WorldWideScience

Sample records for nuclei photoneutron cross

  1. Atlas of photoneutron cross sections obtained with monoenergetic photons

    International Nuclear Information System (INIS)

    Dietrich, S.S.; Berman, B.L.

    1988-01-01

    Photoneutron cross-section and integrated cross-section data obtained with monoenergetic photons are presented in a uniform format. All of the measured partial photoneutron cross sections, the total photoneutron cross section, and the photoneutron yield cross section are plotted as functions of the incident photon energy, as are the integrated photoneutron cross sections and their first and second moments. The values of the integrated cross sections and the moments of the integrated total cross section up to the highest photon energy for which they were measured are tabulated, as are the parameters of Lorentz curves fitted to the total photoneutron cross-section data for medium and heavy nuclei (A>50). This compilation is current as of June 1987. copyright 1988 Academic Press, Inc

  2. New approach to analyzing and evaluating cross sections for partial photoneutron reactions

    International Nuclear Information System (INIS)

    Varlamov, V. V.; Ishkhanov, B. S.; Orlin, V. N.

    2012-01-01

    The presence of substantial systematic discrepancies between the results of different experiments devoted to determining cross sections for partial photoneutron reactions—first of all, (γ, n), (γ, 2n), and (γ, 3n) reactions—is a strong motivation for studying the reliability and authenticity of these data and for developing methods for taking into account and removing the discrepancies in question. In order to solve the first problem, we introduce objective absolute criteria involving transitional photoneutron-multiplicity functions F 1 , F 2 , F 3 , …; by definition, their values cannot exceed 1.0, 0.5, 0.33, …, respectively. With the aim of solving the second problem, we propose a new experimental-theoretical approach. In this approach, reaction cross sections are evaluated by simultaneously employing experimental data on the cross section for the total photoneutron yield, σ expt (γ, xn) = σ expt (γ, n) + 2σ expt (γ, 2n) + 3σ expt (γ, 3n) + …, which are free from drawbacks plaguing experimental methods for sorting neutrons in multiplicity, and the results obtained by calculating the functions F theor 1 , F theor 2 , F theor 3 , … on the basis of the modern model of photonuclear reactions. The reliability and authenticity of data on the cross sections for (γ, n), (γ, 2n), and (γ, 3n) partial reactions—σ eval (γ, in) = F i theor σ expt (γ, xn)—were evaluated for the 90 Zr, 115 In, 112,114,116,117,118,119,120,122,124 Sn, 159 Tb, and 197 Au nuclei.

  3. Cross sections of photoneutron reactions on /sup 64/,/sup 66/,/sup 68/n, /sup 70/,/sup 72/,/sup 74/,/sup 76/Ge, /sup 76/,/sup 78/,/sup 80/,/sup 82/Se

    Energy Technology Data Exchange (ETDEWEB)

    Goryachev, A M; Zalesnyi, G N [Saratovskii Gosudarstvennyi Univ. (USSR); Tulupov, B A [AN SSSR, Moscow. Inst. Yadernykh Issledovanii

    1975-01-01

    Photoneutron cross-sections for /sup 64/,/sup 66/,/sup 68/Zn, /sup 70/,/sup 72/,/sup 74/,/sup 76/Ge, and /sup 76/,/sup 78/,/sup 80/,/sup 82/Se nuclei from the threshold energy to 24 MeV with 0.2 MeV step have been measured. Results of the experiment are compared to predictions of the collective dynamical model of a giant resonance.

  4. Photoneutron cross sections for {sup 59}Co. Systematic uncertainties of data from various experiments

    Energy Technology Data Exchange (ETDEWEB)

    Varlamov, V.V. [Lomonosov Moscow State University, Skobeltsyn Institute of Nuclear Physics, Moscow (Russian Federation); Davydov, A.I. [Lomonosov Moscow State University, Physics Faculty, Moscow (Russian Federation); Ishkhanov, B.S. [Lomonosov Moscow State University, Skobeltsyn Institute of Nuclear Physics, Moscow (Russian Federation); Lomonosov Moscow State University, Physics Faculty, Moscow (Russian Federation)

    2017-09-15

    Data on partial photoneutron reaction cross sections (γ, 1n), (γ, 2n), and (γ, 3n) for {sup 59}Co obtained in two experiments carried out at Livermore (USA) were analyzed. The sources of radiation in both experiments were the monoenergetic photon beams from the annihilation in flight of relativistic positrons. The total yield was sorted by the neutron multiplicity, taking into account the difference in the neutron energy spectra for different multiplicity. The two quoted studies differ in the method of determining the neutron. Significant systematic disagreements between the results of the two experiments exist. They are considered to be caused by large systematic uncertainties in partial cross sections, since they do not satisfy physical criteria for reliability of the data. To obtain reliable cross sections of partial and total photoneutron reactions a new method combining experimental data and theoretical evaluation was used. It is based on the experimental neutron yield cross section which is rather independent of neutron multiplicity and the transitional neutron multiplicity functions of the combined photonucleon reaction model (CPNRM). The model transitional multiplicity functions were used for the decomposition of the neutron yield cross section into the contributions of partial reactions. The results of the new evaluation noticeably differ from the partial cross sections obtained in the two experimental studies are under discussion. (orig.)

  5. Isotopic dependence of photoneutron cross sections around Strontium (Z=38) and Cesium (Z=55) nuclei

    International Nuclear Information System (INIS)

    Nakamura, T.; Uno, Y.; Yamadera, A.; Kase, T.

    1992-01-01

    We measured the average cross sections of (γ,n) reactions for 84 Sr, 86 Sr, 88 Sr, 85 Rb, 87 Rb, 98 Ru and 104 Ru isotopes in giant resonance region (9 to 25 MeV) using Bremsstrahlung radiation of 60 MeV maximum energy. We investigated the isotopic dependence of the average (γ,n) cross sections in giant resonance region from our experimental data and those estimated from other experimental data for Ge, Se, Zr, Mo, Sn, Te, Ce, Nd and Sm isotopes. As a result, we found that the average cross section data become highest for nuclei of neutron magic number of N = 50 and 82 except for Mo nucleus

  6. 94 Mo(γ,n) and 90Zr(γ,n) cross-section measurements towards understanding the origin of p-nuclei

    Science.gov (United States)

    Meekins, E.; Banu, A.; Karwowski, H.; Silano, J.; Zimmerman, W.; Muller, J.; Rich, G.; Bhike, M.; Tornow, W.; McClesky, M.; Travaglio, C.

    2014-09-01

    The nucleosynthesis beyond iron of the rarest stable isotopes in the cosmos, the so-called p-nuclei, is one of the forefront topics in nuclear astrophysics. Recently, a stellar source was found that, for the first time, was able to produce both light and heavy p-nuclei almost at the same level as 56Fe, including the most debated 92,94Mo and 96,98Ru; it was also found that there is an important contribution from the p-process nucleosynthesis to the neutron magic nucleus 90Zr. We focus here on constraining the origin of p-nuclei through nuclear physics by studying two key astrophysical photoneutron reaction cross sections for 94Mo(γ,n) and 90Zr(γ,n). Their energy dependencies were measured using quasi-monochromatic photon beams from Duke University's High Intensity Gamma-ray Source facility at the respective neutron threshold energies up to 18 MeV. Preliminary results of these experimental cross sections will be presented along with their comparison to predictions by a statistical model based on the Hauser-Feshbach formalism implemented in codes like TALYS and SMARAGD. The nucleosynthesis beyond iron of the rarest stable isotopes in the cosmos, the so-called p-nuclei, is one of the forefront topics in nuclear astrophysics. Recently, a stellar source was found that, for the first time, was able to produce both light and heavy p-nuclei almost at the same level as 56Fe, including the most debated 92,94Mo and 96,98Ru; it was also found that there is an important contribution from the p-process nucleosynthesis to the neutron magic nucleus 90Zr. We focus here on constraining the origin of p-nuclei through nuclear physics by studying two key astrophysical photoneutron reaction cross sections for 94Mo(γ,n) and 90Zr(γ,n). Their energy dependencies were measured using quasi-monochromatic photon beams from Duke University's High Intensity Gamma-ray Source facility at the respective neutron threshold energies up to 18 MeV. Preliminary results of these experimental cross

  7. Low level photoneutron detection equipment

    International Nuclear Information System (INIS)

    Ji Changsong; Zhang Yuqin; Li Yuansui

    1991-01-01

    A low level photoneutron detection equipment has been developed. The photoneutrons produced by interaction of 226 Ra gamma quanta and deutron (D) target are detected with n-n discrimination detector made up of 3 He proportional counter array. The D-content information in the target can be obtained from the measured photoneutron counts. The equipment developed is mainly used for nondestructive D-content measurement of D-devices

  8. Setup and taking into operation of a photoneutron source; Aufbau und Inbetriebnahme einer Photoneutronenquelle

    Energy Technology Data Exchange (ETDEWEB)

    Greschner, Martin

    2013-07-01

    The Institute for Nuclear and Particle Physics at the Technische Universitaet Dresden (TUD) has build a neutron physics laboratory at Forschungszentrum Dresden-Rossendorf (FZD) to investigate nuclear processes in materials. The experiments are focused on materials relevant to nuclear fusion. The laboratory is equipped with three intensive neutron sources. The first is a 14 MeV monochromatic neutron source based on the DT reaction (owned by TUD); the other two are continuous and pulsed white photoneutron sources based on (γ,xn) reactions. One pulsed photoneutron source is realized by FZD in cooperation with the TUD. The continuous photoneutron source utilises a tungsten radiator (Tungsten Photoneutron Source) to produce neutrons with a wide energy spectra. The TPNS uses the ELBE-accelerator as a source of electrons for neutron production. This process involves an intermediate step, where slowed down electrons produce bremsstrahlung (γ-rays) absorbed by tungsten nuclei. Consecutively, the excited nuclei emit neutrons. The neutron flux of the photoneutron source is five orders of magnitude higher than the flux of the DT neutron sources with appropriate moderation. The neutron spectrum of TPNS can be modified by moderators, in such a way that the spectrum is comparable to that in the first wall of a Tokamak-Reactor. That allows investigations with the typical neutron spectrum of the fusion reactor. The technical solution, initial operation and the first experiment are described in this work. The neutron source is, in particular, dedicated to quantitative investigations in fusion neutronics. A fusion reactor produces radioactive isotopes as a nuclear waste. The main activity is accumulated in the structural materials. Carefully selected structural materials can significantly minimize the activity and thereby the amount of nuclear waste. The purpose of this project is to find constructional materials with half-lives shorter than several years, which can be recycled

  9. Neutron total cross section measurements of gold and tantalum at the nELBE photoneutron source

    CERN Document Server

    Hannaske, Roland; Beyer, Roland; Junghans, Arnd; Bemmerer, Daniel; Birgersson, Evert; Ferrari, Anna; Grosse, Eckart; Kempe, Mathias; Kögler, Toni; Marta, Michele; Massarczyk, Ralph; Matic, Andrija; Schramm, Georg; Schwengner, Ronald; Wagner, Andreas

    2014-01-01

    Neutron total cross sections of 197 Au and nat Ta have been measured at the nELBE photoneutron source in the energy range from 0.1 - 10 MeV with a statistical uncertainty of up to 2 % and a total systematic uncertainty of 1 %. This facility is optimized for the fast neutron energy range and combines an excellent t ime structure of the neutron pulses (electron bunch width 5 ps) with a short flight path of 7 m. Because of the low instantaneous neutron flux transmission measurements of neutron total cross sections are possible, that exhibit very different beam and back ground conditions than found at other neutron sources.

  10. Photoneutron multiplicities of preactinide nuclei at energies above the pion threshold

    International Nuclear Information System (INIS)

    Arruda-Neto, J.D.T.; Simionatto, S.; Likhachev, V.P.; Garcia, F.; Mesa, J.

    1998-01-01

    The average photoneutron multiplicities anti ν of Au, Ta and 182 W were deduced from their previously measured excitation energies anti E x , from 160 to 250 MeV. A combined analysis of these data and those measured at Saclay up to 140 MeV allowed the extraction of information on anti E x at the ''pure evaporation'' and quasideuteron energy regions. A theoretical approach for the study of anti ν above 140 MeV, which incorporates photopion reabsorption processes by two-body, was proposed, allowing a tentative delineation of the pion mean free path in the nucleus. (orig.)

  11. A photoneutron production option for MCNP4A

    International Nuclear Information System (INIS)

    Gallmeier, F.X.

    1996-01-01

    A photoneutron production option was implemented in the MCNP4A code, mainly to supply a tool for reactor shielding calculations in beryllium and heavy water environments of complicated three dimensional geometries. Subroutines were developed to calculate the probability of the photoneutron production at the photon collision sites and the energy and flight direction of the created photoneutrons with the help of user supplied data. These subroutines are accessed through subroutine colidp which processes the photon collisions

  12. Measurement of photonuclear cross sections from 30 to 140 MeV for intermediate and heavy mass nuclei (Sn, Ce, Ta, Pb and U)

    International Nuclear Information System (INIS)

    Lepretre, A.

    1982-06-01

    The total photonuclear absorption cross section for Sn, Ce, Ta, Pb and U has been studied from 25 to 140 MeV using a continuously variable monochromatic photon beam obtained from the annihilation in flight of monoenergetic positrons. The basic experimental results are a set of data giving sums of inclusive multiple photoneutron production cross sections of the form σsup(j) (Esub(γ) = Σsub(i=j)σ(γ,in) for neutron multiplicities ranging from j=1 to 12. From these data the total photonuclear absorption cross section σ(tot : Esub(γ)) has been deduced. It is concluded that Levinger's modified quasi-deuteron model describes the total cross sections reasonably well. When these data are combined with lower energy data and integrated to 140 MeV they indicate the need for an enhancement factor K for the Thomas-Reiche-Kuhn sum rule of 0.76+-0.10. No evidence was found that would indicate an A-dependence for the enhancement factor. From event-by-event records of observed photoneutron multiplicities it was also possible to determine the mean number of photoneutrons, antiν, for each photon energy and the widths W of the multiplicities distributions. From these measurements one also obtains the cross section for the formation of a compound nucleus state excited with the full energy of the absorbed photon [fr

  13. Photo-neutron cross sections for unstable neutron-rich oxygen isotopes

    International Nuclear Information System (INIS)

    Leistenschneider, A.; Aumann, T.; Boretzky, K.

    2001-05-01

    The dipole response of stable and unstable neutron-rich oxygen nuclei of masses A = 17 to A = 22 has been investigated experimentally utilizing electromagnetic excitation in heavy-ion collisions at beam energies around 600 MeV/nucleon. A kinematically complete measurement of the neutron decay channel in inelastic scattering of the secondary beam projectiles from a Pb target was performed. Differential electromagnetic excitation cross sections dσ/dE were derived up to 30 MeV excitation energy. In contrast to stable nuclei, the deduced dipole strength distribution appears to be strongly fragmented and systematically exhibits a considerable fraction of low-lying strength, exhausting up to 12% of the energy-weighted dipole sum rule at excitation energies below 15 MeV. (orig.)

  14. NAA using the photoneutrons of a Linac as a neutron source

    International Nuclear Information System (INIS)

    Rivera P, E.; De Leon M, H. A.; Hernandez D, V. M.; Vega C, H. R.; Soto B, T.; Gallego, E.; Lorente, A.

    2012-10-01

    Linear accelerators working above 8 MV produce photoneutrons that represent a radiological risk in the patient and hospital staff. In this work a moderator has been designed in the aim to use the photoneutron field to perform neutron activation analysis (NAA) of small samples. The moderator has been designed using Monte Carlo methods, here the photoneutron spectrum is modified by the moderator having the maximum thermal neutron flux in the moderator cavity where the sample to be analyzed is located. (Author)

  15. Polarization of photoneutrons from the threshold region of 208Pb

    International Nuclear Information System (INIS)

    Holt, R.J.; Jackson, H.E.

    1975-01-01

    In order to determine the parities of several resonances in 208 Pb, the polarization of photoneutrons from the 208 Pb(γ,n(pol)) 207 Pb reaction was measured. This represents the first measurement of the polarization of photoneutrons from resonances near threshold. The observations are tabulated. (SDF)

  16. Calculations of the giant-dipole-resonance photoneutrons using a coupled EGS4-morse code

    International Nuclear Information System (INIS)

    Liu, J.C.; Nelson, W.R.; Kase, K.R.; Mao, X.S.

    1995-10-01

    The production and transport of the photoneutrons from the giant-dipoleresonance reaction have been implemented in a coupled EGS4-MORSE code. The total neutron yield (including both the direct neutron and evaporation neutron components) is calculated by folding the photoneutron yield cross sections with the photon track length distribution in the target. Empirical algorithms based on the measurements have been developed to estimate the fraction and energy of the direct neutron component for each photon. The statistical theory in the EVAP4 code, incorporated as a MORSE subroutine, is used to determine the energies of the evaporation neutrons. These represent major improvements over other calculations that assumed no direct neutrons, a constant fraction of direct neutrons, monoenergetic direct neutron, or a constant nuclear temperature for the evaporation neutrons. It was also assumed that the slow neutrons ( 2 θ, which have a peak emission at 900. Comparisons between the calculated and the measured photoneutron results (spectra of the direct, evaporation and total neutrons; nuclear temperatures; direct neutron fractions) for materials of lead, tungsten, tantalum and copper have been made. The results show that the empirical algorithms, albeit simple, can produce reasonable results over the interested photon energy range

  17. On the threshold sensitivity of low background photoneutron systems

    International Nuclear Information System (INIS)

    Kazakevich, G.M.; Ponomarchuk, V.A.; Filippov, E.M.

    1973-01-01

    A mathematical substantiation is given of determining the sensitivity threshold for a number of photoneutron devices used in practice (Berill-2, Berill-4 etc.). It is shown that, considering various effects and a real time of measurements, the sensitivity threshold of the photoneutron devices waries within the range of 1.3x10 -3 % (Berill-3) to 2.2x10 -5 %

  18. The analysis and evaluation by the method of reduction of total photoneutron reaction cross sections in the range of giant dipole resonance

    International Nuclear Information System (INIS)

    Varlamov, V.V.; Efimkin, N.G.; Ishkhanov, B.S.; Sapunenko, V.V.; Stepanov, M.E.

    1993-01-01

    The method based on the method of reduction is proposed for the evaluation of photonuclear reaction cross sections have been obtained at significant systematic uncertainties (different apparatus functions, calibration and normalization uncertainties). The evaluation method consists of using the real apparatus function (photon spectrum) of each individual experiment to reduce the data to a representation generated by an apparatus function of better quality. The task is to find the most reasonably achievable monoenergetic representation (MRAMR) of the information about cross section contained in different experiment observables and to take into account the experimental uncertainties of calibration and normalization procedures. The method was used to obtain the evaluated total photoneutron (γ, xn) reaction cross sections for 16 O, 28 Si, nat Cu, 141 Pr, and 208 Pb are presented. 79 refs., 19 figs., 6 tabs

  19. Optimization studies of photo-neutron production in high-Z metallic ...

    Indian Academy of Sciences (India)

    Monte Carlo calculations have been performed using MCNP code to study the optimization of photo-neutron yield for different electron beam energies impinging on Pb, W and Ta cylindrical targets of varying thickness. It is noticed that photo-neutron yield can be increased for electron beam energies ≥ 100 MeV for ...

  20. Photoneutrons from medical linear accelerators--radiobiological measurements and risk estimates

    International Nuclear Information System (INIS)

    Hall, Eric J.; Martin, Stewart G.; Amols, Howard; Hei, Tom K.

    1995-01-01

    Purpose: To assess the oncogenic potential of the photoneutrons produced by high energy medical linear accelerators. Methods and Materials: An established line of cells of rodent origin (C 3 H 10T1/2) was used to assess the oncogenic potential of the radiation dose received in the breast of an anthropomorphic 'randoman' phanton, while the cervix received a dose of 70 Gy. Experiments were performed at 6 MV, below the threshold for the production of photoneutrons, and at 20 MV where the dose includes about 0.01 Gy of photoneutrons as well as scattered x-rays. Results: A significantly higher transformation incidence was observed for the 20-MV machine, consistent with the measured neutron dose of about 0.01 Gy and a quality factor of 20. Conclusion: An estimate can be made of the additional deaths from second malignancies that might result from the photoneutrons generated by higher energy linear accelerators (Linacs), which must be offset against the possible improvements in survival that might result from the higher tumor doses made possible by the increased percentage depth doses

  1. Monitoring of MNSR operation by measuring subcritical photoneutron flux

    International Nuclear Information System (INIS)

    Haddad, Kh.; Alsomel, N.

    2011-01-01

    Passive nondestructive assay methods are used to monitor the reactor's operation. It is required for nuclear regulatory, calculation validation and safeguards purposes. So, it plays a vital role in the safety and security of the nuclear plants. The possibility of MNSR operation monitoring by measuring the subcritical state photoneutron flux were investigated in this work. The photoneutron flux is induced by the fuels hard gamma radiation in the beryllium reflector. Theoretical formulation and experimental tests were performed. The results show that within a specified cooling time range, the photoneutron flux is induced by a single dominant hard gamma emitter such as 117 Cd (activation product) and 140 Ba ( 140 La fission product). This phenomenon was utilized to monitor the cooling time and the operation neutron flux during the last campaign. Thus a passive nondestructive assay method is proposed with regard to the reactor operation's monitoring.

  2. The simulation of resonance photoneutron produced by dragon-I

    International Nuclear Information System (INIS)

    Xiang Yanjun; Ma Jingfang

    2010-01-01

    The temperature measurement using neutron resonance spectroscopy has many advantages such as non-immerging, inside measurement and local temperature distribution measurement, but the deficiency of high intensity pulsed neutron source limits it's application.In order to study the feasibility of Dragon-I as the pulsed neutron source of temperature measurement, the photoneutron characteristic had been simulated by MCNP5, the photoneutron yield is 1.34 x 10 11 per electron pulse, pulse width is 90ns. the yield is as high as 7.47 x 10 12 per electron pulse when 8cm thick U target had been used, which is only one magnitude lower than the yield of spallation source. the moderation of photoneutron had been simulated using some moderator, the results displayed Dragon-I can be a high intensity,narrow pulse neutron source, it's necessary to study further about it's application to temperature measurement using neutron resonance spectroscopy. (authors)

  3. Sensitization of the analytical methods for photoneutron calculations to the wall concrete composition in radiation therapy

    International Nuclear Information System (INIS)

    Ghiasi, Hosein; Mesbahi, Asghar

    2012-01-01

    The effect of wall material on photoneutron production in radiation therapy rooms was studied using Monte Carlo (MC) simulations. An analytical formula was proposed to take into account the concrete composition in photoneutron dose calculations. Using the MCNPX MC code, the 18 MV photon beam of the Varian Clinac 2100 and a typical treatment room with concrete compositions according to report No. 144 of National Council of Radiation Protection (NCRP) were simulated. Number of room produced photoneutrons per Gray of X-ray at the isocenter was determined for different types of concrete and named as “Q W ”. This new factor was inserted in the used formula for photoneutron fluence calculations at the inner entrance of maze. The photoneutron fluence was calculated using new proposed formula at the inner entrance of maze for all studied concretes. The difference between conventional and proposed equations varied from 11% to 46% for studied concretes. It was found that room produced photoneutrons could be significant for high density concretes. Additionally, applying the new proposed formula can consider the effect of wall material composition on the photoneutron production in high energy radiation therapy rooms. Further studies to confirm the accuracy of newly developed method is recommended.

  4. Photoneutron cross sections measurements in 9Be, 13C e 17O with thermal neutron capture gamma-rays

    International Nuclear Information System (INIS)

    Semmler, Renato

    2006-01-01

    Photoneutron cross sections measurements of 9 Be, 13 C and 17 O have been obtained in the energy interval between 1,6 and 10,8 MeV, using neutron capture gamma-rays with high resolution in energy (3 a 21 eV), produced by 21 target materials, placed inside a tangential beam port, near the core of the IPEN/CNEN-SP IEA-R1 (5 MW) research reactor. The samples have been irradiated inside a 4π geometry neutron detector system 'Long Counter', 520,5 cm away from the capture target. The capture gamma-ray flux was determined by means of the analysis of the gamma spectrum obtained by using a Ge(Li) solid-state detector (EG and G ORTEC, 25 cm 3 , 5%), previously calibrated with capture gamma-rays from a standard target of Nitrogen (Melamine). The neutron photoproduction cross section has been measured for each target capture gamma-ray spectrum (compound cross section). A inversion matrix methodology to solve inversion problems for unfolding the set of experimental compound cross sections, was used in order to obtain the cross sections at specific excitation energy values (principal gamma line energies of the capture targets). The cross sections obtained at the energy values of the principal gamma lines were compared with experimental data reported by other authors, with have employed different gamma-ray sources. A good agreement was observed among the experimental data in this work with reported in the literature. (author)

  5. Experimental investigation of the photoneutron production out of the high-energy photon fields at linear accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yeon Su; Yoon, In Ha; Bae, Sun Myeong; Kang, Tae Young; Baek, Geum Mun; Kim, Sung Hwan; Nam, Uk Won; Lee, Jae Jin; Park, Yeong Sik [Dept. of Radiation Oncology, ASAN Medical Center, Seoul (Korea, Republic of)

    2014-12-15

    Photoneutron dose in high-energy photon radiotherapy at linear accelerator increase the risk for secondary cancer. The purpose of this investigation is to evaluate the dose variation of photoneutron with different treatment method, flattening filter, dose rate and gantry angle in radiation therapy with high-energy photon beam (E≥8 MeV). TrueBeam STxTM(Ver1.5, Varian, USA) and Korea Tissue Equivalent Proportional Counter (KTEPC) were used to detect the photoneutron dose out of the high-energy photon field. Complex Patient plans using Eclipse planning system (Version 10.0, Varian, USA) was used to experiment with different treatment technique(IMRT, VMAT), condition of flattening filter and three different dose rate. Scattered photoneutron dose was measured at eight different gantry angles with open field (Field size : 5×5cm). The mean values of the detected photoneutron dose from IMRT and VMAT were 449.7 μSv, 2940.7 μSv. The mean values of the detected photoneutron dose with Flattening Filter(FF) and Flattening Filter Free(FFF) were measured as 2940.7 μSv, 232.0 μSv. The mean values of the photoneutron dose for each test plan (case 1, case 2 and case 3) with FFF at the three different dose rate (400, 1200, 2400 MU/min) were 3242.5 μSv, 3189.4 μSv, 3191.2 μSv with case 1, 3493.2 μSv, 3482.6 μSv, 3477.2 μSv with case 2 and 4592.2 μSv, 4580.0 μSv, 4542.3 μSv with case 3, respectively. The mean values of the photoneutron dose at eight different gantry angles ( 0° , 45°, 90°, 135°, 180°, 225°, 270° , 315°) were measured as 3.2 μSv, 4.3 μSv, 5.3 μSv, 11.3 μSv, 14.7 μSv, 11.2 μSv, 3.7 μSv, 3.0 μSv at 10 MV and as 373.7 μSv, 369.6 μSv, 384.4 μSv, 423.6 μSv, 447.1 μSv, 448.0 μSv, 384.5 μSv, 377.3 μSv at 15MV. As a result, it is possible to reduce photoneutron dose using FFF mode and VMAT method with TrueBeam STxTM. The risk for secondary cancer of the patients will be decreased with continuous evaluation of the photoneutron dose.

  6. Identification of High-Z Materials With Photoneutrons Driven by a Low-Energy Electron Linear Accelerator

    Science.gov (United States)

    Yang, Yigang; Zhang, Zhi; Chen, Huaibi; Li, Yulan; Li, Yuanjing

    2017-07-01

    Contraband-detection systems can use X-rays and photoneutrons delivered from the same 7-MeV electron linear accelerator (e-LINAC) to stimulate and extract information from inspected materials. The X-ray attenuation information is used to measure the mass thickness, which is combined with the photoneutron attenuation information to categorize inspected materials as common organic materials, metals, and heavy metals. Once a heavy metal is found, the beta-delayed neutrons stimulated by the (γ,fission) reaction are measured by a polyethylene-moderated 3He counter to clarify if the material is fissile. The presence of neutron events 2000 μs after the X-ray pulse confirms the existence of the fissile material. The isotopes in the material are then identified using the time-of-flight method to analyze the resonant attenuation of the fissile material to the 10-1-102 eV photoneutrons emitted from and thermalized by the D2O photonto-neutron convertor, which converts X-rays to photoneutrons. Eight high-Z simulants are tested to confirm the feasibility of identifying the isotopes from the photoneutron resonance. The underlying principles and experimental results are discussed.

  7. Solid state nuclear magnetic resonance studies of cross polarization from quadrupolar nuclei

    Energy Technology Data Exchange (ETDEWEB)

    De Paul, Susan M. [Univ. of California, Berkeley, CA (United States)

    1997-08-01

    The development of solid-state Nuclear Magnetic Resonance (NMR) has, to a large extent, focused on using spin-1/2 nuclei as probes to investigate molecular structure and dynamics. For such nuclei, the technique of cross polarization is well-established as a method for sensitivity enhancement. However, over two-thirds of the nuclei in the periodic table have a spin-quantum number greater than one-half and are known as quadrupolar nuclei. Such nuclei are fundamental constituents of many inorganic materials including minerals, zeolites, glasses, and gels. It is, therefore, of interest to explore the extent to which polarization can be transferred from quadrupolar nuclei. In this dissertation, solid-state NMR experiments involving cross polarization from quadrupolar nuclei to spin-1/2 nuclei under magic-angle spinning (MAS) conditions are investigated in detail.

  8. Photoneutron Reaction Data for Nuclear Physics and Astrophysics

    Science.gov (United States)

    Utsunomiya, Hiroaki; Renstrøm, Therese; Tveten, Gry Merete; Gheorghe, Ioana; Filipescu, Dan Mihai; Belyshev, Sergey; Stopani, Konstantin; Wang, Hongwei; Fan, Gongtao; Lui, Yiu-Wing; Symochko, Dmytro; Goriely, Stephane; Larsen, Ann-Cecilie; Siem, Sunniva; Varlamov, Vladimir; Ishkhanov, Boris; Glodariu, Tudor; Krzysiek, Mateusz; Takenaka, Daiki; Ari-izumi, Takashi; Amano, Sho; Miyamoto, Shuji

    2018-05-01

    We discuss the role of photoneutron reaction data in nuclear physics and astrophysics in conjunction with the Coordinated Research Project of the International Atomic Energy Agency with the code F41032 (IAEA-CRP F41032).

  9. Photoneutron Reaction Data for Nuclear Physics and Astrophysics

    Directory of Open Access Journals (Sweden)

    Utsunomiya Hiroaki

    2018-01-01

    Full Text Available We discuss the role of photoneutron reaction data in nuclear physics and astrophysics in conjunction with the Coordinated Research Project of the International Atomic Energy Agency with the code F41032 (IAEA-CRP F41032.

  10. A study of the giant dipole resonance in doubly even tellurium and cerium isotopes

    International Nuclear Information System (INIS)

    Lepretre, A.; Beil, H.; Bergere, R.; Carlos, P.; Fagot, J.; Miniac, A. de; Veyssiere, A.

    1976-01-01

    The partial photoneutron cross sections [sigma(γ,n)+sigma(γ,pn)] and sigma(γ,2n) of 124 Te, 126 Te, 128 Te, 130 Te and 140 Ce, 142 Ce were measured in the giant dipole resonance region by means of the monochromatic photon beam installation at SACLAY. Absolute total photoneutron cross sections, Lorentz line parameters and integrated cross sections are evaluated. The experimental behaviour of the GDR for the above nuclei and in particular its spreading, is then tentatively interpreted in terms of the improved dynamic collective model using the concept of potential energy surfaces. (Auth.)

  11. Multilevel parametrization of fissile nuclei resonance cross sections

    International Nuclear Information System (INIS)

    Lukyanov, A.A.; Kolesov, V.V.; Janeva, N.

    1987-01-01

    Because the resonance interference has an important influence on the resonance structure of neutron cross sections energy dependence at lowest energies, multilevel scheme of the cross section parametrization which take into account the resonance interference is used for the description with the same provisions in the regions of the interferential maximum and minimum of the resonance cross sections of the fissile nuclei

  12. Cross-section measurements of the 94Mo(γ,n and 90Zr(γ,n reactions using real photons at the HIγS facility

    Directory of Open Access Journals (Sweden)

    Banu Adriana

    2018-01-01

    Full Text Available The photodisintegration reaction cross-sections for 94Mo(γ,n and 90Zr(γ,n have been experimentally investigated with quasi-monochromatic photon beams at the High Intensity γ-Ray Source (HIγS facility, Triangle University Nuclear Laboratory (TUNL. The measurements were focused primarily on studying the energy dependence of the photoneutron cross sections, which is the most direct way of testing statistical models, and were performed close to the respective neutron thresholds and above up to ~ 20 MeV. Neutrons from the (γ,n reactions were detected using a 4π assembly of 3He proportional counters developed at Los Alamos National Laboratory and presently available at TUNL. While the 94Mo(γ,n cross section measurement aims to contribute to a broader investigation for understanding the γ-process (the mechanism responsible for the nucleosynthesis of the so-called p-nuclei, the information from the 90Zr(γ,n data is relevant to constrain QRPA calculations of γ-ray strength functions in this mass region. In this contribution, we will present our preliminary results of the total (γ,n excitation functions for the two photoneutron reactions on 94Mo and 90Zr.

  13. Cross-section measurements of the 94Mo(γ,n) and 90Zr(γ,n) reactions using real photons at the HIγS facility

    Science.gov (United States)

    Banu, Adriana; Silano, Jack; Karwowski, Hugon; Meekins, Evan; Bhike, Megha; Tornow, Werner; McCleskey, Mathew

    2018-05-01

    The photodisintegration reaction cross-sections for 94Mo(γ,n) and 90Zr(γ,n) have been experimentally investigated with quasi-monochromatic photon beams at the High Intensity γ-Ray Source (HIγS) facility, Triangle University Nuclear Laboratory (TUNL). The measurements were focused primarily on studying the energy dependence of the photoneutron cross sections, which is the most direct way of testing statistical models, and were performed close to the respective neutron thresholds and above up to 20 MeV. Neutrons from the (γ,n) reactions were detected using a 4π assembly of 3He proportional counters developed at Los Alamos National Laboratory and presently available at TUNL. While the 94Mo(γ,n) cross section measurement aims to contribute to a broader investigation for understanding the γ-process (the mechanism responsible for the nucleosynthesis of the so-called p-nuclei), the information from the 90Zr(γ,n) data is relevant to constrain QRPA calculations of γ-ray strength functions in this mass region. In this contribution, we will present our preliminary results of the total (γ,n) excitation functions for the two photoneutron reactions on 94Mo and 90Zr.

  14. Photons and photoneutrons spectra of a Linac of 15 MV

    International Nuclear Information System (INIS)

    Benites R, J. L.; Carrillo C, A.; Vega C, H. R.; Velazquez F, J. B.

    2011-10-01

    Using the Monte Carlo code MCNP-5, the photons and photoneutrons spectra generated in the head stock of the lineal accelerator (Linac) Varian of 15 MV of the Cancerology State of Nayarit were determined. For the calculations a heterogeneous head stock was modeled, more compatible with the work conditions. In the center of the head stock a tungsten target was located on a copper support, followed by the flattened filter. The photons and photoneutrons spectra were obtained accelerating electrons and making them collide against the target to produce photons by Bremsstrahlung, these photons were transported inside the head stock and the photons and photoneutrons spectra were calculated in a punctual detector located under the flattened filter and in the isocenter. The spectra were evaluated in punctual detectors that were located in the plane from the isocenter to the long of the X and Y axes each 20 cm, in an equidistant way, up to 2 m, so much in the longitudinal and transversal axes. In the calculations were used histories 5E(6) with the purpose of obtaining smaller uncertainties to 1%. It was found that the photons spectrum in the punctual detector inside the head stock presents a pick of 1.25 MeV in the energy interval of 0.5 and 1.5 MeV, later suffers a filtration and diminishes in asymptote form. This spectrum modifies when the beam reaches the isocenter, diminishing the low energy photons. Inside the head stock the photoneutrons spectrum shows a structure with two picks, one before 1 MeV and other after 1 MeV; this is for effect of the collimators geometry and the distance. Finally an increment of the total neutrons flow to 60 cm of distance of the isocenter on the Y axis was observed, due to the design geometry of the modeling heterogeneous head stock. (Author)

  15. Measurement of total reaction cross sections of exotic neutron rich nuclei

    International Nuclear Information System (INIS)

    Mittig, W.; Chouvel, J.M.; Wen Long, Z.

    1987-01-01

    Total reaction cross-sections of neutron rich nuclei from C to Mg in a thick Si-target have been measured using the detection of the associated γ-rays in a 4Π-geometry. This cross-section strongly increases with neutron excess, indicating an increase of as much as 15% of the reduced strong absorption radius with respect to stable nuclei

  16. The quasi-monochromatic photon beam used in photoneutron experiments from 20-120 MeV at the 600 MeV Saclay Linac

    International Nuclear Information System (INIS)

    Veyssiere, A.; Beil, H.; Bergere, R.; Carlos, P.; Fagot, J.; Lepretre, A.; Ahrens, J.

    1979-01-01

    A beam of 20-130 MeV positrons, with average intensities between 10 nA and 50 nA, is used at the 600 MeV Saclay Linac to create a quasi-monochromatic photon beam with a continuously variable energy. This beam was used to measure photoneutron cross sections and the corresponding photonuclear facility is first described. The computer-controlled methods, implemented to measure the energy spectrum and the emittance of the positron beam are described. The quasi-monochromatic photon lines are produced by the annihilation in flight of monoenergetic positrons in two annihilation radiators with different Z successively. The photon beam emission angle theta is shown to be the most critical parameter in the search for an optimum overall signal to background ratio for a specific photoneutron experiment. The choice of an angle theta approximately 4 0 is explained for absolute measurements of sigma(γ, xn) cross-sections, for which the used average intensities of monochromatic photons were thus purposely reduced to approximately 5 X 10 3 s -1 , with an energy resolution approximately 12%. (Auth.)

  17. Capture cross sections on unstable nuclei

    Science.gov (United States)

    Tonchev, A. P.; Escher, J. E.; Scielzo, N.; Bedrossian, P.; Ilieva, R. S.; Humby, P.; Cooper, N.; Goddard, P. M.; Werner, V.; Tornow, W.; Rusev, G.; Kelley, J. H.; Pietralla, N.; Scheck, M.; Savran, D.; Löher, B.; Yates, S. W.; Crider, B. P.; Peters, E. E.; Tsoneva, N.; Goriely, S.

    2017-09-01

    Accurate neutron-capture cross sections on unstable nuclei near the line of beta stability are crucial for understanding the s-process nucleosynthesis. However, neutron-capture cross sections for short-lived radionuclides are difficult to measure due to the fact that the measurements require both highly radioactive samples and intense neutron sources. Essential ingredients for describing the γ decays following neutron capture are the γ-ray strength function and level densities. We will compare different indirect approaches for obtaining the most relevant observables that can constrain Hauser-Feshbach statistical-model calculations of capture cross sections. Specifically, we will consider photon scattering using monoenergetic and 100% linearly polarized photon beams. Challenges that exist on the path to obtaining neutron-capture cross sections for reactions on isotopes near and far from stability will be discussed.

  18. Capture cross sections on unstable nuclei

    Directory of Open Access Journals (Sweden)

    Tonchev A.P.

    2017-01-01

    Full Text Available Accurate neutron-capture cross sections on unstable nuclei near the line of beta stability are crucial for understanding the s-process nucleosynthesis. However, neutron-capture cross sections for short-lived radionuclides are difficult to measure due to the fact that the measurements require both highly radioactive samples and intense neutron sources. Essential ingredients for describing the γ decays following neutron capture are the γ-ray strength function and level densities. We will compare different indirect approaches for obtaining the most relevant observables that can constrain Hauser-Feshbach statistical-model calculations of capture cross sections. Specifically, we will consider photon scattering using monoenergetic and 100% linearly polarized photon beams. Challenges that exist on the path to obtaining neutron-capture cross sections for reactions on isotopes near and far from stability will be discussed.

  19. Photo-neutron yields from thin and thick targets irradiated by 2.0 GeV electrons

    International Nuclear Information System (INIS)

    Hee-Seock, Lee; Syuichi, Ban; Toshiya, Sanami; Kazutoshi, Takahashi; Tatsuhiko, Sato; Kazuo, Shin

    2005-01-01

    The photo-neutron yields from thin and thick targets irradiated by high energy electrons were studied. The photo-neutron spectra at 90 deg C relative to the incident 2.0 GeV electrons were measured by the pulsed beam time-of-flight technique using the Pilot-U plastic scintillator and the NE213 liquid scintillator with 2 inches in length and 2 inches in diameter. Targets, from low-Z element (carbon) to high-Z element (bismuth) and with thin (0.5 Xo) and thick (10 Xo) thickness, were used in this study. The differential photo-neutron yields between 2 MeV (mainly 8 MeV) and 400 MeV were obtained. The systematics was studied to make empirical yield terms for shielding application. Recently, the study of the angular distributed yields was conducted at two other observing angles, 48 deg C and 140 deg C. The photo-neutron yields between 8 MeV and 250 MeV were obtained for thick targets. The experimental data were compared with results calculated using the EGS4+PICA3 or the MCNPX 2.5d code. (authors)

  20. The photoneutron yield predictions by PICA and comparison with the measurements

    International Nuclear Information System (INIS)

    Job, P.K.; Gabriel, T.A.

    1995-01-01

    The photoneutron yields at higher photon energies have become very important since the advent of high energy electron accelerators. Bremsstrahlung is produced when the particle beam interacts with the storage-ring components or residual-gas molecules in the storage-ring vacuum. Bremsstrahlung thus produced interacts with the high-Z materials in the beamline like the beam dumps and collimators to produce photoneutrons. There are three modes of neutron production by bremsstrahlung. At low energies (≥525 MeV), photons are absorbed by the dipole interaction and the compound nucleus thus formed decays emitting protons and neutrons and other heavier particles. At higher energies (≥25 MeV), photon interacts with the nucleus through absorption on a quasi-deuteron, which subsequently decays producing a neutron and proton pair which can interact with the rest of the nucleus. At still higher energies the photopion production becomes possible and competes with the quasi-deuteron process. In this paper we have calculated the photoneutron yield from a thick copper target using the photonuclear interaction code PICA. Using this as the neutron source, we have calculated the dose rates through heavy concrete and compared it with the measurements made at the Advanced Photon Source at Argonne National Lab

  1. Measurement of the absolute values of cross-sections in neutron photoproduction (1962); Mesure de sections efficaces de photoproduction de neutrons en valeur absolue (1962)

    Energy Technology Data Exchange (ETDEWEB)

    Schuhl, C [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1962-07-01

    The absolute values of photoneutrons production cross-sections for the case of intermediate and heavy nuclei (lanthanium, cerium, tantalum, gold, lead and bismuth) are determined with an error of 15 per cent. The results obtained agree with theories in which the giant resonance is explained by the collective motion of the protons against the neutrons. The effect of the nuclear deformation on the shape of the giant resonance is seen in the case of Ta{sup 181}, it will be possible to determine the quadrupole momenta of deformed nuclei with a good accuracy when we shall increase the statistics of measurements. (author) [French] Les sections efficaces de production de photoneutrons par divers noyaux moyens et lourds (lanthane, cerium, tantale, or, plomb et bismuth) sont determinees en valeur absolue avec une erreur relative de 15 pour cent. Les resultats obtenus s'accordent avec les theories qui interpretent la resonance geante par un mouvement collectif des protons par rapport aux neutrons. L'influence de la deformation du noyau sur la forme de la resonance geante est soulignee dans le cas de {sup 181}Ta pour lequel elle se decompose en deux pics. Une amelioration de la statistique des mesures permettra de determiner les moments quadrupolaires des noyaux deformes avec une meilleure precision. (auteur)

  2. Evaluation of photonuclear reaction cross-sections using the reduction method for large systematic uncertainties

    International Nuclear Information System (INIS)

    Varlamov, V.V.; Efimkin, N.G.; Ishkhanov, B.S.; Sapunenko, V.V.

    1994-12-01

    The authors describe a method based on the reduction method for the evaluation of photonuclear reaction cross-sections obtained under conditions where there are large systematic uncertainties (different instrumental functions, calibration and normalization errors). The evaluation method involves using the actual instrumental function (photon spectrum) of each individual experiment to reduce the data to a representation generated by an instrumental function of better quality. The objective is to find the most reasonably achievable monoenergetic representation of the information on the reaction cross-section derived from the results of various experiments and to take into account the calibration and normalization errors in these experiments. The method was used to obtain the evaluated total photoneutron reaction cross-section (γ,xn) for a large number of nuclei. Data obtained for 16 O and 208 Pb are presented. (author). 36 refs, 6 figs, 4 tabs

  3. Photoneutron source based on a compact 10 MeV betatron

    International Nuclear Information System (INIS)

    Bell, Z.W.; Chaklov, V.L.; Golovkov, V.M.

    1998-01-01

    Accelerator-based photoneutron sources have enjoyed wide use and offer the advantages of long term stability, ease of control and absence of radioactive materials. The authors report here measurements of the yield of photoneutrons from a neutron generator using a compact betatron (466 kg total weight, 900 by 560 by 350 mm betatron dimensions) at the Institute of Introscopy of the Tomsk Polytechnic University. Electrons were accelerated to energies up to 10 MeV and produced a bremsstrahlung beam with a dose rate of 0.16 Gy/min (at 10 MeV, 1 meter from the bremsstrahlung target) to irradiate LiD, Be, depleted U, and Pb neutron-producing targets. The angular distributions of photoneutrons produced by bremsstrahlung beams were measured with a long counter and integrated to determine neutron yield. In addition, neutron time of flight spectra were recorded from all targets using a 15 meter flight path perpendicular to the photon beam. The maximum observed yields were 5.2 x 10 4 n/rad/gram target obtained with LiD, 1.7 x 10 4 n/rad/gram from Be, 3.3 x 10 3 n/rad/gram from U, and 7.5 x 10 2 n/rad/gram from Pb. Optimization of target dimensions, shape, and positioning is expected to increase the yield from the LiD target by a factor of 35. With the increased yield, this compact betatron-based system could find application in the interrogation of waste containers for fissile material

  4. Detection of actinides with an electron accelerator by active photoneutron interrogation measurements

    International Nuclear Information System (INIS)

    Sari, A.; Carrel, F.; Gmar, M.; Laine, F.; Normand, S.; Lyoussi, A.

    2012-01-01

    The solution for management of a nuclear waste package is chosen according to its radiological characteristics. One of the most important of these features is the α-activity which is due to actinides ( 235 U, 238 U, 239 Pu, etc.) If non-destructive passive methods are not sufficient to quantify the latter, non-destructive active methods based on the fission process represent a solution of interest. First, these methods consist in irradiating a package in order to induce fission reactions on the actinides, and then, to detect the prompt and delayed particles which are emitted following these reactions. Our aim is to conduct neutron interrogation measurements on nuclear waste packages using an electron accelerator as a photoneutron generator. One of the main interests of this approach is that the intensity of the neutron flux can be one or two orders of magnitude higher than the one delivered by a deuterium-tritium generator. With the objective of improving nuclear waste characterization, the development of this method could enable the integration of three complementary techniques on a single measurement cell (active neutron interrogation, active photon interrogation, and high-energy imaging). In this paper, simulation and experimental results are presented. A simulation study using MCNPX has been conducted in order to determine the characteristics of the photoneutron flux emitted by the electron accelerator of the SAPHIR facility owned by CEA LIST. Energy spectra, angular distribution and intensity of the photoneutron flux have been obtained. A photoneutron interrogation measurement cell based on this accelerator has been built and assessed by carrying out measurements on uranium samples. Delayed gamma-ray spectra have been acquired and enabled to confirm the experimental feasibility of our method. (authors)

  5. Delayed photoneutrons of the of the Dalat Nuclear Research Reactor

    International Nuclear Information System (INIS)

    Ngo Quang Huy; Ha Van Thong; Vu Hai Long; Ngo Phu Khang; Nguyen Nhi Dien; Pham Van Lam; Huynh Dong Phuong; Luong Ba Vien; Le Vinh Vinh

    1994-01-01

    Time spectrum of delayed neutrons of the Dalat nuclear research reactor is measured and analyzed. It corresponds to a shut-down neutron fluxes of about 10 5 /10 8 n/cm 2 /sec after 100 hours continuous reactor operation at steady power level of 500 kW. Data processing of experimental time neutron spectrum gives 16 exponents, of which 10, resulting from photoneutrons due to (γ,n) reactions on beryllium used inside the reactor core, are obtained by using successive exponential stripping fitting method. For the Dalat reactor, the effective delayed photoneutron fraction relative to the total effective delayed neutron fraction is β B e eff =0.49%β eff for a beryllium weight relative to U 235 fuel of m B e/m U = 8.5. This result is acceptable in comparison to those obtained for other Be-U 235 media. (author). 5 refs., 2 figs., 4 tabs

  6. Photoneutron source based on a compact 10 MeV betatron

    International Nuclear Information System (INIS)

    Chakhlov, V.L.; Bell, Z.W.; Golovkov, V.M.; Shtein, M.M.

    1999-01-01

    Accelerator-based photoneutron sources have enjoyed wide use and offer the advantages of long term stability, ease of control and absence of radioactive materials. We report here measurements of the yield of photoneutrons from a neutron generator using a compact betatron. Electrons were accelerated to energies up to 10 MeV and produced a bremsstrahlung beam with a dose rate of 0.16 Gy/min (at 10 MeV, 1 m from the bremsstrahlung target) to irradiate LiD, Be, depleted U, and Pb neutron-producing targets. The angular distributions of photoneutrons produced by bremsstrahlung beams were measured with a 'long' counter and integrated to determine neutron yield. In addition, neutron time of flight spectra were recorded from all targets using a 15.5 m flight path perpendicular to the photon beam. The maximum observed yields were 4.6x10 7 n/s obtained with 1 kg of LiD, 5.7x10 7 n/s from a 3.3 kg Be block, 6.2x10 6 n/s from 1.5 kg of depleted U, and 7.0x10 6 n/s from 10.7 kg of Pb. Optimization of target dimensions, shape, and positioning is expected to increase the yield from the LiD target by a factor of 35, while optimization of the other targets is expected to yield at most a factor of 10. With the increased yield and a deuteride target, this compact betatron-based system could find application in the interrogation of waste containers for fissile material

  7. An accelerator-based epithermal photoneutron source for boron neutron capture therapy

    International Nuclear Information System (INIS)

    Mitchell, H.E.

    1996-04-01

    Boron neutron capture therapy is an experimental binary cancer radiotherapy modality in which a boronated pharmaceutical that preferentially accumulates in malignant tissue is first administered, followed by exposing the tissue in the treatment volume to a thermal neutron field. Current usable beams are reactor-based but a viable alternative is the production of an epithermal neutron beam from an accelerator. Current literature cites various proposed accelerator-based designs, most of which are based on proton beams with beryllium or lithium targets. This dissertation examines the efficacy of a novel approach to BNCT treatments that incorporates an electron linear accelerator in the production of a photoneutron source. This source may help to resolve some of the present concerns associated with accelerator sources, including that of target cooling. The photoneutron production process is discussed as a possible alternate source of neutrons for eventual BNCT treatments for cancer. A conceptual design to produce epithermal photoneutrons by high photons (due to bremsstrahlung) impinging on deuterium targets is presented along with computational and experimental neutron production data. A clinically acceptable filtered epithermal neutron flux on the order of 10 7 neutrons per second per milliampere of electron current is shown to be obtainable. Additionally, the neutron beam is modified and characterized for BNCT applications by employing two unique moderating materials (an Al/AlF 3 composite and a stacked Al/Teflon design) at various incident electron energies

  8. An accelerator-based epithermal photoneutron source for boron neutron capture therapy

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, Hannah E. [Georgia Inst. of Technology, Atlanta, GA (United States)

    1996-04-01

    Boron neutron capture therapy is an experimental binary cancer radiotherapy modality in which a boronated pharmaceutical that preferentially accumulates in malignant tissue is first administered, followed by exposing the tissue in the treatment volume to a thermal neutron field. Current usable beams are reactor-based but a viable alternative is the production of an epithermal neutron beam from an accelerator. Current literature cites various proposed accelerator-based designs, most of which are based on proton beams with beryllium or lithium targets. This dissertation examines the efficacy of a novel approach to BNCT treatments that incorporates an electron linear accelerator in the production of a photoneutron source. This source may help to resolve some of the present concerns associated with accelerator sources, including that of target cooling. The photoneutron production process is discussed as a possible alternate source of neutrons for eventual BNCT treatments for cancer. A conceptual design to produce epithermal photoneutrons by high photons (due to bremsstrahlung) impinging on deuterium targets is presented along with computational and experimental neutron production data. A clinically acceptable filtered epithermal neutron flux on the order of 107 neutrons per second per milliampere of electron current is shown to be obtainable. Additionally, the neutron beam is modified and characterized for BNCT applications by employing two unique moderating materials (an Al/AlF3 composite and a stacked Al/Teflon design) at various incident electron energies.

  9. Study of consistency between (γ,xn), [(γ,n) (γ,np)] and (γ2n) reaction cross sections using data systematics

    International Nuclear Information System (INIS)

    Varlamov, V.V.; Ishkhanov, B.S.

    2002-08-01

    The majority of published data for photoneutron reaction both total and partial cross section data obtained using both bremsstrahlung and quasimonoenergetic photon beams has been analyzed systematically. The last kind data were treated separately for results obtained at USA National Lawrence Livermore Laboratory and at Centre d.Etudes Nucleaires de Saclay (France). It was found out that as a rule total photoneutron reaction cross sections obtained at Livermore differ (being smaller in amplitude) from that of other laboratories. The Saclay-Livermore data discrepancies were analyzed in details. Combined the result of this analysis with that of analysis of partial photoneutron reactions [(γ,n) + (γ,np)] and (γ,2n) cross sections balance between Livermore and Saclay data published before the following recommendation was formulated: for reliable balance of total photoneutron (γ,xn) and partial [(γ,n) + [(γ,np)] and (γ,2n) reactions cross section absolute values the Livermore (not Saclay) data must be used but multiplied to the parameter 1.122. Saclay total reaction data could be used directly but partial reaction data must be recalculated via complex procedure. (author)

  10. Delayed photoneutrons of the of the Dalat Nuclear Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Huy, Ngo Quang [Centre for Nuclear Technique Application, Ho Chi Minh City (Viet Nam); Thong, Ha Van; Long, Vu Hai; Khang, Ngo Phu; Dien, Nguyen Nhi; Lam, Pham Van; Phuong, Huynh Dong; Vien, Luong Ba; Vinh, Le Vinh [Nuclear Research Inst., Da Lat (Viet Nam)

    1994-10-01

    Time spectrum of delayed neutrons of the Dalat nuclear research reactor is measured and analyzed. It corresponds to a shut-down neutron fluxes of about 10{sup 5}/10{sup 8} n/cm{sup 2}/sec after 100 hours continuous reactor operation at steady power level of 500 kW. Data processing of experimental time neutron spectrum gives 16 exponents, of which 10, resulting from photoneutrons due to ({gamma},n) reactions on beryllium used inside the reactor core, are obtained by using successive exponential stripping fitting method. For the Dalat reactor, the effective delayed photoneutron fraction relative to the total effective delayed neutron fraction is {beta}{sup B}e{sub eff}=0.49%{beta}{sub eff} for a beryllium weight relative to U{sup 235} fuel of m{sub B}e/m{sub U} = 8.5. This result is acceptable in comparison to those obtained for other Be-U{sup 235} media. (author). 5 refs., 2 figs., 4 tabs.

  11. Spectra of photoneutrons produced by high energy X-ray radiotherapy linacs

    Czech Academy of Sciences Publication Activity Database

    Králík, M.; Turek, Karel

    2008-01-01

    Roč. 132, č. 1 (2008), s. 13-17 ISSN 0144-8420 Institutional research plan: CEZ:AV0Z10480505 Keywords : photoneutrons * Bonner spectrometer * track detectors Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 0.951, year: 2008

  12. Modern status of photonuclear data

    Science.gov (United States)

    Varlamov, V. V.; Ishkhanov, B. S.

    2017-09-01

    The reliability of experimental cross sections obtained for (γ, 1 n), (γ, 2 n), and (γ, 3 n) partial photoneutron reactions using beams of quasimonoenergetic annihilation photons and bremsstrahlung is analyzed by employing data for a large number of medium-heavy and heavy nuclei, including those of 63,65Cu, 80Se, 90,91,94Zr, 115In, 112-124Sn, 133Cs, 138Ba, 159Tb, 181Ta, 186-192Os, 197Au, 208Pb, and 209Bi. The ratios of the cross sections of definite partial reactions to the cross section of the neutron-yield reaction, F i = σ(γ, in)/ σ(γ, xn), are used as criteria of experimental-data reliability. By definition, positive values of these ratios should not exceed the upper limits of 1.00, 0.50, 0.33,... for i = 1, 2, 3,..., respectively. For many nuclei, unreliable values of the above ratios were found to correlate clearly in various photon-energy regions F i with physically forbidden negative values of cross sections of partial reactions. On this basis, one can conclude that correspondent experimental data are unreliable. Significant systematic uncertainties of the methods used to determine photoneutron multiplicity are shown to be the main reason for this. New partial-reaction cross sections that satisfy the above data-reliability criteria were evaluated within an experimental-theoretical method [ σ eval(γ, in) = F i theor (γ, in) × σ expt(γ, xn)] by employing the ratios F i theor (γ, in) calculated on the basis of a combined photonuclear-reaction model. It was obtained that cross sections evaluated in this way deviate substantially from the results of many experiments performed via neutron-multiplicity sorting, but, at the same time, agree with the results of alternative activation experiments. Prospects of employing methods that would provide, without recourse to photoneutron-multiplicity sorting, reliable data on cross sections of partial photoneutron reactions are discussed.

  13. Curves and tables of neutron cross sections of fission product nuclei in JENDL-3

    Energy Technology Data Exchange (ETDEWEB)

    Nakagawa, Tsuneo [ed.

    1992-06-15

    Neutron cross sections of 172 nuclei in the fission product region stored in JENDL-3 are shown in graphs and tables. The evaluation work of these nuclei was made by the Fission Product Nuclear Data Working Group of the Japanese Nuclear Data Committee, in the neutron energy region from 10{sup {minus}5} eV to 20 MeV. Almost of the cross section data reproduced in graphs in this report. The cross section averaged over 38 energy intervals are listed in a table. Shown in order tables are thermal cross sections, resonance integrals, Maxwellian neutron flux average cross sections, fission spectrum average cross sections, 14-MeV cross sections, one group average cross sections in neutron flux of typical types of fission reactors and average cross sections in the 30-keV Maxwellian spectrum.

  14. Curves and tables of neutron cross sections of fission product nuclei in JENDL-3

    International Nuclear Information System (INIS)

    Nakagawa, Tsuneo

    1992-06-01

    Neutron cross sections of 172 nuclei in the fission product region stored in JENDL-3 are shown in graphs and tables. The evaluation work of these nuclei was made by the Fission Product Nuclear Data Working Group of the Japanese Nuclear Data Committee, in the neutron energy region from 10 -5 eV to 20 MeV. Almost all the cross section data are reproduced in graphs in this report. The cross section averaged over 38 energy intervals are listed in a table. Shown in other tables are thermal cross sections, resonance integrals, Maxwellian neutron flux average cross sections, fission spectrum average cross sections, 14-MeV cross sections, one group average cross sections in neutron flux of typical types of fission reactors and average cross sections in the 30-keV Maxwellian spectrum. (author)

  15. A Filtration-based Method of Preparing High-quality Nuclei from Cross-linked Skeletal Muscle for Chromatin Immunoprecipitation.

    Science.gov (United States)

    Nohara, Kazunari; Chen, Zheng; Yoo, Seung-Hee

    2017-07-06

    Chromatin immunoprecipitation (ChIP) is a powerful method to determine protein binding to chromatin DNA. Fiber-rich skeletal muscle, however, has been a challenge for ChIP due to technical difficulty in isolation of high-quality nuclei with minimal contamination of myofibrils. Previous protocols have attempted to purify nuclei before cross-linking, which incurs the risk of altered DNA-protein interaction during the prolonged nuclei preparation process. In the current protocol, we first cross-linked the skeletal muscle tissue collected from mice, and the tissues were minced and sonicated. Since we found that ultracentrifugation was not able to separate nuclei from myofibrils using cross-linked muscle tissue, we devised a sequential filtration procedure to obtain high-quality nuclei devoid of significant myofibril contamination. We subsequently prepared chromatin by using an ultrasonicator, and ChIP assays with anti-BMAL1 antibody revealed robust circadian binding pattern of BMAL1 to target gene promoters. This filtration protocol constitutes an easily applicable method to isolate high-quality nuclei from cross-linked skeletal muscle tissue, allowing consistent sample processing for circadian and other time-sensitive studies. In combination with next-generation sequencing (NGS), our method can be deployed for various mechanistic and genomic studies focusing on skeletal muscle function.

  16. Photo-neutron reaction cross-section for 93Nb in the end-point bremsstrahlung energies of 12–16 and 45–70 MeV

    International Nuclear Information System (INIS)

    Naik, H.; Kim, G.N.; Schwengner, R.; Kim, K.; Zaman, M.; Tatari, M.; Sahid, M.; Yang, S.C.; John, R.; Massarczyk, R.; Junghans, A.; Shin, S.G.; Key, Y.; Wagner, A.; Lee, M.W.; Goswami, A.; Cho, M.-H.

    2013-01-01

    The photo-neutron cross-sections of 93 Nb at the end-point bremsstrahlung energies of 12, 14 and 16 MeV as well as 45, 50, 55, 60 and 70 MeV have been determined by the activation and the off-line γ-ray spectrometric techniques using the 20 MeV electron linac (ELBE) at Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany, and 100 MeV electron linac at Pohang Accelerator Laboratory (PAL), Pohang, Korea. The 93 Nb(γ, xn, x=1–4) reaction cross-sections as a function of photon energy were also calculated using computer code TALYS 1.4. The flux-weighted average values were obtained from the experimental and the theoretical (TALYS) values based on mono-energetic photons. The experimental values of present work are in good agreement with the flux-weighted theoretical values of TALYS 1.4 but are slightly higher than the flux-weighted experimental data of mono-energetic photons. It was also found that the theoretical and the experimental values of present work and literature data for the 93 Nb(γ, xn) reaction cross-sections increase from the threshold values to a certain energy, where other reaction channels opens. However, the increase of 93 Nb(γ, n) and 93 Nb(γ, 2n) reaction cross-sections are sharper compared to 93 Nb(γ, 3n) and 93 Nb(γ, 4n) reaction cross-sections. The sharp increase of 93 Nb(γ, n) and 93 Nb(γ, 2n) reaction cross-sections from the threshold value up to 17–22 MeV is due to the Giant Dipole Resonance (GDR) effect besides the role of excitation energy. After a certain values, the individual 93 Nb(γ, xn) reaction cross-sections decrease with increase of bremsstrahlung energy due to opening of other reaction channels

  17. Angular distribution measurements of photo-neutron yields produced by 2.0 GeV electrons incident on thick targets

    International Nuclear Information System (INIS)

    Lee, H. S.; Ban, S.; Sanami, T.; Takahashi, K.; Sato, T.; Shin, K.; Chung, C.

