degrees of freedom. The results are compared to the recently published EXVAM calculations for 68 Ge. (orig.)
Observation of high spin states in 117Xe
International Nuclear Information System (INIS)
Liu, Z.; Yuan, G.J.; Li, G.S.; Yang, C.X.; Luo, W.D.; Chen, Y.S.
1995-01-01
High spin states of 117 Xe have been investigated by means of in-beam γ-ray spectroscopy using the reaction 92 Mo( 28 Si, 2pn) at beam energies of 100 to 120 MeV. The previously known νh 11/2 bands are confirmed and the νg 7/2 favored-signature band is extended up to 47/2 + , in which two band crossings are observed at hω=0.33 and 0.44 MeV, respectively. Two new positive-parity bands have been established, one of which is most likely the νg 7/2 unfavored-signature band. A new transition cascade with irregular level spacings is also observed. (orig.)
High-dose dosimetry using electron spin resonance (ESR) spectroscopy
International Nuclear Information System (INIS)
Kojima, Takuji; Tanaka, Ryuichi
1992-01-01
An electron spin resonance (ESR) dosimeter capable of measuring large doses of radiation in radiotherapy and radiation processing is outlined. In particular, an alanine/ESR dosimeter is discussed, focusing on the development of elements, the development of the ESR dosimetric system, the application of alanine/ESR dosimeter, and basic researches. Rod elements for gamma radiation and x radiation and film elements for electron beams are described in detail. The following recent applications of the alanine/ESR dosimeter are introduced: using as a transfer dosimeter, applying to various types of radiation, diagnosing the deterioration of radiological materials and equipments, and applying to ESR imaging. The future subjects to be solved in the alanine/ESR dosimetric system are referred to as follows: (1) improvement of highly accurate elements suitable for the measurement of various types of radiation, (2) establishment of sensitive calibration method of the ESR equipment itself, and (3) calibration and standardization of radiation doses. (K.N.) 65 refs
Pseudoscalar form factors in tau-neutrino nucleon scattering
International Nuclear Information System (INIS)
Hagiwara, K.; Mawatari, K.; Yokoya, H.
2004-01-01
We investigate the pseudoscalar transition form factors of nucleon for quasi-elastic scattering and Δ resonance production in tau-neutrino nucleon scattering via the charged current interactions. Although the pseudoscalar form factors play an important role for the τ production in neutrino-nucleon scattering, these are not known well. In this Letter, we examine their effects in quasi-elastic scattering and Δ resonance production and find that the cross section, Q 2 distribution, and spin polarization of the produced τ ± leptons are quite sensitive to the pseudoscalar form factors
High-frequency EPR on high-spin transition-metal sites
Mathies, Guinevere
2012-01-01
The electronic structure of transition-metal sites can be probed by electron-paramagnetic-resonance (EPR) spectroscopy. The study of high-spin transition-metal sites benefits from EPR spectroscopy at frequencies higher than the standard 9.5 GHz. However, high-frequency EPR is a developing field. In
Storing quantum information in spins and high-sensitivity ESR.
Morton, John J L; Bertet, Patrice
2018-02-01
Quantum information, encoded within the states of quantum systems, represents a novel and rich form of information which has inspired new types of computers and communications systems. Many diverse electron spin systems have been studied with a view to storing quantum information, including molecular radicals, point defects and impurities in inorganic systems, and quantum dots in semiconductor devices. In these systems, spin coherence times can exceed seconds, single spins can be addressed through electrical and optical methods, and new spin systems with advantageous properties continue to be identified. Spin ensembles strongly coupled to microwave resonators can, in principle, be used to store the coherent states of single microwave photons, enabling so-called microwave quantum memories. We discuss key requirements in realising such memories, including considerations for superconducting resonators whose frequency can be tuned onto resonance with the spins. Finally, progress towards microwave quantum memories and other developments in the field of superconducting quantum devices are being used to push the limits of sensitivity of inductively-detected electron spin resonance. The state-of-the-art currently stands at around 65 spins per Hz, with prospects to scale down to even fewer spins. Copyright © 2017. Published by Elsevier Inc.
Storing quantum information in spins and high-sensitivity ESR
Morton, John J. L.; Bertet, Patrice
2018-02-01
Quantum information, encoded within the states of quantum systems, represents a novel and rich form of information which has inspired new types of computers and communications systems. Many diverse electron spin systems have been studied with a view to storing quantum information, including molecular radicals, point defects and impurities in inorganic systems, and quantum dots in semiconductor devices. In these systems, spin coherence times can exceed seconds, single spins can be addressed through electrical and optical methods, and new spin systems with advantageous properties continue to be identified. Spin ensembles strongly coupled to microwave resonators can, in principle, be used to store the coherent states of single microwave photons, enabling so-called microwave quantum memories. We discuss key requirements in realising such memories, including considerations for superconducting resonators whose frequency can be tuned onto resonance with the spins. Finally, progress towards microwave quantum memories and other developments in the field of superconducting quantum devices are being used to push the limits of sensitivity of inductively-detected electron spin resonance. The state-of-the-art currently stands at around 65 spins per √{ Hz } , with prospects to scale down to even fewer spins.
International Nuclear Information System (INIS)
Ishibashi, K.; Miura, Y.; Sakae, T.
1990-01-01
In the present study, intranuclear nucleons with a high momentum are introduced into intranuclear cascade calculation, and the preequilibrium effects are considered at the end of the cascade process. The improvements made in the HETC (High Energy Transport Code) are outlined, focusing on intranuclear nucleons with a high momentum, and termination of the intranuclear cascade process. Discussion is made of the cutoff energy, and Monte Carlo calculations based on an excitation model are presented and analyzed. The experimental high energy neutrons in the backward direction are successfully reproduced. The preequilibrium effect is considered in a local manner, and this is introduced as a simple probability density function for terminating the intranuclear cascade process. The resultant neutron spectra reproduce the shoulders of the experimental data in the region of 20 to 50 MeV. The exciton model is coded with a Monte Carlo algorithm. The results of the exciton model calculation is not so appreciable except for intermediate energy neutrons in the backward direction. (N.K.)
NN → NN π: the new frontier in nucleon-nucleon interactions
International Nuclear Information System (INIS)
Silbar, R.R.
1986-01-01
The torch in nucleon-nucleon scattering has been passed to experimental and theoretical studies of pion production. Comparing two unitary models shows that most of the structures predicted for spin observables in NN → NNπ are model independent and roughly in agreement with the data. The contribution of rho- exchange is small, indicating the reaction is largely ''peripheral''. The energy dependence of these isobar models is smooth. The largely unstudied reactions producing neutral and negatively-charged pions show richer structure than positively-charged pion production. 6 refs
Effective nucleon-nucleon t matrix in the (p,2p) reaction
International Nuclear Information System (INIS)
Kudo, Y.; Kanayama, N.; Wakasugi, T.
1989-01-01
The cross sections and the analyzing powers for the /sup 40/Ca(p-arrow-right,2p) reactions at E/sub p/ = 76.1, 101.3, and 200 MeV are calculated in the distorted-wave impulse approximation using the Love-Franey effective nucleon-nucleon interaction. It is shown that the calculated individual contributions of the central, spin-orbit, and tensor parts in the Love-Franey interaction to the cross sections and the analyzing powers strongly depend on the incident proton energies. The spectroscopic factors extracted are consistent with the other reaction studies
International Nuclear Information System (INIS)
Miah, M. Idrish
2008-01-01
High field electron-spin transport in low temperature-grown gallium arsenide is studied. We generate electron spins in the samples by optical pumping. During transport, we observe the Dyakonov-Perel (DP) [M.I. Dyakonov, V.I. Perel, Zh. Eksp. Teor. Fiz. 60 (1971) 1954] spin relaxation of the drifting electrons. The results are discussed and are compared with those obtained in calculations of the DP spin relaxation frequency of the hot electrons. A good agreement is obtained
Energy Technology Data Exchange (ETDEWEB)
Miah, M. Idrish [Nanoscale Science and Technology Centre, Griffith University, Nathan, Brisbane, QLD 4111 (Australia); Biomolecular and Physical Sciences, Griffith University, Nathan, Brisbane, QLD 4111 (Australia); Department of Physics, University of Chittagong, Chittagong-4331 (Bangladesh)], E-mail: m.miah@griffith.edu.au
2008-11-17
High field electron-spin transport in low temperature-grown gallium arsenide is studied. We generate electron spins in the samples by optical pumping. During transport, we observe the Dyakonov-Perel (DP) [M.I. Dyakonov, V.I. Perel, Zh. Eksp. Teor. Fiz. 60 (1971) 1954] spin relaxation of the drifting electrons. The results are discussed and are compared with those obtained in calculations of the DP spin relaxation frequency of the hot electrons. A good agreement is obtained.
International Nuclear Information System (INIS)
Eletsky, V.L.
1991-01-01
The problem of temperature dependence of nucleon mass is addressed by considering a retarded correlator of two currents with quantum numbers of a nucleon at finite temperature T π in the chiral limit. It is shown that at Euclidean momenta the leading one-loop corrections arise from direct interaction of thermal pions with the currents. A dispersive representation for the correlator shows that this interaction smears the nucleon pole over frequency interval with width ∼ T. This interaction does not change the exponential fall-off of the correlator in Euclidean space but gives an O(T 2 /F π 2 ) contribution to the pre-exponential factor. 11 refs. (author)
Fusion with highly spin polarized HD and D2
International Nuclear Information System (INIS)
Honig, A.; Letzring, S.; Skupsky, S.
1993-01-01
Our experimental efforts over the past 5 years have been aimed at cazrying out ICF shots with spin-polarized 0 fuel. We successfully prepared polarized 0 in HD, and solved the problems of loading target shells with our carefully prepared isotopic -rnixt.l.l?-es, polarizing them so that the 0 polarization remains metastably frozen-in for about half a day, and carrying out the various cold transfer requirements at Syracuse, where the target is prepared, and at Rochester, where the cold target is inserted fusion chamber. Upon shooting the accurately positioned unpolarized high density cold target, no neutron yield was observed. Inspection inside the OMEGA tank after the shot indicated the absence of neutron yield was dus to mal-timing or insufficient retraction rate of OMEGA'S fast shroud mechanism, resulting in interception of at least 20 of the 24 laser beams by the faulty shroud. In spits of this, all alements of the complex experiment we originally undertook have been successfully demonstrated, and the cold retrieval concepts and methods we developed are being utilized on the ICF upgrades at Rochester and at Livermore. In addition to the solution of the interface problems, we obtained novel results on polymer shell characteristics at low temperatures, and continuation of these experiments is c = ently supported by KLUP. Extensive additional mappings were ca=ied out of nuclear spin relaxation rates of H and D in solid HD in the temperature-magnetic field rangs of 0.01 to 4.2K and 0 - 13 Tesla. New phenomena were discovered, such as association of impurity clustering with very low temperature motion, and inequality of the growth-rate and decay-rate of the magnetization
Fusion with highly spin polarized HD and D2
International Nuclear Information System (INIS)
Honig, A.
1992-01-01
This report discusses the following topics relating to inertial confinement with spin polarized hydrogen targets: low temperature implementation of mating a target to omega; dilution-refrigerator cold-entry and retrieval system; target shell tensile strength characterization at low temperatures; and proton and deuteron spin-lattice relaxation measurements in HD in the millikelvin temperature range
International Nuclear Information System (INIS)
Kulish, Yu.V.; Rybachuk, E.V.
2007-01-01
The currents for the interaction of the massive high-spin boson (J≥1) with two spinless particles are derived. These currents obey the theorem on currents and fields as well as the theorem on current asymptotics. In one-loop approximation the contributions of high-spin boson to the self-energy operator for a spinless particle are calculated. It is shown that in one loop approximation the high-spin boson contributions for any spin J and mass lead to finite self-energy operators of spinless-particle
Demonstrating Multi-bit Magnetic Memory in the Fe8 High Spin Molecule by Muon Spin Rotation
Shafir, Oren; Keren, Amit; Maegawa, Satoru; Ueda, Miki; Amato, Alex; Baines, Chris
2005-01-01
We developed a method to detect the quantum nature of high spin molecules using muon spin rotation, and a three-step field cycle ending always with the same field. We use this method to demonstrate that the Fe8 molecule can remember 6 (possibly 8) different histories (bits). A wide range of fields can be used to write a particular bit, and the information is stored in discrete states. Therefore, Fe8 can be used as a model compound for Multi-bit Magnetic Memory. Our experiment also paves the w...
International Nuclear Information System (INIS)
Scott, D.K.
1978-03-01
Some initial experiments in the intermediate energy region between 10 and 200 MeV/nucleon, which is largely unexplored and poorly understood is considered as regards some initial experiments in this energy region. Included are the emission of complex fragments, localization in heavy ion reactions, coincidence experiments between light and heavy fragments, and the emission of light particles in heavy ion collisions. Some initial results in the region between 20 and 100 MeV/nucleon are presented. 41 references
Insights into nucleon structure from parton distributions
Energy Technology Data Exchange (ETDEWEB)
Melnitchouk, Wally [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)
2017-05-01
We review recent progress in understanding the substructure of the nucleon from global QCD analysis of parton distribution functions (PDFs). New high-precision data onW-boson production in p ¯ p collisions have significantly reduced the uncertainty on the d=u PDF ratio at large values of x, indirectly constraining models of the medium modification of bound nucleons. Drell-Yan data from pp and pd scattering reveal new information on the d¯-u¯ asymmetry, clarifying the role of chiral symmetry breaking in the nucleon. In the strange sector, a new chiral SU(3) analysis finds a valence-like component of the strange-quark PDF, giving rise to a nontrivial s- ¯ s asymmetry at moderate x values. We also review recent analyses of charm in the nucleon, which have found conflicting indications of the size of the nonperturbative charm component.
Nucleon-nucleon scattering and different meson exchanges
International Nuclear Information System (INIS)
Osman, A.
1985-10-01
The iterative and noniterative diagrams with different meson exchange are investigated. The α, πβ and πγ meson exchange, (where α=π, rho, σ, ω, eta and delta; β=π, rho, σ and ω; γ=π and rho), are considered. These diagrams are taken to involve the nucleon-nucleon, the nucleon-isobar and the isobar-isobar intermediate states. The diagrams are calculated in momentum space following the noncovariant perturbation theory. The role of each of these diagrams is examined by calculating its contribution to the nucleon-nucleon interaction. The potential model is taken to include one-boson-exchange terms in addition to these diagrams. The nucleon-nucleon scattering phase shifts are described successfully showing the importance of tensor force. The contributions of the different parts are studied in the nucleon-nucleon scattering. (author)
High-fidelity state transfer over an unmodulated linear XY spin chain
International Nuclear Information System (INIS)
Bishop, C. Allen; Ou Yongcheng; Byrd, Mark S.; Wang Zhaoming
2010-01-01
We provide a class of initial encodings that can be sent with a high fidelity over an unmodulated, linear, XY spin chain. As an example, an average fidelity of 96% can be obtained using an 11-spin encoding to transmit a state over a chain containing 10 000 spins. An analysis of the magnetic-field dependence is given, and conditions for field optimization are provided.
DEFF Research Database (Denmark)
Lindgård, Per-Anker
2005-01-01
An effective spiral spin phase ground state provides a new paradigm for the high-temperature superconducting cuprates. It accounts for the recent neutron scattering observations of spin excitations regarding both the energy dispersion and the intensities, including the "universal" rotation by 45...... model. The form of the exchange interaction function reveals the effects of the Fermi surface, and the unique shape predicts large quantum spin fluctuations in the ground state....
Study of the baryon-baryon interaction in nucleon-nucleon and pion-deuteron scattering
International Nuclear Information System (INIS)
Fuchs, M.
