WorldWideScience

Sample records for nuclear-fuel-cycle research program

  1. Summary of entire research achievements of creative engineering research program on nuclear fuel cycle

    International Nuclear Information System (INIS)

    Takenaka, Shingo; Ikegami, Tetsuo

    2008-03-01

    Creative Engineering Research Program on Nuclear Fuel Cycle (former In-house Innovative Research Encouraging Program) was implemented from FY 2001 to FY 2007 in order to support such in-house researches that create innovative new concepts and aim technical break-through. Totally 37 applications have been received and 14 research themes have been accepted and been performed in this program. As for the research achievements of the 14 research themes, first author papers accepted by scientific journals and by science councils were 47 and 32, respectively, and oral presentations at scientific societies were 99. Furthermore, interpretive articles for scientific journals, requested lectures, patents, and prize winnings were 13, 30, 8, and 3, respectively. Consequently, it can be evaluated that the research achievements resulted from this program are generally in high level and that the expectations, at the starting point of this program, to activate the innovative research activities have been accomplished. In this report, the final reports of the 14 research themes together with the outline of this program are included. (author)

  2. Enterprise SRS: Leveraging Ongoing Operations To Advance Nuclear Fuel Cycles Research And Development Programs

    Energy Technology Data Exchange (ETDEWEB)

    Murray, Alice M.; Marra, John E.; Wilmarth, William R.; Mcguire, Patrick W.; Wheeler, Vickie B.

    2013-07-03

    The Savannah River Site (SRS) is repurposing its vast array of assets to solve future national issues regarding environmental stewardship, national security, and clean energy. The vehicle for this transformation is Enterprise SRS which presents a new, radical view of SRS as a united endeavor for ''all things nuclear'' as opposed to a group of distinct and separate entities with individual missions and organizations. Key among the Enterprise SRS strategic initiatives is the integration of research into facilities in conjunction with on-going missions to provide researchers from other national laboratories, academic institutions, and commercial entities the opportunity to demonstrate their technologies in a relevant environment and scale prior to deployment. To manage that integration of research demonstrations into site facilities, The Department of Energy, Savannah River Operations Office, Savannah River Nuclear Solutions, the Savannah River National Laboratory (SRNL) have established a center for applied nuclear materials processing and engineering research (hereafter referred to as the Center). The key proposition of this initiative is to bridge the gap between promising transformational nuclear fuel cycle processing discoveries and large commercial-scale-technology deployment by leveraging SRS assets as facilities for those critical engineering-scale demonstrations necessary to assure the successful deployment of new technologies. The Center will coordinate the demonstration of R&D technologies and serve as the interface between the engineering-scale demonstration and the R&D programs, essentially providing cradle-to-grave support to the research team during the demonstration. While the initial focus of the Center will be on the effective use of SRS assets for these demonstrations, the Center also will work with research teams to identify opportunities to perform research demonstrations at other facilities. Unique to this approach is the fact

  3. Enterprise SRS: Leveraging Ongoing Operations To Advance Nuclear Fuel Cycles Research And Development Programs

    International Nuclear Information System (INIS)

    Murray, Alice M.; Marra, John E.; Wilmarth, William R.; Mcguire, Patrick W.; Wheeler, Vickie B.

    2013-01-01

    The Savannah River Site (SRS) is repurposing its vast array of assets to solve future national issues regarding environmental stewardship, national security, and clean energy. The vehicle for this transformation is Enterprise SRS which presents a new, radical view of SRS as a united endeavor for ''all things nuclear'' as opposed to a group of distinct and separate entities with individual missions and organizations. Key among the Enterprise SRS strategic initiatives is the integration of research into facilities in conjunction with on-going missions to provide researchers from other national laboratories, academic institutions, and commercial entities the opportunity to demonstrate their technologies in a relevant environment and scale prior to deployment. To manage that integration of research demonstrations into site facilities, The Department of Energy, Savannah River Operations Office, Savannah River Nuclear Solutions, the Savannah River National Laboratory (SRNL) have established a center for applied nuclear materials processing and engineering research (hereafter referred to as the Center). The key proposition of this initiative is to bridge the gap between promising transformational nuclear fuel cycle processing discoveries and large commercial-scale-technology deployment by leveraging SRS assets as facilities for those critical engineering-scale demonstrations necessary to assure the successful deployment of new technologies. The Center will coordinate the demonstration of R&D technologies and serve as the interface between the engineering-scale demonstration and the R&D programs, essentially providing cradle-to-grave support to the research team during the demonstration. While the initial focus of the Center will be on the effective use of SRS assets for these demonstrations, the Center also will work with research teams to identify opportunities to perform research demonstrations at other facilities. Unique to this approach is the fact that these SRS

  4. Criticality safety research on nuclear fuel cycle facility

    Energy Technology Data Exchange (ETDEWEB)

    Miyoshi, Yoshinori [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2004-07-01

    This paper present d s current status and future program of the criticality safety research on nuclear fuel cycle made by Japan Atomic Energy Research Institute. Experimental research on solution fuel treated in reprocessing plant has been performed using two critical facilities, STACY and TRACY. Fundamental data of static and transient characteristics are accumulated for validation of criticality safety codes. Subcritical measurements are also made for developing a monitoring system for criticality safety. Criticality safety codes system for solution and power system, and evaluation method related to burnup credit are developed. (author)

  5. International Source Book: Nuclear Fuel Cycle Research and Development Vol 1 Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    Harmon, K. M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lakey, L. T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    1983-07-01

    This document starts with an overview that summarizes nuclear power policies and waste management activities for nations with significant commercial nuclear fuel cycle activities either under way or planned. A more detailed program summary is then included for each country or international agency conducting nuclear fuel cycle and waste management research and development. This first volume includes the overview and the program summaries of those countries listed alphabetically from Argentina to Italy.

  6. Identification and Analysis of Critical Gaps in Nuclear Fuel Cycle Codes Required by the SINEMA Program

    International Nuclear Information System (INIS)

    Miron, Adrian; Valentine, Joshua; Christenson, John; Hawwari, Majd; Bhatt, Santosh; Dunzik-Gougar, Mary Lou; Lineberry, Michael

    2009-01-01

    The current state of the art in nuclear fuel cycle (NFC) modeling is an eclectic mixture of codes with various levels of applicability, flexibility, and availability. In support of the advanced fuel cycle systems analyses, especially those by the Advanced Fuel Cycle Initiative (AFCI), University of Cincinnati in collaboration with Idaho State University carried out a detailed review of the existing codes describing various aspects of the nuclear fuel cycle and identified the research and development needs required for a comprehensive model of the global nuclear energy infrastructure and the associated nuclear fuel cycles. Relevant information obtained on the NFC codes was compiled into a relational database that allows easy access to various codes' properties. Additionally, the research analyzed the gaps in the NFC computer codes with respect to their potential integration into programs that perform comprehensive NFC analysis.

  7. Identification and Analysis of Critical Gaps in Nuclear Fuel Cycle Codes Required by the SINEMA Program

    Energy Technology Data Exchange (ETDEWEB)

    Adrian Miron; Joshua Valentine; John Christenson; Majd Hawwari; Santosh Bhatt; Mary Lou Dunzik-Gougar: Michael Lineberry

    2009-10-01

    The current state of the art in nuclear fuel cycle (NFC) modeling is an eclectic mixture of codes with various levels of applicability, flexibility, and availability. In support of the advanced fuel cycle systems analyses, especially those by the Advanced Fuel Cycle Initiative (AFCI), Unviery of Cincinnati in collaboration with Idaho State University carried out a detailed review of the existing codes describing various aspects of the nuclear fuel cycle and identified the research and development needs required for a comprehensive model of the global nuclear energy infrastructure and the associated nuclear fuel cycles. Relevant information obtained on the NFC codes was compiled into a relational database that allows easy access to various codes' properties. Additionally, the research analyzed the gaps in the NFC computer codes with respect to their potential integration into programs that perform comprehensive NFC analysis.

  8. Nuclear fuel cycle system analysis

    International Nuclear Information System (INIS)

    Ko, W. I.; Kwon, E. H.; Kim, S. G.; Park, B. H.; Song, K. C.; Song, D. Y.; Lee, H. H.; Chang, H. L.; Jeong, C. J.

    2012-04-01

    The nuclear fuel cycle system analysis method has been designed and established for an integrated nuclear fuel cycle system assessment by analyzing various methodologies. The economics, PR(Proliferation Resistance) and environmental impact evaluation of the fuel cycle system were performed using improved DB, and finally the best fuel cycle option which is applicable in Korea was derived. In addition, this research is helped to increase the national credibility and transparency for PR with developing and fulfilling PR enhancement program. The detailed contents of the work are as follows: 1)Establish and improve the DB for nuclear fuel cycle system analysis 2)Development of the analysis model for nuclear fuel cycle 3)Preliminary study for nuclear fuel cycle analysis 4)Development of overall evaluation model of nuclear fuel cycle system 5)Overall evaluation of nuclear fuel cycle system 6)Evaluate the PR for nuclear fuel cycle system and derive the enhancement method 7)Derive and fulfill of nuclear transparency enhancement method The optimum fuel cycle option which is economical and applicable to domestic situation was derived in this research. It would be a basis for establishment of the long-term strategy for nuclear fuel cycle. This work contributes for guaranteeing the technical, economical validity of the optimal fuel cycle option. Deriving and fulfillment of the method for enhancing nuclear transparency will also contribute to renewing the ROK-U.S Atomic Energy Agreement in 2014

  9. Nuclear-fuel-cycle costs. Consolidated Fuel-Reprocessing Program

    International Nuclear Information System (INIS)

    Burch, W.D.; Haire, M.J.; Rainey, R.H.

    1981-01-01

    The costs for the back-end of the nuclear fuel cycle, which were developed as part of the Nonproliferation Alternative Systems Assessment Program (NASAP), are presented. Total fuel-cycle costs are given for the pressurized-water reactor once-through and fuel-recycle systems, and for the liquid-metal fast-breeder-reactor system. These calculations show that fuel-cycle costs are a small part of the total power costs. For breeder reactors, fuel-cycle costs are about half that of the present once-through system. The total power cost of the breeder-reactor system is greater than that of light-water reactor at today's prices for uranium and enrichment

  10. Safety research in nuclear fuel cycle at PNC

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-09-01

    This report collects the results of safety research in nuclear fuel cycle at Power Reactor and Nuclear Fuel Development Corporation, in order to answer to the Questionnaire of OECD/NEA. The Questionnaire request to include information concerning to research topic, description, main results (if available), reference documents, research institutes involved, sponsoring organization and other pertinent information about followings: a) Recently completed research projects. b) Ongoing (current) research projects. Achievements on following items are omitted by the request of OECD/NEA, uranium mining and milling, uranium refining and conversion to UF{sub 6}, uranium enrichment, fuel manufacturers, spent fuel storage, radioactive waste management, transport of radioactive materials, decommissioning. We select topics from the fields of a) nuclear installation, b) seismic, and c) PSA, in projects from frame of annual safety research plan for nuclear installations established by Nuclear Safety Commission. We apply for the above a) and b) projects as follows: a) Achievements in Safety Research, fiscal 1991-1995, b) fiscal 1996 Safety Research Achievements: Progress. (author)

  11. Safety research in nuclear fuel cycle at PNC

    International Nuclear Information System (INIS)

    1998-09-01

    This report collects the results of safety research in nuclear fuel cycle at Power Reactor and Nuclear Fuel Development Corporation, in order to answer to the Questionnaire of OECD/NEA. The Questionnaire request to include information concerning to research topic, description, main results (if available), reference documents, research institutes involved, sponsoring organization and other pertinent information about followings: a) Recently completed research projects. b) Ongoing (current) research projects. Achievements on following items are omitted by the request of OECD/NEA, uranium mining and milling, uranium refining and conversion to UF 6 , uranium enrichment, fuel manufacturers, spent fuel storage, radioactive waste management, transport of radioactive materials, decommissioning. We select topics from the fields of a) nuclear installation, b) seismic, and c) PSA, in projects from frame of annual safety research plan for nuclear installations established by Nuclear Safety Commission. We apply for the above a) and b) projects as follows: a) Achievements in Safety Research, fiscal 1991-1995, b) fiscal 1996 Safety Research Achievements: Progress. (author)

  12. Research in JAERI on the backend of nuclear fuel cycle

    International Nuclear Information System (INIS)

    Maeda, Mitsuru; Takeshita, Isao

    1999-01-01

    Japan's policy of the backend of nuclear fuel cycle is to reprocess spent fuels and recycle recovered plutonium and uranium, under the principle of no surplus plutonium. High-level radioactive waste separated during reprocessing will be disposed of after solidification in vitrified form, followed by the storage for 30 to 50 years and finally by ultimate disposal in a deep geological formation. The role of JAERI and the effective utilization of NUCEF would become more important. The current status of JAERI's research on backend cycle is reviewed together with the future research direction with emphases on NUCEF utilization. (1) Major objectives of safety research is to develop safety criteria and establish technical bases for licensing, to improve the safety of current or near future technology and to clarify the safety margin of licensed technology. (2) The present goal of fundamental research is to show or clarify the chemical or scientific feasibility of advanced system such as for recycling minor actinides or for incinerating long-lived nuclides. (3) Supporting research for nuclear material control is also conducted mainly for international contribution to strengthened safeguards by IAEA and to frame working of international monitoring system for CTBT. (J.P.N.)

  13. Nuclear fuel cycle: research and development and push technologies

    International Nuclear Information System (INIS)

    Oliveira, Wagner dos Santos

    2002-01-01

    The scope of this work is to show the importance of 'push technologies in the development of the Nuclear Fuel Cycle more specifically the so called 'Projeto Conversao' PROCON. This R and D activities lead to the design of special equipment, new metallic and polymer materials. (author)

  14. A summary report on recruitment type researches on nuclear fuel cycle in fiscal year of 2001

    International Nuclear Information System (INIS)

    2002-07-01

    The promotion system on recruitment type researches on nuclear fuel cycle begun on fiscal year of 1999, aims to intend to activate researching environment of the Japan Nuclear Cycle Development Institute (JNC) through intercourses, information exchanges, publication of research results, and so on between researchers in other organizations and JNC, as a result, to effectively promote fundamental and basic R and Ds. This report contains summaries of 28 items of research results on the recruitment type researches on nuclear fuel cycle as 9 items relating to fast breeder reactors, 8 items relating to nuclear fuel cycle, 1 item relating to radiation safety, and 10 items relating to geological disposal and science, carried out on fiscal year of 2001. (G.K.)

  15. Brief report of the JNC cooperative research (C) on the nuclear fuel cycle for 2002

    International Nuclear Information System (INIS)

    2003-08-01

    The Japan Nuclear Cycle Development Institute (JNC) started the JNC Cooperative Research Scheme (C) on the Nuclear Fuel Cycle in 1999 in order to promote research collaboration with universities and other research institutes (referred to as 'universities, etc. 'below'), which means that the fiscal year 2002 was the fourth year of the scheme. This scheme is to invite foresighted and original themes of basic and fundamental research, to be performed using JNC's facilities and equipment, in principle, for the research and development of JNC in the field of the nuclear fuel cycle, from researchers at universities, etc. Those researchers who propose research themes in response to the invitation are expected to lead the research. The purpose of the scheme is to promote the efficiency of basic and fundamental research and development by enhancing the research environment of JNC through collaboration between JNC's own researchers and other researchers, and exchange of information and publication of achievements, etc. Research themes proposed by researchers at universities, etc. are screened by a screening committee consisting mainly of experts independent of JNC. This report includes a summary of the results of the research carried out in fiscal year 2002 on twenty selected themes related to the JNC's collaborative research for fast breeder reactors, the nuclear fuel cycle, radiation safety and geological disposal/geoscience; eight of which ended in 2002. Of these, three were related to fast breeder reactors, two to the nuclear fuel cycle and three to geological disposal/geoscience. (author)

  16. Nuclear fuel cycle safety research at Sandia Laboratories

    International Nuclear Information System (INIS)

    Ericson, D.M. Jr.

    1978-11-01

    This paper provides a brief introduction to Sandia Laboratories and an overview of Nuclear Regulatory Commission sponsored safety research with particular emphasis on light water reactor related activities. Several experimental and analytical programs are highlighted and the range of activities of a typical staff member illustrated

  17. Brief report of the JNC Cooperative Research (A) on the Nuclear Fuel Cycle for 2004

    International Nuclear Information System (INIS)

    2005-06-01

    The Japan Nuclear Cycle Development Institute (JNC) started the JNC Cooperative Research Scheme (A) on the Nuclear Fuel Cycle in 1995 in order to promote research collaboration with universities and other research institutes (referred to as 'universities, etc.' below), which means that the fiscal year 2004 was the tenth year of the scheme. The purpose of this scheme is to promote the basic and fundamental research that precedes the research and development projects of JNC through collaboration with universities, etc. by using mainly JNC's facilities and equipment. Under the scheme, universities, etc. propose methods and ideas, etc. to lead to the achievement of the goals of research collaboration themes which are set by JNC as research collaboration subjects. Then a screening committee consisting mainly of experts independent of JNC screens the research collaboration subjects. Research collaboration is performed by carrying out cooperative research with universities, etc. or by accepting researchers from universities, etc. as Visiting Research Fellows at JNC. The scheme allows students studying for doctorates at postgraduate schools either to participate in the cooperative research or to be accepted as trainee researchers. This report includes a summary of the results of the research carried out in fiscal year 2004 on 42 research collaboration subjects for preceding basic engineering research related to fast breeder reactors, the nuclear fuel cycle, radiation safety and geological disposal/geoscience; seventeen of which ended in 2004. Of these, eight were related to fast breeder reactors, eight to the nuclear fuel cycle, and one to geological disposal/geoscience. (author)

  18. Brief report of the JNC Cooperative Research (C) on the Nuclear Fuel Cycle for 2004

    International Nuclear Information System (INIS)

    2005-06-01

    The Japan Nuclear Cycle Development Institute (JNC) started the JNC Cooperative Research Scheme (C) on the Nuclear Fuel Cycle in 1999 in order to promote research collaboration with universities and other research institutes (referred to as 'universities, etc.' below), which means that the fiscal year 2004 was the sixth year of the scheme and ended in 2004. This scheme is to invite foresighted and original themes of basic and fundamental research, to be performed using JNC's facilities and equipment, in principle, for the research and development of JNC in the field of the nuclear fuel cycle, from researchers at universities, etc. Those researchers who propose research themes in response to the invitation are expected to lead the research. The purpose of the scheme is to promote the efficiency of basic and fundamental research and development by enhancing the research environment of JNC through collaboration between JNC's own researchers and other researchers, and exchange of information and publication of achievements, etc. Research themes proposed by researchers at universities, etc. are screened by a screening committee consisting mainly of experts independent of JNC. This report includes a summary of the result of the research carried out in fiscal year 2004 on four selected themes related the JNC's collaborative research for fast breeder reactors, the nuclear fuel cycle, radiation safety and geological disposal/geoscience. (author)

  19. Brief report of the JNC cooperative research (C) on the nuclear fuel cycle for 2003

    International Nuclear Information System (INIS)

    2004-06-01

    The Japan Nuclear Cycle Development Institute (JNC) started the JNC Cooperative Research Scheme (C) on the Nuclear Fuel Cycle in 1999 in order to promote research collaboration with universities and other research institutes (referred to as 'universities, etc.' below), which means that the fiscal year 2003 was the fifth year of the scheme. This scheme is to invite foresighted and original themes of basic and fundamental research, to be performed using JNC's facilities and equipment, in principle, for the research and development of JNC in the field of the nuclear fuel cycle, from researchers at universities, etc. Those researchers who propose research themes in response to the invitation are expected to lead the research. The purpose of the scheme is to promote the efficiency of basic and fundamental research and development by enhancing the research environment of JNC through collaboration between JNC's own researchers and other researchers, and exchange of information and publication of achievements, etc. Research themes proposed by researchers at universities, etc. are screened by a screening committee consisting mainly of experts independent of JNC. This report includes a summary of the results of the research carried out in fiscal year 2003 on twelve selected themes related to the JNC's collaborative research for fast breeder reactors, the nuclear fuel cycle, radiation safety and geological disposal/geoscience; eight of which ended in 2003. Of these, four were related to fast breeder reactors, one to radiation safety and three to geological disposal/geoscience. (author)

  20. Brief report of the JAEA cooperative research (A) on the nuclear fuel cycle for 2009

    International Nuclear Information System (INIS)

    2010-08-01

    The Japan Atomic Energy Agency (JAEA) started the JAEA Cooperative Research Scheme (A) on the Nuclear Fuel Cycle in 1995 in order to promote research collaboration with universities and other research institutes (referred to as 'universities, etc.' below), which means that the fiscal year 2009 was the fifteenth year of the scheme. The purpose of this scheme is to promote the basic and fundamental research that precedes the research and development projects in relation to the establishment of nuclear fuel cycle technology through collaboration with universities, etc. by using mainly JAEA's facilities and equipment. Under the scheme, universities, etc. propose methods and ideas, etc. to lead to the achievement of the goals of research collaboration themes which are set by JAEA as research collaboration subjects. Then a screening committee consisting mainly of experts independent of JAEA screens the research collaboration subjects. Research collaboration is performed by carrying out cooperative research with universities, etc. or by accepting researchers from universities, etc. as Visiting Research Fellows at JAEA. The scheme allows students studying for doctorates at postgraduate schools either to participate in the cooperative research or to be accepted as trainee researchers. This report includes a summary of the results of the research carried out in fiscal year 2009 on 32 research collaboration subjects for preceding basic engineering research related to fast breeder reactors, the nuclear fuel cycle, radiation safety and geological disposal/geoscience; eleven of which ended in 2009. Of these, six were related to fast breeder reactors, two to the nuclear fuel cycle, and three to geological disposal/geoscience. (author)

  1. Brief report of the JAEA cooperative research (A) on the nuclear fuel cycle for 2011

    International Nuclear Information System (INIS)

    2012-08-01

    The Japan Atomic Energy Agency (JAEA) started the JAEA Cooperative Research Scheme (A) on the Nuclear Fuel Cycle in 1995 in order to promote research collaboration with universities and other research institutes (referred to as “universities, etc.” below), which means that the fiscal year 2011 was the seventeenth year of the scheme. The purpose of this scheme is to promote the basic and fundamental research that precedes the research and development projects in relation to the establishment of nuclear fuel cycle technology through collaboration with universities, etc. by using mainly JAEA's facilities and equipment. Under the scheme, universities, etc. propose methods and ideas, etc. to lead to the achievement of the goals of research collaboration themes which are set by JAEA as research collaboration subjects. Then a screening committee consisting mainly of experts independent of JAEA screens the research collaboration subjects. Research collaboration is performed by carrying out cooperative research with universities, etc. or by accepting researchers from universities, etc. as Visiting Research Fellows at JAEA. The scheme allows students studying for doctorates at postgraduate schools either to participate in the cooperative research or to be accepted as trainee researchers. This report includes a summary of the results of the research carried out in fiscal year 2011 on 27 research collaboration subjects for preceding basic engineering research related to fast breeder reactors, the nuclear fuel cycle, radiation safety and geological disposal/geoscience; thirteen of which ended in 2011. Of these, seven were related to fast breeder reactors, two to the nuclear fuel cycle, one to radiation safety, and three to geological disposal/geoscience. (author)

  2. Brief report of the JAEA cooperative research (A) on the nuclear fuel cycle for 2007

    International Nuclear Information System (INIS)

    2008-10-01

    The Japan Atomic Energy Agency (JAEA) started the JAEA Cooperative Research Scheme (A) of the Nuclear Fuel Cycle in 1995 in order to promote research collaboration with universities and other research institutes (referred to as 'universities, etc.' below), which means that the fiscal year 2007 was the thirteenth year of the scheme. The purpose of this scheme is to promote the basic and fundamental research that precedes the research and development projects in relation to the establishment of nuclear fuel cycle technology through collaboration with universities, etc. by using mainly JAEA's facilities and equipment. Under the scheme, universities, etc. propose methods and ideas, etc. to lead to the achievement of the goals of research collaboration themes which are set by JAEA as research collaboration subjects. Then a screening committee consisting mainly of experts independent of JAEA screens the research collaboration subjects. Research collaboration is performed by carrying out cooperative research with universities, etc. or by accepting researchers from universities, etc. as Visiting Research Fellows at JAEA. The scheme allows students studying for doctorates at postgraduate schools either to participate in the cooperative research or to be accepted as trainee researchers. This report includes a summary of the results of the research carried out in fiscal year 2007 on 32 research collaboration subjects for preceding basic engineering research related to fast breeder reactors, the nuclear fuel cycle, radiation safety and geological disposal/geoscience; twelve of which ended in 2007. Of these, six were related to fast breeder reactors, two to the nuclear fuel cycle, and two to geological disposal/geoscience. (author)

  3. Brief report of the JAEA cooperative research (A) on the nuclear fuel cycle for 2008

    International Nuclear Information System (INIS)

    2009-09-01

    The Japan Atomic Energy Agency (JAEA) started the JAEA Cooperative Research Scheme (A) on the Nuclear Fuel Cycle in 1995 in order to promote research collaboration with universities and other research institutes (referred to as 'universities, etc.' below), which means that the fiscal year 2008 was the fourteenth year of the scheme. The purpose of this scheme is to promote the basic and fundamental research that precedes the research and development projects in relation to the establishment of nuclear fuel cycle technology through collaboration with universities, etc. by using mainly JAEA's facilities and equipment. Under the scheme, universities, etc. propose methods and ideas, etc. to lead to the achievement of the goals of research collaboration themes which are set by JAEA as research collaboration subjects. Then a screening committee consisting mainly of experts independent of JAEA screens the research collaboration subjects. Research collaboration is performed by carrying out cooperative research with universities, etc. or by accepting researchers from universities, etc. as Visiting Research Fellows at JAEA. The scheme allows students studying for doctorates at postgraduate schools either to participate in the cooperative research or to be accepted as trainee researchers. This report includes a summary of the results of the research carried out in fiscal year 2008 on 32 research collaboration subjects for preceding basic engineering research related to fast breeder reactors, the nuclear fuel cycle, radiation safety and geological disposal/geoscience; twelve of which ended in 2008. Of these, six were related to fast breeder reactors, one to the nuclear fuel cycle, one to radiation safety, and four to geological disposal/geoscience. (author)

  4. Brief report of the JAEA cooperative research (A) on the nuclear fuel cycle for 2012

    International Nuclear Information System (INIS)

    2013-11-01

    The Japan Atomic Energy Agency (JAEA) started the JAEA Cooperative Research Scheme (A) on the Nuclear Fuel Cycle in 1995 in order to promote research collaboration with universities and other research institutes (referred to as 'universities, etc.' below), which means that the fiscal year 2012 was the eighteenth year of the scheme. The purpose of this scheme is to promote the basic and fundamental research that precedes the research and development projects in relation to the establishment of nuclear fuel cycle technology through collaboration with universities, etc. by using mainly JAEA's facilities and equipment. Under the scheme, universities, etc. propose methods and ideas, etc. to lead to the achievement of the goals of research collaboration themes which are set by JAEA as research collaboration subjects. Then a screening committee consisting mainly of experts independent of JAEA screens the research collaboration subjects. Research collaboration is performed by carrying out cooperative research with universities, etc. or by accepting researchers from universities, etc. as Visiting Research Fellows at JAEA. The scheme allows students studying for doctorates at postgraduate schools either to participate in the cooperative research or to be accepted as trainee researchers. This report includes a summary of the results of the research carried out in fiscal year 2012 on 20 research collaboration subjects for preceding basic engineering research related to fast breeder reactors, the nuclear fuel cycle, radiation safety and geological disposal/geoscience; ten of which ended in 2012. Of these, three were related to fast breeder reactors, five to the nuclear fuel cycle, and two to geological disposal/geoscience. (author)

  5. Proceedings of the symposium on the joint research program between JAERI and Universities. Current status and future perspectives of the chemistry research in the nuclear fuel cycle back end field

    International Nuclear Information System (INIS)

    1999-10-01

    The first Symposium on the Joint Research Project between JAERI and Universities was held in Tokyo, January 27, 1999, to present the main achievements of the project in these 5 years and to discuss future perspectives of the chemistry research relating to the nuclear fuel cycle. The areas covered by the Joint Research Project are (1) Nuclear Chemistry for TRU Recycling, (2) Solid State Chemistry on Nuclear Fuels and Wastes, (3) Solution Chemistry on Fuel Reprocessing and Waste Management, and (4) Fundamental Chemistry on Radioactive Waste Disposal. The 8 papers are indexed individually. (J.P.N.)

  6. Outline of results of safety research (in nuclear fuel cycle field in fiscal year 1996)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-01

    The safety research in Power Reactor and Nuclear Fuel Development Corporation in fiscal year 1996 has been carried out based on the basic plan of safety research (from fiscal year 1996 to 2000) which was decided in March, 1996. In this report, on nuclear fuel cycle field, namely all the subjects in the fields of nuclear fuel facilities, environmental radioactivity and waste disposal, and the subjects related to nuclear fuel facilities among the fields of aseismatic and probabilistic safety assessments, the results of research in fiscal year 1996, the first year of the 5-year project, are summarized together with the outline of the basic plan of safety research. The basic policy, objective and system for promotion of the safety research are described. The objectives of the safety research are the advancement of safety technology, the safety of facilities, stable operation techniques, the safety design and the evaluation techniques of next generation facilities, and the support of transferring nuclear fuel cycle to private businesses. The objects of the research are uranium enrichment, fuel fabrication and reprocessing, and waste treatment and storage. 52 investigation papers of the results of the safety research in nuclear fuel cycle field in fiscal year 1996 are collected in this report. (K.I.)

  7. International political environment for the research and development of nuclear fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Young Sun [Seoul National University, Seoul (Korea, Republic of)

    1997-05-01

    The international acceptance of South Korea`s nuclear fuel cycle technology as a peaceful use of nuclear energy needs peaceful relations between South and North Korea. Thus, this study examines the current North Korea`s policy toward South Korea as a part of North Korea`s three-fold survival strategy in the post-cold war period and also forecasts future relations between two countries on the Korean peninsula. To cope with nuclear= nonproliferation policy of the United Sates successfully, which does not allow South Korea`s autonomous nuclear fuel cycle, this study reviews the history of Washington`s nuclear nonproliferation policy with case studies of South Korea`s reprocessing plant project in the 1970`s, US-Japan Nuclear Cooperation Agreement in the 1980`s, and North Korea`s nuclear program in the 1990`s, and for casts the future on nuclear nonproliferation policy of the United States. In conclusion, this analysis tries to develop new approaches to solve two major problems of Korean situation and nuclear nonproliferation policy of the United Sates for the autonomous nuclear fuel cycle in South Korea. (Author) 33 refs.

  8. Brief report of the JNC cooperative research (A) on the Nuclear Fuel Cycle for 2002

    International Nuclear Information System (INIS)

    2003-08-01

    The Japan Nuclear Cycle Development Institute (JNC) started the JNC Cooperative Research Scheme (A) on the Nuclear Fuel Cycle in 1995 in order to promote research collaboration with universities and other research institutes (referred to as 'universities, etc.' below), which means that the fiscal year 2002 was the eighth year of the scheme. The purpose of this scheme is to promote the basic and fundamental research that precedes the research and development projects of JNC through collaboration with universities, etc. by using mainly JNC's facilities and equipment. Under the scheme, universities, etc. propose methods and ideas, etc. to lead to the achievement of the goals of research collaboration themes which are set by JNC as research collaboration subjects. Then a screening committee consisting mainly of experts independent of JNC screens the research collaboration subjects. Research collaboration is performed by carrying out cooperative research with universities, etc. or by accepting researchers from universities, etc. as Visiting Research Fellows at JNC. The scheme allows students studying for doctorates at postgraduate schools either to participate in the cooperative research or to be accepted as trainee researchers. The report includes a summary of the results of the research carried out in fiscal year 2002 on 42 research collaboration subjects for preceding basic engineering research related to fast breeder reactors, the nuclear fuel cycle, radiation safety and geological disposal/geoscience; twelve of which ended in 2002. Of these, five were related to fast breeder reactors, three to the nuclear fuel cycle, one to radiation safety and three to geological disposal/geoscience. (author)

  9. Brief report of the JNC cooperative research (A) on the nuclear fuel cycle for 2003

    International Nuclear Information System (INIS)

    2004-08-01

    The Japan Nuclear Cycle Development Institute (JNC) started the JNC Cooperative Research Scheme (A) on the Nuclear fuel Cycle in 1995 in order to promote research collaboration with universities and other research institutes (referred to as 'universities, etc.' below), which means that the fiscal year 2003 was the ninth year of the scheme. The purpose of this scheme is to promote the basic and fundamental research that precedes the research and development projects of JNC through collaboration with universities, etc. by using mainly JNC's facilities and equipment. Under the scheme, universities, etc. propose methods and ideas, etc. to lead to the achievement of the goals of research collaboration themes which are set by JNC as research collaboration subjects. Then a screening committee consisting mainly of experts independent of JNC screens the research collaboration subjects. Research collaboration is performed by carrying out cooperative research with universities, etc. or by accepting researchers from universities, etc. as Visiting Research Fellows at JNC. The scheme allows students studying for doctorates at postgraduate schools either to participate in the cooperative research or to be accepted as trainee researchers. This report includes a summary of the results of the research carried out in fiscal year 2003 on 43 research collaboration subjects for preceding basic engineering research related to fast breeder reactors, the nuclear fuel cycle, radiation safety and geological disposal/geoscience; fourteen of which ended in 2003. Of these, seven were related to fast breeder reactors, five to the nuclear fuel cycle, one to radiation safety and one to geological disposal/geoscience. (author)

  10. The importance of independent research and evaluation in assessing nuclear fuel cycle and waste management facility safety

    International Nuclear Information System (INIS)

    Downing, Walter D.; Patrick, Wesley C.; Sagar, Budhi

    2009-01-01

    In 1987, the United States Nuclear Regulatory Commission (NRC) established at Southwest Research Institute (SwRI) a federally funded research and development center. Known as the Center for Nuclear Waste Regulatory Analyses (CNWRA), its overall mission is to provide NRC with an independent assessment capability on technical and regulatory issues related to a potential geologic repository for spent nuclear fuel and high-level radioactive waste, as well as interim storage and other nuclear fuel-cycle facilities. For more than 20 years, the CNWRA has supported NRC through an extensive pre-licensing period of establishing the framework of regulations and guidance documents, developing computer codes and other review tools, and conducting independent laboratory, field, and numerical analyses. In June 2008, the United States Department of Energy (DOE) submitted a license application and final environmental impact statement to NRC seeking authorization to construct the nation's first geologic repository at Yucca Mountain, Nevada. The CNWRA will assist NRC in conducting a detailed technical review to critically evaluate the DOE license application to assess whether the potential repository has been designed and can be constructed and operated to safely dispose spent nuclear fuel and high-level radioactive waste. NRC access to independent, unbiased, technical advice from the CNWRA is an important aspect of the evaluation process. This paper discusses why an independent perspective is important when dealing with nuclear fuel cycle and waste management issues. It addresses practical considerations such as avoiding conflicts of interest while at the same time maintaining a world-class research program in technical areas related to the nuclear fuel cycle. It also describes an innovative approach for providing CNWRA scientists and engineers a creative outlet for professional development through an internally funded research program that is focused on future nuclear waste

  11. Radiological safety experience in nuclear fuel cycle operations at Bhabha Atomic Research Center, Trombay, Mumbai, India

    International Nuclear Information System (INIS)

    Pushparaja; Gopalakrishnan, R.K.; Subramaniam, G.

    2000-01-01

    Activities at Bhabha Atomic Research Centre (BARC), Mumbai, cover nuclear fuel cycle operations based on natural uranium as the fuel. The facilities include: plant for purification and production of nuclear grade uranium metal, fuel fabrication, research reactor operation, fuel reprocessing and radioactive waste management in each stage. Comprehensive radiation protection programmes for assessment and monitoring of radiological impact of these operations, both in occupational and public environment, have been operating in BARC since beginning. These programmes, based on the 1990 ICRP Recommendations as prescribed by national regulatory body, the Atomic Energy Regulatory Board (AERB), are being successfully implemented by the Health, Safety and Environment Group, BARC. Radiation Hazards Control Units attached to the nuclear fuel cycle facilities provide radiation safety surveillance to the various operations. The radiation monitoring programme consists of measurement and control of external exposures by thermoluminescent dosimeters (TLDs), hand-held and installed instruments, and internal exposures by bioassay and direct whole body counting using shadow shield counter for beta gamma emitters and phoswich detector based system for plutonium. In addition, an environmental monitoring programme is in place to assess public exposures resulting from the operation of these facilities. The programme involves analysis of various matrices in the environment such as bay water, salt, fish, sediment and computation of resulting public exposures. Based on the operating experience in these plants, improved educating and training programmes for plant operators, have been designed. This, together with the application of new technologies have brought down individual as well as average doses of occupational workers. The environmental releases remain a small fraction of the authorised limits. The operating health physics experience in some of these facilities is discussed in this paper

  12. A decision analysis framework to support long-term planning for nuclear fuel cycle technology research, development, demonstration and deployment

    International Nuclear Information System (INIS)

    Sowder, A.G.; Machiels, A.J.; Dykes, A.A.; Johnson, D.H.

    2013-01-01

    To address challenges and gaps in nuclear fuel cycle option assessment and to support research, develop and demonstration programs oriented toward commercial deployment, EPRI (Electric Power Research Institute) is seeking to develop and maintain an independent analysis and assessment capability by building a suite of assessment tools based on a platform of software, simplified relationships, and explicit decision-making and evaluation guidelines. As a demonstration of the decision-support framework, EPRI examines a relatively near-term fuel cycle option, i.e., use of reactor-grade mixed-oxide fuel (MOX) in U.S. light water reactors. The results appear as a list of significant concerns (like cooling of spent fuels, criticality risk...) that have to be taken into account for the final decision

  13. Nuclear Fuel Cycle Options Catalog: FY16 Improvements and Additions

    Energy Technology Data Exchange (ETDEWEB)

    Price, Laura L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Barela, Amanda Crystal [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Schetnan, Richard Reed [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Walkow, Walter M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-08-31

    The United States Department of Energy, Office of Nuclear Energy, Fuel Cycle Technology Program sponsors nuclear fuel cycle research and development. As part of its Fuel Cycle Options campaign, the DOE has established the Nuclear Fuel Cycle Options Catalog. The catalog is intended for use by the Fuel Cycle Technologies Program in planning its research and development activities and disseminating information regarding nuclear energy to interested parties. The purpose of this report is to document the improvements and additions that have been made to the Nuclear Fuel Cycle Options Catalog in the 2016 fiscal year.

  14. Nuclear Fuel Cycle Options Catalog FY15 Improvements and Additions.

    Energy Technology Data Exchange (ETDEWEB)

    Price, Laura L. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Barela, Amanda Crystal [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Schetnan, Richard Reed [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Walkow, Walter M. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)

    2015-11-01

    The United States Department of Energy, Office of Nuclear Energy, Fuel Cycle Technology Program sponsors nuclear fuel cycle research and development. As part of its Fuel Cycle Options campaign, the DOE has established the Nuclear Fuel Cycle Options Catalog. The catalog is intended for use by the Fuel Cycle Technologies Program in planning its research and development activities and disseminating information regarding nuclear energy to interested parties. The purpose of this report is to document the improvements and additions that have been made to the Nuclear Fuel Cycle Options Catalog in the 2015 fiscal year.

  15. Report of short term research group on environment safety in nuclear fuel cycle, 1983

    International Nuclear Information System (INIS)

    1984-01-01

    The research group on environment safety in nuclear fuel cycle was organized in fiscal 1979 as the research group in the range of the common utilization of Yayoi, and this is the third year since it developed into the short term research group in the Nuclear Engineering Research Laboratory. The results obtained so far were summarized in three reports, UTNL-R110, 134 and 147. In this fiscal year, ''The chemistry of reprocessing'' is the subtheme, and this short term research is to be carried out. The meeting is held on March 23 and 24, 1984, in this Laboratory, and the following reports are presented. The conference on institutional stability and the disposal of nuclear and chemically toxic wastes held at MIT, the social scientific analysis of nuclear power development, the present status of reprocessing research in foreign countries, the problems based on the operation experience of actual plants, the chemistry of fuel dissolution, the chemistry of solvent extraction, reprocessing offgas treatment and problems, the chemistry of fixing Kr and I in zeolite, waste treatment in the Tokai Reprocessing Plant of Power Reactor and Nuclear Fuel Development Corp., the chemistry of actinoids, denitration process and the chemistry of MOX production, and future reprocessing research. (Kako, I.)

  16. Results on safety research for five years (from fiscal year 1996 to 2000). A field of nuclear fuel cycle

    International Nuclear Information System (INIS)

    2001-10-01

    This safety research carried out by the Japan Nuclear Cycle Development Institute (JNC) for five years ranged from fiscal year 1996 to 2000, was performed according to the safety research basic plan (from fiscal year 1996 to 2000) established on March, 1996 (revised again on May, 2000). This report was arranged on a field on nuclear fuel cycle (all subjects on fields of nuclear fuel facility, environmental radioactivity and radioactive wastes and a subject on nuclear fuel cycle in a field of seismic resistant and probabilistic safety assessment) by combining its research results for five years ranged from 1996 to 2000 fiscal year with general outlines on the safety research basic plan. Here were shown outlines on the safety research basic plan, aims and subjects on safety research at a field of nuclear fuel cycle, a list of survey sheets on safety research result, and survey sheets on safety research results. The survey sheets containing research field, title, organization, researcher name, researching period, names of cooperative organization, using facilities, research outline, research results, established contents, application, and research trends, are ranged to 21 items on nuclear fuel facility, 1 item on seismic resistance, 2 items on probabilistic safety assessment, 8 items on environmental radioactivity, and 20 items on radioactive wastes. (G.K.)

  17. Nuclear Fuel Cycle Objectives

    International Nuclear Information System (INIS)

    2013-01-01

    . The four Objectives publications include Nuclear General Objectives, Nuclear Power Objectives, Nuclear Fuel Cycle Objectives, and Radioactive Waste management and Decommissioning Objectives. This publication sets out the objectives that need to be achieved in the area of the nuclear fuel cycle to ensure that the Nuclear Energy Basic Principles are satisfied. Within each of these four Objectives publications, the individual topics that make up each area are addressed. The five topics included in this publication are: resources; fuel engineering and performance; spent fuel management and reprocessing; fuel cycles; and the research reactor nuclear fuel cycle

  18. The nuclear fuel cycle

    International Nuclear Information System (INIS)

    Patarin, L.

    2002-01-01

    This book treats of the different aspects of the industrial operations linked with the nuclear fuel, before and after its use in nuclear reactors. The basis science of this nuclear fuel cycle is chemistry. Thus a recall of the elementary notions of chemistry is given in order to understand the phenomena involved in the ore processing, in the isotope enrichment, in the fabrication of fuel pellets and rods (front-end of the cycle), in the extraction of recyclable materials (residual uranium and plutonium), and in the processing and conditioning of wastes (back-end of the fuel cycle). Nuclear reactors produce about 80% of the French electric power and the Cogema group makes 40% of its turnover at the export. Thus this book contains also some economic and geopolitical data in order to clearly position the stakes. The last part, devoted to the management of wastes, presents the solutions already operational and also the research studies in progress. (J.S.)

  19. Romanian nuclear fuel cycle development

    International Nuclear Information System (INIS)

    Rapeanu, S.N.; Comsa, Olivia

    1998-01-01

    Romanian decision to introduce nuclear power was based on the evaluation of electricity demand and supply as well as a domestic resources assessment. The option was the introduction of CANDU-PHWR through a license agreement with AECL Canada. The major factors in this choice have been the need of diversifying the energy resources, the improvement the national industry and the independence of foreign suppliers. Romanian Nuclear Power Program envisaged a large national participation in Cernavoda NPP completion, in the development of nuclear fuel cycle facilities and horizontal industry, in R and D and human resources. As consequence, important support was being given to development of industries involved in Nuclear Fuel Cycle and manufacturing of equipment and nuclear materials based on technology transfer, implementation of advanced design execution standards, QA procedures and current nuclear safety requirements at international level. Unit 1 of the first Romanian nuclear power plant, Cernavoda NPP with a final profile 5x700 Mw e, is now in operation and its production represents 10% of all national electricity production. There were also developed all stages of FRONT END of Nuclear Fuel Cycle as well as programs for spent fuel and waste management. Industrial facilities for uranian production, U 3 O 8 concentrate, UO 2 powder and CANDU fuel bundles, as well as heavy water plant, supply the required fuel and heavy water for Cernavoda NPP. The paper presents the Romanian activities in Nuclear Fuel Cycle and waste management fields. (authors)

  20. Report on research outline in 1999 fiscal year on public collection type research of nuclear fuel cycle.

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    The Japan Nuclear Cycle Development Institute (JNC) initiated a system to promote the public collection type researches of nuclear fuel cycle since 1999, in order to intend to promote collaboration with universities and research institutes. The system aims to intend to activate researching environment in JNC by intercourse, information exchange, publication of results and so on between researchers in and out of JNC, effectively to proceed basic and fundamental R and D. Here were outlined on eleven researching theme, such as upgrading of velocity and temperature measurement of non-contact type fluid by using electromagnetic ultrasonic wave, development of temperature history memory elements for radiation environment test of a fast breeder reactor, direct glassification of salt wastes by using oxygen plasma, a method on dissolving extraction of metal oxides by using a super-critical fluid, creation of highly separable materials by assistance of computational chemistry (aiming at high order processing of high level radioactive wastes), and so on. (G.K.)

  1. Report on research outline in 1999 fiscal year on public collection type research of nuclear fuel cycle

    International Nuclear Information System (INIS)

    2000-07-01

    The Japan Nuclear Cycle Development Institute (JNC) initiated a system to promote the public collection type researches of nuclear fuel cycle since 1999, in order to intend to promote collaboration with universities and research institutes. The system aims to intend to activate researching environment in JNC by intercourse, information exchange, publication of results and so on between researchers in and out of JNC, effectively to proceed basic and fundamental R and D. Here were outlined on eleven researching theme, such as upgrading of velocity and temperature measurement of non-contact type fluid by using electromagnetic ultrasonic wave, development of temperature history memory elements for radiation environment test of a fast breeder reactor, direct glassification of salt wastes by using oxygen plasma, a method on dissolving extraction of metal oxides by using a super-critical fluid, creation of highly separable materials by assistance of computational chemistry (aiming at high order processing of high level radioactive wastes), and so on. (G.K.)

  2. KWIKPLAN: a computer program for projecting the annual requirements of nuclear fuel cycle operations

    International Nuclear Information System (INIS)

    Salmon, R.; Kee, C.W.

    1977-06-01

    The computer code KWIKPLAN was written to facilitate the calculation of projected nuclear fuel cycle activities. Using given projections of power generation, the code calculates annual requirements for fuel fabrication, fuel reprocessing, uranium mining, and plutonium use and production. The code uses installed capacity projections and mass flow data for six types of reactors to calculate projected fuel cycle activities and inventories. It calculates fissile uranium and plutonium flows and inventories after allowing for an economy with limited reprocessing capacity and a backlog of unreprocessed fuel. All calculations are made on a quarterly basis; printed and punched output of the projected fuel cycle activities are made on an annual basis. Since the punched information is used in another code to determine waste inventories, the code punches a table from which the effective average burnup can be calculated for the fuel being reprocessed

  3. Nuclear fuel cycle

    International Nuclear Information System (INIS)

    1993-01-01

    Status of different nuclear fuel cycle phases in 1992 is discussed including the following issues: uranium exploration, resources, supply and demand, production, market prices, conversion, enrichment; reactor fuel technology; spent fuel management, as well as trends of these phases development up to the year 2010. 10 refs, 11 figs, 15 tabs

  4. Research activity of institute of physical chemistry of Russian Academy of sciences in the field of nuclear fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    Pikaev, A.K. [Institute of Physical Chemistry of Russian Academy of Sciences, Moscow (Russian Federation)

    2000-07-01

    The report is a brief review of the most important directions in research activity of the Institute of Physical Chemistry of RAS (Moscow) in the field of nuclear fuel cycle. The main attention is paid to researches and developments on liquid radioactive waste management including the removal of wastes to deep geological formations and the immobilization of the wastes. In particular, the data from the study on the properties of new, basaltic-like matrices for the immobilization are presented. The results of research on gas evolution from the systems modeling liquid high-level radioactive wastes are considered. The separation of some radionuclides from irradiated nuclear and the production of radiation sources by various methods are discussed. (author)

  5. Brief of the joint research with universities, etc. for 2002. Except the research by the JNC cooperative research scheme on the nuclear fuel cycle

    International Nuclear Information System (INIS)

    2003-09-01

    The Japan Nuclear Cycle Development Institute (JNC) promote the basic and fundamental research in relation to the research and development projects of JNC through collaboration with universities and other research institutes (referred to as 'universities, etc.' below). This report includes a summary of the results of the research carried out in fiscal year 2002 on 15 joint researches with universities, etc. In addition, this report removes the research by the JNC Cooperative Research Scheme on the Nuclear Fuel Cycle. (author)

  6. National Policy on Nuclear Fuel Cycle

    International Nuclear Information System (INIS)

    Soedyartomo, S.

    1996-01-01

    National policy on nuclear fuel cycle is aimed at attaining the expected condition, i.e. being able to support optimality the national energy policy and other related Government policies taking into account current domestic nuclear fuel cycle condition and the trend of international nuclear fuel cycle development, the national strength, weakness, thread and opportunity in the field of energy. This policy has to be followed by the strategy to accomplish covering the optimization of domestic efforts, cooperation with other countries, and or purchasing licences. These policy and strategy have to be broken down into various nuclear fuel cycle programmes covering basically assesment of the whole cycle, performing research and development of the whole cycle without enrichment and reprocessing being able for weapon, as well as programmes for industrialization of the fuel cycle stepwisery commencing with the middle part of the cycle and ending with the edge of the back-end of the cycle

  7. The nuclear fuel cycle

    International Nuclear Information System (INIS)

    Anon.

    1975-01-01

    The papers presented at the International Conference on The Nuclear Fuel Cycle, held at Stockholm, 28 to 31 October 1975, are reviewed. The meeting, organised by the U.S. Atomic Industrial Forum, and the Swedish Nuclear Forum, was concerned more particularly with economic, political, social and commercial aspects than with tecnology. The papers discussed were considered under the subject heading of current status, uranium resources, enrichment, and reprocessing. (U.K.)

  8. Nuclear fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    1975-12-01

    The papers presented at the International Conference on The Nuclear Fuel Cycle, held at Stockholm, 28 to 31 October 1975, are reviewed. The meeting, organised by the U.S. Atomic Industrial Forum, and the Swedish Nuclear Forum, was concerned more particularly with economic, political, social and commercial aspects than with tecnology. The papers discussed were considered under the subject heading of current status, uranium resources, enrichment, and reprocessing.

  9. Alternative nuclear fuel cycles

    International Nuclear Information System (INIS)

    Till, C.E.

    1979-01-01

    This diffuse subject involves value judgments that are political as well as technical, and is best understood in that context. The four questions raised here, however, are mostly from the technical viewpoints: (1) what are alternative nuclear fuel cycles; (2) what generalizations are possible about their characteristics; (3) what are the major practical considerations; and (4) what is the present situation and what can be said about the outlook for the future

  10. The Nuclear Fuel Cycle

    International Nuclear Information System (INIS)

    2011-08-01

    This brochure describes the nuclear fuel cycle, which is an industrial process involving various activities to produce electricity from uranium in nuclear power reactors. The cycle starts with the mining of uranium and ends with the disposal of nuclear waste. The raw material for today's nuclear fuel is uranium. It must be processed through a series of steps to produce an efficient fuel for generating electricity. Used fuel also needs to be taken care of for reuse and disposal. The nuclear fuel cycle includes the 'front end', i.e. preparation of the fuel, the 'service period' in which fuel is used during reactor operation to generate electricity, and the 'back end', i.e. the safe management of spent nuclear fuel including reprocessing and reuse and disposal. If spent fuel is not reprocessed, the fuel cycle is referred to as an 'open' or 'once-through' fuel cycle; if spent fuel is reprocessed, and partly reused, it is referred to as a 'closed' nuclear fuel cycle.

  11. Report of special study meeting on 'Atomic energy research aiming at consistent nuclear fuel cycle', fiscal year 1992

    International Nuclear Information System (INIS)

    Nishina, Kojiro; Nishihara, Hideaki; Mishima, Kaichiro

    1994-12-01

    This meeting was held on March 4, 1993. Since the first power generation with the JPDR and the initial criticality of the KUR, 30 years, and since the initial criticality of the KUCA, 20 years have elapsed. The researchers in universities have contributed greatly to the research and education of atomic energy, but the perspective of leading the world hereafter in this field is very uncertain. This study meeting was held to seek the way to make the proper contribution. In the meeting, lectures were given on Japanese policy on nuclear fuel cycle, the present state of the upstream research and the downstream research in Japan, the experimental plan in NUCEF, the present state of the researches on TRU decay heat data and TRU nucleus data, the present state of the experimental researches at KUCA and at FCA, the present state of the research on the heat removal from high conversion LWRs and the KUR, the present state of the research on radioactive waste treatment, and the present state of TRU chemical research. The record of the holding of this study meeting is added. (K.I.)