    2005-01-01

    A study of differential photo-neutron yields by irradiation with 2 GeV electrons has been carried out. In this extension of a previous study in which measurements were made at an angle of 90 deg. relative to incident electrons, the differential photo-neutron yield was obtained at two other angles, 48 deg. and 140 deg., to study its angular characteristics. Photo-neutron spectra were measured using a pulsed beam time-of-flight method and a BC418 plastic scintillator. The reliable range of neutron energy measurement was 8-250 MeV. The neutron spectra were measured for 10 Xo-thick Cu, Sn, W and Pb targets. The angular distribution characteristics, together with the previous results for 90 deg., are presented in the study. The experimental results are compared with Monte Carlo calculation results. The yields predicted by MCNPX 2.5 tend to underestimate the measured ones. The same trend holds for the comparison results using the EGS4 and PICA3 codes. (authors)

  18. Angular distribution measurements of photo-neutron yields produced by 2.0 GeV electrons incident on thick targets.

    Science.gov (United States)

    Lee, Hee-Seock; Ban, Syuichi; Sanami, Toshiya; Takahashi, Kazutoshi; Sato, Tatsuhiko; Shin, Kazuo; Chung, Chinwha

    2005-01-01

    A study of differential photo-neutron yields by irradiation with 2 GeV electrons has been carried out. In this extension of a previous study in which measurements were made at an angle of 90 degrees relative to incident electrons, the differential photo-neutron yield was obtained at two other angles, 48 degrees and 140 degrees, to study its angular characteristics. Photo-neutron spectra were measured using a pulsed beam time-of-flight method and a BC418 plastic scintillator. The reliable range of neutron energy measurement was 8-250 MeV. The neutron spectra were measured for 10 Xo-thick Cu, Sn, W and Pb targets. The angular distribution characteristics, together with the previous results for 90 degrees, are presented in the study. The experimental results are compared with Monte Carlo calculation results. The yields predicted by MCNPX 2.5 tend to underestimate the measured ones. The same trend holds for the comparison results using the EGS4 and PICA3 codes.

  19. MCNP5 evaluation of photoneutron production from the Alexandria University 15 MV Elekta Precise medical LINAC.

    Science.gov (United States)

    Abou-Taleb, W M; Hassan, M H; El Mallah, E A; Kotb, S M

    2018-05-01

    Photoneutron production, and the dose equivalent, in the head assembly of the 15 MV Elekta Precise medical linac; operating in the faculty of Medicine at Alexandria University were estimated with the MCNP5 code. Photoneutron spectra were calculated in air and inside a water phantom to different depths as a function of the radiation field sizes. The maximum neutron fluence is 3.346×10 -9 n/cm 2 -e for a 30×30 cm 2 field size to 2-4 cm-depth in the phantom. The dose equivalent due to fast neutron increases as the field size increases, being a maximum of 0.912 ± 0.05 mSv/Gy at depth between 2 and 4 cm in the water phantom for 40×40 cm 2 field size. Photoneutron fluence and dose equivalent are larger to 100 cm from the isocenter than to 35 cm from the treatment room wall. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Approach synthesis of superheavy nuclei from some aspects of cross section calculations

    International Nuclear Information System (INIS)

    Liu Zuhua

    2003-01-01

    Several important aspects in the cross section calculations for the synthesis of superheavy nuclei have been inquired. They are the effects of the coupled-channels, the damping of shell correction energy, the collective enhancements in the level density and the spin distributions of evaporation residues. The channel coupling of relative motion with internal degrees of freedom will enhance significantly the capture cross section at sub-barrier energies. However, recent measurements of spin distributions for the survived compound nucleus show that only low partial waves contribute to the evaporation residues, which should at least partially cancel out the enhancement due to the effects of the channel coupling. The fission barriers are determined mainly by the shell correction energy in the case of superheavy nuclei. Therefore, it is especially important to determine as accurate as possible the damping parameter which describes the decrease of the shell effects influence. In addition, the collective enhancement factor in the level density also plays a very important role in the synthesis of heavy spherical nuclei

  1. Study on the photoneutrons produced in 15 MV medical linear accelerators : Comparison of three dimensional conformal radiotherapy and intensity modulated radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Oh Nam [Gangneung Asan Hospital, Gangneung (Korea, Republic of); Yang, Oh Nam; Lim, Cheong Hwan [Hanseo Univ., Seosan (Korea, Republic of)

    2012-12-15

    Intensity-modulated radiotherapy(IMRT) have the ability to provide better dose conformity and sparing of critical normal tissues than three-dimensional radiotherapy(3DCRT). Especially, with the benefit of health insurance in 2011, its use now increasingly in many modern radiotherapy departments. Also the use of linear accelerator with high-energy photon beams over 10 MV is increasing. As is well known, these linacs have the capacity to produce photoneutrons due to photonuclear reactions in materials with a large atomic number such as the target, flattening filters, collimators, and multi-leaf collimators(MLC). MLC-based IMRT treatments increase the monitor units and the probability of production of photoneutrons from photon-induced nuclear reactions. The purpose of this study is to quantitatively evaluate the dose of photoneutrons produced from 3DCRT and IMRT technique for Rando phantom in cervical cancer. We performed the treatment plans with 3DCRT and IMRT technique using Rando phantom for treatment of cervical cancer. An Rando phantom placed on the couch in the supine position was irradiated using 15 MV photon beams. Optically stimulated luminescence dosimeters(OSLD) were attached to 4 different locations (abdomen, chest, head and neck, eyes) and from center of field size and measured 5 times each of locations. Measured neutron dose from IMRT technique increased by 9.0, 8.6, 8.8, and 14 times than 3DCRT technique for abdomen, chest, head and neck, and eyes, respectively. When using IMRT with 15 MV photon beams, the photoneutrons contributed a significant portion on out-of-field. It is difficult to prevent high energy photon beams to produce the photoneutrons due to physical properties, if necessary, It is difficult to prevent high energy photon beams to produce the photoneutrons due to physical properties, if necessary, it is need to provide the additional safe shielding on a linear accelerator and should therefore reduce the out-of-field dose.

  2. Study on the photoneutrons produced in 15 MV medical linear accelerators : Comparison of three dimensional conformal radiotherapy and intensity modulated radiotherapy

    International Nuclear Information System (INIS)

    Yang, Oh Nam; Yang, Oh Nam; Lim, Cheong Hwan

    2012-01-01

    Intensity-modulated radiotherapy(IMRT) have the ability to provide better dose conformity and sparing of critical normal tissues than three-dimensional radiotherapy(3DCRT). Especially, with the benefit of health insurance in 2011, its use now increasingly in many modern radiotherapy departments. Also the use of linear accelerator with high-energy photon beams over 10 MV is increasing. As is well known, these linacs have the capacity to produce photoneutrons due to photonuclear reactions in materials with a large atomic number such as the target, flattening filters, collimators, and multi-leaf collimators(MLC). MLC-based IMRT treatments increase the monitor units and the probability of production of photoneutrons from photon-induced nuclear reactions. The purpose of this study is to quantitatively evaluate the dose of photoneutrons produced from 3DCRT and IMRT technique for Rando phantom in cervical cancer. We performed the treatment plans with 3DCRT and IMRT technique using Rando phantom for treatment of cervical cancer. An Rando phantom placed on the couch in the supine position was irradiated using 15 MV photon beams. Optically stimulated luminescence dosimeters(OSLD) were attached to 4 different locations (abdomen, chest, head and neck, eyes) and from center of field size and measured 5 times each of locations. Measured neutron dose from IMRT technique increased by 9.0, 8.6, 8.8, and 14 times than 3DCRT technique for abdomen, chest, head and neck, and eyes, respectively. When using IMRT with 15 MV photon beams, the photoneutrons contributed a significant portion on out-of-field. It is difficult to prevent high energy photon beams to produce the photoneutrons due to physical properties, if necessary, It is difficult to prevent high energy photon beams to produce the photoneutrons due to physical properties, if necessary, it is need to provide the additional safe shielding on a linear accelerator and should therefore reduce the out-of-field dose

  3. Fusion-fission probabilities, cross sections, and structure notes of superheavy nuclei

    International Nuclear Information System (INIS)

    Kowal, Michał; Cap, Tomasz; Jachimowicz, Piotr; Skalski, Janusz; Siwek-Wilczyńska, Krystyna; Wilczyński, Janusz

    2016-01-01

    Fusion – fission probabilities in the synthesis of heaviest elements are discussed in the context of the latest experimental reports. Cross sections for superheavy nuclei are evaluated using the “Fusion by Diffusion” (FBD) model. Predictive power of this approach is shown for experimentally known Lv and Og isotopes and predictions given for Z = 119, 120. Ground state and saddle point properties as masses, shell corrections, pairing energies, and deformations necessary for cross-section estimations are calculated systematically within the multidimensional microscopic-macroscopic method based on the deformed Woods-Saxon single-particle potential. In the frame of the FBD approach predictions for production of elements heavier than Z = 118 are not too optimistic. For this reason, and because of high instability of superheavy nuclei, we comment on some structure effects, connected with the K-isomerism phenomenon which could lead to a significant increase in the stability of these systems.

  4. Program package for calculation of cross sections of neutron scattering on deformed nuclei by the coupled-channel method

    International Nuclear Information System (INIS)

    Kloss, Yu.Yu.

    1985-01-01

    Program package and numerical solution of the problem for a system of coupled equations used in optical model to solve a problem on low and mean energy neutron scattering on deformed nuclei, is considered. With these programs differnet scattering cross sections depending on the incident neutron energy on even-even and even-odd nuclei were obtained. The programm permits to obtain different scattering cross sections (elastic, inelastic), excitation cross sections of the first three energy levels of rotational band depending on the energy, angular distributions and neutron polarizations including excited channels. In the program there is possibility for accounting even-even nuclei octupole deformation

  5. Total reaction cross sections and neutron-removal cross sections of neutron-rich light nuclei measured by the COMBAS fragment-separator

    Science.gov (United States)

    Hue, B. M.; Isataev, T.; Erdemchimeg, B.; Artukh, A. G.; Aznabaev, D.; Davaa, S.; Klygin, S. A.; Kononenko, G. A.; Khuukhenkhuu, G.; Kuterbekov, K.; Lukyanov, S. M.; Mikhailova, T. I.; Maslov, V. A.; Mendibaev, K.; Sereda, Yu M.; Penionzhkevich, Yu E.; Vorontsov, A. N.

    2017-12-01

    Preliminary results of measurements of the total reaction cross sections σR and neutron removal cross section σ-xn for weakly bound 6He, 8Li, 9Be and 10Be nuclei at energy range (20-35) A MeV with 28Si target is presented. The secondary beams of light nuclei were produced by bombardment of the 22Ne (35 A MeV) primary beam on Be target and separated by COMBAS fragment-separator. In dispersive focal plane a horizontal slit defined the momentum acceptance as 1% and a wedge degrader of 200 μm Al was installed. The Bρ of the second section of the fragment-separator was adjusted for measurements in energy range (20-35) A MeV. Two-neutron removal cross sections for 6He and 10Be and one -neutron removal cross sections 8Li and 9Be were measured.

  6. Parametrization of the cross sections for complete disintegration of nuclei at relativistic energies

    International Nuclear Information System (INIS)

    Bogdanov, V.G.; Plyushchev, V.A.; Solov'eva, Z.I.

    1988-01-01

    A phenomenological analysis of observations of the complete disintegration of target nuclei in emulsions in relativistic heavy-ion reactions is given. On the basis of the probability of complete disintegration obtained from the observations it is possible to determine the value of the disintegration cross sections. A parametrizatio of these inelastic cross sections is formulated

  7. Evaluation of the total gamma-ray production cross-sections for nonelastic interaction of fast neutrons with iron nuclei

    International Nuclear Information System (INIS)

    Savin, M.V.; Nefedov, Yu.Ya; Livke, A.V.; Zvenigorodskij, A.G.

    2001-01-01

    Experimental data on the total gamma-ray production cross-sections for inelastic interaction of fast neutrons with iron nuclei were analysed. The total gamma-ray production cross-sections, grouped according to E γ , were evaluated in the neutron energy range 0.5-19 MeV. The statistical spline approximation method was used to evaluate the experimental data. Evaluated data stored in the ENDF, JENDL, BROND, and other libraries on gamma-ray production spectra and cross-sections for inelastic interaction of fast neutrons with iron nuclei, were analysed. (author)

  8. Charged current cross section for massive cosmological neutrinos impinging on radioactive nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Lazauskas, R.; Volpe, C. [Institut de Physique Nuclueaire, 91 - Orsay (France); Vogel, P. [Kellogg Radiation Lab., Caltech, Pasadena, California (United States)

    2007-07-01

    We discuss the cross section formula both for massless and massive neutrinos on stable and radioactive nuclei. The latter could be of interest for the detection of cosmological neutrinos whose observation is one of the main challenges of modern cosmology. We analyze the signal to background ratio as a function of the ratio m{nu}/{delta}, i.e. the neutrino mass over the detector resolution and show that an energy resolution {delta} {<=} 0.5 eV would be required for sub-eV neutrino masses, independently of the gravitational neutrino clustering. Finally we mention the non-resonant character of neutrino capture on radioactive nuclei. (authors)

  9. Photoneutron spectrum measured with Bonner Spheres in Planetary method mode

    Energy Technology Data Exchange (ETDEWEB)

    Benites R, J. [Centro Estatal de Cancerologia de Nayarit, Servicio de Seguridad Radiologica, Calz. de la Cruz 118 Sur, 63000 Tepic, Nayarit (Mexico); Vega C, H. R. [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Apdo. Postal 336, 98000 Zacatecas (Mexico); Velazquez F, J., E-mail: jlbenitesr@prodigy.net.mx [Universidad Autonoma de Nayarit, Posgrado en Ciencias Biologico Agropecuarias, Carretera Tepic-Compostela Km 9, 63780 Jalisco-Nayarit (Mexico)

    2012-10-15

    We measured the spectrum of photoneutrons at 100 cm isocenter linear accelerator (Linac) Varian ix operating at 15 MV Bremsstrahlung mode. In this process was used a radiation field of 20 x 20 cm{sup 2} at a depth of 5 cm in a solid water phantom with dimensions of 30 x 30 x 15 cm{sup 3}. The measurement was performed with a system using it Bonner Spheres spectrometric method Planetary mode. As neutron detector of the spectrometer is used thermoluminescent dosimeters pairs of type 600 and 700. (Author)

  10. Photoneutron spectrum measured with Bonner Spheres in Planetary method mode

    International Nuclear Information System (INIS)

    Benites R, J.; Vega C, H. R.; Velazquez F, J.

    2012-10-01

    We measured the spectrum of photoneutrons at 100 cm isocenter linear accelerator (Linac) Varian ix operating at 15 MV Bremsstrahlung mode. In this process was used a radiation field of 20 x 20 cm 2 at a depth of 5 cm in a solid water phantom with dimensions of 30 x 30 x 15 cm 3 . The measurement was performed with a system using it Bonner Spheres spectrometric method Planetary mode. As neutron detector of the spectrometer is used thermoluminescent dosimeters pairs of type 600 and 700. (Author)

  11. Diffraction scattering and disintegration of 3He nuclei by atomic nuclei

    International Nuclear Information System (INIS)

    Koval'chuk, V.I.

    2006-01-01

    Within diffraction model framework a method of cross sections calculation for scattering and disintegration of weakly-bounded two-clustered nuclei by nuclei when both of its clusters are changed has been proposed. The experimental elastic scattering cross sections of 3 He by 40 Ca, 90 Zr and coincidence spectra of disintegration products from 28 Si( 3 He,dp) have been described

  12. Review and calculation of Mott scattering cross section by unscreened point nuclei

    International Nuclear Information System (INIS)

    Idoeta, R.; Legarda, F.

    1992-01-01

    A new tabulation of the ratio of the ''exact'' Mott cross section for unscreened point nuclei to the classical Rutherford cross section for electrons and positions has been made. Because of the infinite slowly converging series appearing in this ratio we have made two series transformations. With this evaluation the ratio reached convergence within six significant figures after less than a hundred terms and very low computing time. So the ratios evaluated have less relative error than those in the literature and covers a greater range of energy and atomic number. (orig.)

  13. On a calculation of nucleon knock-out cross sections in a collision of relativistic nuclei

    International Nuclear Information System (INIS)

    Goryachev, B.I.; Lin'kova, N.V.

    1985-01-01

    It is shown that in the framework of the two-stage model one can obtain knock-out cross sections of the given number of nucleons from the nucleus-target at a certain number of nucleons knocked out from the nucleus-projectile. The first stage is considered as a fast process of nucleon collisions of interacting nuclei which is completed with knock out of one or several nucleons. The second stage-comparatively slow - is related to de-excitation of nuclei-fragments

  14. Neutron-induced cross sections of short-lived nuclei via the surrogate reaction method

    Directory of Open Access Journals (Sweden)

    Morel P.

    2011-10-01

    Full Text Available The measurement of neutron-induced cross sections of short-lived nuclei is extremely difficult due to the radioactivity of the samples. The surrogate reaction method is an indirect way of determining cross sections for nuclear reactions that proceed through a compound nucleus. This method presents the advantage that the target material can be stable or less radioactive than the material required for a neutron-induced measurement. We have successfully used the surrogate reaction method to extract neutron-induced fission cross sections of various short-lived actinides. In this work, we investigate whether this technique can be used to determine neutron-induced capture cross sections in the rare-earth region.

  15. Neutron-induced cross sections of short-lived nuclei via the surrogate reaction method

    Directory of Open Access Journals (Sweden)

    Tassan-Got L.

    2012-02-01

    Full Text Available The measurement of neutron-induced cross sections of short-lived nuclei is extremely difficult due to the radioactivity of the samples. The surrogate reaction method is an indirect way of determining cross sections for nuclear reactions that proceed through a compound nucleus. This method presents the advantage that the target material can be stable or less radioactive than the material required for a neutron-induced measurement. We have successfully used the surrogate reaction method to extract neutron-induced fission cross sections of various short-lived actinides. In this work, we investigate whether this technique can be used to determine neutron-induced capture cross sections in the rare-earth region.

  16. Evaluation of the (n,xn) and (n,xnf) cross sections for heavy nuclei with the statistical model

    International Nuclear Information System (INIS)

    Jary, J.

    1975-01-01

    A method was presented to calculate the (n,xn) and (n,xnf) cross sections for the heavy nuclei having mass numbers of 232 1) without fission, according to the law of conventional statistical models, in the (n,xn) process. Fission can also compete with the emission of neutrons and γ-ray for the nuclei and the excitation energy considered. The fission cross sections of 235 U and 238 U recently evaluated by Sowerby and the fission cross section of 236 U have been used to determine the other parameters needed in the calculation. The fission widths of 239 U and 238 U have been obtained by fitting the first-chance and second-chance fission plateaus of the 238 U cross section. For the fission width of 238 U, good agreement was observed between the authors' results and Landrum and others' experimental data. (Iwase, T.)

  17. Proton quasi-elastic scattering at 600MeV on the. cap alpha. -substructure of medium nuclei. [Differential cross sections

    Energy Technology Data Exchange (ETDEWEB)

    Anne, R [CEA Centre d' Etudes Nucleaires de Saclay, 91 - Gif-sur-Yvette (France). Service d' Entretien et de Developpement des Appareils de Physique; Delpierre, P; Kahane, J; Sene, R [College de France, 75 - Paris. Lab. de Physique Corpusculaire; Devaux, A; Landaud, G [Clermont-Ferrand Univ., 63 (France); Yonnet, J [Caen Univ., 14 (France). Lab. de Physique Corpusculaire

    1975-01-01

    Alpha knock out from light and medium nuclei up to /sup 40/Ca was investigated. Preliminary values of the differential cross sections are given for /sup 6/Li and /sup 12/C nuclei. The p(R) recoil momentum distributions show a maximum at p(R)=0.

  18. Photons and photoneutrons spectra of a Linac of 15 MV; Espectros de fotones y fotoneutrones de un LINAC de 15 MV

    Energy Technology Data Exchange (ETDEWEB)

    Benites R, J. L.; Carrillo C, A. [Centro Estatal de Cancerologia de Nayarit, Av. Enfermeria, Fracc. Fray Junipero Serra, 63000 Tepic, Nayarit (Mexico); Vega C, H. R. [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Calle Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas (Mexico); Velazquez F, J. B., E-mail: jlbenitesr@prodigy.net.mx [Universidad Autonoma de Nayarit, Posgrado CBAP, Carretera Tepic Compostela Km. 9, Xalisco, Nayarit (Mexico)

    2011-10-15

    Using the Monte Carlo code MCNP-5, the photons and photoneutrons spectra generated in the head stock of the lineal accelerator (Linac) Varian of 15 MV of the Cancerology State of Nayarit were determined. For the calculations a heterogeneous head stock was modeled, more compatible with the work conditions. In the center of the head stock a tungsten target was located on a copper support, followed by the flattened filter. The photons and photoneutrons spectra were obtained accelerating electrons and making them collide against the target to produce photons by Bremsstrahlung, these photons were transported inside the head stock and the photons and photoneutrons spectra were calculated in a punctual detector located under the flattened filter and in the isocenter. The spectra were evaluated in punctual detectors that were located in the plane from the isocenter to the long of the X and Y axes each 20 cm, in an equidistant way, up to 2 m, so much in the longitudinal and transversal axes. In the calculations were used histories 5E(6) with the purpose of obtaining smaller uncertainties to 1%. It was found that the photons spectrum in the punctual detector inside the head stock presents a pick of 1.25 MeV in the energy interval of 0.5 and 1.5 MeV, later suffers a filtration and diminishes in asymptote form. This spectrum modifies when the beam reaches the isocenter, diminishing the low energy photons. Inside the head stock the photoneutrons spectrum shows a structure with two picks, one before 1 MeV and other after 1 MeV; this is for effect of the collimators geometry and the distance. Finally an increment of the total neutrons flow to 60 cm of distance of the isocenter on the Y axis was observed, due to the design geometry of the modeling heterogeneous head stock. (Author)

  19. Neutrino-induced neutral-current reaction cross sections for r-process nuclei

    CERN Document Server

    Langanke, K

    2002-01-01

    Neutrino-induced reactions play an important role during and after the r-process, if the latter occurs in an environment with extreme neutrino fluxes such as the neutrino-driven wind model or neutron star mergers. Recently we have evaluated the charged-current neutrino-nucleus cross sections relevant for r-process simulations. We extend our approach here to the neutral-current cross sections. Our tabulation considers neutron-rich nuclei with neutron numbers N=41-135 and charge numbers Z=21-82 and lists total as well as partial neutron spallation cross sections. The calculations have been performed within the random phase approximation considering multipole transitions with J<=3 and both parities. The supernova neutrino spectrum is described by a Fermi-Dirac distribution with various temperature parameters between T=2.8 MeV and T=10 MeV and with the degeneracy parameters alpha=0 and alpha=3.

  20. A study on the photoneutron dose estimation in flattening filter mode and flattening filter free mode for medical linear accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Oh Nam [Dept. of Radiology, Mokpo Science University, Mokpo (Korea, Republic of); Lim, Cheong Hwan [Dept. of Radiological Science, Hanseo University, Seosan (Korea, Republic of)

    2017-06-15

    In this study, the generation of photoneutrons between the 10 MV FF mode and the FFF mode was evaluated and the amount of photoneutrons generated by the 10 MV and 15 MV energy changes in the FFF mode was evaluated. The generated neutrons were evaluated at 13 measurement points and the KTEPC was used to collect the generated neutrons. 10 MV FF mode was measured at 10 MV FF mode and FFF mode at all measurement points. In the superior direction, 0.455mSv and 0.152mSv were the largest, and more than 33% optical neutron was generated in FF. 10 MV in FFF mode, 15 MV in 15 MV, and 0.402 mSv in the direction of Superior, and 6.9% in the direction.

  1. Spectrin-like proteins in plant nuclei

    NARCIS (Netherlands)

    Ruijter, de N.C.A.; Ketelaar, T.; Blumenthal, S.S.D.; Emons, A.M.C.; Schel, J.H.N.

    2000-01-01

    We analysed the presence and localization of spectrin-like proteins in nuclei of various plant tissues, using several anti-erythrocyte spectrin antibodies on isolated pea nuclei and nuclei in cells. Western blots of extracted purified pea nuclei show a cross-reactive pair of bands at 220–240 kDa,

  2. Improvement of photoneutron spectrum measurement produced by bombardment of 2 GeV electrons above giant dipole resonance region

    International Nuclear Information System (INIS)

    Lee, H. S.; Park, J. S.; Choi, H. D.; Sato, Tatsuhiko; Shin, Kasuo; Ban, Syuichi

    2000-01-01

    Above the Giant Dipole Resonance (GDR) region, high energy photoneutron spectra produced by irradiation of 2.04 GeV electrons into Pb target were measured by Time-of-Flight (TOF) technique. The differential photoneutron yields were obtained at a fixed angle of 90 degrees to the electron beam direction. The TOF system consists of Pilot-U plastic scintillation detector, which has fast response time, and the high speed multiscaler or CAMAC TDC. In the improvement of experimental setup to extend the flight distance to 10.4 m lead to make the measurable energy to 500 MeV from 300 MeV. And using the TDC based electronics lead to use a veto counter. The results were compared with the calculated one by using EGS4 and Modified PICA95. The characteristics of this TOF system was introduced in this paper and the results for several measuring conditions, which are flight distance, TOF electronics, and type of neutron detector, were discussed to improve the accuracy of this measurement

  3. Fragmentation cross sections of relativistic 8436Kr and 10947Ag nuclei in targets from hydrogen to lead

    International Nuclear Information System (INIS)

    Nilsen, B.S.; Waddington, C.J.; Cummings, J.R.; Garrard, T.L.; Klarmann, J.

    1995-01-01

    With the addition of krypton and silver projectiles we have extended our previous studies of the fragmentation of heavy relativistic nuclei in targets ranging in mass from hydrogen to lead. These projectiles were studied at a number of discrete energies between 450 and 1500A MeV. The total and partial charge-changing cross sections were determined for each energy, target, and projectile, and the values compared with previous predictions. A new parametrization of the dependence of the total charge-changing cross sections on the target and projectile is introduced, based on nuclear charge radii derived from electron scattering. We have also parametrized the energy dependence of the total cross sections over the range of energies studied. New parameters were found for a previous representation of the partial charge-changing cross sections in hydrogen and a new parametrization has been introduced for the nonhydrogen targets. The evidence that limiting fragmentation has been attained for these relatively light projectile nuclei at Bevalac energies is shown to be inconclusive, and further measurements at higher energies will be needed to address this question

  4. Possibility of a crossed-beam experiment involving slow-neutron capture by unstable nuclei - ``rapid-process tron''

    Science.gov (United States)

    Yamazaki, T.; Katayama, I.; Uwamino, Y.

    1993-02-01

    The possibility of a crossed beam facility of slow neutrons capturing unstable nuclei is examined in connection with the Japanese Hadron Project. With a pulsed proton beam of 50 Hz repetition and with a 100 μA average beam current, one obtains a spallation neutron source of 2.4 × 10 8 thermal neutrons/cm 3/spill over a 60 cm length with a 3 ms average duration time by using a D 2O moderator. By confining radioactive nuclei of 10 9 ions in a beam circulation ring of 0.3 MHz revolution frequency, so that nuclei pass through the neutron source, one obtains a collision luminosity of 3.9 × 10 24/cm 2/s. A new research domain aimed at studying rapid processes in nuclear genetics in a laboratory will be created.

  5. Photoneutron cross sections for D2O and beryllium

    International Nuclear Information System (INIS)

    Bowsher, H.F.; Woods, F.J.; Baumann, N.P.

    1975-01-01

    The photodissociation cross section by 24 Na gamma rays was measured for deuterium in order to resolve a discrepancy between earlier measurements (1.43 to 1.59 millibarns) and a more recently reported one (1.34 mb). The measurement of the beryllium (γ,n) cross section for 24 Na gamma rays was also included as a check. Results for deuterium (1.54 mb) are in agreement with the earlier values

  6. Personnel hazards from medical electron accelerator photoneutrons

    International Nuclear Information System (INIS)

    Mcall, R.C.; Jenkins, T.M.; Shore, R.A.; LaRiviere, P.D.

    1980-01-01

    Medical electron accelerators operated in the photon mode produce significant amounts of photoneutrons at energies above 15 MeV. There can be definite radiation problems at doors of treatment rooms where operating consoles are often located. These problems are due in large part to inadequate maze design by physicists unaccustomed to shielding against neutrons. The radiation field at the door is an unusual combination of low energy neutrons, thermal neutrons and capture γ-rays from the concrete walls of the maze and the door itself. While this radiation field is dependent upon the actual construction details, these three components each contribute roughly one-third of the total dose equivalent. Reducing these high radiation levels presents a formidable problem. The neutrons can be absorbed by hydrogenous material which can be attached to the door, but the neutron capture γ-rays would require massive amounts of lead for the required attenuation. Both measurements and Monte Carlo calculations are presented to illustrate the problem. Some possible shielding solutions are presented for pre-existing treatment rooms, as well as design recommendations for new rooms. (H.K.)

  7. A radiochemical separation of spallogenic 88Zr in the carrier-free state for radioisotopic photoneutron sources

    International Nuclear Information System (INIS)

    Whipple, R.E.; Grant, P.M.; Daniels, R.J.; Daniels, W.R.; O'Brien, H.A.Jr.

    1976-01-01

    As the precursor of its 88 Y daughter, 88 Zr could be advantageously included in the active component of the 88 Y-Be photoneutron source for several reasons. The spallation of Mo targets with medium-energy protons at LAMPF procedure has been developed to separate radiozirconium from the target material and various spallogenic impurities. 88 Zr can consequently be obtained carrier-free and in quantitative yield. (author)

  8. The abstraction of independent cross-sections from the γ activities of successively decayed daughter nuclei

    International Nuclear Information System (INIS)

    Zheng Jiwen; Zhang Li; Zhao Jinhua; Hu Qingyuan

    1999-01-01

    A technique for abstracting independent cross section on the basis of the γ activities from the observed isotope itself or its successively decayed daughter nuclei was developed. It is specially applicable for determining the independent cross sections of the isotope products involved in quick, element-separated samples. The authors have used it in the isotope-distribution measurement for Hg element produced in the reaction of 600-MeV 18 O beam bombarding on thick natural lead target, and a total of Hg-isotope independent cross sections more than twenty were obtained in the mass range of 180∼209. Some representative examples showing how the authors deduced these independent cross sections are given

  9. On the distribution of quarks in nuclei

    International Nuclear Information System (INIS)

    Baldin, A.M.; Panebrattsev, V.S.; Stavinskij, V.S.

    1984-01-01

    On the basis of the data on cumulative proton, deuteron and nuclear fragment production in hadr on-nucleon reactions and deep inelastic muon-nucleon scattering quark distributions in light, intemediate and heavy nuclei have been investigated. Conditions of limiting fragmentation of hadrons and nuclei in the studied processes have been investigated to obtain quark-parton structure functions (Gs 2 ) of the studied hadrons or nuclei. Invariant differential cross sections of π + , π - , K + meson production on aluminium, deuterium and lead nuclei and their dependence on scale variable at the transverse momentum value Psub(T) approximately 0 have been obtained. Properties of structure functions G 2 and behaviour of different nuclei differential cross sections of limiting fragmentation have been investigated. It is concluded that considered regularities testify to the presence of multiquark states in nuclei, different by its structure from nUcleons

  10. Total photoabsorption cross section on nuclei measured in energy range 0.5-2.6 GeV

    International Nuclear Information System (INIS)

    Mirazita, M.

    1998-03-01

    The total photoabsorption cross section on several nuclei has been measured in the energy range 0.5 - 2.6 GeV. Nuclear data show a significant reduction of the absorption strength with respect to the free nucleon case suggesting a shadowing effect at low energies

  11. Advanced modeling of reaction cross sections for light nuclei

    International Nuclear Information System (INIS)

    Resler, D.A.

    1991-01-01

    The shell model/R-matrix technique of calculating nuclear reaction cross sections for light projectiles incident on light nuclei is discussed, particularly in the application of the technique to thermonuclear reactions. Details are presented on the computational methods for the shell model which display how easily the calculations can be performed. Results of the shell model/R-matrix technique are discussed as are some of the problems encountered in picking an appropriate nucleon-nucleon interaction for the large model spaces which must be used for current problems. The status of our work on developing an effective nucleon-nucleon interaction for use in large-basis shell model calculations is presented. This new interaction is based on a combination of global constraints and microscopic nuclear data. 23 refs., 6 figs., 2 tabs

  12. Band crossing and signature splitting in odd mass fp shell nuclei

    International Nuclear Information System (INIS)

    Velazquez, Victor; Hirsch, Jorge G.; Sun, Yang

    2001-01-01

    Structure of two sets of mirror nuclei: 47 V- 47 Cr and 49 Cr- 49 Mn, as well as 49 V and 51 Mn, is studied using the projected shell model. Their yrast spectra are described as an interplay between the angular momentum projected states around the Fermi level which carry different intrinsic K-quantum numbers. The deviations from a regular rotational sequence are attributed to band crossing and signature splitting, which are usually discussed in heavy nuclear systems. Our results agree reasonably with experimental data, and are comparable with those from the full pf shell model calculations

  13. Optimization aspects of the new nELBE photo-neutron source

    Directory of Open Access Journals (Sweden)

    Schwengner R.

    2010-10-01

    Full Text Available The nELBE beamline at Forschungszentrum Dresden-Rossendorf (FZD provides intense neutron beams by stopping primary electrons in a liquid lead target, where neutrons are produced by bremsstrahlung photons via (γ,n reactions. With the aim to increase the neutron yield through the enhancement of the electron beam energy (from the current 40 MeV limit up to 50 MeV, as well as to minimize several sources of background that are presently affecting the measurements, a new neutron beam-line and a new, larger neutron experimental room have been designed. The optimization of the neutron/photon ratio, the minimization of the backscattered radiation from the walls and the possibility to have better experimental conditions are the main advantages of the new design. To optimize the beamline, extensive simulations with the particle interaction and transport code FLUKA have been performed. Starting from the primary electron beam, both the photon and neutron radiation fields have been fully characterized. To have a cross-check of the results, the calculated values of the neutron yields at different energies of the primary beam have been compared both with an independent simulation with the MCNP code and with analytical calculations, obtaining a very satisfactory agreement at the level of few percent. The evaluated radiation fields have been used to optimize the direction of the new neutron beamline, in order to minimize the photon flash contribution. A general overview of the new photo-neutron source, together with all the steps of the optimization study, is here presented and discussed.

  14. Reduction methodology for reaction cross sections induced by weakly bound nuclei

    International Nuclear Information System (INIS)

    Deshmukh, N.N.; Mukherjee, S.; Appannababu, S.; Guimaraees, V.; Lubian, J.; Gomes, P.R.S.

    2009-01-01

    The interest in nuclear reactions with weakly bound nuclei has increased considerably along the last decade. Several experiments with stable and unstable projectiles have been performed and a variety of theoretical approaches have been developed. In particular, fusion and breakup reactions induced by such projectiles have been the object of several studies. Owing to the weak binding of the projectile, the breakup cross section may be quite large and coupling with the breakup channel can strongly affect the fusion cross section at near barrier energies. This influence stems from two effects, one of a static and the other of a dynamic nature, which are, however, not easy to be disentangled. The static effect results from the more diffuse density of the weakly bound nuclei, as compared with a strongly bound one. The contribution from weakly bound nucleons to the nuclear density extends further out and this gives rise to a lower and thicker potential barrier. There is general understanding that this static effect enhances the fusion cross section at near barrier energies. On the other hand, there is the dynamic effect corresponding to the coupling with the breakup channel. It is well known that the coupling with a finite number of bound channels enhances the sub-barrier fusion cross section. However, the effect of coupling to channels in the continuum (breakup) is controversial. In first place, one should have in mind that there are different fusion processes in collisions of weakly bound projectiles. One of such processes is the complete fusion, which takes place when the whole mass of the projectile fuses with the target. There may be fusion following breakup. In this case, the compound nucleus may contain the whole mass of the projectile (through sequential fusion of the fragments), or some fragment can escape the interaction region. The former corresponds also to complete fusion (sequential complete fusion) while the latter is known as incomplete fusion. So far

  15. Band crossings in mercury nuclei: effect of occupation of i13/2 neutron orbits

    International Nuclear Information System (INIS)

    Khadkikar, S.B.; Praharaj, C.R.

    1984-04-01

    The K=0 + ground band and two rotation-aligned bands (K=1 + or K2 + two quasi-particle band and K=2 + four quasi-particle band) are studied in 198 Hg, 194 Hg and 190 Hg by angular momentum projection from Hartree-Fock and particle-hole intrinsic states. There is a first anomaly in these three nuclei around 8(h/2π) due to the crossing of the ground band and the two quasi-particle band. Because of the nature of occupation of i13/2 orbitals the four quasi-particle band is too highlying in 198 Hg and does not cross the two quasi-particle bands, while such a second crossing occurs in 194 Hg and 190 Hg near 20 (h/2π). (author)

  16. Location of DNA-protein cross-links in mammalian cell nuclei

    International Nuclear Information System (INIS)

    Oleinick, N.L.

    1985-01-01

    DNA-protein cross-links (DPCs) occur in 1-3% of the bulk DNA of unirradiated cells, and dose-dependent increases in DPCs with γ- or UV-radiation can be detected by filter-binding. DPCs may contribute to cell lethality, since their formation is prevented by radical scavengers. Since the environment of DNA varies within eukaryotic nuclei, we have probed the composition and sub-nuclear location of DPCs. Both before and after irradiation, the major proteins cross-linked to DNA have molecular weights similar to known proteins of the nuclear matrix. The DNA cross-linked to protein is enriched in sequences which hybridize to mRNA or rRNA transcripts; such sequences are also found preferentially in preparations of nuclear matrix. When histone-depleted, matrix-associated DNA is separated from the DNA of the supercoiled ''loops'' by digestion with EcoRI and assayed for DPCs by filter binding, the frequency of DPCs is greater in the matrix. During repair of DPCs, protein-associated DNA becomes depleted in actively transcribing DNA, followed by reconstitution of the active-gene-enriched nuclear matrix. These data are consistent with known properties of the matrix and suggest the hypothesis that in intact cells, radiation-induced DPCs are primarily a product of matrix-associated DNA sequences and matrix protein

  17. The Structure of Nuclei Joint Analysis of Elastic, Inelastic Scattering and Total Reactions Cross-Sections for ^{90,94}Zr-Particles Data

    CERN Document Server

    Duysebaev, A D; Kuchtina, I N; Sadykov, B M; Slusarenko, L I; Tokarevsky, V V; Fayans, S A

    2001-01-01

    A complex analysis of experimental data of elastic, inelastic scattering and total reactions cross-sections of alpha-particles on ^{90,94}Zr nuclei is performed. Values of the deformation lengths and neutron-proton multipole matrix elements relations for 2_{1}^{+}- and 3_{1}^{+}-states of ^{90,92,94,96}Zr nuclei for different types of particles are obtained. A comparative analysis is made. Experimental data for inelastic scattering of 35.4, 40.0, 50.1 and 65.0 MeV alpha-particles on ^{90,94}Zr nuclei are analysed for understanding the phase shifts in frames of the unified approach.

  18. Measurementof photo-neutron dose from an 18-MV medical linac using a foil activation method in view of radiation protection of patients

    International Nuclear Information System (INIS)

    Yuecel, Haluk; Kolbasi, Asuman; Yueksel, Alptug Oezer; Cobanbas, Ibrahim; Kaya, Vildan

    2016-01-01

    High-energy linear accelerators are increasingly used in the medical field. However, the unwanted photo-neutrons can also be contributed to the dose delivered to the patients during their treatments. In this study, neutron fluxes were measured in a solid water phantom placed at the isocenter 1-m distance from the head of an 18-MV linac using the foil activation method. The produced activities were measured with a calibrated well-type Ge detector. From the measured fluxes, the total neutron fluence was found to be (1.17 ± 0.06) X 10 7 n/cm 2 per Gy at the phantom surface in a 20 X 20 cm 2 X-ray field size. The maximum photo-neutron dose was measured to be 0.67 ± 0.04 mSv/Gy at d max = 5 cm depth in the phantom at isocenter. The present results are compared with those obtained for different field sizes of 10 X 10cm 2 , 15 X 15cm 2 , and 20 X 20cm 2 from 10-, 15-, and 18-MV linacs. Additionally, ambient neutron dose equivalents were determined at different locations in the room and they were found to be negligibly low. The results indicate that the photo-neutron dose at the patient position is not a negligible fraction of the therapeutic photon dose. Thus, there is a need for reduction of the contaminated neutron dose by taking some additional measures, for instance, neutron absorbing-protective materials might be used as aprons during the treatment

  19. An MCNP-based model for the evaluation of the photoneutron dose in high energy medical electron accelerators.

    Science.gov (United States)

    Carinou, Eleutheria; Stamatelatos, Ion Evangelos; Kamenopoulou, Vassiliki; Georgolopoulou, Paraskevi; Sandilos, Panayotis

    The development of a computational model for the treatment head of a medical electron accelerator (Elekta/Philips SL-18) by the Monte Carlo code mcnp-4C2 is discussed. The model includes the major components of the accelerator head and a pmma phantom representing the patient body. Calculations were performed for a 14 MeV electron beam impinging on the accelerator target and a 10 cmx10 cm beam area at the isocentre. The model was used in order to predict the neutron ambient dose equivalent at the isocentre level and moreover the neutron absorbed dose distribution within the phantom. Calculations were validated against experimental measurements performed by gold foil activation detectors. The results of this study indicated that the equivalent dose at tissues or organs adjacent to the treatment field due to photoneutrons could be up to 10% of the total peripheral dose, for the specific accelerator characteristics examined. Therefore, photoneutrons should be taken into account when accurate dose calculations are required to sensitive tissues that are adjacent to the therapeutic X-ray beam. The method described can be extended to other accelerators and collimation configurations as well, upon specification of treatment head component dimensions, composition and nominal accelerating potential.

  20. Reaction cross section measurements of neutron-rich exotic nuclei in the vicinity of closed shells N=20 and N=28

    International Nuclear Information System (INIS)

    Khouaja, A.

    2003-12-01

    Using the direct method, the mean energy integrated reaction cross section was investigated for a wide range of neutron-rich nuclei (N → Ar) at GANIL. Using the parametrisation of S. Kox, 19 new radii measurements (reaction cross sections) were obtained. By the isotopic, isotonic and isospin dependence, the evolution of the strong reduced radius was studied according to the excess of neutrons. New halo effect is proposed to the nuclei of Mg 35 and S 44 . A quadratic parametrization is also proposed for the nuclear radius as a function of the isospin in the region of closed shells N=8 and N=28. In addition, we used a modified version of the Glauber model for studying the tail and matter distribution of nuclei. Indeed, using our new data the effects of the nuclear size (root mean square radii) and the matter distribution (diffusivity) were de-convoluted for each isotope. The root mean square radii of Na and Mg isotopes obtained so far were consistent with the ones from literature. (author)

  1. Photoneutron and Photonuclear Cross Sections According to Packed cluster Model

    International Nuclear Information System (INIS)

    El-Mekkawi, L.S.; El-Bakty, O.M.

    1998-01-01

    Photonuclear gross sections have been estimated for 232 Th, 237 Np, 239 Pu, 233 U, 234 U, 235 U, 238 U in the energy range from threshold up to 20 MeV, by perturbation balance in Packed Cluster. The Packed Cluster (gamma, f) and (gamma, n) cross sections require complete absence of any (gamma,2n) or (gamma,nf) cross sections for 233 U and 234 U as in experiment. It also explains the early (gamma,n) and gamma,nf) reactions in 235 U

  2. NESKA, Electron and Positron Scattering from Point Nuclei

    International Nuclear Information System (INIS)

    Idoeta, R.; Legarda, F.

    2002-01-01

    1 - Description of program or function: The Mott's differential cross section for the scattering of electrons and positrons by point nuclei without screening is calculated for any energy, atomic number and angle of scattering. 2 - Method of solution: We have summed the conditionally convergent series appearing in Mott's cross section using two consecutive transformations: the one of Yennie, Ravenhall and Wilson and that of Euler till we have seven times six significant figures repeated in the ratio of the Mott cross section to the classical Rutherford cross section. 3 - Restrictions on the complexity of the problem: Those appearing in the use of Mott's cross section for unscreened point nuclei

  3. Photoneutron Flux Measurement via Neutron Activation Analysis in a Radiotherapy Bunker with an 18 MV Linear Accelerator

    Science.gov (United States)

    Çeçen, Yiğit; Gülümser, Tuğçe; Yazgan, Çağrı; Dapo, Haris; Üstün, Mahmut; Boztosun, Ismail

    2017-09-01

    In cancer treatment, high energy X-rays are used which are produced by linear accelerators (LINACs). If the energy of these beams is over 8 MeV, photonuclear reactions occur between the bremsstrahlung photons and the metallic parts of the LINAC. As a result of these interactions, neutrons are also produced as secondary radiation products (γ,n) which are called photoneutrons. The study aims to map the photoneutron flux distribution within the LINAC bunker via neutron activation analysis (NAA) using indium-cadmium foils. Irradiations made at different gantry angles (0°, 90°, 180° and 270°) with a total of 91 positions in the Philips SLI-25 linear accelerator treatment room and location-based distribution of thermal neutron flux was obtained. Gamma spectrum analysis was carried out with high purity germanium (HPGe) detector. Results of the analysis showed that the maximum neutron flux in the room occurred at just above of the LINAC head (1.2x105 neutrons/cm2.s) which is compatible with an americium-beryllium (Am-Be) neutron source. There was a 90% decrease of flux at the walls and at the start of the maze with respect to the maximum neutron flux. And, just in front of the LINAC door, inside the room, neutron flux was measured less than 1% of the maximum.

  4. Photoneutron Flux Measurement via Neutron Activation Analysis in a Radiotherapy Bunker with an 18 MV Linear Accelerator

    Directory of Open Access Journals (Sweden)

    Çeçen Yiğit

    2017-01-01

    Full Text Available In cancer treatment, high energy X-rays are used which are produced by linear accelerators (LINACs. If the energy of these beams is over 8 MeV, photonuclear reactions occur between the bremsstrahlung photons and the metallic parts of the LINAC. As a result of these interactions, neutrons are also produced as secondary radiation products (γ,n which are called photoneutrons. The study aims to map the photoneutron flux distribution within the LINAC bunker via neutron activation analysis (NAA using indium-cadmium foils. Irradiations made at different gantry angles (0°, 90°, 180° and 270° with a total of 91 positions in the Philips SLI-25 linear accelerator treatment room and location-based distribution of thermal neutron flux was obtained. Gamma spectrum analysis was carried out with high purity germanium (HPGe detector. Results of the analysis showed that the maximum neutron flux in the room occurred at just above of the LINAC head (1.2x105 neutrons/cm2.s which is compatible with an americium-beryllium (Am-Be neutron source. There was a 90% decrease of flux at the walls and at the start of the maze with respect to the maximum neutron flux. And, just in front of the LINAC door, inside the room, neutron flux was measured less than 1% of the maximum.

  5. Cross section measurements of fissile nuclei for slow neutrons; Mesures de sections efficaces de noyaux fissiles pour les neutrons lents

    Energy Technology Data Exchange (ETDEWEB)

    Auclair, J M; Hubert, P; Joly, R; Vendryes, G; Jacrot, B; Netter, F [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires; Galula, M [Centre National de la Recherche Scientifique (CNRS), 91 - Gif-sur-Yvette (France)

    1955-07-01

    It presents the experimental measurements of cross section of fissile nuclei for slow neutrons to improve the understanding of some heavy nuclei of great importance in the study of nuclear reactors. The different experiments are divided in three categories. In the first part, it studied the variation with energy of the cross sections of natural uranium, {sup 233}U, {sup 235}U and {sup 239}Pu. Two measurement techniques are used: the time-of-flight spectrometer and the crystal spectrometer. In a second part, the fission cross sections of {sup 233}U and {sup 239}Pu for thermal neutrons are compared using a neutron flux from EL-2 going through a double fission chamber. The matter quantity contained in each source is measured by counting the {alpha} activity with a solid angle counter. Finally, the average cross section of {sup 236}U for a spectra of neutrons from the reactor is measured by studying the {beta} activity of {sup 237}U formed by the reaction {sup 236}U (n, {gamma}) {sup 237}U in a sample of {sup 236}U irradiated in the Saclay reactor (EL-2). (M.P.)

  6. Electrodisintegration of relativistic nuclei by a periodic crystal field in channeling

    International Nuclear Information System (INIS)

    Pivovarov, Yu.L.; Vorob'ev, S.A.

    1981-01-01

    Processes on channeled relativistic nuclei with transition into a continuous spectrum (electrodisintegration of nuclei with emission of neutron, proton, photon and etc.) are considered. A case of plane channeling is considered. The equivalent photon method is used for calculating the disintegration cross section. The beryllium disintegration cross section in the system of tungsten crystal (100) planes is calculated. At the γ=10 2 Lorentz factor the cross section value is 5.27 mb. The process considered is of interest from the viewpoint of production of monoenergy neutrons of high energies and γ quanta of excited nuclei. The channeling effect gives the possibility to study electromagnetic interactions of relativistic nuclei under suppre--ssion conditions of the nuclear interaction channel [ru

  7. Method of measurement of cross sections of heavy nuclei fission induced by intermediate energy protons

    International Nuclear Information System (INIS)

    Kotov, Alexander; Chtchetkovski, Alexander; Fedorov, Oleg; Gavrikov, Yuri; Chestnov, Yuri; Poliakov, Vladimir; Vaishnene, Larissa; Vovchenko, Vil; Fukahori, Tokio

    2003-01-01

    The purpose of this work is experimental studies of the energy dependence of the fission cross sections of heavy nuclei, nat Pb, 209 Bi, 232 Th, 233 U, 235 U, 238 U, 237 Np and 239 Pu, by protons at the energies from 200 to 1000 MeV. At present experiment the method based on use of the gas parallel plate avalanche counters (PPACs) for registration of complementary fission fragments in coincidence and the telescope of scintillation counters for direct counting of the incident protons on the target has been used. First preliminary results of the energy dependences of proton induced fission cross sections for nat Pb, 209 Bi, 235 U and 238 U are reported. (author)

  8. Study of fusion probabilities with halo nuclei using different proximity based potentials

    International Nuclear Information System (INIS)

    Kumari, Raj

    2013-01-01

    We study fusion of halo nuclei with heavy targets using proximity based potentials due to Aage Winther (AW) 95, Bass 80 and Proximity 2010. In order to consider the extended matter distribution of halo nuclei, the nuclei radii borrowed from cross section measurements are included in these potentials. Our study reveals that the barrier heights are effectively reduced and fusion cross sections are appreciably enhanced by including extended radii of these nuclei. We also find that the extended sizes of halos contribute towards enhancement of fusion probabilities in case of proton halo nuclei, but, contribute to transfer or break-up process rather than fusion yield in case of neutron halo nuclei

  9. High energy neutron cross-sections and kerma values of biomedical interest calculated with a nuclear model applicable to light nuclei

    International Nuclear Information System (INIS)

    Brenner, D.J.

    1984-01-01

    A model has been developed for calculating fast neutron cross sections (E > 14 MeV) for light nuclei of biomedical interest. The model explicitly includes experimental nuclear structure information. Some calculations for 12 C, 14 N, and 16 O are presented

  10. Incidence of centrally positioned nuclei in mouse masticatory muscle fibers

    DEFF Research Database (Denmark)

    Vilmann, A; Vilmann, H; Kirkeby, S

    1989-01-01

    Cross-sections of normal digastric, temporalis and masseter muscles from 7- and 30-week-old mice were studied for centrally positioned nuclei. Such nuclei were inhomogeneously distributed throughout each muscle and varied markedly between specimens. The incidence of centrally positioned nuclei in...

  11. Total nuclear photoabsorption cross section in the range 0.2-1.0 GeV for nuclei throughout the periodic table

    International Nuclear Information System (INIS)

    Terranova, M.L.; Tavares, O.A.P.

    1994-01-01

    An analysis of the total photoabsorption cross section for nuclei ranging from 4 He up to 238 U has been performed in the energy range 0.2-1.0 GeV. Mean total photoabsorption cross sections have been obtained by summing up the contributions from partial photoreactions, and found to follow an A 1 -dependence in the 0.2-1.0 GeV range. A review of the available total photoabsorption cross section data is also presented. Comparisons have been made with cross section values calculated by considering both the quasi-deuteron and π-meson photoproduction mechanism of primary nuclear photointeraction. (orig.)

  12. Photoneutron cross sections measurements in {sup 9}Be, {sup 13}C e {sup 17}O with thermal neutron capture gamma-rays; Medidas das secoes de choque de fotoneutrons do {sup 9}Be, {sup 13}C e {sup 17}O com radiacao gama de captura de neutrons termicos

    Energy Technology Data Exchange (ETDEWEB)

    Semmler, Renato

    2006-07-01

    Photoneutron cross sections measurements of {sup 9}Be, {sup 13}C and {sup 17}O have been obtained in the energy interval between 1,6 and 10,8 MeV, using neutron capture gamma-rays with high resolution in energy (3 a 21 eV), produced by 21 target materials, placed inside a tangential beam port, near the core of the IPEN/CNEN-SP IEA-R1 (5 MW) research reactor. The samples have been irradiated inside a 4{pi} geometry neutron detector system 'Long Counter', 520,5 cm away from the capture target. The capture gamma-ray flux was determined by means of the analysis of the gamma spectrum obtained by using a Ge(Li) solid-state detector (EG and G ORTEC, 25 cm{sup 3}, 5%), previously calibrated with capture gamma-rays from a standard target of Nitrogen (Melamine). The neutron photoproduction cross section has been measured for each target capture gamma-ray spectrum (compound cross section). A inversion matrix methodology to solve inversion problems for unfolding the set of experimental compound cross sections, was used in order to obtain the cross sections at specific excitation energy values (principal gamma line energies of the capture targets). The cross sections obtained at the energy values of the principal gamma lines were compared with experimental data reported by other authors, with have employed different gamma-ray sources. A good agreement was observed among the experimental data in this work with reported in the literature. (author)

  13. Absolute measurements of neutron cross sections. Progress report

    International Nuclear Information System (INIS)

    1984-11-01

    In the photoneutron laboratory, we have completed a major refurbishing of experimental facilities and begun work on measurements of the capture cross section in thorium and U-238. In the 14 MeV neutron experimental bay, work continues on the measurement of 14 MeV neutron induced reactions of interest as standards or because of their technological importance. First results have been obtained over the past year, and we are extending these measurements along the lines outlined in our proposal of a year ago

  14. Radii of nuclei off stability

    International Nuclear Information System (INIS)

    Sugimoto, Kenzo

    1982-01-01

    An experiment is proposed to determine systematically the radii of the nuclei produced through the projectile fragmentation process in high energy heavy-ion collision. The measurement of total reaction cross section using the projectile fragments of a single nuclide on a target give information about nuclear radii. The production cross section of the fragments is appreciable for many nuclides. Therefore, it is possible to map systematically the reaction radii of the nuclei which can be produced as the projectile fragments. In an experiment using the projectile fragments as the incident beam, the cross section can be expressed as a function of the radii of a projectile and a target. An experiment with He-8 produced by the fragmentation of C-12 is proposed. The He-8 has four neutrons in the p-3/2 orbit outside the He-4 core. Proton and neutron distributions for He isotopes were calculated on the basis of the Hartree-Fock method. The information related to this kind of distribution can be obtained by the proposed experiment. The nuclear structure effect is seen in the nuclear radii of other unstable nuclei. The experimental examples of the isotope shift measurement and the excitation energy are presented. (Kato, T.)

  15. Test calculations of photoneutrons emission from surface of uranium sphere irradiated by 28 MeV electrons

    International Nuclear Information System (INIS)

    Blokhin, A.I.; Degtyarev, I.I.

    2002-01-01

    In this paper the results of physical verification for the BOFOD photonuclear data files are reported, available for the uranium isotopes U 235 , U 238 . These results were compared with calculated data by the parameterization driven model of photonuclear reaction and experimental data. Experimental data of photoneutron yields from surface of uranium sphere irradiated by 28 MeV electrons are used for a verification. Both calculations have been carried out with the RTS and T general purpose Monte Carlo code with detailed electron-photon-nucleon transport simulation using the ENDF/B-VI and EPDL evaluated data libraries

  16. Total nuclear photoabsorption cross section in the range 0.2 - 1.0 GeV for nuclei throughout the periodic table

    International Nuclear Information System (INIS)

    Terranova, M.L.; Tavares, O.A.P.

    1993-01-01

    An analysis of the total photoabsorption cross section for nuclei ranging from 4 He up to 238 U has been performed in the energy range 0.2-1.0 GeV. Mean total photoabsorption cross sections have been obtained by summing up the contributions from partial photo reactions, and found to follow an A l -dependence in the 0.2-1.0 GeV range. A review of the available total photoabsorption cross section data is also presented. Comparisons have been made with cross section values calculated by considering both the quasi-deuteron and π-meson photoproduction mechanism of primary nuclear photo interaction. (author)

  17. New aspects of the neutron capture in light nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Mengoni, A. [Institute of Physical and Chemical Research, Wako, Saitama (Japan)

    1997-03-01

    Several neutron capture cross sections of light nuclei (A {<=} 40) for neutron energies up to the MeV region have been recently calculated. Examples are (target nuclei): {sup 12}C, {sup 13}C, {sup 16}O and {sup 10}Be. The results of these calculations will be shown together with a comparison with the most recent experimental data. In the case of n + {sup 10}Be case, the cross section of the inverse process (Coulomb dissociation of {sup 11}Be) is considered and compared with the measurement. A discussion on the relevant nuclear structure information required for the evaluation of nuclear data of light nuclei is given. (author)

  18. Representation of the neutron cross sections of several fertile and fissile nuclei in the resonance regions

    Energy Technology Data Exchange (ETDEWEB)

    de Saussure, G.; Perez, R.B. (Oak Ridge National Lab., TN (USA))

    1982-01-01

    Several problems related to the measurement, analysis and evaluation of the neutron cross sections of the main fertile and fissile nuclides in the resonance region are reviewed. In particular the ENDF/B-V representation of these cross sections is discussed. In recent years little progress has been made in improving our knowledge of the resolved resonance parameters of the fertile nuclei. It is suggested that this absence of progress is due to a lack of adequate methodologies to deal with the systematic errors arising from uncertainties in the analysis of the measurements. The ENDF/B treatment of the unresolved resonance region is commented on and the authors recommend the validation of the unresolved resonance range evaluations with appropriate transmission and self-indication measurements.

  19. Symmetry energy, unstable nuclei and neutron star crusts

    Energy Technology Data Exchange (ETDEWEB)

    Iida, Kei [Kochi University, Department of Natural Science, Kochi (Japan); RIKEN Nishina Center, Saitama (Japan); Oyamatsu, Kazuhiro [RIKEN Nishina Center, Saitama (Japan); Aichi Shukutoku University, Department of Human Informatics, Aichi (Japan)

    2014-02-15

    The phenomenological approach to inhomogeneous nuclear matter is useful to describe fundamental properties of atomic nuclei and neutron star crusts in terms of the equation of state of uniform nuclear matter. We review a series of researches that we have developed by following this approach. We start with more than 200 equations of state that are consistent with empirical masses and charge radii of stable nuclei and then apply them to describe matter radii and masses of unstable nuclei, proton elastic scattering and total reaction cross sections off unstable nuclei, and nuclei in neutron star crusts including nuclear pasta. We finally discuss the possibility of constraining the density dependence of the symmetry energy from experiments on unstable nuclei and even observations of quasi-periodic oscillations in giant flares of soft gamma-ray repeaters. (orig.)

  20. Calculation of the radii of neutron rich light exotic nuclei

    International Nuclear Information System (INIS)

    Charagi, S.K.; Gupta, S.K.

    1991-01-01

    The interaction cross section of a few unstable neutron rich nuclei have been measured using exotic isotope beams produced through the projectile fragmentation process in high energy heavy-ion collisions. Interaction cross section of He, Li, Be and B isotope projectiles with Be, C and Al targets have thus been measured at 790 MeV/nucleon. We have made a comprehensive analysis of the data on the interaction cross section, to extract the radii of these neutron rich light nuclei. 7 refs., 1 fig., 3 tabs

  1. Measurement of cross sections producing short-lived nuclei by 14MeV neutron. Cd, Sn, Te, Nd, Gd, Re

    Energy Technology Data Exchange (ETDEWEB)

    Sakane, H.; Yamamoto, H.; Kawade, K. [Nagoya Univ. (Japan); Iida, T.; Takahashi, A.

    1998-03-01

    Nine neutron activation cross sections producing the nuclei with half-lives between 25sec and 22min were measured at energy range between 13.4 and 14.9 MeV by activation method. The (n,p) and (n,{alpha}) reaction cross sections were measured for the isotopes of {sup 110}Cd, {sup 112}Sn, {sup 122}Te, {sup 130}Te and {sup 185}Re and those of {sup 130}Te, {sup 148}Nd and {sup 158}Gd, respectively. The present results were compared with our systematics proposed on the basis of 58 cross section data of (n,p) and 33 data of (n,{alpha}) reaction. Good agreements have been seen between them. (author)

  2. Structure effects in polarization and cross sections for A(p, p’)X inelastic reactions on {sup 40}Ca and {sup 12}C nuclei at 1 GeV

    Energy Technology Data Exchange (ETDEWEB)

    Miklukho, O. V., E-mail: miklukho-ov@pnpi.rncki.ru; Kisselev, A. Yu., E-mail: kisselev@mail.desy.de; Amalsky, G. M.; Andreev, V. A.; Gavrilov, G. E.; Izotov, A. A.; Kozlenko, N. G.; Kravchenko, P. V.; Levchenko, M. P.; Novinskiy, D. V.; Prokofiev, A. N., E-mail: prokofiev-an@pnpi.rncki.ru; Shvedchikov, A. V.; Trush, S. I.; Zhdanov, A. A. [National Research Centre Kurchatov Institute, Petersburg Nuclear Physics Institute (Russian Federation)

    2017-03-15

    The polarization of secondary protons in the (p, p’) inelastic reactions on {sup 40}Ca and {sup 12}C nuclei at the initial proton energy of 1 GeV was measured over a wide range of scattered-proton momenta at a laboratory angle of Θ = 21°. The reaction cross sections were also measured. Scattered protons were detected by means of magnetic spectrometer equipped with a polarimeter based on multiwire-proportional chambers. A structure in the polarization and cross-section data, which is probably related to scattering off nucleon correlations in the nuclei involved, was observed.

  3. NDA technology for uranium resource evaluation. Progress report, January 1-June 30, 1979

    International Nuclear Information System (INIS)

    Evans, M.L.