1993-01-01
After the definition of the Hamiltonian in general form by meson production and absorption the transition to operators pursued, which connect only spaces with definite meson numbers. In this approximation first the self-energy of a single baryon was calculated in its full energy and momentum dependence. Then the formal expressions for the T matrices of nucleon-nucleon and pion-deuteron scattering were derived. The essential components of these expressions are the baryon-baryon T matrix ant transition amplitudes from pion-deuteron channels to baryon-baryon states. The central chapter dealt with the calculation of the baryon-baryon interaction for the general form of the vertices, with the solution of the binding problem and the baryon-baryon T matrix. Finally followed the results on the nucleon-nucleon and pion-deuteron scattering. For this first the transition amplitudes from pion-deuteron states to intermediate baryon-baryon states and the Born graphs of the pion-deuteron scattering had to be calculated. After some remarks to the transition from partial-wave decomposed T matrices to scattering observables an extensive representation of the total, partial, and differential cross sections and a series of spin observables (analyzing powers and spin correlations) for the elastic proton-proton, neutron-proton, and pion-deuteron scattering as well for the fusion reaction pp→πd and the breakup reaction πd→pp follows. Thereby the energies reached from the nucleon-nucleon respectively pion-deuteron threshold up to 100 MeV above the delta resonance
New materials research for high spin polarized current
International Nuclear Information System (INIS)
Tezuka, Nobuki
2012-01-01
The author reports here a thorough investigation of structural and magnetic properties of Co 2 FeAl 0.5 Si 0.5 Heusler alloy films, and the tunnel magnetoresistance effect for junctions with Co 2 FeAl 0.5 Si 0.5 electrodes, spin injection into GaAs semiconductor from Co 2 FeAl 0.5 Si 0.5 , and spin filtering phenomena for junctions with CoFe 2 O 4 ferrite barrier. It was observed that tunnel magnetoresistance ratio up to 832%(386%) at 9 K (room temperature), which corresponds to the tunnel spin polarization of 0.90 (0.81) for the junctions using Co 2 FeAl 0.5 Si 0.5 Heusler electrodes by optimizing the fabrication condition. It was also found that the tunnel magnetoresistance ratio are almost the same between the junctions with Co 2 FeAl 0.5 Si 0.5 Heusler electrodes on Cr buffered (1 0 0) and (1 1 0) MgO substrates, which indicates that tunnel spin polarization of Co 2 FeAl 0.5 Si 0.5 for these two direction are almost the same. The next part of this paper is a spin filtering effect using a Co ferrite. The spin filtering effect was observed through a thin Co-ferrite barrier. The inverse type tunnel magnetoresistance ratio of −124% measured at 10 K was obtained. The inverse type magnetoresistance suggests the negative spin polarization of Co-ferrite barrier. The magnetoresistance ratio of −124% corresponds to the spin polarization of −0.77 by the Co-ferrite barrier. The last part is devoted to the spin injection from Co 2 FeAl 0.5 Si 0.5 into GaAs. The spin injection signal was clearly obtained by three terminal Hanle measurement. The spin relaxation time was estimated to be 380 ps measured at 5 K.
High spin states and Yrast isomers in 211Rn
International Nuclear Information System (INIS)
Poletti, A.R.; Dracoulis, G.D.; Fahlander, C.; Morrison, I.
1981-01-01
Excited states in 211 Rn with spins up to 53/2 have been identified using (HI,xn) reactions and γ-ray techniques. A shell model calculation can reproduce the ordering of the yrast sequence up to spin 41/2 - . Several yrast isomers have been identified. Enhanced E3 transitions are observed and their systematic occurrence in this region discussed. The influence of the neutron hole, and possible core excitations on the effective moment of inertia are also pointed out
High spin states and yrast isomers in 211Rn
International Nuclear Information System (INIS)
Poletti, A.R.; Dracoulis, G.D.; Fahlander, C.; Morrison, I.
1980-12-01
Excited states in 211 Rn with spins up to 53/2 have been identified using (HI,xn) reactions and γ-ray techniques. A shell model calculation can reproduce the ordering of the yrast sequence up to spin 41/2. Several yrast isomers have been identified. Enhanced E3 transitions are observed and their systematic occurrence in this region discussed. The influence of the neutron hole, and possible core excitations on the effective moment of inertia are also pointed out
High signal intensity of fat on fast spin echo imaging
International Nuclear Information System (INIS)
Ogura, Akio; Yamazaki, Masaru; Hongoh, Takaharu; Inoue, Hiroshi; Ishikuro, Akihiro
2000-01-01
The fast spin echo (FSE) technique of producing T 2 -weighted images in greatly reduced imaging times has recently been used for routine clinical study. FSE images show contrast that is very similar in most tissues to that of conventional SE images. However, fat shows a high signal intensity that is influenced by j-coupling and the magnetization transfer effect. The purpose of this study was to assess whether the higher signal intensity of fat is different among MRI systems and to examine the effects of j-coupling and magnetization transfer on the high signal intensity of fat on FSE. The contrast in signal intensity between fat and water was measured for various echo train lengths (ETL) with and without multislicing on FSE using a contrast phantom. Measurements were obtained with four different MRI systems. In addition, the effective T 2 values of fat were calculated for the above conditions. Results indicated that contrast for fat and water was reduced with increased ETL and by using multislicing and was different among the four MRI systems. The effective T 2 values of fat were extended for increased ETL and were not dependent on multislicing. They also differed among the four MRI systems. The extent of effective T 2 values was affected by j-coupling. In this study, it was indicated that the degree of the high signal intensity of fat on FSE differed for different MRI systems. In addition, the reasons for the high signal intensity of fat on FSE were related to the effects of j-coupling and magnetization transfer. (author)
Nuclear structure at high-spin and large-deformation
International Nuclear Information System (INIS)
Shimizu, Yoshifumi R.
2000-01-01
Atomic nucleus is a finite quantal system and shows various marvelous features. One of the purposes of the nuclear structure study is to understand such features from a microscopic viewpoint of nuclear many-body problem. Recently, it is becoming possible to explore nuclear states under 'extreme conditions', which are far different from the usual ground states of stable nuclei, and new aspects of such unstable nuclei attract our interests. In this lecture, I would like to discuss the nuclear structure in the limit of rapid rotation, or the extreme states with very large angular momenta, which became accessible by recent advent of large arrays of gamma-ray detecting system; these devices are extremely useful to measure coincident multiple γ-rays following heavy-ion fusion reactions. Including such experimental aspects as how to detect the nuclear rotational states, I review physics of high-spin states starting from the elementary subjects of nuclear structure study. In would like also to discuss the extreme states with very large nuclear deformation, which are easily realized in rapidly rotating nuclei. (author)
Gyromagnetic factors for high spin states in the actinides
International Nuclear Information System (INIS)
Ring, P.
1984-01-01
The cranked Hartree-Fock-Bogoliubov theory was used for a systematic investigation of gyromagnetic factors in the yrast states of even-even actinide nuclei. The theory used was the most simplified version with fixed deformation and gap parameters, that is, so-called rotating shell model. The gyromagnetic factor g and the contribution gsub(p) and gsub(n) were obtained for a large number of nuclei in the actinide region. The aligned angular momenta for protons and for neutrons are shown in the same actinide region. The general behaviour of g-factor was able to be understood in terms of simple rules: (i) For fixed proton number, neutron alignment becomes more difficult with increasing the neutron number, and vice versa. (ii) A sudden neutron alignment was observed for N=140 and N=146, and a sudden proton alignment was also observed for Z=94. The alignment between these critical numbers was smooth. The pattern obtained for the values of the aligned angular momentum was clearly reflected to the g-factor, and it provided an excellent tool to study the structure of level in the high spin region. (Asami, T.)
High spin exotic states and new method for pairing energy
International Nuclear Information System (INIS)
Molique, H.
1996-01-01
We present a new method called 'PSY-MB', initially developed in the framework of abstract group theory for the solution of the problem of strongly interacting multi-fermionic systems with particular to systems in an external rotating field. The validity of the new method (PSY-MB) is tested on model Hamiltonians. A detailed comparison between the obtained solutions and the exact ones is performed. The new method is used in the study of realistic nuclear Hamiltonians based on the Woods-Saxon potential within the cranking approximation to study the influence of residual monopole pairing interactions in the rare-earth mass region. In parallel with this new technique we present original results obtained with the Woods-Saxon mean-field and the self-consistent Hartree-Fock approximation in order to investigate such exotic effects as octupole deformations and hexadecapole C 4 -polarizing deformations in the framework of high-spin physics. By developing these three approaches in one single work we prepare the ground for the nuclear structure calculations of the new generation - where the residual two-body interactions are taken into account also in the weak pairing limit. (author)
A new high-spin isomer in {sup 195}Bi
Energy Technology Data Exchange (ETDEWEB)
Roy, T.; Mukherjee, G.; Rana, T.K.; Bhattacharya, Soumik; Asgar, Md.A.; Bhattacharya, C.; Bhattacharya, S.; Bhattacharyya, S.; Pai, H. [Variable Energy Cyclotron Centre, Kolkata (India); Madhavan, N.; Bala, I.; Gehlot, J.; Gurjar, R.K.; Jhingan, A.; Kumar, R.; Muralithar, S.; Nath, S.; Singh, R.P.; Varughese, T. [Inter University Acclerator Centre, New Delhi (India); Basu, K.; Bhattacharjee, S.S.; Ghugre, S.S.; Raut, R.; Sinha, A.K. [UGC-DAE-CSR Kolkata Centre, Kolkata (India); Palit, R. [Tata Institute of Fundamental Research, Department of Nuclear and Atomic Physics, Mumbai (India)
2015-11-15
A new high-spin isomer has been identified in {sup 195}Bi at the focal plane of the HYbrid Recoil mass Analyser (HYRA) used in the gas-filled mode. The fusion evaporation reactions {sup 169}Tm ({sup 30}Si, x n) {sup 193,} {sup 195}Bi were used with the beam energies on targets of 168 and 146MeV for 6n and 4n channels, respectively. The evaporation residues, separated from the fission fragments, and their decays were detected at the focal plane of HYRA using MWPC, Si-Pad and clover HPGe detectors. The half-life of the new isomer in {sup 195}Bi has been measured to be 1.6(1) μs. The configuration of the new isomer has been proposed and compared with the other isomers in this region. The Total Routhian Surface (TRS) calculations for the three-quasiparticle configurations corresponding to the new isomer suggest an oblate deformation for this isomeric state. The same calculations for different configurations in {sup 195}Bi and for the even-even {sup 194}Pb core indicate that the proton i{sub 13/2} orbital has a large shape driving effect towards oblate shape in these nuclei. (orig.)
Observations of high spin states in {sup 179}Au
Energy Technology Data Exchange (ETDEWEB)
Carpenter, M.P.; Ahmad, I.; Blumenthal, D.J. [and others
1995-08-01
As part of a current study on the properties of the {pi} i{sub 13/2} intruder state in the A = 175-190 region, we conducted an experiment at ATLAS to observe high spin states in {sup 179}Au utilizing the reaction {sup 144}Sm({sup 40}Ar,p4n) at beam energies of 207 MeV and 215 MeV. To aid in the identification of {sup 179}Au, and to filter out the large amount of events from fission by-products, the Fragment Mass Analyzer was utilized in conjunction with ten Compton-suppression germanium detectors. In total, 11 x 10{sup 6} {gamma}-{gamma} and 4 x 10{sup 5} {gamma}-recoil events were collected. By comparing {gamma}-rays in coincidence with an A = 179 recoil mass gate and {gamma}-rays in coincidence with Au K{alpha} and K{beta} X-rays, ten {gamma}-rays were identified as belonging to {sup 179}Au. Based on {gamma}-ray coincidence relationships and on comparisons with neighboring odd-A Au nuclei, we constructed a tentative level scheme and assigned a rotational-like sequence to the {pi} i{sub 13/2} proton configuration.
High-fidelity adiabatic inversion of a {sup 31}P electron spin qubit in natural silicon
Energy Technology Data Exchange (ETDEWEB)
Laucht, Arne, E-mail: a.laucht@unsw.edu.au; Kalra, Rachpon; Muhonen, Juha T.; Dehollain, Juan P.; Mohiyaddin, Fahd A.; Hudson, Fay; Dzurak, Andrew S.; Morello, Andrea [Centre for Quantum Computation and Communication Technology, School of Electrical Engineering and Telecommunications, University of New South Wales, Sydney, New South Wales 2052 (Australia); McCallum, Jeffrey C.; Jamieson, David N. [Centre for Quantum Computation and Communication Technology, School of Physics, University of Melbourne, Melbourne, Victoria 3010 (Australia)
2014-03-03
The main limitation to the high-fidelity quantum control of spins in semiconductors is the presence of strongly fluctuating fields arising from the nuclear spin bath of the host material. We demonstrate here a substantial improvement in single-qubit inversion fidelities for an electron spin qubit bound to a {sup 31}P atom in natural silicon, by applying adiabatic sweeps instead of narrow-band pulses. We achieve an inversion fidelity of 97%, and we observe signatures in the spin resonance spectra and the spin coherence time that are consistent with the presence of an additional exchange-coupled donor. This work highlights the effectiveness of simple adiabatic inversion techniques for spin control in fluctuating environments.
Dong, Yao-Jun; Wang, Xue-Feng; Yang, Shuo-Wang; Wu, Xue-Mei
2014-08-21
We demonstrate that giant current and high spin rectification ratios can be achieved in atomic carbon chain devices connected between two symmetric ferromagnetic zigzag-graphene-nanoribbon electrodes. The spin dependent transport simulation is carried out by density functional theory combined with the non-equilibrium Green's function method. It is found that the transverse symmetries of the electronic wave functions in the nanoribbons and the carbon chain are critical to the spin transport modes. In the parallel magnetization configuration of two electrodes, pure spin current is observed in both linear and nonlinear regions. However, in the antiparallel configuration, the spin-up (down) current is prohibited under the positive (negative) voltage bias, which results in a spin rectification ratio of order 10(4). When edge carbon atoms are substituted with boron atoms to suppress the edge magnetization in one of the electrodes, we obtain a diode with current rectification ratio over 10(6).
Optical-coupling nuclear spin maser under highly stabilized low static field
Energy Technology Data Exchange (ETDEWEB)
Yoshimi, A., E-mail: yoshimi@ribf.riken.jp [RIKEN Nishina Center (Japan); Inoue, T.; Uchida, M.; Hatakeyama, N.; Asahi, K. [Tokyo Institute of Technology, Department of Physics (Japan)
2008-01-15
A nuclear spin maser of a new type, that employs a feedback scheme based on optical nuclear spin detection, has been fabricated. The spin maser is operated at a low static field of 30 mG by using the optical detection method. The frequency stability and precision of the spin maser have been improved by a highly stabilized current source for the static magnetic field. An experimental setup to search for an electric dipole moment (EDM) in {sup 129}Xe atom is being developed.
Few-Nucleon Research at TUNL: Probing Two- and Three-Nucleon Interactions with Neutrons
Howell, C. R.; Tornow, W.; Witała, H.
2016-03-01
The central goal of few-nucleon research at the Triangle Universities Nuclear Laboratory (TUNL) is to perform measurements that contribute to advancing ab-initio calculations of nuclear structure and reactions. The program aims include evaluating theoretical treatments of few-nucleon reaction dynamics through strategically comparing theory predictions to data, determining properties of the neutron-neutron interaction that are not accessible in two-nucleon reactions, and searching for evidence of longrange features of three-nucleon interactions, e.g., spin and isospin dependence. This paper will review studies of three- and four-nucleon systems at TUNL conducted using unpolarized and polarized neutron beams. Measurements of neutron-induced reactions performed by groups at TUNL over the last six years are described in comparison with theory predictions. The results are discussed in the context of the program goals stated above. Measurements of vector analyzing powers for elastic scattering in A=3 and A=4 systems, differential cross sections for neutron-deuteron elastic scattering and neutrondeuteron breakup in several final-state configurations are described. The findings from these studies and plans for the coming three years are presented in the context of worldwide activities in this front, in particular, research presented in this session.
Few-Nucleon Research at TUNL: Probing Two- and Three-Nucleon Interactions with Neutrons
Directory of Open Access Journals (Sweden)
Howell C.R.
2016-01-01
Full Text Available The central goal of few-nucleon research at the Triangle Universities Nuclear Laboratory (TUNL is to perform measurements that contribute to advancing ab-initio calculations of nuclear structure and reactions. The program aims include evaluating theoretical treatments of few-nucleon reaction dynamics through strategically comparing theory predictions to data, determining properties of the neutron-neutron interaction that are not accessible in two-nucleon reactions, and searching for evidence of longrange features of three-nucleon interactions, e.g., spin and isospin dependence. This paper will review studies of three- and four-nucleon systems at TUNL conducted using unpolarized and polarized neutron beams. Measurements of neutron-induced reactions performed by groups at TUNL over the last six years are described in comparison with theory predictions. The results are discussed in the context of the program goals stated above. Measurements of vector analyzing powers for elastic scattering in A=3 and A=4 systems, differential cross sections for neutron-deuteron elastic scattering and neutrondeuteron breakup in several final-state configurations are described. The findings from these studies and plans for the coming three years are presented in the context of worldwide activities in this front, in particular, research presented in this session.
