WorldWideScience

Sample records for nucleon form factor

  1. Nucleon Electromagnetic Form Factors

    Energy Technology Data Exchange (ETDEWEB)

    Marc Vanderhaeghen; Charles Perdrisat; Vina Punjabi

    2007-10-01

    There has been much activity in the measurement of the elastic electromagnetic proton and neutron form factors in the last decade, and the quality of the data has greatly improved by performing double polarization experiments, in comparison with previous unpolarized data. Here we review the experimental data base in view of the new results for the proton, and neutron, obtained at JLab, MAMI, and MIT-Bates. The rapid evolution of phenomenological models triggered by these high-precision experiments will be discussed, including the recent progress in the determination of the valence quark generalized parton distributions of the nucleon, as well as the steady rate of improvements made in the lattice QCD calculations.

  2. Nucleon quark structure and strong meson-nucleon form factors

    International Nuclear Information System (INIS)

    Efimov, G.V.; Ivanov, M.A.

    1987-01-01

    The nucleon is considered as a three-quark system in virton-quark model. The main statistic properties of proton and neutron are calculated: magnetic moments, electromagnetic radii, G A /G V ratio in weak neutron decay. Strong meson-nucleon form factors which determine nucleon-nucleon potential are obtained as a function of squared transfer momentum of mesons. The results are compared with phenomenological form factors used for description of phases of NN-scattering in the one-boson-, exchange model

  3. Charge-symmetry-breaking nucleon form factors

    Energy Technology Data Exchange (ETDEWEB)

    Kubis, Bastian, E-mail: kubis@hiskp.uni-bonn.de [Universitaet Bonn, Helmholtz-Institut fuer Strahlen- und Kernphysik (Theorie) and Bethe Center for Theoretical Physics (Germany)

    2011-11-15

    A quantitative understanding of charge-symmetry breaking is an increasingly important ingredient for the extraction of the nucleon's strange vector form factors. We review the theoretical understanding of the charge-symmetry-breaking form factors, both for single nucleons and for {sup 4}He.

  4. Medium modifications of nucleon electromagnetic form factors

    Energy Technology Data Exchange (ETDEWEB)

    Horikawa, T. [Department of Physics, School of Science, Tokai University, Hiratsuka-shi, Kanagawa 259-1292 (Japan); Bentz, W. [Department of Physics, School of Science, Tokai University, Hiratsuka-shi, Kanagawa 259-1292 (Japan)]. E-mail: bentz@keyaki.cc.u-tokai.ac.jp

    2005-11-28

    We use the Nambu-Jona-Lasinio model as an effective quark theory to investigate the medium modifications of the nucleon electromagnetic form factors. By using the equation of state of nuclear matter derived in this model, we discuss the results based on the naive quark-scalar diquark picture, the effects of finite diquark size, and the meson cloud around the constituent quarks. We apply this description to the longitudinal response function for quasielastic electron scattering. RPA correlations, based on the nucleon-nucleon interaction derived in the same model, are also taken into account in the calculation of the response function.

  5. Charge-symmetry-breaking nucleon form factors

    International Nuclear Information System (INIS)

    Kubis, Bastian

    2011-01-01

    A quantitative understanding of charge-symmetry breaking is an increasingly important ingredient for the extraction of the nucleon’s strange vector form factors. We review the theoretical understanding of the charge-symmetry-breaking form factors, both for single nucleons and for 4 He.

  6. Calculation of nucleon electromagnetic form factors

    International Nuclear Information System (INIS)

    Renner, D.B.; Brower, R.; Dolgov, D.; Eicker, N.; Lippert, Th.; Negele, J.W.; Pochinsky, A.; Schilling, K.

    2003-01-01

    The formalism is developed to express nucleon matrix elements of the electromagnetic current in terms of form factors consistent with the translational, rotational, and parity symmetries of a cubic lattice. We calculate the number of these form factors and show how appropriate linear combinations approach the continuum limit

  7. Simple parametrization of nucleon form factors

    International Nuclear Information System (INIS)

    Kelly, J.J.

    2004-01-01

    This Brief Report provides simple parametrizations of the nucleon electromagnetic form factors using functions of Q 2 that are consistent with dimensional scaling at high Q 2 . Good fits require only four parameters each for G Ep , G Mp , and G Mn and only two for G En

  8. Recent Studies of Nucleon Electromagnetic Form Factors

    International Nuclear Information System (INIS)

    Gilad, Shalev

    2010-01-01

    The electromagnetic form factors of nucleons are fundamental quantities in nucleon structure. As such, they have been studied extensively both theoretically and experimentally. Significant progress has been made with new measurements at Jlab, MAMI and MIT-Bates, with emphases on expanding the momentum-transfer range and on higher precision. In this paper, we describe the status of this field and present new results from measurements at both low and high momentum transfers. We also compare the experimental data to model predictions, and mention possible implications of the new results to other fields.

  9. Axial nucleon form factors from lattice QCD

    International Nuclear Information System (INIS)

    Alexandrou, C.; Brinet, M.; Carbonell, J.; Harraud, P. A.; Papinutto, M.; Constantinou, M.; Guichon, P.; Jansen, K.; Korzec, T.

    2011-01-01

    We present results on the nucleon axial form factors within lattice QCD using two flavors of degenerate twisted mass fermions. Volume effects are examined using simulations at two volumes of spatial length L=2.1 fm and L=2.8 fm. Cut-off effects are investigated using three different values of the lattice spacings, namely a=0.089 fm, a=0.070 fm and a=0.056 fm. The nucleon axial charge is obtained in the continuum limit and chirally extrapolated to the physical pion mass enabling comparison with experiment.

  10. Nucleon Form Factors Using Spin Degrees of Freedom

    International Nuclear Information System (INIS)

    Jones, Mark

    2002-01-01

    An overview of recent measurements of the neutron and proton electromagnetic form factors from double polarization experiments. Spin observables are sensitive to the product of nucleon form factor which allows access to the small nucleon electric form factors

  11. Nucleon electromagnetic form factors with Wilson fermions

    International Nuclear Information System (INIS)

    Goeckeler, M.; Haegler, P.; Horsley, R.

    2007-10-01

    The nucleon electromagnetic form factors continue to be of major interest for experimentalists and phenomenologists alike. They provide important insights into the structure of nuclear matter. For a range of interesting momenta they can be calculated on the lattice. The limiting factor continues to be the value of the pion mass. We present the latest results of the QCDSF collaboration using gauge configurations with two dynamical, non-perturbatively improved Wilson fermions at pion masses as low as 350 MeV. (orig.)

  12. Nucleon electromagnetic form factors with Wilson fermions

    Energy Technology Data Exchange (ETDEWEB)

    Goeckeler, M. [Regensburg Univ. (Germany). Inst. fuer Theoretische Physik; Haegler, P. [Technische Univ. Muenchen, Garching (Germany). Inst. fuer Theoretische Physik; Horsley, R. [Edinburgh Univ. (GB). School of Physics] (and others)

    2007-10-15

    The nucleon electromagnetic form factors continue to be of major interest for experimentalists and phenomenologists alike. They provide important insights into the structure of nuclear matter. For a range of interesting momenta they can be calculated on the lattice. The limiting factor continues to be the value of the pion mass. We present the latest results of the QCDSF collaboration using gauge configurations with two dynamical, non-perturbatively improved Wilson fermions at pion masses as low as 350 MeV. (orig.)

  13. Nucleon electromagnetic form factors from lattice QCD

    International Nuclear Information System (INIS)

    Alexandrou, C.; Koutsou, G.; Negele, J. W.; Tsapalis, A.

    2006-01-01

    We evaluate the isovector nucleon electromagnetic form factors in quenched and unquenched QCD on the lattice using Wilson fermions. In the quenched theory we use a lattice of spatial size 3 fm at β=6.0 enabling us to reach low momentum transfers and a lowest pion mass of about 400 MeV. In the unquenched theory we use two degenerate flavors of dynamical Wilson fermions on a lattice of spatial size 1.9 fm at β=5.6 and lowest pion mass of about 380 MeV enabling comparison with the results obtained in the quenched theory. that unquenching effects are small for the pion masses considered in this work. We compare our lattice results to the isovector part of the experimentally measured form factors

  14. Nucleon form factors. Probing the chiral limit

    Energy Technology Data Exchange (ETDEWEB)

    Goeckeler, M. [Regensburg Univ. (Germany). Inst. fuer Theoretische Physik; Haegler, P. [Technische Univ. Muenchen, Garching (Germany). Physik-Dept.; Horsley, R. [Edinburgh Univ. (GB). School of Physics] (and others)

    2006-10-15

    The electromagnetic form factors provide important hints for the internal structure of the nucleon and continue to be of major interest for experimentalists. For an intermediate range of momentum transfers the form factors can be calculated on the lattice. However, reliability of the results is limited by systematic errors due to the required extrapolation to physical quark masses. Chiral effective field theories predict a rather strong quark mass dependence in a range which was yet unaccessible for lattice simulations. We give an update on recent results from the QCDSF collaboration using gauge configurations with Nf=2, non-perturbatively O(a)-improved Wilson fermions at very small quark masses down to 340 MeV pion mass, where we start to probe the relevant quark mass region. (orig.)

  15. Nucleon form factors. Probing the chiral limit

    International Nuclear Information System (INIS)

    Goeckeler, M.; Haegler, P.; Horsley, R.

    2006-10-01

    The electromagnetic form factors provide important hints for the internal structure of the nucleon and continue to be of major interest for experimentalists. For an intermediate range of momentum transfers the form factors can be calculated on the lattice. However, reliability of the results is limited by systematic errors due to the required extrapolation to physical quark masses. Chiral effective field theories predict a rather strong quark mass dependence in a range which was yet unaccessible for lattice simulations. We give an update on recent results from the QCDSF collaboration using gauge configurations with Nf=2, non-perturbatively O(a)-improved Wilson fermions at very small quark masses down to 340 MeV pion mass, where we start to probe the relevant quark mass region. (orig.)

  16. Comments on electromagnetic form factors of the nucleon

    International Nuclear Information System (INIS)

    Sachs, R.G.; Wali, K.C.

    1989-01-01

    This paper draws the concept of nucleon form factors further to consider the electromagnetic aspect based on the magnetic moment of the nucleon. These are seen as valid physical interpretations of form factors in electron-nucleon interactions. A linear combination of two functions, associated with charge radius, is derived, which agreed well with experimental results. The paper also expands the specific form to include relativistic cases and consider appropriate frames of reference. (UK)

  17. Nucleon structure functions, resonance form factors, and duality

    International Nuclear Information System (INIS)

    Davidovsky, V.V.; Struminsky, B.V.

    2003-01-01

    The behavior of nucleon structure functions in the resonance region is explored. For form factors that describe resonance production, expressions are obtained that are dependent on the photon virtuality Q 2 , which have a correct threshold behavior, and which take into account available experimental data on resonance decay. Resonance contributions to nucleon structure functions are calculated. The resulting expressions are used to investigate quark-hadron duality in electron-nucleon scattering by taking the example of the structure function F 2

  18. Pseudoscalar form factors in tau-neutrino nucleon scattering

    International Nuclear Information System (INIS)

    Hagiwara, K.; Mawatari, K.; Yokoya, H.

    2004-01-01

    We investigate the pseudoscalar transition form factors of nucleon for quasi-elastic scattering and Δ resonance production in tau-neutrino nucleon scattering via the charged current interactions. Although the pseudoscalar form factors play an important role for the τ production in neutrino-nucleon scattering, these are not known well. In this Letter, we examine their effects in quasi-elastic scattering and Δ resonance production and find that the cross section, Q 2 distribution, and spin polarization of the produced τ ± leptons are quite sensitive to the pseudoscalar form factors

  19. Low-energy analysis of the nucleon electromagnetic form factors

    International Nuclear Information System (INIS)

    Kubis, Bastian.; Meissner, Ulf-G.

    2001-01-01

    We analyze the electromagnetic form factors of the nucleon to fourth order in relativistic baryon chiral perturbation theory. We employ the recently proposed infrared regularization scheme and show that the convergence of the chiral expansion is improved as compared to the heavy-fermion approach. We also discuss the inclusion of vector mesons and obtain an accurate description of all four-nucleon form factors for momentum transfer squared up to Q 2 ≅0.4 GeV 2

  20. Isospin Mixing in the Nucleon and 4He and the Nucleon Strange Electric Form Factor

    International Nuclear Information System (INIS)

    Viviani, M.; Girlanda, L.; Kievsky, A.; Marcucci, L. E.; Rosati, S.; Schiavilla, R.; Kubis, B.; Lewis, R.

    2007-01-01

    In order to isolate the contribution of the nucleon strange electric form factor to the parity-violating asymmetry measured in 4 He(e-vector,e ' ) 4 He experiments, it is crucial to have a reliable estimate of the magnitude of isospin-symmetry-breaking (ISB) corrections in both the nucleon and 4 He. We examine this issue in the present Letter. Isospin admixtures in the nucleon are determined in chiral perturbation theory, while those in 4 He are derived from nuclear interactions, including explicit ISB terms. A careful analysis of the model dependence in the resulting predictions for the nucleon and nuclear ISB contributions to the asymmetry is carried out. We conclude that, at the low momentum transfers of interest in recent measurements reported by the HAPPEX Collaboration at Jefferson Lab, these contributions are of comparable magnitude to those associated with strangeness components in the nucleon electric form factor

  1. Isospin mixing in the nucleon and He-4 and the nucleon strange electric form-factor

    International Nuclear Information System (INIS)

    M. Viviani; R. Schiavilla; B. Kubis; R. Lewis; L. Girlanda; A. Kievsky; L.E. Marcucci; S. Rosati

    2007-01-01

    In order to isolate the contribution of the nucleon strange electric form factor to the parity-violating asymmetry measured in 4 He((rvec e),e(prime)) 4 He experiments, it is crucial to have a reliable estimate of the magnitude of isospin-symmetry-breaking (ISB) corrections in both the nucleon and 4 He. We examine this issue in the present letter. Isospin admixtures in the nucleon are determined in chiral perturbation theory, while those in 4 He are derived from nuclear interactions, including explicit ISB terms. A careful analysis of the model dependence in the resulting predictions for the nucleon and nuclear ISB contributions to the asymmetry is carried out. We conclude that, at the low momentum transfers of interest in recent measurements reported by the HAPPEX collaboration at Jefferson Lab, these contributions are of comparable magnitude to those associated with strangeness components in the nucleon electric form factor

  2. Dispersion-theoretical analysis of the nucleon electromagnetic form factors

    Energy Technology Data Exchange (ETDEWEB)

    Belushkin, M.

    2007-09-29

    The structure of the proton and the neutron is of fundamental importance for the study of the strong interaction dynamics over a wide range of momentum transfers. The nucleon form factors encode information on the internal structure of the nucleon as probed by the electromagnetic interaction, and, to a certain extent, reflect the charge and magnetisation distributions within the proton and the neutron. In this thesis we report on our investigation of the electromagnetic form factors of the proton and the neutron with dispersion relation techniques, including known experimental input on the {pi}{pi}, K anti K and the {rho}{pi} continua and perturbative QCD constraints. We include new experimental data on the pion form factor and the nucleon form factors in our simultaneous analysis of all four form factors in both the space- and the timelike regions for all momentum transfers, and perform Monte- Carlo sampling in order to obtain theoretical uncertainty bands. Finally, we discuss the implications of our results on the pion cloud of the nucleon, the nucleon radii and the Okubo-Zweig-Iizuka rule, and present our results of a model-independent approach to estimating two-photon effects in elastic electron-proton scattering. (orig.)

  3. Dispersion-theoretical analysis of the nucleon electromagnetic form factors

    International Nuclear Information System (INIS)

    Belushkin, M.

    2007-01-01

    The structure of the proton and the neutron is of fundamental importance for the study of the strong interaction dynamics over a wide range of momentum transfers. The nucleon form factors encode information on the internal structure of the nucleon as probed by the electromagnetic interaction, and, to a certain extent, reflect the charge and magnetisation distributions within the proton and the neutron. In this thesis we report on our investigation of the electromagnetic form factors of the proton and the neutron with dispersion relation techniques, including known experimental input on the ππ, K anti K and the ρπ continua and perturbative QCD constraints. We include new experimental data on the pion form factor and the nucleon form factors in our simultaneous analysis of all four form factors in both the space- and the timelike regions for all momentum transfers, and perform Monte- Carlo sampling in order to obtain theoretical uncertainty bands. Finally, we discuss the implications of our results on the pion cloud of the nucleon, the nucleon radii and the Okubo-Zweig-Iizuka rule, and present our results of a model-independent approach to estimating two-photon effects in elastic electron-proton scattering. (orig.)

  4. Dispersive analysis of the scalar form factor of the nucleon

    Science.gov (United States)

    Hoferichter, M.; Ditsche, C.; Kubis, B.; Meißner, U.-G.

    2012-06-01

    Based on the recently proposed Roy-Steiner equations for pion-nucleon ( πN) scattering [1], we derive a system of coupled integral equations for the π π to overline N N and overline K K to overline N N S-waves. These equations take the form of a two-channel Muskhelishvili-Omnès problem, whose solution in the presence of a finite matching point is discussed. We use these results to update the dispersive analysis of the scalar form factor of the nucleon fully including overline K K intermediate states. In particular, we determine the correction {Δ_{σ }} = σ ( {2M_{π }^2} ) - {σ_{{π N}}} , which is needed for the extraction of the pion-nucleon σ term from πN scattering, as a function of pion-nucleon subthreshold parameters and the πN coupling constant.

  5. Skyrme-model πNN form factor and nucleon-nucleon interaction

    International Nuclear Information System (INIS)

    Holzwarth, G.; Machleidt, R.

    1997-01-01

    We apply the strong πNN form factor, which emerges from the Skyrme model, in the two-nucleon system using a one-boson-exchange (OBE) model for the nucleon-nucleon (NN) interaction. Deuteron properties and phase parameters of NN scattering are reproduced well. In contrast to the form factor of monopole shape that is traditionally used in OBE models, the Skyrme form factor leaves low-momentum transfers essentially unaffected while it suppresses the high-momentum region strongly. It turns out that this behavior is very appropriate for models of the NN interaction and makes it possible to use a soft pion form factor in the NN system. As a consequence, the πN and the NN systems can be described using the same πNN form factor, which is impossible with the monopole. copyright 1997 The American Physical Society

  6. Quark-flavor mixing and the nucleon strangeness form factors

    International Nuclear Information System (INIS)

    Ito, H.

    1995-01-01

    We have calculated the strangeness form factors of the nucleon G E s (Q), G M s (Q) and G A s (Q) and the electromagnetic form factors G E N (Q) as well, by using a relativistic constituent quark model of the nucleon wave function on the light-cone. Octet of Goldstone bosons (π, K, η) are assumed to induce the SU flavor mixing among the light constituent quarks; d-→K+s →d for example, and this mechanism induces the strangeness content in the nucleon. To calculate the meson-loop corrections to the electroweak couplings of constituent quarks, we have employed two models of the quark-meson vertex; (1) composite model of the Goldstone bosons (2) and (3) chiral quark Lagrangian. The loop momenta are regulated in a gauge-invariant way for both models

  7. Strange nucleon electromagnetic form factors from lattice QCD

    Science.gov (United States)

    Alexandrou, C.; Constantinou, M.; Hadjiyiannakou, K.; Jansen, K.; Kallidonis, C.; Koutsou, G.; Avilés-Casco, A. Vaquero

    2018-05-01

    We evaluate the strange nucleon electromagnetic form factors using an ensemble of gauge configurations generated with two degenerate maximally twisted mass clover-improved fermions with mass tuned to approximately reproduce the physical pion mass. In addition, we present results for the disconnected light quark contributions to the nucleon electromagnetic form factors. Improved stochastic methods are employed leading to high-precision results. The momentum dependence of the disconnected contributions is fitted using the model-independent z-expansion. We extract the magnetic moment and the electric and magnetic radii of the proton and neutron by including both connected and disconnected contributions. We find that the disconnected light quark contributions to both electric and magnetic form factors are nonzero and at the few percent level as compared to the connected. The strange form factors are also at the percent level but more noisy yielding statistical errors that are typically within one standard deviation from a zero value.

  8. Form factors and other measures of strangeness in the nucleon

    Energy Technology Data Exchange (ETDEWEB)

    Diehl, M. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Feldmann, T. [Siegen Univ. (Germany). Theoretische Physik I; Kroll, P. [Bergische Univ., Wuppertal (Germany). Fachbereich Physik

    2007-11-15

    We discuss the phenomenology of strange-quark dynamics in the nucleon, based on experimental and theoretical results for electroweak form factors and for parton densities. In particular, we construct a model for the generalized parton distribution that relates the asymmetry s(x)- anti s(x) between the longitudinal momentum distributions of strange quarks and antiquarks with the form factor F{sup s}{sub 1}(t), which describes the distribution of strangeness in transverse position space. (orig.)

  9. Form factors and other measures of strangeness in the nucleon

    International Nuclear Information System (INIS)

    Diehl, M.; Feldmann, T.; Kroll, P.

    2007-11-01

    We discuss the phenomenology of strange-quark dynamics in the nucleon, based on experimental and theoretical results for electroweak form factors and for parton densities. In particular, we construct a model for the generalized parton distribution that relates the asymmetry s(x)- anti s(x) between the longitudinal momentum distributions of strange quarks and antiquarks with the form factor F s 1 (t), which describes the distribution of strangeness in transverse position space. (orig.)

  10. Nucleon electromagnetic form factors in twisted mass lattice QCD

    International Nuclear Information System (INIS)

    Alexandrou, C.; Jansen, K.; Korzec, T.; Humboldt Univ. Berlin

    2011-02-01

    We present results on the nucleon electromagnetic form factors within lattice QCD using two flavors of degenerate twisted mass fermions. Volume effects are examined using simulations at two volumes of spatial length L=2.1 fm and L=2.8 fm. Cut-off effects are investigated using three different values of the lattice spacings, namely a=0.089 fm, a=0.070 fm and a=0.056 fm. The nucleon magnetic moment, Dirac and Pauli radii are obtained in the continuum limit and chirally extrapolated to the physical pion mass allowing for a comparison with experiment. (orig.)

  11. Nucleon electromagnetic form factors in twisted mass lattice QCD

    International Nuclear Information System (INIS)

    Alexandrou, C.; Brinet, M.; Carbonell, J.; Harraud, P. A.; Papinutto, M.; Guichon, P.; Jansen, K.; Korzec, T.; Constantinou, M.

    2011-01-01

    We present results on the nucleon electromagnetic form factors within lattice QCD using two flavors of degenerate twisted mass fermions. Volume effects are examined using simulations at two volumes of spatial length L=2.1 fm and L=2.8 fm. Cutoff effects are investigated using three different values of the lattice spacings, namely a=0.089 fm, a=0.070 fm and a=0.056 fm. The nucleon magnetic moment, Dirac and Pauli radii are obtained in the continuum limit and chirally extrapolated to the physical pion mass allowing for a comparison with experiment.

  12. Nucleon form factors with NF=2 twisted mass fermions

    International Nuclear Information System (INIS)

    Alexandrou, C.; Korzec, T.; Brinet, M.; Carbonell, J.; Harraud, P.A.; Jansen, K.

    2009-10-01

    We present results on the electromagnetic and axial nucleon form factors using two degenerate flavors of twisted mass fermions on lattices of spatial size 2.1 fm and 2.7 fm and a lattice spacing of about 0.09 fm. We consider pion masses in the range of 260-470MeV.We chirally extrapolate results on the nucleon axial charge, the isovector Dirac and Pauli root mean squared radii and magnetic moment to the physical point and compare to experiment. (orig.)

  13. Disconnected-Sea Quarks Contribution to Nucleon Electromagnetic Form Factors

    Science.gov (United States)

    Sufian, Raza Sabbir

    We present comprehensive analysis of the light and strange disconnected-sea quarks contribution to the nucleon electric and magnetic form factors. The lattice QCD estimates of strange quark magnetic moment GsM (0) = -0.064(14)(09) microN and the mean squared charge radius E = -0.0043(16)(14) fm2 are more precise than any existing experimental measurements and other lattice calculations. The lattice QCD calculation includes ensembles across several lattice volumes and lattice spacings with one of the ensembles at the physical pion mass. We have performed a simultaneous chiral, infinite volume, and continuum extrapolation in a global fit to calculate results in the continuum limit. We find that the combined light-sea and strange quarks contribution to the nucleon magnetic moment is -0.022(11)(09) microN and to the nucleon mean square charge radius is -0.019(05)(05) fm 2. The most important outcome of this lattice QCD calculation is that while the combined light-sea and strange quarks contribution to the nucleon magnetic moment is small at about 1%, a negative 2.5(9)% contribution to the proton charge radius and a relatively larger positive 16.3(6.1)% contribution to the neutron charge radius come from the sea quarks in the nucleon. For the first time, by performing global fits, we also give predictions of the light-sea and strange quarks contributions to the nucleon electric and magnetic form factors at the physical point and in the continuum and infinite volume limits in the momentum transfer range of 0 ≤ Q2 ≤ 0.5 GeV2.

  14. The Nucleon Axial Form Factor and Staggered Lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Aaron Scott [Chicago U.

    2017-01-01

    The study of neutrino oscillation physics is a major research goal of the worldwide particle physics program over the upcoming decade. Many new experiments are being built to study the properties of neutrinos and to answer questions about the phenomenon of neutrino oscillation. These experiments need precise theoretical cross sections in order to access fundamental neutrino properties. Neutrino oscillation experiments often use large atomic nuclei as scattering targets, which are challenging for theorists to model. Nuclear models rely on free-nucleon amplitudes as inputs. These amplitudes are constrained by scattering experiments with large nuclear targets that rely on the very same nuclear models. The work in this dissertation is the rst step of a new initiative to isolate and compute elementary amplitudes with theoretical calculations to support the neutrino oscillation experimental program. Here, the eort focuses on computing the axial form factor, which is the largest contributor of systematic error in the primary signal measurement process for neutrino oscillation studies, quasielastic scattering. Two approaches are taken. First, neutrino scattering data on a deuterium target are reanalyzed with a model-independent parametrization of the axial form factor to quantify the present uncertainty in the free-nucleon amplitudes. The uncertainties on the free-nucleon cross section are found to be underestimated by about an order of magnitude compared to the ubiquitous dipole model parametrization. The second approach uses lattice QCD to perform a rst-principles computation of the nucleon axial form factor. The Highly Improved Staggered Quark (HISQ) action is employed for both valence and sea quarks. The results presented in this dissertation are computed at physical pion mass for one lattice spacing. This work presents a computation of the axial form factor at zero momentum transfer, and forms the basis for a computation of the axial form factor momentum dependence

  15. Nucleon form factors, generalized parton distributions and quark angular momentum

    Energy Technology Data Exchange (ETDEWEB)

    Diehl, Markus [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Kroll, Peter [Bergische Univ., Wuppertal (Germany). Fachbereich Physik; Regensburg Univ. (Germany). Institut fuer Theoretische Physik

    2013-02-15

    We extract the individual contributions from u and d quarks to the Dirac and Pauli form factors of the proton, after a critical examination of the available measurements of electromagnetic nucleon form factors. From this data we determine generalized parton distributions for valence quarks, assuming a particular form for their functional dependence. The result allows us to study various aspects of nucleon structure in the valence region. In particular, we evaluate Ji's sum rule and estimate the total angular momentum carried by valence quarks at the scale {mu}=2 GeV to be J{sup u}{sub v}=0.230{sup +0.009}{sub -0.024} and J{sup d}{sub v}=-0.004{sup +0.010}{sub -0.016}.

  16. Nucleon form factors, generalized parton distributions and quark angular momentum

    International Nuclear Information System (INIS)

    Diehl, Markus; Kroll, Peter; Regensburg Univ.

    2013-02-01

    We extract the individual contributions from u and d quarks to the Dirac and Pauli form factors of the proton, after a critical examination of the available measurements of electromagnetic nucleon form factors. From this data we determine generalized parton distributions for valence quarks, assuming a particular form for their functional dependence. The result allows us to study various aspects of nucleon structure in the valence region. In particular, we evaluate Ji's sum rule and estimate the total angular momentum carried by valence quarks at the scale μ=2 GeV to be J u v =0.230 +0.009 -0.024 and J d v =-0.004 +0.010 -0.016 .

  17. Describing the nucleon electromagnetic form factors at high momentum transfers

    International Nuclear Information System (INIS)

    Theussl, L.; Desplanques, B.; Silvestre-Brac, B.; Varga, K.

    1999-01-01

    Electromagnetic form factors of the nucleon are calculated within the framework of a non-relativistic constituent-quark model. The emphasis is put on the reliability and accuracy of present day numerical methods used to solve the three-body problem. The high-q 2 behaviour of the form factors is determined by the form of the wave function at short distances and, due to the small absolute values that one deals with, an accurate solution is essential. Refs. 5, figs. 2 (author)

  18. Nucleon form factors on the lattice with light dynamical fermions

    International Nuclear Information System (INIS)

    Goeckeler, M.; Haegler, P.; Horsley, R.

    2007-09-01

    The electromagnetic form factors provide important insight into the internal structure of the nucleon and continue to be of major interest for experiment and phenomenology. For an intermediate range of momenta the form factors can be calculated on the lattice. However, the reliability of the results is limited by systematic errors mostly due to the required extrapolation to physical quark masses. Chiral effective field theories predict a rather strong quark mass dependence in a range which was yet inaccessible for lattice simulations. We give an update on recent results from the QCDSF collaboration using gauge configurations with dynamical N f =2, non-perturbatively O(a)-improved Wilson fermions at pion masses as low as 350 MeV. (orig.)

  19. Nucleon form factors on the lattice with light dynamical fermions

    Energy Technology Data Exchange (ETDEWEB)

    Goeckeler, M. [Regensburg Univ. (Germany). Inst. fuer Theoretische Physik; Haegler, P. [Technische Univ. Muenchen, Garching (Germany). Inst. fuer Theoretische Physik T39; Horsley, R. [Edinburgh Univ. (GB). School of Physics] (and others)

    2007-09-15

    The electromagnetic form factors provide important insight into the internal structure of the nucleon and continue to be of major interest for experiment and phenomenology. For an intermediate range of momenta the form factors can be calculated on the lattice. However, the reliability of the results is limited by systematic errors mostly due to the required extrapolation to physical quark masses. Chiral effective field theories predict a rather strong quark mass dependence in a range which was yet inaccessible for lattice simulations. We give an update on recent results from the QCDSF collaboration using gauge configurations with dynamical N{sub f}=2, non-perturbatively O(a)-improved Wilson fermions at pion masses as low as 350 MeV. (orig.)

  20. Pion electroproduction at threshold on the nucleon. Contribution to the measurement of the nucleon form factor

    International Nuclear Information System (INIS)

    Duval, M.A.

    1989-11-01

    A pion electroproduction experiment is discussed. The experiment is carried out at threshold on the proton, at the Saclay Linear Accelerator. The scattered electron and the produced pion are detected in coincidence. The aim of the investigation is to measure the nucleon axial form factor. Theoretical concepts and previous experiments are reviewed. The experimental set-up is described, in particular the new pion arm and the trigger simulation. The preliminary analysis of six kinematical points at the momentum transfer of two inverse fermis squared shows the feasibility of the experiment. The pions detection and their identification are satisfactory and allow measurements to be performed [fr

  1. Nucleon Structure and Hyperon Form Factors from Lattice QCD.

    Energy Technology Data Exchange (ETDEWEB)

    Lin,H.W.

    2007-06-11

    In this work, I report the latest lattice QCD calculations of nucleon and hyperon structure from chiral fermions in 2+1-flavor dynamical simulations. All calculations are done with a chirally symmetric fermion action, domain-wall fermions, for valence quarks. I begin with the latest lattice results on the nucleon structure, focusing on results from RBC/UKQCD using 2+1-flavor chiral fermion actions. We find the chiral-extrapolated axial coupling constant at physical pion mass point. to be 1.23(5), consistent with experimental value. The renormalization constants for the structure functions are obtained from RI/MOM-scheme non-perturbative renormalization. We find first moments of the polarized and unpolarized nucleon structure functions at zero transfer momentum to be 0.133(13) and 0.203(23) respectively, using continuum chiral extrapolation. These are consistent with the experimental values, unlike previous calculations which have been 50% larger. We also have a prediction for the transversity, which we find to be 0.56(4). The twist-3 matrix element is consistent with zero which agrees with the prediction of the Wandzura-Wilczek relation. In the second half of this work, I report an indirect dynamical estimation of the strangeness proton magnetic moments using mixed actions. With the analysis of hyperon form factors and using charge symmetry, the strangeness of proton is found to be -0.066(2G), consistent with the Adelaide-JLab Collaboration's result. The hyperon {Sigma} and {Xi} axial coupling constants are also performed for the first time in a lattice calculation, g{sub {Sigma}{Sigma}} = 0.441(14) and g{sub {Xi}{Xi}} = -0.277(11).

  2. Nucleon Structure and hyperon form factors from lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Huey-Wen

    2007-06-11

    In this work, I report the latest lattice QCD calculations of nucleon and hyperon structure from chiral fermions in 2+1-flavor dynamical simulations. All calculations are done with a chirally symmetric fermion action, domain-wall fermions, for valence quarks. I begin with the latest lattice results on the nucleon structure, focusing on results from RBC/UKQCD using 2+1-flavor chiral fermion actions. We find the chiral-extrapolated axial coupling constant at physical pion mass point to be 1.23(5), consistant with experimental value. The renormalization constants for the structure functions are obtained from RI/MOM-scheme non-perturbative renormalization. We find first moments of the polarized and unpolarized nucleon structure functions at zero transfer momentum to be 0.133(13) and 0.203(23) respectively, using continuum chiral extrapolation. These are consistent with the experimental values, unlike previous calculations which have been 50% larger. We also have a prediction for the transversity, which we find to be 0.56(4). The twist-3 matrix element is consistent with zero which agrees with the prediction of the Wandzura-Wilczek relation. In the second half of this work, I report an indirect dynamical estimation of the strangeness proton magnetic moments using mixed actions. With the analysis of hyperon form factors and using charge symmetry, the strangeness of proton is found to be -0.066(26), consistent with the Adelaide-JLab Collaboration's result. The hyperon Sigma and Xi axial coupling constants are also performed for the first time in a lattice calculation, g_SigmaSigma = 0.441(14) and g_XiXi = -0.277(11).

  3. Five-meson VDM fits to the nucleon form factors

    International Nuclear Information System (INIS)

    Mehrotra, S.; Roos, M.

    1975-01-01

    Nucleon electromagnetic form factor data in the spacelike and the timelike regions are fitted with a VDM sum of (up to five) isovector and isoscalar pole terms. Finite width effects are included in the rho and the rhosup(,) terms. The effects of including the rhosup(,) and the psi(3105) are studied. Good fits are found only when the rhosup(,) is allowed to have a too low mass (1.2-1.4 GeV) and when in addition some of the couplings or other derived quantities disagree with other estimates. It is concluded that VDM is unable to describe the data unless one introduces a number of yet unknown mesons, such as ωsup(,), phisup(,), rhosup(,)(1.2), etc. (author)

  4. Measurements of the nucleon form factors at large momentum transfers

    International Nuclear Information System (INIS)

    Andivahis, L.; Bosted, P.; Lung, A.; Arnold, R.; Keppel, C.; Rock, S.; Spengos, M.; Szalata, Z.; Tao, L.; Stuart, L.; Dietrich, F.; Alster, J.; Lichtenstadt, J.; Chang, C.; Dodge, W.; Gearhart, R.; Kuhn, S.; Gomez, J.; Griffioen, K.; Hicks, R.; Miskimen, R.; Peterson, G.; Rokni, S.; Hyde-Wright, C.; Swartz, K.; Petratos, G.; Sakumoto, W.

    1992-12-01

    New measurements of the electric G E (Q 2 ) and magnetic G M (Q 2 ) form factors of the nucleons are reported. The proton data cover the Q 2 range from 1.75 to 8.83 (GeV/c) 2 and the neutron data from 1.75 to 4.00 (GeV/c) 2 , more than doubling the range of previous data. Scaled by the dipole fit, G D (Q 2 ), the results for G Mp (Q 2 )/μ p G D (Q 2 ) decrease smoothly from 1.05 to 0.92, while G Ep (Q 2 )/G D (Q 2 ) is consistent with unity. The preliminary results for Gm.(Q2)1 GD(Q2) consistent with unity, while F En 2 is consistent with zero at all values of Q 2 . Comparisons are made to QCD Sum Rule, diquark, constituent quark, and VMD models, none of which agree with all of the new data

  5. Recoil of the pion-surrounded nucleon bag and axial form factors

    International Nuclear Information System (INIS)

    Klabucar, D.; Picek, I.

    1984-03-01

    A recent method of boosting the bag is extended to the pion-surrounded nucleon bag and developed for the calculation of low-energy nucleon form factors. The usefulness of the method is illustrated by the induced pseudoscalar form factor where both the inclusion of the pion field and the non-vanishing momentum transfer are necessary. (Auth.)

  6. Strange quark content in the nucleon and the strange quark vector current form factors

    International Nuclear Information System (INIS)

    Dubnicka, S.; Dubnickova, A.Z.

    1996-12-01

    A behaviour of the form factors of the nucleon matrix element of the strange quark vector current in the momentum range of the planned measurements in MIT/Bates and CEBAF is predicted theoretically without using any of the experimental information on the nucleon electromagnetic structure. The corresponding leading nonvanishing moments of the nucleon vector strangeness distribution are comparable with the values obtained by other authors in the framework of the method based on the vector meson pole fit of the isoscalar electromagnetic form factors of the nucleon. (author). 16 refs, 2 figs

  7. Constructing Nucleon Operators on a Lattice for Form Factors with High Momentum Transfer

    Energy Technology Data Exchange (ETDEWEB)

    Syritsyn, Sergey [Stony Brook Univ., NY (United States); Gambhir, Arjun S. [College of William and Mary, Williamsburg, VA (United States); Musch, Bernhard U. [Univ. of Regensburg (Germany); Orginos, Konstantinos [College of William and Mary, Williamsburg, VA (United States); Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2017-05-01

    We present preliminary results of computing nucleon form factor at high momentum transfer using the 'boosted' or 'momentum' smearing. We use gauge configurations generated with N f = 2 + 1dynamical Wilson-clover fermions and study the connected as well as disconnected contributions to the nucleon form factors. Our initial results indicate that boosted smearing helps to improve the signal for nucleon correlators at high momentum. However, we also find evidence for large excited state contributions, which will likely require variational analysis to isolate the boosted nucleon ground state.

  8. The scalar and electromagnetic form factors of the nucleon in dispersively improved Chiral EFT

    Energy Technology Data Exchange (ETDEWEB)

    Alarcon, Jose Manuel [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2018-04-01

    We present a method for calculating the nucleon form factors of G-parity-even operators. This method combines chiral effective field theory (χEFT) and dispersion theory. Through unitarity we factorize the imaginary part of the form factors into a perturbative part, calculable with χEFT, and a non-perturbative part, obtained through other methods. We consider the scalar and electromagnetic (EM) form factors of the nucleon. The results show an important improvement compared to standard chiral calculations, and can be used in analysis of the low-energy properties of the nucleon.

  9. Nucleon form factors in dispersively improved chiral effective field theory. II. Electromagnetic form factors

    Science.gov (United States)

    Alarcón, J. M.; Weiss, C.

    2018-05-01

    We study the nucleon electromagnetic form factors (EM FFs) using a recently developed method combining chiral effective field theory (χ EFT ) and dispersion analysis. The spectral functions on the two-pion cut at t >4 Mπ2 are constructed using the elastic unitarity relation and an N /D representation. χ EFT is used to calculate the real functions J±1(t ) =f±1(t ) /Fπ(t ) (ratios of the complex π π →N N ¯ partial-wave amplitudes and the timelike pion FF), which are free of π π rescattering. Rescattering effects are included through the empirical timelike pion FF | Fπ(t) | 2 . The method allows us to compute the isovector EM spectral functions up to t ˜1 GeV2 with controlled accuracy (leading order, next-to-leading order, and partial next-to-next-to-leading order). With the spectral functions we calculate the isovector nucleon EM FFs and their derivatives at t =0 (EM radii, moments) using subtracted dispersion relations. We predict the values of higher FF derivatives, which are not affected by higher-order chiral corrections and are obtained almost parameter-free in our approach, and explain their collective behavior. We estimate the individual proton and neutron FFs by adding an empirical parametrization of the isoscalar sector. Excellent agreement with the present low-Q2 FF data is achieved up to ˜0.5 GeV2 for GE, and up to ˜0.2 GeV2 for GM. Our results can be used to guide the analysis of low-Q2 elastic scattering data and the extraction of the proton charge radius.

  10. Electromagnetic and axial-vector form factors of the quarks and nucleon

    Science.gov (United States)

    Dahiya, Harleen; Randhawa, Monika

    2017-11-01

    In light of the improved precision of the experimental measurements and enormous theoretical progress, the nucleon form factors have been evaluated with an aim to understand how the static properties and dynamical behavior of nucleons emerge from the theory of strong interactions between quarks. We have analyzed the vector and axial-vector nucleon form factors (GE,Mp,n(Q2) and GAp,n(Q2)) using the spin observables in the chiral constituent quark model (χCQM) which has made a significant contribution to the unraveling of the internal structure of the nucleon in the nonperturbative regime. We have also presented a comprehensive analysis of the flavor decomposition of the form factors (GEq(Q2), GMq(Q2) and GAq(Q2) for q = u,d,s) within the framework of χCQM with emphasis on the extraction of the strangeness form factors which are fundamental to determine the spin structure and test the chiral symmetry breaking effects in the nucleon. The Q2 dependence of the vector and axial-vector form factors of the nucleon has been studied using the conventional dipole form of parametrization. The results are in agreement with the available experimental data.

  11. Iso-vector form factors of the delta and nucleon in QCD sum rules

    International Nuclear Information System (INIS)

    Ozpineci, A.

    2012-01-01

    Form factors are important non-perturbative properties of hadrons. They give information about the internal structure of the hadrons. In this work, iso-vector axial-vector and iso-vector tensor form factors of the nucleon and the iso-vector axial-vector Δ→N transition form factor calculations in QCD Sum Rules are presented.

  12. Holographic estimate of the meson cloud contribution to nucleon axial form factor

    Science.gov (United States)

    Ramalho, G.

    2018-04-01

    We use light-front holography to estimate the valence quark and the meson cloud contributions to the nucleon axial form factor. The free couplings of the holographic model are determined by the empirical data and by the information extracted from lattice QCD. The holographic model provides a good description of the empirical data when we consider a meson cloud mixture of about 30% in the physical nucleon state. The estimate of the valence quark contribution to the nucleon axial form factor compares well with the lattice QCD data for small pion masses. Our estimate of the meson cloud contribution to the nucleon axial form factor has a slower falloff with the square momentum transfer compared to typical estimates from quark models with meson cloud dressing.

  13. Nucleon mass difference and off-shell form factors

    International Nuclear Information System (INIS)

    Kimel, I.

    1981-08-01

    The use of off-shell form factors in calculating the proton-neutron mass difference is advocated. These form factors appear in a Cottingham rotated Born-like expression for the mass difference and could lead to a good value for Δ = M sub(p) - M sub(n). (Author) [pt

  14. Calculation of the Nucleon Axial Form Factor Using Staggered Lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Aaron S. [Fermilab; Hill, Richard J. [Perimeter Inst. Theor. Phys.; Kronfeld, Andreas S. [Fermilab; Li, Ruizi [Indiana U.; Simone, James N. [Fermilab

    2016-10-14

    The nucleon axial form factor is a dominant contribution to errors in neutrino oscillation studies. Lattice QCD calculations can help control theory errors by providing first-principles information on nucleon form factors. In these proceedings, we present preliminary results on a blinded calculation of $g_A$ and the axial form factor using HISQ staggered baryons with 2+1+1 flavors of sea quarks. Calculations are done using physical light quark masses and are absolutely normalized. We discuss fitting form factor data with the model-independent $z$ expansion parametrization.

  15. Effects of the d-state quarks on the nucleon electric form factors

    International Nuclear Information System (INIS)

    Oh, Y.J.; Kong, K.J.; Cheon, I.T.

    1987-11-01

    Considering the d-orbital excitation of a quark in the bag, we calculate the nucleon electric form factors in the cloudy bag model. In these calculations, we have taken into account the πNN, πΔN and πγ form factors though neglecting the c.m. correction. It turns out that the neutron charge form factor is very sensitive to the d-state quark admixture in the overall region of the momentum transfer but the proton charge form factor remains unchanged. Taking the d-state quark admixture in the intermediate state baryons, we can obtain the nucleon rms radii in remarkable agreement with the experimental values. We also investigate the roles of Δ particles in the nucleon charge form factors. (author). 20 refs, 10 figs

  16. Nucleon electromagnetic form factors using lattice simulations at the physical point

    International Nuclear Information System (INIS)

    Alexandrou, C.; Cyprus Univ., Nicosia; Constantinou, M.; Hadjiyiannakou, K.; Kallidonis, C.; Koutsou, G.; Jansen, K.; Vaquero Aviles-Casco, A.

    2017-01-01

    We present results for the nucleon electromagnetic form factors using an ensemble of maximally twisted mass clover-improved fermions with pion mass of about 130 MeV. We use multiple sink-source separations and three analysis methods to probe ground-state dominance. We evaluate both the connected and disconnected contributions to the nucleon matrix elements. We find that the disconnected quark loop contributions to the isoscalar matrix elements are small giving an upper bound of up to 2% of the connected and smaller than its statistical error. We present results for the isovector and isoscalar electric and magnetic Sachs form factors and the corresponding proton and neutron form factors. By fitting the momentum dependence of the form factors to a dipole form or to the z-expansion we extract the nucleon electric and magnetic radii, as well as, the magnetic moment. We compare our results to experiment as well as to other recent lattice QCD calculations.

  17. Nucleon electromagnetic form factors using lattice simulations at the physical point

    Energy Technology Data Exchange (ETDEWEB)

    Alexandrou, C. [The Cyprus Institute, Nicosia (Cyprus). Computation-based Science and Technology Research Center; Cyprus Univ., Nicosia (Cyprus). Dept. of Physics; Constantinou, M. [Temple Univ., Philadelphia, PA (United States). Dept. of Physics; Hadjiyiannakou, K.; Kallidonis, C.; Koutsou, G. [The Cyprus Institute, Nicosia (Cyprus). Computation-based Science and Technology Research Center; Jansen, K. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Vaquero Aviles-Casco, A. [Utah Univ., Salt Lake City, UT (United States). Dept. of Physics and Astronomy

    2017-09-20

    We present results for the nucleon electromagnetic form factors using an ensemble of maximally twisted mass clover-improved fermions with pion mass of about 130 MeV. We use multiple sink-source separations and three analysis methods to probe ground-state dominance. We evaluate both the connected and disconnected contributions to the nucleon matrix elements. We find that the disconnected quark loop contributions to the isoscalar matrix elements are small giving an upper bound of up to 2% of the connected and smaller than its statistical error. We present results for the isovector and isoscalar electric and magnetic Sachs form factors and the corresponding proton and neutron form factors. By fitting the momentum dependence of the form factors to a dipole form or to the z-expansion we extract the nucleon electric and magnetic radii, as well as, the magnetic moment. We compare our results to experiment as well as to other recent lattice QCD calculations.

  18. The charge form factor of three-nucleon systems and the polarization of the bound nucleon

    International Nuclear Information System (INIS)

    Giannini, M.M.; Drechsel, D.; Arenhoevel, H.; Tornow, V.

    1979-01-01

    The discrepancy between theoretical calculations of the 3 He charge density and the results derived from elastic electron scattering may be due to the analysis of the experimental data in terms of spherical nucleons. A classical model with deformed nucleons gives qualitive agreement with experiment for an oblate quadrupole moment of -1.8 mb. Such a deformation of the bound nucleon can be described by the admixture of Δ(1232) and higher isobar components with spin >= 3/2. Since the admixture probabilities are small the dominant contributions stem from the transition quadrupole moments between free nucleon and isobar components. Taking into account the leading Δ(1232) components one can explain about half of the discrepancy. As this transition operator is isovector, the effects are opposite for 3 He and 3 H. (orig.)

  19. The nucleon as a test case to calculate vector-isovector form factors at low energies

    Science.gov (United States)

    Leupold, Stefan

    2018-01-01

    Extending a recent suggestion for hyperon form factors to the nucleon case, dispersion theory is used to relate the low-energy vector-isovector form factors of the nucleon to the pion vector form factor. The additionally required input, i.e. the pion-nucleon scattering amplitudes are determined from relativistic next-to-leading-order (NLO) baryon chiral perturbation theory including the nucleons and optionally the Delta baryons. Two methods to include pion rescattering are compared: a) solving the Muskhelishvili-Omnès (MO) equation and b) using an N/D approach. It turns out that the results differ strongly from each other. Furthermore the results are compared to a fully dispersive calculation of the (subthreshold) pion-nucleon amplitudes based on Roy-Steiner (RS) equations. In full agreement with the findings from the hyperon sector it turns out that the inclusion of Delta baryons is not an option but a necessity to obtain reasonable results. The magnetic isovector form factor depends strongly on a low-energy constant of the NLO Lagrangian. If it is adjusted such that the corresponding magnetic radius is reproduced, then the results for the corresponding pion-nucleon scattering amplitude (based on the MO equation) agree very well with the RS results. Also in the electric sector the Delta degrees of freedom are needed to obtain the correct order of magnitude for the isovector charge and the corresponding electric radius. Yet quantitative agreement is not achieved. If the subtraction constant that appears in the solution of the MO equation is not taken from nucleon+Delta chiral perturbation theory but adjusted such that the electric radius is reproduced, then one obtains also in this sector a pion-nucleon scattering amplitude that agrees well with the RS results.

  20. The nucleon as a test case to calculate vector-isovector form factors at low energies

    Energy Technology Data Exchange (ETDEWEB)

    Leupold, Stefan [Uppsala Universitet, Institutionen foer Fysik och Astronomi, Uppsala (Sweden)

    2018-01-15

    Extending a recent suggestion for hyperon form factors to the nucleon case, dispersion theory is used to relate the low-energy vector-isovector form factors of the nucleon to the pion vector form factor. The additionally required input, i.e. the pion-nucleon scattering amplitudes are determined from relativistic next-to-leading-order (NLO) baryon chiral perturbation theory including the nucleons and optionally the Delta baryons. Two methods to include pion rescattering are compared: a) solving the Muskhelishvili-Omnes (MO) equation and b) using an N/D approach. It turns out that the results differ strongly from each other. Furthermore the results are compared to a fully dispersive calculation of the (subthreshold) pion-nucleon amplitudes based on Roy-Steiner (RS) equations. In full agreement with the findings from the hyperon sector it turns out that the inclusion of Delta baryons is not an option but a necessity to obtain reasonable results. The magnetic isovector form factor depends strongly on a low-energy constant of the NLO Lagrangian. If it is adjusted such that the corresponding magnetic radius is reproduced, then the results for the corresponding pion-nucleon scattering amplitude (based on the MO equation) agree very well with the RS results. Also in the electric sector the Delta degrees of freedom are needed to obtain the correct order of magnitude for the isovector charge and the corresponding electric radius. Yet quantitative agreement is not achieved. If the subtraction constant that appears in the solution of the MO equation is not taken from nucleon+Delta chiral perturbation theory but adjusted such that the electric radius is reproduced, then one obtains also in this sector a pion-nucleon scattering amplitude that agrees well with the RS results. (orig.)

  1. π-exchange NN interaction model with overlapping nucleon form factors

    International Nuclear Information System (INIS)

    Bagnoud, X.

    1986-01-01

    The nucleon-nucleon (NN) interaction model includes a π-exchange and takes into account the first excited state Δ(1232) of the nucleon. It is supplemented by a short-range repulsion which has been derived from the nucleon form factor (rms radius b/sub f/) combined with the three-quark wave function (rms radius b/sub q/). The optimization of the model on empirical scattering phase shifts below 300 MeV gives, for a minimum chi 2 , the root-mean-square radii b/sub f/ = b/sub q/ = 0.51 fm and a coupling constant G/sub π/ 2 /4π = 13

  2. Nucleon form factors and hidden symmetry in holographic QCD

    International Nuclear Information System (INIS)

    Hong, D.K.; Rho, M.; Yee, H.-U.; Yi, P.

    2007-10-01

    The vector dominance of the electromagnetic (EM) form factors both for mesons and baryons arises naturally in holographic QCD, where both the number of colors and the 't Hooft coupling are taken to be very large, offering a bona-fide derivation of the notion of vector dominance. The crucial ingredient for this is the infinite tower of vector mesons in the approximations made which share features that are characteristic of the quenched approximation in lattice QCD. We approximate the infinite sum by contributions from the lowest four vector mesons of the tower which turn out to saturate the charge and magnetic moment sum rules within a few % and compute them totally free of unknown parameters for momentum transfers Q 2 approx.= 1 GeV 2 . We identify certain observables that can be reliably computed within the approximations and others that are not, and discuss how the improvement of the latter can enable one to bring holographic QCD closer to QCD proper. (author)

  3. Nucleon electromagnetic form factors in a relativistic quark model with chiral symmetry

    International Nuclear Information System (INIS)

    Barik, N.

    1987-01-01

    The nucleon electromagnetic form factors are computed in an independent quark model based on the Dirac equation. Corrections for centre-of-mass motion and pion-cloud effects are incorporated. Results for static quantities are in reasonable agreement with the experimental data. (author)

  4. Nucleon electromagnetic form factors in a relativistic quark model with chiral symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Barik, N; Das, M

    1987-05-01

    The nucleon electromagnetic form factors are computed in an independent quark model based on the Dirac equation. Corrections for centre-of-mass motion and pion-cloud effects are incorporated. Results for static quantities are in reasonable agreement with the experimental data.

  5. The nucleon electric dipole form factor from dimension-six time-reversal violation

    NARCIS (Netherlands)

    de Vries, J.; Mereghetti, E.; Timmermans, R. G. E.; van Kolck, U.

    2011-01-01

    We calculate the electric dipole form factor of the nucleon that arises as a low-energy manifestation of time-reversal violation in quark-gluon interactions of effective dimension 6: the quark electric and chromoelectric dipole moments, and the gluon chromoelectric dipole moment. We use the

  6. Lattice calculation of electric dipole moments and form factors of the nucleon

    Science.gov (United States)

    Abramczyk, M.; Aoki, S.; Blum, T.; Izubuchi, T.; Ohki, H.; Syritsyn, S.

    2017-07-01

    We analyze commonly used expressions for computing the nucleon electric dipole form factors (EDFF) F3 and moments (EDM) on a lattice and find that they lead to spurious contributions from the Pauli form factor F2 due to inadequate definition of these form factors when parity mixing of lattice nucleon fields is involved. Using chirally symmetric domain wall fermions, we calculate the proton and the neutron EDFF induced by the C P -violating quark chromo-EDM interaction using the corrected expression. In addition, we calculate the electric dipole moment of the neutron using a background electric field that respects time translation invariance and boundary conditions, and we find that it decidedly agrees with the new formula but not the old formula for F3. Finally, we analyze some selected lattice results for the nucleon EDM and observe that after the correction is applied, they either agree with zero or are substantially reduced in magnitude, thus reconciling their difference from phenomenological estimates of the nucleon EDM.