    1980-04-01

    Calculational effort has focused on gamma-ray cross-section conversions, feasibility studies of an x-ray fluorescence (XRF) probe, and simulation of the prototype photoneutron logging tool. Experimental effort has concentrated on the design and fabrication of a field prototype photoneutron-based logging probe, on two types of borehole water monitors, and on a commercial pulse-shape discrimination unit to be used with the photoneutron logging probe. 37 figures, 4 tables

  4. Nuclear-physical investigations with oriented nuclei and polarized neutrons

    International Nuclear Information System (INIS)

    Alfimenkov, V.P.; Pikel'ner, L.B.; Sharapov, Eh.I.

    1980-01-01

    Several experiments with oriented nuclei and polarized neutrons are considered, as well as some methods of polarization of neutrons and nuclei. Experiments on the study of spin dependence of neutron cross sections for fissionable and nonfissionable nuclei interaction of polarized neutrons with polarized nuclei as well as measurement of magnetic momenta of compound-states of rare-earth nuclei. Described are some investigations with thermal neutrons: study on spin dependence of neutron scattering length with nuclei and gamma radiation of neutron radiation capture. Difficulties of production of high-intensive polarized neutron beams and construction of oriented targets are noted. Neutron polarization by transmission of them through a polarized proton target is the most universal method (out of existing methods) in the energy range under consideration [ru

  5. {sup 124}Sb–Be photo-neutron source for BNCT: Is it possible?

    Energy Technology Data Exchange (ETDEWEB)

    Golshanian, Mohadeseh [Nuclear Science and Technology Research Institute (NSTRI), Tehran (Iran, Islamic Republic of); Department of Physics, Shahrood University, Shahrood (Iran, Islamic Republic of); Rajabi, Ali Akbar [Department of Physics, Shahrood University, Shahrood (Iran, Islamic Republic of); Kasesaz, Yaser, E-mail: ykasesaz@aeoi.org.ir [Nuclear Science and Technology Research Institute (NSTRI), Tehran (Iran, Islamic Republic of)

    2016-11-01

    In this research a computational feasibility study has been done on the use of {sup 124}SbBe photo-neutron source for Boron Neutron Capture Therapy (BNCT) using MCNPX Monte Carlo code. For this purpose, a special beam shaping assembly has been designed to provide an appropriate epithermal neutron beam suitable for BNCT. The final result shows that using 150 kCi of {sup 124}Sb, the epithermal neutron flux at the designed beam exit is 0.23×10{sup 9} (n/cm{sup 2} s). In-phantom dose analysis indicates that treatment time for a brain tumor is about 40 min which is a reasonable time. This high activity {sup 124}Sb could be achieved using three 50 kCi rods of {sup 124}Sb which can be produced in a research reactor. It is clear, that as this activity is several hundred times the activity of a typical cobalt radiotherapy source, issues related to handling, safety and security must be addressed.

  6. On deuteron break-up at interaction with heavy nuclei

    International Nuclear Information System (INIS)

    Evlanov, M.V.; Nemets, O.F.; Struzhko, B.G.

    1975-01-01

    The aim of the paper is the study of the nuclear boundary diffusivity during disintegration of a deutron on heavy nuclei for various combinations of neutron and proton emission angles. The formulae has obtained for the cross section and the amplitude of nuclear interaction. The calculation of angular correlations between emission directions of deutron disintegration products and energy spectra of released protons depending on the nuclear boundary diffusivity is made. It is shown that the differential cross sections of deutron fission disintegration decrease with increasing nuclear boundary diffusivity. This effect may serve a qualitative explanation for observed differences in the deutron disintegration cross sections on heavy nuclei

  7. Importance of nuclear triaxiality for electromagnetic strength, level density and neutron capture cross sections in heavy nuclei

    CERN Document Server

    Grosse, Eckart; Massarczyk, Ralph

    2014-01-01

    Cross sections for neutron capture in the range of unresolved resonances are predicted simultaneously to level distances at the neutron threshold for more than 100 spin-0 target nuclei with A >70. Assuming triaxiality in nearly all these nuclei a combined parameterization for both, level density and photon strength is presented. The strength functions used are based on a global fit to IVGDR shapes by the sum of three Lorentzians adding up to the TRK sum rule and theory-based predictions for the A-dependence of pole energies and spreading widths. For the small spins reached by capture level densities are well described by only one free global parameter; a significant collective enhancement due to the deviation from axial symmetry is observed. Reliable predictions for compound nuclear reactions also outside the valley of stability as expected from the derived global parameterization are important for nuclear astrophysics and for the transmutation of nuclear waste.

  8. Measurement of formation cross sections producing short-lived nuclei by 14 MeV neutrons. Pr, Ba, Ce, Sm, W, Sn, Hf

    International Nuclear Information System (INIS)

    Murahira, S.; Satoh, Y.; Honda, N.; Shibata, M.; Yamamoto, H.; Kawade, K.; Takahashi, A.; Iida, T.

    1996-01-01

    Thirteen neutron activation cross sections for (n,2n), (n,p), (n,np) and (n,α) reactions producing short-lived nuclei with half-lives between 56 s and 24 min were measured in the energy range from 13.4 MeV to 14.9 MeV for Pr, Ba, Ce, Sm, W, Sn and Hf. The cross sections of 179 Hf(n,np) 178m Lu and 180 Hf(n,p) 180 Lu were measured for the first time. (author)

  9. Evaporation residue cross sections for the {sup 64}Ni + {sup 144,154}Sm reaction -- Energy dissipation in hot nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Back, B.B.; Blumenthal, D.J.; Davids, C.N. [and others

    1995-08-01

    The fission hindrance of hot nuclei was deduced recently from an enhanced emission of GDR {gamma} rays, neutrons and charged particles prior to scission of heavy nuclei. In the most recent experiments addressing this topic, namely new measurements of the pre-scission {gamma} rays and evaporation residues from the {sup 32}S + {sup 184}W reaction, a rather sharp transition from negligible to full one-body dissipation occurs over the excitation energy region E{sub exc} = 60-100 MeV. However, the cross section does not appear to level out or start to decline again at the upper end of the energy range as expected in this interpretation. It is therefore clearly desirable to extend the excitation energy range to look for such an effect in order to either corroborate or refute this interpretation.

  10. Relativistic exotic nuclei as projectile beams. New perspectives of studies on the properties of nuclei

    International Nuclear Information System (INIS)

    Geissel, H.

    1997-03-01

    Examinations of the production cross-sections and the kinematics permitted refinement of model concepts of the peripheral reactions in exotic nuclei at energies from 100 to 1000 A MeV. Due to the strong selectivity and resolution achieved it was possible to discover a large number of novel isotopes at the fragment separator FRS, despite the relatively low projectile beam intensities of the SIS. The two twice magic nuclei found, Ni 78 and Sn 100, are particularly interesting, as they could not be measured so far with other experimental systems. Fission of relativistic uranium ions proved to be a particularly successful process yielding many medium-heavy, neutron-rich nuclei. Insight into the structure of light neutron halos could be improved. The superlarge spatial dimensions of the nuclear halos is discussed. (orig./CB) [de

  11. Level density parameter dependence of the fission cross sections of some subactinide nuclei induced by protons with the incident energy up to 250 MeV

    International Nuclear Information System (INIS)

    Aydin, A.; Yalim, H.A.; Tel, E.; Sarer, B.; Unal, R.; Sarpuen, I.H.; Kaplan, A.; Dag, M.

    2009-01-01

    This study aims to show the dependence on the choice of the ratio of the level density parameters a f and a n corresponding to the saddle point of fission and equilibrium deformation of nucleus, respectively, of the proton induced fission cross sections of some subactinide targets. The method was employed using different level density parameter ratios for each fission cross section calculation in ALICE/ASH computer code. The ALICE/ASH code calculations were compared both with the available experimental data and with the Prokofiev systematics data. It is found that the fission cross sections dependent heavily on the choice of level density parameter ratio in the fission and neutron emission channels, a f /a n , for some subactinide nuclei. To get a good description of the measured fission cross sections for subactinide nuclei, we used a ratio of the level density parameters in the fission and neutron emission channels, a f /a n , depending both on the target-nucleus and on the energy of the projectile, in agreement with results published in literature.

  12. Relativistic mean field calculations in neutron-rich nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Gangopadhyay, G.; Bhattacharya, Madhubrata [Department of Physics, University of Calcutta, 92 Acharya Prafulla Chandra Road, Kolkata 700 009 (India); Roy, Subinit [Saha Institute of Nuclear Physics, Block AF, Sector 1, Kolkata- 700 064 (India)

    2014-08-14

    Relativistic mean field calculations have been employed to study neutron rich nuclei. The Lagrange's equations have been solved in the co-ordinate space. The effect of the continuum has been effectively taken into account through the method of resonant continuum. It is found that BCS approximation performs as well as a more involved Relativistic Continuum Hartree Bogoliubov approach. Calculations reveal the possibility of modification of magic numbers in neutron rich nuclei. Calculation for low energy proton scattering cross sections shows that the present approach reproduces the density in very light neutron rich nuclei.

  13. Modelisation of the fission cross section

    International Nuclear Information System (INIS)

    Morariu, Claudia

    2013-03-01

    The neutron cross sections of four nuclear systems (n+ 235 U, n+ 233 U, n+ 241 Am and n+ 237 Np) are studied in the present document. The target nuclei of the first case, like 235 U and 239 Pu, have a large fission cross section after the absorption of thermal neutrons. These nuclei are called 'fissile' nuclei. The other type of nuclei, like 237 Np and 241 Am, fission mostly with fast neutrons, which exceed the fission threshold energy. These types of nuclei are called 'fertile'. The compound nuclei of the fertile nuclei have a binding energy higher than the fission barrier, while for the fissile nuclei the binding energy is lower than the fission barrier. In this work, the neutron induced cross sections for both types of nuclei are evaluated in the fast energy range. The total, reaction and shape-elastic cross sections are calculated by the coupled channel method of the optical model code ECIS, while the compound nucleus mechanism are treated by the statistical models implemented in the codes STATIS, GNASH and TALYS. The STATIS code includes a refined model of the fission process. Results from the theoretical calculations are compared with data retrieved from the experimental data base EXFOR. (author) [fr

  14. Total photoabsorption cross section on nuclei measured in energy range 0.5-2.6 GeV; Misura della sezione d`urto di fotoassorbimento tra 0.5 e 2.6 GeV su nuclei ed analisi dei dati

    Energy Technology Data Exchange (ETDEWEB)

    Mirazita, M. [INFN, Laboratori Nazionali di Frascati, Rome (Italy)

    1998-03-01

    The total photoabsorption cross section on several nuclei has been measured in the energy range 0.5 - 2.6 GeV. Nuclear data show a significant reduction of the absorption strength with respect to the free nucleon case suggesting a shadowing effect at low energies.

  15. Deuteron interaction with 124Sn nuclei at sub-barrier energies

    Directory of Open Access Journals (Sweden)

    Yu.N. Pavlenko

    2015-04-01

    Full Text Available The measurements of cross sections for deuteron elastic scattering and (d,p reaction on 124Sn nuclei have been performed with aim to study the features of sub-barrier deuteron interaction with heavy nuclei. Experimental data were obtained on the electrostatic Tandem accelerator EGP-10K of the Institute for Nuclear Research (Kyiv at the deuteron beam energies Ed = 4.0; 5.0 and 5.5 MeV. Cross sections of deuteron elastic scattering were calculated in approach where the deuteron interaction potential with heavy nuclei at sub-barrier energies has been constructed in the framework of single folding model using the complex dynamic polarization potential. It is shown that the account of finite deuteron size leads to the increasing the nuclear potential in outer region of interaction and significantly improves the description of the experimental data. The calculations of elastic scattering cross sections were performed without any variations of the nuclear potential parameters. The analysis of measured integral cross sections of the 124Sn(d,p reaction and calculated cross sections of deuteron breakup reaction 124Sn(d,pn124Sn shows the dominant contribution of the neutron transfer reaction in the processes of the formation of protons and elastic scattering cross sections.

  16. Determining properties of baryon resonances in nuclei

    International Nuclear Information System (INIS)

    Johnson, M.B.; Chen, C.M.; Ernst, D.J.; Jiang, M.F.

    1996-01-01

    Meson-nucleus and photon-nucleus interactions are important sources of information about the medium modifications of baryon resonances in nuclei. Indications of how large the medium effects are for resonances above the Δ 33 (1232) are provided by it combined analysis of photonuclear and pion cross sections in the GeV range of energies. Tile existing data indicate a possible 10-20% renormalization of the pion coupling to higher-lying resonances in nuclei

  17. Fission-evaporation competition in excited uranium and fermium nuclei

    International Nuclear Information System (INIS)

    Sagajdak, R.N.; Chepigin, V.I.; Kabachenko, A.P.

    1997-01-01

    The production cross sections and excitation functions for the 223-226 U neutron deficient isotopes have been measured in the 20 Ne+ 208 Pb and 22 Ne+ 208 Pb reactions for (4,5)n and (4-7)n evaporation channels of the de-excitation of the compound nuclei 228 U* and 230 U*, respectively. The present study considers in addition the de-excitation via the (5,6)n evaporation channels of the 224 U* compound nucleus formed in the 27 Al+ 197 Au reaction. The production cross sections of 247g,246 Fm formed after evaporation of (5,6)n and (7,8)n from the 252 Fm* and 254 Fm* compound nuclei produced in the 20 Ne+ 232 Th and 22 Ne+ 232 Th reactions were also measured respectively. The evaporation residues emerging from the target were separated in-flight from the projectiles and background reaction products by the electrostatic recoil separator VASSILISSA [1]. The investigation regards the U and Fm compound nuclei in the 40-80 MeV excitation energy range. For the analysis of the (Hl, xn) evaporation cross sections the advanced statistical model [2] calculations were used. The angular momentum dependence of the shell correction to the fission barrier, and the effects of the nuclear viscosity and dynamical deformation for these fissile excited nuclei are considered. The n /Γ t > values at the initial steps of the de-excitation cascade for the U and Fm compound nuclei were derived from the measured excitation functions and discussed from the point of view of the consequences for the fission process dynamics

  18. The intergalactic propagation of ultrahigh energy cosmic ray nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Hooper, Dan; /Fermilab; Sarkar, Subir; /Oxford U., Theor. Phys.; Taylor, Andrew M.; /Oxford U.

    2006-08-01

    We investigate the propagation of ultra-high energy cosmic ray nuclei (A = 1-56) from cosmologically distant sources through the cosmic radiation backgrounds. Various models for the injected composition and spectrum and of the cosmic infrared background are studied using updated photodisintegration cross-sections. The observational data on the spectrum and the composition of ultra-high energy cosmic rays are jointly consistent with a model where all of the injected primary cosmic rays are iron nuclei (or a mixture of heavy and light nuclei).

  19. Axial-Current Matrix Elements in Light Nuclei from Lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Savage, Martin [Univ. of Washington, Seattle, WA (United States); Shanahan, Phiala E. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Tiburzi, Brian C. [Univ. of Maryland, College Park, MD (United States); Wagman, Michael L. [Univ. of Washington, Seattle, WA (United States); Winter, Frank T. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Beane, Silas [Univ. of New Hampshire, Durham, NH (United States); Chang, Emmanuel [Univ. of Washington, Seattle, WA (United States); Davoudi, Zohreh; Detmold, William [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Orginos, Konstantinos [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); College of William and Mary, Williamsburg, VA (United States)

    2016-12-01

    I present results from the first lattice QCD calculations of axial-current matrix elements in light nuclei, performed by the NPLQCD collaboration. Precision calculations of these matrix elements, and the subsequent extraction of multi-nucleon axial-current operators, are essential in refining theoretical predictions of the proton-proton fusion cross section, neutrino-nucleus cross sections and $\\beta\\beta$-decay rates of nuclei. In addition, they are expected to shed light on the phenomenological quenching of $g_A$ that is required in nuclear many-body calculations.

  20. Inclusive breakup of three-fragment weakly bound nuclei

    International Nuclear Information System (INIS)

    Carlson, B.V.; Frederico, T.; Hussein, M.S.

    2017-01-01

    The inclusive breakup of three-fragment projectiles is discussed within a four-body spectator model. Both the elastic breakup and the non-elastic breakup are obtained in a unified framework. Originally developed in the 80's for two-fragment projectiles such as the deuteron, in this paper the theory is successfully generalized to three-fragment projectiles. The expression obtained for the inclusive cross section allows the extraction of the incomplete fusion cross section, and accordingly generalizes the surrogate method to cases such as (t, p) and (t, n) reactions. It is found that two-fragment correlations inside the projectile affect in a conspicuous way the elastic breakup cross section. The inclusive non-elastic breakup cross section is calculated and is found to contain the contribution of a three-body absorption term that is also strongly influenced by the two-fragment correlations. This latter cross section contains the so-called incomplete fusion where more than one compound nuclei are formed. Our theory describes both stable weakly bound three-fragment projectiles and unstable ones such as the Borromean nuclei.

  1. Inclusive breakup of three-fragment weakly bound nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, B.V.; Frederico, T. [Instituto Tecnológico de Aeronáutica, DCTA, 12.228-900 São José dos Campos, SP (Brazil); Hussein, M.S., E-mail: hussein@if.usp.br [Instituto Tecnológico de Aeronáutica, DCTA, 12.228-900 São José dos Campos, SP (Brazil); Instituto de Estudos Avançados, Universidade de São Paulo, C.P. 72012, 05508-970 São Paulo, SP (Brazil); Instituto de Física, Universidade de São Paulo, C.P. 66318, 05314-970 São Paulo, SP (Brazil)

    2017-04-10

    The inclusive breakup of three-fragment projectiles is discussed within a four-body spectator model. Both the elastic breakup and the non-elastic breakup are obtained in a unified framework. Originally developed in the 80's for two-fragment projectiles such as the deuteron, in this paper the theory is successfully generalized to three-fragment projectiles. The expression obtained for the inclusive cross section allows the extraction of the incomplete fusion cross section, and accordingly generalizes the surrogate method to cases such as (t, p) and (t, n) reactions. It is found that two-fragment correlations inside the projectile affect in a conspicuous way the elastic breakup cross section. The inclusive non-elastic breakup cross section is calculated and is found to contain the contribution of a three-body absorption term that is also strongly influenced by the two-fragment correlations. This latter cross section contains the so-called incomplete fusion where more than one compound nuclei are formed. Our theory describes both stable weakly bound three-fragment projectiles and unstable ones such as the Borromean nuclei.

  2. Spectra and absorbed dose by photo-neutrons in a solid water mannequin exposed to a Linac of 15 MV

    International Nuclear Information System (INIS)

    Benites R, J.; Vega C, H. R.; Velazquez F, J.

    2012-10-01

    Using Monte Carlo methods was modeled a solid water mannequin; according to the ICRU 44 (1989), Tissue substitutes in radiation dosimetry and measurements, of the International Commission on Radiation Units and Measurements; Report 44. This material Wt 1 is made of H (8.1%), C (67.2%), N (2.4%), O (19.9%), Cl (0.1%), Ca (2.3%) and its density is of 1.02 gr/cm 3 . The mannequin was put instead of the patient, inside the treatment room and the spectra and absorbed dose were determined by photo-neutrons exposed to a Linac of 15 MV. (Author)

  3. Neutron scattering on deformed nuclei

    International Nuclear Information System (INIS)

    Hansen, L.F.; Haight, R.C.; Pohl, B.A.; Wong, C.; Lagrange, C.

    1984-09-01

    Measurements of neutron elastic and inelastic differential cross sections around 14 MeV for 9 Be, C, 181 Ta, 232 Th, 238 U and 239 Pu have been analyzed using a coupled channel (CC) formalism for deformed nuclei and phenomenological global optical model potentials (OMP). For the actinide targets these results are compared with the predictions of a semi-microscopic calculation using Jeukenne, Lejeune and Mahaux (JLM) microscopic OMP and a deformed ground state nuclear density. The overall agreement between calculations and the measurements is reasonable good even for the very light nuclei, where the quality of the fits is better than those obtained with spherical OMP

  4. Interaction of polarized neutrons with polarized La nuclei and the structure of the cross section at energies up to 20 eV

    International Nuclear Information System (INIS)

    Alfimenkov, V.P.; Mareev, Yu.D.; Novitskii, V.V.; Pikel'ner, L.B.; Skoi, V.R.

    1994-01-01

    Properties of lanthanum are investigated in an experiment on the interaction of polarized neutrons with polarized La nuclei. The total cross section for lanthanum is measured for neutron energies ranging from 0.4 to 10 eV. It is shown that one strong level below the neutron binding energy is sufficient for obtaining a good description of the lanthanum cross section in this energy range. The results on the cross section for the interaction of polarized projectiles on a polarized target confirm this conclusion. The spin of the 138 La neutron resonance at 3.0 eV is found to be J = 11 / 2 . 13 refs., 3 figs

  5. Radii of radioactive nuclei

    International Nuclear Information System (INIS)

    Mittig, W.; Plagnol, E.; Schutz, Y.

    1989-11-01

    A new simple direct method for the measurement of the total reaction cross section (σ R ) for several light radioactive nuclei (A≤40) is developed. From that, the reduced strong absorption radii (r o 2 ) are obtained. A comparison is made with data obtained by other techniques. A strong isospin dependence of the nuclear radii is observed. (L.C.) [pt

  6. Neutron induced reaction of light nuclei and its role in nuclear astrophysics

    International Nuclear Information System (INIS)

    Nagai, Y.

    2000-01-01

    Recently, much interest has arisen in the abundance of the s-process isotopes in stars of various metallicity to construct models of the chemical evolution of the Galaxy. Efforts involving both observations and yield estimations of these isotopes are being made for a wide range of metallicities and stellar masses to compare the chemical evolution models with the observational data. So far, in the models of the chemical evolution of the s-isotopes the yields of the isotopes versus the abundance of either 56 Fe (seed) nuclei or 16 O (source) nuclei have been suggested to be linear. However, it has now been shown to be nonlinear for low-metallicity massive stars. The nonlinearity was due to neutron poison by abundant light nuclei. Namely, if the neutron capture cross sections of the light nuclei would be large, the yields of heavier s-isotopes would decrease; the relationship of the yields versus the abundance of either 56 Fe (seed) or 16 O (source) nuclei becomes nonlinear; furthermore, the yields of p-process nuclei would decrease, since the s-process nuclei are the immediate predecessors of the p-nuclei. Therefore, in order to construct models to predict the s- and p-isotope productions as functions of the metallicity and stellar mass, it is necessary to know the neutron capture cross sections of light nuclei at stellar neutron energy. In the lecture, I discuss detailed motive of the study, together with results recently obtained. (author)

  7. Second proton and neutron alignments in the doubly-odd nuclei 154,156Tb

    International Nuclear Information System (INIS)

    Hartley, D.J.; Allen, J.L.; Brown, T.B.; Kondev, F.G.; Pfohl, J.; Riley, M.A.; Fischer, S.M.; Janssens, R.V.; Nisius, D.T.; Fallon, P.; Ma, W.C.; Simpson, J.

    1999-01-01

    High-spin states in the doubly-odd nuclei 154,156 Tb have been populated in two separate experiments using the 36 S+ 124 Sn reaction at different beam energies (160 and 175 MeV). The yrast structures of both nuclei were extended to much higher spin (I≤48ℎ) than previously known and several quasiparticle alignments have been identified. These include the second neutron alignment and a clear delineation of the second proton crossing in 156 Tb. Systematics of these crossings for odd-Z nuclei and comparisons with results of cranked shell model calculations are discussed. thinsp copyright 1999 The American Physical Society

  8. Scattering, diffraction and multiparticle production on hadron and nuclei at high energy

    International Nuclear Information System (INIS)

    Ter-Martirosyan, K.A.; Zoller, V.R.

    1988-01-01

    The cross sections for different types of interactions of hadronic with hadrons and nuclei at high energy are obtained in the simple form in the supercritical pomeron theory. Diffraction desintegration (DD) of hadrons both in the intermediate states, between rescatterings on pomerons, and in the final states is taken into account. With the same accuracy the cross sections δ n for production of n pomeron jets on hadrons and nuclei are also obtained. They determine the whole dynamics of the multiple particle productions, i.e. the spectra and multiplicities of produced particles, the cross sections for DD of colliding hadrons and nucleons inside the target nuclei. The numerical results for δ tot , δ el and for dδ el /dp tr 2 with the set of the pomeron and f, ω-reggeons pole parameters obtained early are presented. 19 refs.; 6 figs

  9. Coherent electromagnetic excitation and disintegration of relativistic nuclei passing through crystals

    International Nuclear Information System (INIS)

    Pivovarov, Yu.L.; Shirokov, A.A.; Vorobiev, S.A.

    1990-01-01

    The energy dependence of electromagnetic excitation and electromagnetic disintegration cross sections for relativistic nuclei passing through crystals is investigated both theoretically and by means of computer simulation. For electromagnetic excitation, resonant peaks are found at definite energy values. An increase of electromagnetic excitation and disintegration cross sections in crystals at very high energies is found to be due to coherent addition of amplitudes. Numerical results are presented for the electric dipole excitation of fluorine nuclei and electromagnetic deuteron disintegration. (orig.)

  10. KOP program for calculating cross sections of neutron and charged particle interactions with atomic nuclei using the optical model

    International Nuclear Information System (INIS)

    Grudzevich, O.D.; Zelenetskij, A.V.; Pashchenko, A.B.

    1986-01-01

    The last version of the KOP program for calculating cross sections of neutron and charged particle interaction with atomic nuclei within the scope of the optical model is described. The structure and program organization, library of total parameters of the optical potential, program identificators and peculiarities of its operation, input of source data and output of calculational results for printing are described in detail. The KOP program is described in Fortran- and adapted for EC-1033 computer

  11. Synthesis and decay process of superheavy nuclei with Z=119-122 via hot-fusion reactions

    Energy Technology Data Exchange (ETDEWEB)

    Ghahramany, N.; Ansari, A. [Shiraz University, Department of Physics and Biruni Observatory, College of Science, Shiraz (Iran, Islamic Republic of)

    2016-09-15

    In this research article attempts have been made to calculate the superheavy-nuclei synthesis characteristics including, the potential energy parameters, fusion probability, fusion and evaporation residue (ER) cross sections as well as, decay properties of compound nucleus and the residue nuclei formation probability for elements with Z=119-122 by using the hot-fusion reactions. It is concluded that, although a selection of double magic projectiles such as {sup 48}Ca with high binding energy, simplifies the calculations significantly due to spherical symmetric shape of the projectile, resulting in high evaporation residue cross section, unfortunately, nuclei with Z > 98 do not exist in quantities sufficient for constructing targets for the hot-fusion reactions. Therefore, practically our selection is fusion reactions with titanium projectile because the mass production of target nuclei for experimental purposes is more feasible. Based upon our findings, it is necessary, for new superheavy-nuclei production with Z > 119, to use neutron-rich projectiles and target nuclei. Finally, the maximal evaporation residue cross sections for the synthesis of superheavy elements with Z=119-122 have been calculated and compared with the previously founded ones in the literature. (orig.)

  12. Structure functions of nucleons and nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Bentz, Wolfgang; Ito, Takuya [Department of Physics, Tokai University, Kanagawa (Japan); Cloet, Ian [Department of Physics, University of Washington, Seattle (United States); Thomas, Anthony [Jefferson Lab., Newport News, VA (United States); Yazaki, Koichi [RIKEN, Wako-shi, Saitama (Japan)

    2009-07-01

    We use an effective chiral quark theory to calculate the quark distributions and structure functions of nucleons and nuclei. The description of the single nucleon is based on the Faddeev framework, and nuclear systems are described in the mean field approximation. Particular amphasis is put on the prediction of the polarized EMC effect in nuclei, and on applications to deep inelastic neutrino-nucleus scattering. Concerning the polarized EMC effect, we discuss the quenching of the quark spin sum in nuclei and its implications for the spin dependent nuclear structure functions, and present results for several nuclei where an experimental observation is feasible. Concerning the case of deep inelastic neutrino-nucleus scattering, we estimate the effect of medium modifications of the quark distribution functions on the measured cross sections, and discuss an interesting resolution of the so called NuTeV anomaly. Finally, we discuss extensions of our model to describe fragmentation functions for semi-inclusive processes. The connection between our effective quark model description and the jet model of Field and Feynman is discussed.

  13. Differential cross section measurement of radiative capture of protons by nuclei 13C

    International Nuclear Information System (INIS)

    Baktibayev, M.K.; Burminskii, V.P.; Burtebayev, N.; Jazairov-Kakhramanov, V.; Kadyrzhanov, K.K.; Sagindykov, Sh.Sh.; Zarifov, R.A.; Zazulin, D.M.

    2004-01-01

    The reaction 13 C(p,γ ) 14 N is the important one for the astrophysics, not only for nuclear synthesis of CNO elements, but also for nuclear synthesis of elements participating in subsequent combustion of helium [1]. The predominant yield of the reaction occurs at protons energies of less than 1 MeV. However, the clearness of the capture mechanism in this energy region is made difficult because of the superposition of the contribution of the low - energy part of the resonance 1320 keV onto the cross section. Last experimental data for a wider energy region, informed in the work [1], and results of previous works, mentioned in that work, give reason for further continuation of the study of the reaction 13 C(p,γ ) 14 N. Measured data of the work [1] in the region of E P = (320 - 900) keV at the angles of 0 o and 90 o are obviously insufficient. In the present work measurements of differential cross sections of the reaction were carried out at protons energies E P = 991 - 365 keV, the accuracy is not worse than 10%. There was studied the most (from the astrophysical point of view) important process of protons capture by 13 C nuclei onto the ground state of the 14 N nucleus. The theoretical investigation of the given reaction included calculation of cross sections. The cross sections were calculated within the framework of model of direct capture with the using of optical potentials for the description of a channel of scattering. The wave functions of a bound state were generated in a potential reproducing binding energy of a proton in 14 N nucleus. Results of calculations were compared with the experimental data. (author)

  14. Monte Carlo approaches to light nuclei

    International Nuclear Information System (INIS)

    Carlson, J.

    1990-01-01

    Significant progress has been made recently in the application of Monte Carlo methods to the study of light nuclei. We review new Green's function Monte Carlo results for the alpha particle, Variational Monte Carlo studies of 16 O, and methods for low-energy scattering and transitions. Through these calculations, a coherent picture of the structure and electromagnetic properties of light nuclei has arisen. In particular, we examine the effect of the three-nucleon interaction and the importance of exchange currents in a variety of experimentally measured properties, including form factors and capture cross sections. 29 refs., 7 figs

  15. Monte Carlo approaches to light nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, J.

    1990-01-01

    Significant progress has been made recently in the application of Monte Carlo methods to the study of light nuclei. We review new Green's function Monte Carlo results for the alpha particle, Variational Monte Carlo studies of {sup 16}O, and methods for low-energy scattering and transitions. Through these calculations, a coherent picture of the structure and electromagnetic properties of light nuclei has arisen. In particular, we examine the effect of the three-nucleon interaction and the importance of exchange currents in a variety of experimentally measured properties, including form factors and capture cross sections. 29 refs., 7 figs.

  16. Measurement method of activation cross-sections of reactions producing short-lived nuclei with 14 MeV neutrons

    CERN Document Server

    Kawade, K; Kasugai, Y; Shibata, M; Iida, T; Takahashi, A; Fukahori, T

    2003-01-01

    We describe a method for obtaining reliable activation cross-sections in the neutron energy range between 13.4 and 14.9 MeV for the reactions producing short-lived nuclei with half-lives between 0.5 and 30 min. We noted neutron irradiation fields and measured induced activities, including (1) the contribution of scattered low-energy neutrons, (2) the fluctuation of the neutron fluence rate during the irradiation, (3) the true coincidence sum effect, (4) the random coincidence sum effect, (5) the deviation in the measuring position due to finite sample thickness, (6) the self-absorption of the gamma-ray in the sample material and (7) the interference reactions producing the same radionuclides or the ones emitting the gamma-ray with the same energy of interest. The cross-sections can be obtained within a total error of 3.6%, when good counting statistics are achieved, including an error of 3.0% for the standard cross-section of sup 2 sup 7 Al (n, alpha) sup 2 sup 4 Na. We propose here simple methods for measuri...

  17. Deformation and shape coexistence in medium mass nuclei

    International Nuclear Information System (INIS)

    Meyer, R.A.

    1985-01-01

    Emerging evidence for deformed structures in medium mass nuclei is reviewed. Included in this review are both nuclei that are ground state symmetric rotors and vibrational nuclei where there are deformed structures at excited energies (shape coexistence). For the first time, Nilsson configurations in odd-odd nuclei within the region of deformation are identified. Shape coexistence in nuclei that abut the medium mass region of deformation is also examined. Recent establishment of a four-particle, four-hole intruder band in the double subshell closure nucleus 96 Zr 56 is presented and its relation to the nuclear vibron model is discussed. Special attention is given to the N=59 nuclei where new data have led to the reanalysis of 97 Sr and 99 Zr and the presence of the [404 9/2] hole intruder state as isomers in these nuclei. The low energy levels of the N=59 nuclei from Z=38 to 50 are compared with recent quadrupole-phonon model calculations that can describe their transition from near-rotational to single closed shell nuclei. The odd-odd N=59 nuclei are discussed in the context of coexisting shape isomers based on the (p[303 5/2]n[404 9/2])2 - configuration. Ongoing in-beam (t,p conversion-electron) multiparameter measurements that have led to the determination of monopole matrix elements for even-even 42 Mo nuclei are presented, and these are compared with initial estimates using IBA-2 calculations that allow mixing of normal and cross subshell excitations. Lastly, evidence for the neutron-proton 3 S 1 force's influence on the level structure of these nuclei is discussed within the context of recent quadrupole-phonon model calculations. (Auth.)

  18. Fusion probability and survivability in estimates of heaviest nuclei production

    International Nuclear Information System (INIS)

    Sagaidak, Roman

    2012-01-01

    A number of theoretical models have been recently developed to predict production cross sections for the heaviest nuclei in fusion-evaporation reactions. All the models reproduce cross sections obtained in experiments quite well. At the same time they give fusion probability values P fus ≡ P CN differed within several orders of the value. This difference implies a corresponding distinction in the calculated values of survivability. The production of the heaviest nuclei (from Cm to the region of superheavy elements (SHE) close to Z = 114 and N = 184) in fusion-evaporation reactions induced by heavy ions has been considered in a systematic way within the framework of the barrier-passing (fusion) model coupled with the standard statistical model (SSM) of the compound nucleus (CN) decay. Both models are incorporated into the HIVAP code. Available data on the excitation functions for fission and evaporation residues (ER) produced in very asymmetric combinations can be described rather well within the framework of HIVAP. Cross-section data obtained in these reactions allow one to choose model parameters quite definitely. Thus one can scale and fix macroscopic (liquid-drop) fission barriers for nuclei involved in the evaporation-fission cascade. In less asymmetric combinations (with 22 Ne and heavier projectiles) effects of fusion suppression caused by quasi-fission are starting to appear in the entrance channel of reactions. The P fus values derived from the capture-fission and fusion-fission cross-sections obtained at energies above the Bass barrier were plotted as a function of the Coulomb parameter. For more symmetric combinations one can deduce the P fus values semi-empirically, using the ER and fission excitation functions measured in experiments, and applying SSM model with parameters obtained in the analysis of a very asymmetric combination leading to the production of (nearly) the same CN, as was done for reactions leading to the pre-actinide nuclei formation

  19. Measurements of double differential cross sections (DDX) for several medium-weight and heavy nuclei at 15 MeV

    International Nuclear Information System (INIS)

    Iwasaki, Shin

    1984-01-01

    Measurements of double differential cross sections (DDX) for several intermediate and heavy nuclei have been performed at 15 MeV in the Dynamitron Laboratory at Tohoku University. Comparison of the experimental data with the evaluated nuclear data file, ENDF/B-IV revealed that the data file could not reproduce the experimental ones, particularly in the angular distributions. Nuclear model calculation showed that the preequilibrium process was important in the present incident energy region. Measurements have been performed for titanium, niobium, molybdenum, lead, and thorium (in progress), including the light elements, carbon and aluminum. (author)

  20. Two-proton knockout on neutron-rich nuclei

    International Nuclear Information System (INIS)

    Bazin, D.; Brown, B.A.; Campbell, C.M.; Church, J.A.; Dinca, D.C.; Enders, J.; Gade, A.; Glasmacher, T.; Hansen, P.G.; Mueller, W.F.; Olliver, H.; Perry, B.C.; Sherrill, B.M.; Terry, J.R.; Tostevin, J.A.

    2004-01-01

    Two-proton knockout reactions on neutron-rich nuclei [Phys. Rev. Lett. 91 (2003) 012501] have been studied in inverse kinematics at intermediate energy. Strong evidence that the two-proton removal from a neutron-rich system proceeds as a direct reaction is presented, together with a preliminary theoretical discussion of the partial cross sections based on eikonal reaction theory and the many-body shell model. They show that this reaction can be used to characterize the wave functions of the projectiles and holds great promise for the study of neutron-rich nuclei

  1. Fundamental Physics with Electroweak Probes of Nuclei

    Science.gov (United States)

    Pastore, Saori

    2018-02-01

    The past decade has witnessed tremendous progress in the theoretical and computational tools that produce our understanding of nuclei. A number of microscopic calculations of nuclear electroweak structure and reactions have successfully explained the available experimental data, yielding a complex picture of the way nuclei interact with electroweak probes. This achievement is of great interest from the pure nuclear-physics point of view. But it is of much broader interest too, because the level of accuracy and confidence reached by these calculations opens up the concrete possibility of using nuclei to address open questions in other sub-fields of physics, such as, understanding the fundamental properties of neutrinos, or the particle nature of dark matter. In this talk, I will review recent progress in microscopic calculations of electroweak properties of light nuclei, including electromagnetic moments, form factors and transitions in between lowlying nuclear states along with preliminary studies for single- and double-beta decay rates. I will illustrate the key dynamical features required to explain the available experimental data, and, if time permits, present a novel framework to calculate neutrino-nucleus cross sections for A > 12 nuclei.

  2. JENDL gas-production cross section file

    International Nuclear Information System (INIS)

    Nakagawa, Tsuneo; Narita, Tsutomu

    1992-05-01

    The JENDL gas-production cross section file was compiled by taking cross-section data from JENDL-3 and by using the ENDF-5 format. The data were given to 23 nuclei or elements in light nuclei and structural materials. Graphs of the cross sections and brief description on their evaluation methods are given in this report. (author)

  3. Maris polarization in neutron-rich nuclei

    Directory of Open Access Journals (Sweden)

    Shubhchintak

    2018-03-01

    Full Text Available We present a theoretical study of the Maris polarization effect and its application in quasi-free reactions to assess information on the structure of exotic nuclei. In particular, we explore the dependence of the polarization effect on neutron excess and neutron-skin thickness. We discuss the uncertainties in the calculations of triple differential cross sections and of analyzing powers due the choices of various nucleon–nucleon interactions and optical potentials and the limitations of the method. Our study implies that polarization variables in (p, 2p reactions in inverse kinematics can be an effective probe of single-particle structure of nuclei in radioactive-beam facilities.

  4. Maris polarization in neutron-rich nuclei

    Science.gov (United States)

    Shubhchintak; Bertulani, C. A.; Aumann, T.

    2018-03-01

    We present a theoretical study of the Maris polarization effect and its application in quasi-free reactions to assess information on the structure of exotic nuclei. In particular, we explore the dependence of the polarization effect on neutron excess and neutron-skin thickness. We discuss the uncertainties in the calculations of triple differential cross sections and of analyzing powers due the choices of various nucleon-nucleon interactions and optical potentials and the limitations of the method. Our study implies that polarization variables in (p, 2p) reactions in inverse kinematics can be an effective probe of single-particle structure of nuclei in radioactive-beam facilities.

  5. How far are we on the way to the superheavy nuclei?

    International Nuclear Information System (INIS)

    Muenzenberg, G.

    1989-10-01

    The discovery of the elements 107, 108, and 109 in a region of dominating shell stabilization is the most important step on the way to the superheavy nuclei in recent years. These experiments leading to the presently upper end of the periodic table were possible with the velocity filter SHIP to separate the heavy nuclei produced in complete fusion reactions of heavy ions. The identification of the unknown nuclei was established by α-α mother-daughter correlation of the nuclei decaying after the implantation into position sensitive surface-barrier detectors. With this method it is possible to identify even single nuclei of unknown isotopes unambiguously. The limits of sensitivity are production cross-sections of a few picobarns and about 2 μs of nuclear lifetime. With this method the elements 107, 108, and 109 were observed for the first time by their α-decay and identified unambiguously. For element 107 the isotopes with masses 261 and 262, for the element 108 the isotopes with masses 264 and 265, and for element 109 the isotope with mass 266 were found. The halflives range from 0.1 ms to 0.1 s. The highly fissile transactinide nuclei were produced in cold fusion of heavy ions using 207,208 Pb and 209 Bi targets, respectively, and 50 Ti, 54 Cr, or 58 Fe beams. The evaluation of the excitation functions for the production of very heavy evaporation residues shows a strong decrease above 25 MeV excitation energy caused by a destruction of the groundstate shell effects at high excitation energies. The strong competition of barrier transmission and survival probability results in rather narrow excitation functions and small production cross sections. The maximum cross section is observed close to the Coulomb barrier and corresponding to projectile energies near 5 MeV/u. (orig.) [de

  6. Cross sections for atmospheric corrections

    International Nuclear Information System (INIS)

    Meyer, J.P.; Casse, M.; Westergaard, N.

    1975-01-01

    A set of cross sections for spallation of relativistic nuclei is proposed based on (i) the best available proton cross sections, (ii) an extrapolation to heavier nuclei of the dependence on the number of nucleons lost of the 'target factor' observed for C 12 and O 16 by Lindstrom et al. (1975), in analogy with Rudstam's formalism, and (iii) on a normalization of all cross sections to the total cross sections for production of fragments with Asub(f) >= 6. The obtained cross sections for peripheral interactions are not inconsistent with simple geometrical considerations. (orig.) [de

  7. Energy spectra of odd nuclei in the generalized model

    Directory of Open Access Journals (Sweden)

    I. O. Korzh

    2015-04-01

    Full Text Available Based on the generalized nuclear model, energy spectra of the odd nuclei of such elements as 25Mg, 41K, and 65Cu are determined, and the structure of wave functions of these nuclei in the excited and normal states is studied. High quality in determining the energy spectra is possible due to the accurate calculations of all elements of the energy matrix. It is demonstrated that the structure of the wave functions so determined provides the possibility to more accurately select the nuclear model and the method for calculating the nucleon cross-sections of the inelastic scattering of nucleons by odd nuclei.

  8. Introduction to the study of collisions between heavy nuclei

    International Nuclear Information System (INIS)

    Bayman, B.F.

    1980-01-01

    Current investigations concerning the collisions of nuclei governed by small de Broglie wavelengths are reviewed. The wave packets localize nuclei in regions small compared to their diameters. Cross sections are examined for potential scattering, elastic scattering, quasi-molecular states, peripheral particle-transfer reactions, fusion, and deep inelastic collisions. Theories of fusion and deep inelastic collisions are summarized. This paper is in the nature of a review-tutorial. 45 references, 51 figures, 2 tables

  9. Measurement of cross sections producing short-lived nuclei by 14 MeV neutron. Br, Te, Dy, Ho, Yb

    Energy Technology Data Exchange (ETDEWEB)

    Sakane, H.; Matsumoto, T.; Yamamoto, H.; Kawade, K. [Nagoya Univ. (Japan); Iida, T.; Takahashi, A.

    1997-03-01

    Nine neutron activation cross sections producing the nuclei with half-lives between 2 min and 57 min have been measured at energy range between 13.4 and 14.9 MeV for Br, Te, Dy, Ho, Yb. The cross sections of {sup 81}Br(n,p){sup 81m}Se, {sup 128}Te(n,p){sup 128m}Sb, {sup 128}Te(n,{alpha}){sup 125m}Sn, {sup 164}Dy(n,p){sup 164}Tb, {sup 165}Ho(n,{alpha}){sup 162}Tb, {sup 176}Yb(n,p){sup 176}Tm were newly obtained at the six energy points between 13.4-14.9 MeV, although the previous results have been obtained at one energy point. {sup 79}Br(n,2n){sup 78}Br, {sup 164}Dy(n,p){sup 164}Tb are compared with evaluated data of JENDL-3.2. The evaluations for these reactions agree reasonably well with experimental results. The cross sections of (n,p) reaction are compared with systematics by Kasugai et. al. The systematics agrees with experimental results. (author)

  10. Microscopic theory of the total reaction cross section and application to stable and exotic nuclei

    International Nuclear Information System (INIS)

    Hussein, M.S.; Rego, R.A.; Bertulani, C.A.

    1990-09-01

    The multiple scattering theory is used to develop a theoretical framework for the calculation of the heavy-ion total reaction order double scattering contribution to the ion-ion t sub(ρ1 ρ2) interaction is calculated and found to contribute at most 10% effect on σ sub(R). It is found that whereas at intermediate energies the t sub(ρ1ρ2) accounts reasonably well for the total reaction cross section, indicating the predominance, at these energies, of single nucleon knockout, it underestimates σ sub(R) at lower energies by a large amount. This is mainly due to the absence in t sub(ρ1ρ2) of fusion and inelastic surface excitation. The case of exotic (neutron-and proton-rich) nuclei is also discussed. (author) the absence

  11. Inelastic cross sections and π- -meson production in relativistic nuclear collisions induced by p, d, 4He and 12C on 12C and 181Ta target-nuclei

    International Nuclear Information System (INIS)

    Chasnikov, I.Ya.; Izbasarov, M.I.; Vinitsky, A.Kh.; Abdinov, O.B.; Agakishiev, G.N.; Backovic, S.; Damianovich, V.; Drndarevic, S.; Krmpotic, D.; Krpic, D.

    1981-12-01

    Experimental data on inelastic cross sections and PI - -meson production in interactions initiated by protons with the incident momentum in the range (2-10) GeV/c and by deuterons, alphas and carbon nuclei with the incident momentum per nucleon in the range (2-5) GeV/c on carbon and tantalum target-nuclei are presented. The experimental data have been obtained using the 2 m propane bubble chamber. The analysis of the experimental data has been made in the framework of various theoretical models. (authors)

  12. Spectroscopy of very heavy nuclei with a view to study super-heavy nuclei

    International Nuclear Information System (INIS)

    Khalfallah, F.

    2007-08-01

    Within the recent years, the spectroscopic study of single particle orbitals of very heavy elements (VHE) has become possible with the development of increasingly efficient experimental setups. This allows us, through nuclear deformation, to access with these deformed nuclei to orbitals situated around the Fermi level in the spherical superheavy elements (SHE) and learn more about the nuclear structure of these nuclei. The aim of this work is the spectroscopic studies of heavy and very heavy elements. Because of the experimental difficulties associated with the fusion reactions in the VHE region, a detailed optimization studies is essential. Simulation of energy loss and angular straggling of these nuclei due to the interaction in the target and to neutron's evaporation was carried out and allowed us to optimize the angular acceptance of the separators according to the target thickness. An extensive survey and exploration in the VHE region was also conducted on the basis of cross section's systematics in the literature and simulations carried out using the statistical code Hivap. In this framework, the possible extension of the range of validity of a set of Hivap parameters was investigated. This work has enabled us to prepare a list of experiments of interest for the production of very heavy nuclei. In this thesis, our work was concentrated on the spectroscopy of the nuclei No 256 et Rf 256 for which two experimental proposals were accepted. The octupole deformations predicted in the actinides region is studied in another part of this thesis, a part witch is dedicated to the gamma spectroscopy of Pa 223 . The data from a new experiment carried out using the Jurogam-Ritu-Great setup are analysed and compared to previous results. They confirm the octupole deformed shape in this nucleus. (author)

  13. The Top-of-Instrument corrections for nuclei with AMS on the Space Station

    Science.gov (United States)

    Ferris, N. G.; Heil, M.

    2018-05-01

    The Alpha Magnetic Spectrometer (AMS) is a large acceptance, high precision magnetic spectrometer on the International Space Station (ISS). The top-of-instrument correction for nuclei flux measurements with AMS accounts for backgrounds due to the fragmentation of nuclei with higher charge. Upon entry in the detector, nuclei may interact with AMS materials and split into fragments of lower charge based on their cross-section. The redundancy of charge measurements along the particle trajectory with AMS allows for the determination of inelastic interactions and for the selection of high purity nuclei samples with small uncertainties. The top-of-instrument corrections for nuclei with 2 < Z ≤ 6 are presented.

  14. Statistical properties of warm nuclei: Investigating the low-energy enhancement in the $\\gamma$- strength function of neutron-rich nuclei

    CERN Multimedia

    We propose to start a program to study the $\\gamma$-ray strength function of neutron rich nuclei in inverse kinematics with radioactive beams at HIE-ISOLDE. An unexpected increase in the $\\gamma$-strength function at low energy has been observed in several stable nuclei using the Oslo method. This year these results were confirmed with a different experimental technique and model independent analysis developed by iThemba/Livermore. If this enhancement of the $\\gamma$-strength function is also present in neutron-rich nuclei, it will strongly affect the neutron capture cross sections, which are important input in stellar models of synthesis of heavier elements in stars. We propose to start with an experiment using a $^{66}$Ni beam of 5.5 MeV /u, where the data will be analyzed using both methods independently, and we are sure to get enough statistics, before moving to more neutron-rich nuclei. When/if neutron-rich Ti, Fe or Mo beams will be available at ISOLDE, we will submit additional proposals.

  15. Shell model calculations for exotic nuclei

    International Nuclear Information System (INIS)

    Brown, B.A.; Wildenthal, B.H.

    1991-01-01

    A review of the shell-model approach to understanding the properties of light exotic nuclei is given. Binding energies including p and p-sd model spaces and sd and sd-pf model spaces; cross-shell excitations around 32 Mg, including weak-coupling aspects and mechanisms for lowering the ntw excitations; beta decay properties of neutron-rich sd model, of p-sd and sd-pf model spaces, of proton-rich sd model space; coulomb break-up cross sections are discussed. (G.P.) 76 refs.; 12 figs

  16. Sub-Coulomb fusion with halo nuclei

    International Nuclear Information System (INIS)

    Fekou-Youmbi, V.; Sida, J.L.; Alamanos, N.; Auger, F.; Bazin, D.; Borcea, C.; Cabot, C.; Cunsolo, A.; Foti, A.; Gillibert, A.; Lepine, A.; Lewitowicz, M.; Liguori-Neto, R.; Mittig, W.; Pollacco, E.; Roussel-Chomaz, P.; Volant, C.; Yong Feng, Y.

    1995-01-01

    The nuclear structure of halo nuclei may have strong influence on the fusion cross section at sub-barrier energies. The actual theoretical debate is briefly reviewed and sub-barrier fusion calculations for the system 11 Be+ 238 U are presented. An experimental program on sub-barrier fusion for the systems 7,9,10,11 Be+ 238 U is underway at GANIL. First results with 9 Be and 11 Be beams were obtained using the F.U.S.ION detector. Relative fission cross sections are presented. ((orig.))

  17. Possibilities at LAMPF for studying nuclei of astrophysical interest

    International Nuclear Information System (INIS)

    Talbert, W.L. Jr.; Bunker, M.E.

    1985-01-01

    Nuclear data needs in astrophysics range from neutron capture cross sections of a number of stable or near-stable nuclei to decay and neutron binding-energy data for highly neutron-rich nuclei. LAMPF has the potential to contribute significantly to these needs. The new Los Alamos Neutron Scattering Center (LANSCE, aka WNR/PSR) offers world-class capabilities for neutron capture studies up to an MeV or so. The study of nuclei far from stability could be extended into some regions of astrophysical interest using a proposed He-jet coupled mass separator system with a target/production chamber in the LAMPF beam stop area. Specific examples of possible studies at each facility are presented

  18. Pseudomagic nuclei

    International Nuclear Information System (INIS)

    Scharff-Goldhaber, G.

    1979-01-01

    It was shown previously that, below a critical angular momentum, yrast bands of nonmagic nuclei are well described by the two-parameter variable moment of inertia model. Some striking exceptions to this rule are found in nuclei which have the same mass number as doubly magic nuclei but possess either one (or two) proton pairs beyond a magic number and one (or two) neutron hole pairs, or vice versa. Yrast bands in these pseudomagic nuclei resemble those in magic nuclei. 17 references

  19. /sup 12/C(γ,n) cross section from 30 to 100 MeV

    International Nuclear Information System (INIS)

    Harty, P.D.; Thompson, M.N.; O'Keefe, G.J.

    1988-01-01

    This paper reports a measurement of the differential photoneutron cross section of /sup 12/C at 65 0 , between E/sub γ/ = 30 and 100 MeV. Tagged photons, monochromatic to within 2.6 MeV, were used, thus allowing the cross sections to a wide range of final states to be observed. The results are compared to the photoproton cross section of /sup 12/C, which was measured previously, under similar conditions. Comparisons are also made with calculations based on the quasi-deuteron model, and with calculations by Gari and Hebach, and Cavinato et al. These latter calculations incorporate two-body effects by the inclusion of meson exchange currents. The agreement between these calculations and the measured cross section is in contrast to predictions of a direct, single-nucleon knockout model of the reaction mechanism, indicating the importance of two-body effects in the photoreaction process for energies greater than 50 MeV

  20. Estimates of fission barrier heights for neutron-deficient Po to Ra nuclei produced in fusion reactions

    Directory of Open Access Journals (Sweden)

    Sagaidak Roman

    2017-01-01

    Full Text Available The cross section data for fission and evaporation residue production in fusion reactions leading to nuclei from Po to Ra have been considered in a systematic way in the framework of the conventional barrier-passing (fusion model coupled with the statistical model. The cross section data obtained in very asymmetric projectile-target combinations can be described within these models rather well with the adjusted model parameters. In particular, one can scale and fix the macroscopic (liquid-drop fission barrier heights (FBHs for nuclei involved in the de-excitation of compound nuclei produced in the reactions. The macroscopic FBHs for nuclei from Po to Ra have been derived in the framework of such analysis and compared with the predictions of various theoretical models.

  1. Particle-rotation coupling in atomic nuclei

    International Nuclear Information System (INIS)

    Almberger, J.

    1980-01-01

    Recently an increased interest in the rotational nuclei has been spurred by the new experimental high-spin activities and by the possibilities for lower spins to interpret an impressive amount of experimental data by some comparatively simple model calculations. The author discusses the particle modes of excitation for rotational nuclei in the pairing regime where some puzzles in the theoretical description remain to be resolved. A model comparison is made between the particle-rotor and cranking models which have different definitions of the collective rotation. The cranking model is found to imply a smaller value of the quasiparticle spin alignment than the particle-rotor model. Rotational spectra for both even and odd nuclei are investigated with the use of the many-BCS-quasiparticles plus rotor model. This model gives an accurate description of the ground and S-bands in many even-even rare-earth nuclei. However, the discrepancies for odd-A nuclei between theory and experiments point to the importance of additional physical components. Therefore the rotationally induced quadrupole pair field is considered. This field has an effect on the low spin states in odd-A nuclei, but is not sufficient to account for the experimental data. Another topic considered is the interaction matrix element in crossings for given spin between quasiparticle rotational bands. The matrix elements are found to oscillate as a function of the number of particles, thereby influencing the sharpness of the backbending. Finally the low-spin continuation of the S-band is studied and it is shown that such states can be populated selectively by means of one-particle pickup reactions involving high angular momentum transfer. (Auth.)

  2. Hybrid theory and calculation of e-N2 scattering. [quantum mechanics - nuclei (nuclear physics)

    Science.gov (United States)

    Chandra, N.; Temkin, A.

    1975-01-01

    A theory of electron-molecule scattering was developed which was a synthesis of close coupling and adiabatic-nuclei theories. The theory is shown to be a close coupling theory with respect to vibrational degrees of freedom but is a adiabatic-nuclei theory with respect to rotation. It can be applied to any number of partial waves required, and the remaining ones can be calculated purely in one or the other approximation. A theoretical criterion based on fixed-nuclei calculations and not on experiment can be given as to which partial waves and energy domains require the various approximations. The theory allows all cross sections (i.e., pure rotational, vibrational, simultaneous vibration-rotation, differential and total) to be calculated. Explicit formulae for all the cross sections are presented.

  3. Measurement and analysis of large momenta in nuclei

    International Nuclear Information System (INIS)

    Force, P.

    1986-06-01

    Backward energetic proton cross sections are measured from 200 MeV proton beam on various targets. Data are analysed using the Quasi Two Body Scaling frame (single scattering on a nucleon). A scaling rule is found for large momenta. A (p-γ) coincidence experiment is performed to identify the residual nuclei and the excitation energy in the nuclei is measured. These results are in good agreement with the ''Q.T.B.S.'' Theory. A similar experiment with an electron beam shows the same momentum spectrum. An approach of short range correlation between nucleons is proposed. 35 refs [fr

  4. From user of photoreaction data. Application to shielding calculation of SR beamline

    International Nuclear Information System (INIS)

    Asano, Yoshihiro

    1996-01-01

    Photoneutron production-yield has been calculated by using the data of track-length distribution caused by gas bremsstrahlung and photoreaction cross-section on a insertion device beamline of SPring-8. The track-length distribution and gas bremsstrahlung spectra were calculated by the Monte Carlo code EGS4. About 1.7 μSv/h has been obtained for the total photoneutron dose-equivalent rate at 1 m from the center of a thick target of Pb by assuming that the target is a point source and neutron emission is isotropic. The benchmark calculations of photoneutron production presented at the SATIF2 meeting have been also discussed. (author)

  5. Shell model Monte Carlo investigation of rare earth nuclei

    International Nuclear Information System (INIS)

    White, J. A.; Koonin, S. E.; Dean, D. J.

    2000-01-01

    We utilize the shell model Monte Carlo method to study the structure of rare earth nuclei. This work demonstrates the first systematic full oscillator shell with intruder calculations in such heavy nuclei. Exact solutions of a pairing plus quadrupole Hamiltonian are compared with the static path approximation in several dysprosium isotopes from A=152 to 162, including the odd mass A=153. Some comparisons are also made with Hartree-Fock-Bogoliubov results from Baranger and Kumar. Basic properties of these nuclei at various temperatures and spin are explored. These include energy, deformation, moments of inertia, pairing channel strengths, band crossing, and evolution of shell model occupation numbers. Exact level densities are also calculated and, in the case of 162 Dy, compared with experimental data. (c) 2000 The American Physical Society

  6. On the theory of deuteron disintegration with collective states excitation in nuclei

    International Nuclear Information System (INIS)

    Evlanov, M.V.

    1981-01-01

    Differential cross sections of diffraction disintegration of deuterons with excitation of collective states in nuclei have been theoretically investigated. Effects of nucleon-nucleon interaction as well as smearing of nucleus boundary on differential characteristics of deuteron disintegration accompanying with change in state of target- nuclei have been studied. Spectra of protons liberated during the reaction of 2 + level deuteron disintegration in 114 Cd nucleus are presented [ru

  7. Disintegration of Ta and W nuclei by high-energy electrons and photons

    International Nuclear Information System (INIS)

    Mitrofanova, A.V.; Noga, V.I.; Popov, A.I.; Ranyuk, Yu.N.; Telegin, Yu.N.

    1977-01-01

    The induced activity method is applied to measure the yields of 15 photonuclear reactions on the tantalum and tungsten nuclei in the 600-1300 MeV energy range of photons. The cross sections are calculated in the ''rectangular'' approximation of the bremsstrahlung spectrum. The data are analysed by the Rudstam semiempirical formula. For the reactions with tungsten nuclei the photo- to electro-yield ratios are measured

  8. Source spectral index of heavy cosmic ray nuclei

    International Nuclear Information System (INIS)

    Engelmann, J.J.; Ferrando, P.; Koch-Miramond, L.; Masse, P.; Soutoul, A.; Webber, W.R.

    1985-08-01

    From the energy spectra of the heavy nuclei observed by the French-Danish experiment on HEAO-3, we have derived the source spectra of the mostly primary nuclei (C, O, Ne, Mg, Si, Ca and Fe) in the framework of an energy dependent leaky box model (Engelmann et al. 1985). In the present paper we want to derive more accurate spectral indices by using better values of the escape length based on the latest cross section measurements (Webber 1984, Soutoul et al. this conference). Our aim is also to extend the analysis to lower energies down to 0.4 GeV/n (kinetic energy observed near earth), using data obtained by other groups. The only nuclei for which we have a good data base in a broad range of energies are O and Fe, so the present study is restricted to these two elements

  9. Measurement of formation cross sections of short-lived nuclei by 14 MeV neutron. Nd, Sm, Dy, Er, Yb

    Energy Technology Data Exchange (ETDEWEB)

    Sakane, H.; Yamamoto, H.; Kawade, K. [Nagoya Univ. (Japan). School of Engineering; Iida, T.; Takahashi, A.

    1997-03-01

    Eight neutron activation cross sections producing the nuclei with half-lives between 3 min and 24 min were obtained at the energy range between 13.4 and 14.9 MeV by activation method. The cross sections were {sup 146}Nd(n,p){sup 146}Pr, {sup 154}Sm(n,{alpha}){sup 151}Nd, {sup 162}Dy(n,p){sup 162}Tb, {sup 163}Dy(n,np){sup 162}Tb, {sup 163}Dy(n,p){sup 163}Tb, {sup 164}Dy(n,p){sup 164}Tb, {sup 170}Er(n,{alpha}){sup 167}Dy, {sup 174}Yb(n,p){sup 170}Tm. {sup 163}Dy(n,np){sup 162}Tb (T{sub 1/2}=7.7 min) was obtained for the first time. Present results are compared with previous results and the evaluated data of JENDL-3 and ENDF/B-VI. There are some discrepancies between present results and the JENDL-3 and ENDF/B-VI. (author)

  10. LOW-FIDELITY COVARIANCES FOR NEUTRON CROSS SECTIONS ON 57 STRUCTURAL AND 31 HEAVY NUCLEI IN THE FAST REGION

    International Nuclear Information System (INIS)

    PIGNI, M.T.; HERMAN, M.; OBLOZINSKY, P.

    2008-01-01

    We produced a large set of neutron cross section covariances in the energy range of 5 keV-20 MeV. The present set of data on 57 structural materials and 31 heavy nuclei follows our earlier work on 219 fission product materials and completes our extensive contribution to the low-fidelity covariance project (307 materials). This project aims to provide initial, low-fidelity yet consistent estimates of covariance data for nuclear criticality safety applications. The evaluation methodology combines the nuclear reaction model code EMPIRE which calculates sensitivity to nuclear reaction model parameters, and the Bayesian code KALMAN that propagates uncertainties of the model parameters to cross sections. Taking into account the large scale of the project, only marginal reference to experimental data was made. The covariances were derived from the perturbation of several key model parameters selected by the sensitivity analysis. These parameters refer to the optical model potential, the level densities and the strength of the pre-equilibrium emission. This work represents the first attempt ever to generate nuclear data covariances on such a large scale

  11. Critical angular momentum dependence of the fission barriers and the stability of superheavy nuclei

    International Nuclear Information System (INIS)

    Magda, M.T.; Sandulescu, A.

    1978-10-01

    Measured complete fusion and evaporation cross section data are used to determine the critical angular momenta for which the fission barriers are vanishing in the region of nuclei with Z = 102 - 116. It is shown that, in order to fit these data, larger values of the critical angular momenta are obtained for superheavy nuclei (Z = 110 - 112) than for heavy ones (Z = 102 - 107), which indicates a relatively higher stability against fission for superheavy nuclei, in agreement with the theoretically predicted island of stability. (author)

  12. The mechanism of total disintegration of heavy nuclei by fast hadrons and nuclei

    International Nuclear Information System (INIS)

    Strugalska-Gola, E.; Strugalski, Z.