Energy Technology Data Exchange (ETDEWEB)
Xia, Yin [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Xu, Jun, E-mail: xujun@sinap.ac.cn [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Li, Bao-An [Department of Physics and Astronomy, Texas A& M University-Commerce, Commerce, TX 75429-3011 (United States); Department of Applied Physics, Xi' an Jiao Tong University, Xi' an 710049 (China); Shen, Wen-Qing [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China)
2016-11-15
The spin up-down splitting of collective flows in intermediate-energy heavy-ion collisions as a result of the nuclear spin–orbit interaction is investigated within a spin- and isospin-dependent Boltzmann–Uehling–Uhlenbeck transport model SIBUU12. Using a Skyrme-type spin–orbit coupling quadratic in momentum, we found that the spin splittings of the directed flow and elliptic flow are largest in peripheral Au+Au collisions at beam energies of about 100–200 MeV/nucleon, and the effect is considerable even in smaller systems especially for nucleons with high transverse momenta. The collective flows of light clusters of different spin states are also investigated using an improved dynamical coalescence model with spin. Our study can be important in understanding the properties of in-medium nuclear spin–orbit interactions once the spin-dependent observables proposed in this work can be measured.
Fusion with highly spin polarized HD and D2
International Nuclear Information System (INIS)
Honig, A.; Letzring, S.; Skupsky, S.
1993-01-01
The experimental efforts over the past 5 years have been aimed at carrying out ICF shots with spin-polarized D fuel. The authors successfully prepared polarized D in HD, and solved the problems of loading target shells with their carefully prepared isotopic mixtures, polarizing them so that the D polarization remains metastably frozen-in for about half a day, and carrying out the various cold transfer requirements at Syracuse, where the target is prepared, and at Rochester, where the cold target is inserted into the OMEGA fusion chamber. A principal concern during this past year was overcoming difficulties encountered in maintaining the integrity of the fragile cold target during the multitude of cold-transfers required for the experiment. These difficulties arose from insufficient rigidity of the cold transfer systems, which were constrained to be of small diameter by the narrow central access bore of the dilution refrigerator, and were exacerbated by the multitude of required target shell manipulations between different environments, each with different coupling geometry, including target shell permeation, polarization, storage, transport, retrieval and insertion into OMEGA. The authors did solve all of these problems, and were able to position a cold, high density but unpolarized target with required precision in OMEGA. Upon shooting the accurately positioned unpolarized high density cold target, no neutron yield was observed. Inspection inside the OMEGA tank after the shot indicated the absence of neutron yield was due to mal-timing or insufficient retraction rate of OMEGA's fast shroud mechanism, resulting in interception of at least 20 of the 24 laser beams by the faulty shroud. In spite of this, all elements of the complex experiment the authors originally undertook have been successfully demonstrated, and the cold retrieval concepts and methods they developed are being utilized on the ICF upgrades at Rochester and at Livermore
Toy model for pion production in nucleon-nucleon collisions
International Nuclear Information System (INIS)
Hanhart, C.; Miller, G. A.; Myhrer, F.; Sato, T.; Kolck, U. van
2001-01-01
We develop a toy model for pion production in nucleon-nucleon collisions that reproduces some of the features of the chiral Lagrangian calculations. We calculate the production amplitude and examine some common approximations
High-performance spinning device for DVD-based micromechanical signal transduction
DEFF Research Database (Denmark)
Hwu, En-Te; Chen, Ching-Hsiu; Bosco, Filippo
2013-01-01
Here we report a high-throughput spinning device for nanometric scale measurements of microstructures with instrumentation details and experimental results. The readout technology implemented in the designed disc-like device is based on a DVD data storage optical pick-up unit (OPU). With a spinning...
High-spin isomer in 211Rn, and the shape of the yrast line
International Nuclear Information System (INIS)
Dracoulis, G.D.; Fahlander, C.; Poletti, A.R.
1981-08-01
High spin yrast states in 211 Rn have been identified. A 61/2 - , 380 ns isomer found at 8856 keV is characterised as a core-excited configuration. The average shape of the yrast line shows a smooth behaviour with spin, in contrast to its neighbour 212 Rn. This difference is attributed to the presence of the neutron hole
Nuclear shape transitions and some properties of aligned-particle configurations at high spin
International Nuclear Information System (INIS)
Koo, T.L.; Chowdhury, P.; Emling, H.
1982-01-01
Two topics are addressed in this paper. First, we discuss the variation of shapes with spin and neutron number for nuclei in the N approx. = 88 transitional region. Second, we present comments on the feeding times of very high spin single-particle yrast states
Interplay between spin polarization and color superconductivity in high density quark matter
DEFF Research Database (Denmark)
Tsue, Yasuhiko; da Providência, João; Providência, Constança
2013-01-01
Here, it is suggested that a four-point interaction of the tensor type may lead to spin polarization in quark matter at high density. It is found that the two-flavor superconducting phase and the spin polarized phase correspond to distinct local minima of a certain generalized thermodynamical pot...
Topics on frustrated spin systems and high-temperature superconductors
International Nuclear Information System (INIS)
Lu Yong.
1990-01-01
The numerical study of frustrated spin systems using the Monte Carlo simulation method and the analytic study of fluctuation phenomenon of the thermoelectric power near the superconducting transition using Green's function techniques are presented. The first frustrated system considered is the B-site antiferromagnetic (AF) spinel. Based on an Ising model, various thermodynamic and magnetic properties were studied for both the fully frustrated structure and partially frustrated cases of a small tetragonal distortion. When fully frustrated, an interesting short-range order and some unusual scaling behavior were obtained. The other frustrated spin system studied is the magnetic phase of YBa 2 Cu 3 O 6+x via a classical spin model, with appropriate anisotropic exchange couplings and randomly located spins of distribution probability as a function of x. There is a first order boundary between Type 1 and Type 2 in the Ising case, while there is no real phase boundary in the cases of continuous spin. In the study on the thermopower fluctuation, the thermopower was determined by the linear response of the electric and heat currents to an electric field, and the linear responses were in turn calculated from correlation functions of the current
Pion-nucleon vertex function with one nucleon off shell
International Nuclear Information System (INIS)
Mizutani, T.; Rochus, P.
1979-01-01
The pion-nucleon vertex function with an off-mass-shell nucleon is obtained through sideways dispersion relations with the P 11 and S 11 pion-nucleon phase shifts as only input. Contrary to the recent calculation of Nutt and Shakin, we find that the proper and improper vertex functions behave quite differently, indicating the importance of the nucleon propagator dressing. In particular the proper vertex function is found to have two poles in the unphysical region
A new form for the nucleon-nucleon potential
International Nuclear Information System (INIS)
Agarwal, B.K.
1976-01-01
The form of the internucleon force is considered. It is assumed that the nucleon-nucleon potential depends, in general, both on the distance ν and the angle theta. It is also assumed that the potential V(ν,ω) admits an analytic continuation into the complex ω-plane so that when ω=costheta is real it denotes the direction in which the potential is being determined. The analysis leads to a new parametryzation of the nucleon-nucleon potential
High spin polarization and the origin of unique ferromagnetic ground state in CuFeSb
International Nuclear Information System (INIS)
Sirohi, Anshu; Saha, Preetha; Gayen, Sirshendu; Gaurav, Abhishek; Jyotsna, Shubhra; Sheet, Goutam; Singh, Chandan K.; Kabir, Mukul; Thakur, Gohil S.; Haque, Zeba; Gupta, L. C.; Ganguli, Ashok K.
2016-01-01
CuFeSb is isostructural to the ferro-pnictide and chalcogenide superconductors and it is one of the few materials in the family that are known to stabilize in a ferromagnetic ground state. Majority of the members of this family are either superconductors or antiferromagnets. Therefore, CuFeSb may be used as an ideal source of spin polarized current in spin-transport devices involving pnictide and the chalcogenide superconductors. However, for that the Fermi surface of CuFeSb needs to be sufficiently spin polarized. In this paper we report direct measurement of transport spin polarization in CuFeSb by spin-resolved Andreev reflection spectroscopy. From a number of measurements using multiple superconducting tips we found that the intrinsic transport spin polarization in CuFeSb is high (∼47%). In order to understand the unique ground state of CuFeSb and the origin of large spin polarization at the Fermi level, we have evaluated the spin-polarized band structure of CuFeSb through first principles calculations. Apart from supporting the observed 47% transport spin polarization, such calculations also indicate that the Sb-Fe-Sb angles and the height of Sb from the Fe plane are strikingly different for CuFeSb than the equivalent parameters in other members of the same family thereby explaining the origin of the unique ground state of CuFeSb.
High spin polarization and the origin of unique ferromagnetic ground state in CuFeSb
Energy Technology Data Exchange (ETDEWEB)
Sirohi, Anshu; Saha, Preetha; Gayen, Sirshendu; Gaurav, Abhishek; Jyotsna, Shubhra; Sheet, Goutam, E-mail: goutam@iisermohali.ac.in [Department of Physical Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, S. A. S. Nagar, Manauli PO 140306 (India); Singh, Chandan K.; Kabir, Mukul [Department of Physics, Indian Institute of Science Education and Research, Pune 411008 (India); Thakur, Gohil S.; Haque, Zeba; Gupta, L. C. [Department of Chemistry, Indian Institute of Technology, New Delhi 110016 (India); Ganguli, Ashok K. [Department of Chemistry, Indian Institute of Technology, New Delhi 110016 (India); Institute of Nano Science & Technology, Mohali 160064 (India)
2016-06-13
CuFeSb is isostructural to the ferro-pnictide and chalcogenide superconductors and it is one of the few materials in the family that are known to stabilize in a ferromagnetic ground state. Majority of the members of this family are either superconductors or antiferromagnets. Therefore, CuFeSb may be used as an ideal source of spin polarized current in spin-transport devices involving pnictide and the chalcogenide superconductors. However, for that the Fermi surface of CuFeSb needs to be sufficiently spin polarized. In this paper we report direct measurement of transport spin polarization in CuFeSb by spin-resolved Andreev reflection spectroscopy. From a number of measurements using multiple superconducting tips we found that the intrinsic transport spin polarization in CuFeSb is high (∼47%). In order to understand the unique ground state of CuFeSb and the origin of large spin polarization at the Fermi level, we have evaluated the spin-polarized band structure of CuFeSb through first principles calculations. Apart from supporting the observed 47% transport spin polarization, such calculations also indicate that the Sb-Fe-Sb angles and the height of Sb from the Fe plane are strikingly different for CuFeSb than the equivalent parameters in other members of the same family thereby explaining the origin of the unique ground state of CuFeSb.
Spin Torque Oscillator for High Performance Magnetic Memory
Directory of Open Access Journals (Sweden)
Rachid Sbiaa
2015-06-01
Full Text Available A study on spin transfer torque switching in a magnetic tunnel junction with perpendicular magnetic anisotropy is presented. The switching current can be strongly reduced under a spin torque oscillator (STO, and its use in addition to the conventional transport in magnetic tunnel junctions (MTJ should be considered. The reduction of the switching current from the parallel state to the antiparallel state is greater than in the opposite direction, thus minimizing the asymmetry of the resistance versus current in the hysteresis loop. This reduction of both switching current and asymmetry under a spin torque oscillator occurs only during the writing process and does not affect the thermal stability of the free layer.
International Nuclear Information System (INIS)
Saha, S.; Palit, R.; Trivedi, T.; Sethi, J.; Joshi, P.K.; Naidu, B.S.; Donthi, R.; Jadhav, S.; Nanal, V.; Pillay, R.G.; Jain, H.C.; Kumar, S.; Biswas, D.C.; Mukherjee, G.; Saha, S.
2011-01-01
Information on the high-spin states of nuclei promises to provide stringent test of the interaction of the Hamiltonian used in the calculation due to smaller basis space for high J-values. It is reported in a recent shell model review that no interaction is optimized for the region of interest around N = 50 and Z = 40 shell closure. The detailed spectroscopic information of the medium and high spin states in these nuclei is required to understand the shape transition between spherical and deformed shapes at N =60 as the higher orbitals are filled. Structure of isomers near shell closure carries important information of, for example, the extent of core excitation. In the present work, the spectroscopic study of the high spin states of 89 Zr isotope have been discussed
Analysis of possibilities for a spin flip in high energy electron ring HERA
International Nuclear Information System (INIS)
Stres, S.; Pestotnik, R.
2007-01-01
In a high energy electron ring the spins of electrons become spontaneously polarized via the emission of spin-flip synchrotron radiation. By employing a radio frequency (RF) radial dipole field kicker, particle spin directions can be rotated slowly over many turns. A model which couples three dimensional spin motion and longitudinal particle motion was constructed to describe non-equilibrium spin dynamics in high energy electron storage rings. The effects of a stochastic synchrotron radiation on the orbital motion in the accelerator synchrotron plane and its influence on the spin motion are studied. The main contributions to the spin motion, the synchrotron oscillations and the stochastic synchrotron radiation, have different influence on the spin polarization reversal in different regions of the parameter space. The results indicate that polarization reversal might be obtained in high energy electron storage rings with a significant noise even with relatively small strengths of a perturbing magnetic field. The only experimental datum avaliable agrees with the model prediction, however further experimental data would be necessary to validate the model
Unresolved gamma rays from high-spin states
International Nuclear Information System (INIS)
Stephens, F.S.
1985-08-01
The γ-rays which are emitted from the highest spin states in nuclei cannot be resolved using present techniques. Nevertheless, methods are being developed to study nuclear structures in this spin range. For example, coincidence data has been used in the study of superdeformations and moments of inertia. While the general properties of these correlation plots are in accord with present expectations, there are several puzzling features of the data which require more study. One unresolved aspect concerns γ-ray energy spreads in a given decay pathway. In addition, higher-order correlation methods are in various stages of inception. 15 refs., 16 figs
Parity violation in the nucleon-nucleon interaction
International Nuclear Information System (INIS)
Haxton, W.C.
1989-01-01
I discuss the present status of our understanding of parity nonconservation (PNC) in the nucleon-nucleon interaction, and some of the difficulties inherent in nuclear tests of PNC. I also discuss the nucleon/nuclear anapole moment, the parity violating coupling of the photon, and its relation to the PNC NN interaction. 13 refs., 1 fig., 2 tabs
In-medium NN interactions and nucleon and meson masses studied with nucleon knockout reactions
Noro, T; Akiyoshi, H; Daito, I; Fujimura, H; Hatanaka, K; Ihara, F; Ishikawa, T; Ito, M; Kawabata, M; Kawabata, T; Maeda, Y; Matsuoka, N; Morinobu, S; Nakamura, M; Obayashi, E; Okihana, A; Sagara, K; Sakaguchi, H; Takeda, H; Taki, T; Tamii, A; Tamura, K; Yamazaki, H; Yoshida, H; Yoshimura, M; Yosoi, M
2000-01-01
Spin observables have been measured for (p, 2p) reactions aiming at studying medium effects on NN interactions in nuclear field. Observed strong density-dependent reduction of the analyzing power is consistent with a model calculation where reduction of nucleon and meson masses are taken into account. On the other hand, calculations with g-matrices in the Shroedinger framework does not predict the reduction. The spin-transfer coefficients, which data are not reproduced by the model calculation, are found to be sensitive to reduction rate of each meson mass and have a possibility to test scaling lows in mass reductions.
International Nuclear Information System (INIS)
Grange, P.; Mathiot, J.F.; Roy-Stephan, M.; Frascaria, R.; Gales, S.
1990-01-01
The topics presented at the 1989 Joliot-Curie Lectures are reported. Two main subjects were retained: a simplified description of the N-body motion of particles in the quasi-particle configuration; study of the dynamics of nuclear components which are not described by nucleons in their ground state. The following themes were presented: quasiparticles and the Green functions, relativistic aspects of the quasiparticle concept, the dimensions of nucleons in the nuclei and the EMC effect, quarks and gluons in the nuclei, the delta in the nuclei, the strangeness, quasiparticles far from the Fermi sea, diffusion of electrons, stellar evolution and nucleosynthesis [fr
International Nuclear Information System (INIS)
Virchaux, M.
1992-11-01
The present status of experimental measurements of the nucleon structure functions is reviewed. The results from nearly all deep inelastic experiments are in good mutual agreement. Principles of the analysis of these structure function data in the framework of QCD are described. The specific features of the perturbative QCD predictions are observed in the data. This provides quantitative tests of the validity of QCD as well as determinations of the various parton distributions in the nucleon and some of the most precise measurements of the strong coupling constant αs. The future of this field of experimental physics is sketched
International Nuclear Information System (INIS)
Jiang Weizhou; Li Baoan; Chen Liewen
2007-01-01
The mean free paths and in-medium scattering cross sections of energetic nucleons in neutron-rich nucleonic matter are investigated using the nucleon optical potential obtained within the relativistic impulse approximation with the empirical nucleon-nucleon scattering amplitudes and the nuclear densities obtained in the relativistic mean-field model. It is found that the isospin-splitting of nucleon mean free paths, sensitive to the imaginary part of the symmetry potential, changes its sign at certain high kinetic energy. The in-medium nucleon-nucleon cross sections are analytically and numerically demonstrated to be essentially independent of the isospin asymmetry of the medium and increase linearly with density in the high-energy region where the relativistic impulse approximation is applicable
Medium corrections to nucleon-nucleon interactions
International Nuclear Information System (INIS)
Dortmans, P.J.; Amos, K.