  12. The nuclear fuel cycle

    International Nuclear Information System (INIS)

    1998-05-01

    After a short introduction about nuclear power in the world, fission physics and the French nuclear power plants, this brochure describes in a digest way the different steps of the nuclear fuel cycle: uranium prospecting, mining activity, processing of uranium ores and production of uranium concentrates (yellow cake), uranium chemistry (conversion of the yellow cake into uranium hexafluoride), fabrication of nuclear fuels, use of fuels, reprocessing of spent fuels (uranium, plutonium and fission products), recycling of energetic materials, and storage of radioactive wastes. (J.S.)

  13. Research at COGEMA: benefits and a future outlook of the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Poncelet, Francois; Masson, Herve

    2004-01-01

    COGEMA research expenses represent about Euro 100 million per year. They include the expenses for internal and external research programs and research management as well as the expenses for pre-engineering studies leading to cost evaluation. They are divided between front-end, back-end and nuclear services. Front-end expenses fell sharply when research on the SILVA enrichment process was dropped. The main objectives of the research are to maintain the ability of the industrial tool to satisfy COGEMA's clients and to increase operational safety while reducing the impact on the environment. It is also to eliminate the legacy of previous operations and to prepare for future evolutions. As far as the back-end is concerned, a large part of expenses is devoted to the 'Program of Common Interest' (PIC) with the CEA. Thanks to this fruitful collaboration, outstanding results have been obtained in the building, start-up and operation of the two modern reprocessing plants in La Hague. A new agreement is about to be signed with the CEA to follow on from the first one signed in 1978. According to this agreement, COGEMA will be financing as a lump sum a part of the expenses of ATALANTE, which is considered a very valuable research tool. Today, the main program in the PIC is still support to the La Hague reprocessing plant. More specifically, some work is still needed in the Puretex program to further improve the present performance of the plants and adapt them to the burn-up increase. There are significant programs on innovative waste vitrification, historical waste retrieval and conditioning and waste characterization including long-term behavior. Concerning Partition and Transmutation, COGEMA support is limited to the former. There is a strong incentive to understand and prepare evolutions to come that can contribute to sustainable development. Such advanced programs are also under consideration in other countries, which were not up to now willing to reprocess, such as the US

  14. Nonproliferation norms in civilian nuclear fuel cycle

    International Nuclear Information System (INIS)

    Kawata, Tomio

    2005-01-01

    For sustainable use of nuclear energy in large scale, it seems inevitable to choose a closed cycle option. One of the important questions is, then, whether we can really achieve the compatibility between civilian nuclear fuel cycle and nonproliferation norms. In this aspect, Japan is very unique because she is now only one country with full-scope nuclear fuel cycle program as a non-nuclear weapon state in NPT regime. In June 2004 in the midst of heightened proliferation concerns in NPT regime, the IAEA Board of Governors concluded that, for Japanese nuclear energy program, non-diversion of declared nuclear material and the absence of undeclared nuclear material and activities were verified through the inspections and examinations under Comprehensive Safeguards and the Additional Protocol. Based on this conclusion, the IAEA announced the implementation of Integrated Safeguards in Japan in September 2004. This paper reviews how Japan has succeeded in becoming the first country with full-scope nuclear fuel cycle program to qualify for integrated Safeguards, and identifies five key elements that have made this achievement happen: (1) Obvious need of nuclear fuel cycle program, (2) Country's clear intention for renunciation of nuclear armament, (3) Transparency of national nuclear energy program, (4) Record of excellent compliance with nonproliferation obligations for many decades, and (5) Numerous proactive efforts. These five key elements will constitute a kind of an acceptance model for civilian nuclear fuel cycle in NNWS, and may become the basis for building 'Nonproliferation Culture'. (author)

  15. Experience and advantages in implementation of educational program in network form at Department «Closed nuclear fuel cycle Technologies» of National Research Nuclear University «MEPhI»

    Science.gov (United States)

    Beygel‧, A. G.; Kutsenko, K. V.; Lavrukhin, A. A.; Magomedbekov, E. P.; Pershukov, V. A.; Sofronov, V. L.; Tyupina, E. A.; Zhiganov, A. N.

    2017-01-01

    The experience of implementation of the basic educational program of magistracy on direction «Nuclear Physics and Technologies» in a network form is presented. Examples of joint implementation of the educational process with employers organizations, other universities and intranet mobility of students are given.

  16. Experience and advantages in implementation of educational program in network form at Department «Closed nuclear fuel cycle Technologies» of National Research Nuclear University «MEPhI»

    International Nuclear Information System (INIS)

    Beygel', A G; Kutsenko, K V; Lavrukhin, A A; Pershukov, V A; Sofronov, V L; Tyupina, E A; Zhiganov, A N; Magomedbekov, E P

    2017-01-01

    The experience of implementation of the basic educational program of magistracy on direction «Nuclear Physics and Technologies» in a network form is presented. Examples of joint implementation of the educational process with employers organizations, other universities and intranet mobility of students are given. (paper)

  17. Development program of two-arm bilateral servomanipulator system for nuclear fuel cycle facilities in PNC

    International Nuclear Information System (INIS)

    Kashihara, H.; Igarashi, M.; Maeda, M.; Nomizu, T.; Uematsu, K.

    1984-01-01

    PNC started the development program of a two-arm bilateral servomanipulator to improve remote maintenance in the planning of pilot plants for HLLW vitrification and FBR fuel reprocessing. In this paper, the development program of two-arm bilateral servomanipulators, signal and power transmissions, high performance viewing system, man-machine interface, and transporter system for manipulators will be presented. Also radiation tests for all components used in a hot cell are being performed to aid remote system design

  18. The nuclear fuel cycle

    International Nuclear Information System (INIS)

    Jones, P.M.S.

    1987-01-01

    This chapter explains the distinction between fissile and fertile materials, examines briefly the processes involved in fuel manufacture and management, describes the alternative nuclear fuel cycles and considers their advantages and disadvantages. Fuel management is usually divided into three stages; the front end stage of production and fabrication, the back end stage which deals with the fuel after it is removed from the reactor (including reprocessing and waste treatment) and the stage in between when the fuel is actually in the reactor. These stages are illustrated and explained in detail. The plutonium fuel cycle and thorium-uranium-233 fuel cycle are explained. The differences between fuels for thermal reactors and fast reactors are explained. (U.K.)

  19. Nuclear-fuel-cycle education: Module 1. Nuclear fuel cycle overview

    International Nuclear Information System (INIS)

    Eckhoff, N.D.

    1981-07-01

    This educational module is an overview of the nuclear-fule-cycle. The overview covers nuclear energy resources, the present and future US nuclear industry, the industry view of nuclear power, the International Nuclear Fuel Cycle Evaluation program, the Union of Concerned Scientists view of the nuclear-fuel-cycle, an analysis of this viewpoint, resource requirements for a model light water reactor, and world nuclear power considerations

  20. Nuclear-Fuel-Cycle Research Program: availability of geotoxic material

    Energy Technology Data Exchange (ETDEWEB)

    Wachter, B.G.; Kresan, P.L.

    1982-09-01

    This report represents an analog approach to the characterization of the environmental behavior of geotoxic waste materials (toxic material emplaced in the earth's crust) as drawn from literature on the Oklo natural fission reactors and uranium ore deposits relative to radioactive wastes, and hydrothermal metal ore deposits relative to stable toxic wastes. The natural analog data were examined in terms of mobility and immobility of selected radioactive or stable waste elements and are presented in matrix relationship with their prime geochemical variables. A numerical system of ranking those relationships for purposes of hazard-indexing is proposed. Geochemical parameters (especially oxidation/reduction potential) are apparently more potent mobilizers/immobilizers than geological or hydrological conditions in many, if not most, geologic environments for most radioactive waste elements. Heavy metal wastes, by analogy to hydrothermal ore systems and geothermal systems, are less clear in their behavior but similar geochemical patterns do apply. Depth relationships between geochemical variables and waste element behavior show some surprises. It is significantly indicated that for waste isolation, deeper is not necessarily better geochemically. Relatively shallow isolation in host rocks such as shale could offer maximum immobility. This paper provides a geochemical outline for examining analog models as well as a departure point for improved quantification of geological and geochemical indexing of toxic waste hazards.

  1. Nuclear-Fuel-Cycle Research Program: availability of geotoxic material

    International Nuclear Information System (INIS)

    Wachter, B.G.; Kresan, P.L.

    1982-09-01

    This report represents an analog approach to the characterization of the environmental behavior of geotoxic waste materials (toxic material emplaced in the earth's crust) as drawn from literature on the Oklo natural fission reactors and uranium ore deposits relative to radioactive wastes, and hydrothermal metal ore deposits relative to stable toxic wastes. The natural analog data were examined in terms of mobility and immobility of selected radioactive or stable waste elements and are presented in matrix relationship with their prime geochemical variables. A numerical system of ranking those relationships for purposes of hazard-indexing is proposed. Geochemical parameters (especially oxidation/reduction potential) are apparently more potent mobilizers/immobilizers than geological or hydrological conditions in many, if not most, geologic environments for most radioactive waste elements. Heavy metal wastes, by analogy to hydrothermal ore systems and geothermal systems, are less clear in their behavior but similar geochemical patterns do apply. Depth relationships between geochemical variables and waste element behavior show some surprises. It is significantly indicated that for waste isolation, deeper is not necessarily better geochemically. Relatively shallow isolation in host rocks such as shale could offer maximum immobility. This paper provides a geochemical outline for examining analog models as well as a departure point for improved quantification of geological and geochemical indexing of toxic waste hazards

  2. Securing personnel in nuclear fuel cycle research and development in Japan

    International Nuclear Information System (INIS)

    Sekino, H.

    1993-01-01

    The PNC, a japanese governmental research and development organization, is concerned with research and development into building and operating advanced power reactors and R and D into the whole cycle of the nuclear fuel. PNC promotes international cooperation with the USA and European countries as well as technical cooperation with the private sectors in uranium enrichment, reprocessing and advanced reactor development. This report discusses the current situation and problems in securing PNC personnel, in securing 'loan' staff for PNC, and in personnel exchanges for technical transfer and international cooperation. 5 figs

  3. Nuclear fuel cycle information workshop

    International Nuclear Information System (INIS)

    1983-01-01

    This overview of the nuclear fuel cycle is divided into three parts. First, is a brief discussion of the basic principles of how nuclear reactors work; second, is a look at the major types of nuclear reactors being used and world-wide nuclear capacity; and third, is an overview of the nuclear fuel cycle and the present industrial capability in the US

  4. Research in decommissioning techniques for nuclear fuel cycle facilities in JNC. 7. JWTF decommissioning techniques

    International Nuclear Information System (INIS)

    Ogawa, Ryuichiro; Ishijima, Noboru

    1999-02-01

    Decommissioning techniques such as radiation measuring and monitoring, decontamination, dismantling and remote handling in the world were surveyed to upgrading technical know-how database for decommissioning of Joyo Waste Treatment Facility (JWTF). As the result, five literatures for measuring and monitoring techniques, 14 for decontamination and 22 for dismantling feasible for JWTF decommissioning were obtained and were summarized in tables. On the basis of the research, practical applicability of those techniques to decommissioning of JWTF was evaluated. This report contains brief surveyed summaries related to JWTF decommissioning. (H. Itami)

  5. International Nuclear Fuel Cycle Fact Book

    Energy Technology Data Exchange (ETDEWEB)

    Leigh, I.W.; Patridge, M.D.

    1991-05-01

    As the US Department of Energy (DOE) and DOE contractors have become increasingly involved with other nations in nuclear fuel cycle and waste management cooperative activities, a need has developed for a ready source of information concerning foreign fuel cycle programs, facilities, and personnel. This Fact Book was compiled to meet that need. The information contained in the International Nuclear Fuel Cycle Fact Book has been obtained from many unclassified sources: nuclear trade journals and newsletters; reports of foreign visits and visitors; CEC, IAEA, and OECN/NEA activities reports; not reflect any one single source but frequently represent a consolidation/combination of information.

  6. International nuclear fuel cycle fact book. Revision 6

    International Nuclear Information System (INIS)

    Harmon, K.M.; Lakey, L.T.; Leigh, I.W.; Jeffs, A.G.

    1986-01-01

    The International Fuel Cycle Fact Book has been compiled in an effort to provide (1) an overview of worldwide nuclear power and fuel cycle programs and (2) current data concerning fuel cycle and waste management facilities, R and D programs and key personnel. Additional information on each country's program is available in the International Source Book: Nuclear Fuel Cycle Research and Development, PNL-2478, Rev. 2

  7. International nuclear fuel cycle fact book. Revision 6

    Energy Technology Data Exchange (ETDEWEB)

    Harmon, K.M.; Lakey, L.T.; Leigh, I.W.; Jeffs, A.G.

    1986-01-01

    The International Fuel Cycle Fact Book has been compiled in an effort to provide (1) an overview of worldwide nuclear power and fuel cycle programs and (2) current data concerning fuel cycle and waste management facilities, R and D programs and key personnel. Additional information on each country's program is available in the International Source Book: Nuclear Fuel Cycle Research and Development, PNL-2478, Rev. 2.

  8. Integrated radioactive waste management from NPP, research reactor and back end of nuclear fuel cycle - an Indian experience

    International Nuclear Information System (INIS)

    Kumar, S.; Ali, S.S.; Chander, M.; Bansal, N.K.; Balu, K.

    2001-01-01

    India is one of the developing countries operating waste management facilities for entire nuclear fuel cycle for the last three decades. Over the years, the low and intermediate level (LIL) liquid waste streams arising from reactors and fuel reprocessing facilities have been well characterised and different processes for treatment, conditioning and disposal are being practised. LIL waste generated in nuclear facilities is treated by chemical treatment processes where majority of the activity is retained in the form of sludge. Decontamination factors ranging from 10 to 1000 are achieved depending upon the process employed and characteristics of the waste. At an inland PHWR site at Rajasthan, the LIL waste is concentrated by solar evaporation. To augment the treatment capability, a plant is being set up at Trombay to treat LIL waste based on reverse osmosis process. Alkaline waste of intermediate level activity is being treated by using indigenously developed resorcinol formaldehyde resin. Solid radioactive waste is volume reduced by compacting, baling and incineration depending on the nature of the waste. Cement matrix is employed for immobilisation of process concentrate such as chemical sludge, ash from incinerators etc. The solid waste, depending on the activity contents, is disposed in underground engineered trenches in near surface disposal facility. Bore well samples around the trench are drawn periodically to ascertain the effectiveness of the disposal system. The gaseous waste is treated at the source itself. High efficiency particulate air (HEPA) filter and impregnated activated carbon is employed to restrict the release of airborne activity to the environment. Radioactive waste discharges are kept well below the authorised limits prescribed by the regulatory authorities. This paper covers the waste management practices being adopted in India for treatment, conditioning, interim storage and disposal of low and intermediate level waste arising from the

  9. The IFR modern nuclear fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    Hannum, W.H.

    1991-01-01

    Nuclear power is an essential component of the world's energy supply. The IFR program, by returning to fundamentals, offers a fresh approach to closing the nuclear fuel cycle. This closed fuel cycle represents the ultimate in efficient resource utilization and environmental accountability. 35 refs., 2 tabs.

  10. The IFR modern nuclear fuel cycle

    International Nuclear Information System (INIS)

    Hannum, W.H.

    1991-01-01

    Nuclear power is an essential component of the world's energy supply. The IFR program, by returning to fundamentals, offers a fresh approach to closing the nuclear fuel cycle. This closed fuel cycle represents the ultimate in efficient resource utilization and environmental accountability. 35 refs., 2 tabs

  11. Over view of nuclear fuel cycle examination facility at KAERI

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Key-Soon; Kim, Eun-Ga; Joe, Kih-Soo; Kim, Kil-Jeong; Kim, Ki-Hong; Min, Duk-Ki [Korea Atomic Energy Research Institute, Taejon (Korea)

    1999-09-01

    Nuclear fuel cycle examination facilities at the Korea Atomic Energy Research Institute (KAERI) consist of two post-irradiation examination facilities (IMEF and PIEF), one chemistry research facility (CRF), one radiowaste treatment facility (RWTF) and one radioactive waste form examination facility (RWEF). This paper presents the outline of the nuclear fuel cycle examination facilities in KAERI. (author)

  12. Nuclear power and the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Hardy, C.J.; Silver, J.M.

    1985-09-01

    The report provides data and assessments of the status and prospects of nuclear power and the nuclear fuel cycle. The report discusses the economic competitiveness of nuclear electricity generation, the extent of world uranium resources, production and requirements, uranium conversion and enrichment, fuel fabrication, spent fuel treatment and radioactive waste management. A review is given of the status of nuclear fusion research

  13. Proceedings of the 2nd NUCEF international symposium NUCEF`98. Safety research and development of base technology on nuclear fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    This volume contains 68 papers presented at the 2nd NUCEF International Symposium NUCEF`98 held on 16-17 November 1998, in Hitachinaka, Japan, following the 1st symposium NUCEF`95 (Proceeding: JAERI-Conf 96-003). The theme of this symposium was `Safety Research and Development of Base Technology on Nuclear Fuel Cycle`. The papers were presented in oral and poster sessions on following research fields: (1) Criticality Safety, (2) Reprocessing and Partitioning, (3) Radioactive Waste Management. The 68 papers are indexed individually. (J.P.N.)

  14. Proceedings of the 2nd NUCEF international symposium NUCEF'98. Safety research and development of base technology on nuclear fuel cycle

    International Nuclear Information System (INIS)

    1999-03-01

    This volume contains 68 papers presented at the 2nd NUCEF International Symposium NUCEF'98 held on 16-17 November 1998, in Hitachinaka, Japan, following the 1st symposium NUCEF'95 (Proceeding: JAERI-Conf 96-003). The theme of this symposium was 'Safety Research and Development of Base Technology on Nuclear Fuel Cycle'. The papers were presented in oral and poster sessions on following research fields: (1) Criticality Safety, (2) Reprocessing and Partitioning, (3) Radioactive Waste Management. The 68 papers are indexed individually. (J.P.N.)

  15. International nuclear fuel cycle fact book

    Energy Technology Data Exchange (ETDEWEB)

    Leigh, I.W.

    1988-01-01

    As the US Department of Energy (DOE) and DOE contractors have become increasingly involved with other nations in nuclear fuel cycle and waste management cooperative activities, a need has developed for a ready source or information concerning foreign fuel cycle programs, facilities, and personnel. This Fact Book was compiled to meet that need. The information contained has been obtained from nuclear trade journals and newsletters; reports of foreign visits and visitors; CEC, IAEA, and OECD/NEA activities reports; proceedings of conferences and workshops; and so forth. Sources do not agree completely with each other, and the data listed herein does not reflect any one single source but frequently is consolidation/combination of information. Lack of space as well as the intent and purpose of the Fact Book limit the given information to that pertaining to the Nuclear Fuel Cycle and to data considered of primary interest or most helpful to the majority of users.

  16. International Nuclear Fuel Cycle Fact Book

    International Nuclear Information System (INIS)

    Leigh, I.W.

    1992-05-01

    As the US Department of Energy (DOE) and DOE contractors have become increasingly involved with other nations in nuclear fuel cycle and waste management cooperative activities, a need exists costs for a ready source of information concerning foreign fuel cycle programs, facilities, and personnel. This Fact Book has been compiled to meet that need. The information contained in the International Nuclear Fuel Cycle Fact Book has been obtained from many unclassified sources: nuclear trade journals and newsletters; reports of foreign visits and visitors; CEC, IAEA, and OECD/NMEA activities reports; and proceedings of conferences and workshops. The data listed typically do not reflect any single source but frequently represent a consolidation/combination of information

  17. International nuclear fuel cycle fact book

    International Nuclear Information System (INIS)

    Leigh, I.W.; Lakey, L.T.; Schneider, K.J.; Silviera, D.J.

    1987-01-01

    As the US Department of Energy (DOE) and DOE contractors have become increasingly involved with other nations in nuclear fuel cycle and waste management cooperative activities, a need has developed for a ready source of information concerning foreign fuel cycle programs, facilities, and personnel. This Fact Book was compiled to meet that need. The information contained has been obtained from nuclear trade journals and newsletters; reports of foreign visits and visitors; CEC, IAEA, and OECD/NEA activities reports; proceedings of conferences and workshops; and so forth. Sources do not agree completely with each other, and the data listed herein does not reflect any one single source but frequently is a consolidation/combination of information. Lack of space as well as the intent and purpose of the Fact Book limit the given information to that pertaining to the Nuclear Fuel Cycle and to data considered of primary interest or most helpful to the majority of users

  18. International Nuclear Fuel Cycle Fact Book

    Energy Technology Data Exchange (ETDEWEB)

    Leigh, I W; Mitchell, S J

    1990-01-01

    As the US Department of Energy (DOE) and DOE contractors have become increasingly involved with other nations in nuclear fuel cycle and waste management cooperative activities, a need has developed for a ready source of information concerning foreign fuel cycle programs, facilities, and personnel. This Fact Book was compiled to meet that need. The information contained in the International Nuclear Fuel Cycle Fact Book has been obtained from many unclassified sources: nuclear trade journals and newsletters; reports of foreign visits and visitors; CEC, IAEA, and OECD/NEA activities reports; proceedings of conferences and workshops, etc. The data listed do not reflect any one single source but frequently represent a consolidation/combination of information.

  19. International nuclear fuel cycle fact book

    International Nuclear Information System (INIS)

    Leigh, I.W.

    1988-01-01

    As the US Department of Energy (DOE) and DOE contractors have become increasingly involved with other nations in nuclear fuel cycle and waste management cooperative activities, a need has developed for a ready source or information concerning foreign fuel cycle programs, facilities, and personnel. This Fact Book was compiled to meet that need. The information contained has been obtained from nuclear trade journals and newsletters; reports of foreign visits and visitors; CEC, IAEA, and OECD/NEA activities reports; proceedings of conferences and workshops; and so forth. Sources do not agree completely with each other, and the data listed herein does not reflect any one single source but frequently is consolidation/combination of information. Lack of space as well as the intent and purpose of the Fact Book limit the given information to that pertaining to the Nuclear Fuel Cycle and to data considered of primary interest or most helpful to the majority of users

  20. International Nuclear Fuel Cycle Fact Book

    International Nuclear Information System (INIS)

    Leigh, I.W.; Mitchell, S.J.

    1990-01-01

    As the US Department of Energy (DOE) and DOE contractors have become increasingly involved with other nations in nuclear fuel cycle and waste management cooperative activities, a need has developed for a ready source of information concerning foreign fuel cycle programs, facilities, and personnel. This Fact Book was compiled to meet that need. The information contained in the International Nuclear Fuel Cycle Fact Book has been obtained from many unclassified sources: nuclear trade journals and newsletters; reports of foreign visits and visitors; CEC, IAEA, and OECD/NEA activities reports; proceedings of conferences and workshops, etc. The data listed do not reflect any one single source but frequently represent a consolidation/combination of information

  1. ATALANTE, innovation for the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Anon.

    2016-01-01

    At Marcoule (France) CEA has been operating a facility called ATALANTE since the beginning of the eighties and dedicated to research on the nuclear fuel cycle. 4 lines of research are pursued: a technical support for nuclear industry, advanced nuclear fuel cycles, the recycling of minor actinides, and the vitrification of high level radioactive wastes. ATALANTE facility consists of 17 laboratories working on 250 glove boxes and 11 shielded hot cells. The latter allow the handling of highly gamma emitting materials through 59 workstations equipped with remote manipulatory arms, while the former allow the handling of contaminating (but low irradiating) materials like most actinides. In 2013 ATALANTE was rewarded the 'Nuclear historic landmark' by the American Nuclear Society that awards facilities that have led to major advances in scientific knowledge

  2. Nuclear fuel cycle. V. 1

    International Nuclear Information System (INIS)

    1983-01-01

    Nuclear fuel cycle information in the main countries that develop, supply or use nuclear energy is presented. Data about Japan, FRG, United Kingdom, France and Canada are included. The information is presented in a tree-like graphic way. (C.S.A.) [pt

  3. Nuclear Fuel Cycle Introductory Concepts

    Energy Technology Data Exchange (ETDEWEB)

    Karpius, Peter Joseph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-02-02

    The nuclear fuel cycle is a complex entity, with many stages and possibilities, encompassing natural resources, energy, science, commerce, and security, involving a host of nations around the world. This overview describes the process for generating nuclear power using fissionable nuclei.

  4. Nuclear Fuel Cycle Introductory Concepts

    International Nuclear Information System (INIS)

    Karpius, Peter Joseph

    2017-01-01

    The nuclear fuel cycle is a complex entity, with many stages and possibilities, encompassing natural resources, energy, science, commerce, and security, involving a host of nations around the world. This overview describes the process for generating nuclear power using fissionable nuclei.

  5. Nuclear fuel cycle. V. 2

    International Nuclear Information System (INIS)

    1984-01-01

    Nuclear fuel cycle information in some countries that develop, supply or use nuclear energy is presented. Data about Argentina, Australia, Belgium, Netherlands, Italy, Denmarmark, Norway, Sweden, Switzerland, Finland, Spain and India are included. The information is presented in a tree-like graphic way. (C.S.A.) [pt

  6. Modeling the Nuclear Fuel Cycle

    International Nuclear Information System (INIS)

    Jacobson, Jacob J.; Dunzik-Gougar, Mary Lou; Juchau, Christopher A.

    2010-01-01

    A review of existing nuclear fuel cycle systems analysis codes was performed to determine if any existing codes meet technical and functional requirements defined for a U.S. national program supporting the global and domestic assessment, development and deployment of nuclear energy systems. The program would be implemented using an interconnected architecture of different codes ranging from the fuel cycle analysis code, which is the subject of the review, to fundamental physical and mechanistic codes. Four main functions are defined for the code: (1) the ability to characterize and deploy individual fuel cycle facilities and reactors in a simulation, while discretely tracking material movements, (2) the capability to perform an uncertainty analysis for each element of the fuel cycle and an aggregate uncertainty analysis, (3) the inclusion of an optimization engine able to optimize simultaneously across multiple objective functions, and (4) open and accessible code software and documentation to aid in collaboration between multiple entities and facilitate software updates. Existing codes, categorized as annualized or discrete fuel tracking codes, were assessed according to the four functions and associated requirements. These codes were developed by various government, education and industrial entities to fulfill particular needs. In some cases, decisions were made during code development to limit the level of detail included in a code to ease its use or to focus on certain aspects of a fuel cycle to address specific questions. The review revealed that while no two of the codes are identical, they all perform many of the same basic functions. No code was able to perform defined function 2 or several requirements of functions 1 and 3. Based on this review, it was concluded that the functions and requirements will be met only with development of a new code, referred to as GENIUS.

  7. IAEA programme on nuclear fuel cycle and materials technologies

    International Nuclear Information System (INIS)

    Killeen, J.

    2006-01-01

    In this paper a brief description and the main objectives of IAEA Programme B on Nuclear fuel cycle are given. The coordinated research project on Improvement of Models Used For Fuel Behaviour Simulation (FUMEX II) is also presented

  8. IAEA activities on nuclear fuel cycle 1997

    International Nuclear Information System (INIS)

    Oi, N.

    1997-01-01

    The presentation discussing the IAEA activities on nuclear fuel cycle reviews the following issues: organizational charts of IAEA, division of nuclear power and the fuel cycle, nuclear fuel cycle and materials section; 1997 budget estimates; budget trends; the nuclear fuel cycle programme

  9. IAEA activities on nuclear fuel cycle 1997

    Energy Technology Data Exchange (ETDEWEB)

    Oi, N [International Atomic Energy Agency, Vienna (Austria). Nuclear Fuel Cycle and Materials Section

    1997-12-01

    The presentation discussing the IAEA activities on nuclear fuel cycle reviews the following issues: organizational charts of IAEA, division of nuclear power and the fuel cycle, nuclear fuel cycle and materials section; 1997 budget estimates; budget trends; the nuclear fuel cycle programme.

  10. International nuclear fuel cycle evaluation

    International Nuclear Information System (INIS)

    Witt, P.

    1980-01-01

    In the end of February 1980, the two-years work on the International Nuclear Fuel Cycle Evaluation (INFCE) was finished in Vienna with a plenary meeting. INFCE is likely to have been a unique event in the history of international meetings: It was ni diplomatic negotiation meeting, but a techno-analytical investigation in which the participants tenaciously shuggled for many of the formulations. Starting point had been a meeting initiated by President Carter in Washington in Oct. 1979 after the World Economy Summit Meeting in London. The results of the investigation are presented here in a brief and popular form. (orig./UA) [de

  11. The evolving nuclear fuel cycle

    International Nuclear Information System (INIS)

    Gale, J.D.; Hanson, G.E.; Coleman, T.A.

    1993-01-01

    Various economics and political pressures have shaped the evolution of nuclear fuel cycles over the past 10 to 15 yr. Future trends will no doubt be similarly driven. This paper discusses the influences that long cycles, high discharge burnups, fuel reliability, and costs will have on the future nuclear cycle. Maintaining the economic viability of nuclear generation is a key issue facing many utilities. Nuclear fuel has been a tremendous bargain for utilities, helping to offset major increases in operation and maintenance (O ampersand M) expenses. An important factor in reducing O ampersand M costs is increasing capacity factor by eliminating outages

  12. Radioecology of nuclear fuel cycles

    International Nuclear Information System (INIS)

    Cadwell, L.L.

    1982-01-01

    This study provides information to help assess the environmental impacts and certain potential human hazards associated with nuclear fuel cycles. A data base is being developed to define and quantify biological transport routes, which will permit credible predictions and assessment of routine and potential large-scale releases of radionuclides and other toxic materials. These data, used in assessment models, will increase the accuracy of estimating radiation doses to man and other life forms. Results will provide information to determine if waste management procedures on the Hanford site have caused ecological perturbations, and, if so, to determine the source, nature and magnitude of such disturbances

  13. Radioecology of nuclear fuel cycles

    International Nuclear Information System (INIS)

    Schreckhise, R.G.; Cadwell, L.L.; Emery, R.M.

    1981-01-01

    This study provides information to help assess the environmental impacts and certain potential human hazards associated with nuclear fuel cycles. A data base is being developed to define and quantify biological transport routes which will permit credible predictions and assessment of routine and potential large-scale releases of radionuclides and other toxic materials. Information obtained from existing storage and disposal sites will provide a meaningful radioecological perspective with which to improve the effectiveness of waste management practices. This paper focuses on terrestrial and aquatic radioecology of waste management areas and biotic transport parameters

  14. Regulation at nuclear fuel cycle

    International Nuclear Information System (INIS)

    2002-01-01

    This bulletin contains information about activities of the Nuclear Regulatory Authority of the Slovak Republic (UJD). In this leaflet the role of the UJD in regulation at nuclear fuel cycle is presented. The Nuclear Fuel Cycle (NFC) is a complex of activities linked with production of nuclear fuel for nuclear reactors as a source of energy used for production of electricity and heat, and of activities linked with spent nuclear fuel handling. Activities linked with nuclear fuel (NF) production, known as the Front-End of Nuclear Fuel Cycle, include (production of nuclear fuel from uranium as the most frequently used element). After discharging spent nuclear fuel (SNF) from nuclear reactor the activities follow linked with its storage, reprocessing and disposal known as the Back-End of Nuclear Fuel Cycle. Individual activity, which penetrates throughout the NFC, is transport of nuclear materials various forms during NF production and transport of NF and SNF. Nuclear reactors are installed in the Slovak Republic only in commercial nuclear power plants and the NFC is of the open type is imported from abroad and SNF is long-term supposed without reprocessing. The main mission of the area of NFC is supervision over: - assurance of nuclear safety throughout all NFC activities; - observance of provisions of the Treaty on Non-Proliferation of Nuclear Weapons during nuclear material handling; with an aim to prevent leakage of radioactive substances into environment (including deliberated danage of NFC sensitive facilities and misuse of nuclear materials to production of nuclear weapons. The UJD carries out this mission through: - assessment of safety documentation submitted by operators of nuclear installations at which nuclear material, NF and SNF is handled; - inspections concentrated on assurance of compliance of real conditions in NFC, i.e. storage and transport of NF and SNF; storage, transport and disposal of wastes from processing of SNF; with assumptions of the safety

  15. Nuclear fuel cycle requirements in WOCA

    International Nuclear Information System (INIS)

    Klumpp, P.

    1982-02-01

    OECD/NEA will publsih an updated version of its study 'Nuclear Fuel Cycle Requirements and Supply Considerations, Through the Long-Term.' The Nuclear Research Centre Karlsruhe (KfK) was involved in the work necessary to provide this book. Although KfK had only responsiblility for part of the required computations it performed all the calculations for its own documentation interests. This documentation was felt to be a helpful background material for the reader of the second 'Yellow Book'. In this sense the original strategy computer outprints are published now without any discussion of assumptions and results. (orig.) [de

  16. Nuclear fuel cycle: reprocessing. A bibliography

    International Nuclear Information System (INIS)

    Smith, L.B.

    1982-12-01

    This bibliography contains information on the reprocessing portion of the nuclear fuel cycle included in the Department of Energy's Energy Data Base from January 1981 through November 1982. The abstracts are grouped by subject category. Entries in the subject index also facilitate access by subject. Within each category the arrangement is by report number for reports, followed by nonreports in reverse chronological order. These citations are to research reports, journal articles, books, patents, theses, and conference papers from worldwide sources. Five indexes, each preceded by a brief description, are provided: Corporate Author, Personal Author, Subject, Contract Number, and Report Number

  17. The nuclear fuel cycle light and shadow

    International Nuclear Information System (INIS)

    Giraud, A.

    1977-01-01

    The nuclear fuel cycle industry has a far reaching effect on future world energy developments. The growth in turnover of this industry follows a known patterm; by 1985 this turnover will have reached a figure of 2 billion dollars. Furthermore, the fuel cycle plays a determining role in ensuring the physical continuity of energy supplies for countries already engaged in the nuclear domain. Finally, the development of this industry is subject to economic and political constraints which imply the availability of raw materials, technological know-how, and production facilities. Various factors which could have an adverse influence on the cycle: technical, economic, or financial difficulties, environmental impact, nuclear safety, theft or diversion of nuclear materials, nuclear weapon, proliferation risks, are described, and the interaction between the development of the cycle, energy independance, and the fulfillment of nuclear energy programs is emphasized. It is concluded that the nuclear fuel cycle industry is confronted with difficulties due to its extremely rapid growth rate (doubling every 5 years); it is a long time since such a growth rate has been experienced by any heavy industry. The task which lays before us is difficult, but the fruit is worth the toil, as it is the fuel cycle which will govern the growth of the nuclear industry [fr

  18. International Nuclear Fuel Cycle Evaluation

    International Nuclear Information System (INIS)

    Carnesale, A.

    1980-01-01

    As nuclear power expands globally, so too expands the capability for producing nuclear weapons. The International Nuclear Fuel Cycle Evaluation (INFCE) was organized in 1977 for the purpose of exploring two areas: (1) ways in which nuclear energy can be made available to help meet world energy needs, and (2) means by which the attendant risk of weapons proliferation can be held to a minimum. INFCE is designed for technical and analytical study rather than negotiation. Its organizational structure and issues under consideration are discussed. Some even broader issues that emerge from consideration of the relationships between the peaceful and military use of nuclear energy are also discussed. These are different notions of the meaning of nuclear proliferation, nuclear export policy, the need of a nuclear policy to be both a domestic as well as a foreign one, and political-military measures that can help reduce incentives of countries to acquire nuclear weapons of their own

  19. Financing the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Stephany, M.

    1975-01-01

    While conventional power stations usually have fossil fuel reserves for only a few weeks, nuclear power stations, because of the relatively long time required for uranium processing from ore extraction to the delivery of the fuel elements and their prolonged in-pile time, require fuel reserves for a period of several years. Although the specific fuel costs of nuclear power stations are much lower than those of conventional power stations, this results in consistently higher financial requirements. But the problems involved in financing the nuclear fuel do not only include the aspect of financing the requirements of reactor operators, but also of financing the facilities of the nuclear fuel cycle. As far as the fuel supply is concerned, the true financial requirements greatly exceed the mere purchasing costs because the costs of financing are rather high as a consequence of the long lead times. (orig./UA) [de

  20. Nuclear power and the nuclear fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1976-07-01

    The IAEA is organizing a major conference on nuclear power and the nuclear fuel cycle, which is to be held from 2 to 13 May 1977 in Salzburg, Austria. The programme for the conference was published in the preceding issue of the IAEA Bulletin (Vol.18, No. 3/4). Topics to be covered at the conference include: world energy supply and demand, supply of nuclear fuel and fuel cycle services, radioactivity management (including transport), nuclear safety, public acceptance of nuclear power, safeguarding of nuclear materials, and nuclear power prospects in developing countries. The articles in the section that follows are intended to serve as an introduction to the topics to be discussed at the Salzburg Conference. They deal with the demand for uranium and nuclear fuel cycle services, uranium supplies, a computer simulation of regional fuel cycle centres, nuclear safety codes, management of radioactive wastes, and a pioneering research project on factors that determine public attitudes toward nuclear power. It is planned to present additional background articles, including a review of the world nuclear fuel reprocessing situation and developments in the uranium enrichment industry, in future issues of the Bulletin. (author)

  1. Nuclear Fuel Cycle Information System. A directory of nuclear fuel cycle facilities. 2009 ed

    International Nuclear Information System (INIS)

    2009-04-01

    The Nuclear Fuel Cycle Information System (NFCIS) is an international directory of civilian nuclear fuel cycle facilities, published online as part of the Integrated Nuclear Fuel Cycle Information System (iNFCIS: http://www-nfcis.iaea.org/). This is the fourth hardcopy publication in almost 30 years and it represents a snapshot of the NFCIS database as of the end of 2008. Together with the attached CD-ROM, it provides information on 650 civilian nuclear fuel cycle facilities in 53 countries, thus helping to improve the transparency of global nuclear fuel cycle activities

  2. Nuclear Fuel Cycle Analysis Technology to Develop Advanced Nuclear Fuel Cycle

    Energy Technology Data Exchange (ETDEWEB)

    Park, Byung Heung [Chungju National University, Chungju (Korea, Republic of); Ko, Won IL [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2011-12-15

    The nuclear fuel cycle (NFC) analysis is a study to set a NFC policy and to promote systematic researches by analyzing technologies and deriving requirements at each stage of a fuel cycle. System analysis techniques are utilized for comparative analysis and assessment of options on a considered system. In case that NFC is taken into consideration various methods of the system analysis techniques could be applied depending on the range of an interest. This study presented NFC analysis strategies for the development of a domestic advanced NFC and analysis techniques applicable to different phases of the analysis. Strategically, NFC analysis necessitates the linkage with technology analyses, domestic and international interests, and a national energy program. In this respect, a trade-off study is readily applicable since it includes various aspects on NFC as metrics and then analyzes the considered NFC options according to the derived metrics. In this study, the trade-off study was identified as a method for NFC analysis with the derived strategies and it was expected to be used for development of an advanced NFC. A technology readiness level (TRL) method and NFC simulation codes could be utilized to obtain the required metrics and data for assessment in the trade-off study. The methodologies would guide a direction of technology development by comparing and assessing technological, economical, environmental, and other aspects on the alternatives. Consequently, they would contribute for systematic development and deployment of an appropriate advanced NFC.

  3. Nuclear Fuel Cycle Analysis Technology to Develop Advanced Nuclear Fuel Cycle

    International Nuclear Information System (INIS)

    Park, Byung Heung; Ko, Won IL

    2011-01-01

    The nuclear fuel cycle (NFC) analysis is a study to set a NFC policy and to promote systematic researches by analyzing technologies and deriving requirements at each stage of a fuel cycle. System analysis techniques are utilized for comparative analysis and assessment of options on a considered system. In case that NFC is taken into consideration various methods of the system analysis techniques could be applied depending on the range of an interest. This study presented NFC analysis strategies for the development of a domestic advanced NFC and analysis techniques applicable to different phases of the analysis. Strategically, NFC analysis necessitates the linkage with technology analyses, domestic and international interests, and a national energy program. In this respect, a trade-off study is readily applicable since it includes various aspects on NFC as metrics and then analyzes the considered NFC options according to the derived metrics. In this study, the trade-off study was identified as a method for NFC analysis with the derived strategies and it was expected to be used for development of an advanced NFC. A technology readiness level (TRL) method and NFC simulation codes could be utilized to obtain the required metrics and data for assessment in the trade-off study. The methodologies would guide a direction of technology development by comparing and assessing technological, economical, environmental, and other aspects on the alternatives. Consequently, they would contribute for systematic development and deployment of an appropriate advanced NFC.

  4. New approach to the optimization of nuclear fuel cycle - application of the goal programming and the AHP

    International Nuclear Information System (INIS)

    Kim, Poong Oh

    1998-02-01

    The front-end fuel cycle from mining to enrichment is in the maturity. Unlike the front-end fuel cycle, there are several pathways in the back-end fuel cycle. in this study five fuel cycle scenarios derived from a unique position in Korea of having a two-reactor programme of PWR and PHWR are proposed. In a selection of an optimal fuel cycle in a country, a number of attributes and factors that interact each other should be taken into account. Those factors to be considered in the study are categorized into two groups, one is tangible factor and the other is intangible factor. The major factors consist of minimizing fuel cycle cost, maximizing resource utilization, minimizing environmental impact and satisfying domestic and international politics. The long-term consequences of any decision for the back-end fuel cycle requires some sophisticated decision making tools. In this paper the Goal Programming method in combination with the Analytic Hierarchy Process (AHP) is applied in the decision making process. The Goal Programming is a very useful decision making tool to solve complex and multi-objective problems. The AHP, a method of solving complex decision problems with multiple attributes or objectives shows the strength in measuring the preferences of the attributes. In the study, the AHP is used for quantification of the intangible factors of which the evaluation is done by a team of nuclear experts. A model for fuel cycle selection is established in accordance with the logic of the Goal Programming. Also an interactive computer program is developed to obtain a solution for the most optimal fuel cycle in Korea

  5. Nuclear Fuel Cycle Analysis and Simulation Tool (FAST)

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Won Il; Kwon, Eun Ha; Kim, Ho Dong

    2005-06-15

    This paper describes the Nuclear Fuel Cycle Analysis and Simulation Tool (FAST) which has been developed by the Korea Atomic Energy Research Institute (KAERI). Categorizing various mix of nuclear reactors and fuel cycles into 11 scenario groups, the FAST calculates all the required quantities for each nuclear fuel cycle component, such as mining, conversion, enrichment and fuel fabrication for each scenario. A major advantage of the FAST is that the code employs a MS Excel spread sheet with the Visual Basic Application, allowing users to manipulate it with ease. The speed of the calculation is also quick enough to make comparisons among different options in a considerably short time. This user-friendly simulation code is expected to be beneficial to further studies on the nuclear fuel cycle to find best options for the future all proliferation risk, environmental impact and economic costs considered.

  6. Radioecology of nuclear fuel cycles

    International Nuclear Information System (INIS)

    Schreckhise, R.G.; Cadwell, L.L.; Emery, R.M.

    1980-01-01

    Sites where radioactive wastes are found are solid waste burial grounds, soils below liquid stoage areas, surface ditches and ponds, and the terrestrial environment around chemical processing facilities that discharge airborne radioactive debris from stacks. This study provides information to help assess the environmental impacts and certain potentiall human hazards associated with nuclear fuel cycles. A data base is being developed to define and quantify biological transport routes which will permit credible predictions and assessment of routine and potential large-scale releases of radionuclides and other toxic materials. These data, used in assessment models, will increase the accuracy of estimating radiation doses to man and other life forms. Information obtained from existing storage and disposal sites will provide a meaningful radioecological perspective with which to improve the effectiveness of waste management practices. Results will provide information to determine if waste management procedures on the Hanford Site have caused ecological perturbations, and if so, to determine the source, nature, and magnitude of such disturbances

  7. International nuclear fuel cycle fact book

    International Nuclear Information System (INIS)

    1992-09-01

    The International Nuclear Fuel Cycle Fact Book has been compiled in an effort to provide current data concerning fuel cycle and waste management facilities, R ampersand D programs and key personnel on 23 countries, including the US, four multi-national agencies, and 21 nuclear societies. The Fact Book is organized as follows: National summaries-a section for each country which summarizes nuclear policy, describes organizational relationships, and provides addresses and names of key personnel and information on facilities. International agencies-a section for each of the international agencies which has significant fuel cycle involvement and a listing of nuclear societies. Glossary-a list of abbreviations/acronyms of organizations, facilities, technical and other terms. The national summaries, in addition to the data described above, feature a small map for each country as well as some general information. The latter presented from the perspective of the Fact Book user in the United States

  8. Survey of nuclear fuel-cycle codes

    International Nuclear Information System (INIS)

    Thomas, C.R.; de Saussure, G.; Marable, J.H.

    1981-04-01

    A two-month survey of nuclear fuel-cycle models was undertaken. This report presents the information forthcoming from the survey. Of the nearly thirty codes reviewed in the survey, fifteen of these codes have been identified as potentially useful in fulfilling the tasks of the Nuclear Energy Analysis Division (NEAD) as defined in their FY 1981-1982 Program Plan. Six of the fifteen codes are given individual reviews. The individual reviews address such items as the funding agency, the author and organization, the date of completion of the code, adequacy of documentation, computer requirements, history of use, variables that are input and forecast, type of reactors considered, part of fuel cycle modeled and scope of the code (international or domestic, long-term or short-term, regional or national). The report recommends that the Model Evaluation Team perform an evaluation of the EUREKA uranium mining and milling code

  9. Challenge to establishment of nuclear fuel cycle

    International Nuclear Information System (INIS)

    Nakajima, Ichiro

    2000-01-01

    Japan Nuclear Cycle Development Inst. (JNC) has promoted some efforts on introduction of business management cycle system integrated on safety security and business management, planning a safety conservation system with effectiveness concept on risk, and their practice steadily and faithfully. Here were described on some characteristic items on effort of safety promotion since establishment of JNC. And, here were also introduced on outlines of some research actions, at a center of research and development on a high breeding reactor and its relating cycle technology carried out at present by JNC under aiming at establishment of the nuclear fuel recycling, that is to say the nuclear fuel cycle, in Japan to upgrade the nuclear security more and more. (G.K.)

  10. Modeling closed nuclear fuel cycles processes

    Energy Technology Data Exchange (ETDEWEB)

    Shmidt, O.V. [A.A. Bochvar All-Russian Scientific Research Institute for Inorganic Materials, Rogova, 5a street, Moscow, 123098 (Russian Federation); Makeeva, I.R. [Zababakhin All-Russian Scientific Research Institute of Technical Physics, Vasiliev street 13, Snezhinsk, Chelyabinsk region, 456770 (Russian Federation); Liventsov, S.N. [Tomsk Polytechnic University, Tomsk, Lenin Avenue, 30, 634050 (Russian Federation)

    2016-07-01

    Computer models of processes are necessary for determination of optimal operating conditions for closed nuclear fuel cycle (NFC) processes. Computer models can be quickly changed in accordance with new and fresh data from experimental research. 3 kinds of process simulation are necessary. First, the VIZART software package is a balance model development used for calculating the material flow in technological processes. VIZART involves taking into account of equipment capacity, transport lines and storage volumes. Secondly, it is necessary to simulate the physico-chemical processes that are involved in the closure of NFC. The third kind of simulation is the development of software that allows the optimization, diagnostics and control of the processes which implies real-time simulation of product flows on the whole plant or on separate lines of the plant. (A.C.)

  11. The Nuclear Fuel Cycle Information System

    International Nuclear Information System (INIS)

    1987-02-01

    The Nuclear Fuel Cycle Information System (NFCIS) is an international directory of civilian nuclear fuel cycle facilities. Its purpose is to identify existing and planned nuclear fuel cycle facilities throughout the world and to indicate their main parameters. It includes information on facilities for uranium ore processing, refining, conversion and enrichment, for fuel fabrication, away-from-reactor storage of spent fuel and reprocessing, and for the production of zirconium metal and Zircaloy tubing. NFCIS currently covers 271 facilities in 32 countries and includes 171 references

  12. Financing Strategies for Nuclear Fuel Cycle Facility

    International Nuclear Information System (INIS)

    David Shropshire; Sharon Chandler

    2005-01-01

    To help meet our nation's energy needs, reprocessing of spent nuclear fuel is being considered more and more as a necessary step in a future nuclear fuel cycle, but incorporating this step into the fuel cycle will require considerable investment. This report presents an evaluation of financing scenarios for reprocessing facilities integrated into the nuclear fuel cycle. A range of options, from fully government owned to fully private owned, was evaluated using a DPL (Dynamic Programming Language) 6.0 model, which can systematically optimize outcomes based on user-defined criteria (e.g., lowest life-cycle cost, lowest unit cost). Though all business decisions follow similar logic with regard to financing, reprocessing facilities are an exception due to the range of financing options available. The evaluation concludes that lowest unit costs and lifetime costs follow a fully government-owned financing strategy, due to government forgiveness of debt as sunk costs. Other financing arrangements, however, including regulated utility ownership and a hybrid ownership scheme, led to acceptable costs, below the Nuclear Energy Agency published estimates. Overwhelmingly, uncertainty in annual capacity led to the greatest fluctuations in unit costs necessary for recovery of operating and capital expenditures; the ability to determine annual capacity will be a driving factor in setting unit costs. For private ventures, the costs of capital, especially equity interest rates, dominate the balance sheet; the annual operating costs dominate the government case. It is concluded that to finance the construction and operation of such a facility without government ownership could be feasible with measures taken to mitigate risk, and that factors besides unit costs should be considered (e.g., legal issues, social effects, proliferation concerns) before making a decision on financing strategy

  13. Globalization of the nuclear fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    Rougeau, J.P. [Cogema, Corporate Strategy and International Development, Velizy (France)

    1996-07-01

    The article deals with the increased scale and sophistication of the markets in the nuclear fuel cycle, with the increased vulnerability to outside pressures, and with changes in the decision process.

  14. An introduction to the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Leuze, R.E.

    1986-01-01

    This overview of the nuclear fuel cycle is divided into three parts. First, is a brief discussion of the basic principles of how nuclear reactors work;second, is a look at the major types of nuclear reactors being used and world-wide nuclear capacity;and third, is an overview of the nuclear fuel cycle and the present industrial capability in the US. 34 figs., 10 tabs

  15. Seismic design considerations of nuclear fuel cycle facilities

    International Nuclear Information System (INIS)

    2001-10-01

    An Advisory Group Meeting (AGM) on Seismic Technologies of Nuclear Fuel Cycle Facilities was convened in Vienna from 12 to 14 November 1997. The main objective of the meeting was the investigation of the present status of seismic technologies in nuclear fuel cycle facilities in Member States as a starting point for understanding of the most important directions and trends of national initiatives, including research and development, in the area of seismic safety. The AGM gave priority to the establishment of a consistent programme for seismic assessment of nuclear fuel cycle facilities worldwide. A consultants meeting subsequently met in Vienna from 16 to 19 March 1999. At this meeting the necessity of a dedicated programme was further supported and a technical background to the initiative was provided. This publication provides recommendations both for the seismic design of new plants and for re-evaluation projects of nuclear fuel cycle facilities. After a short introduction of the general IAEA approach, some key contributions from Member State participants are presented. Each of them was indexed separately

  16. A study on improving international political and diplomatic acceptability of advanced nuclear fuel cycle for Korea

    International Nuclear Information System (INIS)

    Lee, Joeng Hoon

    2011-03-01

    In order to establish an advanced nuclear fuel cycle program for Korea, U.S. support and trust are imperative. In the midst of the negotiations for the renewal of the U.S.-South Korea agreement on peaceful nuclear cooperation, the two obvious components of an advanced nuclear fuel cycle - enrichment and reprocessing - have surfaced as major issues. Despite the United States' firm commitment to nonproliferation, South Korea is in dire need to advance its nuclear fuel cycle proportionate to its now significant nuclear energy program. This research project's objective is to put the U.S.-South Korea Nuclear Agreement into proper alliance perspective. The military alliance between the two countries have weathered decades of trials and tribulations. It is one of the most staunch alliances in existence in global politics. As such, the negotiations for the nuclear agreement must be dealt with in the context of the broader alliance relations, not to be lost in the technicalities of the nonproliferation arguments. But even so, South Korea's track record is far better than some of the states the United States has recently granted a most lenient nuclear agreement - India being a case in point. Fairness issue also surfaces when it comes to the agreement the United States has concluded with Japan. As an equally if not more important ally in Asia, South Korea must be permitted to make significant advancements in either enrichment or reprocessing procedures. This project argues that this is the appropriate direction given the history of the two nations' alliance relations. In the final analysis, this research puts forward the argument that the matter that should count the most is not the question of whether South Korea will proliferate or not, but rather whether the United States trusts its battle-tested ally, enough to help develop a peaceful and efficient advanced nuclear fuel cycle program in South Korea

  17. The impact of the multilateral approach to the nuclear fuel cycle in Malaysia's nuclear fuel cycle policy

    International Nuclear Information System (INIS)

    Baharuddin, B.; Ferdinand, P.