    1997-01-01

    The mechanism of the total disintegration of atomic nuclei by fast hadrons and nuclei is considered. The passage of energetic hadrons through layers of intranuclear matter, accompanied by emission of fast nucleons with kinetic energies from about 20 up to about 500 MeV from definite local small regions in the nuclei around projectile courses in them, allows one to explain simply the occurrence of the total destruction of nuclei involved in the collisions. Light nuclei may be totally disintegrated by fast hadrons and nuclei; heavier nuclei may be totally disintegrated only in central collisions of nuclei with similar mass numbers

  13. RIPL starter file parameter validation for actinide nuclei

    International Nuclear Information System (INIS)

    Maslov, V.M.; Porodzinskij, Yu.V.

    1999-01-01

    Nuclear reaction theory calculations are of particular importance for actinide nuclei data evaluation. Measured data base for 238-U provides a unique possibility to compare calculated data with measured total, elastic, inelastic, fission, capture, (n,2n), (n,3n) and (n,4n) cross section data up to 40 MeV

  14. The Peculiarities of the Production and Decay of Superheavy Nuclei

    International Nuclear Information System (INIS)

    Itkis, M. G.; Bogachev, A. A.; Itkis, I. M.; Jandel, M.; Kliman, J.; Knyazheva, G. N.; Kondratiev, N. A.; Kozulin, E. M.; Krupa, L.; Oganessian, Yu. Ts.; Pokrovsky, I. V.; Prokhorova, E. V.; Rusanov, A. Ya.; Sagaidak, R. N.; Beghini, S.; Montagnoli, G.; Scarlassara, F.; Behera, B. R.; Corradi, L.; Fioretto, E.

    2006-01-01

    The interest in the study of the fission process of superheavy nuclei mainly deals with the opportunity to obtain information about the cross-section of the compound nucleus (CN) formation at excitation energies E*≅15-30 MeV. It allows one to estimate the survival probability of the superheavy composite system after evaporation of 1-3 neutrons, i.e. in 'cold' or 'warm' fusion reactions. However, in order to solve this problem deeper understanding of the coalescence processes between colliding nuclei, the competition between fusion-fission and quasi-fission processes is needed. The characteristics of both processes, their manifestation in the experimental observables and the relative contribution to the capture cross-section in dependence on the excitation energies, reaction entrance channel etc were investigated for a wide range of target-projectile combinations. Results of the experiments devoted to the study of the fusion-fission and quasi-fission processes in the reactions of the formation of the superheavy nuclei with Z = 102-122 are presented. The heavy ions 26Mg, 48Ca, 50Ti, 58Fe and 64Ni were used as projectiles. The choice of the reactions with 48Ca and actinide-targets was inspired by the experiments on the production of the isotopes 283112, 289114 and 283116 in Dubna using the same reactions. The 50Ti, 58Fe and 64Ni projectiles were chosen since the corresponding projectile-target combinations lead to the synthesis of even heavier elements. The experiments were carried out at the U-400 accelerator of the Flerov Laboratory of Nuclear Reactions (JINR, Russia) and the XTU Tandem accelerator of the National Laboratory of Legnaro (LNL, Italy) using the time-of-flight spectrometer of fission fragments CORSET. The role of the shell effects, the influence of the entrance channel asymmetry and the deformations of colliding nuclei on the mechanism of the fusion-fission and the competitive process of quasi-fission are discussed. The recent results on synthesis of

  15. Short Range Correlations in Nuclei at Large xbj through Inclusive Quasi-Elastic Electron Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Zhihong [Univ. of Virginia, Charlottesville, VA (United States)

    2013-12-01

    The experiment, E08-014, in Hall-A at Jefferson Lab aims to study the short-range correlations (SRC) which are necessary to explain the nuclear strength absent in the mean field theory. The cross sections for 2H, 3He, 4He, 12C, 40Ca and 48Ca, were measured via inclusive quasi-elastic electron scattering from these nuclei in a Q2 range between 0.8 and 2.8 (GeV/c)2 for x>1. The cross section ratios of heavy nuclei to 2H were extracted to study two-nucleon SRC for 1

  16. 238U photonuclear studies with 5-10 MeV photons

    International Nuclear Information System (INIS)

    Hawkes, N.P.

    1986-02-01

    The 238 U photofission and photoneutron cross sections, and the mean number -ν of prompt neutrons per fission, have been measured between 5 and 10 MeV. The experiment was carried out using bremsstrahlung from the electron linear accelerator HELIOS at Harwell. Neutrons from (γ,f) and (γ,n) reactions on 238 U were detected, and neutron multiplicity distributions recorded. Photoneutron events were separated from photofission events by means of their different multiplicities. (author)

  17. Some aspects of the use of deep inelastic transfer reactions to produce nuclei far from stability and nuclei with large angular momenta

    International Nuclear Information System (INIS)

    Volkov, V.V.

    1980-01-01

    Some experimental data are considered that indicate the validity of the Q/sub gg/ systematics of cross sections for production of isotopes in multinucleon transfer reactions for any target-projectile combination. The effect of the nuclear structure of the light fragment on the evolution and disintegration of the double nuclear system formed in deep inelastic collisions of complex nuclei is discussed. Predominance of the α-particle emission over all other channels of the disintegration of the double nuclear system is demonstrated. It is shown that deep inelastic transfer reactions can be used to study the deformation of nuclei with large angular momenta. 9 figures

  18. Confinement forces in fast backward nucleon production off nuclei

    International Nuclear Information System (INIS)

    Kopeliovich, B.Z.; Niedermayer, F.

    1982-01-01

    Multiple colour exchange mechanism is proposed to describe fast backward nucleon production off nuclei at high energies. Cross section of hd → psub(B)X reaction is calculated in the colour flux tube model. This contribution is found to dominate in the hard part of momentum spectra

  19. Density functional theory of nuclei

    International Nuclear Information System (INIS)

    Terasaki, Jun

    2008-01-01

    The density functional theory of nuclei has come to draw attention of scientists in the field of nuclear structure because the theory is expected to provide reliable numerical data in wide range on the nuclear chart. This article is organized to present an overview of the theory to the people engaged in the theory of other fields as well as those people in the nuclear physics experiments. At first, the outline of the density functional theory widely used in the electronic systems (condensed matter, atoms, and molecules) was described starting from the Kohn-Sham equation derived on the variational principle. Then the theory used in the field of nuclear physics was presented. Hartree-Fock and Hartree-Fock-Bogolyubov approximation by using Skyrme interaction was explained. Comparison of the results of calculations and experiments of binding energies and ground state mean square charge radii of some magic number nuclei were shown. The similarity and dissimilarity between the two streams were summarized. Finally the activities of the international project of Universal Nuclear Energy Density Functional (UNEDF) which was started recently lead by US scientist was reported. This project is programmed for five years. One of the applications of the project is the calculation of the neutron capture cross section of nuclei on the r-process, which is absolutely necessary for the nucleosynthesis research. (S. Funahashi)

  20. Fragmentation of relativistic nuclei

    International Nuclear Information System (INIS)

    Cork, B.

    1975-06-01

    Nuclei with energies of several GeV/n interact with hadrons and produce fragments that encompass the fields of nuclear physics, meson physics, and particle physics. Experimental results are now available to explore problems in nuclear physics such as the validity of the shell model to explain the momentum distribution of fragments, the contribution of giant dipole resonances to fragment production cross sections, the effective Coulomb barrier, and nuclear temperatures. A new approach to meson physics is possible by exploring the nucleon charge-exchange process. Particle physics problems are explored by measuring the energy and target dependence of isotope production cross sections, thus determining if limiting fragmentation and target factorization are valid, and measuring total cross sections to determine if the factorization relation, sigma/sub AB/ 2 = sigma/sub AA/ . sigma/sub BB/, is violated. Also, new experiments have been done to measure the angular distribution of fragments that could be explained as nuclear shock waves, and to explore for ultradense matter produced by very heavy ions incident on heavy atoms. (12 figures, 2 tables)

  1. The radiative capture of fast nucleons in the mass area of medium and heavy nuclei

    International Nuclear Information System (INIS)

    Rigaud, F.

    1978-01-01

    The radiative capture of 14 MeV neutrons cross-sections on the 59 Co, 93 Nb, 103 Rh, 133 Cs, 139 La, Ce and 159 Tb nuclei were investigated by the integration method and by the activation method on the 27 Al, 50 Ti, 51 V, 103 Rh, 127 I and 139 La nuclei. The gamma-ray spectra following the capture of 8-22 MeV protons on 110 Cd and 115 In nuclei were measured and the single-particle states capture cross-sections deduced. The 110 Cd(p,γ 0 ) 111 In angular distribution was also measured at 13 MeV. The direct and semi-direct processes explained the experimental results. The volume form of the coupling interaction was adequate to account the neutrons results and the surface form to account the 110 Cd(p,γ 0 ) 111 In results. The 110 Cd nuclei electric quadrupole excitation was formed negligible compared with the electric dipole excitation which is adequate to explain the 110 Cd(p,γ 0 ) 111 In excitation function [fr

  2. Exotic nuclei

    International Nuclear Information System (INIS)

    Villari, A.C.C.

    1990-01-01

    The actual tendencies to study exotic nuclei; applications of exotic nuclei beams in material study and medicine; recent results obtained by GANIL and Berkeley Laboratories of measurements of binding energy and radii of light nuclei; the future experiences to be carry out in several international laboratories and; proposal of studies in Brazil using Pelletron-USP accelerator and the LINAC superconductor accelerator, in construction in the same laboratory, are presented. (M.C.K.)

  3. Microscopic structure for light nuclei

    International Nuclear Information System (INIS)

    Sharma, V.K.

    1995-01-01

    The microscopic structure for light nuclei e.g. 4 He, 7 Li and 8 Be is considered in the frame work of the generator coordinate method (GCM). The physical interpretation of our GCM is also discussed. The GC amplitudes are used to calculate the various properties like charge and magnetic RMS radii, form factors, electromagnetic moments, astrophysical S-factor, Bremsstrahlung weighted cross sections, relative wavefunctions and vertex functions etc. All the calculated quantities agree well with the values determined experimentally. (author). 30 refs., 10 figs., 2 tabs

  4. Near and sub-barrier fusion studies with radioactive nuclei: an overview

    International Nuclear Information System (INIS)

    Majumdar, Harashit

    2004-01-01

    Full text: Understanding of the reaction mechanism with radioactive nuclei, e.g., halo nuclei, at near barrier energies appears to be a challenging problem at present. Recent experimental and theoretical investigations of fusion of exotic nuclei with stable targets have yielded new insights into the structure of these nuclei and its effects on the fusion reaction dynamics. One interesting and intriguing result of this type of study is the controversy over fusion enhancement in the presence of strong break-up channels. Other novel information include an increase of break-up cross-sections and weakening or absence of threshold anomaly, related to energy dependence of optical model potentials, in the neighbourhood of the barrier. It is believed that the coupling of the entrance channel to different non-elastic channels (including break-up) is responsible for the above phenomena and these aspects are more prominent in the near barrier region. An overview of the experimental studies of fusion excitation function with RIB will be presented

  5. Near and sub-barrier fusion studies with radioactive nuclei: an overview

    International Nuclear Information System (INIS)

    Majumdar, Harashit

    2004-01-01

    Full Text: Understanding of the reaction mechanism with radioactive nuclei, e.g., halo nuclei, at near barrier energies appears to be a challenging problem at present. Recent experimental and theoretical investigations of fusion of exotic nuclei with stable targets have yielded new insights into the structure of these nuclei and its effects on the fusion reaction dynamics. One interesting and intriguing result of this type of study is the controversy over fusion enhancement in the presence of strong break-up channels. Other novel information include an increase of break-up cross-sections and weakening or absence of threshold anomaly, related to energy dependence of optical model potentials, in the neighbourhood of the barrier. It is believed that the coupling of the entrance channel to different non-elastic channels (including break-up) is responsible for the above phenomena and these aspects are more prominent in the near barrier region. An overview of the experimental studies of fusion excitation function with RIB will be presented

  6. On Coulomb disintegration of relativistic nuclei and hypernuclei

    International Nuclear Information System (INIS)

    Lyuboshits, V.L.

    1989-01-01

    The dependence of the total cross-section of excitation and disintegration of a relativistic nucleus in the Coulomb field on the energy and parameters characterizing nuclear dimensions is investigated. The analogy with the problem of atomic ionization at the passage of charged particles through matter is used. The results are applied to the description of the Coulomb dissociation of nuclei with small binding energies. An explicit expression for the effective cross-section of the Coulomb disintegration of the hypernucleus-Λ 3 H into a deuteron and Λ-particle. 12 refs

  7. Spectroscopy of few-particle nuclei around magic 132Sn from fission product γ-ray studies

    International Nuclear Information System (INIS)

    Zhang, C. T.

    1998-01-01

    We are studying the yrast structure of very neutron-rich nuclei around doubly magic 132 Sn by analyzing fission product γ-ray data from a 248 Cm source at Eurogam II. Yrast cascades in several few-valence-particle nuclei have been identified through γγ cross coincidences with their complementary fission partners. Results for two-valence-particle nuclei 132 Sb, 134 Te, 134 Sb and 134 Sn provide empirical nucleon-nucleon interactions which, combined with single-particle energies already known in the one-particle nuclei, are essential for shell-model analysis in this region. Findings for the N = 82 nuclei 134 Te and 135 I have now been extended to the four-proton nucleus 136 Xe. Results for the two-neutron nucleus 134 Sn and the N = 83 isotones 134 Sb, 135 Te and 135 I open up the spectroscopy of nuclei in the northeast quadrant above 132 Sn

  8. Large acceptance spectrometers for invariant mass spectroscopy of exotic nuclei and future developments

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, T.; Kondo, Y.

    2016-06-01

    Large acceptance spectrometers at in-flight RI separators have played significant roles in investigating the structure of exotic nuclei. Such spectrometers are in particular useful for probing unbound states of exotic nuclei, using invariant mass spectroscopy with reactions at intermediate and high energies. We discuss here the key characteristic features of such spectrometers, by introducing the recently commissioned SAMURAI facility at the RIBF, RIKEN. We also investigate the issue of cross talk in the detection of multiple neutrons, which has become crucial for exploring further unbound states and nuclei beyond the neutron drip line. Finally we discuss future perspectives for large acceptance spectrometers at the new-generation RI-beam facilities.

  9. Nuclei transmutation by collisions with fast hadrons and nuclei

    International Nuclear Information System (INIS)

    Strugalski, Z.; Strugalska-Gola, E.; Drzymala, A.

    1998-01-01

    Atomic nuclei change their mass- and charge-numbers if bombarded by fast hadrons and nuclei; the transmutation appears as a complicated process. It proceeds in a definite way - through a few stages or phases. Adequate identification of the nucleons and light nuclear fragments emitted and evaporated in a hadron-nucleus or nucleus-nucleus collisions and in the collision-induced intranuclear reactions allows one to estimate quantitatively the nuclei transmutations in the various stages (phases) of the process

  10. Problem of α-clustering levels in heavy nuclei

    International Nuclear Information System (INIS)

    Kadmenskij, V.G.; Kadmenskij, S.G.; Kurgalin, S.D.; Furman, V.I.

    1982-01-01

    From the optical model analysis of elastic scattering and absorption cross sections of α-particles including the (n,α) reaction induced by resonance neutrons it may be concluded that the conception of black nucleus is valid for α-particles. It was shown that the magnitudes of α-particle surface spectroscopic factors did not exceed 10sup(-2) for all the known α-transitions both in spherical and deformed heavy nuclei accounting for the ambiguities of the optical model potential. The possibilities of extracting the α-particles form factors of low-lying nuclear states from α-transfer reaction data are considered. From all the data considered it is concluded that there is no evidence for the revealing of α-clustering levels in heavy nuclei. (author)

  11. Reaction Mechanism and Structure Interplay for Proton Elastic Scattering from Halo Nuclei

    International Nuclear Information System (INIS)

    Crespo, R.; Johnson, R.C.

    1999-01-01

    The aim of this work is to clarify what properties of the projectile w.f. are relevant to describe elastic scattering of halo nuclei from stable nuclei. In particular, we examine how far elastic scattering observables probe correlation effects among projectile nucleons. Our treatment is based on a multiple scattering expansion of the proton-projectile transition amplitude in a form which is well adapted to the weakly bound cluster picture of halo nuclei. In the specific case of 11 Li scattering from protons at 800 MeV/u we show that because core recoil effects are significant, scattering cross sections can not, in general, be deduced from knowledge of the total matter density alone. We advocate that the optical potential concept for the scattering of halo nuclei on protons should be avoided and that the multiple scattering series for the full transition amplitude should be used instead

  12. Pair correlations in nuclei

    International Nuclear Information System (INIS)

    Shimizu, Yoshifumi

    2009-01-01

    Except for the closed shell nuclei, almost all nuclei are in the superconducting state at their ground states. This well-known pair correlation in nuclei causes various interesting phenomena. It is especially to be noted that the pair correlation becomes weak in the excited states of nuclei with high angular momentum, which leads to the pair phase transition to the normal state in the high spin limit. On the other hand, the pair correlation becomes stronger in the nuclei with lower nucleon density than in those with normal density. In the region of neutron halo or skin state of unstable nuclei, this phenomenon is expected to be further enhanced to be observed compared to the ground state of stable nuclei. An overview of those interesting aspects caused via the pair correlation is presented here in the sections titled 'pair correlations in ground states', pair correlations in high spin states' and 'pair correlations in unstable nuclei' focusing on the high spin state. (S. Funahashi)

  13. Transport theory of deep-inelastic collisions between heavy nuclei

    International Nuclear Information System (INIS)

    Ayik, S.; Noerenberg, W.; Schuermann, B.

    1975-01-01

    In collisions between heavy nuclei, the major part of the total cross-section is due to deep-inelastic processes. These processes have been studied within a quantum-statistical approach leading to transport equations of the Fokker-Planck type (generalized diffusion equation). Transport coefficients have been studied within a model. (orig./WL) [de

  14. From heavy nuclei to super-heavy nuclei

    International Nuclear Information System (INIS)

    Theisen, Ch.

    2003-01-01

    The existence of super-heavy nuclei has been predicted nearly fifty years ago. Due to the strong coulomb repulsion, the stabilisation of these nuclei is possible only through shell effects. The reasons for this fragile stability, as well as the theoretical predictions concerning the position of the island of stability are presented in the first part of this lecture. In the second part, experiments and experimental techniques which have been used to synthesize or search for super-heavy elements are described. Spectroscopic studies performed in very heavy elements are presented in the following section. We close this lecture with techniques that are currently being developed in order to reach the superheavy island and to study the structure of very-heavy nuclei. (author)

  15. Photofissility of heavy nuclei at intermediate energies

    International Nuclear Information System (INIS)

    Deppman, A.; Arruda Neto, J.D.T.; Likhachev, V.P.; Goncalves, M.

    2002-10-01

    We use the recently developed MCMC/MCEF (Multi Collisional Monte Carlo plus Monte Carlo for Evaporation-Fission calculations) model to calculate the photo fissility and the photofission cross section at intermediate energies for the 243 Am and for 209 Bi, and compare them to results obtained for other actinides and to available experimental data. As expected, the results for 243 Am are close to those for 237 Np. The fissility for pre actinide nuclei is nearly one order of magnitude lower than that for the actinides. Both fissility and photofission cross section for 209 Bi are in good agreement with the experimental data. (author)

  16. Studies of exotic nuclei

    International Nuclear Information System (INIS)

    Angelique, J.C.; Orr, N.A.

    1997-01-01

    The study of the nuclei far off stability valley is of much interest for testing the nuclear models established for the stable nuclei but also for astrophysics to understand the nucleosynthesis. Experiments aim to measure the mass and lifetime, to build the decay schemes and also to study the structure and the properties of these nuclei. The radioactive beam group focused its research on light neutron-rich nuclei having a halo neutron structure. Mass measurements in N ∼ Z nuclei namely in A ∼ 60-80 proton-rich nuclei, important for understanding the rp process, are mentioned, as well as in nuclei in the 100 Sn region. In the newly obtained 26 O and 28 O nuclei the lifetimes, the probabilities of emission of one for more neutrons were determined. The data analysis has permitted to determine also for the first time the lifetimes of 27,29 F and 30 Ne. Studies of nuclei in the 100 Sn region, near the proton drip line in the ground and isomeric states are now under way. The spectroscopy (energy levels, gamma emissions, etc.) of the neutron-rich nuclei produced by the 36 S fragmentation has been carried out in 31 Ne, 17 B and 29 F. Studies by Coulomb excitation of the 2 + excited states and associated probability B (E2) in O, Ne, Ni and Zn are now analysed

  17. Study of Beta-Delayed Neutron Emission by Neutron-Rich Nuclei and Analysis of the Nuclear Reaction Mechanism responsible for the Yields of these Nuclei

    International Nuclear Information System (INIS)

    Bazin, D.

    1987-07-01

    Among the nuclear mechanisms used for the production of nuclei far from stability, the projectile fragmentation process has recently proved its efficiency. However, at Fermi energies, one has to take into account some collective and relaxation effects which drastically modify the production cross-sections. The spectroscopic study of very neutron-rich nuclei is very dependent of these production rates. A study of beta-delayed neutron emission which leads to new measurements of half-lives and neutron delayed emission probabilities is achieved with a liquid scintillator detector. The results which are then compared to different theories are of interest for the understanding of natural production of heavy elements (r processus) [fr

  18. Neutrino-induced charged-current reaction rates for r-process nuclei

    CERN Document Server

    Langanke, K

    2001-01-01

    Neutrino-induced reactions play an important role during and after the r-process if it occurs in an environment with extreme neutrino fluxes, as in the neutrino-driven wind model or neutron star mergers. The neutrino reactions can excite the daughter nucleus above the neutron threshold, which is quite low for r-process nuclei. Thus the daughter nucleus will decay by emission of one or several neutrons. We have calculated the relevant total (nu sub e , e sup -) cross sections as well as the partial neutron spallation cross sections for r-process nuclei with neutron numbers N=41-135 and proton numbers Z=21-82. The supernova neutrino spectrum is described by a Fermi-Dirac distribution with various temperature parameters between T=2.8 MeV and T=10 MeV and with the degeneracy parameters alpha=0 and alpha=3. Our calculations of the nuclear response are based on the random phase approximation and consider allowed as well as forbidden transitions.

  19. Comparison of different proximity potentials for asymmetric colliding nuclei

    International Nuclear Information System (INIS)

    Dutt, Ishwar; Puri, Rajeev K.

    2010-01-01

    Using the different versions of phenomenological proximity potential as well as other parametrizations within the proximity concept, we perform a detailed comparative study of fusion barriers for asymmetric colliding nuclei with asymmetry parameter as high as 0.23. In all, 12 different proximity potentials are robust against the experimental data of 60 reactions. Our detailed study reveals that the surface energy coefficient as well as radius of the colliding nuclei depend significantly on the asymmetry parameter. All models are able to explain the fusion barrier heights within ±10% on the average. The potentials due to Bass 80, AW 95, and Denisov DP explain nicely the fusion cross sections at above- as well as below-barrier energies.

  20. Microscopic approach to the theory of light nuclei and to simple nuclear reactions

    International Nuclear Information System (INIS)

    Baz', L.I.; Filippov, G.F.

    1976-01-01

    The results of calculations for the properties of light nuclei and simple nuclear reactions using the Schrodinger multinucleon equation involving the realistic nucleon-nucleon interaction are reviewed. It is noted that the theory for the A(<=)4 nuclei is practically complete at present. The reasons for the good agreement between the theoretical and experimental cross sections of nuclear reactions are given. The programme of a correct separation of the nuclear collective degree of freedom are discussed in detail

  1. Experimental study on p-wave neutron strength functions for light nuclei

    International Nuclear Information System (INIS)

    Koester, L.; Waschkowski, W.; Meier, J.; Rau, G.; Salehi, M.

    1988-01-01

    Broad energy distributions in fast neutron beams have been achieved by appropriate filtering of the 236 U fission radiation provided from the RENT converter facility at the FRM research reactor. Transmission measurements in such beams result in average cross sections to which resonance reactions and shape elastic scattering contribute. We used a silicon (124.5 cm) filtered beam with a median energy of 143 keV (width 20 keV) and beams with 1.3 MeV (0.55 to 3 MeV) and 2.1 MeV (1 to 5.5 MeV) obtained through different filter combinations of lead and polyethylene. The relative high energies and the broad spectra made it possible to determine experimentally the contributions of s- and p-wave resonance reactions to the average cross section even for light nuclei. Using the three different beams we determined the average cross sections for the elements in the mass region A = 9 to 65. Analysing the measured cross sections by means of the R matrix formalism provided a complete set of p-wave strength functions and distant level parameters. Moreover, single particle shell effects in the cross sections were observed. In conclusion we obtained information on the 2P and the 3S size resonances and about the validity of the optical model for neutron reactions with light nuclei. (orig.)

  2. Production cross-sections of pions and kaons in proton-nucleus collisions around 1 GeV - Measurement of the production cross-sections of light charged particles in collisions between 62.9 GeV protons and "2"0"8Pb nuclei

    International Nuclear Information System (INIS)

    Guertin, A.

    2001-01-01

    A charged kaon includes a strange anti-quark that cannot be re-absorbed by matter which make kaons an interesting probe of nuclear matter. The first part of this work is dedicated to the production cross-sections of pions and kaons in proton-nucleus collision around 1 GeV. The molecular quantum dynamic model used for simulating proton-nucleus is presented and the total cross-sections of the reactions implemented in the model are described. Then, the impact of the neutron's spectral function on pion and kaon production is assessed in double differential cross-sections. The consequences of the correlations observed between nucleons are discussed. The simple phenomenological approach we have developed to take into account 2 nucleon correlations gives good results for the doubly differential production cross-section of pions and kaons whatever the target nucleus. The second part of this work is dedicated to the measurement of the production of light charged particles (p, d, t, "3He, α) and neutron production in collisions between 62,9 MeV protons with "2"0"8Pb nuclei. The experimental setting is installed on the S2 line of the CYCLONE cyclotron (Belgium), the detection system is composed of 7 triple telescopes (Si, Si and CsI(Tl)). The separation and identification of particles is made through 2 methods: the E-ΔE method based on the energy losses in the different detectors and the discrimination method based on the different shapes of the quick and slow signals of the CsI crystal. The extraction of the cross-section values is detailed. We have compared the values obtained with 3 theoretical models: the exciton model (GNASH code), the F.K.K. (Feshbach-Kerman-Koonin) theory (MINGUS code) and a more phenomenological model able to simulate hadron reactions on nuclei for a very broad range of energy (FLUKA code)

  3. Dynamic deformation theory of spherical and deformed light and heavy nuclei with A = 12-240

    International Nuclear Information System (INIS)

    Kumar, Krishna.

    1979-01-01

    Deformation dependent wave functions are calculated for different types of even-even nuclei (spherical, transitional, deformed; light, medium, heavy) without any fitting parameters. These wave functions are employed for the energies, B(E2)'s, quadrupole and magnetic moments of selected nuclei with A = 12-240 (with special emphasis on 56 Fe, 154 Gd), and for neutron cross sections of 148 Sm, 152 Sm

  4. Fusion excitation functions involving transitional nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Rehm, K.E.; Jiang, C.L.; Esbensen, H. [and others

    1995-08-01

    Measurements of fusion excitation functions involving transitional nuclei {sup 78}Kr and {sup 100}Mo showed a different behavior at low energies, if compared to measurements with {sup 86}Kr and {sup 92}Mo. This points to a possible influence of nuclear structure on the fusion process. One way to characterize the structure of vibrational nuclei is via their restoring force parameters C{sub 2} which can be calculated from the energy of the lowest 2{sup +} state and the corresponding B(E2) value. A survey of the even-even nuclei between A = 28-150 shows strong variations in C{sub 2} values spanning two orders of magnitude. The lowest values for C{sub 2} are observed for {sup 78}Kr, {sup 104}Ru and {sup 124}Xe followed by {sup 74,76}Ge, {sup 74,76}Se, {sup 100}Mo and {sup 110}Pd. In order to learn more about the influence of {open_quotes}softness{close_quotes} on the sub-barrier fusion enhancement, we measured cross sections for evaporation residue production for the systems {sup 78}Kr + {sup 104}Ru and {sup 78}Kr + {sup 76}Ge with the gas-filled magnet technique. For both systems, fusion excitation functions involving the closed neutron shell nucleus {sup 86}Kr were measured previously. The data are presently being analyzed.

  5. The asymptotic hadron spectrum, anti-nuclei, hyper-nuclei and quark phase

    International Nuclear Information System (INIS)

    Glendenning, N.K.

    1978-01-01

    The only hope of determining the hadronic spectrum in the high mass region is through a study of matter produced in very high energy nuclear collisions. Along the way, exotic nuclei, i.e., anti-nuclei and hyper-nuclei may be produced in appreciable numbers, and the detection of a quark phase may be possible. (orig.) [de

  6. NDA technology for uranium resource evaluation. Progress report, July 1-December 31, 1978

    International Nuclear Information System (INIS)

    Evans, M.L.

    1979-11-01

    The calculational work has focused on gamma-ray calculations, code improvements, and cross-section conversions. The experimental effort has concentrated on the design of a field prototype photoneutron logging probe and on uranium-fission neutron pulse-shape discrimination. The GAMRES code has been modified to provide the facility for computing gamma-ray response functions for different types of detectors. Calculations to identify the physical processes of importance in the operation of the disequilibrium probe have been completed. A field prototype photoneutron-based logging probe and associated radiation shielding cask are currently being designed. Feasibility studies have been initiated to investigate the use of (α,n) source for direct uranium ore-grade determination. Pulse-shape-discrimination (PSD) techniques are being investigated for use with photoneutron probes having liquid scintillation fast-neutron detectors

  7. Level structures in Yb nuclei far from stable nuclei

    International Nuclear Information System (INIS)

    Hashizume, Akira

    1982-01-01

    Applying n-γ, γ-γ coincidence techniques, the excited levels in 158 Yb and in 157 Yb nuclei were studied. Stress is placed ona neutron detection technique to assign (HI,xn) reactions which produce the nuclei far from β stability line. (author)

  8. Diffractive scattering on nuclei in multiple scattering theory with inelastic screening

    International Nuclear Information System (INIS)

    Zoller, V.R.

    1988-01-01

    The cross sections for the diffractive scattering of hadrons on nuclei are calculated in the two-channel approximation of multiple scattering theory. In contrast to the standard Glauber approach, it is not assumed that the nucleon scattering profile is a Gaussian or that the Regge radius of the hadron is small compared to the nuclear radius. The AGK Reggeon diagrammatic technique is used to calculate the topological cross sections and the cross sections for coherent and incoherent diffractive dissociation and quasielastic scattering. The features of hadron-nucleus scattering at superhigh energies are discussed

  9. Interaction of slow pions with atomic nuclei

    International Nuclear Information System (INIS)

    Troitskij, M.A.; Tsybul'nikov, A.V.; Chekunaev, N.I.

    1984-01-01

    Interactions of slow pions with atomic nuclei near to pion condensation are investigated. From comparison of experimental data with the theoretical calculation results on the basis of precise microscopic approach not bound with the random phase approximation (RPA) nuclear matter fundamental parameters near a critical point can be found. Optical potential of slow pions in nuclei, πN-scattering amplitudes and lengths, π-atom level isotopic shift, phenomenon of single-nucleon pion absorption by nucleus, phenomenon of nuclear critical opalescence are considered. The results of πN-scattering lengths calculation, sup(40-44)Ca, sup(24-29)Mg, sup(16-18)O π-atom level shift are presented. It is shown that the presence of π-condensate in nuclei can explain the observed suppression of p-wave potential terms. The phenomenon of single-nucleon pion absorption by nucleus is one of direct experiments which permits to reveal the π-condensate. The nuclear opalescence phenomenon is manifested in increase of pion photoproduction reaction cross section for account of nucleus proximity to π-condensation as compared with the calculated in the Fermi-gas model. The suggested method for calculating precondensate phenomena operates the better, the nearer is the system to the condensation threshold whereas the RPA method in this region is inapplicable

  10. Decay properties of nuclei in the neighbourhood of 100Sn

    International Nuclear Information System (INIS)

    Straub, Katrin

    2011-01-01

    This thesis concentrates on nuclear properties of very neutron deficient nuclei near the proton dripline in the neighbourhood of doubly-magic 100 Sn. In an experiment performed in March 2008 at the GSI in Darmstadt, the exotic nuclei were produced in a projectile fragmentation reaction using a 124 Xe primary beam with an energy of 100 AMeV impinging on a 4000 Beryllium target, separated and identified in the FRS and eventually stopped for decay spectroscopy in a complex implantation detector developed at the institute E12. The Germanium array RISING was employed for the measurement of prompt and delayed gamma radiation. Production cross sections and half lives were determined along the proton dripline. The isotopes 99 Sn, 97 In and 95 Cd were identified for the first time. additional nuclei studied in this thesis are 103 Sn, 96 Cd as well as the two tin isotopes 101 Sn and 102 Sn. (orig.)

  11. Near-Barrier Fusion of Heavy Nuclei. Coupling of the Channels

    CERN Document Server

    Zagrebaev, V I

    2003-01-01

    The problem of quantum description of near-barrier fusion of heavy nuclei taking place under strong coupling of relative motion with rotation of deformed nuclei and with dynamic deformations of their surfaces is studied in the paper. A new effective method is proposed for numerical solution of a set of coupled Schrodinger equations with boundary conditions corresponding to a full absorption of the flux penetrated through the multi-dimensional Coulomb barrier. The method has no limitation on the number of coupled channels and allows one to calculate fusion cross-sections of very heavy nuclei used for synthesis of super-heavy elements. A combined analysis of the multi-dimensional potential energy surface relief and the multi-channel wave function in the vicinity of the Coulomb barrier gives a clear interpretation of near-barrier fusion dynamics. Comparison with experimental data and with semi-empirical model calculations is performed. The computing codes are allocated at the web-server http://nrv.jinr.ru/nrv/ w...

  12. Supplemental material: afterburner for generating light (anti-)nuclei with QCD-inspired event generators in pp collisions

    CERN Document Server

    2017-01-01

    This note complements the paper titled: ``Production of deuterons, tritons, $^{3}$He nuclei and their anti-nuclei in pp collisions at $\\sqrt{s}$~=~0.9, 2.76 and 7~TeV'' with additional material related to Monte Carlo simulations necessary to compare the results with lower energy experiments. It describes a coalescence-based afterburner for QCD-inspired event generators, which allows the generation of light nuclei, hyper-nuclei and their charge conjugates in proton--proton (pp) collisions at LHC energies. The event generators with the afterburner are able to reproduce the differential cross sections of light (anti-)nuclei ($A<4)$ with the same degree of agreement as those of protons and anti-protons at the same momentum per nucleon. They also explain the transverse momentum dependence of the coalescence parameters as the result of hard scattering effects.

  13. Microscopic description of α - particles interaction with ''7Li nuclei at low energies

    International Nuclear Information System (INIS)

    Burtebayev, N.; Basybekov, K.B.; Zhurynbayeva, G.S.; Sagindykov, Sh.Sh.;; Zhusupov, M.A.; Sakhiev, S.K.;

    2001-01-01

    The experimental data of α-particle elastic scattering on ''7Li nuclei are investigated within the framework of optical model by using of phenomenological and microscopical potentials. For construction of microscopical potentials double folding model and cluster folding model were used. The reproducing of cross-sections increasing on backward angles is achieved by the contribution of heavy stripping mechanism in scattering cross-section

  14. Particles and nuclei, letters

    International Nuclear Information System (INIS)

    2000-01-01

    The present collection of letters from JINR, Dubna, contains seven separate records on the integral representation for structure functions and target mass effects, multiscale properties of DNA primary structure including cross-scale correlations, dissipative evolution of the elementary act, the fine structure of the M T =1 Gamow-Teller resonance in 147g Tb→ 147 Gd β + /EC decay, the behaviour of the TVO temperature sensors in the magnetic fields, a fast method for searching for tracks in multilayer drift chambers of HADES spectrometer, a novel approach to particle track etching including surfactant enhanced control of pore morphology, azimuthal correlations of secondary particles in 32 S induced interactions with Ag(Br) nuclei at 4.5 GeV/ c/ nucleon

  15. A study of charge-pickup interactions by (158A GeV) Pb nuclei

    International Nuclear Information System (INIS)

    Sher, G.; Shahzad, M.I.

    2012-01-01

    Study of the relativistic heavy-ion collision is important to focus on probing phase transitions between hadrons and quark-gluon phases in the extreme conditions of temperature and density of nuclear matter formed in the collisions. These states of nuclear matter are expected to be created in relativistic nuclear collisions with large overlap of interacting nuclei, the Lorentz-boosted Coulomb potential Vc proportional to alpha gamma Z/b of a partner with charge Z is very strong, where b is impact parameter and is the fine structure constant. Either one or both nuclei may be disintegrated by the electromagnetic forces in ultra-peripheral collisions at b = R1 + R2, where R1 and R2 are the nuclear radii. This distinct feature of electromagnetic dissociation makes it possible to study the behavior of nuclear matter under electromagnetic fields. The nuclear charge-pickup ( delta Z = +1) by Pb projectiles at energy 158A GeV interacting with targets Bi, Pb, Cu and Al was investigated using CR39 nuclear track detectors. The target-detector stacks were exposed at CERN SPS beam facility. The projectile and fragments charge states have been identified using the etch-cone lengths for charge-pickup at Z = 83 of residual nuclei. Our measured charge-pickup cross sections (delta Z = +1) are shown. It was observed that for the heavy targets the increase in the cross section is anticipated by substantial contribution of electromagnetic dissociation process of production by virtual photons which is almost negligible at 10.6A GeV. In the light target region, our measured cross sections and charge-pickup cross sections reported at energy 10.6A GeV show dominant nuclear contribution and very small contribution of electromagnetic dissociation term. A strong dependence of charge-pickup cross sections on the target mass number was observed particularly in the heavy targets. (orig./A.B.)

  16. Role of interference of states of intermediate nuclei in exchange processes

    International Nuclear Information System (INIS)

    Belyaeva, T.L.; Zelenskaya, N.S.; Teplov, I.B.

    1982-01-01

    Role of interference of intermediate nucleus states for exchange processes in reactions with alpha particles on 11 B, 7 Li and 6 Li light nuclei was investigated when considering exactly the process dynamics in the method of distorted waves with a finite interaction radius. The process dynamics, in particular, the overlapping degree of wave functions of bound states and interaction potentials, affects considerably the reaction cross section in the rections with alpha particles on nuclei of 1p shell. If in the reaction selection rules permit the excitation of components of intermediate system states with maximum values of #betta# 1 and #betta# 2 orbital moments at the given N 1 and N 2 , the contribution of such components to the cross section will be determining. When components of intermediate system states with maximum #betta# 1 (or #betta# 2 ) are forbidden with selection rules, several intermediate states can have approximately similar overlapping integrals

  17. On rescattering in meson coherent photoproduction on nuclei

    International Nuclear Information System (INIS)

    Starkov, N.I.; Tsarev, V.A.

    1978-01-01

    Screening corrections for cross section of π deg-meson photoproduction on He nuclei were calculated: γ + 4 He → π 0 + 4 He. On the basis of the Glauber theory the effect of meson rescattering in the range of small transferred pulses (t) 2 and ''mean'' photon energies 2 2 ), determined by interference of members of one-and twofold interactions. The results are compared with those obtained by other authors

  18. Differential cross section measurement of radiative capture of protons by nuclei 13C

    International Nuclear Information System (INIS)

    Baktibayev, M.K.; Burminskii, V.P.; Burtebayev, N.; Dzazairov-Kakhramanov, V.; Kadyrzhanov, K.K.; Sagindykov, Sh.Sh.; Zarifov, R.A.; Zazulin, D.M.

    2004-01-01

    Full text: The reaction 13 C(p,γ ) 14 N is the important one for the astrophysics, not only for nuclear synthesis of CNO elements, but and for nuclear synthesis of elements participating in subsequent combustion of helium [1]. The predominant yield of the reaction occurs at protons energies of less than 1 MeV. However, the clearness of the capture mechanism in this energy region is made difficult because of the superposition of the contribution of the low - energetical part of the resonance 1320 keV onto the cross section. Last experimental data for more wide energy region, informed in the work [1], and results of previous works, mentioned in that work, give reason for further continuation of the study of the reaction 13 C(p,γ ) 14 N. Measured data of the work [1] in the region of E ρ = (320 † 900) keV at the angles of 0 o and 90 o are obviously insufficient. In the present work measurements of differential cross sections of the reaction were carried out at protons energies E p = 991, 558 and 365 keV, the accuracy is not worse then 10%. There was studied the most (from the astrophysical point of view) important process of protons capture by 13 C nuclei onto the ground state of the 14 N nucleus. The 13 C (99%) targets, used in the experiment, were sprayed onto copper base. The target thickness was determined by incident protons energy losses in the target. The energy losses were clearly reflected in the corresponding spreading of transitions of radiation capture. The statement about the gamma-lines spreading is valid in this case, because energy losses in the target are here significantly more, than the energetical resolution of the detector. The peak width of the radiation capture gamma-line at half-height corresponds to energy losses of incident protons in the target. From the Table of brake values for protons in carbon [2] there was determined that the thickness of the target was 140 ± 5% μg/cm 2 . The upper part of gamma-lines in the spectrum repeats the

  19. K-bar-mesic nuclei

    International Nuclear Information System (INIS)

    Dote, Akinobu; Akaishi, Yoshinori; Yamazaki, Toshimitsu

    2005-01-01

    New nuclei 'K-bar-Mesic Nuclei' having the strangeness are described. At first it is shown that the strongly attractive nature of K-bar N interaction is reasoned inductively from consideration of the relation between Kaonic hydrogen atom and Λ (1405) which is an excited state of hyperon Λ. The K-bar N interactions are reviewed and summarized into three categories: 1. Phenomenological approach with density dependent K-bar N interaction (DD), relativistic mean field (RMF) approach, and hybrid of them (RMF+DD). 2. Boson exchange model. 3. Chiral SU(3) theory. The investigation of some light K-bar-nuclei by Akaishi and Yamazaki using phenomenological K-bar N interaction is explained in detail. Studies by antisymmetrized molecular dynamics (AMD) approach are also presented. From these theoretical researches, the following feature of K-bar-mesic nuclei are revealed: 1) Ground state is discrete and bound by 100 MeV or more. 2) Density is very high in side the K-bar-mesic nuclei. 3) Strange structures develop which are not seen in ordinary nuclei. Finally some recent experiments to explore K-bar-mesic nuclei are reviewed. (S. Funahashi)

  20. Measurement of the cross section for forward Compton scattering by /sup 4//sub 2/ He nuclei at energies E/sub. gamma. / = 1. 8--3. 8 GeV

    Energy Technology Data Exchange (ETDEWEB)

    Aleksanyan, A.S.; Babayan, G.E.; Voskanyan, A.V.; Gasparyan, A.D.; Gevorkyan, S.R.; Karapetyan, S.N.; Ketikyan, A.Z.; Megrabyan, G.K.; Movsisyan, K.A.; Oganesyan, G.A.; and others

    1987-04-01

    The differential cross sections for Compton scattering by nuclei of /sup 4//sub 2/ He have been measured at the momentum transfers 0.02less than or equal tochemically bondtchemically bond<0.14 (GeV/c)/sup 2/ in the energy region E/sub ..gamma../ = 1.8--3.8 GeV. On the basis of the diffraction theory of multiple scattering the values of the differential cross sections at t = 0, of the slope parameters of the diffraction cone, and of the /sup 4//sub 2/ He nucleus radius have been determined. Experimental values are given for the phase of the scattering amplitude by nucleons, ..cap alpha..( f/sup 0//sub i/) = Re f/sup 0//sub i// Im f/sup 0//sub i/. On the basis of the differential cross sections at t = 0 the total photoabsorption cross section and the photon screening coefficient are determined for the /sup 4//sub 2/ He nucleus.

  1. Pion degrees of freedom and effects of closeness of nuclei to the po point of pion condensate instability

    International Nuclear Information System (INIS)

    Borzov, I.N.; Sapershtejn, Eh.E.; Tolokonnikov, S.V.; Fayans, S.A.

    1981-01-01

    The review of contemporary state of the π-condensation in nuclei problem is presented. The problem has been considered in the framework of the finite Fermi system theory. Formulated are the theory equations with a separated single-pion exchange. Determinated are stability conditions in relation to the π-condensation in finite nuclei. Data which testify to the π-condensate absence in nuclei are presented. The analysis of spectroscopic nuclei characteristics (magnetic moments, M1-transition probabilities, etc. which shows the nuclei closeness to the π-condensate instability point is carried out. Precritical effects in nucleon and electron scattering are discussed. In particular, the results of calculation of differential cross sections of inelastic proton scattering with production of 208 Pb and 12 C excited states as well as 208 Pb and 12 C excited state magnetic form factors at inelastic electron scattering by nuclei are presented. The possibility of nuclei closeness to the finite Fermi system theory is predicted [ru

  2. Nuclear Data for Reactor Physics: Cross sections and level densities in the actinide region

    Directory of Open Access Journals (Sweden)

    Bernstein L.

    2010-03-01

    Full Text Available Nuclear data in the actinide region are particularly important because they are basis behind all simulations of nuclear reactor core behaviour over both long time scales (fuel depletion and waste production and short time scales (accident scenarios. Nuclear reaction cross sections must be known as precisely as possible so that core reaction rates can be accurately calculated. Although cross section measurements in this region have been widely performed, for certain nuclei, particularly those with short half lives, direct measurements are either very difficult or impossible and thus reactor simulations must rely on theoretical calculations or extrapolations from neighbouring nuclei. The greatest uncertainty in theoretical cross section calculations comes from the lack of knowledge of level densities, for which predicted values can often be incorrect by a factor of two or more. Therefore there is a strong case for a systematic experimental study of level densities in the actinide region for the purpose of a providing a stringent test of theoretical cross section calculations for nuclei where experimental cross section data are available and b for providing better estimations of cross sections for nuclei in which no cross section data are available.

  3. High spin spectroscopy for A ∼ 160 nuclei

    International Nuclear Information System (INIS)

    Yu, C.-H.

    1989-01-01

    Experimental routhians, alignments, band crossing frequencies, and the B(M1)/B(E2) ratios of the N = 90 isotopes and several light Lu (N = 90--96) isotopes are summarized and discussed in terms of shape changes. These systematic analyses show a neutron and proton number dependent deformations (both quadruple and γ deformations) for these light rare earth nuclei. The stability of the nuclear deformation with respect to β and γ is also found to be particle number dependent. Such particle number dependent shapes can be attributed to the different locations of the proton and neutron Fermi levels in the Nilsson diagrams. Configurations dependent shapes are discussed specially concerned the deformation difference between the proton h 9/2 1/2 - [541] and the high-K h 11/2 configurations. The observed large neutron band crossing frequencies in the h 9/2 1/2 - [541] configuration support the predicted large deformation of this configuration but can be reproduced by the cranked shell model calculation according to the predicted deformations. Lifetime measurement for 157 Ho, one of the nuclei that show a large ℎω c in the 1/2 - [541] band, indicates that deformation difference can only account for 20% of such shift in ℎω c . 55 refs., 12 figs

  4. Shadowing effect in inelastic electron scattering on 12C and 27Al nuclei at small four momentum transfer

    International Nuclear Information System (INIS)

    Hartwig, S.; Heimlich, F.H.; Huber, G.; Roessle, E.; Koebberling, M.; Moritz, J.; Schmidt, K.H.; Wegener, D.; Zeller, D.; Karlsruhe Univ.; Bleckwenn, J.

    1977-08-01

    The cross section for inelastic electron scattering on 12 C and 27 Al nuclei has been measured for energy transfers of the virtual photon 2 . The influence of different sources of the radiative corrections is studied in detail. Shadowing effects, which increase with decreasing values of the scalling variable x, are observed for both nuclei. (orig.) [de

  5. Investigation of total cross sections for reactions induced by {sup 6}He interaction with silicon nuclei at energies between 5 and 50 MeV/A

    Energy Technology Data Exchange (ETDEWEB)

    Kabdrakhimova, G. D., E-mail: gaukharkd@gmail.com [L.N.Gumilyov Eurasian National University (Kazakhstan); Sobolev, Yu. G.; Kuhtina, I. N. [Joint Institute for Nuclear Research (Russian Federation); Kuterbekov, K. A. [L.N.Gumilyov Eurasian National University (Kazakhstan); Mendibaev, K. O.; Penionzhkevich, Yu. E. [Joint Institute for Nuclear Research (Russian Federation)

    2017-01-15

    Experimental excitation functions in terms of the total cross sections for {sup 6}He + Si nuclear reactions are analyzed in the energy range between 5 and 50 MeV/A, and a brief survey of the procedures used to obtain experimental data is given. Particular attention is given to describing experiments performed in beams of radioactive nuclei from the accelerators of the Laboratory of Nuclear Reactions at the Joint Institute for Nuclear Research (JINR, Dubna). The experimental data in question are analyzed on the basis of a semimicroscopic optical model.

  6. Nuclear fission and neutron-induced fission cross-sections

    Energy Technology Data Exchange (ETDEWEB)

    James, G.D.; Lynn, J.E.; Michaudon, A.; Rowlands, J.; de Saussure, G.

    1981-01-01

    A general presentation of current knowledge of the fission process is given with emphasis on the low energy fission of actinide nuclei and neutron induced fission. The need for and the required accuracy of fission cross section data in nuclear energy programs are discussed. A summary is given of the steps involved in fission cross section measurement and the range of available techniques. Methods of fission detection are described with emphasis on energy dependent changed and detector efficiency. Examples of cross section measurements are given and data reduction is discussed. The calculation of fission cross sections is discussed and relevant nuclear theory including the formation and decay of compound nuclei and energy level density is introduced. A description of a practical computation of fission cross sections is given.

  7. Integral nucleus-nucleus cross sections

    International Nuclear Information System (INIS)

    Barashenkov, V.S.; Kumawat, H.

    2003-01-01

    Expressions approximating the experimental integral cross sections for elastic and inelastic interactions of light and heavy nuclei at the energies up to several GeV/nucleon are presented. The calculated cross sections are inside the corridor of experimental errors or very close to it. Described in detail FORTRAN code and a numerical example of the cross section approximation are also presented

  8. Resonances in collisions between S-D shell nuclei

    International Nuclear Information System (INIS)

    Betts, R.R.

    1984-01-01

    Experimental evidence relating to the existence of resonances in collisions between s-d shell nuclei will be reviewed. The determination of the spins and spectroscopic properties of some of these resonances will be discussed. The behaviour of both the resonance and background cross-sections will be compared with model expectations. Some future directions in this area of study will be indicated and the relationship of this work to other results briefly discussed. (author)

  9. Reactions probing effects of quark clusters in nuclei

    International Nuclear Information System (INIS)

    Lassila, K.E.; Sukhatme, U.P.

    1988-01-01

    We study signatures of quark clusters in reactions which probe quarks in nuclei. We examine the EMC effect and use physical arguments to establish features of valence and ocean parton distributions in multiquark clusters. We predict from these distributions ratios of structure functions and cross sections measured with neutrino, antineutrinos and proton beams. It appears that a unique determination of the source of the EMC effect will be possible. 6 refs., 4 figs

  10. Isotonic and isotopic dependence of the radiative neutron capture cross-section on the neutron excess

    International Nuclear Information System (INIS)

    Trofimov, Yu.N.

    1991-01-01

    The radiative neutron capture cross-section of nuclei has been derived as a function of neutron excess on the basis of the exponential dependence of the cross-section on the reaction energy. It is shown that unknown cross-sections of stable and radioactive nuclei may be evaluated by using the isotonic and isotopic dependence together with available reference cross-section measurements. (author). 4 refs, 3 figs

  11. Total disintegration of three-nucleon nuclei in charged-pion photo-production

    International Nuclear Information System (INIS)

    Dzhibuti, R.I.; Kezerashvili, R.Y.

    1984-01-01

    The total disintegration of three-nucleon nuclei in charged-pion photo-production is studied within the framework of the microscopic approach based on the method of hyperspherical functions. The initial and final nuclear states are described using the same NN potentials. The differential and total cross sections are calculated using various NN potentials. It is shown that the cross sections are sensitive to the form of the NN interaction and to the final-state interaction of the three nucleons. It is found that the cross section for π - meson production is systematically larger than the cross section for π + meson production. The importance of an experimental investigation of these reactions is shown

  12. MCNP6 unstructured mesh application to estimate the photoneutron distribution and induced activity inside a linac bunker

    Science.gov (United States)

    Juste, B.; Morató, S.; Miró, R.; Verdú, G.; Díez, S.

    2017-08-01

    Unwanted neutrons in radiation therapy treatments are typically generated by photonuclear reactions. High-energy beams emitted by medical Linear Accelerators (LinAcs) interact with high atomic number materials situated in the accelerator head and release neutrons. Since neutrons have a high relative biological effectiveness, even low neutron doses may imply significant exposure of patients. It is also important to study radioactivity induced by these photoneutrons when interacting with the different materials and components of the treatment head facility and the shielding room walls, since persons not present during irradiation (e.g. medical staff) may be exposed to them even when the accelerator is not operating. These problems are studied in this work in order to contribute to challenge the radiation protection in these treatment locations. The work has been performed by simulation using the latest state of the art of Monte-Carlo computer code MCNP6. To that, a detailed model of particles transport inside the bunker and treatment head has been carried out using a meshed geometry model. The LinAc studied is an Elekta Precise accelerator with a treatment photon energy of 15 MeV used at the Hospital Clinic Universitari de Valencia, Spain.

  13. Analysis of the Photoneutron Yield and Thermal Neutron Flux in an Unreflected Electron Accelerator-Driven Neutron Source

    International Nuclear Information System (INIS)

    Dale, Gregory E.; Gahl, John M.

    2005-01-01

    There are several potential uses for a high-flux thermal neutron source in both industrial and clinical applications. The viable commercial implementation of these applications requires a low-cost, high-flux thermal neutron generator suitable for installation in industrial and clinical environments. This paper describes the Monte Carlo for N-Particle modeling results of a high-flux thermal neutron source driven with an electron accelerator. An electron linear accelerator (linac), fitted with a standard X-ray converter, can produce high neutron yields in materials with low photonuclear threshold energies, such as D and 9 Be. Results indicate that a 10-MeV, 10-kW electron linac can produce on the order of 10 12 n/s in a heavy water photoneutron target. The thermal neutron flux in an unreflected heavy water target is calculated to be on the order of 10 10 n.cm -2 .s. The sensitivity of these answers to heavy water purity is also investigated, specifically the dilution of heavy water with light water. It is shown that the peak thermal neutron flux is not adversely effected by dilution up to a light water weight fraction of 35%

  14. Simple, empirical approach to predict neutron capture cross sections from nuclear masses

    Science.gov (United States)

    Couture, A.; Casten, R. F.; Cakirli, R. B.

    2017-12-01

    Background: Neutron capture cross sections are essential to understanding the astrophysical s and r processes, the modeling of nuclear reactor design and performance, and for a wide variety of nuclear forensics applications. Often, cross sections are needed for nuclei where experimental measurements are difficult. Enormous effort, over many decades, has gone into attempting to develop sophisticated statistical reaction models to predict these cross sections. Such work has met with some success but is often unable to reproduce measured cross sections to better than 40 % , and has limited predictive power, with predictions from different models rapidly differing by an order of magnitude a few nucleons from the last measurement. Purpose: To develop a new approach to predicting neutron capture cross sections over broad ranges of nuclei that accounts for their values where known and which has reliable predictive power with small uncertainties for many nuclei where they are unknown. Methods: Experimental neutron capture cross sections were compared to empirical mass observables in regions of similar structure. Results: We present an extremely simple method, based solely on empirical mass observables, that correlates neutron capture cross sections in the critical energy range from a few keV to a couple hundred keV. We show that regional cross sections are compactly correlated in medium and heavy mass nuclei with the two-neutron separation energy. These correlations are easily amenable to predict unknown cross sections, often converting the usual extrapolations to more reliable interpolations. It almost always reproduces existing data to within 25 % and estimated uncertainties are below about 40 % up to 10 nucleons beyond known data. Conclusions: Neutron capture cross sections display a surprisingly strong connection to the two-neutron separation energy, a nuclear structure property. The simple, empirical correlations uncovered provide model-independent predictions of

  15. Studies of the giant resonances in heavy nuclei

    International Nuclear Information System (INIS)

    Cataldi, M.I.C.

    1986-01-01

    Experimental measurements of the eletrodisintegration cross section in 181 Ta, 208 Pb and 209 Bi nuclei are made in the Linear Accelerator of the IFUSP-Brazil. The cross section is obtained by the direct counting of the emitted neutrons, in an electron excitation energy range between 8 to 22 MeV. The experimental data are analysed throught the virtual photon method, with the aim of obtaining the isoscalar and isovectorial electric quadrupole giant resonance (E2GR) intensities, as well as the magnetic dipole intensity. For each studied nucleus the results obtained for the E2GR, isoscalar and isovectorial, are compared with the photodisintegration cross section measured by the Saclay and Livermore laboratories. From this comparison, it is observed that the photodisintegration cross sections are compatibles with the existence of an isovector E2GR, located between 120 to 130 A -1/3 Mev and which exhaust around 100% of the Energy-Weighted Sum rules (EWSR). (L.C.) [pt

  16. Basis for calculating cross sections for nuclear magnetic resonance spin-modulated polarized neutron scattering.

    Science.gov (United States)

    Kotlarchyk, Michael; Thurston, George M

    2016-12-28

    In this work we study the potential for utilizing the scattering of polarized neutrons from nuclei whose spin has been modulated using nuclear magnetic resonance (NMR). From first principles, we present an in-depth development of the differential scattering cross sections that would arise in such measurements from a hypothetical target system containing nuclei with non-zero spins. In particular, we investigate the modulation of the polarized scattering cross sections following the application of radio frequency pulses that impart initial transverse rotations to selected sets of spin-1/2 nuclei. The long-term aim is to provide a foundational treatment of the scattering cross section associated with enhancing scattering signals from selected nuclei using NMR techniques, thus employing minimal chemical or isotopic alterations, so as to advance the knowledge of macromolecular or liquid structure.

  17. Elastic scattering of helium ions on 9Be nuclei and exchange mechanisms

    International Nuclear Information System (INIS)

    Burtebaev, N.; Dujsebaev, B.A.

    1999-01-01

    Among nuclei of 1p-shell 9 Be is an extremely deformed nucleus with cluster structure. This considerably impedes determination of nucleus-nucleus potential of interaction. The latter relates to the fact that cross-section of 3 He ion and ?-particle elastic scattering on light nuclei is formed by not only mechanism of mere potential nature but also by other processes of heavy breakaway and displacement as well as by effects of channel relation. Final probability of 6 He+ and 3 He and 5 He+? cluster existence in 9 Be nucleus can be determined in the processes of 3 He or ?-particle ion scattering. As a result, it can cause considerable growth of cross-section under backward angles due to exchange of impinging particle with identical cluster in a nucleus. In order to study the contribution of different mechanisms into formation of cross-section of elastic scattering of helium nuclides on 9 Be nucleus we have performed series of experiments in broad angular range at energies 8-20 MeV/nucleon at derived beams of isochronous cyclotron of the Institute of Nuclear Physics of Kazakhstan national Nuclear Centre

  18. Gamow-Teller decay of T = 1 nuclei to odd-odd N = Z nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Lisetskiy, A F [National Superconducting Cyclotron Laboratory, MSU, East Lansing, MI 48824 (United States); Gelberg, A [Institute for Nuclear Physics, University of Cologne, 50937 Cologne (Germany); Institute of Physical and Chemical Reasearch (RIKEN), Wako, 351-0198 (Japan); Brentano, P von [Institute for Nuclear Physics, University of Cologne, 50937 Cologne (Germany)

    2005-01-01

    Transition strengths of Gamow-Teller decay of T{sub z} = {+-}1 nuclei to N = Z odd-odd nuclei have been calculated in a two-nucleon approximation for spherical and deformed nuclei. The results obtained for the latter are quite close to the values obtained by full-space shell-model calculations and to the experiment.

  19. Nuclear spectroscopy of exotic nuclei with the Sara/Igisol facility

    International Nuclear Information System (INIS)

    Beraud, R.; Emsallem, A.; Astier, A.; Duffait, R.; Le Coz, Y.; Redon, N.; Barneoud, D.; Genevey, J.; Gizon, A.

    1994-11-01

    The authors review their recent studies on alpha and beta decay of exotic nuclei performed with the on-line mass separator at the Igisol/Sara facility in Grenoble. The experiments using charged particle induced fission have given new information on production cross section and properties of n-rich nuclei with A=110-130 whereas by means of heavy ion induced fusion evaporation reactions the authors have investigated two regions close to the proton drip line around A=180 and A=130. This paper gives first a brief description of the Igisol technique and shows its application in case of two different production modes: charged particle-induced fission and heavy ion -induced fusion-evaporation reactions. The systematic study of the low-lying levels in n-rich Ru isotopes has allowed to show an axial symmetry breaking, whereas complementary investigations are necessary to clarify the case of 180 Tl decay. A number of new spectroscopic data such as new isotopes identification have been gained in the region of light rare earth nuclei. (N.T.)

  20. Continuum effects in the scattering of exotic nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Druet, T. [Universite Libre de Bruxelles (ULB), Physique Quantique, C.P. 165/82, Brussels (Belgium); Universite Libre de Bruxelles (ULB), Physique Nucleaire Theorique et Physique Mathematique, Brussels (Belgium); Descouvemont, P. [Universite Libre de Bruxelles (ULB), Physique Nucleaire Theorique et Physique Mathematique, Brussels (Belgium)

    2012-10-15

    We discuss continuum effects in the scattering of exotic nuclei, and more specifically on the {sup 11}Be + {sup 64}Zn scattering. {sup 11}Be is a typical example of an exotic nucleus, with a low binding energy. Elastic, inelastic and breakup cross-sections of the {sup 11}Be + {sup 64}Zn system are computed in the Continuum Discretized Coupled Channel formalism, at energies near the Coulomb barrier. We show that converged cross-sections need high angular momenta as well as as large excitation energies in the wave functions of the projectile. Extensions to other systems are simulated by different collision energies, and by varying the binding energy of {sup 11}Be. (orig.)

  1. Fast neutron scattering from soft nuclei: coupled-channel formalism and illustrations

    International Nuclear Information System (INIS)

    Delaroche, J.P.