1990-01-01
The Bethe-Goldstone equations have been solved for both negative and positive energies to specify two nucleon G-matrices fully off of the energy shell. Medium correction effects of Pauli blocking and of the auxiliary potential are included in infinite matter systems characterized by fermi momenta in the range 0.5 fm -1 to 1.8 fm -1 . The Paris interaction is used as the starting potential in most calculations. Medium corrections are shown to be very significant over a large range of energies and densities. On the energy shell values of G-matrices vary markedly from those of free two nucleon (NN) t-matrices which have been solved by way of the Lippmann-Schwinger equation. Off of the energy shell, however, the free and medium corrected Kowalski-Noyes f-ratios rate are quite similar suggesting that a useful model of medium corrected G-matrices are appropriately scaled free NN t-matrices. The choice of auxiliary potential form is also shown to play a decisive role in the negative energy regime, especially when the saturation of nuclear matter is considered. 30 refs., 7 tabs., 7 figs
International Nuclear Information System (INIS)
McClelland, J.B.; Aas, B.; Azizi, A.
1982-01-01
A complete measurement of the polarization transfer observables has been made for the first time in the (p,p') reaction at intermediate energies. Measurements are reported for the 12 C(p,p') 12 C reaction to the 1 + , T = 0(12.71 MeV) and 1 + , T = 1(15.11 MeV) states at 500 MeV at laboratory scattering angles of 3.5 0 , 5.5 0 , 7.5 0 , and 12.0 0 . Linear combinations of these observables are shown to exhibit a very selective dependence on the isoscalar and isovector spin-dependent components of the nucleon-nucleon interaction. To the extent of the validity of the single collision approximation, these amplitudes are compared directly to the free nucleon-nucleon amplitudes at small momentum transfers
High energy spin waves in iron measured by neutron scattering
International Nuclear Information System (INIS)
Boothroyd, A.T.; Paul, D.M.; Mook, H.A.
1991-01-01
We present new results for the spin were dispersion relation measured along the [ζζ0] direction in bcc iron (12% silicon) by time-of-flight, neutron inelastic scattering. The excitations were followed to the zone boundary, where they are spread over a range of energies around 300meV. 6 refs., 2 figs
Three-nucleon problem with phase equivalent potentials
International Nuclear Information System (INIS)
Pushkash, O.M.; Shapoval, D.V.; Simenog, I.V.
1991-01-01
The effect of the t-matrix off-shell variations with nonlocal phase equivalent N-N potentials on the three-nucleon parameters is studied. The variations, which lower or increase the tritium binding energy, are revealed. We show that under certain conditions, the three-nucleon low-energy observables are almost insensitive to the high energy behaviour of the negative parts of the scattering phase shifts. The inverse problem method is applied to reconstruct simple S-wave potentials which to provide a unified description of the two-nucleon and low-energy three-nucleon data. 22 refs.; 6 figs. (author)
Forward pion-nucleon charge exchange reaction and Regge constraints
International Nuclear Information System (INIS)
Huang Fei; Sibirtsev, A.; Krewald, S.; Hanhart, C.; Haidenbauer, J.; Meibner, U.-G.
2009-01-01
We present our recent study of pion-nucleon charge exchange amplitudes above 2 GeV. We analyze the forward pion-nucleon charge exchange reaction data in a Regge model and compare the resulting amplitudes with those from the Karlsruhe-Helsinki and George-Washington-University partial-wave analyses. We explore possible high-energy constraints for theoretical baryon resonance analyses in the energy region above 2 GeV. Our results show that for the pion-nucleon charge exchange reaction, the appropriate energy region for matching meson-nucleon dynamics to diffractive scattering should be around 3 GeV for the helicity flip amplitude. (authors)
Axial structure of the nucleon
Energy Technology Data Exchange (ETDEWEB)
Veronique Bernard; Latifa Elouadrhiri; Ulf-G Meissner
2002-01-01
We review the current status of experimental and theoretical understanding of the axial nucleon structure at low and moderate energies. Topics considered include (quasi)elastic (anti)neutrino-nucleon scattering, charged pion electroproduction off nucleons and ordinary as well as radiative muon capture on the proton.
Hard probes of short-range nucleon-nucleon correlations
Energy Technology Data Exchange (ETDEWEB)
J. Arrington, D. W. Higinbotham, G. Rosner, M. Sargsian
2012-10-01
The strong interaction of nucleons at short distances leads to a high-momentum component to the nuclear wave function, associated with short-range correlations between nucleons. These short-range, high-momentum structures in nuclei are one of the least well understood aspects of nuclear matter, relating to strength outside of the typical mean-field approaches to calculating the structure of nuclei. While it is difficult to study these short-range components, significant progress has been made over the last decade in determining how to cleanly isolate short-range correlations in nuclei. We have moved from asking if such structures exist, to mapping out their strength in nuclei and studying their microscopic structure. A combination of several different measurements, made possible by high-luminosity and high-energy accelerators, coupled with an improved understanding of the reaction mechanism issues involved in studying these structures, has led to significant progress, and provided significant new information on the nature of these small, highly-excited structures in nuclei. We review the general issues related to short-range correlations, survey recent experiments aimed at probing these short-range structures, and lay out future possibilities to further these studies.
Nowak, M A; Zahed, I
1989-01-01
The issue of the strangeness content of the proton in relation to a large σ π N term is examined using the instanton-antiinstanton description of the QCD ground state. Modulo plausible assumptions, our results indicate no strangeness admixture in the nucleon state at zero momentum transfer.
International Nuclear Information System (INIS)
Anon.
1978-01-01
The design and operation of a nucleonic weighing machine fabricated for continuous weighing of material over conveyor belt are described. The machine uses a 40 mCi cesium-137 line source and a 10 litre capacity ionization chamber. It is easy to maintain as there are no moving parts. It can also be easily removed and reinstalled. (M.G.B.)
International Nuclear Information System (INIS)
Tornow, T.; Tornow, W.
1999-01-01
It Is shown that the 3 P j neutron-proton (proton-proton) phase shifts cannot be determined to less than ± 100 % (± 20 %) uncertainty at low energies (∼ 10 MeV), even if high-accuracy nucleon-nucleon data were to become available for currently inaccessible observables. For a more accurate determination, appropriate theoretical constraints have to be invoked, but their accuracy can be judged only from the comparison of rigorous three-nucleon continuum calculations with particular three-nucleon observables. (author)
Three-nucleon force contribution in the distorted-wave theory of (d ,p ) reactions
Timofeyuk, N. K.
2018-05-01
The distorted-wave theory of A (d ,p )B reactions, widely used to analyze experimental data, is based on a Hamiltonian that includes only two-nucleon interactions. However, numerous studies of few-nucleon systems and many modern developments in nuclear structure theory show the importance of the three-nucleon (3 N ) force. The purpose of this paper is to study the contribution of the 3 N force of the simplest possible form to the A (d ,p )B reaction amplitude. This contribution is given by a new term that accounts for the interaction of the neutron and proton in the incoming deuteron with one of the target nucleons. This term involves a new type of nuclear matrix elements containing an infinite number of target excitations in addition to the main part associated with the traditional overlap function between A and B . The nuclear matrix elements are calculated for double-closed shell targets within a mean field theory where target excitations are shown to be equivalent to exchanges between valence and core nucleons. These matrix elements can be readily incorporated into available reaction codes if the 3 N interaction has a spin-independent zero-range form. Distorted-wave calculations are presented for a contact 3 N force with the volume integral fixed by the chiral effective field theory at the next-to-next-to-leading order. For this particular choice, the 3 N contribution is noticeable, especially at high deuteron incident energies. No 3 N effects are seen for incident energies below the Coulomb barrier. The finite range can significantly affect the 3 N contribution to the (d ,p ) cross sections. Finite-range studies require new formal developments and, therefore, their contribution is preliminarily assessed within the plane-wave Born approximation, together with sensitivity to the choice of the deuteron model.
Large-amplitude superexchange of high-spin fermions in optical lattices
International Nuclear Information System (INIS)
Jürgensen, Ole; Heinze, Jannes; Lühmann, Dirk-Sören
2013-01-01
We show that fermionic high-spin systems with spin-changing collisions allow one to monitor superexchange processes in optical superlattices with large amplitudes and strong spin fluctuations. By investigating the non-equilibrium dynamics, we find a superexchange dominated regime at weak interactions. The underlying mechanism is driven by an emerging tunneling-energy gap in shallow few-well potentials. As a consequence, the interaction-energy gap that is expected to occur only for strong interactions in deep lattices is re-established. By tuning the optical lattice depth, a crossover between two regimes with negligible particle number fluctuations is found: firstly, the common regime with vanishing spin-fluctuations in deep lattices and, secondly, a novel regime with strong spin fluctuations in shallow lattices. We discuss the possible experimental realization with ultracold 40 K atoms and observable quantities in double wells and two-dimensional plaquettes. (paper)
Generating highly polarized nuclear spins in solution using dynamic nuclear polarization
DEFF Research Database (Denmark)
Wolber, J.; Ellner, F.; Fridlund, B.
2004-01-01
A method to generate strongly polarized nuclear spins in solution has been developed, using Dynamic Nuclear Polarization (DNP) at a temperature of 1.2K, and at a field of 3.354T, corresponding to an electron spin resonance frequency of 94GHz. Trityl radicals are used to directly polarize 13C...... and other low-γ nuclei. Subsequent to the DNP process, the solid sample is dissolved rapidly with a warm solvent to create a solution of molecules with highly polarized nuclear spins. Two main applications are proposed: high-resolution liquid state NMR with enhanced sensitivity, and the use...
Properties of high-spin boson interaction currents and elimination of power divergences
International Nuclear Information System (INIS)
Kulish, Yu.V.; Rybachuk, E.V.
2001-01-01
The problem of the elimination of the power divergences for the interactions of the high-spin bosons (J ≥ 1) is investigated. It is proved that in the consistent theory the high-spin boson interaction currents and the field tensors must obey similar requirements. Therefore the momentum dependencies of the propagators for all the bosons are the same. The partial differential equations derived for some components include the derivatives of order 2J for the currents. Therefore the current components for the spin-J boson must decrease with the momentum Kombi scalar p v Kombi scalar → ∞ at least as Kombi scalar p v Kombi scalar -2J
Recent trends in high spin sensitivity magnetic resonance
Blank, Aharon; Twig, Ygal; Ishay, Yakir
2017-07-01
new ideas, show how these limiting factors can be mitigated to significantly improve the sensitivity of induction detection. Finally, we outline some directions for the possible applications of high-sensitivity induction detection in the field of electron spin resonance.
Comparative study of various methods of primary energy estimation in nucleon-nucleon interactions
International Nuclear Information System (INIS)
Goyal, D.P.; Yugindro Singh, K.; Singh, S.
1986-01-01
The various available methods for the estimation of primary energy in nucleon-nucleon interactions have been examined by using the experimental data on angular distributions of shower particles from p-N interactions at two accelerator energies, 67 and 400 GeV. Three different groups of shower particle multiplicities have been considered for interactions at both energies. It is found that the different methods give quite different estimates of primary energy. Moreover, each method is found to give different values of energy according to the choice of multiplicity groups. It is concluded that the E ch method is relatively the better method among all the methods available, and that within this method, the consideration of the group of small multiplicities gives a much better result. The method also yields plausible estimates of inelasticity in high energy nucleon-nucleon interactions. (orig.)
Block, Martin M
2002-01-01
Using an eikonal structure for the scattering amplitude, factorization theorems for nucleon-nucleon, gamma p and gamma gamma scattering at high energies have been derived, using only some very general assumptions. Using a QCD-inspired eikonal analysis of nucleon-nucleon scattering, we present here experimental confirmation for factorization of cross sections, nuclear slope parameters B and rho -values (ratio of real to imaginary portion of forward scattering amplitudes), showing that: 1) the three factorization theorems of Block and Kaidalov [2000] hold, 2) the additive quark model holds to approximately=1%, and 3) vector dominance holds to better than approximately=4%. Predictions for the total cross section, elastic cross section and other forward scattering parameters at the LHC (14 TeV) are given. (12 refs).
High spin states in odd-odd {sup 132}Cs
Energy Technology Data Exchange (ETDEWEB)
Hayakawa, Takehito [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Lu, J; Furuno, K [and others
1998-03-01
Excited states with spin larger than 5 {Dirac_h} were newly established in the {sup 132}Cs nucleus via the {sup 124}Sn({sup 11}B,3n) reaction. Rotational bands built on the {nu}h{sub 11/2} x {pi}d{sub 5/2}, {nu}h{sub 11/2} x {pi}g{sub 7/2} and {nu}h{sub 11/2} x {pi}h{sub 11/2} configurations were observed up to spin I {approx} 16 {Dirac_h}. The {nu}h{sub 11/2} x {pi}h{sub 11/2} band shows inverted signature splitting below I < 14 {Dirac_h}. A dipole band was firstly observed in doubly odd Cs nuclei. (author)
COMPASS spins in new directions
Katarina Anthony
2012-01-01
The COMPASS experiment is preparing for a new phase in its physics programme: COMPASS-II. Due to start in 2014, COMPASS-II will bring a powerful new look at the building blocks of protons: quarks and gluons. The COMPASS installation. It’s an exciting and busy time for COMPASS. As one of the few experiments in the world capable of studying the internal structure of protons with high precision, COMPASS uses secondary beams from the SPS accelerator to study a variety of quark and gluon properties. This includes their distribution within nucleons, their contribution to nucleon spin and the way they form hadrons when pulled out from the nucleon - all properties that may also improve the understanding of proton collisions in the LHC. In 2014, a new chapter will begin for the COMPASS collaboration. “We have two new phases planned for COMPASS-II,” explains Fabienne Kunne, COMPASS co-spokesperson. “The first will begin in 2014, collidi...
Critical emission from a high-spin black hole
Lupsasca, Alexandru; Porfyriadis, Achilleas P.; Shi, Yichen
2018-03-01
We consider a rapidly spinning black hole surrounded by an equatorial, geometrically thin, slowly accreting disk that is stationary and axisymmetric. We analytically compute the broadening of electromagnetic line emissions from the innermost part of the disk, which resides in the near-horizon region. The result is independent of the disk's surface emissivity and therefore universal. This is an example of critical behavior in astronomy that is potentially observable by current or future telescopes.
High spin polarisation at the HERA electron storage ring
International Nuclear Information System (INIS)
Barber, D.P.; Boege, M.; Bremer, H.D.; Brinkmann, R.; Gianfelice-Wendt, E.; Kaiser, R.; Klanner, R.; Lewin, H.C.; Meyners, N.; Ripken, G.; Zapfe, K.; Boettcher, H.; Dueren, M.; Steffens, E.; Lomperski, M.; Rith, K.; Westphal, D.; Zetsche, F.
1993-04-01
This paper describes the progress made in 1992 towards increasing the vertical electron beam polarization at HERA. Utilizing harmonic spin-orbit corrections and beam tuning, the vertical polarization has been increased from 15% to nearly 60% at a beam energy of 26.7 GeV. The long-term reproducibility of the polarization is excellent. Measurements of the build-up time and the energy dependence of the polarization are also described. (orig.)
Topics on frustrated spin systems and high-temperature superconductors
International Nuclear Information System (INIS)
Lu, Yong.
1990-01-01
The numerical study of frustrated spin systems using the Monte Carlo simulation method and the analytic study of fluctuation phenomenon of the thermoelectric power near the superconducting transition using Green's function techniques are presented. The first frustrated system considered was the B-site antiferromagnetic (AF) spinel. Based on an Ising model, various thermodynamic and magnetic properties for both the fully frustrated structure and partially frustrated cases of a small tetragonal distortion were studied. When fully frustrated, an interesting short range order and some unusual scaling behavior were obtained. In the two tetragonally distorted cases, contracting and expanding in the crystallographic c-direction, AF long range orders and some hysteresis behavior were found. A general phase diagram was constructed as a function of the degree of the distortion. The other frustrated spin system that was studied is the magnetic phase of YBa2Cu3O(6+x). A classical spin model, was constructed, and various properties in its Ising, Heisenberg, and x-y versions were studied. The susceptibility was calculated as a function of temperature for various values of x. In the study on the thermopower fluctuation, the thermopower was determined by the linear response of the electric and heat currents to an electric field, and the linear responses were in turn calculated from correlation functions of the current
High spin states in 63Cu. 17/2+ isomeric yrast state
International Nuclear Information System (INIS)
Tsan Ung Chan; Bruandet, J.F.; Dauchy, A.; Giorni, A.; Glasser, F.; Morand, C.; Chambon, B.; Drain, D.