  7. Calculations of electromagnetic nucleon form factors and electroexcitation amplitudes of isobars

    International Nuclear Information System (INIS)

    Warns, M.; Schroeder, H.; Pfeil, W.; Rollnik, H.

    1989-03-01

    In this paper, we present numerical results for electroproduction amplitudes of proton resonances and electromagnetic nucleon form factors calculated in a relativized quark model. Interactions with both transversely and longitudinally polarized virtual photons were considered. Contributions of the different effects included in our approach have been analysed through a sample comparison with the available data. We also discuss the validity of the usual single-quark transition ansatz and possible parametrizations of the potential acting between the constituent quarks of the baryon. Impressive agreement is obtained with the nucleon form factor data up to squared momentum transfers of 2.5 GeV 2 , but still some problems remain with the Δ(1232) and higher resonances. (orig.)

  8. Future Measurements of the Nucleon Elastic Electromagnetic Form Factors at Jefferson Lab

    Science.gov (United States)

    Gilfoyle, Gerard

    2018-01-01

    The elastic, electromagnetic form factors are fundamental observables that describe the internal structure of protons, neutrons, and atomic nuclei. Jefferson Lab in the United States has completed the 12 GeV Upgrade that will open new opportunities to study the form factors. A campaign to measure all four nucleon form factors (electric and magnetic ones for both proton and neutron) has been approved consisting of seven experiments in Halls A, B, and C. The increased energy of the electron beam will extend the range of precision measurements to higher Q2 for all four form factors together. This combination of measurements will allow for the decomposition of the results into their quark components and guide the development of a QCD-based understanding of nuclei in the non-perturbative regime. I will present more details on the 12 GeV Upgrade, the methods used to measure the form factors, and what we may learn.

  9. On the ππ continuum in the nucleon form factors and the proton radius puzzle

    Science.gov (United States)

    Hoferichter, M.; Kubis, B.; Ruiz de Elvira, J.; Hammer, H.-W.; Meißner, U.-G.

    2016-11-01

    We present an improved determination of the ππ continuum contribution to the isovector spectral functions of the nucleon electromagnetic form factors. Our analysis includes the most up-to-date results for the ππ→bar{N} N partial waves extracted from Roy-Steiner equations, consistent input for the pion vector form factor, and a thorough discussion of isospin-violating effects and uncertainty estimates. As an application, we consider the ππ contribution to the isovector electric and magnetic radii by means of sum rules, which, in combination with the accurately known neutron electric radius, are found to slightly prefer a small proton charge radius.

  10. On the ππ continuum in the nucleon form factors and the proton radius puzzle

    International Nuclear Information System (INIS)

    Hoferichter, M.; Kubis, B.; Ruiz de Elvira, J.; Hammer, H.W.; Meissner, U.G.

    2016-01-01

    We present an improved determination of the ππ continuum contribution to the isovector spectral functions of the nucleon electromagnetic form factors. Our analysis includes the most up-to-date results for the ππ → anti NN partial waves extracted from Roy-Steiner equations, consistent input for the pion vector form factor, and a thorough discussion of isospin-violating effects and uncertainty estimates. As an application, we consider the ππ contribution to the isovector electric and magnetic radii by means of sum rules, which, in combination with the accurately known neutron electric radius, are found to slightly prefer a small proton charge radius. (orig.)

  11. On the ππ continuum in the nucleon form factors and the proton radius puzzle

    Energy Technology Data Exchange (ETDEWEB)

    Hoferichter, M. [University of Washington, Institute for Nuclear Theory, Seattle, WA (United States); Kubis, B.; Ruiz de Elvira, J. [Universitaet Bonn, Helmholtz-Institut fuer Strahlen- und Kernphysik (Theorie) and Bethe Center for Theoretical Physics, Bonn (Germany); Hammer, H.W. [Technische Universitaet Darmstadt, Institut fuer Kernphysik, Darmstadt (Germany); GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, ExtreMe Matter Institute EMMI, Darmstadt (Germany); Meissner, U.G. [Universitaet Bonn, Helmholtz-Institut fuer Strahlen- und Kernphysik (Theorie) and Bethe Center for Theoretical Physics, Bonn (Germany); Institut fuer Kernphysik, Institute for Advanced Simulation, and Juelich Center for Hadron Physics, Forschungszentrum Juelich, Juelich (Germany)

    2016-11-15

    We present an improved determination of the ππ continuum contribution to the isovector spectral functions of the nucleon electromagnetic form factors. Our analysis includes the most up-to-date results for the ππ → anti NN partial waves extracted from Roy-Steiner equations, consistent input for the pion vector form factor, and a thorough discussion of isospin-violating effects and uncertainty estimates. As an application, we consider the ππ contribution to the isovector electric and magnetic radii by means of sum rules, which, in combination with the accurately known neutron electric radius, are found to slightly prefer a small proton charge radius. (orig.)

  12. A New EM CKM Matrix: Implications of the Nucleon Strange Quark Content, Anomalous Magnetic Moments of Nucleons and Electric and Magnetic Nucleon Form Factors

    Science.gov (United States)

    Ward, Thomas

    2013-10-01

    A new electromagnetic neutral-current quark mixing matrix, analog to the well-known Cabibbo-Kobayashi-Maskawa (CKM) weak charge-current matrix, is proposed to account for the strange quark content of the neutron and proton and part of the anomalous axial vector magnetic moments. The EM-CKM matrix is shown to be equivalent to the weak-CKM matrix following an EM to weak gauge symmetry transformation, demonstrating the universality of the Standard Model (SM) CKM quark mixing matrix. The electric and magnetic form factors are reformulated using a new QCD three quark nucleon gyromagnetic factor, Dirac and Pauli form factors and anomalous kappa factors. The old 1943 Jauch form factors which have been systematically used and developed for many years is shown to be in stark disagreement with the new global set of experimental polarized electron-proton scattering data whereas the reformulated SM parameter set of this study is shown to agree very well, lending strong support for this new EM SM approach.

  13. Counting and tensorial properties of twist-two helicity-flip nucleon form factors

    International Nuclear Information System (INIS)

    Chen Zhang; Ji Xiangdong

    2005-01-01

    We perform a systematic analysis on the off-forward matrix elements of the twist-two quark and gluon helicity-flip operators. By matching the allowed quantum numbers and their crossing channel counterparts (a method developed by Ji and Lebed), we systematically count the number of independent nucleon form factors in off-forward scattering of matrix elements of these quark and gluon spin-flip operators. In particular, we find that the numbers of independent nucleon form factors of twist-two, helicity-flip quark (gluon) operators are 2n-1 (2n-5) if n is odd, and 2n-2 (2n-6) if n is even, with n≥2 (n≥4). We also analyze and write down the tensorial/Lorentz structure and kinematic factors of the expansion of these operators' matrix elements in terms of the independent form factors. These generalized form factors define the off-forward quark and gluon helicity-flip distributions in the literature

  14. Strangeness Vector and Axial-Vector Form Factors of the Nucleon

    Directory of Open Access Journals (Sweden)

    Pate Stephen

    2014-03-01

    Full Text Available A revised global fit of electroweak ep and vp elastic scattering data has been performed, with the goal of determining the strange quark contribution to the vector and axial-vector form factors of the nucleon in the momentum-transfer range 0 < Q2 < 1 GeV2. The two vector (electric and magnetic form factors GsE(Q2 and GsM(Q2 are strongly constrained by ep elastic scattering data, while the major source of information on the axial-vector form factor GsA(Q2 is vp scattering data. Combining the two kinds of data into a single global fit makes possible additional precision in the determination of these form factors, and provides a unique way to determine the strange quark contribution to the nucleon spin, ΔS , independently of leptonic deep-inelastic scattering. The fit makes use of data from the BNL-E734, SAMPLE, HAPPEx, G0, and PVA4 experiments; we will also compare the result of the fit with recent data from MiniBooNE, and anticipate how this fit can be improved when new data from MicroBooNE become available.

  15. New large-Nc relations for the electromagnetic nucleon-to-Δ form factors

    International Nuclear Information System (INIS)

    Vladimir Pascalutsa; Marc Vanderhaeghen

    2006-01-01

    We establish relations which express the three N → Δ transition form factors in terms of the nucleon form factors. These relations are based on the known large-N c relation between the N → Δ electric quadrupole moment and the neutron charge radius, and a newly derived large-N c relation between the electric quadrupole (E2) and Coulomb quadrupole (C2) transitions. Namely, in the large-N c limit we find C2=E2. We show that these relations provide predictions for the N → Δ electromagnetic form factors which are found to be in very good agreement with experiment for moderate momentum transfers. They also provide constraints for the N → Δ GPDs

  16. Nucleon form factors and structure functions from Nf=2 Clover fermions

    International Nuclear Information System (INIS)

    Collins, S.; Goeckeler, M.; Haegler, P.

    2010-12-01

    We give an update on our ongoing efforts to compute the nucleon's form factors and moments of structure functions using N f =2 flavours of non-perturbatively improved Clover fermions. We focus on new results obtained on gauge configurations where the pseudo-scalar meson mass is in the range of 170-270 MeV. We compare our results with various estimates obtained from chiral effective theories since we have some overlap with the quark mass region where results from such theories are believed to be applicable. (orig.)

  17. N → Δ (1232) electromagnetic transition form factor and pion-nucleon dynamics at moderate energies

    International Nuclear Information System (INIS)

    Jurewicz, A.

    1980-01-01

    The dependence of the electromagnetic N → Δ (1232) transition form factor G/sup asterisk//sub M/(q 2 ) on q 2 , the four-momentum transfer squared, has been calculated with the use of relativistic dispersion relations supplemented with some dynamical assumptions. In the first place, they regard the phase of the magnetic dipole amplitude of electroproduction of pions on nucleons in the p 33 final state beyond the region of elastic unitarity. Namely, over the range from the lowest inelastic threshold up to 1780 MeV pion-nucleon c.m. energy, the phase in question has been identified with the real part of the respective phase shift of pion-nucleon scattering. Secondly, contributions to the dispersion integral from the higher energy region have been neglected. Finally, the polynomial ambiguity which appears in the problem has been fixed by requiring that the foregoing amplitude of electroproduction vanishes, independently of q 2 , at the upper end of the integration interval as defined above. These assumptions which preserve unitarity were shown previously to lead to very good results when applied to the calculation of the multipole amplitudes M/sup() 3/2/ 1 /sub +/ and E/sup() 3/2/ 1 /sub +/ of photopion production on nucleons in the Δ (1232) region. Now it is also shown that G/sup asterisk//sub M/(q 2 ) calculated in that fashion follows remarkably well the data over the whole range 0 2 2 currently covered by quantitative experimental studies. Some speculation concerning a possible dynamical rooting of the foregoing assumptions is presented

  18. Nucleon form factors at high q2 within constituent quark models

    International Nuclear Information System (INIS)

    Desplanques, B.; Silvestre-Brac, B.; Cano, F.; Noguera, S.; Gonzalez, P.; .

    2000-01-01

    The nucleon form factors are calculated using a non-relativistic description in terms of constituent quarks. The emphasis is put on present numerical methods used to solve the three-body problem in order to reliably predict the expected asymptotic behavior of form factors. Nucleon wave functions obtained in the hyperspherical formalism or employing Faddeev equations have been considered. While a q -8 behavior is expected at high q for a quark-quark force behaving like 1/r at short distances, it is found that the hyper central approximation in the hyperspherical formalism (K = 0) leads to a q -7 behavior. An infinite set of waves would be required to get the correct behavior. Solutions of the Faddeev equations lead to the q -8 behavior. The coefficient of the corresponding term, however, depends on the number of partial waves retained in the Faddeev amplitude. The convergence to the asymptotic behavior has also been studied. Approximate expressions characterizing this one have been derived. From the comparison with the most complete Faddeev calculation, a validity range is inferred for restricted calculations. Refs. 46 (author)

  19. High-precision calculation of the strange nucleon electromagnetic form factors

    Energy Technology Data Exchange (ETDEWEB)

    Green, Jeremy [Johannes Gutenberg Univ., Mainz (Germany); Meinel, Stefan [Univ. of Arizona, Tucson, AZ (United States); Brookhaven National Lab. (BNL), Upton, NY (United States); Engelhardt, Michael G. [New Mexico State Univ., Las Cruces, NM (United States); Krieg, Stefan [Bergische Univ., Wuppertal (Germany); Julich Supercomputing Centre, Julich (Germany); Laeuchli, Jesse [College of William and Mary, Williamsburg, VA (United States); Negele, John W. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Orginos, Kostas [College of William and Mary, Williamsburg, VA (United States); Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Pochinsky, Andrew [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Syritsyn, Sergey [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-08-26

    We report a direct lattice QCD calculation of the strange nucleon electromagnetic form factors GsE and GsM in the kinematic range 0 ≤ Q2 ≤ 1.2GeV2. For the first time, both GsE and GsM are shown to be nonzero with high significance. This work uses closer-to-physical lattice parameters than previous calculations, and achieves an unprecented statistical precision by implementing a recently proposed variance reduction technique called hierarchical probing. We perform model-independent fits of the form factor shapes using the z-expansion and determine the strange electric and magnetic radii and magnetic moment. As a result, we compare our results to parity-violating electron-proton scattering data and to other theoretical studies.

  20. Goldberger-Treiman discrepancy and the momentum variation of the pion-nucleon form factor and pion decay constant

    International Nuclear Information System (INIS)

    Coon, S.A.; Scadron, M.D.

    1981-01-01

    We suggest that the observed 6% Goldberger-Treiman discrepancy is due in part to a 3% variation in the pion-nucleon form factor and in part due to a 3% variation in the pion decay form factor from q 2 =m/sub π/ 2 to q 2 =0

  1. Low-energy analysis of the nucleon electromagnetic form factors[12.39.Fe; 13.40.Gp; 14.20.Dh; Nucleon electromagnetic form factors; Chiral perturbation theory

    Energy Technology Data Exchange (ETDEWEB)

    Kubis, Bastian. E-mail: b.kubis@fz-juelich.de; Meissner, Ulf-G. E-mail: Ulf-G.Meissner@fz-juelich.de

    2001-01-01

    We analyze the electromagnetic form factors of the nucleon to fourth order in relativistic baryon chiral perturbation theory. We employ the recently proposed infrared regularization scheme and show that the convergence of the chiral expansion is improved as compared to the heavy-fermion approach. We also discuss the inclusion of vector mesons and obtain an accurate description of all four-nucleon form factors for momentum transfer squared up to Q{sup 2}{approx_equal}0.4 GeV{sup 2}.

  2. Pion-nucleon form factor in the Chew-Low theory

    International Nuclear Information System (INIS)

    Ernst, D.J.; Johnson, M.B.

    1978-01-01

    We find a solution to the static Chew-Low theory of pion-nucleon scattering, avoiding the ''one-meson approximation.'' Our basic equation is crossing symmetric and may be solved for phase shifts delta (p) by standard numerical techniques, upon specifying a form factor v (p) and a set of inelasticities. With v (p) = exp(-p 2 /30) we reproduce experimental delta (p) for p/sub L/ < or = 1.2 GeV/c in the (3,3) state; in the (1,3) states and (3,1) states delta (p) compare well on the average but in the (1,1) state delta (p) have opposite signs. We show the importance of crossing symmetry and the coupling to inelastic channels, and we discuss the possibility of determining v (p) directly from elastic scattering by an inverse scattering formula

  3. The electric dipole form factor of the nucleon in chiral perturbation theory to sub-leading order

    NARCIS (Netherlands)

    Mereghetti, E.; de Vries, J.; Hockings, W. H.; Maekawa, C. M.; van Kolck, U.

    2011-01-01

    The electric dipole form factor (EDFF) of the nucleon stemming from the QCD (theta) over bar term and from the quark color-electric dipole moments is calculated in chiral perturbation theory to sub-leading order. This is the lowest order in which the isoscalar EDFF receives a calculable,

  4. Nucleon axial form factors using Nf=2 twisted mass fermions with a physical value of the pion mass

    Science.gov (United States)

    Alexandrou, C.; Constantinou, M.; Hadjiyiannakou, K.; Jansen, K.; Kallidonis, C.; Koutsou, G.; Vaquero Aviles-Casco, A.

    2017-09-01

    We present results on the nucleon axial and induced pseudoscalar form factors using an ensemble of two degenerate twisted mass clover-improved fermions with mass yielding a pion mass of mπ=130 MeV . We evaluate the isovector and the isoscalar, as well as the strange and the charm axial form factors. The disconnected contributions are evaluated using recently developed methods that include deflation of the lower eigenstates, allowing us to extract the isoscalar, strange, and charm axial form factors. We find that the disconnected quark loop contributions are nonzero and particularly large for the induced pseudoscalar form factor.

  5. A new form for the nucleon-nucleon potential

    International Nuclear Information System (INIS)

    Agarwal, B.K.

    1976-01-01

    The form of the internucleon force is considered. It is assumed that the nucleon-nucleon potential depends, in general, both on the distance ν and the angle theta. It is also assumed that the potential V(ν,ω) admits an analytic continuation into the complex ω-plane so that when ω=costheta is real it denotes the direction in which the potential is being determined. The analysis leads to a new parametryzation of the nucleon-nucleon potential

  6. Study of the in-medium nucleon electromagnetic form factors using a light-front nucleon wave function combined with the quark-meson coupling model

    Science.gov (United States)

    de Araújo, W. R. B.; de Melo, J. P. B. C.; Tsushima, K.

    2018-02-01

    We study the nucleon electromagnetic (EM) form factors in symmetric nuclear matter as well as in vacuum within a light-front approach using the in-medium inputs calculated by the quark-meson coupling model. The same in-medium quark properties are used as those used for the study of in-medium pion properties. The zero of the proton EM form factor ratio in vacuum, the electric to magnetic form factor ratio μpGEp (Q2) /GMp (Q2) (Q2 = -q2 > 0 with q being the four-momentum transfer), is determined including the latest experimental data by implementing a hard constituent quark component in the nucleon wave function. A reasonable fit is achieved for the ratio μpGEp (Q2) /GMp (Q2) in vacuum, and we predict that the Q02 value to cross the zero of the ratio to be about 15 GeV2. In addition the double ratio data of the proton EM form factors in 4He and H nuclei, [GEp4He (Q2) /G4HeMp (Q2) ] / [GEp1H (Q2) /GMp1H (Q2) ], extracted by the polarized (e → ,e‧ p →) scattering experiment on 4He at JLab, are well described. We also predict that the Q02 value satisfying μpGEp (Q02) /GMp (Q0 2) = 0 in symmetric nuclear matter, shifts to a smaller value as increasing nuclear matter density, which reflects the facts that the faster falloff of GEp (Q2) as increasing Q2 and the increase of the proton mean-square charge radius. Furthermore, we calculate the neutron EM form factor double ratio in symmetric nuclear matter for 0.1 neutron double ratio is enhanced relative to that in vacuum, while for the proton it is quenched, and agrees with an existing theoretical prediction.

  7. The Electric Dipole Form Factor of the Nucleon in Chiral Perturbation Theory to Sub-leading Order

    CERN Document Server

    Mereghetti, E; Hockings, W H; Maekawa, C M; van Kolck, U

    2011-01-01

    The electric dipole form factor (EDFF) of the nucleon stemming from the QCD theta term and from the quark color-electric dipole moments is calculated in chiral perturbation theory to sub-leading order. This is the lowest order in which the isoscalar EDFF receives a calculable, non-analytic contribution from the pion cloud. In the case of the theta term, the expected lower bound on the deuteron electric dipole moment is |d_d| > 1.4 10^(-4) \\theta e fm. The momentum dependence of the isovector EDFF is proportional to a non-derivative time-reversal-violating pion-nucleon coupling, and the scale for momentum variation ---appearing, in particular, in the radius of the form factor--- is the pion mass.

  8. Flavor structure of the nucleon electromagnetic form factors and transverse charge densities in the chiral quark-soliton model

    Science.gov (United States)

    Silva, António; Urbano, Diana; Kim, Hyun-Chul

    2018-02-01

    We investigate the flavor decomposition of the electromagnetic form factors of the nucleon, based on the chiral quark-soliton model (χQSM) with symmetry-conserving quantization. We consider the rotational 1/N_c and linear strange-quark mass (ms) corrections. We discuss the results of the flavor-decomposed electromagnetic form factors in comparison with the recent experimental data. In order to see the effects of the strange quark, we compare the SU(3) results with those of SU(2). Finally, we discuss the transverse charge densities for both unpolarized and polarized nucleons. The transverse charge density inside a neutron turns out to be negative in the vicinity of the center within the SU(3) χQSM, which can be explained by the contribution of the strange quark.

  9. Connected and disconnected contributions to nucleon axial form factors using Nf = 2 twisted mass fermions at the physical point

    Science.gov (United States)

    Alexandrou, Constantia; Constantinou, Martha; Hadjiyiannakou, Kyriakos; Jansen, Karl; Kallidonis, Christos; Koutsou, Giannis; Vaquero Avilés-Casco, Alejandro

    2018-03-01

    We present results on the isovector and isoscalar nucleon axial form factors including disconnected contributions, using an ensemble of Nf = 2 twisted mass cloverimproved Wilson fermions simulated with approximately the physical value of the pion mass. The light disconnected quark loops are computed using exact deflation, while the strange and the charm quark loops are evaluated using the truncated solver method. Techniques such as the summation and the two-state fits have been employed to access ground-state dominance.

  10. Analysis of nucleon form factor data reveals the e+e-→nucleon-antinucleon cross section to be remarkably larger than the e+e-→proton-antiproton one

    International Nuclear Information System (INIS)

    Dubricka, S.

    1987-01-01

    A modified six-resonance VMD model for a description of the nucleon electromagnetic structure is constructed. It possesses correct analytic properties and the asymptotic behaviour in accordance with a quark model prediction for baryons. Only parameters with clear physical meaning are contained in the model. They are evaluated numerically in a simultaneous fit of all existing data on electric and magnetic nucleon form factors. As a result, the behaviour in the time-like region of electric and magnetic neutron form factors, for which there are no data up to now, has been predicted. In comparison with the corresponding behaviour of proton form factors above the nucleon-antinucleon threshold one finds them to exceed by a factor of five. Consequently the cross section of e + e - →nucleon-antinucleon is expected to be roughly twenty-five-times as large as the cross section of e + e - →proton-antiproton

  11. Determination of strange form factors of nucleon by parity violation asymmetry by polarized electron-proton elastic scattering

    International Nuclear Information System (INIS)

    Jardillier, Johann

    1999-01-01

    In the quark model, the proton is described as a system of three quarks UUD. However, recent experiments (CERN, SLAC) have shown that the strange quarks may contribute in a significant way to the mass and the spin of the proton. The HAPPEX experiment gives one further knowledge about the question of the role the strange quarks play inside the proton. It measures parity violating asymmetry in the scattering of polarized electrons from a proton because the latter is sensitive to the contribution of the strange quarks to the electromagnetic form factors of the nucleon. The observed asymmetry is in the order of a few ppm (part per million). The main difficulty of the experiment is to identify, to estimate and to minimize, as much as possible, all the systematic effects which could give rise to false asymmetries. This thesis discusses the principle of the HAPPEX experiment, its implementation at the Jefferson Lab (JLab), the processing and the analysis of the data, the systematic errors, and finally presents the result of the first data taking (1999) and its present interpretation. The HAPPEX experiment has measured, at Q 2 = 0.5 (GeV/c) 2 , a strange quarks contribution of (1.0 ± 2.3)% to the electromagnetic form factors of the nucleon. The statistics and the systematic effects (measure of the electron beam polarization and knowledge of the neutron electric form factor) contribute equally to the error. (author)

  12. Up- and Down-Quark Contributions to the Nucleon Form Factors

    Directory of Open Access Journals (Sweden)

    Qattan I. A.

    2014-03-01

    Full Text Available Recent measurements of the neutron s electric to magnetic form factors ratio, Rn = µnGnE/GnM, up to 3.4 (GeV/c2 combined with existing Rp = µpGpE/GpM measurements in the same Q2 range allowed, for the first time, a separation of the up- and downquark contributions to the form factors at high Q2, as presented by Cates, et al.. Our analysis expands on the original work by including additional form factor data, applying two-photon exchange (TPE corrections, and accounting for the uncertainties associated with all of the form factor measurements.

  13. Inelastic effects in the Sidewise dispersion relations for the electromagnetic form factors of the nucleon

    International Nuclear Information System (INIS)

    Vanhecke, F.J.

    1977-01-01

    We present a model for the inelastic effects of the πN S-matrix in the Hilbert problem associated with the calculation of the πNN vertex and the I=1/2, J=1/2 electroproduction amplitudes. The model is applied to the calculation of the isoscalar anomalous magnetic moment of the nucleon

  14. The pion-nucleon form factor in space- and time-like regions

    International Nuclear Information System (INIS)

    Speth, J.; Tegen, R.

    1990-01-01

    We investigate the pion-nucleon vertex function in space- and time-like regions; these vertex functions appear as internal vertices in nucleon-antinucleon annihilations into n pions (n=2, 3, ..., 6). It is emphasised that only relativistic quark models can account for these vertices where one of the baryons/antibaryons is far off-shell with total energy close to zero. Using a novel 4-momentum projection technique we obtain results which generalize the usual (Breit frame) calculation of G πNN (k 2 ) (space-like) thereby removing completely the discrepancy in the Goldberger-Treiman relation. Our relativistic quark model calculation also explains the empirical suppression of antibaryonic contributions to the vertex functions Gsub(πNanti B) and Gsub(πBanti N) which enter in processes like Nanti N→ππ. (orig.)

  15. Strange and charge symmetry violating electromagnetic form factors of the nucleon

    International Nuclear Information System (INIS)

    Shanahan, P.E.

    2016-01-01

    We summarise recent work based on lattice QCD simulations of the electromagnetic form factors of the octet baryons from the CSSM/QCDSF/UKQCD collaborations. After an analysis of the simulation results using techniques to approach the infinite volume limit and the physical pseudoscalar masses at non-zero momentum transfer, the extrapolated proton and neutron form factors are found to be in excellent agreement with those extracted from experiment. Given the success of these calculations, we describe how the strange electromagnetic form factors may be estimated from these results under the same assumption of charge symmetry used in experimental determinations of those quantities. Motivated by the necessity of that assumption, we explore a method for determining the size of charge symmetry breaking effects using the same lattice results. (author)

  16. A Global Analysis of the Strange Vector and Axial Form Factors of the Nucleon and their Uncertainties

    Energy Technology Data Exchange (ETDEWEB)

    Schaub, John [New Mexico State Univ., Las Cruces, NM (United States); Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2010-07-01

    We studied the strange contributions to the elastic vector and axial form factors of the nucleon using all available elastic electroweak scattering data. Specifically, we combine elastic nu-p and nubar-p scattering cross-section data from the Brookhaven E734 experiment with elastic ep and quasi-elastic ed and e-4He scattering parity-violating asymmetry data from the SAMPLE, HAPPEx, PVA4 and G0 experiments. We not only determined these form factors at individual values of momentum-transfer (Q2), as other groups have done recently, but also fit the Q2-dependence of these form factors using simple functional forms. I present an overview of the G0 backward-angle experiment as well as the results of these fits using existing data, along with some expectations of how we can improve our knowledge of these form factors if the MicroBooNE collaboration completes their experiment.

  17. On the sensitivity of nucleon-nucleon correlations to the form of short-range potential

    International Nuclear Information System (INIS)

    Gmitro, M.; Kvasil, J.; Lednicky, R.; Lyuboshitz, V.L.

    1986-01-01

    Nucleon-nucleon correlation characteristics are calculated for several phenomenological and realistic strong potentials. The results show that a square-well potential reasonably well approximates the nucleon-nucleon interaction if one calculates the correlations between nucleons generated in a region with an r.m.s. radius larger than 1.5-2 fm. Vice versa, the correlations of nucleons emitted from a smaller generation region are sensitive to the form of the assumed nucleon-nucleon potential. (author)

  18. Determination of strange form factors of nucleon by parity violation asymmetry by polarized electron-proton elastic scattering; Mesure des facteurs de forme etranges du nucleon par asymetrie de violation de parite dans la diffusion elastique electron polarise-proton

    Energy Technology Data Exchange (ETDEWEB)

    Jardillier, Johann [Lab. de Physique Corpusculaire, Clermont-Ferrand-2 Univ., 63 - Aubiere (France)

    1999-09-21

    In the quark model, the proton is described as a system of three quarks UUD. However, recent experiments (CERN, SLAC) have shown that the strange quarks may contribute in a significant way to the mass and the spin of the proton. The HAPPEX experiment gives one further knowledge about the question of the role the strange quarks play inside the proton. It measures parity violating asymmetry in the scattering of polarized electrons from a proton because the latter is sensitive to the contribution of the strange quarks to the electromagnetic form factors of the nucleon. The observed asymmetry is in the order of a few ppm (part per million). The main difficulty of the experiment is to identify, to estimate and to minimize, as much as possible, all the systematic effects which could give rise to false asymmetries. This thesis discusses the principle of the HAPPEX experiment, its implementation at the Jefferson Lab (JLab), the processing and the analysis of the data, the systematic errors, and finally presents the result of the first data taking (1999) and its present interpretation. The HAPPEX experiment has measured, at Q{sup 2} = 0.5 (GeV/c){sup 2}, a strange quarks contribution of (1.0 {+-} 2.3)% to the electromagnetic form factors of the nucleon. The statistics and the systematic effects (measure of the electron beam polarization and knowledge of the neutron electric form factor) contribute equally to the error. (author)

  19. Nucleon form factors and moments of generalized parton distributions using N{sub f}= 2+1+1 twisted mass fermions

    Energy Technology Data Exchange (ETDEWEB)

    Alexandrou, C. [Univ. of Cyprus, Nicosia (Cyprus). Dept. of Physics; Cyprus Institute, Nicosia (Cyprus). Computation-based Science and Technology Research Center; Constantinou, M.; Kallidonis, C. [Univ. of Cyprus, Nicosia (Cyprus). Dept. of Physics; Dinter, S.; Drach, V. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Jansen, K. [Univ. of Cyprus, Nicosia (Cyprus). Dept. of Physics; Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Koutsou, G. [Cyprus Institute, Nicosia (Cyprus). Computation-based Science and Technology Research Center; Collaboration: European Twisted Mass Collaboration

    2013-04-15

    We present results on the axial and the electromagnetic form factors of the nucleon, as well as, on the first moments of the nucleon generalized parton distributions using maximally twisted mass fermions. We analyze two N{sub f}=2+1+1 ensembles having pion masses of 210 MeV and 354 MeV at two values of the lattice spacing. The lattice scale is determined using the nucleon mass computed on a total of 18 N{sub f}=2+1+1 ensembles generated at three values of the lattice spacing, a. The renormalization constants are evaluated non-perturbatively with a perturbative subtraction of O(a''2)-terms. The moments of the generalized parton distributions are given in the MS scheme at a scale of {mu}=2 GeV. We compare with recent results obtained using different discretization schemes. The implications on the spin content of the nucleon are also discussed.

  20. Electromagnetic form factors for nucleons and pions at positive and negative q2 in the model of quark-gluon strings

    International Nuclear Information System (INIS)

    Kaidalov, A.B.; Kondratyuk, L.A.; Tchekin, D.V.

    2000-01-01

    The electromagnetic form factors for pions and nucleons are considered within the model of quark-gluon strings, where the momentum-transfer dependence of hadronic form factors is determined by the intercepts of the corresponding Regge trajectories and by the Sudakov form factor. Analytic expressions found for form factors in the timelike region admit an analytic continuation to the spacelike region. The resulting form factors for pions and nucleons comply well with experimental data both for positive and for negative values of the squared momentum transfer q 2 . It is shown that the distinctions between the absolute values of the pion and nucleon form factors F π (q 2 ), G m (q 2 ), and F 2 (q 2 ) at positive values of q 2 and those at negative values of this variable are associated with the analytic properties of the double-logarithmic term in the exponent of the Sudakov form factor. The spin structure of the amplitudes for quark transitions into hadrons that is proposed in the present study makes it possible to describe fairly well available experimental data on the Pauli form factor F 2 and on the ratio G e /G m

  1. The pseudo-scalar form factor of the nucleon, the sigma-like term, and the L0+ amplitude for charged pion electro-production near threshold

    International Nuclear Information System (INIS)

    Cheoun, Myung Ki; Kim, K.S.

    2007-01-01

    The pseudo-scalar form factor, which represents the pseudo-scalar quark density distribution due to finite quark masses on the nucleon, is shown to manifest itself with the induced pseudo-scalar form factor in the L 0 + amplitude for the charged pion electro-production. Both form factors show their own peculiar momentum dependence. Under the approximation on which the Goldberger-Treiman relation holds, a sum of both form factors' contributions accounts for the t-channel contribution in the charged pion electro-production near threshold

  2. Electroweak form factors

    International Nuclear Information System (INIS)

    Singh, S.K.

    2002-01-01

    The present status of electroweak nucleon form factors and the N - Δ transition form factors is reviewed. Particularly the determination of dipole mass M A in the axial vector form factor is discussed

  3. Electromagnetic form factors

    International Nuclear Information System (INIS)

    Desplanques, B.

    1987-01-01

    Electromagnetic form factors, in first approximation, are sensitive to spatial distribution of nucleons and to their current. In second approximation, more precise effects are concerned, whose role is increasing with momentum transfer and participating essentially of short range nuclei description. They concern of course the nucleon-nucleon interaction while approaching each other and keeping their free-state identity, but also mutually polarizing one the other. In this last effect, radial and orbital excitations of nucleon, the nucleon mesonic cloud modification and the nucleon antinucleon pair excitation are included. In this paper, these contributions are discussed while trying to find the important elements for a good description of form factors. Current questions are also discussed. Light nuclei are essentially concerned [fr

  4. The G0 experiment at Jefferson laboratory: Measurement of the weak neutral form factors of the nucleon

    International Nuclear Information System (INIS)

    Furget, C.

    2005-01-01

    The G0 experiment aims to measure parity-violating asymmetries in elastic electron-proton and quasi-elastic electron-deuteron scattering. This experimental program allows to perform the separation of the electric and magnetic weak neutral and axial form factors for three different momentum transfers 0.3, 0.5 and 0.8 (GeV/c)2. The first part of the experiment has been performed in Hall C of Jefferson Laboratory with a commissioned setup. A preliminary analysis of the data has provided a first estimate of the main systematic uncertainties. The analysis to determine the actual physics asymmetries is proceeding

  5. Investigation of nucleon electromagnetic form factors in the unphysical region by means of the N bar N → πl+l- reactions

    International Nuclear Information System (INIS)

    Dubnickova, A.Z.; Dubnicka, S.; Rekalo, M.P.

    1995-01-01

    A theoretical investigation of N bar N → πl + l - processes is carried out. First, the general structure of the differential probability of annihilation of very slow antinucleons on nucleons at rest into pion and lepton pairs is derived, then the structure of the electromagnetic current of N bar N → πγ * transition in case of the S-state annihilation is restored and general properties of the corresponding form factors are demonstrated. Next, by using the three-diagram approximation of the amplitude, those form factors are calculated explicitly and for the special process (p bar p) → π 0 γ * → π 0 l + l - they are shown to be completely described by the magnetic form factor of the proton in the unphysical region. Finally, the effective mass spectra of lepton pairs and the integral coefficients of internal conversion for the p bar p → π 0 l + l - and p bar n → π - l + l - processes are predicted. 15 refs., 7 figs

  6. Deuteron electromagnetic form factors in the transitional region between nucleon-meson and quark-gluon pictures

    International Nuclear Information System (INIS)

    Kobushkin, A.P.; Syamtomov, A.I.

    1994-01-01

    Experimental observables of the elastic ed-scattering in the region of intermediate energies are discussed. We offer the numerical analysis of the available experimental data, which reproduces the results of the calculations with popular NN-potentials at low energies (Q 2 2 ), but, at the same time, provides the right asymptotic behavior of the deuteron e.m. form factors, following from the quark counting rules, at high energies (Q 2 >>1(GeV/c) 2 ). The numerical analysis developed allows to make certain estimations of the characteristic energy scale, at what the consideration of quark-gluon degrees of freedom in the deuteron becomes essential. (author). 18 refs., 2 tab., 10 figs

  7. Electromagnetic Hadronic Form-Factors

    International Nuclear Information System (INIS)

    Edwards, Robert G.

    2005-01-01

    We present a calculation of the nucleon electromagnetic form-factors as well as the pion and rho to pion transition form-factors in a hybrid calculation with domain wall valence quarks and improved staggered (Asqtad) sea quarks

  8. Disconnected electromagnetic form factors

    International Nuclear Information System (INIS)

    Wilcox, Walter

    2001-01-01

    Preliminary results of a calculation of disconnected nucleon electromagnetic factors factors on the lattice are presented. The implementation of the numerical subtraction scheme is outlined. A comparison of results for electric and magnetic disconnected form factors on two lattice sizes with those of the Kentucky group is presented. Unlike previous results, the results found in this calculation are consistent with zero in these sectors

  9. Neutron electromagnetic form factors

    International Nuclear Information System (INIS)

    Finn, J.M.; Madey, R.; Eden, T.; Markowitz, P.; Rutt, P.M.; Beard, K.; Anderson, B.D.; Baldwin, A.R.; Keane, D.; Manley, D.M.; Watson, J.W.; Zhang, W.M.; Kowalski, S.; Bertozzi, W.; Dodson, G.; Farkhondeh, M.; Dow, K.; Korsch, W.; Tieger, D.; Turchinetz, W.; Weinstein, L.; Gross, F.; Mougey, J.; Ulmer, P.; Whitney, R.; Reichelt, T.; Chang, C.C.; Kelly, J.J.; Payerle, T.; Cameron, J.; Ni, B.; Spraker, M.; Barkhuff, D.; Lourie, R.; Verst, S.V.; Hyde-Wright, C.; Jiang, W.-D.; Flanders, B.; Pella, P.; Arenhoevel, H.

    1992-01-01

    Nucleon form factors provide fundamental input for nuclear structure and quark models. Current knowledge of neutron form factors, particularly the electric form factor of the neutron, is insufficient to meet these needs. Developments of high-duty-factor accelerators and polarization-transfer techniques permit new experiments that promise results with small sensitivities to nuclear models. We review the current status of the field, our own work at the MIT/Bates linear accelerator, and future experimental efforts

  10. Nucleon Resonance Transition Form factors

    Energy Technology Data Exchange (ETDEWEB)

    Burkert, Volker D. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Mokeev, Viktor I. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Aznauryan, Inna G. [Yerevan Physics Inst. (YerPhI) (Armenia)

    2016-08-01

    We discuss recent results from CLAS on electromagnetic resonance transition amplitudes and their dependence on the distance scale (Q2). From the comparison of these results with most advanced theoretical calculations within QCD-based approaches there is clear evidence that meson-baryon contributions are present and important at large distances, i.e. small Q2, and that quark core contributions dominate the short distance behavior.

  11. Precise determination of low-Q nucleon electromagnetic form factors and their impact on parity-violating e-p elastic scattering

    International Nuclear Information System (INIS)

    Arrington, John; Sick, Ingo

    2007-01-01

    The extraction of the strangeness form factors from parity-violating elastic electron-proton scattering is sensitive to the electromagnetic form factors at low Q 2 . We provide parametrizations for the form factors and uncertainties, including the effects of two-photon exchange corrections to the extracted electromagnetic form factors. We study effect of the correlations between different form factors, in particular as they impact the parity-violating asymmetry and the extraction of the strangeness form factors. We provide a prescription to extract the strangeness form factors from the asymmetry that provides an excellent approximation of the full two-photon correction. The corrected form factors are also appropriate as input for other low-Q analyses, although the effects of correlations and two-photon exchange corrections may be different

  12. Electroweak form factors of the Skyrmion

    International Nuclear Information System (INIS)

    Braaten, E.; Sze-Man Tse; Willcox, C.

    1986-01-01

    The electroweak form factors of baryons are studied in the semiclassical approximation to the Skyrme model. General expressions for the form factors are given for arbitrary choices of the Skyrme-model Lagrangian. They are applied to the original two-parameter Skyrme model to compute the electric, magnetic, and axial-vector form factors of the nucleon and the electromagnetic nucleon-Δ transition form factors. The dependence of the form factors on the momentum transfer is compared with phenomenological dipole parametrizations

  13. Consequences of the factorization hypothesis in nucleon-nucleon, $\\gamma p and \\gamma \\gamma$ scattering

    CERN Document Server

    Block, Martin M

    2002-01-01

    Using an eikonal structure for the scattering amplitude, factorization theorems for nucleon-nucleon, gamma p and gamma gamma scattering at high energies have been derived, using only some very general assumptions. Using a QCD-inspired eikonal analysis of nucleon-nucleon scattering, we present here experimental confirmation for factorization of cross sections, nuclear slope parameters B and rho -values (ratio of real to imaginary portion of forward scattering amplitudes), showing that: 1) the three factorization theorems of Block and Kaidalov [2000] hold, 2) the additive quark model holds to approximately=1%, and 3) vector dominance holds to better than approximately=4%. Predictions for the total cross section, elastic cross section and other forward scattering parameters at the LHC (14 TeV) are given. (12 refs).

  14. Electromagnetic form factors of hadrons

    International Nuclear Information System (INIS)

    Zidell, V.S.

    1976-01-01

    A vector meson dominance model of the electromagnetic form factors of hadrons is developed which is based on the use of unstable particle propagators. Least-square fits are made to the proton, neutron, pion and kaon form factor data in both the space and time-like regions. A good fit to the low-energy nucleon form factor data is obtained using only rho, ω, and phi dominance, and leads to a determination of the vector meson resonance parameters in good agreement with experiment. The nucleon-vector meson coupling constants obey simple sum rules indicating that there exists no hard core contribution to the form factors within theoretical uncertainties. The prediction for the electromagnetic radii of the proton is in reasonable agreement with recent experiments. The pion and kaon charge form factors as deduced from the nucleon form factors assuming vector meson universality are compared to the data. The pion form factor agrees with the data in both the space and time-like regions. The pion charge radius is in agreement with the recent Dubna result, but the isovector P-wave pion-pion phase shift calculated from the theory disagrees with experiment. A possible contribution to the form factors from a heavy rho meson is also evaluated

  15. Strange mesonic transition form factor

    International Nuclear Information System (INIS)

    Goity, J.L.; Musolf, M.J.

    1996-01-01

    The strange-quark vector current ρ-to-π meson transition form factor is computed at one-loop order using strange meson intermediate states. A comparison is made with a φ-meson dominance model estimate. We find that one-loop contributions are comparable in magnitude to those predicted by φ-meson dominance. It is possible that the one-loop contribution can make the matrix element as large as those of the electromagnetic current mediating vector meson radiative decays. However, due to the quadratic dependence of the one-loop results on the hadronic form factor cutoff mass, a large uncertainty in the estimate of the loops is unavoidable. These results indicate that non-nucleonic strange quarks could contribute appreciable in moderate-parallel Q 2 parallel parity-violating electron-nucleus scattering measurements aimed at probing the strange-quark content of the nucleon. copyright 1996 The American Physical Society

  16. Nucleon strangeness: present and future

    CERN Document Server

    Sapozhnikov, M G

    2010-01-01

    A review of experimental results for the measurement of the strange quark distributions in the nucleon, is given. Contributions of the strange quarks to the nucleon mass, electromagnetic form factors and spin, are discussed.

  17. Chiral analysis of baryon form factors

    Energy Technology Data Exchange (ETDEWEB)

    Gail, T.A.

    2007-11-08

    This work presents an extensive theoretical investigation of the structure of the nucleon within the standard model of elementary particle physics. In particular, the long range contributions to a number of various form factors parametrizing the interactions of the nucleon with an electromagnetic probe are calculated. The theoretical framework for those calculations is chiral perturbation theory, the exact low energy limit of Quantum Chromo Dynamics, which describes such long range contributions in terms of a pion-cloud. In this theory, a nonrelativistic leading one loop order calculation of the form factors parametrizing the vector transition of a nucleon to its lowest lying resonance, the {delta}, a covariant calculation of the isovector and isoscalar vector form factors of the nucleon at next to leading one loop order and a covariant calculation of the isoscalar and isovector generalized vector form factors of the nucleon at leading one loop order are performed. In order to perform consistent loop calculations in the covariant formulation of chiral perturbation theory an appropriate renormalization scheme is defined in this work. All theoretical predictions are compared to phenomenology and results from lattice QCD simulations. These comparisons allow for a determination of the low energy constants of the theory. Furthermore, the possibility of chiral extrapolation, i.e. the extrapolation of lattice data from simulations at large pion masses down to the small physical pion mass is studied in detail. Statistical as well as systematic uncertainties are estimated for all results throughout this work. (orig.)

  18. Insight into nucleon structure from generalized parton distributions

    International Nuclear Information System (INIS)

    J.W. Negele; R.C. Brower; P. Dreher; R. Edwards; G. Fleming; Ph. Hagler; Th. Lippert; A.V.Pochinsky; D.B. Renner; D. Richards; K. Schilling; W. Schroers

    2004-01-01

    The lowest three moments of generalized parton distributions are calculated in full QCD and provide new insight into the behavior of nucleon electromagnetic form factors, the origin of the nucleon spin, and the transverse structure of the nucleon

  19. Magnetic form factors of the trinucleons

    Energy Technology Data Exchange (ETDEWEB)

    Schiavilla, R; Pandharipande, V R; Riska, Dan-Olof

    1989-11-01

    The magnetic form factors of 3H and 3He are calculated with the Monte Carlo method from variational ground-state wave functions obtained for the Argonne and Urbana two- and three-nucleon interactions. The electromagnetic current operator contains one- and two-body terms that are constructed so as to satisfy the continuity equation with the two-nucleon potential in the Hamiltonian. The results obtained with the Argonne two-nucleon interaction are in overall agreement with the empirical values. It appears that the remaining theoretical uncertainty, in the calculation of these form factors from a given interaction model, is dominated by that in the electromagnetic form factors of the nucleon. It is found that the isovector magnetic form factors are rather sensitive to the details of the isospin-dependent tensor force, and they are much better reproduced with the Argonne than the Urbana potential. The isoscalar magnetic form factors appear to be sensitive to the spin-orbit interactions, and are better reproduced with the Urbana potential. The Argonne potential has a stronger τ1∙τ2 tensor force, while the Urbana one has a shorter-range spin-orbit interaction.

  20. The empirical form of the effective nucleon-nucleon interaction in a model space with correlated J = O pairs

    International Nuclear Information System (INIS)

    Akkermans, J.N.L.; Allaart, K.

    1982-01-01

    Like in earlier work by Schiffer et al. the effective interaction is derived from experimental two-body multiplets. However, now the assumption is that a multiplet state is formed by two unpaired fermions relative to a core of correlated J = 0 pairs. Then the need for two ranges, as proposed Schiffer, disappears for the force between identical nucleons in a model space which is large enough to include pairing correlations. A form with a single attractive medium range is preferred for the identical nucleon interaction in order to reproduce collective 2 + states in even-even nuclei. In contrast, the proton-neutron force requires a very short range or two ranges to reproduce the empirical values of multipole coefficients, observed in odd-odd nuclei. Therefore we discuss the fact that the effective interaction is not always isospin invariant. As a typical case broken-pair calculations in the N = 50 region are considered. But the conclusions drawn, will also apply to other regions of the periodic table. (orig.)

  1. From form factors to generalized parton distributions

    Energy Technology Data Exchange (ETDEWEB)

    Diehl, Markus

    2013-06-15

    I present an extraction of generalized parton distributions from selected data on the electromagnetic nucleon form factors. The extracted distributions can in particular be used to quantify the contribution to the proton spin from the total angular momentum carried by valence quarks, as well as their transverse spatial distribution inside the proton.

  2. General operator form of the non-local three-nucleon force

    Energy Technology Data Exchange (ETDEWEB)

    Topolnicki, K. [Jagiellonian University, M. Smoluchowski Institute of Physics, Krakow (Poland)

    2017-09-15

    This paper describes a procedure to obtain the general form of the three-nucleon force. The result is an operator form where the momentum space matrix element of the three-nucleon potential is written as a linear combination of 320 isospin-spin-momentum operators and scalar functions of momenta. Any spatial and isospin rotation invariant three-nucleon force can be written in this way and in order for the potential to be Hermitian, symmetric under parity inversion, time reversal and particle exchange, the scalar functions must have definite transformation properties under these discrete operations. A complete list of the isospin-spin-momentum operators and scalar function transformation properties is given. (orig.)

  3. Two-body form factors at high Q2

    International Nuclear Information System (INIS)

    Gross, F.; Keister, B.D.

    1983-02-01

    The charge form factor of a scalar deuteron at high momentum transfer is examined in a model employing scalar nucleons and mesons. With an eye toward establishing consistency criteria for more realistic calculations, several aspects of the model are examined in detail: the role of nucleon and meson singularities in the one-loop impulse diagram, the role of positive-and negative-energy nucleons, and the relationship to time-ordered perturbation theory. It is found that at large Q 2 (1) the form factor is dominated by a term in which the spectator nucleon is on the mass shell, and (2) the meson singularity structure of the d-n-p vertex function is unimportant in determining the overall high-Q 2 behaviour of the form factor

  4. Mesonic Form Factors

    Energy Technology Data Exchange (ETDEWEB)

    Frederic D. R. Bonnet; Robert G. Edwards; George T. Fleming; Randal Lewis; David Richards

    2003-07-22

    We have started a program to compute the electromagnetic form factors of mesons. We discuss the techniques used to compute the pion form factor and present preliminary results computed with domain wall valence fermions on MILC asqtad lattices, as well as Wilson fermions on quenched lattices. These methods can easily be extended to rho-to-gamma-pi transition form factors.

  5. Baryon form factors at high momentum transfer and generalized parton distributions

    International Nuclear Information System (INIS)

    Stoler, Paul

    2002-01-01

    Nucleon form factors at high momentum transfer t are treated in the framework of generalized parton distributions (GPD's). The possibility of obtaining information about parton high transverse momentum components by application of GPD's to form factors is discussed. This is illustrated by applying an ad hoc 2-body parton wave function to elastic nucleon form factors F 1 and F 2 , the N→Δ transition magnetic form factor G M * , and the wide angle Compton scattering form factor R 1

  6. Perturbative QCD and electromagnetic form factors

    International Nuclear Information System (INIS)

    Carlson, C.E.; Gross, F.

    1987-01-01

    We calculate nucleon magnetic form factors using perturbative QCD for several distribution amplitudes including a general one given in terms of Appell polynomials. We find that the magnitude and sign of both nucleon magnetic form factors can be explained within perturbative QCD. The observed normalization of G/sub Mp/ requires that the distribution amplitude be broader than its superhigh momentum transfer limit, and the G/sub Mn//G/sub Mp/ data may require the distribution amplitude to be asymmetric, in accord with distribution amplitudes derived from QCD sum rules. Some speculation as to how an asymmetric distribution amplitude can come about is offered. Finally, we show that the soft contributions corresponding to the particular distribution amplitudes we use need not be bigger than the data. 16 refs., 6 figs

  7. Elastic form factors at higher CEBAF energies

    Energy Technology Data Exchange (ETDEWEB)

    Petratos, G.G. [Kent State Univ., OH (United States)

    1994-04-01

    The prospects for elastic scattering from few body systems with higher beam energies at CEBAF is presented. The deuteron and{sup 3}He elastic structure functions A(Q{sup 2}) can be measured at sufficiently high momentum transfers to study the transition between the conventional meson-nucleon and the constituent quark-gluon descriptions. Possible improvements in the proton magnetic form factor data are also presented.

  8. Investigation of the nucleon structure and the nucleon-nucleon interaction by electron-deuteron scattering

    International Nuclear Information System (INIS)

    Simon, G.G.

    1978-01-01

    In this thesis results of measurements of the differential cross sections of the elastic and inelastic electron deuteron scattering are presented. The data were taken at several scattering angles and in the electron energy range of 150 MeV up to 320 MeV. The extracted form factors and structure functions are compared with theoretical results which are sensitive to details of nucleon structure and of the nucleon-nucleon forces. (FKS)

  9. Soil Forming Factors

    Science.gov (United States)

    It! What is Soil? Chip Off the Old Block Soil Forming Factors Matters of Life and Death Underneath It All Wise Choices A World of Soils Soil Forming Factors 2 A Top to Bottom Guide 3 Making a Soil Monolith 4 Soil Orders 5 State Soil Monoliths 6 Where in the Soil World Are You? >> A Top to

  10. Form factors in the projected linear chiral sigma model

    International Nuclear Information System (INIS)

    Alberto, P.; Coimbra Univ.; Bochum Univ.; Ruiz Arriola, E.; Fiolhais, M.; Urbano, J.N.; Coimbra Univ.; Goeke, K.; Gruemmer, F.; Bochum Univ.

    1990-01-01

    Several nucleon form factors are computed within the framework of the linear chiral soliton model. To this end variational means and projection techniques applied to generalized hedgehog quark-boson Fock states are used. In this procedure the Goldberger-Treiman relation and a virial theorem for the pion-nucleon form factor are well fulfilled demonstrating the consistency of the treatment. Both proton and neutron charge form factors are correctly reproduced, as well as the proton magnetic one. The shapes of the neutron magnetic and of the axial form factors are good but their absolute values at the origin are too large. The slopes of all the form factors at zero momentum transfer are in good agreement with the experimental data. The pion-nucleon form factor exhibits to great extent a monopole shape with a cut-off mass of Λ=690 MeV. Electromagnetic form factors for the vertex γNΔ and the nucleon spin distribution are also evaluated and discussed. (orig.)

  11. Test of weak and strong factorization in nucleus-nucleuscollisions atseveral hundred MeV/nucleon

    Energy Technology Data Exchange (ETDEWEB)

    La Tessa, Chiara; Sihver, Lembit; Zeitlin, Cary; Miller, Jack; Guetersloh, Stephen; Heilbronn, Lawrence; Mancusi, Davide; Iwata,Yoshiuki; Murakami, Takeshi

    2006-06-21

    Total and partial charge-changing cross sections have been measured for argon projectiles at 400 MeV/nucleon in carbon, aluminum, copper, tin and lead targets; cross sections for hydrogen were also obtained, using a polyethylene target. The validity of weak and strong factorization properties has been investigated for partial charge-changing cross sections; preliminary cross section values obtained for carbon, neon and silicon at 290 and 400 MeV/nucleon and iron at 400 MeV/nucleon, in carbon, aluminum, copper, tin and lead targets have been also used for testing these properties. Two different analysis methods were applied and both indicated that these properties are valid, without any significant difference between weak and strong factorization. The factorization parameters have then been calculated and analyzed in order to find some systematic behavior useful for modeling purposes.