    2014-01-01

    Since the Pakistan-India nuclear weapon race, the North Korean nuclear test and the September 11 attack revealed Abdul Qadeer Khan's clandestine nuclear black market and the fear that Iran's nuclear program may be used for nuclear weapon development, scrutiny of activities related to nuclear technologies, especially technology transfer has become more stringent. The nuclear supplier group has initiated a multilateral nuclear fuel cycle regime with the purpose of guaranteeing nuclear fuel supply and at the same time preventing the spread of nuclear proliferation. Malaysia wants to develop a programme for the peaceful use of nuclear energy and it needs to accommodate itself to this policy. When considering developing a nuclear fuel cycle policy, the key elements that Malaysia needs to consider are the extent of the fuel cycle technologies that it intends to acquire and the costs (financial and political) of acquiring them. Therefore, this paper will examine how the multilateral approach to the nuclear fuel cycle may influence Malaysia's nuclear fuel cycle policy, without jeopardising the country's rights and sovereignty as stipulated under the NPT. (authors)

  18. Effects of degree of approval and message on utility of nuclear fuel cycle

    International Nuclear Information System (INIS)

    Tanigaki, Toshihiko

    2007-01-01

    It is said that the effectiveness of nuclear power generation is the greatest factor contributing to whether or not people support the nuclear power policy. The major objectives of this research are twofold: from among opinions regarding the effectiveness of the nuclear fuel cycle, to clarify what kinds of opinions people support and what kinds of opinions have influenced judgments about the pros and cons of the nuclear fuel cycle; and to measure the extent to which people's awareness of the nuclear fuel cycle is influenced by numerical information that has been added to a nuclear-fuel-cycle-related message that has been created on the basis of results of the survey conducted for the first objective mentioned above. As for the first objective, the survey results revealed that the opinion 'the establishment of a nuclear fuel cycle leads to the effective use of energy resources' did not garner much support from the public. However, it was indicated that people being for or against that opinion may have relatively great effect on their judgment regarding the pros and ons of nuclear fuel cycle establishment. For the second objective, we showed people the messages the nuclear fuel cycle enables effective use of natural uranium' and 'the nuclear fuel cycle enables tens times more effective use of natural uranium' to the latter of which numerical information was added. As a result, we found no difference in people's attitude toward the nuclear fuel cycle even if numerical information was added to a nuclear-fuel-cycle-related message. (author)

  19. Social awareness on nuclear fuel cycle

    International Nuclear Information System (INIS)

    Tanigaki, Toshihiko

    2006-01-01

    In the present we surveyed public opinion regarding the nuclear fuel cycle to find out about the social awareness about nuclear fuel cycle and nuclear facilities. The study revealed that people's image of nuclear power is more familiar than the image of the nuclear fuel cycle. People tend to display more recognition and concern towards nuclear power and reprocessing plants than towards other facilities. Comparatively speaking, they tend to perceive radioactive waste disposal facilities and nuclear power plants as being highly more dangerous than reprocessing plants. It is found also that with the exception of nuclear power plants don't know very much whether nuclear fuel cycle facilities are in operation in Japan or not. The results suggests that 1) the relatively mild image of the nuclear fuel cycle is the result of the interactive effect of the highly dangerous image of nuclear power plants and the less dangerous image of reprocessing plants; and 2) that the image of a given plant (nuclear power plant, reprocessing plant, radioactive waste disposal facility) is influenced by the fact of whether the name of the plant suggests the presence of danger or not. (author)

  20. The industrial nuclear fuel cycle in Argentina

    International Nuclear Information System (INIS)

    Koll, J.H.; Kittl, J.E.; Parera, C.A.; Coppa, R.C.; Aguirre, E.J.

    1977-01-01

    The nuclear power program of Argentina for the period 1976-85 is described, as a basis to indicate fuel requirements and the consequent implementation of a national fuel cycle industry. Fuel cycle activities in Argentina were initiated as soon as 1951-2 in the prospection and mining activities through the country. Following this step, yellow-cake production was initiated in plants of limited capacity. National production of uranium concentrate has met requirements up to the present time, and will continue to do so until the Sierra Pintada Industrial Complex starts operation in 1979. Presently, there is a gap in local production of uranium dioxide and fuel elements for the Atucha power station, which are produced abroad using Argentine uranium concentrate. With its background, the argentine program for the installation of nuclear fuel cycle industries is described, and the techno-economical implications considered. Individual projects are reviewed, as well as the present and planned infrastructure needed to support the industrial effort [es

  1. Significant incidents in nuclear fuel cycle facilities

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    In contrast to nuclear power plants, events in nuclear fuel cycle facilities are not well documented. The INES database covers all the nuclear fuel cycle facilities; however, it was developed in the early 1990s and does not contain information on events prior to that. The purpose of the present report is to collect significant events and analyze them in order to give a safety related overview of nuclear fuel cycle facilities. Significant incidents were selected using the following criteria: release of radioactive material or exposure to radiation; degradation of items important to safety; and deficiencies in design, quality assurance, etc. which include criticality incidents, fire, explosion, radioactive release and contamination. This report includes an explanation, where possible, of root causes, lessons learned and action taken. 4 refs, 4 tabs.

  2. Significant incidents in nuclear fuel cycle facilities

    International Nuclear Information System (INIS)

    1996-03-01

    In contrast to nuclear power plants, events in nuclear fuel cycle facilities are not well documented. The INES database covers all the nuclear fuel cycle facilities; however, it was developed in the early 1990s and does not contain information on events prior to that. The purpose of the present report is to collect significant events and analyze them in order to give a safety related overview of nuclear fuel cycle facilities. Significant incidents were selected using the following criteria: release of radioactive material or exposure to radiation; degradation of items important to safety; and deficiencies in design, quality assurance, etc. which include criticality incidents, fire, explosion, radioactive release and contamination. This report includes an explanation, where possible, of root causes, lessons learned and action taken. 4 refs, 4 tabs

  3. The safety of the nuclear fuel cycle

    International Nuclear Information System (INIS)

    2005-01-01

    The procurement and preparation of fuel for nuclear power reactors, followed by its recovery, processing and management subsequent to reactor discharge, are frequently referred to as the ''front end'' and ''back end'' of the nuclear fuel cycle. The facilities associated with these activities have an extensive and well-documented safety record accumulated over the past 50 years by technical experts and safety authorities. This information has enabled an in-depth analysis of the complete fuel cycle. Preceded by two previous editions in 1981 and 1993, this new edition of the Safety of the Nuclear Fuel Cycle represents the most up-to-date analysis of the safety aspects of the nuclear fuel cycle. It will be of considerable interest to nuclear safety experts, but also to those wishing to acquire extensive information about the fuel cycle more generally. (author)

  4. The safety of the nuclear fuel cycle

    International Nuclear Information System (INIS)

    2005-10-01

    The procurement and preparation of fuel for nuclear power reactors, followed by its recovery, processing and management subsequent to reactor discharge, are frequently referred to as the 'front end' and 'back end' of the nuclear fuel cycle. The facilities associated with these activities have an extensive and well-documented safety record accumulated over the past 50 years by technical experts and safety authorities. This information has enabled an in-depth analysis of the complete fuel cycle. Preceded by two previous editions in 1981 and 1993, this new edition of The Safety of the Nuclear Fuel Cycle represents the most up-to-date analysis of the safety aspects of the nuclear fuel cycle. It will be of considerable interest to nuclear safety experts, but also to those wishing to acquire extensive information about the fuel cycle more generally. (author)

  5. Land and Water Use, CO2 Emissions, and Worker Radiological Exposure Factors for the Nuclear Fuel Cycle

    Energy Technology Data Exchange (ETDEWEB)

    Brett W Carlsen; Brent W Dixon; Urairisa Pathanapirom; Eric Schneider; Bethany L. Smith; Timothy M. AUlt; Allen G. Croff; Steven L. Krahn

    2013-08-01

    The Department of Energy Office of Nuclear Energy’s Fuel Cycle Technologies program is preparing to evaluate several proposed nuclear fuel cycle options to help guide and prioritize Fuel Cycle Technology research and development. Metrics are being developed to assess performance against nine evaluation criteria that will be used to assess relevant impacts resulting from all phases of the fuel cycle. This report focuses on four specific environmental metrics. • land use • water use • CO2 emissions • radiological Dose to workers Impacts associated with the processes in the front-end of the nuclear fuel cycle, mining through enrichment and deconversion of DUF6 are summarized from FCRD-FCO-2012-000124, Revision 1. Impact estimates are developed within this report for the remaining phases of the nuclear fuel cycle. These phases include fuel fabrication, reactor construction and operations, fuel reprocessing, and storage, transport, and disposal of associated used fuel and radioactive wastes. Impact estimates for each of the phases of the nuclear fuel cycle are given as impact factors normalized per unit process throughput or output. These impact factors can then be re-scaled against the appropriate mass flows to provide estimates for a wide range of potential fuel cycles. A companion report, FCRD-FCO-2013-000213, applies the impact factors to estimate and provide a comparative evaluation of 40 fuel cycles under consideration relative to these four environmental metrics.

  6. Nuclear fuel cycle modelling using MESSAGE

    International Nuclear Information System (INIS)

    Guiying Zhang; Dongsheng Niu; Guoliang Xu; Hui Zhang; Jue Li; Lei Cao; Zeqin Guo; Zhichao Wang; Yutong Qiu; Yanming Shi; Gaoliang Li

    2017-01-01

    In order to demonstrate the possibilities of application of MESSAGE tool for the modelling of a Nuclear Energy System at the national level, one of the possible open nuclear fuel cycle options based on thermal reactors has been modelled using MESSAGE. The steps of the front-end and back-end of nuclear fuel cycle and nuclear reactor operation are described. The optimal structure for Nuclear Power Development and optimal schedule for introducing various reactor technologies and fuel cycle options; infrastructure facilities, nuclear material flows and waste, investments and other costs are demonstrated. (author)

  7. The safety of the nuclear fuel cycle

    International Nuclear Information System (INIS)

    1993-01-01

    The nuclear fuel cycle covers the procurement and preparation of fuel for nuclear power reactors, its recovery and recycling after use and the safe storage of all wastes generated through these operations. The facilities associated with these activities have an extensive and well documented safety record accumulated over the past 40 years by technical experts and safety authorities. This report constitutes an up-to-date analysis of the safety of the nuclear fuel cycle, based on the available experience in OECD countries. It addresses the technical aspects of fuel cycle operations, provides information on operating practices and looks ahead to future activities

  8. Globalisation of the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Rougeau, J.-P.; Durret, L.-F.

    1995-01-01

    Three main features of the globalisation of the nuclear fuel cycle are identified and discussed. The first is an increase in the scale of the nuclear fuel cycle materials and services markets in the past 20 years. This has been accompanied by a growth in the sophistication of the fuel cycle. Secondly, the nuclear industry is now more vulnerable to outside pressures; it is no longer possible to make strategic decisions on the industry within a country solely on national considerations. Thirdly, there are changes in the decision-making process at the political, regulatory, operational and industrial level which are the consequence of global factors. (UK)

  9. Nuclear fuel cycle and legal regulations

    International Nuclear Information System (INIS)

    Shimoyama, Shunji; Kaneko, Koji.

    1980-01-01

    Nuclear fuel cycle is regulated as a whole in Japan by the law concerning regulation of nuclear raw materials, nuclear fuel materials and reactors (hereafter referred to as ''the law concerning regulation of reactors''), which was published in 1957, and has been amended 13 times. The law seeks to limit the use of atomic energy to peaceful objects, and nuclear fuel materials are controlled centering on the regulation of enterprises which employ nuclear fuel materials, namely regulating each enterprise. While the permission and report of uses are necessary for the employment of nuclear materials under Article 52 and 61 of the law concerning regulation of reactors, the permission provisions are not applied to three kinds of enterprises of refining, processing and reprocessing and the persons who install reactors as the exceptions in Article 52, when nuclear materials are used for the objects of the enterprises themselves. The enterprises of refining, processing and reprocessing and the persons who install reactors are stipulated respectively in the law. Accordingly the nuclear material regulations are applied only to the users of small quantity of such materials, namely universities, research institutes and hospitals. The nuclear fuel materials used in Japan which are imported under international contracts including the nuclear energy agreements between two countries are mostly covered by the security measures of IAEA as internationally controlled substances. (Okada, K.)

  10. Development of nuclear fuel cycle technology

    International Nuclear Information System (INIS)

    Kawahara, Akira; Sugimoto, Yoshikazu; Shibata, Satoshi; Ikeda, Takashi; Suzuki, Kazumichi; Miki, Atsushi.

    1990-01-01

    In order to establish the stable supply of nuclear fuel as an important energy source, Hitachi ltd. has advanced the technical development aiming at the heightening of reliability, the increase of capacity, upgrading and the heightening of performance of the facilities related to nuclear fuel cycle. As for fuel reprocessing, Japan Nuclear Fuel Service Ltd. is promoting the construction of a commercial fuel reprocessing plant which is the first in Japan. The verification of the process performance, the ensuring of high reliability accompanying large capacity and the technical development for recovering effective resources from spent fuel are advanced. Moreover, as for uranium enrichment, Laser Enrichment Technology Research Association was founded mainly by electric power companies, and the development of the next generation enrichment technology using laser is promoted. The development of spent fuel reprocessing technology, the development of the basic technology of atomic process laser enrichment and so on are reported. In addition to the above technologies recently developed by Hitachi Ltd., the technology of reducing harm and solidification of radioactive wastes, the molecular process laser enrichment and others are developed. (K.I.)

  11. Development of nuclear fuel cycle technologies

    International Nuclear Information System (INIS)

    Suzuoki, Akira; Matsumoto, Takashi; Suzuki, Kazumichi; Kawamura, Fumio

    1995-01-01

    In the long term plan for atomic energy that the Atomic Energy Commission decided the other day, the necessity of the technical development for establishing full scale fuel cycle for future was emphasized. Hitachi Ltd. has engaged in technical development and facility construction in the fields of uranium enrichment, MOX fuel fabrication, spent fuel reprocessing and so on. In uranium enrichment, it took part in the development of centrifuge process centering around Power Reactor and Nuclear Fuel Development Corporation (PNC), and took its share in the construction of the Rokkasho uranium enrichment plant of Japan Nuclear Fuel Service Co., Ltd. Also it cooperates with Laser Enrichment Technology Research Association. In Mox fuel fabrication, it took part in the construction of the facilities for Monju plutonium fuel production of PNC, for pellet production, fabrication and assembling processes. In spent fuel reprocessing, it cooperated with the technical development of maintenance and repair of Tokai reprocessing plant of PNC, and the construction of spent fuel stores in Rokkasho reprocessing plant is advanced. The centrifuge process and the atomic laser process of uranium enrichment are explained. The high reliability of spent fuel reprocessing plants and the advancement of spent fuel reprocessing process are reported. Hitachi Ltd. Intends to exert efforts for the technical development to establish nuclear fuel cycle which increases the importance hereafter. (K.I.)

  12. International nuclear fuel cycle fact book. [Contains glossary

    Energy Technology Data Exchange (ETDEWEB)

    Leigh, I.W.; Lakey, L.T.; Schneider, K.J.; Silviera, D.J.

    1987-01-01

    As the US Department of Energy (DOE) and DOE contractors have become increasingly involved with other nations in nuclear fuel cycle and waste management cooperative activities, a need has developed for a ready source of information concerning foreign fuel cycle programs, facilities, and personnel. This Fact Book was compiled to meet that need. The information contained has been obtained from nuclear trade journals and newsletters; reports of foreign visits and visitors; CEC, IAEA, and OECD/NEA activities reports; proceedings of conferences and workshops; and so forth. Sources do not agree completely with each other, and the data listed herein does not reflect any one single source but frequently is a consolidation/combination of information. Lack of space as well as the intent and purpose of the Fact Book limit the given information to that pertaining to the Nuclear Fuel Cycle and to data considered of primary interest or most helpful to the majority of users.

  13. The status of nuclear fuel cycle system analysis for the development of advanced nuclear fuel cycles

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Won Il; Kim, Seong Ki; Lee, Hyo Jik; Chang, Hong Rae; Kwon, Eun Ha; Lee, Yoon Hee; Gao, Fanxing [KAERI, Daejeon (Korea, Republic of)

    2011-11-15

    The system analysis has been used with different system and objectives in various fields. In the nuclear field, the system can be applied from uranium mining to spent fuel reprocessing or disposal which is called the nuclear fuel cycle. The analysis of nuclear fuel cycle can be guideline for development of advanced fuel cycle through integrating and evaluating the technologies. For this purpose, objective approach is essential and modeling and simulation can be useful. In this report, several methods which can be applicable for development of advanced nuclear fuel cycle, such as TRL, simulation and trade analysis were explained with case study

  14. Modeling the Multinationality and Other Socio-Political Aspects of the Nuclear Fuel Cycle

    International Nuclear Information System (INIS)

    Nguyen, Viet Phuong; Yim, Man Sung

    2016-01-01

    Nuclear fuel cycle is a complex process with numerous steps, which are influenced by both engineering and socio-economic factors. Therefore, as an interdisciplinary tool developed to study the dynamic complexity of a system, system dynamics has been used to simulate nuclear fuel cycle and to support the development of nuclear policies. A number of studies have been done in this area providing comprehensive view of nuclear fuel cycle in respect to the energy scenarios, material flows, and pricing mechanism. However, the effect of other socio-economic aspects like public acceptance, proliferation risks, or the transboundary nature of the nuclear fuel cycle have not been well illustrated by those previous researches. In order to inform decision makers of the suitability and sustainability of any nuclear fuel cycle option, a modeling tool has to adequately cover such issues. A system dynamics model of nuclear fuel cycle was developed in order to examine the trans-boundary and domestic effects related to the socio-economic aspect of the fuel cycle. The significance and coefficient of the socio-economic factors were determined using statistical analysis of historical data. Preliminary results show the definitive effect of such factors on the net benefit of the nuclear fuel cycle and its expansion in relation with the nuclear cooperation between the service provider and the end-user. Thus, future models need to incorporate such features in order to provide a more comprehensive look of the fuel cycle

  15. Modeling the Multinationality and Other Socio-Political Aspects of the Nuclear Fuel Cycle

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Viet Phuong; Yim, Man Sung [KAIST, Daejeon (Korea, Republic of)

    2016-05-15

    Nuclear fuel cycle is a complex process with numerous steps, which are influenced by both engineering and socio-economic factors. Therefore, as an interdisciplinary tool developed to study the dynamic complexity of a system, system dynamics has been used to simulate nuclear fuel cycle and to support the development of nuclear policies. A number of studies have been done in this area providing comprehensive view of nuclear fuel cycle in respect to the energy scenarios, material flows, and pricing mechanism. However, the effect of other socio-economic aspects like public acceptance, proliferation risks, or the transboundary nature of the nuclear fuel cycle have not been well illustrated by those previous researches. In order to inform decision makers of the suitability and sustainability of any nuclear fuel cycle option, a modeling tool has to adequately cover such issues. A system dynamics model of nuclear fuel cycle was developed in order to examine the trans-boundary and domestic effects related to the socio-economic aspect of the fuel cycle. The significance and coefficient of the socio-economic factors were determined using statistical analysis of historical data. Preliminary results show the definitive effect of such factors on the net benefit of the nuclear fuel cycle and its expansion in relation with the nuclear cooperation between the service provider and the end-user. Thus, future models need to incorporate such features in order to provide a more comprehensive look of the fuel cycle.

  16. Recent developments in the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Wunderer, A.

    1984-01-01

    There is a description of the present situation in each individual area of the nuclear fuel cycle. Further topics are: risk and safety factors and emissions from the fuel cycle, availability and disruptions, waste disposal and the storage of radioactive waste. (UA) [de

  17. Critical review of nuclear fuel cycle

    International Nuclear Information System (INIS)

    Kuster, N.

    1996-01-01

    Transmutation of long-lived radionuclides is considered as an alternative to the in-depth disposal of spent nuclear fuel, in particular, on the final stage of the nuclear fuel cycle. The majority of conclusions is the result of the common work of the Karlsruhe FZK and the Commissariat on nuclear energy of France (CEA)

  18. Nuclear fuel cycle and no proliferation

    International Nuclear Information System (INIS)

    Villagra Delgado, Pedro

    2005-01-01

    The worry produced by the possibility of new countries acquiring nuclear weapons through the forbidden use of sensitive installations for the production of fissionable materials, had arisen proposals intended to restrict activities related to the full nuclear fuel cycle, even when these activities are allowed in the frame of rules in force for the peaceful uses of nuclear energy. (author) [es

  19. IAEA programme on nuclear fuel cycle and materials technologies

    International Nuclear Information System (INIS)

    Killeen, J.

    2008-01-01

    In this paper a brief description and the main objectives of IAEA Programme B on Nuclear fuel cycle are given. The coordinated research project on Improvement of Models Used For Fuel Behaviour Simulation (FUMEX II) as well as the changes, trends and main outputs of Sub-programme B.2 for 2006/2007 are discussed. The aim, composition and activities within the International Fuel Performance Experiments (IFPE) Database project are also presented

  20. Developing safety in the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Brown, M.L.

    1996-01-01

    The nuclear fuel cycle had its origins in the new technology developed in the 1940s and 50s involving novel physical and chemical processes. At the front end of the cycle, mining, milling and fuel fabrication all underwent development, but in general the focus of process development and safety concerns was the reprocessing stage, with radiation, contamination and criticality the chief hazards. Safety research is not over and there is still work to be done in advancing technical knowledge to new generation nuclear fuels such as Mixed Oxide Fuel and in refining knowledge of margins and of potential upset conditions. Some comments are made on potential areas for work. The NUCEF facility will provide many useful data to aid safety analysis and accident prevention. The routine operations in such plants, basically chemical factories, requires industrial safety and in addition the protection of workers against radiation or contamination. The engineering and management measures for this were novel and the early operation of such plants pioneering. Later commissioning and operating experience has improved routine operating safety, leading to a new generation of factories with highly developed worker protection, engineering safeguards and safety management systems. Ventilation of contamination control zones, remote operation and maintenance, and advanced neutron shielding are engineering examples. In safety management, dose control practices, formally controlled operating procedures and safety cases, and audit processes are comparable with, or lead, best industry practice in other hazardous industries. Nonetheless it is still important that the knowledge and experience from operating plants continue to be gathered together to provide a common basis for improvement. The NEA Working Group on Fuel Cycle Safety provides a forum for much of this interchange. Some activities in the Group are described in particular the FINAS incident reporting system. (J.P.N.)

  1. International Nuclear Fuel Cycle Fact Book. Revision 5

    International Nuclear Information System (INIS)

    Harmon, K.M.; Lakey, L.T.; Leigh, I.W.; Jeffs, A.G.

    1985-01-01

    This Fact Book has been compiled in an effort to provide: (1) an overview of worldwide nuclear power and fuel cycle programs; and (2) current data concerning fuel cycle and waste management facilities, R and D programs, and key personnel in countries other than the United States. Additional information on each country's program is available in the International Source Book: Nuclear Fuel Cycle Research and Development, PNL-2478, Rev. 2. The Fact Book is organized as follows: (1) Overview section - summary tables which indicate national involvement in nuclear reactor, fuel cycle, and waste management development activities; (2) national summaries - a section for each country which summarizes nuclear policy, describes organizational relationships and provides addresses, names of key personnel, and facilities information; (3) international agencies - a section for each of the international agencies which has significant fuel cycle involvement; (4) energy supply and demand - summary tables, including nuclear power projections; (5) fuel cycle - summary tables; and (6) travel aids international dialing instructions, international standard time chart, passport and visa requirements, and currency exchange rate

  2. International Nuclear Fuel Cycle Fact Book. Revision 5

    Energy Technology Data Exchange (ETDEWEB)

    Harmon, K.M.; Lakey, L.T.; Leigh, I.W.; Jeffs, A.G.

    1985-01-01

    This Fact Book has been compiled in an effort to provide: (1) an overview of worldwide nuclear power and fuel cycle programs; and (2) current data concerning fuel cycle and waste management facilities, R and D programs, and key personnel in countries other than the United States. Additional information on each country's program is available in the International Source Book: Nuclear Fuel Cycle Research and Development, PNL-2478, Rev. 2. The Fact Book is organized as follows: (1) Overview section - summary tables which indicate national involvement in nuclear reactor, fuel cycle, and waste management development activities; (2) national summaries - a section for each country which summarizes nuclear policy, describes organizational relationships and provides addresses, names of key personnel, and facilities information; (3) international agencies - a section for each of the international agencies which has significant fuel cycle involvement; (4) energy supply and demand - summary tables, including nuclear power projections; (5) fuel cycle - summary tables; and (6) travel aids international dialing instructions, international standard time chart, passport and visa requirements, and currency exchange rate.

  3. International nuclear fuel cycle fact book. Revision 4

    Energy Technology Data Exchange (ETDEWEB)

    Harmon, K.M.; Lakey, L.T.; Leigh, I.W.

    1984-03-01

    This Fact Book has been compiled in an effort to provide (1) an overview of worldwide nuclear power and fuel cycle programs and (2) current data concerning fuel cycle and waste management facilities, R and D programs, and key personnel in countries other than the United States. Additional information on each country's program is available in the International Source Book: Nuclear Fuel Cycle Research and Development, PNL-2478, Rev. 2. The Fact Book is organized as follows: (1) Overview section - summary tables which indicate national involvement in nuclear reactor, fuel cycle, and waste management development activities; (2) national summaries - a section for each country which summarizes nuclear policy, describes organizational relationships and provides addresses, names of key personnel, and facilities information; (3) international agencies - a section for each of the international agencies which has significant fuel cycle involvement; (4) energy supply and demand - summary tables, including nuclear power projections; (5) fuel cycle - summary tables; and (6) travel aids - international dialing instructions, international standard time chart, passport and visa requirements, and currency exchange rate.

  4. International nuclear fuel cycle fact book. Revision 4

    International Nuclear Information System (INIS)

    Harmon, K.M.; Lakey, L.T.; Leigh, I.W.

    1984-03-01

    This Fact Book has been compiled in an effort to provide (1) an overview of worldwide nuclear power and fuel cycle programs and (2) current data concerning fuel cycle and waste management facilities, R and D programs, and key personnel in countries other than the United States. Additional information on each country's program is available in the International Source Book: Nuclear Fuel Cycle Research and Development, PNL-2478, Rev. 2. The Fact Book is organized as follows: (1) Overview section - summary tables which indicate national involvement in nuclear reactor, fuel cycle, and waste management development activities; (2) national summaries - a section for each country which summarizes nuclear policy, describes organizational relationships and provides addresses, names of key personnel, and facilities information; (3) international agencies - a section for each of the international agencies which has significant fuel cycle involvement; (4) energy supply and demand - summary tables, including nuclear power projections; (5) fuel cycle - summary tables; and (6) travel aids - international dialing instructions, international standard time chart, passport and visa requirements, and currency exchange rate

  5. Development and Validation of A Nuclear Fuel Cycle Analysis Tool: A FUTURE Code

    Energy Technology Data Exchange (ETDEWEB)

    Kim, S. K.; Ko, W. I. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Lee, Yoon Hee [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2013-10-15

    This paper presents the development and validation methods of the FUTURE (FUel cycle analysis Tool for nUcleaR Energy) code, which was developed for a dynamic material flow evaluation and economic analysis of the nuclear fuel cycle. This code enables an evaluation of a nuclear material flow and its economy for diverse nuclear fuel cycles based on a predictable scenario. The most notable virtue of this FUTURE code, which was developed using C and MICROSOFT SQL DBMS, is that a program user can design a nuclear fuel cycle process easily using a standard process on the canvas screen through a drag-and-drop method. From the user's point of view, this code is very easy to use thanks to its high flexibility. In addition, the new code also enables the maintenance of data integrity by constructing a database environment of the results of the nuclear fuel cycle analyses.

  6. DEVELOPMENT AND VALIDATION OF A NUCLEAR FUEL CYCLE ANALYSIS TOOL: A FUTURE CODE

    Directory of Open Access Journals (Sweden)

    S.K. KIM

    2013-10-01

    Full Text Available This paper presents the development and validation methods of the FUTURE (FUel cycle analysis Tool for nUcleaR Energy code, which was developed for a dynamic material flow evaluation and economic analysis of the nuclear fuel cycle. This code enables an evaluation of a nuclear material flow and its economy for diverse nuclear fuel cycles based on a predictable scenario. The most notable virtue of this FUTURE code, which was developed using C# and MICROSOFT SQL DBMS, is that a program user can design a nuclear fuel cycle process easily using a standard process on the canvas screen through a drag-and-drop method. From the user's point of view, this code is very easy to use thanks to its high flexibility. In addition, the new code also enables the maintenance of data integrity by constructing a database environment of the results of the nuclear fuel cycle analyses.

  7. Contribution of Heavy Water Board in nuclear fuel cycle technologies. Contributed Paper IT-03

    International Nuclear Information System (INIS)

    Mohanty, P.R.

    2014-01-01

    The three stage Indian nuclear power programme envisages use of closed nuclear fuel cycle and thorium utilization as its mainstay for long term energy security on sustainable basis. India is committed to realize this objective through the development and deployment of frontier technologies pertaining to all aspects of a closed nuclear fuel cycle. Comprehensive indigenous capabilities have been developed in all aspects of nuclear power and associated fuel cycles. Heavy Water Board (HWB), with its abiding objective of fulfilling demand of heavy water for India's flourishing nuclear power program, is one of the frontrunner in Nuclear Fuel Cycle Technology. HWB is now engaged in wide spectrum of activities in various facets of fuel cycle covering all the three stages of Indian Nuclear Power Programme. HWB is contributing to Nuclear Fuel Cycle through large scale production and sustained supply of key input materials including heavy water, solvents for nuclear hydrometallurgy, 10 B enriched boron etc

  8. World nuclear fuel cycle requirements 1991

    Energy Technology Data Exchange (ETDEWEB)

    1991-10-10

    The nuclear fuel cycle consists of mining and milling uranium ore, processing the uranium into a form suitable for generating electricity, burning'' the fuel in nuclear reactors, and managing the resulting spent nuclear fuel. This report presents projections of domestic and foreign requirements for natural uranium and enrichment services as well as projections of discharges of spent nuclear fuel. These fuel cycle requirements are based on the forecasts of future commercial nuclear power capacity and generation published in a recent Energy Information Administration (EIA) report. Also included in this report are projections of the amount of spent fuel discharged at the end of each fuel cycle for each nuclear generating unit in the United States. The International Nuclear Model is used for calculating the projected nuclear fuel cycle requirements. 14 figs., 38 tabs.

  9. World nuclear fuel cycle requirements 1991

    International Nuclear Information System (INIS)

    1991-01-01

    The nuclear fuel cycle consists of mining and milling uranium ore, processing the uranium into a form suitable for generating electricity, ''burning'' the fuel in nuclear reactors, and managing the resulting spent nuclear fuel. This report presents projections of domestic and foreign requirements for natural uranium and enrichment services as well as projections of discharges of spent nuclear fuel. These fuel cycle requirements are based on the forecasts of future commercial nuclear power capacity and generation published in a recent Energy Information Administration (EIA) report. Also included in this report are projections of the amount of spent fuel discharged at the end of each fuel cycle for each nuclear generating unit in the United States. The International Nuclear Model is used for calculating the projected nuclear fuel cycle requirements. 14 figs., 38 tabs

  10. Fuel and nuclear fuel cycle

    International Nuclear Information System (INIS)

    Prunier, C.

    1998-01-01

    The nuclear fuel is studied in detail, the best choice and why in relation with the type of reactor, the properties of the fuel cans, the choice of fuel materials. An important part is granted to the fuel assembly of PWR type reactor and the performances of nuclear fuels are tackled. The different subjects for research and development are discussed and this article ends with the particular situation of mixed oxide fuels ( materials, behavior, efficiency). (N.C.)

  11. Overview of the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Knief, R.A.

    1978-01-01

    The nuclear fuel cycle is substantially more complicated than the energy production cycles of conventional fuels because of the very low abundance of uranium 235, the presence of radioactivity, the potential for producing fissile nuclides from irradiation, and the risk that fissile materials will be used for nuclear weapons. These factors add enrichment, recycling, spent fuel storage, and safeguards to the cycle, besides making the conventional steps of exploration, mining, processing, use, waste disposal, and transportation more difficult

  12. International trade in nuclear fuel cycle services

    International Nuclear Information System (INIS)

    May, D.

    1989-01-01

    This paper analyses and discusses general trends in international trade in nuclear fuel cycle services with particular emphasis on the development of trading patterns between Europe, North America and the Far East. The paper also examines the role of collaborative ventures in the development of the nuclear industry. Barriers to international trade, the effect of government regulations and restrictions and the impact of non-proliferation issues are discussed. (author)

  13. Nuclear Fuel Cycle Evaluation and Real Options

    Directory of Open Access Journals (Sweden)

    L. Havlíček

    2008-01-01

    Full Text Available The first part of this paper describes the nuclear fuel cycle. It is divided into three parts. The first part, called Front-End, covers all activities connected with fuel procurement and fabrication. The middle part of the cycle includes fuel reload design activities and the operation of the fuel in the reactor. Back-End comprises all activities ensuring safe separation of spent fuel and radioactive waste from the environment. The individual stages of the fuel cycle are strongly interrelated. Overall economic optimization is very difficult. Generally, NPV is used for an economic evaluation in the nuclear fuel cycle. However the high volatility of uranium prices in the Front-End, and the large uncertainty of both economic and technical parameters in the Back-End, make the use of NPV difficult. The real option method is able to evaluate the value added by flexibility of decision making by a company under conditions of uncertainty. The possibility of applying this method to the nuclear fuel cycle evaluation is studied. 

  14. Commercialization of nuclear fuel cycle business

    International Nuclear Information System (INIS)

    Yakabe, Hideo

    1998-01-01

    Japan depends on foreign countries almost for establishing nuclear fuel cycle. Accordingly, uranium enrichment, spent fuel reprocessing and the safe treatment and disposal of radioactive waste in Japan is important for securing energy. By these means, the stable supply of enriched uranium, the rise of utilization efficiency of uranium and making nuclear power into home-produced energy can be realized. Also this contributes to the protection of earth resources and the preservation of environment. Japan Nuclear Fuel Co., Ltd. operates four business commercially in Rokkasho, Aomori Prefecture, aiming at the completion of nuclear fuel cycle by the technologies developed by Power Reactor and Nuclear Fuel Development Corporation and the introduction of technologies from foreign countries. The conditions of location of nuclear fuel cycle facilities and the course of the location in Rokkasho are described. In the site of about 740 hectares area, uranium enrichment, burying of low level radioactive waste, fuel reprocessing and high level waste control have been carried out, and three businesses except reprocessing already began the operation. The state of operation of these businesses is reported. Hereafter, efforts will be exerted to the securing of safety through trouble-free operation and cost reduction. (K.I.)

  15. Report of Nuclear Fuel Cycle Subcommittee

    International Nuclear Information System (INIS)

    1982-01-01

    In order to secure stable energy supply over a long period of time, the development and utilization of atomic energy have been actively promoted as the substitute energy for petroleum. Accordingly, the establishment of nuclear fuel cycle is indispensable to support this policy, and efforts have been exerted to promote the technical development and to put it in practical use. The Tokai reprocessing plant has been in operation since the beginning of 1981, and the pilot plant for uranium enrichment is about to start the full scale operation. Considering the progress in the refining and conversion techniques, plutonium fuel fabrication and son on, the prospect to technically establish the nuclear fuel cycle in Japan has been bright. The important problem for the future is to put these techniques in practical use economically. The main point of technical development hereafter is the enlargement and rationalization of the techniques, and the cooperation of the government and the people, and the smooth transfer of the technical development results in public corporations to private organization are necessary. The important problems for establishing the nuclear fuel cycle, the securing of enriched uranium, the reprocessing of spent fuel, unused resources, and the problems related to industrialization, location and fuel storing are reported. (Kako, I.)

  16. The application of systems engineering principles to the prioritization of sustainable nuclear fuel cycle options

    International Nuclear Information System (INIS)

    Price, Robert R.; Singh, Bhupinder P.; MacKinnon, Robert J.; David Sevougian, S.

    2013-01-01

    We investigate the implementation of the principles of systems engineering in the U.S. Department of Energy’s Fuel Cycle Technologies (FCT) Program to provide a framework for achieving its long-term mission of demonstrating and deploying sustainable nuclear fuel cycle options. A fuel cycle “screening” methodology is introduced that provides a systematic, objective, and traceable method for evaluating and categorizing nuclear fuel cycles according to their performance in meeting sustainability objectives. The goal of the systems engineering approach is to transparently define and justify the research and development (R and D) necessary to deploy sustainable fuel cycle technologies for a given set of national policy objectives. The approach provides a path for more efficient use of limited R and D resources and facilitates dialog among a variety of stakeholder groups interested in U.S. energy policy. Furthermore, the use of systems engineering principles will allow the FCT Program to more rapidly adapt to future policy changes, including any decisions based on recommendations of the Blue Ribbon Commission on America’s Nuclear Future. Specifically, if the relative importance of policy objectives changes, the FCT Program will have a structured process to rapidly determine how this impacts potential fuel cycle performance and the prioritization of needed R and D for associated technologies. - Highlights: ► Systems engineering principles applied in U.S. DOE-NE Fuel Cycle Technology Program. ► Use of decision analysis methods for determining promising nuclear fuel cycles. ► A new screening methodology to help communicate and prioritize U.S. DOE R and D needs. ► Fuel cycles categorized by performance/risk in meeting FCT Program objectives. ► Systems engineering allows DOE-NE to more rapidly adapt to future policy changes

  17. Safety culture in a major nuclear fuel cycle facility

    International Nuclear Information System (INIS)

    Pushparaja; Abani, M.C.

    2002-01-01

    Human factor plays an important role in development of safety culture in any nuclear fuel cycle facility. This is more relevant in major nuclear facility such as a reactor or a reprocessing plant. In Indian reprocessing plants, an effective worker's training, education and certification program is in place to sensitize the worker's response to safety and safe work procedures. The methodology followed to self evaluation of safety culture and the benefits in a reprocessing plant is briefly discussed. Various indicators of safety performance and visible signs of a good safety management are also qualitatively analyzed. (author)

  18. Sustainability Features of Nuclear Fuel Cycle Options

    Directory of Open Access Journals (Sweden)

    Stefano Passerini

    2012-09-01

    Full Text Available The nuclear fuel cycle is the series of stages that nuclear fuel materials go through in a cradle to grave framework. The Once Through Cycle (OTC is the current fuel cycle implemented in the United States; in which an appropriate form of the fuel is irradiated through a nuclear reactor only once before it is disposed of as waste. The discharged fuel contains materials that can be suitable for use as fuel. Thus, different types of fuel recycling technologies may be introduced in order to more fully utilize the energy potential of the fuel, or reduce the environmental impacts and proliferation concerns about the discarded fuel materials. Nuclear fuel cycle systems analysis is applied in this paper to attain a better understanding of the strengths and weaknesses of fuel cycle alternatives. Through the use of the nuclear fuel cycle analysis code CAFCA (Code for Advanced Fuel Cycle Analysis, the impact of a number of recycling technologies and the associated fuel cycle options is explored in the context of the U.S. energy scenario over 100 years. Particular focus is given to the quantification of Uranium utilization, the amount of Transuranic Material (TRU generated and the economics of the different options compared to the base-line case, the OTC option. It is concluded that LWRs and the OTC are likely to dominate the nuclear energy supply system for the period considered due to limitations on availability of TRU to initiate recycling technologies. While the introduction of U-235 initiated fast reactors can accelerate their penetration of the nuclear energy system, their higher capital cost may lead to continued preference for the LWR-OTC cycle.

  19. Nuclear fuel cycle simulation system (VISTA)

    International Nuclear Information System (INIS)

    2007-02-01

    The Nuclear Fuel Cycle Simulation System (VISTA) is a simulation system which estimates long term nuclear fuel cycle material and service requirements as well as the material arising from the operation of nuclear fuel cycle facilities and nuclear power reactors. The VISTA model needs isotopic composition of spent nuclear fuel in order to make estimations of the material arisings from the nuclear reactor operation. For this purpose, in accordance with the requirements of the VISTA code, a new module called Calculating Actinide Inventory (CAIN) was developed. CAIN is a simple fuel depletion model which requires a small number of input parameters and gives results in a very short time. VISTA has been used internally by the IAEA for the estimation of: spent fuel discharge from the reactors worldwide, Pu accumulation in the discharged spent fuel, minor actinides (MA) accumulation in the spent fuel, and in the high level waste (HLW) since its development. The IAEA decided to disseminate the VISTA tool to Member States using internet capabilities in 2003. The improvement and expansion of the simulation code and the development of the internet version was started in 2004. A website was developed to introduce the simulation system to the visitors providing a simple nuclear material flow calculation tool. This website has been made available to Member States in 2005. The development work for the full internet version is expected to be fully available to the interested parties from IAEA Member States in 2007 on its website. This publication is the accompanying text which gives details of the modelling and an example scenario

  20. The actual state of nuclear fuel cycle

    International Nuclear Information System (INIS)

    Sawai, Masako

    2014-01-01

    The describing author's claims are as follows: a new mythology, semi made-in Japan energy, which 'the energy fundamental plan' creates; what is a nuclear fuel cycle?; operation processes in a reprocessing plant; the existing state against a recycle in dream; does a recycle reduce waste masses?; discharged liquid and gaseous radioactive wastes; an evaluation of exposure 'the value 22 μSv is irresponsible'; the putting off of waste problem in reprocessing; a guide in reprocessing; should a reprocessing be a duty of electric power companies? (M.H.)

  1. Current Comparison of Advanced Nuclear Fuel Cycles

    International Nuclear Information System (INIS)

    Steven Piet; Trond Bjornard; Brent Dixon; Robert Hill; Gretchen Matthern; David Shropshire

    2007-01-01

    This paper compares potential nuclear fuel cycle strategies--once-through, recycling in thermal reactors, sustained recycle with a mix of thermal and fast reactors, and sustained recycle with fast reactors. Initiation of recycle starts the draw-down of weapons-usable material and starts accruing improvements for geologic repositories and energy sustainability. It reduces the motivation to search for potential second geologic repository sites. Recycle in thermal-spectrum nuclear reactors achieves several recycling objectives; fast nuclear reactors achieve all of them

  2. Economic Analysis of Several Nuclear Fuel Cycles

    International Nuclear Information System (INIS)

    Ko, Won Il; Gao, Fanxing; Kim, Sung Ki

    2012-01-01

    Economics is one of the essential criteria to be considered for the future deployment of the nuclear power. With regard to the competitive power market, the cost of electricity from nuclear power plants is somewhat highly competitive with those from the other electricity generations, averaging lower in cost than fossil fuels, wind, or solar. However, a closer look at the nuclear power production brings an insight that the cost varies within a wide range, highly depending on a nuclear fuel cycle option. The option of nuclear fuel cycle is a key determinant in the economics, and therefrom, a comprehensive comparison among the proposed fuel cycle options necessitates an economic analysis for thirteen promising options based on the material flow analysis obtained by an equilibrium model as specified in the first article (Modeling and System Analysis of Different Fuel Cycle Options for Nuclear Power Sustainability (I): Uranium Consumption and Waste Generation). The objective of the article is to provide a systematic cost comparison among these nuclear fuel cycles. The generation cost (GC) generally consists of a capital cost, an operation and maintenance cost (O and M cost), a fuel cycle cost (FCC), and a decontaminating and decommissioning (D and D) cost. FCC includes a frontend cost and a back-end cost, as well as costs associated with fuel recycling in the cases of semi-closed and closed cycle options. As a part of GC, the economic analysis on FCC mainly focuses on the cost differences among fuel cycle options considered and therefore efficiently avoids the large uncertainties of the Generation-IV reactor capital costs and the advanced reprocessing costs. However, the GC provides a more comprehensive result covering all the associated costs, and therefrom, both GC and FCC have been analyzed, respectively. As a widely applied tool, the levelized cost (mills/KWh) proves to be a fundamental calculation principle in the energy and power industry, which is particularly

  3. Solvent extraction in the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Eccles, H.; Naylor, A.

    1987-01-01

    Solvent extraction techniques have been used in the uranium nuclear fuel cycle in three main areas; concentration of uranium from ore leach liquor, purification of ore concentrates and fuel reprocessing. Solvent extraction has been extended to the removal of transuranic elements from active waste liquor, the recovery of uranium from natural sources and the recovery of noble metals from active waste liquor. Schemes are presented for solvent extraction of uranium using the Amex or Dapex process; spent fuel reprocessing and the Purex process. Recent and future developments of the techniques are outlined. (UK)

  4. Nuclear power and the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Scurr, I.F.; Silver, J.M.

    1990-01-01

    Australian Nuclear Science and Technology Organization maintains an ongoing assessment of the world's nuclear technology developments, as a core activity of its Strategic Plan. This publication reviews the current status of the nuclear power and the nuclear fuel cycle in Australia and around the world. Main issues discussed include: performances and economics of various types of nuclear reactors, uranium resources and requirements, fuel fabrication and technology, radioactive waste management. A brief account of the large international effort to demonstrate the feasibility of fusion power is also given. 11 tabs., ills

  5. Nuclear fuel cycle facility accident analysis handbook

    International Nuclear Information System (INIS)

    Ayer, J.E.; Clark, A.T.; Loysen, P.; Ballinger, M.Y.; Mishima, J.; Owczarski, P.C.; Gregory, W.S.; Nichols, B.D.

    1988-05-01

    The Accident Analysis Handbook (AAH) covers four generic facilities: fuel manufacturing, fuel reprocessing, waste storage/solidification, and spent fuel storage; and six accident types: fire, explosion, tornado, criticality, spill, and equipment failure. These are the accident types considered to make major contributions to the radiological risk from accidents in nuclear fuel cycle facility operations. The AAH will enable the user to calculate source term releases from accident scenarios manually or by computer. A major feature of the AAH is development of accident sample problems to provide input to source term analysis methods and transport computer codes. Sample problems and illustrative examples for different accident types are included in the AAH

  6. Remote handling technology for nuclear fuel cycle facilities

    International Nuclear Information System (INIS)

    Sakai, Akira; Maekawa, Hiromichi; Ohmura, Yutaka

    1997-01-01

    Design and R and D on nuclear fuel cycle facilities has intended development of remote handling and maintenance technology since 1977. IHI has completed the design and construction of several facilities with remote handling systems for Power Reactor and Nuclear Fuel Development Corporation (PNC), Japan Atomic Energy Research Institute (JAERI), and Japan Nuclear Fuel Ltd. (JNFL). Based on the above experiences, IHI is now undertaking integration of specific technology and remote handling technology for application to new fields such as fusion reactor facilities, decommissioning of nuclear reactors, accelerator testing facilities, and robot simulator-aided remote operation systems in the future. (author)

  7. Nuclear fuel cycle scenarios at CGNPC

    International Nuclear Information System (INIS)

    Xiao, Min; Zhou, Zhou; Nie, Li Hong; Mao, Guo Ping; Hao, Si Xiong; Shen, Kang

    2008-01-01

    Established in 1994, China Guangdong Nuclear Power Holding Co. (CGNPC) now owns two power stations GNPS and LNPS Phase I, with approximate 4000 MWe of installed capacity. With plant upgrades, advanced fuel management has been introduced into the two plants to improve the plant economical behavior with the high burnup fuel implemented. For the purpose of sustainable development, some preliminary studies on nuclear fuel cycle, especially on the back-end, have been carried out at CGNPC. According to the nuclear power development plan of China, the timing for operation and the capacity of the reprocessing facility are studied based on the amount of the spent fuel forecast in the future. Furthermore, scenarios of the fuel cycles in the future in China with the next generation of nuclear power were considered. Based on the international experiences on the spent fuel management, several options of spent fuel reprocessing strategies are investigated in detail, for example, MOX fuel recycling in light water reactor, especially in the current reactors of CGNPC, spent fuel intermediated storage, etc. All the investigations help us to draw an overall scheme of the nuclear fuel cycle, and to find a suitable road-map to achieve the sustainable development of nuclear power. (authors)

  8. Safeguarding and Protecting the Nuclear Fuel Cycle

    International Nuclear Information System (INIS)

    Bjornard, Trond; Garcia, Humberto; Desmond, William; Demuth, Scott

    2010-01-01

    International safeguards as applied by the International Atomic Energy Agency (IAEA) are a vital cornerstone of the global nuclear nonproliferation regime - they protect against the peaceful nuclear fuel cycle becoming the undetected vehicle for nuclear weapons proliferation by States. Likewise, domestic safeguards and nuclear security are essential to combating theft, sabotage, and nuclear terrorism by non-State actors. While current approaches to safeguarding and protecting the nuclear fuel cycle have been very successful, there is significant, active interest to further improve the efficiency and effectiveness of safeguards and security, particularly in light of the anticipated growth of nuclear energy and the increase in the global threat environment. This article will address two recent developments called Safeguards-by-Design and Security-by-Design, which are receiving increasing broad international attention and support. Expected benefits include facilities that are inherently more economical to effectively safeguard and protect. However, the technical measures of safeguards and security alone are not enough - they must continue to be broadly supported by dynamic and adaptive nonproliferation and security regimes. To this end, at the level of the global fuel cycle architecture, 'nonproliferation and security by design' remains a worthy objective that is also the subject of very active, international focus.

  9. Prospects for Australian involvement in the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Chandra, S.; Hallenstein, C.

    1988-05-01

    A review of recent overseas developments in the nuclear industry by The Northern Territory Department of Mines and Energy suggests that there are market prospects in all stages of the fuel cycle. Australia could secure those markets through aggressive marketing and competitive prices. This report gives a profile of the nuclear fuel cycle and nuclear fuel cycle technologies, and describes the prospects of Australian involvement in the nuclear fuel cycle. It concludes that the nuclear fuel cycle industry has the potential to earn around $10 billion per year in export income. It recommend that the Federal Government: (1) re-examines its position on the Slayter recommendation (1984) that Australia should develop new uranium mines and further stages of the nuclear fuel cycle, and (2) gives it's in-principle agreement to the Northern Territory to seek expressions of interest from the nuclear industry for the establishment of an integrated nuclear fuel cycle industry in the Northern Territory

  10. A Study on Response Strategy to Cope with International and Domestic Constraints on the Development of Nuclear Fuel Cycle.

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Chung in; Park, Hahn Kyu; Kim, Tak Won; Lee, Dong Yoon; Lee, Yong Hwan [Yonsei University, Seoul (Korea, Republic of)

    1997-12-01

    The purpose of this study is to analyze international and domestic constraints on the development of nuclear fuel cycle technology in Korea and to develop response strategies to deal with these constraints. This study proceeded as follows: Chapter 2 examined multilateral international constrains including IAEA safeguards system and NPT, bilateral international constraints such as the U.S.-Korea Nuclear Energy Cooperation Agreement and the U.S. nonproliferation policy, and domestic constraints like residents' anti nuclear movement and environmental protest movement. In Chapter 3, this study conducted a case study on Japan's nuclear fuel cycle programs as a basic research for the establishment of relevant response strategies vis-a-vis the international and domestic constraints. In this chapter, the focus of analysis was on Japan's strategies to deal with multilateral and bilateral pressures and domestic constraints. In Chapters 4 and 5, this study sought to elaborate Korea's strategies to cope with multilateral international constraints and U.S. constraints on the development of a domestic nuclear fuel cycle in Korea, respectively. The response strategies to domestic constraints were also illuminated in Chapter 6. 44 refs., 2 tabs., 9 figs. (author)

  11. Introduction and preparation of the nuclear fuel cycle facility risk analysis code: STAR

    International Nuclear Information System (INIS)

    Nomura, Yasushi

    1990-09-01

    STAR code is a computer program, by which one can perform the probabilistic safety assessment (PSA) for the nuclear fuel cycle facility in both the normal and the accidental event of environmental radioactive material release. This code was originally developed by NUKEM GmbH in West Germany as a fruit of the PSE (Projekt Sicherheitsstudien Entsorgung) aiming at R and D of safety analysis methods for use in nuclear fuel cycle facilities such as reprocessing plants. In JAERI, efforts have been made to research and develop safety assessment methods applicable to the accidental situations assumed to happen in the reprocessing plants. In this line of objectives, the STAR code was introduced from NUKEM GmbH in 1986 and, since then, has been improved and prepared to add an ability to analyze public radiation exposure by released activities from the plants. At the first stage of this code preparation, the program conversion was made to adapt the STAR code, originally operative on IBM-compatible PC's and Hewlett Packard 7550A plotters, to NEC PC 9801RX and NEC PR 602R page printers installed in the Fuel Cycle Safety Assessment Laboratory of JAERI. This report describes calculational performances of the STAR code, results of the improvement and preparation works together with input/output data format in illustration of a sample HALW (High Activity Liquid Waste) tank PSA problem, thus making a users' manual for the STAR code. (author)

  12. Multilateral controls of nuclear fuel-cycle in Asia

    International Nuclear Information System (INIS)

    Choi, Jor-Shan

    2010-01-01

    To meet increasing energy demand and climate change issues, nuclear energy is expected to expand during the next decades in both developed and developing countries. This expansion, most visibly in Asian countries would no doubt be accompanied with complex and intractable challenges to global peace and security, notably in the back-end of the nuclear fuel cycle. What to do with the growing stocks of spent fuel in existing nuclear programs? And how to reduce proliferation concerns when spent fuels are generated in less stable regions of the world? The answers to these questions may lie in the possibility of multilateral (or regional) control of nuclear materials and technologies in the back-end of nuclear fuel cycle. One of the areas of interest is technology, e.g., spent fuel treatment (reprocessing) for long term sustainability and environmental-friendly disposal of radioactive wastes, as an alternative to directly disposing spent fuel in geologic repository. The other is to seek for regional centers for centralized interim spent fuel storage which can eventually turn into disposal facilities. Such centers could help facilitate the possibilities of spent fuel take-back/take-away from countries located in less stable regions for fix-period storage. (author)

  13. Factors which could limit the nuclear fuel cycle development

    International Nuclear Information System (INIS)

    Pecqueur, M.; Barre, B.