1979-01-01
The 63 Cu nucleus has been studied via the reaction 61 Ni(α, pnγ), using different in beam γ spectroscopy techniques. An isomeric high-spin Yrast state 17/2 + (tau = 6.1 +- 0.6ns) is located at 4498 keV. The gsub(9/2) shell must be involved to explain positive high-spin states established in this work [fr
Explorations on High Dimensional Landscapes: Spin Glasses and Deep Learning
Sagun, Levent
This thesis deals with understanding the structure of high-dimensional and non-convex energy landscapes. In particular, its focus is on the optimization of two classes of functions: homogeneous polynomials and loss functions that arise in machine learning. In the first part, the notion of complexity of a smooth, real-valued function is studied through its critical points. Existing theoretical results predict that certain random functions that are defined on high dimensional domains have a narrow band of values whose pre-image contains the bulk of its critical points. This section provides empirical evidence for convergence of gradient descent to local minima whose energies are near the predicted threshold justifying the existing asymptotic theory. Moreover, it is empirically shown that a similar phenomenon may hold for deep learning loss functions. Furthermore, there is a comparative analysis of gradient descent and its stochastic version showing that in high dimensional regimes the latter is a mere speedup. The next study focuses on the halting time of an algorithm at a given stopping condition. Given an algorithm, the normalized fluctuations of the halting time follow a distribution that remains unchanged even when the input data is sampled from a new distribution. Two qualitative classes are observed: a Gumbel-like distribution that appears in Google searches, human decision times, and spin glasses and a Gaussian-like distribution that appears in conjugate gradient method, deep learning with MNIST and random input data. Following the universality phenomenon, the Hessian of the loss functions of deep learning is studied. The spectrum is seen to be composed of two parts, the bulk which is concentrated around zero, and the edges which are scattered away from zero. Empirical evidence is presented for the bulk indicating how over-parametrized the system is, and for the edges that depend on the input data. Furthermore, an algorithm is proposed such that it would
Multi-nucleon transfer: a probe to investigate the reaction mechanism around the barrier
International Nuclear Information System (INIS)
Mandal, Samit K.
2014-01-01
The investigation of multi-nucleon transfer mechanism offers valuable information on the pairing interactions that enhance the transfer of nucleon pairs across heavy ions involved in the reaction. These reactions are also a useful tool to study exotic nuclei far from the stability line, which can be explored with the new generation radioactive beam facility. In this talk, multi-nucleon transfer reaction mechanisms between heavy ions and their effect on the reaction dynamics around the coulomb barrier energies have been discussed. Experimental results will be presented with a semi classical description of multi nucleon transfer reaction calculation. One and two nucleon transfer cross sections reproduced using a quantum mechanical coupled channel calculations will also be discussed. A feasibility of investigation of multi-nucleon transfer mechanism to explore the pairing correlation at moderate spin states with radioactive beams will be discussed. (author)
An approach to the structure function for nucleon
International Nuclear Information System (INIS)
Long Ming
1986-01-01
The structure function for nucleon is discussed by using the method given in a previous paper. The formula are compared with the experimental data from low Q 2 to high Q 2 . The results show that the way that the structure function for nucleon can be obtained from the hadronic wavefunction is a possible approach of investigating structure functions for hadron
Paramagnetic properties of the low- and high-spin states of yeast cytochrome c peroxidase
International Nuclear Information System (INIS)
Vanwetswinkel, Sophie; Nuland, Nico A. J. van; Volkov, Alexander N.
2013-01-01
Here we describe paramagnetic NMR analysis of the low- and high-spin forms of yeast cytochrome c peroxidase (CcP), a 34 kDa heme enzyme involved in hydroperoxide reduction in mitochondria. Starting from the assigned NMR spectra of a low-spin CN-bound CcP and using a strategy based on paramagnetic pseudocontact shifts, we have obtained backbone resonance assignments for the diamagnetic, iron-free protein and the high-spin, resting-state enzyme. The derived chemical shifts were further used to determine low- and high-spin magnetic susceptibility tensors and the zero-field splitting constant (D) for the high-spin CcP. The D value indicates that the latter contains a hexacoordinate heme species with a weak field ligand, such as water, in the axial position. Being one of the very few high-spin heme proteins analyzed in this fashion, the resting state CcP expands our knowledge of the heme coordination chemistry in biological systems
Paramagnetic properties of the low- and high-spin states of yeast cytochrome c peroxidase
Energy Technology Data Exchange (ETDEWEB)
Vanwetswinkel, Sophie; Nuland, Nico A. J. van; Volkov, Alexander N., E-mail: ovolkov@vub.ac.be [Vrije Universiteit Brussel, Jean Jeener NMR Centre, Structural Biology Brussels (Belgium)
2013-09-15
Here we describe paramagnetic NMR analysis of the low- and high-spin forms of yeast cytochrome c peroxidase (CcP), a 34 kDa heme enzyme involved in hydroperoxide reduction in mitochondria. Starting from the assigned NMR spectra of a low-spin CN-bound CcP and using a strategy based on paramagnetic pseudocontact shifts, we have obtained backbone resonance assignments for the diamagnetic, iron-free protein and the high-spin, resting-state enzyme. The derived chemical shifts were further used to determine low- and high-spin magnetic susceptibility tensors and the zero-field splitting constant (D) for the high-spin CcP. The D value indicates that the latter contains a hexacoordinate heme species with a weak field ligand, such as water, in the axial position. Being one of the very few high-spin heme proteins analyzed in this fashion, the resting state CcP expands our knowledge of the heme coordination chemistry in biological systems.
Phase variation of nucleon-nucleon amplitude for proton-12C elastic scattering
International Nuclear Information System (INIS)
Deng Yibing; Wang Shilai; Yin Gaofang
2006-01-01
Franco and Yin studied for α- 4 He, 3 He, 2 He, 1 He elastic-scattering by using the phase of the nucleon-nucleon elastic-scattering amplitude varies with momentum transfer in the framework of Glauber multiple scattering theory at intermediate energy. The phase variation leads to large changes in the differential cross sections, and brings the Glauber theory into agreement with experimental data. Later Lombard and Maillet is based on the suggestion by Franco and Yin studied for the p- 4 He elastic-scattering in the framework of Glauber theory, and found this phase to be actually important for the description of spin observables. Recently Wang Shilai and Deng Yibing et al studied for the p- 4 He elastic-scattering in the framework of KMT multiple scattering theory at intermediate energy, and found this phase lead to differential cross sections and polarization, which are in better agreement with experimental data. This paper is based on the suggestion by Franco and Yin that the phase of the nucleon-nucleon scattering amplitude should vary with momentum transfer. The proton elastic scattering on 12 C is studied in the KMT multiple scattering theory with microscopic momentum space first term optical potential. The Coulomb interactions are taken into account in our calculation. The theoretical calculation results show that the phase leads to differential cross section and polarization are in better agreement with experimental data. In conclusion this phase is actually important in the framework of KMT theory. (authors)
International Nuclear Information System (INIS)
Steckmeyer, J.C.
1984-10-01
Angular momentum transfer and spin dealignment mechanisms have been studied in the deep inelastic collisions Ar+Bi and Ni+Pb using the sequential fission method. This experimental technique consists to measure the angular distribution of the fission fragments of a heavy nucleus in coincidence with the reaction partner, and leads to a complete determination of the heavy nucleus spin distribution. High spin values are transferred to the heavy nucleus in the interaction and indicate that the dinuclear system has reached the rigid rotation limit. A theoretical model, taking into account the excitation of surface vibrations of the nuclei and the nucleon transfer between the two partners, is able to reproduce the high spin values measured in our experiments. The spin fluctuations are important, with values of the order of 15 to 20 h units. These fluctuations increase with the charge transfer from the projectile to the target and the total kinetic energy loss. The spin dealignment mechanisms act mainly in a plane approximately perpendicular to the heavy recoil direction in the laboratory system. These results are well described by a dynamical transport model based on the stochastic exchange of individual nucleons between the two nuclei during the interaction. The origin of the dealignment mechanisms in the spin transfer processes is then related to the statistical nature of the nucleon exchange. However other mechanisms can contribute to the spin dealignment as the surface vibrations, the nuclear deformations as well their relative orientations [fr
Multi-photon Rabi oscillations in high spin paramagnetic impurity
International Nuclear Information System (INIS)
Bertaina, S; Groll, N; Chen, L; Chiorescu, I
2011-01-01
We report on multiple photon monochromatic quantum oscillations (Rabi oscillations) observed by pulsed EPR (Electron Paramagnetic Resonance) of Mn 2+ (S = 5/2) impurities in MgO. We find that when the microwave magnetic field is similar or large than the anisotropy splitting, the Rabi oscillations have a spectrum made of many frequencies not predicted by the S = l/2 Rabi model. We show that these new frequencies come from multiple photon coherent manipulation of the multi-level spin impurity. We develop a model based on the crystal field theory and the rotating frame approximation, describing the observed phenomenon with a very good agreement.
Bounds on the maximum attainable equilibrium spin polarization of protons at high energy in HERA
International Nuclear Information System (INIS)
Vogt, M.
2000-12-01
For some years HERA has been supplying longitudinally spin polarised electron and positron (e ± ) beams to the HERMES experiment and in the future longitudinal polarisation will be supplied to the II1 and ZEUS experiments. As a result there has been a development of interest in complementing the polarised e ± beams with polarised protons. In contrast to the case of e ± where spin flip due to synchrotron radiation in the main bending dipoles leads to self polarisation owing to an up-down asymmetry in the spin flip rates (Sokolov-Ternov effect), there is no convincing self polarisation mechanism for protons at high energy. Therefore protons must be polarised almost at rest in a source and then accelerated to the working energy. At HERA, if no special measures are adopted, this means that the spins must cross several thousand ''spin-orbit resonances''. Resonance crossing can lead to loss of polarisation and at high energy such effects are potentially strong since spin precession is very pronounced in the very large magnetic fields needed to contain the proton beam in HERA-p. Moreover simple models which have been successfully used to describe spin motion at low and medium energies are no longer adequate. Instead, careful numerical spin-orbit tracking simulations are needed and a new, mathematically rigorous look at the theoretical concepts is required. This thesis describes the underlying theoretical concepts, the computational tools (SPRINT) and the results of such a study. In particular strong emphasis is put on the concept of the invariant spin field and its non-perturbative construction. The invariant spin field is then used to define the amplitude dependent spin tune and to obtain numerical non-perturbative estimates of the latter. By means of these two key concepts the nature of higher order resonances in the presence of snakes is clarified and their impact on the beam polarisation is analysed. We then go on to discuss the special aspects of the HERA-p ring
Shapes and alignments at high spin in some rare-earth nuclei
International Nuclear Information System (INIS)
Deleplanque, M.A.; Diamond, R.M.; Stephens, F.S.; Macchiavelli, A.O.; Doessing, T.; Draper, J.E.; Dines, E.L.
1985-01-01
The structure of nuclei at high spins is dominated by an interplay between deformation and alignment effects. Cranking models predict various shapes but at the highest spins, there is a tendency towards large triaxial deformations and sometimes towards very large prolate deformations (superdeformations). Directly involved in the shape changes are aligned orbitals which come down to the Fermi level as the nucleus rotates more rapidly. At a certain frequency, they become populated and cause large alignments. The mechanism of these changes has been explored by looking at a series of rare earth quasirotational nuclei from Dy to W in the transition region around N = 90 neutrons. The continuum spectra, corrected for incomplete population (feeding) of the high spins, are directly proportional to dynamic effective moments of inertia which describe how much spin is generated at each rotational frequency
New high spin states and isomers in the {sup 208}Pb and {sup 207}Pb nuclei
Energy Technology Data Exchange (ETDEWEB)
Broda, R.; Wrzesinski, J.; Pawlat, T. [and others
1996-12-31
The two most prominent examples of the heavy doubly closed shell (DCS) nuclei, {sup 208}Pb and {sup 132}Sn, are not accessible by conventional heavy-ion fusion processes populating high-spin states. This experimental difficulty obscured for a long time the investigation of yrast high-spin states in both DCS and neighboring nuclei and consequently restricted the study of the shell model in its most attractive regions. Recent technical development of multidetector gamma arrays opened new ways to exploit more complex nuclear processes which populate the nuclei of interest with suitable yields for gamma spectroscopy and involve population of moderately high spin states. This new possibility extended the range of accessible spin values and is a promising way to reach new yrast states. Some of these states are expected to be of high configurational purity and can be a source of important shell model parameters which possibly can be used later to check the validity of the spherical shell model description at yet higher spin and higher excitation energy. The nuclei in the closest vicinity of {sup 132}Sn are produced in spontaneous fission and states with spin values up to I=14 can be reached in fission gamma spectroscopy studies with the presently achieved sensitivity of gamma arrays. New results on yrast states in the {sup 134}Te and {sup 135}I nuclei populated in fission of the {sup 248}Cm presented at this conference illustrate such application of the resolving power offered by modern gamma techniques.
The spin-orbit interaction in nuclei
International Nuclear Information System (INIS)
Skyrme, T.H.R.
1994-01-01
The analysis previously made of the average nuclear potential has been extended to consideration of the spin-orbit interactions. It has not been possible to find a satisfactory two-body interaction consistent with all the data; that suggested by the phase-shift analysis of nucleon-nucleon scattering is just within the region of possible forms. (author). 13 refs, 1 fig
Quasielastic nucleon scattering using polarized beams and targets
International Nuclear Information System (INIS)
Haeusser, O.
1990-07-01
Inelastic scattering of polarized intermediate energy nucleons to continuum nuclear states is discussed with emphasis on recent results. Spin momentum correlations of protons in polarized targets of 3 He were observed for the first time. Complete spin observables in (p,p') show effects of the nuclear spin-isospin response and of an NN interaction modified by the nuclear medium. A comparison of Gamow Teller and isovector M1 giant resonance strengths in the sd shell provides evidence for large meson exchange current effects in the M1. (Author) (37 refs., 2 tabs., 9 figs.)
Recent Studies of Nucleon Electromagnetic Form Factors
International Nuclear Information System (INIS)
Gilad, Shalev
2010-01-01
The electromagnetic form factors of nucleons are fundamental quantities in nucleon structure. As such, they have been studied extensively both theoretically and experimentally. Significant progress has been made with new measurements at Jlab, MAMI and MIT-Bates, with emphases on expanding the momentum-transfer range and on higher precision. In this paper, we describe the status of this field and present new results from measurements at both low and high momentum transfers. We also compare the experimental data to model predictions, and mention possible implications of the new results to other fields.
Counter terms for low momentum nucleon-nucleon interactions
International Nuclear Information System (INIS)
Holt, Jason D.; Kuo, T.T.S.; Brown, G.E.; Bogner, Scott K.
2004-01-01
There is much current interest in treating low energy nuclear physics using the renormalization group (RG) and effective field theory (EFT). Inspired by this RG-EFT approach, we study a low-momentum nucleon-nucleon (NN) interaction, V low-k , obtained by integrating out the fast modes down to the scale Λ∼2 fm -1 . Since NN experiments can only determine the effective interaction in this low momentum region, our chief purpose is to find such an interaction for complex nuclei whose typical momenta lie below this scale. In this paper we find that V low-k can be highly satisfactorily accounted for by the counter terms corresponding to a short range effective interaction. The coefficients C n of the power series expansion ΣC n q n for the counter terms have been accurately determined, and results derived from several meson-exchange NN interaction models are compared. The counter terms are found to be important only for the S, P and D partial waves. Scaling behavior of the counter terms is studied. Finally we discuss the use of these methods for computing shell model matrix elements
Experimental Flight Characterization of Spin Stabilized Projectiles at High Angle of Attack
2017-08-07
impact point prediction for applications such as high-arcing, spin-stabilized munitions. 15. SUBJECT TERMS aerodynamics, spark range, spin...angles of attack increase the delivery error due to poor fire-control solutions (i.e., understanding the relationship between the gun pointing angle and...of downrange travel ) is also evident in the horizontal data. Fig. 3 Center-of-gravity motion The rolling motion is captured in Fig. 4. These
International Nuclear Information System (INIS)
Teller, S.