    1986-01-01

    Spectra of most of the even-even nuclei have a character which is neither that of a pure vibrator nor that of a pure rotor. Instead, the nuclear spectra display very often both characters. Therefore, improvements in the analysises of nucleon scattering and reaction cross sections require that appropriate collective models of nuclear structure be used. A selection of these models is reviewed, and suggestions are given as to how to extend the familiar coupled-channel formalism to incorporate these enriched collective pictures. These extensions are primarily intended to describe inelastic scattering from levels belonging to β - , γ - and octupole bands. Illustrations are given for neutron and proton scattering off various nuclei [fr

  2. An Antiproton Ion Collider (AIC) for Measuring Neutron and Proton Distributions in Stable and Radioactive Nuclei

    International Nuclear Information System (INIS)

    Kienle, Paul

    2005-01-01

    An antiproton-ion collider is proposed to independently determine mean square radii for protons and neutrons in stable and short lived nuclei by means of antiproton absorption at medium energies. The experiment makes use of the electron ion collider complex (ELISE) of the GSI FAIR project with appropriate modifications of the electron ring to store, cool and collide antiprotons of 30 MeV energy with 740A MeV energy ions.The total absorption cross-section of antiprotons by the stored ions will be measured by detecting their loss by means of the Schottky noise spectroscopy method. Cross sections for the absorption on protons and neutrons, respectively, will be studied by detection of residual nuclei with A-1 either by the Schottky method or by analysing them in recoil detectors after the first dipole stage of the NESR following the interaction zone. With a measurement of the A-1 fragment momentum distribution, one can test the momentum wave functions of the annihilated neutron and proton, respectively. Furthermore by changing the incident ion energy the tails of neutron and proton distribution can be measured.The absorption cross section is at asymptotic energies in leading order proportional to the mean square radius of the nucleus. Predicted cross sections and luminosities show that the method is applicable to nuclei with production rates of about 105 s-1 or lower, depending on the lifetime of the ions in the NESR, and for half-lives down to 1 second

  3. Production of proton-rich nuclei around Z = 84-90 in fusion-evaporation reactions

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Peng-Hui [Chinese Academy of Sciences, Institute of Modern Physics, Lanzhou (China); Lanzhou University, School of Nuclear Science and Technology, Lanzhou (China); University of Chinese Academy of Sciences, Beijing (China); Feng, Zhao-Qing; Li, Jun-Qing; Jin, Gen-Ming [Chinese Academy of Sciences, Institute of Modern Physics, Lanzhou (China); Niu, Fei [Chinese Academy of Sciences, Institute of Modern Physics, Lanzhou (China); Henan Normal University, Institute of Particle and Nuclear Physics, Xinxiang (China); Guo, Ya-Fei [Chinese Academy of Sciences, Institute of Modern Physics, Lanzhou (China); Lanzhou University, School of Nuclear Science and Technology, Lanzhou (China); Zhang, Hong-Fei [Lanzhou University, School of Nuclear Science and Technology, Lanzhou (China)

    2017-05-15

    Within the framework of the dinuclear system model, production cross sections of proton-rich nuclei with charged numbers of Z = 84-90 are investigated systematically. Possible combinations with the {sup 28}Si, {sup 32}S, {sup 40}Ar bombarding the target nuclides {sup 165}Ho, {sup 169}Tm, {sup 170-174}Yb, {sup 175,176}Lu, {sup 174,} {sup 176-180}Hf and {sup 181}Ta are analyzed thoroughly. The optimal excitation energies and evaporation channels are proposed to produce the proton-rich nuclei. The systems are feasible to be constructed in experiments. It is found that the neutron shell closure of N = 126 is of importance during the evaporation of neutrons. The experimental excitation functions in the {sup 40}Ar induced reactions can be nicely reproduced. The charged particle evaporation is comparable with neutrons in cooling the excited proton-rich nuclei, in particular for the channels with α and proton evaporation. The production cross section increases with the mass asymmetry of colliding systems because of the decrease of the inner fusion barrier. The channels with pure neutron evaporation depend on the isotopic targets. But it is different for the channels with charged particles and more sensitive to the odd-even effect. (orig.)

  4. Glauber-Sitenko screening in elastic and inelastic diffraction of hadrons and light nuclei

    International Nuclear Information System (INIS)

    Fazylov, M.I.; Yuldashev, B.S.; Azhniyazova, G.T.; Ismatov, E.I.; Sartbay, T.; Kurmanbay, M.S.; Tskhay, K.V.

    2004-01-01

    Full text: In this work a method for differential and integral cross-sections of diffraction interactions of hadrons and light nuclei on heavy nuclei was developed. For HeA-interactions the effect of pair, three-fold and four-fold screening was estimated. The sensitivity of analysis of hadron-nucleus and nucleus-nucleus scattering characteristics was conducted in order to select parameterization of a single particle nuclear densities. It is demonstrated that differential cross-sections of hadron-nucleus and nucleus-nucleus scattering are less sensitive to nuclear structure than differential cross-section of nucleus-nucleus Coulomb scattering. A simple parameterization of nuclear density allowing one to have an analytical representation for width function T(ρ ) is suggested. By using this function it is possible to simplify significantly calculations of physical characteristics of hadron-nucleus and nucleus-nucleus interactions. Phenomenological procedure for Coulomb effects consideration in nucleus-nucleus scattering is developed. In frames of optical approximation the expression for differential and integral cross-sections of quasi-elastic scattering are obtained. It is shown that the optical approximation is the most effective for quasi-elastic scattering calculation. For elastic and inelastic diffraction of hadrons on nucleons the ration of total cross-sections σ el /σ t , σ el /b and σ in /b via ratio of a real and imaginary parts of the scattering amplitude forward δ (t) are obtained, and it is shown that δ (t) significantly influences on the structure of differential cross-section of the interaction

  5. Glauber-Sitenko screening in elastic and inelastic diffraction of hadrons and light nuclei

    International Nuclear Information System (INIS)

    Yuldashev, B.S.; Fazilova, Z.F.; Ismatov, E.I.; Ajniyazova, G.T.; Kurmanbai, M.S.; Shunkeev, K.Sh.; Medeuova, A.B.; Tskhai, K.V.

    2004-01-01

    In this work a method for differential and integral cross-sections of diffraction interactions of hadrons and light nuclei on heavy nuclei was developed. For HeA-interactions the effect of pair, three-fold and four-fold screening was estimated. The sensitivity of analysis of hadron-nucleus and nucleus-nucleus scattering characteristics was conducted in order to select parameterization of a single particle nuclear densities. It is demonstrated that differential cross-sections of hadron-nucleus and nucleus-nucleus scattering are less sensitive to nuclear structure than differential cross-section of nucleus-nucleus Coulomb scattering. A simple parameterization of nuclear density allowing one to have an analytical representation for width function T(ρ) is suggested. By using this function it is possible to simplify significantly calculations of physical characteristics of hadron-nucleus and nucleus-nucleus interactions. Phenomenological procedure for Coulomb effects consideration in nucleus-nucleus scattering is developed. In frames of optical approximation the expression for differential and integral cross-sections of quasi-elastic scattering are obtained. It is shown that the optical approximation is the most effective for quasi-elastic scattering calculation. For elastic and inelastic diffraction of hadrons on nucleons the ration of total cross-sections σ el /σ t , σ el /b and σ in /b via ratio of a real and imaginary parts of the scattering amplitude forward δ (t) are obtained, and it is shown that δ (t) significantly influences on the structure of differential cross-section of the interaction

  6. Pairing correlations in nuclei

    International Nuclear Information System (INIS)

    Baba, C.V.K.

    1988-01-01

    There are many similarities between the properties of nucleons in nuclei and electrons in metals. In addition to the properties explainable in terms of independent particle motion, there are many important co-operative effects suggesting correlated motion. Pairing correlation which leads to superconductivity in metals and several important properties in nuclei , is an exmple of such correlations. An attempt has been made to review the effects of pairing correlations in nuclei. Recent indications of reduction in pairing correlations at high angular momenta is discussed. A comparision between pairing correlations in the cases of nuclei and electrons in metals is attempted. (author). 20 refs., 10 figs

  7. Projected shell model study of yrast states of neutron-deficient odd-mass Pr nuclei

    International Nuclear Information System (INIS)

    Ibanez-Sandoval, A.; Ortiz, M. E.; Velazquez, V.; Galindo-Uribarri, A.; Hess, P. O.; Sun, Y.

    2011-01-01

    A wide variety of modern instruments allow us to study neutron-deficient nuclei in the A=130 mass region. Highly deformed nuclei have been found in this region, providing opportunities to study the deformed rotational bands. The description of the 125,127,129,131,133 Pr isotopes with the projected shell model is presented in this paper. Good agreement between theory and experiment is obtained and some characteristics are discussed, including the dynamic moment of inertia J (2) , kinetic moment of inertia J (1) , the crossing of rotational bands, and backbending effects.

  8. Effects of fissioning nuclei distributions on fragment mass distributions for high energy fission

    Directory of Open Access Journals (Sweden)

    Rossi P C R

    2012-02-01

    Full Text Available We study the effects of fissioning nuclei mass- and energy-distributions on the formation of fragments for fission induced by high energy probes. A Monte Carlo code called CRISP was used for obtaining mass distributions and spectra of the fissioning nuclei for reactions induced by 660 MeV protons on 241Am and on 239Np, by 500 MeV protons on 208Pb, and by Bremsstrahlung photons with end-point energies at 50 MeV and 3500 MeV on 238U. The results show that even at high excitation energies, asymmetric fission may still contribute significantly to the fission cross section of actinide nuclei, while it is the dominante mode in the case of lead. However, more precise data for high energy fission on actinide are necessary in order to allow definite conclusions.

  9. Remarks on the fission barriers of super-heavy nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Hofmann, S. [GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany); Goethe-Universitaet Frankfurt, Institut fuer Physik, Frankfurt (Germany); Heinz, S.; Mann, R.; Maurer, J.; Muenzenberg, G.; Barth, W.; Dahl, L.; Kindler, B.; Kojouharov, I.; Lang, R.; Lommel, B.; Runke, J.; Scheidenberger, C.; Tinschert, K. [GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany); Antalic, S. [Comenius University, Department of Nuclear Physics and Biophysics, Bratislava (Slovakia); Eberhardt, K.; Thoerle-Pospiech, P.; Trautmann, N. [Johannes Gutenberg-Universitaet Mainz, Mainz (Germany); Grzywacz, R. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); University of Tennessee, Knoxville, TN (United States); Hamilton, J.H. [Vanderbilt University, Department of Physics and Astronomy, Nashville, TN (United States); Henderson, R.A.; Kenneally, J.M.; Moody, K.J.; Shaughnessy, D.A.; Stoyer, M.A. [Lawrence Livermore National Laboratory, Livermore, CA (United States); Miernik, K. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); University of Warsaw, Warsaw (Poland); Miller, D. [University of Tennessee, Knoxville, TN (United States); Morita, K. [RIKEN Nishina Center for Accelerator-Based Science, Wako, Saitama (Japan); Nishio, K. [Japan Atomic Energy Agency, Tokai, Ibaraki (Japan); Popeko, A.G.; Yeremin, A.V. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Roberto, J.B.; Rykaczewski, K.P. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); Uusitalo, J. [University of Jyvaeskylae, Department of Physics, Jyvaeskylae (Finland)

    2016-04-15

    Shell-correction energies of super-heavy nuclei are approximated by using Q{sub α} values of measured decay chains. Five decay chains were analyzed, which start at the isotopes {sup 285}Fl, {sup 294}118, {sup 291}Lv, {sup 292}Lv and {sup 293}Lv. The data are compared with predictions of macroscopic-microscopic models. Fission barriers are estimated that can be used to eliminate uncertainties in partial fission half-lives and in calculations of evaporation-residue cross-sections. In that calculations, fission probability of the compound nucleus is a major factor contributing to the total cross-section. The data also provide constraints on the cross-sections of capture and quasi-fission in the entrance channel of the fusion reaction. Arguments are presented that fusion reactions for synthesis of isotopes of elements 118 and 120 may have higher cross-sections than assumed so far. (orig.)

  10. Nuclei and quantum worlds

    International Nuclear Information System (INIS)

    Chomaz, Ph.

    2000-01-01

    This document gathers the slides and their commentaries that have been presented at the conference 'physics and fundamental questions' by P. Chomaz. The author reviews the different quantum aspects of nuclei: tunnel effect, symmetries, magic numbers, wave functions, size, shapes and deformations. The author shows that nuclei are quantum objects of great complexity, their structures are not yet well understood and the study of exotic nuclei will continue bringing valuable information

  11. Collisions of deformed nuclei and superheavy-element production

    International Nuclear Information System (INIS)

    Iwamoto, Akira; Moeller, P.; Univ. of Aizu, Fukushima; P. Moller Scientific Computing and Graphics, Inc., Los Alamos, NM; Los Alamos National Lab., NM; Nix, J.R.; Sagawa, Hiroyuki, Sagawa

    1995-01-01

    A detailed understanding of complete fusion cross sections in heavy-ion collisions requires a consideration of the effects of the deformation of the projectile and target. The aim here is to show that deformation and orientation of the colliding nuclei have a very significant effect on the fusion-barrier height and on the compactness of the touching configuration. To facilitate discussions of fusion configurations of deformed nuclei, the authors develop a classification scheme and introduce a notation convention for these configurations. They discuss particular deformations and orientations that lead to compact touching configurations and to fusion-barrier heights that correspond to fairly low excitation energies of the compound systems. Such configurations should be the most favorable for producing superheavy elements. They analyze a few projectile-target combinations whose deformations allow favorable entrance-channel configurations and whose proton and neutron numbers lead to compound systems in a part of the superheavy region where a half-lives are calculated to be observable, that is, longer than 1 micros

  12. Vertical uniformity of cells and nuclei in epithelial monolayers.

    Science.gov (United States)

    Neelam, Srujana; Hayes, Peter Robert; Zhang, Qiao; Dickinson, Richard B; Lele, Tanmay P

    2016-01-22

    Morphological variability in cytoskeletal organization, organelle position and cell boundaries is a common feature of cultured cells. Remarkable uniformity and reproducibility in structure can be accomplished by providing cells with defined geometric cues. Cells in tissues can also self-organize in the absence of directing extracellular cues; however the mechanical principles for such self-organization are not understood. We report that unlike horizontal shapes, the vertical shapes of the cell and nucleus in the z-dimension are uniform in cells in cultured monolayers compared to isolated cells. Apical surfaces of cells and their nuclei in monolayers were flat and heights were uniform. In contrast, isolated cells, or cells with disrupted cell-cell adhesions had nuclei with curved apical surfaces and variable heights. Isolated cells cultured within micron-sized square wells displayed flat cell and nuclear shapes similar to cells in monolayers. Local disruption of nuclear-cytoskeletal linkages resulted in spatial variation in vertical uniformity. These results suggest that competition between cell-cell pulling forces that expand and shorten the vertical cell cross-section, thereby widening and flattening the nucleus, and the resistance of the nucleus to further flattening results in uniform cell and nuclear cross-sections. Our results reveal the mechanical principles of self-organized vertical uniformity in cell monolayers.

  13. Three-body halo nuclei in an effective theory framework

    Energy Technology Data Exchange (ETDEWEB)

    Canham, David L.

    2009-05-20

    The universal properties and structure of halo nuclei composed of two neutrons (2n) and a core are investigated within an effective quantum mechanics framework. We construct an effective interaction potential that exploits the separation of scales in halo nuclei and treat the nucleus as an effective three-body system, which to leading order is described by the large S-wave scattering lengths in the underlying two-body subsystems. The uncertainty from higher orders in the expansion is quantified through theoretical error bands. First, we investigate the possibility to observe excited Efimov states in 2n halo nuclei. Based on the experimental data, {sup 20}C is the only halo nucleus candidate to possibly have an Efimov excited state, with an energy less than 7 keV below the scattering threshold. Second, we study the structure of {sup 20}C and other 2n halo nuclei. In particular, we calculate their matter density form factors, radii, and two-neutron opening angles. We then make a systematic improvement upon these calculations by extending the effective potential to the next-to-leading order. To this order, we require an additional two-body parameter, which we tune to the effective range of the interaction. In addition to range corrections to the 2n halo nuclei results, we show corrections to the Efimov effect in the three-boson system. Furthermore, we explore universality in the linear range corrections to the Efimov spectrum. Finally, we study the scattering of D{sup 0} and D{sup *0} mesons and their antiparticles off the X(3872) in an effective field theory for short-range interactions. We present results for the S-wave scattering amplitude, total interaction cross section and S-wave scattering length. (orig.)

  14. Three-body halo nuclei in an effective theory framework

    International Nuclear Information System (INIS)

    Canham, David L.

    2009-01-01

    The universal properties and structure of halo nuclei composed of two neutrons (2n) and a core are investigated within an effective quantum mechanics framework. We construct an effective interaction potential that exploits the separation of scales in halo nuclei and treat the nucleus as an effective three-body system, which to leading order is described by the large S-wave scattering lengths in the underlying two-body subsystems. The uncertainty from higher orders in the expansion is quantified through theoretical error bands. First, we investigate the possibility to observe excited Efimov states in 2n halo nuclei. Based on the experimental data, 20 C is the only halo nucleus candidate to possibly have an Efimov excited state, with an energy less than 7 keV below the scattering threshold. Second, we study the structure of 20 C and other 2n halo nuclei. In particular, we calculate their matter density form factors, radii, and two-neutron opening angles. We then make a systematic improvement upon these calculations by extending the effective potential to the next-to-leading order. To this order, we require an additional two-body parameter, which we tune to the effective range of the interaction. In addition to range corrections to the 2n halo nuclei results, we show corrections to the Efimov effect in the three-boson system. Furthermore, we explore universality in the linear range corrections to the Efimov spectrum. Finally, we study the scattering of D 0 and D *0 mesons and their antiparticles off the X(3872) in an effective field theory for short-range interactions. We present results for the S-wave scattering amplitude, total interaction cross section and S-wave scattering length. (orig.)

  15. Is neutron evaporation from highly excited nuclei a poisson random process

    International Nuclear Information System (INIS)

    Simbel, M.H.

    1982-01-01

    It is suggested that neutron emission from highly excited nuclei follows a Poisson random process. The continuous variable of the process is the excitation energy excess over the binding energy of the emitted neutrons and the discrete variable is the number of emitted neutrons. Cross sections for (HI,xn) reactions are analyzed using a formula containing a Poisson distribution function. The post- and pre-equilibrium components of the cross section are treated separately. The agreement between the predictions of this formula and the experimental results is very good. (orig.)

  16. Electron accelerator-based production of molybdenum-99: Bremsstrahlung and photoneutron generation from molybdenum vs. tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Tsechanski, A. [Ben-Gurion University of the Negev, Department of Nuclear Engineering, P.O. Box 653, Beer-Sheva 84105 (Israel); Bielajew, A.F. [Department of Nuclear Engineering and Radiological Sciences, The University of Michigan, 2355 Bonisteel Boulevard, Ann Arbor, MI 48109 (United States); Archambault, J.P.; Mainegra-Hing, E. [National Research Council of Canada, Ionizing Radiation Standards Laboratory, Ottawa, ON K1A 0R6 (Canada)

    2016-01-01

    A new “one-stage” approach for production of {sup 99}Mo and other radioisotopes by means of an electron linear accelerator is described. It is based on using a molybdenum target both as a bremsstrahlung converter and as a radioisotope producing target for the production of {sup 99}Mo via the photoneutron reaction {sup 100}Mo(γ,n){sup 99}Mo. Bremsstrahlung characteristics, such as bremsstrahlung efficiency, angular distribution, and energy deposition for molybdenum targets were obtained by means of the EGSnrc Monte Carlo simulation code system. As a result of our simulations, it is concluded that a 60 MeV electron beam incident on a thick Mo target will have greater bremsstrahlung efficiency than the same thickness (in units of r{sub 0}) W target, for target thickness z > 1.84r{sub 0}, where r{sub 0} is the electron range. A 50 MeV electron beam incident on a Mo target will result in greater bremsstrahlung efficiency than the same thickness W target (in units of r{sub 0}) for target thickness case: z ⩾ 2.0r{sub 0}. It is shown for the one-stage approach with thicknesses of (1.84–2.0)r{sub 0}, that the {sup 99}Mo-production bremsstrahlung efficiency of a molybdenum target is greater by ∼100% at 30 MeV and by ∼70% at 60 MeV compared to the values for tungsten of the same thickness (in units of the appropriate r{sub 0}) in the traditional two-stage approach (W converter and separate {sup 99}Mo producing target). This advantage of the one-stage approach arises from the fact that the bremsstrahlung produced is attenuated only once from attenuation in the molybdenum converter/target. In the traditional, two-stage approach, the bremsstrahlung generated in the W-converter/target is attenuated both in the converter in the {sup 99}Mo-producing molybdenum target. The photoneutron production yield of molybdenum and tantalum (as a substitute for tungsten) target was calculated by means of the MCNP5 transport code. On the basis of these data, the specific activity

  17. Proton-gamma coincidence experiment on medium mass nuclei at 400MeV and study of reaction mechanisms

    International Nuclear Information System (INIS)

    Baldit, Alain.

    1981-01-01

    Previous γ ray production experiments produced by proton on nuclei show important cross sections for residual nuclei corresponding to a four nucleon (2p + 2n) removal. With our (p - γ) coincidence experiment the forward emitted proton reflects the primary interaction and the γ spectra characterizes the final state of the reaction. Protons are detected with a magnetic spectrometer and γ rays are selected with a Ge(Li) diode. Angular and momentum analysis of scattered protons demonstrate a primary quasi free process on nucleons. No indication of knock out reactions on clusters has been seen. The residual nuclei are mainly produced by evaporation processes. A theoretical calculation involving intranuclear cascades and evaporation processes has been performed. The nucleus model is based upon a Fermi gas and nuclear density agrees with diffusion electron experiments. Residual nuclei far from target are well described with a such model. Residual nuclei near the target are sensitive to the nuclear structure [fr

  18. Semimicroscopic description of the giant quadrupole resonances in deformed nuclei

    International Nuclear Information System (INIS)

    Kurchev, G.; Malov, L.A.; Nesterenko, V.O.; Soloviev, V.G.

    1976-01-01

    The calculation results of the giant quadrupole isoscalar and isovector resonances performed within the random phase approximation are represented. The strength functions for E2-transitions are calculated for doubly even deformed nuclei in the regions 150 (<=) A < 190 and 228 (<=) A < 248 in the energy interval (0-40) MeV. The following integral characteristics of giant quadrupole resonances are obtained: the position, widths, the contribution to the energy weighted sum rule and the contribution to the total cross section of photoabsorption. The calculations have shown that giant quadrupole resonances are common for all the considered nuclei. The calculated characteristics of the isoscalar giant quadrupole resonance agree with the available experimental data. The calculations also show that the semimicroscopic theory can be successfully applied for the description of giant multipole resonances

  19. Cross-sections of residual nuclei from deuteron irradiation of thin thorium target at energy 7 GeV

    Directory of Open Access Journals (Sweden)

    Vespalec Radek

    2017-01-01

    Full Text Available The residual nuclei yields are of great importance for the estimation of basic radiation-technology characteristics (like a total target activity, production of long-lived nuclides etc. of accelerator driven systems planned for transmutation of spent nuclear fuel and for a design of radioisotopes production facilities. Experimental data are also essential for validation of nuclear codes describing various stages of a spallation reaction. Therefore, the main aim of this work is to add new experimental data in energy region of relativistic deuterons, as similar data are missing in nuclear databases. The sample made of thin natural thorium foil was irradiated at JINR Nuclotron accelerator with a deuteron beam of the total kinetic energy 7 GeV. Integral number of deuterons was determined with the use of aluminum activation detectors. Products of deuteron induced spallation reaction were qualified and quantified by means of gamma-ray spectroscopy method. Several important spectroscopic corrections were applied to obtain results of high accuracy. Experimental cumulative and independent cross-sections were determined for more than 80 isotopes including meta-stable isomers. The total uncertainty of results rarely exceeded 9%. Experimental results were compared with MCNP6.1 Monte-Carlo code predictions. Generally, experimental and calculated cross-sections are in a reasonably good agreement, with the exception of a few light isotopes in a fragmentation region, where the calculations are highly under-estimated. Measured data will be useful for future development of high-energy nuclear codes. After completion, final data will be added into the EXFOR database.

  20. Coherent fragmentation of 12C nuclei of momentum 4.5 GeV/ c per nucleon through the 8Beg.s.+4He channel in a nuclear photoemulsion containing lead nuclei

    Science.gov (United States)

    Belaga, V. V.; Gerasimov, S. G.; Dronov, V. A.; Peresadko, N. G.; Pisetskaya, A. V.; Rusakova, V. V.; Fetisov, V. N.; Kharlamov, S. P.; Shesterkina, L. N.

    2017-07-01

    A two-particle channel in which an unbound nucleus of 8Be in the ground state (8Beg.s.) was one of the fragments was selected among events where 12C nuclei of momentum 4.5 GeV/c per nucleon undergo coherent dissociation into three alpha particles. The events in question were detected in a track nuclear photoemulsion containing lead nuclei, which was irradiated at the synchrophasotron of the Laboratory of High Energies at the Joint Institute for Nuclear Research (JINR, Dubna). The average transverse momentum of alpha particles produced upon the decay of 8Beg.s. nuclei was 87±6 MeV/ c, while that for "single" alpha (αs) particles was 123±15 MeV/ c. The average value of the transverse-momentum transfer in the reaction being considered, Pt(12C), was 223 ± 20 MeV/ c. The average value of the cross section for this channel involving Ag and Br target nuclei was 13 ± 4 mb, while the cross section for the reaction on the Pb nucleus was 40 ± 15 mb. The Coulomb dissociation contribution evaluated on the basis of the number of events where the momentum P t(12C) did not exceed 0.1 GeV/c saturated about 20%. In nine events, the measured total transverse energy of the fragments in the reference frame comoving with the decaying carbon nucleus did not exceed 0.45 MeV, which did not contradict the excitation of the participant 12C nucleus to the level at 7.65 MeV. The average value of the transverse momentum in those events was 234 ± 25 MeV/ c.

  1. Some peculiarities of interactions of weakly bound lithium nuclei at near-barrier energies

    Science.gov (United States)

    Kabyshev, A. M.; Kuterbekov, K. A.; Sobolev, Yu G.; Penionzhkevich, Yu E.; Kubenova, M. M.; Azhibekov, A. K.; Mukhambetzhan, A. M.; Lukyanov, S. M.; Maslov, V. A.; Kabdrakhimova, G. D.

    2018-02-01

    This paper presents new experimental data on the total cross sections of 9Li + 28Si reactions at low energies as well as the analysis of previously obtained data for 6,7Li. Based on a large collection of data (authors’ and literature data) we carried out a comparative analysis of the two main experimental interaction cross sections (angular distributions of the differential cross sections and total reaction cross sections) for weakly bound lithium (6-9Li, 11Li) nuclei in the framework of Kox parameterization and the macroscopic optical model. We identified specific features of these interactions and predicted the experimental trend in the total reaction cross sections for Li isotopes at energies close to the Coulomb barrier.

  2. Three-dimensional TDHF calculation for reactions of unstable nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ka-Hae; Otsuka, Takaharu [Tokyo Univ. (Japan). Dept. of Physics; Bonche, P.

    1998-07-01

    The fusion is studied for reactions between a stable and an unstable nuclei with neutron skin. The reactions {sup 16,28}O+{sup 40}Ca and {sup 16}O+{sup 16,28}O are taken as examples, and the three-dimensional time-dependent Hartree-Fock method with the full Skyrme interaction is used. It is confirmed that the fusion cross section in low-energy region is sensitive to the interaction used in the calculation. (author)

  3. Asymmetry dependence of nucleon correlations in spherical nuclei extracted from a dispersive-optical-model analysis

    International Nuclear Information System (INIS)

    Mueller, J. M.; Shane, R.; Waldecker, S. J.; Dickhoff, W. H.; Charity, R. J.; Sobotka, L. G.; Crowell, A. S.; Esterline, J. H.; Fallin, B.; Howell, C. R.; Westerfeldt, C.; Youngs, M.; Crowe, B. J. III; Pedroni, R. S.

    2011-01-01

    Neutron elastic-scattering angular distributions were measured at beam energies of 11.9 and 16.9 MeV on 40,48 Ca targets. These data plus other elastic-scattering measurements, total and reaction cross-sections measurements, (e,e ' p) data, and single-particle energies for magic and doubly magic nuclei have been analyzed in the dispersive optical-model (DOM), generating nucleon self-energies (optical-model potentials) that can be related, via the many-body Dyson equation, to spectroscopic factors and occupation probabilities. It is found that, for stable nuclei with N≥Z, the imaginary surface potential for protons exhibits a strong dependence on the neutron-proton asymmetry. This result leads to a more modest dependence of the spectroscopic factors on asymmetry. The measured data and the DOM analysis of all considered nuclei clearly demonstrate that the neutron imaginary surface potential displays very little dependence on the neutron-proton asymmetry for nuclei near stability (N≥Z).

  4. Superdeformed nuclei

    International Nuclear Information System (INIS)

    Janssens, R.V.F.; Khoo, T.L.

    1991-01-01

    Superdeformation was first proposed some twenty years ago to explain the fission isomers observed in some actinide nuclei. It was later realized that superdeformed shapes can occur at high angular momentum in lighter nuclei. The interest in the mechanisms responsible for these exotic shapes has increased enormously with the discovery of a superdeformed band of nineteen discrete lines in 152 Dy (8). At about the same time, evidence for highly deformed nuclei (axis ratio 3:2) was also reported near 132 Ce(9). Striking properties emerged from the first experiments, such as the essentially constant energy spacing between transitions (picket-fence spectra), the unexpectedly strong population of superdeformed bands at high spins, and the apparent lack of a link between the superdeformed states and the yrast levels. These findings were reviewed by Nolan and Twin. The present article follows upon their work and discusses the wealth of information that has since become available. This includes the discovery of a new island of superdeformation near A = 190, the detailed spectroscopy of ground and excited bands in the superdeformed well near A = 150 and A = 190, the surprising occurrence of superdeformed bands with identical transition energies in nuclei differing by one or two mass units, and the improved understanding of mechanisms responsible for the feeding into and the decay out of the superdeformed states

  5. Structure of neutron-rich nuclei

    International Nuclear Information System (INIS)

    Nazarewicz, W.

    2000-01-01

    Complete text of publication follows. The uncharted regions of the (N,Z) plane contain information that can answer many questions of fundamental importance for science: How many protons and neutrons can be clustered together by the strong interaction to form a bound nucleus? What are the proton and neutron magic numbers of the exotic nuclei? What are the properties of very short-lived exotic nuclei with extreme neutron-to-proton ratios? What is the effective nucleon-nucleon interaction in a nucleus that has a very large neutron excess? Nuclear life far from stability is different from that around the stability line; the promised access to completely new combinations of proton and neutron numbers offers prospects for new structural phenomena. The main objective of this talk is to discuss some of the challenges and opportunities of research with exotic nuclei. The covered topics will include: Theoretical challenges; Skins and halos in heavy nuclei; Shape coexistence in exotic nuclei; Beta-decays of neutron-rich nuclei. (author)

  6. Combined Photoneutron And X Ray Interrogation Of Containers For Nuclear Materials

    Science.gov (United States)

    Gozani, Tsahi; Shaw, Timothy; King, Michael J.; Stevenson, John; Elsalim, Mashal; Brown, Craig; Condron, Cathie

    2011-06-01

    Effective cargo inspection systems for nuclear material detection require good penetration by the interrogating radiation, generation of a sufficient number of fissions, and strong and penetrating detection signatures. Inspection systems need also to be sensitive over a wide range of cargo types and densities encountered in daily commerce. Thus they need to be effective with highly hydrogenous cargo, where neutron attenuation is a major limitation, as well as with dense metallic cargo, where x-ray penetration is low. A system that interrogates cargo with both neutrons and x-rays can, in principle, achieve high performance over the widest range of cargos. Moreover, utilizing strong prompt-neutron (˜3 per fission) and delayed-gamma ray (˜7 per fission) signatures further strengthens the detection sensitivity across all cargo types. The complementary nature of x-rays and neutrons, used as both probing radiation and detection signatures, alleviates the need to employ exceedingly strong sources, which would otherwise be required to achieve adequate performance across all cargo types, if only one type of radiation probe were employed. A system based on the above principles, employing a commercially-available 9 MV linac was developed and designed. Neutrons are produced simultaneously with x-rays by the photonuclear interaction of the x-ray beam with a suitable converter. A total neutron yield on the order of 1011 n/s is achieved with an average electron beam current of 100 μA. If fissionable material is present, fissions are produced both by the high-energy x-ray beam and by the photoneutrons. Photofission and neutron fission dominate in hydrogenous and metallic cargos, respectively. Neutron-capture gamma rays provide information on the cargo composition. The prompt neutrons resulting from fission are detected by two independent detector systems: by very efficient Differential Die Away Analysis (DDAA) detectors, and by direct detection of neutrons with energies higher

  7. Improving the Calculation of The Potential Between Spherical and Deformed Nuclei

    International Nuclear Information System (INIS)

    Ismail, M.; Ramadan, Kh.A.

    2000-01-01

    The Heavy Ion (HI) interaction potential between spherical and deformed nuclei is improved by calculating its exchange part using finite range nucleon-nucleon (NN) force. We considered U 238 as a target nucleus and seven projectile nuclei to show the dependence of the HI potential on both the energy and orientation of the deformed target nucleus. The effect of finite range NN force has been found to produce significant changes in the HI potential. The variation of the barrier height V B , its thickness and its position R B due to the use of finite range NN force are significant. Such variation enhance the fusion cross-section at energy values just below the Coulomb barrier by a factor increasing with the mass number of projectile nucleus. (author)

  8. Energetic Nuclei, Superdensity and Biomedicine

    Science.gov (United States)

    Baldin, A. M.

    1977-01-01

    High-energy, relativistic nuclei were first observed in cosmic rays. Studing these nuclei has provided an opportunity for analyzing the composition of cosmic rays and for experimentally verifying principles governing the behavior of nuclear matter at high and super-high temperatures. Medical research using accelerated nuclei is suggested.…

  9. On the production of shower particles from light (Cno) and heavy (Ag Br) emulsion nuclei at Dubna energy

    International Nuclear Information System (INIS)

    EI-Nagdy, M.S.; Abdel-Waged, Kh; Abdel-Halim, S.M.; Khalil, E.I.

    2000-01-01

    The reaction cross sections for p, d, He, C, Mg and S beams with different chemical components of emulsion nuclei at 4.5 A GeV/c have been studied with high statistics, and were compared with the calculations according to Glauber model. The multiplicity distributions of shower produced particles from these interactions with light and heavy emulsion nuclei are analyzed in terms of the negative binomial and Poisson distribution laws

  10. Problem of ''deformed'' superheavy nuclei

    International Nuclear Information System (INIS)

    Sobiczewski, A.; Patyk, Z.; Muntian, I.

    2000-08-01

    Problem of experimental confirmation of deformed shapes of superheavy nuclei situated in the neighbourhood of 270 Hs is discussed. Measurement of the energy E 2+ of the lowest 2+ state in even-even species of these nuclei is considered as a method for this confirmation. The energy is calculated in the cranking approximation for heavy and superheavy nuclei. The branching ratio p 2+ /p 0+ between α decay of a nucleus to this lowest 2+ state and to the ground state 0+ of its daughter is also calculated for these nuclei. The results indicate that a measurement of the energy E 2+ for some superheavy nuclei by electron or α spectroscopy is a promising method for the confirmation of their deformed shapes. (orig.)

  11. Phenomenological nuclear reaction description in deuterium-saturated palladium and synthesized structure in dense deuterium gas under γ-quanta irradiation

    International Nuclear Information System (INIS)

    Didyk, A.Yu.; Wisniewski, R.

    2012-01-01

    The observed phenomena on the changes of chemical compositions in our previous reports allowed us to develop a phenomenological nuclear fusion-fission model with taking into consideration the elastic and inelastic scattering of photoprotons and photoneutrons, heating of surrounding deuterium nuclei, following D-D fusion reactions and fission of middle-mass nuclei by 'hot' protons, deuterons and various-energy neutrons. Such chain processes could produce the necessary number of neutrons, 'hot' deuterons for explanation of the observed experimental results. The developed approach can be a basis for creation of deuterated nuclear fission reactors (DNFR) with high-density deuterium gas and so-called deuterated metals. Also, the developed approach can be used for the study of nuclear reactions in high-density deuterium or tritium gases and deuterated metals

  12. Critical-point nuclei

    International Nuclear Information System (INIS)

    Clark, R.M.

    2004-01-01

    It has been suggested that a change of nuclear shape may be described in terms of a phase transition and that specific nuclei may lie close to the critical point of the transition. Analytical descriptions of such critical-point nuclei have been introduced recently and they are described briefly. The results of extensive searches for possible examples of critical-point behavior are presented. Alternative pictures, such as describing bands in the candidate nuclei using simple ΔK = 0 and ΔK = 2 rotational-coupling models, are discussed, and the limitations of the different approaches highlighted. A possible critical-point description of the transition from a vibrational to rotational pairing phase is suggested

  13. Fusion and reactions of exotic nuclei

    Directory of Open Access Journals (Sweden)

    Sánchez-Benítez A.M.

    2011-10-01

    Full Text Available Close to the drip lines, the scattering cross sections of halo nuclei show a different behaviour as compared to the tightly bound projectiles of the stability line. Several experiments carried out in the last decade have been dedicated to investigate the competition between transfer, breakup and fusion channels at energies around and below the Coulomb barrier. The rather complex scenario gives rise to conflicting conclusions concerning the effect of breakup and transfer on reaction dynamics and the sub-barrier fusion process. In this work we discuss recent experimental findings in fusion and reactions of 6He halo nucleus at energies around the Coulomb barrier.

  14. Fusion enhancement/suppression and irreversibility in reactions induced by weakly bound nuclei

    International Nuclear Information System (INIS)

    Gomes, P.R.S.; Lubian, J.; Canto, L.F.; Chamon, L.C.; Crema, E.; Hussein, M.S.

    2011-01-01

    We show that halo effects enhance fusion cross sections of weakly bound systems, comparing with the situation when there is no-halo. We introduce dimensionless fusion functions and energy variable quantity to investigate systematical trends in the fusion cross sections of weakly bound nuclei at near-barrier energies. We observe very clearly complete fusion suppression at energies above the barrier due to dynamic effects of the breakup on fusion. We explain this suppression in terms of the repulsive polarization potential produced by the breakup. (author)

  15. Cluster structures in light nuclei

    International Nuclear Information System (INIS)

    Horiuchi, H.

    2000-01-01

    Complete text of publication follows. Clustering in neutron-rich nuclei is discussed. To understand the novel features (1,2,3) of the clustering in neutron-rich nuclei, the basic features of the clustering in stable nuclei (4) are briefly reviewed. In neutron-rich nuclei, the requirement of the stability of clusters is questioned and the threshold rule is no more obeyed. Examples of clustering in Be and B isotopes (4,5) are discussed in some detail. Possible existence of novel type of clustering near neutron dripline is suggested (1). (author)

  16. Inelastic collisions of neon-22 nuclei with nuclei in photoemulsion at 90 GeV/c momentum

    International Nuclear Information System (INIS)

    Vokalova, A.; Krasnov, S.A.; Tolstov, K.D.

    1985-01-01

    The experimental data obtained according to the analysis of 4303 inelastic interactions of the relativistic neon-22 nuclei with the nuclei in photoemulsion are presented. The multiplicities and angular distributions are shown as the functions of the disintegration degree of the colliding nuclei. It is shown that the same number of interacting nucleons of the projectile neon and carbon nuclei are connected with the different impact parameters with the target nucleus

  17. Interactions of 10.6 GeV/n gold nuclei with light and heavy target nuclei in nuclear emulsion

    International Nuclear Information System (INIS)

    Cherry, M.L.; Denes-Jones, P.

    1994-03-01

    We have investigated the particle production and fragmentation of nuclei participating in the interactions of 10.6 GeV/n gold nuclei in nuclear emulsions. A new criteria has been developed to distinguish between the interactions of these gold nuclei with the light (H, C, N, O) and heavy (Ag, Br) target nuclei in the emulsion. This has allowed separate analyzes of the multiplicity and pseudo-rapidity distributions of the singly charged particles emitted in Au-(H, C, N, O) and Au-(Ag, Br) interactions, as well as of the models of breakup of the projectile and target nuclei. The pseudo-rapidity distributions show strong forward asymmetries, particularly for the interactions with the light nuclei. Heavy target nuclei produce a more severe breakup of the projectile gold nucleus than do the lighter targets. A negative correlation between the number of fragments emitted from the target nuclei and the degree of centrality of the collisions has been observed, which can be attributed to the total destruction of the relatively light target nuclei by these very heavy projectile nuclei. (author). 14 refs, 11 figs, 1 tab

  18. Analysis of the dependence parametrization of the allocations of heavy ions on light nuclei elastic scattering diffraction maxima from the projectile energy

    International Nuclear Information System (INIS)

    Ponkratenko, O.A.; Pyirnak, Val. M.; Rudchik, A.A.; Stepanenko, Yu.M.; Uleshchenko, V.V.; Shirma, Yu.O.

    2015-01-01

    Diffraction range of available experimental differential cross sections of heavy ions on light nuclei elastic scattering for the interactive nuclei 17 pairs with 4 ≤ A ≤ 20 have been analyzed in the projectile energy wide interval from 1 to 100 MeV/nucleon. Diffraction maxima and minima positions in the transferred momentum coordinates depending on projectile energy demonstrate smooth behavior at energies higher 2 - 4 MeV/nucleon and at energies to 30 - 40 MeV/nucleon - practically does not depend on energy. These energy dependences of maxima (minima) position. can be parameterized by simple functions. It was found the suitable approximations that describe reasonable the energy dependence of the maxima (minima) positions of the experimental elastic scattering differential cross sections. These approximations were evaluated with the same parameters for all colliding nuclei groups

  19. The PSIMECX medium-energy neutron activation cross-section library. Part III: Calculational methods for heavy nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Atchison, F.

    1998-09-01

    The PSIMECX library contains calculated nuclide production cross-sections from neutron-induced reactions in the energy range about 2 to 800 MeV in the following 72 stable isotopes of 24 elements: {sup 12}C, {sup 13}C, {sup 16}O, {sup 17}O, {sup 18}O, {sup 23}Na, {sup 24}Mg, {sup 25}Mg, {sup 26}Mg, {sup 27}Al, {sup 28}Si, {sup 29}Si, {sup 30}Si, {sup 31}P, {sup 32}S, {sup 33}S, {sup 34}S, {sup 36}S, {sup 35}Cl, {sup 37}Cl, {sup 39}K, {sup 40}K, {sup 41}K, {sup 40}Ca, {sup 42}Ca, {sup 43}Ca, {sup 44}Ca, {sup 46}Ca, {sup 48}Ca, {sup 46}Ti, {sup 47}Ti, {sup 48}Ti, {sup 49}Ti, {sup 50}Ti, {sup 50}V, {sup 51}V, {sup 50}Cr, {sup 52}Cr, {sup 53}Cr, {sup 54}Cr, {sup 55}Mn, {sup 54}Fe, {sup 56}Fe, {sup 57}Fe, {sup 58}Fe, {sup 58}Ni, {sup 60}Ni, {sup 61}Ni, {sup 62}Ni, {sup 64}Ni, {sup 63}Cu, {sup 65}Cu, {sup 64}Zn, {sup 66}Zn, {sup 67}Zn, {sup 68}Zn, {sup 70}Zn, {sup 92}Mo, {sup 94}Mo, {sup 95}Mo, {sup 96}Mo, {sup 97}Mo, {sup 98}Mo, {sup 100}Mo, {sup 121}Sb, {sup 123}Sb, {sup 204}Pb, {sup 206}Pb, {sup 207}Pb, {sup 208}Pb, {sup 232}Th and {sup 238}U. The energy range covers essentially all transmutation channels other than capture. The majority of the selected elements are main constituents of normal materials of construction used in and around accelerator facilities and the library is, first and foremost, designed to be a tool for the estimation of their activation in wide-band neutron fields. This third report describes and discusses the calculational methods used for the heavy nuclei. The library itself has been described in the first report of this series and the treatment for the medium and light mass nuclei is given in the second. (author)

  20. Scaling laws and higher-order effects in Coulomb excitation of neutron halo nuclei

    International Nuclear Information System (INIS)

    Typel, S.; Baur, G.

    2008-01-01

    Essential properties of halo nuclei can be described in terms of a few low-energy constants. For neutron halo nuclei, analytical results can be found for wave functions and electromagnetic transition matrix elements in simple but well-adapted models. These wave functions can be used to study nuclear reactions; an especially simple and instructive example is Coulomb excitation. A systematic expansion in terms of small parameters can be given. We present scaling laws for excitation amplitudes and cross-sections. The results can be used to analyze experiments like 11 Be Coulomb excitation. They also serve as benchmark tests for more involved reaction theories. (orig.)

  1. Probability of ternary fission of 93Nb andnat Ag nuclei induced by 0.8-1.8 GeV photons

    International Nuclear Information System (INIS)

    Lima, D.A. de; Milomen, W.C.C.; Tavares, O.A.P.

    1989-01-01

    The yields of ternary fission of 93 Nb and nat Ag nuclei induced by bremsstrahlung photons of 0.8, 1.0, 1.4 and 1.8 GeV end-point energies have been measured by using the 2 Π-forward geometry with thick target metal foils in contact with makrofol polycarbonate sheets as fission-track detectors. Absolute mean cross sections per photon in the range 0.8-1.8 GeV have been obtained as 0.3 ± 0.3 μb and 0.5 ± μb, respectively, for 93 Nb and nat Ag nuclei. These correspond to a probability of ternary fission of approx. 10 -5 for both nuclei. Results are discussed and compared with previous ternary fission data obtained for nuclei of A [pt

  2. Fusability and survivability in reactions leading to heavy nuclei in the vicinity of the N = 126 shell

    International Nuclear Information System (INIS)

    Sagajdak, R.N.

    2008-01-01

    The production of heavy nuclei from Rn to Th around the N = 126 neutron shell in complete fusion reactions of nuclei has been considered in a systematic way in the framework of the conventional barrier-passing fusion model coupled with the Standard Statistical Model (SSM). Available data on the excitation functions for fusion and production of evaporation residues obtained in very asymmetric combinations are described with these models rather well. In the interaction of massive projectiles with heavy target nuclei quasi-fission effects appear in the entrance reaction channel. The quantity of the fusion probability introduced empirically has been used to reproduce excitation functions with the same SSM parameters (fission barriers) as those obtained in the analysis of very asymmetric combinations. A lack of stabilization against fission around N = 126 for Th nuclei was earlier explained with a reduced collective contribution to the level density in spherical nuclei. However, the present analysis shows severe inhibition for fusion, i.e., the drop in production cross sections of Th nuclei in the vicinity of N = 126 is mainly caused by entrance channel effects. The macroscopic component of fission barriers for nuclei involved in a deexcitation cascade has been derived and compared with the theoretical model predictions and available data

  3. The experimental test of the adequateness of relativistic impulse approximation when describing the lightest nuclei break-up

    International Nuclear Information System (INIS)

    Sitnik, I.M.

    1995-01-01

    The behaviour of the lightest nuclei break-up cross sections at zero angle has been analyzed in vicinity of the maximum. It is shown that asymmetry of cross sections relatively maximum is in conflict with nonrelativistic impulse approximation, but agrees well with one of relativistic approaches to describe this process. 10 refs., 9 figs

  4. Quarks in Few Body Nuclei

    Directory of Open Access Journals (Sweden)

    Holt Roy J.

    2016-01-01

    Full Text Available Electron scattering at very high Bjorken x from hadrons provides an excellent test of models, has an important role in high energy physics, and from nuclei, provides a window into short range correlations. Light nuclei have a key role because of the relatively well-known nuclear structure. The development of a novel tritium target for Jefferson Lab has led to renewed interest in the mass three system. For example, deep inelastic scattering experiments in the light nuclei provide a powerful means to determine the neutron structure function. The isospin dependence of electron scattering from mass-3 nuclei provide information on short range correlations in nuclei. The program using the new tritium target will be presented along with a summary of other experiments aimed at revealing the large-x structure of the nucleon.

  5. Complete destruction of heavy nuclei by hadrons and nuclei

    International Nuclear Information System (INIS)

    Tolstov, K.D.

    1980-01-01

    The total disintegration is considered of Ag and Pb nuclei and 4 He, 12 C nuclei With a momentum of 4.5 GeV/c per nucleon. It is shown that nucleons are mainly emitted, and there is no residual nUcleus the mass of which is comparable to that of the primary nucleus. The probability of total nucleus disintegration is considered as a function of projectile energy and the mass. The multiplicity, energy and emission angle of particles are considerred as well. It is shown that the density of nuclear matter in the overlap zone of colliding nuclei exceeds the usual one by a factor of approximately 4. A comparison is made with interaction models. A conclusion is drawn of the collective interaction mechanism (perhaps, of the shock wave type) of particle ejection from the target nucleus at the first stage of interaction and of explosive decay of the residual nucleus at the next one

  6. High-spin excitations of atomic nuclei

    International Nuclear Information System (INIS)

    Xu Furong; National Laboratory of Heavy Ion Physics, Lanzhou; Chinese Academy of Sciences, Beijing

    2004-01-01

    The authors used the cranking shell model to investigate the high-spin motions and structures of atomic nuclei. The authors focus the collective rotations of the A∼50, 80 and 110 nuclei. The A∼50 calculations show complicated g spectroscopy, which can have significant vibration effects. The A≅80 N≅Z nuclei show rich shape coexistence with prolate and oblate rotational bands. The A≅110 nuclei near the r-process path can have well-deformed oblate shapes that become yrast and more stable with increasing rotational frequency. As another important investigation, the authors used the configuration-constrained adiabatic method to calculate the multi-quasiparticle high-K states in the A∼130, 180 and superheavy regions. The calculations show significant shape polarizations due to quasi-particle excitations for soft nuclei, which should be considered in the investigations of high-K states. The authors predicted some important high-K isomers, e.g., the 8 - isomers in the unstable nuclei of 140 Dy and 188 Pb, which have been confirmed in experiments. In superheavy nuclei, our calculations show systematic existence of high-K states. The high-K excitations can increase the productions of synthesis and the survival probabilities of superheavy nuclei. (authors)

  7. Reaction cross section measurements of neutron-rich exotic nuclei in the vicinity of closed shells N=20 and N=28; Mesures de section efficace de reaction de noyaux exotiques riches en neutrons dans la zone de fermeture des couches N=20 et N=28

    Energy Technology Data Exchange (ETDEWEB)

    Khouaja, A

    2003-12-01

    Using the direct method, the mean energy integrated reaction cross section was investigated for a wide range of neutron-rich nuclei (N {yields} Ar) at GANIL. Using the parametrisation of S. Kox, 19 new radii measurements (reaction cross sections) were obtained. By the isotopic, isotonic and isospin dependence, the evolution of the strong reduced radius was studied according to the excess of neutrons. New halo effect is proposed to the nuclei of Mg{sup 35} and S{sup 44}. A quadratic parametrization is also proposed for the nuclear radius as a function of the isospin in the region of closed shells N=8 and N=28. In addition, we used a modified version of the Glauber model for studying the tail and matter distribution of nuclei. Indeed, using our new data the effects of the nuclear size (root mean square radii) and the matter distribution (diffusivity) were de-convoluted for each isotope. The root mean square radii of Na and Mg isotopes obtained so far were consistent with the ones from literature. (author)

  8. Fusion reaction around the Coulomb barrier with neutron-rich nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Atsushi [Institute of Physical and Chemical Research, Wako, Saitama (Japan)

    1997-07-01

    Two fusion reactions with neutron-rich nuclei are reported in this work. On the first reaction: {sup 9,10,11}Be+{sup 209}Bi, the fusion cross sections around the coulomb barrier were measured by determing {alpha} disintegration from compound nucleus Fr. In the field of 10-100 mb, the same total fusion cross sections were obtained. The phenomenon {sup 11}Be(neutron halo nucleus) alone increased and decreased was not observed. The fusion cross sections of {sup 27,29,31}Al+{sup 197}Au system were determined by using 130 kcps and 30 kcps of beam strength of {sup 29,31}Al, respectively. The value of {sup 27}Al was reproduced by calculation, but that of {sup 29}Al increased around barrier which could not be explained by CCDEF calculation. (S.Y.)

  9. The shape of nuclei

    International Nuclear Information System (INIS)

    Mackintosh, R.S.

    1977-01-01

    For the class of nuclei which are 'strongly deformed' it is possible to introduce the idea of an empirically measurable static nuclear shape. The limitations of this concept as applied to nuclei (fundamentally quantum-mechanical objects) are discussed. These are basically the limitations of the rotational model which must be introduced in order to define and measure nuclear shape. A unified discussion of the ways in which the shape has been parametrized is given with emphasis on the fact that different parametrizations correspond to different nuclear structures. Accounts of the various theoretical procedures for calculating nuclear shapes and of the interaction between nuclear shapes and nuclear spectroscopy are given. A coherent account of a large subset of nuclei (strongly deformed nuclei) can be given by means of a model in which the concept of nuclear shape plays a central role. (author)

  10. Structure of Warm Nuclei

    International Nuclear Information System (INIS)

    Aaberg, S.; Uhrenholt, H.

    2009-01-01

    We study the structure of nuclei in the energy region between the ground state and the neutron separation energy, here called warm nuclei. The onset of chaos in the nucleus as excitation energy is increased is briefly reviewed. Chaos implies fluctuations of energies and wave functions qualitatively the same for all chaotic nuclei. On the other hand, large structure effects are seen, e.g. in the level-density function at same excitation energies. A microscopic model for the level density is reviewed and we discuss effects on structure of the total level-density function, parity enhancement, and the spin distribution function. Comparisons to data are performed at the neutron separation energy for all observed nuclei, and structure of the level-density function for a few measured cases. The role of structure effects in the level-density function for fission dynamics is exemplified.

  11. Experimental apparatus with {sup 3}He detectors for photoneutron measurements greater than 8 MV; Aparato experimental de detector {sup 3}He, para medida fotonêutrons em acelerador com energia acima 8 MV

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Marcelo Vilela da; Fontes, Gladson Silva; Cardoso, Domingos D’Oliveira, E-mail: marcelovilelasilva@gmail.com [Instituto Militar de Engenharia (IME), Rio de Janeiro, RJ (Brazil)

    2017-07-01

    Particle technology has a profound impact on society. Its applications are well established mainly in the treatment of cancer and other diseases. The objective of this work was to develop an experimental apparatus with {sup 3}He detectors for photoneutron measurements greater than 8 MV. The apparatus allowed to obtain a multi energetic neutron measurements with detector and changing the different thicknesses of shields and for different dose rates. Additionally, an analytical model was developed, based on the approximation of the diffusion, for two groups of energy. The results indicated an increasing and linear behavior in the detector response. (author)

  12. Production of actinide nuclei by multi-nucleon transfer

    Energy Technology Data Exchange (ETDEWEB)

    Lauritsen, T.; Ahmad, I.; Carpenter, M.P. [and others

    1995-08-01

    Multi-nucleon transfers have increasingly allowed us to reach parts of the nuclear chart where regular compound nuclear reactions are prohibited. The interesting region of Ra and Rn, where a rich tapestry of nuclear structure manifests itself, is now accessible using this technique of deep inelastic scattering. In particular, these nuclei are predicted to lie at the onset of octupole deformation and the region is rich in examples of shape coexistence. There are several theoretical predictions of nuclear structure of these nuclei that have not been experimentally tested. Moreover, there is serious disagreement among these theories. We used a beam of {sup 136}Xe at 720 MeV from ATLAS on a target of {sup 232}Th to produce a range of Rn isotopes, with a mass from 220 to 224, and Ra isotopes with masses greater than 222. The beam energy, target and beam were selected carefully to enhance the cross-section for production of these nuclei and reduce the Doppler broadening of the gamma rays that were observed in the Argonne Notre Dame gamma-ray facility. The 12 germanium detectors of this array allowed the observation of gamma-gamma coincidences. The inner ball of 50 BGO detectors allowed us to record the multiplicity and sum-energy information for each event. The latter should permit us to determine the entry region in the products of the transfer reaction. We had four successful days of beam-time, when we collected in excess of 8 x 10{sup 7} events. Data analysis is in progress at the University of Liverpool. A complete set of spectroscopic information on the yrast structure of the many nuclei produced in this reaction is being extracted.

  13. Dynamic polarisation of nuclei

    International Nuclear Information System (INIS)

    Borghini, M.; Abragam, A.

    1961-01-01

    In magnetic fields of about 13000 gauss, at a temperature of 1.5 deg. K, in samples of about 2 mm 3 , we have obtained by the 'solid effect' (application of a magnetic field at an appropriate frequency around 35000 MHz), nuclear polarizations /I of a few percent: 19 per cent for hydrogen nuclei in single crystals of La 2 Mg 3 (NO 3 ) 12 , 24H 2 O; 5 per cent for hydrogen nuclei in polystyrene; 6 per cent for fluorine nuclei in single crystals of LiF. (author) [fr

  14. Experimental study of energy dependence of proton induced fission cross sections for heavy nuclei in the energy range 200-1000 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Kotov, A.A.; Gavrikov, Yu.A.; Vaishnene, L.A.; Vovchenko, V.G.; Poliakov, V.V.; Fedorov, O.Ya.; Chestnov, Yu.A.; Shchetkovskiy, A.I [Petersburg Nuclear Physics Institute, Gatchina, Leningrad district, Orlova roscha 1, 188300 (Russian Federation); Fukahori, T. [Japan Atomic Energy Research Institute, Tokai-mura, Ibaraki 319-1195 (Japan)

    2005-07-01

    The results of the total fission cross sections measurements for {sup nat}Pb, {sup 209}Bi, {sup 232}Th, {sup 233}U, {sup 235}U, {sup 238}U, {sup 237}Np and {sup 239}Pu nuclei at the energy proton range 200-1000 MeV are presented. Experiments were carried out at 1 GeV synchrocyclotron of Petersburg Nuclear Physics Institute (Gatchina). The measurement method is based on the registration in coincidence of both complementary fission fragments by two gas parallel plate avalanche counters, located at a short distance and opposite sides of investigated target. The insensitivity of parallel plate avalanche counters to neutron and light charged particles allowed us to place the counters together with target immediately in the proton beam providing a large solid angle acceptance for fission fragment registration and reliable identification of fission events. The proton flux on the target to be studied was determined by direct counting of protons by scintillation telescope. The measured energy dependence of the total fission cross sections is presented. Obtained results are compared with other experimental data as well as with calculation in the frame of the cascade evaporation model. (authors)

  15. Total dissociation cross section of halo nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Formanek, J. [Karlova Univ., Prague (Czech Republic). Fakulta Matematicko-Fyzikalni; Lombard, R.J. [Paris-11 Univ., 91 - Orsay (France). Inst. de Physique Nucleaire

    1996-10-01

    Calculations of the total dissociation cross section is performed in the impact parameter representation. The case of {sup 11}Be and {sup 11}Li loosing one and two neutron(s), respectively, by collision on a {sup 12}C target, which remains in its ground state are discussed. The results are found to depend essentially on the rms radius of the halo wave function. (author). 12 refs.

  16. Pion-nucleus cross sections approximation

    International Nuclear Information System (INIS)

    Barashenkov, V.S.; Polanski, A.; Sosnin, A.N.

    1990-01-01

    Analytical approximation of pion-nucleus elastic and inelastic interaction cross-section is suggested, with could be applied in the energy range exceeding several dozens of MeV for nuclei heavier than beryllium. 3 refs.; 4 tabs

  17. Neutron rich nuclei

    International Nuclear Information System (INIS)

    Foucher, R.

    1979-01-01

    If some β - emitters are particularly interesting to study in light, medium, and heavy nuclei, another (and also) difficult problem is to know systematically the properties of these neutron rich nuclei far from the stability line. A review of some of their characteristics is presented. How far is it possible to be objective in the interpretation of data is questioned and implications are discussed

  18. Baryon resonances in nuclei

    International Nuclear Information System (INIS)

    Arenhoevel, H.

    1977-01-01

    The field of baryon resonances in nuclei is reviewed. Theoretical developments and experimental evidence as well are discussed. Special emphasis is laid on electromagnetic processes for the two nucleon system. Some aspects of real isobars in nuclei are touched upon. (orig.) [de

  19. Proton optical potential and scattering matrix for tin nuclei at sub-coulomb energies

    International Nuclear Information System (INIS)

    Guzhovskij, B.Ya.; Dzyuba, B.M.

    1981-01-01

    A unified set of parameters of the proton optical potential (OP) for the n nuclei is searched for in the below-Coulomb-barrier energy range. The set must describe well the experimental data on the pn-reaction total cross sections and on the angular distributions of elastically scattered protons at E [ru

  20. Analysis of the dependence parametrization of the allocations of heavy ions on light nuclei elastic scattering diffraction maxima from the projectile energy

    Directory of Open Access Journals (Sweden)

    O. A. Ponkratenko

    2015-10-01

    Full Text Available Diffraction range of available experimental differential cross sections of heavy ions on light nuclei elastic scattering for 17 pairs of the interacting nuclei with 4 ≤ А ≤ 20 have been analyzed in the projectile energy wide interval from 1 to 100 МеV/nucleon. Diffraction maxima and minima positions in the transferred momentum coordinates depending on projectile energy demonstrate smooth behavior at energies higher 2 - 4 МeV/nucleon, and practically do not depend on energy at energies up to 30 - 40 МеV/nucleon. These energy dependences of maxima (minima positions can be parameterized by simple functions. It was found the suitable approximations that describe reasonably the energy dependence of the maxima (minima positions of the experimental elastic scattering differential cross sections. These approximations were evaluated with the same parameters for all colliding nuclei groups.

  1. Isolation of Nuclei and Nucleoli.

    Science.gov (United States)

    Pendle, Alison F; Shaw, Peter J

    2017-01-01

    Here we describe methods for producing nuclei from Arabidopsis suspension cultures or root tips of Arabidopsis, wheat, or pea. These methods could be adapted for other species and cell types. The resulting nuclei can be further purified for use in biochemical or proteomic studies, or can be used for microscopy. We also describe how the nuclei can be used to obtain a preparation of nucleoli.

  2. Colour dynamics in large psub(T) hadron production on nuclei

    International Nuclear Information System (INIS)

    Kopeliovich, B.Z.; Niedermayer, F.

    1984-01-01

    The color dynamics of hadron production with large transverse momentum (psub(T)) on nuclei is investigated. Retardation by colour forces of colour objects propagating through nuclear matter leads to considerable shadowing of hard processes inside the nucleus. This explains the weak A dependence of the production cross section for large psub(T) meson pairs. The small absorption of compressed hadronic configurations inside the nucleus explains the linear A dependence of pp-pair production

  3. Energy-dependent microscopic optical potential for scattering of nucleons on light nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Farag, M.Y.H.; Esmael, E.H. [Cairo University, Physics Department, Faculty of Science, Giza (Egypt); Maridi, H.M. [Cairo University, Physics Department, Faculty of Science, Giza (Egypt); Taiz University, Physics Department, Faculty of Applied Science, Taiz (Yemen)

    2014-06-15

    We present an energy-dependent microscopic optical model potential for elastic scattering of nucleons on light nuclei. The single-folding model is used for the real part of the optical potential (OP), while the imaginary part is derived within the high-energy approximation theory. The energy dependence of the OP is determined from the parameterization of the volume integrals those calculated from the best-fit OP that fit the experimental data of the cross sections and analyzing powers. This energy-dependent OP is successfully applied to analyze the proton elastic scattering of {sup 4,6,i8}He, {sup 6,7}Li, and {sup 9,10}Be nuclei at low and intermediate incident energies up to 200MeV/nucleon. (orig.)