    1977-01-01

    The nuclear fuel cycle is a most important industry for the energy future of the world. It has also a leading part as regards the physical continuity of energy supply of the countries engaged in the nuclear field. The development of this industry is subject to the economic or political constraints involved by the availability of raw materials, technologies or production means. The various limiting factors which could affect the different stages of the fuel cycle are linked with the technical, economic and financial aspects, with the impact on the environment, nuclear safety, risks of non-pacific uses and proliferation of arms. Interesting to note is also the correlation between the fuel cycle development and the problems of energy independence and security of nuclear programs. As a conclusion, the nuclear fuel cycle industry is confronted to difficulties due to its extremely rapid growth (doubling time 5 years) which only few heavy industries have encountered for long periods. It is more over submitted to the political and safety constraints always linked with nuclear matters. The task is therefore a difficult one. But the objective is worth-while since it is a condition to the development of nuclear industry [fr

  14. International nuclear fuel cycle evaluation (INFCE)

    International Nuclear Information System (INIS)

    Schlupp, C.

    1986-07-01

    The study describes and analyzes the structures, the procedures and decision making processes of the International Nuclear Fuel Cycle Evaluation (INFCE). INFCE was agreed by the Organizing Conference to be a technical and analytical study and not a negotiation. The results were to be transmitted to governments for their consideration in developing their nuclear energy policies and in international discussions concerning nuclear energy cooperation and related controls and safeguards. Thus INFCE provided a unique example for decision making by consensus in the nuclear world. It was carried through under mutual respect for each country's choices and decisions, without jeopardizing their respective fuel cycle policies or international co-operation agreements and contracts for the peaceful use of nuclear energy, provided that agreed safeguards are applied. (orig.)

  15. Radiation protection at nuclear fuel cycle facilities

    International Nuclear Information System (INIS)

    Endo, K.; Momose, T.; Furuta, S.

    2011-01-01

    Radiation protection methodologies concerning individual monitoring, workplace monitoring and environmental monitoring in nuclear fuel facilities have been developed and applied to facilities in the Nuclear Fuel Cycle Engineering Laboratories (NCL) of Japan Atomic Energy Agency (JAEA) for over 40 y. External exposure to photon, beta ray and neutron and internal exposure to alpha emitter are important issues for radiation protection at these facilities. Monitoring of airborne and surface contamination by alpha and beta/photon emitters at workplace is also essential to avoid internal exposure. A critical accident alarm system developed by JAEA has been proved through application at the facilities for a long time. A centralised area monitoring system is effective for emergency situations. Air and liquid effluents from facilities are monitored by continuous monitors or sampling methods to comply with regulations. Effluent monitoring has been carried out for 40 y to assess the radiological impacts on the public and the environment due to plant operation. (authors)

  16. Seismic design considerations for nuclear fuel cycle facilities

    International Nuclear Information System (INIS)

    Soni, R.S.; Kushwaha, H.S.; Venkat Raj, V.

    2001-01-01

    During the last few decades, there have been considerable advances in the field of a seismic design of nuclear structures and components housed inside a Nuclear power Plant (NPP). The seismic design and qualification of theses systems and components are carried out through the use of well proven and established theoretical as well as experimental means. Many of the related research works pertaining to these methods are available in the published literature, codes, guides etc. Contrary to this, there is very little information available with regards to the seismic design aspects of the nuclear fuel cycle facilities. This is probably on account of the little importance attached to these facilities from the point of view of seismic loading. In reality, some of these facilities handle a large inventory of radioactive materials and, therefore, these facilities must survive during a seismic event without giving rise to any sort of undue radiological risk to the plant personnel and the public at large. Presented herein in this paper are the seismic design considerations which are adopted for the design of nuclear fuel cycle facilities in India. (author)

  17. The nuclear fuel cycle including essential aspects of safety

    International Nuclear Information System (INIS)

    Warnemuende, R.; May, H.

    1978-11-01

    When judging nuclear energy not only the reactor but also the whole fuel cycle is of importance. The fuel cycle consists of the supply, i.e. the process from uranium ore to the insertion of fuel elements into the reactor and the waste management, the removal of fuel elements from the reactor and the final storage of radioactive waste. The different stages of the nuclear fuel cycle are well known with regard to their technical difficulties, their problems of industrial safety and pollution. Although it is possible to compare them qualitatively, they still differ partly to a considerable extent, from a quantitative point of view. However, the fact that technical solutions are available for all kinds of tasks can be stated. It is significant for the Federal Republic of Germany that all essential preparatory work for closing the nuclear fuel cycle has been carried out and that safety problems will no longer be in the way of the large-scale realization of uranium enrichment, reprocessing of nuclear fuels and final storage of radioactive waste. Further research and development activities will serve its technical and economic optimization. (orig.) [de

  18. EPRI nuclear fuel-cycle accident risk assessment

    International Nuclear Information System (INIS)

    Anon.

    1981-01-01

    The present results of the nuclear fuel-cycle accident risk assessment conducted by the Electric Power Research Institute show that the total risk contribution of the nuclear fuel cycle is only approx. 1% of the accident risk of the power plant; hence, with little error, the accident risk of nuclear electric power is essentially that of the power plant itself. The power-plant risk, assuming a very large usage of nuclear power by the year 2005 is only approx. 0.5% of the radiological risk of natural background. The smallness of the fuel-cycle risk relative to the power-plant risk may be attributed to the lack of internal energy to drive an accident and the small amount of dispersible material. This work aims at a realistic assessment of the process hazards, the effectiveness of confinement and mitigation systems and procedures, and the associated likelihood of errors and the estimated size of errors. The primary probabilistic estimation tool is fault-tree analysis, with the release source terms calculated using physicochemical processes. Doses and health effects are calculated with CRAC (Consequences of Reactor Accident Code). No evacuation or mitigation is considered; source terms may be conservative through the assumption of high fuel burnup (40,000 MWd/t) and short cooling period (90 to 150 d); high-efficiency particulate air filter efficiencies are derived from experiments

  19. Criteria for proliferation resistance of nuclear fuel cycle options

    International Nuclear Information System (INIS)

    Kiriyama, Eriko; Pickett, Susan; Suzuki, Tatsujiro

    2000-01-01

    In order to understand the concept of nuclear proliferation resistance, this paper examines the technical definitions of proliferation resistance. Although nuclear proliferation resistance is often included as one of the major goals of advanced reactor research and development, the criteria for nuclear proliferation resistance of nuclear fuel cycles is not defined clearly. The implied meaning of proliferation resistance was compared in proposals regarding the nuclear fuel cycle. Discrepancies amongst the proposals regarding the technical definition of proliferation resistance is found. While all these proposals indicate proliferation resistance, few clearly spell out exactly what criteria they are measuring themselves against. However we found there are also common feature in many proposals. They are; (1) Reduction of Pu, (2) Less separated Weapon Usable Materials, (3) Fewer steps, (4) Barrier for Weapon Usable Materials. Recognizing that there are numerous political and infrastructure measures that may also be taken to guard against proliferation risks, we have focused here on the definition of proliferation resistance in terms of technical characteristics. Another important conclusion is that in many proposals proliferation resistance is only one of the important criteria such as energy security, economical efficiency, and safety. (author)

  20. 77 FR 19278 - Informational Meeting on Nuclear Fuel Cycle Options

    Science.gov (United States)

    2012-03-30

    ... DEPARTMENT OF ENERGY Informational Meeting on Nuclear Fuel Cycle Options AGENCY: Office of Fuel... activities leading to a comprehensive evaluation and screening of nuclear fuel cycle options in 2013. At this... fuel cycle options developed for the evaluation and screening provides a comprehensive representation...

  1. Proceeding of the Scientific Presentation on Nuclear Fuel Cycle

    International Nuclear Information System (INIS)

    Suripto, A.; Yuwono, I.; Nasution, H.; Hersubeno, B.J.; Amini, S.; Sigit; Cahyono, A.

    1996-11-01

    The proceeding contains papers presented on Scientific Presentation on Nuclear Fuel Cycle held in Jakarta, 18-19 March 1996. These are 46 papers resulted from scientific works on various disciplines which have supported to nuclear fuel cycle activities both in and outside National Atomic Energy Agency of Indonesia.(ID)

  2. Proceedings of the second Scientific Presentation on Nuclear Fuel Cycle

    International Nuclear Information System (INIS)

    Suripto, A.; Yuwono, I.; Badruzzaman, M; Nasution, H.; Kusnowo, A; Sigit; Amini, S.

    1998-01-01

    The proceeding contains papers presented on Scientific Presentation on Nuclear Fuel Cycle held in Jakarta, 19-20 November 1996. These papers form a scientific works on various disciplines which have supported to nuclear fuel cycle activities both in and outside National Atomic Energy Agency of Indonesia. There are 48 papers indexed individually. (ID)

  3. Post operation: The changing characteristics of nuclear fuel cycle costs

    International Nuclear Information System (INIS)

    Frank, F.J.

    1986-01-01

    Fundamental changes have occurred in the nuclear fuel cycle. These changes forged by market forces, legislative action, and regulatory climate appear to be a long term characteristic of the nuclear fuel cycle. The nature of these changes and the resulting emerging importance of post-operation and its impact on fuel cycle costs are examined

  4. NUFACTS-nuclear fuel cycle activity simulator: reference manual. Final report

    International Nuclear Information System (INIS)

    Triplett, M.B.; Waddell, J.D.; Breese, T.A.

    1978-01-01

    The Nuclear Fuel Cycle Activity Simulator (NUFACTS) is a package of FORTRAN subroutines which facilitate the simulation of a diversity of nuclear power growth scenarios. An approach to modeling the nuclear fuel cycle has been developed that is highly adaptive and capable of addressing a variety of problems. Being a simulation model rather than an optimization model, NUFACTS mimics the events and processes that are characteristic of the nuclear fuel cycle. This approach enables the model user to grasp the modeling approach rather quickly. Within this report descriptions of the model and its components are provided with several emphases. First, a discussion of modeling approach and basic assumptions is provided. Next, instructions are provided for generating data, inputting the data properly, and running the code. Finally, detailed descriptions of individual program element are given as an aid to modifying and extending the present capabilities

  5. National briefing summaries: Nuclear fuel cycle and waste management

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, K.J.; Lakey, L.T.; Silviera, D.J.

    1988-12-01

    The National Briefing Summaries is a compilation of publicly available information concerning the nuclear fuel cycle and radioactive waste management strategies and programs of 21 nations, including the United States and three international agencies that have publicized their activities in this field. It presents available highlight information with references that may be used by the reader for additional information. The information in this document is compiled primarily for use by the US Department of Energy and other US federal agencies and their contractors to provide summary information on radioactive waste management activities in other countries. This document provides an awareness to managers and technical staff of what is occurring in other countries with regard to strategies, activities, and facilities. The information may be useful in program planning to improve and benefit United States' programs through foreign information exchange. Benefits to foreign exchange may be derived through a number of exchange activities.

  6. National briefing summaries: Nuclear fuel cycle and waste management

    International Nuclear Information System (INIS)

    Schneider, K.J.; Bradley, D.J.; Fletcher, J.F.; Konzek, G.J.; Lakey, L.T.; Mitchell, S.J.; Molton, P.M.; Nightingale, R.E.

    1991-04-01

    Since 1976, the International Program Support Office (IPSO) at the Pacific Northwest Laboratory (PNL) has collected and compiled publicly available information concerning foreign and international radioactive waste management programs. This National Briefing Summaries is a printout of an electronic database that has been compiled and is maintained by the IPSO staff. The database contains current information concerning the radioactive waste management programs (with supporting information on nuclear power and the nuclear fuel cycle) of most of the nations (except eastern European countries) that now have or are contemplating nuclear power, and of the multinational agencies that are active in radioactive waste management. Information in this document is included for three additional countries (China, Mexico, and USSR) compared to the prior issue. The database and this document were developed in response to needs of the US Department of Energy

  7. National briefing summaries: Nuclear fuel cycle and waste management

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, K.J.; Bradley, D.J.; Fletcher, J.F.; Konzek, G.J.; Lakey, L.T.; Mitchell, S.J.; Molton, P.M.; Nightingale, R.E.

    1991-04-01

    Since 1976, the International Program Support Office (IPSO) at the Pacific Northwest Laboratory (PNL) has collected and compiled publicly available information concerning foreign and international radioactive waste management programs. This National Briefing Summaries is a printout of an electronic database that has been compiled and is maintained by the IPSO staff. The database contains current information concerning the radioactive waste management programs (with supporting information on nuclear power and the nuclear fuel cycle) of most of the nations (except eastern European countries) that now have or are contemplating nuclear power, and of the multinational agencies that are active in radioactive waste management. Information in this document is included for three additional countries (China, Mexico, and USSR) compared to the prior issue. The database and this document were developed in response to needs of the US Department of Energy.

  8. National briefing summaries: Nuclear fuel cycle and waste management

    International Nuclear Information System (INIS)

    Schneider, K.J.; Lakey, L.T.; Silviera, D.J.

    1988-12-01

    The National Briefing Summaries is a compilation of publicly available information concerning the nuclear fuel cycle and radioactive waste management strategies and programs of 21 nations, including the United States and three international agencies that have publicized their activities in this field. It presents available highlight information with references that may be used by the reader for additional information. The information in this document is compiled primarily for use by the US Department of Energy and other US federal agencies and their contractors to provide summary information on radioactive waste management activities in other countries. This document provides an awareness to managers and technical staff of what is occurring in other countries with regard to strategies, activities, and facilities. The information may be useful in program planning to improve and benefit United States' programs through foreign information exchange. Benefits to foreign exchange may be derived through a number of exchange activities

  9. Advanced nuclear fuel cycles activities in IAEA

    International Nuclear Information System (INIS)

    Nawada, H.P.; Ganguly, C.

    2007-01-01

    Full text of publication follows. Of late several developments in reprocessing areas along with advances in fuel design and robotics have led to immense interest in partitioning and transmutation (P and T). The R and D efforts in the P and T area are being paid increased attention as potential answers to ever-growing issues threatening sustainability, environmental protection and non-proliferation. Any fuel cycle studies that integrate partitioning and transmutation are also known as ''advanced fuel cycles'' (AFC), that could incinerate plutonium and minor actinide (MA) elements (namely Am, Np, Cm, etc.) which are the main contributors to long-term radiotoxicity. The R and D efforts in developing these innovative fuel cycles as well as reactors are being co-ordinated by international initiatives such as Innovative Nuclear Power Reactors and Fuel Cycles (INPRO), the Generation IV International Forum (GIF) and the Global Nuclear Energy Partnership (GENP). For these advanced nuclear fuel cycle schemes to take shape, the development of liquid-metal-cooled reactor fuel cycles would be the most essential step for implementation of P and T. Some member states are also evaluating other concepts involving the use of thorium fuel cycle or inert-matrix fuel or coated particle fuel. Advanced fuel cycle involving novel partitioning methods such as pyrochemical separation methods to recover the transuranic elements are being developed by some member states which would form a critical stage of P and T. However, methods that can achieve a very high reduction (>99.5%) of MA and long-lived fission products in the waste streams after partitioning must be achieved to realize the goal of an improved protection of the environment. In addition, the development of MA-based fuel is also an essential and crucial step for transmutation of these transuranic elements. The presentation intends to describe progress of the IAEA activities encompassing the following subject-areas: minimization of

  10. Development of a nuclear fuel cycle transparency framework

    International Nuclear Information System (INIS)

    Love, Tracia L.

    2005-01-01

    Nuclear fuel cycle transparency can be defined as a confidence building approach among political entities to ensure civilian nuclear facilities are not being used for the development of nuclear weapons. Transparency concepts facilitate the transfer of nuclear technology, as the current international political climate indicates a need for increased methods of assuring non-proliferation. This research develops a system which will augment current non-proliferation assessment activities undertaken by U.S. and international regulatory agencies. It will support the export of nuclear technologies, as well as the design and construction of Gen. IV energy systems. Additionally, the framework developed by this research will provide feedback to cooperating parties, thus ensuring full transparency of a nuclear fuel cycle. As fuel handling activities become increasingly automated, proliferation or diversion potential of nuclear material still needs to be assessed. However, with increased automation, there exists a vast amount of process data to be monitored. By designing a system that monitors process data continuously, and compares this data to declared process information and plant designs, a faster and more efficient assessment of proliferation risk can be made. Figure 1 provides an illustration of the transparency framework that has been developed. As shown in the figure, real-time process data is collected at the fuel cycle facility; a reactor, a fabrication plant, or a recycle facility, etc. Data is sent to the monitoring organization and is assessed for proliferation risk. Analysis and recommendations are made to cooperating parties, and feedback is provided to the facility. The analysis of proliferation risk is based on the following factors: (1) Material attractiveness: the quantification of factors relevant to the proliferation risk of a certain material (e.g., highly enriched Pu-239 is more attractive than that of lower enrichment) (2) The static (baseline) risk: the

  11. The Nuclear Fuel Cycle in France: Past Developments and Prospects for the Future

    International Nuclear Information System (INIS)

    Levy, David; Devezeaux de Lavergne, Jeanguy

    1993-01-01

    National policy of energy independence and economic growth, as described in the energy policy outlined by the Commissioner General of Planning, which states that 'no impediment relating to energy availability should be allowed to slow economic development', industrial capability through the development of the entire fuel cycle by a single powerful group and - R and D programs begun long ago by the French Atomic Energy Commission (CEA), whose substantial store of experience acquired since was created accounts for today's technological advances, especially in the area of nuclear safety. Cooperation between the research establishment and industry is a particularly critical component in the success of French nuclear programs. The French nuclear fuel cycle industry, in pace with the French nuclear power program, is one of the largest among market economy countries. At the root of the success of the industry are clear-cut policies and straightforward decisions

  12. Review of the IAEA Nuclear Fuel Cycle Materials Section activities related to WWER fuel

    International Nuclear Information System (INIS)

    Killeen, J.

    2003-01-01

    The IAEA Nuclear Fuel Cycle Programme, designated as Programme B, has the main objective of supporting Member States in policy making, strategic planning, developing technology and addressing issues with respect to safe, reliable, economically efficient, proliferation resistant and environmentally sound nuclear fuel cycle. This paper is concentrated on describing the work within Sub-programme B.2 'Fuel Performance and Technology'. Two Technical Working Groups assist in the preparation of the IAEA programme in the nuclear fuel cycle area - Technical Working Group on Water Reactor Fuel Performance and Technology and Technical Working Group on Nuclear Fuel Cycle Options. The activities of the Unit within the Nuclear Fuel Cycle and Materials Section working on Fuel Performance and Technology are given, based on the sub-programme structure of the Agency programme and budget for 2002-2003. Within the framework of Co-ordinated Research Projects a study of the delayed hydride cracking (DHC) of the zirconium alloys used in pressurised heavy water reactors (PHWR) involving 10 countries has been completed. It achieved very effective transfer of know-how at the laboratory level in three technologically important areas: 1) Controlled hydriding of samples to predetermined levels; 2) Accurate measurement of hydrogen concentrations at the relatively low levels found in pressure tubes and RBMK channel tubes; and 3) In the determination of DHC rates under various conditions of temperature and stress. A new project has been started on the 'Improvement of Models used for Fuel Behaviour Simulation' (FUMEX II) to assist Member States in improving the predictive capabilities of computer codes used in modelling fuel behaviour for extended burnup. The IAEA also collaborates with organisations in the Member States to support activities and meetings on nuclear fuel cycle related topics

  13. World nuclear fuel cycle requirements, 1988

    International Nuclear Information System (INIS)

    1988-01-01

    This report contains an analysis of the sensitivities of the nuclear fuel cycle projections to different levels and types of projected nuclear capacity, different enrichment tails assays, higher and lower capacity factors, changes in nuclear fuel burnup levels, and other exogenous assumptions. The projections for the United States generally extend through the year 2020, and the (WOCA) World Outside Centrally Planned Economic Areas projections, which include the United States, are provided through 2010. The report also presents annual projections of spent nuclear fuel discharges and inventories of spent fuel. Appendix E includes aggregated domestic spent fuel projections through the year 2020 for the Lower and Upper References cases and through 2037, the last year in which spent fuel is discharged, for the No New Orders case. Annual projections of spent fuel discharges through the year 2037 for individual US reactors in the No New Orders cases are included for the first time in Appendix H. These disaggregated projections are provided at the request of the Department of Energy's Office of Civilian Radioactive Waste Management

  14. Vertical integration in the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Mommsen, J.T.

    1977-01-01

    Vertical integration in the nuclear fuel cycle and its contribution to market power of integrated fuel suppliers were studied. The industry subdivision analyzed is the uranium raw materials sector. The hypotheses demonstrated are that (1) this sector of the industry is trending toward vertical integration between production of uranium raw materials and the manufacture of nuclear fuel elements, and (2) this vertical integration confers upon integrated firms a significant market advantage over non-integrated fuel manufacturers. Under microeconomic concepts the rationale for vertical integration is the pursuit of efficiency, and it is beneficial because it increases physical output and decreases price. The Market Advantage Model developed is an arithmetical statement of the relative market power (in terms of price) between non-integrated nuclear fuel manufacturers and integrated raw material/fuel suppliers, based on the concept of the ''squeeze.'' In operation, the model compares net profit and return on sales of nuclear fuel elements between the competitors, under different price and cost circumstances. The model shows that, if integrated and non-integrated competitors sell their final product at identical prices, the non-integrated manufacturer returns a net profit only 17% of the integrated firm. Also, the integrated supplier can price his product 35% below the non-integrated producer's price and still return the same net profit. Vertical integration confers a definite market advantage to the integrated supplier, and the basic source of that advantage is the cost-price differential of the raw material, uranium

  15. Nuclear Fuel Cycle System Analysis (II)

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Won Il; Kwon, Eun Ha; Yoon, Ji Sup; Park, Seong Won

    2007-04-15

    As a nation develops strategies that provide nuclear energy while meeting its various objectives, it must begin with identification of a fuel cycle option that can be best suitable for the country. For such a purpose, this paper takes four different fuel cycle options that are likely adopted by the Korean government, considering the current status of nuclear power generation and the 2nd Comprehensive Nuclear Energy Promotion Plan (CNEPP) - Once-through Cycle, DUPIC Recycle, Thermal Reactor Recycle and GEN-IV Recycle. The paper then evaluates each option in terms of sustainability, environment-friendliness, proliferation-resistance, economics and technologies. Like all the policy decision, however, a nuclear fuel cycle option can not be superior in all aspects of sustainability, environment-friendliness, proliferation-resistance, economics, technologies and so on, which makes the comparison of the options extremely complicated. Taking this into consideration, the paper analyzes all the four fuel cycle options using the Multi-Attribute Utility Theory (MAUT) and the Analytic Hierarchy Process (AHP), methods of Multi-Attribute Decision Making (MADM), that support systematical evaluation of the cases with multi- goals or criteria and that such goals are incompatible with each other. The analysis shows that the GEN-IV Recycle appears to be most competitive.

  16. World nuclear fuel cycle requirements 1989

    International Nuclear Information System (INIS)

    1989-01-01

    This analysis report presents the projected requirements for uranium concentrate and uranium enrichment services to fuel the nuclear power plants expected to be operating under two nuclear supply scenarios. These two scenarios, the Lower Reference and Upper Reference cases, apply to the United States, Canada, Europe, the Far East, and other countries in the World Outside Centrally Planned Economic Areas (WOCA). A No New Orders scenarios is also presented for the Unites States. This report contains an analysis of the sensitivities of the nuclear fuel cycle projections to different levels and types of projected nuclear capacity, different enrichment tails assays, higher and lower capacity factors, changes in nuclear fuel burnup levels, and other exogenous assumptions. The projections for the United States generally extend through the year 2020, and the WOCA projections, which include the United States, are provided through 2010. The report also presents annual projections of spent nuclear fuel; discharges and inventories of spent fuel. Appendix D includes domestic spent fuel projections through the year 2020 for the Lower and Upper Reference cases and through 2036, the last year in which spent fuel is discharged, for the No New Orders case

  17. World nuclear fuel cycle requirements 1985

    International Nuclear Information System (INIS)

    Moden, R.; O'Brien, B.; Sanders, L.; Steinberg, H.

    1985-01-01

    Projections of uranium requirements (both yellowcake and enrichment services) and spent fuel discharges are presented, corresponding to the nuclear power plant capacity projections presented in ''Commercial Nuclear Power 1984: Prospects for the United States and the World'' (DOE/EIA-0438(85)) and the ''Annual Energy Outlook 1984:'' (DOE/EIA-0383(84)). Domestic projections are provided through the year 2020, with foreign projections through 2000. The domestic projections through 1995 are consistent with the integrated energy forecasts in the ''Annual Energy Outlook 1984.'' Projections of capacity beyond 1995 are not part of an integrated energy foreccast; the methodology for their development is explained in ''Commercial Nuclear Power 1984.'' A range of estimates is provided in order to capture the uncertainty inherent in such forward projections. The methodology and assumptions are also stated. A glossary is provided. Two appendixes present additional material. This report is of particular interest to analysts involved in long-term planning for the disposition of radioactive waste generated from the nuclear fuel cycle. 14 figs., 18 tabs

  18. The nuclear fuel cycle is complete

    International Nuclear Information System (INIS)

    Hildenbrand, G.

    1984-01-01

    The nuclear fuel cycle in the Federal Republic of Germany has a firm base. Its entry stages, natural uranium, conversion, enrichment, and fuel fabrication, have not only been put on solid grounds in terms of supplies, but have also attained a high degree of technical maturity and a high quality level. Further efforts are being devoted to cost reductions. Especially higher burnups and the recycling of plutonium in the form of MOX fuel assemblies in light water reactors must be mentioned under this heading. In the field of back end fuel cycle steps, the important sector of interim storage has now found a practical solution, which is also fully sufficient with respect to capacity. The project of a German reprocessing plant has now entered its decisive stage with the filling of the licensing applications and the awarding of the planning contracts. The study on alternative waste management techniques entitled ''Direct Final Storage'' is about to be concluded, and a work on the exploration and development of a repository proceeds on schedule. (orig.) [de

  19. World nuclear fuel cycle requirements 1990

    International Nuclear Information System (INIS)

    1990-01-01

    This analysis report presents the projected requirements for uranium concentrate and uranium enrichment services to fuel the nuclear power plants expected to be operating under three nuclear supply scenarios. Two of these scenarios, the Lower Reference and Upper Reference cases, apply to the United States, Canada, Europe, the Far East, and other countries with free market economies (FME countries). A No New Orders scenario is presented only for the United States. These nuclear supply scenarios are described in Commercial Nuclear Power 1990: Prospects for the United States and the World (DOE/EIA-0438(90)). This report contains an analysis of the sensitivities of the nuclear fuel cycle projections to different levels and types of projected nuclear capacity, different enrichment tails assays, higher and lower capacity factors, changes in nuclear fuel burnup levels, and other exogenous assumptions. The projections for the United States generally extend through the year 2020, and the FME projections, which include the United States, are provided through 2010. The report also presents annual projections of spent nuclear fuel discharges and inventories of spent fuel. Appendix D includes domestic spent fuel projections through the year 2030 for the Lower and Upper Reference cases and through 2040, the last year in which spent fuel is discharged, for the No New Orders case. These disaggregated projections are provided at the request of the Department of Energy's Office of Civilian Radioactive Waste Management

  20. Approaches for Securing the Nuclear Fuel Cycle

    International Nuclear Information System (INIS)

    Kim, Jae San; Kim, Min Su; Jo, Seong Youn

    2007-01-01

    The greatest challenge to international nuclear nonproliferation regime is posed by nuclear energy's dual nature for both peaceful and military purposes. Uranium enrichment and spent nuclear fuel (SNF) reprocessing (sensitive nuclear technologies) are critical from the non-proliferation viewpoint because they may be used to produce weapons-grade nuclear materials. Therefore, since 1970s the world community started to develop further measures to curb the spread of sensitive nuclear technologies. The establishment of a Nuclear Suppliers Group (NSG) in 1975 was one such measure. The NSG united countries which voluntarily agreed to coordinate their legislation regarding export of nuclear materials, equipment and technologies to countries not possessing nuclear weapons. Alongside measures to limit the spread of sensitive nuclear technologies, multilateral approaches to the nuclear fuel cycle (NFC) started to be discussed. It's becoming increasingly important to link the objective need for an expanded use of nuclear energy with strengthening nuclear non-proliferation by preventing the spread of sensitive nuclear technologies and securing access for interested countries to NFC products and services

  1. Cost benefit analysis of recycling nuclear fuel cycle in Korea

    International Nuclear Information System (INIS)

    Lee, Jewhan; Chang, Soonheung

    2012-01-01

    Nuclear power has become an essential part of electricity generation to meet the continuous growth of electricity demand. The importance if nuclear waste management has been the main issue since the beginning of nuclear history. The recycling nuclear fuel cycle includes the fast reactor, which can burn the nuclear wastes, and the pyro-processing technology, which can reprocess the spent nuclear fuel. In this study, a methodology using Linear Programming (LP) is employed to evaluate the cost and benefits of introducing the recycling strategy and thus, to see the competitiveness of recycling fuel cycle. The LP optimization involves tradeoffs between the fast reactor capital cost with pyro-processing cost premiums and the total system uranium price with spent nuclear fuel management cost premiums. With the help of LP and sensitivity analysis, the effect of important parameters is presented as well as the target values for each cost and price of key factors

  2. International nuclear fuel cycle fact book: Revision 9

    Energy Technology Data Exchange (ETDEWEB)

    Leigh, I.W.

    1989-01-01

    The International Nuclear Fuel Cycle Fact Book has been compiled in an effort to provide current data concerning fuel cycle and waste management facilities, R and D programs and key personnel. The Fact Book contains: national summaries in which a section for each country which summarizes nuclear policy, describes organizational relationships and provides addresses, names of key personnel, and facilities information; and international agencies in which a section for each of the international agencies which has significant fuel cycle involvement, and a listing of nuclear societies. The national summaries, in addition to the data described above, feature a small map for each country as well as some general information. The latter is presented from the perspective of the Fact Book user in the United States.

  3. Workshop on internal dosimetry in the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Rojo, A.M.; Gómez Parada, I.; Gossio, S.; Puerta Yepes, N.; Saavedra, A.D.; Segato, A.D.

    2011-01-01

    Dose assessment in case of internal exposure involves the estimation of committed effective dose based on the interpretation of bioassay measurement, and the assumptions of hypotheses on the characteristics of the radioactive material and the time pattern and the pathway of intake. In the case of workers exposed in nuclear fuel facilities, the normal uranium excretion from the diet is an additional difficulty in the process of assessing internal exposure. The aim of this paper is to present the main topics discussion and the conclusions of the workshop, held in the frame of the missions of the Autoridad Regulatoria Nuclear. All the personnel involved in the control of internal exposure in nuclear fuel cycle was invited to participate in the workshop to discuss about individual monitoring criteria and the available tools for assessing committed effective dose in the workers of their facilities. The lectures were presented jointly by the Nuclear Fuel Cycle Facilities Control and the Dosimetric and Radiobiological Assessment departments. It was hold at the Ezeiza Atomic Center from 23th to 24th November 2010 based on the Advanced Course on Internal Dosimetry organized on 2009 and focusing specific uranium compound internal dosimetry. A representative of each facility was invited to present the monitoring program implemented for controlling the internal exposure. It was an opportunity to discuss criteria and to share experiences on this field in the frame of the ICRP, HPA and ISO publications. The different monitoring program criteria could be analyzed and so contributing to the improvement of radiological protection. Finally, it was agreed to hold periodical meetings to assure the update on uranium measurement techniques and the handling of monitoring data for committed effective dose assessment. (authors) [es

  4. Economic evaluation of multilateral nuclear fuel cycle approach

    International Nuclear Information System (INIS)

    Takashima, Ryuta; Kuno, Yusuke; Omoto, Akira; Tanaka, Satoru

    2011-01-01

    Recently previous works have shown that multilateral nuclear fuel cycle approach has benefits not only of non-proliferation but also of cost effectiveness. This is because for most facilities in nuclear fuel cycle, there exist economies of scale, which has a significant impact on the costs of nuclear fuel cycle. Therefore, the evaluation of economic rationality is required as one of the evaluation factors for the multilateral nuclear fuel cycle approach. In this study, we consider some options with respect to multilateral approaches to nuclear fuel cycle in Asian-Pacific region countries that are proposed by the University of Tokyo. In particular, the following factors are embedded into each type: A) no involvement of assurance of services, B) provision of assurance of services including construction of new facility, without transfer of ownership, and C) provision of assurance of service including construction of new joint facilities with ownership transfer of facilities to multilateral nuclear fuel cycle approach. We show the overnight costs taking into account install and operation of nuclear fuel cycle facilities for each option. The economic parameter values such as uranium price, scale factor, and market output expansion influences the total cost for each option. Thus, we show how these parameter values and economic risks affect the total overnight costs for each option. Additionally, the international facilities could increase the risk of transportation for nuclear material compared to national facilities. We discuss the potential effects of this transportation risk on the costs for each option. (author)

  5. Aerial infrared monitoring for nuclear fuel cycle facilities in Ukraine

    International Nuclear Information System (INIS)

    Stankevich, S.A.; Dudar, T.V.; Kovalenko, G.D.; Kartashov, V.V.

    2015-01-01

    The scientific research overall objective is rapid express detection and preliminary identification of pre-accidental conditions at nuclear fuel cycle facilities. We consider development of a miniature unmanned aerial vehicle equipped with high-precision infrared spectroradiometer able to detect remotely internal warming up of hazardous facilities by its thermal infrared radiation. The possibility of remote monitoring using unmanned aerial vehicle is considered at the example of the dry spent fuel storage facility of the Zaporizhzhya Nuclear Power Plant. Infrared remote monitoring is supposed to present additional information on the monitored facilities based on different physical principles rather than those currently in use. Models and specifications towards up-to-date samples of infrared surveying equipment and its small-sized unmanned vehicles are presented in the paper.

  6. Analysis and management of risks from the nuclear fuel cycle

    International Nuclear Information System (INIS)

    1989-04-01

    The Coordinated Research Programme (CRP) on Risk Criteria for the Nuclear Fuel Cycle was begun in 1983 with several objectives: A primary objective was to permit countries with little experience with risk assessment methods to gain familiarity with these techniques. Another objective was to support work regarding safety criteria complementary to the risk assessment work. Risk criteria expressed as quantitative safety goals or targets can be used to establish acceptable safety levels; in this respect, they define what it is that risk assessments should measure; conversely the capabilities of risk assessment must be recognized when risk criteria are established. In addition to the work by each participating country under the sponsorship of the programme, the exchange of information between the participants was an objective of the programme. Refs, figs and tabs

  7. Development of System Engineering Technology for Nuclear Fuel Cycle

    International Nuclear Information System (INIS)

    Kim, Hodong; Choi, Iljae

    2013-04-01

    The development of efficient process for spent fuel and establishment of system engineering technology to demonstrate the process are required to develop nuclear energy continuously. The demonstration of pyroprocess technology which is proliferation resistance nuclear fuel cycle technology can reduce spent fuel and recycle effectively. Through this, people's trust and support on nuclear power would be obtained. Deriving the optimum nuclear fuel cycle alternative would contribute to establish a policy on back-end nuclear fuel cycle in the future, and developing the nuclear transparency-related technology would contribute to establish amendments of the ROK-U. S. Atomic Energy Agreement scheduled in 2014

  8. Human capital needs - teaching, training and coordination for nuclear fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    Retegan, T.; Ekberg, C. [Department of Chemistry and Biological Engineering, Nuclear Chemistry, Chalmers University of Technology, Kemivaegen 4, 41296 Gothenburg (Sweden); John, J. [Department of Nuclear Chemistry, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Brehova 7, 115 19 Prague 1 (Czech Republic); Nordlund, A. [Nuclear Engineering, Chalmers University of Technology, Kemivaegen 4, 41296 Gothenburg (Sweden)

    2013-07-01

    Human capital is the accumulation of competencies, knowledge, social and creativity skills and personality attributes, which are necessary to perform work so as to produce economic value. In the frame of the nuclear fuel cycle, this is of paramount importance that the right human capital exists and in Europe this is fostered by a series of integrated or directed projects. The teaching, training and coordination will be discussed in the frame of University curricula with examples from several programs, like e.g. the Master of Nuclear Engineering at Chalmers University, Sweden and two FP7 EURATOM Projects: CINCH - a project for cooperation in nuclear chemistry - and ASGARD - a research project on advanced or novel nuclear fuels and their reprocessing issues for generation IV reactors. The integration of the university curricula in the market needs but also the anchoring in the research and future fuel cycles will be also discussed, with examples from the ASGARD project. (authors)

  9. Human capital needs - teaching, training and coordination for nuclear fuel cycle

    International Nuclear Information System (INIS)

    Retegan, T.; Ekberg, C.; John, J.; Nordlund, A.

    2013-01-01

    Human capital is the accumulation of competencies, knowledge, social and creativity skills and personality attributes, which are necessary to perform work so as to produce economic value. In the frame of the nuclear fuel cycle, this is of paramount importance that the right human capital exists and in Europe this is fostered by a series of integrated or directed projects. The teaching, training and coordination will be discussed in the frame of University curricula with examples from several programs, like e.g. the Master of Nuclear Engineering at Chalmers University, Sweden and two FP7 EURATOM Projects: CINCH - a project for cooperation in nuclear chemistry - and ASGARD - a research project on advanced or novel nuclear fuels and their reprocessing issues for generation IV reactors. The integration of the university curricula in the market needs but also the anchoring in the research and future fuel cycles will be also discussed, with examples from the ASGARD project. (authors)

  10. Environmental impact of nuclear fuel cycle operations

    International Nuclear Information System (INIS)

    Wilkinson, W.L.

    1989-09-01

    This paper considers the environmental impact of nuclear fuel cycle operations, particularly those operated by British Nuclear Fuels plc, which include uranium conversion, fuel fabrication, uranium enrichment, irradiated fuel transport and storage, reprocessing, uranium recycle and waste treatment and disposal. Quantitative assessments have been made of the impact of the liquid and gaseous discharges to the environment from all stages in the fuel cycle. An upper limit to the possible health effects is readily obtained using the codified recommendations of the International Commission on Radiological Protection. This contrasts with the lack of knowledge concerning the health effects of many other pollutants, including those resulting from the burning of fossil fuels. Most of the liquid and gaseous discharges result at the reprocessing stage and although their impact on the environment and on human health is small, they have given rise to much public concern. Reductions in discharges at Sellafield over the last few years have been quite dramatic, which shows what can be done provided the necessary very large investment is undertaken. The cost-effectiveness of this investment must be considered. Some of it has gone beyond the point of justification in terms of health benefit, having been undertaken in response to public and political pressure, some of it on an international scale. The potential for significant off-site impact from accidents in the fuel cycle has been quantitatively assessed and shown to be very limited. Waste disposal will also have an insignificant impact in terms of risk. It is also shown that it is insignificant in relation to terrestrial radioactivity and therefore in relation to the human environment. 14 refs, 5 figs, 2 tabs

  11. Regional nuclear fuel cycle centers study project

    International Nuclear Information System (INIS)

    Bennett, L.; Catlin, R.G.; Meckoni, V.

    1977-01-01

    The concept of regional fuel cycle centers (RFCC) has attracted wide interest. The concept was endorsed by many countries in discussions at the General Conference of the International Atomic Energy Agency and at the General Assembly of the United Nations. Accordingly, in 1975, the IAEA initiated a detailed study of the RFCC concept. The Agency study has concentrated on what is referred to as the ''back-end'' of the fuel cycle because that is the portion which is currently problematic. The study covers transport, storage, processing and recycle activities starting from the time the spent fuel leaves the reactor storage pools and through all steps until the recycled fuel is in finished fuel elements and shipped to the reactor. A detailed evaluation of the specific features of large regional fuel cycle centers established on a multinational basis vis-a-vis smaller dispersed fuel cycle facilities set up on a national basis has been carried out. The methodology for assessment of alternative strategies for fuel storage, reprocessing, and recycling of plutonium has been developed, characteristic data on material flows and cost factors have been generated, and an analytic system has been developed to carry out such evaluations including appropriate sensitivity analysis. Studies in related areas on institutional and legal, organizational, environmental, materials control and other essential aspects have also been made. The material developed during the course of this Study would enable any group of interested Member States to examine and work out alternative strategies pertinent to their present and projected nuclear fuel cycle needs, as well as evolve institutional, legal and other appropriate frameworks or agreements for the establishment of fuel cycle centers on a multinational cooperative basis

  12. Long-term alternatives for nuclear fuel cycles

    International Nuclear Information System (INIS)

    Vira, J.; Vieno, T.

    1981-07-01

    Several technical alternatives have been proposed to the nuclear spent fuel management but the practical experience on any of these is small or totally lacking. Since the management method is also connected with the composition of fresh fuel, the comparison of the alternatives must include the whole fuel cycle of a nuclear power plant. In the planning of the nuclear fuel cycle over a time range of several decades a consideration must be given, in addition, to the potential of the new reactor types with increased efficiency of uranium utilization. For analyses and mutual comparisons of the fuel cycle alternatives a number of computer models have been designed and implemented at the Technical Research Centre of Finland. Given the estimated boundary conditions the models can be used to study the impact of different goals and requirements on the fuel cycle decisions. Further, they facilitate cost predictions and display information on the role of the intrinsic uncertainties in the decision-making. The conclusions of the study are tied to the questions of price and availability of uranium. Hence, for instance, the benefits from the reprocessing of spent fuel might prove to be small when compared to the costs required, especially as the current reprocessing contracts do not allow the custemer to dismiss the duty of building the final disposal facilities for high level radioactive waste. For a few decades the final decisions can be postponed by extending the interim storage period. Farther in the future the decisions in the nuclear fuel cycle arrangements will more link to the introduction of the fast breeder reactors. (author)

  13. Securing the nuclear fuel cycle: What next?

    International Nuclear Information System (INIS)

    Ruchkin, S.V.; Loginov, V.Y.

    2006-01-01

    The greatest challenge to the international nuclear non-proliferation regime is posed by nuclear energy's dual nature for both peaceful and military purposes. Uranium enrichment and spent nuclear fuel (SNF) reprocessing (here after called s ensitive nuclear technologies ) are critical from the non-proliferation viewpoint because they may be used to produce weapons-grade nuclear materials: highly enriched uranium and separated plutonium. Alongside measures to limit the spread of sensitive nuclear technologies, multilateral approaches to the nuclear fuel cycle (NFC) started to be discussed. Spiralling prices for hydrocarbons and prospects of their imminent extinction are encouraging more and more countries to look at nuclear energy as an alternative means to ensure their sustainable development. To this end, it's becoming increasingly important to link the objective need for an expanded use of nuclear energy with strengthening nuclear non-proliferation by, in particular, preventing the spread of sensitive nuclear technologies and securing access for interested countries to NFC products and services. With this in mind, at the IAEA General Conference in 2003, IAEA Director General Mohamed ElBaradei called for establishing an international experts group on multilateral nuclear approaches. The proposal was supported, and in February 2005 the international experts, headed by Bruno Pellaud, issued a report (published by the IAEA as INFCIRC-640; see www.iaea.org) with recommendations on different multilateral approaches. The recommendations can be generalized as follows: reinforcement of existing market mechanisms; involvement of governments and the IAEA in the assurance of supply, including the establishment of low-enriched uranium (LEU) stocks as reserves; conversion of existing national uranium enrichment and SNF reprocessing enterprises into multilateral ones under international management and control, and setting up new multilateral enterprises on regional and

  14. Nuclear fuel cycle and waste management in France

    International Nuclear Information System (INIS)

    Sousselier, Yves.

    1981-05-01

    After a short description of the nuclear fuel cycle mining, milling, enrichment and reprocessing, radioactive waste management in France is exposed. The different types of radioactive wastes are examined. Storage, solidification and safe disposal of these wastes are described

  15. Independent assessment of forseeable problems in the nuclear fuel cycle

    International Nuclear Information System (INIS)

    1975-01-01

    Information is presented concerning the U. S. nuclear fuel cycle business including investment requirements; nuclear power growth projection; reliability of uranium supply; enrichment facilities; plutonium recycle; safeguards; and insurance

  16. Radioactive waste management and advanced nuclear fuel cycle technologies

    International Nuclear Information System (INIS)

    2007-01-01

    In 2007 ENEA's Department of Nuclear Fusion and Fission, and Related Technologies acted according to national policy and the role assigned to ENEA FPN by Law 257/2003 regarding radioactive waste management and advanced nuclear fuel cycle technologies

  17. International development within the spent nuclear fuel cycle

    International Nuclear Information System (INIS)

    Aggeryd, I.; Broden, K.; Gelin, R.

    1990-06-01

    The report gives a survey of the newest international development of the fuel processing and the spent nuclear fuel cycle. The transmutation technology of long lived nuclides is discussed in more details. (K.A.E)

  18. Nuclear fuel cycle: international market, international constraints and international cooperation

    International Nuclear Information System (INIS)

    Imai, R.

    1977-01-01

    Some of the constraints on the nuclear fuel cycle are ones arising from economic and financial reasons, those caused by uranium resources and their distribution, those arising from technical reasons, issues of public acceptance, and those quite independent of normal industrial considerations, but caused by elements of international politics. The nuclear fuel cycle and the international market, matters of nuclear non-proliferation, and international cooperation are discussed

  19. Health and environmental aspects of nuclear fuel cycle facilities

    International Nuclear Information System (INIS)

    1996-11-01

    The purpose of the present publication is to give a generic description of health and environmental aspects of nuclear fuel cycle facilities. Primarily the report is meant to stand alone; however, because of the content of the publication and in the context of the DECADES project, it may serve as a means of introducing specialists in other fuel cycles to the nuclear fuel cycle. Refs, figs, tabs

  20. Research on Actinides in Nuclear Fuel Cycles

    International Nuclear Information System (INIS)

    Song, Kyu Seok; Park, Yong Joon; Cho, Young Hwan

    2010-04-01

    The electrochemical/spectroscopic integrated measurement system was designed and set up for spectro-electrochemical measurements of lanthanide and actinide ions in high temperature molten salt media. A compact electrochemical cell and electrode system was also developed for the minimization of reactants, and consequently minimization of radioactive waste generation. By applying these equipment, oxidation and reduction behavior of lanthanide and actinide ions in molten salt media have been made. Also, thermodynamic parameter values are determined by interpreting the results obtained from electrochemical measurements. Several lanthanide ions exhibited fluorescence properties in molten salt. Also, UV-VIS measurement provided the detailed information regarding the oxidation states of lanthanide and actinide ions in high temperature molten salt media

  1. Research on Actinides in Nuclear Fuel Cycles

    Energy Technology Data Exchange (ETDEWEB)

    Song, Kyu Seok; Park, Yong Joon; Cho, Young Hwan

    2010-04-15

    The electrochemical/spectroscopic integrated measurement system was designed and set up for spectro-electrochemical measurements of lanthanide and actinide ions in high temperature molten salt media. A compact electrochemical cell and electrode system was also developed for the minimization of reactants, and consequently minimization of radioactive waste generation. By applying these equipment, oxidation and reduction behavior of lanthanide and actinide ions in molten salt media have been made. Also, thermodynamic parameter values are determined by interpreting the results obtained from electrochemical measurements. Several lanthanide ions exhibited fluorescence properties in molten salt. Also, UV-VIS measurement provided the detailed information regarding the oxidation states of lanthanide and actinide ions in high temperature molten salt media

  2. Proceeding of the Fifth Scientific Presentation on Nuclear Fuel Cycle: Development of Nuclear Fuel Cycle Technology in Third Millennium

    International Nuclear Information System (INIS)

    Suripto, A.; Sastratenaya, A.S.; Sutarno, D.

    2000-01-01

    The proceeding contains papers presented in the Fifth Scientific Presentation on Nuclear Fuel Element Cycle with theme of Development of Nuclear Fuel Cycle Technology in Third Millennium, held on 22 February in Jakarta, Indonesia. These papers were divided by three groups that are technology of exploration, processing, purification and analysis of nuclear materials; technology of nuclear fuel elements and structures; and technology of waste management, safety and management of nuclear fuel cycle. There are 35 papers indexed individually. (id)

  3. A nuclear fuel cycle system dynamic model for spent fuel storage options

    International Nuclear Information System (INIS)

    Brinton, Samuel; Kazimi, Mujid

    2013-01-01

    Highlights: • Used nuclear fuel management requires a dynamic system analysis study due to its socio-technical complexity. • Economic comparison of local, regional, and national storage options is limited due to the public financial information. • Local and regional options of used nuclear fuel management are found to be the most economic means of storage. - Abstract: The options for used nuclear fuel storage location and affected parameters such as economic liabilities are currently a focus of several high level studies. A variety of nuclear fuel cycle system analysis models are available for such a task. The application of nuclear fuel cycle system dynamics models for waste management options is important to life-cycle impact assessment. The recommendations of the Blue Ribbon Committee on America’s Nuclear Future led to increased focus on long periods of spent fuel storage [1]. This motivated further investigation of the location dependency of used nuclear fuel in the parameters of economics, environmental impact, and proliferation risk. Through a review of available literature and interactions with each of the programs available, comparisons of post-reactor fuel storage and handling options will be evaluated based on the aforementioned parameters and a consensus of preferred system metrics and boundary conditions will be provided. Specifically, three options of local, regional, and national storage were studied. The preliminary product of this research is the creation of a system dynamics tool known as the Waste Management Module (WMM) which provides an easy to use interface for education on fuel cycle waste management economic impacts. Initial results of baseline cases point to positive benefits of regional storage locations with local regional storage options continuing to offer the lowest cost

  4. Financing Strategies For A Nuclear Fuel Cycle Facility

    International Nuclear Information System (INIS)

    David Shropshire; Sharon Chandler

    2006-01-01

    To help meet the nation's energy needs, recycling of partially used nuclear fuel is required to close the nuclear fuel cycle, but implementing this step will require considerable investment. This report evaluates financing scenarios for integrating recycling facilities into the nuclear fuel cycle. A range of options from fully government owned to fully private owned were evaluated using DPL (Decision Programming Language 6.0), which can systematically optimize outcomes based on user-defined criteria (e.g., lowest lifecycle cost, lowest unit cost). This evaluation concludes that the lowest unit costs and lifetime costs are found for a fully government-owned financing strategy, due to government forgiveness of debt as sunk costs. However, this does not mean that the facilities should necessarily be constructed and operated by the government. The costs for hybrid combinations of public and private (commercial) financed options can compete under some circumstances with the costs of the government option. This analysis shows that commercial operations have potential to be economical, but there is presently no incentive for private industry involvement. The Nuclear Waste Policy Act (NWPA) currently establishes government ownership of partially used commercial nuclear fuel. In addition, the recently announced Global Nuclear Energy Partnership (GNEP) suggests fuels from several countries will be recycled in the United States as part of an international governmental agreement; this also assumes government ownership. Overwhelmingly, uncertainty in annual facility capacity led to the greatest variations in unit costs necessary for recovery of operating and capital expenditures; the ability to determine annual capacity will be a driving factor in setting unit costs. For private ventures, the costs of capital, especially equity interest rates, dominate the balance sheet; and the annual operating costs, forgiveness of debt, and overnight costs dominate the costs computed for the

  5. Transition Towards a Sustainable Nuclear Fuel Cycle

    International Nuclear Information System (INIS)

    McCarthy, K.; Romanello, V.; Schwenk-Ferrero, A.; Vezzoni, B.; Gabrielli, F.; Maschek, W.; Rineiski, A.; Salvatores, M.