1977-01-01
Nucleonic weighing systems utilize the principle of the absorption or the scattering of nuclear radiation for a contactless measurement of the weight of material per unit length, the loading, of a conveyor. The load signal is processed in an electronic unit with a tachometer signal for the conveyor velocity to indicate the flow rate and the integrated flow of material. The different sources of error in nucleonic weighing using transmitted and forward scattered radiation are discussed, and the design of two nucleonic weighing systems is described. One is a conventional transmission gauge particularly suited for measuring rapid variation in belt loading due to a fast detection and linearizing unit. The other system consists of a forward scattering gauge, particularly suitable for measuring light inhomogeneous materials due to the linear relationship between the weight per unit area and the gauge response. Results from on-line trials with different materials are presented, and experiences from more than one year of operation for a batch weighing system for quick lime and a continuous weighing system for mineral wool are reported. (author)
High-spin, multiparticle isomers in 121,123Sb
International Nuclear Information System (INIS)
Jones, G. A.; Walker, P. M.; Podolyak, Zs.; Cullen, I. J.; Garnsworthy, A. B.; Liu, Z.; Thompson, N. J.; Williams, S. J.; Zhu, S.; Carpenter, M. P.; Janssens, R. V. F.; Khoo, T. L.; Seweryniak, D.; Carroll, J. J.; Chakrawarthy, R. S.; Hackman, G.; Chowdhury, P.; Dracoulis, G. D.; Lane, G. J.; Kondev, F. G.
2008-01-01
Isomers in near-spherical Z=51, antimony isotopes are reported here for the first time using fusion-fission reactions between 27 Al and a pulsed 178 Hf beam of energy, 1150 MeV. γ rays were observed from the decay of isomeric states with half-lives, T 1/2 =200(30) and 52(3)μs, and angular momenta I=((25/2)) and I π =(23/2) + , in 121,123 Sb, respectively. These states are proposed to correspond to ν(h (11/2) ) 2 configurations, coupled to an odd d (5/2) or g (7/2) proton. Nanosecond isomers were also identified at I π =(19/2) - [T 1/2 =8.5(5) ns] in 121 Sb and I π =((15/2) - ) [T 1/2 =37(4) ns] in 123 Sb. Information on spins and parities of states in these nuclei was obtained using a combination of angular correlation and intensity-balance measurements. The configurations of states in these nuclei are discussed using a combination of spin/energy systematics and shell-model calculations for neighboring tin isotones and antimony isotopes
High-spin rotational states in {sup 179}Os
Energy Technology Data Exchange (ETDEWEB)
Burde, J [Lawrence Berkeley Lab., CA (United States); [Hebrew Univ., Jerusalem (Israel). Racah Inst. of Physics; Deleplanque, M A; Diamond, R M; Macchiavelli, A O; Stephens, F S; Beausang, C W [Lawrence Berkeley Lab., CA (United States)
1992-08-01
The rotational bands of the osmium isotopes display very interesting properties that vary with the neutron number. On the one hand the yrast bands of {sup 182,184,186}Os display a sudden and rather strong gain in aligned angular momentum,, whereas the lighter osmium nuclei such as {sup 176,178,180}Os show a more gradual increase of alignment characteristic of strongly interacting bands. In addition, an unusual rotational band has been found in {sup 178}Os. It consists of seven regularly spaced transitions about 36 keV apart which correspond closely to the spacing of the superdeformed band in {sup 152}Dy after an A{sup 5/3} normalization. this band populates the yrast band directly, and the moment of inertia J{sup (1)} is found to be much smaller than J{sup (2)}. The most likely interpretation of this is a band with large deformation which is undergoing systematic changes in deformation, pairing and/or alignment. This latter finding in particular motivated us to carry out research on the higher spin states in {sup 179}Os. Dracoulis et al. have published their results on 5 rotational bands in {sup 179}Os. In the present work we found six new bands and extended appreciably the spin limits in the other five. (author). 5 refs., 3 figs.
Quark bags, P-matrix and nucleon-nucleon scattering
International Nuclear Information System (INIS)
Narodetskij, I.M.
1984-01-01
This paper is an extended version of the talk given at IX European Conference on Few Body Problems in Physics, Tbilisi, 1984. It reviews recent developments of the quark compound bag (QCB) model including explicit examples of the QCB nucleon-nucleon potentials, description of the deuteron properties, calculation of the six quark admixture in the deuteron and applications to the three-nucleon system
Nucleon-nucleon momentum correlation function for light nuclei
International Nuclear Information System (INIS)
Ma, Y.G.; Cai, X.Z.; Chen, J.G.; Fang, D.Q.; Guo, W.; Liu, G.H.; Ma, C.W.; Ma, E.J.; Shen, W.Q.; Shi, Y.; Su, Q.M.; Tian, W.D.; Wang, H.W.; Wang, K.; Wei, Y.B.; Yan, T.Z.
2007-01-01
Nucleon-nucleon momentum correlation function have been presented for nuclear reactions with neutron-rich or proton-rich projectiles using a nuclear transport theory, namely Isospin-Dependent Quantum Molecular Dynamics model. The relationship between the binding energy of projectiles and the strength of proton-neutron correlation function at small relative momentum has been explored, while proton-proton correlation function shows its sensitivity to the proton density distribution. Those results show that nucleon-nucleon correlation function is useful to reflect some features of the neutron- or proton-halo nuclei and therefore provide a potential tool for the studies of radioactive beam physics
Nucleon quark structure and strong meson-nucleon form factors
International Nuclear Information System (INIS)
Efimov, G.V.; Ivanov, M.A.
1987-01-01
The nucleon is considered as a three-quark system in virton-quark model. The main statistic properties of proton and neutron are calculated: magnetic moments, electromagnetic radii, G A /G V ratio in weak neutron decay. Strong meson-nucleon form factors which determine nucleon-nucleon potential are obtained as a function of squared transfer momentum of mesons. The results are compared with phenomenological form factors used for description of phases of NN-scattering in the one-boson-, exchange model
Coupled channels Marchenko inversion for nucleon-nucleon potentials
International Nuclear Information System (INIS)
Kohlhoff, H.; Geramb, H.V. von
1994-01-01
Marchenko inversion is used to determine local energy independent but channel dependent potential matrices from optimum sets of experimental phase shifts. 3 SD 1 and 3 PF 2 channels of nucleon-nucleon systems contain in their off-diagonal potential matrices explicitly the tensor force for T = 0 and 1 isospin. We obtain, together with single channels, complete sets of quantitative nucleon-nucleon potential results which are ready for application in nuclear structure and reaction analyses. The historic coupled channels inversion result of Newton and Fulton is revisited. (orig.)
Semi-phenomenological model of the nucleon-nucleon interaction
International Nuclear Information System (INIS)
Houriet, A.; Bagnoud, Y.
1977-01-01
A nucleon with isobars is used to elaborate a model of the nucleon-nucleon interaction at low energy (Esub(CM) 2 sub(r), the pion-nucleon renormalized coupling constant. The model establishes a very good coordination for deuteron and p-p scattering-polarization measurements ( 1 K 0 , 1 D 2 , 1 G 4 phase shifts), and permits the determination of f 2 sub(r) for every independent experimental value. For 21 such values, the mean value 2 sub(r)>=0.0785 with Δf 2 sub(r)=0.0024(3%) is obtained. (Auth.)
Ciofi degli Atti, Claudio; Mezzetti, Chiara Benedetta; Morita, Hiko
2017-04-01
Background: Two-nucleon (2 N ) short-range correlations (SRC) in nuclei have been recently thoroughly investigated, both theoretically and experimentally and the study of three-nucleon (3 N ) SRC, which could provide important information on short-range hadronic structure, is underway. Novel theoretical ideas concerning 2 N and 3 N SRC are put forward in the present paper. Purpose: The general features of a microscopic one-nucleon spectral function which includes the effects of both 2 N and 3 N SRC and its comparison with ab initio spectral functions of the three-nucleon systems are illustrated. Methods: A microscopic and parameter-free one-nucleon spectral function expressed in terms of a convolution integral involving ab initio relative and center-of-mass (c.m.) momentum distributions of a 2 N pair and aimed at describing two- and three-nucleon short-range correlations, is obtained by using: (i) the two-nucleon momentum distributions obtained within ab initio approaches based upon nucleon-nucleon interactions of the Argonne family; (ii) the exact relation between one- and two-nucleon momentum distributions; (iii) the fundamental property of factorization of the nuclear wave function at short internucleon ranges. Results: The comparison between the ab initio spectral function of 3He and the one based upon the convolution integral shows that when the latter contains only two-nucleon short-range correlations the removal energy location of the peaks and the region around them exhibited by the ab initio spectral function are correctly predicted, unlike the case of the high and low removal energy tails; the inclusion of the effects of three-nucleon correlations brings the convolution model spectral function in much better agreement with the ab initio one; it is also found that whereas the three-nucleon short-range correlations dominate the high energy removal energy tail of the spectral function, their effects on the one-nucleon momentum distribution are almost one
New results on spin determination of nanosatellite BLITS from High Repetition Rate SLR data
Kucharski, D.; Kirchner, G.; Lim, H.-C.; Koidl, F.
2013-03-01
The nanosatellite BLITS (Ball Lens In The Space) demonstrates a successful design of the new spherical lens type satellite for Satellite Laser Ranging (SLR). The spin parameters of the satellite were calculated from more than 1000 days of SLR data collected from 6 High Repetition Rate (HRR) systems: Beijing, Changchun, Graz, Herstmonceux, Potsdam, Shanghai.Analysis of the 892 passes (September 26, 2009-June 18, 2012) shows precession of the spin axis around orientation of the along track vector calculated at the launch epoch of the satellite RA = 9h16m39s, Dec = 43.1°. The spin period of BLITS remains stable with the mean value Tmean = 5.613 s, RMS = 11 ms. The incident angle between the spin axis and the symmetry axis of the body changes within 60° range.
Energy Technology Data Exchange (ETDEWEB)
Vasilyev, D.; Kirschner, J. [Max-Planck-Institut für Mikrostrukturphysik, Weinberg 2, 06120 Halle (Germany)
2016-08-15
We describe a new “complete” spin-polarized electron energy loss spectrometer comprising a spin-polarized primary electron source, an imaging electron analyzer, and a spin analyzer of the “spin-polarizing mirror” type. Unlike previous instruments, we have a high momentum resolution of less than 0.04 Å{sup −1}, at an energy resolution of 90-130 meV. Unlike all previous studies which reported rather broad featureless data in both energy and angle dependence, we find richly structured spectra depending sensitively on small changes of the primary energy, the kinetic energy after scattering, and of the angle of incidence. The key factor is the momentum resolution.
A high-field adiabatic fast passage ultracold neutron spin flipper for the UCNA experiment
Energy Technology Data Exchange (ETDEWEB)
Holley, A. T.; Pattie, R. W.; Young, A. R. [Department of Physics, North Carolina State University, Raleigh, North Carolina 27695 (United States); Broussard, L. J. [Department of Physics, Duke University, Durham, North Carolina 27708 (United States); Davis, J. L.; Ito, T. M.; Lyles, J. T. M.; Makela, M.; Morris, C. L.; Mortensen, R.; Saunders, A. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Hickerson, K.; Mendenhall, M. P. [W. K. Kellogg Radiation Laboratory, California Institute of Technology, Pasadena, California 91125 (United States); Liu, C.-Y. [Department of Physics, Indiana University, Bloomington, Indiana 47405 (United States); Mammei, R. R. [Department of Physics, Virginia Tech, Blacksburg, Virginia 24061 (United States); Rios, R. [Department of Physics, Idaho State University, Pocatello, Idaho 83209 (United States)
2012-07-15
The UCNA collaboration is making a precision measurement of the {beta} asymmetry (A) in free neutron decay using polarized ultracold neutrons (UCN). A critical component of this experiment is an adiabatic fast passage neutron spin flipper capable of efficient operation in ambient magnetic fields on the order of 1 T. The requirement that it operate in a high field necessitated the construction of a free neutron spin flipper based, for the first time, on a birdcage resonator. The design, construction, and initial testing of this spin flipper prior to its use in the first measurement of A with UCN during the 2007 run cycle of the Los Alamos Neutron Science Center's 800 MeV proton accelerator is detailed. These studies determined the flipping efficiency of the device, averaged over the UCN spectrum present at the location of the spin flipper, to be {epsilon}=0.9985(4).
Technical data on nucleonic gauges
International Nuclear Information System (INIS)
2005-07-01
This nucleonic gauge manual and directory provides a reference database of nucleonic control systems available to potential users in the fields of exploration, exploitation and processing of natural resources and in the manufacturing industries. It starts with background information an the general principals of nucleonic gauges, followed by portable nuclear analysis systems (PNAS), computer tomography, cost-benefit on NCS (Nucleonic Control Systems) applications and trends and transfer of NCS technology. It continues with radiation protection and safety, discusses nucleonic gauges with low radioactivity sources and ends with typical models of nucleonic gauges. The basic principles of the most popular techniques are reviewed and reference data links to suppliers are provided. Information sheets on many typical commercial devices are also included. It will help end-users to select the most suitable alternative to solve a particular problem or to measure a certain parameter in a specific process
High-order moments of spin-orbit energy in a multielectron configuration
Na, Xieyu; Poirier, M.
2016-07-01
In order to analyze the energy-level distribution in complex ions such as those found in warm dense plasmas, this paper provides values for high-order moments of the spin-orbit energy in a multielectron configuration. Using second-quantization results and standard angular algebra or fully analytical expressions, explicit values are given for moments up to 10th order for the spin-orbit energy. Two analytical methods are proposed, using the uncoupled or coupled orbital and spin angular momenta. The case of multiple open subshells is considered with the help of cumulants. The proposed expressions for spin-orbit energy moments are compared to numerical computations from Cowan's code and agree with them. The convergence of the Gram-Charlier expansion involving these spin-orbit moments is analyzed. While a spectrum with infinitely thin components cannot be adequately represented by such an expansion, a suitable convolution procedure ensures the convergence of the Gram-Charlier series provided high-order terms are accounted for. A corrected analytical formula for the third-order moment involving both spin-orbit and electron-electron interactions turns out to be in fair agreement with Cowan's numerical computations.
Spin physics at intermediate energies
International Nuclear Information System (INIS)
Burkert, V.
1986-01-01
In this session a total of 25 contributed papers were presented studying a broad range of spin effects in nucleons and nuclei using electromagnetic (electrons and photons) and hadronic (pions and nucleons) probes. The status of the theory was characterized by its almost total absence. Only one theoretical contribution was presented at this session. Those experiments examining electromagnetic-, electroweak- and weak-strong interactions were emphasized
Nucleon resonance production in electromagnetic interactions
International Nuclear Information System (INIS)
Mukhtarov, A.I.; Sadykhov, F.S.; Vasil'ev, O.A.; Abdullaev, S.K.; Mustafaev, V.Z.
1977-01-01
The results of investigation into nucleon resonance production (NR) in the ep → eNsup(*)(eNsup(*)γ) and eantie → antipNsup(*)(antipNsup(*)γ) processes, where Nsup(*) is a nucleon resonance of the 3/2 or 5/2 spin are presented. The calculation of the NR structure functions with the mass M and 3/2 or 5/2 spin is carried out. The Δ(1236), N(1688) and Δ(2160) NR production was observed in the ep → eNsup(*) and eantie → antipNsup(*) processes. For the ep-interaction the energy dependence of the NR production differential cross section at the electron scattering angle THETA = 6 dea and the angular dependence of the longitudinal polarization degree of the scattered electrons at the electron energy of 6 GeV are presented. The energy dependence of the total cross section of the NR production for eantie → antipNsup(*) is obtained. The ep → eNsup(*)γ radiative electron scattering on a proton is investigated only in case of the Δ(1236)NR production. The dependence of the effective cross section of the Δ(1236) radiative production process on THETA for the energies of an incident and scattered electron of 6 and 2.5 GeV, respectively, and the dependence of the cross section on the scattered electron energy at the initial energy of 6 GeV and THETA = 15 deg are presented
Structure functions of nucleons and nuclei
Energy Technology Data Exchange (ETDEWEB)
Bentz, Wolfgang; Ito, Takuya [Department of Physics, Tokai University, Kanagawa (Japan); Cloet, Ian [Department of Physics, University of Washington, Seattle (United States); Thomas, Anthony [Jefferson Lab., Newport News, VA (United States); Yazaki, Koichi [RIKEN, Wako-shi, Saitama (Japan)
2009-07-01
We use an effective chiral quark theory to calculate the quark distributions and structure functions of nucleons and nuclei. The description of the single nucleon is based on the Faddeev framework, and nuclear systems are described in the mean field approximation. Particular amphasis is put on the prediction of the polarized EMC effect in nuclei, and on applications to deep inelastic neutrino-nucleus scattering. Concerning the polarized EMC effect, we discuss the quenching of the quark spin sum in nuclei and its implications for the spin dependent nuclear structure functions, and present results for several nuclei where an experimental observation is feasible. Concerning the case of deep inelastic neutrino-nucleus scattering, we estimate the effect of medium modifications of the quark distribution functions on the measured cross sections, and discuss an interesting resolution of the so called NuTeV anomaly. Finally, we discuss extensions of our model to describe fragmentation functions for semi-inclusive processes. The connection between our effective quark model description and the jet model of Field and Feynman is discussed.