  12. Pion distribution in the nucleon

    International Nuclear Information System (INIS)

    Lee, T.-S.H.

    1989-01-01

    A model is presented for calculating the pion wave function inside the nucleon. By assuming that all pions around a core of the nucleon are in the lowest eigenstate of the system, it is shown that both the bound state and πN scattering amplitude can be consistently described by an exactly soluble model defined in the subspace spanned by the core state and the physical πN state. The parameters of the model are determined by fitting the data of the nucleon mass, πNN coupling constant and low energy πN scattering phase shifts. The model predicts that the probability of finding the pion component inside the nucleon is about 20%. The calculated πNN form factor differs significantly from the conventional monopole form. The dynamical consequences of the differences are demonstrated in a calculation of electromagnetic production of pions from the nucleon and the deuteron. 7 refs., 4 figs., 1 tab

  13. Influence of the density dependence factor in effective nucleon-nucleon forces and interaction of 4He-particles with stable nuclei

    International Nuclear Information System (INIS)

    Kuterbekov, K.A.; Zholdybayev, T.K.; Muchamedzhan, A.; Penionzhkevich, Yu.E.; Kukhtina, I.N.

    2004-01-01

    Full text: The most popular method for join analysis of experimental angular distributions (AD) and total cross sections (TCS) at low and moderate energies is semimicroscopic folding model (SFM) [1]. Since 4 He-particle is a core of exotic nuclei 6,8 He, it is topical to continue systematic investigations at various effective nucleon-nucleon forces. In [2] we investigated for the first time energy and mass dependencies of the parameters SFM at low and moderate energies. At that, as effective forces between nucleons of the colliding nuclei were used total M3Y-interaction [3] and nucleon densities calculated by the method of density functional [4]. In the present work based on SFM there were investigated influences of the density dependence factor in effective nucleon-nucleon forces (4 force options considered) on calculation of ADs and TCSs at interaction of 4 He-particles with stable nuclei (A = 12 - 208) at α-particle energies 21 - 141.5 MeV. Corresponding experimental AD and TCS data used for model verification are of high quality with low error both for angular and energy diapason. Therefore, conclusions made in the performed investigation contain important quantitative information and are valuable for consequent comparative analysis of experimental data on interaction of light exotic nuclei with stable nuclei

  14. Understanding nucleon structure using lattice simulations. Recent progress on three different structural observables

    International Nuclear Information System (INIS)

    Schroers, W.

    2007-01-01

    This review focuses on the discussion of three key results of nucleon structure calculations on the lattice. These three results are the quark contribution to the nucleon spin, J q , the nucleon-Δ transition form factors, and the nucleon axial coupling, g A . The importance for phenomenology and experiment is discussed and the requirements for future simulations are pointed out. (orig.)

  15. Δ(1232) Axial Charge and Form Factors from Lattice QCD

    International Nuclear Information System (INIS)

    Alexandrou, Constantia; Gregory, Eric B.; Korzec, Tomasz; Koutsou, Giannis; Negele, John W.; Sato, Toru; Tsapalis, Antonios

    2011-01-01

    We present the first calculation on the Δ axial vector and pseudoscalar form factors using lattice QCD. Two Goldberger-Treiman relations are derived and examined. A combined chiral fit is performed to the nucleon axial charge, N to Δ axial transition coupling constant and Δ axial charge.

  16. From quarks and gluons to baryon form factors.

    Science.gov (United States)

    Eichmann, Gernot

    2012-04-01

    I briefly summarize recent results for nucleon and [Formula: see text] electromagnetic, axial and transition form factors in the Dyson-Schwinger approach. The calculation of the current diagrams from the quark-gluon level enables a transparent discussion of common features such as: the implications of dynamical chiral symmetry breaking and quark orbital angular momentum, the timelike structure of the form factors, and their interpretation in terms of missing pion-cloud effects.

  17. Pion form factor

    Energy Technology Data Exchange (ETDEWEB)

    Ryong Ji, C.; Pang, A.; Szczepaniak, A. [North Carolina State Univ., Raleigh, NC (United States)

    1994-04-01

    It is pointed out that the correct criterion to define the legal PQCD contribution to the exclusive processes in the lightcone perturbative expansion should be based on the large off-shellness of the lightcone energy in the intermediate states. In the lightcone perturbative QCD calculation of the pion form factor, the authors find that the legal PQCD contribution defined by the lightcone energy cut saturates in the smaller Q{sup 2} region compared to that defined by the gluon four-momentum square cut. This is due to the contribution by the highly off-energy-shell gluons in the end point regions of the phase space, indicating that the gluon four-momentum-square cut may have cut too much to define the legal PQCD.

  18. The neutron electric form factor to Q² = 1.45 (GeV/c)²

    Energy Technology Data Exchange (ETDEWEB)

    Plaster, Bradley [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2004-02-01

    The nucleon elastic electromagnetic form factors are fundamental quantities needed for an understanding of nucleon and nuclear electromagnetic structure. The evolution of the Sachs electric and magnetic form factors with Q2, the square of the four-momentum transfer, is related to the distribution of charge and magnetization within the nucleon. High precision measurements of the nucleon form factors are essential for stringent tests of our current theoretical understanding of confinement within the nucleon. Measurements of the neutron form factors, in particular, those of the neutron electric form factor, have been notoriously difficult due to the lack of a free neutron target and the vanishing integral charge of the neutron. Indeed, a precise measurement of the neutron electric form factor has eluded experimentalists for decades; however, with the advent of high duty-factor polarized electron beam facilities, experiments employing polarization degrees of freedom have finally yielded the first precise measurements of this fundamental quantity. Following a general overview of the experimental and theoretical status of the nucleon form factors, a detailed description of an experiment designed to extract the neutron electric form factor from measurements of the neutron's recoil polarization in quasielastic 2H(e, e')1H scattering is presented. The experiment described here employed the Thomas Jefferson National Accelerator Facility's longitudinally polarized electron beam, a magnetic spectrometer for detection of the scattered electron, and a neutron polarimeter designed specifically for this experiment. Measurements were conducted at three Q2 values of 0.45, 1.13, and 1.45 (GeV/c)2, and the final results extracted from an analysis of the data acquired in this experiment are reported and compared with recent theoretical predictions for the nucleon form factors.

  19. From fundamental fields to constituent quarks and nucleon form factors?

    International Nuclear Information System (INIS)

    Coester, F.

    1991-01-01

    Constituent-quark models formulated in the frame work of nonrelativistic quantum mechanics have been successful in accounting for the mass spectra of mesons and baryons. Applications to elastic electron scattering require relativistic dynamics. Relativistic quantum mechanics of constituent quarks can be formulated by constructing a suitable unitary representation of the Poincare group on the three-quark Hilbert space. The mass and spin operators of this representation specify the relativistic model dynamics. The dynamics of fundamental quark fields, on the other hand, is specified by a Euclidean functional integral. In this paper, the author shows how the dynamics of the fundamental fields can be related in principle to the Hamiltonian dynamics of quark particles through the properties of the Wightman functions

  20. Analytical expressions for two-nucleon transfer spectroscopic factors in sdg interacting boson model

    International Nuclear Information System (INIS)

    Devi, Y.D.; Kota, V.K.B.

    1991-01-01

    Analytical expressions for two-nucleon (l = 0,2 and 4) transfer spectroscopic factors are derived in the SU sdg (3) limit of the sdg interacting boson model. In addition, large N (boson number) limit expressions for the ratio of summed l = 0 transfer strength to excited 0 + states to that of ground state are derived in all the symmetry limits of the sdg model. Some comparisons with data are made. (author)

  1. Analytical expressions for two-nucleon transfer spectroscopic factors in sdg interacting boson model

    Energy Technology Data Exchange (ETDEWEB)

    Devi, Y.D.; Kota, V.K.B. (Physical Research Lab., Ahmedabad (India))

    1991-11-01

    Analytical expressions for two-nucleon (l = 0,2 and 4) transfer spectroscopic factors are derived in the SU{sub sdg}(3) limit of the sdg interacting boson model. In addition, large N (boson number) limit expressions for the ratio of summed l = 0 transfer strength to excited 0{sup +} states to that of ground state are derived in all the symmetry limits of the sdg model. Some comparisons with data are made. (author).

  2. Stranger than fiction: The strangeness radius and magnetic moment of the nucleon

    International Nuclear Information System (INIS)

    Jaffe, R.L.; Massachusetts Inst. of Tech., Cambridge

    1989-01-01

    The nucleon matrix elements of the operators r s 2 =s + (χ)χ 2 s(χ) and μ s =1/2χxanti sγs are estimated using dispersion theory fits to the nucleon isoscalar form factor, together with a standard treatment of φ-ω mixing and some mild assumptions on the asymptotic behavior (at large q 2 ) of nucleon form factors. The results indicate a significant strange quark content in the nucleon. (orig.)

  3. Covariant computation of e+e- production in nucleon-nucleon collisions

    International Nuclear Information System (INIS)

    Haglin, K.; Kapusta, J.; Gale, C.

    1989-01-01

    Electron-positron production differential cross sections in nucleon-nucleon collisions are calculated analytically via meson exchange with a realistic pseudovector coupling including strong interaction form factors. These results are compared with newly obtained data from the DLS at the BEVALAC of proton on beryllium. A comparison with the soft photon approximation is also made. (orig.)

  4. Covariance dynamics and symmetries, and hadron form factors

    International Nuclear Information System (INIS)

    Bhagwat, M.S.; Cloet, I.C.; Roberts, C.D.

    2007-01-01

    We summarize applications of Dyson-Schwinger equations to the theory and phenomenology of hadrons. Some exact results for pseudoscalar mesons are highlighted with details relating to the U A (1) problem. We describe inferences from the gap equation relating to the radius of convergence for expansions of observables in the current-quark mass. We recapitulate upon studies of nucleon electromagnetic form factors, providing a comparison of the ln-weighted ratios of Pauli and Dirac form factors for the neutron and proton.

  5. Form factors and structure functions of hadrons in parton model

    International Nuclear Information System (INIS)

    Volkonskij, N.Yu.

    1979-01-01

    The hadron charge form factors and their relation to the deep-inelastic lepton-production structure functions in the regions of asymptotically high and small momentum transfer Q 2 are studied. The nucleon and pion charge radii are calculated. The results of calculations are in good agreement with the experimental data. The K- and D-meson charge radii are estimated. In the region of asymptotically high Q 2 the possibility of Drell-Yan-West relation violation is analyzed. It is shown, that for pseudoscalar mesons this relation is violated. The relation between the proton and neutron form factor asymptotics is obtained

  6. Nucleon wave function from lattice QCD

    International Nuclear Information System (INIS)

    Warkentin, Nikolaus

    2008-04-01

    In this work we develop a systematic approach to calculate moments of leading-twist and next-to-leading twist baryon distribution amplitudes within lattice QCD. Using two flavours of dynamical clover fermions we determine low moments of nucleon distribution amplitudes as well as constants relevant for proton decay calculations in grand unified theories. The deviations of the leading-twist nucleon distribution amplitude from its asymptotic form, which we obtain, are less pronounced than sometimes claimed in the literature. The results are applied within the light cone sum rule approach to calculate nucleon form factors that are compared with recent experimental data. (orig.)

  7. Nucleon wave function from lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Warkentin, Nikolaus

    2008-04-15

    In this work we develop a systematic approach to calculate moments of leading-twist and next-to-leading twist baryon distribution amplitudes within lattice QCD. Using two flavours of dynamical clover fermions we determine low moments of nucleon distribution amplitudes as well as constants relevant for proton decay calculations in grand unified theories. The deviations of the leading-twist nucleon distribution amplitude from its asymptotic form, which we obtain, are less pronounced than sometimes claimed in the literature. The results are applied within the light cone sum rule approach to calculate nucleon form factors that are compared with recent experimental data. (orig.)

  8. Form factors and QCD in spacelike and timelike region

    International Nuclear Information System (INIS)

    A.P. Bakulev; A.V. Radyushkin; N.G. Stefanis

    2000-01-01

    The authors analyze the basic hard exclusive processes: πγ * γ-transition, pion and nucleon electromagnetic form factors, and discuss the analytic continuation of QCD formulas from the spacelike q 2 2 > 0 of the relevant momentum transfers. They describe the construction of the timelike version of the coupling constant α s . They show that due to the analytic continuation of the collinear logarithms each eigenfunction of the evolution equation acquires a phase factor and investigate the resulting interference effects which are shown to be very small. They found no sources for the K-factor-type enhancements in the perturbative QCD contribution to the hadronic form factors. To study the soft part of the pion electromagnetic form factor, they use a QCD sum rule inspired model and show that there are non-canceling Sudakov double logarithms which result in a K-factor-type enhancement in the timelike region

  9. Form factors and QCD in spacelike and timelike regions

    International Nuclear Information System (INIS)

    Bakulev, A. P.; Radyushkin, A. V.; Stefanis, N. G.

    2000-01-01

    We analyze the basic hard exclusive processes, the πγ * γ-transition and the pion and nucleon electromagnetic form factors, and discuss the analytic continuation of QCD formulas from the spacelike q 2 2 >0 of the relevant momentum transfers. We describe the construction of the timelike version of the coupling constant α s . We show that due to the analytic continuation of the collinear logarithms, each eigenfunction of the evolution equation acquires a phase factor and investigate the resulting interference effects which are shown to be very small. We find no sources for the K-factor-type enhancements in the perturbative QCD contribution to the hadronic form factors. To study the soft part of the pion electromagnetic form factor, we use a QCD sum rule inspired model and show that there are noncanceling Sudakov double logarithms which result in a K-factor-type enhancement in the timelike region

  10. Electric form factor of the proton through recoil polarization

    International Nuclear Information System (INIS)

    Punjabi, V.

    2000-01-01

    The electromagnetic form factors of the nucleon, G E and G M , describe the charge and current distribution inside the nucleon and thus are quite intimately related to its structure. Jefferson Lab experiment 93-027 measured P l and Pt, the longitudinal and transverse recoil proton polarization, respectively, for the 1 H(e-vector,e'p-vector) reaction in the four-momentum transfer squared range of 0.5 to 3.5 GeV 2 , using the Hall A facility with two high resolution spectrometers and a Focal Plane Polarimeter. The ratio G Ep /G Mp is directly proportional to the ratio P t /P l . These data have unprecedented precision, and show for the first time that the Q 2 dependence of G Ep and G Mp is very different. (author)

  11. Electric Form Factor of the Neutron

    Science.gov (United States)

    Feuerbach, Robert

    2007-10-01

    Recent polarization-based precision measurements of the nucleons' elastic electric form factors have led to surprising results. The measurement of the ratio of the proton's electromagnetic form factors, μpGE^p/GM^p, was found to drop nearly linearly with Q^2 out to at least 5 GeV^2, inconsistent with the older Rosenbluth-type experiments. A recent measurement of GE^n, the neutron's electric form-factor saw GE^n does not fall off as quickly as commonly expected up to Q^2 1.5 GeV^2. Extending this study, a precision measurement of GE^n up to Q^2=3.5 GeV^2 was completed in Hall A at Jefferson Lab. The ratio GE^n/GM^n was measured through the beam-target asymmetry A of electrons quasi-elastically scattered off polarized neutrons in the reaction ^3He(e,e' n). The experiment took full advantage of the electron beam, recent target developments, as well as two detectors new to Jefferson Lab. The measurement used the accelerator's 100% duty-cycle high-polarization (typically 84%) electron beam and a new, hybrid optically-pumped polarized ^3He target which achieved in-beam polarizations in excess of 50%. A medium acceptance (80msr) open-geometry magnetic spectrometer (BigBite) detected the scattered electron, while a geometrically matched neutron detector observed the struck neutron. Preliminary results from this measurement will be discussed and compared to modern calculations of GE^n.

  12. Hadronic Form Factors in Asymptotically Free Field Theories

    Science.gov (United States)

    Gross, D. J.; Treiman, S. B.

    1974-01-01

    The breakdown of Bjorken scaling in asymptotically free gauge theories of the strong interactions is explored for its implications on the large q{sup 2} behavior of nucleon form factors. Duality arguments of Bloom and Gilman suggest a connection between the form factors and the threshold properties of the deep inelastic structure functions. The latter are addressed directly in an analysis of asymptotically free theories; and through the duality connection we are then led to statements about the form factors. For very large q{sup 2} the form factors are predicted to fall faster than any inverse power of q{sup 2}. For the more modest range of q{sup 2} reached in existing experiments the agreement with data is fairly good, though this may well be fortuitous. Extrapolations beyond this range are presented.

  13. Hadron form factors in the constituent quark model

    International Nuclear Information System (INIS)

    Cardarelli, F.; Salme', G.; Simula, S.; Pace, E.

    1998-01-01

    Hadron electromagnetic form factors are evaluated in a light-front constituent quark model based on the eigenfunctions of a mass operator, including in the q-q interaction a confining term and a one-gluon-exchange term (OGE). The spin-dependent part of the interaction plays an essential role for obtaining both a proper fit of the experimental nucleon electromagnetic form factors and the faster than dipole decrease of the magnetic N-P 33 (1232) transition form factor. The effects of the D wave, produced by the tensor part of the OGE interaction, on the quadrupole and Coulomb N-P 33 (1232) transition form factors have been found to be negligible. (author)

  14. Electromagnetic form factors at large momenta from lattice QCD

    Science.gov (United States)

    Chambers, A. J.; Dragos, J.; Horsley, R.; Nakamura, Y.; Perlt, H.; Pleiter, D.; Rakow, P. E. L.; Schierholz, G.; Schiller, A.; Somfleth, K.; Stüben, H.; Young, R. D.; Zanotti, J. M.; Qcdsf/Ukqcd/Cssm Collaborations

    2017-12-01

    Accessing hadronic form factors at large momentum transfers has traditionally presented a challenge for lattice QCD simulations. Here, we demonstrate how a novel implementation of the Feynman-Hellmann method can be employed to calculate hadronic form factors in lattice QCD at momenta much higher than previously accessible. Our simulations are performed on a single set of gauge configurations with three flavors of degenerate mass quarks corresponding to mπ≈470 MeV . We are able to determine the electromagnetic form factors of the pion and nucleon up to approximately 6 GeV2 , with results for the ratio of the electric and magnetic form factors of the proton at our simulated quark mass agreeing well with experimental results.

  15. Calculation of pion form factor

    International Nuclear Information System (INIS)

    Vahedi, N.; Amirarjomand, S.

    1975-09-01

    The pion form factor is calculated using the structure function Wsub(2), which incorporates kinematical constraints, threshold behaviour and scaling. The Bloom-Gilman sum rule is used and only the two leading Regge trajectories are taken into account

  16. TRASYS form factor matrix normalization

    Science.gov (United States)

    Tsuyuki, Glenn T.

    1992-01-01

    A method has been developed for adjusting a TRASYS enclosure form factor matrix to unity. This approach is not limited to closed geometries, and in fact, it is primarily intended for use with open geometries. The purpose of this approach is to prevent optimistic form factors to space. In this method, nodal form factor sums are calculated within 0.05 of unity using TRASYS, although deviations as large as 0.10 may be acceptable, and then, a process is employed to distribute the difference amongst the nodes. A specific example has been analyzed with this method, and a comparison was performed with a standard approach for calculating radiation conductors. In this comparison, hot and cold case temperatures were determined. Exterior nodes exhibited temperature differences as large as 7 C and 3 C for the hot and cold cases, respectively when compared with the standard approach, while interior nodes demonstrated temperature differences from 0 C to 5 C. These results indicate that temperature predictions can be artificially biased if the form factor computation error is lumped into the individual form factors to space.

  17. Study of the compressibility of the nucleon

    Energy Technology Data Exchange (ETDEWEB)

    Morsch, P.H. [Forschungszentrum Juelich GmbH (Germany). Inst. fuer Kernphysik]|[Laboratoire National Saturne, Centre d`Etudes de Saclay, 91 - Gif-sur-Yvette (France)

    1996-12-31

    A brief discussion of the theoretical and experimental situation in baryon spectroscopy is given. Then, the radial structure is discussed, related to the ground state form factors and the compressibility. The compressibility derived from experimental data is compared with results from different nucleon models. From the study of the Roper resonance in nuclei information on the dynamical radius of the nucleon can be obtained. Experiments have been performed on deuteron and {sup 12}C which show no shift of the Roper resonance in these systems. This indicates no sizeable `swelling` or `shrinking` of the nucleon in the nuclear medium. (K.A.). 25 refs.

  18. In medium modification of nucleon electromagnetic properties

    International Nuclear Information System (INIS)

    Khanna, F.; Rakhimov, A.; Yakhsiev, U.

    1997-01-01

    Since nucleons are composite objects, their internal structure is expected to be changed by nuclear environment. A Skyrme like Lagrangian is proposed to consider such effects, namely the modification of electromagnetic (EM) properties of the nucleon. The static properties and EM form factors were obtained. It was shown that the charge radius of the nucleon increased in medium and the mass and axial coupling constant are reduced. The enhancement of magnetic moment of proton is smaller than that obtained in non-topological soliton model.Obtained results may be useful in electron nucleus scattering analysis.(A.A.D.)

  19. Study of the compressibility of the nucleon

    International Nuclear Information System (INIS)

    Morsch, P.H.

    1996-01-01

    A brief discussion of the theoretical and experimental situation in baryon spectroscopy is given. Then, the radial structure is discussed, related to the ground state form factors and the compressibility. The compressibility derived from experimental data is compared with results from different nucleon models. From the study of the Roper resonance in nuclei information on the dynamical radius of the nucleon can be obtained. Experiments have been performed on deuteron and 12 C which show no shift of the Roper resonance in these systems. This indicates no sizeable 'swelling' or 'shrinking' of the nucleon in the nuclear medium. (K.A.)

  20. Electromagnetic form factors at large momenta from lattice QCD

    International Nuclear Information System (INIS)

    Chambers, Alexander J.; Dragos, J.; Michigan State Univ., East Lansing, MI; Horsley, R.

    2017-01-01

    Accessing hadronic form factors at large momentum transfers has traditionally presented a challenge for lattice QCD simulations. Here we demonstrate how a novel implementation of the Feynman-Hellmann method can be employed to calculate hadronic form factors in lattice QCD at momenta much higher than previously accessible. Our simulations are performed on a single set of gauge configurations with three flavours of degenerate mass quarks corresponding to m_π∼470 MeV. We are able to determine the electromagnetic form factors of the pion and nucleon up to approximately 6 GeV"2, with results for G_E/G_M in the proton agreeing well with experimental results.

  1. Three-nucleon forces and the trinucleon bound states

    International Nuclear Information System (INIS)

    Friar, J.L.; Frois, B.

    1986-04-01

    A summary of the bound-state working group session of the ''International Symposium on the Three-Body Force in the Three-Nucleon System'' is presented. The experimental evidence for three-nucleon forces has centered on two ground state properties: the tritium binding energy and the trinucleon form factors. Both are discussed

  2. Studies of the nucleon-nucleus and the nucleon-nucleon interactions using polarized neutron beams

    International Nuclear Information System (INIS)

    Walter, R.L.; Howell, C.R.; Tornow, W.

    1988-01-01

    The results o four scattering measurements using beams of polarized neutrons are described. Results for the analyzing power A y (θ) for elastic scattering of neutrons from protons and deuterons are compared to calculations based on the Paris and the Bonn nucleon-nucleon interactions. Deficiencies particularly in the Bonn model are indicated. A nucleon-nucleus potential is derived from σ(θ) and A y (θ) data for n + 28 Si and p + 28 Si and the Coulomb correction terms are derived according to two approaches. A Fourier-Bessel expansion is used to investigate the form factors of the terms of the n + 208 Pb potential which are necessary to describe σ(θ) and A y (θ) data from 6 to 10 MeV. The nature of the spin-orbit term is also presented. (author)

  3. Form factors and radiation widths of the giant multipole resonances

    International Nuclear Information System (INIS)

    Denisov, V.Yu.

    1990-01-01

    Simple analytic relations for the form factors of inelastic electron scattering in the Born approximation and radiation widths of the isovector and isoscalar giant multipole resonances are derived. The dynamic relationship between the volume and surface density vibrations were taken into account in this calculation. The form factors in the Born approximation were found to be in satisfactory agreement with experimental data in the region of small transferred momenta. The radiation widths of isoscalar multipole resonances increase when the number of nucleons increase as A 1/3 , and for isovector resonances this dependence has the form f(A)A 1/3 , where f(A) is a slowly increasing function of A. Radiation widths well fit the experimental data

  4. Proton Form Factor Puzzle and the CEBAF Large Acceptance Spectrometer (CLAS) Two-Photon Exchange Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Rimal, Dipak [Florida Intl Univ., Miami, FL (United States)

    2014-05-01

    The electromagnetic form factors are the most fundamental observables that encode information about the internal structure of the nucleon. This dissertation explored dependence of R on kinematic variables such as squared four-momentum transfer (Q2) and the virtual photon polarization parameter (ε).

  5. The relativistic rotation of spin and asymptotic behaviour of the form factor of the composite system

    International Nuclear Information System (INIS)

    Trubnikov, S.V.

    1984-01-01

    The relativistic rotation of nucleon spin in addition to deuteron spin leads to the appearance of the new term in the deuteron charge form factor (DCFF). This term is absent in the traditional approaches and essentially influences the asymptotic behaviour of DCFF. General formulae are obtained for the DCFF asymptotics in the relativistic and nonrelativistic impulse approximation

  6. Proton and neutron charge form factors in soliton model with dilaton-quarkonium fields

    International Nuclear Information System (INIS)

    Magar, E.N.; Nikolaev, V.A.; Tkachev, O.G.; Novozhilov, V.Yu.

    1997-01-01

    Nucleon electromagnetic form factors are considered in the framework of the generalized Skyrme model with dilaton-quarkonium fields. In our first publication we got big discrepancy between calculated form factors and dipole approximation formula. Here we have reasonably good accordance between them in finite impulse region after vector meson dominance has been taken into account. Omega- and rho-mesons have been included only into hadron structure of the photon

  7. Cluster transfer form factor and intercluster relative motion in the orthogonality-condition model

    International Nuclear Information System (INIS)

    Lovas, R.G.; Pal, K.F.

    1984-01-01

    The orthogonality-condition model (OCM), as an approximation method for calculating the overlap and potential overlap functions involved in the form factor of transfer reactions, is tested against microscopic cluster calculations for the 7 Li=α+t system. The OCM overlap and potential overlap turned out to depend strongly on the OCM potential although the potentials are chosen so as to produce the same asymptotic phase. Excellent approximations to microscopic overlaps and potential overlaps are, however, obtained by optimizing the OCM potential so that the OCM may reproduce the microscopic energy surface. This way the dependence on the OCM potential is traced back to the underlying nucleon-nucleon force. (author)

  8. Deuteron A(Q2) structure function and the neutron electric form factor

    International Nuclear Information System (INIS)

    Platchkov, S.; Amroun, A.; Auffret, S.; Cavedon, J.M.; Dreux, P.; Duclos, J.; Frois, B.; Goutte, D.; Hachemi, H.; Martino, J.

    1989-01-01

    We present new measurements of the deuteron A(Q 2 ) structure function in the momentum transfer region between 1 and 18 fm -2 . The accuracy of the data ranges from 2% to 6%. We investigate the sensitivity of A(Q 2 ) to the nucleon-nucleon interaction and to the neutron electric form factor G E n . Our analysis shows that below 20 fm -2 G E n can be inferred from these data with a significantly improved accuracy. The model dependence of this analysis is discussed

  9. Factorization and pion form factor in QCD

    International Nuclear Information System (INIS)

    Efremov, A.V.; Radyushkin, A.V.

    1979-01-01

    The behaviour of the pion electromagnetic form factor (EMFF) in the framework of quantum chromodynamics (QCD) is discussed. Pion is considered to be a quark-antiquark bound state. It is proposed to use an OPE description of the bound state structure by matrix elements of certain local gauge-invariant operators. Short-distance quark interactions is proved using a direct analysis of perturbation theory in the α-parametric representation of the Feynman diagrams. It is shown that the short-distance parton picture privides a self-consistent description of the large Q 2 momentum behaviour of the pion EMFF in QCD. Pion EMFF asymptotics is expressed in terms of fu fundamental constants of the theory

  10. Composite nucleon approach to the deuteron problem

    International Nuclear Information System (INIS)

    Agarwal, B.K.

    1975-01-01

    A composite model is suggested for the nucleons by assuming a long-range strong gluon force between a diquark boson B and a quark A. In the proton, A is trapped inside B in an oscillator potential; and in the neutron, A is on the surface of B in a hydrogenlike state. Nucleon form factors are obtained in agreement with experiments. The model contains a mechanism for a large effective mass of the quark A. When B is identified with π and A with μ, one can fix the gluon charge value and obtain the magnetic moments of the proton and neutron. The (μπ) atomic model for the nucleon can be used to construct the deuteron on a hydrogen molecule model. It leads to values for the binding energy, electric quadrupole moment, and form factors of the deuteron that are in agreement with experiments

  11. Warming up a nucleon

    International Nuclear Information System (INIS)

    Eletsky, V.L.

    1991-01-01

    The problem of temperature dependence of nucleon mass is addressed by considering a retarded correlator of two currents with quantum numbers of a nucleon at finite temperature T π in the chiral limit. It is shown that at Euclidean momenta the leading one-loop corrections arise from direct interaction of thermal pions with the currents. A dispersive representation for the correlator shows that this interaction smears the nucleon pole over frequency interval with width ∼ T. This interaction does not change the exponential fall-off of the correlator in Euclidean space but gives an O(T 2 /F π 2 ) contribution to the pre-exponential factor. 11 refs. (author)

  12. Nucleon-nucleon scattering data

    International Nuclear Information System (INIS)

    Bystricky, J.; Lehar, F.

    1981-01-01

    The present review contains a compilation of p-p, n-n, n-p and p-n elastic scattering data, total cross sections for elastic and inelastic nucleon-nucleon processes as well as the slope parameters and the ratios of the real to the imaginary part of the forward scattering amplitude measured at all energies. The data are given in detailed tables with comments on each measurement. Summary tables, nucleon-nucleon kinematics formulae, transformation tables for kinematics, a detailed list of references and an author index complete the paper. (orig.)

  13. Nucleonic gauging

    International Nuclear Information System (INIS)

    Bond, A.

    1977-01-01

    The present position of nucleonic techniques for process measurements, is considered from the technical and cost viewpoints. Systems considered include level, density, thickness (including coating thickness), moisture, and sulphur in hydrocarbons gauges and also belt weighers. The advantages of such systems are discussed and the cost-benefit position considered. The combination of nucleonic measuring equipment with a microcomputer is examined. (U.K.)

  14. The role of the form factor and short-range correlation in the relativistic Hartree-Fock model for nuclear matter

    International Nuclear Information System (INIS)

    Hu, J.; Toki, H.; Wen, W.; Shen, H.

    2010-01-01

    The role of the form factor and short-range correlation in nuclear matter is studied within the relativistic Hartree-Fock approximation. We take, first, the mean-field approximation for meson fields and obtain the fluctuation terms of mesons to be used for the Fock energies. We introduce form factors in the meson-nucleon coupling vertices to take into account the finite-size effect of the nucleon. We use further the unitary correlation operator method for the treatment of the short-range correlation. The form factors of the size (Λ∝1.0 -2.0 GeV) of the nucleon-nucleon interaction cut down largely the contribution of the ρ-meson in the Fock term. The short-range correlation effect is not large but has a significant effect on the pion and ρ-meson energies in the relativistic Hartree-Fock approximation for nuclear matter. (orig.)

  15. The role of the form factor and short-range correlation in the relativistic Hartree-Fock model for nuclear matter

    Science.gov (United States)

    Hu, J.; Toki, H.; Wen, W.; Shen, H.

    2010-03-01

    The role of the form factor and short-range correlation in nuclear matter is studied within the relativistic Hartree-Fock approximation. We take, first, the mean-field approximation for meson fields and obtain the fluctuation terms of mesons to be used for the Fock energies. We introduce form factors in the meson-nucleon coupling vertices to take into account the finite-size effect of the nucleon. We use further the unitary correlation operator method for the treatment of the short-range correlation. The form factors of the size ( Λ ˜ 1.0 -2.0GeV) of the nucleon-nucleon interaction cut down largely the contribution of the ρ -meson in the Fock term. The short-range correlation effect is not large but has a significant effect on the pion and ρ -meson energies in the relativistic Hartree-Fock approximation for nuclear matter.

  16. Off-energy-shell variations of two-nucleon transition matrix and three-nucleon problem

    International Nuclear Information System (INIS)

    Stingl, M.; Sauer, P.U.

    1975-01-01

    For a schematic three-nucleon problem, approximate analytic expressions are derived for the functional derivatives of measurable three-particle quantities with respect to off-shell variations of the triplet-s two-nucleon transition matrix. Those quantities include neutron-deuteron scattering lengths, trinucleon binding energies, and the 3 He charge form-factor minimum; correlations between off-shell changes in the latter two are discussed. An indication is given how results of this kind may be to decide whether or not a given set of discrepancies between calculated and experimental three-nucleon observables can be reconciled in terms of off-shell variations of a nonretarded hermitean two-nucleon interaction. The treatment is not restricted to special classes of phase-shift equivalent potentials or phase-shift preserving transformations but instead makes use of a systematic parameterization of off-shell variations in terms of symmetric rational approximants of increasing order

  17. Nucleon deformation from lattice QCD

    International Nuclear Information System (INIS)

    Tsapalis, A.

    2008-01-01

    The issue of nucleon and Delta(1232) deformation is discussed through the evaluation of the N to Delta electromagnetic transition and Delta electromagnetic form factors in Lattice QCD. The momentum dependence of the form factors is studied using 2+1 staggered dynamical flavors at pion masses as low as 350 MeV and compared to results obtained in the Wilson quenched and two-flavor dynamical theory at similar pion masses. The measurement of small non-zero quadrupole amplitudes, in agreement to recent experiments, establishes the existence of deformation in the N and Delta states. (author)

  18. Light-cone quark model with spin force for the nucleon and Δ(1232)

    International Nuclear Information System (INIS)

    Weber, H.J.

    1992-01-01

    Electromagnetic structure functions for the nucleon, static observables for the nucleon and N→D(1232) transition form factors are calculated in a relativistic constituent quark model on the light cone. The model simulates the main effect of the spin force between quarks in terms of smaller (and lighter) scalar ud diquarks in the nucleon. The polarized proton structure function is found to agree with the EMC data. (orig.)

  19. Microscopic models for hadronic form factors and vertex functions

    International Nuclear Information System (INIS)

    Santhanam, I.; Bhatnagar, S.; Mitra, A.N.

    1990-01-01

    We review the status of nucleon (N) and few-nucleon form factors (f.f.'s) from the view-point of a gradual unfolding of successively inner degrees of freedom (d.o.f.) with increase in q 2 . To this end we focus attention on the problem of a microscopic formulation of hadronic vertex functions (v.f.) from the point of view of their key role in understanding the physics of a large variety of few-hadron reactions on the one hand, and their practical usefulness in articulating the internal dynamics of hadron and few-hadron systems on the other hand. The criterion of an integrated view from low-energy spectroscopy to high-q 2 amplitudes is employed to emphasize the desirability of formulations in terms of relativistic dynamical equations based on Lorentz and gauge invariance in preference to phenomenological models, which often require additional assumptions beyond their original premises to extend their applicability domains. In this respect, the practical possibilities of the Bethe-Salpeter equation (BSE) in articulating the necessary dynamical ingredients are emphasized on a two-tier basis, the basis constants (3) being pre-determined from the mass spectral data (1 st stage) in preparation for the construction of the hadron-quark vertex functions (2 nd stage). An explicit construction is outlined for meson-quark and baryon-quark vertex functions as well as of meson-nucleon vertex functions in a stepwise fashion. The role of the latter as basic parameter-free ingredients is discussed for possible use in the more serious treatment in the current literature of quark-meson level (α) and meson-isobar (β) d.o.f. in 2-N and 3-N form factor studies. Since most of these studies are characterized by the use of RGM techniques at the six-quark level, a comparative discussion is also given of several contemporary RGM based models. Finally, the concrete prospects for employing such hardon-quark vertex functions for evaluating pp-bar annihilation amplitudes are briefly indicated

  20. Predictions of baryon form factors for the electromagnetic and weak interaction

    International Nuclear Information System (INIS)

    Kiehlmann, H.D.

    1978-05-01

    The electromagnetic and weak form factors of the baryon matrix elements (with B the nucleon or the Λ(1232)-resonance) are determined via sumrules by the experimentally known form factors of the nucleon matrix element for momentum transfers 0 2 2 . The operator Jμ denotes either the electromagnetic current or the weak hypercharge-conserving current of the I. class. The sumrules are derived from the superconvergence of properly chosen reaction amplitudes. The results allow an absolute determination of the cross sections of a series of peripheral reactions. An important and interesting consequence for the considered matrix elements of the weak current is that the properties of CVC of PCAC follow from the sumrules without additional assumptions. Finally the predictions of relativistic SU(6)-models are checked. One gets surprisingly a good confirmation of the essential results of these models, the reliability of which has almost been unknown on account of a series of speculative assumptions. (orig.) [de

  1. Nucleon-nucleon forces in the quark compound bag model and few-nucleon systems

    International Nuclear Information System (INIS)

    Kalashnikova, Yu.S.; Narodetskij, I.M.

    1984-01-01

    Role of quark-gluon degrees of freedom is discussed in nucleon-nucleon scattering at low and intermediate energies. It is shown that the existence of six-quark hags fixes the form of NN potential at small distances, which leads to the P-matrix satisfying the criterion of Jaffe and Low. The dynamical model of three-nucleon system is discussed taking into accoint the contribution of six-quark bags

  2. High energy approximations for nuclear knockout form factors at small momentum transfer

    International Nuclear Information System (INIS)

    Amado, R.D.; Cannata, F.; Dedonder, J.P.

    1985-01-01

    We obtain an explicit approximate expression for the nucleon knockout form factor at small momentum transfer induced by a scalar probe in a single particle model in terms of the momentum space bound state wave function. Our form preserves the orthogonality constraint without using explicitly the final state scattering wave function. We examine the leading large momentum behavior of the momentum space wave function and of correction terms to our expression for the form factor in the case where the bound state is an s state

  3. Dependence of electromagnetic form factors of hadrons on light-cone frames

    International Nuclear Information System (INIS)

    Weber, H.J.; Xu Xiaoming; Chinese Acad. of Sci., Shanghai

    1996-01-01

    A constituent quark model is developed for an arbitrary light-cone direction so that the light-front time is x LF + =ω.x with a constant lightlike four-vector ω. Form factors are obtained from free one-body electromagnetic current matrix elements. They are found to be ω-independent for spin-0 mesons, nucleons and the Λ-hyperon, while there is an ω-dependence for spin-1 systems like the deuteron. (orig.)

  4. The nucleon-nucleon interaction from a realistic pseudoscalar-vector chiral lagrangian

    International Nuclear Information System (INIS)

    Kaiser, N.; Meissner, U.G.; Massachusetts Inst. of Tech., Cambridge

    1990-01-01

    We investigate the static nucleon-nucleon potential in the framework of a non-linear chiral meson theory. The model includes pions as well as the vector mesons ρ and ω. All parameters are fixed in the meson sector and predictions about the nucleon-nucleon interaction follow without adjusting any parameters. We use an S-matrix approach to calculate correlated two-pion exchange between two solitons. The most prominent feature of this two-pion exchange is that it leads very natural to attraction in the scalar-isoscalar channel. We also discuss the effect of πp correlations on the central potential, and present the spectral function related to the correlated two-pion exchange. Furthermore, we study the form factors of the nucleon sources related to the two-pion exchange and find that they are of dipole type with typical cutoff scales Λ D ≅ 700 MeV. We also discuss the destructive interference of π- and ρ-exchange in the isovector tensor potential. Altogether, we present a unified treatment of meson exchange phenomenology based on a serious model of the nucleon. Finally, we point out the limitations of the model and discuss some further applications. (orig.)

  5. The effect of higher order different meson exchange nucleon-nucleon interactions on the three-nucleon binding energy coupling problem

    International Nuclear Information System (INIS)

    Osman, A.; Ramadan, S.

    1989-01-01

    Faddeev equations of bound three-nucleon system are presented as a set of integral equations. To solve them, a sutable form of the nucleon-nucleon interactions is used: with the exchange of a scalar meson, a pseudoscalar meson and a massless vector meson. Higher orders of these different meson exchanges in the nucleon-nucleon interactions have been taken into account. With these nuclear forces and nucleon-nucleon interactions, the three-nucleon binding energy is calculated by solving the Faddeev integral equations. The obtained value of the three-nucleon binding energy is 8.441 MeV. The inclusion of the higher order terms of the different meson exchange in the nuclear nucleon-nucleon interaction is found to affect the three-nucleon binding by about 3.92%. 3 figs., 16 refs

  6. Matter density distributions and elastic form factors of some two ...

    Indian Academy of Sciences (India)

    Ahmed N Abdullah

    2017-08-31

    Aug 31, 2017 ... include the proton, neutron and matter density distributions, the corresponding rms radii, the binding energy per nucleon and the charge form ... the nuclear structure models based on the experimental data for stable nuclei ... Most exotic nuclei are so short lived that they cannot be used as targets at rest.

  7. On form factors of boundary changing operators

    Energy Technology Data Exchange (ETDEWEB)

    Bajnok, Z., E-mail: bajnok.zoltan@wigner.mta.hu [MTA Lendület Holographic QFT Group, Wigner Research Centre for Physics, P.O.B. 49, H-1525 Budapest 114 (Hungary); Hollo, L., E-mail: hollo.laszlo@wigner.mta.hu [MTA Lendület Holographic QFT Group, Wigner Research Centre for Physics, P.O.B. 49, H-1525 Budapest 114 (Hungary); Laboratoire de Physique Théorique, École Normale Supérieure, 24, rue Lhomond, 75005 Paris (France)

    2016-04-15

    We develop a form factor bootstrap program to determine the matrix elements of local, boundary condition changing operators. We propose axioms for these form factors and determine their solutions in the free boson and Lee–Yang models. The sudden change in the boundary condition, caused by an operator insertion, can be interpreted as a local quench and the form factors provide the overlap of any state before the quench with any outgoing state after the quench.

  8. Polarization observables in the process d + p → d+ X and electromagnetic form factors of N → N* transitions

    International Nuclear Information System (INIS)

    Rekalo, M.P.; Tomasi-Gustafsson, E.

    1996-01-01

    We analyze the properties of the inclusive d + p-reactions, with particular interest in the domain of nucleonic resonances excitation. The calculated cross section and polarization observables show that it is possible to disentangle the different reaction mechanisms (ω-,σ-, n- exchange) and bring new information about the electromagnetic form factors of the deuteron as well as of the nucleonic resonances excitation. Existing data on the tensor analyzing power are in agreement with the predictions based on the ω-exchange model. (authors)

  9. Electron scattering and few nucleon systems

    International Nuclear Information System (INIS)

    Frois, B.

    1983-08-01

    Recent result obtained by electron scattering in the few-nucleon systems (A 3 He charge and magnetic form factors are discussed. New theoretical results indicate that three body forces improve considerably the saturation properties of 3 He, 4 He and nuclear matter, but are not able to reconcile experiment and theory for the charge form factors of 3 He and 4 He. Calculations of meson exchange effects with different theoretical approaches bring the theory into reasonable agreement with the experimental charge and magnetic form factor fo 3 He. Recent results of the measurements of the two and three body break-up of 3 He are discussed

  10. Electromagnetic form factors of a massive neutrino

    International Nuclear Information System (INIS)

    Dvornikov, M.S.; Studenikin, A.I.

    2004-01-01

    Electromagnetic form factors of a massive neutrino are studied in a minimally extended standard model in an arbitrary R ξ gauge and taking into account the dependence on the masses of all interacting particles. The contribution from all Feynman diagrams to the electric, magnetic, and anapole form factors, in which the dependence of the masses of all particles as well as on gauge parameters is accounted for exactly, are obtained for the first time in explicit form. The asymptotic behavior of the magnetic form factor for large negative squares of the momentum of an external photon is analyzed and the expression for the anapole moment of a massive neutrino is derived. The results are generalized to the case of mixing between various flavors of the neutrino. Explicit expressions are obtained for the electric, magnetic, and electric dipole and anapole transitional form factors as well as for the transitional electric dipole moment

  11. Gravitational form factors and angular momentum densities in light-front quark-diquark model

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Narinder [Indian Institute of Technology Kanpur, Department of Physics, Kanpur (India); Mondal, Chandan [Chinese Academy of Sciences, Institute of Modern Physics, Lanzhou (China); Sharma, Neetika [I K Gujral Punjab Technical University, Department of Physical Sciences, Jalandhar, Punjab (India); Panjab University, Department of Physics, Chandigarh (India)

    2017-12-15

    We investigate the gravitational form factors (GFFs) and the longitudinal momentum densities (p{sup +} densities) for proton in a light-front quark-diquark model. The light-front wave functions are constructed from the soft-wall AdS/QCD prediction. The contributions from both the scalar and the axial vector diquarks are considered here. The results are compared with the consequences of a parametrization of nucleon generalized parton distributions (GPDs) in the light of recent MRST measurements of parton distribution functions (PDFs) and a soft-wall AdS/QCD model. The spatial distribution of angular momentum for up and down quarks inside the nucleon has been presented. At the density level, we illustrate different definitions of angular momentum explicitly for an up and down quark in the light-front quark-diquark model inspired by AdS/QCD. (orig.)

  12. The pion form factor from first principles

    International Nuclear Information System (INIS)

    Heide, J. van der

    2004-01-01

    We calculate the electromagnetic form factor of the pion in quenched lattice QCD. The non-perturbatively improved Sheikoleslami-Wohlert lattice action is used together with the O(a) improved current. We calculate form factor for pion masses down to mπ = 380 MeV. We compare the mean square radius for the pion extracted from our form factors to the value obtained from the 'Bethe Salpeter amplitude'. Using (quenched) chiral perturbation theory, we extrapolate our results towards the physical pion mass

  13. Measurement of the pion form factor

    International Nuclear Information System (INIS)

    Dally, E.; Hauptman, J.; May, C.

    1977-01-01

    The pion form factor has been measured in the momentum transfer range of 0.03( 2 by scattering pions from atomic electrons in a liquid hydrogen target. The pion form factor is defined to be the elastic scattering cross section divided by that predicted for a point pion. The experiment has been performed in a 100 GeV/c negative pion beam incident on a 50 cm liquid hydrogen target at Fermi laboratory. The corrected form factor equals 0.33+-0.06 f 2 . Vector dominance predicts 0.40 f 2

  14. Electric form factors of the octet baryons from lattice QCD and chiral extrapolation

    International Nuclear Information System (INIS)

    Shanahan, P.E.; Thomas, A.W.; Young, R.D.; Zanotti, J.M.; Pleiter, D.; Stueben, H.

    2014-03-01

    We apply a formalism inspired by heavy baryon chiral perturbation theory with finite-range regularization to dynamical 2+1-flavor CSSM/QCDSF/UKQCD Collaboration lattice QCD simulation results for the electric form factors of the octet baryons. The electric form factor of each octet baryon is extrapolated to the physical pseudoscalar masses, after finite-volume corrections have been applied, at six fixed values of Q 2 in the range 0.2-1.3 GeV 2 . The extrapolated lattice results accurately reproduce the experimental form factors of the nucleon at the physical point, indicating that omitted disconnected quark loop contributions are small. Furthermore, using the results of a recent lattice study of the magnetic form factors, we determine the ratio μ p G E p /G M p . This quantity decreases with Q 2 in a way qualitatively consistent with recent experimental results.

  15. Small Form Factor RFID Applicator, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed development of a small form factor Astrobee dedicated RFID label applicator will allow current and future free flying vehicles to place RFID labels...

  16. Heavy meson form factors from QCD

    International Nuclear Information System (INIS)

    Falk, A.F.; Georgi, H.; Grinstein, B.

    1990-01-01

    We calculate the leading QCD radiative corrections to the relations which follow from the decoupling of the heavy quark spin as the quark mass goes infinity and from the symmetry between systems with different heavy quarks. One of the effects we calculate gives the leading q 2 -dependence of the form factor of a heavy quark, which in turn dominates the q 2 -dependence of the form factors of bound states of the heavy quark with light quarks. This, combined with the normalization of the form factor provided by symmetry, gives us a first principles calculation of the heavy meson (or baryon) form factors in the limit of very large heavy quark mass. (orig.)

  17. Make Projects Small Form Factor PCs

    CERN Document Server

    Wessels, Duane

    2006-01-01

    Shoebox sized and smaller, small-form-factor PCs can pack as much computing muscle as a full-sized desktop computer. They consumer less power, have few or no moving parts, and are very quiet. Whether you plan to use one as a standalone PC or want to embed it in your next hacking project, a small-form-factor PC can be a lot of fun to build. Make Projects: Small Form Factor PCs is the only book available that shows you how to build small-form-factor PCs -- from kits and from scratch -- that are more interesting and more personalized than what a full-sized PC can give you. Included in the book

  18. Parallel Integer Factorization Using Quadratic Forms

    National Research Council Canada - National Science Library

    McMath, Stephen S

    2005-01-01

    .... In 1975, Daniel Shanks used class group infrastructure to modify the Morrison-Brillhart algorithm and develop Square Forms Factorization, but he never published his work on this algorithm or provided...

  19. Radial excitations in nucleon-nucleon scattering

    International Nuclear Information System (INIS)

    Silvestre-Brac, B.; Carbonell, J.; Gignoux, C.

    1986-01-01

    In the non-relativistic constituent quark model, the role of the radial excitations of the nucleon is studied within a resonating group approach of the nucleon-nucleon scattering. It is shown that, rather than the inclusion of new channels, it is important to include mixed-symmetry spin-isospin components in the nucleon wave function. It is also found that during the collision there is no significant deformation of the nucleon. (orig.)

  20. Hadron collisions and the fifth form factor

    International Nuclear Information System (INIS)

    Dokshitzer, Yu.L.; Marchesini, G.

    2005-01-01

    Logarithmically enhanced effects due to radiation of soft gluons at large angles in 2->2 QCD scattering processes are treated in terms of the ''fifth form factor'' that accompanies the four collinear singular Sudakov form factors attached to incoming and outgoing hard partons. Unexpected symmetry under exchange of internal and external variables of the problem is pointed out for the anomalous dimension that governs soft gluon effects in hard gluon-gluon scattering

  1. Evaluation of the three-nucleon analyzing power puzzle

    International Nuclear Information System (INIS)

    Tornow, W.; Witala, H.

    1998-01-01

    The current status of the three-nucleon analyzing power puzzle is reviewed. Applying tight constraints on the allowed deviations between calculated predictions and accepted values for relevant nucleon-nucleon observables reveals that energy independent correction factors applied to the 3 P j nucleon-nucleon interactions can not solve the puzzle. Furthermore, using the same constraints, charge-independence breaking in the 3 P j nucleon-nucleon interactions can be ruled out as a possible tool to improve the agreement between three-nucleon calculations and data. The study of the energy dependence of the three-nucleon analyzing power puzzle gives clear evidence that the 3 P j nucleon-nucleon interaction obtained from phase-shift analyses and used in potential models are correct above about 25 MeV, i.e., the 3 P j nucleon-nucleon interactions have to be modified only at lower energies in order to solve the three-nucleon analyzing power puzzle, unless new three-nucleon forces can be found that account for the three-nucleon analyzing power puzzle without destroying the beautiful agreement between rigorous three-nucleon calculations and a large body of accurate three-nucleon data. (orig.)

  2. Evaluation of the three-nucleon analyzing power puzzle

    Energy Technology Data Exchange (ETDEWEB)

    Tornow, W. [Duke Univ., Durham, NC (United States). Dept. of Physics]|[Triangle Univ. Nuclear Lab., Durham, NC (United States); Witala, H. [Uniwersytet Jagiellonski, Cracow (Poland). Inst. Fizyki

    1998-07-20

    The current status of the three-nucleon analyzing power puzzle is reviewed. Applying tight constraints on the allowed deviations between calculated predictions and accepted values for relevant nucleon-nucleon observables reveals that energy independent correction factors applied to the {sup 3}P{sub j} nucleon-nucleon interactions can not solve the puzzle. Furthermore, using the same constraints, charge-independence breaking in the {sup 3}P{sub j} nucleon-nucleon interactions can be ruled out as a possible tool to improve the agreement between three-nucleon calculations and data. The study of the energy dependence of the three-nucleon analyzing power puzzle gives clear evidence that the {sup 3}P{sub j} nucleon-nucleon interaction obtained from phase-shift analyses and used in potential models are correct above about 25 MeV, i.e., the {sup 3}P{sub j} nucleon-nucleon interactions have to be modified only at lower energies in order to solve the three-nucleon analyzing power puzzle, unless new three-nucleon forces can be found that account for the three-nucleon analyzing power puzzle without destroying the beautiful agreement between rigorous three-nucleon calculations and a large body of accurate three-nucleon data. (orig.) 18 refs.

  3. One-boson-exchange approach to dilepton production in nucleon-nucleon collisions

    International Nuclear Information System (INIS)

    Haglin, K.L.

    1991-01-01

    The author calculates energy-dependent nucleon-nucleon elastic cross sections and electron-positron pair production differential cross sections for the processes pp → pp, np → np, and pp → ppe + e - , np → npe + e - at laboratory kinetic energies in the 1-5 GeV range. These calculations will be based on a one-boson-exchange (π, ρ, ω, σ, δ, η) approximation to the nucleon-nucleon scattering problem. Strong form factors are included in a manner which preserves gauge invariance. He finds excellent results as compared with data for the total elastic cross sections. The calculate differential elastic cross sections show only qualitative agreement with data. For dilepton production in n-p scattering the model overestimates the number of pairs as compared with proton on beryllium data. For the p-p case he finds the tensor coupling of the ρ to the nucleons to be clearly dominant. Data do not yet exist for the p-p case at these energies: the author predicts them

  4. Charge form factors and alpha-cluster internal structure of 12C

    International Nuclear Information System (INIS)

    Luk'yanov, V.K.; Zemlyanaya, E.V.; Kadrev, D.N.; Antonov, A.N.; Spasova, K.; Anagnostatos, G.S.; Ginis, P.; Giapitzakis, J.

    1999-01-01

    The transition densities and form factors of 0 + , 2 + , and 3 - states in 12 C are calculated in alpha-cluster model using the triangle frame with clusters in the vertices. The wave functions of nucleons in the alpha clusters are taken as they were obtained in the framework of the models used for the description of the 4 He form factor and momentum distribution which are based on the one-body density matrix construction. They contain effects of the short-range NN correlations, as well as the d-shell admixtures in 4 He. Calculations and the comparison with the experimental data show that visible effects on the form and magnitude of the 12 C form factors take place, especially at relatively large momentum transfers

  5. Diquarks and nucleon structure functions

    International Nuclear Information System (INIS)

    Linkevich, A.D.; Savrin, V.I.; Skachkov, N.B.