    2013-01-01

    To support the evaluation of R and D needs and relevant technology requirements for future nuclear fuel cycles, the OECD/NEA WPFC Expert Group on Advanced Fuel Cycle Scenarios was created in 2010, replacing the WPFC Expert Group on Fuel Cycle Transition Scenario Studies (1) to assemble, organise and understand the scientific issues of advanced fuel cycles and (2) to provide a framework for assessing specific national needs related to the implementation of advanced fuel cycles. In this framework, a simulation of world transition scenarios towards possible future fuel cycles with fast reactors has been performed, using both a homogeneous and a heterogeneous approach involving different world regions. In fact, it has been found that a crucial feature of any world scenario study is to provide not only trends for an idealised 'homogeneous' description of the world, but also trends for different regions in the world, selected with simple criteria (mostly of geographical type), in order to apply different hypotheses to energy demand growth, different fuel cycle strategies and different reactor types implementation in the different regions. This approach was an attempt to avoid focusing on selected countries, in particular on those where no new spectacular energy demand growth is expected, but to provide trends and conclusions that account for the features of countries that will be major future players in the world's energy development. The heterogeneous approach considered a subdivision of the world in four main macro-regions (where countries have been grouped together according to their economic development dynamics). An original global electricity production envelope was used in simulations and a specific regional energy share was defined. In the regional approach two different fuel cycles were analysed: a once-through LWR cycle was used as the reference and a transition to fast reactor closed cycle to enable a better management of resources and minimisation of waste

  6. Recent situation of the establishment of nuclear fuel cycle

    International Nuclear Information System (INIS)

    Hoshiba, Shizuo

    1982-01-01

    In Japan, the development of nuclear power as principal petroleum substitute is actively pursued. Nuclear power generation now accounts for about 17 % of the total power generation in Japan. The business related to nuclear fuel cycle should be established by private enterprises. The basic policy in the establishment of nuclear fuel cycle is the stabilized supply of natural uranium, raise in domestic production of enriched uranium, dFomestic fuel reprocessing in principle, positive plutonium utilization, and so on. After explaining this basic policy, the present situation and problems in the establishment of nuclear fuel cycle are described: securing of uranium resources, securing of enriched uranium, reprocessing of used fuel, utilization of plutonium, management of radioactive wastes. (Mori, K.)

  7. Nuclear fuel cycles : description, demand and supply estimates

    International Nuclear Information System (INIS)

    Gadallah, A.A.; Abou Zahra, A.A.; Hammad, F.H.

    1985-01-01

    This report deals with various nuclear fuel cycles description as well as the world demand and supply estimates of materials and services. Estimates of world nuclear fuel cycle requirements: nuclear fuel, heavy water and other fuel cycle services as well as the availability and production capabilities of these requirements, are discussed for several reactor fuel cycle strategies, different operating and under construction fuel cycle facilities in some industrialized and developed countries are surveyed. Various uncertainties and bottlenecks which are recently facing the development of some fuel cycle components are also discussed, as well as various proposals concerning fuel cycle back-end concepts. finally, the nuclear fuel cycles activities in some developing countries are reviewed with emphasis on the egyptian plans to introduce nuclear power in the country. 11 fig., 16 tab

  8. Atomic scale modelling of materials of the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Bertolus, M.

    2011-10-01

    This document written to obtain the French accreditation to supervise research presents the research I conducted at CEA Cadarache since 1999 on the atomic scale modelling of non-metallic materials involved in the nuclear fuel cycle: host materials for radionuclides from nuclear waste (apatites), fuel (in particular uranium dioxide) and ceramic cladding materials (silicon carbide). These are complex materials at the frontier of modelling capabilities since they contain heavy elements (rare earths or actinides), exhibit complex structures or chemical compositions and/or are subjected to irradiation effects: creation of point defects and fission products, amorphization. The objective of my studies is to bring further insight into the physics and chemistry of the elementary processes involved using atomic scale modelling and its coupling with higher scale models and experimental studies. This work is organised in two parts: on the one hand the development, adaptation and implementation of atomic scale modelling methods and validation of the approximations used; on the other hand the application of these methods to the investigation of nuclear materials under irradiation. This document contains a synthesis of the studies performed, orientations for future research, a detailed resume and a list of publications and communications. (author)

  9. A European perspective on the US nuclear fuel cycle

    International Nuclear Information System (INIS)

    Wilkinson, W.L.

    1989-01-01

    Many Europeans believe that the main problems which have impeded progress in solving the back end of the nuclear fuel cycle in the United States have been a series of ideological and political hang-ups and these, coupled with excessive bureaucracy, have made logical decision making on the back-end problems impossible. This situation has been caused by a succession of political nondecisions. Public confidence in nuclear generation was thereby undermined and, because of plentiful supplies of other energy sources, there was no urgent need to expand the nuclear program in the United States. Since uranium was cheap and fast reactors not commercially attractive, there was no economic incentive to reprocess fuel from existing reactors in the United States. The problem facing the United States is that of managing the large stocks of spent fuel which have arisen over many years. A logical way forward for the United States would appear to be as follows: build more storage for spent fuel; consider overseas reprocessing to provide plutonium; develop reprocessing technology; and develop direct disposal technology

  10. National briefing summaries: Nuclear fuel cycle and waste management

    International Nuclear Information System (INIS)

    Schneider, K.J.; Harmon, K.M.; Lakey, L.T.; Silviera, D.J.; Leigh, I.W.

    1987-09-01

    This report is a compilation of publicly-available information concerning the nuclear fuel cycle and radioactive waste management strategies and programs of 20 nations and three international agencies that have publicized their activities in this field. The information in this document is compiled to provide summary information on radioactive waste management activities in other countries. This document indicates what is occurring in other countries with regard to strategies, activities, and facilities. This document first presents a short overview of the activities and trends for managing low- to high-level radioactive waste and spent fuel by the entities covered in this review. This is followed by information for each country for nuclear power; fuel cycle and waste management strategy/policy; highlights and major milestones; institutional considerations/organizations; nuclear fuel production; fuel recycle; spent fuel storage and transport; waste conditioning, storage and transport; surface and near-surface waste disposal; geologic waste disposal; management of uranium mine and mill wastes; decommissioning; international; and references. 406 refs

  11. Public health risks associated with the CANDU nuclear fuel cycle

    International Nuclear Information System (INIS)

    Paskievici, W.; Zikovsky, L.

    1983-06-01

    This report analyzes in a preliminary way the risks to the public posed by the CANDU nuclear fuel cycle. Part 1 considers radiological risks, while part 2 (published as INFO-0141-2) evaluates non-radiological risks. The report concludes that, for radiological risks, maximum individual risks to members of the public are less than 10 -5 per year for postulated accidents, are less than 1 percent of regulatory limits for normal operation and that collective doses are small, less than 3 person-sieverts. It is also concluded that radiological risks are much smaller than the non-radiological risks posed by activities of the nuclear fuel cycle

  12. The transparency associated with the nuclear fuel cycle

    International Nuclear Information System (INIS)

    2009-01-01

    This document presents the French national plan for the management of radioactive materials and wastes (PNGMDR - Plan national de gestion des matieres et dechets nucleaires), its elaboration process, its content in terms of nuclear fuel cycle. Then, it describes the control by the ASN of the nuclear fuel cycle, the associated installations, the concerned transports, the 'cycle consistency' approach and its limitations. Propositions are stated aiming at the improvement of the transparency associated with the fuel cycle: to use the PNGMDR, to extend the investigation on the cycle consistency to imported materials and wastes, to improve the transparency on radioactive material transport

  13. Request from nuclear fuel cycle and criticality safety design

    International Nuclear Information System (INIS)

    Hamasaki, Manabu; Sakashita, Kiichiro; Natsume, Toshihiro

    2005-01-01

    The quality and reliability of criticality safety design of nuclear fuel cycle systems such as fuel fabrication facilities, fuel reprocessing facilities, storage systems of various forms of nuclear materials or transportation casks have been largely dependent on the quality of criticality safety analyses using qualified criticality calculation code systems and reliable nuclear data sets. In this report, we summarize the characteristics of the nuclear fuel cycle systems and the perspective of the requirements for the nuclear data, with brief comments on the recent issue about spent fuel disposal. (author)

  14. Decommissioning of nuclear fuel cycle facilities. Safety guide

    International Nuclear Information System (INIS)

    2001-01-01

    The objective of this Safety Guide is to provide guidance to regulatory bodies and operating organizations on planning and provision for the safe management of the decommissioning of non-reactor nuclear fuel cycle facilities. While the basic safety considerations for the decommissioning of nuclear fuel cycle facilities are similar to those for nuclear power plants, there are important differences, notably in the design and operating parameters for the facilities, the type of radioactive material and the support systems available. It is the objective of this Safety Guide to provide guidance for the shutdown and eventual decommissioning of such facilities, their individual characteristics being taken into account

  15. Sustainable multilateral nuclear fuel cycle framework. (2) Models for multilateral nuclear fuel cycle approach

    International Nuclear Information System (INIS)

    Adachi, T; Tanaka, S; Tazaki, M; Akiba, M; Takashima, R; Kuno, Y

    2011-01-01

    To construct suitable models for a reliable and sustainable international/regional framework in the fields of nuclear fuel cycle, it is essential to reflect recent political situations including such that 1) a certain number of emerging countries especially in south-east Asia want to introduce and develop nuclear power in the long-terms despite the accident of the Fukushima Daiichi NPP, and 2) exposition of nuclear proliferation threats provided by North Korea and Iran. It is also to be considered that Japan is an unique country having enrichment and reprocessing facilities on commercial base among non-nuclear weapon countries. Although many models presented for the internationalization have not been realized yet, studies at the University of Tokyo aim at multilateral nuclear approach (MNA) in Asian-Pacific countries balancing between nuclear non-proliferation and nuclear fuel supply/service and presenting specific examples such as prerequisites for participating countries, scope of cooperative activities, ownership of facilities and type of agreements/frameworks. We will present a model basic agreement and several bilateral and multi-lateral agreements for the combinations of industry or government led consortia including Japan and its neighboring countries and made a preliminary evaluation for the combination of processes/facilities based on the INFCIRC/640 report for MNA. (author)

  16. Development of System Engineering Technology for Nuclear Fuel Cycle

    International Nuclear Information System (INIS)

    Kim, Ho Dong; Kim, Sung Ki; Song, Kee Chan

    2010-04-01

    This report is aims to establish design requirements for constructing mock-up system of pyroprocess by 2011 to realize long-term goal of nuclear energy promotion comprehensive plan, which is construction of engineering scale pyroprocess integrated process demonstration facility. The development of efficient process for spent fuel and establishment of system engineering technology to demonstrate the process are required to develop nuclear energy continuously. The detailed contents of research for these are as follows; - Design of Mock-up facility for demonstrate pyroprocess, Construction, Approval, Trial run, Performance test - Development of nuclear material accountancy technology for unit processes of pyroprocess and design of safeguards system - Remote operation of demonstrating pyroprocess / Development of maintenance technology and equipment - Establishment of transportation system and evaluation of pre-safety for interim storage system - Deriving and implementation of a method to improve nuclear transparency for commercialization proliferation resistance nuclear fuel cycle Spent fuel which is the most important pending problem of nuclear power development would be reduced and recycled by developing the system engineering technology of pyroprocess facility by 2010. This technology would contribute to obtain JD for the use of spent fuel between the ROK-US and to amend the ROK-US Atomic Energy Agreement scheduled in 2014

  17. Civil design aspects for nuclear fuel cycle facilities

    International Nuclear Information System (INIS)

    Bhalerao, Sandip; Subramanyam, P.; Sharma, Sudin; Bhargava, Kapilesh; Agarwal, Kailash; Rao, D.A.S.; Roy, Amitava; Basu, S.

    2015-01-01

    The civil design requirements of safety related nuclear structures are much more stringent and conservative as compared to that for conventional and industrial structures. Due to the importance of safety and desired reliability in the civil design of nuclear structures, International Atomic Energy Agency (IAEA) and Atomic Energy Regulatory Board (AERB) have provided various safety guides for their safe design. There has been advancement in theoretical and experimental knowledge pertaining to the design, construction, installation, maintenance, testing and inspection of structures, systems, and components (SSCs) of nuclear power plants (NPPs), such that, their quality and reliability is commensurate with safety functions. The well established procedures are available in the form of different codes, standards, guidelines and well proven research work for NPPs. However, such procedures are somewhat limited in nature for design of civil structures in nuclear fuel cycle facilities (NFCF), and till date no separate codes or standards have been published by regulatory authorities in India that cover civil design aspects for NFCF. Hence, design of civil structures of NFCF in India is performed by using different national and international standards, and the recommendations provided by BARC Safety Council (BSC). Present paper focuses civil design aspects for NFCF in India. (author)

  18. IAEA programme on nuclear fuel cycle and materials technologies - 2009

    International Nuclear Information System (INIS)

    Killeen, J.

    2009-01-01

    In this paper a brief description and the main objectives of IAEA Programme B on Nuclear fuel cycle are given. The following Coordinated Research Projects: 1) Delayed Hydride Cracking (DHC); 2) Structural Materials Radiation Effects (SMoRE); 3) Water Chemistry (FUWAC) and 4) Fuel Modelling (FUMEX-III) are shortly described. The data collected by the IAEA Expert Group of Fuel Failures in Water Cooled Reactors including information about fuel assembly damage that did not result in breach of the fuel rod cladding, such as assembly bow or crud deposition an the experience with these unexpected fuel issues shows that they can seriously affect plant operations, and it is clear that concerns about reliability in this area are of similar importance today as fuel rod failures, at least for LWR fuel are discussed. Detection, examination and analysis of fuel failures and description of failures and mitigation measures as well as preparation of a Monograph on Zirconium including an overview of Zirconium for nuclear applications, including extraction, forming, properties and irradiation experience are presented

  19. Back-end of the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Choi, J.S.

    2002-01-01

    Current strategies of the back-end nuclear fuel cycles are: (1) direct-disposal of spent fuel (Open Cycle), and (2) reprocessing of the spent fuel and recycling of the recovered nuclear materials (Closed Cycle). The selection of these strategies is country-specific, and factors affecting selection of strategy are identified and discussed in this paper. (author)

  20. Uranium to Electricity: The Chemistry of the Nuclear Fuel Cycle

    Science.gov (United States)

    Settle, Frank A.

    2009-01-01

    The nuclear fuel cycle consists of a series of industrial processes that produce fuel for the production of electricity in nuclear reactors, use the fuel to generate electricity, and subsequently manage the spent reactor fuel. While the physics and engineering of controlled fission are central to the generation of nuclear power, chemistry…

  1. Ion exchange technology in the nuclear fuel cycle

    International Nuclear Information System (INIS)

    1986-02-01

    The application of ion exchange has been expanded to various parts of the nuclear fuel cycle. Major applications are in uranium production facilities, nuclear power plants, spent fuel reprocessing and waste treatment. Furthermore, application to isotope separation has been under development. The appendix contains a compilation of resin data. A separate abstract was prepared for each of the 6 chapters in this technical document

  2. Material control and accountability in nuclear fuel cycle

    International Nuclear Information System (INIS)

    Rumyantsev, A.N.

    2006-01-01

    It is proposed to unify the complexes, used in the systems for control and accountability of nuclear materials, and to use the successful experience of developing these complexes. It is shown that the problem of control, accountability and physical protection may by achieved by using the developed complex Probabilistic expert-advising system, permitting to analyse the safety in nuclear fuel cycles [ru

  3. Nuclear-fuel-cycle education: Module 10. Environmental consideration

    International Nuclear Information System (INIS)

    Wethington, J.A.; Razvi, J.; Grier, C.; Myrick, T.

    1981-12-01

    This educational module is devoted to the environmental considerations of the nuclear fuel cycle. Eight chapters cover: National Environmental Policy Act; environmental impact statements; environmental survey of the uranium fuel cycle; the Barnwell Nuclear Fuel Reprocessing Plant; transport mechanisms; radiological hazards in uranium mining and milling operations; radiological hazards of uranium mill tailings; and the use of recycle plutonium in mixed oxide fuel

  4. The nuclear fuel cycle associated with the operation of nuclear ...

    African Journals Online (AJOL)

    The nuclear power option has been mentioned as an alternative for Ghana but the issue of waste management worries both policy makers and the public. In this paper, the nuclear fuel cycle associated with the operation of nuclear power plants (NPPs) for electric power generation has been extensively reviewed. Different ...

  5. Multi-faceted evaluation for nuclear fuel cycles with transmutation

    International Nuclear Information System (INIS)

    Nishihara, Kenji

    2015-03-01

    Environment impact, economy and proliferation resistance were estimated for nuclear fuel cycles involving transmutation by fast reactor and accelerator-driven system in equilibrium state. As a result, the transmutation scenario using only fast reactor was superior to the scenarios combined with accelerator-driven system in all estimation, but the differences were insignificant. (author)

  6. A New Dynamic Model for Nuclear Fuel Cycle System Analysis

    International Nuclear Information System (INIS)

    Choi, Sungyeol; Ko, Won Il

    2014-01-01

    The evaluation of mass flow is a complex process where numerous parameters and their complex interaction are involved. Given that many nuclear power countries have light and heavy water reactors and associated fuel cycle technologies, the mass flow analysis has to consider a dynamic transition from the open fuel cycle to other cycles over decades or a century. Although an equilibrium analysis provides insight concerning the end-states of fuel cycle transitions, it cannot answer when we need specific management options, whether the current plan can deliver these options when needed, and how fast the equilibrium can be achieved. As a pilot application, the government brought several experts together to conduct preliminary evaluations for nuclear fuel cycle options in 2010. According to Table 1, they concluded that the closed nuclear fuel cycle has long-term advantages over the open fuel cycle. However, it is still necessary to assess these options in depth and to optimize transition paths of these long-term options with advanced dynamic fuel cycle models. A dynamic simulation model for nuclear fuel cycle systems was developed and its dynamic mass flow analysis capability was validated against the results of existing models. This model can reflects a complex combination of various fuel cycle processes and reactor types, from once-through to multiple recycling, within a single nuclear fuel cycle system. For the open fuel cycle, the results of the developed model are well matched with the results of other models

  7. Nuclear fuel cycle bringing about opportunity for industrial structure conversion

    International Nuclear Information System (INIS)

    Nakamura, Taiki

    1991-01-01

    Three facilities of nuclear fuel cycle, that is, uranium enrichment, fuel reprocessing and low level radioactive waste storage and burying, are being constructed by electric power industry in Rokkasho Village, Kamikita County, Aomori Prefecture. These are the large scale project of the total investment of 1.2 trillion yen. It is expected that the promotion of this project exerts not a little effect to the social economy of the surrounding districts. Agency of Natural Resources and Energy, Ministry of International Trade and Industry, carried out the social environment survey on the location of nuclear fuel cycle facilities. In this report, the outline of the economical pervasive effect due to the construction and operation of the three facilities in the report of this survey is described. The method of survey and the organization, the outline of three nuclear fuel cycle facilities, the economical pervasive effect, the effect to the local social structure, and the direction of arranging occupation, residence and leisure accompanying the location of three nuclear fuel cycle facilities are reported. (K.I.)

  8. Safety study of fire protection for nuclear fuel cycle facility

    International Nuclear Information System (INIS)

    2013-01-01

    Insufficiencies in the fire protection system of the nuclear reactor facilities were pointed out when the fire occurred due to the Niigata prefecture-Chuetsu-oki Earthquake in July, 2007. This prompted the revision of the fire protection safety examination guideline for nuclear reactors as well as commercial guidelines. The commercial guidelines have been endorsed by the regulatory body. Now commercial fire protection standards for nuclear facilities such as the design guideline and the management guideline for protecting fire in the Light Water Reactors (LWRs) are available, however, those to apply to the nuclear fuel cycle facilities such as mixed oxide fuel fabrication facility (MFFF) have not been established. For the improvement of fire protection system of the nuclear fuel cycle facilities, the development of a standard for the fire protection, corresponding to the commercial standard for LWRs were required. Thus, Japan Nuclear Energy Safety Organization (JNES) formulated a fire protection guidelines for nuclear fuel cycle facilities as a standard relevant to the fire protection of the nuclear fuel cycle facilities considering functions specific to the nuclear fuel cycle facilities. In formulating the guidelines, investigation has been conduced on the commercial guidelines for nuclear reactors in Japan and the standards relevant to the fire protection of nuclear facilities in USA and other countries as well as non-nuclear industrial fire protection standards. The guideline consists of two parts; Equipments and Management, as the commercial guidances of the nuclear reactor. In addition, the acquisition of fire evaluation data for a components (an electric cabinet, cable, oil etc.) targeted for spread of fire and the evaluation model of fire source were continued for the fire hazard analysis (FHA). (author)

  9. Nuclear Fuel Cycle Evaluation and Screening Findings on Partitioning and Transmutation

    International Nuclear Information System (INIS)

    Wigeland, R.A.; Taiwo, T.A.; Gehin, J.C.; Jubin, R.; Todosow, M.

    2015-01-01

    A Nuclear Fuel Cycle Evaluation and Screening (E and S) study has recently been completed in the United States. The study considered the entire fuel cycle, included considerations for both once-through and recycle fuel cycle options, evaluated a set of 40 fuel cycles that allowed a comprehensive assessment of fuel cycle performance, identified a relatively small number of promising fuel cycle options that have the potential for achieving substantial improvements compared to the current nuclear fuel cycle in the United States, and allowed the identification of research and development (R and D) activities needed to support the development of the promising fuel cycle options. Nine high-level criteria (Nuclear Waste Management, Proliferation Risk, Nuclear Material Security Risk, Safety, Environmental Impact, Resource Utilisation, Development and Deployment Risk, Institutional Issues, and Financial Risk and Economics) and associated metrics were used in the study to compare the performance of nuclear fuel cycle options to that of the current fuel cycle practiced in the United States. The study also evaluated a number of fuel cycle characteristics that may have the potential to impact future R and D directions. These included for example: 1) The fuel resources used, i. e., uranium and/or thorium. 2) Impact of extremely high burnup fuels. 3) Minor actinide recycle. 4) The impact of losses during separations (partitioning). 5) Critical versus subcritical (externally-driven) systems for material irradiation. 6) Impact of spectrum of irradiation system, i.e., fast, thermal or intermediate. 7) Waste generation reduction, all of which were quantified in the study. The E and S study has implemented a framework that can be used now and in the future to objectively inform on the potential of alternative nuclear fuel cycles, providing decision-makers and others with perspective on fuel cycle capabilities. (authors)

  10. Quantitative Analysis of the Civilian Bilateral Cooperation in Front-End of the Nuclear Fuel Cycle

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Viet Phuong; Yim, Man-Sung [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2015-05-15

    A substantial part of such cooperation is related to the front-end of the nuclear fuel cycle, which encompasses the processes that help manufacturing nuclear fuel, including mining and milling of natural uranium, refining and chemical conversion, enrichment (in case of fuels for Pressurized Water Reactor PWR), and fuel fabrication. Traditionally, the supply of natural uranium was dominated by Canada and Australia, whereas enrichment services have been mostly provided by companies from Western states or Russia, which are also the main customers of such services. However, Kazakhstan and African countries like Niger, Namibia, and Malawi have emerged as important suppliers in the international uranium market and recent forecasts show that China will soon become a major player in the front-end market as both consumer and service provider. In this paper, the correlation between bilateral civil nuclear cooperation in front-end of the nuclear fuel cycle and the political and economic relationship among countries was examined through a dataset of bilateral nuclear cooperation in the post-Cold War era, from 1990 to 2011. Such finding has implication on not only the nonproliferation research but also the necessary reinforcement of export control regimes like such as the Nuclear Suppliers Group. Further improvement of this dataset and the regression method are also needed in order to increase the robustness of the findings as well as to cover the whole scope of the nuclear fuel cycle, including both front-end and back-end activities.

  11. Quantitative Analysis of the Civilian Bilateral Cooperation in Front-End of the Nuclear Fuel Cycle

    International Nuclear Information System (INIS)

    Nguyen, Viet Phuong; Yim, Man-Sung

    2015-01-01

    A substantial part of such cooperation is related to the front-end of the nuclear fuel cycle, which encompasses the processes that help manufacturing nuclear fuel, including mining and milling of natural uranium, refining and chemical conversion, enrichment (in case of fuels for Pressurized Water Reactor PWR), and fuel fabrication. Traditionally, the supply of natural uranium was dominated by Canada and Australia, whereas enrichment services have been mostly provided by companies from Western states or Russia, which are also the main customers of such services. However, Kazakhstan and African countries like Niger, Namibia, and Malawi have emerged as important suppliers in the international uranium market and recent forecasts show that China will soon become a major player in the front-end market as both consumer and service provider. In this paper, the correlation between bilateral civil nuclear cooperation in front-end of the nuclear fuel cycle and the political and economic relationship among countries was examined through a dataset of bilateral nuclear cooperation in the post-Cold War era, from 1990 to 2011. Such finding has implication on not only the nonproliferation research but also the necessary reinforcement of export control regimes like such as the Nuclear Suppliers Group. Further improvement of this dataset and the regression method are also needed in order to increase the robustness of the findings as well as to cover the whole scope of the nuclear fuel cycle, including both front-end and back-end activities

  12. A state-of-the-art report on the evaluation technology of the environmental compatibility of nuclear fuel cycle

    International Nuclear Information System (INIS)

    Lee, Dong Gyu; Oh, Won Zin; Cho, Il Hoon; Ahn, Ki Jung; Kim Young Min

    1997-09-01

    In order to evaluate the environmental compatibility of nuclear fuel cycle, the methodologies for quantifying evaluation factors and the global trend of the back-end nuclear fuel cycle is reviewed. The evaluation methods of monetary values of radiation dose are demonstrate. There are Human Capital, Legal Compensation Principles, Insurance Premium Analogies, and Willingness to Pay. It can be considered that the estimation of public acceptance cost is the estimation problem of economic value of environmental property. In this report, contingent valuation method is discussed, which is one of the estimation methods of economic value. The recent research on residual radiation detection system is analyzed. (author). 7 refs., 10 tabs., 11 figs

  13. Occupational radiation exposure in nuclear fuel cycle facilities

    International Nuclear Information System (INIS)

    1979-01-01

    Full text: This symposium forms an essential part of the continuing tradition of subjecting nuclear energy to periodic review to assess the adequacy of radiation protection practices and experiences and to identify those areas needing further study and development. Specifically, the symposium focused on a review of statistical data on radiation exposure experience to workers in the nuclear fuel cycle through 1978. The technical sessions were concerned with occupational exposures: experienced in Member States; in research and development facilities; in nuclear power plants; in nuclear Fuel reprocessing facilities; in waste management facilities; and techniques to minimize doses. A critical review was made of internal and external exposures to the following occupational groups: uranium miners; mill workers; fuel fabricators; research personnel, reactor workers; maintenance staff; hot cell workers; reprocessing plant personnel; waste management personnel. In particular, attention was devoted to the work activities causing the highest radiation exposures and successful techniques which have been used to minimize individual and collective doses. Also there was an exchange of information on the trends of occupational exposure over the lifespan of individual nuclear power plants and other facilities in the nuclear fuel cycle. During the last session there was a detailed panel discussion on the conclusions and future needs highlighted during the symposium. While past symposia on nuclear power and its fuel cycle have presented data on occupational dose statistics, this symposium was the first to focus attention on the experience and trends of occupational exposure in recent years. The papers presented an authoritative account of the status of the levels and trends of the average annual individual dose as well as the annual collective dose for occupational workers in most of the world up to 1979. From the data presented it became evident that considerable progress has been

  14. French views on the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Chavardes, D.

    1986-01-01

    Fuel cycle activities are viewed in France as a very important and indissociable part of our nuclear program. Supply of material and services are firmly assured for domestic needs and overcapacities provide opportunities for industry to compete on the international market. A permanent and consistent R and D effort is continuously undertaken, aiming to apply new advanced technologies improving safety, economy and reliability of fuel cycle installations

  15. Nuclear power and the nuclear fuel cycle

    International Nuclear Information System (INIS)

    1988-06-01

    The percentage of electricity generated by nuclear energy in each of the 26 countries that operated nuclear power plants in 1987 is given. The current policy and programs of some of these countries is described. News concerning uranium mining, enrichment, reprocessing and waste management is also included. Data in the form of a generalized status summary for all power reactors (> 30 MWEN) prepared from the nuclear power reactor data files of ANSTO is shown

  16. Population exposure from the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Alpen, E.L.; Chester, R.O.; Fisher, D.R.

    1988-01-01

    The papers in this volume reflect the latest research on the nature and degree of exposure to human populations from ionizing radiation that results from the production of commercial nuclear power. The conference comprised representatives from such notable organizations as Brookhaven National Laboratory, the Inhalation Toxicology Research Institute and Pacific Northwest Laboratories. Issues addressed include the effects on humans of the mining and extraction of uranium and the fabrication of fuel for nuclear reactors, the decommissioning and disposal of facilities that are no longer useful or efficient and the likelihood of major nuclear accidents. Each document will have to be cataloged separately

  17. A study on the environmental friendliness of nuclear fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    Lee, K. J.; Lee, B. H.; Lee, S. Y.; Lim, C. Y.; Choi, Y. S.; Lee, Y. E.; Hong, D. S.; Cheong, J. H; Park, J. B.; Kim, K. K.; Cheong, H. Y; Song, M. C; Lee, H. J. [Korea Advanced Inst. of Science and Technology, Taejon (Korea, Republic of)

    1998-01-01

    The purpose of this study is to develop methodologies for quantifying environmental and socio-political factors involved with nuclear fuel cycle and finally to evaluate nuclear fuel cycle options with special emphasis given to the factors. Moreover, methodologies for developing practical radiological health risk assessment code system will be developed by which the assessment could be achieved for the recycling and reuse of scrap materials containing residual radioactive contamination. Selected scenarios are direct disposal, DUPIC(Direct use of PWR spent fuel in CANDU), and MOX recycle, land use, radiological effect, and non-radiological effect were chosen for environmental criteria and public acceptance and non-proliferation of nuclear material for socio-political ones. As a result of this study, potential scenarios to be chosen in Korea were selected and methodologies were developed to quantify the environmental and socio-political criteria. 24 refs., 27 tabs., 29 figs. (author)

  18. Enduring Nuclear Fuel Cycle, Proceedings of a panel discussion

    Energy Technology Data Exchange (ETDEWEB)

    Walter, C. E., LLNL

    1997-11-18

    The panel reviewed the complete nuclear fuel cycle in the context of alternate energy resources, energy need projections, effects on the environment, susceptibility of nuclear materials to theft, diversion, and weapon proliferation. We also looked at ethical considerations of energy use, as well as waste, and its effects. The scope of the review extended to the end of the next century with due regard for world populations beyond that period. The intent was to take a long- range view and to project, not forecast, the future based on ethical rationales, and to avoid, as often happens, long-range discussions that quickly zoom in on only the next few decades. A specific nuclear fuel cycle technology that could satisfy these considerations was described and can be applied globally.

  19. Selenium electrochemistry. Applications in the nuclear fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    Maslennikov, A.; Peretroukhine, V. [Russian Academy of Sciences, Moscow (Russian Federation). Inst. of Physical Chemistry; David, F. [Centre National de la Recherche Scientifique (CNRS), 91 - Orsay (France); Lecomte, M. [CEA Centre d' Etudes de la Valle du Rhone, 30 - Marcoule (France). Direction du Cycle du Combustible

    1999-07-01

    Modern state of selenium electrochemistry is reviewed in respect of the application of electrochemical methods for the study of the behavior of this element and its quantitative analysis in the solutions of nuclear fuel cycle. The review includes the data on the redox potentials of Se in aqueous solutions, and the data on Se redox reactions, occurring at mercury and solid electrodes. Analysis of the available literature data shows that the inverse stripping voltammetry technique for trace Se concentration and determination seems to be the most promising in application for the Se determination in PUREX solutions and in radioactive wastes. The adaptation of the ISV technique for the trace Se concentration and determination in the solutions of the nuclear fuel cycle is indicated as the most prospective goal of the future experimental study. (author)

  20. The role of accelerators in the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Takahashi, Hiroshi.

    1990-01-01

    The use of neutrons produced by the medium energy proton accelerator (1 GeV--3 GeV) has considerable potential in reconstructing the nuclear fuel cycle. About 1.5 ∼ 2.5 ton of fissile material can be produced annually by injecting a 450 MW proton beam directly into fertile materials. A source of neutrons, produced by a proton beam, to supply subcritical reactors could alleviate many of the safety problems associated with critical assemblies, such as positive reactivity coefficients due to coolant voiding. The transient power of the target can be swiftly controlled by controlling the power of the proton beam. Also, the use of a proton beam would allow more flexibility in the choice of fuel and structural materials which otherwise might reduce the reactivity of reactors. This paper discusses the rate of accelerators in the transmutation of radioactive wastes of the nuclear fuel cycles. 34 refs., 17 figs., 9 tabs

  1. Survey of nuclear fuel cycle economics: 1970--1985

    International Nuclear Information System (INIS)

    Prince, B.E.; Peerenboom, J.P.; Delene, J.G.

    1977-03-01

    This report is intended to provide a coherent view of the diversity of factors that may affect nuclear fuel cycle economics through about 1985. The nuclear fuel cycle was surveyed as to past trends, current problems, and future considerations. Unit costs were projected for each step in the fuel cycle. Nuclear fuel accounting procedures were reviewed; methods of calculating fuel costs were examined; and application was made to Light Water Reactors (LWR) over the next decade. A method conforming to Federal Power Commission accounting procedures and used by utilities to account for backend fuel-cycle costs was described which assigns a zero net salvage value to discharged fuel. LWR fuel cycle costs of from 4 to 6 mills/kWhr (1976 dollars) were estimated for 1985. These are expected to reach 6 to 9 mills/kWr if the effect of inflation is included

  2. Radioactive Waste Generation in Pyro-SFR Nuclear Fuel Cycle

    International Nuclear Information System (INIS)

    Gao, Fanxing; Park, Byung Heung; Ko, Won Il

    2011-01-01

    Which nuclear fuel cycle option to deploy is of great importance in the sustainability of nuclear power. SFR fuel cycle employing pyroprocessing (named as Pyro- SFR Cycle) is one promising fuel cycle option in the near future. Radioactive waste generation is a key criterion in nuclear fuel cycle system analysis, which considerably affects the future development of nuclear power. High population with small territory is one special characteristic of ROK, which makes the waste management pretty important. In this study, particularly the amount of waste generation with regard to the promising advanced fuel cycle option was evaluated, because the difficulty of deploying an underground repository for HLW disposal requires a longer time especially in ROK

  3. Zone approaches to international safeguards of a nuclear fuel cycle

    International Nuclear Information System (INIS)

    Fishbone, L.G.; Higinbotham, W.A.

    1986-01-01

    At present the IAEA designs its safeguards approach with regard to each type of nuclear facility so that the safeguards activities and effort are essentially the same for a given type and size of nuclear facility wherever it may be located. Conclusions regarding a State are derived by combining the results of safeguards verifications for the individual facilities within it. The authors have examined safeguards approaches for a State nuclear fuel cycle that take into account the existence of all of the nuclear facilities in the State. They have focused on the fresh-fuel zone of an advanced nuclear fuel cycle, the several facilities of which use or process low-enriched uranium. The intention is to develop an approach which will make it possible to compare the technical effectiveness and the inspection effort for the facility-oriented approach, for the zone approach and for some reasonable intermediate safeguards approaches

  4. Nuclear fuel cycle. International overview. Updating of volume 1

    International Nuclear Information System (INIS)

    1985-01-01

    It is presented the updating of the vol.I of the 'Nuclear fuel cycle - International overview' series which informs about the nuclear fuel cycle in the main countries that supply and /or use nuclear energy. It intends to serve the managerial staff since it gives a global view of the fuel cycle as well as its extent in each of the countries focalized. Information about Japan, Federal Republic of Germany, United Kingdon, France and Canada are presented. At first a summary about the situation of each country is presented and then all data for each country is presented in a tree - graphyic type, using an analysis and synthesis method, developed at the Nuclear Information Center, Brazil. (E.G.) [pt

  5. Transparency associated with the nuclear fuel cycle

    International Nuclear Information System (INIS)

    2009-01-01

    This document presents the different fuel cycle stages with which the CEA is associated, the annual flow of materials and wastes produced at these different stages, and the destiny of these produced materials and wastes. These information are given for the different CEA R and D activities: experimentation hot laboratories (activities, fuel cycle stages, list of laboratories, tables giving annual flows for each of them), research reactors (types of reactors, fuel usage modes, annual flows of nuclear materials for each reactor), spent fuel management (different types of used materials), spent fuels and radioactive wastes with a foreign origin (quantities, processes)

  6. Nuclear Fuel Cycle Strategy For Developing Countries

    International Nuclear Information System (INIS)

    Kim, Chang Hyo

    1987-01-01

    The world's uranium market is very uncertain at the moment while other front-end fuel cycle services including enrichment show a surplus of supply. Therefore, a current concern of developing countries is how to assure a long-term stable supply of uranium, so far as front-end fuel cycle operation is concerned. So, as for the front-end fuel cycle strategy, I would like to comment only on uranium procurement strategy. I imagine that you are familiar with, yet let me begin my talk by having a look at, the nuclear power development program and current status of fuel cycle technology of developing countries. It is a nice thing to achieve the full domestic control of fuel cycle operation. The surest way to do so is localization of related technology. Nevertheless, developing at a time due to enormous capital requirements, not to mention the non-proliferation restrictions. Therefore, the important which technology to localize prior to other technology and how to implement. The non-proliferation restriction excludes the enrichment and reprocessing technology for the time being. As for the remaining technology the balance between the capital costs and benefits must dictate the determination of the priority as mentioned previously. As a means to reduce the commercial risk and heavy financial burdens, the multi-national joint venture of concerned countries is desirable in implementing the localization projects

  7. The nuclear fuel cycle, an overview

    International Nuclear Information System (INIS)

    Ballery, J.L.; Cazalet, J.; Hagemann, R.

    1995-01-01

    Because uranium is widely distributed on the face of the Earth, nuclear energy has a very large potential as an energy source in view of future depletion of fossil fuel reserves. Also future energy requirements will be very sizeable as populations of developing countries are often growing and make the energy question one of the major challenges for the coming decades. Today, nuclear contributes some 340 GWe to the energy requirements of the world. Present and future nuclear programs require an adequate fuel cycle industry, from mining, refining, conversion, enrichment, fuel fabrication, fuel reprocessing and the storage of the resulting wastes. The commercial fuel cycle activities amount to an annual business in the 7-8 billions of US Dollars in the hands of a large number of industrial operators. This paper gives details about companies and countries involved in each step of the fuel cycle and about the national strategies and options chosen regarding the back end of the fuel cycle (waste storage and reprocessing). These options are illustrated by considering the policy adopted in three countries (France, United Kingdom, Japan) versed in reprocessing. (J.S.). 13 figs., 2 tabs

  8. Nuclear fuel cycle facility accident analysis handbook

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    The purpose of this Handbook is to provide guidance on how to calculate the characteristics of releases of radioactive materials and/or hazardous chemicals from nonreactor nuclear facilities. In addition, the Handbook provides guidance on how to calculate the consequences of those releases. There are four major chapters: Hazard Evaluation and Scenario Development; Source Term Determination; Transport Within Containment/Confinement; and Atmospheric Dispersion and Consequences Modeling. These chapters are supported by Appendices, including: a summary of chemical and nuclear information that contains descriptions of various fuel cycle facilities; details on how to calculate the characteristics of source terms for releases of hazardous chemicals; a comparison of NRC, EPA, and OSHA programs that address chemical safety; a summary of the performance of HEPA and other filters; and a discussion of uncertainties. Several sample problems are presented: a free-fall spill of powder, an explosion with radioactive release; a fire with radioactive release; filter failure; hydrogen fluoride release from a tankcar; a uranium hexafluoride cylinder rupture; a liquid spill in a vitrification plant; and a criticality incident. Finally, this Handbook includes a computer model, LPF No.1B, that is intended for use in calculating Leak Path Factors. A list of contributors to the Handbook is presented in Chapter 6. 39 figs., 35 tabs.

  9. Nuclear fuel cycle facility accident analysis handbook

    International Nuclear Information System (INIS)

    1998-03-01

    The purpose of this Handbook is to provide guidance on how to calculate the characteristics of releases of radioactive materials and/or hazardous chemicals from nonreactor nuclear facilities. In addition, the Handbook provides guidance on how to calculate the consequences of those releases. There are four major chapters: Hazard Evaluation and Scenario Development; Source Term Determination; Transport Within Containment/Confinement; and Atmospheric Dispersion and Consequences Modeling. These chapters are supported by Appendices, including: a summary of chemical and nuclear information that contains descriptions of various fuel cycle facilities; details on how to calculate the characteristics of source terms for releases of hazardous chemicals; a comparison of NRC, EPA, and OSHA programs that address chemical safety; a summary of the performance of HEPA and other filters; and a discussion of uncertainties. Several sample problems are presented: a free-fall spill of powder, an explosion with radioactive release; a fire with radioactive release; filter failure; hydrogen fluoride release from a tankcar; a uranium hexafluoride cylinder rupture; a liquid spill in a vitrification plant; and a criticality incident. Finally, this Handbook includes a computer model, LPF No.1B, that is intended for use in calculating Leak Path Factors. A list of contributors to the Handbook is presented in Chapter 6. 39 figs., 35 tabs

  10. Safety study of fire protection for nuclear fuel cycle facility

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-15

    Based on the investigation of fire protection standards for domestic and foreign nuclear facilities, the fire protection guideline for nuclear fuel cycle facility has been completed. In 2012, trial operation is started by private company using the guideline. In addition, the acquisition of fire evaluation data for a components (electric cable) targeted for spread of fire and the evaluation model of fire source were continued for the fire hazard analysis (FHA). (author)

  11. Report of the Nuclear Fuel Cycle Study Group

    International Nuclear Information System (INIS)

    1978-01-01

    In order to establish the nuclear fuel cycle in nuclear power generation, the study group has discussed necessary measures. Japan's attitudes to the recent international situation are first expounded. Then, the steps to be taken by the Government and private enterprises respectively are recommended regarding acquisition of natural uranium, acquisition of enriched uranium, establishment of fuel reprocessing system, utilization of plutonium, management of radioactive wastes, and transport system of spent fuel. (Mori, K.)

  12. Applications in the nuclear fuel cycle and radiopharmacy

    International Nuclear Information System (INIS)

    Jones, C.J.

    1987-01-01

    Chapter 6 of comprehensive coordination chemistry deals with applications of uranium and thorium in the nuclear fuel cycle. There are sections on the separation and recovery of the two metals from their ores and on the preparation of and re-processing of nuclear fuels. Another section is devoted to the chemistry of gallium, indium and technetium and to pharmaceutical applications of radionuclides for diagnostic imaging. (UK)

  13. Nuclear fuel cycle under progressing preparation of its systemisation

    International Nuclear Information System (INIS)

    Anon.

    2001-01-01

    Trends of nuclear development in Japan show more remarkable advancements in 2000, such as new addition of nuclear power plant, nuclear fuel cycling business, and so on. Based on an instruction of the criticality accident in JCO formed on September, 1999, government made efforts on revision of the law on regulation of nuclear reactor and so forth and establishment of a law on protection of nuclear accident as sooner, to enforce nuclear safety management and nuclear accident protective countermeasure. On the other hand, the nuclear industry field develops some new actions such as establishment of Nuclear Safety Network (NSnet)', mutual evaluation of nuclear-relative works (pier review), and so forth. And, on the high level radioactive wastes disposal of the most important subject remained in nuclear development, the Nuclear Waste Management Organization of Japan' of its main business body was established on October, 1999 together with establishment of the new law, to begin a business for embodiment of the last disposal aiming at 2030s to 2040s. On the same October, the Japan Nuclear Fuel Limited. concluded a safety agreement on premise of full-dress transportation of the used fuels to the Rokkasho Reprocessing Plant in Aomori prefecture with local government, to begin their transportation from every electric company since its year end. Here were described on development of the nuclear fuel cycling business in Japan, establishment of nuclear fuel cycling, disposal on the high level radioactive wastes, R and D on geological disposal of the high level radioactive wastes, establishment on cycle back-end of nuclear fuels, and full-dressing of nuclear fuel cycling. (G.K.)

  14. Spent fuel management and closed nuclear fuel cycle

    International Nuclear Information System (INIS)

    Kudryavtsev, E.G.

    2012-01-01

    Strategic objectives set by Rosatom Corporation in the field of spent fuel management are given. By 2030, Russia is to create technological infrastructure for innovative nuclear energy development, including complete closure of the nuclear fuel cycle. A target model of the spent NPP nuclear fuel management system until 2030 is analyzed. The schedule for key stages of putting in place the infrastructure for spent NPP fuel management is given. The financial aspect of the problem is also discussed [ru

  15. Uranium Resource Availability Analysis of Four Nuclear Fuel Cycle Options

    International Nuclear Information System (INIS)

    Youn, S. R.; Lee, S. H.; Jeong, M. S.; Kim, S. K.; Ko, W. I.

    2013-01-01

    Making the national policy regarding nuclear fuel cycle option, the policy should be established in ways that nuclear power generation can be maintained through the evaluation on the basis of the following aspects. To establish the national policy regarding nuclear fuel cycle option, that must begin with identification of a fuel cycle option that can be best suited for the country, and the evaluation work for that should be proceeded. Like all the policy decision, however, a certain nuclear fuel cycle option cannot be superior in all aspects of sustain ability, environment-friendliness, proliferation-resistance, economics, technologies, which make the comparison of the fuel cycle options very complicated. For such a purpose, this paper set up four different fuel cycle of nuclear power generation considering 2nd Comprehensive Nuclear Energy Promotion Plan(CNEPP), and analyzed material flow and features in steady state of all four of the fuel cycle options. As a result of an analysis on material flow of each nuclear fuel cycle, it was analyzed that Pyro-SFR recycling is most effective on U resource availability among four fuel cycle option. As shown in Figure 3, OT cycle required the most amount of U and Pyro-SFR recycle consumed the least amount of U. DUPIC recycling, PWR-MOX recycling, and Pyro-SFR recycling fuel cycle appeared to consumed 8.2%, 12.4%, 39.6% decreased amount of uranium respectively compared to OT cycle. Considering spent fuel can be recycled as potential energy resources, U and TRU taken up to be 96% is efficiently used. That is, application period of limited uranium natural resources can be extended, and it brings a great influence on stable use of nuclear energy

  16. Setting the scenario - potential hazards of the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Berry, R.J.; McPhail, N.

    1989-01-01

    The range of nuclear fuel cycle services provided by the various plants belonging to BNFL throughout the UK are described. The Sellafield Reprocessing Plant as the site which has the greatest potential for radiological hazard is then considered in more detail. In particular the safety cycle designed to prevent radiological accidents at Sellafield, emergency planning, the consequences of a major accident at Sellafield and the medical arrangements in the event of an accident are all discussed. (UK)

  17. Proceedings of the Third Scientific Presentation on Nuclear Fuel Cycle

    International Nuclear Information System (INIS)

    1998-02-01

    The proceeding contains papers presented in the Third Scientific Presentation on nuclear Fuel Element Cycle held on 4-5 Nov 1997 in Jakarta, Indonesia. These papers were divided by three groups that are technology of exploration, processing, purification and analysis of nuclear materials; technology of nuclear fuel elements and structures; and technology of waste management, safety and nuclear fuel cycle. There are 38 papers indexed individually. (ID)

  18. Impact of actinide recycle on nuclear fuel cycle health risks

    International Nuclear Information System (INIS)

    Michaels, G.E.

    1992-06-01

    The purpose of this background paper is to summarize what is presently known about potential impacts on the impacts on the health risk of the nuclear fuel cycle form deployment of the Advanced Liquid Metal Reactor (ALMR) 1 and Integral Fast Reactor (IF) 2 technology as an actinide burning system. In a companion paper the impact on waste repository risk is addressed in some detail. Therefore, this paper focuses on the remainder of the fuel cycle

  19. Safety study of fire protection for nuclear fuel cycle facility

    International Nuclear Information System (INIS)

    2013-01-01

    Based on the investigation of fire protection standards for domestic and foreign nuclear facilities, the fire protection guideline for nuclear fuel cycle facility has been completed. In 2012, trial operation is started by private company using the guideline. In addition, the acquisition of fire evaluation data for a components (electric cable) targeted for spread of fire and the evaluation model of fire source were continued for the fire hazard analysis (FHA). (author)

  20. Methodologies for evaluating the proliferation resistance of nuclear fuel cycles

    International Nuclear Information System (INIS)

    Shiotani, Hiroki; Hori, Kei-ichiro; Takeda, Hiroshi

    2001-01-01

    The Japan Nuclear Cycle Development Institute (JNC) believes that the development of future nuclear fuel cycle technology should be conducted with careful consideration given to non-proliferation. JNC is studying methodologies for evaluating proliferation resistance of nuclear fuel cycle technologies. However, it is difficult to establish the methodology for evaluating proliferation resistance since the results greatly depend on the assumption for the evaluation and the surrounding conditions. This study grouped factors of proliferation resistance into categories through reviewing past studies and studied the relationships between the factors. Then, this study tried to find vulnerable nuclear material (plutonium) in some FBR fuel cycles from the proliferation perspective, and calculated the time it takes to convert the materials from various nuclear fuel cycles into pure plutonium metal under some assumptions. The result showed that it would take a long time to convert the nuclear materials from the FBR fuel cycles without plutonium separation. While it is a preliminary attempt to evaluate a technical factor of proliferation resistance as the basis of the institutional proliferation resistance, the JNC hopes that it will contribute to future discussions in this area. (author)

  1. Advanced nuclear fuel cycles - Main challenges and strategic choices

    International Nuclear Information System (INIS)

    Le Biez, V.; Machiels, A.; Sowder, A.

    2013-01-01

    A graphical conceptual model of the uranium fuel cycles has been developed to capture the present, anticipated, and potential (future) nuclear fuel cycle elements. The once-through cycle and plutonium recycle in fast reactors represent two basic approaches that bound classical options for nuclear fuel cycles. Chief among these other options are mono-recycling of plutonium in thermal reactors and recycling of minor actinides in fast reactors. Mono-recycling of plutonium in thermal reactors offers modest savings in natural uranium, provides an alternative approach for present-day interim management of used fuel, and offers a potential bridging technology to development and deployment of future fuel cycles. In addition to breeder reactors' obvious fuel sustainability advantages, recycling of minor actinides in fast reactors offers an attractive concept for long-term management of the wastes, but its ultimate value is uncertain in view of the added complexity in doing so,. Ultimately, there are no simple choices for nuclear fuel cycle options, as the selection of a fuel cycle option must reflect strategic criteria and priorities that vary with national policy and market perspectives. For example, fuel cycle decision-making driven primarily by national strategic interests will likely favor energy security or proliferation resistance issues, whereas decisions driven primarily by commercial or market influences will focus on economic competitiveness

  2. Autonomous dynamic decision making in a nuclear fuel cycle simulator

    International Nuclear Information System (INIS)

    Pelakauskas, Martynas; Auzans, Aris; Schneider, Erich A.; Tkaczyk, Alan H.

    2013-01-01

    Highlights: • Objective criteria based decision making in a nuclear fuel cycle simulator. • Simulation driven by an evolving performance metric. • Implementation of the model in a nuclear fuel cycle simulator. • Verification of dynamic decision making based on uranium price evolution. -- Abstract: Growing energy demand and the push to move toward carbon-free ways of electricity generation have renewed the world's interest in nuclear energy. Due to the high technical and economic uncertainties related to nuclear energy, simulation tools have become a necessity in order to plan and evaluate possible nuclear fuel cycles (NFCs). Most of the NFC simulators today work by running the simulation with a user-defined set of facility build orders and preferences. While this allows for a simple way to change the simulation conditions, it may not always lead to optimal results and strongly relies on the user defining the correct parameters. This study looks into the possibility of using the expected cost of electricity (CoE) as the driving build decision variable instead of relying on user-defined build orders. This is a first step toward a more general decision making strategy in dynamic fuel cycle simulation. For this purpose, additional modules were implemented in an NFC simulator, VEGAS, with the consumption dependent price of uranium as a time-varying NFC cost component that drives the cost competitiveness of available NFC options. The model was demonstrated to verify the correct operation of a CoE-driven NFC simulator

  3. Advanced nuclear fuel cycles - Main challenges and strategic choices

    Energy Technology Data Exchange (ETDEWEB)

    Le Biez, V. [Corps des Mines, 35 bis rue Saint-Sabin, F-75011 Paris (France); Machiels, A.; Sowder, A. [Electric Power Research Institute, Inc. 3420, Hillview Avenue, Palo Alto, CA 94304 (United States)

    2013-07-01

    A graphical conceptual model of the uranium fuel cycles has been developed to capture the present, anticipated, and potential (future) nuclear fuel cycle elements. The once-through cycle and plutonium recycle in fast reactors represent two basic approaches that bound classical options for nuclear fuel cycles. Chief among these other options are mono-recycling of plutonium in thermal reactors and recycling of minor actinides in fast reactors. Mono-recycling of plutonium in thermal reactors offers modest savings in natural uranium, provides an alternative approach for present-day interim management of used fuel, and offers a potential bridging technology to development and deployment of future fuel cycles. In addition to breeder reactors' obvious fuel sustainability advantages, recycling of minor actinides in fast reactors offers an attractive concept for long-term management of the wastes, but its ultimate value is uncertain in view of the added complexity in doing so,. Ultimately, there are no simple choices for nuclear fuel cycle options, as the selection of a fuel cycle option must reflect strategic criteria and priorities that vary with national policy and market perspectives. For example, fuel cycle decision-making driven primarily by national strategic interests will likely favor energy security or proliferation resistance issues, whereas decisions driven primarily by commercial or market influences will focus on economic competitiveness.