Simple parametrization of nucleon form factors
International Nuclear Information System (INIS)
Kelly, J.J.
2004-01-01
This Brief Report provides simple parametrizations of the nucleon electromagnetic form factors using functions of Q 2 that are consistent with dimensional scaling at high Q 2 . Good fits require only four parameters each for G Ep , G Mp , and G Mn and only two for G En
Double longitudinal spin asymmetries in single hadron photoproduction at high p_T at COMPASS
Levillain, Maxime
This thesis presents a new study aiming at constraining the gluon contribution {\\Delta G} to the 1/2 nucleon spin. The collinear pQCD theoretical framework, on which it is based, deals with asymmetries calculated from cross-sections for single inclusive hadron in the regime of quasi-real photoproduction {Q^2 1 GeV/c). These calculations are done up to Next-to-Leading order with a foreseen inclusion of Next-to-Leading logarithm threshold gluon resummation, only performed for the unpolarised cross-sections yet. This makes the asymmetries sensitive to the gluon polarisation not only through Photon Gluon Fusion {\\gamma* g} but also through resolved {\\gamma*}g processes such as qg or gg. The measurement of the asymmetries is performed for all the COMPASS data available from 2002 to 2011 with a polarised muon beam at 160-200 GeV scattered off a longitudinally polarised target of deuteron ( {_6LiD} for 2002-2006) or proton ({NH_3} for 2007 and 2011). The asymmetries are presented in bins of pT and of pseudorapidity...
On the sensitivity of nucleon-nucleon correlations to the form of short-range potential
International Nuclear Information System (INIS)
Gmitro, M.; Kvasil, J.; Lednicky, R.; Lyuboshitz, V.L.
1986-01-01
Nucleon-nucleon correlation characteristics are calculated for several phenomenological and realistic strong potentials. The results show that a square-well potential reasonably well approximates the nucleon-nucleon interaction if one calculates the correlations between nucleons generated in a region with an r.m.s. radius larger than 1.5-2 fm. Vice versa, the correlations of nucleons emitted from a smaller generation region are sensitive to the form of the assumed nucleon-nucleon potential. (author)
Superfluidity of nuclei and the nucleon--phonon interaction
International Nuclear Information System (INIS)
Kadmenskii, S.G.; Luk'yanovich, P.A.
1989-01-01
The Lehmann expansion for the exact one-particle Green function in a system with superfluidity is obtained. Expressions for the correlation function and mass operator are derived with allowance for a retarded nucleon--phonon interaction. Within the scope of the formalism developed, equations for the superfluidity of nuclei allowing for quasiparticle fragmentation effects are derived. It is concluded that the retarded nucleon--phonon interaction in the particle--particle channel causes a decrease of the fragmentation of the one-particle force in the vicinity of the Fermi surface. It is shown that inclusion of a nonretarded vacuum interaction of two nucleons and of a retarded interaction due to the exchange between two nucleons of low-lying highly collectivized quadrupole phonons is sufficient to provide the necessary scale of attraction in the description of pair correlations of nucleons in nuclei with developed superfluidity
Roy–Steiner-equation analysis of pion–nucleon scattering
Directory of Open Access Journals (Sweden)
Meißner U.-G.
2017-01-01
Full Text Available Low-energy pion–nucleon scattering is relevant for many areas in nuclear and hadronic physics, ranging from the scalar couplings of the nucleon to the long-range part of two-pion-exchange potentials and three-nucleon forces in Chiral Effective Field Theory. In this talk, we show how the fruitful combination of dispersion-theoretical methods, in particular in the form of Roy–Steiner equations, with modern high-precision data on hadronic atoms allows one to determine the pion–nucleon scattering amplitudes at low energies with unprecedented accuracy. Special attention will be paid to the extraction of the pion–nucleon σ-term, and we discuss in detail the current tension with recent lattice results, as well as the determination of the low-energy constants of chiral perturbation theory.c
Roy-Steiner-equation analysis of pion-nucleon scattering
Meißner, U.-G.; Ruiz de Elvira, J.; Hoferichter, M.; Kubis, B.
2017-03-01
Low-energy pion-nucleon scattering is relevant for many areas in nuclear and hadronic physics, ranging from the scalar couplings of the nucleon to the long-range part of two-pion-exchange potentials and three-nucleon forces in Chiral Effective Field Theory. In this talk, we show how the fruitful combination of dispersion-theoretical methods, in particular in the form of Roy-Steiner equations, with modern high-precision data on hadronic atoms allows one to determine the pion-nucleon scattering amplitudes at low energies with unprecedented accuracy. Special attention will be paid to the extraction of the pion-nucleon σ-term, and we discuss in detail the current tension with recent lattice results, as well as the determination of the low-energy constants of chiral perturbation theory.
International Nuclear Information System (INIS)
Burleson, G.R.
1987-01-01
We are applying for a three-year grant from the US Department of Energy to New Mexico State University to continue its support of our work on experimental studies of nucleon-nucleon and pion-nucleus interactions at intermediate energies, which has been carried out in collaboration with groups from various laboratories and universities. The nucleon-nucleon work is aimed at making measurements that will contribute to a determination of the isospin-zero amplitudes, as well as continuing our investigations of evidence for dibaryon resonances. It is based at the LAMPF accelerator in Los Alamos, New Mexico. Current and planned experiments include measurements of total cross-section differences in pure spin states and of spin parameters in neutron-proton scattering. The pion-nucleus work is aimed at improving our understanding both of the nature of the pion-nucleus interaction and of nuclear structure. It consists of two programs, one based at LAMPF and one based principally at the SIN laboratory in Switzerland. The LAMPF-based work involves studies of large-angle scattering, double-charge-exchange scattering, including measurements at a new energy range above 300 MeV, and a new program of experiments with polarized nuclear targets. The SIN-based work involves studies of quasielastic scattering and absorption, including experiments with a new large-acceptance detector system planned for construction there. We are requesting support to continue the LAMPF-based work at its current level and to expand the SIN-based work to allow for increased involvement in experiments with the new detector system. 57 refs
First measurement of the gluon polarisation in the nucleon using D mesons at COMPASS
von Hodenberg, Martin
2005-01-01
The complicated structure of the nucleon has been studied with great success in deep-inelastic lepton-nucleon scattering (DIS) experiments at CERN, SLAC and DESY. As a result the unpolarised structure functions have been measured accurately over a wide kinematic range. From these measurements it is possible to determine the gluon density in the nucleon with good accuracy via a so-called QCD fit. In the case of the spin structure of the nucleon the situation is different. Even after decades of experimental and theoretical efforts it remains to be understood how the spin of the nucleon of 1/2 in units of h-bar is to be accounted for in terms of contributions from the quarks and gluons inside the nucleon. Of particular interest is the question whether the polarised gluon density can explain the unexpected smallness of the quark contribution to the nucleon spin. The QCD fit, which worked well in the unpolarised case, yields a polarised gluon density Delta G which is only badly constrained. This is due to the fact...
Energy Technology Data Exchange (ETDEWEB)
Farag, M.Y.H.; Esmael, E.H. [Cairo University, Physics Department, Faculty of Science, Giza (Egypt); Maridi, H.M. [Cairo University, Physics Department, Faculty of Science, Giza (Egypt); Taiz University, Physics Department, Faculty of Applied Science, Taiz (Yemen)
2012-11-15
The proton elastic scattering data on some light exotic nuclei, namely, {sup 6,} {sup 8}He, {sup 9,} {sup 11}Li, and {sup 10,} {sup 11,} {sup 12}Be, at energies below than 100MeV/nucleon are analyzed using the single folding optical model. The real, imaginary, and spin-orbit parts of the optical potential (OP) are constructed only from the folded potentials and their derivatives using M3Y effective nucleon-nucleon interaction. These OP parts, their renormalization factors and their volume integrals are studied. The surface and spin-orbit potentials are important to fit the experimental data. Three model densities for halo nuclei are used and the sensitivity of the cross-sections to these densities is tested. The imaginary OP within high-energy approximation is used and compared with the single folding OP. This OP with few and limited fitting parameters, which have systematic behavior with incident energy, successfully describes the proton elastic scattering data with exotic nuclei. (orig.)
Devices and process for high-pressure magic angle spinning nuclear magnetic resonance
Energy Technology Data Exchange (ETDEWEB)
Hoyt, David W.; Sears, Jesse A.; Turcu, Romulus V. F.; Rosso, Kevin M.; Hu, Jian Zhi
2017-12-05
A high-pressure magic angle spinning (MAS) rotor is detailed that includes a high-pressure sample cell that maintains high pressures exceeding 150 bar. The sample cell design minimizes pressure losses due to penetration over an extended period of time.
Devices and process for high-pressure magic angle spinning nuclear magnetic resonance
Hoyt, David W; Sears, Jr., Jesse A; Turcu, Romulus V.F.; Rosso, Kevin M; Hu, Jian Zhi
2014-04-08
A high-pressure magic angle spinning (MAS) rotor is detailed that includes a high-pressure sample cell that maintains high pressures exceeding 150 bar. The sample cell design minimizes pressure losses due to penetration over an extended period of time.
Adolph, C; Alexakhin, V Yu; Alexandrov, Yu; Alexeev, G D; Amoroso, A; Antonov, A A; Austregesilo, A; Badelek, B; Balestra, F; Barth, J; Baum, G; Bedfer, Y; Bernhard, J; Bertini, R; Bettinelli, M; Bicker, K; Bieling, J; Birsa, R; Bisplinghoff, J; Bordalo, P; Bradamante, F; Braun, C; Bravar, A; Bressan, A; Burtin, E; Chiosso, M; Chung, S U; Cicuttin, A; Crespo, M L; Dalla Torre, S; Das, S; Dasgupta, S S; Dasgupta, S; Denisov, O Yu; Dhara, L; Donskov, S V; Doshita, N; Duic, V; Dünnweber, W; Dziewiecki, M; Efremov, A; Elia, C; Eversheim, P D; Eyrich, W; Faessler, M; Ferrero, A; Filin, A; Finger, M; Finger, M; Fischer, H; Franco, C; du Fresne von Hoheneschedu, N; Friedrich, J M; Frolov, V; Garfagnini, R; Gautheron, F; Gavrichtchouk, O P; Gerassimov, S; Geyer, R; Giorgi, M; Gnesi, I; Gobbo, B; Goertz, S; Grabmüller, S; Grasso, A; Grube, B; Gushterski, R; Guskov, A; Guthörl, T; Haas, F; von Harrach, D; Heinsius, F H; Herrmann, F; Hess, C; Hinterberger, F; Horikawa, N; Höppner, Ch; d'Hose, N; Ishimoto, S; Ivanov, O; Ivanshin, Yu; Iwata, T; Jahn, R; Jary, V; Jasinski, P; Joosten, R; Kabuss, E; Kang, D; Ketzer, B; Khaustov, G V; Khokhlov, Yu A; Kisselev, Yu; Klein, F; Klimaszewski, K; Koblitz, S; Koivuniemi, J H; Kolosov, V N; Kondo, K; Königsmann, K; Konorov, I; Konstantinov, V F; Korzenev, A; Kotzinian, A M; Kouznetsov, O; Krämer, M; Kroumchtein, Z V; Kuhn, R; Kunne, F; Kurek, K; Lauser, L; Lednev, A A; Lehmann, A; Levorato, S; Lichtenstadt, J; Liska, T; Maggiora, A; Magnon, A; Makke, N; Mallot, G K; Mann, A; Marchand, C; Martin, A; Marzec, J; Matsuda, T; Meshcheryakov, G; Meyer, W; Michigami, T; Mikhailov, Yu V; Moinester, M A; Morreale, A; Mutter, A; Nagaytsev, A; Nagel, T; Negrini, T; Nerling, F; Neubert, S; Neyret, D; Nikolaenko, V I; Nowak, W -D; Nunes, A S; Olshevsky, A G; Ostrick, M; Padee, A; Panknin, R; Panzieri, D; Parsamyan, B; Paul, S; Perevalova, E; Pesaro, G; Peshekhonov, D V; Piragino, G; Platchkov, S; Pochodzalla, J; Polak, J; Polyakov, V A; Pretz, J; Quaresma, M; Quintans, C; Rajotte, J -F; Ramos, S; Rapatsky, V; Reicherz, G; Richter, A; Rocco, E; Rondio, E; Rossiyskaya, N S; Ryabchikov, D I; Samoylenko, V D; Sandacz, A; Sapozhnikov, M G; Sarkar, S; Savin, I A; Sbrizzai, G; Schiavon, P; Schill, C; Schlüter, T; Schmidt, K; Schmitt, L; Schönning, K; Schopferer, S; Schott, M; Schröder, W; Shevchenko, O Yu; Silva, L; Sinha, L; Sissakian, A N; Slunecka, M; Smirnov, G I; Sosio, S; Sozzi, F; Srnka, A; Steiger, L; Stolarski, M; Sulc, M; Sulej, R; Sznajder, P; Takekawa, S; Ter Wolbeek, J; Tessaro, S; Tessarotto, F; Tkatchev, L G; Uhl, S; Uman, I; Vandenbroucke, M; Virius, M; Vlassov, N V; Wang, L; Windmolders, R; Wislicki, W; Wollny, H; Zaremba, K; Zavertyaev, M; Zemlyanichkina, E; Ziembicki, M; Zhuravlev, N; Zvyagin, A
2013-01-01
The cross section for production of charged hadrons with high transverse momenta in scattering of 160 GeV/c muons off nucleons at low photon virtualities has been measured at the COMPASS experiment at CERN. The results, which cover transverse momenta from 1.1 to 3.6 GeV/c, are compared to a next-to-leading order perturbative Quantum Chromodynamics (NLO pQCD) calculation in order to evaluate the applicability of pQCD to this process in the kinematic domain of the experiment. The shape of the calculated differential cross section as a function of transverse momentum is found to be in good agreement with the experimental data, but the normalization is underestimated by NLO pQCD. This discrepancy may point towards the relevance of terms beyond NLO in the pQCD framework. The dependence of the cross section on the pseudo-rapidity and on the charge of the hadrons is also discussed.
Shang, Jianyu; Deng, Zhihong; Fu, Mengyin; Wang, Shunting
2016-06-16
Traditional artillery guidance can significantly improve the attack accuracy and overall combat efficiency of projectiles, which makes it more adaptable to the information warfare of the future. Obviously, the accurate measurement of artillery spin rate, which has long been regarded as a daunting task, is the basis of precise guidance and control. Magnetoresistive (MR) sensors can be applied to spin rate measurement, especially in the high-spin and high-g projectile launch environment. In this paper, based on the theory of a MR sensor measuring spin rate, the mathematical relationship model between the frequency of MR sensor output and projectile spin rate was established through a fundamental derivation. By analyzing the characteristics of MR sensor output whose frequency varies with time, this paper proposed the Chirp z-Transform (CZT) time-frequency (TF) domain analysis method based on the rolling window of a Blackman window function (BCZT) which can accurately extract the projectile spin rate. To put it into practice, BCZT was applied to measure the spin rate of 155 mm artillery projectile. After extracting the spin rate, the impact that launch rotational angular velocity and aspect angle have on the extraction accuracy of the spin rate was analyzed. Simulation results show that the BCZT TF domain analysis method can effectively and accurately measure the projectile spin rate, especially in a high-spin and high-g projectile launch environment.
Spin dynamics on cyclic iron wheels in high magnetic fields
International Nuclear Information System (INIS)
Schnelzer, Lars
2008-01-01
In the present thesis the spin dynamics of cyclic spin-cluster compounds, the so called ''ferric wheels'' were studied by means of the NMR. In the iron wheels Li/Na rate at Fe 6 (tea) 6 and Cs rate at Fe 8 (tea) 8 as probes of NMR both the protons and the centrally lying alkali atoms 7 Li, 23 Na, and 133 Cs were available. For this purpose measurements in the magnetic field region up to B=20 T and at temperatures between room temperature and T=50 mK were performed. The longitudinal relaxation rate was temperature dependently studied at two field values on the lithium cluster and a frequency independent maximum of the relaxation rate at a temperature of T∼30 K resulted. Different behaviour showed the measurement on the sodium cluster. the longitudinal relaxation rate slopes linearly with the temperature and shows no maximum. The two quadrupole satellites of the 23 Na could be resolved. From the distance of the satellites to the central transition both on the field gradient of the iron ring and on the orientation of the symmetry axis to the external magnetic field could be concluded. The determined field gradient of the Na rate at Fe 6 (tea) 6 of eq=4.78(11).10 20 V/m 2 was in very good agreement with the present theoretically calculated value. The orientation of the crystal was determined to θ(c,B)=62.8 . The very low splitting of the 7 Li NMR spectrum of the lithium cluster allows to give as upper limit for the value of the field gradient eq=1.82(11).10 20 V/m 2 . From the seven lines of the cesium spectrum theoretically to be expected five were resolved. The evaluation yielded for the cesium ring a value of eq=-1.3(1).10 21 V/m 2 . The study of the field-dependent line position of the 23 Na NMR line led to the determination of the parameter of the transferred hyperfine interaction to A tHf /2π=140 kHz. For the first time on a cyclic iron cluster a level crossing could be studied by means of the central ion. The temperature dependence of the longitudinal
International Nuclear Information System (INIS)
Brown, V.R.