  4. Universal trend for heavy-ion total reaction cross sections at energies above the Coulomb barrier

    International Nuclear Information System (INIS)

    Tavares, O.A.P.; Medeiros, E.L.; Morcelle, V.

    2010-06-01

    Heavy-ion total reaction cross section measurements for more than one thousand one hundred reaction cases covering 61 target nuclei in the range 6 Li- 238 U, and 158 projectile nuclei from 2 H up to 84 Kr (mostly exotic ones) have been analysed in a systematic way by using an empirical, three-parameter formula which is applicable to cases for projectile kinetic energies above the Coulomb barrier. The analysis has shown that the average total nuclear binding energy per nucleon of the interacting nuclei and their radii are the chief quantities which describe the cross section patterns. A great number of cross section data (87%) has been quite satisfactorily reproduced by the proposed formula, therefore total reaction cross section predictions for new, not yet experimentally investigated reaction cases can be obtained within 25 percent (or much less) of uncertainty (author)

  5. Pion-nucleus cross sections

    International Nuclear Information System (INIS)

    Barashenkov, V.S.

    1990-01-01

    The tables of inelastic and total cross sections of π ± mesons interactions with nuclei 4 He- 238 U are presented. The tables are obtained by theoretical analysis of known experimental data for energies higher some tens of MeV. 1 ref.; 1 tab

  6. Nucleons in nuclei, however

    International Nuclear Information System (INIS)

    Grange, P.; Mathiot, J.F.; Roy-Stephan, M.; Frascaria, R.; Gales, S.

    1990-01-01

    The topics presented at the 1989 Joliot-Curie Lectures are reported. Two main subjects were retained: a simplified description of the N-body motion of particles in the quasi-particle configuration; study of the dynamics of nuclear components which are not described by nucleons in their ground state. The following themes were presented: quasiparticles and the Green functions, relativistic aspects of the quasiparticle concept, the dimensions of nucleons in the nuclei and the EMC effect, quarks and gluons in the nuclei, the delta in the nuclei, the strangeness, quasiparticles far from the Fermi sea, diffusion of electrons, stellar evolution and nucleosynthesis [fr

  7. Characteristic 7- and 5- states observed in the (p,t) reactions on even-even rare earth nuclei

    International Nuclear Information System (INIS)

    Ishizaki, Y.; Kubono, S.; Iwasaki, Y.

    1984-01-01

    The (p,t) reactions have been studied for the even-even rare earth nuclei with 40 MeV proton beam from the INS SF cyclotron. A pair of 7 - and 5 - states was observed with large cross sections in each of the nuclei with the neutron number (N) ranging from 86 to 100. For sup(140,142)Nd of N = 80 and 82 the data were obtained at KVI in Groningen, and the data for 152 Sm of N = 90 at MSU. Q value systematics of (p,t) reactions to these states seem to suggest that these are excited by the two neutron pick-up from the neutron core of N = 82. The (p,t) cross sections leading to these states of N from 82 to 96 are nearly constant. (author)

  8. Systematic behavior of B(E2) values in the yrast bands of doubly even nuclei

    International Nuclear Information System (INIS)

    Andrejtscheff, W.; Rutgers - the State Univ., New Brunswick, NJ; Nadjakov, E.; Venkova, T.

    1980-01-01

    The experimental information on B(E2) transition rates in the yrast bands of doubly even nuclei (126 2 (J: moment of inertia) are plotted versus the rotational frequency squared h/2π 2 ω 2 for each nucleus. In strongly deformed nuclei (N >= 90), the Ssub(exp) curves smoothly increase for low rotational frequencies suggesting that up to spin values I approx. 8 the ratio Q 2 0 /J is nearly constant (Q 0 : quadrupole moment). This is not the case in nuclei with a soft core (N <= 88). In the relevant discussion, the hydrodynamical model as well as the CAP effect are considered. The results in the backbending region are qualitatively discussed in terms of the two-band crossing model. Evidence is found supporting the prediction of an oscillating behavior of the yrast-yrare interaction. (orig.)

  9. Stability of nuclei in peripheral collisions in the JAERI quantum molecular dynamics model

    International Nuclear Information System (INIS)

    Mancusi, Davide; Niita, Koji; Maruyama, Tomoyuki; Sihver, Lembit

    2009-01-01

    The JAERI quantum molecular dynamics (JQMD) model has been successfully used for a long time now to describe many different aspects of nuclear reactions in a unified way. In some cases, however, the JQMD model cannot produce consistent results: First, it lacks a fully relativistically covariant approach to the problem of molecular dynamics; second, the quantum-mechanical ground state of nuclei cannot be faithfully reproduced in a semiclassical framework. Therefore, we introduce R-JQMD, an improved version of JQMD that also features a new ground-state initialization algorithm for nuclei. We compare the structure of the two codes and discuss whether R-JQMD can be adjusted to improve JQMD's agreement with measured heavy-ion fragmentation cross sections

  10. Reflection asymmetric shapes in nuclei

    International Nuclear Information System (INIS)

    Ahmad, I.; Carpenter, M.P.; Emling, H.

    1989-01-01

    Experimental data show that there is no even-even nucleus with a reflection asymmetric shape in its ground state. Maximum octupole- octupole correlations occur in nuclei in the mass 224 (N∼134, Z∼88) region. Parity doublets, which are the characteristic signature of octupole deformation, have been observed in several odd mass Ra, Ac and Pa nuclei. Intertwined negative and positive parity levels have been observed in several even-even Ra and Th nuclei above spin ∼8ℎ. In both cases, the opposite parity states are connected by fast El transitions. In some medium-mass nuclei intertwined negative and positive parity levels have also been observed above spin ∼7ℎ. The nuclei which exhibit octupole deformation in this mass region are 144 Ba, 146 Ba and 146 Ce; 142 Ba, 148 Ce, 150 Ce and 142 Xe do not show these characteristics. No case of parity doublet has been observed in the mass 144 region. 32 refs., 16 figs., 1 tab

  11. Precision measurement of the mass difference between light nuclei and anti-nuclei

    CERN Document Server

    Adam, Jaroslav; Aggarwal, Madan Mohan; Aglieri Rinella, Gianluca; Agnello, Michelangelo; Agrawal, Neelima; Ahammed, Zubayer; Ahmed, Ijaz; Ahn, Sang Un; Aimo, Ilaria; Aiola, Salvatore; Ajaz, Muhammad; Akindinov, Alexander; Alam, Sk Noor; Aleksandrov, Dmitry; Alessandro, Bruno; Alexandre, Didier; Alfaro Molina, Jose Ruben; Alici, Andrea; Alkin, Anton; Alme, Johan; Alt, Torsten; Altinpinar, Sedat; Altsybeev, Igor; Alves Garcia Prado, Caio; Andrei, Cristian; Andronic, Anton; Anguelov, Venelin; Anielski, Jonas; Anticic, Tome; Antinori, Federico; Antonioli, Pietro; Aphecetche, Laurent Bernard; Appelshaeuser, Harald; Arcelli, Silvia; Armesto Perez, Nestor; Arnaldi, Roberta; Aronsson, Tomas; Arsene, Ionut Cristian; Arslandok, Mesut; Augustinus, Andre; Averbeck, Ralf Peter; Azmi, Mohd Danish; Bach, Matthias Jakob; Badala, Angela; Baek, Yong Wook; Bagnasco, Stefano; Bailhache, Raphaelle Marie; Bala, Renu; Baldisseri, Alberto; Ball, Markus; Baltasar Dos Santos Pedrosa, Fernando; Baral, Rama Chandra; Barbano, Anastasia Maria; Barbera, Roberto; Barile, Francesco; Barnafoldi, Gergely Gabor; Barnby, Lee Stuart; Ramillien Barret, Valerie; Bartalini, Paolo; Bartke, Jerzy Gustaw; Bartsch, Esther; Basile, Maurizio; Bastid, Nicole; Basu, Sumit; Bathen, Bastian; Batigne, Guillaume; Batista Camejo, Arianna; Batyunya, Boris; Batzing, Paul Christoph; Bearden, Ian Gardner; Beck, Hans; Bedda, Cristina; Behera, Nirbhay Kumar; Belikov, Iouri; Bellini, Francesca; Bello Martinez, Hector; Bellwied, Rene; Belmont Iii, Ronald John; Belmont Moreno, Ernesto; Belyaev, Vladimir; Bencedi, Gyula; Beole, Stefania; Berceanu, Ionela; Bercuci, Alexandru; Berdnikov, Yaroslav; Berenyi, Daniel; Bertens, Redmer Alexander; Berzano, Dario; Betev, Latchezar; Bhasin, Anju; Bhat, Inayat Rasool; Bhati, Ashok Kumar; Bhattacharjee, Buddhadeb; Bhom, Jihyun; Bianchi, Livio; Bianchi, Nicola; Bianchin, Chiara; Bielcik, Jaroslav; Bielcikova, Jana; Bilandzic, Ante; Biswas, Saikat; Bjelogrlic, Sandro; Blanco, Fernando; Blau, Dmitry; Blume, Christoph; Bock, Friederike; Bogdanov, Alexey; Boggild, Hans; Boldizsar, Laszlo; Bombara, Marek; Book, Julian Heinz; Borel, Herve; Borissov, Alexander; Borri, Marcello; Bossu, Francesco; Botje, Michiel; Botta, Elena; Boettger, Stefan; Braun-Munzinger, Peter; Bregant, Marco; Breitner, Timo Gunther; Broker, Theo Alexander; Browning, Tyler Allen; Broz, Michal; Brucken, Erik Jens; Bruna, Elena; Bruno, Giuseppe Eugenio; Budnikov, Dmitry; Buesching, Henner; Bufalino, Stefania; Buncic, Predrag; Busch, Oliver; Buthelezi, Edith Zinhle; Buxton, Jesse Thomas; Caffarri, Davide; Cai, Xu; Caines, Helen Louise; Calero Diaz, Liliet; Caliva, Alberto; Calvo Villar, Ernesto; Camerini, Paolo; Carena, Francesco; Carena, Wisla; Castillo Castellanos, Javier Ernesto; Castro, Andrew John; Casula, Ester Anna Rita; Cavicchioli, Costanza; Ceballos Sanchez, Cesar; Cepila, Jan; Cerello, Piergiorgio; Chang, Beomsu; Chapeland, Sylvain; Chartier, Marielle; Charvet, Jean-Luc Fernand; Chattopadhyay, Subhasis; Chattopadhyay, Sukalyan; Chelnokov, Volodymyr; Cherney, Michael Gerard; Cheshkov, Cvetan Valeriev; Cheynis, Brigitte; Chibante Barroso, Vasco Miguel; Dobrigkeit Chinellato, David; Chochula, Peter; Choi, Kyungeon; Chojnacki, Marek; Choudhury, Subikash; Christakoglou, Panagiotis; Christensen, Christian Holm; Christiansen, Peter; Chujo, Tatsuya; Chung, Suh-Urk; Cicalo, Corrado; Cifarelli, Luisa; Cindolo, Federico; Cleymans, Jean Willy Andre; Colamaria, Fabio Filippo; Colella, Domenico; Collu, Alberto; Colocci, Manuel; Conesa Balbastre, Gustavo; Conesa Del Valle, Zaida; Connors, Megan Elizabeth; Contreras Nuno, Jesus Guillermo; Cormier, Thomas Michael; Corrales Morales, Yasser; Cortes Maldonado, Ismael; Cortese, Pietro; Cosentino, Mauro Rogerio; Costa, Filippo; Crochet, Philippe; Cruz Albino, Rigoberto; Cuautle Flores, Eleazar; Cunqueiro Mendez, Leticia; Dahms, Torsten; Dainese, Andrea; Danu, Andrea; Das, Debasish; Das, Indranil; Das, Supriya; Dash, Ajay Kumar; Dash, Sadhana; De, Sudipan; De Caro, Annalisa; De Cataldo, Giacinto; De Cuveland, Jan; De Falco, Alessandro; De Gruttola, Daniele; De Marco, Nora; De Pasquale, Salvatore; Deisting, Alexander; Deloff, Andrzej; Denes, Ervin Sandor; D'Erasmo, Ginevra; Di Bari, Domenico; Di Mauro, Antonio; Di Nezza, Pasquale; Diaz Corchero, Miguel Angel; Dietel, Thomas; Dillenseger, Pascal; Divia, Roberto; Djuvsland, Oeystein; Dobrin, Alexandru Florin; Dobrowolski, Tadeusz Antoni; Domenicis Gimenez, Diogenes; Donigus, Benjamin; Dordic, Olja; Dubey, Anand Kumar; Dubla, Andrea; Ducroux, Laurent; Dupieux, Pascal; Ehlers Iii, Raymond James; Elia, Domenico; Engel, Heiko; Erazmus, Barbara Ewa; Erhardt, Filip; Eschweiler, Dominic; Espagnon, Bruno; Estienne, Magali Danielle; Esumi, Shinichi; Evans, David; Evdokimov, Sergey; Eyyubova, Gyulnara; Fabbietti, Laura; Fabris, Daniela; Faivre, Julien; Fantoni, Alessandra; Fasel, Markus; Feldkamp, Linus; Felea, Daniel; Feliciello, Alessandro; Feofilov, Grigorii; Ferencei, Jozef; Fernandez Tellez, Arturo; Gonzalez Ferreiro, Elena; Ferretti, Alessandro; Festanti, Andrea; Figiel, Jan; Araujo Silva Figueredo, Marcel; Filchagin, Sergey; Finogeev, Dmitry; Fionda, Fiorella; Fiore, Enrichetta Maria; Fleck, Martin Gabriel; Floris, Michele; Foertsch, Siegfried Valentin; Foka, Panagiota; Fokin, Sergey; Fragiacomo, Enrico; Francescon, Andrea; Frankenfeld, Ulrich Michael; Fuchs, Ulrich; Furget, Christophe; Furs, Artur; Fusco Girard, Mario; Gaardhoeje, Jens Joergen; Gagliardi, Martino; Gago Medina, Alberto Martin; Gallio, Mauro; Gangadharan, Dhevan Raja; Ganoti, Paraskevi; Gao, Chaosong; Garabatos Cuadrado, Jose; Garcia-Solis, Edmundo Javier; Gargiulo, Corrado; Gasik, Piotr Jan; Germain, Marie; Gheata, Andrei George; Gheata, Mihaela; Ghosh, Premomoy; Ghosh, Sanjay Kumar; Gianotti, Paola; Giubellino, Paolo; Giubilato, Piero; Gladysz-Dziadus, Ewa; Glassel, Peter; Gomez Ramirez, Andres; Gonzalez Zamora, Pedro; Gorbunov, Sergey; Gorlich, Lidia Maria; Gotovac, Sven; Grabski, Varlen; Graczykowski, Lukasz Kamil; Grelli, Alessandro; Grigoras, Alina Gabriela; Grigoras, Costin; Grigoryev, Vladislav; Grigoryan, Ara; Grigoryan, Smbat; Grynyov, Borys; Grion, Nevio; Grosse-Oetringhaus, Jan Fiete; Grossiord, Jean-Yves; Grosso, Raffaele; Guber, Fedor; Guernane, Rachid; Guerzoni, Barbara; Gulbrandsen, Kristjan Herlache; Gulkanyan, Hrant; Gunji, Taku; Gupta, Anik; Gupta, Ramni; Haake, Rudiger; Haaland, Oystein Senneset; Hadjidakis, Cynthia Marie; Haiduc, Maria; Hamagaki, Hideki; Hamar, Gergoe; Hanratty, Luke David; Hansen, Alexander; Harris, John William; Hartmann, Helvi; Harton, Austin Vincent; Hatzifotiadou, Despina; Hayashi, Shinichi; Heckel, Stefan Thomas; Heide, Markus Ansgar; Helstrup, Haavard; Herghelegiu, Andrei Ionut; Herrera Corral, Gerardo Antonio; Hess, Benjamin Andreas; Hetland, Kristin Fanebust; Hilden, Timo Eero; Hillemanns, Hartmut; Hippolyte, Boris; Hristov, Peter Zahariev; Huang, Meidana; Humanic, Thomas; Hussain, Nur; Hussain, Tahir; Hutter, Dirk; Hwang, Dae Sung; Ilkaev, Radiy; Ilkiv, Iryna; Inaba, Motoi; Ionita, Costin; Ippolitov, Mikhail; Irfan, Muhammad; Ivanov, Marian; Ivanov, Vladimir; Izucheev, Vladimir; Jacobs, Peter Martin; Jahnke, Cristiane; Jang, Haeng Jin; Janik, Malgorzata Anna; Pahula Hewage, Sandun; Jena, Chitrasen; Jena, Satyajit; Jimenez Bustamante, Raul Tonatiuh; Jones, Peter Graham; Jung, Hyungtaik; Jusko, Anton; Kalinak, Peter; Kalweit, Alexander Philipp; Kamin, Jason Adrian; Kang, Ju Hwan; Kaplin, Vladimir; Kar, Somnath; Karasu Uysal, Ayben; Karavichev, Oleg; Karavicheva, Tatiana; Karpechev, Evgeny; Kebschull, Udo Wolfgang; Keidel, Ralf; Keijdener, Darius Laurens; Keil, Markus; Khan, Kamal; Khan, Mohammed Mohisin; Khan, Palash; Khan, Shuaib Ahmad; Khanzadeev, Alexei; Kharlov, Yury; Kileng, Bjarte; Kim, Beomkyu; Kim, Do Won; Kim, Dong Jo; Kim, Hyeonjoong; Kim, Jinsook; Kim, Mimae; Kim, Minwoo; Kim, Se Yong; Kim, Taesoo; Kirsch, Stefan; Kisel, Ivan; Kiselev, Sergey; Kisiel, Adam Ryszard; Kiss, Gabor; Klay, Jennifer Lynn; Klein, Carsten; Klein, Jochen; Klein-Boesing, Christian; Kluge, Alexander; Knichel, Michael Linus; Knospe, Anders Garritt; Kobayashi, Taiyo; Kobdaj, Chinorat; Kofarago, Monika; Kohler, Markus Konrad; Kollegger, Thorsten; Kolozhvari, Anatoly; Kondratev, Valerii; Kondratyeva, Natalia; Kondratyuk, Evgeny; Konevskikh, Artem; Kouzinopoulos, Charalampos; Kovalenko, Vladimir; Kowalski, Marek; Kox, Serge; Koyithatta Meethaleveedu, Greeshma; Kral, Jiri; Kralik, Ivan; Kravcakova, Adela; Krelina, Michal; Kretz, Matthias; Krivda, Marian; Krizek, Filip; Kryshen, Evgeny; Krzewicki, Mikolaj; Kubera, Andrew Michael; Kucera, Vit; Kucheryaev, Yury; Kugathasan, Thanushan; Kuhn, Christian Claude; Kuijer, Paulus Gerardus; Kulakov, Igor; Kumar, Jitendra; Lokesh, Kumar; Kurashvili, Podist; Kurepin, Alexander; Kurepin, Alexey; Kuryakin, Alexey; Kushpil, Svetlana; Kweon, Min Jung; Kwon, Youngil; La Pointe, Sarah Louise; La Rocca, Paola; Lagana Fernandes, Caio; Lakomov, Igor; Langoy, Rune; Lara Martinez, Camilo Ernesto; Lardeux, Antoine Xavier; Lattuca, Alessandra; Laudi, Elisa; Lea, Ramona; Leardini, Lucia; Lee, Graham Richard; Lee, Seongjoo; Legrand, Iosif; Lehnert, Joerg Walter; Lemmon, Roy Crawford; Lenti, Vito; Leogrande, Emilia; Leon Monzon, Ildefonso; Leoncino, Marco; Levai, Peter; Li, Shuang; Li, Xiaomei; Lien, Jorgen Andre; Lietava, Roman; Lindal, Svein; Lindenstruth, Volker; Lippmann, Christian; Lisa, Michael Annan; Ljunggren, Hans Martin; Lodato, Davide Francesco; Lonne, Per-Ivar; Loggins, Vera Renee; Loginov, Vitaly; Loizides, Constantinos; Lopez, Xavier Bernard; Lopez Torres, Ernesto; Lowe, Andrew John; Lu, Xianguo; Luettig, Philipp Johannes; Lunardon, Marcello; Luparello, Grazia; Maevskaya, Alla; Mager, Magnus; Mahajan, Sanjay; Mahmood, Sohail Musa; Maire, Antonin; Majka, Richard Daniel; Malaev, Mikhail; Maldonado Cervantes, Ivonne Alicia; Malinina, Liudmila; Mal'Kevich, Dmitry; Malzacher, Peter; Mamonov, Alexander; Manceau, Loic Henri Antoine; Manko, Vladislav; Manso, Franck; Manzari, Vito; Marchisone, Massimiliano; Mares, Jiri; Margagliotti, Giacomo Vito; Margotti, Anselmo; Margutti, Jacopo; Marin, Ana Maria; Markert, Christina; Marquard, Marco; Martashvili, Irakli; Martin, Nicole Alice; Martin Blanco, Javier; Martinengo, Paolo; Martinez Hernandez, Mario Ivan; Martinez-Garcia, Gines; Martinez Pedreira, Miguel; Martynov, Yevgen; Mas, Alexis Jean-Michel; Masciocchi, Silvia; Masera, Massimo; Masoni, Alberto; Massacrier, Laure Marie; Mastroserio, Annalisa; Matyja, Adam Tomasz; Mayer, Christoph; Mazer, Joel Anthony; Mazzoni, Alessandra Maria; Mcdonald, Daniel; Meddi, Franco; Menchaca-Rocha, Arturo Alejandro; Meninno, Elisa; Mercado-Perez, Jorge; Meres, Michal; Miake, Yasuo; Mieskolainen, Matti Mikael; Mikhaylov, Konstantin; Milano, Leonardo; Milosevic, Jovan; Minervini, Lazzaro Manlio; Mischke, Andre; Mishra, Aditya Nath; Miskowiec, Dariusz Czeslaw; Mitra, Jubin; Mitu, Ciprian Mihai; Mohammadi, Naghmeh; Mohanty, Bedangadas; Molnar, Levente; Montano Zetina, Luis Manuel; Montes Prado, Esther; Morando, Maurizio; Moreira De Godoy, Denise Aparecida; Moretto, Sandra; Morreale, Astrid; Morsch, Andreas; Muccifora, Valeria; Mudnic, Eugen; Muhlheim, Daniel Michael; Muhuri, Sanjib; Mukherjee, Maitreyee; Muller, Hans; Mulligan, James Declan; Gameiro Munhoz, Marcelo; Murray, Sean; Musa, Luciano; Musinsky, Jan; Nandi, Basanta Kumar; Nania, Rosario; Nappi, Eugenio; Naru, Muhammad Umair; Nattrass, Christine; Nayak, Kishora; Nayak, Tapan Kumar; Nazarenko, Sergey; Nedosekin, Alexander; Nellen, Lukas; Ng, Fabian; Nicassio, Maria; Niculescu, Mihai; Niedziela, Jeremi; Nielsen, Borge Svane; Nikolaev, Sergey; Nikulin, Sergey; Nikulin, Vladimir; Noferini, Francesco; Nomokonov, Petr; Nooren, Gerardus; Norman, Jaime; Nyanin, Alexander; Nystrand, Joakim Ingemar; Oeschler, Helmut Oskar; Oh, Saehanseul; Oh, Sun Kun; Ohlson, Alice Elisabeth; Okatan, Ali; Okubo, Tsubasa; Olah, Laszlo; Oleniacz, Janusz; Oliveira Da Silva, Antonio Carlos; Oliver, Michael Henry; Onderwaater, Jacobus; Oppedisano, Chiara; Ortiz Velasquez, Antonio; Oskarsson, Anders Nils Erik; Otwinowski, Jacek Tomasz; Oyama, Ken; Ozdemir, Mahmut; Pachmayer, Yvonne Chiara; Pagano, Paola; Paic, Guy; Pajares Vales, Carlos; Pal, Susanta Kumar; Pan, Jinjin; Pandey, Ashutosh Kumar; Pant, Divyash; Papikyan, Vardanush; Pappalardo, Giuseppe; Pareek, Pooja; Park, Woojin; Parmar, Sonia; Passfeld, Annika; Paticchio, Vincenzo; Paul, Biswarup; Pawlak, Tomasz Jan; Peitzmann, Thomas; Pereira Da Costa, Hugo Denis Antonio; Pereira De Oliveira Filho, Elienos; Peresunko, Dmitry Yurevich; Perez Lara, Carlos Eugenio; Peskov, Vladimir; Pestov, Yury; Petracek, Vojtech; Petrov, Viacheslav; Petrovici, Mihai; Petta, Catia; Piano, Stefano; Pikna, Miroslav; Pillot, Philippe; Pinazza, Ombretta; Pinsky, Lawrence; Piyarathna, Danthasinghe; Ploskon, Mateusz Andrzej; Planinic, Mirko; Pluta, Jan Marian; Pochybova, Sona; Podesta Lerma, Pedro Luis Manuel; Poghosyan, Martin; Polishchuk, Boris; Poljak, Nikola; Poonsawat, Wanchaloem; Pop, Amalia; Porteboeuf, Sarah Julie; Porter, R Jefferson; Pospisil, Jan; Prasad, Sidharth Kumar; Preghenella, Roberto; Prino, Francesco; Pruneau, Claude Andre; Pshenichnov, Igor; Puccio, Maximiliano; Puddu, Giovanna; Pujahari, Prabhat Ranjan; Punin, Valery; Putschke, Jorn Henning; Qvigstad, Henrik; Rachevski, Alexandre; Raha, Sibaji; Rajput, Sonia; Rak, Jan; Rakotozafindrabe, Andry Malala; Ramello, Luciano; Raniwala, Rashmi; Raniwala, Sudhir; Rasanen, Sami Sakari; Rascanu, Bogdan Theodor; Rathee, Deepika; Razazi, Vahedeh; Read, Kenneth Francis; Real, Jean-Sebastien; Redlich, Krzysztof; Reed, Rosi Jan; Rehman, Attiq Ur; Reichelt, Patrick Simon; Reicher, Martijn; Reidt, Felix; Ren, Xiaowen; Renfordt, Rainer Arno Ernst; Reolon, Anna Rita; Reshetin, Andrey; Rettig, Felix Vincenz; Revol, Jean-Pierre; Reygers, Klaus Johannes; Riabov, Viktor; Ricci, Renato Angelo; Richert, Tuva Ora Herenui; Richter, Matthias Rudolph; Riedler, Petra; Riegler, Werner; Riggi, Francesco; Ristea, Catalin-Lucian; Rivetti, Angelo; Rocco, Elena; Rodriguez Cahuantzi, Mario; Rodriguez Manso, Alis; Roeed, Ketil; Rogochaya, Elena; Rohr, David Michael; Roehrich, Dieter; Romita, Rosa; Ronchetti, Federico; Ronflette, Lucile; Rosnet, Philippe; Rossi, Andrea; Roukoutakis, Filimon; Roy, Ankhi; Roy, Christelle Sophie; Roy, Pradip Kumar; Rubio Montero, Antonio Juan; Rui, Rinaldo; Russo, Riccardo; Ryabinkin, Evgeny; Ryabov, Yury; Rybicki, Andrzej; Sadovskiy, Sergey; Safarik, Karel; Sahlmuller, Baldo; Sahoo, Pragati; Sahoo, Raghunath; Sahoo, Sarita; Sahu, Pradip Kumar; Saini, Jogender; Sakai, Shingo; Saleh, Mohammad Ahmad; Salgado Lopez, Carlos Alberto; Salzwedel, Jai Samuel Nielsen; Sambyal, Sanjeev Singh; Samsonov, Vladimir; Sanchez Castro, Xitzel; Sandor, Ladislav; Sandoval, Andres; Sano, Masato; Santagati, Gianluca; Sarkar, Debojit; Scapparone, Eugenio; Scarlassara, Fernando; Scharenberg, Rolf Paul; Schiaua, Claudiu Cornel; Schicker, Rainer Martin; Schmidt, Christian Joachim; Schmidt, Hans Rudolf; Schuchmann, Simone; Schukraft, Jurgen; Schulc, Martin; Schuster, Tim Robin; Schutz, Yves Roland; Schwarz, Kilian Eberhard; Schweda, Kai Oliver; Scioli, Gilda; Scomparin, Enrico; Scott, Rebecca Michelle; Seeder, Karin Soraya; Seger, Janet Elizabeth; Sekiguchi, Yuko; Selyuzhenkov, Ilya; Senosi, Kgotlaesele; Seo, Jeewon; Serradilla Rodriguez, Eulogio; Sevcenco, Adrian; Shabanov, Arseniy; Shabetai, Alexandre; Shadura, Oksana; Shahoyan, Ruben; Shangaraev, Artem; Sharma, Ankita; Sharma, Natasha; Shigaki, Kenta; Shtejer Diaz, Katherin; Sibiryak, Yury; Siddhanta, Sabyasachi; Sielewicz, Krzysztof Marek; Siemiarczuk, Teodor; Silvermyr, David Olle Rickard; Silvestre, Catherine Micaela; Simatovic, Goran; Simonetti, Giuseppe; Singaraju, Rama Narayana; Singh, Ranbir; Singha, Subhash; Singhal, Vikas; Sinha, Bikash; Sarkar - Sinha, Tinku; Sitar, Branislav; Sitta, Mario; Skaali, Bernhard; Slupecki, Maciej; Smirnov, Nikolai; Snellings, Raimond; Snellman, Tomas Wilhelm; Soegaard, Carsten; Soltz, Ron Ariel; Song, Jihye; Song, Myunggeun; Song, Zixuan; Soramel, Francesca; Sorensen, Soren Pontoppidan; Spacek, Michal; Spiriti, Eleuterio; Sputowska, Iwona Anna; Spyropoulou-Stassinaki, Martha; Srivastava, Brijesh Kumar; Stachel, Johanna; Stan, Ionel; Stefanek, Grzegorz; Steinpreis, Matthew Donald; Stenlund, Evert Anders; Steyn, Gideon Francois; Stiller, Johannes Hendrik; Stocco, Diego; Strmen, Peter; Alarcon Do Passo Suaide, Alexandre; Sugitate, Toru; Suire, Christophe Pierre; Suleymanov, Mais Kazim Oglu; Sultanov, Rishat; Sumbera, Michal; Symons, Timothy; Szabo, Alexander; Szanto De Toledo, Alejandro; Szarka, Imrich; Szczepankiewicz, Adam; Szymanski, Maciej Pawel; Takahashi, Jun; Tanaka, Naoto; Tangaro, Marco-Antonio; Tapia Takaki, Daniel Jesus; Tarantola Peloni, Attilio; Tariq, Mohammad; Tarzila, Madalina-Gabriela; Tauro, Arturo; Tejeda Munoz, Guillermo; Telesca, Adriana; Terasaki, Kohei; Terrevoli, Cristina; Teyssier, Boris; Thaeder, Jochen Mathias; Thomas, Deepa; Tieulent, Raphael Noel; Timmins, Anthony Robert; Toia, Alberica; Trogolo, Stefano; Trubnikov, Victor; Trzaska, Wladyslaw Henryk; Tsuji, Tomoya; Tumkin, Alexandr; Turrisi, Rosario; Tveter, Trine Spedstad; Ullaland, Kjetil; Uras, Antonio; Usai, Gianluca; Utrobicic, Antonija; Vajzer, Michal; Vala, Martin; Valencia Palomo, Lizardo; Vallero, Sara; Van Der Maarel, Jasper; Van Hoorne, Jacobus Willem; Van Leeuwen, Marco; Vanat, Tomas; Vande Vyvre, Pierre; Varga, Dezso; Diozcora Vargas Trevino, Aurora; Vargyas, Marton; Varma, Raghava; Vasileiou, Maria; Vasiliev, Andrey; Vauthier, Astrid; Vechernin, Vladimir; Veen, Annelies Marianne; Veldhoen, Misha; Velure, Arild; Venaruzzo, Massimo; Vercellin, Ermanno; Vergara Limon, Sergio; Vernet, Renaud; Verweij, Marta; Vickovic, Linda; Viesti, Giuseppe; Viinikainen, Jussi Samuli; Vilakazi, Zabulon; Villalobos Baillie, Orlando; Vinogradov, Alexander; Vinogradov, Leonid; Vinogradov, Yury; Virgili, Tiziano; Vislavicius, Vytautas; Viyogi, Yogendra; Vodopyanov, Alexander; Volkl, Martin Andreas; Voloshin, Kirill; Voloshin, Sergey; Volpe, Giacomo; Von Haller, Barthelemy; Vorobyev, Ivan; Vranic, Danilo; Vrlakova, Janka; Vulpescu, Bogdan; Vyushin, Alexey; Wagner, Boris; Wagner, Jan; Wang, Hongkai; Wang, Mengliang; Wang, Yifei; Watanabe, Daisuke; Weber, Michael; Weber, Steffen Georg; Wessels, Johannes Peter; Westerhoff, Uwe; Wiechula, Jens; Wikne, Jon; Wilde, Martin Rudolf; Wilk, Grzegorz Andrzej; Wilkinson, Jeremy John; Williams, Crispin; Windelband, Bernd Stefan; Winn, Michael Andreas; Yaldo, Chris G; Yamaguchi, Yorito; Yang, Hongyan; Yang, Ping; Yano, Satoshi; Yasnopolskiy, Stanislav; Yin, Zhongbao; Yokoyama, Hiroki; Yoo, In-Kwon; Yurchenko, Volodymyr; Yushmanov, Igor; Zaborowska, Anna; Zaccolo, Valentina; Zaman, Ali; Zampolli, Chiara; Correia Zanoli, Henrique Jose; Zaporozhets, Sergey; Zarochentsev, Andrey; Zavada, Petr; Zavyalov, Nikolay; Zbroszczyk, Hanna Paulina; Zgura, Sorin Ion; Zhalov, Mikhail; Zhang, Haitao; Zhang, Xiaoming; Zhang, Yonghong; Zhao, Chengxin; Zhigareva, Natalia; Zhou, Daicui; Zhou, You; Zhou, Zhuo; Zhu, Hongsheng; Zhu, Jianhui; Zhu, Xiangrong; Zichichi, Antonino; Zimmermann, Alice; Zimmermann, Markus Bernhard; Zinovjev, Gennady; Zyzak, Maksym

    2015-08-17

    The measurement of the mass differences for systems bound by the strong force has reached a very high precision with protons and anti-protons. The extension of such measurement from (anti-)baryons to (anti-)nuclei allows one to probe any difference in the interactions between nucleons and anti-nucleons encoded in the (anti-)nuclei masses. This force is a remnant of the underlying strong interaction among quarks and gluons and can be described by effective theories, but cannot yet be directly derived from quantum chromodynamics. Here we report a measurement of the difference between the ratios of the mass and charge of deuterons (d) and anti-deuterons ($\\bar{d}$), and $^{3}{\\rm He}$ and $^3\\overline{\\rm He}$ nuclei carried out with the ALICE (A Large Ion Collider Experiment) detector in Pb-Pb collisions at a centre-of-mass energy per nucleon pair of 2.76 TeV. Our direct measurement of the mass-over-charge differences confirm CPT invariance to an unprecedented precision in the sector of light nuclei. This funda...

  12. Structure of light mass (exotic) nuclei as evidenced by scattering from hydrogen

    International Nuclear Information System (INIS)

    Amos, K.; Dortmans, P.J.

    1998-01-01

    Microscopic optical model potentials generated by full folding of realistic two-nucleon (n/N) interactions with nuclear structure specified by large basis shell model calculations have been constructed. With those (nonlocal) optical potentials, predictions of light mass nuclei-hydrogen scattering were obtained at intermediate energies (65 to 800 MeV) that agree well with observations of cross sections and analyzing powers

  13. Microscopic cross sections: An utopia?

    Energy Technology Data Exchange (ETDEWEB)

    Hilaire, S. [CEA Bruyeres-le-Chatel, DIF 91 (France); Koning, A.J. [Nuclear Research and Consultancy Group, PO Box 25, 1755 ZG Petten (Netherlands); Goriely, S. [Institut d' Astronomie et d' Astrophysique, Universite Libre de Bruxelles, Campus de la Plaine, CP 226, 1050 Brussels (Belgium)

    2010-07-01

    The increasing need for cross sections far from the valley of stability poses a challenge for nuclear reaction models. So far, predictions of cross sections have relied on more or less phenomenological approaches, depending on parameters adjusted to available experimental data or deduced from systematical relations. While such predictions are expected to be reliable for nuclei not too far from the experimentally known regions, it is clearly preferable to use more fundamental approaches, based on sound physical bases, when dealing with very exotic nuclei. Thanks to the high computer power available today, all major ingredients required to model a nuclear reaction can now be (and have been) microscopically (or semi-microscopically) determined starting from the information provided by a nucleon-nucleon effective interaction. We have implemented all these microscopic ingredients in the TALYS nuclear reaction code, and we are now almost able to perform fully microscopic cross section calculations. The quality of these ingredients and the impact of using them instead of the usually adopted phenomenological parameters will be discussed. (authors)

  14. Microscopic cross sections: An utopia?

    International Nuclear Information System (INIS)

    Hilaire, S.; Koning, A.J.; Goriely, S.

    2010-01-01

    The increasing need for cross sections far from the valley of stability poses a challenge for nuclear reaction models. So far, predictions of cross sections have relied on more or less phenomenological approaches, depending on parameters adjusted to available experimental data or deduced from systematical relations.While such predictions are expected to be reliable for nuclei not too far from the experimentally known regions, it is clearly preferable to use more fundamental approaches, based on sound physical bases, when dealing with very exotic nuclei. Thanks to the high computer power available today, all major ingredients required to model a nuclear reaction can now be (and have been) microscopically (or semi-microscopically) determined starting from the information provided by a nucleon-nucleon effective interaction. We have implemented all these microscopic ingredients in the TALYS nuclear reaction code, and we are now almost able to perform fully microscopic cross section calculations. The quality of these ingredients and the impact of using them instead of the usually adopted phenomenological parameters will be discussed. (authors)

  15. Nuclear structure and weak rates of heavy waiting point nuclei under rp-process conditions

    Science.gov (United States)

    Nabi, Jameel-Un; Böyükata, Mahmut

    2017-01-01

    The structure and the weak interaction mediated rates of the heavy waiting point (WP) nuclei 80Zr, 84Mo, 88Ru, 92Pd and 96Cd along N = Z line were studied within the interacting boson model-1 (IBM-1) and the proton-neutron quasi-particle random phase approximation (pn-QRPA). The energy levels of the N = Z WP nuclei were calculated by fitting the essential parameters of IBM-1 Hamiltonian and their geometric shapes were predicted by plotting potential energy surfaces (PESs). Half-lives, continuum electron capture rates, positron decay rates, electron capture cross sections of WP nuclei, energy rates of β-delayed protons and their emission probabilities were later calculated using the pn-QRPA. The calculated Gamow-Teller strength distributions were compared with previous calculation. We present positron decay and continuum electron capture rates on these WP nuclei under rp-process conditions using the same model. For the rp-process conditions, the calculated total weak rates are twice the Skyrme HF+BCS+QRPA rates for 80Zr. For remaining nuclei the two calculations compare well. The electron capture rates are significant and compete well with the corresponding positron decay rates under rp-process conditions. The finding of the present study supports that electron capture rates form an integral part of the weak rates under rp-process conditions and has an important role for the nuclear model calculations.

  16. Barriers in the energy of deformed nuclei

    Directory of Open Access Journals (Sweden)

    V. Yu. Denisov

    2014-06-01

    Full Text Available Interaction energy between two nuclei considering to their deformations is studied. Coulomb and nuclear in-teraction energies, as well as the deformation energies of both nuclei, are taken into account at evaluation of the interaction energy. It is shown that the barrier related to the interaction energy of two nuclei depends on the de-formations and the height of the minimal barrier is evaluated. It is obtained that the heavier nucleus-nucleus sys-tems have large deformation values at the lowest barrier. The difference between the barrier between spherical nuclei and the lowest barrier between deformed nuclei increases with the mass and the charge of the interacting nuclei.

  17. Theory of hot and rotating nuclei within the static path approximation

    International Nuclear Information System (INIS)

    Ansari, A.

    1995-01-01

    For the description of hot and rotating nuclei the static path approximation to the path integral representation of the partition function is at present the best practicable approach incorporating rigorously the statistical fluctuations in nuclear shape degrees of freedom. The paper briefly discusses the method and present a few of the recent results on level densities and GDR (giant dipole resonance) γ-absorption cross sections. (author). 22 refs., 2 figs

  18. Neutron-induced capture cross sections via the surrogate reaction method

    International Nuclear Information System (INIS)

    Boutoux, G.; Jurado, B.; Aiche, M.; Barreau, G.; Capellan, N.; Companis, I.; Czajkowski, S.; Dassie, D.; Haas, B.; Mathieu, L.; Meot, V.; Bail, A.; Bauge, E.; Daugas, J. M.; Faul, T.; Gaudefroy, L.; Morel, P.; Pillet, N.; Roig, O.; Romain, P.; Taieb, J.; Theroine, C.; Burke, J.T.; Companis, I.; Derkx, X.; Gunsing, F.; Matea, I.; Tassan-Got, L.; Porquet, M.G.; Serot, O.

    2011-01-01

    The surrogate reaction method is an indirect way of determining cross sections for nuclear reactions that proceed through a compound nucleus. This technique enables neutron-induced cross sections to be extracted for nuclear reactions on short-lived unstable nuclei that otherwise can not be measured. This technique has been successfully applied to determine the neutron-induced fission cross sections of several short-lived nuclei. In this work, we investigate whether this powerful technique can also be used to determine of neutron-induced capture cross sections. For this purpose we use the surrogate reaction 174 Yb( 3 He, pγ) 176 Lu to infer the well known 175 Lu(n, γ) cross section and compare the results with the directly measured neutron-induced data. This surrogate experiment has been performed in March 2010. The experimental technique used and the first preliminary results will be presented. (authors)

  19. Structure of Light Neutron-rich Nuclei

    International Nuclear Information System (INIS)

    Dlouhy, Zdenek

    2007-01-01

    In this contribution we searched for irregularities in various separation energies in the frame of mass measurement of neutron-rich nuclei at GANIL. On this basis we can summarize that the new doubly magic nuclei are 8 He, 22 O and 24 O. They are characterized by extra stability and, except 24 O, they cannot accept and bind additional neutrons. However, if we add to these nuclei a proton we obtain 9 Li and 25 F which are the core for two-neutron halo nucleus 11 Li and enables that fluorine can bound even 6 more neutrons, respectively. In that aspect the doubly magic nuclei in the neutron-rich region can form the basis either for neutron halo or very neutron-rich nuclei. (Author)

  20. Model cross section calculations using LAHET

    International Nuclear Information System (INIS)

    Prael, R.E.

    1992-01-01

    The current status of LAHET is discussed. The effect of a multistage preequilibrium exciton model following the INC is examined for neutron emission benchmark calculations, as is the use of a Fermi breakup model for light nuclei rather than an evaporation model. Comparisons are made also for recent fission cross section experiments, and a discussion of helium production cross sections is presented

  1. Interference analysis of fission cross section

    International Nuclear Information System (INIS)

    Toshkov, S.A.; Yaneva, N.B.

    1976-01-01

    The formula for the reaction cross-section based on the R-matrix formalism considering the interference between the two neighbouring resonances, referred to the same value of total momentum was used for the analysis of the cross-section of resonance neutron induced fission of 230Pu. The experimental resolution and thermal motion of the target nuclei were accounted for numerical integration

  2. Universal trend for heavy-ion total reaction cross sections at energies above the Coulomb barrier

    Energy Technology Data Exchange (ETDEWEB)

    Tavares, O.A.P.; Medeiros, E.L., E-mail: emil@cbpf.b [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil); Morcelle, V. [Universidade de Sao Paulo (IF/USP), SP (Brazil). Inst. de Fisica

    2010-06-15

    Heavy-ion total reaction cross section measurements for more than one thousand one hundred reaction cases covering 61 target nuclei in the range {sup 6}Li-{sup 238}U, and 158 projectile nuclei from {sup 2}H up to {sup 84}Kr (mostly exotic ones) have been analysed in a systematic way by using an empirical, three-parameter formula which is applicable to cases for projectile kinetic energies above the Coulomb barrier. The analysis has shown that the average total nuclear binding energy per nucleon of the interacting nuclei and their radii are the chief quantities which describe the cross section patterns. A great number of cross section data (87%) has been quite satisfactorily reproduced by the proposed formula, therefore total reaction cross section predictions for new, not yet experimentally investigated reaction cases can be obtained within 25 percent (or much less) of uncertainty (author)

  3. Cosmology and unstable nuclei

    International Nuclear Information System (INIS)

    Schramm, D.N.

    1995-01-01

    Primordial nucleosynthesis has established itself as one of the three pillars of Big Bang cosmology. Many of the Big Bang Nucleosynthesis reactions involve unstable nuclei. Hence there is a tight relationship hetween the subject of this conference and cosmology. The prime role of unstable nuclei in cosmology is related to lithium synthesis and the lack of cosmological synthesis of Be and B. These nuclei will thus be focused upon. Nucleosynthesis involves comparing calculated abundances with observed abundances. In general, abundance determinations are dominated by systematic rather than statistical errors, and work on bounding systematics is crucial. The quark-hadron inspired inhomogeneous calculations now unanimously agree that only relatively small variations in Ω b are possible vis-a-vis the homogeneous model; hence the robustness of Ω b ∼0.05 is now apparent. (These calculations depend critically on unstable nuclei.) The above argues that the bulk of the baryons in the universe are not producing visible light. A comparison with the ROSAT cluster data is also shown to be consistent with the standard BBN model. Ω b ∼1 seems to be definitely excluded, so if Ω TOTAL =1, as some recent observations may hint, then non-baryonic dark matter is required. The implications of the recently reported halo microlensing events are discussed. In summary, it is argued that the physics of unstable nuclei affects the fundamental dark matter argument. ((orig.))

  4. Vibrational-rotational model of odd-odd nuclei

    International Nuclear Information System (INIS)

    Afanas'ev, A.V.; Guseva, T.V.; Tamberg, Yu.Ya.

    1988-01-01

    The rotational vibrational (RV) model of odd nuclei is generalized to odd-odd nuclei. The hamiltonian, wave functions and matrix elements of the RV-model of odd-odd nuclei are obtained. The expressions obtained for matrix elements of the RV-model of odd-odd nuclei can be used to study the role of vibrational additions in low-lying two-particle states of odd-odd deformed nuclei. Such calculations permit to study more correctly the residual neutron-proton interaction of valent nucleons with respect to collectivization effects

  5. Nuclei with exotic constituents

    International Nuclear Information System (INIS)

    Yamazaki, Toshimitsu.

    1990-08-01

    We discuss various interesting features in the behavior of exotic constituents of nuclei such as hyperons and mesons, in particular, with emphases on the aspect of exotic halos which are formed in general by short-range repulsion and long-range attraction. Specifically, Λ and Σ hypernuclei and pionic nuclei are discussed. (author)

  6. Study of the (p,pn) reaction on 1p shell nuclei at 46 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Miller, C A

    1974-01-01

    The (p,pn) reaction on four 1p shell nuclei, /sup 6/Li, /sup 9/Be, /sup 13/C and /sup 12/C, as well as the /sup 6/Li(p,2p) reaction, have been studied at 46 MeV. The /sup 6/Li(p,pn) cross section was found to be approximately four times that for (p,2p) and to have a very different angular dependence. Both reactions show the s-state admixture in /sup 6/Li observed with (p,2p) at higher energies. For all of the target nuclei, the cross sections have features that cannot be fitted by a renormalized Plane Wave Impulse Approximation (PWIA) calculation. A zero range distorted wave calculation was found to be in only fair agreement with the /sup 9/Be and /sup 13/C data. The overall magnitudes of the results of the calculation were found to be very sensitive to the RMS radii of the bound state wave functions of the knocked-out neutrons.

  7. The colours of Hubble Sc galaxy nuclei

    International Nuclear Information System (INIS)

    Iskudaryan, S.G.

    1975-01-01

    The colorimetric data on the nuclei of the Sc galaxies are given. Comparison of the following parameters: color of a nucleus, integral color of a galaxy, Byurakan class, and spectral type of normal spirals gives the possibility to conclude: (1) The colors of the nuclei of the Sc galaxies have a high dispersion in its values. In all Byurakan classes the galaxies with intensely red and blue nuclei occur; (2) Some Sc galaxies exhibit a discrepancy between the spectral and morphological types. The results of colorimetry of nuclei indicate that almost all such Sc galaxies have intensely red nuclei which, naturally, provide for these late spectral types. It can be assumed that the intensely red color of the nuclei of such Sc galaxies is a result of a new type of activity of these nuclei; and (3) some Sc galaxies show the characteristics of the Markarian objects

  8. Nuclei in high forms

    International Nuclear Information System (INIS)

    Szymanski, Z.; Berger, J.F.; Heenen, P.H.; Heyde, K.; Haas, B.; Janssens, R.; Paya, D.; Gogny, D.; Huber, G.; Bjoernholm, S.; Brack, M.

    1991-01-01

    The purpose of 1991 Joliot-Curie Summer School is to review the most advances in the understanding of the nuclei physics after the considerable progress in gamma spectroscopy. It covers the following topics: Highly and super-deformed nuclei, nuclear structures, mean-field approach and beyond, fission isomers, nuclear excitations with long lifetime and metal clusters

  9. On the unified system of the nucleons in nuclei

    International Nuclear Information System (INIS)

    Sharafiddinov, R.S.

    2005-01-01

    Full text: One of an innate features of the interaction of neutrons and protons in nuclei is the connection between these phenomena and character of the structure of nucleons themselves. At the same time a question about the appearance of the united system of massive fermions of the different nature requires the special investigation. Our study of the behavior of massive Dirac neutrinos in a nucleus field shows clearly that the mass and charge of a particle correspond to two form of the unified regularity of the ultimate structure of this field. Thereby such a mass - charge duality of matter explains the coexistence of the united force, mass and charge. In the present work, we discuss the problem of the unified system of the structural particles in nuclei investigating the most diverse symmetries of Dirac fermions at the interaction of massive neutrinos with nuclei of electroweak charges. It is assumed that the neutrino has the longitudinal as well as the transversal polarization. In this connection appears of principle possibility to directly look at the nature of an incoming lepton and the united system of hadrons themselves. With the use of the studied processes cross sections a proof has been obtained regardless of a particle type, the appearance of the connected system of massive fermions can be explained by the interference of their currents of the different symmetrically. Findings allow to establish at the fundamental level the compound structure of the interaction of nucleons in nuclei elucidating the inter-ratio of intranuclear forces and the nature of invariance of these types of the actions concerning C, P and T, and also their combinations CP and CPT which open up new possibilities for solution of the problem of elementary particle chiral and isotopic symmetries

  10. Exotic nuclei: another aspect of nuclear structure

    International Nuclear Information System (INIS)

    Dobaczewski, J.; Blumenfeld, Y.; Flocard, H.; Garcia Borge, M.J.; Nowacki, F.; Rombouts, S.; Theisen, Ch.; Marques, F.M.; Lacroix, D.; Dessagne, P.; Gaeggeler, H.

    2002-01-01

    This document gathers the lectures made at the Joliot Curie international summer school in 2002 whose theme that year was exotic nuclei. There were 11 contributions whose titles are: 1) interactions, symmetry breaking and effective fields from quarks to nuclei; 2) status and perspectives for the study of exotic nuclei: experimental aspects; 3) the pairing interaction and the N = Z nuclei; 4) borders of stability region and exotic decays; 5) shell structure of nuclei: from stability to decay; 6) variational approach of system with a few nucleons; 7) from heavy to super-heavy nuclei; 8) halos, molecules and multi-neutrons; 9) macroscopic approaches for fusion reactions; 10) beta decay: a tool for spectroscopy; 11) the gas phase chemistry of super-heavy elements

  11. Exotic nuclei and radioactive beams

    International Nuclear Information System (INIS)

    Chomaz, P.

    1996-01-01

    The Nuclei called exotic are all the nuclei that it is necessary to recreate in laboratory to study them. Their life time is too short -in relation to earth age- for it remains enough on earth. The researchers are going to have at their s disposal at GANIL (Caen) with the S.P.I.R.A.L. project, exotic nuclei beams and will study new kinds of nuclear reactions to better understand the atom nucleus. (N.C.). 2 refs., 9 figs

  12. Dynamical correlations in finite nuclei: A simple method to study tensor effects

    International Nuclear Information System (INIS)

    Dellagiacoma, F.; Orlandini, G.; Traini, M.

    1983-01-01

    Dynamical correlations are introduced in finite nuclei by changing the two-body density through a phenomenological method. The role of tensor and short-range correlations in nuclear momentum distribution, electric form factor and two-body density of 4 He is investigated. The importance of induced tensor correlations in the total photonuclear cross section is reinvestigated providing a successful test of the method proposed here. (orig.)

  13. Heavy ion collisions and quark distribution in nuclei

    International Nuclear Information System (INIS)

    Liu Lian-sou; Pan Ji-cai; Peng Hung-an

    1986-01-01

    Heavy-ion collisions are studied by means of two-component Fokker--Planck equations on the assumption that there exist multiquark states in nuclei. Inclusive cross sections for the production of protons are calculated in heavy-ion collisions of C+C, Ne+NaF, and Ar+KCl at 800 MeV/A; Ne+Na at 400 MeV/A, 800 MeV/A, and 2100 MeV/A. Satisfactory agreement with the experimental data near 90 degrees c.m. is obtained. The production of deuterons in the collision of C+C at 800 MeV/A is also discussed

  14. Isotope shifts in unstable nuclei

    International Nuclear Information System (INIS)

    Rebel, H.

    1980-05-01

    Current experimental investigations of isotope shifts in atomic spectra of unstable nuclei and the resulting information about size and shape of nuclei far off stability are discussed with reference to some representative examples. (orig.)

  15. Neutron-rich nuclei produced at zero degrees in damped collisions induced by a beam of 18O on a 238U target

    Science.gov (United States)

    Stefan, I.; Fornal, B.; Leoni, S.; Azaiez, F.; Portail, C.; Thomas, J. C.; Karpov, A. V.; Ackermann, D.; Bednarczyk, P.; Blumenfeld, Y.; Calinescu, S.; Chbihi, A.; Ciemala, M.; Cieplicka-Oryńczak, N.; Crespi, F. C. L.; Franchoo, S.; Hammache, F.; Iskra, Ł. W.; Jacquot, B.; Janssens, R. V. F.; Kamalou, O.; Lauritsen, T.; Lewitowicz, M.; Olivier, L.; Lukyanov, S. M.; Maccormick, M.; Maj, A.; Marini, P.; Matea, I.; Naumenko, M. A.; de Oliveira Santos, F.; Petrone, C.; Penionzhkevich, Yu. E.; Rotaru, F.; Savajols, H.; Sorlin, O.; Stanoiu, M.; Szpak, B.; Tarasov, O. B.; Verney, D.

    2018-04-01

    Cross sections and corresponding momentum distributions have been measured for the first time at zero degrees for the exotic nuclei obtained from a beam of 18O at 8.5 MeV/A impinging on a 1 mg/cm2238U target. Sizable cross sections were found for the production of exotic species arising from the neutron transfer and proton removal from the projectile. Comparisons of experimental results with calculations based on deep-inelastic reaction models, taking into account the particle evaporation process, indicate that zero degree is a scattering angle at which the differential reaction cross section for production of exotic nuclei is at its maximum. This result is important in view of the new generation of zero degrees spectrometers under construction, such as the S3 separator at GANIL, for example.

  16. STELLAR TRANSITS IN ACTIVE GALACTIC NUCLEI

    International Nuclear Information System (INIS)

    Béky, Bence; Kocsis, Bence

    2013-01-01

    Supermassive black holes (SMBHs) are typically surrounded by a dense stellar population in galactic nuclei. Stars crossing the line of site in active galactic nuclei (AGNs) produce a characteristic transit light curve, just like extrasolar planets do when they transit their host star. We examine the possibility of finding such AGN transits in deep optical, UV, and X-ray surveys. We calculate transit light curves using the Novikov-Thorne thin accretion disk model, including general relativistic effects. Based on the expected properties of stellar cusps, we find that around 10 6 solar mass SMBHs, transits of red giants are most common for stars on close orbits with transit durations of a few weeks and orbital periods of a few years. We find that detecting AGN transits requires repeated observations of thousands of low-mass AGNs to 1% photometric accuracy in optical, or ∼10% in UV bands or soft X-ray. It may be possible to identify stellar transits in the Pan-STARRS and LSST optical and the eROSITA X-ray surveys. Such observations could be used to constrain black hole mass, spin, inclination, and accretion rate. Transit rates and durations could give valuable information on the circumnuclear stellar clusters as well. Transit light curves could be used to image accretion disks with unprecedented resolution, allowing us to resolve the SMBH silhouette in distant AGNs.

  17. Dynamic polarization of radioactive nuclei

    International Nuclear Information System (INIS)

    Kiselev, Yu.F.; Lyuboshits, V.L.; )

    2001-01-01

    Radioactive nuclei, embedded into a frozen polarized proton target, atr proposed to polarize by means of some dynamic polarization methods. Angular distributions of γ-quanta emitted ny 22 Na(3 + ) in the cascade β-γ-radiation are calculated. It is shown that this distribution does not depend on the spin temperature sing at the Boltzmann distribution of populations among the Zeeman magnetic substates, whereas the tensor polarization of quadrupole nuclei, placed in the electric field of the crystal, causes the considerable sing dependence. The new method promises wide opportunities for the magnetic structure investigations as well as for the study of spin-spin interaction dynamics of rare nuclei in dielectrics. Physical-technical advantages and disadvantages of the given method are discussed for the polarization of heavy nuclei in the on-line implantation mode [ru

  18. Proton propagation through nuclei and the quasi-free reaction mechanism studied with (e,e'p) reactions

    International Nuclear Information System (INIS)

    Dutta, D.; Abbott, D.; Amatuni, T.A.

    1997-01-01

    Jefferson Lab experiment E91-013 measured the energy dependence of proton propagation in nuclei, using the quasi-free (e, e'p) reaction. The ratios of the experimental (e, e'p) cross-sections integrated over the quasi-free region to PWIA calculations are presented as a function of momentum transfer, (0.6 2 2 ) and target nucleus (C, Fe and Au). As a first step towards a longitudinal and transverse separation of the quasi-free cross-section, a super ratio of the measured to the calculated cross-sections at forward and backward angles is presented

  19. Eta mesons in nuclei

    International Nuclear Information System (INIS)

    Liu, L.C.

    1987-01-01

    The possibility of producing eta-mesic nuclei by the use of pions is discussed. If these nuclei are observed experimentally, then the binding energies of the eta in this new nuclear matter can be used to extract accurately the eta-N-N* coupling constant in a nucleus. The framework for these calculations is the coupled channel isobar model

  20. International summer school on hyperfine interactions and physics with oriented nuclei - 1985. Pt.1,2

    International Nuclear Information System (INIS)

    Rotter, M.

    1985-01-01

    Part I and part II are presented of the contributions submitted to the International study meeting on physics with oriented nuclei and of papers from the International summer school on hyperfine interactions. The contributions and papers are devoted to the present status and further development of low temperature nuclear orientation of short-lived nuclei with emphasis on online techniques. The following topics are covered: nuclear orientation, NMR/ON, level mixing and level crossing resonances, laser spectroscopy, Moessbauer spectroscopy, polarization phenomena in low, medium and high energy physics, applications of hyperfine interaction techniques in nuclear physics, atomic physics, solid state physics, biology and materials research. (Z.J.)

  1. Role of external neutrons of weakly bound nuclei in reactions with their participation

    Science.gov (United States)

    Naumenko, M. A.; Penionzhkevich, Yu E.; Samarin, V. V.; Sobolev, Yu G.

    2018-05-01

    The paper presents the results of measurement of the total cross sections for reactions 4,6He+Si and 6,7,9Li+Si in the beam energy range 5–50 A MeV. The enhancements of the total cross sections for reaction 6He+Si compared with reaction 4He+Si and 9Li+Si compared with reactions 6,7Li+Si have been observed. The performed microscopic analysis of total cross sections for reactions 6He+Si and 9Li+Si based on numerical solution of the time-dependent Schrödinger equation for external neutrons of projectile nuclei 6He and 9Li yielded good agreement with experimental data.

  2. Multifragmentation of hot nuclei

    International Nuclear Information System (INIS)

    Tamain, B.

    1990-10-01

    It is difficult to deposit a large amount (∼ 1 Gev) of excitation energy into a nucleus. And if one wants to deposit large excitation energy values, the best way consists of shooting a given target nucleus with several nucleons, which can be achieved by using intermediate energy (10-100 MeV/nucleon) heavy ions. Such very excited objects were named hot nuclei. The study of hot nuclei has been undertaken only for 7 years because intermediate energy heavy ion facilities were not available before. The game is then to determine the decay properties of such nuclei, their limits of existence. Their study is connected with general properties of nuclear matter: namely its equation of state. Of special interest, is the onset of a new decay mechanism: multifragmentation, which is the non-sequential disassembly of a hot nucleus into several light nuclei (often called intermediate-mass fragments or IMF) or particles. This paper, shows how this mechanism can reflect fundamental properties of nuclear matter, but also how its experimental signature is difficult to establish. Multifragmentation has also been studied by using very energetic projectiles (protons and heavy ions) in the relativistic or ultra-relativistic region. The multifragmentation question of hot nuclei is far from being solved. One knows that IMF production increases when the excitation energy brought into a system is strongly increased, but very little is known about the mechanisms involved and a clear onset for multifragmentation is not established

  3. On the theory of electroproduction of small relative momentum nucleon pairs on atomic nuclei

    International Nuclear Information System (INIS)

    Nagornyj, S.I.; Inopin, E.V.

    1979-01-01

    Problems concerning knocking-out of nucleon pairs from atomic nuclei by high-energy electrons are studied. Dependences of cross sections of different processes of the knocking-out on the nucleon relative momentum in a pair are considered. Probabilities of different processes of the knocking-out are compared. A comparison of probabilities of total and three-particle splittings of a 4 He nucleus is performed. On total splitting in the formation of the cross section energy dependence the levels of observable and non-observable subsystems shown to take place. It has been stated that the cross section cannot be increased at the expense of levels of both subsystems simultaneously

  4. Systematics of the (n, t) reaction cross sections at 14 MeV

    International Nuclear Information System (INIS)

    Yao Lishan

    1992-01-01

    The systematic behaviour of the (n, t) reaction cross sections have been studied for medium and heavy mass nuclei at 14 MeV. An analysis of the gross trend, the isotope and odd-even effects are given. Possible reaction mechanisms are also discussed. A set of the systematics parameters have been extracted on the basis of the analyzing and fitting of the available data. The (n, t) reaction cross sections of some nuclei have been predicted and a good agreement with the measured data has been obtained

  5. Prospects for Precision Neutrino Cross Section Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Harris, Deborah A. [Fermilab

    2016-01-28

    The need for precision cross section measurements is more urgent now than ever before, given the central role neutrino oscillation measurements play in the field of particle physics. The definition of precision is something worth considering, however. In order to build the best model for an oscillation experiment, cross section measurements should span a broad range of energies, neutrino interaction channels, and target nuclei. Precision might better be defined not in the final uncertainty associated with any one measurement but rather with the breadth of measurements that are available to constrain models. Current experience shows that models are better constrained by 10 measurements across different processes and energies with 10% uncertainties than by one measurement of one process on one nucleus with a 1% uncertainty. This article describes the current status of and future prospects for the field of precision cross section measurements considering the metric of how many processes, energies, and nuclei have been studied.