    1982-01-01

    Formulae for structure functions of the deep-inelastic lepton-nucleon scattering are obtained through relativistic wave functions of systems composed of particles with spins 0, 1/2 and 1, 1/2. These wave functions are solutions of covariant two-particle single-time equations describing the nucleon as a system formed out of a quark and a diquark. Diquark is considered as a boson with the spin 0 and 1. The expressions for the nucleon structure functions are obtained by using the matrix elements of the current operator corresponding to the elastic scattering of the photon on a quark and on a diquark [ru

  6. The NE11 experiment at SLAC and the neutron form factors

    International Nuclear Information System (INIS)

    Stuart, L.M.; Lung, A.; Bosted, P.E.

    1993-05-01

    The neutron electromagnetic form factors G En and G Mn , which reflect the charge and magnetization distributions within the neutron, are of fundamental importance for understanding nucleon structure, and are necessary for calculations of processes involving the electromagnetic interaction with complex nuclei. These quantities are functions of Q 2 , the four-momentum transfer squared. SLAC experiment NE11 has measured these form factors out to a Q 2 of 4.0 (GeV/c) 2 with high precision, and the results have been recently published. This paper provides some additional details on the extraction of G Mn and G En from the NE11 measurements. Several formalisms have been developed over the years which attempt to understand the nucleon form factors using basic physical principles. Vector Meson Dominance (VMD) models are based on superpositions of photon couplings to various vector mesons. These models generally involve free parameters which are fit to form factor data at low Q 2 , and are not expected to be valid at high Q 2 . For asymptotically large Q 2 , dimensional scaling methods and perturbative Quantum Chromodynamics (pQCD) predict form factor behavior at large Q 2 , but they do not make absolute magnitude predictions. To describe the form factor behavior at intermediate values of Q 2 , a hybrid model by Gari and Kruempelmann (GK) uses VMD constraints at low Q 2 and pQCD constraints at high Q 2 . Free parameters in the model are adjusted to fit existing form factor data. Other approaches include the use of QCD sum rules to make absolute predictions, diquark models, and relativistic constituent quark models

  7. Asymptotics of Heavy-Meson Form Factors

    CERN Document Server

    Grozin, A.G.; Grozin, Andrey G.; Neubert, Matthias

    1997-01-01

    Using methods developed for hard exclusive QCD processes, we calculate the asymptotic behaviour of heavy-meson form factors at large recoil. It is determined by the leading- and subleading-twist meson wave functions. For $1\\ll |v\\cdot v'|\\ll m_Q/\\Lambda$, the form factors are dominated by the Isgur--Wise function, which is determined by the interference between the wave functions of leading and subleading twist. At $|v\\cdot v'|\\gg m_Q/\\Lambda$, they are dominated by two functions arising at order $1/m_Q$ in the heavy-quark expansion, which are determined by the leading-twist wave function alone. The sum of these contributions describes the form factors in the whole region $|v\\cdot v'|\\gg 1$. As a consequence, there is an exact zero in the form factor for the scattering of longitudinally polarized $B^*$ mesons at some value $v\\cdot v'\\sim m_b/\\Lambda$, and an approximate zero in the form factor of $B$ mesons in the timelike region ($v\\cdot v'\\sim -m_b/\\Lambda$). We obtain the evolution equations and sum rules ...

  8. The effect of including tensor forces in nucleon-nucleon interaction on three-nucleon binding energy

    International Nuclear Information System (INIS)

    Osman, A.; Ramadan, S.

    1986-01-01

    Separable two-body interactions are used in considering the three-nucleon problem. The nucleon-nucleon potentials are taken to include attraction and repulsion as well as tensor forces. The separable approximation is used in order to investigate the effect of the tensor forces. The separable expansion is introduced in the three-nucleon problem, by which the Faddeev equations are reduced to a well-behaved set of coupled integral equations. Numerical calculations are carried out for the obtained integral equations using potential functions of the Yamaguchi, Gaussian, Takabin, Mongan and Reid forms. The present calculated values of the binding energies of the 3 H and 3 He nuclei are in good agreement with the experimental values. The effect of including the tensor forces in the nucleon-nucleon interactions is found to improve the three-nucleon binding energy by about 4.490% to 8.324%. 37 refs., 2 tabs. (author)

  9. Color-kinematic duality for form factors

    International Nuclear Information System (INIS)

    Boels, Rutger H.; Kniehl, Bernd A.; Tarasov, Oleg V.; Yang, Gang

    2012-12-01

    Recently a powerful duality between color and kinematics has been proposed for integrands of scattering amplitudes in quite general gauge theories. In this paper the duality proposal is extended to the more general class of gauge theory observables formed by form factors. After a discussion of the general setup the existence of the duality is verified in two and three loop examples in four dimensional maximally supersymmetric Yang-Mills theory which involve the stress energy tensor multiplet. In these cases the duality reproduces known results in a particularly transparent and uniform way. As a non-trivial application we obtain a very simple form of the integrand of the four-loop two-point (Sudakov) form factor which passes a large set of unitarity cut checks.

  10. Color-kinematic duality for form factors

    Energy Technology Data Exchange (ETDEWEB)

    Boels, Rutger H.; Kniehl, Bernd A.; Tarasov, Oleg V.; Yang, Gang [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik

    2012-12-15

    Recently a powerful duality between color and kinematics has been proposed for integrands of scattering amplitudes in quite general gauge theories. In this paper the duality proposal is extended to the more general class of gauge theory observables formed by form factors. After a discussion of the general setup the existence of the duality is verified in two and three loop examples in four dimensional maximally supersymmetric Yang-Mills theory which involve the stress energy tensor multiplet. In these cases the duality reproduces known results in a particularly transparent and uniform way. As a non-trivial application we obtain a very simple form of the integrand of the four-loop two-point (Sudakov) form factor which passes a large set of unitarity cut checks.

  11. Hadronic form factors in kaon photoproduction

    Energy Technology Data Exchange (ETDEWEB)

    Syukurilla, L., E-mail: tmart@fisika.ui.ac.id; Mart, T., E-mail: tmart@fisika.ui.ac.id [Department Fisika, FMIPA, Universitas Indonesia, Depok, 164242 (Indonesia)

    2014-09-25

    We have revisited the effect of hadronic form factors in kaon photoproduction process by utilizing an isobaric model developed for kaon photoproduction off the proton. The model is able to reproduce the available experimental data nicely as well as to reveal the origin of the second peak in the total cross section, which was the main source of confusion for decades. Different from our previous study, in the present work we explore the possibility of using different hadronic form factors in each of the KΛN vertices. The use of different hadronic form factors, e.g. dipole, Gaussian, and generalized dipole, has been found to produce a more flexible isobar model, which can provide a significant improvement in the model.

  12. Paramagnetic form factors from itinerant electron theory

    International Nuclear Information System (INIS)

    Cooke, J.F.; Liu, S.H.; Liu, A.J.

    1985-01-01

    Elastic neutron scattering experiments performed over the past two decades have provided accurate information about the magnetic form factors of paramagnetic transition metals. These measurements have traditionally been analyzed in terms of an atomic-like theory. There are, however, some cases where this procedure does not work, and there remains the overall conceptual problem of using an atomistic theory for systems where the unpaired-spin electrons are itinerant. We have recently developed computer codes for efficiently evaluating the induced magnetic form factors of fcc and bcc itinerant electron paramagnets. Results for the orbital and spin contributions have been obtained for Cr, Nb, V, Mo, Pd, and Rh based on local density bands. By using calculated spin enhancement parameters, we find reasonable agreement between theory and neutron form factor data. In addition, these zero parameter calculations yield predictions for the bulk susceptibility on an absolute scale which are in reasonable agreement with experiment in all treated cases except palladium

  13. Weak form factors of beauty baryons

    International Nuclear Information System (INIS)

    Ivanov, M.A.; Lyubovitskij, V.E.

    1992-01-01

    Full analysis of semileptonic decays of beauty baryons with J p =1/2 2 and J p =3/2 2 into charmed ones within the Quark Confinement Model is reported. Weak form factors and decay rates are calculated. Also the heavy quark limit m Q →∞ (Isgur-Wise symmetry) is examined. The weak heavy-baryon form factors in the Isgur-Wise limit and 1/m Q -corrections to them are computered. The Ademollo-Gatto theorem is spin-flavour symmetry of heavy quarks is checked. 33 refs.; 1 fig.; 9 tabs

  14. The nucleon as a projected chiral soliton: vacuum and medium properties

    International Nuclear Information System (INIS)

    Fiolhais, M.; Alberto, P.; Ruiz Arriola, E.; Christov, C.V.; Bylgarska Akademiya na Naukite, Sofia

    1990-01-01

    Nucleon properties and nucleon form factors are computed within the framework of the projected linear chiral soliton model. To this end the Gell-Mann - Levy lagrangian is solved by means of variational methods which include angular momentum and isospin projection with trial quark-boson Fock states in generalized hedgehog configurations. The consistency of the treatment is checked by the fulfillment of virial theorems such as Goldberger-Treiman relation. In general the q 2 dependence of the nucleon form factors are well described although some of their values at zero momentum transfer come out too large, namely for the axial- and πN N- form factors. Electromagnetic form factors for the N - Δ transition are also calculated and compared with the available experimental data. Medium effects on the nucleon properties are investigated combining the projected chiral soliton model with the Nambu-Jona-Lasinio model. The latter is employed to compute the pion decay constant and the pion and sigma masses at finite medium density. These meson properties fix the parameters in the linear sigma model, which is then solved using the same variational methods as for the zero density. The nucleon mass shows a decrease of 17% and the proton radius an increase of 19% if the medium reaches nuclear matter density. The magnetic moments and g A are less affected by the medium. The nucleon electromagnetic form factors show remarkable changes at finite transfer numbers as well. (author)

  15. High Precision Measurement of the Proton Elastic Form Factor Ratio at Low Q2

    Energy Technology Data Exchange (ETDEWEB)

    Xiaohui Zhan

    2009-12-01

    A high precision measurement of the proton elastic form factor ratio µpGEp/GMp in the range Q2 = 0.3–0.7 GeV2/c2 was performed using recoil polarimetry in Jefferson Lab Hall A. In this low Q2 range, previous data from LEDEX [5] along with many fits and calculations [2, 3, 4] indicate substantial deviations of the ratio from unity. In this new measurement, with 80% polarized electron beam for 24 days, we are able to achieve <1% statistical uncertainty. Preliminary results are a few percent lower than expected from previous world data and fits, indicating a smaller GEp at this region. Beyond the intrinsic interest in nucleon structure, the improved form factor measurements also have implications for DVCS, determinations of the proton Zemach radius and strangeness form factors through parity violation experiments.

  16. Nucleon structure in the chiral regime with domain wall fermions on an improved staggered sea

    International Nuclear Information System (INIS)

    R.G. Edwards; G. Fleming; Ph. Hagler; J.W. Negele; K. Orginos; A.V. Pochinsky; D.B. Renner; D.G. Richards; W. Schroers

    2006-01-01

    Moments of unpolarized, helicity, and transversity distributions, electromagnetic form factors, and generalized form factors of the nucleon are presented from a preliminary analysis of lattice results using pion masses down to 359 MeV. The twist two matrix elements are calculated using a mixed action of domain wall valence quarks and asqtad staggered sea quarks and are renormalized perturbatively. Several observables are extrapolated to the physical limit using chiral perturbation theory. Results are compared with experimental moments of quark distributions and electromagnetic form factors and phenomenologically determined generalized form factors, and the implications on the transverse structure and spin content of the nucleon are discussed

  17. Form factor expansion for thermal correlators

    NARCIS (Netherlands)

    Pozsgay, B.; Takács, G.

    2010-01-01

    We consider finite temperature correlation functions in massive integrable quantum field theory. Using a regularization by putting the system in finite volume, we develop a novel approach (based on multi-dimensional residues) to the form factor expansion for thermal correlators. The first few terms

  18. Electron form factors of deformable nuclei

    International Nuclear Information System (INIS)

    Tartakovskii, V.K.; Isupov, V.Yu.

    1988-01-01

    Using the smallness of the deformation parameter of the nucleus, we obtain simple explicit expressions for the form factors of electroexcitation of the low-lying rotation-vibration states of light, deformable, even-even nuclei. The expressions satisfactorily describe the experimental data on the excitation of collective nuclear states by the inelastic scattering of fast electrons

  19. Baryon electromagnetic form factors at BESIII

    Directory of Open Access Journals (Sweden)

    Dbeyssi Alaa

    2017-01-01

    Full Text Available Electromagnetic form factors are fundamental quantities which parameterize the electric and magnetic structure of hadrons. This contribution reports on the measurements of baryon electromagnetic form factors at the BESIII experiment in Beijing. The Beijing e+e− collider BEPCII is a double-ring symmetric collider running at √s between 2.0 and 4.6 GeV. Baryon electromagnetic form factors can be measured at BESIII in direct e+e−-annihilation and in initial state radiation processes. Based on the data collected by the BESIII detector at 12 center of mass energies between 2.23 and 3.67 GeV, the e+e− → p̄p cross section and the time-like proton form factor is measured. Preliminary results from the analysis of the initial state radiation process e+e− → p̄pγ using a data set of 7.408 fb−1 collected at center-of-mass energies between 3.773 and 4.6 GeV, are also presented. The cross section for e+e−→Λ¯Λ${e^ + }{e^ - } \\to \\bar \\Lambda \\Lambda $ is measured based on 40.5 pb−1 data collected at 4 energy points from the threshold up to 3.08 GeV. Preliminary results on the total cross section and the Λ effective form factor are shown. Ongoing analysis based on the high luminosity energy scan from 2015 and from radiative return at different √s are also described.

  20. Overview of nucleon form factor experiments with 12 GeV at Jefferson Lab

    Directory of Open Access Journals (Sweden)

    Cisbani Evaristo

    2014-06-01

    A selection of the relevant properties of the FF's, and the main results of JLab are shortly reviewed; the new proposed and approved experiments on FF's at JLab are presented addressing some key details, the expected experimental achievements and the new equipment designed for them.

  1. Strange vector form factors in the context of the SAMPLE, A4, HAPPEX and G0 experiments

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Antonio; Kim, Hyu-Chul; Goeke, Klaus

    2003-06-30

    We present the recent results of the strange vector form factors of the nucleon within the framework of the SU(3) chiral quark-soliton model. We compare our results with the recent experimental data of the SAMPLE and HAPPEX collaborations and find that they are in a good agreement with the data. We also predict the future experiments of the A4, HAPPEX-II and G0 collaborations.

  2. Strange vector form factors in the context of the SAMPLE, A4, HAPPEX and G0 experiments

    International Nuclear Information System (INIS)

    Silva, Antonio; Kim, Hyu-Chul; Goeke, Klaus

    2003-01-01

    We present the recent results of the strange vector form factors of the nucleon within the framework of the SU(3) chiral quark-soliton model. We compare our results with the recent experimental data of the SAMPLE and HAPPEX collaborations and find that they are in a good agreement with the data. We also predict the future experiments of the A4, HAPPEX-II and G0 collaborations

  3. Asymptotic behavior of composite-particle form factors and the renormalization group

    International Nuclear Information System (INIS)

    Duncan, A.; Mueller, A.H.

    1980-01-01

    Composite-particle form factors are studied in the limit of large momentum transfer Q. It is shown that in models with spinor constituents and either scalar or gauge vector gluons, the meson electromagnetic form factor factorizes at large Q 2 and is given by independent light-cone expansions on the initial and final meson legs. The coefficient functions are shown to satisfy a Callan-Symanzik equation. When specialized to quantum chromodynamics, this equation leads to the asymptotic formula of Brodsky and Lepage for the pion electromagnetic form factor. The nucleon form factors G/sub M/(Q 2 ), G/sub E/(Q 2 ) are also considered. It is shown that momentum flows which contribute to subdominant logarithms in G/sub M/(Q 2 ) vitiate a conventional renormalization-group interpretation for this form factor. For large Q 2 , the electric form factor G/sub E/(Q 2 ) fails to factorize, so that a renormalization-group treatment seems even more unlikely in this case

  4. Parametrization of the nucleon-trinucleon overlap function in 4He and the effect of meson exchange corrections

    International Nuclear Information System (INIS)

    Greben, J.M.

    1982-04-01

    Nucleon-trinucleon overlap functions in 4 He have been parametrized as a sum of exponentials, and are fitted to the charge form factor of 4 He. We present results with and without taking account of meson-exchange corrections

  5. Form factors of heavy mesons in QCD

    International Nuclear Information System (INIS)

    Shifman, M.A.; Vysotsky, M.I.

    1980-01-01

    Logarithmic corrections to form factors of mesons built from heavy quarks are dirived in the framework of quantum chromodynamics. The reactions e + e - → etasub(c)γ and H → J/PSIγ are considered as an example. A novel feature as compared to the well studied problem of the pion form factor is the existence of the transformations between the quark-antiquark state c anti c and the gluonic one. O(αsub(s)) corrections are calculated exactly. An infinite series of the leading logarithmic terms is summed up with the help of the operator technique. Apart from already known results for quark operators some new results referring to gluon operators and their mixing with the quark ones are used. Two alternative derivations of the multiplicatively renormalizable operators are given. The first one reduces to a direct computation of the mixing matrix and its diagonalization, the second derivation is based on conformal symmetry considerations

  6. Baryon form factors in chiral perturbation theory

    Energy Technology Data Exchange (ETDEWEB)

    Kubis, B.; Meissner, U.G. [Forschungszentrum Juelich GmbH (Germany). Inst. fuer Kernphysik

    2001-01-01

    We analyze the electromagnetic form factors of the ground state baryon octet to fourth order in relativistic baryon chiral perturbation theory. Predictions for the {sigma}{sup -} charge radius and the {lambda}-{sigma}{sup 0} transition moment are found to be in excellent agreement with the available experimental information. Furthermore, the convergence behavior of the hyperon charge radii is shown to be more than satisfactory. (orig.)

  7. Nucleon-nucleon theory and phenomenology

    International Nuclear Information System (INIS)

    Signell, P.

    1981-03-01

    This project involves five inter-related subprojects: (1) derivation of the intermediate range nucleon-nucleon interaction using a new method that utilizes much shorter and simpler analytic continuation through the unphysical region that lies between the πN and ππ physical regions of the N anti N → ππ amplitude (with significantly improved accuracy for the nucleon-nucleon interaction); (2) construction of a short range phenomenological potential that, with the theoretical part mentioned above, gives a precise fit to the nucleon-nucleon data and is parameterized for easy use in nucleon calculations; (3) phase shift analyses of the world data below 400 MeV, especially the large amount of very precise data below 20 MeV and the new data near 55 MeV that have never been analyzed properly; (4) the introduction of a K-matrix formulation of the Optimal Polynomial Expansion in order to accelerate convergence of the partial wave series at LAMPF energies; and (5) setting up of a cooperatively evaluated permanent nucleon-nucleon data bank in the 0-1200 MeV range that can be used by all nucleon-nucleon reseachers

  8. Electromagnetic form factors of composite systems

    International Nuclear Information System (INIS)

    Nowak, E.J.

    1978-01-01

    Electromagnetic form factors are examined for a spin-zero, two-body composite system with emphasis on the case of small momentum transfer and/or deep (relativistic) binding. Perturbation theory calculations are first performed using spin-zero and then spin-one-half constituents. A dispersion representation of the bound-state vertex function is conjectured first for scalar and then for fermion constituents. Then a relativistic effective range approximation (RERA) is developed for each case and applied to the calculation of the electromagnetic form factor. The approach is applied to the study of the charge radii of the K 0 and K + mesons. The K/sub l3/ form factor is calculated in the fermion constituent RERA model, and restrictions are imposed on the model parameters from available experimental data. With these restrictions the limits 0.24fm less than or equal to √[abs. value ( 2 >/sub K 0 /)] less than or equal to = 0.36fm and 0.66fm less than or equal to = √( 2 >/sub K + /) less than or equal to 0.79fm are obtained for the kaon charge radii, and -.22 less than or equal to xi less than or equal to -.13 is found for the ratio of the neutral to charged kaon charge radius squared

  9. Medium corrections to nucleon-nucleon interactions

    International Nuclear Information System (INIS)

    Dortmans, P.J.; Amos, K.

    1990-01-01

    The Bethe-Goldstone equations have been solved for both negative and positive energies to specify two nucleon G-matrices fully off of the energy shell. Medium correction effects of Pauli blocking and of the auxiliary potential are included in infinite matter systems characterized by fermi momenta in the range 0.5 fm -1 to 1.8 fm -1 . The Paris interaction is used as the starting potential in most calculations. Medium corrections are shown to be very significant over a large range of energies and densities. On the energy shell values of G-matrices vary markedly from those of free two nucleon (NN) t-matrices which have been solved by way of the Lippmann-Schwinger equation. Off of the energy shell, however, the free and medium corrected Kowalski-Noyes f-ratios rate are quite similar suggesting that a useful model of medium corrected G-matrices are appropriately scaled free NN t-matrices. The choice of auxiliary potential form is also shown to play a decisive role in the negative energy regime, especially when the saturation of nuclear matter is considered. 30 refs., 7 tabs., 7 figs

  10. Comment on the electric potentials of the nucleon

    International Nuclear Information System (INIS)

    Wolters, G.F.

    1984-04-01

    The electric potential is considered which corresponds to the empirical dipole charge form factor of the proton. This potential is in support of the charge symmetric quark model approach to nucleon form factors. The corresponding potentials for proton and neutron are obtained in that model. The neutron potential has a range less than the hardronic size. It shows, like the proton potential, little variation deep inside, where V=0.3 and 3 MV respectively. (orig.)

  11. The nucleon-nucleon potential

    International Nuclear Information System (INIS)

    Green, A.M.

    1978-01-01

    The first part of this talk is based on the one presented at the Tokyo conference last September and can be found in ref( 1 ). This coveres such topics as the Paris and Stonybrook potentials, the new values of the NN coupling constants and also our understanding of the NNω coupling constant. The second part reviews recent developments concerning the Paris potential, the application of the MIT bag model to the NN interaction, the effect of crossed pion processes and vertex form factors. Comments made about the possible future trends of NN potential calculations. The current status of the D-state probability of the deuteron is discussed. (orig./AH) [de

  12. Diquark contributions to the nucleon deep inelastic structure functions

    International Nuclear Information System (INIS)

    Anselmino, M.; Leader, E.; Soares, J.

    1990-01-01

    The contributions of diquarks to the nucleon structure functions are discussed in the framework of the parton model and in the most general case of both vector and scalar diquarks inside unpolarized and polarized nucleons. The vector diquark anomalous magnetic moment and the scalar-vector and vector-scalar diquark transitions are also taken into account. The properties of the diquarks and of their form factors, required in order for the resulting scaling violations to be compatible with the observed ones, are discussed. (author)

  13. Anomalous magnetic nucleon moments in a Bethe-Salpeter model

    International Nuclear Information System (INIS)

    Chak Wing Chan.

    1978-01-01

    We investigate the anomalous magnetic moment of the nucleon in a field theoretic many-channel model for the electromagnetic form factors of the N anti N, the ππ, the K anti K, the πω and the πrho systems. Propagator self-energy corrections from the Ward idendity and phenomenological strong vertex corrections are both included. The photon is coupled minimally to pions, kaons and nucleons with power multiplicative renormalization. With solutions in the framework of the Bethe-Salpeter equation we obtain a value 1.84 for the isovector moment and a value -0.02 for the isoscalar moment. (orig.)

  14. Form factors and excitations of topological solitons

    International Nuclear Information System (INIS)

    Weir, David J.; Rajantie, Arttu

    2011-01-01

    We show how the interaction properties of topological solitons in quantum field theory can be calculated with lattice Monte Carlo simulations. Topologically nontrivial field configurations are key to understanding the nature of the QCD vacuum through, for example, the dual superconductor picture. Techniques that we have developed to understand the excitations and form factors of topological solitons, such as kinks and 't Hooft-Polyakov monopoles, should be equally applicable to chromoelectric flux tubes. We review our results for simple topological solitons and their agreement with exact results, then discuss our progress towards studying objects of interest to high energy physics.

  15. Neutron electric form factor via recoil polarimetry

    International Nuclear Information System (INIS)

    Richard Madey; Andrei Semenov; Simon Taylor; Aram Aghalaryan; Erick Crouse; Glen MacLachlan; Bradley Plaster; Shigeyuki Tajima; William Tireman; Chenyu Yan; Abdellah Ahmidouch; Brian Anderson; Razmik Asaturyan; O. Baker; Alan Baldwin; Herbert Breuer; Roger Carlini; Michael Christy; Steve Churchwell; Leon Cole; Samuel Danagoulian; Donal Day; Mostafa Elaasar; Rolf Ent; Manouchehr Farkhondeh; Howard Fenker; John Finn; Liping Gan; Kenneth Garrow; Paul Gueye; Calvin Howell; Bitao Hu; Mark Jones; James Kelly; Cynthia Keppel; Mahbubul Khandaker; Wooyoung Kim; Stanley Kowalski; Allison Lung; David Mack; D. Manley; Pete Markowitz; Joseph Mitchell; Hamlet Mkrtchyan; Allena Opper; Charles Perdrisat; Vina Punjabi; Brian Raue; Tilmann Reichelt; Joerg Reinhold; Julie Roche; Yoshinori Sato; Wonick Seo; Neven Simicevic; Gregory Smith; Samuel Stepanyan; Vardan Tadevosyan; Liguang Tang; Paul Ulmer; William Vulcan; John Watson; Steven Wells; Frank Wesselmann; Stephen Wood; Chen Yan; Seunghoon Yang; Lulin Yuan; Wei-Ming Zhang; Hong Guo Zhu; Xiaofeng Zhu

    2003-01-01

    The ratio of the electric to the magnetic form factor of the neutron, G En /G Mn , was measured via recoil polarimetry from the quasielastic d((pol-e),e(prime)(pol-n)p) reaction at three values of Q 2 [viz., 0.45, 1.15 and 1.47 (GeV/c) 2 ] in Hall C of the Thomas Jefferson National Accelerator Facility. Preliminary data indicate that G En follows the Galster parameterization up to Q 2 = 1.15 (GeV/c) 2 and appears to rise above the Galster parameterization at Q 2 = 1.47 (GeV/c) 2

  16. A personal view of nucleon structure as revealed by electron scattering

    International Nuclear Information System (INIS)

    Hofstadter, R.

    1989-01-01

    In this article the author charts his scientific career from graduation in 1935. His work on the No I (T1) scintillator detector developed a widely used tool for particle physicists. He later used these detectors in experiments to study nucleon structure via inelastic electron scattering, working mainly with deuterium, alpha particles and beryllium. Proton and neutron ''size'' were early successes of the fifties, with nucleon form factors following after several years' more work. (UK)

  17. Spin degrees of freedom in electron nucleon scattering in the resonance region

    International Nuclear Information System (INIS)

    Burkert, V.D.

    1987-01-01

    Some aspects of using polarized electrons and/or polarized targets in electron-nucleon scattering experiments are discussed. Polarization measurements can be used to extend the knowledge of nucleon form-factor measurements to higher Q 2 and are indispensable for a model-independent extraction of the helicity amplitudes of exclusive meson production. Measurements of polarization asymmetries may also help in revealing the excitation of weaker resonances

  18. Measurement of the generalized form factors near threshold via $\\gamma^* p \\to n\\pi^+$ at high $Q^2$

    OpenAIRE

    Park, Kijun; Gothe, Ralf; Adhikari, Krishna; Adikaram-Mudiyanselage, Dasuni; Anghinolfi, Marco; Baghdasaryan, Hovhannes; Ball, Jacques; Battaglieri, Marco; Baturin, Vitaly; Bedlinskiy, Ivan; Bennett, Robert; Biselli, Angela; Bookwalter, Craig; Boyarinov, Sergey; Branford, Derek

    2012-01-01

    We report the first extraction of the pion-nucleon multipoles near the production threshold for the $n\\pi^+$ channel at relatively high momentum transfer ($Q^2$ up to 4.2 $\\rm{GeV^2}$). The dominance of the s-wave transverse multipole ($E_{0+}$), expected in this region, allowed us to access the generalized form factor $G_1$ within the light-cone sum rule (LCSR) framework as well as the axial form factor $G_A$. The data analyzed in this work were collected by the nearly $4\\pi$ CEBAF Large Acc...

  19. Proton Form Factors And Related Processes in BaBar by ISR

    Energy Technology Data Exchange (ETDEWEB)

    Ferroli, R.B.; /Enrico Fermi Ctr., Rome /INFN, Rome

    2007-02-12

    BaBar has measured with unprecedented accuracy e{sup +}e{sup -} {yields} p{bar p} from the threshold up to Q{sub p{bar p}}{sup 2} {approx} 20 GeV{sup 2}/c{sup 4}, finding out an unexpected cross section, with plateaux and drops. In particular it is well established a sharp drop near threshold, where evidence for structures in multihadronic channels has also been found. Other unexpected and spectacular features of the Nucleon form factors are reminded, the behavior of space-like G{sub E}{sup p}/G{sub M}{sup p} and the neutron time-like form factors.

  20. Chiral-model of weak-interaction form factors and magnetic moments of octet baryons

    International Nuclear Information System (INIS)

    Kubodera, K.; Kohyama, Y.; Tsushima, K.; Yamaguchi, T.

    1989-01-01

    For baryon spectroscopy, magnetic moments and weak interaction form factors provide valuable information, and the impressive amount of available experimental data on these quantities for the octet baryons invites detailed investigations. The authors of this paper have made extensive studies of the weak-interaction form factors and magnetic moments of the octet baryons within the framework of the volume-type cloudy-bag model (v-type CBM). The clouds of all octet mesons have been included. Furthermore, we have taken into account in a unified framework various effects that were so far only individually discussed in the literature. Thus, the gluonic effects, center-of-mass (CM0 corrections, and recoil corrections have been included). In this talk, after giving a brief summary of some salient features of the results, we discuss a very interesting application of our model to the problem of the spin content of nucleons

  1. Measurement of time-like baryon electro-magnetic form factors in BESIII

    Energy Technology Data Exchange (ETDEWEB)

    Morales Morales, Cristina; Dbeyssi, Alaa [Helmholtz-Institut Mainz (Germany); Ahmed, Samer Ali Nasher; Lin, Dexu; Rosner, Christoph; Wang, Yadi [Helmholtz-Institut Mainz (Germany); Institut fuer Kernphysik, Johannes Gutenberg-Universitaet Mainz (Germany); Maas, Frank [Helmholtz-Institut Mainz (Germany); Institut fuer Kernphysik, Johannes Gutenberg-Universitaet Mainz (Germany); PRISMA Cluster of Excellence, Johannes Gutenberg-Universitaet Mainz (Germany); Collaboration: BESIII-Collaboration

    2016-07-01

    BEPCII is a symmetric electron-positron collider located in Beijing running at center-of-mass energies between 2.0 and 4.6 GeV. This energy range allows BESIII experiment to measure baryon form factors both from direct electron-positron annihilation and from initial state radiation processes. We present results on direct electron-positron annihilation into proton anti-proton and preliminary results on direct electron-positron annihilation into lambda anti-lambda based on data collected by BESIII in 2011 and 2012. Finally, expectations on the measurement of nucleon and hyperon electro-magnetic form factors from the BESIII high luminosity energy scan in 2015 and from initial state radiation processes at different center-of-mass energies are also shown.

  2. Low equation, pion-nucleon scattering, and Castillejo-Dalitz-Dyson pole

    International Nuclear Information System (INIS)

    Nakano, K.; Nogami, Y.

    1986-01-01

    We examine the p-wave πN scattering at medium energies by means of the Low equation with a view to determining the form factor of the πN interaction. Solutions of the equation with and without a Castillejo-Dalitz-Dyson (CDD) pole are used. The solution with no CDD pole corresponds to the old Chew-Low model, whereas the one with a CDD pole corresponds to the quark version of the Chew-Low model. The πN interaction form factor is determined so that the Δ resonance is well reproduced. We find that the solution with a CDD pole leads to a softer form factor but is not as soft as those expected from the nucleon size in the quark model. Using the solutions and form factors thus determined, we also examine the pionic contributions to the nucleon magnetic moment and the nucleon mass

  3. Weak and strong factorization properties in nucleus-nucleus collisions in the energy region 290-2100 MeV/nucleon

    International Nuclear Information System (INIS)

    La Tessa, C. . E-mail chiara@nephy.chalmers.se; Sihver, L.; Mancusi, D.; Zeitlin, C.; Miller, J.; Guetersloh, S.; Heilbronn, L.

    2007-01-01

    We have collected from the literature partial charge-changing cross sections for projectiles with charge 6=< Z=<26, energy ranging from 290 up to 2100 MeV/nucleon and interacting with several targets, in order to investigate weak and strong factorization properties. The same analysis methods as in our previous work have been applied to the data: we have shown that, except for hydrogen targets, weak and strong factorization properties are valid within 5%, thus confirming the results obtained in the first paper [C. La Tessa, et al., Test of weak and strong factorization in nucleus-nucleus collisions at several hundred MeV/nucleon, Nucl. Phys. A, in press]. Factorization parameters have been calculated and, in particular, target factors have been expressed with ad hoc analytical functions which describe the data trend very well. New expressions for weak and strong factorization properties can then be obtained by substituting the target factors with these functions: this formulation partially isolates the dependence of the partial charge-changing cross sections on the target and projectile mass numbers; moreover, fragment factors are the only parameters left in the formulas thus facilitating the future task of interpolating them with appropriate analytical expressions

  4. Form factors of heavy mesons in QCD

    Energy Technology Data Exchange (ETDEWEB)

    Shifman, M A; Vysotsky, M I [Moskovskii Inst. Theoreticheskoj i Ehksperimental' noj Fiziki (USSR)

    1981-08-10

    We discuss logarithmic corrections to form factors of mesons built from heavy quarks. The reactions e/sup +/e/sup -/ ..-->.. etasub(c)..gamma.. and H ..-->.. J/psi..gamma.. are considered as an example. A novel feature as compared to the well-studied problem of the pion form factor is the existence of transitions between the quark-antiquark state canti c and the gluonic one. O(..cap alpha..sub(s)) corrections are calculated exactly. An infinite series of the leading logarithmic terms (..cap alpha..sub(s)ln(Q/sup 2//m/sup 2/sub(c)))sup(n) is summed up with the help of the operator technique. Apart from results already known for quark operators, we use some new results referring to gluon operator and their mixing with those made from quarks. Two alternative derivations of the multiplicatively renormalizable operators are given. The first one reduces to a direct computation of the mixing matrix and its diagonalization, the second is based on conformal symmetry considerations.

  5. Helium Compton Form Factor Measurements at CLAS

    Energy Technology Data Exchange (ETDEWEB)

    Voutier, Eric J.-M. [Laboratoire de Physique Subatomique et Cosmologie

    2013-07-01

    The distribution of the parton content of nuclei, as encoded via the generalized parton distributions (GPDs), can be accessed via the deeply virtual Compton scattering (DVCS) process contributing to the cross section for leptoproduction of real photons. Similarly to the scattering of light by a material, DVCS provides information about the dynamics and the spatial structure of hadrons. The sensitivity of this process to the lepton beam polarization allows to single-out the DVCS amplitude in terms of Compton form factors that contain GPDs information. The beam spin asymmetry of the $^4$He($\\vec {\\mathrm e}$,e$' \\gamma ^4$He) process was measured in the experimental Hall B of the Jefferson Laboratory to extract the real and imaginary parts of the twist-2 Compton form factor of the $^4$He nucleus. The experimental results reported here demonstrate the relevance of this method for such a goal, and suggest the dominance of the Bethe-Heitler amplitude to the unpolarized process in the kinematic range explored by the experiment.

  6. Nucleon Structure on a Lattice at the Physical Point

    International Nuclear Information System (INIS)

    Syritsyn, Sergey

    2015-01-01

    We report initial nucleon structure results computed on lattices with 2+1 dynamical Mobius domain wall fermions at the physical point generated by the RBC and UKQCD collaborations. At this stage, we evaluate only connected quark contributions. In particular, we discuss the nucleon vector and axial-vector form factors, nucleon axial charge and the isovector quark momentum fraction. From currently available statistics, we estimate the stochastic accuracy of the determination of g A and 〈x〉 u-d to be around 10%, and we expect to reduce that to 5% within the next year. To reduce the computational cost of our calculations, we extensively use acceleration techniques such as low-eigenmode deflation and all-mode-averaging (AMA). We present a method for choosing optimal AMA parameters. (paper)

  7. Electromagnetic properties of the three-nucleon ground state

    International Nuclear Information System (INIS)

    Strueve, W.

    1985-01-01

    The electromagnetic form factors of the three-nucleon ground state are calculated on the base of an exact solution of the Faddeev equations. In a Hilbert space of nucleons and a possible Δ-isobar the effects of a non-perturbative description of the Δ-isobar on the magnetic form factors are studied. Pure nucleonic current operators with two- and three-particle character can be described in the extended Hilbert space by simpler one-body operators. Additionally nonrelativistic meson-exchange corrections due to π and ρ exchange are calculated consistently with the requirements of current conservation. Further relativistic corrections are estimated on selected examples. The calculations yield a total magnetic contribution of the Δ-isobar which is smaller than hitherto assumed, a static approximation of the Δ propagation is proved as inadmissible and must be rejected. Together with the meson-exchange corrections a well agreement with the experimental data at low momentum transfers results. Especially the magnetic moments and magnetization radii can be explained. For higher momentum transfers the results show the importance of further corrections. The regard of selected relativistic corrections leads to a good description of the experimental magnetic form factors. Also by this way the position of the minimum and the height of the second maximum in the 3 He charge form factor can be explained. The comparison with the latest experimental results reveals furthermore unresolved problems in the description of the 3 H charge form factor. (orig.) [de

  8. Scattering by bound nucleons

    International Nuclear Information System (INIS)

    Tezuka, Hirokazu.

    1984-10-01

    Scattering of a particle by bound nucleons is discussed. Effects of nucleons that are bound in a nucleus are taken as a structure function. The way how to calculate the structure function is given. (author)

  9. Three-nucleon forces

    International Nuclear Information System (INIS)

    Sauer, P.U.

    2014-01-01

    In this paper, the role of three-nucleon forces in ab initio calculations of nuclear systems is investigated. The difference between genuine and induced many-nucleon forces is emphasized. Induced forces arise in the process of solving the nuclear many-body problem as technical intermediaries toward calculationally converged results. Genuine forces make up the Hamiltonian. They represent the chosen underlying dynamics. The hierarchy of contributions arising from genuine two-, three- and many-nucleon forces is discussed. Signals for the need of the inclusion of genuine three-nucleon forces are studied in nuclear systems, technically best under control, especially in three-nucleon and four-nucleon systems. Genuine three-nucleon forces are important for details in the description of some observables. Their contributions to observables are small on the scale set by two-nucleon forces. (author)

  10. Nucleon and isobar properties in a relativistic Hartree-Fock calculation with vector Richardson potential and various radial forms for scalar mass terms

    International Nuclear Information System (INIS)

    Dey, J.; Dey, M.; Mukhopadhyay, G.; Samanta, B.C.

    1989-01-01

    Mean field models of the nucleon and the delta are established with the two-quark vector Richardson potential along with various prescriptions for a running quark mass. This is taken to be a one-particle operator in the Dirac-Hartree Fock formalism. An effective density dependent one body potential U(ρ) for quarks at a given density ρ inside the nucleon is derived. It shows an interesting structure. Asymptotic freedom and confinement properties are built-in at high and low densities in U (ρ) and the model dependence is restricted to the intermediate desnsities. (author) [pt

  11. Chiral symmetry and nucleon structure: Low energy aspects

    International Nuclear Information System (INIS)

    Weise, W.

    1989-01-01

    The symmetries and currents of QCD at low energy and long wavelength are realized in the form of mesons, rather than quarks and gluons. In this talk I summarize the merits, but also the limits, of chiral non-linear meson theories and their soliton solutions, in descriptions of nucleon structure and the nucleon-nucleon interaction. (orig.)

  12. New large-Nc relations among the nucleon and nucleon-to-Delta GPDs

    International Nuclear Information System (INIS)

    Marc Vanderhaeghen; Vladimir Pascalutsa

    2006-01-01

    We establish relations which express the generalized parton distributions (GPDs) describing the N → Δ transition in terms of the nucleon GPDs. These relations are based on the known large-N c relation between the N → Δ electric quadrupole moment and the neutron charge radius, and a newly derived large-N c relation between the electric quadrupole (E2) and Coulomb quadrupole (C2) transitions. Namely, in the large-N c limit we find C2=E2. The resulting relations among the nucleon and N → Δ GPDs provide predictions for the N → Δ electromagnetic form factors which are found to be in very good agreement with experiment for moderate momentum transfers

  13. Calculations of nucleon structure functions

    International Nuclear Information System (INIS)

    Signal, A.I.

    1990-01-01

    We present a method of calculating deep inelastic nucleon structure functions using bag model wavefunctions. Our method uses the Peierls - Yoccoz projection to form translation invariant bag states. We obtain the correct support for the structure functions and satisfy the positivity requirements for quark and anti-quark distribution functions. (orig.)

  14. Flavor asymmetry of the nucleon

    International Nuclear Information System (INIS)

    Bijker, R.; Santopinto, E.

    2008-01-01

    The flavor asymmetry of the nucleon sea is discussed in an unquenched quark model for baryons in which the effects of quark-antiquark pairs (uu, dd and ss) are taken into account in an explicit form. The inclusion of qq pairs leads automatically to an excess of d over u quarks in the proton, in agreement with experimental data. (Author)

  15. Flavor asymmetry of the nucleon

    Energy Technology Data Exchange (ETDEWEB)

    Bijker, R. [Instituto de Ciencias Nucleares, UNAM, Apartado Postal 70-543, 04510 Mexico D. F. (Mexico); Santopinto, E. [INFN and Dipartimento di Fisica, Via Dodecaneso 33, I-16146 Genova (Italy)]. e-mail: bijker@nucleares.unam.mx

    2008-12-15

    The flavor asymmetry of the nucleon sea is discussed in an unquenched quark model for baryons in which the effects of quark-antiquark pairs (uu, dd and ss) are taken into account in an explicit form. The inclusion of qq pairs leads automatically to an excess of d over u quarks in the proton, in agreement with experimental data. (Author)

  16. A separable approach to the Bethe-Salpeter equation and its application to nucleon-nucleon scattering

    International Nuclear Information System (INIS)

    Schwarz, K.; Froehlich, J.; Zingl, H.F.K.

    1980-01-01

    The Bethe-Salpeter equation is solved in closed form with the help of a four dimensional separable 'potential'. For possible applications to three-nucleon investigations the authors have fitted all nucleon-nucleon S-wave phase shifts in a sufficient way by this method; in addition they also present an example for a P-wave. (Auth.)

  17. Pion transition form factor in k{sub T} factorization

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hsiang-nan [Academica Sinica, Taipei, Taiwan (China). Inst. of Physics; Tsing-Hua Univ., Hsinchu, Taiwan (China). Dept. of Phyiscs; National Cheng-Kung Univ., Tainan, Taiwan (China). Dept. of Physics; National Cheng-Chi Univ, Taipei, Taiwan (China). Inst. of Applied Physics; Mishima, Satoshi [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2009-07-15

    It has been pointed out that the recent BaBar data on the {pi}{gamma}{sup *} {yields} {gamma} transition form factor F{sub {pi}}{sub {gamma}}(Q{sup 2}) at low (high) momentum transfer squared Q{sup 2} indicate an asymptotic (flat) pion distribution amplitude. These seemingly contradictory observations can be reconciled in the k{sub T} factorization theorem: the increase of the measured Q{sup 2}FF{sub {pi}}{sub {gamma}}(Q{sup 2}) for Q{sup 2} > 10 GeV{sup 2} is explained by convoluting a k{sub T} dependent hard kernel with a flat pion distribution amplitude, k{sub T} being a parton transverse momentum. The low Q{sup 2} data are accommodated by including the resummation of {alpha}{sub s} ln{sup 2}x, x being a parton momentum fraction, which provides a stronger suppression at the endpoints of x. The next-to-leading-order correction to the pion transition form factor is found to be less than 20% in the considered range of Q{sup 2}. (orig.)

  18. The nucleon-nucleon interaction in the presence of the electromagnetic field: Nucleon-nucleon bremsstrahlung

    International Nuclear Information System (INIS)

    Brown, V.R.

    1990-01-01

    Nucleon-nucleon bremsstrahlung, NNγ, is a fundamental process, which involves the strong and electromagnetic fields acting simultaneously. Since the electromagnetic interaction is well known, NNγ provides a calculable tool for comparing off-energy-shell effects from different two-nucleon potentials compared to experiment and also provides a simple testing ground, which is sensitive to meson-exchange-current contributions that are so important in electronuclear physics. Historically, experimental studies have focused on ppγ, with only a few measurements of npγ. The present workshop was organized primarily to investigate the interest in, the value of, and the feasibility of doing an npγ experiment using the neutron white source at LANL. An increasing amount of US nuclear physics dollars are being spent on electronuclear physics. npγ is a fundamental process with large meson-exchange currents. In the npγ calculations of Brown and Franklin, the meson-exchange contributions increase the cross section by a factor of roughly two and later the angular distribution of the emitted photon dramatically. The details of these calculated effects have never been verified experimentally, but the proper quantum-mechanical inclusion of meson-exchange contributions, using the methods of brown and Franklin, has proved to be essential in understanding the heavy-ion results. The understanding of the importance of such terms is extremely important inelectronuclear processes, such as are presently under investigation or being planned at Bates, SLAC, and CEBAF. Just one example is in the electrodisintegration of the deuteron, where meson-exchange contributions must be included properly before any conclusions about nuclear models, such as QCD versus meson-exchange potentials can be made

  19. Electric form factors of the octet baryons from lattice QCD and chiral extrapolation

    Energy Technology Data Exchange (ETDEWEB)

    Shanahan, P.E.; Thomas, A.W.; Young, R.D.; Zanotti, J.M. [Adelaide Univ., SA (Australia). ARC Centre of Excellence in Particle Physics at the Terascale and CSSM; Horsley, R. [Edinburgh Univ. (United Kingdom). School of Physics and Astronomy; Nakamura, Y. [RIKEN Advanced Institute for Computational Science, Kobe, Hyogo (Japan); Pleiter, D. [Forschungszentrum Juelich (Germany). JSC; Regensburg Univ. (Germany). Inst. fuer Theoretische Physik; Rakow, P.E.L. [Liverpool Univ. (United Kingdom). Theoretical Physics Div.; Schierholz, G. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Stueben, H. [Hamburg Univ. (Germany). Regionales Rechenzentrum; Collaboration: CSSM and QCDSF/UKQCD Collaborations

    2014-03-15

    We apply a formalism inspired by heavy baryon chiral perturbation theory with finite-range regularization to dynamical 2+1-flavor CSSM/QCDSF/UKQCD Collaboration lattice QCD simulation results for the electric form factors of the octet baryons. The electric form factor of each octet baryon is extrapolated to the physical pseudoscalar masses, after finite-volume corrections have been applied, at six fixed values of Q{sup 2} in the range 0.2-1.3 GeV{sup 2}. The extrapolated lattice results accurately reproduce the experimental form factors of the nucleon at the physical point, indicating that omitted disconnected quark loop contributions are small. Furthermore, using the results of a recent lattice study of the magnetic form factors, we determine the ratio μ{sub p}G{sub E}{sup p}/G{sub M}{sup p}. This quantity decreases with Q{sup 2} in a way qualitatively consistent with recent experimental results.

  20. One method of determination of charge neutron form factors

    International Nuclear Information System (INIS)

    Trubnikov, S.V.

    1983-01-01

    Polarization vector of recoil nucleon in deuteron electric disintegration by polarized electrons is calculated based on relativistic integral representation for current of deUteron electro-disintegration

  1. Dressing the nucleon propagator

    International Nuclear Information System (INIS)

    Fishman, S.; Gersten, A.

    1976-01-01

    The nucleon propagator in the ''nested bubbles'' approximation is analyzed. The approximation is built from the minimal set of diagrams which is needed to maintain the unitarity condition under two-pion production threshold in the two-nucleon Bethe--Salpeter equation. Recursive formulas for subsets of ''nested bubbles'' diagrams calculated in the framework of the pseudoscalar interaction are obtained by the use of dispersion relations. We prove that the sum of all the ''nested bubbles'' diverges. Moreover, the successive iterations are plagued with ghost poles. We prove that the first approximation--which is the so-called chain approximation--has ghost poles for any nonvanishing coupling constant. In an earlier paper we have shown that ghost poles lead to ghost cuts. These cuts are present in the ''nested bubbles.'' Ghost elimination procedures are discussed. Modifications of the ''nested bubbles'' approximation are introduced in order to obtain convergence and in order to eliminate the ghost poles and ghost cuts. In a similar way as in the Lee model, cutoff functions are introduced in order to eliminate the ghost poles. The necessary and sufficient conditions for the absence of ghost poles are formulated and analyzed. The spectral functions of the modified ''nested bubbles'' are analyzed and computed. Finally, we present a theorem, similar in its form to Levinson's theorem in scattering theory, which enables one to compute in a simple way the number of ghost poles

  2. Parallel Integer Factorization Using Quadratic Forms

    National Research Council Canada - National Science Library

    McMath, Stephen S

    2005-01-01

    Factorization is important for both practical and theoretical reasons. In secure digital communication, security of the commonly used RSA public key cryptosystem depends on the difficulty of factoring large integers...

  3. The d(e, e'p)n reaction and the nuetron electric form factor

    International Nuclear Information System (INIS)

    Dieperink, A.E.L.

    1978-01-01

    An accurate determination of the electric form factor of the neutron, Gsub(En), is important both for our understanding of the structure of the nucleons, and for the description of electron scattering on nuclear many-body systems. At present only reliable model-independent information on Gsub(En) is available for four-momentum transfer (qsub(μ)) 2 →0 from the scattering of thermal neutrons off atoms. Electron scattering offers the possibility to obtain information at higher (qsub(μ)) 2 . However, since electrons can only be scattered off neutrons embedded in a many-body target the extraction of Gsub(En) will in general be affected by nuclear structure uncertainties. Some methods to obtain information on Gsub(En) in e-d experiments are discussed. (Auth.)

  4. The charge form factor and quadrupole moment of lithium-6 and -7

    International Nuclear Information System (INIS)

    Srinivasa Rao, K.; Susila, S.; Sridhar, R.

    1980-01-01

    The cluster model wave functions for lithium-6 and -7 are constructed from a two oscillator shell model wave function assuming the nucleons belonging to the clusters to be in the 1s- and 1p-shells, respectively. After first finding the range of values of the parameters in the wave function for which acceptable values of the r.m.s. radius are obtained, the range is considerably refined by a study of the form factors of these cluster nuclei. A deformation parameter is introduced in the wave functions, to get a non-spherical charge density. This parameter is uniquely fixed by the quadrupole moment for the nucleus. The model wave functions are considered to be the desirable ones for the study of cluster-knock-out reactions. (author)

  5. Pionic background for nucleon-nucleon observables

    International Nuclear Information System (INIS)

    Ballot, J.L.; Robilotta, M.R.

    1992-01-01

    A method is presented that allows the unambiguous definition of the one pion exchange contribution to nucleon-nucleon scattering observables and then use it to determine those waves where values of phase shifts and mixing parameters may be understood as sums of pionic and non-pionic dynamical effects. This helps the assessment of the explicative power of the various existing phenomenological potentials and may eventually lead to ways of discriminating their effectiveness. (author) 16 refs.; 19 figs.; 2 tabs

  6. The Electro-Excitation Form Factors for Low-Lying States of 7Li Nucleus

    International Nuclear Information System (INIS)

    Dakhl, Z.A.; Salih, L.; Al-Qazaz, B.S.

    2010-01-01

    The transverse electron scattering form factors have been studied for low -lying excited states of 7 L i nucleus. These states are specified by JπT= (0.478MeV),(4.63MeV) and(6.68MeV). The transitions to these states are taking place by both isoscalar and isovector components. These form factors have been analyzed in the framework of the multi-nucleon configuration mixing of harmonic oscillator shell model with size parameter b r ms=1.74fm. The universal two-body of Cohen-Kurath is used to generate the 1p-shell wave functions. The core polarization effects are included in the calculations through effective g-factors and resolved many discrepancies with experiments. A higher configuration effect outside the 1p-shell model space, such as the 2p-shell, enhances the form factors for q-values and reproduces the data. The present results are compared with other theoretical models. PACS: 25.30.Bf Elastic electron scattering - 25.30.Dh Inelastic electron scattering to specific states - 21.60.Cs Shell model - 27.20. +n 5≤ A ≥19

  7. From Theory to Experiment: Hadron Electromagnetic Form Factors in Space-like and Time-like Regions

    International Nuclear Information System (INIS)

    Tomasi-Gustafsson, E.; Gakh, G.I.; Rekalo, A.P.

    2007-01-01

    Hadron electromagnetic form factors contain information on the intrinsic structure of the hadrons. The pioneering work developed at the Kharkov Physical-Technical Institute in the 60's on the relation between the polarized cross section and the proton form factors triggered a number of experiments. Such experiments could be performed only recently due to the progress in accelerator and polarimetry techniques. The principle of these measurements is recalled and surprise and very precise results obtained on proton are presented. The actual status of nucleon electromagnetic form factors is reviewed, with special attention to the basic work done in Kharkov Physical-Technical Institute. This Paper is devoted to the memory of Prof. M.P. Rekalo

  8. Effects of an electromagnetic quark form factor on meson properties

    International Nuclear Information System (INIS)

    Silvestre-Brac, B.

    2002-01-01

    A form factor is introduced in the quark electromagnetic current. Its effect is analyzed on charge mean square radii and form factors in the mesonic sector. The decay of a vector meson into lepton-antilepton pair is also affected. Two different expressions for the form factors, and two different types of quark potential are tested and some relativistic kinematical corrections are proposed. In any case the introduction of a quark form factor greatly improves the agreement with experimental data

  9. The Jlab Upgrade - Nucleon Studies with CLAS12

    International Nuclear Information System (INIS)

    Volker Burkert

    2007-01-01

    An overview is presented on the program to study the nucleon structure at the 12 GeV Jlab Upgrade using the CLAS12 detector. The focus is on deeply virtual exclusive processes to access the generalized parton distributions, semi-inclusive processes to study transveresx momentum-dependent distributions functions, and inclusive spin structure functions and resonance transition form factors at high Q 2 and with high precision

  10. A relativistic, meson exchange model of pion-nucleon scattering

    International Nuclear Information System (INIS)

    Pearces, B.C.; Jennings, B.K.

    1990-06-01

    A relativistic meson exchange approach to the pion-nucleon interaction is developed using a three-dimensional relativistic two-body propagator, and the results using different propagators are compared. The relativistic approach is able to describe low energy scattering up to 400 MeV above threshold, while preserving the soft pion theorems. The different propagators give similar results, as the form factors necessary to get a fit suppress much of the multiple scattering. (Author) (24 refs., 4 tabs., 6 figs.)

  11. Form factors in (HI,HI') direct reactions

    International Nuclear Information System (INIS)

    Chu, Y.H.