1990-01-01
Nucleon-nucleon bremsstrahlung, NNγ, is a fundamental process, which involves the strong and electromagnetic fields acting simultaneously. Since the electromagnetic interaction is well known, NNγ provides a calculable tool for comparing off-energy-shell effects from different two-nucleon potentials compared to experiment and also provides a simple testing ground, which is sensitive to meson-exchange-current contributions that are so important in electronuclear physics. Historically, experimental studies have focused on ppγ, with only a few measurements of npγ. The present workshop was organized primarily to investigate the interest in, the value of, and the feasibility of doing an npγ experiment using the neutron white source at LANL. An increasing amount of US nuclear physics dollars are being spent on electronuclear physics. npγ is a fundamental process with large meson-exchange currents. In the npγ calculations of Brown and Franklin, the meson-exchange contributions increase the cross section by a factor of roughly two and later the angular distribution of the emitted photon dramatically. The details of these calculated effects have never been verified experimentally, but the proper quantum-mechanical inclusion of meson-exchange contributions, using the methods of brown and Franklin, has proved to be essential in understanding the heavy-ion results. The understanding of the importance of such terms is extremely important inelectronuclear processes, such as are presently under investigation or being planned at Bates, SLAC, and CEBAF. Just one example is in the electrodisintegration of the deuteron, where meson-exchange contributions must be included properly before any conclusions about nuclear models, such as QCD versus meson-exchange potentials can be made
Chiral symmetry and the nucleon--nucleon interaction
International Nuclear Information System (INIS)
Brown, G.E.
1977-01-01
The nucleon--nucleon interaction is understood in terms of a dynamic model, the sigma model. The anti NN → ππ helicity amplitudes are assumed to be physical data, and the dynamical model must reproduce these data, more or less. 14 references
Solitary wave exchange potential and nucleon-nucleon interaction
International Nuclear Information System (INIS)
Prema, K.; Raghavan, S.S.; Sekhar Raghavan
1986-11-01
Nucleon-nucleon interaction is studied using a phenomenological potential model called solitary wave exchange potential model. It is shown that this simple model reproduces the singlet and triplet scattering data and the deuteron parameters reasonably well. (author). 6 refs, 2 figs, 1 tab
International Nuclear Information System (INIS)
Simon, G.G.
1978-01-01
In this thesis results of measurements of the differential cross sections of the elastic and inelastic electron deuteron scattering are presented. The data were taken at several scattering angles and in the electron energy range of 150 MeV up to 320 MeV. The extracted form factors and structure functions are compared with theoretical results which are sensitive to details of nucleon structure and of the nucleon-nucleon forces. (FKS)
Nucleon-nucleon forces in the quark compound bag model and few-nucleon systems
International Nuclear Information System (INIS)
Kalashnikova, Yu.S.; Narodetskij, I.M.
1984-01-01
Role of quark-gluon degrees of freedom is discussed in nucleon-nucleon scattering at low and intermediate energies. It is shown that the existence of six-quark hags fixes the form of NN potential at small distances, which leads to the P-matrix satisfying the criterion of Jaffe and Low. The dynamical model of three-nucleon system is discussed taking into accoint the contribution of six-quark bags
Δ-excitations and the three-nucleon force
International Nuclear Information System (INIS)
Epelbaum, E.; Krebs, H.; Meissner, Ulf-G.
2008-01-01
We study the three-nucleon force in chiral effective field theory with explicit Δ-resonance degrees of freedom. We show that up to next-to-next-to-leading order, the only contribution to the isospin symmetric three-nucleon force involving the spin-3/2 degrees of freedom is given by the two-pion-exchange diagram with an intermediate delta, frequently called the Fujita-Miyazawa force. We also analyze the leading isospin-breaking corrections due to the delta. For that, we give the first quantitative analysis of the delta quartet mass splittings in chiral effective field theory including the leading electromagnetic corrections. The charge-symmetry breaking three-nucleon force due to an intermediate delta excitation is small, of the order of a few keV
Spectroscopy of high-spin states of 206Po
International Nuclear Information System (INIS)
Baxter, A.M.; Byrne, A.P.; Dracoulis, G.D.; Bark, R.A.; Riess, F.; Stuchbery, A.E.; Kruse, M.C.; Poletti, A.R.
1990-05-01
The yrast and near-yrast energy levels of 206 Po have been investigated to over 9 MeV excitation and up to spins with J=24. The measure-ments consisted of γ-γ coincidence data, internal-conversion-electron spectra, time spectra of γ-rays relative to a pulsed beam, excitation functions and γ-ray angular distributions. Two new isomers, with lifetime in the one-nonasecond range,were found. The observed structure is compared with the predictions of empirical shell-model calculations in which 206 Po is regarded as a 208 Pb core with two valence protons and four valence neutron holes. The agreement is generaly satisfactory for the observed odd-parity levels and for even parity levels with J > 12; those with J = 6 to 12 are better accounted for by weak coupling of two valence protons to a 204 Pb core in its 0 + 1, 2 + 1 and 4 + 1 states. 33 refs., 7 tabs., 12 figs
High-fidelity gates in quantum dot spin qubits.
Koh, Teck Seng; Coppersmith, S N; Friesen, Mark
2013-12-03
Several logical qubits and quantum gates have been proposed for semiconductor quantum dots controlled by voltages applied to top gates. The different schemes can be difficult to compare meaningfully. Here we develop a theoretical framework to evaluate disparate qubit-gating schemes on an equal footing. We apply the procedure to two types of double-dot qubits: the singlet-triplet and the semiconducting quantum dot hybrid qubit. We investigate three quantum gates that flip the qubit state: a DC pulsed gate, an AC gate based on logical qubit resonance, and a gate-like process known as stimulated Raman adiabatic passage. These gates are all mediated by an exchange interaction that is controlled experimentally using the interdot tunnel coupling g and the detuning [Symbol: see text], which sets the energy difference between the dots. Our procedure has two steps. First, we optimize the gate fidelity (f) for fixed g as a function of the other control parameters; this yields an f(opt)(g) that is universal for different types of gates. Next, we identify physical constraints on the control parameters; this yields an upper bound f(max) that is specific to the qubit-gate combination. We show that similar gate fidelities (~99:5%) should be attainable for singlet-triplet qubits in isotopically purified Si, and for hybrid qubits in natural Si. Considerably lower fidelities are obtained for GaAs devices, due to the fluctuating magnetic fields ΔB produced by nuclear spins.
Nucleon-nucleon scattering at LAMPF and KEK
International Nuclear Information System (INIS)
Glass, G.
1988-01-01
A review of current measurements of spin-dependent observables in p-p and n-p scattering is given for experiments done at two laboratories, Clinton P. Anderson Meson Physics Facility at Los Alamos (LAMPF) and the National Laboratory for High Energy Physics in Japan (KEK). 18 refs., 12 figs
Rodriguez, Carl L; Amaro-Seoane, Pau; Chatterjee, Sourav; Rasio, Frederic A
2018-04-13
We present models of realistic globular clusters with post-Newtonian dynamics for black holes. By modeling the relativistic accelerations and gravitational-wave emission in isolated binaries and during three- and four-body encounters, we find that nearly half of all binary black hole mergers occur inside the cluster, with about 10% of those mergers entering the LIGO/Virgo band with eccentricities greater than 0.1. In-cluster mergers lead to the birth of a second generation of black holes with larger masses and high spins, which, depending on the black hole natal spins, can sometimes be retained in the cluster and merge again. As a result, globular clusters can produce merging binaries with detectable spins regardless of the birth spins of black holes formed from massive stars. These second-generation black holes would also populate any upper mass gap created by pair-instability supernovae.
Rodriguez, Carl L.; Amaro-Seoane, Pau; Chatterjee, Sourav; Rasio, Frederic A.
2018-04-01
We present models of realistic globular clusters with post-Newtonian dynamics for black holes. By modeling the relativistic accelerations and gravitational-wave emission in isolated binaries and during three- and four-body encounters, we find that nearly half of all binary black hole mergers occur inside the cluster, with about 10% of those mergers entering the LIGO/Virgo band with eccentricities greater than 0.1. In-cluster mergers lead to the birth of a second generation of black holes with larger masses and high spins, which, depending on the black hole natal spins, can sometimes be retained in the cluster and merge again. As a result, globular clusters can produce merging binaries with detectable spins regardless of the birth spins of black holes formed from massive stars. These second-generation black holes would also populate any upper mass gap created by pair-instability supernovae.
Proceedings of the workshop on two-nucleon system
International Nuclear Information System (INIS)
Kawaguchi, Masaaki; Namiki, Mikio; Fukawa, Mineo; Masaike, Akira
1980-08-01
The workshop on two nucleon system started its works four years ago to promote the experiment project on nucleon-nucleon system in the National Laboratory for High Energy Physics by the close cooperation of experimenters and theorists. In particular, several proposals have been made about the experiments using the polarized targets of hydrogen and deuterium, the spectrometers of large solid angle and others, and the investigation into them have been forwarded. It was decided to publish the results of the fourth meeting held in the National Laboratory for High Energy Physics on October 19 and 20, 1979, as the interim report, summarizing the contents. Some of the initial objectives have not been realized yet, but the data have been produced gradually from the experiments in the National Laboratory for High Energy Physics, and are contributing to various analyses. This report is composed of the physics of nucleon-nucleon systems and anti-nucleon-nucleon systems, the results of experiments and the projects corresponding to them, and the hypothetic round-table talk on the points which this workshop considers as problematic and the views of outside researchers on the National Laboratory for High Energy Physics. Finally, the materials distributed at the time of the meeting are added for reference as the appendix. Some numerical values are mutually different, but adjustment was not made. (Kako, I.)
High spin levels in 62Zn, 64Zn, 66Zn, and 68Zn
International Nuclear Information System (INIS)
Bruandet, J.-F.
1976-01-01
Investigation by in-beam gamma spectroscopy of high-spin states in the even zinc isotopes has been made using the Ni(α,2nγ)Zn reactions at Esub(α) approximately equal to 30MeV for 62 Zn, 64 Zn and 66 Zn, and the 65 Cu(α,pγ) reaction at Esub(α) approximately equal to 18MeV for 68 Zn. The high-spin states feeding by varying the incident particles: p, 3 He,α, 12 C is discussed. It is pointed out that the gsub(9/2) orbital plays an important role in the structure of the high-spin states. The variation of the inertia momentum throughout the yrast line shows a backbending behavior and a shape transition associated to the occurence, for J>6, of rotational states is speculated [fr
Isospin breaking in the pion-nucleon coupling constant and the nucleon-nucleon scattering length
Directory of Open Access Journals (Sweden)
V. A. Babenko
2016-08-01
Full Text Available Charge independence breaking (CIB in the pion-nucleon coupling constant and the nucleon-nucleon scattering length is considered on the basis of the Yukawa meson theory. CIB effect in these quantities is almost entirely explained by the mass difference between the charged and the neutral pions. Therewith charge splitting of the pion-nucleon coupling constant is almost the same as charge splitting of the pion mass. Calculated difference between the proton-proton and the neutron-proton scattering length in this case comprises ∼90% of the experimental value.
International Nuclear Information System (INIS)
Bunce, G.
1995-01-01
Colliding beams of high energy polarized protons at RHIC is an excellent way to probe the polarization of gluons, u and d quarks in a polarized proton. RHIC is the Relativistic Heavy Ion Collider being built now at Brookhaven in the ISABELLE tunnel. It is designed to collide gold ions on gold ions at 100 GeV/nucleon. Its goal is to discover the quark-gluon plasma, and the first collisions are expected in March, 1999. RHIC will also make an ideal polarized proton collider with high luminosity and 250 GeV x 250 GeV collisions. The RHIC spin physics program is: (1) Use well-understood perturbative QCD probes to study non-perturbative confining dynamics in QCD. We will measure - gluon and sea quark polarization in a polarized proton, polarization of quarks in a transversely polarized proton. (2) Look for additional surprises using the first high energy polarized proton collider. We will - look for the expected maximal parity violation in W and Z boson production, - search for parity violation in other processes, - test parton models with spin. This lecture is organized around a few of the key ideas: Siberian Snakes--What are they? High energy proton-proton collisions are scatters of quarks and leptons, at high x, a polarized proton beam is a beam of polarized u quarks, quark and gluon collisions are very sensitive to spin. We will discuss two reactions: how direct photon production measures gluon polarization, and how W + boson production measures u and d quark polarization
Energy Technology Data Exchange (ETDEWEB)
Bunce, G.
1995-12-31
Colliding beams of high energy polarized protons at RHIC is an excellent way to probe the polarization of gluons, u and d quarks in a polarized proton. RHIC is the Relativistic Heavy Ion Collider being built now at Brookhaven in the ISABELLE tunnel. It is designed to collide gold ions on gold ions at 100 GeV/nucleon. Its goal is to discover the quark-gluon plasma, and the first collisions are expected in March, 1999. RHIC will also make an ideal polarized proton collider with high luminosity and 250 GeV x 250 GeV collisions. The RHIC spin physics program is: (1) Use well-understood perturbative QCD probes to study non-perturbative confining dynamics in QCD. We will measure - gluon and sea quark polarization in a polarized proton, polarization of quarks in a transversely polarized proton. (2) Look for additional surprises using the first high energy polarized proton collider. We will - look for the expected maximal parity violation in W and Z boson production, - search for parity violation in other processes, - test parton models with spin. This lecture is organized around a few of the key ideas: Siberian Snakes--What are they? High energy proton-proton collisions are scatters of quarks and leptons, at high x, a polarized proton beam is a beam of polarized u quarks, quark and gluon collisions are very sensitive to spin. We will discuss two reactions: how direct photon production measures gluon polarization, and how W{sup +} boson production measures u and d quark polarization.
Smeigh, Amanda L; Creelman, Mark; Mathies, Richard A; McCusker, James K
2008-10-29
A combination of femtosecond electronic absorption and stimulated Raman spectroscopies has been employed to determine the kinetics associated with low-spin to high-spin conversion following charge-transfer excitation of a FeII spin-crossover system in solution. A time constant of tau = 190 +/- 50 fs for the formation of the 5T2 ligand-field state was assigned based on the establishment of two isosbestic points in the ultraviolet in conjunction with changes in ligand stretching frequencies and Raman scattering amplitudes; additional dynamics observed in both the electronic and vibrational spectra further indicate that vibrational relaxation in the high-spin state occurs with a time constant of ca. 10 ps. The results set an important precedent for extremely rapid, formally forbidden (DeltaS = 2) nonradiative relaxation as well as defining the time scale for intramolecular optical switching between two electronic states possessing vastly different spectroscopic, geometric, and magnetic properties.
Observation of a new high-spin isomer in 94Pd
International Nuclear Information System (INIS)
Brock, T. S.; Nara Singh, B. S.; Wadsworth, R.; Boutachkov, P.; Gorska, M.; Grawe, H.; Pietri, S.; Domingo-Pardo, C.; Caceres, L.; Engert, T.; Farinon, F.; Gerl, J.; Goel, N.; Kojuharov, I.; Kurz, N.; Nociforo, C.; Prochazka, A.; Schaffner, H.; Weick, H.; Braun, N.
2010-01-01
A second γ-decaying high-spin isomeric state, with a half-life of 197(22)ns, has been identified in the N=Z+2 nuclide 94 Pd as part of a stopped-beam Rare Isotope Spectroscopic INvestigation at GSI (RISING) experiment. Weisskopf estimates were used to establish a tentative spin/parity of 19 - , corresponding to the maximum possible spin of a negative parity state in the restricted (p 1/2 , g 9/2 ) model space of empirical shell model calculations. The reproduction of the E3 decay properties of the isomer required an extension of the model space to include the f 5/2 and p 3/2 orbitals using the CD-Bonn potential. This is the first time that such an extension has been required for a high-spin isomer in the vicinity of 100 Sn and reveals the importance of such orbits for understanding the decay properties of high-spin isomers in this region. However, despite the need for the extended model space for the E3 decay, the dominant configuration for the 19 - state remains (πp 1/2 -1 g 9/2 -3 ) 11 x (νg 9/2 -2 ) 8 . The half-life of the known, 14 + , isomer was remeasured and yielded a value of 499(13) ns.