  6. Study of evaporation residue cross-section for 48Ti + 140,142Ce systems

    International Nuclear Information System (INIS)

    Kaur, Devinder Pal; Behera, B.R.; Kaur, M.

    2017-01-01

    For understanding the reaction mechanism of heavy compound nucleus (CN), the study of evaporation residue (ER) cross-section plays a vital role. For heavier systems, the probability of formation of CN is strongly influenced by the properties of the di-nuclear system at contact configuration, where entrance channel plays a major role in reaction dynamics. Nuclear structure of the colliding nuclei also plays a key role, which influence the fusion probability. In some of the recent studies the dependence of the fusion reaction on the nuclear shell structure of projectile and target nuclei was also investigated and the importance of N = 82 in the heavy ion fusion reaction was proposed. It was reported that shell closure of one of the interacting nuclei can lead to the enhanced ER cross-section and helps in the synthesis of heavy nuclei. Keeping these points in mind, a systematic measurement of ER cross sections for 48 Ti + 140,142 Ce, 124 Sn systems was performed. Here, 140 Ce target is neutron shell closed (N T =82) but 142 Ce have 84 neutrons. By comparing the ER cross-sections of these systems, the effect of neutron shell closure on fusion probability can be examined. The ER excitation function for third system ( 48 Ti + 124 Sn) was also measured at few energy points to estimate the transmission efficiency of the spectrometer

  7. nuclei

    Directory of Open Access Journals (Sweden)

    Minkov N.

    2016-01-01

    Full Text Available We study the effects of quadrupole-octupole deformations on the energy and magnetic properties of high-K isomeric states in even-even heavy and superheavy nuclei. The neutron two-quasiparticle (2qp isomeric energies and magnetic dipole moments are calculated within a deformed shell model with the Bardeen-Cooper- Schrieffer (BCS pairing interaction over a wide range of quadrupole and octupole deformations. We found that in most cases the magnetic moments exhibit a pronounced sensitivity to the octupole deformation, while the 2qp energies indicate regions of nuclei in which the presence of high-K isomeric states may be associated with the presence of octupole softness or even with octupole deformation. In the present work we also examine the influence of the BCS pairing strength on the energy of the blocked isomer configuration. We show that the formation of 2qp energy minima in the space of quadrupole-octupole and eventually higher multipolarity deformations is a subtle effect depending on nuclear pairing correlations.

  8. Are there multiquark bags in nuclei

    International Nuclear Information System (INIS)

    Kondratyuk, L.A.; Scmatkov, M.Zh.

    1983-01-01

    Arguments are presented favouring the idea that multiquark bags do eXist in nuclei. Such hypothesis makes possible to reveal the relationship among three different scopes of phenomena: deep inelastic scattering of leptons by nUclei, large q 2 (where q 2 is a square of momentum transfer) behaviour of the form factors of light nuclei and yield of cumulative proton.s

  9. Study of the influence of the shell correction energy on the nuclear reactions leading to the region of the superheavy nuclei

    International Nuclear Information System (INIS)

    Marchix, A.

    2007-11-01

    The aim of this work is to study the influence of shell correction energy on the deexcitation of superheavy nuclei. For that purpose, a new statistical code, called Kewpie2, which is based on an original algorithm allowing to have access to very weak probabilities, was developed. The results obtained with Kewpie2 have been compared to the experimental data on residue cross sections obtained by cold fusion (Z=108 to Z=113) and by hot fusion (Z=112, Z=114 and Z=116), as well as data on fission times (Z=114, Z=120 and Z=126). Constraints on the microscopic structure of the studied nuclei have been obtained by means of the shell correction energy. By adjusting the intrinsic parameters of the models of fusion in order to reproduce the data on the fusion cross sections, this study shows the necessity of decreasing very strongly the shell correction energy predicted by the calculations of Moller and Nix, during the study of the residues cross sections as well for the nuclei produced by cold fusion as by hot fusion. On the other hand, during the confrontation of the results of Kewpie2 to the data on mean fission times, it is rather advisable to increase it. A shift of the proton shell closure predicted for Z=114 by the calculations of Moller and Nix towards larger Z would allow to explain these opposite conclusions. In this thesis, we also have shown the significant influence of the inclusion of isomeric states on fission times for the superheavy nuclei. (author)

  10. Electron scattering for exotic nuclei

    International Nuclear Information System (INIS)

    Suda, T.

    2013-01-01

    An electron scattering facility is under construction in RIKEN RI Beam Factory, Japan, which is dedicated to the structure studies of short-lived nuclei. This is the world's first and currently only facility of its type. The construction is nearly completed, and the first electron scattering experiment off short-lived nuclei will be carried out in the beginning of next year. The charge density distributions of short-lived nuclei will be precisely determined by elastic electron scattering for the first time. Physics pursued at this facility including future perspectives are explained

  11. The decay of hot nuclei

    International Nuclear Information System (INIS)

    Moretto, L.G.; Wozniak, G.J.

    1988-11-01

    The formation of hot compound nuclei in intermediate-energy heavy ion reactions is discussed. The statistical decay of such compound nuclei is responsible for the abundant emission of complex fragments and high energy gamma rays. 43 refs., 23 figs

  12. Current status of Russian Evaluated Neutron Data Libraries

    International Nuclear Information System (INIS)

    Blokhin, A.I.; Ignatyuk, A.V.; Manokhin, V.N.; Nikolaev, M.N.

    1996-01-01

    The status of Russian Evaluated Data Libraries is discussed. The last modifications of the BROND-2 files and their relations to the additional files of the FOND library and the ABBN-90 group constants are considered. The main characteristics of new libraries for the photoneutron data, dosimetry and activation reaction cross sections and transmutation cross sections for intermediate energies are described briefly. (author)

  13. Thermodynamics of pairing phase transition in nuclei

    International Nuclear Information System (INIS)

    Karim, Afaque; Ahmad, Shakeb

    2014-01-01

    The pairing gaps, pairing energy, heat capacity and entropy are calculated within BCS (Bardeen- Cooper-Schrieffer) based quasi particle approach, including thermal fluctuations on pairing field within pairing model for all nuclei (light, medium, heavy and super heavy nuclei). Quasi particles approach in BCS theory was introduced and reformulated to study various properties. For thermodynamic behavior of nuclei at finite temperatures, the anomalous averages of creation and annihilation operators are introduced. It is solved self consistently at finite temperatures to obtain BCS Hamiltonian. After doing unitary transformation, we obtained the Hamiltonian in the diagonal form. Thus, one gets temperature dependence gap parameter and pairing energy for nuclei. Moreover, the energy at finite temperatures is the sum of the condensation energy and the thermal energy of fermionic quasi particles. With the help of BCS Hamiltonian, specific heat, entropy and free energy are calculated for different nuclei. In this paper the gap parameter occupation number and pairing energy as a function of temperature which is important for all the light, medium, heavy and super heavy nuclei is calculated. Moreover, the various thermo dynamical quantities like specific heat, entropy and free energy is also obtained for different nuclei. Thus, the thermodynamics of pairing phase transition in nuclei is studied

  14. Mean field theory of nuclei and shell model. Present status and future outlook

    International Nuclear Information System (INIS)

    Nakada, Hitoshi

    2003-01-01

    Many of the recent topics of the nuclear structure are concerned on the problems of unstable nuclei. It has been revealed experimentally that the nuclear halos and the neutron skins as well as the cluster structures or the molecule-like structures can be present in the unstable nuclei, and the magic numbers well established in the stable nuclei disappear occasionally while new ones appear. The shell model based on the mean field approximation has been successfully applied to stable nuclei to explain the nuclear structure as the finite many body system quantitatively and it is considered as the standard model at present. If the unstable nuclei will be understood on the same model basis or not is a matter related to fundamental principle of nuclear structure theories. In this lecture, the fundamental concept and the framework of the theory of nuclear structure based on the mean field theory and the shell model are presented to make clear the problems and to suggest directions for future researches. At first fundamental properties of nuclei are described under the subtitles: saturation and magic numbers, nuclear force and effective interactions, nuclear matter, and LS splitting. Then the mean field theory is presented under subtitles: the potential model, the mean field theory, Hartree-Fock approximation for nuclear matter, density dependent force, semiclassical mean field theory, mean field theory and symmetry, Skyrme interaction and density functional, density matrix expansion, finite range interactions, effective masses, and motion of center of mass. The subsequent section is devoted to the shell model with the subtitles: beyond the mean field approximation, core polarization, effective interaction of shell model, one-particle wave function, nuclear deformation and shell model, and shell model of cross shell. Finally structure of unstable nuclei is discussed with the subtitles: general remark on the study of unstable nuclear structure, asymptotic behavior of wave

  15. Collisions with nuclei

    International Nuclear Information System (INIS)

    Gulamov, K.G.

    1987-01-01

    It is well known that interactions of high energy particles with nuclei, owing to possible intranuclear rescatterings, may provide information about the space-time behaviour of the production process. Therefore the main goals of these investigations are related with the attempts to study the space-time process of hadronization of coloured quarks and gluons produced at the initial stage of an interaction to white final state particles and to clarify the influence of composite quark-gluon structure of both the projectile and target on features of the production mechanisms. Since in both the initial and final states of these reactions the authors have strongly interacting multiparticle systems, it is of importance to study the collective properties of these systems. The questions to the point are: what is the degree of collectivization of particles newly produced in collisions with nuclei and what is the influence of the collective nature of a nucleus itself on the production mechanisms, in particular, what are the manifestations of possible multinucleon (multiquark) configurations in nuclei? It is obvious that the reductability of, say, hadron-nucleus (hA) interaction to hadron-nucleon (hN) collisions is directly related to the above problems. Due to time limitations the author discusses here only a few aspects of low p/sub t/ hA interactions which in his opinion are of importance for better understanding of general regularities of collisions with nuclei and for further investigations of the above problems

  16. Spectroscopy of heavy fissionable nuclei

    Indian Academy of Sciences (India)

    2015-08-05

    Aug 5, 2015 ... Nuclei in the actinide chain and beyond are prone to fission owing to ... mass nuclei are typically more difficult, because the intensity is .... j15/2 neutron alignments in a region where shell stablization effects are crucial.

  17. Spectroscopy of very heavy nuclei with a view to study super-heavy nuclei; Spectroscopie de noyaux tres lourds en vue de l'etude des noyaux super-lourds

    Energy Technology Data Exchange (ETDEWEB)

    Khalfallah, F

    2007-08-15

    Within the recent years, the spectroscopic study of single particle orbitals of very heavy elements (VHE) has become possible with the development of increasingly efficient experimental setups. This allows us, through nuclear deformation, to access with these deformed nuclei to orbitals situated around the Fermi level in the spherical superheavy elements (SHE) and learn more about the nuclear structure of these nuclei. The aim of this work is the spectroscopic studies of heavy and very heavy elements. Because of the experimental difficulties associated with the fusion reactions in the VHE region, a detailed optimization studies is essential. Simulation of energy loss and angular straggling of these nuclei due to the interaction in the target and to neutron's evaporation was carried out and allowed us to optimize the angular acceptance of the separators according to the target thickness. An extensive survey and exploration in the VHE region was also conducted on the basis of cross section's systematics in the literature and simulations carried out using the statistical code Hivap. In this framework, the possible extension of the range of validity of a set of Hivap parameters was investigated. This work has enabled us to prepare a list of experiments of interest for the production of very heavy nuclei. In this thesis, our work was concentrated on the spectroscopy of the nuclei No{sup 256} et Rf{sup 256} for which two experimental proposals were accepted. The octupole deformations predicted in the actinides region is studied in another part of this thesis, a part witch is dedicated to the gamma spectroscopy of Pa{sup 223}. The data from a new experiment carried out using the Jurogam-Ritu-Great setup are analysed and compared to previous results. They confirm the octupole deformed shape in this nucleus. (author)

  18. A study of the (p,pn) reaction on 1p shell nuclei at 46 MeV

    International Nuclear Information System (INIS)

    Miller, C.A.

    1974-01-01

    The (p,pn) reaction on four 1p shell nuclei, 6 Li, 9 Be, 13 C and 12 C, as well as the 6 Li(p,2p) reaction, have been studied at 46 MeV. The 6 Li(p,pn) cross section was found to be approximately four times that for (p,2p) and to have a very different angular dependence. Both reactions show the s-state admixture in 6 Li observed with (p,2p) at higher energies. For all of the target nuclei, the cross sections have features that cannot be fitted by a renormalized Plane Wave Impulse Approximation (PWIA) calculation. A zero range distorted wave calculation was found to be in only fair agreement with the 9 Be and 13 C data. The overall magnitudes of the results of the calculation were found to be very sensitive to the RMS radii of the bound state wave functions of the knocked-out neutrons. (author)

  19. The resonance neutron fission on heavy nuclei

    International Nuclear Information System (INIS)

    Kopach, Yu.N.; Popov, A.B.; Furman, V.I.; Alfimenkov, V.P.; Lason', L.; Pikel'ner, L.B.; ); Gonin, N.N.; Kozlovskij, L.K.; Tambovtsev, D.I.; Gagarskij, A.M.; Petrov, G.A.; Sokolov, V.E.

    2001-01-01

    A new approach to the description of the fission, similar to the well-known reaction theory and based on the helicity representation for the exit fission channels, is briefly summarized. This approach allows one to connect the multimodal fission representation with A. Bohr's concept of the fission transition states and to obtain formulae for the partial and differential fission cross sections. The formulae are used for analysis of the angular anisotropy of fragments in the neutron resonance induced fission of aligned 235 U nuclei and of the P-even angular forward-backward and right-left correlations of fragments oe the P-odd correlations caused by the interference of s- and p-wave neutron resonances [ru

  20. From heavy nuclei to super-heavy nuclei; Des noyaux lourds aux super-lourds

    Energy Technology Data Exchange (ETDEWEB)

    Theisen, Ch

    2003-01-01

    The existence of super-heavy nuclei has been predicted nearly fifty years ago. Due to the strong coulomb repulsion, the stabilisation of these nuclei is possible only through shell effects. The reasons for this fragile stability, as well as the theoretical predictions concerning the position of the island of stability are presented in the first part of this lecture. In the second part, experiments and experimental techniques which have been used to synthesize or search for super-heavy elements are described. Spectroscopic studies performed in very heavy elements are presented in the following section. We close this lecture with techniques that are currently being developed in order to reach the superheavy island and to study the structure of very-heavy nuclei. (author)

  1. Colliding nuclei

    International Nuclear Information System (INIS)

    Balian, Roger; Remaud, Bernard; Suraud, E.; Durand, Dominique; Tamain, Bernard; Gobbi, A.; Cugnon, J.; Drapier, Olivier; Govaerts, Jan; Prieels, Rene

    1995-09-01

    This 14. international school Joliot-Curie of nuclear physic deals with nuclei in collision at high energy. Nine lectures are included in the proceedings of this summer school: 1 - From statistical mechanics outside equilibrium to transport equations (Balian, R.); 2 - Modeling of heavy ions reactions (Remaud, B.); 3 - Kinetic equations in heavy ions physics (Suraud, E.); 4 - Colliding nuclei near the Fermi energy (Durand, D.; Tamain, B.); 5 - From the Fermi to the relativistic energy domain: which observable? For which physics? (Gobbi, A.); 6 - Collisions at relativistic and ultra relativistic energies, Theoretical aspects (Cugnon, J.); 7 - Quark-gluon plasma: experimental signatures (Drapier, O.); 8 - Electroweak interaction: a window on physics beyond the standard model (Govaerts, J.); 9 - Symmetry tests in β nuclear process: polarization techniques (Prieels, R.)

  2. Symmetry and Phase Transitions in Nuclei

    International Nuclear Information System (INIS)

    Iachello, F.

    2009-01-01

    Phase transitions in nuclei have received considerable attention in recent years, especially after the discovery that, contrary to expectations, systems at the critical point of a phase transition display a simple structure. In this talk, quantum phase transitions (QPT), i.e. phase transitions that occur as a function of a coupling constant that appears in the quantum Hamiltonian, H, describing the system, will be reviewed and experimental evidence for their occurrence in nuclei will be presented. The phase transitions discussed in the talk will be shape phase transitions. Different shapes have different symmetries, classified by the dynamic symmetries of the Interacting Boson Model, U(5), SU(3) and SO(6). Very recently, the concept of Quantum Phase Transitions has been extended to Excited State Quantum Phase Transitions (ESQPT). This extension will be discussed and some evidence for incipient ESQPT in nuclei will be presented. Systems at the critical point of a phase transition are called 'critical systems'. Approximate analytic formulas for energy spectra and other properties of 'critical nuclei', in particular for nuclei at the critical point of the second order U(5)-SO(6) transition, called E(5), and along the line of first order U(5)-SU(3) transitions, called X(5), will be presented. Experimental evidence for 'critical nuclei' will be also shown. Finally, the microscopic derivation of shape phase transitions in nuclei within the framework of density functional methods will be briefly discussed.(author)

  3. Strength of Coriolis Coupling in actinide nuclei

    International Nuclear Information System (INIS)

    Peker, L.K.; Rasmussen, J.O.; Hamilton, J.H.

    1982-01-01

    Coriolis Coupling V/sub cor/ plays an important role in deformed nuclei. V/sub cor/ is proportional to h 2 /J[j (j + 1) -Ω (Ω + 1)]/sup 1/2/ and therefore is particularly significant in the nuclei with large j and low Ω Nilsson levels close to Fermi surface: n(i/sub 13/2/) in A = 150 to 170 rare-earth nuclei and p(i/sub 13/2/) and n(j/sub 15/2/) in A greater than or equal to 224 actinide nuclei. Because of larger j (n(j/sub 15/2/) versus n(i/sub 13/2/)) and smaller deformations (β approx. = 0.22 versus β 0.28) it was reasonable to expect that in actinide nuclei Coriolis effects are stronger than in the rare earth nuclei. Recently it was realized that the strength of observed Coriolis effects depends not only on the genuine Coriolis Coupling but also on the interplay between Coriolis ad pairing forces which leads to an interference between the wave functions of two mixing rotational bands. As a consequence the effective interaction V/sub eff/ of both bands is an oscillating function of the degree of shell filling (or chemical potential lambda F). It was shown that in the rare earth nuclei this interference strongly influenced conclusions about the trends in the Coriolis coupling strength and explained many of the observed band-mixing features (the sharpness of back banding curves, details of the blocking effect etc.). From theoretical analysis it was concluded that in the majority of actinide nuclei the effective interaction V/sub eff/ is strong, and therefore the Coriolis band-mixing have to be very strong. In this paper we would like to demonstrate that contrary to these predictions experimental data suggest that Coriolis band mixing in studied actinide nuclei is relatively weak and possibly significantly weaker than in rare earth nuclei

  4. Scattering of polarized protons by yttrium, iron and nickel nuclei

    International Nuclear Information System (INIS)

    Melssen, J.P.M.G.

    1978-01-01

    Results are presented of scattering experiments performed on yttrium and some iron and nickel isotopes with polarized proton beams at energies around 20 MeV. The angular distributions of the differential cross sections and analyzing powers have been measured and comparison of these with predictions from theoretical models has led to information about excited nuclear states like spin, parity and details of the wavefunctions. The DWBA has been mostly used to describe the reaction at the bombarding energies and for the target nuclei investigated. (C.F.)

  5. Real and imaginary part of the potential between two nuclei and the realistic nucleon-nucleon interaction

    International Nuclear Information System (INIS)

    Trefz, M.

    1985-01-01

    Starting from a realistic nucleon-nucleon interaction (Reid soft-core) in the model of two infinitely extended confusing nuclear matter complex energy densities are calculated by means of a G matrix. By means of a generalized local-density approximation the results are transferred to finite nuclei. In the framework of the frozen-density approximation in the energy-density formalism a complex potential between two nuclei is calculated. The potential calculated so contains not the contribution of 1-particle-1-hole states to the optical potential. The contribution of these states is therefore calculated in the Feshbach formalism, respectively these states are explicitely regarded in coupled-channel calculations. The model is applied to light (for instance 12 C+ 12 C), medium heavy (for instance 48 Ca+ 48 Ca), and heavy (for instance 40 Ar+ 208 Pb) systems. Potentials for incident energies of 5-84 MeV per projectile nucleon are calculated. By means of these potentials differential cross sections and reaction cross sections are determined and compared with the experimental data. The energy dependence of the reaction cross section is discussed. It is shown that at higher energies (40 MeV/N) the differential cross sections can be quantitatively reproduced. For the reaction cross section in the whole energy range good agreement with the experiment is obtained. Contrarily to current theoretical models it is proved that at low energies the excitation of collective states yields a large contribution to the reaction cross section and therefore must not be neglected. (orig.) [de

  6. Differential cross sections for reactions of π+n → K+Ε0 and π+n → K+Λ and ratio of differential cross sections of π+A → K+Y+A' quasi-binary processes for carbon and deuterium nuclei at 10.3 GeV/c

    International Nuclear Information System (INIS)

    Bitsadze, G.S.; Budagov, Yu.A.; Dzhelepov, V.P.

    1986-01-01

    The results of the study of π + n → K + Σ 0 and π + n → K + Λ reactions at 10.3 GeB/c are presented. The measurements were carried out at missing mass spectrometer HYPERON at IHEP accelerator. The differential cross sections in 0 ≤ t-t min 2 momentum transfer range are measured. The integral cross sections in the studied t-interval are (11.8±1.1)μb and (21.7±2.2)μb for reactions π + n → K + Σ 0 and π + n → K + Λ, respectively. The obtained results were compared with the predictions of quasi-eikonal model and with other experimental data. The ratio A eff (t) of differential cross sections for π + A → K + Y+A' reactions on carbon and deuterium nuclei are measured. The A cff (t) tend to grow with increasing t in agreement with the predictions of QCD-based model

  7. Exclusive experiment on nuclei with backward emitted particles by electron-nucleus collision in ∼ 10 GeV energy range

    International Nuclear Information System (INIS)

    Saito, T.; Takagi, F.

    1994-01-01

    Since the evidence of strong cross section in proton-nucleus backward scattering was presented in the early of 1970 years, this phenomena have been interested from the point of view to be related to information on the short range correlation between nucleons or on high momentum components of the wave function of the nucleus. In the analysis of the first experiment on protons from the carbon target under bombardment by 1.5-5.7 GeV protons, indications are found of an effect analogous to scaling in high-energy interactions of elementary particles with protons. Moreover it is found that the function f(p 2 )/σ tot , which describes the spectra of the protons and deuterons emitted backward from nuclei in the laboratory system, does not depend on the energy and the type of the incident particle or on the atomic number of the target nucleus. In the following experiments the spectra of the protons emitted from the nuclei C, Al, Ti, Cu, Cd and Pb were measured in the inclusive reactions with incident particles of negative pions (1.55-6.2 GeV/c) and protons (6.2-9.0 GeV/C). The cross section f is described by f = E/p 2 d 2 σ/dpdΩ = C exp (-Bp 2 ), where p is the momentum of hadron. The function f depends linearly on the atomic weight A of the target nuclei. The slope parameter B is independent of the target nucleus and of the sort and energy of the bombarding particles. The invariant cross section ρ = f/σ tot is also described by exponential A 0 exp (-A 1p 2 ), where p becomes independent of energy at initial particle energies ≥ 1.5 GeV for C nucleus and ≥ 5 GeV for the heaviest of the investigated Pb nuclei

  8. Accessibility of ribosomal genes to trimethyl psoralen in nuclei of Physarum polycephalum

    International Nuclear Information System (INIS)

    Judelson, H.S.; Vogt, V.M.

    1982-01-01

    The authors have probed the accessibility of the genes for rRNA in Physarum polycephalum by using the photoreactive DNA cross-linking agent 4,5',8-trimethyl psoralen. Nuclei isolated from actively growing Physarum were treated with trimethyl psoralen and irradiated with 360-nm light in order to form cross-links. The palindromic, extrachromosomal rDNA then was isolated, and the positions of cross-links were determined by electron microscopy of the DNA under totally denaturing conditions. The results indicate that the frequency of cross-linking, after correction for base sequence bias of the reaction, is up to sixfold higher in the transcribed regions than in the central or the terminal spacer regions. There is no detectable heterogeneity among the different rDNA molecules or between the halves of a single molecule. Cross-linked molecules invariably occur in a linear as opposed to a cruciform structure. The preferential cross-linking of the transcribed region is nearly eliminated in spherules, a dormant transcriptionally inactive form in the Physarum life cycle

  9. Monopole transitions in hot nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Sujkowski, Z. [Soltan Inst. for Nuclear Studies, Otwock-Swierk (Poland)

    1994-12-31

    Monopole transitions can be a signature of shape changing in a hot, pulsating nucleus (the low energy E0 mode) and/or a measure of the compressibility of finite nuclei (GMR, the breathing mode). Experimental information pertaining to GMR is reviewed. Recipes for deducing the incompressibility modules for infinite nuclear matter from data on GMR are discussed. Astrophysical implications are outlined. The first attempts at locating the GMR strength in moderately hot nuclei are described. Prospects for improving the experimental techniques to make an observation of this strength in selected nuclei unambiguous are discussed. (author). 46 refs, 8 figs.

  10. Monopole transitions in hot nuclei

    International Nuclear Information System (INIS)

    Sujkowski, Z.

    1994-01-01

    Monopole transitions can be a signature of shape changing in a hot, pulsating nucleus (the low energy E0 mode) and/or a measure of the compressibility of finite nuclei (GMR, the breathing mode). Experimental information pertaining to GMR is reviewed. Recipes for deducing the incompressibility modules for infinite nuclear matter from data on GMR are discussed. Astrophysical implications are outlined. The first attempts at locating the GMR strength in moderately hot nuclei are described. Prospects for improving the experimental techniques to make an observation of this strength in selected nuclei unambiguous are discussed. (author). 46 refs, 8 figs

  11. Cavitation inception from bubble nuclei

    DEFF Research Database (Denmark)

    Mørch, Knud Aage

    2015-01-01

    , and experimental investigations of bubbles and cavitation inception have been presented. These results suggest that cavitation nuclei in equilibrium are gaseous voids in the water, stabilized by a skin which allows diffusion balance between gas inside the void and gas in solution in the surrounding liquid....... The cavitation nuclei may be free gas bubbles in the bulk of water, or interfacial gaseous voids located on the surface of particles in the water, or on bounding walls. The tensile strength of these nuclei depends not only on the water quality but also on the pressure-time history of the water. A recent model...

  12. Cross sections of the interactions of He nuclei with protons

    International Nuclear Information System (INIS)

    Glagolev, V.V.; Lebedev, R.M.; Pestova, G.D.; Shimansky, S.S.; Kravcikova, M.; Seman, M.; Sandor, L.; Dirner, A.; Hlavacova, J.; Martinska, G.; Urban, J.; Khairetdinov, K.U.; Braun, H.; Gerber, J.P.; Juillot, P.; Michalon, A.; Kacharava, A.K.; Menteshashvili, Z.P.; Nioradze, M.S.; Salukvadze, Z.R.; Sobczak, T.; Stepaniak, J.

    1993-01-01

    4 He-p collisions at two values of 4 He momenta 8.6 GeV/c and 13.6 GeV/c as well as the 3 He-p collisions at 13.5 GeV/c have been studied using the one-meter JINR hydrogen bubble chamber. Total, elastic, topological and reaction cross sections have been measured. The cross sections have been determined on a sample of minimum biased events. (orig.)

  13. Electron-microscope study of cloud and fog nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Ogiwara, S; Okita, T

    1952-01-01

    Droplets of clouds on a mountain and of fog in an urban area were captured and the form, nature and size of their nuclei were studied by means of an electron-microscope and by a chamber of constant humidity. These nuclei have similar form and nature to the hygroscopic particles in haze and to the artificially produced combustion particles. No sea-salt nuclei were found in our observations, therefore, sea-spray appears to be an insignificant source of condensation nuclei. It was found that both the cloud and the fog nuclei originated in combustion products which were the mixture of hygroscopic and non-hygroscopic substances, and that the greater part of the nuclei did not contain pure sulfuric acid.

  14. Quarks in nuclei

    International Nuclear Information System (INIS)

    Rho, M.; CEA Centre d'Etudes Nucleaires de Saclay, 91 - Gif-sur-Yvette

    1983-01-01

    Some features of quark degrees of freedom in nuclei are discussed in the light of recent developments in QCD. The principal aim of this talk is to propose, and give a tentative support to, the motion that one can study through nuclear matter different facets of the vacuum structure implied by quantum chromodynamics (QCD). This will be done using the recent (exciting) results obtained in particle physics, in particular lattice gauge calculations. Relevance of this aspect of problem to quark degrees of freedom as well as meson degrees of freedom in nuclei will be discussed. (orig.)

  15. NucliTrack: an integrated nuclei tracking application.

    Science.gov (United States)

    Cooper, Sam; Barr, Alexis R; Glen, Robert; Bakal, Chris

    2017-10-15

    Live imaging studies give unparalleled insight into dynamic single cell behaviours and fate decisions. However, the challenge of reliably tracking single cells over long periods of time limits both the throughput and ease with which such studies can be performed. Here, we present NucliTrack, a cross platform solution for automatically segmenting, tracking and extracting features from fluorescently labelled nuclei. NucliTrack performs similarly to other state-of-the-art cell tracking algorithms, but NucliTrack's interactive, graphical interface makes it significantly more user friendly. NucliTrack is available as a free, cross platform application and open source Python package. Installation details and documentation are at: http://nuclitrack.readthedocs.io/en/latest/ A video guide can be viewed online: https://www.youtube.com/watch?v=J6e0D9F-qSU Source code is available through Github: https://github.com/samocooper/nuclitrack. A Matlab toolbox is also available at: https://uk.mathworks.com/matlabcentral/fileexchange/61479-samocooper-nuclitrack-matlab. sam@socooper.com. Supplementary data are available at Bioinformatics online. © The Author(s) 2017. Published by Oxford University Press.

  16. Search for the neutron-rich nuclei in RIKEN-RIPS

    Energy Technology Data Exchange (ETDEWEB)

    Notani, Masahiro; Aoi, Nori; Fukuda, Naoki [Tokyo Univ. (Japan). Dept. of Physics] [and others

    1997-05-01

    {sup 64}Ni and {sup 181}Ta target were irradiated with {sup 48}Ca beam (70 AMeV) by R201N experiment in this paper. The production cross sections and yields of F, Ne, Na and Al isotopes were determined by particle identification of RIPS. New three nuclei, {sup 38}Mg and {sup 40},{sup 41}Al were found. Moreover, unstable nuclear isomer {sup 32m}Al was studied by measuring {gamma}-ray emission energy spectrum. The life and rate of isomer were determined. The rate of isomer was different from that of other systems. (S.Y.)

  17. Dose Measurements of Bremsstrahlung-Produced Neutrons at the Advanced Photon Source

    International Nuclear Information System (INIS)

    Job, P.K.; Pisharody, M.; Semones, E.

    1998-01-01

    Bremsstrahlung is generated in the storage rings of the synchrotron radiation facilities by the radiative interaction of the circulating particle beam with both the residual gas molecules and storage ring components. These bremsstrahlung photons, having an energy range of zero to the maximum energy of the particle beam, interact with beamline components like beam stops and collimators generating photoneutrons of varying energies. There are three main processes by which photoneutrons may be produced by the high energy bremsstrahlung photons: giant nuclear dipole resonance and decay (10 MeV γ γ γ > 140 MeV). The giant resonance neutrons are emitted almost isotropically and have an average energy of about 2 MeV. High energy neutrons (E > 10 MeV) emitted from the quasi-deuteron decay and intranuclear cascade are peaked in the forward direction. At the Advanced Photon Source (APS), where bremsstrahlung energy can be as high as 7 GeV, production of photoneutrons in varying yields is possible from all of the above three processes. The bremsstrahlung produced along a typical 15.38-m straight path of the insertion device (ID) beamline of the APS has been measured and analyzed in previous studies. High-Z materials constituting the beamline components, such as collimators and beam stops, can produce photoneutrons upon interaction with these bremsstrahlung photons. The 1/E nature of the bremsstrahlung spectrum and the fact that the photoneutron production cross section is comparatively larger in the energy region 10 MeV γ 3 detector, as well as a very sensitive pressurized 3 He detector, is used for neutron dose measurements. The dose equivalent rates, normalized to bremsstrahlung power, beam current, and storage ring vacuum, are measured for various targets. This report details the experimental setup,

  18. Spectroscopy of odd Z trans-fermium nuclei: the nuclear structure of Md251

    International Nuclear Information System (INIS)

    Chatillon, A.

    2005-10-01

    The objective of this thesis was to determine the structure of trans-fermium nuclei (Z 100) with odd proton number, which remained largely unexplored. These nuclei were produced in fusion-evaporation reactions with small cross sections below 1 μb. The experimental methods of Recoil-Tagging and Recoil-Decay-Tagging were used for their identification. In order to identify the active orbitals in this mass region, 255 Lr, 251 M1d and 247 Es nuclei have been studied by decay spectroscopy at the University of Jyvaskyla and at GANIL with the LISE spectrometer and the α-electron detector BEST coupled to four CLover detectors from the EXOGAM array. New states have been observed in each of the isotopes, and their configuration has been proposed. The collective properties were also studied in two experiments using prompt γ and electron spectroscopy, combining the JUROGAM and SACRED arrays, respectively, with the recoil separator RITU and the GREAT spectrometer at its focal plane. A rotational band has been observed for the first time in a proton-odd trans-fermium nucleus. The interpretation of this collective structure is based on the theoretical HFB calculations. (author)

  19. Evaluation of fusion-evaporation cross-section calculations

    Science.gov (United States)

    Blank, B.; Canchel, G.; Seis, F.; Delahaye, P.

    2018-02-01

    Calculated fusion-evaporation cross sections from five different codes are compared to experimental data. The present comparison extents over a large range of nuclei and isotopic chains to investigate the evolution of experimental and calculated cross sections. All models more or less overestimate the experimental cross sections. We found reasonable agreement by using the geometrical average of the five model calculations and dividing the average by a factor of 11.2. More refined analyses are made for example for the 100Sn region.

  20. Neutron activation processes in the medical linear accelerator Elekta Precise; Procesos de activacion neutronica en el acelerador lineal medico Elekta Precise

    Energy Technology Data Exchange (ETDEWEB)

    Juste, B.; Miro, R.; Verdu, G.; Diez, S.; Campayo, J. M.

    2014-07-01

    In radiotherapy beams of high energy photons produced lower doses in the skin and a lower dose dispersed into surrounding healthy tissue. However, when operating above 10 MV, Linacs have some drawbacks such as the generation of photo-neutrons and activation of some components of the accelerator. The launch and capture of neutrons produce radioactive nuclei that can radiate even when the accelerator is not working. These reactions occur mainly in the heavier materials of the head accelerator. This work has studied the activation generated isotopes resulting, concluding that these derived doses are not negligible. (Author)

  1. Off-shell effects in the coherent π0 photoproduction off nuclei

    International Nuclear Information System (INIS)

    Chumbalov, A.A.; Kamalov, S.S.

    1987-01-01

    A strong sensitivity of coherent π 0 -meson photoproduction on nuclei to different ω reaction energy change in elementary amplitude t πγ (ω) is demonstrated. Various assumptions concerning ω behaviour in the extraenergy area can change differential cross sections 1.5-2 times. The best agreement of the DWIA-results with experimental data is obtained at ω being equal to its own value of pion-nucleon system free relativistic Hamiltonian. Such a result agrees with relativistic potential theory effects

  2. Exotic behavior of elastic scattering differential cross-sections of weakly bound nucleus 17F at small angles

    International Nuclear Information System (INIS)

    Han Jianlong; Hu Zhengguo; Zhang Xueyin; Yuan Xiaohua; Xu Huagen; Qi Huirong; Wang Yue; Jia Fei; Wu Lijie; Ding Xianli; Gao Qi; Gao Hui; Bai Zhen

    2006-01-01

    The differential cross-sections for elastic scattering of 17 F and 17 O on 208 Pb have been measured at Radioactive Ion Beam Line at Lanzhou (RIBLL). The variation of the logarithms of differential cross-sections with the square of scattering angles shows clearly that there exists a turning point in the range of small scattering angles (6 degree-20 degree) for 17 F having exotic structure, while no turning point was observed in the 17 O elastic scattering. The experimental results have been compared with previous data. Systematical analysis on the available data seems to conclude that there is an exotic behavior of elastic scattering differential cross-sections of weakly bound nuclei with halo or skin structure as compared with that of the ordinary nuclei near stable line. Therefore the fact that the turning point of the logarithms of differential cross-sections appears at small angle for weakly bound nuclei could be used as a new probe to investigate the halo and skin phenomenon. (authors)

  3. Electron Capture Cross Sections for Stellar Nucleosynthesis

    Directory of Open Access Journals (Sweden)

    P. G. Giannaka

    2015-01-01

    Full Text Available In the first stage of this work, we perform detailed calculations for the cross sections of the electron capture on nuclei under laboratory conditions. Towards this aim we exploit the advantages of a refined version of the proton-neutron quasiparticle random-phase approximation (pn-QRPA and carry out state-by-state evaluations of the rates of exclusive processes that lead to any of the accessible transitions within the chosen model space. In the second stage of our present study, we translate the abovementioned e--capture cross sections to the stellar environment ones by inserting the temperature dependence through a Maxwell-Boltzmann distribution describing the stellar electron gas. As a concrete nuclear target we use the 66Zn isotope, which belongs to the iron group nuclei and plays prominent role in stellar nucleosynthesis at core collapse supernovae environment.

  4. The dynamics of the nuclei-nuclei interactions at very high energies

    International Nuclear Information System (INIS)

    Blaizot, J.P.

    1988-01-01

    The lectures on the dynamics of nuclei-nuclei interactions at very high energies, presented in the Summer School on Nuclear Physics and Particle Physics (1988), are shown. The equation of state of the hadronic matter is analyzed, by means of simple models, and some orders of magnitude can be asserted. The main characteristics of the high energy hadronic interactions are recalled. The basis of the dynamics of the relativistic fluids are given. Applications of this dynamics in the description of the space-time evolution of a plasma, generated by heavy ions collision, are carried out [fr

  5. Neutrino-nucleus cross-sections: a unified theoretical approach for nucleon knock-out, coherent and incoherent pion production

    CERN Document Server

    Martini, M; G. Chanfray; Marteau, J

    2010-01-01

    Neutrino-nucleus cross-sections are needed to interpret neutrino oscillation data, as neutrino detectors involve complex nuclei. We present a theory of neutrino interactions with nuclei aimed at a unified description of the partial cross-sections, namely quasi-elastic and multi-nucleon emission, coherent and incoherent single pion production. We compare our approach to the available neutrino experimental data on carbon. We also discuss the evolution of the neutrino cross-sections with the mass number in view of future precision ex- periments which will use a liquid argon chamber.

  6. Fission of spin-aligned projectile-like nuclei in the interactions of 29 MeV/nucleon 208Pb with 197Au

    International Nuclear Information System (INIS)

    Bresson, S.; Morjean, M.; Jastrzebski, J.; Skulski, W.; Kordyasz, A.; Lott, B.

    1992-01-01

    Binary fission of projectile-like nuclei was investigated in the interaction of 29 MeV/nucleon Pb on Au, together with the associated neutron multiplicity. Fission is only observed in rather peripheral collisions and represents approximately 20% of the total reaction cross-section. The fission process occurs after collisions in which up to 550 MeV have been dissipated. The angular and energy distribution of the fragments can be accounted for by assuming a noticeable spin alignment of the fissioning nuclei. (author) 18 refs.; 3 figs

  7. Reaction rate and energy-loss rate for photopair production by relativistic nuclei

    Science.gov (United States)

    Chodorowski, Michal J.; Zdziarski, Andrzej A.; Sikora, Marek

    1992-01-01

    The process of e(+/-) pair production by relativistic nuclei on ambient photons is considered. The process is important for cosmic-ray nuclei in interstellar and intergalactic space as well as in galactic and extragalactic compact objects. The rate of this process is given by an integral of the cross section over the photon angular and energy distribution. In the case of isotropic photons, the angular integration is performed to provide an expression for the rate at given photon energy in the nucleus rest frame. The total rate then becomes a single integral of that rate over the photon energy distribution. Formulas are also given for the fractional energy loss of a relativistic nucleus colliding with a photon of a given energy in the rest frame. The nucleus energy-loss rate is integrated over the photon angular distribution in the case of isotropic photons, and simple fits are provided.

  8. Electric monopole transitions from low energy excitations in nuclei

    CERN Document Server

    Wood, J L; De Coster, C; Heyde, Kris L G

    1999-01-01

    Electric monopole (E0) properties are studied across the entire nuclear mass surface. Besides an introductory discussion of various model results (shell model, geometric vibrational and rotational models, algebraic models), we point out that many of the largest E0 transition strengths, $\\rho^2$(E0), are associated with shape mixing. We discuss in detail the manifestation of E0 transitions and present extensive data for~: single-closed shell nuclei, vibrational nuclei, well-deformed nuclei, nuclei that exhibit sudden ground-state changes, and nuclei that exhibit shape coexistence and intruder states. We also give attention to light nuclei, odd-A nuclei, and illustrate a suggested relation between $\\rho^2$(E0) and isotopic shifts.

  9. What we have learned so far on reactions and scattering with weakly bound nuclei at near barrier energies

    International Nuclear Information System (INIS)

    Gomes, P.R.S.

    2011-01-01

    Reactions involving weakly bound nuclei, especially halo nuclei, at near barrier energies, are an important subject not yet fully understood. Due to the low threshold energy for breakup, this process is particularly important and may affect significantly the fusion process and elastic scattering. In this talk I will show the systematic of results so far available in this field, concerning static and dynamical effects of halo and breakup on fusion and total reaction cross sections, the energy dependence of the optical potential on the elastic scattering and coupling effects on quasi-elastic scattering barrier distributions involving weakly bound nuclei, both stable and radioactive. The data to be discussed are new data from our group and from the literature, together with some older data. I will also present some experimental challenges for the development of this field. (author)

  10. Fast helium production in interactions of 3.7 A GeV 24Mg with emulsion nuclei

    International Nuclear Information System (INIS)

    Jilany, M.A.

    2004-01-01

    We have studied the properties of the relativistic helium fragments emitted from the projectile in the interactions of 24 Mg ions accelerated at an energy of 3.7 A GeV with emulsion nuclei. The total, partial nuclear cross-sections and production rates of helium fragmentation channels in relativistic nucleus-nucleus collisions and their dependence on the mass and energy of the incident projectile nucleus are investigated. The yields of multiple helium projectile fragments disrupted from the interactions of 24 Mg projectile nuclei with hydrogen H, light CNO and heavy AgBr groups of target emulsion nuclei are discussed and they indicate that the breakup mechanism of the projectile seems to be independent of the target mass. Limiting fragmentation behavior of fast-moving helium fragments is observed in both the projectile and target nuclei. The multiplicity distributions of helium projectile fragments emitted in the interactions of 24 Mg projectile nuclei with the different target nuclei of the emulsion are well described by the KNO scaling presentation. The mean multiplicities of the different charged secondary particles, normally defined shower, grey and black (left angle n s right angle, left angle n g right angle and left angle n b right angle) emitted in the interactions of 3.7 A GeV 24 Mg with the different groups of emulsion nuclei at different ranges of projectile fragments are decreasing when the number of He fragments stripped from projectile increases. These values of left angle n i right angle (i=s, g, band h particles) in the events where the emission of fast helium fragments were accompanied by heavy fragments having Z≥3 seem to be constant as the He multiplicity increases, and exhibit a behavior independent of the He multiplicity. (orig.)

  11. Elastic scattering, fusion, and breakup of light exotic nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Kolata, J.J. [University of Notre Dame, Physics Department, Notre Dame, IN (United States); Guimaraes, V. [Universidade de Sao Paulo, Instituto de Fisica, Sao Paulo, SP (Brazil); Aguilera, E.F. [Instituto Nacional de Investigaciones Nucleares, Departamento de Aceleradores, Mexico, Distrito Federal (Mexico)

    2016-05-15

    The present status of fusion reactions involving light (A< 20) radioactive projectiles at energies around the Coulomb barrier (E<10 MeV per nucleon) is reviewed, emphasizing measurements made within the last decade. Data on elastic scattering (providing total reaction cross section information) and breakup channels for the involved systems, demonstrating the relationship between these and the fusion channel, are also reviewed. Similarities and differences in the behavior of fusion and total reaction cross section data concerning halo nuclei, weakly-bound but less exotic projectiles, and strongly-bound systems are discussed. One difference in the behavior of fusion excitation functions near the Coulomb barrier seems to emerge between neutron-halo and proton-halo systems. The role of charge has been investigated by comparing the fusion excitation functions, properly scaled, for different neutron- and proton-rich systems. Possible physical explanations for the observed differences are also reviewed. (orig.)

  12. MUTIL, Asymmetry Factor of Mott Cross-Sections for Electron, Positron Scattering

    International Nuclear Information System (INIS)

    Idoeta, R.; Legarda, F.

    2002-01-01

    1 - Description of program or function: The asymmetry factor S of Mott's differential cross section for the scattering of electrons and positrons by point nuclei without screening is calculated for any energy, atomic number and angle of scattering. 2 - Method of solution: We have summed the conditionally convergent series, F and G, appearing in the asymmetry factor using two consecutive transformations: The one of Yennie, Ravenhall and Wilson and that of Euler till we have seven times six significant figures repeated in the factor S. 3 - Restrictions on the complexity of the problem: Those appearing in the use of Mott's cross section for unscreened point nuclei

  13. Cluster structure in Cf nuclei

    International Nuclear Information System (INIS)

    Singh, Shailesh K.; Biswal, S.K.; Bhuyan, M.; Patra, S.K.; Gupta, R.K.

    2014-01-01

    Due to the availability of advance experimental facilities, it is possible to probe the nuclei upto their nucleon level very precisely and analyzed the internal structure which will help us to resolve some mysterious problem of the decay of nuclei. Recently, the relativistic nuclear collision, confirmed the α cluster type structure in the 12 C which is the mile stone for the cluster structure in nuclei. The clustering phenomena in light and intermediate elements in nuclear chart is very interesting. There is a lot of work done by our group in the clustering behaviour of the nuclei. In this paper, the various prospectus of clustering in the isotopes of Cf nucleus including fission state is discussed. Here, 242 Cf isotope for the analysis, which is experimentally known is taken. The relativistic mean field model with well established NL3 parameter set is taken. For getting the exact ground state configuration of the isotopes, the calculation for minimizing the potential energy surface is performed by constraint method. The clustering structure of other Cf isotopes is discussed

  14. Morphometric analysis of the suprachiasmatic and paraventricular nuclei in the human brain: sex differences and age-dependent changes

    NARCIS (Netherlands)

    Hofman, M. A.; Fliers, E.; Goudsmit, E.; Swaab, D. F.

    1988-01-01

    The size, shape and cellular morphology of the suprachiasmatic (SCN) and paraventricular nuclei (PVN) in the human hypothalamus were examined in relation to sex and age. In both nuclear regions the following parameters were determined: length of the rostrocaudal axis, maximum cross sectional area,

  15. Critical and shape-unstable nuclei

    CERN Document Server

    Cailliau, M; Husson, J P; Letessier, J; Mang, H J

    1973-01-01

    The authors' experimental work on the decay of neutron deficient mercury osmium nuclei, some other studies at ISOLDE (CERN) and their first theoretical analysis show that the nuclei around /sup 186/Pt (Z=78, N=108) are at the limit of spherical, oblate, prolate nuclei, have (the even one) their first 0/sup +/ excited states at very low energy; quasi- rotational bands are associated to these states. The energy of this O/sup +/ state in /sup 186-/Pt deviate from the Kumar value: angular shape instability is not enough to explain this result. The authors look at radial shape and pairing fluctuations. The position of the 4p-4n state must also be known. (0 refs).

  16. Protonic decay of oriented nuclei

    International Nuclear Information System (INIS)

    Kadmensky, S.G.

    2002-01-01

    On the basis of the multiparticle theory of protonic decay, the angular distributions of protons emitted by oriented spherical and deformed nuclei in the laboratory frame and in the internal coordinate frame of deformed parent nuclei are constructed with allowance for symmetry with respect to time inversion. It is shown that, because of the deep-subbarrier character of protonic decay, the adiabatic approximation is not applicable to describing the angular distributions of protons emitted by oriented deformed nuclei and that the angular distribution of protons in the laboratory frame does not coincide with that in the internal coordinate frame. It is demonstrated that these angular distributions coincide only if the adiabatic and the semiclassical approximation are simultaneously valid

  17. Coulomb energy differences in mirror nuclei

    International Nuclear Information System (INIS)

    Lenzi, Silvia M

    2006-01-01

    By comparing the excitation energies of analogue states in mirror nuclei, several nuclear structure properties can be studied as a function of the angular momentum up to high spin states. They can be described in the shell model framework by including electromagnetic and nuclear isospin-non-conserving interactions. Calculations for the mirror energy differences in nuclei of the f 7/2 shell are described and compared with recent experimental data. These studies are extended to mirror nuclei in the upper sd and fp shells

  18. Is there chirality in atomic nuclei?

    International Nuclear Information System (INIS)

    Meng Jie

    2009-01-01

    Static chiral symmetries are common in nature, for example, the macroscopic spirals of snail shells, the microscopic handedness of certain molecules, and human hands. The concept of chirality in atomic nuclei was first proposed in 1997, and since then many efforts have been made to understand chiral symmetry and its spontaneous breaking in atomic nuclei. Recent theoretical and experimental progress in the verification of chirality in atomic nuclei will be reviewed, together with a discussion of the problems that await to be solved in the future. (authors)

  19. The mean free path of protons in nuclei and the nuclear radius

    International Nuclear Information System (INIS)

    Dymarz, R.; Kohmura, T.

    1983-01-01

    We determine the mean free path of protons in nuclei in the energy range 40-1000 MeV. We find that it is necessary to use in the calculation of the mean free path the nuclear radius R which reproduces the reaction and total cross sections consistently and that this radius leads to a rather small mean free path which is comparable with the value obtained in the microscopic calculation in the whole energy region. (orig.)

  20. Study of the experimental data of multifragmentation of gold and krypton nuclei on interactions with photoemulsion nuclei at high energies

    International Nuclear Information System (INIS)

    Saleh, Z.A.; Abdel-Hafez, A.

    2002-01-01

    Results from EMU-01/12 collaboration for the experimental data on multifragmentation of gold residual nuclei created in the interactions with photoemulsion nuclei at the energy of 10.7 GeV/nucleon are presented together with the experimental data on multifragmentation of krypton created on the interactions with photoemulsion nuclei at energy of 0.9 GeV/nucleon. The data are analyzed in the frame of the statistical model of multifragmentation. It is obvious that there are two regimes for nuclear multifragmentation: the former is when less than one-half of nucleons of projectile nucleus are knocked out, the later is when more than one-half of nucleons are knocked out. Residual nuclei with masses close to each other created at different reactions are fragmented practically simultaneously when more than one-half of nucleons of original nuclei are knocked out. These results give an indication that projectiles other than Gold and Krypton may give the same characterization on interaction with emulsion nuclei at high energies

  1. Hot nuclei and fragmentation

    International Nuclear Information System (INIS)

    Guerreau, D.

    1993-01-01

    A review is made of the present status concerning the production of nuclei above 5 MeV temperature. Considerable progress has been made recently on the understanding of the formation and the fate of such hot nuclei. It appears that the nucleus seems more stable against temperature than predicted by static calculations. However, the occurrence of multifragment production at high excitation energies is now well established. The various experimental features of the fragmentation process are discussed. (author) 59 refs., 12 figs

  2. Spectra and absorbed dose by photo-neutrons in a solid water mannequin exposed to a Linac of 15 MV; Espectros y dosis absorbida por fotoneutrones en un maniqui de agua solida expuesta a una Linac de 15 MV

    Energy Technology Data Exchange (ETDEWEB)

    Benites R, J. [Centro Estatal de Cancerologia de Nayarit, Servicio de Seguridad Radiologica, Calz. de la Cruz 118 Sur, 63000 Tepic, Nayarit (Mexico); Vega C, H. R. [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Apdo. Postal 336, 98000 Zacatecas (Mexico); Velazquez F, J., E-mail: jlbenitesr@prodigy.net.mx [Universidad Autonoma de Nayarit, Posgrado en Ciencias Biologico Agropecuarias, Carretera Tepic-Compostela Km 9, 63780 Jalisco-Nayarit (Mexico)

    2012-10-15

    Using Monte Carlo methods was modeled a solid water mannequin; according to the ICRU 44 (1989), Tissue substitutes in radiation dosimetry and measurements, of the International Commission on Radiation Units and Measurements; Report 44. This material Wt 1 is made of H (8.1%), C (67.2%), N (2.4%), O (19.9%), Cl (0.1%), Ca (2.3%) and its density is of 1.02 gr/cm{sup 3}. The mannequin was put instead of the patient, inside the treatment room and the spectra and absorbed dose were determined by photo-neutrons exposed to a Linac of 15 MV. (Author)

  3. A-dependence of the γ- and p-induced production of the Λ(1520) from nuclei

    International Nuclear Information System (INIS)

    Kaskulov, M.; Oset, E.; Roca, L.

    2006-01-01

    Using results of a recent calculation of the Λ(1520) in the nuclear medium, which show that the medium width is about five times the free width, we study the A-dependence of the Λ(1520) production cross-section in the reactions γA→K + Λ(1520)A' and pA→pK + Λ(1520)A'. We find a sizable A-dependence in the ratio of the nuclear cross-sections for heavy nuclei with respect to a light one due to the large value of the Λ(1520) width in the medium, showing that devoted experiments, easily within reach in present facilities, can provide good information on that magnitude by measuring the cross-sections studied here. (orig.)

  4. Major new sources of biological ice nuclei

    Science.gov (United States)

    Moffett, B. F.; Hill, T.; Henderson-Begg, S. K.

    2009-12-01

    Almost all research on biological ice nucleation has focussed on a limited number of bacteria. Here we characterise several major new sources of biogenic ice nuclei. These include mosses, hornworts, liverworts and cyanobacteria. Ice nucleation in the eukaryotic bryophytes appears to be ubiquitous. The temperature at which these organisms nucleate is that at which the difference in vapour pressure over ice and water is at or close to its maximum. At these temperatures (-8 to -18 degrees C) ice will grow at the expense of supercooled water. These organisms are dependent for their water on occult precipitation - fog, dew and cloudwater which by its nature is not collected in conventional rain gauges. Therefore we suggest that these organism produce ice nuclei as a water harvesting mechanism. Since the same mechanism would also drive the Bergeron-Findeisen process, and as moss is known to become airborne, these nuclei may have a role in the initiation of precipitation. The properties of these ice nuclei are very different from the well characterised bacterial nuclei. We will also present DNA sequence data showing that, although related, the proteins responsible are only very distantly related to the classical bacterial ice nuclei.

  5. Structure and clusters of light unstable nuclei

    International Nuclear Information System (INIS)

    En'yo, Yoshiko

    2010-01-01

    As it is known, cluster structures are often observed in light nuclei. In the recent evolution of unstable nuclear research (on nuclei having unbalanced number of neutron and proton) further new types of clusters are coming to be revealed. In this report, structures of light unstable nuclei and some of the theoretical models to describe them are reviewed. The following topics are picked up. 1. Cluster structure and theoretical models, 2. Cluster structure of unstable nuclei (low excited state). 3. Cluster structure of neutron excess beryllium isotopes. 4. Cluster gas like state in C isotope. 5. Dineutron structure of He isotopes. Numbers of strange nuclear structures of light nuclei are illustrated. Antisymmetrized molecular dynamics (AMD) is the recently developed theoretical framework which has been successfully used in heavy ion reactions and nuclear structure studies. Successful application of AMD to the isotopes of Be, B and C are illustrated. (S. Funahashi)

  6. Perturbative many-body approaches to finite nuclei

    International Nuclear Information System (INIS)

    Hjort-Jensen, M.; Engeland, T.; Holt, A.; Osnes, E.

    1992-06-01

    In this work the authors discuss various approaches to the effective interaction appropriate for finite nuclei. The methods reviewed are the folded-diagram method of Kuo and co-workers and the summation of the folded diagrams as advocated by Lee and Suzuki. Examples of applications to sd-shell nuclei from previous works are discussed together with hitherto unpublished results for nuclei in pf-shell. Since the method of Lee and Suzuki is found to yield the best converged results, this method is applied to calculate the effective interaction for nuclei in the pf-shell. For the calculation of the effective interaction, three recent versions of the Bonn meson-exchange potential model have been used. These versions are fitted to the same set of data and differ only in the strength of the tensor force. The importance of the latter for finite nuclei is discussed. 67 refs., 17 figs., 7 tabs

  7. A new spin-oriented nuclei facility: POLAREX

    Directory of Open Access Journals (Sweden)

    Etilé A.

    2014-03-01

    Full Text Available Using the On-Line Nuclear Orientation method, POLAREX (POLARization of EXotic nuclei is a new facility allowing to study the anisotropic decay of spin-oriented nuclei. Based on the combination of on-line implantation of radioactive nuclei with Low Temperature Nuclear Orientation technique and Nuclear Magnetic Resonance, POLAREX allows to measure nuclear electromagnetic moments and ground-state spins, in the aim to get information about the wave function composition of the nuclear state. Polarized nuclei can also be used to study fundamental interactions involving nuclear β-decay asymmetries. The POLAREX infrastructure will be installed at Accélérateur Linéaire auprés du Tandem d’Orsay in order to study neutron-rich nuclei, some of which have not been studied yet. Will be presented here, all the possibilities of this new facility and a non exhaustive scientific program.

  8. Formation and decay of hot nuclei

    International Nuclear Information System (INIS)

    Tamain, B.

    1992-09-01

    The mechanisms involved in hot nuclei formation and decay and their eventual connexion with fundamental properties of nuclear matter are discussed, i.e. its equation of state is considered. After a brief review of the reactions in which hot nuclei can be formed, the variables which are used to describe them, the corresponding theoretical descriptions and their limits when extreme states are reached are discussed. Experimental evidences for hot nuclei formation are presented, with the corresponding decay properties used as signatures. (R.P.) 64 refs.; 25 figs.; 2 tabs

  9. Elusive active galactic nuclei

    Science.gov (United States)

    Maiolino, R.; Comastri, A.; Gilli, R.; Nagar, N. M.; Bianchi, S.; Böker, T.; Colbert, E.; Krabbe, A.; Marconi, A.; Matt, G.; Salvati, M.

    2003-10-01

    A fraction of active galactic nuclei do not show the classical Seyfert-type signatures in their optical spectra, i.e. they are optically `elusive'. X-ray observations are an optimal tool to identify this class of objects. We combine new Chandra observations with archival X-ray data in order to obtain a first estimate of the fraction of elusive active galactic nuclei (AGN) in local galaxies and to constrain their nature. Our results suggest that elusive AGN have a local density comparable to or even higher than optically classified Seyfert nuclei. Most elusive AGN are heavily absorbed in the X-rays, with gas column densities exceeding 1024 cm-2, suggesting that their peculiar nature is associated with obscuration. It is likely that in elusive AGN the nuclear UV source is completely embedded and the ionizing photons cannot escape, which prevents the formation of a classical narrow-line region. Elusive AGN may contribute significantly to the 30-keV bump of the X-ray background.

  10. Nuclei quadrupole coupling constants in diatomic molecule

    International Nuclear Information System (INIS)

    Ivanov, A.I.; Rebane, T.K.

    1993-01-01

    An approximate relationship between the constants of quadrupole interaction of nuclei in a two-atom molecule is found. It enabled to establish proportionality of oscillatory-rotation corrections to these constants for both nuclei in the molecule. Similar results were obtained for the factors of electrical dipole-quadrupole screening of nuclei. Applicability of these relationships is proven by the example of lithium deuteride molecule. 4 refs., 1 tab

  11. Nuclei at the limits of particle stability

    International Nuclear Information System (INIS)

    Mueller, A.C.

    1993-01-01

    The properties and synthesis of nuclei at the limits of particle stability are reviewed. Nuclear reactions were induced and studied by means of the 'exotic' nuclear beams, i.e. beams of radioactive drip-line nuclei. The beams are mostly generated in heavy-ion projectile fragmentation. The cases of both neutron-rich and proton-rich nuclei are discussed. (K.A.) 270 refs.; 13 figs.; 1 tab

  12. Automated Segmentation of Nuclei in Breast Cancer Histopathology Images.

    Science.gov (United States)

    Paramanandam, Maqlin; O'Byrne, Michael; Ghosh, Bidisha; Mammen, Joy John; Manipadam, Marie Therese; Thamburaj, Robinson; Pakrashi, Vikram

    2016-01-01

    The process of Nuclei detection in high-grade breast cancer images is quite challenging in the case of image processing techniques due to certain heterogeneous characteristics of cancer nuclei such as enlarged and irregularly shaped nuclei, highly coarse chromatin marginalized to the nuclei periphery and visible nucleoli. Recent reviews state that existing techniques show appreciable segmentation accuracy on breast histopathology images whose nuclei are dispersed and regular in texture and shape; however, typical cancer nuclei are often clustered and have irregular texture and shape properties. This paper proposes a novel segmentation algorithm for detecting individual nuclei from Hematoxylin and Eosin (H&E) stained breast histopathology images. This detection framework estimates a nuclei saliency map using tensor voting followed by boundary extraction of the nuclei on the saliency map using a Loopy Back Propagation (LBP) algorithm on a Markov Random Field (MRF). The method was tested on both whole-slide images and frames of breast cancer histopathology images. Experimental results demonstrate high segmentation performance with efficient precision, recall and dice-coefficient rates, upon testing high-grade breast cancer images containing several thousand nuclei. In addition to the optimal performance on the highly complex images presented in this paper, this method also gave appreciable results in comparison with two recently published methods-Wienert et al. (2012) and Veta et al. (2013), which were tested using their own datasets.

  13. Automated Segmentation of Nuclei in Breast Cancer Histopathology Images.

    Directory of Open Access Journals (Sweden)

    Maqlin Paramanandam

    Full Text Available The process of Nuclei detection in high-grade breast cancer images is quite challenging in the case of image processing techniques due to certain heterogeneous characteristics of cancer nuclei such as enlarged and irregularly shaped nuclei, highly coarse chromatin marginalized to the nuclei periphery and visible nucleoli. Recent reviews state that existing techniques show appreciable segmentation accuracy on breast histopathology images whose nuclei are dispersed and regular in texture and shape; however, typical cancer nuclei are often clustered and have irregular texture and shape properties. This paper proposes a novel segmentation algorithm for detecting individual nuclei from Hematoxylin and Eosin (H&E stained breast histopathology images. This detection framework estimates a nuclei saliency map using tensor voting followed by boundary extraction of the nuclei on the saliency map using a Loopy Back Propagation (LBP algorithm on a Markov Random Field (MRF. The method was tested on both whole-slide images and frames of breast cancer histopathology images. Experimental results demonstrate high segmentation performance with efficient precision, recall and dice-coefficient rates, upon testing high-grade breast cancer images containing several thousand nuclei. In addition to the optimal performance on the highly complex images presented in this paper, this method also gave appreciable results in comparison with two recently published methods-Wienert et al. (2012 and Veta et al. (2013, which were tested using their own datasets.