    1981-01-01

    Using the semiclassical theory, the inelastic transition form factors are analyzed. For the first order form factors, we find that: (i) In the strong absorption limit, the Austern-Blair theory is a good approximation to the inelastic form factor--even in highly mismatched reactions. (ii) In weak to moderate absorption, the amplitude of the inelastic form factor oscillates due to overlapping potential resonances. The internal part of the form factor can be expressed in a simple form, which may easily be used to analyze heavy-ion inelastic scattering. (iii) In the presence of an isolated resonance, the inelastic form factor is enhanced greatly at the resonance due to multiple reflections inside the potential well. The second order form factors contain two terms, i.e. the one-step direct process (OSD) term and the two-step process (TS) term. It is found that: (i) In the strong absorption limit, OSD and TS form factors are equally important and interfere destructively near the grazing angular momentum. The Austern-Blair theory gives satisfactory results for well-matched reactions. The angular distributions of the mutual and double excitations are out of phase compared with that of the single excitation. (ii) For the weak absorption case, the internal part of the TS form factor is so enhanced that the OSD form factor can simply be neglected. The internal TS form factor can be parameterized in a form proportional to the internal-wave elastic Smatrix, where the angular distribution shows characteristically refractive phenomenon

  12. Nucleon-nucleon optical model for energies to 3 GeV

    International Nuclear Information System (INIS)

    Funk, A.; Von Geramb, H.V.; University of Melbourne, VIC; Amos, K.A.

    2001-01-01

    Several nucleon-nucleon potentials, Paris, Nijmegen, Argonne, and those derived by quantum inversion, which describe the NN interaction for T Lab ≤ 300 MeV are extended in their range of application as NN optical models. Extensions are made in r-space using complex separable potentials definable with a wide range of form factor options including those of boundary condition models. We use the latest phase shift analyses SP00 (FA00, WI00) of Arndt et al. from 300 MeV to 3 GeV to determine these extensions. The imaginary parts of the optical model interactions account for loss of flux into direct or resonant production processes. The optical potential approach is of particular value as it permits one to visualize fusion, and subsequent fission, of nucleons when T Lab > 2 GeV. We do so by calculating the scattering wave functions to specify the energy and radial dependences of flux losses and of probability distributions. Furthermore, half-off the energy shell t-matrices are presented as they are readily deduced with this approach. Such t-matrices are required for studies of few- and many-body nuclear reactions

  13. MesonNet Workshop on Meson Transition Form Factors

    CERN Document Server

    Eidelman, S; Hanhart, C; Kubis, B; Kupsc, A; Leupold, S; Moskal, P; Schadmand, S

    2012-01-01

    The mini-proceedings of the Workshop on Meson Transition Form Factors held in Cracow from May 29th to 30th, 2012 introduce the meson transition form factor project with special emphasis on the interrelations between the various form factors (on-shell, single off-shell, double off-shell). Short summaries of the talks presented at the workshop follow.

  14. Zeros in the electromagnetic and hadronic form factors

    International Nuclear Information System (INIS)

    Martini, A.F.; Menon, M.J.; Montanha, J.

    2004-01-01

    We discuss the evidences for the existence of zeros in the electric and in the hadronic form factors of the proton. We show that the shape of both form factors are similar, but there is indication that the hadronic form factors can depend on the energy. (author)

  15. Off-shell effects in the model of spectator electroproduction of cumulative nucleons; Ehffekty skhoda s massovoj poverkhnosti v modeli spektatornogo obrazovaniya kumulyativnykh nuklonov

    Energy Technology Data Exchange (ETDEWEB)

    Sargsyan, M M

    1992-12-31

    The effects of deeply bound nucleons are considered in the reaction of deuteron quasielastic electro disintegration, where the spectator nucleon and scattered electrons are registered in coincidence. Both, the off-shell influence on the description of nucleon motion in nuclear surrounding and the modification of deeply bound nucleon form - factors are investigated as two aspects of the off-shell effect manifestation. The possibility to control the extent of interacting nucleon binding energy by varying the spectator nucleon kinematic parameters (p{sub s},{theta}{sub s},{phi}{sub s}) is an advantage of the reactions considered. The cross section ratios of these processes are considered under specific kinematical conditions, which allow to investigate unambiguously the manifestations of deeply bound effects. To estimate the extent of the phenomena expected, we present the results of calculation of R ratios in the framework of models that take the off-shell effects into account differently. The effects of bound nucleon form - factor modification are estimated according to the model of mini delocalization, which predicts the bound nucleon swelling in nuclear environment. 28 refs.

  16. Parity-Violating Electron Deuteron Scattering and the Proton's Neutral Axial Vector Form Factor

    International Nuclear Information System (INIS)

    Ito, T.

    2003-01-01

    The authors report on a new measurement of the parity-violating asymmetry in quasielastic electron scattering from the deuteron at the backward angles at electron beam energy of 125 MeV [Q 2 =0.038 (GeV/c) 2 ]. This quantity provides a determination of the neutral weak axial vector form factor of the nucleon. In addition to the tree level amplitude associated with Z-exchange, the neutral weak axial vector form factor as measured in electron scattering can potentially receive large electroweak corrections, including the anapole moment, that are absent in neutrino scattering. The measured asymmetry A -3.51 ± 0.57 (stat) ± 0.58 (sys) ppm is consistent with theoretical predictions. We also report on updated results of the previous experiment at 200 MeV [Q 2 = 0.091 (GeV/c) 2 ] on a deuterium target. The updated results are also consistent with theoretical predictions on the neutral weal axial vector form factor

  17. Excitation of Nucleon Resonances

    International Nuclear Information System (INIS)

    Burkert, Volker D.

    2001-01-01

    I discuss developments in the area of nucleon resonance excitation, both necessary and feasible, that would put our understanding of nucleon structure in the regime of strong QCD on a qualitatively new level. They involve the collection of high quality data in various channels, a more rigorous approach in the search for ''missing'' resonances, an effort to compute some critical quantities in nucleon resonance excitations from first principles, i.e. QCD, and a proposal focused to obtain an understanding of a fundamental quantity in nucleon structure

  18. Where does the nucleon spin come from?

    International Nuclear Information System (INIS)

    Frois, B.; CEA Centre d'Etudes de Saclay, 91 - Gif-sur-Yvette; Karliner, M.

    1994-01-01

    This article describes current thinking on exactly how quarks form neutrons and protons, and where nucleon spin is derived. The European Muon Collaboration has recently shown that, contrary to previous thinking, little of the proton spin is carried by quarks, rather that virtual strange quarks in a sea contribute to nucleon spin. Thus a fundamental gap is revealed in our understanding of nucleon structure which is explored in this article, by looking at several ways of accounting for these surprising results using the ''axiaanomaly'' and the idea of gluon polarization. Future experiments already planned, on polarized scattering, should resolve the enigma of proton spin. (UK)

  19. Two-photon exchange in elastic electron-nucleon scattering

    International Nuclear Information System (INIS)

    Blunden, P.G.; Melnitchouk, W.; Tjon, J.A.

    2005-01-01

    A detailed study of two-photon exchange in unpolarized and polarized elastic electron-nucleon scattering is presented, taking particular account of nucleon finite size effects. Contributions from nucleon elastic intermediate states are found to have a strong angular dependence, which leads to a partial resolution of the discrepancy between the Rosenbluth and polarization transfer measurements of the proton electric to magnetic form factor ratio, G E /G M . The two-photon exchange contribution to the longitudinal polarization transfer P L is small, whereas the contribution to the transverse polarization transfer P T is enhanced at backward angles by several percent, increasing with Q 2 . This gives rise to a small, E /G M obtained from the polarization transfer ratio P T /P L at large Q 2 . We also compare the two-photon exchange effects with data on the ratio of e + p to e - p cross sections, which is predicted to be enhanced at backward angles. Finally, we evaluate the corrections to the form factors of the neutron and estimate the elastic intermediate state contribution to the 3 He form factors

  20. Chou-Yang model and PHI form factor

    Energy Technology Data Exchange (ETDEWEB)

    Fazal-e-Aleem; Saleem, M.; Rafique, M.

    1988-03-01

    By using the deduced differential cross-section data for PHIp elastic scattering at 175 GeV/c in the Chou-Yang model, the PHI form factor has been computed and parametrized. Then in conjunction with the proton form factor this form factor is used in the pristine Chou-Yang model to obtain differential cross-section data at Fermilab energies. The theoretical results agree with the experimental measurements, endorsing the conjecture that the hadronic form factor of neutral particle is proportional to its magnetic form factor.

  1. Electromagnetic form factors in the light-front dynamics

    International Nuclear Information System (INIS)

    Karmanov, V.A.; Smirnov, A.V.

    1992-01-01

    It is shown that the electromagnetic vertex of a nucleus (and of any bound system), expressed through the wave function in the light-front dynamics at relativistic values of momentum transfer, contains a contribution of nonphysical form factors which increases the total number of invariant form factors (for the deuteron from 3 up to 11). This fact explains an ambiguity in the form factors calculated previously. The physical and nonphysical form factors are covariantly separated. Explicit expressions for physical form factors of systems with spin 0, 1/2 and 1 through the vertex functions are obtained. (orig.)

  2. One-Boson Approach to Dilepton Production in Nucleon-Nucleon Collisions.

    Science.gov (United States)

    Haglin, Kevin Lee

    1990-01-01

    We calculate energy dependent nucleon-nucleon total elastic cross sections and invariant mass dependent electron-positron pair production differential cross sections for the processes pp to pp, np to np and pp to ppe ^+e^-, pn to pne^+e ^- at laboratory kinetic energies in the 1-5 GeV range. These calculations will be based on relativistic quantum field theory in the one-boson-exchange (pi,rho,omega,sigma,delta, eta) approximation to the nucleon-nucleon scattering problem. There are several independent Feynman diagrams for each process--twenty-five for the case np to npe^+e^ - and forty-eight for the case pp to ppe^+e^- --which, for evaluation, require taking the trace of as many as ten gamma matrices and evaluating an angular integral of a quotient of polynomial functions of initial and final energies, particle masses, coupling constants and so on. These mathematical operations are carried out with the aid of the following algebraic manipulators: for the trace operations we use REDUCE 3.3 on the VAX at the ACS facility and for testing the angular integration algorithms we use MAPLE on the Cray-2 at the Minnesota Supercomputer Institute. Finally, we use Cray-2 Fortran for the resulting numerical substitutions. Gauge invariance is strictly observed while including strong and electromagnetic form factors. The numerical results for these calculations are compared with existing data from the Particle Data Group Booklet and compared with recently released data from the Dilepton Spectrometer (DLS) at the Bevalac of proton on Beryllium. For the latter comparison, the spectrometer's finite acceptance function is introduced before a rapidity and transverse momentum integration.

  3. A strange nucleon probe: the parity violation in ep{yields}ep; Une etrange sonde du nucleon: la violation de parite en diffusion ep{yields}ep

    Energy Technology Data Exchange (ETDEWEB)

    Cavata, Ch

    1998-10-01

    Recent experiments have confirmed the importance of strange quarks in the description of the spin structure of the proton. This unexpected fact has spurred an intense experimental activity to study the contribution of strange quarks to other aspects of the nucleon. In this framework experiments have been designed to weigh up this contribution to the charge distribution and the magnetization of the nucleon. The experimental way that leads to the measuring of the s-quark contribution is presented. The strange form factor can be deduced from the weak form factor of the proton combined with its electromagnetic form factors. The weak form factor can be measured by studying parity violation in ep elastic scattering. One of the chapters reviews the experimental equipment required to perform parity breaking measurements.The preliminary results of 2 experiments: SAMPLE and HAPPEX are given. (A.C.)

  4. Magnetic form factors of rare earth ions

    International Nuclear Information System (INIS)

    Deckman, H.W.

    1976-01-01

    The magnetic scattering of neutrons by atoms has been investigated by exploiting its similarity to the radiation problem in spectroscopy. Expressions for the magnetic scattering amplitude were developed for cases in whcih an atom in the l/sup n/ electronic configuration is described either by a relativistic or nonrelativistic Hamiltonian. For each of these cases, it has been shown that the magnetic scattering amplitude can be expressed in terms of relativistic or nonrelativistic matrix elements of magnetic and electric multipole operators. For a nonrelativistic atom, the calculation of these matrix elements has been separated into evaluating radial matrix elements and matrix elements of Racah tensors W/(sup 0,k)k/ and W/(sup 1,k')k/. For a relativistic atom the effective operator approach has been used to define effective multipole operators so that a relativistic result is obtained by taking matrix elements of these effective operators between nonrelativistic states of the atom. The calculation of matrix elements of these effective operators has been reduced to evaluating relativistic radial integrals and matrix elements of the Racah tensors taken between nonrelativistic states of the atom. It is shown tha for the case of elastic scattering by either a relativistic or nonrelativistic atom in single Russel-Saunders state, the magnetic scattering amplitude can be written in the conventional form p(vector q)vector q/sub m/.vector sigma. General expressions for p(vector q) as well as elastic magnetic form factorshave been obtained. The formalism has been illustrated throughout by applying it to the case of scattering by rare earth ions

  5. mu. -nucleon atoms

    Energy Technology Data Exchange (ETDEWEB)

    Dobretsov, Yu; Dolgoshein, B; Kirillov-Ugryumov, V

    1980-12-01

    The properties and formation are described of ..mu..-nucleon atoms, the Larmor method of muon spin precession is discussed and the experimental confirmation of the existence of ..mu..-nucleon atoms is shown. The prospects of their use are indicated.

  6. μ-nucleon atoms

    International Nuclear Information System (INIS)

    Dobretsov, Yu.; Dolgoshejn, B.; Kirillov-Ugryumov, V.

    1980-01-01

    The properties and formation are described of μ-nucleon atoms, the Larmor method of muon spin precession is discussed and the experimental confirmation of the existence of μ-nucleon atoms is shown. The prospects of their use are indicated. (J.P.)

  7. Nucleon-nucleon scattering phase shifts

    International Nuclear Information System (INIS)

    Bryan, R.

    1978-01-01

    Here are presented 0 to 800 MeV nucleon-nucleon elastic and inelastic phase parameters derived by several groups: Arndt and Roper; Hoshizaki; Bugg; Bystricky, Lechanoine, and Lehar; and Bryan, Clark, and VerWest. Resonant-like behavior appears in the 1 D 2 and 3 F 3 states above the inelastic threshold in Hoshizaki's analysis but not in Arndt and Roper's. The np data are inadequate to permit determination of the I = O phase parameters above 600 MeV. 27 references

  8. THE FACTORS FORMING QUALITY OF GRANULATED SUGAR

    Directory of Open Access Journals (Sweden)

    N. G. Kulneva

    2015-01-01

    Full Text Available Sugar, with good taste and high caloric, is one of the most popular human food. Consumers sugar must be sure that the sugar under normal conditions of use is of high quality and is not harmful to the health of the product. One reason for the decline in the quality of sugar is bacterial contamination. This is because the sugar industry products are good targets for the development of different groups of microorganisms, e.g., Bacillus subtilis, Clostridium perfringes, Leuconostoc dextranicum, Torula alba, Pseudomonas fluorescens, Sarcina lutea and others. These organisms are affected with beets, and then with sugar beet chips and diffusion juice fall into the processing line of sugar production. Their number in the diffusion juice varies and depends on many facto rs such as the quality of raw materials, the quality of cleaning beet root colonization of transporter-washing and the supply of water to the diffusion process, the temperature of the diffusion and others. In the diffusion unit has the most favorable conditions for the development of micro-organisms. Some of them, especially resistant bacteria and thermophilic bacteria or their spores, forming a capsule which protects against external influences occur in the final product sugar. When injected into the fresh crop of product (juice, syrup, they begin to multiply rapidly, causing difficulties in the process. The higher seeding beet microorganisms, the more they decompose and emit sucrose metabolism byproducts. To reduce the negative impact of microbiological and reduce losses from decomposition of sucrose conducted research on the possibility of using chlorine-containing substances in the sugar industry. It was established experimentally that the investigated chlorinated drug has bacteriostatic action and can be recommended for use in sugar beet production.

  9. The QCD form factor of massive quarks and applications

    International Nuclear Information System (INIS)

    Moch, S.

    2009-11-01

    We review the electromagnetic form factor of heavy quarks with emphasis on the QCD radiative corrections at two-loop order in the perturbative expansion. We discuss important properties of the heavy-quark form factor such as its exponentiation in the high-energy limit and its role in QCD factorization theorems for massive n-parton amplitudes. (orig.)

  10. Nucleon-nucleon interaction in the soliton bag model

    International Nuclear Information System (INIS)

    Schuh, A.

    1985-01-01

    In the framework of the Soliton Bag Model introduced by Friedberg and Lee we treat S-wave nucleon-nucleon scattering. Our system consists of six quarks and the nontopological soliton field which represents an average colorfree interaction between the quarks and yields their (relative) confinement. The dynamical problem is treated by means of the Generator coordinate Method (GCM) where the total wave function is the weighted sum over static configurations of prescribed bag deformation. The static configurations needed for the GCM ansatz are generated starting from a potential well of prescribed deformation wherein we solve the Dirac equation for the quarks. The single particle quark orbitals are properly coupled with respect to orbital, color, spin, and isospin quantum numbers to form a totally antisymmetric 6-quark state. A mean field solution for the soliton field is then calculated and turned into a quantum mechanical state by a coherent state approximation. Since these static configurations are only to be seen as wave function generators for the GCM no selfconsistency between quark and soliton solution is enforced. With these configurations we then evaluate the norm and Hamiltonian kernels appearing in the GCM treatment. The Hill-Wheeler integral equation for the weight functions is transformed into a Schroedinger-type differential equation by an expansion into symmetric moments of up to second order. This equation is brought into a form where we can identify the interaction potential unambiguously. We find an intermediate range attraction of about 120 MeV and no attraction in the vicinity of the spherically symmetric shape of the system, in contradiction to the naive adiabatic potentials widely used in quark models for the nucleon-nucleon interaction up to now. (orig./HSI) [de

  11. Sea quarks contribution to the nucleon magnetic moment and charge radius at the physical point

    Science.gov (United States)

    Sufian, Raza Sabbir; Yang, Yi-Bo; Liang, Jian; Draper, Terrence; Liu, Keh-Fei; χ QCD Collaboration

    2017-12-01

    We report a comprehensive analysis of the light and strange disconnected-sea quarks contribution to the nucleon magnetic moment, charge radius, and the electric and magnetic form factors. The lattice QCD calculation includes ensembles across several lattice volumes and lattice spacings with one of the ensembles at the physical pion mass. We adopt a model-independent extrapolation of the nucleon magnetic moment and the charge radius. We have performed a simultaneous chiral, infinite volume, and continuum extrapolation in a global fit to calculate results in the continuum limit. We find that the combined light and strange disconnected-sea quarks contribution to the nucleon magnetic moment is μM(DI )=-0.022 (11 )(09 ) μN and to the nucleon mean square charge radius is ⟨r2⟩E(DI ) =-0.019 (05 )(05 ) fm2 which is about 1 /3 of the difference between the ⟨rp2⟩E of electron-proton scattering and that of a muonic atom and so cannot be ignored in obtaining the proton charge radius in the lattice QCD calculation. The most important outcome of this lattice QCD calculation is that while the combined light-sea and strange quarks contribution to the nucleon magnetic moment is small at about 1%, a negative 2.5(9)% contribution to the proton mean square charge radius and a relatively larger positive 16.3(6.1)% contribution to the neutron mean square charge radius come from the sea quarks in the nucleon. For the first time, by performing global fits, we also give predictions of the light and strange disconnected-sea quarks contributions to the nucleon electric and magnetic form factors at the physical point and in the continuum and infinite volume limits in the momentum transfer range of 0 ≤Q2≤0.5 GeV2 .

  12. Asymptotical behaviour of pion electromagnetic form factor in QCD

    International Nuclear Information System (INIS)

    Efremov, A.V.; Radyushkin, A.V.

    1978-01-01

    In the framework of the renormalizable quantum field theory a new approach is developed to the investigation of asymptotical behaviour of two-particle bound state electromagnetic form factor. It is shown that the behaviour of the pion EM form factor in quantum chromodynamics at sufficiently large momentum transfers is controlled by the short-distance dynamics only. The formula is obtained which expresses the asymptotical behaviour of the pion form factor in terms of the fundamental constants of the theory

  13. Analytical evaluation of atomic form factors: Application to Rayleigh scattering

    Energy Technology Data Exchange (ETDEWEB)

    Safari, L., E-mail: laleh.safari@ist.ac.at [IST Austria (Institute of Science and Technology Austria), Am Campus 1, 3400 Klosterneuburg (Austria); Department of Physics, University of Oulu, Box 3000, FI-90014 Oulu (Finland); Santos, J. P. [Laboratório de Instrumentação, Engenharia Biomédica e Física da Radiação (LIBPhys-UNL), Departamento de Física, Faculdade de Ciências e Tecnologia, FCT, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); Amaro, P. [Laboratório de Instrumentação, Engenharia Biomédica e Física da Radiação (LIBPhys-UNL), Departamento de Física, Faculdade de Ciências e Tecnologia, FCT, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); Physikalisches Institut, Universität Heidelberg, D-69120 Heidelberg (Germany); Jänkälä, K. [Department of Physics, University of Oulu, Box 3000, FI-90014 Oulu (Finland); Fratini, F. [Department of Physics, University of Oulu, Box 3000, FI-90014 Oulu (Finland); Institute of Atomic and Subatomic Physics, TU Wien, Stadionallee 2, 1020 Wien (Austria); Departamento de Física, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, MG (Brazil)

    2015-05-15

    Atomic form factors are widely used for the characterization of targets and specimens, from crystallography to biology. By using recent mathematical results, here we derive an analytical expression for the atomic form factor within the independent particle model constructed from nonrelativistic screened hydrogenic wave functions. The range of validity of this analytical expression is checked by comparing the analytically obtained form factors with the ones obtained within the Hartee-Fock method. As an example, we apply our analytical expression for the atomic form factor to evaluate the differential cross section for Rayleigh scattering off neutral atoms.

  14. Radical conservatism and nucleon decay

    International Nuclear Information System (INIS)

    Wilczek, Frank

    2000-01-01

    Unification of couplings, observation of neutrino masses in the expected range, and several other considerations confirm central implications of straightforward gauge unification based on SO(10) or a close relative and incorporating low-energy supersymmetry. The remaining outstanding consequence of this circle of ideas, yet to be observed, is nucleon instability. Clearly, we should aspire to be as specific as possible regarding the rate and form of such instability. I argue that not only esthetics, but also the observed precision of unification of couplings, favors an economical symmetry-breaking (Higgs) structure. Assuming this, one can exploit its constraints to build reasonably economical, overconstrained yet phenomenologically viable models of quark and lepton masses. Putting it all together, one arrives at reasonably concrete, hopeful expectations regarding nucleon decay. These expectations are neither ruled out by existing experiments, nor hopelessly inaccessible. Furthermore, the branching fractions can discriminate among different possibilities for physics at the unification scale

  15. Measurement of the generalized form factors near threshold via γ*p→nπ+ at high Q2

    Science.gov (United States)

    Park, K.; Gothe, R. W.; Adhikari, K. P.; Adikaram, D.; Anghinolfi, M.; Baghdasaryan, H.; Ball, J.; Battaglieri, M.; Batourine, V.; Bedlinskiy, I.; Bennett, R. P.; Biselli, A. S.; Bookwalter, C.; Boiarinov, S.; Branford, D.; Briscoe, W. J.; Brooks, W. K.; Burkert, V. D.; Carman, D. S.; Celentano, A.; Chandavar, S.; Charles, G.; Cole, P. L.; Contalbrigo, M.; Crede, V.; D'Angelo, A.; Daniel, A.; Dashyan, N.; De Vita, R.; De Sanctis, E.; Deur, A.; Djalali, C.; Doughty, D.; Dupre, R.; El Alaoui, A.; El Fassi, L.; Eugenio, P.; Fedotov, G.; Fradi, A.; Gabrielyan, M. Y.; Gevorgyan, N.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F. X.; Goetz, J. T.; Gohn, W.; Golovatch, E.; Graham, L.; Griffioen, K. A.; Guidal, M.; Guo, L.; Hafidi, K.; Hakobyan, H.; Hanretty, C.; Heddle, D.; Hicks, K.; Holtrop, M.; Hyde, C. E.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Isupov, E. L.; Jenkins, D.; Jo, H. S.; Joo, K.; Kalantarians, N.; Khandaker, M.; Khetarpal, P.; Kim, A.; Kim, W.; Klein, A.; Klein, F. J.; Kubarovsky, A.; Kubarovsky, V.; Kuhn, S. E.; Kuleshov, S. V.; Kvaltine, N. D.; Livingston, K.; Lu, H. Y.; MacGregor, I. J. D.; Markov, N.; Mayer, M.; McKinnon, B.; Mestayer, M. D.; Meyer, C. A.; Mineeva, T.; Mirazita, M.; Mokeev, V.; Moutarde, H.; Munevar, E.; Nadel-Turonski, P.; Nasseripour, R.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Osipenko, M.; Ostrovidov, A. I.; Paolone, M.; Pappalardo, L.; Paremuzyan, R.; Park, S.; Pereira, S. Anefalos; Phelps, E.; Pisano, S.; Pogorelko, O.; Pozdniakov, S.; Price, J. W.; Procureur, S.; Prok, Y.; Ricco, G.; Rimal, D.; Ripani, M.; Ritchie, B. G.; Rosner, G.; Rossi, P.; Sabatié, F.; Saini, M. S.; Salgado, C.; Schott, D.; Schumacher, R. A.; Seraydaryan, H.; Sharabian, Y. G.; Smith, E. S.; Smith, G. D.; Sober, D. I.; Sokhan, D.; Stepanyan, S. S.; Stepanyan, S.; Stoler, P.; Strakovsky, I. I.; Strauch, S.; Taiuti, M.; Tang, W.; Taylor, C. E.; Tian, Y.; Tkachenko, S.; Trivedi, A.; Ungaro, M.; Vernarsky, B.; Vlassov, A. V.; Voutier, E.; Watts, D. P.; Weygand, D. P.; Wood, M. H.; Zachariou, N.; Zhao, B.; Zhao, Z. W.

    2012-03-01

    We report the first extraction of the pion-nucleon multipoles near the production threshold for the nπ+ channel at relatively high momentum transfer (Q2 up to 4.2 GeV2). The dominance of the s-wave transverse multipole (E0+), expected in this region, allowed us to access the generalized form factor G1 within the light-cone sum-rule (LCSR) framework as well as the axial form factor GA. The data analyzed in this work were collected by the nearly 4π CEBAF Large Acceptance Spectrometer (CLAS) using a 5.754-GeV electron beam on a proton target. The differential cross section and the π-N multipole E0+/GD were measured using two different methods, the LCSR and a direct multipole fit. The results from the two methods are found to be consistent and almost Q2 independent.

  16. The impact of s- anti s asymmetry on the strange electromagnetic form factor

    Energy Technology Data Exchange (ETDEWEB)

    Ghasempour Nesheli, Ali [Islamic Azad University, Department of Physics, Shiraz Branch, Shiraz (Iran, Islamic Republic of)

    2016-09-15

    The existence of the strange quark asymmetry in the nucleon sea has been indicated by both the experimental and theoretical analyses. Although it is well known that the s- anti s asymmetry is important for some processes in high-energy hadron collisions, it has also been indicated that it can be related to the strange Dirac form factor F{sub 1}{sup s}. In this work, we have studied the impact of s- anti s asymmetry and its uncertainty from various modern parton distribution functions (PDFs) on F{sub 1} {sup s} and compared the obtained results with the available experimental information. As a result, we found that the uncertainty in F{sub 1}{sup s}(t) due to the s(x) - anti s (x) distribution is rather large so that it dominates the model uncertainty at all values of the squared momentum transfer t. However, taking into account the uncertainties, the theoretical predictions of F{sub 1}{sup s}(t) are fully compatible with the estimate extracted from experiment. We concluded that the future accurate experimental data of the strange Dirac form factor might be used to put direct constraints on the strange content of the proton and reduce its uncertainty that has always been a challenge. (orig.)

  17. Measurements of the deuteron and proton magnetic form factors at large momentum transfers

    International Nuclear Information System (INIS)

    Bosted, P.E.; Katramatou, A.T.; Arnold, R.G.; Benton, D.; Clogher, L.; DeChambrier, G.; Lambert, J.; Lung, A.; Petratos, G.G.; Rahbar, A.; Rock, S.E.; Szalata, Z.M.; Debebe, B.; Frodyma, M.; Hicks, R.S.; Hotta, A.; Peterson, G.A.; Gearhart, R.A.; Alster, J.; Lichtenstadt, J.; Dietrich, F.; van Bibber, K.

    1990-01-01

    Measurements of the deuteron elastic magnetic structure function B(Q 2 ) are reported at squared four-momentum transfer values 1.20≤Q 2 ≤2.77 (GeV/c) 2 . Also reported are values for the proton magnetic form factor G Mp (Q 2 ) at 11 Q 2 values between 0.49 and 1.75 (GeV/c) 2 . The data were obtained using an electron beam of 0.5 to 1.3 GeV. Electrons backscattered near 180 degree were detected in coincidence with deuterons or protons recoiling near 0 degree in a large solid-angle double-arm spectrometer system. The data for B(Q 2 ) are found to decrease rapidly from Q 2 =1.2 to 2 (GeV/c) 2 , and then rise to a secondary maximum around Q 2 =2.5 (GeV/c) 2 . Reasonable agreement is found with several different models, including those in the relativistic impulse approximation, nonrelativistic calculations that include meson-exchange currents, isobar configurations, and six-quark configurations, and one calculation based on the Skyrme model. All calculations are very sensitive to the choice of deuteron wave function and nucleon form factor parametrization. The data for G Mp (Q 2 ) are in good agreement with the empirical dipole fit

  18. Towards a Resolution of the Proton Form Factor Problem: New Electron and Positron Scattering Data

    Science.gov (United States)

    Adikaram, D.; Rimal, D.; Weinstein, L. B.; Raue, B.; Khetarpal, P.; Bennett, R. P.; Arrington, J.; Brooks, W. K.; Adhikari, K. P.; Afanasev, A. V.; Amaryan, M. J.; Anderson, M. D.; Anefalos Pereira, S.; Avakian, H.; Ball, J.; Battaglieri, M.; Bedlinskiy, I.; Biselli, A. S.; Bono, J.; Boiarinov, S.; Briscoe, W. J.; Burkert, V. D.; Carman, D. S.; Careccia, S.; Celentano, A.; Chandavar, S.; Charles, G.; Colaneri, L.; Cole, P. L.; Contalbrigo, M.; Crede, V.; D'Angelo, A.; Dashyan, N.; De Vita, R.; De Sanctis, E.; Deur, A.; Djalali, C.; Dodge, G. E.; Dupre, R.; Egiyan, H.; El Alaoui, A.; El Fassi, L.; Elouadrhiri, L.; Eugenio, P.; Fedotov, G.; Fegan, S.; Filippi, A.; Fleming, J. A.; Fradi, A.; Garillon, B.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F. X.; Goetz, J. T.; Gohn, W.; Golovatch, E.; Gothe, R. W.; Griffioen, K. A.; Guegan, B.; Guidal, M.; Guo, L.; Hafidi, K.; Hakobyan, H.; Hanretty, C.; Harrison, N.; Hattawy, M.; Hicks, K.; Holtrop, M.; Hughes, S. M.; Hyde, C. E.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Jenkins, D.; Jiang, H.; Jo, H. S.; Joo, K.; Joosten, S.; Kalantarians, N.; Keller, D.; Khandaker, M.; Kim, A.; Kim, W.; Klein, A.; Klein, F. J.; Koirala, S.; Kubarovsky, V.; Kuhn, S. E.; Livingston, K.; Lu, H. Y.; MacGregor, I. J. D.; Markov, N.; Mattione, P.; Mayer, M.; McKinnon, B.; Mestayer, M. D.; Meyer, C. A.; Mirazita, M.; Mokeev, V.; Montgomery, R. A.; Moody, C. I.; Moutarde, H.; Movsisyan, A.; Camacho, C. Munoz; Nadel-Turonski, P.; Niccolai, S.; Niculescu, G.; Osipenko, M.; Ostrovidov, A. I.; Park, K.; Pasyuk, E.; Peña, C.; Pisano, S.; Pogorelko, O.; Price, J. W.; Procureur, S.; Prok, Y.; Protopopescu, D.; Puckett, A. J. R.; Ripani, M.; Rizzo, A.; Rosner, G.; Rossi, P.; Roy, P.; Sabatié, F.; Salgado, C.; Schott, D.; Schumacher, R. A.; Seder, E.; Sharabian, Y. G.; Simonyan, A.; Skorodumina, I.; Smith, E. S.; Smith, G. D.; Sober, D. I.; Sokhan, D.; Sparveris, N.; Stepanyan, S.; Stoler, P.; Strauch, S.; Sytnik, V.; Taiuti, M.; Tian, Ye; Trivedi, A.; Ungaro, M.; Voskanyan, H.; Voutier, E.; Walford, N. K.; Watts, D. P.; Wei, X.; Wood, M. H.; Zachariou, N.; Zana, L.; Zhang, J.; Zhao, Z. W.; Zonta, I.; CLAS Collaboration

    2015-02-01

    There is a significant discrepancy between the values of the proton electric form factor, GEp, extracted using unpolarized and polarized electron scattering. Calculations predict that small two-photon exchange (TPE) contributions can significantly affect the extraction of GEp from the unpolarized electron-proton cross sections. We determined the TPE contribution by measuring the ratio of positron-proton to electron-proton elastic scattering cross sections using a simultaneous, tertiary electron-positron beam incident on a liquid hydrogen target and detecting the scattered particles in the Jefferson Lab CLAS detector. This novel technique allowed us to cover a wide range in virtual photon polarization (ɛ ) and momentum transfer (Q2) simultaneously, as well as to cancel luminosity-related systematic errors. The cross section ratio increases with decreasing ɛ at Q2=1.45 GeV2 . This measurement is consistent with the size of the form factor discrepancy at Q2≈1.75 GeV2 and with hadronic calculations including nucleon and Δ intermediate states, which have been shown to resolve the discrepancy up to 2 - 3 GeV2 .

  19. Quark-diquark approximation of the three-quark structure of a nucleon and the NN phase shifts

    International Nuclear Information System (INIS)

    Efimov, G.V.; Ivanov, M.A.

    1988-01-01

    The quark-diquark approximations of the three-quark structure of a nucleon are considered in the framework of the quark confinement model (QCM) based on definite concepts of the hadronization and quark confinement. The static nucleon characteristics (magnetic moments, ratio G A /G V and strong meson-nucleon coupling constants) are calculated. The behaviour of the electromagnetic and strong nucleon form factors is obtained at the low energy (0≤0 2 =-q 2 2 , where q is a transfer momentum). The one-boson exchange potential is constructed and the NN-phase-shifts are computed. Our results are compared with experiment and the Bonn potential model. 45 refs.; 7 figs.; 3 tabs

  20. The heavy quark form factors at two loops

    Energy Technology Data Exchange (ETDEWEB)

    Ablinger, J.; Schneider, C. [Johannes Kepler Univ., Linz (Austria). Research Inst. for Symbolic Computation (RISC); Behring, A. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); RWTH Aachen Univ. (Germany). Inst. fuer Theoretische Teilchenphysik und Kosmologie; Bluemlein, J.; Freitas, A. de; Marquard, P.; Rana, N. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Falcioni, G. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Nikhef, Amsterdam (Netherlands). Theory Group

    2017-12-15

    We compute the two-loop QCD corrections to the heavy quark form factors in case of the vector, axial-vector, scalar and pseudo-scalar currents up to second order in the dimensional parameter ε=(4-D)/2. These terms are required in the renormalization of the higher order corrections to these form factors.

  1. Model of separated form factors for unilamellar vesicles

    International Nuclear Information System (INIS)

    Kiselev, M.A.; Aksenov, V.L.; Lesieur, P.; Lombardo, D.; Kiselev, A.M.

    2001-01-01

    A new model of separated form factors is proposed for the evaluation of small-angle neutron scattering curves from large unilamellar vesicles. The validity of the model was checked via comparison with the model of a hollow sphere. The model of separated form factors and the hollow sphere model give a reasonable agreement in the evaluation of vesicle parameters

  2. Molecular form factors in X-ray crystallography

    NARCIS (Netherlands)

    Groenewegen, P.P.M.; Feil, D.

    1969-01-01

    The calculation of molecular form factors from ab initio molecular electronic wavefunctions is discussed, and a scheme for application to X-ray diffraction structure analysis is given. The method is used to calculate the form factor of the NH+4 molecular ion from three accurate molecular

  3. Surface sensitivity of nuclear-knock-out form factors

    International Nuclear Information System (INIS)

    Fratamico, G.

    1984-01-01

    A numerical calculation has been performed to investigate the sensitivity of nuclear-knock-out form factors to nuclear-surface behaviour of bound-state wave functions. The result of our investigation suggests that one can extract the bound-state behaviour at the surface from experimental information on nuclear-knock-out form factors

  4. Analytic properties of form factors in strictly confining models

    International Nuclear Information System (INIS)

    Csikor, F.

    1979-12-01

    An argument is presented showing that strict confinement implies the possible existence of an (unwanted) branch point at q 2 =0 in the form factors. In case of a bag extended to infinity in the relative time, the branch point is certainly there (provided that the form factor is non zero at q 2 =0). (author)

  5. Relationship Domain of Form Six Teachers Thinking in Teaching with External Factors of Form Six Teachers

    Science.gov (United States)

    bin Pet, Mokhtar; Sihes, Ahmad Johari Hj

    2015-01-01

    This study aims to examine the external factors of form six teachers who can influence thinking domain form six teachers in their teaching. This study was conducted using a quantitative approach using questionnaires. A total of 300 form six teacher schools in Johor were chosen as respondents. The findings were obtained as student background…

  6. The nucleon-nucleon spin-orbit interaction in the Skyrme model

    International Nuclear Information System (INIS)

    Riska, D.O.; Dannbom, K.

    1987-01-01

    The spin-orbit and quadratic spin-orbit components of the nucleon-nucleon interaction are derived in the Skyrme model at the classical level. These interaction components arise from the orbital and rotational motion of the soliton fields that form the nucleons. The isospin dependent part of the spin-orbit interaction is similar to the corresponding component obtained from boson exchange mechanisms at long distances although at short distances it is weaker. The isospin independent spin-orbit component is however different from the prediction of boson exchange mechanisms and has the opposite sign. The quadratic spin-orbit interaction is weak and has only an isospin dependent component

  7. From nuclei to nucleons

    International Nuclear Information System (INIS)

    Scott, D.K.

    1978-03-01

    Some initial experiments in the intermediate energy region between 10 and 200 MeV/nucleon, which is largely unexplored and poorly understood is considered as regards some initial experiments in this energy region. Included are the emission of complex fragments, localization in heavy ion reactions, coincidence experiments between light and heavy fragments, and the emission of light particles in heavy ion collisions. Some initial results in the region between 20 and 100 MeV/nucleon are presented. 41 references

  8. Is nucleon deformed?

    International Nuclear Information System (INIS)

    Abbas, Afsar

    1992-01-01

    The surprising answer to this question Is nucleon deformed? is : Yes. The evidence comes from a study of the quark model of the single nucleon and when it is found in a nucleus. It turns out that many of the long standing problems of the Naive Quark Model are taken care of if the nucleon is assumed to be deformed. Only one value of the parameter P D ∼1/4 (which specifies deformation) fits g A (the axial vector coupling constant) for all the semileptonic decay of baryons, the F/D ratio, the pion-nucleon-delta coupling constant fsub(πNΔ), the double delta coupling constant 1 fsub(πΔΔ), the Ml transition moment μΔN and g 1 p the spin structure function of proton 2 . All this gives strong hint that both neutron and proton are deformed. It is important to look for further signatures of this deformation. When this deformed nucleon finds itself in a nuclear medium its deformation decreases. So much that in a heavy nucleus the nucleons are actually spherical. We look into the Gamow-Teller strengths, magnetic moments and magnetic transition strengths in nuclei to study this property. (author). 15 refs

  9. Nucleon-nucleon scattering and different meson exchanges

    International Nuclear Information System (INIS)

    Osman, A.

    1985-10-01

    The iterative and noniterative diagrams with different meson exchange are investigated. The α, πβ and πγ meson exchange, (where α=π, rho, σ, ω, eta and delta; β=π, rho, σ and ω; γ=π and rho), are considered. These diagrams are taken to involve the nucleon-nucleon, the nucleon-isobar and the isobar-isobar intermediate states. The diagrams are calculated in momentum space following the noncovariant perturbation theory. The role of each of these diagrams is examined by calculating its contribution to the nucleon-nucleon interaction. The potential model is taken to include one-boson-exchange terms in addition to these diagrams. The nucleon-nucleon scattering phase shifts are described successfully showing the importance of tensor force. The contributions of the different parts are studied in the nucleon-nucleon scattering. (author)

  10. Portable nucleonics instrument design: The PortaCAT example

    International Nuclear Information System (INIS)

    Wallace, G.; Pohl, P.; Hutchinson, E.

    2000-01-01

    Portable nucleonic gauges prototypes are designed and manufactured in New Zealand for niche applications. Considerable development in hardware and software provide new opportunity in design of relatively low cost portable nucleonic gauges. In this paper are illustrated principles, and specific factors to be consider when designing portable nucleonic instrumentation, using an example called PortaCAT, which is a portable computed tomography scanner designed for imaging wooden power poles. (author)

  11. Absorptive form factors for high-energy electron diffraction

    International Nuclear Information System (INIS)

    Bird, D.M.; King, Q.A.

    1990-01-01

    The thermal diffuse scattering contribution to the absorptive potential in high-energy electron diffraction is calculated in the form of an absorptive contribution to the atomic form factor. To do this, the Einstein model of lattice vibrations is used, with isotropic Debye-Waller factors. The absorptive form factors are calculated as a function of scattering vector s and temperature factor M on a grid which enables polynomial interpolation of the results to be accurate to better than 2% for much of the ranges 0≤Ms 2 ≤6 and 0≤M≤2 A 2 . The computed values, together with an interpolation routine, have been incorporated into a Fortran subroutine which calculates both the real and absorptive form factors for 54 atomic species. (orig.)

  12. A Bayesian analysis of the nucleon QCD sum rules

    International Nuclear Information System (INIS)

    Ohtani, Keisuke; Gubler, Philipp; Oka, Makoto

    2011-01-01

    QCD sum rules of the nucleon channel are reanalyzed, using the maximum-entropy method (MEM). This new approach, based on the Bayesian probability theory, does not restrict the spectral function to the usual ''pole + continuum'' form, allowing a more flexible investigation of the nucleon spectral function. Making use of this flexibility, we are able to investigate the spectral functions of various interpolating fields, finding that the nucleon ground state mainly couples to an operator containing a scalar diquark. Moreover, we formulate the Gaussian sum rule for the nucleon channel and find that it is more suitable for the MEM analysis to extract the nucleon pole in the region of its experimental value, while the Borel sum rule does not contain enough information to clearly separate the nucleon pole from the continuum. (orig.)

  13. Effect of two-pion exchange in nucleon-nucleon scattering in high partial waves

    International Nuclear Information System (INIS)

    Harun ar Rashid, A.M.; Chaudhury, T.K.

    1983-01-01

    The work of Brown and Durso (Phys. Lett. 35B, 120 (1971)) on the soft-pion determination of the intermediate range nucleon-nucleon interaction is extended by using the most general form of the ΔNπ interaction which involves an arbitrary parameter Z. It is shown that both the annihilation channel helicity amplitude fsub(+)sup((O))(t) as well as peripheral proton-proton scattering phase shifts seem to favour Z=1/2. (author)

  14. Polarization phenomena in deuteron proton scattering: a useful tool for the study of nucleon resonances properties

    International Nuclear Information System (INIS)

    Rekalo, M.P.; Tomasi-Gustafsson, E.

    1996-01-01

    The microscopic structure of the nucleon N and its excited states N* can be determined through the (elastic or inelastic) electromagnetic form factors. These form factors should help to understand the nature of the transition regime from soft physics of the confinement region to the hard physics of the perturbative QCD. The authors show that hadron induced reactions with isospin zero projectiles, could be an effective method for the study of the nucleon structure, in particular through the measurement of polarization observables. They analyzed the properties of the inclusive d + p reactions, with particular interest in the domain of nucleonic resonances excitation. The calculated cross section and polarization observables show that it is possible to disentangle the different reaction mechanisms (omega, sigma and eta exchange) and bring new information about the electromagnetic form factors of the deuteron as well as of the nucleonic resonances. Existing data on the tensor analyzing power are in agreement with the prediction based on the omega exchange model. (authors)

  15. Anomaly, mixing and transition form factors of pseudoscalar mesons

    International Nuclear Information System (INIS)

    Klopot, Yaroslav; Oganesian, Armen; Teryaev, Oleg

    2011-01-01

    We derive the exact non-perturbative QCD sum rule for the transition form factors of η and η ′ using the dispersive representation of axial anomaly. This sum rule allows to express the transition form factors entirely in terms of meson decay constants. Using this sum rule several mixing schemes were analyzed and compared to recent experimental data. A good agreement with experimental data on η,η ′ transition form factors in the range from real to highly virtual photons was obtained.

  16. Anomaly, mixing and transition form factors of pseudoscalar mesons

    Energy Technology Data Exchange (ETDEWEB)

    Klopot, Yaroslav, E-mail: klopot@theor.jinr.ru [Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Joliot-Curie 6, Dubna 141980 (Russian Federation); Oganesian, Armen, E-mail: armen@itep.ru [Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Joliot-Curie 6, Dubna 141980 (Russian Federation); Institute of Theoretical and Experimental Physics, B. Cheremushkinskaya 25, Moscow 117218 (Russian Federation); Teryaev, Oleg, E-mail: teryaev@theor.jinr.ru [Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Joliot-Curie 6, Dubna 141980 (Russian Federation)

    2011-10-15

    We derive the exact non-perturbative QCD sum rule for the transition form factors of {eta} and {eta}{sup Prime} using the dispersive representation of axial anomaly. This sum rule allows to express the transition form factors entirely in terms of meson decay constants. Using this sum rule several mixing schemes were analyzed and compared to recent experimental data. A good agreement with experimental data on {eta},{eta}{sup Prime} transition form factors in the range from real to highly virtual photons was obtained.

  17. Meson cloud in the nucleon and its consequences in various phenomena

    International Nuclear Information System (INIS)

    Szczurek, A.

    1997-06-01

    Consequences of the meson cloud in the nucleon and search for its evidences in various phenomena in both soft and hard processes were discussed. The cut-off parameters of the form factors (FF) for meson-baryon vertices are determined from high-energy particle production data. An universal cut-off parameter for processes involving octet baryons has been found. Relativistic calculations of the effects of the pion cloud on the electromagnetic properties of the nucleon are presented. Light-cone formalism was used to construct the nucleon wave function. The elastic electromagnetic nucleon FF G p,n E (Q 2 ) and G p,n M (Q 2 ) are computed in terms of matrix elements of current operator and the nucleon wave function. The Q 2 -dependence of contributions to the nucleon FF from the various sectors of the model space is calculated. The observed deviations from FF scaling and dipole parameterization is discussed. A set of formulae for longitudinal momentum distribution functions (splitting functions) of mesons in the nucleon has been determined. The value of the Gottfried Sum Rule obtained from model (S G =0.224) agrees with that obtained by the NMC. The calculated axial coupling constants for semileptonic decays of the octet baryons agree with the experimental data. Enhanced production of events at large x in comparison to standard sets of quark distributions with rather mild Q 2 -dependence was predicted. The semi-inclusive cross section for producing slow protons in charged current deep inelastic (anti-)neutrino scattering nucleons is calculated as a function of the x and the proton momentum. The possible consequences of the meson cloud in the nucleon for the production of the W and Z bosons in hadron-hadron collisions were discussed. A good description of the total W and Z production cross sections measured in the proton-antiproton collisions as well as the lepton asymmetry have been obtained. The model predicts an enhancement of the cross section for the W production in

  18. Meson cloud in the nucleon and its consequences in various phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Szczurek, A. [The H. Niewodniczanski Inst. of Nuclear Physics, Cracow (Poland)

    1997-06-01

    Consequences of the meson cloud in the nucleon and search for its evidences in various phenomena in both soft and hard processes were discussed. The cut-off parameters of the form factors (FF) for meson-baryon vertices are determined from high-energy particle production data. An universal cut-off parameter for processes involving octet baryons has been found. Relativistic calculations of the effects of the pion cloud on the electromagnetic properties of the nucleon are presented. Light-cone formalism was used to construct the nucleon wave function. The elastic electromagnetic nucleon FF G{sup p,n}{sub E}(Q{sup 2}) and G{sup p,n}{sub M} (Q{sup 2}) are computed in terms of matrix elements of current operator and the nucleon wave function. The Q{sup 2}-dependence of contributions to the nucleon FF from the various sectors of the model space is calculated. The observed deviations from FF scaling and dipole parameterization is discussed. A set of formulae for longitudinal momentum distribution functions (splitting functions) of mesons in the nucleon has been determined. The value of the Gottfried Sum Rule obtained from model (S{sub G}=0.224) agrees with that obtained by the NMC. The calculated axial coupling constants for semileptonic decays of the octet baryons agree with the experimental data. Enhanced production of events at large x in comparison to standard sets of quark distributions with rather mild Q{sup 2}-dependence was predicted. The semi-inclusive cross section for producing slow protons in charged current deep inelastic (anti-)neutrino scattering nucleons is calculated as a function of the x and the proton momentum. The possible consequences of the meson cloud in the nucleon for the production of the W and Z bosons in hadron-hadron collisions were discussed. A good description of the total W and Z production cross sections measured in the proton-antiproton collisions as well as the lepton asymmetry have been obtained. The model predicts an enhancement of the

  19. Pion-cloud effects on the electromagnetic properties of nucleons in a quark model

    International Nuclear Information System (INIS)

    Barik, N.

    1992-01-01

    This paper reports that incorporating corrections for the center-of-mass motion and pion-cloud effects the nucleon electromagnetic form factors G N E.M (q 2 ) are computed in an independent quark model based on the Dirac equation with a confining potential V q (r) = (1 + γ 0 ) a 1n (r/b). The static quantities like magnetic moment μn, charge radius (r 2 ) 1/2 N and axial vector coupling constant (g A ) n → pev of the nucleons computed in this model are in reasonable agreement with the experiment. The pseudoscalar and the pseudovector pion-nucleon coupling constants are obtained as g NNπ = 13.52 and f NNπ = 0.284, which are in excellent agreement with the experimental data

  20. Infrared photons and gluons and the electromagnetic quark form factor

    International Nuclear Information System (INIS)

    Scholz, B.

    1982-01-01

    A method for a consistent treatment of the infrared behaviour of QED and QCD is presented. As an application of the method the calculation of the electromagnetic quark form factor is discussed. (M.F.W.)

  1. Finite volume form factors in the presence of integrable defects

    International Nuclear Information System (INIS)

    Bajnok, Z.; Buccheri, F.; Hollo, L.; Konczer, J.; Takacs, G.

    2014-01-01

    We developed the theory of finite volume form factors in the presence of integrable defects. These finite volume form factors are expressed in terms of the infinite volume form factors and the finite volume density of states and incorporate all polynomial corrections in the inverse of the volume. We tested our results, in the defect Lee–Yang model, against numerical data obtained by truncated conformal space approach (TCSA), which we improved by renormalization group methods adopted to the defect case. To perform these checks we determined the infinite volume defect form factors in the Lee–Yang model exactly, including their vacuum expectation values. We used these data to calculate the two point functions, which we compared, at short distance, to defect CFT. We also derived explicit expressions for the exact finite volume one point functions, which we checked numerically. In all of these comparisons excellent agreement was found

  2. Dispersive analysis of the pion transition form factor

    Science.gov (United States)

    Hoferichter, M.; Kubis, B.; Leupold, S.; Niecknig, F.; Schneider, S. P.

    2014-11-01

    We analyze the pion transition form factor using dispersion theory. We calculate the singly-virtual form factor in the time-like region based on data for the cross section, generalizing previous studies on decays and scattering, and verify our result by comparing to data. We perform the analytic continuation to the space-like region, predicting the poorly-constrained space-like transition form factor below , and extract the slope of the form factor at vanishing momentum transfer . We derive the dispersive formalism necessary for the extension of these results to the doubly-virtual case, as required for the pion-pole contribution to hadronic light-by-light scattering in the anomalous magnetic moment of the muon.

  3. The connected prescription for form factors in twistor space

    Energy Technology Data Exchange (ETDEWEB)

    Brandhuber, A.; Hughes, E.; Panerai, R.; Spence, B.; Travaglini, G. [Centre for Research in String Theory, School of Physics and Astronomy,Queen Mary University of London,Mile End Road, London E1 4NS (United Kingdom)

    2016-11-23

    We propose a connected prescription formula in twistor space for all tree-level form factors of the stress tensor multiplet operator in N=4 super Yang-Mills, which is a generalisation of the expression of Roiban, Spradlin and Volovich for superamplitudes. By introducing link variables, we show that our formula is identical to the recently proposed four-dimensional scattering equations for form factors. Similarly to the case of amplitudes, the link representation of form factors is shown to be directly related to BCFW recursion relations, and is considerably more tractable than the scattering equations. We also discuss how our results are related to a recent Grassmannian formulation of form factors, and comment on a possible derivation of our formula from ambitwistor strings.

  4. Normalization Of Thermal-Radiation Form-Factor Matrix

    Science.gov (United States)

    Tsuyuki, Glenn T.

    1994-01-01

    Report describes algorithm that adjusts form-factor matrix in TRASYS computer program, which calculates intraspacecraft radiative interchange among various surfaces and environmental heat loading from sources such as sun.

  5. Classical limit of diagonal form factors and HHL correlators

    Energy Technology Data Exchange (ETDEWEB)

    Bajnok, Zoltan [MTA Lendület Holographic QFT Group, Wigner Research Centre,H-1525 Budapest 114, P.O.B. 49 (Hungary); Janik, Romuald A. [Institute of Physics, Jagiellonian University,ul. Łojasiewicza 11, 30-348 Kraków (Poland)

    2017-01-16

    We propose an expression for the classical limit of diagonal form factors in which we integrate the corresponding observable over the moduli space of classical solutions. In infinite volume the integral has to be regularized by proper subtractions and we present the one, which corresponds to the classical limit of the connected diagonal form factors. In finite volume the integral is finite and can be expressed in terms of the classical infinite volume diagonal form factors and subvolumes of the moduli space. We analyze carefully the periodicity properties of the finite volume moduli space and found a classical analogue of the Bethe-Yang equations. By applying the results to the heavy-heavy-light three point functions we can express their strong coupling limit in terms of the classical limit of the sine-Gordon diagonal form factors.