  4. Evaluation Indicators for Analysis of Nuclear Fuel Cycle Sustainability

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Chang Joon; Ko, Won Il; Chang, Hong Lae

    2008-01-15

    In this report, an attempt was made to derive indicators for the evaluation of the sustainability of the nuclear fuel cycle, using the methodologies developed by the INPRO, OECD/NEA and Gen-IV. In deriving the indicators, the three main elements of the sustainability, i.e., economics, environmental impact, and social aspect, as well as the technological aspect of the nuclear fuel cycle, considering the importance of the safety, were selected as the main criteria. An evaluation indicator for each criterion was determined, and the contents and evaluation method of each indicator were proposed. In addition, a questionnaire survey was carried out for the objectivity of the selection of the indicators in which participated some experts of the Korea Energy Technology and Emergency Management Institute (KETEMI) . Although the proposed indicators do not satisfy the characteristics and requirements of general indicators, it is presumed that they can be used in the analysis of the sustainability of the nuclear fuel cycle because those indicators incorporate various expert judgment and public opinions. On the other hand, the weighting factor of each indicator should be complemented in the future, using the AHP method and expert advice/consultations.

  5. TALSPEAK Chemistry in Advanced Nuclear Fuel Cycles

    International Nuclear Information System (INIS)

    Nilsson, Mikael; Nash, Kenneth L.

    2008-01-01

    The separation of trivalent transplutonium actinides from fission product lanthanide ions represents a challenging aspect of advanced nuclear fuel partitioning schemes. The challenge of this separation could be amplified in the context of the AFCI-UREX+1a process, as Np and Pu will accompany the minor actinides to this stage of separation. At present, the baseline lanthanide-actinide separation method is the TALSPEAK (Trivalent Actinide - Lanthanide Separation by Phosphorus reagent Extraction from Aqueous complexes) process. TALSPEAK was developed in the late 1960's at Oak Ridge National Laboratory and has been demonstrated at pilot scale. This process relies on the complex interaction between an organic and an aqueous phase both containing complexants for selectively separating the trivalent actinide. The 3 complexing components are: the di(2-ethylhexyl) phosphoric acid (HDEHP), the lactic acid (HL) and the diethylenetriamine-N,N,N',N'',N''-pentaacetic acid (DTPA). In this report we discuss observations on kinetic and thermodynamic features described in the prior literature and describe some results of our ongoing research on basic chemical features of this system. The information presented indicates that the lactic acid buffer participates in the net operation of the TALSPEAK process in a manner that is not explained by existing information on the thermodynamic features if the known Eu(III)-lactate species. (authors)

  6. Verifiable Fuel Cycle Simulation Model (VISION): A Tool for Analyzing Nuclear Fuel Cycle Futures

    International Nuclear Information System (INIS)

    Jacobson, Jacob J.; Piet, Steven J.; Matthern, Gretchen E.; Shropshire, David E.; Jeffers, Robert F.; Yacout, A.M.; Schweitzer, Tyler

    2010-01-01

    The nuclear fuel cycle consists of a set of complex components that are intended to work together. To support the nuclear renaissance, it is necessary to understand the impacts of changes and timing of events in any part of the fuel cycle system such as how the system would respond to each technological change, a series of which moves the fuel cycle from where it is to a postulated future state. The system analysis working group of the United States research program on advanced fuel cycles (formerly called the Advanced Fuel Cycle Initiative) is developing a dynamic simulation model, VISION, to capture the relationships, timing, and changes in and among the fuel cycle components to help develop an understanding of how the overall fuel cycle works. This paper is an overview of the philosophy and development strategy behind VISION. The paper includes some descriptions of the model components and some examples of how to use VISION. For example, VISION users can now change yearly the selection of separation or reactor technologies, the performance characteristics of those technologies, and/or the routing of material among separation and reactor types - with the model still operating on a PC in <5 min.

  7. Epidemiological follow-up of nuclear fuel cycle workers in France: Review of IRSN's studies - 2017 report

    International Nuclear Information System (INIS)

    2017-10-01

    This report reviews the progresses in knowledge provided by the epidemiological research conducted by the IRSN. It concerns follow-up studies of health effects of workers employed in the nuclear fuel cycle, in link with their occupational chronic exposure to ionizing radiation, from external irradiation or internal contamination

  8. Operating experience with a near-real-time inventory balance in a nuclear fuel cycle plant

    International Nuclear Information System (INIS)

    Armento, W.J.; Box, W.D.; Kitts, F.G.; Krichinsky, A.M.; Morrison, G.W.; Pike, D.H.

    1981-01-01

    The principal objective of the ORNL Integrated Safeguards Program (ISP) is to provide enhanced material accountability, improved process control, and greater security for nuclear fuel cycle facilities. With the improved instrumentation and computer interfacing currently installed, the ORNL 233 U Pilot Plant has demonstrated capability of a near-real-time liquid-volume balance in both the solvent-extraction and ion-exchange systems. Future developments should include the near-real-time mass balancing of special nuclear materials as both a static, in-tank summation and a dynamic, in-line determination. In addition, the aspects of site security and physical protection can be incorporated into the computer monitoring

  9. Energy and Nuclear Fuel Cycle in the Asia Pacific

    International Nuclear Information System (INIS)

    Soentono, S.

    1998-01-01

    Asia in the Asia Pacific region will face a scarcity of energy supply and an environmental pollution in the near future. On the other hand, development demands an increasing standard of living for a large number of, and still growing, population. Nuclear energy utilization is to be one of the logical alterative to overcome those problems. From the economical point of view, Asia has been ready to introduce the nuclear energy utilization. Asia should establish the cooperation in all aspects such as in politics, economics and human resources through multilateral agreement between countries to enable the introduction successfully. Although the beginning of the introduction, the selection of the reactor types and the nuclear fuel cycle utilized are limited, but eventually the nuclear fuel cycle chosen should be the one of a better material usage as well as non proliferation proof. The fuel reprocessing and spent fuel storage may become the main technological and political issues. The radioactive waste management technology however should not be a problem for a country starting the nuclear energy utilization, but a sound convincing waste management programme is indispensable to obtained public acceptance. The operating nuclear power countries can play important roles in various aspects such as problem solving in waste management, disseminating nuclear safety experiences, conducting education and training, developing the advanced nuclear fuel cycle for better utilization of nuclear fuels, and enhancing as well as strengthening the non-proliferation. It has to be remembered that cooperation in human resources necessitates the important of maintaining and improving the safety culture, which has been already practiced during the last 4 decades by nuclear community

  10. Transportation risks in the US nuclear fuel cycle

    International Nuclear Information System (INIS)

    Rhoads, R.E.; Andrews, W.B.

    1980-01-01

    Estimated risks associated with accidental releases of materials transported for each step of the nuclear fuel cycle are presented. The risk estimates include both immediate and latent fatilities caused by releases of these materials in transportation accidents. Studies of the risk of transporting yellowcake, fresh nuclear and low level wastes from the front end of the fuel cycle have not been completed. Existing information does permit estimates of the risks to be made. The estimates presented result from the very low hazards associated with release of these materials. These estimates are consistent with the results of other studies. The results show that risks from all the fuel cycle transportation steps are low. The results also indicate that the total transportation risks associated with the nuclear fuel cycle are distributed about evenly between the fuel supply end and waste management end of the cycle. Risks in the front end of the cycle result primarily from the chemical toxicity of the materials transported. The results of the risk analysis studies for transportation of nuclear fuel cycle materials are compared with the results for the three studies that have been completed for non-nuclear systems. The risk analysis methodology used in these studies identifies the complete spectrum of potential accident consequences and estimates the probability of events producing that level of consequence. The maximum number of fatalities predicted for each material is presented. A variety of risk measures have been used because of the inherent difficulties in making risk comparisons. Examination of a number of risk measures can provide additional insights and help guard against conclusions that are dependent on the way the risk information has been developed and displayed. The results indicate that the risks from transporting these materials are all relatively low in comparison to other risks in society

  11. Nuclear fuel cycle reprocessing and waste management technology

    International Nuclear Information System (INIS)

    Allardice, R.H.

    1992-01-01

    In this address, the status of global and US nuclear fuel cycles is briefly reviewed. Projections for Europe and the Pacific basin include a transition towards mixed uranium and plutonium oxide (MOX) recycle in thermal and, eventually, fast reactors. Major environmental benefits could be expected by the development of fast reactor technology. Published estimates of the principal greenhouse gas emission from nuclear operations are reviewed. The final section notes the reduction in radiation dose uptake by operators and general public which can be anticipated when fast reactor and thermal reactor fuel cycles are compared. The major reduction follows elimination of the uranium mining/milling operation

  12. The environmental accounting in the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Komatsu, Cintia Nagako; Aquino, Afonso Rodrigues de

    2006-01-01

    This paper illustrates how accountancy can contribute to conservation, protection and the recovery of the environment. Firstly, the appearance of accountancy, its performance fields, its terminologies and even the Environmental Accounting Definition is approached, bringing the social balance as a tool for making decisions in the social field. Environmental Accounting is a very useful tool to apply to any entity including the nuclear area by calculating the use in order for the environmental passive to be zero, especially in the activity of the nuclear fuel cycle. (author)

  13. The environmental impacts of the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Hamard, J.

    1975-01-01

    A survey about the environmental pollution and the population exposure caused by the nuclear fuel cycle is set up. Proceeding from the environmental changes caused by the construction of plants, the author shows the hazards of the operation of the plants. The fuel cycle beginning with the mining of nuclear fuels and reaching to their reprocessing, the environmental pollution by radionuclides and the population exposure resulting from this are outlined. After indicating the advantages of the concentration of nuclear plants, the author shows comparatively the hazards caused by conventional energy sources. (ORU) [de

  14. Development on nuclear fuel cycle business in Japan

    International Nuclear Information System (INIS)

    Usami, Kogo

    2002-01-01

    The Japan Nuclear Fuel Co., Ltd. (JNF) develops five businesses on nuclear fuel cycle such as uranium concentration, storage and administration of high level radioactive wastes, disposition of low level radioactive wastes, used fuel reprocessing, MOX fuel, at Rokkasho-mura in Aomori prefecture. Here were introduced on outline, construction and operation in reprocessing and MOX fuel works, outline, present state and future subjects on technical development of uranium concentration, outline and safety of disposition center on low level radioactive wastes, and storage and administration of high level radioactive wastes. (G.K.)

  15. Evaluation of Waste Arising from Future Nuclear Fuel Cycle

    International Nuclear Information System (INIS)

    Jubin, Robert Thomas; Taiwo, Temitope; Wigeland, Roald

    2015-01-01

    A comprehensive study was recently completed at the request of the US Department of Energy Office of Nuclear Energy (DOE-NE) to evaluate and screen nuclear fuel cycles. The final report was issued in October 2014. Uranium- and thorium-based fuel cycles were evaluated using both fast and thermal spectrum reactors. Once-through, limited-recycle, and continuous-recycle cases were considered. This study used nine evaluation criteria to identify promising fuel cycles. Nuclear waste management was one of the nine evaluation criteria. The waste generation criterion from this study is discussed herein.

  16. Radiological protection and transuranic wastes from the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Morley, F.; Kelly, G.N.

    1976-01-01

    The significant higher actinides in the nuclear fuel cycle are identified and current knowledge of their radiotoxicity is reviewed with particular emphasis on plutonium. Experience of plutonium in the environment is briefly summarised. The origins of fuel cycle wastes contaminated by actinides are described and available data examined to estimate the amounts of radioactivity involved now and in the future. The radiological importance of individual isotopes of the various actinide elements in wastes is compared and attention drawn to changes with time. Some possible alternative waste management policies are reviewed against the requirements of radiological safety. (author)

  17. The nuclear fuel cycle; Le cycle du combustible nucleaire

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-05-01

    After a short introduction about nuclear power in the world, fission physics and the French nuclear power plants, this brochure describes in a digest way the different steps of the nuclear fuel cycle: uranium prospecting, mining activity, processing of uranium ores and production of uranium concentrates (yellow cake), uranium chemistry (conversion of the yellow cake into uranium hexafluoride), fabrication of nuclear fuels, use of fuels, reprocessing of spent fuels (uranium, plutonium and fission products), recycling of energetic materials, and storage of radioactive wastes. (J.S.)

  18. Optimization in the nuclear fuel cycle II: Surface contamination

    International Nuclear Information System (INIS)

    Pereira, W.S.; Silva, A.X.; Lopes, J.M.; Carmo, A.S.; Fernandes, T.S.; Mello, C.R.; Kelecom, A.

    2017-01-01

    Optimization is one of the bases of radioprotection and aims to move doses away from the dose limit that is the borderline of acceptable radiological risk. This work aims to use the monitoring of surface contamination as a tool of the optimization process. 53 surface contamination points were analyzed at a nuclear fuel cycle facility. Three sampling points were identified with monthly mean values of contamination higher than 1 Bq ∙ cm -2 , points 28, 42 and 47. These points were indicated for the beginning of the optimization process

  19. Hazards and control of ruthenium in the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Eichholz, G.G.

    1978-01-01

    A review is presented of present information on the possible hazards of radioruthenium in the nuclear fuel cycle and its behaviour in nuclear operations and in the environment. The subject is dealt with under the following headings: basic chemical and nuclear properties of ruthenium; chemistry (including the ruthenium-nitric acid system, electrochemistry, extraction processes); ruthenium toxicity; generation of radioruthenium (fallout sources, reactor sources, fuel reprocessing operations); waste treatment (cementation and bitumenization, calcining processes, vitrification); movement in the environment (movement of airborne effluents, liquid effluents and the freshwater environment, marine environment, bottom sediments, marine organisms, terrestrial environments, uptake in vegetation and animals); conclusion. (U.K.)

  20. Study on comprehensive evaluation methods for nuclear fuel cycle

    International Nuclear Information System (INIS)

    Arie, Kazuo

    1999-03-01

    This investigation on comprehensive-evaluation-methods for nuclear fuel cycle has been performed through open-literature search. As the results, no proper comprehensive-evaluation-method has been found which integrate several factors to be considered into only one factor. In the evaluation of future advanced nuclear energy systems, it is required to evaluate from both view points of natural resources and natural environment, in addition to the other factors such as safety, economy, and proliferation resistance. It is recommended that clarification of specific items or targets to be evaluated is most important as the first thing to be done. Second, methodology for the evaluation should be discussed. (author)

  1. Guidelines for implementation of an environmental management system in the nuclear fuel cycle: a case study of USEXA-CEA

    International Nuclear Information System (INIS)

    Mattiolo, Sandra Regina

    2012-01-01

    The environmental management standards are intended to provide to the organizations the elements needed for the implementation of an Environmental Management System (EMS) that can be effectively integrated to another management requirements and assist them to achieve their environmental and economic goals. The Uranium Hexafluoride Production Unit - USEXA, located at the Navy Technological Center in São Paulo, will be the first Brazilian industrial plant responsible for the conversion stage in the nuclear fuel cycle (production of uranium hexafluoride - UF6), allowing added-value to the uranium ore. The EMS proposed to USEXA in this project allows to regulate its interfaces with the environment, since the Standards of CNEN - National Commission of Nuclear Energy and of the IAEA - International Atomic Energy Agency for Nuclear Installations, aim, mostly, to attend the security criteria for the population and the environment, concerning ionizing radiation. This model of EMS fills the gaps in standards of IAEA and CNEN, since it takes into account the environmental impacts from the use of chemicals in the manufacturing process of UF6, and general aspects of sustainability. It can be considered an original contribution within the complex activities that includes the uranium processing in the nuclear fuel cycle. This research proposes, as result, the use of a filter of significance to evaluate the environmental impacts depending on the installation location. It is also presented the Management System Manual for USEXA and models for training in personnel management are suggested, such as coaching and neuro linguistic programing, which can be applied to any Management System. The training can be considered a preventive action as they considerably decreased incidents related to equipment maintenance and thus the occurrence of environmental impacts. (author)

  2. Survey of technology for decommissioning of nuclear fuel cycle facilities. 8. Remote handling and cutting techniques

    Energy Technology Data Exchange (ETDEWEB)

    Ogawa, Ryuichiro; Ishijima, Noboru [Japan Nuclear Cycle Development Inst., Oarai, Ibaraki (Japan). Oarai Engineering Center

    1999-03-01

    In nuclear fuel cycle facility decommissioning and refurbishment, the remote handling techniques such as dismantling, waste handling and decontamination are needed to reduce personnel radiation exposure. The survey research for the status of R and D activities on remote handling tools suitable for nuclear facilities in the world and domestic existing commercial cutting tools applicable to decommissioning of the facilities was conducted. In addition, the drive mechanism, sensing element and control system applicable to the remote handling devices were also surveyed. This report presents brief surveyed summaries. (H. Itami)

  3. OECD/NEA Ongoing activities related to the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Cornet, S.M.; McCarthy, K.; Chauvin, N.

    2013-01-01

    As part of its role in encouraging international collaboration, the OECD Nuclear Energy Agency is coordinating a series of projects related to the Nuclear Fuel Cycle. The Nuclear Science Committee (NSC) Working Party on Scientific Issues of the Nuclear Fuel Cycle (WPFC) comprises five different expert groups covering all aspects of the fuel cycle from front to back-end. Activities related to fuels, materials, physics, separation chemistry, and fuel cycles scenarios are being undertaken. By publishing state-of-the-art reports and organizing workshops, the groups are able to disseminate recent research advancements to the international community. Current activities mainly focus on advanced nuclear systems, and experts are working on analyzing results and establishing challenges associated to the adoption of new materials and fuels. By comparing different codes, the Expert Group on Advanced Fuel Cycle Scenarios is aiming at gaining further understanding of the scientific issues and specific national needs associated with the implementation of advanced fuel cycles. At the back end of the fuel cycle, separation technologies (aqueous and pyrochemical processing) are being assessed. Current and future activities comprise studies on minor actinides separation and post Fukushima studies. Regular workshops are also organized to discuss recent developments on Partitioning and Transmutation. In addition, the Nuclear Development Committee (NDC) focuses on the analysis of the economics of nuclear power across the fuel cycle in the context of changes of electricity markets, social acceptance and technological advances and assesses the availability of the nuclear fuel and infrastructure required for the deployment of existing and future nuclear power. The Expert Group on the Economics of the Back End of the Nuclear Fuel Cycle (EBENFC), in particular, is looking at assessing economic and financial issues related to the long term management of spent nuclear fuel. (authors)

  4. Nuclear fuel cycle assessment of India: A technical study for U.S.-India cooperation

    Science.gov (United States)

    Krishna, Taraknath Woddi Venkat

    The recent civil nuclear cooperation proposed by the Bush Administration and the Government of India has heightened the necessity of assessing India's nuclear fuel cycle inclusive of nuclear materials and facilities. This agreement proposes to change the long-standing U.S. policy of preventing the spread of nuclear weapons by denying nuclear technology transfer to non-NPT signatory states. The nuclear tests in 1998 have convinced the world community that India would never relinquish its nuclear arsenal. This has driven the desire to engage India through civilian nuclear cooperation. The cornerstone of any civilian nuclear technological support necessitates the separation of military and civilian facilities. A complete nuclear fuel cycle assessment of India emphasizes the entwinment of the military and civilian facilities and would aid in moving forward with the separation plan. To estimate the existing uranium reserves in India, a complete historical assessment of ore production, conversion, and processing capabilities was performed using open source information and compared to independent reports. Nuclear energy and plutonium production (reactor- and weapons-grade) was simulated using declared capacity factors and modern simulation tools. The three-stage nuclear power program entities and all the components of civilian and military significance were assembled into a flowsheet to allow for a macroscopic vision of the Indian fuel cycle. A detailed view of the nuclear fuel cycle opens avenues for technological collaboration. The fuel cycle that grows from this study exploits domestic thorium reserves with advanced international technology and optimized for the existing system. To utilize any appreciable fraction of the world's supply of thorium, nuclear breeding is necessary. The two known possibilities for production of more fissionable material in the reactor than is consumed as fuel are fast breeders or thermal breeders. This dissertation analyzes a thermal

  5. Severe accident analysis and management in nuclear fuel cycle facilities

    International Nuclear Information System (INIS)

    Golshan, Mina

    2013-01-01

    Within the UK regulatory regime, assessment of risks arising from licensee's activities are expected to cover both normal operations and fault conditions. In order to establish the safety case for fault conditions, fault analysis is expected to cover three forms of analysis: design basis analysis (DBA), probabilistic safety assessment (PSA) and severe accident analysis (SAA). DBA should provide a robust demonstration of the fault tolerance of the engineering design and the effectiveness of the safety measures on a conservative basis. PSA looks at a wider range of fault sequences (on a best estimate basis) including those excluded from the DBA. SAA considers significant but unlikely accidents and provides information on their progression and consequences, within the facility, on the site and off site. The assessment of severe accidents is not limited to nuclear power plants and is expected to be carried out for all plant states where the identified dose targets could be exceeded. This paper sets out the UK nuclear regulatory expectation on what constitutes a severe accident, irrespective of the type of facility, and describes characteristics of severe accidents focusing on nuclear fuel cycle facilities. Key rules in assessment of severe accidents as well as the relationship to other fault analysis techniques are discussed. The role of SAA in informing accident management strategies and offsite emergency plans is covered. The paper also presents generic examples of scenarios that could lead to severe accidents in a range of nuclear fuel cycle facilities. (authors)

  6. The Derivation of Evaluation Criteria of Nuclear Fuel Cycle

    International Nuclear Information System (INIS)

    Kim, S. K.; Ko, W. I.

    2013-01-01

    This study suggests the evaluation criteria and evaluation indicators derived using a factor analysis. As a result of a factor analysis, 5 evaluation criteria (safety (technological feature), environmental impact, economic feasibility, sociality, institution) and 24 evaluation indicators were selected. Particularly, the level of legislation for the management of radioactive waste, the level of establishment of safety standards of the country, and the level of application of international safety standards were analyzed to be qualitative evaluation indicators that should be considered in the aspect of the institution. The purpose of an analysis on diverse nuclear fuel cycles is to select the optimum nuclear fuel cycle suitable for the environment of one's own country. Accordingly, diverse evaluation criteria and evaluation indicators are necessary. In addition, individual evaluation criteria can be explained with various evaluation indicators. For example, the evaluation criteria for economic feasibility can be explained with evaluation indicators such as the unit cost or total cost. However, if too many evaluation indicators are included in one evaluation criterion, the evaluation is not easy, and if too few evaluation indicators are established, the evaluation criteria cannot be explained sufficiently, and thus the evaluation can be distorted. Accordingly, not only should the evaluation indicators be composed of an appropriate number of units, but they should also not be overlapped, and ambiguous evaluation indicators should be dropped out and necessary evaluation indicators must be included

  7. Advances in nuclear fuel cycle materials and concepts. Vol. 1

    International Nuclear Information System (INIS)

    El-Sayed, A.A.

    1996-01-01

    This presentation gives an overview of the new trends in the materials used in various steps of the nuclear fuel cycle. This will cover fuels for various types of reactors (PWRs, HTRs, ... etc.) cladding materials, control rod materials, reactor structural materials, as well as materials used in the back end of the fuel cycle. Problems associated with corrosion of fuel cladding materials as well as those in control rod materials (B 4 C swelling...etc.), and approaches for combating these influences are reviewed. For the case of reactor pressure vessel materials issues related to the influences of alloy composition, design approaches including the use of more forged parts and minimizing, as for as possible, longitudinal welds especially in the central region, are discussed. Furthermore the application of techniques for recovery of pre-irradiation mechanical properties of PVS components is also covered. New candidate materials for the construction of high level waste containers including modified types of stainless steel (high Ni and high MO), nickel-base alloys and titanium alloys are also detailed. Finally, nuclear fuel cycle concepts involving plutonium and actinides recycling shall be reviewed. 28 figs., 6 tabs

  8. Rokkashomura: debut of the nuclear fuel cycle business

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    Japan Nuclear Fuel Industries and local governments signed the safety agreement, and the work began to initiate the operation of a uranium enrichment plant. In this way, the national Rokkashomura project to be constructed with the total cost of 1.2 trillion yen marked the debut of nuclear fuel cycle business in Japan. The public hearing concerning the low level radioactive waste storage facility was finished. However, a fuel reprocessing plant has not advanced since the national government did not clarify the policy for the management of high level rad-waste from the plant. Gubernatorial election was the best thing to happen for the public acceptance, and the local opposition movement lost steam. The operation of the uranium enrichment plant is to begin next January, and the construction of the low level waste storage facility proceeds on schedule. Regarding the fuel reprocessing plant, the public hearing is to be held in autumn, but it faces difficulties. The siting of nuclear fuel cycle facilities has already produced benefits for the local economy. 18 business establishments representing 15 firms have so far decided to open in Aomori Prefecture. JNFI and JNFS began the specific study for merger. (K.I.)

  9. Advances in nuclear fuel cycle materials and concepts. Vol. 1

    Energy Technology Data Exchange (ETDEWEB)

    El-Sayed, A A [Materials Division, Nuclear Research Centre, Atomic Energy Authority, Cairo (Egypt)

    1996-03-01

    This presentation gives an overview of the new trends in the materials used in various steps of the nuclear fuel cycle. This will cover fuels for various types of reactors (PWRs, HTRs, ... etc.) cladding materials, control rod materials, reactor structural materials, as well as materials used in the back end of the fuel cycle. Problems associated with corrosion of fuel cladding materials as well as those in control rod materials (B{sub 4} C swelling...etc.), and approaches for combating these influences are reviewed. For the case of reactor pressure vessel materials issues related to the influences of alloy composition, design approaches including the use of more forged parts and minimizing, as for as possible, longitudinal welds especially in the central region, are discussed. Furthermore the application of techniques for recovery of pre-irradiation mechanical properties of PVS components is also covered. New candidate materials for the construction of high level waste containers including modified types of stainless steel (high Ni and high MO), nickel-base alloys and titanium alloys are also detailed. Finally, nuclear fuel cycle concepts involving plutonium and actinides recycling shall be reviewed. 28 figs., 6 tabs.

  10. A study on domino effect in nuclear fuel cycle facilities

    International Nuclear Information System (INIS)

    Bozzolan, Jean-Claude

    2006-01-01

    Accidents caused by domino effect are among the most severe accidents in the chemical and process industry. Although the destructive potential of these accidental scenarios is widely known, little attention has been paid to this problem in the technical literature and a complete methodology for quantitative assessment of domino accidents contribution to industrial risk is still lacking. The present study proposed a systematic procedure for the quantitative assessment of the risk caused by domino effect in chemical plants that are part of nuclear fuel cycle plants. This work is based on recent advances in the modeling of fire and explosion damage to process equipment due to different escalation vectors (heat radiation, overpressure and fragment projection). Available data from literature and specific vulnerability models derived for several categories of process equipment had been used in the present work. The proposed procedure is applied to a typical storage area of a reconversion plant situated in a complex that shelters other nuclear fuel cycle facilities. The top-events and escalation vectors are identified, their consequences estimated and credible domino scenarios selected on the basis of their frequencies. (author)

  11. Changing Perspectives on Nonproliferation and Nuclear Fuel Cycles

    International Nuclear Information System (INIS)

    Choi, J; Isaacs, TH

    2005-01-01

    The concepts of international control over technologies and materials in the proliferation sensitive parts of the nuclear fuel cycle, specifically those related to enrichment and reprocessing, have been the subject of many studies and initiatives over the years. For examples: the International Fissionable Material Storage proposal in President Eisenhower's Speech on Atoms for Peace, and in the Charter of the International Atomic Energy Agency (IAEA) when the organization was formed in 1957; the regional nuclear fuel cycle center centers proposed by INFCE in the 80's; and most recently and notably, proposals by Dr. ElBaradei, the Director General of IAEA to limit production and processing of nuclear weapons usable materials to facilities under multinational control; and by U.S. President George W. Bush, to limit enrichment and reprocessing to States that have already full scale, functioning plants. There are other recent proposals on this subject as well. In this paper, the similarities and differences, as well as the effectiveness and challenges in proliferation prevention of these proposals and concepts will be discussed. The intent is to articulate a ''new nuclear regime'' and to develop concrete steps to implement such regime for future nuclear energy and deployment

  12. Zone approaches to international safeguards of a nuclear fuel cycle

    International Nuclear Information System (INIS)

    Fishbone, L.G.; Higinbotham, W.A.

    1986-01-01

    At present the IAEA designs its safeguards approach with regard to each type of nuclear facility so that the safeguards activities and effort are essentially the same for a given type and size of nuclear facility wherever it may be located. Conclusions regarding a state are derived by combining the results of safeguards verifications for the individual facilities within it. We have examined safeguards approaches for a state nuclear fuel cycle that take into account the existence of all of the nuclear facilities in the state. We have focussed on the fresh-fuel zone of an advanced nuclear fuel cycle, the several facilities of which use or process low-enriched uranium. At one extreme, flows and inventories would be verified at each material balance area. At the other extreme, the flows into and out of the zone and the inventory of the whole zone would be verified. The intention is to develop an approach which will make it possible to compare the technical effectiveness and the inspection effort for the facility-oriented approach, for the zone approach and for some reasonable intermediate safeguards approaches. Technical effectiveness, in these cases, means an estimate of the assurance that all nuclear material has been accounted for

  13. Perspective of nuclear fuel cycle for sustainable nuclear energy

    International Nuclear Information System (INIS)

    Fukuda, K.; Bonne, A.; Kagramanian, V.

    2001-01-01

    Nuclear power, on a life-cycle basis, emits about the same level of carbon per unit of electricity generated as wind and solar power. Long-term energy demand and supply analysis projects that global nuclear capacities will expand substantially, i.e. from 350 GW today to more than 1,500 GW by 2050. Uranium supply, spent fuel and waste management, and a non-proliferation nuclear fuel cycle are essential factors for sustainable nuclear power growth. An analysis of the uranium supply up to 2050 indicates that there is no real shortage of potential uranium available if based on the IIASA/WEC scenario on medium nuclear energy growth, although its market price may become more volatile. With regard to spent fuel and waste management, the short term prediction foresees that the amount of spent fuel will increase from the present 145,000 tHM to more than 260,000 tHM in 2015. The IPCC scenarios predicted that the spent fuel quantities accumulated by 2050 will vary between 525 000 tHM and 3 210 000 tHM. Even according to the lowest scenario, it is estimated that spent fuel quantity in 2050 will be double the amount accumulated by 2015. Thus, waste minimization in the nuclear fuel cycle is a central tenet of sustainability. The proliferation risk focusing on separated plutonium and resistant technologies is reviewed. Finally, the IAEA Project INPRO is briefly introduced. (author)

  14. Radiation protection and environmental surveillance programme in and around Nuclear Fuel Cycle Facilities in India

    International Nuclear Information System (INIS)

    Tripathi, R.M.

    2018-01-01

    Radiation safety is an integral part of the operation of the Indian nuclear fuel cycle facilities and safety culture has been inculcated in all the spheres of its operation. Nuclear fuel cycle comprises of mineral exploration, mining, ore processing, fuel fabrication, power plants, reprocessing, waste management and accelerator facilities. Health Physics Division of BARC is entrusted with the responsibility of radiation protection and environmental surveillance in all the nuclear fuel cycle facilities

  15. Nuclear fuel cycle and reactor strategies: Adjusting to new realities. Key issue papers

    International Nuclear Information System (INIS)

    1997-01-01

    The international symposium ''Nuclear Fuel Cycle and Reactor Strategy: Adjusting to new Realities'' was organized to face the new realities in the nuclear fuel cycle and to consider options on how these new realities could be addressed. The Key Issue Papers treat the various subjects from both short and long term perspectives. In so doing, they address the likely development of all aspects concerning the nuclear fuel cycle up to the year 2050

  16. Cost Probability Analysis of China's Nuclear Fuel Cycle Transition

    International Nuclear Information System (INIS)

    Gao, R. X.; Ko, W. I.; Lee, S. H.

    2015-01-01

    The Chinese government has already determined to develop the closed nuclear fuel cycle, its long-term roadmap of spent fuel management has not been decided yet. Currently, it seems that China's booming economy gives abundant financial assurance to develop nuclear programs in full play according to its near-term national plans. However, the viability and sustainability of nuclear power always depends critically on its economics. Therefore, it is necessary to conduct a well focused cost-benefit and objective analysis of China's ongoing nuclear power programs with the future prospects. In this study, we conduct a comparative analysis of electricity generation cost in four reference nuclear fuel cycle transition scenarios by 2050. Direct disposal is assumed to produce the cheapest LCT as low as 62.688 mills/kWh compared to the other options. However, after performing a relative uncertainty study, the results show that the capital cost of reactor is the key cost component which leads to the cost gap

  17. Cost Probability Analysis of China's Nuclear Fuel Cycle Transition

    Energy Technology Data Exchange (ETDEWEB)

    Gao, R. X. [Univ. of Science and Technology, Daejeon (Korea, Republic of); Ko, W. I.; Lee, S. H. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    The Chinese government has already determined to develop the closed nuclear fuel cycle, its long-term roadmap of spent fuel management has not been decided yet. Currently, it seems that China's booming economy gives abundant financial assurance to develop nuclear programs in full play according to its near-term national plans. However, the viability and sustainability of nuclear power always depends critically on its economics. Therefore, it is necessary to conduct a well focused cost-benefit and objective analysis of China's ongoing nuclear power programs with the future prospects. In this study, we conduct a comparative analysis of electricity generation cost in four reference nuclear fuel cycle transition scenarios by 2050. Direct disposal is assumed to produce the cheapest LCT as low as 62.688 mills/kWh compared to the other options. However, after performing a relative uncertainty study, the results show that the capital cost of reactor is the key cost component which leads to the cost gap.

  18. Integration of the military and civilian nuclear fuel cycles in Russia

    International Nuclear Information System (INIS)

    Bukharin, O.

    1994-01-01

    This paper describes the close integration of the civil and military nuclear fuel cycles in Russia. Individual processing facilities, as well as the flow of nuclear material, are described as they existed in the 1980s and as they exist today. The end of the Cold War and the breakup of the Soviet Union weakened the ties between the two nuclear fuel cycles, but did not separate them. Separation of the military and civilian nuclear fuel cycles would facilitate Russia's integration into the world's nuclear fuel cycle and its participation in international non-proliferation regimes

  19. Degree of Sustainability of Various Nuclear Fuel Cycles

    International Nuclear Information System (INIS)

    Brogli, R.; Krakowski, R.A.

    2002-08-01

    The focus of this study is on a 'top-level' examination of the sustainability of nuclear energy in the context of the overall nuclear fuel cycle (NFC). This evaluation is conducted according to a set of established sustainability criteria that encompasses key economic (energy generation costs), environmental (resource utilization, long-term waste accumulations), and societal (nuclear-weapons proliferation risk) concerns associated with present and future NFC approaches. In this study, key NFCs are assessed according to a simplified and limited set of criteria that attempts to quantify NFC concerns related to cost, resource, waste, and proliferation. The overarching aim of this study is to examine a representative set of NFC options on a relative basis according to the adopted set of criteria to aid in the assessment and decision-making process. These criteria were then aggregated into a single, composite metric to examine the impacts of specific 'stakeholder' preferences. The study architecture is based on sets of nuclear process components. These sets are assembled around a particular nuclear reactor technology for the generation of electricity. Selections are made from the resulting sets of reactor-centric technologies and grouped to form nine central NFC scenarios. The above-described sustainability metrics are evaluated using a steady-state (equilibrium), highly aggregated model that is applied through mass and energy conservation to evaluate each NFC scenario. Six NFC scenarios examined to varying degrees are adaptations or extensions of scenarios used in a recent OECD study (OECD, 2002) of partitioning and transmutation (P and T) schemes based on accelerator-driven systems (ADS) or fast reactors (FR). Three NFC scenarios are based entirely on present-day or near-term LWR technologies. In addition to these near-term scenarios, more advanced systems considered in the original OECD study on which this model is based were retained using a similar evaluation

  20. Degree of Sustainability of Various Nuclear Fuel Cycles

    Energy Technology Data Exchange (ETDEWEB)

    Brogli, R.; Krakowski, R.A. [Los Alamos National Laboratory, New Mexico (United States)

    2002-08-01

    The focus of this study is on a 'top-level' examination of the sustainability of nuclear energy in the context of the overall nuclear fuel cycle (NFC). This evaluation is conducted according to a set of established sustainability criteria that encompasses key economic (energy generation costs), environmental (resource utilization, long-term waste accumulations), and societal (nuclear-weapons proliferation risk) concerns associated with present and future NFC approaches. In this study, key NFCs are assessed according to a simplified and limited set of criteria that attempts to quantify NFC concerns related to cost, resource, waste, and proliferation. The overarching aim of this study is to examine a representative set of NFC options on a relative basis according to the adopted set of criteria to aid in the assessment and decision-making process. These criteria were then aggregated into a single, composite metric to examine the impacts of specific 'stakeholder' preferences. The study architecture is based on sets of nuclear process components. These sets are assembled around a particular nuclear reactor technology for the generation of electricity. Selections are made from the resulting sets of reactor-centric technologies and grouped to form nine central NFC scenarios. The above-described sustainability metrics are evaluated using a steady-state (equilibrium), highly aggregated model that is applied through mass and energy conservation to evaluate each NFC scenario. Six NFC scenarios examined to varying degrees are adaptations or extensions of scenarios used in a recent OECD study (OECD, 2002) of partitioning and transmutation (P and T) schemes based on accelerator-driven systems (ADS) or fast reactors (FR). Three NFC scenarios are based entirely on present-day or near-term LWR technologies. In addition to these near-term scenarios, more advanced systems considered in the original OECD study on which this model is based were retained using a

  1. The nuclear fuel cycle versus the carbon cycle

    International Nuclear Information System (INIS)

    Ewing, R.C.

    2005-01-01

    Nuclear power provides approximately 17% of the world's electricity, which is equivalent to a reduction in carbon emissions of ∼0.5 gigatonnes (Gt) of C/yr. This is a modest reduction as compared with global emissions of carbon, ∼7 Gt C/yr. Most analyses suggest that in order to have a significant and timely impact on carbon emissions, carbon-free sources, such as nuclear power, would have to expand total production of energy by factors of three to ten by 2050. A three-fold increase in nuclear power capacity would result in a projected reduction in carbon emissions of 1 to 2 Gt C/yr, depending on the type of carbon-based energy source that is displaced. This three-fold increase utilizing present nuclear technologies would result in 25,000 metric tonnes (t) of spent nuclear fuel (SNF) per year, containing over 200 t of plutonium. This is compared to a present global inventory of approximately 280,000 t of SNF and >1,700 t of Pu. A nuclear weapon can be fashioned from as little as 5 kg of 239 Pu. However, there is considerable technological flexibility in the nuclear fuel cycle. There are three types of nuclear fuel cycles that might be utilized for the increased production of energy: open, closed, or a symbiotic combination of different types of reactor (such as, thermal and fast neutron reactors). The neutron energy spectrum has a significant effect on the fission product yield, and the consumption of long-lived actinides, by fission, is best achieved by fast neutrons. Within each cycle, the volume and composition of the high-level nuclear waste and fissile material depend on the type of nuclear fuel, the amount of burn-up, the extent of radionuclide separation during reprocessing, and the types of materials used to immobilize different radionuclides. As an example, a 232 Th-based fuel cycle can be used to breed fissile 233 U with minimum production of Pu. In this paper, I will contrast the production of excess carbon in the form of CO 2 from fossil fuels with

  2. A dynamic, dependent type system for nuclear fuel cycle code generation

    Energy Technology Data Exchange (ETDEWEB)

    Scopatz, A. [The University of Chicago 5754 S. Ellis Ave, Chicago, IL 60637 (United States)

    2013-07-01

    The nuclear fuel cycle may be interpreted as a network or graph, thus allowing methods from formal graph theory to be used. Nodes are often idealized as nuclear fuel cycle facilities (reactors, enrichment cascades, deep geologic repositories). With the advent of modern object-oriented programming languages - and fuel cycle simulators implemented in these languages - it is natural to define a class hierarchy of facility types. Bright is a quasi-static simulator, meaning that the number of material passes through a facility is tracked rather than natural time. Bright is implemented as a C++ library that models many canonical components such as reactors, storage facilities, and more. Cyclus is a discrete time simulator, meaning that natural time is tracked through out the simulation. Therefore a robust, dependent type system was developed to enable inter-operability between Bright and Cyclus. This system is capable of representing any fuel cycle facility. Types declared in this system can then be used to automatically generate code which binds a facility implementation to a simulator front end. Facility model wrappers may be used either internally to a fuel cycle simulator or as a mechanism for inter-operating multiple simulators. While such a tool has many potential use cases it has two main purposes: enabling easy performance of code-to-code comparisons and the verification and the validation of user input.

  3. Research on radiative heat transfer in sodium combustion. Modeling, verification and development a radiative properties measuring method. Report of the JNC cooperative research scheme on the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Li Bingxi; Kudo, Kazuhiko

    2001-05-01

    A quantitative evaluation of a radiative heat transfer is important in sodium combustion because a large amount of aerosol particles, which are produced as a result of the combustion, exists in a combustion region. In this study, a development of radiation model with aerosols and optical property measurement has been carried out for the purpose of evaluating radiative heat transfer based on a optical property, diameter, number density and statistical and spatial distribution of aerosol particles. In 2000 research, one dimensional analysis program of the Monte Carlo method has been developed. This program evaluates a radiative transmission intensity based on an optical property and a statistic and spatial diameter distribution of airborne particles. Using this program, an optical property can be estimated from experimental conditions (e.g. diameter distribution) and results (radiative transmission intensity). As a result of numerical analyses which evaluate an influence of a size parameter (relation between a particle diameter [D] and wavelength [λ] :=πD/λ) on the accuracy evaluation, an optical property can be estimated within 3% accuracy though an angle distribution measurement of radiative transmission intensity is necessary when the size parameter becomes large. (author)

  4. Nuclear-fuel-cycle optimization: methods and modelling techniques

    International Nuclear Information System (INIS)

    Silvennoinen, P.

    1982-01-01

    This book present methods applicable to analyzing fuel-cycle logistics and optimization as well as in evaluating the economics of different reactor strategies. After an introduction to the phases of a fuel cycle, uranium cost trends are assessed in a global perspective. Subsequent chapters deal with the fuel-cycle problems faced by a power utility. The fuel-cycle models cover the entire cycle from the supply of uranium to the disposition of spent fuel. The chapter headings are: Nuclear Fuel Cycle, Uranium Supply and Demand, Basic Model of the LWR (light water reactor) Fuel Cycle, Resolution of Uncertainties, Assessment of Proliferation Risks, Multigoal Optimization, Generalized Fuel-Cycle Models, Reactor Strategy Calculations, and Interface with Energy Strategies. 47 references, 34 figures, 25 tables

  5. Concepts for institutional arrangements for the nuclear fuel cycle

    International Nuclear Information System (INIS)

    1979-01-01

    The paper focuses on the role of institutional arrangements in developing a consensus in international nuclear cooperation. Institutional arrangements are defined as undertakings and activities by governments or private entities to facilitate the efficient and secure functioning of the nuclear fuel cycle. The first two sections of the paper explore the historical role of cooperative arrangements, suggest criteria for evaluating the usefulness of institutional arrangements, and review the status of the discussion of institutional arrangements in INFCE Working Groups as of December 1978. The final section of the paper, explores potential relationships between various institutional arrangements and suggests that certain areas such as, the standardization of nuclear practices, joint commercial and development undertakings, nuclear supply assurances, and the settlement of disputes may have broad application for several stages of the fuel cycle and merit further study

  6. Proliferation resistance of advanced sustainable nuclear fuel cycles

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, H.E.; Lineberry, M.J.; Aumeier, S.E.; McFarlane, H.F. [Argonne National Lab.-West (United States)

    2001-07-01

    Intrinsic and extrinsic proliferation barriers of a pyro-process-based nuclear fuel cycle are discussed. While technical characteristics of the process raise new challenges for safeguards, others naturally facilitate the implementation of more integrated schemes for unattended continuous monitoring. In particular, the concept of operations accountability and model-assisted methods are revisited. While traditional safeguards constructs, such as material control and accountability, place greater emphasis on input/output characterization of nuclear processes, a model- based discrete event accountability approach could explicitly verify not only facility use but also internal operational dynamics. Under the proposed remote integral safeguards approach, transparency can be achieved efficiently, without divulging competitive or national security sensitive information. (author)

  7. Proliferation resistance of advanced sustainable nuclear fuel cycles

    International Nuclear Information System (INIS)

    Garcia, H.E.; Lineberry, M.J.; Aumeier, S.E.; McFarlane, H.F.

    2001-01-01

    Intrinsic and extrinsic proliferation barriers of a pyro-process-based nuclear fuel cycle are discussed. While technical characteristics of the process raise new challenges for safeguards, others naturally facilitate the implementation of more integrated schemes for unattended continuous monitoring. In particular, the concept of operations accountability and model-assisted methods are revisited. While traditional safeguards constructs, such as material control and accountability, place greater emphasis on input/output characterization of nuclear processes, a model- based discrete event accountability approach could explicitly verify not only facility use but also internal operational dynamics. Under the proposed remote integral safeguards approach, transparency can be achieved efficiently, without divulging competitive or national security sensitive information. (author)

  8. Implications of multinational arrangements for nuclear fuel cycle facilities

    International Nuclear Information System (INIS)

    Muench, E.; Richter, B.; Stein, G.

    1980-01-01

    In the recently concluded INFCE study a variety of possibilities to minimize the proliferation risk was discussed, and their applicability in the nuclear fuel cycle was investigated. It was found that safeguards still play a central part as an anti-proliferation measure. Aspect of institutional arrangements with the aim of placing nuclear material processing and storage facilities under multinational or international auspices is the basis and goal of this study, as in international discussions some degree of proliferation hindrance is attributed to such models. In the assessment of the internationalization of nuclear facilities as an anti-proliferation measure two aspects have to be emphasized: Firstly, internationalization may be understood as a political measure to hinder proliferation, and secondly, no additional control effort should be caused by the possible complementary character to safeguards. 5 refs

  9. Supply and demand estimates for the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Haussermann, W.; Hogroian, P.; Krymm, R.; Cameron, J.

    1977-01-01

    Based on the nuclear power growth forecasts described in the papers for Session I.B., estimates of requirements in the nuclear fuel cycle are given, notably concerning: - natural uranium, - enriched uranium, - fuel fabrication services, and - reprocessing services. The influence of realistic scenarios of uranium and plutonium recycling on fuel cycle requirements is discussed. Furthermore, the known plans for uranium and related fuel cycle production capacities are compared with the foreseeable demand. These estimates cover the period between now and the year 2000. However, in order to determine the influence of possible variations in reactor strategies on uranium demand, notably the introduction of breeder reactors, power growth projections and resulting fuel cycle requirements beyond the year 2000 are also briefly considered [fr

  10. Advanced nuclear fuel cycles and radioactive waste management

    International Nuclear Information System (INIS)

    2006-01-01

    This study analyses a range of advanced nuclear fuel cycle options from the perspective of their effect on radioactive waste management policies. It presents various fuel cycle options which illustrate differences between alternative technologies, but does not purport to cover all foreseeable future fuel cycles. The analysis extends the work carried out in previous studies, assesses the fuel cycles as a whole, including all radioactive waste generated at each step of the cycles, and covers high-level waste repository performance for the different fuel cycles considered. The estimates of quantities and types of waste arising from advanced fuel cycles are based on best available data and experts' judgement. The effects of various advanced fuel cycles on the management of radioactive waste are assessed relative to current technologies and options, using tools such as repository performance analysis and cost studies. (author)

  11. Key strategies and criteria to redesigning the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Iakimets, V.N.

    1999-01-01

    Design of the nuclear fuel cycle (NFC) impacts future development of the nuclear industry on the one hand and the scale of the technological and environmental risk for future generations on the other hand. Adequate protection for humans and the biosphere will depend upon careful and unbiased design of the NFC. This paper addresses the two following problems: 1. What are the key strategies in restructuring nuclear power production itself in terms of choosing the safest possible variant of the NFC and identifying reasonable approaches to redesigning decision-making procedures for design, siting and operation, and decommissioning of new facilities, which have to be based on a strong legally approved citizen involvement. 2. What criteria should be used to evaluate any strategic or mid-term decisions related to the NFC, how can these be made operational, and what procedures may we apply to evaluate alternatives and select the most preferable one mutually acceptable to both citizens and nuclear specialists?

  12. An intelligent stochastic optimization routine for nuclear fuel cycle design

    International Nuclear Information System (INIS)

    Parks, G.T.

    1990-01-01

    A simulated annealing (Metropolis algorithm) optimization routine named AMETROP, which has been developed for use on realistic nuclear fuel cycle problems, is introduced. Each stage of the algorithm is described and the means by which it overcomes or avoids the difficulties posed to conventional optimization routines by such problems are explained. Special attention is given to innovations that enhance AMETROP's performance both through artificial intelligence features, in which the routine uses the accumulation of data to influence its future actions, and through a family of simple performance aids, which allow the designer to use his heuristic knowledge to guide the routine's essentially random search. Using examples from a typical fuel cycle optimization problem, the performance of the stochastic Metropolis algorithm is compared to that of the only suitable deterministic routine in a standard software library, showing AMETROP to have many advantages

  13. Safeguards and an internationalized nuclear fuel cycle for East Asia

    International Nuclear Information System (INIS)

    Olsen, John

    2005-01-01

    Concerns about nuclear proliferation by means of illicit enrichment of uranium or reprocessing of plutonium suggest limiting those technologies to a few, large facilities. In turn, countries that renounce acquiring those capabilities would be guaranteed fuel cycle services. Interdependence might lead to an Internationalized Nuclear Fuel Cycle (IFC), which could be formalized in voluntary regional compacts to share management of certain facilities. An IFC could add managerial oversight to strengthen the nonproliferation culture in the region and offer cost and efficiency benefits to participating countries, as well. An East Asian IFC would present opportunities to enhance the efficiency and effectiveness of international safeguards by consolidating inspection requirements into relatively few facilities. This may be an opportune time to consider an IFC before the growing national industries each invest in separate facilities. An East Asian IFC regime could minimize international safeguards burdens, strengthen regional non-proliferation cooperation, and help manage future energy costs. (author)

  14. Controlling Hexavalent Americium – A Centerpiece to a Compact Nuclear Fuel Cycle

    Energy Technology Data Exchange (ETDEWEB)

    Shafer/Braley, Jenifer; Nash, Kenneth L; Lumetta, Gregg; McCann, Kevin; Sinkov, Sergey I

    2014-10-01

    Closing the nuclear fuel cycle could be simplified by recovering the actinides U through Am as a group. This could be achieved by converting U, Np, Pu and Am to the hexavalent state. Uranium, Np and Pu are readily oxidized to the hexavalent state. Generation of hexavalent Am in acidic solutions is more difficult, as the standard reduction potential of the Am(VI) /Am(III) couple (+1.68 V in 1 M HClO4) is well outside of the electrochemical stability window of water. While the oxidation and separation of Am has been demonstrated under laboratory conditions, several issues could plague scale up and implementation of this separation with used fuel. Two primary concerns are considered. The first issue concerns the stability of the oxidized Am. The second involves the undesirable co-extraction of tetravalent f-elements with the hexavalent actinides. To address the first concern regarding Am redox instability, Am reduction will be monitored under a variety of different conditions to establish the means of improving the stability of Am(VI) in the organic phase. Identifying the components contributing most significantly to its reduction will allow thoughtful modification of the process. To address the second concern, we propose to apply branched chain extractants to separate hexavalent actinides from tetravalent f-elements. Both branched monoamide and organophosphorus extractants have demonstrated significant selectivity for UO22+ versus Th4+, with separation factors generally on the order of 100. The efforts of this two-pronged research program should represent a significant step forward in the development of aqueous separations approaches designed to recover the U-Am actinides based on the availability of the hexavalent oxidation state. For the purposes of this proposal, separations based on this approach will be called SAn(VI) separations, indicating the Separation of An(VI).