  14. Coulomb excitation of neutron-rich$^{28,29,30}$Na nuclei with MINIBALL at REX-ISOLDE: Mapping the borders of the island of inversion

    CERN Multimedia

    Butler, P; Cederkall, J A; Reiter, P; Wiens, A; Blazhev, A A; Kruecken, R; Voulot, D; Kalkuehler, M; Wadsworth, R; Gernhaeuser, R A; Hess, H E; Holler, A; Finke, F; Leske, J; Huyse, M L; Seidlitz, M

    We propose to study the properties of neutron-rich nuclei $^{28,29,30}$Na via Coulomb excitation experiments using the REX-ISOLDE facility coupled with the highly efficient MINIBALL array. Reliable B(E2,0$^{+}$ $\\rightarrow$ 2$^{+}$) values for $^{30,32}$Mg were obtained at ISOLDE. Together with recent new results on $^{31}$Mg, collective and single particle properties are probed for Z=12 at the N=20 neutron closed shell, the 'island of inversion'. We would like to extend this knowledge to the neighbouring $^{28,29,30}$Na isotopes where a different transition from the usual filling of the neutron levels into the region with low lying 2p-2h cross shell configurations is predicted by theory. Detailed theoretical predictions on the transition strength in all three Na nuclei are awaiting experimental verification and are the subject of this proposal. At REX beam energies of 3.0 MeV /nucleon the cross-sections for Coulomb excitation are sufficient. Moreover the results from the close-by $^{30,31,32}$Mg nuclei de...

  15. α decay chains in 271-294115 superheavy nuclei

    International Nuclear Information System (INIS)

    Santhosh, K. P.; Priyanka, B.; Joseph, Jayesh George; Sahadevan, Sabina

    2011-01-01

    α decay of 271-294 115 superheavy nuclei is studied using the Coulomb and proximity potential model for deformed nuclei (CPPMDN). The predicted α half-lives of 287 115 and 288 115 nuclei and their decay products are in good agreement with experimental values. Comparison of α and spontaneous fission half-lives predicts four-α chains and three-α chains, respectively, from 287 115 and 288 115 nuclei and are in agreement with experimental observation. Our study predicts two-α chains from 273,274,289 115, three-α chains from 275 115, and four-α chains consistently from 284,285,286 115 nuclei. These observations will be useful for further experimental investigation in this region.

  16. The method to set up file-6 in neutron data library of light nuclei below 20 MeV

    International Nuclear Information System (INIS)

    Zhang Jingshang; Han Yinlu

    2001-01-01

    So far there is no file-6 (double differential cross section data, DDX) of the light nuclei in the main evaluated neutron nuclear data libraries in the world. Therefore, locating a proper description on the double differential cross section of all kinds of outgoing particles from neutron induced light nucleus reaction below 20 MeV is necessary. The motivation for this work is to introduce a way to set up file-6 in the neutron data library

  17. Study of the threshold anomaly in systems involving weakly bound nuclei

    International Nuclear Information System (INIS)

    Figueira, J.M.; Niello, J.O. Fernandez; Abelof, G.A.; Arazi, A.; Barmak, D.H.; Capurro, O.A.; Carnelli, P.; Fimiani, L.; Marti, G.V.; Heimann, D. Martinez; Negri, A.E.; Pacheco, A.J.; Gomes, P.R.S.; Lubian, J.; Monteiro, D.S.

    2009-01-01

    Full text: One of the dominant mechanisms in systems involving weakly bound nuclei is the break-up channel; however, the dynamics of this process remains poorly understood. In elastic scattering of strongly bound nuclei it is clearly established that there is always a threshold anomaly (TA) in the optical potential. The TA is characterized by a localized peak in the real part of the potential and by a decrease of the imaginary part of the potential as the bombarding energy decreases towards the Coulomb barrier. But when at least one of the nuclei is weakly bound the results are different for different systems. Three kinds of situations have been reported: the usual TA is observed; the usual TA is not observed because the potentials are almost constant even close to the Coulomb barrier; the so-called Break up Threshold Anomaly (BTA), where the imaginary potential increases as the bombarding energy decreases towards the Coulomb barrier. The BTA is attributed to a strong coupling of the elastic channel with the breakup process, which might have a much larger cross section than fusion at sub-barrier energies. In order to understand how those differences are affected by the system properties it is important to have data of new systems available. In this work we contribute original elastic scattering data of the weakly bound 6,7 Li projectiles on 144 Sm at near coulomb barrier energies. The measurements have been performed at the TANDAR Laboratory using 6 Li and 7 Li beams and a 100 μg/cm 2 thick 144 Sm target. Eleven different bombarding energies between 21 and 42.3 MeV were used for each projectile. The results are analyzed using phenomenological optical potentials and compared with results from other systems involving weakly bound nuclei. (author)

  18. Nuclear Computational Low Energy Initiative (NUCLEI)

    Energy Technology Data Exchange (ETDEWEB)

    Reddy, Sanjay K. [University of Washington

    2017-08-14

    This is the final report for University of Washington for the NUCLEI SciDAC-3. The NUCLEI -project, as defined by the scope of work, will develop, implement and run codes for large-scale computations of many topics in low-energy nuclear physics. Physics to be studied include the properties of nuclei and nuclear decays, nuclear structure and reactions, and the properties of nuclear matter. The computational techniques to be used include Quantum Monte Carlo, Configuration Interaction, Coupled Cluster, and Density Functional methods. The research program will emphasize areas of high interest to current and possible future DOE nuclear physics facilities, including ATLAS and FRIB (nuclear structure and reactions, and nuclear astrophysics), TJNAF (neutron distributions in nuclei, few body systems, and electroweak processes), NIF (thermonuclear reactions), MAJORANA and FNPB (neutrino-less double-beta decay and physics beyond the Standard Model), and LANSCE (fission studies).

  19. Laser method of free atom nuclei orientation

    International Nuclear Information System (INIS)

    Barabanov, A.L.

    1987-01-01

    Orientation process of free atom (atoms in beams) nuclei, scattering quanta of circularly polarized laser radiation is considered. A method for the evaluation of nuclei orientation parameters is developed. It is shown that in the process of pumping between the ground and first excited atomic states with electron shell spins J 1 and J 2 , so that J 2 = J 1 + 1, a complete orientation of nuclei can be attained

  20. Possible existence of backbending in actinide nuclei

    International Nuclear Information System (INIS)

    Dudek, J.; Nazarewicz, W.; Szymanski, Z.

    1982-01-01

    The possibilities for the backbending effect to occur in actinide nuclei are studied using the pairing-self-consistent independent quasiparticle method. The Hamiltonian used is that of the deformed Woods-Saxon potential plus monopole pairing term. The results of the calculations explain why there is no backbending in most actinide nuclei and simultaneously suggest that in some light neutron deficient nuclei around Th and 22 Ra a backbending effect may occur

  1. Survivability and Fusibility in Reactions Leading to Heavy Nuclei in the Vicinity of the N=126 Closed Shell

    International Nuclear Information System (INIS)

    Sagaidak, R. N.

    2009-01-01

    Nuclear fission is well suited to study the dynamic properties and dissipative processes in cold and moderately excited nuclei. It is also a unique tool to explore level density and shell effects at an extreme deformation. Despite the significant progress in the fission studies, the isospin dependence of fission properties and, in particular, of fission barrier heights still remains an open problem. Theoretical fission model parameters are tuned by using the experimental nuclear and fission data close to stability [1]. The models provide a reasonable description of the fission barriers close to the stability line. However, large deviations are observed between predictions of different models for the fission barriers of very neutron-deficient and neutron-rich nuclei. These discrepancies (by as much as 20-30 MeV, see, e.g. [2]) become especially important in the r-process calculations for extremely neutron-rich nuclei, whose fission barriers determine the termination of the r-process by fission [3]. Unfortunately, such neutron-rich nuclei will probably not become accessible in the nearest experiments. Therefore, fission properties of exotic nuclei and especially their isospin dependence can be investigated in alternative regions of the Nuclide Chart, which are accessible for such studies now. Fusion-evaporation cross sections for heavy fissile nuclei obtained in heavy ion induced reactions as well as their fission cross sections are mainly determined by statistical properties of decaying compound nuclei (CN) and first of all by the fission-barrier heights of nuclei involved in the de-excitation chains leading to observable evaporation residues (ER). At the same time, the ER production and fission in nearly symmetric projectile-target fusion reactions leading to the most neutron-deficient CN could be strongly suppressed due to the quasi-fission (QF) effect [4], as observed recently in the 4 8C a induced reactions leading to Ra [5] and Pb [6] CN. The production of

  2. Dipole response in Pb-208 within a self-consistent multiphonon approach

    Czech Academy of Sciences Publication Activity Database

    Knapp, F.; Lo Iudice, N.; Veselý, Petr; Andreozzi, F.; De Gregorio, G.; Porrino, A.

    2015-01-01

    Roč. 92, č. 5 (2015), s. 054315 ISSN 0556-2813 R&D Projects: GA ČR GA13-07117S Grant - others:GA MŠk(CZ) LM2010005 Institutional support: RVO:61389005 Keywords : photoneutron * cross-section * neutron scattering Subject RIV: BE - Theoretical Physics Impact factor: 3.146, year: 2015

  3. Quasifree pion electroproduction from nuclei in the Δ region

    International Nuclear Information System (INIS)

    Lee, F.X.; Wright, L.E.; Bennhold, C.

    1995-10-01

    We present calculations of the reaction Α (e, e 1 π N)B in the distorted wave impulse approximation. The reaction allows for the study of the production process in the nuclear medium without being obscured by the details of nuclear transition densities. First, a pion electroproduction operator suitable for nuclear calculations is obtained by extending the Blomqvist-Laget photoproduction operator to the virtual photon case. The operator is gauge invariant, unitary, reference frame independent, and describes the existing data reasonably well. Then it is applied in nuclei to predict nuclear cross sections under a variety of kinematic arrangements. Issues such as the effects of gauge-fixing, the interference of the Δ resonance with the background, sensitivities to be guadrupole component of the Δ excitation and to the electromagnetic form factors, the role of final-state interactions, are studied in detail. Methods on how to experimentally separate the various pieces in the coincidence cross section are suggested. Finally, the model is compared to recent SLAC experiment. (authors)

  4. Collisions between complex atomic nuclei

    International Nuclear Information System (INIS)

    Vaagen, J. S.

    1977-08-01

    The use of heavy ion accelerators in the study of nuclear structure and states is reviewed. The reactions discussed are the quasielastic reactions in which small amounts of energy and few particles are exchanged between the colliding nuclei. The development of heavy ion accelerators is also discussed, as well as detection equipment. Exotic phenomena, principally the possible existence of superheavy nuclei, are also treated. (JIW)

  5. Study of nuclei far from stability with AYE-Ball array

    International Nuclear Information System (INIS)

    Carpenter, M.P.

    1996-01-01

    The coupling of a Compton-suppressed Ge (CsGe) detector array to a recoil mass separator (RMS) has seen limited use in the past due to the low efficiency for measuring recoil-γ ray coincidences (< 0.1%). With the building of new generation recoil separators and gamma-ray arrays, a substantial increase in detection efficiency has been achieved. This allows for the opportunity to measure excited states in nuclei with cross-sections approaching 100 nb. In this paper, results from the coupling of a modest array of CsGe detectors (AYE-Ball) with a recoil separator (FMA) will be presented

  6. Quantum effects and colour transparency in charmonium photoproduction on nuclei

    International Nuclear Information System (INIS)

    Kopeliovich, B.Z.; Zakharov, B.G.

    1991-01-01

    A rigorous quantum-mechanical treatment of colour transparency effects in diffractive photoproduction of c-barc-pairs on nuclei was developed. The evolution of the c-barc wave function during propagating through a nucleus is rather a considerable distortion of its form, than a trivial attenuation. One of the manifestations of the quantum effects is a nuclear antishadowing of Ψ' yield, i.e. transparency above one. On the contrary, a considerable nuclear shadowing is predicted for the photoproduction of J/Ψ, which has a much smaller absorption cross section than Ψ'. 26 refs.; 5 figs.; 1 tab

  7. Bound states of Θ+ in nuclei

    International Nuclear Information System (INIS)

    Oset, E.; Cabrera, D.; Li, Q.B.; Magas, V.K.; Vicente Vacas, M.J.

    2005-01-01

    We study the binding energy and the width of the Θ + in nuclei, associated to the KN and KπN components. The first one leads to negligible contributions while the second one leads to a sizeable attraction, enough to bind the Θ + in nuclei. Pauli blocking and binding effects on the KN decay reduce considerably the Θ + decay width in nuclei and medium effects associated to the KπN component also lead to a very small width, as a consequence of which one finds separation between the bound levels considerably larger than the width of the states

  8. Chaos in nuclei: Theory and experiment

    Science.gov (United States)

    Muñoz, L.; Molina, R. A.; Gómez, J. M. G.

    2018-05-01

    During the last three decades the quest for chaos in nuclei has been quite intensive, both with theoretical calculations using nuclear models and with detailed analyses of experimental data. In this paper we outline the concept and characteristics of quantum chaos in two different approaches, the random matrix theory fluctuations and the time series fluctuations. Then we discuss the theoretical and experimental evidence of chaos in nuclei. Theoretical calculations, especially shell-model calculations, have shown a strongly chaotic behavior of bound states in regions of high level density. The analysis of experimental data has shown a strongly chaotic behavior of nuclear resonances just above the one-nucleon emission threshold. For bound states, combining experimental data of a large number of nuclei, a tendency towards chaotic motion is observed in spherical nuclei, while deformed nuclei exhibit a more regular behavior associated to the collective motion. On the other hand, it had never been possible to observe chaos in the experimental bound energy levels of any single nucleus. However, the complete experimental spectrum of the first 151 states up to excitation energies of 6.20 MeV in the 208Pb nucleus have been recently identified and the analysis of its spectral fluctuations clearly shows the existence of chaotic motion.

  9. Particles and nuclei, letters

    International Nuclear Information System (INIS)

    2001-01-01

    The present collection of letters from JINR, Dubna, contains seven separate records on physics from extra dimensions, new physics in the new millennium with GENIUS: double beta decay, dark matter, solar neutrinos, the (μ - , e + ) conversion in nuclei mediated by light Majorana neutrinos, exotic muon-to-positron conversion in nuclei: partial transition sum evaluation by using shell model, solar neutrino problem accounting for self consistent magnetohydrodynamics solution for solar magnetic fields, first neutrino observations from the Sudbury neutrino observatory and status report on BOREXINO and results of the muon-background measurements at CERN

  10. Particles and nuclei, letters

    International Nuclear Information System (INIS)

    2002-01-01

    The present collection of letters from JINR, Dubna, contains seven separate records on kinematic separation and mass analysis of heavy recoiling nuclei, dynamical effects prior to heavy ion fusion, VACTIV-DELPHI graphical dialog based program for the analysis of gamma-ray spectra, irradiation of nuclear emulsions in relativistic beams of 6 He and 3 H nuclei, optical and structural investigations of PLZT x/65/35 (x = 4, 8 %) ferroelectric ceramics irradiated by a high-current pulsed electron beam, the oscillating charge and first evidence for neutrinoless double beta decay

  11. Weak interactions with nuclei

    International Nuclear Information System (INIS)

    Walecka, J.D.

    1983-01-01

    Nuclei provide systems where the strong, electomagnetic, and weak interactions are all present. The current picture of the strong interactions is based on quarks and quantum chromodynamics (QCD). The symmetry structure of this theory is SU(3)/sub C/ x SU(2)/sub W/ x U(1)/sub W/. The electroweak interactions in nuclei can be used to probe this structure. Semileptonic weak interactions are considered. The processes under consideration include beta decay, neutrino scattering and weak neutral-current interactions. The starting point in the analysis is the effective Lagrangian of the Standard Model

  12. Fissility of actinide nuclei induced by 60-130 MeV photons

    International Nuclear Information System (INIS)

    Morcelle, Viviane; Tavares, Odilon A.P.

    2004-06-01

    Nuclear fissilities obtained from recent photofission reaction cross section measurements carried out at Saskatchewan Accelerator Laboratory (Saskatoon, Canada) in the energy range 60-130 MeV for 232 Th, 233 U, 235 U, 238 U, and 237 Np nuclei have been analysed in a systematic way. To this aim, a semiempirical approach has been developed based on the quasi-deuteron nuclear photoabsorption model followed by the process of competition between neutron evaporation and fission for the excited nucleus. The study reproduces satisfactorily well the increasing trend of nuclear fissility with parameter Z 2 =A. (author)

  13. Exclusive experiment on nuclei with backward emitted particles by electron-nucleus collision in {approximately} 10 GeV energy range

    Energy Technology Data Exchange (ETDEWEB)

    Saito, T.; Takagi, F. [Tohoku Univ., Sendai (Japan)

    1994-04-01

    Since the evidence of strong cross section in proton-nucleus backward scattering was presented in the early of 1970 years, this phenomena have been interested from the point of view to be related to information on the short range correlation between nucleons or on high momentum components of the wave function of the nucleus. In the analysis of the first experiment on protons from the carbon target under bombardment by 1.5-5.7 GeV protons, indications are found of an effect analogous to scaling in high-energy interactions of elementary particles with protons. Moreover it is found that the function f(p{sup 2})/{sigma}{sub tot}, which describes the spectra of the protons and deuterons emitted backward from nuclei in the laboratory system, does not depend on the energy and the type of the incident particle or on the atomic number of the target nucleus. In the following experiments the spectra of the protons emitted from the nuclei C, Al, Ti, Cu, Cd and Pb were measured in the inclusive reactions with incident particles of negative pions (1.55-6.2 GeV/c) and protons (6.2-9.0 GeV/C). The cross section f is described by f = E/p{sup 2} d{sup 2}{sigma}/dpd{Omega} = C exp ({minus}Bp{sup 2}), where p is the momentum of hadron. The function f depends linearly on the atomic weight A of the target nuclei. The slope parameter B is independent of the target nucleus and of the sort and energy of the bombarding particles. The invariant cross section {rho} = f/{sigma}{sub tot} is also described by exponential A{sub 0} exp ({minus}A{sub 1p}{sup 2}), where p becomes independent of energy at initial particle energies {ge} 1.5 GeV for C nucleus and {ge} 5 GeV for the heaviest of the investigated Pb nuclei.

  14. Interaction cross-sections and matter radii of A = 20 isobars

    International Nuclear Information System (INIS)

    Chulkov, L.; Bochkarev, O.; Geissel, H.; Golovkov, M.; Janas, Z.; Keller, H.; Kobayashi, T.; Muenzenberg, G.; Nickel, F.; Ogloblin, A.; Patra, S.; Piechaczek, A.; Roeckl, E.; Schwab, W.; Suemmerer, K.; Suzuki, T.; Tanihata, I.; Yoshida, K.

    1995-11-01

    High-energy interaction cross-sections of A=20 nuclei ( 20 N, 20 O, 20 F, 20 Ne, 20 Na, 20 Mg) on carbon were measured with accuracies of ∼1%. The nuclear matter rms radii derived from the measured cross-sections show an irregular dependence on isospin projection. The largest difference in radii, which amounts to approximately 0.2 fm, has been obtained for the mirror nuclei 20 O and 20 Mg. The influenc of nuclear deformation and binding energy on the radii is discussed. By evaluating the difference in rms radii of neutron and proton distributions, evidence has been found for the existence of a proton skin for 20 Mg and of a neutron skin for 20 N. (orig.)

  15. Reentrainment of radioactive nuclei from filters

    International Nuclear Information System (INIS)

    Dincklage, R.-D. von

    1982-01-01

    The possible relevance of atomic phenomena for the reentrainment of radioactive nuclei is discussed. The considerations are based on the coulombic fragmentation mechanism. Nuclei of potential interest in reprocessing technology are identified. Future experiments have been shown to be of definite need in this field. (author)

  16. On the occurrence of nuclei in mature sieve elements.

    Science.gov (United States)

    Event, R F; Davis, J D; Tucker, C M; Alfieri, F J

    1970-12-01

    The secondary phloem of 3 species of the Taxodiaceae and 13 species of woody dicotyledons was examined for the occurrence of nuclei in mature sieve elements. Nuclei were found in all mature sieve cells of Metasequoia glyptostroboides, Sequoia sempervirens and Taxodium distichum, and in some mature sieve-tube members in 12 of the 13 species of woody dicotyledons. Except for nuclei of sieve cells undergoing cessation of function, the nuclei in mature sieve cells of M. glyptostroboides, S. sempervirens and T. distichum were normal in appearance. The occurrence and morphology of nuclei in mature sieve-tube members of the woody dicotyledons were quite variable. Only 3 species, Robinia pseudoacacia, Ulmus americana and Vitis riparia, contained some mature sieve elements with apparently normal nuclei.

  17. Real and virtual pions in nuclei

    International Nuclear Information System (INIS)

    Giraud, N.

    1984-02-01

    The thesis first part is concerned with physical pion interaction with deuton, studied in a three-body problem frame. The elastic cross-section in the energy range near the resonance (3-3), has been deduced taking in account the pion virtual absorption. The second part is concerned with virtual pion in nuclei. In particular the virtual pion cloud around the nucleus has been studied and the effective constant coupling pion-nucleus has been deduced. This one is strongly reduced by polorazation effects of the nuclear medium (essentially by virtual excitation of the Δ isobar), in relation to its value for free nucleon collection. In the frame of the same polarization model, the pion field inside the nucleus has been studied also. This field is lowered for small momentum transfer. It is increased for large momentum transfer. This last phenomenon corresponds to critical opalescence related to phase transition of pion condensation [fr

  18. DNA Measurement of Overlapping Cell Nuclei in Thick Tissue Sections

    Directory of Open Access Journals (Sweden)

    Liang Ji

    1997-01-01

    Full Text Available The paper describes an improved image analysis procedure for measuring the DNA content of cell nuclei in thick sections of liver tissue by absorption densitometry. Whereas previous methods only permitted the analysis of isolated nuclei, the new technique enables both isolated and overlapping nuclei to be measured. A 3D segmentation procedure determines whether each object is an isolated nucleus or a pair of overlapping nuclei; in the latter case the combined optical density is redistributed to the individual nuclei. A selection procedure ensures that only complete nuclei are measured.

  19. Single Particle Entropy in Heated Nuclei

    International Nuclear Information System (INIS)

    Guttormsen, M.; Chankova, R.; Hjorth-Jensen, M.; Rekstad, J.; Siem, S.; Sunde, A. C.; Syed, N. U. H.; Agvaanluvsan, U.; Schiller, A.; Voinov, A.

    2006-01-01

    The thermal motion of single particles represents the largest contribution to level density (or entropy) in atomic nuclei. The concept of single particle entropy is presented and shown to be an approximate extensive (additive) quantity for mid-shell nuclei. A few applications of single particle entropy are demonstrated

  20. Understanding Nuclei in the upper sd - shell

    OpenAIRE

    Sarkar, M. Saha; Bisoi, Abhijit; Ray, Sudatta; Kshetri, Ritesh; Sarkar, S.

    2013-01-01

    Nuclei in the upper-$sd$ shell usually exhibit characteristics of spherical single particle excitations. In the recent years, employment of sophisticated techniques of gamma spectroscopy has led to observation of high spin states of several nuclei near A$\\simeq$ 40. In a few of them multiparticle, multihole rotational states coexist with states of single particle nature. We have studied a few nuclei in this mass region experimentally, using various campaigns of the Indian National Gamma Array...

  1. Shell-model Monte Carlo studies of nuclei

    International Nuclear Information System (INIS)

    Dean, D.J.

    1997-01-01

    The pair content and structure of nuclei near N = Z are described in the frwnework of shell-model Monte Carlo (SMMC) calculations. Results include the enhancement of J=0 T=1 proton-neutron pairing at N=Z nuclei, and the maxked difference of thermal properties between even-even and odd-odd N=Z nuclei. Additionally, a study of the rotational properties of the T=1 (ground state), and T=0 band mixing seen in 74 Rb is presented

  2. Calculation of absorbed dose and biological effectiveness from photonuclear reactions in a bremsstrahlung beam of end point 50 MeV.

    Science.gov (United States)

    Gudowska, I; Brahme, A; Andreo, P; Gudowski, W; Kierkegaard, J

    1999-09-01

    The absorbed dose due to photonuclear reactions in soft tissue, lung, breast, adipose tissue and cortical bone has been evaluated for a scanned bremsstrahlung beam of end point 50 MeV from a racetrack accelerator. The Monte Carlo code MCNP4B was used to determine the photon source spectrum from the bremsstrahlung target and to simulate the transport of photons through the treatment head and the patient. Photonuclear particle production in tissue was calculated numerically using the energy distributions of photons derived from the Monte Carlo simulations. The transport of photoneutrons in the patient and the photoneutron absorbed dose to tissue were determined using MCNP4B; the absorbed dose due to charged photonuclear particles was calculated numerically assuming total energy absorption in tissue voxels of 1 cm3. The photonuclear absorbed dose to soft tissue, lung, breast and adipose tissue is about (0.11-0.12)+/-0.05% of the maximum photon dose at a depth of 5.5 cm. The absorbed dose to cortical bone is about 45% larger than that to soft tissue. If the contributions from all photoparticles (n, p, 3He and 4He particles and recoils of the residual nuclei) produced in the soft tissue and the accelerator, and from positron radiation and gammas due to induced radioactivity and excited states of the nuclei, are taken into account the total photonuclear absorbed dose delivered to soft tissue is about 0.15+/-0.08% of the maximum photon dose. It has been estimated that the RBE of the photon beam of 50 MV acceleration potential is approximately 2% higher than that of conventional 60Co radiation.

  3. Calculation of absorbed dose and biological effectiveness from photonuclear reactions in a bremsstrahlung beam of end point 50 MeV

    International Nuclear Information System (INIS)

    Gudowska, I.; Brahme, A.; Andreo, P.; Gudowski, W.; Kierkegaard, J.

    1999-01-01

    The absorbed dose due to photonuclear reactions in soft tissue, lung, breast, adipose tissue and cortical bone has been evaluated for a scanned bremsstrahlung beam of end point 50 MeV from a racetrack accelerator. The Monte Carlo code MCNP4B was used to determine the photon source spectrum from the bremsstrahlung target and to simulate the transport of photons through the treatment head and the patient. Photonuclear particle production in tissue was calculated numerically using the energy distributions of photons derived from the Monte Carlo simulations. The transport of photoneutrons in the patient and the photoneutron absorbed dose to tissue were determined using MCNP4B; the absorbed dose due to charged photonuclear particles was calculated numerically assuming total energy absorption in tissue voxels of 1 cm 3 . The photonuclear absorbed dose to soft tissue, lung, breast and adipose tissue is about (0.11-0.12)±0.05% of the maximum photon dose at a depth of 5.5 cm. The absorbed dose to cortical bone is about 45% larger than that to soft tissue. If the contributions from all photoparticles (n, p, 3 He and 4 He particles and recoils of the residual nuclei) produced in the soft tissue and the accelerator, and from positron radiation and gammas due to induced radioactivity and excited states of the nuclei, are taken into account the total photonuclear absorbed dose delivered to soft tissue is about 0.15±0.08% of the maximum photon dose. It has been estimated that the RBE of the photon beam of 50 MV acceleration potential is approximately 2% higher than that of conventional 60 Co radiation. (author)

  4. Fission of Weakly Prolate 119Sn and Weakly Oblate 209Bi Nuclei Induced by 500 and 672 MeV Negative Pions

    International Nuclear Information System (INIS)

    Rana, Mukhtar Ahmed; Sher, Gul; Manzoor, Shahid; Shahzad, M. I.

    2011-01-01

    Fission cross-sections of 119 Sn and 209 Bi induced by negative pions of two energies 500 and 672 MeV were measured using a CR-39 nuclear track detector. Target-detector stacks were exposed to pion beams at the Brookhaven National Laboratory (USA). Measurement results are compared with the corresponding calculations using the computer code CEM95. Agreement between measurements and calculations is fairly good for the 209 Bi target nuclei whereas it is poor for 119 Sn at both investigated energies of 500 and 672 MeV. Fission cross-section results of 119 Sn and 209 Bi are explained using the equilibrium properties of these nuclides including nuclear electric quadrupole moments which determine the shapes of nuclei. A logarithmic dependence of fission cross-section on Z 2 /A is observed for the above-mentioned reactions and a critical limit of Z 2 /A is identified with the value of 30 which divides the curve of σ f versus Z 2 /A into two regimes, one with weak dependence and the other with strong dependence. (nuclear physics)

  5. Fission of Weakly Prolate 119Sn and Weakly Oblate 209Bi Nuclei Induced by 500 and 672 MeV Negative Pions

    Science.gov (United States)

    Mukhtar, Ahmed Rana; Gul, Sher; Shahid, Manzoor; I. Shahzad, M.

    2011-09-01

    Fission cross-sections of 119Sn and 209Bi induced by negative pions of two energies 500 and 672 MeV were measured using a CR-39 nuclear track detector. Target-detector stacks were exposed to pion beams at the Brookhaven National Laboratory (USA). Measurement results are compared with the corresponding calculations using the computer code CEM95. Agreement between measurements and calculations is fairly good for the 209Bi target nuclei whereas it is poor for 119Sn at both investigated energies of 500 and 672 MeV. Fission cross-section results of 119Sn and 209Bi are explained using the equilibrium properties of these nuclides including nuclear electric quadrupole moments which determine the shapes of nuclei. A logarithmic dependence of fission cross-section on Z2/A is observed for the above-mentioned reactions and a critical limit of Z2/A is identified with the value of 30 which divides the curve of σf versus Z2/A into two regimes, one with weak dependence and the other with strong dependence.

  6. Fusion probability and survivability in estimates of heaviest nuclei production

    Directory of Open Access Journals (Sweden)

    Sagaidak Roman N.

    2012-02-01

    Full Text Available Production of the heavy and heaviest nuclei (from Po to the region of superheavy elements close to Z=114 and N=184 in fusion-evaporation reactions induced by heavy ions has been considered in a systematic way within the framework of the barrier-passing model coupled with the statistical model (SM of de-excitation of a compound nucleus (CN. Excitation functions for fission and evaporation residues (ER measured in very asymmetric combinations can be described rather well. One can scale and fix macroscopic (liquid-drop fission barriers for nuclei involved in the calculation of survivability with SM. In less asymmetric combinations, effects of fusion suppression caused by quasi-fission (QF are starting to appear in the entrance channel of reactions. QF effects could be semi-empirically taken into account using fusion probabilities deduced as the ratio of measured ER cross sections to the ones obtained in the assumption of absence of the fusion suppression in corresponding reactions. SM parameters (fission barriers obtained at the analysis of a very asymmetric combination leading to the production of (nearly the same CN should be used for this evaluation.

  7. Flavanol binding of nuclei from tree species.

    Science.gov (United States)

    Feucht, W; Treutter, D; Polster, J

    2004-01-01

    Light microscopy was used to examine the nuclei of five tree species with respect to the presence of flavanols. Flavanols develop a blue colouration in the presence of a special p-dimethylaminocinnamaldehyde (DMACA) reagent that enables those nuclei loaded with flavanols to be recognized. Staining of the nuclei was most pronounced in both Tsuga canadensis and Taxus baccata, variable in Metasequoia glyptostroboides, faint in Coffea arabica and minimal in Prunus avium. HPLC analysis showed that the five species contained substantial amounts of different flavanols such as catechin, epicatechin and proanthocyanidins. Quantitatively, total flavanols were quite different among the species. The nuclei themselves, as studied in Tsuga seed wings, were found to contain mainly catechin, much lower amounts of epicatechin and traces of proanthocyanidins. Blue-coloured nuclei located centrally in small cells were often found to maximally occupy up to 90% of a cell's radius, and the surrounding small rim of cytoplasm was visibly free of flavanols. A survey of 34 gymnosperm and angiosperm species indicated that the first group has much higher nuclear binding capacities for flavanols than the second group.

  8. Neutron rich nuclei around 132Sn

    International Nuclear Information System (INIS)

    Bhattacharya, Sarmishtha

    2016-01-01

    The neutron rich nuclei with few particles or holes in 132 Sn have various experimental and theoretical interest to understand the evolution of nuclear structure around the doubly magic shell closure Z=50 and N=82. Some of the exotic neutron rich nuclei in this mass region are situated near waiting points in the r-process path and are of special astrophysical interest. Neutron rich nuclei near 132 Sn have been studied using fission fragment spectroscopy. The lifetime of low lying isomeric states have been precisely measured and the beta decay from the ground and isomeric states have been characterized using gamma-ray spectroscopy

  9. Low-luminosity gamma-ray bursts as the sources of ultrahigh-energy cosmic ray nuclei

    Science.gov (United States)

    Zhang, B. Theodore; Murase, Kohta; Kimura, Shigeo S.; Horiuchi, Shunsaku; Mészáros, Peter

    2018-04-01

    Recent results from the Pierre Auger Collaboration have shown that the composition of ultrahigh-energy cosmic rays (UHECRs) becomes gradually heavier with increasing energy. Although gamma-ray bursts (GRBs) have been promising sources of UHECRs, it is still unclear whether they can account for the Auger results because of their unknown nuclear composition of ejected UHECRs. In this work, we revisit the possibility that low-luminosity GRBs (LL GRBs) act as the sources of UHECR nuclei and give new predictions based on the intrajet nuclear composition models considering progenitor dependencies. We find that the nuclear component in the jet can be divided into two groups according to the mass fraction of silicon nuclei, Si-free and Si-rich. Motivated by the connection between LL GRBs and transrelativistic supernovae, we also consider the hypernova ejecta composition. Then, we discuss the survivability of UHECR nuclei in the jet base and internal shocks of the jets, and show that it is easier for nuclei to survive for typical LL GRBs. Finally, we numerically propagate UHECR nuclei ejected from LL GRBs with different composition models and compare the resulting spectra and composition to Auger data. Our results show that both the Si-rich progenitor and hypernova ejecta models match the Auger data well, while the Si-free progenitor models have more difficulty in fitting the spectrum. We argue that our model is consistent with the newly reported cross-correlation between the UHECRs and starburst galaxies, since both LL GRBs and hypernovae are expected to be tracers of the star-formation activity. LL GRBs have also been suggested as the dominant origin of IceCube neutrinos in the PeV range, and the LL GRB origin of UHECRs can be critically tested by near-future multimessenger observations.

  10. Microscopic study on proton elastic scattering of light exotic nuclei at energies below than 100 MeV/nucleon

    Energy Technology Data Exchange (ETDEWEB)

    Farag, M.Y.H.; Esmael, E.H. [Cairo University, Physics Department, Faculty of Science, Giza (Egypt); Maridi, H.M. [Cairo University, Physics Department, Faculty of Science, Giza (Egypt); Taiz University, Physics Department, Faculty of Applied Science, Taiz (Yemen)

    2012-11-15

    The proton elastic scattering data on some light exotic nuclei, namely, {sup 6,} {sup 8}He, {sup 9,} {sup 11}Li, and {sup 10,} {sup 11,} {sup 12}Be, at energies below than 100MeV/nucleon are analyzed using the single folding optical model. The real, imaginary, and spin-orbit parts of the optical potential (OP) are constructed only from the folded potentials and their derivatives using M3Y effective nucleon-nucleon interaction. These OP parts, their renormalization factors and their volume integrals are studied. The surface and spin-orbit potentials are important to fit the experimental data. Three model densities for halo nuclei are used and the sensitivity of the cross-sections to these densities is tested. The imaginary OP within high-energy approximation is used and compared with the single folding OP. This OP with few and limited fitting parameters, which have systematic behavior with incident energy, successfully describes the proton elastic scattering data with exotic nuclei. (orig.)

  11. Measurement of differential (n,x{alpha}) cross section using 4{pi} gridded ionization chamber

    Energy Technology Data Exchange (ETDEWEB)

    Sanami, Toshiya; Baba, Mamoru; Matsuyama, Shigeo; Kiyosumi, Takehide; Nauchi, Yasushi; Saito, Keiichiro; Hirakawa, Naohiro [Tohoku Univ., Sendai (Japan). Faculty of Engineering; Kawano, Toshihiko

    1997-03-01

    We carried out the measurements of high resolution {alpha} emission spectra of {sup 58}Ni and {sup nat}Ni between 4.5 and 6.5 MeV, and {sup 12}C(n,x{alpha}) cross section using a 4{pi} gridded ionization chamber. In Ni measurement, overall energy resolution was improved to around 200 keV by optimizing a sample thickness and a neutron source width. Measured alpha spectra showed separate peaks corresponding to the ground and low-lying excited states of the residual nucleus ({sup 55}Fe). These results were compared with another direct measurement and statistical model calculations. In {sup 12}C measurement, GIC was applied for (n,x{alpha}) reactions of light nuclei. This application is difficult to (n,x{alpha}) cross sections of light nuclei, because of the influences of large recoil energy and multi-body break-up. We developed new methods which eliminate the effects of recoil nuclei and multi-body break-up and applied them to {sup 12}C(n,x{alpha}) reaction at En=14.1 MeV. In our experiment, the {sup 12}C(n,{alpha}{sub 0}){sup 9}Be angular differential cross section and {sup 12}C(n,n`3{alpha}) cross section were obtained. (author)

  12. Nuclear data evaluation for medium and heavy nuclei

    International Nuclear Information System (INIS)

    Mizumoto, Motoharu

    1988-01-01

    Present status of nuclear data evaluation works for medium and heavy nuclei is described in this paper. These data are being prepared for JENDL-3 (Japanese Evaluated Nuclear Data Library-Version 3). At present, about a half of the data files, which are expected to be stored in the final library, has been brought into a temporary library called JENDL-3T. The remaining works and additional revisions are still needed to be made in order to finalize the data library as JENDL-3. Special emphases have been put on the high energy neutron data for which the previous JENDL-2 had some inadequacies, and gamma-ray production cross sections have been newly evaluated. Systematic and consistent evaluations have been intended for the new evaluations. (author)

  13. Nuclei in a neutron star

    International Nuclear Information System (INIS)

    Oyamatsu, K.; Yamada, M.

    1994-01-01

    We report on the recent progress in understanding the matter in the crust of a neutron star. For nuclides in the outer crust, recently measured masses of neutron-rich nuclei enable us to determine more accurately the stable nuclide as a function of the matter density. In the inner crust, the compressible liquid-drop model predicts successive change of the nuclear shape, from sphere to cylinder, slab, cylindrical hole and spherical hole at densities just before the transition to uniform matter. In order to go beyond the liquiddrop model, we performed the Thomas-Fermi calculation paying special attention to the surface diffuseness, and have recently calculated the shell energies of the non-spherical nuclei. We have found from these studies that all these non-spherical nuclei exist stably in the above order even if we include the surface diffuseness and shell energies. (author)

  14. Systematics of light nuclei in a relativistic model

    International Nuclear Information System (INIS)

    Price, C.E.

    1988-01-01

    The results of relativistic mean field calculations for non-spherical nuclei are presented and discussed. The need for non-linear scalar meson self-couplings in order to describe the properties of s-d shell nuclei is emphasized along with the importance of self-consistency in calculations of magnetic moments of odd-mass nuclei. 16 refs., 3 figs., 2 tabs

  15. Giant halos in medium nuclei within modified relativistic mean field (MRMF) model

    Energy Technology Data Exchange (ETDEWEB)

    Nugraha, A. M., E-mail: alpi.mahisha@gmail.com; Sulaksono, A. [Departemen Fisika, FMIPA, Universitas Indonesia, Kampus UI Depok (Indonesia); Sumaryada, T. [Department of Physics, Bogor Agricultural University, Jalan Meranti Kampus IPB Dramaga Bogor 16680 (Indonesia)

    2016-04-19

    The large number of neutrons in a region beyond a closed shell core indicates the presence of giant halos in nuclei. In this work, by using the Rotival method within a modified relativistic mean field (MRMF) model, we predict theoretically the formation of giant halos in Cr and Zr isotopes. The MRMF model is a modification of standard RMF model augmented with isoscalar and isovector tensor terms, isovector-isoscalar vector cross coupling term and electromagnetic exchange term for Coulomb interaction in local density approximation (LDA).

  16. Stability and production of superheavy nuclei

    International Nuclear Information System (INIS)

    Moeller, P.; Los Alamos National Lab., NM; Nix, J.R.

    1997-01-01

    Beyond uranium heavy elements rapidly become increasingly unstable with respect to spontaneous fission as the proton number Z increases, because of the disruptive effect of the long-range Coulomb force. However, in the region just beyond Z = 100 magic proton and neutron numbers and the associated shell structure enhances nuclear stability sufficient to allow observation of additional nuclei. Some thirty years ago it was speculated that an island of spherical, relatively stable superheavy nuclei would exist near the next doubly magic proton-neutron combination beyond 208 Pb, that is, at proton number Z 114 and neutron number N = 184. Theory and experiment now show that there also exists a rock of stability in the vicinity of Z = 110 and N = 162 between the actinide region, which previously was the end of the peninsula of known elements, and the predicted island of spherical superheavy nuclei slightly southwest of the magic numbers Z = 114 and N = 184. The authors review here the stability properties of the heavy region of nuclei. Just as the decay properties of nuclei in the heavy region depend strongly on shell structure, this structure also dramatically affects the fusion entrance channel. The six most recently discovered new elements were all formed in cold-fusion reactions. They discuss here the effect of the doubly magic structure of the target in cold-fusion reactions on the fusion barrier and on dissipation

  17. Applications of the nuclear theory to the computation of neutron cross sections for actinide isotopes

    International Nuclear Information System (INIS)

    Konshin, V.A.

    1981-01-01

    Neutron cross section calculational methods for actinides in the unresolved resonance energy range (1-150 kev) are discussed, with a special emphasis on calculation of width fluctuation factors for the generalized distribution, as well as for a sub-threshold fission. It is shown that the energy dependence of sub(J), the (n,n') -process competition and the structure in neutron cross section has to be taken into account in the energy range considered. Analysis of different approaches in the statistical theory for heavy nuclei neutron cross-section calculation is given, and it is shown to be important to allow for the (n,γf)-reaction in neutron cross section calculations for fissile nuclei. The use of the non-spherical potential, the Lorentzian spectral factor and the Fermi-gas model involving the collective modes enables to obtain the self-consistent data for all neutron cross sections, including σnγ. (author)

  18. Projectile fragmentation of neutron-rich nuclei on light target (momentum distribution and nucleon-removal cross section)

    International Nuclear Information System (INIS)

    Kobayashi, T.; Tanihata, I.; Suzuki, T.

    1992-01-01

    Transverse momentum distributions of the projectile fragments from β-unstable nuclei have been measured with various projectile and target combinations. The momentum correlation of two neutrons in the neutron halo is extracted from the P c t distribution of 9 Li and hat of the neutrons. It is found that the two neutrons are moving in the same direction on average and thus strongly suggests the formation of a di-neutron in 11 Li. (Author)

  19. Collective models of transition nuclei Pt. 2

    International Nuclear Information System (INIS)

    Dombradi, Zs.

    1982-01-01

    The models describing the even-odd and odd-odd transition nuclei (nuclei of moderate ground state deformation) are reviewed. The nuclear core is described by models of even-even nuclei, and the interaction of a single particle and the core is added. Different models of particle-core coupling (phenomenological models, collective models, nuclear field theory, interacting boson-fermion model, vibration nucleon cluster model) and their results are discussed. New developments like dynamical supersymmetry and new research trends are summarized. (D.Gy.)

  20. Influence of the density dependence factor in effective nucleon-nucleon forces and interaction of 4He-particles with stable nuclei

    International Nuclear Information System (INIS)

    Kuterbekov, K.A.; Zholdybayev, T.K.; Muchamedzhan, A.; Penionzhkevich, Yu.E.; Kukhtina, I.N.

    2004-01-01

    Full text: The most popular method for join analysis of experimental angular distributions (AD) and total cross sections (TCS) at low and moderate energies is semimicroscopic folding model (SFM) [1]. Since 4 He-particle is a core of exotic nuclei 6,8 He, it is topical to continue systematic investigations at various effective nucleon-nucleon forces. In [2] we investigated for the first time energy and mass dependencies of the parameters SFM at low and moderate energies. At that, as effective forces between nucleons of the colliding nuclei were used total M3Y-interaction [3] and nucleon densities calculated by the method of density functional [4]. In the present work based on SFM there were investigated influences of the density dependence factor in effective nucleon-nucleon forces (4 force options considered) on calculation of ADs and TCSs at interaction of 4 He-particles with stable nuclei (A = 12 - 208) at α-particle energies 21 - 141.5 MeV. Corresponding experimental AD and TCS data used for model verification are of high quality with low error both for angular and energy diapason. Therefore, conclusions made in the performed investigation contain important quantitative information and are valuable for consequent comparative analysis of experimental data on interaction of light exotic nuclei with stable nuclei

  1. Particles and nuclei in PANIC

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1987-07-15

    PANIC is the triennal International Conference on Particles and Nuclei, and judging from the latest PANIC, held in Kyoto from 20-24 April there is no need for panic yet. Faced with two pictures – one of nuclei described in nucleon and meson terms, and another of nucleons containing quarks and gluons – physicists are intrigued to know what new insights from the quark level can tell us about nuclear physics, or vice versa.

  2. Particles and nuclei in PANIC

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    PANIC is the triennal International Conference on Particles and Nuclei, and judging from the latest PANIC, held in Kyoto from 20-24 April there is no need for panic yet. Faced with two pictures – one of nuclei described in nucleon and meson terms, and another of nucleons containing quarks and gluons – physicists are intrigued to know what new insights from the quark level can tell us about nuclear physics, or vice versa

  3. Understanding nuclei in the upper sd - shell

    Energy Technology Data Exchange (ETDEWEB)

    Sarkar, M. Saha; Bisoi, Abhijit; Ray, Sudatta [Nuclear Physics Division, Saha Institute of Nuclear Physics, Kolkata 700064 (India); Kshetri, Ritesh [Nuclear Physics Division, Saha Institute of Nuclear Physics, Kolkata 700064, India and Sidho-Kanho-Birsha University, Purulia - 723101 (India); Sarkar, S. [Indian Institute of Engineering Science and Technology, Shibpur, Howrah - 711103 (India)

    2014-08-14

    Nuclei in the upper-sd shell usually exhibit characteristics of spherical single particle excitations. In the recent years, employment of sophisticated techniques of gamma spectroscopy has led to observation of high spin states of several nuclei near A ≃ 40. In a few of them multiparticle, multihole rotational states coexist with states of single particle nature. We have studied a few nuclei in this mass region experimentally, using various campaigns of the Indian National Gamma Array setup. We have compared and combined our empirical observations with the large-scale shell model results to interpret the structure of these nuclei. Indication of population of states of large deformation has been found in our data. This gives us an opportunity to investigate the interplay of single particle and collective degrees of freedom in this mass region.

  4. Quarks in nuclei

    International Nuclear Information System (INIS)

    Roberts, R.G.

    1984-11-01

    The paper concerns the behaviour of quarks in nuclei. Confinement size changes and dynamical rescaling; A dependence; low-x region; gluons and confinement size; and nucleons in a nucleus; are all discussed. (U.K.)

  5. Decay properties of nuclei close to Z = 108 and N = 162

    International Nuclear Information System (INIS)

    Dvorak, Jan

    2007-01-01

    The goal of the research conducted in the frame of this thesis was to investigate the decay properties of the nuclides 269-271 Hs and their daughters using an improved chemical separation and detection system. Shell stabilization was predicted in the region around Z=108 and N=162 in calculations, taking into account possible higher orders of deformations of the nuclei. The nucleus 270 Hs with a closed proton and a closed neutron deformed shell, was predicted to be ''deformed doubly magic''. Nuclei around 270 Hs can be produced only via fusion reactions at picobarn levels, resulting in a production rates of few atoms per day. Investigating short-lived nuclei using rapid chemical separation and subsequent on-line detection methods provides an independent and alternative means to electromagnetic on-line separators. Chemical separation of Hs in the form of HsO 4 provides an excellent tool to study the formation reactions and nuclear structure in this region of the chart of nuclides due to a high overall efficiency and a very high purification factor. The goal was accomplished, as element 108, hassium, was produced in the reaction 248 Cm( 26 Mg,xn) 274-x Hs and chemically isolated. After gas phase separation of HsO 4 , 26 genetically linked decay chains have been observed. These were attributed to decays of three different Hs isotopes produced in the 3-5n evaporation channels. The known decay chain of 269 Hs, the 5n evaporation product, serves as an anchor point, thus allowing the unambiguous assignment of the observed decay chains to the 5n, 4n, and 3n channels, respectively. Decay properties of five nuclei have been unambiguously established for the first time, including the one for the the doubly-magic nuclide 270 Hs. This hassium isotope is the next doubly magic nucleus after the well known 208 Pb and the first experimentally observed even-even nucleus on the predicted N=162 neutron shell. The observed decay properties provide strong indications for enhanced nuclear

  6. Formation of heavy compound nuclei, their survival and correlation with longtime-scale fission

    International Nuclear Information System (INIS)

    Karamyan, S.A.; Yakushev, A.B.

    2006-01-01

    Fusion of two massive nuclei with formation of super-heavy compound nucleus (CN) is driven by the potential energy gradient, as follows from the analysis of nuclear reaction cross-sections. The conservative energy of the system is deduced in simple approximation using regularized nuclear mass and interaction barrier values. Different reactions for the synthesis of Z c 110-118 nuclei are compared and the favourable conditions are found for fusion of the stable (W-Pt) isotopes with radioactive fission fragment projectiles, like 94 Kr or 100 Sr. Thus, the cold fusion method can be extended for a synthesis of elements with Z > 113. Survival of the evaporation residue is defined by the neutron-to-fission probability ratio and by the successful emission of gammas at the final step of the reaction. Numerical estimates are presented. Fixation of evaporation residue products must correlate with longtime-scale fission and available experimental results are discussed

  7. Microscopic Cluster Theory for Exotic Nuclei

    International Nuclear Information System (INIS)

    Tomaselli, M; Kuehl, T; Ursescu, D; Fritzsche, S

    2006-01-01

    For a better understanding of the dynamics of complex exotic nuclei it is of crucial importance to develop a practical microscopic theory easy to be applied to a wide range of masses. In this paper we propose to calculate the structure of neutron-rich nuclei within a dynamic model based on the EoM theory

  8. Mean-field models and exotic nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Bender, M; Buervenich, T; Maruhn, J A; Greiner, W [Inst. fuer Theoretische Physik, Univ. Frankfurt (Germany); Rutz, K [Inst. fuer Theoretische Physik, Univ. Frankfurt (Germany); [Gesellschaft fuer Schwerionenforschung mbH, Darmstadt (Germany); Reinhard, P G [Inst. fuer Theoretische Physik, Univ. Erlangen (Germany)

    1998-06-01

    We discuss two widely used nuclear mean-field models, the relativistic mean-field model and the (nonrelativistic) Skyrme-Hartree-Fock model, and their capability to describe exotic nuclei. Test cases are superheavy nuclei and neutron-rich Sn isotopes. New information in this regime helps to fix hitherto loosely determined aspects of the models. (orig.)

  9. Mean-field models and exotic nuclei

    International Nuclear Information System (INIS)

    Bender, M.; Buervenich, T.; Maruhn, J.A.; Greiner, W.; Rutz, K.; Reinhard, P.G.

    1998-01-01

    We discuss two widely used nuclear mean-field models, the relativistic mean-field model and the (nonrelativistic) Skyrme-Hartree-Fock model, and their capability to describe exotic nuclei. Test cases are superheavy nuclei and neutron-rich Sn isotopes. New information in this regime helps to fix hitherto loosely determined aspects of the models. (orig.)

  10. The giant quadrupole resonance in highly excited rotating nuclei

    International Nuclear Information System (INIS)

    Civitarese, O.; Furui, S.; Ploszajczak, M.; Faessler, A.

    1983-01-01

    The giant quadrupole resonance in highly excited, fast rotating nuclei is studied as a function of both the nuclear temperature and the nuclear angular momentum. The photo-absorption cross sections for quadrupole radiation in 156 Dy, 160 Er and 164 Er are evaluated within the linear response theory. The strength functions of the γ-ray spectrum obtained from the decay of highly excited nuclear states by deexcitation of the isoscalar quadrupole mode show a fine structure, which depends on the temperature T, the angular momentum I and the deformation of the nucleus β. The splitting of the modes associated with the signature-conserving and signature-changing components of the quadrupole field is discussed. (orig.)

  11. Fusion-fission of superheavy nuclei at low excitation energies

    International Nuclear Information System (INIS)

    Itkis, M.G.; Oganesyan, Yu.Ts.; Kozulin, E.M.

    2000-01-01

    The process of fusion-fission of superheavy nuclei with Z = 102 -122 formed in the reactions with 22 Ne, 26 Mg, 48 Ca, 58 Fe and 86 Kr ions at energies near and below the Coulomb barrier has been studied. The experiments were carried out at the U-400 accelerator of the Flerov Laboratory of Nuclear Reactions (JINR) using a time-of-flight spectrometer of fission fragments CORSET and a neutron multi-detector DEMON. As a result of the experiments, mass and energy distributions of fission fragments, fission and quasi-fission cross sections, multiplicities of neutrons and gamma-rays and their dependence on the mechanism of formation and decay of compound superheavy systems have been studied

  12. High-energy photoproduction and electroproduction of π+ on nuclei

    International Nuclear Information System (INIS)

    Kuz'menko, V.S.; Mitrofanova, A.V.; Noga, V.I.; Ranyuk, Y.N.; Sorokin, P.V.; Telegin, Y.N.; Blomqvist, I.; Jonsson, G.G.; Freed, N.

    1977-01-01

    Cross sections for photoproduction and electroproduction of π + on 27 Al and 51 V leading to bound states in the daughter nuclei have been measured at Kharkov in the energy range 600--1200 MeV by use of the activation method. Careful comparison is made to other recent results obtained at intermediate and high energies. Agreement is found between the present data and results of earlier work carried out at Lund and DESY. Discrepancies between photoproduction data taken at different laboratories are attributed to differences between methods of background subtraction. Relative bremsstrahlung-induced to electron-induced yield ratios are compared with predictions based on the Dalitz-Yennie formalism for virtual-photon spectra

  13. Relativistic exotic nuclei as projectile beams. New perspectives of studies on the properties of nuclei; Relativistische exotische Kerne als Projektilstrahlen. Neue Perspektiven zum Studium der Kerneigenschaften

    Energy Technology Data Exchange (ETDEWEB)

    Geissel, H

    1997-03-01

    Examinations of the production cross-sections and the kinematics permitted refinement of model concepts of the peripheral reactions in exotic nuclei at energies from 100 to 1000 A MeV. Due to the strong selectivity and resolution achieved it was possible to discover a large number of novel isotopes at the fragment separator FRS, despite the relatively low projectile beam intensities of the SIS. The two twice magic nuclei found, Ni 78 and Sn 100, are particularly interesting, as they could not be measured so far with other experimental systems. Fission of relativistic uranium ions proved to be a particularly successful process yielding many medium-heavy, neutron-rich nuclei. Insight into the structure of light neutron halos could be improved. The superlarge spatial dimensions of the nuclear halos is discussed. (orig./CB) [Deutsch] Die Untersuchungen der Produktionsquerschnitte und der Kinematik fuehr ten zu einer Verfeinerung der Modellvorstellungen der peripheren Kernr eaktionen an exotischen Kernen bei Energien im Bereich von 100- 1000 A MeV. Die hohe Selektivitaet und Aufloesung waren die Voraussetzung, da ss schon bei den vergleichsweise niedrigen Projektilstrahlintensitaete n des SIS eine grosse Anzahl von neuen Isotopen am Fragmentseparator F RS entdeckt werden konnten. Besonders erwaehnenswert sind die beiden d oppelt magischen Kerne Ni 78 und Sn 100, die mit anderen experimentel len Anlagen vorher nicht zugaenglich waren.Die Spaltung relativistisch er Uranionen hat sich als eine besonders ergiebige Quelle fuer mittels chwere neutronenreiche Kerne erwiesen. Die Kenntnisse der Struktur lei chter Neutronen- Halokerne konnten erweitert werden. Die uebergrosse r aeumliche Ausdehnung der Halokerne wurde aufgezeigt.

  14. Microscopic theory of light exotic nuclei. Shell Models Embedded in the Continuum

    International Nuclear Information System (INIS)

    Bennaceur, K.

    1999-01-01

    The recent advances in experimental nuclear physics make it possible to study nuclear systems far from the beta stability line. The discovery of new phenomena, like halos or neutron skins, requires the development of new theoretical models which enable to study these systems. The first part of this work is devoted to the development and the applications of the Shell Model Embedded in the Continuum (SMEC). This new formalism allows to take into account the correlations between the bound and scattering states of loosely bound nuclei. SMEC is applied here to the study of the spectroscopy of the Mirror nuclei 8 B- 8 Li and 17 F- 17 O. It can also be used to calculate the cross sections of the elastic scattering, the Coulomb breakup processes and the radiative n,p capture processes. The results concerning the reactions of astrophysical interest: 18 O(p, γ) 17 F and 7 Be(p, γ) 8 B, are discussed in details. This last reaction is very important because the disintegration of 8 B is the main source of High energy neutrinos in the sun. The second part of this work is related to the analysis of pairing interaction for weakly bound nuclei. We have developed a new approach, based on the Hartree-Fock-Bogolyubov (HFB) theory, that allows to study the pairing correlations between bound and scattering states, both resonant and not resonant ones. The 'particle-hole' potential is replaced by a model potential for which the solutions are analytically known. This method allows to analyse the effect of pairing on bound and resonant states, independently of their energy position. We have clearly demonstrated that the non-resonant continuum plays a crucial role in the loosely bound nuclei and that solving the HFB equations in the coordinate space is the only method that permits to treat this problem correctly. (author)

  15. Interactions of 82Pb208 nuclei with energy 158 GeV per nucleon with photoemulsion nuclei

    International Nuclear Information System (INIS)

    Adamovich, M.I.; Andreeva, N.P.; Bubnov, V.I.; Gajtinov, A.Sh.; Kanygina, Eh.K.; Musaeva, A.K.; Sejtimbetov, A.M.; Skorobagatova, V.I.; Filippova, L.N.; Chasnikov, I.Ya.

    1999-01-01

    In this report there are experimental data on 82 Pb 208 nuclei (158 GeV) interaction with photoemulsion nuclei. The said data are compared to the similar ones for 79 Au 197 nuclei with less energy (10,7 A GeV). Stack of nuclear emulsion was irradiated with the beam of nuclei 82 Pb 208 at SPS of CERN. Events search was done along the primary nucleus trace. Pb nucleus average path length happened to be λ=(3,8±0,1) cm, this virtually coincides with the one calculated by Brandt and Peters formula (3,9 cm). Secondary particles were identified into s (storm), g (knock-on protons) and b- particles (target nucleus fragments), as well as into nucleus-bullet fragments with different charges (Z=1,2,≥3). This allowed obtaining event distribution by multiplicity of these particles (n s , n g , n b ) and fragments (n z=1,2,≥3 ), calculation of average values by multiplicity (see table), finding correlation of characteristics. >From the table it's clear that when the energy increases s > increases 2,5 times where as g > insignificantly decreases and b > doesn't change

  16. Atmospheric particles acting as ice forming nuclei in different size ranges and cloud condensation nuclei measurements

    International Nuclear Information System (INIS)

    Santachiara, G.; Di Matteo, L.; Belosi, F.; Prodi, F.

    2009-01-01

    Measurements of ice nuclei (I N) in different size classes of aerosol P M1, P M2.5, PM10, and total suspended particles (Tsp) were performed at a rural site (S.Pietro Capofiume, in the Po Valley, Italy). Simultaneous measurements of particle number concentrations were also made with a condensation nucleus counter (CN C-TSI), along with particle concentration in different size classes starting from diameter d > 0.3 μm (Optical Spectrometer Grimm, Mod.1.108). No correlation is observed between I N and the particle number concentration measured with the condensation nuclei counter, and there is only a weak correlation with the particle concentration measured using the optical counter, thus confirming the contribution of the accumulation and coarse aerosol fraction. A positive correlation is observed between supersaturation with respect to ice and water values and ice nuclei number concentration, and an exponential dependence of I N on temperature is found. In addition, cloud concentration nuclei (C CN) were measured. The present measurements reveal a diurnal trend, with lower values at about midday and higher ones during the night, a similar trend between C CN and the relative humidity, and opposite to the mixing layer height.

  17. Proton multiplicity distributions in high-energy hadron-nuclei collisions

    International Nuclear Information System (INIS)

    Strugalski, Z.

    1979-01-01

    The fast proton emission process is analyzed in high-energy hadron-nuclei collisions. The formula describing the proton multiplicity distributions is derived. It describes well enough the proton multiplicity distribution of pion-nuclei and proton-nuclei collisions at 200 and 400 GeV

  18. Quantum phase transitions in atomic nuclei

    International Nuclear Information System (INIS)

    Zamfir, N.V.

    2005-01-01

    Studies of quantum phase transitions in mesoscopic systems and applications to atomic nuclei are presented. Analysis in terms of the Interacting Boson Model shows that the main features persist even for moderate number of particles. Experimental evidence in rare-earth nuclei is discussed. New order and control parameters for systems with the same number of particles are proposed. (author)

  19. Study of nuclear level densities for exotic nuclei

    International Nuclear Information System (INIS)

    Nasrabadi, M. N.; Sepiani, M.

    2012-01-01

    Nuclear level density is one of the properties of nuclei with widespread applications in astrophysics and nuclear medicine. Since there has been little experimental and theoretical research on the study of nuclei which are far from stability line, studying nuclear level density for these nuclei is of crucial importance. Also, as nuclear level density is an important input for nuclear research codes, hence studying the methods for calculation of this parameter is essential. Besides introducing various methods and models for calculating nuclear level density for practical applications, we used exact spectra distribution (SPDM) for determining nuclear level density of two neutron and proton enriched exotic nuclei with the same mass number.

  20. Two-particle spatial correlations in superfluid nuclei

    International Nuclear Information System (INIS)

    Pillet, N.; Berger, J.-F.; Sandulescu, N.; Schuck, P.

    2010-01-01

    We discuss the effect of pairing on two-neutron space correlations in deformed nuclei. The spatial correlations are described by the pairing tensor in coordinate space calculated in the HFB approach. Calculations are done using the D1S Gogny force. We show that the pairing tensor has a rather small extension in the relative coordinate, a feature observed earlier in spherical nuclei. It is pointed out that in deformed nuclei the coherence length corresponding to the pairing tensor has a pattern similar to what we have found previously in spherical nuclei; that is, it is maximal in the interior of the nucleus and then it decreases rather rapidly in the surface region, where it reaches a minimal value of about 2 fm. This minimal value of the coherence length in the surface is essentially determined by the finite size properties of single-particle states in the vicinity of the chemical potential and has little to do with enhanced pairing correlations in the nuclear surface. It is shown that in nuclei the coherence length is not a good indicator of the intensity of pairing correlations. This feature is contrasted with the situation in infinite matter.