  6. Conformal symmetry and pion form factor: Soft and hard contributions

    International Nuclear Information System (INIS)

    Choi, Ho-Meoyng; Ji, Chueng-Ryong

    2006-01-01

    We discuss a constraint of conformal symmetry in the analysis of the pion form factor. The usual power-law behavior of the form factor obtained in the perturbative QCD analysis can also be attained by taking negligible quark masses in the nonperturbative quark model analysis, confirming the recent AdS/CFT correspondence. We analyze the transition from soft to hard contributions in the pion form factor considering a momentum-dependent dynamical quark mass from an appreciable constituent quark mass at low momentum region to a negligible current quark mass at high momentum region. We find a correlation between the shape of nonperturbative quark distribution amplitude and the amount of soft and hard contributions to the pion form factor

  7. ELECTROMAGENTIC FORM FACTORS OF THE PROTON AND NEUTRON

    Energy Technology Data Exchange (ETDEWEB)

    Griffy, T. A.; Hofstadter, R.; Hughes, E. B.; Janssens, T.; Yearian, M. R.

    1963-06-15

    Proton form factors in the four-momentum-transfer range q/sup 2/ = 4.6 to 32.0 f/sup -2/ and neutron form factors in the range q/sup 2/ = 2.5 to 10.0 f/ sup -2/ are measured by means of electron elastic scattering by protons and electron inelastic scattering by deuterons. (T.F.H.)

  8. Hyperon decay form factors in chiral perturbation theory

    International Nuclear Information System (INIS)

    Lacour, Andre; Kubis, Bastian; Meissner, Ulf-G.

    2007-01-01

    We present a complete calculation of the SU(3)-breaking corrections to the hyperon vector form factors up to O(p 4 ) in covariant baryon chiral perturbation theory. Partial higher-order contributions are obtained, and we discuss chiral extrapolations of the vector form factor at zero momentum transfer. In addition we derive low-energy theorems for the subleading moments in hyperon decays, the weak Dirac radii and the weak anomalous magnetic moments, up to O(p 4 )

  9. Contribution of nucleonic degrees of freedom to the EMC effect

    International Nuclear Information System (INIS)

    Anisovich, V.V.; Sarantsev, A.V.; Starodubskii, V.E.

    1987-01-01

    The dispersion-integration method has been used to calculate the contribution of nucleonic degrees of freedom to the EMC effect. The structure of the amplitude of deep inelastic scattering is discussed for a nucleus with spin one half. The question of the functional form of the structure function of a nucleon off the mass shell is discussed

  10. Form factors of the finite quantum XY-chain

    International Nuclear Information System (INIS)

    Iorgov, Nikolai

    2011-01-01

    Explicit factorized formulas for the matrix elements (form factors) of the spin operators σ x and σ y between the eigenvectors of the Hamiltonian of the finite quantum periodic XY-chain in a transverse field were derived. The derivation is based on the relations between three models: the model of quantum XY-chain, Ising model on 2D lattice and N = 2 Baxter-Bazhanov-Stroganov τ (2) -model. Due to these relations we transfer the formulas for the form factors of the latter model recently obtained by the use of separation of variables method to the model of quantum XY-chain. Hopefully, the formulas for the form factors will help in analysis of multipoint dynamic correlation functions at a finite temperature. As an example, we re-derive the asymptotics of the two-point correlation function in the disordered phase without the use of the Toeplitz determinants and the Wiener-Hopf factorization method.

  11. A Measurement of the neutron electric form factor at very large momentum transfer using polaried electrions scattering from a polarized helium-3 target

    Energy Technology Data Exchange (ETDEWEB)

    Kelleher, Aidan [College of William and Mary, Williamsburg, VA (United States)

    2010-02-01

    Knowledge of the electric and magnetic elastic form factors of the nucleon is essential for an understanding of nucleon structure. Of the form factors, the electric form factor of the neutron has been measured over the smallest range in Q2 and with the lowest precision. Jefferson Lab experiment 02-013 used a novel new polarized 3 He target to nearly double the range of momentum transfer in which the neutron form factor has been studied and to measure it with much higher precision. Polarized electrons were scattered off this target, and both the scattered electron and neutron were detected. Gn E was measured to be 0.0242 ± 0.0020(stat) ± 0.0061(sys) and 0.0247 ± 0.0029(stat) ± 0.0031(sys) at Q2 = 1.7 and 2.5 GeV2 , respectively.

  12. Jets in high energy nucleon-nucleon collisions

    International Nuclear Information System (INIS)

    Strugalski, Z.

    1982-01-01

    From the experimental studies of high-energy hardon-nucleon and nucleon-nucleon collisions, by means of nuclear targets applied as detectors, it follows that particles are produced via intermediate objects created first in a 2 → 2 type endoergic reaction. These objects, called generons, decay in flight into finally observed particles and resonances after their lifetime tausub(g) > or approximately 10 - 22 s. The jet structure of the outcome in nucleon-nucleon collisions is a simple and indispensable consequence of this particle production mechanism. The picture of the jet structure in the collision outcome observed in the CMS of the colliding nucleons depends on the energy of these nUcleons. New particle production scheme is proposed, which can be tested experimentally; corresponding simple relations between characteristics of colliding nucleons and of produced jets are proposed for a testing

  13. Toy model for pion production in nucleon-nucleon collisions

    International Nuclear Information System (INIS)

    Hanhart, C.; Miller, G. A.; Myhrer, F.; Sato, T.; Kolck, U. van

    2001-01-01

    We develop a toy model for pion production in nucleon-nucleon collisions that reproduces some of the features of the chiral Lagrangian calculations. We calculate the production amplitude and examine some common approximations

  14. Current algebra constraints on K13 form factors

    International Nuclear Information System (INIS)

    Simmons, L.D.

    1975-01-01

    New theoretical constraints on the divergence form factor in K 13 decays are derived. The assumptions underlying the derivation are presented. The constraints on the divergence form factor are derived and summarized in the form of a theorem. It is shown that the finiteness of the leakage charge is a natural consequence of the parallelΔI vectorparallel = 1 / 2 rule. The Lorentz invariance of current algebra sum rules is discussed. The theorem is rederived within the context of the conserved vector current hypothesis. Finally, the implications of the present work are noted with attention being paid to both the theoretical and experimental consequences

  15. Pion-nucleon vertex function with one nucleon off shell

    International Nuclear Information System (INIS)

    Mizutani, T.; Rochus, P.

    1979-01-01

    The pion-nucleon vertex function with an off-mass-shell nucleon is obtained through sideways dispersion relations with the P 11 and S 11 pion-nucleon phase shifts as only input. Contrary to the recent calculation of Nutt and Shakin, we find that the proper and improper vertex functions behave quite differently, indicating the importance of the nucleon propagator dressing. In particular the proper vertex function is found to have two poles in the unphysical region

  16. Overview of factors affecting the leachability of nuclear waste forms

    International Nuclear Information System (INIS)

    Stone, J.A.

    1980-01-01

    An overview of various factors that affect the leachability of nuclear waste forms is presented. The factors affect primarily the leaching system (temperature, for example), the leachant (pH, for example), or the solid being leached (surface condition, for example). A qualitative understanding exists of the major factors affecting leaching, but further studies are needed to establish leaching mechanisms and develop predictive models. 67 refs

  17. Parity violation in the nucleon-nucleon interaction

    International Nuclear Information System (INIS)

    Haxton, W.C.

    1989-01-01

    I discuss the present status of our understanding of parity nonconservation (PNC) in the nucleon-nucleon interaction, and some of the difficulties inherent in nuclear tests of PNC. I also discuss the nucleon/nuclear anapole moment, the parity violating coupling of the photon, and its relation to the PNC NN interaction. 13 refs., 1 fig., 2 tabs

  18. Extended vector meson dominance model for the baryon octet electromagnetic form factors

    International Nuclear Information System (INIS)

    Williams, R.A.; Puckett-Truman, C.

    1996-01-01

    An unresolved issue in the present understanding of nucleon structure is the effect of hidden strangeness on electromagnetic observables such as G n E (q 2 ). Previously, we have shown that G n E (q 2 ) is sensitive to small φNN couplings. A complementary approach for understanding effects due to strangeness content and the Okubo-Zweig-Iizuka (OZI) rule is to investigate the electromagnetic structure of hyperons. We apply Sakurai close-quote s universality limit of the SU(3) F symmetry relations and a prescription based on the OZI rule to calculate the electromagnetic form factors of the baryon octet states (p,n,Λ,Σ + ,Σ 0 ,Σ - ,Ξ 0 ,Ξ - ) within the framework of an extended vector meson dominance model. To provide additional motivation for experimental investigation, we discuss the possibility of extracting the ratio G M Λ (q 2 )/G M ΣΛ (q 2 ) from the Λ/Σ polarization ratio in kaon electroproduction experiments. copyright 1996 The American Physical Society

  19. Nucleons in nuclei, however

    International Nuclear Information System (INIS)

    Grange, P.; Mathiot, J.F.; Roy-Stephan, M.; Frascaria, R.; Gales, S.

    1990-01-01

    The topics presented at the 1989 Joliot-Curie Lectures are reported. Two main subjects were retained: a simplified description of the N-body motion of particles in the quasi-particle configuration; study of the dynamics of nuclear components which are not described by nucleons in their ground state. The following themes were presented: quasiparticles and the Green functions, relativistic aspects of the quasiparticle concept, the dimensions of nucleons in the nuclei and the EMC effect, quarks and gluons in the nuclei, the delta in the nuclei, the strangeness, quasiparticles far from the Fermi sea, diffusion of electrons, stellar evolution and nucleosynthesis [fr

  20. Nucleon structure functions

    International Nuclear Information System (INIS)

    Virchaux, M.

    1992-11-01

    The present status of experimental measurements of the nucleon structure functions is reviewed. The results from nearly all deep inelastic experiments are in good mutual agreement. Principles of the analysis of these structure function data in the framework of QCD are described. The specific features of the perturbative QCD predictions are observed in the data. This provides quantitative tests of the validity of QCD as well as determinations of the various parton distributions in the nucleon and some of the most precise measurements of the strong coupling constant αs. The future of this field of experimental physics is sketched

  1. The nucleon- nucleon interaction and symmetries

    International Nuclear Information System (INIS)

    Van Oers, W.T.H.

    1992-11-01

    With the advent of the possibility to study nucleon-nucleon scattering at medium energies, its extension to investigate fundamental symmetries was recognized early on. It was precisely the introduction of rotational invariance, parity conservation, time reversal invariance, and isotopic spin conversation that led to the description of the N - N scattering matrix in terms of five complex amplitudes: one set of five for proton-proton scattering and one set of five for neutron-proton scattering, or alternatively, one set for the isotopic spin state ι=ο and the other for the isotopic spin state ι=1. Clearly, if one or more of the above constraints are removed, there are additional amplitudes that need to be considered. To be meaningful, experiment requires observables that are particularly sensitive to the violation of a conservation law or symmetry principle. During the last decade a series of precision experiments has been performed to measure charge- symmetry breaking in n - p elastic scattering (corresponding to isotopic spin non-conservation), and to measure parity violation in p-p scattering. For a particle-anti-particle system,like the pp or λλ system one can raise the question of CP violation in a system other than the neutral kaon system may become possible in the near future through pp →λλ and pp→ ≡ ≡. A description is given of the ongoing efforts to measure charge symmetry breaking, parity violation and CP violation.(author). 42 refs., 6 figs

  2. Nucleon structure by Lattice QCD computations with twisted mass fermions

    International Nuclear Information System (INIS)

    Harraud, P.A.

    2010-11-01

    Understanding the structure of the nucleon from quantum chromodynamics (QCD) is one of the greatest challenges of hadronic physics. Only lattice QCD allows to determine numerically the values of the observables from ab-initio principles. This thesis aims to study the nucleon form factors and the first moments of partons distribution functions by using a discretized action with twisted mass fermions. As main advantage, the discretization effects are suppressed at first order in the lattice spacing. In addition, the set of simulations allows a good control of the systematical errors. After reviewing the computation techniques, the results obtained for a wide range of parameters are presented, with lattice spacings varying from 0.0056 fm to 0.089 fm, spatial volumes from 2.1 up to 2.7 fm and several pion masses in the range of 260-470 MeV. The vector renormalization constant was determined in the nucleon sector with improved precision. Concerning the electric charge radius, we found a finite volume effect that provides a key towards an explanation of the chiral dependence of the physical point. The results for the magnetic moment, the axial charge, the magnetic and axial charge radii, the momentum and spin fractions carried by the quarks show no dependence on the lattice spacing nor volume. In our range of pion masses, their values show a deviation from the experimental values. Their chiral behaviour do not exhibit the curvature predicted by the chiral perturbation theory which could explain the apparent discrepancy. (author)

  3. Experiments on few-nucleon systems at MAMI

    International Nuclear Information System (INIS)

    Distler, M.O. . Author

    2008-01-01

    The experimental effort at the Mainz Microtron with respect to few-body physics is focused on a number of selected topics. The structure of 3 He has been studied in the reactions 3 He(ε, εn) and 3 He(ε, ε'p) with large (transversal) missing momenta and in quasi-elastic electron scattering. Experiments to determine the neutron electric form factor G en have been performed - a measurement at a four-momentum transfer Q 2 ∼ 1.5(GeV/c) 2 took place in July 2007. Electromagnetically induced two-nucleon knockout has been investigated in order to study the role of correlated nucleon-nucleon motion in the nucleus. Measurements of the (e,e' pn) reaction on 3 He and 16 O were performed for the first time. A triple-polarization experiment of type 3 He(ε, ε'p)d has been performed in August 2007, where, in addition, the spin of the knocked-out proton is analyzed. This measurement provides information on the spin-dependent momentum distribution of proton-deuteron clusters in the 3 He nucleus. By using this deuteron-tagging method spin-polarized 3 He might also serve as an effective polarized proton target for electron scattering experiments. Presented at the 20th Few-Body Conference, Pisa, Italy, 10-14 September 2007. (author)

  4. Axial structure of the nucleon

    Energy Technology Data Exchange (ETDEWEB)

    Veronique Bernard; Latifa Elouadrhiri; Ulf-G Meissner

    2002-01-01

    We review the current status of experimental and theoretical understanding of the axial nucleon structure at low and moderate energies. Topics considered include (quasi)elastic (anti)neutrino-nucleon scattering, charged pion electroproduction off nucleons and ordinary as well as radiative muon capture on the proton.

  5. Three-body force in the three-nucleon system

    International Nuclear Information System (INIS)

    Gibson, B.F.

    1986-01-01

    A brief summary of the symposium is presented. Three-nucleon force models are discussed, including the two-pion exchange potential, NN-ΔN coupled-channels model, and phenomenological parametrization. Relevant experimental data and model calculations are discussed including form factors, binding energies, charge radii, and charge density for 3 H and 3 He. A calculation of the EMC effect for 3 He is also made using Sasakawa's wave function and compared to experimental data obtained at SLAC. The paper ends with discussions of proton-deuteron scattering, investigations at intermediate energies, and QCD efforts to understand the three-body problem

  6. Meson-induced correlations of nucleons in nuclear Compton scattering

    International Nuclear Information System (INIS)

    Huett, M.; Milstein, A.I.

    1998-01-01

    The nonresonant (seagull) contribution to the nuclear Compton amplitude at low energies is strongly influenced by nucleon correlations arising from meson exchange. We study this problem in a modified Fermi gas model, where nuclear correlation functions are obtained with the help of perturbation theory. The dependence of the mesonic seagull amplitude on the nuclear radius is investigated and the influence of a realistic nuclear density on this amplitude is discussed. We found that different form factors appear for the static part (proportional to the enhancement constant κ) of the mesonic seagull amplitude and for the parts, which contain the contribution from electromagnetic polarizabilities. copyright 1998 The American Physical Society

  7. Two-loop SL(2) form factors and maximal transcendentality

    International Nuclear Information System (INIS)

    Loebbert, Florian; Sieg, Christoph; Wilhelm, Matthias; Yang, Gang

    2016-01-01

    Form factors of composite operators in the SL(2) sector of N=4 SYM theory are studied up to two loops via the on-shell unitarity method. The non-compactness of this subsector implies the novel feature and technical challenge of an unlimited number of loop momenta in the integrand’s numerator. At one loop, we derive the full minimal form factor to all orders in the dimensional regularisation parameter. At two loops, we construct the complete integrand for composite operators with an arbitrary number of covariant derivatives, and we obtain the remainder functions as well as the dilatation operator for composite operators with up to three covariant derivatives. The remainder functions reveal curious patterns suggesting a hidden maximal uniform transcendentality for the full form factor. Finally, we speculate about an extension of these patterns to QCD.

  8. Computation of 3D form factors in complex environments

    International Nuclear Information System (INIS)

    Coulon, N.

    1989-01-01

    The calculation of radiant interchange among opaque surfaces in a complex environment poses the general problem of determining the visible and hidden parts of the environment. In many thermal engineering applications, surfaces are separated by radiatively non-participating media and may be idealized as diffuse emitters and reflectors. Consenquently the net radiant energy fluxes are intimately related to purely geometrical quantities called form factors, that take into account hidden parts: the problem is reduced to the form factor evaluation. This paper presents the method developed for the computation of 3D form factors in the finite-element module of the system TRIO, which is a general computer code for thermal and fluid flow analysis. The method is derived from an algorithm devised for synthetic image generation. A comparison is performed with the standard contour integration method also implemented and suited to convex geometries. Several illustrative examples of finite-element thermal calculations in radiating enclosures are given

  9. Two-loop SL(2) form factors and maximal transcendentality

    Energy Technology Data Exchange (ETDEWEB)

    Loebbert, Florian [Institut für Physik, Humboldt-Universität zu Berlin,Zum Großen Windkanal 6, 12489 Berlin (Germany); Sieg, Christoph [Institut für Physik, Humboldt-Universität zu Berlin,Zum Großen Windkanal 6, 12489 Berlin (Germany); Institut für Mathematik, Humboldt-Universität zu Berlin,Zum Großen Windkanal 6, 12489 Berlin (Germany); Wilhelm, Matthias [Institut für Physik, Humboldt-Universität zu Berlin,Zum Großen Windkanal 6, 12489 Berlin (Germany); Institut für Mathematik, Humboldt-Universität zu Berlin,Zum Großen Windkanal 6, 12489 Berlin (Germany); Niels Bohr Institute, Copenhagen University,Blegdamsvej 17, 2100 Copenhagen Ø (Denmark); Yang, Gang [CAS Key Laboratory of Theoretical Physics,Institute of Theoretical Physics, Chinese Academy of Sciences,Beijing 100190 (China); Institut für Physik, Humboldt-Universität zu Berlin,Zum Großen Windkanal 6, 12489 Berlin (Germany)

    2016-12-19

    Form factors of composite operators in the SL(2) sector of N=4 SYM theory are studied up to two loops via the on-shell unitarity method. The non-compactness of this subsector implies the novel feature and technical challenge of an unlimited number of loop momenta in the integrand’s numerator. At one loop, we derive the full minimal form factor to all orders in the dimensional regularisation parameter. At two loops, we construct the complete integrand for composite operators with an arbitrary number of covariant derivatives, and we obtain the remainder functions as well as the dilatation operator for composite operators with up to three covariant derivatives. The remainder functions reveal curious patterns suggesting a hidden maximal uniform transcendentality for the full form factor. Finally, we speculate about an extension of these patterns to QCD.

  10. Electromagnetic form factors of the Ω- in lattice QCD

    International Nuclear Information System (INIS)

    Alexandrou, C.; Korzec, T.; Koutsou, G.; Negele, J. W.; Proestos, Y.

    2010-01-01

    We present results on the omega baryon (Ω - ) electromagnetic form factors using N f =2+1 domain-wall fermion configurations for three pion masses in the range of about 350 to 300 MeV. We compare results obtained using domain-wall fermions with those of a mixed-action (hybrid) approach, which combines domain-wall valence quarks on staggered sea quarks, for a pion mass of about 350 MeV. We pay particular attention in the evaluation of the subdominant electric quadrupole form factor to sufficient accuracy to exclude a zero value, by constructing a sequential source that isolates it from the dominant form factors. The Ω - magnetic moment, μ Ω - , and the electric charge and magnetic radius, E0/M1 2 >, are extracted for these pion masses. The electric quadrupole moment is determined for the first time using dynamical quarks.

  11. Evaluation of E2 form factor = 24Mg

    International Nuclear Information System (INIS)

    Marinelli, J.R.; Moreira, J.R.

    1988-11-01

    Longitudinal and transverse electron scattering form factors for the 2 + state at 1.37 Mev of the 24 Mg nucleus was evaluated with rotational model wavefunctions. Four different approaches were used for the transverse E2 form factor: PHF, cranking model, ridig rotor and irrotational flow. For the nuclear intrinsic wavefunction, the Nilsson model was assumed in all approaches yielding the calculation of the form factor in PWBA and DWBA. The results are discussed and compared with a recent measurement performed with 180 0 electron scattered from this state. The DWBA calculation, taking into account first order corrections shows that PHF and irrotational flow models give the best agreements with the available data and compete in quality with more complex calculation performed under the 'shell model' approach. (author) [pt

  12. Lepton-nucleon scattering

    International Nuclear Information System (INIS)

    Windmolders, R.

    1989-01-01

    In this paper the following topics are reviewed: 1. the structure functions measured in deep inelastic e-N, μ-N and ν-N scattering; 2. nuclear effects on the structure functions; 3. nuclear effects on the fragmentation functions; 4. the spin dependent structure functions and their interpretation in terms of nucleon constituents. (orig./HSI)

  13. Is the nucleon strange?

    CERN Document Server

    Nowak, M A; Zahed, I

    1989-01-01

    The issue of the strangeness content of the proton in relation to a large σ π N term is examined using the instanton-antiinstanton description of the QCD ground state. Modulo plausible assumptions, our results indicate no strangeness admixture in the nucleon state at zero momentum transfer.

  14. A nucleonic weighing machine

    International Nuclear Information System (INIS)

    Anon.

    1978-01-01

    The design and operation of a nucleonic weighing machine fabricated for continuous weighing of material over conveyor belt are described. The machine uses a 40 mCi cesium-137 line source and a 10 litre capacity ionization chamber. It is easy to maintain as there are no moving parts. It can also be easily removed and reinstalled. (M.G.B.)

  15. Nucleon-nucleon correlations in dense nuclear matter

    International Nuclear Information System (INIS)

    Alm, T.

    1993-02-01

    In this thesis new results on the problematics of the formation of nucleon-nucleon correlations in nuclear matter could be presented. Starting from a general study of the two-particle problem in matter we studied the occurrence of a suprafluid phase (pair condensate of nucleons). The Gorkov decoupling by means of anomalous Green functions was generalized, so that also Cooper pairs with spin 1 (triplet pairing) can be described. A generalized gap equation resulted, which permits to determine the order parameters of the suprafluied phase in arbitrary channels of the nucleon-nucleon scattering states. This equation was solvd in the 1 S 0 -, in the 3 P 2 - 3 F 2 , and in the 3 S 1 - 3 D 1 channel under application of realistic nucleon-nucleon potentials. The behaviour of the resulting gap parameters in the single channels was studied as function of density and temperature. (orig.) [de

  16. Master integrals for the four-loop Sudakov form factor

    International Nuclear Information System (INIS)

    Boels, Rutger; Kniehl, Bernd A.; Yang, Gang; Chinese Academy of Sciences, Beijing

    2015-08-01

    The light-like cusp anomalous dimension is a universal function in the analysis of infrared divergences. In maximally (N=4) supersymmetric Yang-Mills theory (SYM) in the planar limit, it is known, in principle, to all loop orders. The non-planar corrections are not known in any theory, with the first appearing at the four-loop order. Probably the simplest quantity which contains this correction is the four-loop two-point form factor of the stress tensor multiplet. This form factor was obtained in integrand form in a previous work for N=4 SYM, up to a single parameter. In this work, a reduction of the appearing integrals obtained by solving integration-by-parts (IBP) identities using (a tweaked version of) Reduze is reported. The form factor is shown to be independent of the remaining parameter at integrand level due to an intricate pattern of cancellations after IBP reduction. The appearing master integrals are cross-checked using algebraic techniques explored in the Mint package. The latter results provide the basis of master integrals applicable to generic form factors, including those in Quantum Chromodynamics. Remaining bottlenecks to completing the computation of the four-loop non-planar cusp anomalous dimension in N=4 SYM and beyond are identified.

  17. Master integrals for the four-loop Sudakov form factor

    Directory of Open Access Journals (Sweden)

    Rutger H. Boels

    2016-01-01

    Full Text Available The light-like cusp anomalous dimension is a universal function in the analysis of infrared divergences. In maximally (N=4 supersymmetric Yang–Mills theory (SYM in the planar limit, it is known, in principle, to all loop orders. The non-planar corrections are not known in any theory, with the first appearing at the four-loop order. The simplest quantity which contains this correction is the four-loop two-point form factor of the stress tensor multiplet. This form factor was largely obtained in integrand form in a previous work for N=4 SYM, up to a free parameter. In this work, a reduction of the appearing integrals obtained by solving integration-by-parts (IBP identities using a modified version of Reduze is reported. The form factor is shown to be independent of the remaining parameter at integrand level due to an intricate pattern of cancellations after IBP reduction. Moreover, two of the integral topologies vanish after reduction. The appearing master integrals are cross-checked using independent algebraic-geometry techniques explored in the Mint package. The latter results provide the basis of master integrals applicable to generic form factors, including those in Quantum Chromodynamics. Discrepancies between explicitly solving the IBP relations and the MINT approach are highlighted. Remaining bottlenecks to completing the computation of the four-loop non-planar cusp anomalous dimension in N=4 SYM and beyond are identified.

  18. Towards a dispersive determination of the pion transition form factor

    Science.gov (United States)

    Leupold, Stefan; Hoferichter, Martin; Kubis, Bastian; Niecknig, Franz; Schneider, Sebastian P.

    2018-01-01

    We start with a brief motivation why the pion transition form factor is interesting and, in particular, how it is related to the high-precision standard-model calculation of the gyromagnetic ratio of the muon. Then we report on the current status of our ongoing project to calculate the pion transition form factor using dispersion theory. Finally we present and discuss a wish list of experimental data that would help to improve the input for our calculations and/or to cross-check our results.

  19. Towards a dispersive determination of the pion transition form factor

    Directory of Open Access Journals (Sweden)

    Leupold Stefan

    2018-01-01

    Full Text Available We start with a brief motivation why the pion transition form factor is interesting and, in particular, how it is related to the high-precision standard-model calculation of the gyromagnetic ratio of the muon. Then we report on the current status of our ongoing project to calculate the pion transition form factor using dispersion theory. Finally we present and discuss a wish list of experimental data that would help to improve the input for our calculations and/or to cross-check our results.

  20. Measurement of the Charged Pion Electromagnetic Form Factor

    International Nuclear Information System (INIS)

    J. Volmer; David Abbott; H. Anklin; Chris Armstrong; John Arrington; K. Assamagan; Steven Avery; Oliver K. Baker; Henk Blok; C. Bochna; Ed Brash; Herbert Breuer; Nicholas Chant; Jim Dunne; Tom Eden; Rolf Ent; David Gaskell; Ron Gilman; Kenneth Gustafsson; Wendy Hinton; Garth Huber; Hal Jackson; Mark K. Jones; Cynthia Keppel; P.H. Kim; Wooyoung Kim; Andi Klein; Doug Koltenuk; Meme Liang; George Lolos; Allison Lung; David Mack; D. McKee; David Meekins; Joseph Mitchell; H. Mkrtchian; B. Mueller; Gabriel Niculescu; Ioana Niculescu; D. Pitz; D. Potterveld; Liming Qin; Juerg Reinhold; I.K. Shin; Stepan Stepanyan; V. Tadevosian; L.G. Tang; R.L.J. van der Meer; K. Vansyoc; D. Van Westrum; Bill Vulcan; Stephen Wood; Chen Yan; W.X. Zhao; Beni Zihlmann

    2001-01-01

    Separated longitudinal and transverse structure functions for the reaction 1H(e,eprime pi+)n were measured in the momentum transfer region Q2=0.6-1.6 (GeV/c)**2 at a value of the invariant mass W=1.95 GeV. New values for the pion charge form factor were extracted from the longitudinal cross section by using a recently developed Regge model. The results indicate that the pion form factor in this region is larger than previously assumed and is consistent with a monopole parameterization fitted to very low Q2 elastic data

  1. Deuteron form factor measurements at low momentum transfers

    Directory of Open Access Journals (Sweden)

    Schlimme B. S.

    2016-01-01

    Full Text Available A precise measurement of the elastic electron-deuteron scattering cross section at four-momentum transfers of 0.24 fm−1 ≤ Q ≤ 2.7 fm−1 has been performed at the Mainz Microtron. In this paper we describe the utilized experimental setup and the necessary analysis procedure to precisely determine the deuteron charge form factor from these data. Finally, the deuteron charge radius rd can be extracted from an extrapolation of that form factor to Q2 = 0.

  2. Nucleon electromagnetic structure studies in the spacelike and timelike regions

    Energy Technology Data Exchange (ETDEWEB)

    Guttmann, Julia

    2013-07-23

    The thesis investigates the nucleon structure probed by the electromagnetic interaction. One of the most basic observables, reflecting the electromagnetic structure of the nucleon, are the form factors, which have been studied by means of elastic electron-proton scattering with ever increasing precision for several decades. In the timelike region, corresponding with the proton-antiproton annihilation into a electron-positron pair, the present experimental information is much less accurate. However, in the near future high-precision form factor measurements are planned. About 50 years after the first pioneering measurements of the electromagnetic form factors, polarization experiments stirred up the field since the results were found to be in striking contradiction to the findings of previous form factor investigations from unpolarized measurements. Triggered by the conflicting results, a whole new field studying the influence of two-photon exchange corrections to elastic electron-proton scattering emerged, which appeared as the most likely explanation of the discrepancy. The main part of this thesis deals with theoretical studies of two-photon exchange, which is investigated particularly with regard to form factor measurements in the spacelike as well as in the timelike region. An extraction of the two-photon amplitudes in the spacelike region through a combined analysis using the results of unpolarized cross section measurements and polarization experiments is presented. Furthermore, predictions of the two-photon exchange effects on the e{sup +}p/e{sup -}p cross section ratio are given for several new experiments, which are currently ongoing. The two-photon exchange corrections are also investigated in the timelike region in the process p anti p → e{sup +}e{sup -} by means of two factorization approaches. These corrections are found to be smaller than those obtained for the spacelike scattering process. The influence of the two-photon exchange corrections on

  3. Nucleon electromagnetic structure studies in the spacelike and timelike regions

    International Nuclear Information System (INIS)

    Guttmann, Julia

    2013-01-01

    The thesis investigates the nucleon structure probed by the electromagnetic interaction. One of the most basic observables, reflecting the electromagnetic structure of the nucleon, are the form factors, which have been studied by means of elastic electron-proton scattering with ever increasing precision for several decades. In the timelike region, corresponding with the proton-antiproton annihilation into a electron-positron pair, the present experimental information is much less accurate. However, in the near future high-precision form factor measurements are planned. About 50 years after the first pioneering measurements of the electromagnetic form factors, polarization experiments stirred up the field since the results were found to be in striking contradiction to the findings of previous form factor investigations from unpolarized measurements. Triggered by the conflicting results, a whole new field studying the influence of two-photon exchange corrections to elastic electron-proton scattering emerged, which appeared as the most likely explanation of the discrepancy. The main part of this thesis deals with theoretical studies of two-photon exchange, which is investigated particularly with regard to form factor measurements in the spacelike as well as in the timelike region. An extraction of the two-photon amplitudes in the spacelike region through a combined analysis using the results of unpolarized cross section measurements and polarization experiments is presented. Furthermore, predictions of the two-photon exchange effects on the e + p/e - p cross section ratio are given for several new experiments, which are currently ongoing. The two-photon exchange corrections are also investigated in the timelike region in the process p anti p → e + e - by means of two factorization approaches. These corrections are found to be smaller than those obtained for the spacelike scattering process. The influence of the two-photon exchange corrections on cross section

  4. The nucleon- nucleon interaction and symmetries

    Energy Technology Data Exchange (ETDEWEB)

    Van Oers, W T.H.

    1992-11-01

    With the advent of the possibility to study nucleon-nucleon scattering at medium energies, its extension to investigate fundamental symmetries was recognized early on. It was precisely the introduction of rotational invariance, parity conservation, time reversal invariance, and isotopic spin conversation that led to the description of the N - N scattering matrix in terms of five complex amplitudes: one set of five for proton-proton scattering and one set of five for neutron-proton scattering, or alternatively, one set for the isotopic spin state {iota}={omicron} and the other for the isotopic spin state {iota}=1. Clearly, if one or more of the above constraints are removed, there are additional amplitudes that need to be considered. To be meaningful, experiment requires observables that are particularly sensitive to the violation of a conservation law or symmetry principle. During the last decade a series of precision experiments has been performed to measure charge- symmetry breaking in n - p elastic scattering (corresponding to isotopic spin non-conservation), and to measure parity violation in p-p scattering. For a particle-anti-particle system,like the pp or {lambda}{lambda} system one can raise the question of CP violation in a system other than the neutral kaon system may become possible in the near future through pp {yields}{lambda}{lambda} and pp{yields} {identical_to} {identical_to}. A description is given of the ongoing efforts to measure charge symmetry breaking, parity violation and CP violation.(author). 42 refs., 6 figs.

  5. Chiral pion dynamics for spherical nucleon bags

    International Nuclear Information System (INIS)

    Vento, V.; Rho, M.; Nyman, E.M.; Jun, J.H.; Brown, G.E.; CEA Centre d'Etudes Nucleaires de Saclay, 91 - Gif-sur-Yvette

    1980-01-01

    A chirally symmetric quark-bag model for the nucleon is obtained by introducing an explicit, classical, pion field exterior to the bag. The coupling at the bag surface is determined by the requirement of a conserved axial-vector current. The pion field satisfies equations of motion corresponding to the non-linear sigma-model. We study on this paper the simplified case where the bag and the pion field are spherically symmetric. Corrections due to gluon exchange between the quarks are ignored along with other interactions which split the N- and Δ-masses. The equations of motion for the pion field are solved and we find a substantial pion pressure at the bag surface, along with an attractive contribution to the nucleon self-energy. The total energy of the system, bag plus meson cloud, turns out to be approximately Msub(n)c 2 for a wide range of bag radii, from 1.5 fm down to about 0.5 fm. Introduction of a form factor for the pion would extend the range of possible radii to even smaller values. We propose that the bag with the smallest allowed radius be identified with the 'little bag' discussed before. One surprising result of the paper is that as long as one restricts to spherically symmetric bags, restoring chiral symmetry to the bag model makes the axial-vector current coupling constant gsub(A) to be always too large compared with the experimental value for any bag radius, suggesting a deviation from spherical symmetry for the intrinsic bag wave functions of the 'ground-state' hadrons. (orig.)

  6. Critical opalescence of the nuclear pion field: A possible evidence in the M1 (15.11 MeV) form factor of 12C

    International Nuclear Information System (INIS)

    Delorme, J.; Figureau, A.; Giraud, N.

    1980-01-01

    We have computed the nuclear pion field for the transition to the 15.11 MeV (1 + , T = 1) state of 12 C, evaluating the nuclear polarization with a large basis of nucleon- and isobar-hole excitations. The field shows an enhancement (or critical opalescence) in the momentum region beyond 1.5 msub(π) which leads to a substantial increase of the second maximum of the M1 form factor. Agreement with experiment can be obtained if the 12 C nucleus is much closer to the condensation threshold than currently expected. (orig.)

  7. Critical opalescence of the nuclear pion field: a possible evidence in the M1 (15.11 MeV) form factor of 12C

    International Nuclear Information System (INIS)

    Delorme, J.; Ericson, M.; Figureau, A.; Giraud, N.

    1979-07-01

    The nuclear pion field for the transition to the 15.11 MeV (1 + , T= 1) state of 12 C has been computed, evaluating the nuclear polarization with a large basis of nucleon- and isobar-hole excitations. The field shows an enhancement (or critical opalescence) in the momentum region beyond 1.5msub(π) which leads to a substantial increase of the second maximum of the M1 form factor. Agreement with experiment can be obtained if the 12 C nucleus is much closer to the pion condensation threshold than currently expected

  8. Perturbative corrections to B → D form factors in QCD

    Science.gov (United States)

    Wang, Yu-Ming; Wei, Yan-Bing; Shen, Yue-Long; Lü, Cai-Dian

    2017-06-01

    We compute perturbative QCD corrections to B → D form factors at leading power in Λ/ m b , at large hadronic recoil, from the light-cone sum rules (LCSR) with B-meson distribution amplitudes in HQET. QCD factorization for the vacuum-to- B-meson correlation function with an interpolating current for the D-meson is demonstrated explicitly at one loop with the power counting scheme {m}_c˜ O(√{Λ {m}_b}) . The jet functions encoding information of the hard-collinear dynamics in the above-mentioned correlation function are complicated by the appearance of an additional hard-collinear scale m c , compared to the counterparts entering the factorization formula of the vacuum-to- B-meson correction function for the construction of B → π from factors. Inspecting the next-to-leading-logarithmic sum rules for the form factors of B → Dℓν indicates that perturbative corrections to the hard-collinear functions are more profound than that for the hard functions, with the default theory inputs, in the physical kinematic region. We further compute the subleading power correction induced by the three-particle quark-gluon distribution amplitudes of the B-meson at tree level employing the background gluon field approach. The LCSR predictions for the semileptonic B → Dℓν form factors are then extrapolated to the entire kinematic region with the z-series parametrization. Phenomenological implications of our determinations for the form factors f BD +,0 ( q 2) are explored by investigating the (differential) branching fractions and the R( D) ratio of B → Dℓν and by determining the CKM matrix element |V cb | from the total decay rate of B → Dμν μ .

  9. On form factors and correlation functions in twistor space

    International Nuclear Information System (INIS)

    Koster, Laura; Mitev, Vladimir; Staudacher, Matthias; Wilhelm, Matthias

    2017-01-01

    In this paper, we continue our study of form factors and correlation functions of gauge-invariant local composite operators in the twistor-space formulation of N=4 super Yang-Mills theory. Using the vertices for these operators obtained in our recent papers (DOI: 10.1103/PhysRevLett.117.011601; 10.1007/JHEP06(2016)162 ), we show how to calculate the twistor-space diagrams for general N k MHV form factors via the inverse soft limit, in analogy to the amplitude case. For general operators without α-dot indices, we then reexpress the NMHV form factors from the position-twistor calculation in terms of momentum twistors, deriving and expanding on a relation between the two twistor formalisms previously observed in the case of amplitudes. Furthermore, we discuss the calculation of generalized form factors and correlation functions as well as the extension to loop level, in particular providing an argument promised in https://www.doi.org/10.1002/prop.201400085.

  10. Heavy quark form factors at two loops in perturbative QCD

    International Nuclear Information System (INIS)

    Ablinger, J.; Schneider, C.; Behring, A.; Falcioni, G.

    2017-11-01

    We present the results for heavy quark form factors at two-loop order in perturbative QCD for different currents, namely vector, axial-vector, scalar and pseudo-scalar currents, up to second order in the dimensional regularization parameter. We outline the necessary computational details, ultraviolet renormalization and corresponding universal infrared structure.

  11. Generation of truncated recombinant form of tumor necrosis factor ...

    African Journals Online (AJOL)

    7. Original Research Article. Generation of truncated recombinant form of tumor necrosis factor ... as 6×His tagged using E.coli BL21 (DE3) expression system. The protein was ... proapoptotic signaling cascade through TNFR1. [5] which is ...

  12. Pion form factor within QCD instanton vacuum model

    International Nuclear Information System (INIS)

    Dorokhov, A.E.

    1997-01-01

    Instanton induced pion wave function is constructed. It provides an intrinsic k 1 dependence which suppress soft virtual one-gluon exchanges and thus legitimate the perturbative QCD (pQCD) calculations of the pion electromagnetic form factor in the region of momentum transfers above the scale. (author)

  13. Form factors and charge radii in a quantum chromodynamics ...

    Indian Academy of Sciences (India)

    tic form factors and charge radii of D, Ds,B,Bs and Bc mesons in a quantum chromodynamics. (QCD)-inspired ... as pointed out in [12,13], one can expect a similar success here too. .... 0 were large and the formalism failed to account for large ...

  14. Numerical study of the lattice meson form factor

    International Nuclear Information System (INIS)

    Woloshyn, R.M.; Kobos, A.M.

    1986-01-01

    The electric form factor of the pseudo-Goldstone meson (the generic pion) is calculated in quenched lattice quantum chromodynamics with SU(2) color. Charge radii are calculated for different values of the bare-quark mass. The results are in agreement with the physically reasonable expectation that heavier quarks have distributions of smaller radius

  15. Dispersive analysis of the pion transition form factor

    Energy Technology Data Exchange (ETDEWEB)

    Hoferichter, M. [Technische Universitaet Darmstadt, Institut fuer Kernphysik, Darmstadt (Germany); GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, ExtreMe Matter Institute EMMI, Darmstadt (Germany); University of Bern, Albert Einstein Center for Fundamental Physics, Institute for Theoretical Physics, Bern (Switzerland); Kubis, B.; Niecknig, F.; Schneider, S.P. [Universitaet Bonn, Helmholtz-Institut fuer Strahlen- und Kernphysik (Theorie) and Bethe Center for Theoretical Physics, Bonn (Germany); Leupold, S. [Uppsala Universitet, Institutionen foer fysik och astronomi, Box 516, Uppsala (Sweden)

    2014-11-15

    We analyze the pion transition form factor using dispersion theory. We calculate the singly-virtual form factor in the time-like region based on data for the e{sup +}e{sup -} → 3π cross section, generalizing previous studies on ω, φ → 3π decays and γπ → ππ scattering, and verify our result by comparing to e{sup +}e{sup -} → π{sup 0}γ data. We perform the analytic continuation to the space-like region, predicting the poorlyconstrained space-like transition form factor below 1 GeV, and extract the slope of the form factor at vanishing momentum transfer a{sub π} = (30.7 ± 0.6) x 10{sup -3}. We derive the dispersive formalism necessary for the extension of these results to the doubly-virtual case, as required for the pion-pole contribution to hadronic light-by-light scattering in the anomalous magnetic moment of the muon. (orig.)

  16. Measurement of the pion form factor at higher energies

    Energy Technology Data Exchange (ETDEWEB)

    Mack, D.J. [CEBAF, Newport News, VA (United States)

    1994-04-01

    One of the strongest arguments for increasing the nominal CEBAF beam energy to equal or exceed 6 GeV is that one would be able to make quality high Q{sup 2} measurements of the charged pion form factor.

  17. On form factors and correlation functions in twistor space

    Energy Technology Data Exchange (ETDEWEB)

    Koster, Laura [Institut für Mathematik, Institut für Physik und IRIS Adlershof,Humboldt-Universität zu Berlin,Zum Großen Windkanal 6, 12489 Berlin (Germany); Mitev, Vladimir [PRISMA Cluster of Excellence, Institut für Physik, WA THEP,Johannes Gutenberg-Universität Mainz,Staudingerweg 7, 55128 Mainz (Germany); Staudacher, Matthias [Institut für Mathematik, Institut für Physik und IRIS Adlershof,Humboldt-Universität zu Berlin,Zum Großen Windkanal 6, 12489 Berlin (Germany); Wilhelm, Matthias [Niels Bohr Institute, Copenhagen University,Blegdamsvej 17, 2100 Copenhagen Ø (Denmark)

    2017-03-24

    In this paper, we continue our study of form factors and correlation functions of gauge-invariant local composite operators in the twistor-space formulation of N=4 super Yang-Mills theory. Using the vertices for these operators obtained in our recent papers (DOI: 10.1103/PhysRevLett.117.011601; 10.1007/JHEP06(2016)162 ), we show how to calculate the twistor-space diagrams for general N{sup k}MHV form factors via the inverse soft limit, in analogy to the amplitude case. For general operators without α-dot indices, we then reexpress the NMHV form factors from the position-twistor calculation in terms of momentum twistors, deriving and expanding on a relation between the two twistor formalisms previously observed in the case of amplitudes. Furthermore, we discuss the calculation of generalized form factors and correlation functions as well as the extension to loop level, in particular providing an argument promised in https://www.doi.org/10.1002/prop.201400085.

  18. Heavy quark form factors at two loops in perturbative QCD

    Energy Technology Data Exchange (ETDEWEB)

    Ablinger, J.; Schneider, C. [Johannes Kepler Univ., Linz (Austria). Research Inst. for Symbolic Computation (RISC); Behring, A. [RWTH Aachen Univ. (Germany). Inst. fuer Theoretische Teilchenphysik und Kosmologie; Bluemlein, J.; Freitas, A. de; Marquard, P.; Rana, N. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Falcioni, G. [Nikhef, Amsterdam (Netherlands). Theory Group

    2017-11-15

    We present the results for heavy quark form factors at two-loop order in perturbative QCD for different currents, namely vector, axial-vector, scalar and pseudo-scalar currents, up to second order in the dimensional regularization parameter. We outline the necessary computational details, ultraviolet renormalization and corresponding universal infrared structure.

  19. Roy–Steiner-equation analysis of pion–nucleon scattering

    Directory of Open Access Journals (Sweden)

    Meißner U.-G.

    2017-01-01

    Full Text Available Low-energy pion–nucleon scattering is relevant for many areas in nuclear and hadronic physics, ranging from the scalar couplings of the nucleon to the long-range part of two-pion-exchange potentials and three-nucleon forces in Chiral Effective Field Theory. In this talk, we show how the fruitful combination of dispersion-theoretical methods, in particular in the form of Roy–Steiner equations, with modern high-precision data on hadronic atoms allows one to determine the pion–nucleon scattering amplitudes at low energies with unprecedented accuracy. Special attention will be paid to the extraction of the pion–nucleon σ-term, and we discuss in detail the current tension with recent lattice results, as well as the determination of the low-energy constants of chiral perturbation theory.c

  20. Roy-Steiner-equation analysis of pion-nucleon scattering

    Science.gov (United States)

    Meißner, U.-G.; Ruiz de Elvira, J.; Hoferichter, M.; Kubis, B.

    2017-03-01

    Low-energy pion-nucleon scattering is relevant for many areas in nuclear and hadronic physics, ranging from the scalar couplings of the nucleon to the long-range part of two-pion-exchange potentials and three-nucleon forces in Chiral Effective Field Theory. In this talk, we show how the fruitful combination of dispersion-theoretical methods, in particular in the form of Roy-Steiner equations, with modern high-precision data on hadronic atoms allows one to determine the pion-nucleon scattering amplitudes at low energies with unprecedented accuracy. Special attention will be paid to the extraction of the pion-nucleon σ-term, and we discuss in detail the current tension with recent lattice results, as well as the determination of the low-energy constants of chiral perturbation theory.

  1. Measurements of the Electric Form Factor of the Neutron at Q2=0.45 and 1.13 (GeV/c)2

    International Nuclear Information System (INIS)

    Shigeyuki Tajima

    2003-01-01

    Precise measurements of the electric form factor of the neutron, Gn E, over a wide range of the square of the four-momentum transfer, Q2, are important for understanding nucleon and nuclear electromagnetic structure. In the non-relativistic limit, the electric and magnetic form factors are related to the charge and magnetization distribution inside a nucleon, respectively. The measured values of the form factors also serve as an important test for nucleon models. Among the four nucleon form factors, the electric form factor of the neutron, Gn E, is the most difficult one to measure and therefore has been very poorly known especially in the region Q2 > 1 (GeV/c)2 due to the lack of a free neutron target and the small value of Gn E. The Jefferson Laboratory E93-038 collaboration measured the ratio of the electric to magnetic form factor of the neutron, g = Gn E/Gn M, at three acceptance-averaged Q2 values of 0.45, 1.13 and 1.45 (GeV/c)2 using the quasi-elastic 2H(∼e, e0∼n)1H reaction. In our experiment, an electron was scattered quasielastically from a neutron in a liquid-deuterium target, and the electron was detected in an electron spectrometer in coincidence with the neutron which was detected in a neutron polarimeter. The polarimeter was used to analyze the polarization of the recoil neutrons by measuring the np elastic scattering asymmetry. The experiment was performed in Hall-C at Thomas Jefferson National Accelerator Facility during the period from September 2000 to April 2001. The value of g was determined from the measured ratio of the sideways and longitudinal components of the neutron polarization vector. The values for Gn E were computed from our measured values of g = Gn E/Gn M using the Gn M values obtained from a fit to the world data. The E93-038 collaboration reported the first measurements of Gn E using polarization techniques at Q2 greater than 1 (GeV/c)2. Furthermore, our measurements of Gn E at the two higher Q2 values of 1.13 and 1.45 (Ge

  2. Measurement of the electric neutron form factor in the reaction 3vector (He)(vector e,e'n)pp at Q2=1.58 (GeV/c)2

    International Nuclear Information System (INIS)

    Schlimme, Bjoern Soeren

    2012-01-01

    Electromagnetic nucleon form factors are fundamental quantities which are closely related to the electromagnetic structure of the nucleon. The evolution of the electric and magnetic Sachs form factors G E and G M with Q 2 , the negative square of the four momentum transfer in the electromagnetic scattering process, is directly connected with the spatial charge and current distributions in the nucleon by means of a Fourier transform. Therefore precise measurements of the form factors over a wide Q 2 range are essential for a quantitative understanding of the nucleon structure. Owing to the lack of a free neutron target measurements of the neutron form factors prove to be difficult compared to the measurements on the proton. Consequently the available neutron data is less precise, and the measured Q 2 range is smaller. In particular the electric neutron Sachs form factor G n E is difficult to measure; due to the vanishing net charge of the neutron, G n E is small compared to the other nucleon form factors. G n E characterizes the charge distribution of the electrically neutral neutron, hence it is very sensitive to the inner structure of the neutron. In the present work G n E was determined from beam helicity asymmetries in the quasielastic scattering process 3 vector (He)(vector e,e'n)pp at a momentum transfer Q 2 =1.58 (GeV/c) 2 . The measurement took place in Mainz at the electron accelerator facility Mainz Microtron within the A1 collaboration in the summer of 2008. Longitudinally polarized electrons with an energy of 1.508 GeV impinged on a polarized 3 He gas target which served as an effective polarized neutron target. The scattered electrons were detected in coincidence with the recoil neutrons; a magnetic spectrometer was used for the electron detection, the contribution of quasielastic scattering off the protons was restricted through the detection of the neutron via a plastic scintillator matrix. Cross section asymmetries with respect to the electron

  3. Deformed chiral nucleons

    Energy Technology Data Exchange (ETDEWEB)

    Price, C E; Shepard, J R [Colorado Univ., Boulder (USA). Dept. of Physics

    1991-04-18

    We compute properties of the nucleon in a hybrid chiral model based on the linear {sigma}-model with quark degrees of freedom treated explicity. In contrast to previous calculations, we do not use the hedgehog ansatz. Instead we solve self-consistently for a state with well defined spin and isospin projections. We allow this state to be deformed and find that, although d- and g-state admixtures in the predominantly s-state single quark wave functions are not large, they have profound effects on many nucleon properties including magnetic moments and g{sub A}. Our best fit parameters provide excellent agreement with experiment but are much different from those determined in hedgehog calculations. (orig.).

  4. The Factors of Forming the National HR-Management Model

    Directory of Open Access Journals (Sweden)

    Elena P. Kostenko

    2017-12-01

    Full Text Available There are some factors considered in this article, which influence the forming of national HR-management model. The group-forming criterion is the nature of factors, that determine the system of HR-management as a system of corporate culture values, norms and rules of organizational behavior, ways of realization some important managing functions and dominating approaches to make decisions. This article shows that the plurality of combinations in different factors leads to forming the unique HR-management model. The geoclimatic factor influences the principles of the labor organization (orientation primarily on individual or collective forms of labor, attitude to the management experience of other countries, attitude to resources, etc., the distribution of labor resources, the level of labor mobility, and the psychosocial type of employee. Models of man's labor behavior are constituted In the process of historical development. Attention is focused on the formation of a national HR-model, such as the conducted socio-economic policy, the characteristics of the institutional environment, economic goals and priorities of the country's development, the level of development and the nature of the national productive forces and economic structures. Much attention was paid to the analysis of the historically formed value system and labor traditions, which influence the approaches to HR-management. As far as religion influences the model of person’s inclusion in labor, motives of labor behavior, management culture of a certain employee, preferred payment etc., we examined how the main traditional religions (Christianity, Islam, Judaism, Buddhism, Confucianism, Hinduism influence the HR-management system in different countries.

  5. The multidimensional nucleon structure

    Directory of Open Access Journals (Sweden)

    Pasquini Barbara

    2016-01-01

    Full Text Available We discuss different kinds of parton distributions, which allow one to obtain a multidimensional picture of the internal structure of the nucleon. We use the concept of generalized transverse momentum dependent parton distributions and Wigner distributions, which combine the features of transverse-momentum dependent parton distributions and generalized parton distributions. We show examples of these functions within a phenomenological quark model, with focus on the role of the spin-spin and spin-orbit correlations of quarks.

  6. Form factor of some types of toroidal solenoids

    International Nuclear Information System (INIS)

    Koryavko, V.I.; Litvinenko, Yu.A.

    1979-01-01

    Obtained were the type of dependence between consumed power and formed field for toroidal helical-wound solenoids and the expression for the form factor analogous to the Fabry coefficient for cylindrical solenoids. Determined were optimum dimensions of the helical winding of ''forceless'' toroidal solenoids satisfying the condition of the formation of maximum field at minimum consumed power. Investigations also covered some types of conventional toroidal solenoids. Presented in the paper diagrams permitted to chose dimensions of the considered toroidal solenoids according to their consumed power and winding material volume

  7. Nucleonic weighing systems

    International Nuclear Information System (INIS)

    Teller, S.

    1977-01-01

    Nucleonic weighing systems utilize the principle of the absorption or the scattering of nuclear radiation for a contactless measurement of the weight of material per unit length, the loading, of a conveyor. The load signal is processed in an electronic unit with a tachometer signal for the conveyor velocity to indicate the flow rate and the integrated flow of material. The different sources of error in nucleonic weighing using transmitted and forward scattered radiation are discussed, and the design of two nucleonic weighing systems is described. One is a conventional transmission gauge particularly suited for measuring rapid variation in belt loading due to a fast detection and linearizing unit. The other system consists of a forward scattering gauge, particularly suitable for measuring light inhomogeneous materials due to the linear relationship between the weight per unit area and the gauge response. Results from on-line trials with different materials are presented, and experiences from more than one year of operation for a batch weighing system for quick lime and a continuous weighing system for mineral wool are reported. (author)

  8. Determination of the Pion Charge Form Factor at Q2=1.60 and 2.45 (GeV/c)2

    International Nuclear Information System (INIS)

    Horn, T.; Beise, E. J.; Breuer, H.; Chang, C. C.; King, P. M.; Liu, J.; Roos, P. G.; Aniol, K.; Margaziotis, D. J.; Arrington, J.; Holt, R. J.; Potterveld, D.; Reimer, P.; Zheng, X.; Barrett, B.; Sarty, A.; Blok, H. P.; Tvaskis, V.; Boeglin, W.; Markowitz, P.