  15. Nuclear Power, Nuclear Fuel Cycle and Sustainable Development in a Changing World

    International Nuclear Information System (INIS)

    Arakawa, Yoshitaka

    2000-01-01

    ) fuels are keys to improving the economics of the nuclear fuel cycle as a whole. The commercial application of MOX fuel in LWRs has been started in the middle of 1980s when fast reactor programs were cut back. Today, more than 30 thermal reactors use MOX-fuel in a partial core-loading pattern. In early days of the nuclear power era, the philosophy was to close the nuclear fuel cycle. Some countries decided not to do that and consequently the necessity appeared to expand the spent fuel storage pool capacity by reracking their pools and using neutron absorbers. Additional pool type storage facilities away-from-the-reactor (AFR) rather than at-reactor (AR) were built. About 130,000 tHM (tonnes of heavy metal) of spent fuel is presently being stored in AR and AFR storage facilities awaiting either reprocessing or final disposal. Spent fuel reprocessing meets today's requirement of natural resource conservation and reduction of waste toxicity. At present, reprocessing capacity amounts to some 5000 tHM/y in the OECD member countries, essentially commercial, and some 620 tHM/y in non-OECD countries (Russia and India). Nuclear power avoids the release into the atmosphere of approximately 8% of global GHG emissions and potentially will play a much greater role in the future. Managing waste and fuel in the short term does not pose a problem because the supervision can be guaranteed and storage facilities have been built. For longer term, however, it is generally recognized that deep underground disposal is the most appropriate solution. Many states are re-examining national policies, seeking to identify waste management solution. It is now recognized that the trust of the public has to be obtained through continuous dialogue and exchange between all concerned parties so that it eventually becomes recognized that geological disposal is a safe and sound solution. The document contains an extended abstract and a slide-based oral presentation. (author)

  16. An Agent-Based Modeling Framework and Application for the Generic Nuclear Fuel Cycle

    Science.gov (United States)

    Gidden, Matthew J.

    Key components of a novel methodology and implementation of an agent-based, dynamic nuclear fuel cycle simulator, Cyclus , are presented. The nuclear fuel cycle is a complex, physics-dependent supply chain. To date, existing dynamic simulators have not treated constrained fuel supply, time-dependent, isotopic-quality based demand, or fuel fungibility particularly well. Utilizing an agent-based methodology that incorporates sophisticated graph theory and operations research techniques can overcome these deficiencies. This work describes a simulation kernel and agents that interact with it, highlighting the Dynamic Resource Exchange (DRE), the supply-demand framework at the heart of the kernel. The key agent-DRE interaction mechanisms are described, which enable complex entity interaction through the use of physics and socio-economic models. The translation of an exchange instance to a variant of the Multicommodity Transportation Problem, which can be solved feasibly or optimally, follows. An extensive investigation of solution performance and fidelity is then presented. Finally, recommendations for future users of Cyclus and the DRE are provided.

  17. How long must radioactive wastes from the nuclear fuel cycle be excluded from the biosphere

    International Nuclear Information System (INIS)

    Steffen, G.

    1982-01-01

    Estimations of the social costs resulting from the generation and release of radionuclides in the nuclear fuel cycle on the basis of the ''potential hazard measure'' prove, without any additional hypotheses, costs too high as to be acceptable under social aspects. Other approaches to a comparison between advantages and disadvantages determine only part of the radioactivity or use equally unproven additional assumptions. The nuclear industry, but also representatives of supervisory authorities and research institutes argue on the basis of radiotoxicity calculations that even high-level radioactive wastes will cease to be an unbearable risk after several hundreds or thousands of years. In this connection no standardized measure of toxicity is used, nor is there any convincing reasoning agreed upon, so that the estimates of the moment when the high-level radioactive wastes can be considered harmless differ from 500 to 100000 years. An exact application of the various concepts of toxicity and a careful argumentation show, however that detailed safety considerations on an ultimate storage for radioactive wastes of the nuclear fuel cycle should also be made for long periods of times in the geological sense. (orig./RW) [de

  18. A framework and methodology for nuclear fuel cycle transparency

    International Nuclear Information System (INIS)

    McClellan, Yvonne; York, David L.; Inoue, Naoko; Love, Tracia L.; Rochau, Gary Eugene

    2006-01-01

    A key objective to the global deployment of nuclear technology is maintaining transparency among nation-states and international communities. By providing an environment in which to exchange scientific and technological information regarding nuclear technology, the safe and legitimate use of nuclear material and technology can be assured. Many nations are considering closed or multiple-application nuclear fuel cycles and are subsequently developing advanced reactors in an effort to obtain some degree of energy self-sufficiency. Proliferation resistance features that prevent theft or diversion of nuclear material and reduce the likelihood of diversion from the civilian nuclear power fuel cycle are critical for a global nuclear future. IAEA Safeguards have been effective in minimizing opportunities for diversion; however, recent changes in the global political climate suggest implementation of additional technology and methods to ensure the prompt detection of proliferation. For a variety of reasons, nuclear facilities are becoming increasingly automated and will require minimum manual operation. This trend provides an opportunity to utilize the abundance of process information for monitoring proliferation risk, especially in future facilities. A framework that monitors process information continuously can lead to greater transparency of nuclear fuel cycle activities and can demonstrate the ability to resist proliferation associated with these activities. Additionally, a framework designed to monitor processes will ensure the legitimate use of nuclear material. This report describes recent efforts to develop a methodology capable of assessing proliferation risk in support of overall plant transparency. The framework may be tested at the candidate site located in Japan: the Fuel Handling Training Model designed for the Monju Fast Reactor at the International Cooperation and Development Training Center of the Japan Atomic Energy Agency

  19. Nuclear-fuel-cycle facility deployment and price generation

    International Nuclear Information System (INIS)

    Andress, D.A.

    1981-04-01

    The enrichment process and how it is to be modeled in the International Nuclear Model (INM) is described. The details of enrichment production, planning, unit price generation, demand estimation and ordering are examined. The enrichment process from both the producer's and the utility's point of view is analyzed. The enrichment separative-work-unit (SWU) contracts are also discussed. The relationship of the enrichment process with other sectors of the nuclear fuel cycle, expecially uranium mining and milling is considered. There are portions of the enrichment process that are not completely understood at the present time. These areas, which require further study, will be pinpointed in the following discussion. In many cases, e.g., the advent of SMU brokerage activities, the answers will emerge only in time. In other cases, e.g., political trends, uncertainties will always remain. It is possible to cast the uncertainties in a probabilistic framework, but this is beyond the scope of this report. INM, a comprehensive model of the international nuclear industry, simulates the market decision process based on current and future price expectations under a broad range of scenario specifications. INM determines the proper reactor mix as well as the planning, operation, and unit price generation of the attendant nuclear fuel cycle facilities. The level of detail of many of the enrichment activities presented in this report, e.g., the enrichment contracts, is too fine to be incorporated into INM. Nevertheless, they are presented in a form that is ammendable to modeling. The reasons for this are two-fold. First, it shows the level of complexity that would be required to model the entire system. Second, it presents the structural framework for a detailed, stand-alone enrichment model

  20. MUICYCL and MUIFAP: models tracking minor uranium isotopes in the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Blum, S.R.; McLaren, R.A.

    1979-10-01

    Two computer programs have been written to provide information on the buildup of minor uranium isotopes in the nuclear fuel cycle. The Minor Uranium Isotope Cycle Program, MUICYCL, tracks fuel through a multiyear campaign cycle of enrichment, reactor burnup, reprocessing, enrichment, etc. MUICYCL facilities include preproduction stockpiles, U 235 escalation, and calculation of losses. The Minor Uranium Isotope Flowsheet Analyzer Program, MUIFAP, analyzes one minor isotope in one year of an enrichment operation. The formulation of the enrichment cascade, reactors, and reprocessing facility is presented. Input and output descriptions and sample cases are presented. The programs themselves are documented by short descriptions of each routine, flowcharts, definitions of common blocks and variables, and internal documentation. The programs are written in FORTRAN for use in batch mode

  1. Proceeding of the Scientific Presentation on Nuclear Fuel Cycle; Prosiding Presentasi Ilmiah Daur Bahan Bakar Nuklir

    Energy Technology Data Exchange (ETDEWEB)

    Suripto, A; Yuwono, I; Nasution, H; Hersubeno, B J; Amini, S; Sigit,; Cahyono, A [Nuclear Fuel Elements Development Centre, National Atomic Energy Agency, Serpong, Indonesia (Indonesia)

    1996-11-01

    The proceeding contains papers presented on Scientific Presentation on Nuclear Fuel Cycle held in Jakarta, 18-19 March 1996. These are 46 papers resulted from scientific works on various disciplines which have supported to nuclear fuel cycle activities both in and outside National Atomic Energy Agency of Indonesia.(ID)

  2. The back-end of the nuclear fuel cycle: The Argentine view

    International Nuclear Information System (INIS)

    Stevens, C.E.

    2002-01-01

    The strategy of the back-end nuclear fuel cycle for Argentina is presented in this paper. Although one may consider Argentina's current policy on spent fuel management as 'wait and see', Argentina is continuously directing her efforts towards the development of technology and human resources for the future demand of the closure of the nuclear fuel cycle. (author)

  3. Management of radioactive wastes from the nuclear fuel cycle

    International Nuclear Information System (INIS)

    1976-01-01

    The increased emphasis in many countries on the development and utilization of nuclear power is leading to an expansion of all sectors of the nuclear fuel cycle, giving rise to important policy issues and radioactive-waste management requirements. Consequently, the IAEA and the Nuclear Energy Agency of OECD felt that it would be timely to review latest technology for the management of the radioactive wastes arising from nuclear fuel cycle facilities, to identify where important advances have been made, and to indicate those areas where further technological development is needed. Beginning in 1959, the IAEA, either by itself or jointly with OECD/NEA has held seven international symposia on the management of radioactive wastes. The last symposium, on the management of radioactive wastes from fuel reprocessing, was held jointly by the IAEA and OECD/NEA in Paris in November 1972. An objective of the 1976 symposium was to update the information presented at the previous symposia with the latest technological developments and thinking regarding the management and disposal of all categories of radioactive wastes. Consequently, although the scope of the symposium was rather broad, attention was focussed on operational experience and progress in unresolved areas of radioactive waste management. The programme dealt primarily with the solidification of liquid radioactive wastes and disposal of the products, especially the high-level fission products and actinide-containing waste from fuel reprocessing. Other topics covered policy and planning, treatment of hulls and solvent, management of plutonium-contaminated waste, and removal of gaseous radionuclides. The major topic of interest was the current state of the technology for the reduction and incorporation of the high-level radioactive liquid from fuel reprocessing into solid forms, such as calcines, glasses or ceramics, for safe interim storage and eventual disposal. The approaches to vitrification ranged from two stage

  4. System Theoretic Frameworks for Mitigating Risk Complexity in the Nuclear Fuel Cycle

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Adam David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Mohagheghi, Amir H. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Cohn, Brian [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Osborn, Douglas M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jones, Katherine A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); DeMenno, Mercy [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Kalinina, Elena Arkadievna [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Thomas, Maikael A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Parks, Ethan Rutledge [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Parks, Mancel Jordan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jeantete, Brian A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-09-01

    In response to the expansion of nuclear fuel cycle (NFC) activities -- and the associated suite of risks -- around the world, this project evaluated systems-based solutions for managing such risk complexity in multimodal and multi-jurisdictional international spent nuclear fuel (SNF) transportation. By better understanding systemic risks in SNF transportation, developing SNF transportation risk assessment frameworks, and evaluating these systems-based risk assessment frameworks, this research illustrated interdependency between safety, security, and safeguards risks is inherent in NFC activities and can go unidentified when each "S" is independently evaluated. Two novel system-theoretic analysis techniques -- dynamic probabilistic risk assessment (DPRA) and system-theoretic process analysis (STPA) -- provide integrated "3S" analysis to address these interdependencies and the research results suggest a need -- and provide a way -- to reprioritize United States engagement efforts to reduce global nuclear risks. Lastly, this research identifies areas where Sandia National Laboratories can spearhead technical advances to reduce global nuclear dangers.

  5. An Analysis of the Multinational Approach in Nuclear Fuel Cycle for East Asia

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Viet Phuong; Yim, Man Sung [KAIST, Daejeon (Korea, Republic of)

    2014-10-15

    To balance the need to develop nuclear power for peaceful purposes and to prevent the risks of nuclear proliferation, multinational approach (MNA) of nuclear fuel cycle has been developed on the basis that nuclear technology is managed not by individual countries, but by a community of state-level technology users, so that countries can have access to the benefits of peaceful applications of nuclear technology while any proliferation intention will be collectively eliminated by the community. This paper focuses on why MNA is still necessary for this region in the non-proliferation and nuclear power development context of East Asia. Following the analysis on the need for MNA, the possible challenges and necessary considerations for new proposal of MNA in East Asia are provided. The paper is concluded with a summarization on the necessity and challenges of MNA as well as further direction for research. From the analysis in this paper, it could be concluded that the development of MNA for nuclear fuel cycle is a complex process, of which the success could only be assured by the combination of political effort, feasible technology choice, and practical approach. The complexity and political-implied nature of MNA in East Asia have resulted in the failure of every proposals in this region. Nevertheless, given the numerous issues of the regional nuclear industry, MNA has become once again a reasonable choice for the East Asia countries, which are thriving to a solution to assure fuel supply and back-end fuel cycle management while trying to eliminate the risk of nuclear proliferation in the region. The creation of such cooperation regime will have to surpass the obstacles of international relations, regional political tension and scope of approach. In this paper, a comprehensive coverage of the MNA for nuclear fuel cycle is not presented due to space limitation. Rather, this paper focuses on analysing the advantages and obstacles of MNA in East Asia, with the hope that it

  6. An Analysis of the Multinational Approach in Nuclear Fuel Cycle for East Asia

    International Nuclear Information System (INIS)

    Nguyen, Viet Phuong; Yim, Man Sung

    2014-01-01

    To balance the need to develop nuclear power for peaceful purposes and to prevent the risks of nuclear proliferation, multinational approach (MNA) of nuclear fuel cycle has been developed on the basis that nuclear technology is managed not by individual countries, but by a community of state-level technology users, so that countries can have access to the benefits of peaceful applications of nuclear technology while any proliferation intention will be collectively eliminated by the community. This paper focuses on why MNA is still necessary for this region in the non-proliferation and nuclear power development context of East Asia. Following the analysis on the need for MNA, the possible challenges and necessary considerations for new proposal of MNA in East Asia are provided. The paper is concluded with a summarization on the necessity and challenges of MNA as well as further direction for research. From the analysis in this paper, it could be concluded that the development of MNA for nuclear fuel cycle is a complex process, of which the success could only be assured by the combination of political effort, feasible technology choice, and practical approach. The complexity and political-implied nature of MNA in East Asia have resulted in the failure of every proposals in this region. Nevertheless, given the numerous issues of the regional nuclear industry, MNA has become once again a reasonable choice for the East Asia countries, which are thriving to a solution to assure fuel supply and back-end fuel cycle management while trying to eliminate the risk of nuclear proliferation in the region. The creation of such cooperation regime will have to surpass the obstacles of international relations, regional political tension and scope of approach. In this paper, a comprehensive coverage of the MNA for nuclear fuel cycle is not presented due to space limitation. Rather, this paper focuses on analysing the advantages and obstacles of MNA in East Asia, with the hope that it

  7. The external cost of the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Schieber, C.; Schneider, T.

    2002-01-01

    The external cost of the nuclear fuel cycle has been evaluated in the particular context of France as part of the European Commission's ExternE project. All the steps in the fuel cycle which involve the use of cutting edge technology were taken into consideration, from mining of uranium ores to waste disposal, via construction, dismantling of nuclear power plants and the transport of radioactive materials. The general methodology adopted in the study, known as the 'Impact Pathway Analysis', is based on a sequence of evaluations from source terms to the potential= effects on man and the environment, and then to their monetary evaluation, using a single framework devised for all the fuel cycles considered in the ExternE project. The resulting external cost is in the range of 2 to 3 mEuro/kWh when no discount rate is applied, and around 0.1 mEuro/kWh when a discount rate of 3% is considered. Further developments have been made on the external cost of a nuclear accident and on the integration of risk aversion in its evaluation. It appeared that the external cost of a nuclear accident would be about 0.04 mEuro/kWh, instead of 0.002 mEuro/kWh without taking risk aversion into account. (authors)

  8. Nuclear fuel cycle and its supply industrial system

    Energy Technology Data Exchange (ETDEWEB)

    Takei, M [Japan Energy Economic Research Inst., Tokyo

    1976-04-01

    This paper discusses problems about the supply and costs of nuclear fuel cycle referring to the discussions of IAEA's Advisory Group Meeting. As for natural uranium resources, prospect is given to the demand, supply, and cost trend up to 2000. As for uranium enrichment, the increasing capacity is compared with the projected demand. The comparison of cost characteristics between diffusion and centrifuge plants is presented with respect to plant scale, investment cost, electric power cost, and operation and maintenance cost. The fabrication cost for fuel is analyzed, and it is suggested that some cost down can be expected for the future. As for the mixed oxide fuel fabrication, the capacity in each country and the estimated fabrication costs for PWR, prototype fast breeder reactor and commercial fast breeder reactor are presented. As for reprocessing, the shortage of supply capacity and the needs for more storage capacity are emphasized. The estimated reprocessing cost for a new plant is also presented. Finally, the present status and future trend of fuel storage in each major country are reviewed.

  9. Cost estimation of the decommissioning of nuclear fuel cycle plants

    International Nuclear Information System (INIS)

    Barbe, A.; Pech, R.

    1991-01-01

    Most studies conducted to date on the cost of decommissioning nuclear facilities pertain to reactors. Few such studies have been performed on the cost of decommissioning nuclear fuel cycle plants, particularly spent fuel reprocessing plants. Present operators of these plants nevertheless need to assess such costs, at least in order to include the related expenses in their short-, medium- or long-term projections. They also need to determine now, for example, suitable production costs that the plant owners will have to propose to their customers. Unlike nuclear reactors for which a series effect is involved (PWRs, BWRs, etc.) and where radioactivity is relatively concentrated, industrial-scale reprocessing plants are large, complex installations for which decommissioning is a long and costly operation that requires a special approach. Faced with this problem, Cogema, the owner and operator of the La Hague and Marcoule reprocessing plants in France, called on SGN to assess the total decommissioning costs for its plants. This assessment led SGN to development by SGN engineers of a novel methodology and a computerized calculation model described below. The resulting methodology and model are applicable to other complex nuclear facilities besides reprocessing plants, such as laboratories and nuclear auxiliaries of reactor cores. (author)

  10. Speciation, in the nuclear fuel cycle by spectroscopic techniques

    International Nuclear Information System (INIS)

    Colette, S.; Plancque, G.; Allain, F.; Lamouroux, C.; Steiner, V.; Amekraz, B.; Moulin, C.

    2000-01-01

    New analytical techniques allowing to perform speciation in the framework of the nuclear fuel cycle are more and more needed. They have to be selective (since matrix encountered are very complex), sensitive (in order to work at representative concentration and below solubility limit), as well as non intrusive (in order to keep the image of the real solution). Among them, laser-based analytical techniques present these advantages together with the possibility to perform remote measurements via fiber optics. Hence, Time-Resolved Laser-Induced Fluorescence (TRLIF) has been used for actinides/lanthanides interaction and speciation studies in inorganic and organic matrices from the reprocessing to waste storage. Moreover, new ion detection methods such as Electro-Spray - Mass Spectrometry (ES-MS) seems promising for speciation studies. Hence, it is the first time that it is possible to directly couple a liquid at atmospheric pressure to a mass detection working at reduced pressure with a soft mode of ionisation that should allow to give informations on chemical species present. Principle, advantages and limitations as well as results obtained with the use of TRLIF and ES-MS on different systems of interest including actinides, lanthanides, fission products in interaction with simple organic molecules to very complex structure will be presented and discussed. (authors)

  11. ENVIRONMENTAL ASSESSMENT METHODOLOGY FOR THE NUCLEAR FUEL CYCLE

    Energy Technology Data Exchange (ETDEWEB)

    Brenchley, D. L.; Soldat, J. K.; McNeese, J. A.; Watson, E. C.

    1977-07-01

    This report describes the methodology for determining where environmental control technology is required for the nuclear fuel cycle. The methodology addresses routine emission of chemical and radioactive effluents, and applies to mining, milling, conversion, enrichment, fuel fabrication, reactors (LWR and BWR) and fuel reprocessing. Chemical and radioactive effluents are evaluated independently. Radioactive effluents are evaluated on the basis of maximum exposed individual dose and population dose calculations for a 1-year emission period and a 50-year commitment. Sources of radionuclides for each facility are then listed according to their relative contribution to the total calculated dose. Effluent, ambient and toxicology standards are used to evaluate the effect of chemical effluents. First, each chemical and source configuration is determined. Sources are tagged if they exceed existirrg standards. The combined effect of all chemicals is assessed for each facility. If the additive effects are unacceptable, then additional control technology is recommended. Finally, sources and their chemicals at each facility are ranked according to their relative contribution to the ambient pollution level. This ranking identifies those sources most in need of environmental control.

  12. Closing nuclear fuel cycle with fast reactors: problems and prospects

    Energy Technology Data Exchange (ETDEWEB)

    Shadrin, A.; Dvoeglazov, K.; Ivanov, V. [Bochvar Institute - VNIINM, Moscow (Russian Federation)

    2013-07-01

    The closed nuclear fuel cycle (CNFC) with fast reactors (FR) is the most promising way of nuclear energetics development because it prevents spent nuclear fuel (SNF) accumulation and minimizes radwaste volume due to minor actinides (MA) transmutation. CNFC with FR requires the elaboration of safety, environmentally acceptable and economically effective methods of treatment of SNF with high burn-up and low cooling time. The up-to-date industrially implemented SNF reprocessing technologies based on hydrometallurgical methods are not suitable for the reprocessing of SNF with high burn-up and low cooling time. The alternative dry methods (such as electrorefining in molten salts or fluoride technologies) applicable for such SNF reprocessing have not found implementation at industrial scale. So the cost of SNF reprocessing by means of dry technologies can hardly be estimated. Another problem of dry technologies is the recovery of fissionable materials pure enough for dense fuel fabrication. A combination of technical solutions performed with hydrometallurgical and dry technologies (pyro-technology) is proposed and it appears to be a promising way for the elaboration of economically, ecologically and socially accepted technology of FR SNF management. This paper deals with discussion of main principle of dry and aqueous operations combination that probably would provide safety and economic efficiency of the FR SNF reprocessing. (authors)

  13. The legal aspects of internationalization of nuclear fuel cycle

    International Nuclear Information System (INIS)

    Tazaki, M.; Akiba, M.; Kuno, Y.

    2011-01-01

    The purpose of internationalization of nuclear fuel cycle facilities and / or multilateral nuclear approach (MNA) is to support nuclear nonproliferation regime by minimizing unnecessary proliferation of sensitive technologies and facilities through assured supply of nuclear fuel and services. In order to establish such MNA, a University of Tokyo team, including authors of this paper, first furnished justification for MNA, and then set out twelve MNA prerequisites. One of those prerequisites is 'Legal Aspect' and it intends to avoid inconsistencies between MNAs and existing treaties and agreements. By listing typical treaties and agreements related to each MNA prerequisite, several inconsistencies are found out. In relations with sovereign states' alienable right of the peaceful use of nuclear energy recognized in Article IV of Nuclear Nonproliferation Treaty (NPT), two inconsistencies should be highlighted. One is nuclear supplier states' restraint in transfer of sensitive facilities, equipment, technology and material to recipient states set out in Nuclear Suppliers Group (NSG) Guidelines, while the other is also some nuclear supplier states' restriction on reprocessing of spent fuel (SF) of their origin in recipient states, which is specified in supplier-recipient bilateral nuclear cooperation agreement. Authors are now on the way to analyze more various inconsistencies, in order to find out ways to avoid or overcome such inconsistencies for sustainable and feasible MNAs. This paper describes a broad introduction of authors' current study. (author)

  14. Recent development in safety regulation of nuclear fuel cycle activities

    International Nuclear Information System (INIS)

    Kato, S.

    2001-01-01

    Through the effort of deliberation and legislation over five years, Japanese government structure was reformed this January, with the aim of realizing simple, efficient and transparent administration. Under the reform, the Agency for Nuclear and Industrial Safety (ANIS) was founded in the Ministry of Economy, Trade and Industry (METI) to be responsible for safety regulation of energy-related nuclear activities, including nuclear fuel cycle activities, and industrial activities, including explosives, high-pressure gasses and mining. As one of the lessons learned from the JCO criticality accident of September 1999, it was pointed out that the government's inspection function was not enough for fuel fabrication facilities. Accordingly, new statutory regulatory activities were introduced, namely, inspection of observance of safety rules and procedures for all kinds of nuclear operators and periodic inspection of fuel fabrication facilities. In addition, in order to cope with insufficient safety education and training of workers in nuclear facilities, licensees of nuclear facilities are required by law to specify safety education and training for their workers. ANIS is committed to enforce these new regulatory activities effectively and efficiently. In addition, it is going to be prepared, in its capacity as safety regulatory authority, for future development of Japanese fuel cycle activities, including commissioning of JNFL Rokkasho reprocessing plant and possible application for licenses for JNFL MOX fabrication plant and for spent fuel interim storage facilities. (author)

  15. Management of wastes from the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Heafield, W.; Barlow, P.

    1988-01-01

    The management of wastes from the nuclear fuel cycle is a key activity which affects all stages of the cycle and in which there is intense public interest, particularly at the culmination of waste management activities where dispersal and disposal are practised or are proposed. The different categories of waste are considered - high, intermediate and low level. A description is given of how and where in the fuel cycle they are produced, giving indications of volumes and activities. The fundamental objectives of waste management are reviewed and the application of these objectives to select practicable waste management processes, covering process systems product and safety considerations is discussed. Current technology can deal with the wastes now in storage, those which will be generated from oxide fuel reprocessing and future decommissioning activities; examples of these technologies, ranging from compaction and incineration for low level waste, encapsulation for intermediate level waste through to vitrification for high level waste, are described. The specific objectives relating to disposal are considered in the context of international co-operation on development and national strategies aimed at providing safe, deep repositories over the next 20 years. (author)

  16. World situation of atomic energy and nuclear fuel cycle

    International Nuclear Information System (INIS)

    Szili, G.

    1978-01-01

    At the International Conference organized by the IAEA in May 1976, several sections dealt with problems of the production of atomic energy and of the nuclear fuel cycle. However, the whole spectrum of these problems was discussed including problems of economic policy, politics and ethical problems, too. Reports were presented on trends of the development of atomic energy in developed and developing countries. Besides the systems of nuclear power plants and the trends of their development, the Conference attached prominent importance to the supply of nuclear fuels and to the fuel cycle, respectively. Owing to important factors, the reprocessing of the spent nuclear fuel was emphasized. The problem area of the treatment of radioactive wastes, the protection of workers in immediate contact and of environment against radiations, the possibilities of ensuring nuclear safety, the degrees of hazards and the methods of protection of fast breeder reactors and up-to-date equipments were discussed. In contrast to earlier conferences the complex problem of the correlation of atomic energy to public opinion played an important role, too. (P.J.)

  17. The role of accelerators in the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Takahashi, Hiroshi

    1990-01-01

    The use of the neutrons produced by medium energy proton accelerators (1-3 GeV) has the considerable potential in reconstructing the nuclear fuel cycle. About 1.5 - 2.5 t of fissile material can be produced annually by injecting a 450 MW proton beam directly into fertile materials. A source of neutrons produced by a proton beam to supply subcritical reactors could alleviate many of the safety problems associated with critical assemblies. It is worthwhile to study an alternative approach to store the waste that would separate long-lived nuclei from high level waste by transmuting them into short-lived or nonradioactive waste. The small beam power of 15-30 MW can incinerate the actinide produced by ten 1 GWe light water reactors. Moreover, an incinerator with 900 MW thermal power can produce 270-240 MWe excess electricity and 100 kg of fissile material by surrounding the core with fertile materials. Accelerator breeders, actinide incinerators, particle fuel suitable to these purposes, the incineration of Cs-137 and Sr-90 fission products and future accelerator technology are described. Plasma beat waves and wake fields, and laser technology are the next steps of development. (K.I.)

  18. Nuclear fuel cycle synergies and regional scenarios for Europe

    International Nuclear Information System (INIS)

    Salvadores, M.; Romanello, V.; Schwenk-Ferrero, A.; Boucher, L.; Meyer, M.

    2009-01-01

    Regional strategies can provide a useful framework for implementing innovative nuclear fuel cycles. The appropriate sharing of efforts and facilities among different countries is necessary in today's context, as is taking into account proliferation concerns and resource optimisation. The preliminary studies examined in this report show that the expected benefits deriving from partitioning and transmutation (P and T), notably the reduction of radiotoxicity and heat load in a shared repository, can bring advantages to all countries of the region concerned, even when different nuclear energy policies are pursued. The studies also demonstrate that regional strategies tend to favour a nuclear renaissance in some countries. A regional approach is proposed in order to implement the innovative fuel cycles associated with partitioning and transmutation in Europe. The impact of different deployment strategies and policies in various countries is addressed. Regional facilities characteristics and potential deployment schedules are also discussed. Further studies should be undertaken to investigate practical issues (fuel transport in particular) and institutional issues which will, without doubt, be very challenging. (authors)

  19. The roles of industry for internationalization of nuclear fuel cycle

    International Nuclear Information System (INIS)

    Choi, Jor-Shan; Oda, Takuji; Tanaka, Satoru; Kuno, Yusuke

    2011-01-01

    To meet increasing energy demand and counter climate change, nuclear energy is expected to expand during the next decades in both developed and developing countries. The Fukushima accident in Japan in March 2011 may dampen the expansion, but it would proceed and continue when the Fukushima lessons are learned. This expansion, most visibly in Asian would be accompanied with complex and intractable challenges to global stability and nuclear security, notably, on 'how to reduce security and proliferation concerns if nuclear power is introduce and when used fuel is generated in less stable regions of the world?' The answers to the question may lie in the possibility of multilateral control of nuclear materials and technologies in the nuclear fuel cycle, including the provision of a 'cradle-to-grave' fuel cycle service, presumably by the nuclear industries and their respective governments. This paper evaluates the importance of such industry-government cooperative initiative and explores into the roles which the nuclear industry should play to ensure that the world would not be 'creating proliferation when expanding the application of nuclear power to emerging nuclear countries'. (author)

  20. Suggested non-proliferation criteria for commercial nuclear fuel cycles

    International Nuclear Information System (INIS)

    Laney, R.V.; Heubotter, P.R.

    1978-01-01

    Based on the Administration's policy to prevent nuclear weapons proliferation through diversion of fuel from commercial reactor fuel cycles, a ''benchmark'' set of nonproliferation criteria was prepared for the commercial nuclear fuel cycle. These criteria should eliminate incremental risks of proliferation beyond those inherent in the present generation of low-enriched-uranium-fueled reactors operating in a once-through mode, with internationally safeguarded storage of spent fuel. They focus on the balanced application of technical constraints consistent with the state of the technology, with minimal requirements for institutional constraints, to provide a basis for assessing the proliferation resistance of proposed fission power systems. The paper contains: (1) our perception of the nuclear energy policy and of the baseline proliferation risk accepted under this policy; (2) objectives for a reactor and fuel cycle strategy which address the technical, political, and institutional aspects of diversion and proliferation and, at the same time, satisfy the Nation's needs for efficient, timely, and economical utilization of nuclear fuel resources; (3) criteria which are responsive to these objectives and can therefore be used to screen proposed reactor and fuel cycle strategies; and (4) a rationale for these criteria

  1. An environmental impact measure for nuclear fuel cycle evaluation

    International Nuclear Information System (INIS)

    Ahn, Joonhong

    2004-01-01

    Review of the models and measures for repository performance assessment has revealed that dedicated measures for environmental impacts need to be developed for the purpose of nuclear-fuel-cycle evaluation from the viewpoint of environmental impact minimization. The present study proposes the total toxicity index of released radionuclides that have accumulated in the region exterior to the repository as an environmental impact measure. The measure is quantitatively evaluated by a radionuclide transport model that incorporates the effects of canister-array configuration and the initial mass loading in the waste canister. With the measure, it is demonstrated that the environmental impact of the repository can be effectively reduced by reduction of the initial mass loading and change in the canister-array configuration in the repository. Environmental impacts of the mill tailings and the depleted uranium are as important as those from the high-level radioactive wastes repository. For a fair comparison of various fuel cycles, the sum of these impacts should be compared. (author)

  2. Economic assessment of new technology of nuclear fuel cycle

    International Nuclear Information System (INIS)

    Kim, H. S.; Song, K. D.; Lee, M. K.; Moon, K. H.; Kim, S. S.; Lee, J. S.; Choi, H. B.

    1998-06-01

    The purpose of this study is to analyze the impact of the change in the manufacturing cost of DUPIC fuel on the power generation cost. In doing so, the installed capacity of nuclear power plants until the year 2040 were forecasted by using the trend analysis technique. This study used the NUFCAP computer code, developed by KAERI, which allows to conduct quantitative evaluation of the volumes of nuclear fuel and spent fuel as well as unit and system costs of nuclear fuel cycle. As a result of this study, it was found that there was little economic difference between the two possible options for the Korean electric system, direct disposal and DUPIC fuel cycle. The rate of discount and the manufacturing cost of DUPIC fuel were resulted in the most significant factors affecting the economics of the two options. Finally, it was expected that the result of this study provided the arguing point for the international debate on the economics of DUPIC fuel cycle technology. (author). 6 refs., 7 tabs., 8 figs

  3. Speciation, in the nuclear fuel cycle by spectroscopic techniques

    Energy Technology Data Exchange (ETDEWEB)

    Colette, S.; Plancque, G.; Allain, F.; Lamouroux, C.; Steiner, V.; Amekraz, B.; Moulin, C. [CEA/Saclay, Dept, des Procedes d' Enrichissement (DPE), 91 - Gif-sur-Yvette (France)

    2000-07-01

    New analytical techniques allowing to perform speciation in the framework of the nuclear fuel cycle are more and more needed. They have to be selective (since matrix encountered are very complex), sensitive (in order to work at representative concentration and below solubility limit), as well as non intrusive (in order to keep the image of the real solution). Among them, laser-based analytical techniques present these advantages together with the possibility to perform remote measurements via fiber optics. Hence, Time-Resolved Laser-Induced Fluorescence (TRLIF) has been used for actinides/lanthanides interaction and speciation studies in inorganic and organic matrices from the reprocessing to waste storage. Moreover, new ion detection methods such as Electro-Spray - Mass Spectrometry (ES-MS) seems promising for speciation studies. Hence, it is the first time that it is possible to directly couple a liquid at atmospheric pressure to a mass detection working at reduced pressure with a soft mode of ionisation that should allow to give informations on chemical species present. Principle, advantages and limitations as well as results obtained with the use of TRLIF and ES-MS on different systems of interest including actinides, lanthanides, fission products in interaction with simple organic molecules to very complex structure will be presented and discussed. (authors)

  4. Precedents for diversion-resistant nuclear fuel cycles

    International Nuclear Information System (INIS)

    Culler, F.L. Jr.

    1978-01-01

    The urgent need to limit the spread of nuclear weapons and to control the means of production of fissionable material has been the dominant force in the worldwide development of civilian nuclear power. The author follows the historical perspective for institutional control. To improve diversion resistance of the back end of the fuel recycle, the Civex process is proposed. The Civex process does not use new separation process principles or new methods for fuel fabrication. Rather, it is a combination of processes used and partially developed techniques for breeder fuel reprocessing and refabrication. Its characteristics are listed. The process steps and the design knowledge to meet these criteria, and to operate under conditions that provide maximum diversion resistance, can be adaptations of methods studied earlier and, in most cases, used for both military and civilian fuel recycle. The adaptations change the original techniques enough to make the technology different from that used for existing power reactors. The author discusses tried or partially demonstrated techniques from which Civex has been or could be fashioned. Separation processes discussed are bismuth phosphate; Purex; Thorex; fluoride volatility; pyrometallurgy. The Sol--Gel Uranium--Plutonium Spherepak and Pellet Fuels processes are discussed as candidates for Civex fuel-production methods. The author concludes that, in his opinion, the Civex process is as far as technology can go in the back end of the nuclear fuel cycle from illicit diversion of fissile materials

  5. Status of Chinese NPP Industry and Nuclear Fuel Cycle Policy

    Energy Technology Data Exchange (ETDEWEB)

    Gao, R. X. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Ko, W. I.; Kim, S. K. [Univ. of Science and Technology, Daejeon (Korea, Republic of)

    2013-05-15

    China still extended their experiences to both domestic and overseas so far. Chinese State Council approved its 'Medium and Long-term Nuclear Power Development Plan' in November 2007, indicating further definition for nuclear energy as indispensable energy option and future self-reliance development of nuclear industry. China intends to become self-sufficient not only in NPPs capacity, but also in the fuel production for all those plants. There are currently 17 NPPs in operation, and 28 NPPs under construction. However, domestic uranium mining supplying is currently less than a quarter of nuclear fuel demands. This paper investigated and summarized the updated status of NPP industry in China and Nuclear Fuel Cycle(NFC) policy. There still remain a number of technical innovation and comprehensive challenges for this nuclear developing country in the long-term, but its large ambitions and dramatic improvements toward future should not be ignored. As shown in this paper, the most suitable approach for China to achieve both environmentally-friendly power supplying and increasing energy demands meeting simultaneously must be considered. Nuclear energy now was recognized as the most potential and optimal way of energy supply system. In addition, to accommodate such a high-speed NPP construction in China, it should also focus on when and how spent nuclear fuel should be reprocessed. Finally, the nuclear back-end fuel cycle policy should be established, taking into accounts of all costs, uranium resource security, spent fuel management, proliferation resistance and environmental impact.

  6. Carbon-14 discharges from the nuclear fuel cycle: Pt. 1

    International Nuclear Information System (INIS)

    McCartney, M.; Baxter, M.S.; Scott, E.M.

    1988-01-01

    The radiological impact of 14 C produced by the nuclear fuel cycle is assessed using an advanced 25-box model of the carbon cycle coupled with a range of feasible energy-use scenarios. In particular, this study estimates both the short- and long-term dose implications to the global population. In the former context, it is predicted that the atmospheric 14 C specific activity in the year 2050 will be 234 Bq kg -1 (carbon), corresponding to delivery of an individual effective dose equivalent rate of 15 μSv year -1 . The contribution of reactor-derived 14 C to the individual dose rate increases steadily throughout this period, reaching 1.8 μSv year -1 in 2050, well within ICRP limits. In the longer term, however, the collective effective dose equivalent commitment is conservatively estimated at 141 man Sv TBq -1 , corresponding to 480 man Sv (GW(e) year) -1 . These figures indicate that 14 C could generate one of the largest contributions to the total dose to man from nuclear power production. (author)

  7. Economic Analysis of Different Nuclear Fuel Cycle Options

    International Nuclear Information System (INIS)

    Ko, W.; Gao, F.

    2012-01-01

    An economic analysis has been performed to compare four nuclear fuel cycle options: a once-through cycle (OT), DUPIC recycling, thermal recycling using MOX fuel in a pressurized water reactor (PWR-MOX), and sodium fast reactor recycling employing pyro processing (Pyro-SFR). This comparison was made to suggest an economic competitive fuel cycle for the Republic of Korea. The fuel cycle cost (FCC) has been calculated based on the equilibrium material flows integrated with the unit cost of the fuel cycle components. The levelized fuel cycle costs (LFCC) have been derived in terms of mills/kWh for a fair comparison among the FCCs, and the results are as follows: OT 7.35 mills/kWh, DUPIC 9.06 mills/kWh, PUREX-MOX 8.94 mills/kWh, and Pyro-SFR 7.70 mills/kWh. Due to unavoidable uncertainties, a cost range has been applied to each unit cost, and an uncertainty study has been performed accordingly. A sensitivity analysis has also been carried out to obtain the break-even uranium price (215$/kgU) for the Pyro-SFR against the OT, which demonstrates that the deployment of the Pyro-SFR may be economical in the foreseeable future. The influence of pyro techniques on the LFCC has also been studied to determine at which level the potential advantages of Pyro-SFR can be realized.

  8. Remote maintenance system technology development for nuclear fuel cycle plants

    International Nuclear Information System (INIS)

    Kashihara, Hidechiyo

    1984-01-01

    The necessity of establishing the technology of remote maintenance, the kinds of maintenance techniques and the change, the image of a facility adopting remote maintenance canyon process, and the outline of the R and D plan to put remote maintenance canyon process in practical use are described. As the objects of development, there are twin arm type servo manipulator system, rack system, remote tube connectors, solution sampling system, inspection system for in-cell equipment, and large plugs for wall penetration. The outline of those are also reported. The development of new remote maintenance technology has been forwarded in the Tokai Works aiming at the application to a glass solidification pilot plant and a FBR fuel recycling test facility. The lowering of the rate of utilization of cells due to poor accessibility and the increase of radiation exposure of workers must be overcome to realize nuclear fuel cycle technology. The maintenance technology is classified into crane canyon method, direct maintenance cell method, remote maintenance cell method and remote maintenance canyon method, and those are described briefly. The development plan of remote maintenance technology is outlined. (Kako, I.)

  9. Current status and prospects on Rokkasho nuclear fuel cycle project

    International Nuclear Information System (INIS)

    Suzuki, Mitsuo

    2003-01-01

    JNFL has been established aiming at fulfillment of Nuclear Fuel Cycle, as well as to contribute to the long-term and stable supply of nuclear power in Japan. 'Uranium Enrichment Plant' with its production of 1,050 SWU/y and planned to be expand to 1,500 SWU/y, 'Low Level Radioactive Waste Disposal Center' with 150,000/200 l drums stored, out of its 400,000 drums capacity, and 'Vitrified Waste Storage Center' with 760 canisters stored, out of its 1440 canisters capacity, are already in its operation. It is now preparing for the operation of '800 t/y Reprocessing Plant' and construction of '130t HM/y MOX Fuel Fabrication Plant'. As for the Reprocessing Plant, 780t of spent fuels has been already received and stored in the storage pools. Main plant is now in the course of test operation and planned to start the commercial operation by July 2006. Due to some defects found during the course of its construction, JNFL is now reviewing the Total Quality Assurance Structure to improve and reinforce its system. And for the MOX Fuel Fabrication Plant, activities towards obtaining the local autonomy's agreement for the construction are being made energetically. It is essential to obtain the good understanding of the public community to promote these projects successfully; JNFL is putting its best efforts to dispatch all the necessary information to the public in a timely manner. (author)

  10. Review of nuclear fuel cycle alternatives including certain features pertaining to weapon proliferation

    International Nuclear Information System (INIS)

    Williams, D.C.; Rosenstroch, B.

    1978-01-01

    Largely as a result of concerns over nuclear weapon proliferation, the U.S. program to develop and commercialize the plutonium-fueled breeder reactor has been slowed down; interest in alternative fuel cycles has increased. The report offers an informal review of the various nuclear fuel cycle options including some aspects relevant to weapon proliferation, although no complete review of the latter subject is attempted. Basic principles governing breeding, reactor safety, and efficient utilization of fission energy resources (thorium and uranium) are discussed. The controversial problems of weapon proliferation and its relation to fuel reprocessing (which is essential for efficient fuel cycles) are reviewed and a number of proposed approaches to reducing proliferation risks are noted. Some representative specific reactor concepts are described, with emphasis on their development status, their potentials for resource utilization, and their implications for proliferation

  11. The external costs of the nuclear fuel cycle: implementation in France

    International Nuclear Information System (INIS)

    Dreicer, M.; Tort, V.; Margerie, H.

    1995-08-01

    In 1991 the European Community and the US Department of Energy initiated a joint research project to assess the external costs of fuel cycles used to generate electricity. The intention of this project, called the EC-US External Costs of Fuel Cycles Project (ECFC), was to develop a conceptual approach, consistent methodology and identify future research in the assessment of the externalities. A second phase of the project continued in Europe (with a new name ''ExternE'') and expanded to include the implementation of the consistent methodology in various EC countries. This report presents the final results of the French Implementation for the nuclear fuel cycle. (author). 37 refs., 11 figs., 24 tabs

  12. Guidelines for evaluation of the environmental expense in the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Komatsu, Cintia Nagako

    2008-01-01

    The main objective of this research is to establish guidelines to fit the environment account in the nuclear fuel cycle, using as study of case the uranium hexafluoride production unit of Centro Tecnologico da Marinha in Sao Paulo. The environment accounting, branch of the accounting science, supply a source of tools capable to measure the protection efforts, the nature preservation, the environment monitoring and the recovering during all the conversion phase (since the uranium concentrated, the yellow cake, up to the Uranium hexafluoride production). It was performed several researches, visits to the Centre, databank creation, interviews and extensive consulting to the preliminary safety report, in order to obtain the percentage of the total expenses related to environment protection in regarding to the total amount invested in the unit. It was also evaluated the total preserved green area making possible a preliminary environment accounting balance. (author)

  13. The external costs of the nuclear fuel cycle: implementation in France

    Energy Technology Data Exchange (ETDEWEB)

    Dreicer, M.; Tort, V.; Margerie, H.

    1995-08-01

    In 1991 the European Community and the US Department of Energy initiated a joint research project to assess the external costs of fuel cycles used to generate electricity. The intention of this project, called the EC-US External Costs of Fuel Cycles Project (ECFC), was to develop a conceptual approach, consistent methodology and identify future research in the assessment of the externalities. A second phase of the project continued in Europe (with a new name ``ExternE``) and expanded to include the implementation of the consistent methodology in various EC countries. This report presents the final results of the French Implementation for the nuclear fuel cycle. (author). 37 refs., 11 figs., 24 tabs.

  14. Review of the IAEA nuclear fuel cycle and material section activities connected with nuclear fuel including WWER fuel

    International Nuclear Information System (INIS)

    Sokolov, F.

    2001-01-01

    Program activities on Nuclear Fuel Cycle and Materials cover the areas of: 1) raw materials (B.1.01); 2) fuel performance and technology (B.1.02); 3) pent fuel (B.1.03); 4) fuel cycle issues and information system (B.1.04); 5) support to technical cooperation activities (B.1.05). The IAEA activities in fuel performance and technology in 2001 include organization of the fuel experts meetings and completion of the Co-ordinate Research Projects (CRP). The special attention is given to the advanced post-irradiation examination techniques for water reactor fuel and fuel behavior under transients and LOCA conditions. An international research program on modeling of activity transfer in primary circuit of NPP is finalized in 2001. A new CRP on fuel modeling at extended burnup (FUMEX II) has planed to be carried out during the period 2002-2006. In the area of spent fuel management the implementation of burnup credit (BUC) in spent fuel management systems has motivated to be used in criticality safety applications, based on economic consideration. An overview of spent fuel storage policy accounting new fuel features as higher enrichment and final burnup, usage of MOX fuel and prolongation of the term of spent fuel storage is also given

  15. Environmental monitoring standardization of effluent from nuclear fuel cycle facilities in China

    International Nuclear Information System (INIS)

    Gao Mili

    1993-01-01

    China has established some environmental monitoring standards of effluent from nuclear fuel cycle facilities. Up to date 33 standards have been issued; 10 to be issued; 11 in drafting. These standards cover sampling, gross activities measurement, analytical methods and management rules and so on. They involve with almost all nuclear fuel cycle facilities and have formed a complete standards system. By the end of the century, we attempt to draft a series of analytical and determination standards in various environmental various medium, they include 36 radionuclides from nuclear fuel cycle facilities. (3 tabs.)

  16. New long-term plan of nuclear development and perspectives of nuclear fuel cycle policy

    International Nuclear Information System (INIS)

    Uchiyama, Yohji

    2005-01-01

    Japan's nuclear fuel cycle policy, recently issued as an interim report of the Council to Formulate the New Long-Term Nuclear Program of the Atomic Energy Commission, is summarized and briefly explained together with the concluding remarks from the sub-committee for discussing technical and economical problems on the spent nuclear fuels with the present state of the Rokkasho reprocessing plant in mind. As for the nuclear fuel treatment, the panel considered four scenarios: (1) total reprocessing (the reprocessing for spent fuel after an appropriate period of storage); (2) partial reprocessing (spent fuel is reprocessed, with direct disposal of any spent fuel in excess of reprocessing capacity); (3) total direct disposal (direct disposal of all spent fuel); and (4) temporary storage (spent fuel is temporarily stored, and in about 2060 a choice will be made about whether to reprocess it or directly dispose of it). These four scenarios were studied from various perspectives, namely: (1) ensuring safety; (2) energy security; (3) environmental compatibility; (4) economic efficiency; (5) nuclear nonproliferation; (6) technical feasibility; (7) social acceptance; (8) securing choices; (9) issues concerning change in policy; and (10) overseas trends. Regarding economic efficiency, the council in particular conducted detailed studies and reassessment of nuclear fuel cycle costs. Scenario 1 (total reprocessing) is about 0.5-0.7 yen/kWh higher than scenario 3 (total direct disposal). However, looking at the situation from the perspectives of energy security, that is the stable supply and moderate use of resources, and environmental compatibility, scenario 1 (total reprocessing) can be evaluated as superior to the other scenarios. And more importantly, if the fast-breeder reactor cycle is commercialized, this superiority increases considerably. (S. Ohno)

  17. Proliferation and the Civilian Nuclear Fuel Cycle. Towards a Simplified Recipe to Measure Proliferation Risk

    Energy Technology Data Exchange (ETDEWEB)

    Brogli, R.; Krakowski, R.A

    2001-08-01

    The primary goal of this study is to frame the problem of nuclear proliferation in the context of protection and risks associated with nuclear materials flowing in the civilian nuclear fuel cycle. The perspective adopted for this study is that of a nuclear utility and the flow of fresh and spent nuclear fuel with which that utility must deal in the course of providing economic, safe, and ecologically acceptable electrical power to the public. Within this framework quantitative approaches to a material-dependent, simplified proliferation-risk metric are identified and explored. The driving force behind this search for such a proliferation metric derives from the need to quantify the proliferation risk in the context of evaluating various commercial nuclear fuel cycle options (e.g., plutonium recycle versus once-through). While the formulation of the algebra needed to describe the desired, simplified metric(s) should be straight forward once a modus operandi is defined, considerable interaction with the user of any final product that results is essential. Additionally, a broad contextual review of the proliferation problem and past efforts in the quantification of associated risks was developed as part of this study. This extensive review was essential to setting perspectives and establishing (feasibility) limits to the search for a proliferation metric(s) that meets the goals of this study. Past analyses of proliferation risks associated with the commercial nuclear fuel cycle have generally been based on a range of decision-analysis, operations-research tools. Within the time and budget constraints, as well as the self-enforced (utility) customer focus, the more subjective and data-intensive decision-analysis methodologies where not pursued. Three simplified, less-subjective approaches were investigated instead: a) a simplified 'four-factor' formula expressing as a normalized product political, material-quantity, material-quality, and material

  18. Proliferation and the Civilian Nuclear Fuel Cycle. Towards a Simplified Recipe to Measure Proliferation Risk

    International Nuclear Information System (INIS)

    Brogli, R.; Krakowski, R.A.

    2001-08-01

    The primary goal of this study is to frame the problem of nuclear proliferation in the context of protection and risks associated with nuclear materials flowing in the civilian nuclear fuel cycle. The perspective adopted for this study is that of a nuclear utility and the flow of fresh and spent nuclear fuel with which that utility must deal in the course of providing economic, safe, and ecologically acceptable electrical power to the public. Within this framework quantitative approaches to a material-dependent, simplified proliferation-risk metric are identified and explored. The driving force behind this search for such a proliferation metric derives from the need to quantify the proliferation risk in the context of evaluating various commercial nuclear fuel cycle options (e.g., plutonium recycle versus once-through). While the formulation of the algebra needed to describe the desired, simplified metric(s) should be straight forward once a modus operandi is defined, considerable interaction with the user of any final product that results is essential. Additionally, a broad contextual review of the proliferation problem and past efforts in the quantification of associated risks was developed as part of this study. This extensive review was essential to setting perspectives and establishing (feasibility) limits to the search for a proliferation metric(s) that meets the goals of this study. Past analyses of proliferation risks associated with the commercial nuclear fuel cycle have generally been based on a range of decision-analysis, operations-research tools. Within the time and budget constraints, as well as the self-enforced (utility) customer focus, the more subjective and data-intensive decision-analysis methodologies where not pursued. Three simplified, less-subjective approaches were investigated instead: a) a simplified 'four-factor' formula expressing as a normalized product political, material-quantity, material-quality, and material-protection metrics; b

  19. Nuclear power performance and safety. V.5. Nuclear fuel cycle

    International Nuclear Information System (INIS)

    1988-01-01

    The International Conference on Nuclear Power Performance and Safety, organized by the International Atomic Energy Agency, was held at the Austria Centre Vienna (ACV) in Vienna, Austria, from 28 September to 2 October 1987. The objective of the Conference was to promote an exchange of worldwide information on the current trends in the performance and safety of nuclear power and its fuel cycle, and to take a forward look at the expectations and objectives for the 1990s. Policy decisions for waste management have already been taken in many countries and the 1990s should be a period of demonstration and implementation of these policies. As ilustrated by data presented from a number of countries, many years of experience in radioactive waste management have been achieved and the technology exists to implement the national plans and policies that have been developed. The establishment of criteria, the development of safety performance methodology and site investigation work are key activities essential to the successful selection, characterization and construction of geological repositories for the final disposal of radioactive waste. Considerable work has been done in these areas over the last ten years and will continue into the 1990s. However, countries that are considering geological disposal for high level waste now recognize the need for relating the technical aspects to public understanding and acceptance of the concept and decision making activities. The real challenge for the 1990s in waste disposal will be successfully to integrate technological activities within a process which responds to institutional and public concern. Volume 5 of the Proceedings comprehends the contributions on waste management in the 1990s. Decontamination and decommissioning, waste management, treatment and disposal, nuclear fuel cycle - present and future. Enrichment services and advanced reactor fuels, improvements in reactor fuel utilization and performance, spent fuel management

  20. ASSESSING THE PROLIFERATION RESISTANCE OF INNOVATIVE NUCLEAR FUEL CYCLES

    International Nuclear Information System (INIS)

    BARI, R.; ROGLANS, J.; DENNING, R.; MLADINEO, S.