    2006-01-01

    The 1 H(e,e ' π + )n cross section was measured at four-momentum transfers of Q 2 =1.60 and 2.45 GeV 2 at an invariant mass of the photon nucleon system of W=2.22 GeV. The charged pion form factor (F π ) was extracted from the data by comparing the separated longitudinal pion electroproduction cross section to a Regge model prediction in which F π is a free parameter. The results indicate that the pion form factor deviates from the charge-radius constrained monopole form at these values of Q 2 by one sigma, but is still far from its perturbative quantum chromodynamics prediction

  9. Quark bags, P-matrix and nucleon-nucleon scattering

    International Nuclear Information System (INIS)

    Narodetskij, I.M.

    1984-01-01

    This paper is an extended version of the talk given at IX European Conference on Few Body Problems in Physics, Tbilisi, 1984. It reviews recent developments of the quark compound bag (QCB) model including explicit examples of the QCB nucleon-nucleon potentials, description of the deuteron properties, calculation of the six quark admixture in the deuteron and applications to the three-nucleon system

  10. Measurement of weak meson form factors in spacelike regions

    CERN Document Server

    Brene, N

    1973-01-01

    With the construction of high energy, high intensity accelerators (NAL & CERN, SPS) investigation of neutrino scattering on virtual pions, a la Chew-Low, becomes experimentally possible. The process nu +N to mu /sup -/+K+ Delta is analysed to extract the usual K/sub l3/ form factor(s) for spacelike momentum transfer. A model calculation suggests that f/sub +/(T) can be determined reasonably well from a triple differential cross section, whereas only rough information on f /sub -/(T) may be obtained from the transverse polarization of the muon. The experiment proposed requires scanning of several millions of bubble chamber pictures. (14 refs).

  11. Electromagnetic form factors and vertex constants for 6Li

    International Nuclear Information System (INIS)

    Blokhintsev, L.D.; Shvarts, I.A.

    1977-01-01

    It has been assumed that the main contribution to the rapidly changing part of the charge form factor of 6 Li provides the amplitude of the triangle diagram containing virtual lines of deuteron and α particle. The vertex constant G 2 for the 6 Li→α+d decay is expressed through the nuclear charge radii for 6 Li, d, and α. Taking into account coulomb interaction in the vertex of the 6 Li→α+d reaction increases G 2 by about a factor of two. The account of virtuality of a deuteron cluster also leads to an increase in G 2

  12. Revisiting the pion's scalar form factor in chiral perturbation theory

    CERN Document Server

    Juttner, Andreas

    2012-01-01

    The quark-connected and the quark-disconnected Wick contractions contributing to the pion's scalar form factor are computed in the two and in the three flavour chiral effective theory at next-to-leading order. While the quark-disconnected contribution to the form factor itself turns out to be power-counting suppressed its contribution to the scalar radius is of the same order of magnitude as the one of the quark-connected contribution. This result underlines that neglecting quark-disconnected contributions in simulations of lattice QCD can cause significant systematic effects. The technique used to derive these predictions can be applied to a large class of observables relevant for QCD-phenomenology.

  13. SU(3) breaking in hyperon transition vector form factors

    International Nuclear Information System (INIS)

    Shanahan, P.E.; Thomas, A.W.; Young, R.D.; Zanotti, J.M.; Rakow, P.E.L.

    2015-08-01

    We present a calculation of the SU(3)-breaking corrections to the hyperon transition vector form factors to O(p 4 ) in heavy baryon chiral perturbation theory with finite-range regularisation. Both octet and decuplet degrees of freedom are included. We formulate a chiral expansion at the kinematic point Q 2 =-(M B 1 -M B 2 ) 2 , which can be conveniently accessed in lattice QCD. The two unknown low-energy constants at this point are constrained by lattice QCD simulation results for the Σ - →n and Ξ 0 →Σ + transition form factors. Hence we determine lattice-informed values of f 1 at the physical point. This work constitutes progress towards the precise determination of vertical stroke V us vertical stroke from hyperon semileptonic decays.

  14. Sine-Gordon breather form factors and quantum field equations

    International Nuclear Information System (INIS)

    Babujian, H; Karowski, M

    2002-01-01

    Using the results of previous investigations on sine-Gordon form factors, exact expressions of all breather matrix elements are obtained for several operators: all powers of the fundamental Bose field, general exponentials of it, the energy-momentum tensor and all higher currents. Formulae for the asymptotic behaviour of bosonic form factors are presented which are motivated by Weinberg's power counting theorem in perturbation theory. It is found that the quantum sine-Gordon field equation holds, and an exact relation between the 'bare' mass and the renormalized mass is obtained. Also a quantum version of a classical relation for the trace of the energy-momentum is proved. The eigenvalue problem for all higher conserved charges is solved. All results are compared with perturbative Feynman graph expansions and full agreement is found

  15. Nucleon-nucleon momentum correlation function for light nuclei

    International Nuclear Information System (INIS)

    Ma, Y.G.; Cai, X.Z.; Chen, J.G.; Fang, D.Q.; Guo, W.; Liu, G.H.; Ma, C.W.; Ma, E.J.; Shen, W.Q.; Shi, Y.; Su, Q.M.; Tian, W.D.; Wang, H.W.; Wang, K.; Wei, Y.B.; Yan, T.Z.

    2007-01-01

    Nucleon-nucleon momentum correlation function have been presented for nuclear reactions with neutron-rich or proton-rich projectiles using a nuclear transport theory, namely Isospin-Dependent Quantum Molecular Dynamics model. The relationship between the binding energy of projectiles and the strength of proton-neutron correlation function at small relative momentum has been explored, while proton-proton correlation function shows its sensitivity to the proton density distribution. Those results show that nucleon-nucleon correlation function is useful to reflect some features of the neutron- or proton-halo nuclei and therefore provide a potential tool for the studies of radioactive beam physics

  16. Coupled channels Marchenko inversion for nucleon-nucleon potentials

    International Nuclear Information System (INIS)

    Kohlhoff, H.; Geramb, H.V. von

    1994-01-01

    Marchenko inversion is used to determine local energy independent but channel dependent potential matrices from optimum sets of experimental phase shifts. 3 SD 1 and 3 PF 2 channels of nucleon-nucleon systems contain in their off-diagonal potential matrices explicitly the tensor force for T = 0 and 1 isospin. We obtain, together with single channels, complete sets of quantitative nucleon-nucleon potential results which are ready for application in nuclear structure and reaction analyses. The historic coupled channels inversion result of Newton and Fulton is revisited. (orig.)

  17. Semi-phenomenological model of the nucleon-nucleon interaction

    International Nuclear Information System (INIS)

    Houriet, A.; Bagnoud, Y.

    1977-01-01

    A nucleon with isobars is used to elaborate a model of the nucleon-nucleon interaction at low energy (Esub(CM) 2 sub(r), the pion-nucleon renormalized coupling constant. The model establishes a very good coordination for deuteron and p-p scattering-polarization measurements ( 1 K 0 , 1 D 2 , 1 G 4 phase shifts), and permits the determination of f 2 sub(r) for every independent experimental value. For 21 such values, the mean value 2 sub(r)>=0.0785 with Δf 2 sub(r)=0.0024(3%) is obtained. (Auth.)

  18. Generation of truncated recombinant form of tumor necrosis factor ...

    African Journals Online (AJOL)

    Purpose: To produce truncated recombinant form of tumor necrosis factor receptor 1 (TNFR1), cysteine-rich domain 2 (CRD2) and CRD3 regions of the receptor were generated using pET28a and E. coli/BL21. Methods: DNA coding sequence of CRD2 and CRD3 was cloned into pET28a vector and the corresponding ...

  19. Coverlayer fabrication for small form factor optical disks

    Science.gov (United States)

    Kim, Jong-Hwan; Lee, Seung-Won; Kim, Jin-Hong

    2004-09-01

    Two different coverlayers made of UV resin and coversheet were prepared for small form factor optical disks. Thin coverlayer of 10 mm and thick coverlayer of 80 mm were fabricated for flying optical head and non-flying optical head, respectively. Thickness uniformity was analyzed for both coverlayers, and new designs to diminish a ski-jump phenomenon were suggested. Mechanical properties of protective film made of UV resin were investigated.

  20. Stackable Form-Factor Peripheral Component Interconnect Device and Assembly

    Science.gov (United States)

    Somervill, Kevin M. (Inventor); Ng, Tak-kwong (Inventor); Torres-Pomales, Wilfredo (Inventor); Malekpour, Mahyar R. (Inventor)

    2013-01-01

    A stackable form-factor Peripheral Component Interconnect (PCI) device can be configured as a host controller or a master/target for use on a PCI assembly. PCI device may comprise a multiple-input switch coupled to a PCI bus, a multiplexor coupled to the switch, and a reconfigurable device coupled to one of the switch and multiplexor. The PCI device is configured to support functionality from power-up, and either control function or add-in card function.

  1. QCD constraints for the electromagnetic form factor of the pion

    International Nuclear Information System (INIS)

    Machet, B.

    1980-07-01

    Using the modulus representation, we derive constraints for the behaviour of the electromagnetic form factor of the pion in the time like region [1 GeV 2 , + infinity[, from information given by perturbative QCD in the space like region [-μ 2 , - infinity[. A phenomenological μ dependent upper bound for the exponent of the first non leading logarithmic correction is deduced. Restrictions and problems of the method are discussed

  2. Strong CP violation and the neutron electric dipole form factor

    International Nuclear Information System (INIS)

    Kuckei, J.; Dib, C.; Faessler, A.; Gutsche, T.; Kovalenko, S. G.; Lyubovitskij, V. E.; Pumsa-ard, K.

    2007-01-01

    We calculate the neutron electric dipole form factor induced by the CP-violating θ term of QCD within a perturbative chiral quark model which includes pion and kaon clouds. On this basis, we derive the neutron electric dipole moment and the electron-neutron Schiff moment. From the existing experimental upper limits on the neutron electric dipole moment, we extract constraints on the θ parameter and compare our results with other approaches

  3. Massive three-loop form factor in the planar limit

    Energy Technology Data Exchange (ETDEWEB)

    Henn, Johannes [PRISMA Cluster of Excellence, Johannes Gutenberg University,Staudingerweg 9, 55099 Mainz (Germany); Smirnov, Alexander V. [Research Computing Center, Moscow State University,119991 Moscow (Russian Federation); Smirnov, Vladimir A. [Skobeltsyn Institute of Nuclear Physics of Moscow State University,119991 Moscow (Russian Federation); Institut für Theoretische Teilchenphysik, Karlsruhe Institute of Technology (KIT),Wolfgang-Gaede Straße 1, 76128 Karlsruhe (Germany); Steinhauser, Matthias [Institut für Theoretische Teilchenphysik, Karlsruhe Institute of Technology (KIT),Wolfgang-Gaede Straße 1, 76128 Karlsruhe (Germany)

    2017-01-17

    We compute the three-loop QCD corrections to the massive quark-anti-quark-photon form factors F{sub 1} and F{sub 2} in the large-N{sub c} limit. The analytic results are expressed in terms of Goncharov polylogarithms. This allows for a straightforward numerical evaluation. We also derive series expansions, including power suppressed terms, for three kinematic regions corresponding to small and large invariant masses of the photon momentum, and small velocities of the heavy quarks.

  4. Microscopic nucleon spectral function for finite nuclei featuring two- and three-nucleon short-range correlations: The model versus ab initio calculations for three-nucleon systems

    Science.gov (United States)

    Ciofi degli Atti, Claudio; Mezzetti, Chiara Benedetta; Morita, Hiko

    2017-04-01

    Background: Two-nucleon (2 N ) short-range correlations (SRC) in nuclei have been recently thoroughly investigated, both theoretically and experimentally and the study of three-nucleon (3 N ) SRC, which could provide important information on short-range hadronic structure, is underway. Novel theoretical ideas concerning 2 N and 3 N SRC are put forward in the present paper. Purpose: The general features of a microscopic one-nucleon spectral function which includes the effects of both 2 N and 3 N SRC and its comparison with ab initio spectral functions of the three-nucleon systems are illustrated. Methods: A microscopic and parameter-free one-nucleon spectral function expressed in terms of a convolution integral involving ab initio relative and center-of-mass (c.m.) momentum distributions of a 2 N pair and aimed at describing two- and three-nucleon short-range correlations, is obtained by using: (i) the two-nucleon momentum distributions obtained within ab initio approaches based upon nucleon-nucleon interactions of the Argonne family; (ii) the exact relation between one- and two-nucleon momentum distributions; (iii) the fundamental property of factorization of the nuclear wave function at short internucleon ranges. Results: The comparison between the ab initio spectral function of 3He and the one based upon the convolution integral shows that when the latter contains only two-nucleon short-range correlations the removal energy location of the peaks and the region around them exhibited by the ab initio spectral function are correctly predicted, unlike the case of the high and low removal energy tails; the inclusion of the effects of three-nucleon correlations brings the convolution model spectral function in much better agreement with the ab initio one; it is also found that whereas the three-nucleon short-range correlations dominate the high energy removal energy tail of the spectral function, their effects on the one-nucleon momentum distribution are almost one

  5. Helicity non-conserving form factor of the proton

    Energy Technology Data Exchange (ETDEWEB)

    Voutier, E.; Furget, C.; Knox, S. [Universite Joseph Fourier, Grenoble (France)] [and others

    1994-04-01

    The study of the hadron structure in the high Q{sup 2} range contributes to the understanding of the mechanisms responsible for the confinement of quarks and gluons. Among the numerous experimental candidates sensitive to these mechanisms, the helicity non-conserving form factor of the proton is a privileged observable since it is controlled by non-perturbative effects. The authors investigate here the feasibility of high Q{sup 2} measurements of this form factor by means of the recoil polarization method in the context of the CEBAF 8 GeV facility. For that purpose, they discuss the development of a high energy proton polarimeter, based on the H({rvec p},pp) elastic scattering, to be placed at the focal plane of a new hadron spectrometer. It is shown that this experimental method significantly improves the knowledge of the helicity non-conserving form factor of the proton up to 10 GeV{sup 2}/c{sup 2}.

  6. Meson Transition Form Factors in Light-Front Holographic QCD

    Energy Technology Data Exchange (ETDEWEB)

    Brodsky, Stanley J.; /SLAC; Cao, Fu-Guang; /Massey U.; de Teramond, Guy F.; /Costa Rica U.

    2011-06-22

    We study the photon-to-meson transition form factors (TFFs) F{sub M{gamma}}(Q{sup 2}) for {gamma}{gamma}* {yields} M using light-front holographic methods. The Chern-Simons action, which is a natural form in 5-dimensional anti-de Sitter (AdS) space, leads directly to an expression for the photon-to-pion TFF for a class of confining models. Remarkably, the predicted pion TFF is identical to the leading order QCD result where the distribution amplitude has asymptotic form. The Chern-Simons form is local in AdS space and is thus somewhat limited in its predictability. It only retains the q{bar q} component of the pion wavefunction, and further, it projects out only the asymptotic form of the meson distribution amplitude. It is found that in order to describe simultaneously the decay process {pi}{sup 0} {yields} {gamma}{gamma} and the pion TFF at the asymptotic limit, a probability for the q{bar q} component of the pion wavefunction P{sub q{bar q}} = 0.5 is required; thus giving indication that the contributions from higher Fock states in the pion light-front wavefunction need to be included in the analysis. The probability for the Fock state containing four quarks (anti-quarks) which follows from analyzing the hadron matrix elements, P{sub q{bar q}q{bar q}} {approx} 10%, agrees with the analysis of the pion elastic form factor using light-front holography including higher Fock components in the pion wavefunction. The results for the TFFs for the {eta} and {eta}{prime} mesons are also presented. The rapid growth of the pion TFF exhibited by the BABAR data at high Q{sup 2} is not compatible with the models discussed in this article, whereas the theoretical calculations are in agreement with the experimental data for the {eta} and {eta}{prime} TFFs.

  7. Technical data on nucleonic gauges

    International Nuclear Information System (INIS)

    2005-07-01

    This nucleonic gauge manual and directory provides a reference database of nucleonic control systems available to potential users in the fields of exploration, exploitation and processing of natural resources and in the manufacturing industries. It starts with background information an the general principals of nucleonic gauges, followed by portable nuclear analysis systems (PNAS), computer tomography, cost-benefit on NCS (Nucleonic Control Systems) applications and trends and transfer of NCS technology. It continues with radiation protection and safety, discusses nucleonic gauges with low radioactivity sources and ends with typical models of nucleonic gauges. The basic principles of the most popular techniques are reviewed and reference data links to suppliers are provided. Information sheets on many typical commercial devices are also included. It will help end-users to select the most suitable alternative to solve a particular problem or to measure a certain parameter in a specific process

  8. Nucleon resonance electroproduction at high momentum transers: Results from SLAC and suggestions for CEBAF

    Energy Technology Data Exchange (ETDEWEB)

    Keppel, C. [Virginia Union Univ., Richmond, VA (United States)

    1994-04-01

    Nucleon resonance electroproduction results from SLAC Experiment E14OX are presented. A CEBAF facility with doubled energy would enable similar high momentum transfer measurements to be made with greater accuracy. Of particular interest are the Delta P{sub 33}(1232) resonance form factor and R = {sigma}{sub L}/{sigma}{sub T}, the ratio of the longitudinal and transverse components of the cross section. A suggestion is made to study these quantities in conjunction with Bloom-Gilman duality.

  9. Neutron charge radius and the neutron electric form factor

    International Nuclear Information System (INIS)

    Gentile, T. R.; Crawford, C. B.

    2011-01-01

    For nearly forty years, the Galster parametrization has been employed to fit existing data for the neutron electric form factor, G E n , vs the square of the four-momentum transfer, Q 2 . Typically this parametrization is constrained to be consistent with experimental data for the neutron charge radius. However, we find that the Galster form does not have sufficient freedom to accommodate reasonable values of the radius without constraining or compromising the fit. In addition, the G E n data are now at sufficient precision to motivate a two-parameter fit (or three parameters if we include thermal neutron data). Here we present a modified form of a two-dipole parametrization that allows this freedom and fits both G E n (including recent data at both low and high four-momentum transfer) and the charge radius well with simple, well-defined parameters. Analysis reveals that the Galster form is essentially a two-parameter approximation to the two-dipole form but becomes degenerate if we try to extend it naturally to three parameters.

  10. Strangeness in the nucleon on the light-cone

    International Nuclear Information System (INIS)

    Malheiro, Manuel; Melnitchouk, Wally

    1999-01-01

    Strange matrix elements of the nucleon are calculated within the light-cone formulation of the meson cloud model. The Q 2 dependence of the strange vector form factors is computed, and the strangeness radius and magnetic moment extracted, both of which are found to be very small. The strange magnetic moment μ S is seen to change sign once the spurious form factors arising from the violation of rotational invariance are subtracted. The resulting μ S is small and slightly positive, in agreement with the trend of the recent data from the SAMPLE experiment. Within the same framework one finds a small but non-zero excess of the antistrange distribution over the strange at large x. (author)

  11. Relativistic form factors for clusters with nonrelativistic wave functions

    International Nuclear Information System (INIS)

    Mitra, A.N.; Kumari, I.

    1977-01-01

    Using a simple variant of an argument employed by Licht and Pagnamenta (LP) on the effect of Lorentz contraction on the elastic form factors of clusters with nonrelativistic wave functions, it is shown how their result can be generalized to inelastic form factors so as to produce (i) a symmetrical appearance of Lorentz contraction effects in the initial and final states, and (ii) asymptotic behavior in accord with dimensional scaling theories. A comparison of this result with a closely analogous parametric form obtained by Brodsky and Chertok from a propagator chain model leads, with plausible arguments, to the conclusion of an effective mass M for the cluster, with M 2 varying as the number n of the quark constituents, instead of as n 2 . A further generalization of the LP formula is obtained for an arbitrary duality-diagram vertex, again with asymptotic behavior in conformity with dimensional scaling. The practical usefulness of this approach is emphasized as a complementary tool to those of high-energy physics for phenomenological fits to data up to moderate values of q 2

  12. Model of homogeneous nucleus. Total and inelastic cross sections of nucleon-nucleus scattering

    International Nuclear Information System (INIS)

    Ponomarev, L.A.; Smorodinskaya, N.Ya.

    1985-01-01

    It is shown that the nucleon-nuckleus scattering amplitude at high energy can be easily calculated by generalization of the nucleon-nucleon scattering amplitude and satisfies a simple factorization relation. As distinct from the Glauber model, the suggested approach makes no use of the nucleonic structure of the nucleus and the hadron-nucleus scattering amplitude is not expressed in terms of hadron-nucleon scattering amplitudes. The energy dependence of total and inelastic cross sections is successfully described for a number of nuclei

  13. Forms and factors of peer violence and victimisation

    Directory of Open Access Journals (Sweden)

    Dinić Bojana

    2014-01-01

    Full Text Available The main aim of this study was to explore the latent structure of violence and victimisation based on the factor analysis of the Peer Violence and Victimisation Questionnaire (PVVQ, as well as to examine the correlates of violence and victimisation. The sample included 649 secondary school students (61.8% male from the urban area. Besides the PVVQ, the Aggressiveness questionnaire AVDH was administered. Based on parallel analysis, three factors were extracted in the violence domain, as well as in the victimisation domain of the PVVQ. The factors were interpreted as a physical, verbal and relational form of violence and victimisation, which is in line with common classifications. The correlations of those forms with the aggressiveness dimensions were positive. The relationships with gender, school grade and school achievement referred to the importance of interaction effects between the mentioned characteristics of students and the tendency towards violence or being exposed to it. The main result is that boys from lower school grades and students with lower school achievement in general, are more prone to manifesting physical violence and more often are the target of physical violence. These groups of students are the target groups for preventive programs. The resulting effects indicated the complexity of the violence phenomenon and pointed to the need to consider the wider context of student’s characteristics in the determination of violence. [Projekat Ministarstva nauke Republike Srbije, br. 179037 i br. 179053

  14. Chiral symmetry and the nucleon--nucleon interaction

    International Nuclear Information System (INIS)

    Brown, G.E.

    1977-01-01

    The nucleon--nucleon interaction is understood in terms of a dynamic model, the sigma model. The anti NN → ππ helicity amplitudes are assumed to be physical data, and the dynamical model must reproduce these data, more or less. 14 references

  15. Solitary wave exchange potential and nucleon-nucleon interaction

    International Nuclear Information System (INIS)

    Prema, K.; Raghavan, S.S.; Sekhar Raghavan

    1986-11-01

    Nucleon-nucleon interaction is studied using a phenomenological potential model called solitary wave exchange potential model. It is shown that this simple model reproduces the singlet and triplet scattering data and the deuteron parameters reasonably well. (author). 6 refs, 2 figs, 1 tab

  16. Doorway-resonance model for pion-nucleon D- and F-wave scattering

    International Nuclear Information System (INIS)

    Ernst, D.J.; Parnell, G.E.; Assad, C.; Texas A and M Univ., College Station, TX

    1990-01-01

    A model for the resonant pion-nucleon D- and F-waves is developed which assumes that the pion-plus-nucleon couples to a resonance and that the resonance can serve as a doorway to the inelastic channels. With the use of simple form factors, the model is capable of reproducing the pion-nucleon phase shifts up to an energy of T π =1.4 GeV if the coupling of the elastic channel to the inelastic channels is taken from data as input into the model. A value for the mass of the resonance that would result in the absence of the coupling to decay channels is extracted from the data utilizing the model. This is the mass that is most easily modeled by bag models. For the non-resonant D- and F-wave channels a separable potential model is used. This model, like the resonance model, is developed utilizing the invariant amplitude which is free of kinematic singularities and uses invariant norms and phase spaces. The model is also applied to the S-wave channels. A relation between the resonance model and the Chew-Low model is discovered and used to derive an extended Chew-Low model which is applied to the P 13 , P 31 and P 33 channels. Implications of the model for understanding the range of the pion-nucleon interaction and the dynamic structure of the interaction are presented. (orig.)

  17. Study of the baryon-baryon interaction in nucleon-nucleon and pion-deuteron scattering

    International Nuclear Information System (INIS)

    Fuchs, M.

    1993-01-01

    After the definition of the Hamiltonian in general form by meson production and absorption the transition to operators pursued, which connect only spaces with definite meson numbers. In this approximation first the self-energy of a single baryon was calculated in its full energy and momentum dependence. Then the formal expressions for the T matrices of nucleon-nucleon and pion-deuteron scattering were derived. The essential components of these expressions are the baryon-baryon T matrix ant transition amplitudes from pion-deuteron channels to baryon-baryon states. The central chapter dealt with the calculation of the baryon-baryon interaction for the general form of the vertices, with the solution of the binding problem and the baryon-baryon T matrix. Finally followed the results on the nucleon-nucleon and pion-deuteron scattering. For this first the transition amplitudes from pion-deuteron states to intermediate baryon-baryon states and the Born graphs of the pion-deuteron scattering had to be calculated. After some remarks to the transition from partial-wave decomposed T matrices to scattering observables an extensive representation of the total, partial, and differential cross sections and a series of spin observables (analyzing powers and spin correlations) for the elastic proton-proton, neutron-proton, and pion-deuteron scattering as well for the fusion reaction pp→πd and the breakup reaction πd→pp follows. Thereby the energies reached from the nucleon-nucleon respectively pion-deuteron threshold up to 100 MeV above the delta resonance

  18. Baryon octet electromagnetic form factors in a confining NJL model

    Directory of Open Access Journals (Sweden)

    Manuel E. Carrillo-Serrano

    2016-08-01

    Full Text Available Electromagnetic form factors of the baryon octet are studied using a Nambu–Jona-Lasinio model which utilizes the proper-time regularization scheme to simulate aspects of colour confinement. In addition, the model also incorporates corrections to the dressed quarks from vector meson correlations in the t-channel and the pion cloud. Comparison with recent chiral extrapolations of lattice QCD results shows a remarkable level of consistency. For the charge radii we find the surprising result that rEp

  19. CEBAF at higher energies and the kaon electromagnetic form factor

    Energy Technology Data Exchange (ETDEWEB)

    Baker, O.K.

    1994-04-01

    The electromagnetic production of strangeness, the physics of exciting systems having strangeness degrees of freedom (production of hadrons with one or more strange constituent quarks) using electromagnetic probes (real or virtual photons), is one of the frontier areas of research which will be investigated at the Continuous Electron Beam Accelerator Facility (CEBAF) when it becomes operational. CEBAF is expected to have an important impact upon this field of research using its specialized set of detection instruments and high quality electron beam. This paper focusses upon one aspect of the associated production of strangeness - the determination of the kaon electromagnetic form factor at high squared momentum transfers.

  20. Isospin breaking in the pion-nucleon coupling constant and the nucleon-nucleon scattering length

    Directory of Open Access Journals (Sweden)

    V. A. Babenko

    2016-08-01

    Full Text Available Charge independence breaking (CIB in the pion-nucleon coupling constant and the nucleon-nucleon scattering length is considered on the basis of the Yukawa meson theory. CIB effect in these quantities is almost entirely explained by the mass difference between the charged and the neutral pions. Therewith charge splitting of the pion-nucleon coupling constant is almost the same as charge splitting of the pion mass. Calculated difference between the proton-proton and the neutron-proton scattering length in this case comprises ∼90% of the experimental value.

  1. High Precision Measurement of the Proton Elastic Form Factor Ratio at Low Q2

    Energy Technology Data Exchange (ETDEWEB)

    Zhan, Xiaohui [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2010-01-01

    Experiment E08-007 measured the proton elastic form factor ratio μpGE/GM in the range of Q2 = 0.3-0.7(GeV/c)2 by recoil polarimetry. Data were taken in 2008 at the Thomas Jefferson National Accelerator Facility in Virginia, USA. A 1.2 GeV polarized electron beam was scattered off a cryogenic hydrogen target. The recoil proton was detected in the left HRS in coincidence with the elasticly scattered electrons tagged by the BigBite spectrometer. The proton polarization was measured by the focal plane polarimeter (FPP). In this low Q2 region, previous measurement from Jefferson Lab Hall A (LEDEX) along with various fits and calculations indicate substantial deviations of the ratio from unity. For this new measurement, the proposed statistical uncertainty (< 1%) was achieved. These new results are a few percent lower than expected from previous world data and fits, which indicate a smaller GEp at this region. Beyond the intrinsic interest in nucleon structure, the new results also have implications in determining the proton Zemach radius and the strangeness form factors from parity violation experiments.

  2. Effective nucleon-nucleon t matrix in the (p,2p) reaction

    International Nuclear Information System (INIS)

    Kudo, Y.; Kanayama, N.; Wakasugi, T.

    1989-01-01

    The cross sections and the analyzing powers for the /sup 40/Ca(p-arrow-right,2p) reactions at E/sub p/ = 76.1, 101.3, and 200 MeV are calculated in the distorted-wave impulse approximation using the Love-Franey effective nucleon-nucleon interaction. It is shown that the calculated individual contributions of the central, spin-orbit, and tensor parts in the Love-Franey interaction to the cross sections and the analyzing powers strongly depend on the incident proton energies. The spectroscopic factors extracted are consistent with the other reaction studies

  3. Pion-nucleon scattering: from chiral perturbation theory to Roy-Steiner equations

    Science.gov (United States)

    Kubis, Bastian; Hoferichter, Martin; de Elvira, Jacobo Ruiz; Meißner, Ulf-G.

    2016-11-01

    Ever since Weinberg's seminal predictions of the pion-nucleon scattering amplitudes at threshold, this process has been of central interest for the study of chiral dynamics involving nucleons. The scattering lengths or the pion-nucleon σ-term are fundamental quantities characterizing the explicit breaking of chiral symmetry by means of the light quark masses. On the other hand, pion-nucleon dynamics also strongly affects the long-range part of nucleon-nucleon potentials, and hence has a far-reaching impact on nuclear physics. We discuss the fruitful combination of dispersion-theoretical methods, in the form of Roy-Steiner equations, with chiral dynamics to determine pion-nucleon scattering amplitudes at low energies with high precision.*

  4. The two-nucleon system above pion threshold

    International Nuclear Information System (INIS)

    Poepping, H.; Sauer, P.U.; Zhang Xizhen

    1987-01-01

    A force model is presented for the description of the two-nucleon system below and above pion threshold and its coupled inelastic channels with one pion. It uses Δ-isobar and pion degrees of freedom in addition to the nucleonic one. The force model is based on a hamiltonian approach within the framework of noncovariant quantum mechanics. It extends the traditional approach with purely nucleonic potentials in isospin-triplet partial waves. It is constructed to remain valid up to 500 MeV c.m. energy. The characteristics of the force model is its mechanism for pion production and pion absorption which is mediated by the Δ-isobar. Even without any fit of phenomenological parameters the force model is able to account for the experimental data of elastic nucleon-nucleon scattering' of the inelastic reactions pp ↔ π + d and of elastic pion-deuteron scattering with satisfactory accuracy. No need for the introduction of dibaryon degrees of freedom has been found yet. The force model is a realistic one in the two-nucleon system. In many-nucleon systems it forms the unifying basis for a microscopic description of nuclear structure and nuclear reactions at low and intermediate energies. (orig.)

  5. Roy-Steiner equations for pion-nucleon scattering

    Science.gov (United States)

    Ditsche, C.; Hoferichter, M.; Kubis, B.; Meißner, U.-G.

    2012-06-01

    Starting from hyperbolic dispersion relations, we derive a closed system of Roy-Steiner equations for pion-nucleon scattering that respects analyticity, unitarity, and crossing symmetry. We work out analytically all kernel functions and unitarity relations required for the lowest partial waves. In order to suppress the dependence on the high energy regime we also consider once- and twice-subtracted versions of the equations, where we identify the subtraction constants with subthreshold parameters. Assuming Mandelstam analyticity we determine the maximal range of validity of these equations. As a first step towards the solution of the full system we cast the equations for the π π to overline N N partial waves into the form of a Muskhelishvili-Omnès problem with finite matching point, which we solve numerically in the single-channel approximation. We investigate in detail the role of individual contributions to our solutions and discuss some consequences for the spectral functions of the nucleon electromagnetic form factors.

  6. Nucleon Resonance Physics

    Energy Technology Data Exchange (ETDEWEB)

    Burkert, Volker D.

    2016-07-25

    Recent results of meson photo-production at the existing electron machines with polarized real photon beams and the measurement of polarization observables of the final state baryons have provided high precision data that led to the discovery of new excited nucleon and $\\Delta$ states using multi-channel partial wave analyses procedures. The internal structure of several prominent excited states has been revealed employing meson electroproduction processes. On the theoretical front, lattice QCD is now predicting the baryon spectrum with very similar characteristics as the constituent quark model, and continuum QCD, such as is represented in the Dyson-Schwinger Equations approach and in light front relativistic quark models, describes the non-perturbative behavior of resonance excitations at photon virtuality of $Q^2 > 1.5GeV^2$. In this talk I discuss the need to continue a vigorous program of nucleon spectroscopy and the study of the internal structure of excited states as a way to reveal the effective degrees of freedom underlying the excited states and their dependence on the distance scale probed.

  7. Nucleon-antinucleon interaction

    International Nuclear Information System (INIS)

    Dover, C.B.

    1983-01-01

    The current status of our understanding of the low energy nucleon-antinucleon (N anti N) interaction is reviewed. We compare several phenomenological models which fit the available N anti N cross section data. The more realistic of these models employ an annihilation potential W(r) which is spin, isospin and energy dependent. The microscopic origins for these dependences are discussed in terms of quark rearrangement and annihilation processes. It is argued that the study of N anti N annihilation offers a powerful means of studying quark dynamics at short distances. We also discuss how one may try to isolate coherent meson exchange contributions to the medium and long range part of the N anti N potential. These pieces of the N anti N interaction are calculable via the G-parity transformation from a model for the NN potential; their effects are predicted to be seen in N anti N spin observables, to be measured at LEAR. The possible existence of quasi-stable bound states or resonances of the anti N plus one or more nucleons is discussed, with emphasis on few-body systems. 42 references

  8. The pion form factor within the hidden local symmetry model

    International Nuclear Information System (INIS)

    Benayoun, M.; David, P.; DelBuono, L.; Leruste, P.; O'Connell, H.B.

    2003-01-01

    We analyze a pion form factor formulation which fulfills the Analyticity requirement within the Hidden Local Symmetry (HLS) Model. This implies an s-dependent dressing of the ρ-γ VMD coupling and an account of several coupled channels. The corresponding function F π (s) provides nice fits of the pion form factor data from s=-0.25 to s=1 GeV 2 . It is shown that the coupling to KK has little effect, while ωπ 0 improves significantly the fit probability below the φ mass. No need for additional states like ρ(1450) shows up in this invariant-mass range. All parameters, except for the subtraction polynomial coefficients, are fixed from the rest of the HLS phenomenology. The fits show consistency with the expected behaviour of F π (s) at s=0 up to O(s 2 ) and with the phase shift data on δ 1 1 (s) from threshold to somewhat above the φ mass. The ω sector is also examined in relation with recent data from CMD-2. (orig.)

  9. Analytical and unitary approach in mesons electromagnetic form factor applications

    International Nuclear Information System (INIS)

    Liptaj, A.

    2010-07-01

    In the dissertation thesis we address several topics related to the domain of particle physics. All of them represent interesting open problems that can be connected to the elastic or transition electromagnetic form factors of mesons, the form factors being the main objects of our interest. Our ambition is to contribute to the solution of these problems and use for that purpose known analytic properties of the form factors and the unitarity condition. These two tools are very powerful in the low energy domain (such as bound states of partons), where the perturbative QCD looses its validity. This is the motivation for construction of the unitary and analytic (U and A) models of studied form factors, that enable us to get the majority of our results. We use the U and A model to evaluate the contribution of the processes e"+e"- → Pγ, P = π"0, η, η to the muon magnetic anomaly a_μ in the lowest order of the hadronic vacuum polarization. For the contribution a_μ"h"a"d","L"O (π"+π"-) we demonstrate, that the use of the model leads to a dramatic error reduction with respect to the results of other authors. We also get a shift in the central value in the 'correct' direction, that brings the theoretical value closer to the experimental one. This results encourages us to use the model also for the evaluation of a_μ"h"a"d","L"O (P_γ). These contributions are smaller, however the precision of the experiment makes their evaluation necessary. We further use the U and A model of the transition form factors of π"0, η and η"' mesons to predict the partial decay widths of these particles Γ_π_"0_→_γ_γ and Γ_η_→_γ_γ and Γ_η_"'_→_γ_γ. In this way we make an independent cross check of the PDG table values. We find an agreement in the case of Γ_η_→_γ_γ and Γ_η_"'_→_γ_γ, even a smaller uncertainty for Γ_η_"'_→_γ_γ. In the case of Γ_π_"0_→_γ_γ we find a disagreement that points to an interesting problem. We wonder whether it could be

  10. Measurement of the $\\Lambda_{b}^{0}$ Decay Form Factor

    CERN Document Server

    Abdallah, J; Adam, W; Adzic, P; Albrecht, T; Alderweireld, T; Alemany-Fernandez, R; Allmendinger, T; Allport, P P; Amaldi, Ugo; Amapane, N; Amato, S; Anashkin, E; Andreazza, A; Andringa, S; Anjos, N; Antilogus, P; Apel, W D; Arnoud, Y; Ask, S; Åsman, B; Augustin, J E; Augustinus, A; Baillon, Paul; Ballestrero, A; Bambade, P; Barbier, R; Bardin, Dimitri Yuri; Barker, G; Baroncelli, A; Battaglia, Marco; Baubillier, M; Becks, K H; Begalli, M; Behrmann, A; Ben-Haim, E; Benekos, N C; Benvenuti, Alberto C; Bérat, C; Berggren, M; Berntzon, L; Bertrand, D; Besançon, M; Besson, N; Bloch, D; Blom, M; Bluj, M; Bonesini, M; Boonekamp, M; Booth, P S L; Borisov, G; Botner, O; Bouquet, B; Bowcock, T J V; Boyko, I; Bracko, M; Brenner, R; Brodet, E; Brückman, P; Brunet, J M; Bugge, L; Buschmann, P; Calvi, M; Camporesi, T; Canale, V; Carena, F; Castro, N; Cavallo, F R; Chapkin, M M; Charpentier, P; Checchia, P; Chierici, R; Shlyapnikov, P; Chudoba, J; Chung, S U; Cieslik, K; Collins, P; Contri, R; Cosme, G; Cossutti, F; Costa, M J; Crawley, B; Crennell, D J; Cuevas-Maestro, J; D'Hondt, J; Dalmau, J; Da Silva, T; Da Silva, W; Della Ricca, G; De Angelis, A; de Boer, Wim; De Clercq, C; De Lotto, B; De Maria, N; De Min, A; De Paula, L S; Di Ciaccio, Lucia; Di Simone, A; Doroba, K; Drees, J; Dris, M; Eigen, G; Ekelöf, T J C; Ellert, M; Elsing, M; Espirito-Santo, M C; Fanourakis, G K; Fassouliotis, D; Feindt, M; Fernández, J; Ferrer, A; Ferro, F; Flagmeyer, U; Föth, H; Fokitis, E; Fulda-Quenzer, F; Fuster, J A; Gandelman, M; García, C; Gavillet, P; Gazis, E N; Gokieli, R; Golob, B; Gómez-Ceballos, G; Gonçalves, P; Graziani, E; Grosdidier, G; Grzelak, K; Guy, J; Haag, C; Hallgren, A; Hamacher, K; Hamilton, K; Haug, S; Hauler, F; Hedberg, V; Hennecke, M; Herr, H; Hoffman, J; Holmgren, S O; Holt, P J; Houlden, M A; Hultqvist, K; Jackson, J N; Jarlskog, G; Jarry, P; Jeans, D; Johansson, E K; Johansson, P D; Jonsson, P; Joram, C; Jungermann, L; Kapusta, F; Katsanevas, S; Katsoufis, E C; Kernel, G; Kersevan, Borut P; Kerzel, U; Kiiskinen, A P; King, B T; Kjaer, N J; Kluit, P; Kokkinias, P; Kourkoumelis, C; Kuznetsov, O; Krumshtein, Z; Kucharczyk, M; Lamsa, J; Leder, G; Ledroit, F; Leinonen, L; Leitner, R; Lemonne, J; Lepeltier, V; Lesiak, T; Liebig, W; Liko, D; Lipniacka, A; Lopes, J H; López, J M; Loukas, D; Lutz, P; Lyons, L; MacNaughton, J; Malek, A; Maltezos, S; Mandl, F; Marco, J; Marco, R; Maréchal, B; Margoni, M; Marin, J C; Mariotti, C; Markou, A; Martínez-Rivero, C; Masik, J; Mastroyiannopoulos, N; Matorras, F; Matteuzzi, C; Mazzucato, F; Mazzucato, M; McNulty, R; Meroni, C; Meyer, W T; Myagkov, A; Migliore, E; Mitaroff, W A; Mjörnmark, U; Moa, T; Moch, M; Mönig, K; Monge, R; Montenegro, J; Moraes, D; Moreno, S; Morettini, P; Müller, U; Münich, K; Mulders, M; Mundim, L M; Murray, W; Muryn, B; Myatt, Gerald; Myklebust, T; Nassiakou, M; Navarria, Francesco Luigi; Nawrocki, K; Nicolaidou, R; Nikolenko, M; Oblakowska-Mucha, A; Obraztsov, V F; Olshevskii, A G; Onofre, A; Orava, Risto; Österberg, K; Ouraou, A; Oyanguren, A; Paganoni, M; Paiano, S; Palacios, J P; Palka, H; Papadopoulou, T D; Pape, L; Parkes, C; Parodi, F; Parzefall, U; Passeri, A; Passon, O; Peralta, L; Perepelitsa, V F; Perrotta, A; Petrolini, A; Piedra, J; Pieri, L; Pierre, F; Pimenta, M; Piotto, E; Podobnik, T; Poireau, V; Pol, M E; Polok, G; Poropat, P; Pozdnyakov, V; Pukhaeva, N; Pullia, Antonio; Rames, J; Ramler, L; Read, A; Rebecchi, P; Rehn, J; Reid, D; Reinhardt, R; Renton, P B; Richard, F; Rídky, J; Rivero, M; Rodríguez, D; Romero, A; Ronchese, P; Rosenberg, E I; Roudeau, Patrick; Rovelli, T; Ruhlmann-Kleider, V; Ryabtchikov, D; Sadovskii, A; Salmi, L; Salt, J; Savoy-Navarro, A; Schwickerath, U; Segar, A; Sekulin, R L; Siebel, M; Sissakian, A N; Smadja, G; Smirnova, O G; Sokolov, A; Sopczak, A; Sosnowski, R; Spassoff, Tz; Stanitzki, M; Stocchi, A; Strauss, J; Stugu, B; Szczekowski, M; Szeptycka, M; Szumlak, T; Tabarelli de Fatis, T; Taffard, A C; Tegenfeldt, F; Timmermans, J; Tkatchev, L G; Tobin, M; Todorovova, S; Tomé, B; Tonazzo, A; Tortosa, P; Travnicek, P; Treille, D; Tristram, G; Trochimczuk, M; Troncon, C; Turluer, M L; Tyapkin, I A; Tyapkin, P; Tzamarias, S; Uvarov, V; Valenti, G; van Dam, P; Van Eldik, J; Van Lysebetten, A; Van Remortel, N; Van Vulpen, I B; Vegni, G; Veloso, F; Venus, W A; Verdier, P; Verzi, V; Vilanova, D; Vitale, L; Vrba, V; Wahlen, H; Washbrook, A J; Weiser, C; Wicke, D; Wickens, J H; Wilkinson, G; Winter, M; Witek, M; Yushchenko, O P; Zalewska-Bak, A; Zalewski, Piotr; Zavrtanik, D; Zhuravlov, V; Zimin, N I; Zinchenko, A I; Zupan, M

    2004-01-01

    The form factor of Lambda_b^0 baryons is estimated using 3.46 10^6 hadronic Z decays collected by the DELPHI experiment between 1992 and 1995. Charmed Lambda_c^+ baryons fully reconstructed in the pK-pi+, pK0_S, and Lambda pi+pi+pi- modes, are associated to a lepton with opposite charge in order to select Lambda_b^0 -> Lambda_c^+ l^- anti-nu_l decays. From a combined likelihood and event rate fit to the distribution of the Isgur-Wise variable w, and using the Heavy Quark Effective Theory (HQET), the slope of the b-baryon form factor is measured to be: rho-hat^2 = 2.03 +/- 0.46 (stat) ^{+0.72}_{-1.00} (syst). The exclusive semileptonic branching fraction Br(Lambda_b^0 -> Lambda_c^+ l^- anti-nu_l) can be derived from rho-hat^2 and is found to be (5.0^{+1.1}_{-0.8} (stat) ^{+1.6}_{-1.2} (syst))%. Limits on other branching fractions are also obtained.

  11. Small form factor optical fiber connector evaluation for harsh environments

    Science.gov (United States)

    Ott, Melanie N.; Thomes, W. Joe, Jr.; Chuska, Richard F.; Switzer, Robert; Blair, Diana E.

    2011-09-01

    For the past decade NASA programs have utilized the Diamond AVIM connector for optical fiber assemblies on space flight instrumentation. These connectors have been used in communications, sensing and LIDAR systems where repeatability and high performance are required. Recently Diamond has released a smaller form factor optical fiber connector called the "Mini-AVIM" which although more compact still includes the tight tolerances and the ratcheting feature of the heritage AVIM. NASA Goddard Space Flight Center Photonics Group in the Parts, Packaging and Assembly Technologies Office has been performing evaluations of this connector to determine how it compares to the performance of the AVIM connector and to assess its feasibility for harsh environmental applications. Vibration and thermal testing were performed on the Mini-AVIM with both multi-mode and single-mode optical fiber using insitu optical transmission monitoring. Random vibration testing was performed using typical launch condition profiles for most NASA missions but extended to 35 Grms, which is much higher than most requirements. Thermal testing was performed incrementally up to a range of -55°C to +125°C. The test results include both unjacketed fiber and cabled assembly evaluations. The data presented here indicate that the Mini-AVIM provides a viable option for small form factor applications that require a high performance optical fiber connector.

  12. Few-nucleon systems (theory)

    International Nuclear Information System (INIS)

    Schwamb, M.

    2006-01-01

    An overview over present achievements and future challenges in the field of few-nucleon systems is presented. Special emphasis is laid on the construction of a unified approach to hadronic and electromagnetic reactions on few-nucleon systems, necessary for studying the borderline between quark-gluon and effective descriptions. (orig.) (orig.)

  13. Study of single-nucleon spectroscopic characteristics in light nuclei

    International Nuclear Information System (INIS)

    Zhusupova, K.A.

    1998-01-01

    Single-nucleon characteristics of 1 p-shell nuclei are investigated in the thesis. These characteristics are necessary for describing nuclear processes leaded to separation of target nuclei or to addition of one nucleon to it. Multi-particle shell model and three-body cluster model (for 6 L i and 9 Be) are used. It is shown that shell model explains well spectroscopic S-factors for stripping and pick-up reactions of nucleon. Three body α2 N-model reproduces well S-factors and momentum distribution extracted from (e, e p) reactions for separation of proton from ground state of 6 L i nucleus accompanied by appearance of ground and high exited states of 5 He nucleolus. The classification and explanation for small value nucleon partial widths for high lying states for odd nuclei 1 p-shell with isospin T=3/2 are given. (author)

  14. Hadron spectroscopy and form factors at quark level

    International Nuclear Information System (INIS)

    Chakrabarty, S.; Gupta, K.K.; Singh, N.N.; Mitra, A.N.

    1988-01-01

    The theoretical status of hadrons as quark composites is examined from the point of view of a simultaneous understanding of their on-shell (mass spectra) and off-shell (form factors, transition amplitudes) properties. Greater stress is laid on light quark systems which are more sensitive to the confinement regime, and more prone to relativistic effects than on heavy quarkonia (on which many reviews exist). Two broad theoretical approaches obeying Lorentz and gauge invariance are identified: (i) QCD sum rules as a means of extrapolation from high to low energies; and (ii) dynamical equations for providing a microcausal link in the opposite direction (from low to high energies). The latter represents the major focus of attention in this article, with the Bethe-Salpeter Equation (BSE) providing a formal plank for a comparative assessment of several models. The Null-plane ansatz which facilitates the reduction of the 4-D BSE to a covariant 3-D form also provides the language for its comparison with other covariant 3-D equations. In particular, attention is drawn to the interesting possibility of reconstructing the 4-D BS wave function from its 3-D form (in a two-tier fashion) as a practical tool for generating higher Fock-space components (qq effects) in the BS wave function, and (more interestingly) for a clean separation between soft and hard QCD effects. To illustrate one such practical tool for an integrated view of different hadronic sectors within a single framework, the results of a two-tier BS model are presented in respect of qq-bar, qqq, gg, ggg, gqq-bar states and compared with experiment as well as with the results of other contemporary models. The N.R Resonating Group Method, which becomes necessary for bigger (six-quark) systems is briefly discussed from the point of view of its compatibility with a relativistic form of quark dynamics motivated from the BSC. (Author)

  15. Weak pion production off the nucleon

    International Nuclear Information System (INIS)

    Hernandez, E.; Nieves, J.; Valverde, M.

    2007-01-01

    We develop a model for the weak pion production off the nucleon, which besides the delta pole mechanism [weak excitation of the Δ(1232) resonance and its subsequent decay into Nπ], includes also some background terms required by chiral symmetry. We refit the C 5 A (q 2 ) form factor to the flux-averaged ν μ p→μ - pπ + ANL q 2 -differential cross section data, finding a substantially smaller contribution of the delta pole mechanism than traditionally assumed in the literature. Within this scheme, we calculate several differential and integrated cross sections, including pion angular distributions, induced by neutrinos and antineutrinos and driven both by charged and neutral currents. In all cases we find that the background terms produce quite significant effects, and that they lead to an overall improved description of the data, as compared to the case where only the delta pole mechanism is considered. We also show that the interference between the delta pole and the background terms produces parity-violating contributions to the pion angular differential cross section, which are intimately linked to T-odd correlations in the contraction between the leptonic and hadronic tensors. However, these latter correlations do not imply a genuine violation of time-reversal invariance because of the existence of strong final state interaction effects

  16. G-parity violation of weak nucleon current and in-medium mass renormalization of nucleons detected through the beta decays of spin aligned sup 1 sup 2 B and sup 1 sup 2 N

    CERN Document Server

    Minamisono, K; Sumikama, T; Nagatomo, T; Matsuta, K; Minamisono, T; Fukuda, M; Koshigiri, K; Morita, M

    2000-01-01

    The beta-ray angular distributions from purely spin aligned sup 1 sup 2 B and sup 1 sup 2 N were precisely measured to determine a new limit of the G-parity irregular induced tensor form factor in weak nucleon axial vector currents and to study the in-medium mass renormalization of nucleons through the axial charge. Since the major systematic error in the previous result which originated from the intensity fluctuation of the incident beam used for the production of the nuclei was removed in the present measurement, the more reliable result was obtained: 0.01 <= 2M f sub T /f sub A <= 0.34 (90 % CL). The result is consistent with the theoretical prediction in the framework of which induced tensor form factor is proportional to the mass difference between the up and down quarks. We also determined the axial charge of the weak nucleon current to be y = 4.66 +- 0.12, which may disclose an in-medium mass reduction of the decaying nucleon of 11 +- 4 %.

  17. Pion form factor in QCD at intermediate momentum transfers

    Science.gov (United States)

    Braun, V. M.; Khodjamirian, A.; Maul, M.

    2000-04-01

    We present a quantitative analysis of the electromagnetic pion form factor in the light-cone sum rule approach, including radiative corrections and higher-twist effects. The comparison to the existing data favors the asymptotic profile of the pion distribution amplitude and allows us to estimate the deviation: [∫du/uφπ(u)]/[∫du/uφasπ(u)]=1.1+/-0.1 at the scale of 1 GeV. Special attention is paid to the precise definition and interplay of soft and hard contributions at intermediate momentum transfer, and to the matching of the sum rule to the perturbative QCD prediction. We observe a strong numerical cancellation between the soft (end-point) contribution and power-suppressed hard contributions of higher twist, so that the total nonperturbative correction to the usual PQCD result turns out to be of the order of 30% for Q2~1 GeV2.

  18. Form factors and related quantities in clothed-particle representation

    Directory of Open Access Journals (Sweden)

    Shebeko Alexander

    2017-01-01

    Full Text Available We show new applications of the notion of clothed particles in quantum field theory. Its realization by means of the clothing procedure put forward by Greenberg and Schweber allows one to express the total Hamiltonian H and other generators of the Poincaré group for a given system of interacting fields through the creation (annihilation operators for the so-called clothed particles with physical (observed properties. Here such a clothed particle representation is used to calculate the matrix elements (shortly, form factors of the corresponding Nöther current operators sandwiched between the H eigenstates. Our calculations are performed with help of an iterative technique suggested by us earlier when constructing the NN → πNN transition operators. As an illustration, we outline some application of our approach in the spinor quantum electrodynamics.

  19. Finite-lattice form factors in free-fermion models

    International Nuclear Information System (INIS)

    Iorgov, N; Lisovyy, O

    2011-01-01

    We consider the general Z 2 -symmetric free-fermion model on the finite periodic lattice, which includes as special cases the Ising model on the square and triangular lattices and the Z n -symmetric BBS τ (2) -model with n = 2. Translating Kaufman's fermionic approach to diagonalization of Ising-like transfer matrices into the language of Grassmann integrals, we determine the transfer matrix eigenvectors and observe that they coincide with the eigenvectors of a square lattice Ising transfer matrix. This allows us to find exact finite-lattice form factors of spin operators for the statistical model and the associated finite-length quantum chains, of which the most general is equivalent to the XY chain in a transverse field

  20. Meson Form Factors and Deep Exclusive Meson Production Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Horn, Tanja [The Catholic Univ. of America, Washington, DC (United States); Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2017-05-01

    Pion and kaon electroproduction data play a unique role in Nature and our understanding of them is essential for explaining hadron structure. Precision longitudinaltransverse separated pion and kaon cross sections are of particular interest. They allow for the extraction of meson form factors and validation of understanding of hard exclusive and semi-inclusive reactions (π+, K+, π0, γ) towards 3D hadron imaging and potential future flavor decomposition. We review recent data and present prospects for deep exclusive pion and kaon electroproduction at the 12 GeV Jefferson Lab including the prospects to use projected charged- and neutral pion data to further determine the spin, charge-parity and flavor of GPDs, including the helicity-flip GPDs.

  1. Conformal anomaly of generalized form factors and finite loop integrals

    CERN Document Server

    Chicherin, Dmitry

    2017-01-01

    We reveal a new mechanism of conformal symmetry breaking at Born level. It occurs in generalized form factors with several local operators and an on-shell state of massless particles. The effect is due to hidden singularities on collinear configurations of the momenta. This conformal anomaly is different from the holomorphic anomaly of amplitudes. We present a number of examples in four and six dimensions. We find an application of the new conformal anomaly to finite loop momentum integrals with one or more massless legs. The collinear region around a massless leg creates a contact anomaly, made visible by the loop integration. The anomalous conformal Ward identity for an $\\ell-$loop integral is a 2nd-order differential equation whose right-hand side is an $(\\ell-1)-$loop integral. We show several examples, in particular the four-dimensional scalar double box.

  2. Current correlators and form factors in the resonance region

    Energy Technology Data Exchange (ETDEWEB)

    Rosell, I. [Departamento de Ciencias Fisicas, Matematicas y de la Computacion, Universidad CEU Cardenal Herrera, c/Sant Bartomeu 55, E-46115 Alfara del Patriarca, Valencia (Spain); IFIC, Universitat de Valencia - CSIC, Apt. Correus 22085, E-46071 Valencia (Spain)

    2009-01-15

    Within Resonance Chiral Theory and in the context of QCD current correlators at next-to-leading order in 1/N{sub C}, we have analyzed the two-body form factors which include resonances as a final state. The short-distance constraints have been studied. One of the main motivations is the estimation of the chiral low-energy constants at subleading order, that is, keeping full control of the renormalization scale dependence. As an application we show the resonance estimation of some coupling, L{sub 10}{sup r}({mu}{sub 0})=(-4.4{+-}0.9).10{sup -3} and C{sub 87}{sup r}({mu}{sub 0})=(3.1{+-}1.1).10{sup -5}.

  3. Nucleonic measuring apparatus

    International Nuclear Information System (INIS)

    Holben, B.C.; Bach, R.E.

    1975-01-01

    A nucleonic measuring instrument is described wherein a housing contains a radiation source and has an aperture controlled by a shutter which is spring loaded to a closed position for confining and shielding the radiation and is movable by a motor to an open position for releasing the radiation, the motor being supplied with power through a heat sensitive element so that it is deenergized and the shutter closes in response to a predetermined high ambient temperature such as may be caused by a fire, and including an explosive blank cartridge positioned in relation to the shutter guide which explodes in response to a still higher ambient temperature, deforming the guide and thereby locking the shutter in the closed position. (auth)

  4. Microscopic calculation of the form factors for deeply inelastic heavy-ion collisions within the statistical model

    International Nuclear Information System (INIS)

    Barrett, B.R.; Shlomo, S.; Weidenmueller, H.A.

    1978-01-01

    Agassi, Ko, and Weidenmueller have recently developed a transport theory of deeply inelastic heavy-ion collisions based on a random-matrix model. In this work it was assumed that the reduced form factors, which couple the relative motion with the intrinsic excitation of either fragment, represent a Gaussian stochastic process with zero mean and a second moment characterized by a few parameters. In the present paper, we give a justification of the statistical assumptions of Agassi, Ko, and Weidenmueller and of the form of the second moment assumed in their work, and calculate the input parameters of their model for two cases: 40 Ar on 208 Pb and 40 Ar on 120 Sn. We find values for the strength, correlation length, and angular momentum dependence of the second moment, which are consistent with those estimated by Agassi, Ko, and Weidenmueller. We consider only inelastic excitations (no nucleon transfer) caused by the penetration of the single-particle potential well of the light ion into the mass distribution of the heavy one. This is combined with a random-matrix model for the high-lying excited states of the heavy ion. As a result we find formulas which relate simply to those of Agassi, Ko, and Weidenmueller, and which can be evaluated numerically, yielding the results mentioned above. Our results also indicate for which distances of closest approach the Agassi-Ko-Weidenmueller theory breaks down

  5. The nucleon spin crisis bible

    International Nuclear Information System (INIS)

    Close, F.E.

    1993-06-01

    When the new data on polarised lepton nucleon scattering are compared at the same value of Q 2 and with a common set of assumptions, a consistent picture of the spin content of the nucleon begins to emerge. Higher order effects in O(α s ), higher twist effects, modern data on unpolarised structure functions and an updated value for F/D are all important in analysing the data. The detailed x dependences of the polarisation asymmetry in the valence quark region are shown to confirm 20 year old predictions of the quark model and I argue that these are an important ingredient in decoding the nucleon spin puzzle. (author)

  6. The nucleon spin crisis bible

    International Nuclear Information System (INIS)

    Close, F.E.

    1994-01-01

    When the new data on polarised lepton nucleon scattering are compared at the same value of Q 2 and with a common set of assumptions, a consistent picture of the spin content of the nucleon begins to emerge. Higher order effects in 0(α s ), higher twist effects, modern data on unpolarized structure functions and an updated value for F/D are all important in analysing the data. The detailed x dependences of the polarisation asymmetry in the valence quark region are shown to confirm 20 year old predictions of the quark model and I argue that these are an important ingredient in decoding the nucleon spin puzzle. (author)

  7. Probing nuclear structure with nucleons

    International Nuclear Information System (INIS)

    Bauge, E.

    2007-01-01

    The goal of this lecture is to show how nucleon scattering can be used to probe the structure of target nuclei, and how nucleon scattering observables can be interpreted in terms of nuclear structure using microscopic optical potentials. After a brief overview of the specificities of nucleon-nucleus scattering, and a quick reminder on scattering theory, the main part of this lecture is devoted to the construction of optical potentials in which the target nuclei structure information is folded with an effective interaction. Several examples of such microscopic optical model potentials are given. (author)

  8. Nucleon Viewed as a Borromean Bound-State

    Science.gov (United States)

    Segovia, Jorge; Mezrag, Cédric; Chang, Lei; Roberts, Craig D.

    2018-05-01

    We explain how the emergent phenomenon of dynamical chiral symmetry breaking ensures that Poincaré covariant analyses of the three valence-quark scattering problem in continuum quantum field theory yield a picture of the nucleon as a Borromean bound-state, in which binding arises primarily through the sum of two separate contributions. One involves aspects of the non-Abelian character of Quantum Chromodynamics that are expressed in the strong running coupling and generate tight, dynamical color-antitriplet quark-quark correlations in the scalar-isoscalar and pseudovector-isotriplet channels. This attraction is magnified by quark exchange associated with diquark breakup and reformation, which is required in order to ensure that each valence-quark participates in all diquark correlations to the complete extent allowed by its quantum numbers. Combining these effects, we arrive at a properly antisymmetrised Faddeev wave function for the nucleon and calculate, e.g. the flavor-separated versions of the Dirac and Pauli form factors and the proton's leading-twist parton distribution amplitude. We conclude that available data and planned experiments are capable of validating the proposed picture.

  9. Nucleon-nucleon interaction with quark exchange and prediction of the color van der Waals potential

    International Nuclear Information System (INIS)

    Osman, A.

    1988-01-01

    The nucleon-nucleon interaction is considered by including the color nucleon clusters. The nucleon-nucleon system is treated as a six-quark system. The obtained local potentials reduce the short-range repulsion. The resulting nucleon-nucleon potential, using a quark-quark potential, agress well with the central-force potentials. The phase shifts calculated by using these local potentials are in good agreement with those obtained from other methods. Introducing the quark-quark potential in the nucleon-nucleon interaction leads to a color van der Waals potential much stronger than that implied by experiments

  10. Nucleon-nucleon interaction with quark exchanges and prediction to colour van der Waals potential

    International Nuclear Information System (INIS)

    Osman, A.

    1985-11-01

    The nucleon-nucleon interaction is considered by including the colour nucleon clusters. The nucleon-nucleon system is treated as a six-quark system. The obtained local potentials reduce the short-range repulsion. The resulted nucleon-nucleon potential by using a quark-quark potential well agrees with the central-force potentials. The phase shifts calculated by using these local potentials are in good agreement with those obtained from other methods. Introducing the quark-quark potential in the nucleon-nucleon interaction, leads to a colour van der Waals potential very strong compared with that predicted by experiments. (author)

  11. Nucleon-Nucleon Potentials and Computation of Scattering Phase Shifts

    Directory of Open Access Journals (Sweden)

    Jhasaketan Bhoi

    2015-12-01

    Full Text Available By judicious exploitation of supersymmetry formalism of quantum mechanics higher partial wave nucleon-nucleon potentials are generated from its ground state interactions. The nuclear Hulthen potential and the corresponding ground state wave function with the parameters of Arnold and MacKellar are used as the starting point of our calculation. We compute the scattering phase shifts for our constructed potentials through Phase Function Method to examine the merit of our approach to the problem.

  12. Proceedings of RIKEN BNL Research Center Workshop: Brookhaven Summer Program on Nucleon Spin Physics

    Energy Technology Data Exchange (ETDEWEB)

    Aschenauer, A.; Qiu, Jianwei; Vogelsang, W.; Yuan, F.

    2011-08-02

    Understanding the structure of the nucleon is of fundamental importance in sub-atomic physics. Already the experimental studies on the electro-magnetic form factors in the 1950s showed that the nucleon has a nontrivial internal structure, and the deep inelastic scattering experiments in the 1970s revealed the partonic substructure of the nucleon. Modern research focuses in particular on the spin and the gluonic structure of the nucleon. Experiments using deep inelastic scattering or polarized p-p collisions are carried out in the US at the CEBAF and RHIC facilities, respectively, and there are other experimental facilities around the world. More than twenty years ago, the European Muon Collaboration published their first experimental results on the proton spin structure as revealed in polarized deep inelastic lepton-nucleon scattering, and concluded that quarks contribute very little to the proton's spin. With additional experimental and theoretical investigations and progress in the following years, it is now established that, contrary to naive quark model expectations, quarks and anti-quarks carry only about 30% of the total spin of the proton. Twenty years later, the discovery from the polarized hadron collider at RHIC was equally surprising. For the phase space probed by existing RHIC experiments, gluons do not seem to contribute any to the proton's spin. To find out what carries the remaining part of proton's spin is a key focus in current hadronic physics and also a major driving force for the new generation of spin experiments at RHIC and Jefferson Lab and at a future Electron Ion Collider. It is therefore very important and timely to organize a series of annual spin physics meetings to summarize the status of proton spin physics, to focus the effort, and to layout the future perspectives. This summer program on 'Nucleon Spin Physics' held at Brookhaven National Laboratory (BNL) on July 14-27, 2010 [http://www.bnl.gov/spnsp/] is the

  13. IEEE 1588 Time Synchronization Board in MTCA.4 Form Factor

    Science.gov (United States)

    Jabłoński, G.; Makowski, D.; Mielczarek, A.; Orlikowski, M.; Perek, P.; Napieralski, A.; Makijarvi, P.; Simrock, S.

    2015-06-01

    Distributed data acquisition and control systems in large-scale scientific experiments, like e.g. ITER, require time synchronization with nanosecond precision. A protocol commonly used for that purpose is the Precise Timing Protocol (PTP), also known as IEEE 1588 standard. It uses the standard Ethernet signalling and protocols and allows obtaining timing accuracy of the order of tens of nanoseconds. The MTCA.4 is gradually becoming the platform of choice for building such systems. Currently there is no commercially available implementation of the PTP receiver on that platform. In this paper, we present a module in the MTCA.4 form factor supporting this standard. The module may be used as a timing receiver providing reference clocks in an MTCA.4 chassis, generating a Pulse Per Second (PPS) signal and allowing generation of triggers and timestamping of events on 8 configurable backplane lines and two front panel connectors. The module is based on the Xilinx Spartan 6 FPGA and thermally stabilized Voltage Controlled Oscillator controlled by the digital-to-analog converter. The board supports standalone operation, without the support from the host operating system, as the entire control algorithm is run on a Microblaze CPU implemented in the FPGA. The software support for the card includes the low-level API in the form of Linux driver, user-mode library, high-level API: ITER Nominal Device Support and EPICS IOC. The device has been tested in the ITER timing distribution network (TCN) with three cascaded PTP-enabled Hirschmann switches and a GPS reference clock source. An RMS synchronization accuracy, measured by direct comparison of the PPS signals, better than 20 ns has been obtained.

  14. The nucleon-air nuclei interaction probability law with rising cross-sections

    International Nuclear Information System (INIS)

    Portella, H.M.; Oliveira Castro, F.M. de.

    1988-01-01

    The negative-binomial interaction probability law for nucleon of atmosphere is obtained as a consequence of the respective diffUsion equation. The mean-free path of the nucleon-nucleus interaction rises with the energy of the incident nucleon in the form 1/λ N (E) = (1+aln(E/E 0 ))/λ 0 N , E 0 =1 TeV. In the case of lambda N = constant the distribution law is poissonian. (author) [pt

  15. Factorization of heavy-to-light form factors in soft-collinear effective theory

    CERN Document Server

    Beneke, Martin; Feldmann, Th.

    2004-01-01

    Heavy-to-light transition form factors at large recoil energy of the light meson have been conjectured to obey a factorization formula, where the set of form factors is reduced to a smaller number of universal form factors up to hard-scattering corrections. In this paper we extend our previous investigation of heavy-to-light currents in soft-collinear effective theory to final states with invariant mass Lambda^2 as is appropriate to exclusive B meson decays. The effective theory contains soft modes and two collinear modes with virtualities of order m_b*Lambda (`hard-collinear') and Lambda^2. Integrating out the hard-collinear modes results in the hard spectator-scattering contributions to exclusive B decays. We discuss the representation of heavy-to-light currents in the effective theory after integrating out the hard-collinear scale, and show that the previously conjectured factorization formula is valid to all orders in perturbation theory. The naive factorization of matrix elements in the effective theory ...

  16. Lattice QCD Calculation of Nucleon Structure

    International Nuclear Information System (INIS)

    Liu, Keh-Fei; Draper, Terrence

    2016-01-01

    It is emphasized in the 2015 NSAC Long Range Plan that 'understanding the structure of hadrons in terms of QCD's quarks and gluons is one of the central goals of modern nuclear physics.' Over the last three decades, lattice QCD has developed into a powerful tool for ab initio calculations of strong-interaction physics. Up until now, it is the only theoretical approach to solving QCD with controlled statistical and systematic errors. Since 1985, we have proposed and carried out first-principles calculations of nucleon structure and hadron spectroscopy using lattice QCD which entails both algorithmic development and large-scale computer simulation. We started out by calculating the nucleon form factors -- electromagnetic, axial-vector, ?NN, and scalar form factors, the quark spin contribution to the proton spin, the strangeness magnetic moment, the quark orbital angular momentum, the quark momentum fraction, and the quark and glue decomposition of the proton momentum and angular momentum. The first round of calculations were done with Wilson fermions in the 'quenched' approximation where the dynamical effects of the quarks in the sea are not taken into account in the Monte Carlo simulation to generate the background gauge configurations. Beginning in 2000, we have started implementing the overlap fermion formulation into the spectroscopy and structure calculations. This is mainly because the overlap fermion honors chiral symmetry as in the continuum. It is going to be more and more important to take the symmetry into account as the simulations move closer to the physical point where the u and d quark masses are as light as a few MeV only. We began with lattices which have quark masses in the sea corresponding to a pion mass at ~ 300 MeV and obtained the strange form factors, charm and strange quark masses, the charmonium spectrum and the D_s meson decay constant f_D__s, the strangeness and charmness, the meson mass decomposition and the strange quark spin from the

  17. Lattice QCD Calculation of Nucleon Structure

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Keh-Fei [University of Kentucky, Lexington, KY (United States). Dept. of Physics and Astronomy; Draper, Terrence [University of Kentucky, Lexington, KY (United States). Dept. of Physics and Astronomy

    2016-08-30

    It is emphasized in the 2015 NSAC Long Range Plan that "understanding the structure of hadrons in terms of QCD's quarks and gluons is one of the central goals of modern nuclear physics." Over the last three decades, lattice QCD has developed into a powerful tool for ab initio calculations of strong-interaction physics. Up until now, it is the only theoretical approach to solving QCD with controlled statistical and systematic errors. Since 1985, we have proposed and carried out first-principles calculations of nucleon structure and hadron spectroscopy using lattice QCD which entails both algorithmic development and large-scale computer simulation. We started out by calculating the nucleon form factors -- electromagnetic, axial-vector, πNN, and scalar form factors, the quark spin contribution to the proton spin, the strangeness magnetic moment, the quark orbital angular momentum, the quark momentum fraction, and the quark and glue decomposition of the proton momentum and angular momentum. The first round of calculations were done with Wilson fermions in the `quenched' approximation where the dynamical effects of the quarks in the sea are not taken into account in the Monte Carlo simulation to generate the background gauge configurations. Beginning in 2000, we have started implementing the overlap fermion formulation into the spectroscopy and structure calculations. This is mainly because the overlap fermion honors chiral symmetry as in the continuum. It is going to be more and more important to take the symmetry into account as the simulations move closer to the physical point where the u and d quark masses are as light as a few MeV only. We began with lattices which have quark masses in the sea corresponding to a pion mass at ~ 300 MeV and obtained the strange form factors, charm and strange quark masses, the charmonium spectrum and the Ds meson decay constant fDs, the strangeness and charmness, the meson mass

  18. A two component model describing nucleon structure functions in the low-x region

    Energy Technology Data Exchange (ETDEWEB)

    Bugaev, E.V. [Institute for Nuclear Research of the Russian Academy of Sciences, 7a, 60th October Anniversary prospect, Moscow 117312 (Russian Federation); Mangazeev, B.V. [Irkutsk State University, 1, Karl Marx Street, Irkutsk 664003 (Russian Federation)

    2009-12-15

    A two component model describing the electromagnetic nucleon structure functions in the low-x region, based on generalized vector dominance and color dipole approaches is briefly described. The model operates with the mesons of rho-family having the mass spectrum of the form m{sub n}{sup 2}=m{sub r}ho{sup 2}(1+2n) and takes into account the nondiagonal transitions in meson-nucleon scattering. The special cut-off factors are introduced in the model, to exclude the gamma-qq-bar-V transitions in the case of narrow qq-bar-pairs. For the color dipole part of the model the well known FKS-parameterization is used.

  19. Nucleon decay in Soudan 2

    International Nuclear Information System (INIS)

    Goodman, M. C.

    1999-01-01

    The Soudan 2 detector is used to search for evidence of nucleon decay. Particular emphasis is put on searches for modes with multiple-charged particles in the final state, and for modes suggested by super-symmetric theories

  20. Conformal anomaly of generalized form factors and finite loop integrals

    Science.gov (United States)

    Chicherin, Dmitry; Sokatchev, Emery

    2018-04-01

    We reveal a new mechanism of conformal symmetry breaking at Born level. It occurs in generalized form factors with several local operators and an on-shell state of massless particles. The effect is due to hidden singularities on collinear configurations of the momenta. This conformal anomaly is different from the holomorphic anomaly of amplitudes. We present a number of examples in four and six dimensions. We find an application of the new conformal anomaly to finite loop momentum integrals with one or more massless legs. The collinear region around a massless leg creates a contact anomaly, made visible by the loop integration. The anomalous conformal Ward identity for an ℓ-loop integral is a 2nd-order differential equation whose right-hand side is an (ℓ - 1)-loop integral. It could serve as a new useful tool to find/test analytic expressions for conformal integrals. We illustrate this point with several examples of known integrals. We propose a new differential equation for the four-dimensional scalar double box.

  1. Nucleon-nucleon interaction and the quark model

    International Nuclear Information System (INIS)

    Faessler, A.

    1985-01-01

    The NN phase shifts are calculated using the quark model with a QCD inspired quark-quark force. The short range part of the NN force is given by quark and gluon exchange. The long range part is described by π and σ-meson exchange. The data fitted in the model are five values connected with three quarks only: the nucleon mass, the Δ mass, the root mean square radius of the charge distribution of the proton including the pion cloud, the π-N and the σ-N coupling constant at zero momentum transfer. The 1 S and 3 S phase shifts are nicely reproduced. The short range repulsion is decisively influenced by the node in the [42] r relative wave function. Very important is the colour magnetic quark-quark force which enlarges the [42] r admixture. In the OBEP's the short range repulsion is connected with the exchange of the ω-meson. But to reproduce the short range repulsion one had to blow up the ω-N coupling constant by a factor 2 to 3 compared to flavour SU 3 . With quark and gluon exchange the best fit to the ω-N coupling constant lies close to the SU 3 flavour value. This fact strongly supports the notion that the real nature of the short range repulsion of the NN interaction have been found

  2. Chiral symmetry effect on the pion-nucleon coupling constant; O efeito da simetria quiral na constante de acoplamento pion-nucleon

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, Vanilse da Silva

    1997-12-31

    In this work we study the effects of chiral symmetry in the pion-nucleon coupling constant in the context of the linear {sigma}- model. First, we introduce the linear {sigma}-model and we discuss the phenomenological hypothesis of CVC and PCAC. Next, we calculate the coupling constant g+{pi}{sub NN}(q{sup 2}) and the nucleon pionic mean square radius considering the contribution of all the diagrams up to one-loop in the framework of the linear {sigma}-model for different values of the mass of the sigma meson and we compare them with the phenomenological form factors. Finally we make an extension of the linear {sigma}-model that consists of taking into account the mass differences of ions and nucleons into the Lagrangian of the model, to study the change dependence of g{sub {pi}nn} (q{sup 2}) and of the mean square radius. (author) 21 refs., 17 figs., 4 tabs.

  3. Electromagnetic Meson Production in the Nucleon Resonance Region

    Energy Technology Data Exchange (ETDEWEB)

    Volker Burkert; T.-S. H. Lee

    2004-10-01

    Recent experimental and theoretical advances in investigating electromagnetic meson production reactions in the nucleon resonance region are reviewed. The article gives a description of current experimental facilities with electron and photon beams and presents a unified derivation of most of the phenomenological approaches being used to extract the resonance parameters from the data. The analyses of {pi} and {eta} production data and the resulting transition form factors for the {Delta}(1232)P{sub 33}, N(1535)S{sub 11}, N(1440)P{sub 11}, and N(1520)D{sub 13} resonances are discussed in detail. The status of our understanding of the reactions with production of two pions, kaons, and vector mesons is also reviewed.

  4. The zerology of kaon-nucleon forward scattering amplitudes

    International Nuclear Information System (INIS)

    Dumbrajs, O.

    1981-01-01

    It has been realized for a long time that zeros of the forward kaon-nucleon scattering amplitudes are useful in correlating different low and high-energy scattering parameters and in providing a consistency test of available data. The simplest possibility of exploring zeros is to evaluate the ordinary dispersion relations in the complex energy plane. The more natural way of bringing zeros of amplitudes into play is to consider either one of the more sophisticated forms of dispersion relations: i) phase dispersion relations, ii) inverse-amplitude dispersion relations, iii) logarithmic dispersion relations, or to apply the maximum modulus theorem and a factorization theorem. The author concentrates on the use of logarithmic dispersion relations because this approach seems to be the most convenient one for future extensions to nonforward scattering data analyses based on the zeros of the amplitude. (Auth.)

  5. Pion–nucleon scattering: from chiral perturbation theory to Roy–Steiner equations

    International Nuclear Information System (INIS)

    Kubis, Bastian; Hoferichter, Martin; Elvira, Jacobo Ruiz de; Meißner, Ulf-G.

    2016-01-01

    Ever since Weinberg’s seminal predictions of the pion–nucleon scattering amplitudes at threshold, this process has been of central interest for the study of chiral dynamics involving nucleons. The scattering lengths or the pion–nucleon σ-term are fundamental quantities characterizing the explicit breaking of chiral symmetry by means of the light quark masses. On the other hand, pion–nucleon dynamics also strongly affects the long-range part of nucleon–nucleon potentials, and hence has a far-reaching impact on nuclear physics. We discuss the fruitful combination of dispersion-theoretical methods, in the form of Roy–Steiner equations, with chiral dynamics to determine pion–nucleon scattering amplitudes at low energies with high precision.

  6. Cytokinin response factors regulate PIN-FORMED auxin transporters

    Czech Academy of Sciences Publication Activity Database

    Šimášková, M.; O'Brien, J.A.; Khan, M.; Van Noorden, G.; Ötvös, K.; Vieten, A.; De Clercq, E.; Van Haperen, J.M.A.; Cuesta, C.; Hoyerová, Klára; Vanneste, S.; Marhavý, P.; Wabnik, K.; Van Breusegem, F.; Nowack, M.; Murphy, A.; Friml, J.; Weijers, D.; Beeckman, T.; Benková, E.

    2015-01-01

    Roč. 6, NOV (2015), s. 8717 ISSN 2041-1723 Institutional support: RVO:61389030 Keywords : ARABIDOPSIS -THALIANA * ROOT-MERISTEM * TRANSCRIPTION FACTORS Subject RIV: ED - Physiology Impact factor: 11.329, year: 2015

  7. Conservative flight with a varying load factor and closed form ...

    Indian Academy of Sciences (India)

    Conservative flight performance of an aircraft with constant load factor was analysed by ... Within the frame work of flat earth hypotheses the equations of motion of an aircraft as obtained by ..... load factor function if this inequality holds good.

  8. Universality of many-body two-nucleon momentum distributions: Correlated nucleon spectral function of complex nuclei

    Science.gov (United States)

    Ciofi degli Atti, Claudio; Morita, Hiko

    2017-12-01

    Background: The nuclear spectral function is a fundamental quantity that describes the mean-field and short-range correlation dynamics of nucleons embedded in the nuclear medium; its knowledge is a prerequisite for the interpretation of various electroweak scattering processes off nuclear targets aimed at providing fundamental information on strong and weak interactions. Whereas in the case of the three-nucleon and, partly, the four-nucleon systems, the spectral function can be calculated ab initio within a nonrelativistic many-body Schroedinger approach, in the case of complex nuclei only models of the correlated, high-momentum part of the spectral function are available so far. Purpose: The purpose of this paper is to present a new approach such that the spectral function for a specific nucleus can be obtained from a reliable many-body calculation based upon realistic nucleon-nucleon interactions, thus avoiding approximations leading to adjustable parameters. Methods: The expectation value of the nuclear many-body Hamiltonian, containing realistic nucleon-nucleon interaction of the Argonne family, is evaluated variationally by a normalization-conserving linked-cluster expansion and the resulting many-body correlated wave functions are used to calculate the one-nucleon and the two-nucleon momentum distributions; by analyzing the high-momentum behavior of the latter, the spectral function can be expressed in terms of a transparent convolution formula involving the relative and center-of-mass (c.m.) momentum distributions in specific regions of removal energy E and momentum k . Results: It is found that as a consequence of the factorization of the many-body wave functions at short internucleon separations, the high-momentum behavior of the two-nucleon momentum distributions in A =3 ,4 ,12 ,16 ,40 nuclei factorizes, at proper values of the relative and c.m. momenta, into the c.m. and relative momentum distributions, with the latter exhibiting a universal A

  9. B-decay form factors from QCD sum rules

    International Nuclear Information System (INIS)

    Offen, Nils

    2008-01-01

    In the Standard Model of particle physics there is only one source of CP-violation. Namely, a single complex phase in the unitary 3 x 3 CKM-Matrix governing flavor transitions in the weak interaction. The unitarity is usually visualized by a triangle in the complex ρ - η-plane. Therefore testing this framework comes down to measuring weak decays, relating observables to sides and angles of this so called Unitarity Triangle(UT). Particular interest in this respect is payed to decays of mesons containing a heavy b-quark, giving the opportunity to alone determine all parameters of the UT. Doing this is far from easy. Besides tedious experimental measurements the theoretical calculations are plagued by hadronic quantities which cannot be determined by perturbation theory. In this work several of these quantities so called form factors are computed using the well known method of light cone sum rules(LCSR). Two different setups have been used. One, established in this work, utilizing a correlation function with an on-shell B-Meson and one following the traditional calculation by taking the light meson on-shell. Both using light cone expansion in the respective on-shell mesons distribution amplitudes. While the first approach allows to calculate a whole bunch of phenomenologically interesting quantities by just changing Dirac-structures of the relevant currents it has the drawback that it does not have access to the well developed twist expansion of the latter. To incorporate higher Fock-state contributions the first models for three-particle distribution amplitudes of the B-Meson have been derived. α s -corrections remain out of the scope of this work. Nevertheless does a comparison with more sophisticated methods show an encouraging numerical agreement. In the second setup all known corrections especially the never verified α s -corrections to Twist three terms have been recalculated and a competitive result for the CKM-matrixelement vertical stroke V ub vertical

  10. Polarized lepton-nucleon scattering

    International Nuclear Information System (INIS)

    Hughes, E.

    1994-01-01

    The author provides a summary of the proposed and published statistical (systematic) uncertainties from the world experiments on nucleon spin structure function integrals. By the time these programs are complete, there will be a vast resource of data on nucleon spin structure functions. Each program has quite different experimental approaches regarding the beams, targets, and spectrometers thus ensuring systematically independent tests of the spin structure function measurements. Since the field of spin structure function measurements began, there has been a result appearing approximately every five years. With advances in polarized target technology and high polarization in virtually all of the lepton beams, results are now coming out each year; this is a true signature of the growth in the field. Hopefully, the experiments will provide a consistent picture of nucleon spin structure at their completion. In summary, there are still many open questions regarding the internal spin structure of the nucleon. Tests of QCD via the investigation of the Bjorken sum rule is a prime motivator for the field, and will continue with the next round of precision experiments. The question of the origin of spin is still a fundamental problem. Researchers hope is that high-energy probes using spin will shed light on this intriguing mystery, in addition to characterizing the spin structure of the nucleon

  11. Polarized lepton-nucleon scattering

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, E. [Stanford Univ., CA (United States)

    1994-12-01

    The author provides a summary of the proposed and published statistical (systematic) uncertainties from the world experiments on nucleon spin structure function integrals. By the time these programs are complete, there will be a vast resource of data on nucleon spin structure functions. Each program has quite different experimental approaches regarding the beams, targets, and spectrometers thus ensuring systematically independent tests of the spin structure function measurements. Since the field of spin structure function measurements began, there has been a result appearing approximately every five years. With advances in polarized target technology and high polarization in virtually all of the lepton beams, results are now coming out each year; this is a true signature of the growth in the field. Hopefully, the experiments will provide a consistent picture of nucleon spin structure at their completion. In summary, there are still many open questions regarding the internal spin structure of the nucleon. Tests of QCD via the investigation of the Bjorken sum rule is a prime motivator for the field, and will continue with the next round of precision experiments. The question of the origin of spin is still a fundamental problem. Researchers hope is that high-energy probes using spin will shed light on this intriguing mystery, in addition to characterizing the spin structure of the nucleon.

  12. p-wave pion production from nucleon-nucleon collisions

    International Nuclear Information System (INIS)

    Baru, V.; Epelbaum, E.; Haidenbauer, J.; Hanhart, C.; Kudryavtsev, A. E.; Lensky, V.; Meissner, U.-G.

    2009-01-01

    We investigate p-wave pion production in nucleon-nucleon collisions up to next-to-next-to-leading order in chiral effective field theory. In particular, we show that it is possible to describe simultaneously the p-wave amplitudes in the pn→ppπ - , pp→pnπ + , pp→dπ + channels by adjusting a single low-energy constant accompanying the short-range operator that is available at this order. This study provides a nontrivial test of the applicability of chiral effective field theory to reactions of the type NN→NNπ.

  13. Inequalities and bounds for nucleon-nucleon scattering

    International Nuclear Information System (INIS)

    Ramandurai, K.S.

    1979-08-01

    The objective of this work is to derive model-independent inequalities and bounds for nucleon-nucleon elastic scattering amplitudes based on well-established theoretical principles and symmetries. Two classes of methods are used: algebraic and variational. In the algebraic part, the author derives inequalities and bounds for NN amplitudes and observables using their mutual relations and x symmetries. In the variational part, he employs Lagrange's method of undetermined multipliers to evaluate the bounds. He tests the predictions of a sample of proposed phase shifts at three different energies using the results obtained

  14. The nucleon spin crisis bible

    Energy Technology Data Exchange (ETDEWEB)

    Close, F.E.

    1993-06-01

    When the new data on polarised lepton nucleon scattering are compared at the same value of Q{sup 2} and with a common set of assumptions, a consistent picture of the spin content of the nucleon begins to emerge. Higher order effects in O({alpha}{sub s}), higher twist effects, modern data on unpolarised structure functions and an updated value for F/D are all important in analysing the data. The detailed x dependences of the polarisation asymmetry in the valence quark region are shown to confirm 20 year old predictions of the quark model and I argue that these are an important ingredient in decoding the nucleon spin puzzle. (author).

  15. Picture book of nucleon--nucleon scattering: amplitudes, models, double- and triple-spin observables

    International Nuclear Information System (INIS)

    Field, R.D.; Stevens, P.R.

    1975-01-01

    A comprehensive study of nucleon-nucleon scattering is presented with particular emphasis on the underlying amplitude structure. The five complex NN amplitudes are determined as a function of energy and momentum transfer from existing pp, anti pp, and np elastic scattering data and np and anti pp CHEX data. Some constraints determined from meson-baryon fits are imposed. The resulting amplitudes are used to make predictions of forthcoming double- and triple-spin measurements, and are also compared with the model amplitudes of Kane and Seidl. In addition, the usefulness of transversity amplitudes in NN scattering is discussed, the status of our present knowledge concerning them is examined, and model predictions of these amplitudes are displayed. The paper is presented in a ''picture book'' form so that the reader can get a good overview of NN scattering by studying the figures and reading the tables and figure captions

  16. Compound-nuclear tests of time reversal invariance in the nucleon-nucleon interaction

    International Nuclear Information System (INIS)

    French, J.B.; Pandey, A.; Smith, J.

    1987-01-01

    The theory for the effects of time-reversal noninvariance (TRNI) in complex systems is reviewed. Applied to the compound-nuclear data for energy-level, width and cross-section fluctuations (the latter for detailed-balance pairs of reactions proceeding through the compound nucleus) this gives bounds on multiparticle TRNI Hamiltonian matrix elements. Using a fluctuation-free form of statistical spectroscopy the results are reduced to bounds on α, the relative magnitude of the TRNI nucleon-nucleon interaction. The level and width analyses for heavy nuclei gave α ≤ 2 x 10 -3 at high (∼99%) statistical confidence; preliminary calculations for detailed balance with 24 Mg(α,p) 27 Al and its inverse gives α ≤ 4 x 10 -3 at the same high confidence, but ≤0.2 x 10 -3 at 80% confidence. Suggestions are made about experiments which should yield sharper bounds. 28 refs., 1 tab

  17. Forms and factors of peer violence and victimisation

    OpenAIRE

    Dinić Bojana; Sokolovska Valentina; Milovanović Ilija; Oljača Milan

    2014-01-01

    The main aim of this study was to explore the latent structure of violence and victimisation based on the factor analysis of the Peer Violence and Victimisation Questionnaire (PVVQ), as well as to examine the correlates of violence and victimisation. The sample included 649 secondary school students (61.8% male) from the urban area. Besides the PVVQ, the Aggressiveness questionnaire AVDH was administered. Based on parallel analysis, three factors were extra...

  18. Relations between the simultaneous and sequential transfer of two nucleons

    International Nuclear Information System (INIS)

    Satchler, G.R.

    1982-01-01

    The transfer of two nucleons between projectile and target in a direct or peripheral reaction such as (p,t) or ( 16 O, 14 C) may occur in one-step or two-steps. These we refer to as simultaneous and sequential transfers, respectively. In the former, the interaction acts once and both nucleons are transferred. In the latter, the interaction acts once to transfer one nucleon, the system then propagates in one or more intermediate states and is followed by a second action of the interaction to transfer the second nucleon. This process may be symbolized for the examples as (p,d; d,t) and ( 16 O, 15 N; 15 N, 14 C), implying the intermediate formation of a deuteron or the nucleus 15 N. In terms of a perturbation theory expansion, such as the distorted-wave Born series, simultaneous transfer is possible in first order while sequential transfer requires second order. The nuclear forces are predominantly two-body in character; hence, in first-order only one of the two nucleons experiences an interaction. The possibility of finding that the other nucleon has also transferred arises only because its state within the projectile is not orthogonal to the state in the target into which it transfers. In the two-step process each nucleon is transferred under the direct influence of an interaction with the target. The one-step and two-step amplitudes are frequently comparable in magnitude for light-ion reactions while the two-step may dominate in reactions with heavy ions. Our purpose here is to gain some insight into the relationship between the two amplitudes by using a simple approximate form of the theory. For simplicity, we shall discuss a light-ion reaction and, to be specific, we choose the (t,p) reaction (or the inverse (p,t) reaction)

  19. Two neutron transfer form factor for the reaction 42Ca(p,t)40Ca

    International Nuclear Information System (INIS)

    Meyer, R.H.

    1978-01-01

    In an attempt to better interpret experimental data concerning the two-neutron pickup process 42 Ca(p,t) 40 Ca, a detailed study of the form factors associated with the reaction is carried out. A set of coupled integro-differential equations describing these form factors is derived, starting from a microscopic, model-independent Hamiltonian. These equations allow contributions to the form factors from hole terms as well as from the particle and so-called ''continuum'' states, which were previously studied. An approximate solution of the form factor equations is obtained by neglecting the coupling terms and expressing the form factor in terms of a set of Sturmian states. Form factors for the transition to the 40 Ca ground state (O 1 + ) are calculated using various sets of Sturmian states. The inclusion of hole states is found to have a major effect upon both the shape of the form factor and the size of the related cross section. Finally, a comparison is made between the O 1 + form factors calculated using Sturmian states and a O 1 + form factor obtained using Sturmian states and a O 1 + form factor obtained using the coexistence model. It is found that a form factor based on Sturmian particle and hole states is very similar to the form factor obtained from the coexistence model calculation

  20. The hyperon-nucleon interaction

    International Nuclear Information System (INIS)

    Haidenbauer, J.

    2007-01-01

    Results of two recent hyperon-nucleon interaction potentials, both developed by the Bonn-Juelich group, are presented that are derived either in the conventional meson-exchange picture or within leading order chiral effective field theory. The chiral potential consists of one-pseudoscalar-meson exchanges and non-derivative four-baryon contact terms. The most salient feature of the new meson-exchange hyperon-nucleon model is that the contributions in the scalar-isoscalar (σ) and vector-isovector (ρ) exchange channels are constrained by a microscopic model of correlated ππ and KK-bar exchange

  1. Nucleon transfer between heavy nuclei

    International Nuclear Information System (INIS)

    Von Oertzen, W.

    1984-02-01

    Nucleon transfer reactions between heavy nuclei are characterized by the classical behaviour of the scattering orbits. Thus semiclassical concepts are well suited for the description of these reactions. In the present contribution the characteristics of single and multinucleon transfer reactions at energies below and above the Coulomb barrier are shown for systems like Sn+Sn, Xe+U and Ni+Pb. The role of the pairing interaction in the transfer of nucleon pairs is illustrated. For strong transitions the coupling of channels and the absorption into more complicated channels is taken into account in a coupled channels calculation

  2. Three-Body Antikaon-Nucleon Systems

    Czech Academy of Sciences Publication Activity Database

    Shevchenko, Nina V.

    2017-01-01

    Roč. 58, č. 1 (2017), č. článku UNSP 6. ISSN 0177-7963 R&D Projects: GA ČR(CZ) GA15-04301S Institutional support: RVO:61389005 Keywords : three-body * antikaon-nucleon * K p interactions Subject RIV: BE - Theoretical Physics OBOR OECD: Atom ic, molecular and chemical physics (physics of atom s and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect) Impact factor: 0.877, year: 2016

  3. Induced Hyperon-Nucleon-Nucleon Interactions and the Hyperon Puzzle.

    Science.gov (United States)

    Wirth, Roland; Roth, Robert

    2016-10-28

    We present the first ab initio calculations for p-shell hypernuclei including hyperon-nucleon-nucleon (YNN) contributions induced by a similarity renormalization group transformation of the initial hyperon-nucleon interaction. The transformation including the YNN terms conserves the spectrum of the Hamiltonian while drastically improving model-space convergence of the importance-truncated no-core model, allowing a precise extraction of binding and excitation energies. Results using a hyperon-nucleon interaction at leading order in chiral effective field theory for lower- to mid-p-shell hypernuclei show a good reproduction of experimental excitation energies while hyperon separation energies are typically overestimated. The induced YNN contributions are strongly repulsive and we show that they are related to a decoupling of the Σ hyperons from the hypernuclear system, i.e., a suppression of the Λ-Σ conversion terms in the Hamiltonian. This is linked to the so-called hyperon puzzle in neutron-star physics and provides a basic mechanism for the explanation of strong ΛNN three-baryon forces.

  4. Color oscillations of nucleons in a nucleus

    International Nuclear Information System (INIS)

    Petrov, V.A.; Smirnov, A.Yu.

    1987-01-01

    Possibility of nucleus description as an object consisting of quarks and gluons is considered. A model of two-nucleon interaction in a nucleus is presented and analytical expressions for the nucleus nucleon ground state wave functions and also for nuclear nucleon structure functions are obtained. The carried out analysis shows that the suggested model permits to express the nucleus structure functions at quark level only by means of nucleon and Δ-isobaric degrees of freedom

  5. Recruitment of bloom-forming cyanobacteria and its driving factors ...

    African Journals Online (AJOL)

    Based on most of the literature, this paper reviewed the progress made in following aspects: cognition to cyanobacteria recruitment, various traps for studying cyanobacteria recruitment in lakes, recruitment patterns of some species of cyanobacteria, and the driving factors for recruitment. Additionally, perspective studies of ...

  6. On the nucleon renormalization in many nucleon problems due to pionic degrees of freedom

    International Nuclear Information System (INIS)

    Sauer, P.U.; Sawicki, M.; Furui, Sadataka.

    1985-01-01

    Conceptual problems of unified two-nucleon force models are discussed. The force models are based on the pion-nucleon vertex and attempt a description of the nucleon-nucleon interaction below and above pion threshold. The conceptual problems arise from the nucleon renormalization due to pionic degrees of freedom. Keeping channels with a single pion only no renormalization procedure can be given which is consistent in the one-nucleon and in the many-nucleon systems. The medium dependence of the one-pion exchange potential is illustrated. (author)

  7. Nucleon-nucleon scattering in the functional quantum theory of the non-linear spinor field

    International Nuclear Information System (INIS)

    Philipp, W.

    1975-01-01

    The nucleon-nucleon and nucleon-antinucleon scattering cross sections are calculated in the frame of the functional quantum field theory by means of two different approximation methods: averaging by integration of indefinite integrals and pulse averaging. The results for nucleon-nucleon scattering are compared with experimental data, with calculations using a modified functional scalar product and with results in first order perturbation theory (V-A-coupling). As for elastic nucleon-antinucleon scattering, the S matrix is investigated for crossing symmetry. Scattering of 'nucleons' of different mass results in different cross sections even in the lowest-order approximation. (BJ) [de

  8. Investigation of the nucleon-nucleon tensor force in three-nucleon system

    Energy Technology Data Exchange (ETDEWEB)

    Clajus, M.; Egun, P.M.; Gruebler, W.; Hautle, P. (Eidgenoessische Technische Hochschule, Zurich (Switzerland). Inst. fuer Mittelenergiephysik); Slaus, I. (Institut Rudjer Boskovic, Zagreb (Yugoslavia)); Vuaridel, B. (Michigan Univ., Ann Arbor (USA) Brookhaven National Lab., Upton, NY (USA)); Sperisen, F. (Indiana Univ., Bloomington (USA). Cyclotron Facility); Kretschmer, W.; Rauscher, A.; Schuster, W.; Weidmann, R.; Haller, M. (Erlangen-Nuernberg Univ., Erlangen (Germany, F.R.)); Bruno, M.; Cannata, F.; D' Agostino, M. (Istituto Nazionale di Fisica Nucleare, Bologna (Italy)); Witala, H.; Cornelius, T.; Gloeckle, W. (Bochum Univ. (Germany, F.R.)); Schmelzbach, P.A. (Paul Scherrer Inst., Villigen (Switzerland))

    1990-08-16

    Proton-deuteron elastic scattering has been investigated at E{sub p}=22.7 MeV by comparison of rigorous Faddeev calculations with experimental results. The observable most sensitive to the tensor force is the nucleon-nucleon polarization transfer coefficient K{sub y}sup(y'). The new angular distribution of K{sub y}sup(y') clearly favours the tensor force of the Bonn A potential, which is weaker than the one of the Paris potential. (orig.).

  9. Chiral perturbation theory with nucleons

    International Nuclear Information System (INIS)

    Meissner, U.G.

    1991-09-01

    I review the constraints posed on the interactions of pions, nucleons and photons by the spontaneously broken chiral symmetry of QCD. The framework to perform these calculations, chiral perturbation theory, is briefly discussed in the meson sector. The method is a simultaneous expansion of the Greens functions in powers of external moments and quark masses around the massless case, the chiral limit. To perform this expansion, use is made of a phenomenological Lagrangian which encodes the Ward-identities and pertinent symmetries of QCD. The concept of chiral power counting is introduced. The main part of the lectures of consists in describing how to include baryons (nucleons) and how the chiral structure is modified by the fact that the nucleon mass in the chiral limit does not vanish. Particular emphasis is put on working out applications to show the strengths and limitations of the methods. Some processes which are discussed are threshold photopion production, low-energy compton scattering off nucleons, πN scattering and the σ-term. The implications of the broken chiral symmetry on the nuclear forces are briefly described. An alternative approach, in which the baryons are treated as very heavy fields, is touched upon

  10. Soudan 2 nucleon decay experiment

    International Nuclear Information System (INIS)

    Thron, J.L.

    1986-01-01

    The Soudan 2 nucleon decay experiment consists of a 1.1 Kton fine grained iron tracking calorimeter. It has a very isotropic detection structure which along with its flexible trigger will allow detection of multiparticle and neutrino proton decay modes. The detector has now entered its construction stage

  11. Nucleon structure from lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Dinter, Simon

    2012-11-13

    In this thesis we compute within lattice QCD observables related to the structure of the nucleon. One part of this thesis is concerned with moments of parton distribution functions (PDFs). Those moments are essential elements for the understanding of nucleon structure and can be extracted from a global analysis of deep inelastic scattering experiments. On the theoretical side they can be computed non-perturbatively by means of lattice QCD. However, since the time lattice calculations of moments of PDFs are available, there is a tension between these lattice calculations and the results from a global analysis of experimental data. We examine whether systematic effects are responsible for this tension, and study particularly intensively the effects of excited states by a dedicated high precision computation. Moreover, we carry out a first computation with four dynamical flavors. Another aspect of this thesis is a feasibility study of a lattice QCD computation of the scalar quark content of the nucleon, which is an important element in the cross-section of a heavy particle with the nucleon mediated by a scalar particle (e.g. Higgs particle) and can therefore have an impact on Dark Matter searches. Existing lattice QCD calculations of this quantity usually have a large error and thus a low significance for phenomenological applications. We use a variance-reduction technique for quark-disconnected diagrams to obtain a precise result. Furthermore, we introduce a new stochastic method for the calculation of connected 3-point correlation functions, which are needed to compute nucleon structure observables, as an alternative to the usual sequential propagator method. In an explorative study we check whether this new method is competitive to the standard one. We use Wilson twisted mass fermions at maximal twist in all our calculations, such that all observables considered here have only O(a{sup 2}) discretization effects.

  12. Nucleon structure from lattice QCD

    International Nuclear Information System (INIS)

    Dinter, Simon

    2012-01-01

    In this thesis we compute within lattice QCD observables related to the structure of the nucleon. One part of this thesis is concerned with moments of parton distribution functions (PDFs). Those moments are essential elements for the understanding of nucleon structure and can be extracted from a global analysis of deep inelastic scattering experiments. On the theoretical side they can be computed non-perturbatively by means of lattice QCD. However, since the time lattice calculations of moments of PDFs are available, there is a tension between these lattice calculations and the results from a global analysis of experimental data. We examine whether systematic effects are responsible for this tension, and study particularly intensively the effects of excited states by a dedicated high precision computation. Moreover, we carry out a first computation with four dynamical flavors. Another aspect of this thesis is a feasibility study of a lattice QCD computation of the scalar quark content of the nucleon, which is an important element in the cross-section of a heavy particle with the nucleon mediated by a scalar particle (e.g. Higgs particle) and can therefore have an impact on Dark Matter searches. Existing lattice QCD calculations of this quantity usually have a large error and thus a low significance for phenomenological applications. We use a variance-reduction technique for quark-disconnected diagrams to obtain a precise result. Furthermore, we introduce a new stochastic method for the calculation of connected 3-point correlation functions, which are needed to compute nucleon structure observables, as an alternative to the usual sequential propagator method. In an explorative study we check whether this new method is competitive to the standard one. We use Wilson twisted mass fermions at maximal twist in all our calculations, such that all observables considered here have only O(a 2 ) discretization effects.

  13. Correlator of nucleon currents in finite temperature pion gas

    International Nuclear Information System (INIS)

    Eletsky, V.L.

    1990-01-01

    A retarded correlator of two currents with nucleon quantum numbers is calculated for finite temperature T π in the chiral limit. It is shown that for euclidean momenta the leading one-loop corrections arise from direct interaction of thermal pions with the currents. A dispersive representation for the correlator shows that this interaction smears the nucleon pole over a frequency interval with width ≅ T. This interaction does not change the exponential fall-off of the correlator in euclidean space but gives an O(T 2 /F 2 π ) contribution to the pre-exponential factor. (orig.)

  14. Fusion reactor nucleonics: status and needs

    International Nuclear Information System (INIS)

    Lee, J.D.; Engholm, B.A.; Dudziak, D.J.; Haight, R.C.

    1980-01-01

    The national fusion technology effort has made a good start at addressing the basic nucleonics issues, but only a start. No fundamental nucleonics issues are seen as insurmountable barriers to the development of commercial fusion power. To date the fusion nucleonics effort has relied almost exclusively on other programs for nuclear data and codes. But as we progress through and beyond ETF type design studies the fusion program will need to support a broad based nucleonics effort including code development, sensitivity studies, integral experiments, data acquisition etc. It is clear that nucleonics issues are extremely important to fusion development and that we have only scratched the surface

  15. Why do nucleons cling. [Meson theory

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, N [Hindu Coll., Delhi (India)

    1976-10-01

    The nature of the forces which bind nucleons together within the nucleus of an atom have been discussed in detail. The characteristic properties of the nucleons, such as spin, interaction range etc. and the meson theory of nuclear forces are described. The present researches indicate that the force between two nucleons in a many-nucleon system is not very different from the force between two free nucleons. Researches related to the origin of nuclear forces based on the meson theory are now mainly concerned with the role played by the heavier mesons and the two pion exchanges in the middle region around 0.7 fm. (10/sup -13/ cm).

  16. Nucleon-nucleon correlations and the Coulomb Displacement Energy

    International Nuclear Information System (INIS)

    Van Neck, D.; Waroquier, M.; Heyde, K.

    1997-01-01

    Coulomb Displacement Energies (CDE) are accurately known for a wide range of nuclear masses. Assuming isospin independence in the nuclear Hamiltonian, the CDE can in first instance be interpreted as the Coulomb interaction energy between the density of the excess neutrons and the proton charge density in the parent nucleus. However, when using reasonable mean-field models for the proton and neutron density one underestimates the CDE by about 8% on average. This discrepancy is known as the Nolen-Schiffer anomaly, and various explanations have been put forward in the past. In this work the role of nucleon-nucleon correlations are re-examined. Calculations for the pair density functions in various nuclei are presented. Preliminary results suggest that the modifications to the mean-field pair density functions cause an enhancement of the CDE in the order of 4%, which is rather A-independent. (author)

  17. Leading order relativistic chiral nucleon-nucleon interaction

    Science.gov (United States)

    Ren, Xiu-Lei; Li, Kai-Wen; Geng, Li-Sheng; Long, Bingwei; Ring, Peter; Meng, Jie

    2018-01-01

    Motivated by the successes of relativistic theories in studies of atomic/molecular and nuclear systems and the need for a relativistic chiral force in relativistic nuclear structure studies, we explore a new relativistic scheme to construct the nucleon-nucleon interaction in the framework of covariant chiral effective field theory. The chiral interaction is formulated up to leading order with covariant power counting and a Lorentz invariant chiral Lagrangian. We find that the relativistic scheme induces all six spin operators needed to describe the nuclear force. A detailed investigation of the partial wave potentials shows a better description of the {}1S0 and {}3P0 phase shifts than the leading order Weinberg approach, and similar to that of the next-to-leading order Weinberg approach. For the other partial waves with angular momenta J≥slant 1, the relativistic results are almost the same as their leading order non-relativistic counterparts. )

  18. Coherent generation of mesons in nucleon-nucleon interactions

    CERN Document Server

    Takibaev, Z S; Zaitsev, K G

    1974-01-01

    The authors have at an experiment conducted at CERN searched for events of 0 four-prong type which satisfy coherent pion production. The 2-meter hydrogen bubble chamber at CERN was bombarded by 19.07 GeV protons. The cross-section for four final state particle events was 13.04 mb. the cross-section for the process pp to pp pi /sup +/ pi /sup -/ was 1.1 mb and the cross section for coherent pion production was found to vary according to the criteria used between 0.044 mb. and 0.2 mb. Some theoretical work is given using the Glauber formalism in which it is assumed that the nucleon behaves like a nucleus and contains sub-particles. From the theory and data an upper limit of 10 is put on the number of subparticles in the nucleon. (9 refs).

  19. Nucleon–nucleon scattering in the light of supersymmetric quantum ...

    Indian Academy of Sciences (India)

    2014-05-02

    May 2, 2014 ... Abstract. By exploiting supersymmetry-inspired factorization method together with a judiciously chosen deuteron ground-state wave function, approximate higher partial wave nucleon–nucleon potentials are generated. In this context, a minor modification is also introduced to the gener- ated potentials.

  20. Two-body Dirac equations for nucleon-nucleon scattering

    International Nuclear Information System (INIS)

    Liu Bin; Crater, Horace

    2003-01-01

    We investigate the nucleon-nucleon interaction by using the meson exchange model and the two-body Dirac equations of constraint dynamics. This approach to the two-body problem has been successfully tested for QED and QCD relativistic bound states. An important question we wish to address is whether or not the two-body nucleon-nucleon scattering problem can be reasonably described in this approach as well. This test involves a number of related problems. First we must reduce our two-body Dirac equations exactly to a Schroedinger-like equation in such a way that allows us to use techniques to solve them already developed for Schroedinger-like systems in nonrelativistic quantum mechanics. Related to this, we present a new derivation of Calogero's variable phase shift differential equation for coupled Schroedinger-like equations. Then we determine if the use of nine meson exchanges in our equations gives a reasonable fit to the experimental scattering phase shifts for n-p scattering. The data involve seven angular momentum states including the singlet states 1 S 0 , 1 P 1 , 1 D 2 and the triplet states 3 P 0 , 3 P 1 , 3 S 1 , 3 D 1 . Two models that we have tested give us a fairly good fit. The parameters obtained by fitting the n-p experimental scattering phase shift give a fairly good prediction for most of the p-p experimental scattering phase shifts examined (for the singlet states 1 S 0 , 1 D 2 and triplet states 3 P 0 , 3 P 1 ). Thus the two-body Dirac equations of constraint dynamics present us with a fit that encourages the exploration of a more realistic model. We outline generalizations of the meson exchange model for invariant potentials that may possibly improve the fit