    2003-01-01

    The National Nuclear Security Administration is developing methods for nonproliferation assessments to support the development and implementation of U.S. nonproliferation policy. This paper summarizes the key results of that effort. Proliferation resistance is the degree of difficulty that a nuclear material, facility, process, or activity poses to the acquisition of one or more nuclear weapons. A top-level measure of proliferation resistance for a fuel cycle system is developed here from a hierarchy of metrics. At the lowest level, intrinsic and extrinsic barriers to proliferation are defined. These barriers are recommended as a means to characterize the proliferation characteristics of a fuel cycle. Because of the complexity of nonproliferation assessments, the problem is decomposed into: metrics to be computed, barriers to proliferation, and a finite set of threats. The spectrum of potential threats of nuclear proliferation is complex and ranges from small terrorist cells to industrialized countries with advanced nuclear fuel cycles. Two general categories of methods have historically been used for nonproliferation assessments: attribute analysis and scenario analysis. In the former, attributes of the systems being evaluated (often fuel cycle systems) are identified that affect their proliferation potential. For a particular system under consideration, the attributes are weighted subjectively. In scenario analysis, hypothesized scenarios of pathways to proliferation are examined. The analyst models the process undertaken by the proliferant to overcome barriers to proliferation and estimates the likelihood of success in achieving a proliferation objective. An attribute analysis approach should be used at the conceptual design level in the selection of fuel cycles that will receive significant investment for development. In the development of a detailed facility design, a scenario approach should be undertaken to reduce the potential for design vulnerabilities

  1. Scenarios for the Nuclear fuel cycle in the next decade

    International Nuclear Information System (INIS)

    Connor, M.J.; Ortega C, R.F.

    2005-01-01

    Some ask: What is the most important event in the Nuclear Fuel Cycle in recent years? One obvious answer is: the dramatic increase in the price of uranium in the international market. The 'spot' or short term delivery price of uranium, increased from $10.90 US dol/lb U 3 O 8 in June 2003 to $14.40 US dol/lb U 3 O 8 in December 2003, a 34% increase in just six months. Then it jumped again to $20.50 US dol/lb U 3 O 8 by December 2004, an increase of 42% that year. Now, by June of 2005, the spot price has climbed another 41% in six months to $29.00 dol/lb U 3 O 8 . Altogether this is a 270% jump in the spot price in just two years. In the same period, the long-term contract price increased from $ 11.75 US dol/lb U 3 O 8 to $30.00 US dol/lb U 3 O 8 - an increase of 255%. These 'adjustments' are a shock to fuel buyers similar to that adjustment of tectonic plates that caused the terrible 'tsunami' in the coast of East Asia last December. This 'adjustment' occurred in a market that most buyers had thought had developed stability - but this was a stability which we now know was mainly due to the supply of large excess inventories of uranium from several countries, including military stocks in the CIS and USA. But what the future holds may be even more dramatic. This paper examines some of the critical elements that will shape the future U 3 O 8 supply/demand relationship, and prices, in the coming decade. (Author)

  2. Overview of the OECD Nuclear Energy Agency scientific activities on the nuclear fuel cycle - 5301

    International Nuclear Information System (INIS)

    Cornet, S.; Chauvin, N.

    2015-01-01

    As part of its role in encouraging international collaboration, the OECD Nuclear Energy Agency is coordinating a series of projects related to the Nuclear Fuel Cycle. The Nuclear Science Committee (NSC) Working Party on Scientific Issues of the Nuclear Fuel Cycle (WPFC) comprises five different expert groups covering scientific aspects of the fuel cycle from front to back-end. Ongoing projects include fuel cycle scenarios, fuels, materials, physics and chemical separations. Members of the expert groups cooperate to share recent research advancements at an international level and help identify gaps and needs in the field. Current activities focus on current and advanced nuclear systems in particular the challenges associated with the adoption of new materials and fuels such as for example cladding materials, fuels containing minor actinides, or the use of liquid metal as coolants. The Expert Group on Innovative Fuels has recently prepared a report on MA bearing fuels looking at different type of fuels and examining the technical issues associated with their fabrication, characterization, irradiation performance, and design and safety criteria. Experts of the group on Heavy Liquid Metal (HLM) technologies are compiling and editing the second version of the LBE (Lead Bismuth Eutectic) Handbook to include new experimental data. The Expert Group on Advanced Fuel Cycle Scenarios has undertaken a study to evaluate the effects of uncertainties of input parameters on the outcomes of fuel scenario studies to provide guidance on which uncertainties are more significant. At the back-end of the fuel cycle, separation technologies (aqueous and pyrochemical) are being assessed by the Expert Group on Fuel recycling Chemistry. (authors)

  3. Lanthanide - actinide separation: a challenge in the back end of nuclear fuel cycle

    International Nuclear Information System (INIS)

    Mohapatra, P.K.

    2015-01-01

    Due to their similar size and chemical state, separation of trivalent lanthanide and actinide ions has always been a challenging topic of research. Of late, the growing concern for the radioactive waste management in the back end of the nuclear fuel cycle has led to the possibility of transmuting the long-lived transuranides in high flux reactors. This necessitates the development of processes for the separation of lanthanides and actinides in acidic/low pH media. In view of the high absorption cross section of few lanthanides, their presence in relatively large proportion (10-100 times) impedes the transmutation process. Processes such as the TRAMEX and TALSPEAK have been used for the separation of lanthanides from trivalent actinides. Of late soft donor ligands containing S and N donor atoms have been used for the selective extraction of trivalent actinide ions. The commercially available S-donor compound, CYANEX 301 (bis(2,4,4-trimethylpentyl) dithiophosphinic acid) has been used to yield separation factor (S.F.) values in the excess of 6000. Synergistic extraction with N-donor ligands such as 2,2'-bipyridyl and 1,10-phenanthroline have yielded S.F. values close to 40,000. N-donor ligands such as BTP (bis-triazinylpyridine), BTBP (bis-triazinylbipyridyl) and BTPhen (bis-triazinyl-phenanthroline) have been particularly effective from relatively acidic feed conditions. The present lecture will give a brief outline of the separation processes and experimental results of studies carried out using various S and N donor ligands. Use of room temperature ionic liquids for more favorable separations will be highlighted. Liquid membrane separation results for application to back end nuclear fuel cycle will also be discussed. (author)

  4. The present status of IAEA safeguards on nuclear fuel cycle facilities

    International Nuclear Information System (INIS)

    1979-02-01

    This paper examines the present approach of the International Atomic Energy Agency (IAEA) to safeguarding various types of facilities in the nuclear fuel cycle, in the hope that it will serve as useful background material for several of the various working groups of the International Nuclear Fuel Cycle Evaluation (INFCE). The objectives and criteria of safeguards as well as the specific safeguards techniques which are utilized by the Agency, are addressed. In Part I, a general overview of safeguards as well as a discussion of procedures applicable to most if not all IAEA safeguarded facilities are included. Part II is broken down into specific facility types and focusses on the particular safeguards measures applied to them. Safeguards have reached different degrees of development for different types of facilities, in part because the Agency's experience in safeguarding certain types is considerably greater than for other types. Thus the Agency safeguards described herein are not static, but are continuously evolving. This evolution results not only from the fact that larger and more complex facilities have been coming under safeguards. Changes are also continually being introduced based on practical experience and research and development aimed at improving safeguards efficiency, reducing intrusiveness into plant operations, minimizing operator and inspector radiation exposure, and reducing subjective evaluations in determining the effectiveness of safeguards. To these ends, the technical support programmes of various countries are playing an important role. It is emphasized that this paper is not intended to evaluate the effectiveness of Agency safeguards or to highlight problem areas. It is simply aimed at providing a picture of what safeguards are or are planned to be at various stages of the fuel cycle

  5. Computerized Registration System of Occupational Exposure in Nuclear Fuel Cycle in Slovenia

    International Nuclear Information System (INIS)

    Cernilogar Radez, M.; Krizman, M.

    2001-01-01

    Full text: In early 1999s the SNSA started to develop a computerised registration system of occupational radiation exposure for workers in a nuclear fuel cycle in Slovenia, which arises from four nuclear facilities: nuclear power plant, research reactor, storage facility and uranium mine. In the period 1985-2000 about 5000 workers altogether were monitored due to exposure in a nuclear fuel cycle in Slovenia (about 1200 employees and 3800 outside workers), with an average of 1000 workers being assessed each calendar year. Four dosimetric services regularly perform personal monitoring of the occupational exposure and all of them have been requested to provide data to the SNSA electronically. The computerised register was put into operation in 2000 enabling prompt control of personal exposures, including annual, 5-year and lifetime doses. Besides individual exposure also collective doses can be evaluated, together with size and time distributions and trends over certain periods. Apart from the total dose, the doses received due to external radiation (gamma, neutrons) and due to internal radiation have been separately recorded into the register. In addition, personal data of workers as well as employee and facility data have been also recorded. Some statistics of dose distributions have been evaluated and the results have been compared to international data. More than 80% of workers from the register have been exposed in the NPP. Workers received the major part of their exposure during the annual outage works. It is found out that in recent years, the average individual and collective doses have shown a rising trend. (author)

  6. Japan-IAEA Workshops on Advanced Safeguards for Future Nuclear Fuel Cycles

    International Nuclear Information System (INIS)

    Hoffheins, B.; Hori, M.; Suzuki, M.; Kuno, Y.; Kimura, N.; Naito, K.; Hosoya, M.; Khlebnikov, N.; Whichello, J.; Zendel, M.

    2010-01-01

    Beginning in 2007, the Japan Atomic Energy Agency (JAEA) and the International Atomic Energy Agency (IAEA) Department of Safeguards initiated a workshop series focused on advanced safeguards technologies for the future nuclear fuel cycle (NFC). The goals for these workshops were to address safeguards challenges, to share implementation experiences, to discuss fuel cycle plans and promising research and development, and to address other issues associated with safeguarding new fuel cycle facilities. Concurrently, the workshops also served to promote dialog and problem solving, and to foster closer collaborations for facility design and planning. These workshops have sought participation from IAEA Member States' support programmes (MSSP), the nuclear industry, R and D organizations, state systems of accounting and control (SSAC), regulators and inspectorates to ensure that all possible stakeholder views can be shared in an open process. Workshop presentations have covered, inter alia, national fuel cycle programs and plans, research progress in proliferation resistance (PR) and safeguardability, approaches for nuclear measurement accountancy of large material throughputs and difficult to access material, new and novel radiation detectors with increased sensitivity and automation, and lessons learned from recent development and operation of safeguards systems for complex facilities and the experiences of integrated safeguards (IS) in Japan. Although the title of the workshops presumes an emphasis on technology, participants recognized that early planning and organization, coupled with close cooperation among stakeholders, that is, through the application of 'Safeguards by Design' (SBD) processes that include nuclear safety and security coordination, 'Remote Inspections' and 'Joint-Use of Equipment (JUE)' would be required to enable more successful implementations of safeguards at future NFC facilities. The needs to cultivate the future workforce, effectively preserve

  7. Proceeding of the Fourth Scientific Presentation on Nuclear Fuel Cycle: Technology of Nuclear Fuel Cycle facing the Challenge of Energy Need on the 21-st Century

    International Nuclear Information System (INIS)

    Suripto, A.; Sajuti, D.; Aiman, S.; Yuwono, I.; Fathurrachman; Suwarno, H.; Suwardi; Amini, S.; Widjaksana

    1999-03-01

    The proceeding contains papers presented in the Fourth Scientific Presentation on Nuclear Fuel Element Cycle with theme of Technology of Nuclear Fuel Cycle facing the Challenge of Energy Need on the 21 s t Century, held on 1-2 December in Jakarta, Indonesia. These papers were divided by three groups that are technology of exploration, processing, purification and analysis of nuclear materials; technology of nuclear fuel elements and structures; and technology of waste management, safety and management of nuclear fuel cycle. There are 36 papers indexed individually. (ID)

  8. The structure and economics of the nuclear fuel cycle service industry

    International Nuclear Information System (INIS)

    Hyett, A.J.

    1984-01-01

    The subject is covered in sections, entitled; introduction; mining and milling of uranium ore; the nuclear energy process; enrichment; burnup; reprocessing; fast reactors; waste disposal; international aspects of the nuclear fuel cycle (international trade). (U.K.)

  9. Accident-generated radioactive particle source term development for consequence assessment of nuclear fuel cycle facilities

    International Nuclear Information System (INIS)

    Sutter, S.L.; Ballinger, M.Y.; Halverson, M.A.; Mishima, J.

    1983-04-01

    Consequences of nuclear fuel cycle facility accidents can be evaluated using aerosol release factors developed at Pacific Northwest Laboratory. These experimentally determined factors are compiled and consequence assessment methods are discussed. Release factors can be used to estimate the fraction of material initially made airborne by postulated accident scenarios. These release fractions in turn can be used in models to estimate downwind contamination levels as required for safety assessments of nuclear fuel cycle facilities. 20 references, 4 tables

  10. Investigation and analysis of nuclear fuel cycle back-end technology development

    International Nuclear Information System (INIS)

    Song, Kee Chan

    2012-01-01

    The R and D status of the nuclear fuel cycle beckoned was investigated and analyzed for Korea and overseas nuclear countries. The technical achievement and future plan of Korea were outlined, and up-to-date R and D status and strategies of overseas nuclear countries were investigated and analyzed. Ο United States Ο France and European Union Ο Japan Ο Russia Ο China And the recent trend of the multilateral approach in the nuclear fuel cycle backoned was arranged

  11. Analysis and consideration for the US criteria of nuclear fuel cycle facilities to resist natural disasters

    International Nuclear Information System (INIS)

    Shen Hong

    2013-01-01

    Natural disasters pose a threat to the safety of nuclear facilities. Fukushima nuclear accident tells us that nuclear safety in siting, design and construction shall be strengthened in case of external events caused by natural disasters. This paper first analyzes the DOE criteria of nuclear fuel cycle facilities to resist natural disasters. Then to develop our national criteria for natural disaster resistance of nuclear fuel cycle facilities is suggested, so as to ensure the safety of these facilities. (authors)

  12. Model development for quantitative evaluation of proliferation resistance of nuclear fuel cycles

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Won Il; Kim, Ho Dong; Yang, Myung Seung

    2000-07-01

    This study addresses the quantitative evaluation of the proliferation resistance which is important factor of the alternative nuclear fuel cycle system. In this study, model was developed to quantitatively evaluate the proliferation resistance of the nuclear fuel cycles. The proposed models were then applied to Korean environment as a sample study to provide better references for the determination of future nuclear fuel cycle system in Korea. In order to quantify the proliferation resistance of the nuclear fuel cycle, the proliferation resistance index was defined in imitation of an electrical circuit with an electromotive force and various electrical resistance components. The analysis on the proliferation resistance of nuclear fuel cycles has shown that the resistance index as defined herein can be used as an international measure of the relative risk of the nuclear proliferation if the motivation index is appropriately defined. It has also shown that the proposed model can include political issues as well as technical ones relevant to the proliferation resistance, and consider all facilities and activities in a specific nuclear fuel cycle (from mining to disposal). In addition, sensitivity analyses on the sample study indicate that the direct disposal option in a country with high nuclear propensity may give rise to a high risk of the nuclear proliferation than the reprocessing option in a country with low nuclear propensity.

  13. Safety Aspects of Radioactive Waste Management in Different Nuclear Fuel Cycle Policies, a Comparative Study

    International Nuclear Information System (INIS)

    Gad Allah, A.A.

    2009-01-01

    With the increasing demand of energy worldwide, and due to the depletion of conventional natural energy resources, energy policies in many countries have been devoted to nuclear energy option. On the other hand, adopting a safe and reliable nuclear fuel cycle concept guarantees future nuclear energy sustain ability is a vital request from environmental and economic point of views. The safety aspects of radioactive waste management in the nuclear fuel cycle is a topic of great importance relevant to public acceptance of nuclear energy and the development of nuclear technology. As a part of nuclear fuel cycle safety evaluation studies in the department of nuclear fuel cycle safety, National Center for Nuclear Safety and Radiation Control (NCNSRC), this study evaluates the radioactive waste management policies and radiological safety aspects of three different nuclear fuel cycle policies. The once-through fuel cycle (OT- fuel cycle) or the direct spent fuel disposal concept for both pressurized light water reactor ( PWR) and pressurized heavy water reactor (PHWR or CANDU) systems and the s elf-generated o r recycling fuel cycle concept in PWR have been considered in the assessment. The environmental radiological safety aspects of different nuclear fuel cycle options have been evaluated and discussed throughout the estimation of radioactive waste generated from spent fuel from these fuel cycle options. The decay heat stored in the spent fuel was estimated and a comparative safety study between the three fuel cycle policies has been implemented

  14. Model development for quantitative evaluation of proliferation resistance of nuclear fuel cycles

    International Nuclear Information System (INIS)

    Ko, Won Il; Kim, Ho Dong; Yang, Myung Seung

    2000-07-01

    This study addresses the quantitative evaluation of the proliferation resistance which is important factor of the alternative nuclear fuel cycle system. In this study, model was developed to quantitatively evaluate the proliferation resistance of the nuclear fuel cycles. The proposed models were then applied to Korean environment as a sample study to provide better references for the determination of future nuclear fuel cycle system in Korea. In order to quantify the proliferation resistance of the nuclear fuel cycle, the proliferation resistance index was defined in imitation of an electrical circuit with an electromotive force and various electrical resistance components. The analysis on the proliferation resistance of nuclear fuel cycles has shown that the resistance index as defined herein can be used as an international measure of the relative risk of the nuclear proliferation if the motivation index is appropriately defined. It has also shown that the proposed model can include political issues as well as technical ones relevant to the proliferation resistance, and consider all facilities and activities in a specific nuclear fuel cycle (from mining to disposal). In addition, sensitivity analyses on the sample study indicate that the direct disposal option in a country with high nuclear propensity may give rise to a high risk of the nuclear proliferation than the reprocessing option in a country with low nuclear propensity

  15. Advanced Nuclear Fuel Cycle Transitions: Optimization, Modeling Choices, and Disruptions

    Science.gov (United States)

    Carlsen, Robert W.

    Many nuclear fuel cycle simulators have evolved over time to help understan the nuclear industry/ecosystem at a macroscopic level. Cyclus is one of th first fuel cycle simulators to accommodate larger-scale analysis with it liberal open-source licensing and first-class Linux support. Cyclus also ha features that uniquely enable investigating the effects of modeling choices o fuel cycle simulators and scenarios. This work is divided into thre experiments focusing on optimization, effects of modeling choices, and fue cycle uncertainty. Effective optimization techniques are developed for automatically determinin desirable facility deployment schedules with Cyclus. A novel method fo mapping optimization variables to deployment schedules is developed. Thi allows relationships between reactor types and scenario constraints to b represented implicitly in the variable definitions enabling the usage o optimizers lacking constraint support. It also prevents wasting computationa resources evaluating infeasible deployment schedules. Deployed power capacit over time and deployment of non-reactor facilities are also included a optimization variables There are many fuel cycle simulators built with different combinations o modeling choices. Comparing results between them is often difficult. Cyclus flexibility allows comparing effects of many such modeling choices. Reacto refueling cycle synchronization and inter-facility competition among othe effects are compared in four cases each using combinations of fleet of individually modeled reactors with 1-month or 3-month time steps. There are noticeable differences in results for the different cases. The larges differences occur during periods of constrained reactor fuel availability This and similar work can help improve the quality of fuel cycle analysi generally There is significant uncertainty associated deploying new nuclear technologie such as time-frames for technology availability and the cost of buildin advanced reactors

  16. The nuclear fuel cycle: review on R and D policies in the Member States of the European Communities

    International Nuclear Information System (INIS)

    1989-01-01

    This report presents an overview of the state of research in the field of the nuclear fuel cycle in the Member States of the European Communities. It covers the following steps of the fuel cycle: uranium enrichment, fuel fabrication, reprocessing, waste management and, in addition, decommissioning of nuclear facilities. Research carried out both in the public and private sectors has been covered. However, information on the scope and volume of research carried out in the private sector is only in part available, as access to such information is difficult, in particular where it concerns activities which have a competitive commercial character

  17. Strengthening the nuclear nonproliferation regime: focus on the civilian nuclear fuel cycle

    International Nuclear Information System (INIS)

    Saltiel, David H.; Pregenzer, Arian Leigh

    2005-01-01

    Leaders around the world and across the ideological spectrum agree that the global nonproliferation regime is facing a serious test. The emergence of sophisticated terrorist networks, black markets in nuclear technology, and technological leaps associated with globalization have conspired to threaten one of the most successful examples of international cooperation in history. The rampant proliferation of nuclear weapons that was predicted at the start of the nuclear age has been largely held in check and the use of those weapons avoided. Nonetheless, with the thirty-fifth anniversary of the Treaty on the Nonproliferation of Nuclear Weapons (NPT), the threat of nuclear proliferation seems more serious than ever. Although experts readily concede that there exist many pathways to proliferation, the threat posed by the misuse of the civilian nuclear fuel cycle has received considerable recent attention. While the connection between nuclear energy and nonproliferation has been a topic of discussion since the dawn of the nuclear age, world events have brought the issue to the forefront once again. United States President George W. Bush and International Atomic Energy Agency (IAEA) Director General Mohammad ElBaradei are among those who have highlighted proliferation risks associated with civilian nuclear power programs and called for revitalizing the nuclear nonproliferation regime to address new threats. From the possibility of diversion or theft of nuclear material or technology, to the use of national civilian programs as a cover for weapons programs - what some have called latent proliferation - the fuel cycle appears to many to represent a glaring proliferation vulnerability. Just as recognition of these risks is not new, neither is recognition of the many positive benefits of nuclear energy. In fact, a renewed interest in exploiting these benefits has increased the urgency of addressing the risks. Global energy demand is expected to at least double by the middle of

  18. Rogue proliferator? North Korea's nuclear fuel cycle and its relationship to regime perpetuation

    International Nuclear Information System (INIS)

    Habib, Benjamin

    2010-01-01

    North Korea is unlikely to relinquish its nuclear program because of its importance to the perpetuation of the Kim regime. This conclusion arises from the observation that the nuclear program has been a long-term project spanning several decades, culminating in denuclearisation negotiations, which have followed a cyclical pattern in which the North has provoked crises to extract concessions and gain leverage vis-a-vis regional states. It is clear that the nuclear program has great intrinsic value to Pyongyang. First, this paper argues that the sunk costs of previous investment in the nuclear program, as evidenced by the infrastructure for the country's nuclear fuel cycle, create forward momentum favouring continuation of the nuclear program. Second, it argues that the nuclear program solidifies Kim regime rule as an institutional buttress, as a prop for the domestic economy, and as a vehicle for ideological legitimation. The paper is a unique contribution, which explicitly links the Kim regime's proliferation calculus to the economic and bureaucratic imperatives of regime perpetuation, as well as the sunk cost of previous investment in the nuclear program. It provides a coherent explanation for North Korea's consistent unreliability in negotiations, and offers insights into future prospects of the denuclearisation process.

  19. Contemporary strategy for external nuclear fuel cycle development: An analysis of the work of the IAEA NMFCTS

    International Nuclear Information System (INIS)

    Nechaev, A.F.

    1989-01-01

    The section's program includes four basic areas of activity: (1) nuclear fuel ore resources; (2) processing nuclear and reactor materials; (3) reactor fuel design, fabrication and behavior; and (4) spent nuclear fuel handling. The paper discusses the present-day condition and tendencies in the development of the nuclear fuel cycle and characteristics of international collaboration, including initial stages of the reactor fuel cycle, reactor fuel technology, and spent nuclear fuel handling. In recent years, the IAEA has made active efforts to improve international collaboration in accord with contemporary needs, and the purpose of this survey consists of showing a few concrete results achieved by the NMFCTS in this regard

  20. Operating experience with a near-real-time inventory balance in a nuclear-fuel-cycle plant

    International Nuclear Information System (INIS)

    Armento, W.J.; Box, W.D.; Kitts, F.G.; Krichinsky, A.M.; Morrison, G.W.; Pike, D.H.

    1981-01-01

    The principal objective of the ORNL Integrated Safeguards Program (ISP) is to provide enhanced material accountability, improved process control, and greater security for nuclear fuel cycle facilities. With the improved instrumentation and computer interfacing currently installed, the ORNL 233 U Pilot Plant has demonstrated capability of a near-real-time liquid-volume balance in both the solvent-extraction and ion-exchange systems. Future developments should include the near-real-time mass balancing of special nuclear materials as both a static, in-tank summation and a dynamic, in-line determination. In addition, the aspects of site security and physical protection can be incorporated into the computer monitoring

  1. Research and development program for transuranic-contaminated waste within the U.S. Energy Research and Development Administration

    International Nuclear Information System (INIS)

    Wolfe, R.A.

    1976-01-01

    This overview examines the research and development program that has been established within the U.S. Energy Research and Development Administration (ERDA) to develop the technology to treat transuranic-contaminated waste. Also considered is the waste expected within the total nuclear fuel cycle

  2. Research on the actinide chemistry in Nuclear Fuel Cycle

    Energy Technology Data Exchange (ETDEWEB)

    Song, Kyseok; Park, Yong Joon; Cho, Young Hwan; and others

    2012-04-15

    Fundamental technique to measure chemical behaviors and properties of lanthanide and actinide in radioactive waste is necessary for the development of pryochemical process. First stage, the electrochemical/spectroscopic integrated measurement system was designed and set up for spectro-electrochemical measurements of lanthanide and actinide ions in high temperature molten salt media. A compact electrochemical cell and electrode system was also developed for the minimization of reactants, and consequently minimization of radioactive waste generation. By applying these equipments, oxidation and reduction behavior of lanthanide and actinide ions in molten salt media have been made. Also, thermodynamic parameter values are determined by interpreting the results obtained from electrochemical measurements. Several lanthanide ions exhibited fluorescence properties in molten salt. Also, UV-VIS measurement provided the detailed information regarding the oxidation states of lanthanide and actinide ions in high temperature molten salt media. In the second stage, measurement system for physical properties at pyrochemical process such as viscosity, melting point and conductivity is established, and property database at different compositions of lanthanide and actinide is collected. And, both interactions between elements and properties with different potential are measured at binary composition of actinide-lanthanide in molten salt using electrochemical/spectroscopic integrated measurement system.

  3. Burnup effect on nuclear fuel cycle cost using an equilibrium model

    International Nuclear Information System (INIS)

    Youn, S. R.; Kim, S. K.; Ko, W. I.

    2014-01-01

    The degree of fuel burnup is an important technical parameter to the nuclear fuel cycle, being sensitive and progressive to reduce the total volume of process flow materials and eventually cut the nuclear fuel cycle costs. This paper performed the sensitivity analysis of the total nuclear fuel cycle costs to changes in the technical parameter by varying the degree of burnups in each of the three nuclear fuel cycles using an equilibrium model. Important as burnup does, burnup effect was used among the cost drivers of fuel cycle, as the technical parameter. The fuel cycle options analyzed in this paper are three different fuel cycle options as follows: PWR-Once Through Cycle(PWR-OT), PWR-MOX Recycle, Pyro-SFR Recycle. These fuel cycles are most likely to be adopted in the foreseeable future. As a result of the sensitivity analysis on burnup effect of each three different nuclear fuel cycle costs, PWR-MOX turned out to be the most influenced by burnup changes. Next to PWR-MOX cycle, in the order of Pyro-SFR and PWR-OT cycle turned out to be influenced by the degree of burnup. In conclusion, the degree of burnup in the three nuclear fuel cycles can act as the controlling driver of nuclear fuel cycle costs due to a reduction in the volume of spent fuel leading better availability and capacity factors. However, the equilibrium model used in this paper has a limit that time-dependent material flow and cost calculation is impossible. Hence, comparative analysis of the results calculated by dynamic model hereafter and the calculation results using an equilibrium model should be proceed. Moving forward to the foreseeable future with increasing burnups, further studies regarding alternative material of high corrosion resistance fuel cladding for the overall

  4. Nuclear fuel cycle risk assessment: survey and computer compilation of risk-related literature

    International Nuclear Information System (INIS)

    Yates, K.R.; Schreiber, A.M.; Rudolph, A.W.

    1982-10-01

    The US Nuclear Regulatory Commission has initiated the Fuel Cycle Risk Assessment Program to provide risk assessment methods for assistance in the regulatory process for nuclear fuel cycle facilities other than reactors. Both the once-through cycle and plutonium recycle are being considered. A previous report generated by this program defines and describes fuel cycle facilities, or elements, considered in the program. This report, the second from the program, describes the survey and computer compilation of fuel cycle risk-related literature. Sources of available information on the design, safety, and risk associated with the defined set of fuel cycle elements were searched and documents obtained were catalogued and characterized with respect to fuel cycle elements and specific risk/safety information. Both US and foreign surveys were conducted. Battelle's computer-based BASIS information management system was used to facilitate the establishment of the literature compilation. A complete listing of the literature compilation and several useful indexes are included. Future updates of the literature compilation will be published periodically. 760 annotated citations are included

  5. Recycle and reuse of materials and components from waste streams of nuclear fuel cycle facilities

    International Nuclear Information System (INIS)

    2000-01-01

    All nuclear fuel cycle processes utilize a wide range of equipment and materials to produce the final products they are designed for. However, as at any other industrial facility, during operation of the nuclear fuel cycle facilities, apart from the main products some byproducts, spent materials and waste are generated. A lot of these materials, byproducts or some components of waste have a potential value and may be recycled within the original process or reused outside either directly or after appropriate treatment. The issue of recycle and reuse of valuable material is important for all industries including the nuclear fuel cycle. The level of different materials involvement and opportunities for their recycle and reuse in nuclear industry are different at different stages of nuclear fuel cycle activity, generally increasing from the front end to the back end processes and decommissioning. Minimization of waste arisings and the practice of recycle and reuse can improve process economics and can minimize the potential environmental impact. Recognizing the importance of this subject, the International Atomic Energy Agency initiated the preparation of this report aiming to review and summarize the information on the existing recycling and reuse practice for both radioactive and non-radioactive components of waste streams at nuclear fuel cycle facilities. This report analyses the existing options, approaches and developments in recycle and reuse in nuclear industry

  6. A Science-Based Approach to Understanding Waste Form Durability in Open and Closed Nuclear Fuel Cycles

    International Nuclear Information System (INIS)

    M.T. Peters; R.C. Ewing

    2006-01-01

    There are two compelling reasons for understanding source term and near-field processes in a radioactive waste geologic repository. First, almost all of the radioactivity is initially in the waste form, mainly in the spent nuclear fuel (SNF) or nuclear waste glass. Second, over long periods, after the engineered barriers are degraded, the waste form is a primary control on the release of radioactivity. Thus, it is essential to know the physical and chemical state of the waste form after hundreds of thousands of years. The United States Department of Energy's Yucca Mountain Repository Program has initiated a long-term program to develop a basic understanding of the fundamental mechanisms of radionuclide release and a quantification of the release as repository conditions evolve over time. Specifically, the research program addresses four critical areas: (a) SNF dissolution mechanisms and rates; (b) formation and properties of U 6+ -secondary phases; (c) waste form-waste package interactions in the near-field; and (d) integration of in-package chemical and physical processes. The ultimate goal is to integrate the scientific results into a larger scale model of source term and near-field processes. This integrated model will be used to provide a basis for understanding the behavior of the source term over long time periods (greater than 10 5 years). Such a fundamental and integrated experimental and modeling approach to source term processes can also be readily applied to development of advanced waste forms as part of a closed nuclear fuel cycle. Specifically, a fundamental understanding of candidate waste form materials stability in high temperature/high radiation environments and near-field geochemical/hydrologic processes could enable development of advanced waste forms ''tailored'' to specific geologic settings

  7. A Science-Based Approach to Understanding Waste Form Durability in Open and Closed Nuclear Fuel Cycles

    International Nuclear Information System (INIS)

    Peters, M.T.; Ewing, R.C.

    2007-01-01

    There are two compelling reasons for understanding source term and near-field processes in a radioactive waste geologic repository. First, almost all of the radioactivity is initially in the waste form, mainly in the spent nuclear fuel (SNF) or nuclear waste glass. Second, over long periods, after the engineered barriers are degraded, the waste form is a primary control on the release of radioactivity. Thus, it is essential to know the physical and chemical state of the waste form after hundreds of thousands of years. The United States Department of Energy's Yucca Mountain Repository Program has initiated a long-term program to develop a basic understanding of the fundamental mechanisms of radionuclide release and a quantification of the release as repository conditions evolve over time. Specifically, the research program addresses four critical areas: a) SNF dissolution mechanisms and rates; b) formation and properties of U 6+ - secondary phases; c) waste form-waste package interactions in the near-field; and d) integration of in-package chemical and physical processes. The ultimate goal is to integrate the scientific results into a larger scale model of source term and near-field processes. This integrated model will be used to provide a basis for understanding the behavior of the source term over long time periods (greater than 10 5 years). Such a fundamental and integrated experimental and modeling approach to source term processes can also be readily applied to development of advanced waste forms as part of a closed nuclear fuel cycle. Specifically, a fundamental understanding of candidate waste form materials stability in high temperature/high radiation environments and near-field geochemical/hydrologic processes could enable development of advanced waste forms 'tailored' to specific geologic settings. (authors)

  8. A comparative assessment of the economics of plutonium disposition including comparison with other nuclear fuel cycles

    International Nuclear Information System (INIS)

    Williams, K.A.; Miller, J.W.; Reid, R.L.

    1997-01-01

    DOE has been evaluating three technologies for the disposition of approximately 50 metric tons of surplus plutonium from defense-related programs: reactors, immobilization, and deep boreholes. As part of the process supporting an early CY 1997 Record of Decision (ROD), a comprehensive assessment of technical viability, cost, and schedule has been conducted. Oak Ridge National Laboratory has managed and coordinated the life-cycle cost (LCC) assessment effort for this program. This paper discusses the economic analysis methodology and the results prior to ROD. Other objectives of the paper are to discuss major technical and economic issues that impact plutonium disposition cost and schedule. Also to compare the economics of a once-through weapons-derived MOX nuclear fuel cycle to other fuel cycles, such as those utilizing spent fuel reprocessing. To evaluate the economics of these technologies on an equitable basis, a set of cost estimating guidelines and a common cost-estimating format were utilized by all three technology teams. This paper also includes the major economic analysis assumptions and the comparative constant-dollar and discounted-dollar LCCs

  9. REFCO83, Nuclear Fuel Cycle Cost Economics Using Discounted Cash Flow Analysis

    International Nuclear Information System (INIS)

    Delene, J.G.; Hermann, O.W.

    2001-01-01

    1 - Description of program or function: REFCO83 utilizes a discounted cash flow (DCF) analysis procedure to calculate batch, cycle, and lifetime levelized average nuclear fuel cycle costs. The DCF analysis establishes an energy 'cost' associated with the fuel by requiring that the revenues from the sale of energy be adequate to pay the required return on outstanding capital, to pay all expenses including taxes, and to retire the outstanding investment to zero by the end of the economic life of the set of fuel investments. The program uses reactor mass flow information together with individual fuel cost parameters and utility capital structure and money costs to calculate levelized costs cumulatively through any batch or cycle. 2 - Method of solution: A fuel cycle cost component is considered to be any fuel material purchase, processing cost, or discharge material credit in the complete fuel cycle. The costs for each individual component, i.e. uranium, enrichment, etc., may either be expensed or capitalized for tax purposes or, in the case of waste disposal, the cost may also be made proportional to power production. To properly account for the effect of income taxes, all calculations in REFCO83 are done using 'then' current dollars, including price escalations caused by inflation. The database used for the default values for REFCO83 was taken from the Nuclear Energy Cost Data Base. 3 - Restrictions on the complexity of the problem: The maximum number of fuel batches is 120

  10. Proceedings of the GLOBAL 2009 congress - The Nuclear Fuel Cycle: Sustainable Options and Industrial Perspectives

    International Nuclear Information System (INIS)

    2009-06-01

    GLOBAL 2009 is the ninth bi-annual scientific world meeting on the Nuclear Fuel Cycle (NFC) that started in 1993 in Seattle. This meeting has established itself as a dedicated international forum for experts, to provide an overall review of the status and new trends of research applications and policies related to the fuel cycle. The international nuclear community is actively developing advanced processes and innovative technologies that enhance economic competitiveness of nuclear energy and ensure its sustainability, through optimized utilization of natural resources, minimization of nuclear wastes, resistance to proliferation and compliance with safety requirements. In this context, and under the profound evolutions concerning energy supply, GLOBAL 2009 is a great opportunity for sharing ideas and visions on the NFC. Special emphasis are placed on the results of the international studies for developing next generation systems. GLOBAL 2009 highlights the technical challenges and successes involved in closing the NFC and recycling long lived nuclear waste. It is also an excellent occasion to review and discuss social and regulatory aspects as well as national plans and international policies and decision affecting the future of nuclear energy. This meeting provides a forum for the exchange of the newest ideas and developments related to the initiatives at of establishing an acceptable, reliable and universal international non proliferation regime. The congress, organized by the French Nuclear Energy Society (SFEN), under the aegis of the IAEA, NEA of the OECD and the UE Commission with the basic sponsorships of ANS, ENS and AESJ, combines plenary sessions, general panel sessions, parallel sessions and technical visits. The program has full length technical papers, which are peer reviewed and published in conference proceedings. A large industrial exhibition takes place to complement the congress. The GLOBAL 2009 congress is organized in coordination with the 2009

  11. Proceedings of the GLOBAL 2009 congress - The Nuclear Fuel Cycle: Sustainable Options and Industrial Perspectives

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-06-15

    GLOBAL 2009 is the ninth bi-annual scientific world meeting on the Nuclear Fuel Cycle (NFC) that started in 1993 in Seattle. This meeting has established itself as a dedicated international forum for experts, to provide an overall review of the status and new trends of research applications and policies related to the fuel cycle. The international nuclear community is actively developing advanced processes and innovative technologies that enhance economic competitiveness of nuclear energy and ensure its sustainability, through optimized utilization of natural resources, minimization of nuclear wastes, resistance to proliferation and compliance with safety requirements. In this context, and under the profound evolutions concerning energy supply, GLOBAL 2009 is a great opportunity for sharing ideas and visions on the NFC. Special emphasis are placed on the results of the international studies for developing next generation systems. GLOBAL 2009 highlights the technical challenges and successes involved in closing the NFC and recycling long lived nuclear waste. It is also an excellent occasion to review and discuss social and regulatory aspects as well as national plans and international policies and decision affecting the future of nuclear energy. This meeting provides a forum for the exchange of the newest ideas and developments related to the initiatives at of establishing an acceptable, reliable and universal international non proliferation regime. The congress, organized by the French Nuclear Energy Society (SFEN), under the aegis of the IAEA, NEA of the OECD and the UE Commission with the basic sponsorships of ANS, ENS and AESJ, combines plenary sessions, general panel sessions, parallel sessions and technical visits. The program has full length technical papers, which are peer reviewed and published in conference proceedings. A large industrial exhibition takes place to complement the congress. The GLOBAL 2009 congress is organized in coordination with the 2009

  12. 2. JAPAN-IAEA workshop on advanced safeguards technology for the future nuclear fuel cycle. Abstracts

    International Nuclear Information System (INIS)

    2009-01-01

    This international workshop addressed issues and technologies associated with safeguarding the future nuclear fuel cycle. The workshop discussed issues of interest to the safeguards community, facility operators and State Systems of accounting and control of nuclear materials. Topic areas covered were as follows: Current Status and Future Prospects of Developing Safeguards Technologies for Nuclear Fuel Cycle Facilities, Technology and Instrumentation Needs, Advanced Safeguards Technologies, Guidelines on Developing Instrumentation to Lead the Way for Implementing Future Safeguards, and Experiences and Lessons learned. This workshop was of interest to individuals and organizations concerned with future nuclear fuel cycle technical developments and safeguards technologies. This includes representatives from the nuclear industry, R and D organizations, safeguards inspectorates, State systems of accountancy and control, and Member States Support Programmes

  13. Population exposure from the nuclear fuel cycle: Review and future direction

    International Nuclear Information System (INIS)

    Richmond, C.R.

    1988-01-01

    The legacy of radiation exposures confronting man arises from two historical sources of energy, the sun and radioactive decay. Contemporary man continues to be dependent on these two energy sources, which include the nuclear fuel cycle. Radiation exposures from all energy sources should be examined, with particular emphasis on the nuclear fuel cycle, including incidents such as Chernobyl and Three Mile Island. In addition to risk estimation, concepts such as de minimis, life shortening as a measure of risk, and competing risks as projected into the future must be considered in placing radiation exposures in perspective. The utility of these concepts is in characterizing population exposures for decision makers in a manner that the public may judge acceptable. All these viewpoints are essential in the evaluation of population exposure from the nuclear fuel cycle

  14. Nuclear fuel cycle in the 1990s and beyond the century: Some trends and foreseeable problems

    International Nuclear Information System (INIS)

    1989-01-01

    The International Atomic Energy Agency (IAEA) invited a number of well known experts from Member States to provide an analysis of selected stages of the nuclear fuel cycle with an outlook to the near future and with an emphasis on the feasible advantages as well as the disadvantages of the approaches discussed. Voluntary contributions from invited specialists as well as the results of comprehensive analyses from some nuclear fuel cycle trends performed by IAEA staff form the main content of this publication. Its aim is to highlight selected subjects of common interest (but not necessarily consensus) and establish a starting point for productive discussions on the future of the nuclear fuel cycle worldwide. A separate abstract was prepared for each of the 5 presented papers. Refs, figs and tabs

  15. Abstract of results of safety study. Nuclear fuel cycle field in fiscal 2003

    International Nuclear Information System (INIS)

    2004-11-01

    This report descried the results of studies of nuclear fuel cycle field (nuclear fuel facilities, seismic design, all subjects of environmental radiation and waste disposal, and subjects on nuclear fuel cycle in probabilistic safety assessment) in fiscal 2003 on the basis of the principle project of safety study (from fiscal 2001 to 2005). It consists of four chapters; the first chapter is outline of the principle of project, the second is objects and subjects of safety study in the nuclear fuel cycle field, the third list of questionnaire of results of safety study and the forth investigation of results of safety study in fiscal 2003. There are 49 lists, which include 22 reports on the nuclear fuel facility, one on the seismic design, 4 on the probabilistic safety assessment, 7 on the environmental radiation and 15 on the waste disposal. (S.Y.)

  16. Chemistry of actinides and fission products in the nuclear-fuel cycle

    International Nuclear Information System (INIS)

    Anon.

    2004-01-01

    This colloquium was held under the auspices of the French and Russian Academies of Sciences, from 21 to 23 May 2003, at the 'Ecole nationale superieure de chimie de Paris' (ENSCP), under the cooperative framework agreed between the two Academies. Fifteen specialists from each country were brought together to present their results concerning research in their respective fields (industrial considerations, fundamental chemistry, the environment, new conditioning systems, hydro- and pyro-chemical separation techniques), situating the results in the general context of the two countries'common strategy for closing the nuclear fuel cycle and for the management of radioactive waste. The colloquium brought together 26 oral presentations, and three round table discussions (theoretical chemistry and modelling, the frontiers of research on the nuclear cycle, elemental characterisation). The speakers chosen represented a large section of the organisations involved in the research on these topics, from each country. This thematic issue of the Comptes Rendus Chimie presents some new insights into these topics and some original results. The colloquium was supported financially par the DRI of the French Academy des sciences, CNRS, IN2P3, CEA, Cogema, EDF, and ENSCP. (authors)

  17. Nuclear Fuel Cycle Technologies: Current Challenges and Future Plans - 12558

    Energy Technology Data Exchange (ETDEWEB)

    Griffith, Andrew [U.S. Department of Energy, Washington, DC (United States)

    2012-07-01

    The mission of the Office of Nuclear Energy's Fuel Cycle Technologies office (FCT program) is to provide options for possible future changes in national nuclear energy programs. While the recent draft report of the Blue Ribbon Commission on America's Nuclear Future stressed the need for organization changes, interim waste storage and the establishment of a permanent repository for nuclear waste management, it also recognized the potential value of alternate fuel cycles and recommended continued research and development in that area. With constrained budgets and great expectations, the current challenges are significant. The FCT program now performs R and D covering the entire fuel cycle. This broad R and D scope is a result of the assignment of new research and development (R and D) responsibilities to the Office of Nuclear Energy (NE), as well as reorganization within NE. This scope includes uranium extraction from seawater and uranium enrichment R and D, used nuclear fuel recycling technology, advanced fuel development, and a fresh look at a range of disposal geologies. Additionally, the FCT program performs the necessary systems analysis and screening of fuel cycle alternatives that will identify the most promising approaches and areas of technology gaps. Finally, the FCT program is responsible for a focused effort to consider features of fuel cycle technology in a way that promotes nonproliferation and security, such as Safeguards and Security by Design, and advanced monitoring and predictive modeling capabilities. This paper and presentation will provide an overview of the FCT program R and D scope and discuss plans to analyze fuel cycle options and support identified R and D priorities into the future. The FCT program is making progress in implanting a science based, engineering driven research and development program that is evaluating options for a sustainable fuel cycle in the U.S. Responding to the BRC recommendations, any resulting legislative

  18. Completion of Population of and Quality Assurance on the Nuclear Fuel Cycle Options Catalog.

    Energy Technology Data Exchange (ETDEWEB)

    Price, Laura L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Barela, Amanda Crystal [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Walkow, Walter M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Schetnan, Richard Reed [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Arnold, Matthew Brian [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-12-01

    An Evaluation and Screening team supporting the Fuel Cycle Technologies Program Office of the United States Department of Energy, Office of Nuclear Energy is conducting an evaluation and screening of a comprehensive set of fuel cycle options. These options have been assigned to one of 40 evaluation groups, each of which has a representative fuel cycle option [Todosow 2013]. A Fuel Cycle Data Package System Datasheet has been prepared for each representative fuel cycle option to ensure that the technical information used in the evaluation is high-quality and traceable [Kim, et al., 2013]. The information contained in the Fuel Cycle Data Packages has been entered into the Nuclear Fuel Cycle Options Catalog at Sandia National Laboratories so that it is accessible by the evaluation and screening team and other interested parties. In addition, an independent team at Savannah River National Laboratory has verified that the information has been entered into the catalog correctly. This report documents that the 40 representative fuel cycle options have been entered into the Catalog, and that the data entered into the catalog for the 40 representative options has been entered correctly.

  19. Survey and evaluation of handling and disposing of solid low-level nuclear fuel cycle wastes

    International Nuclear Information System (INIS)

    Mullarkey, T.B.; Jentz, T.L.; Connelly, J.M.; Kane, J.P.

    1976-10-01

    The report identifies the types and quantities of low-level solid radwaste for each portion of the nuclear fuel cycle, based on operating experiences at existing sites and design information for future installations. These facts are used to evaluate reference 1000 MWe reactor plants in terms of solid radwaste generation. The effect of waste volumes on disposal methods and land usage has also been determined, based on projections of nuclear power growth through the year 2000. The relative advantages of volume reduction alternatives are included. Major conclusions are drawn concerning available land burial space, light water reactors and fuel fabrication and reprocessing facilities. Study was conducted under the direction of an industry task force and the National Environmental Studies Project, a technical program of the Atomic Industrial Forum. Data was obtained from questionnaires sent to 8 fuel fabrication facilities, 39 reactor sites and 6 commercial waste disposal sites. Additional data were gathered from interviews with architect engineering firms, site visits, contacts with regulatory agencies and published literature

  20. State-of-the-Art Report on the Progress of Nuclear Fuel Cycle Chemistry

    International Nuclear Information System (INIS)

    Collins, E.D.; DelCul, G.D.; Spencer, B.B.; Jubin, R.T.; Maher, C.; Kim, I.-T.; Lee, H.; Federov, Yu. S.; Saprykin, V.F.; Beznosyuk, V.I.; Kolyadin, A.B.; Baron, P.; Miguirditchian, M.; Sorel, C.; Morita, Y.; Taylor, R.; Khaperskaya, A.; Hill, C.; Malmbeck, R.; Law, J.; Angelis, G. de; Boucher, L.; Xeres, X.; Collins, E.; Mendes, E.; Lee, H.-S.; Inoue, T.; Glatz, J.P.; Kormilitsyn, M.; Uhlir, J.; Ignatiev, V.; Serp, J.; Delpech, S.

    2018-01-01

    The implementation of advanced nuclear systems requires that new technologies associated with the back end of the fuel cycle are developed. The separation of minor actinides from other fuel components is one of the advanced concepts being studied to help close the nuclear fuel cycle and to improve the long-term effects on the performance of geological repositories. Separating spent fuel elements and subsequently converting them through transmutation into short-lived nuclides should considerably reduce the long-term risks associated with nuclear power generation. R and D programs worldwide are attempting to address such challenges, and many processes for advanced reprocessing and partitioning minor actinides are being developed. This report provides a comprehensive overview of progress on separation chemistry processes, and in particular on the technologies associated with the separation and recovery of minor actinides for recycling so as to help move towards the implementation of advanced fuel cycles. The report examines both aqueous and pyro processes, as well as the status of current and proposed technologies described according to the hierarchy of separations targeting different fuel components. The process criteria that will affect technology down-selection are also reviewed, as are non-proliferation requirements. The maturity of different reprocessing techniques are assessed using a scale based on the technology readiness level, and perspectives for future R and D are reviewed

  1. Implementation of ICRP recommendation in nuclear fuel cycle operations: challenges and achievements

    International Nuclear Information System (INIS)

    Gupta, V.K.

    1999-01-01

    The operating experience with regard to occupational exposure and environmental releases in Nuclear Fuel Cycle Facilities are described. The achievements of Nuclear Fuel Cycle Facilities in adhering to the revised radiological protection standards are highlighted, with particular reference to Nuclear Power Plants (NPPs). The downward trend of occupational and public doses due to nuclear power plant operation is emphasised. Some of the important radiologically significant jobs executed at NPPs are listed. With the vast experiences in the field of radiological protection, vis-a-vis stringent regulatory requirements, and design modifications envisaged in future facilities the radiological impact, both in the occupational and public domain is bound to be minimum. (author)

  2. Development and preliminary analyses of material balance evaluation model in nuclear fuel cycle

    International Nuclear Information System (INIS)

    Matsumura, Tetsuo

    1994-01-01

    Material balance evaluation model in nuclear fuel cycle has been developed using ORIGEN-2 code as basic engine. This model has feature of: It can treat more than 1000 nuclides including minor actinides and fission products. It has flexibility of modeling and graph output using a engineering work station. I made preliminary calculation of LWR fuel high burnup effect (reloading fuel average burnup of 60 GWd/t) on nuclear fuel cycle. The preliminary calculation shows LWR fuel high burnup has much effect on Japanese Pu balance problem. (author)

  3. System aspects on safeguards for the back-end of the Swedish nuclear fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    Fritzell, Anni (Dept. of Physics and Astronomy, Uppsala Univ., Uppsala (Sweden))

    2008-03-15

    This thesis has investigated system aspects of safeguarding the back-end of the Swedish nuclear fuel cycle. These aspects include the important notion of continuity of knowledge, the philosophy of verifying measurements and the need to consider the safeguards system as a whole when expanding it to include the encapsulation facility and the geological repository. The research has been analytical in method both in the identification of concrete challenges for the safeguards community in Paper 1, and in the diversion path analysis performed in Paper 2. This method of work is beneficial for example when abstract notions are treated. However, as a suggestion for further work along these lines, a formal systems analysis would be advantageous, and may even reveal properties of the safeguards system that the human mind so far has been to narrow to consider. A systems analysis could be used to model a proposed safeguards approach with the purpose of finding vulnerabilities in its detection probabilities. From the results, capabilities needed to overcome these vulnerabilities could be deduced, thereby formulating formal boundary conditions. These could include: The necessary partial defect level for the NDA measurement; The level of redundancy required in the C/S system to minimize the risk of inconclusive results due to equipment failure; and, Requirements on the capabilities of seismic methods, etc. The field of vulnerability assessment as a tool for systems analysis should be of interest for the safeguards community, as a formal approach could give a new dimension to the credibility of safeguards systems

  4. Regeneration and localization of radioactive waste in the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Egorov, N.N.; Kudryavtsev, E.G.; Nikipelov, B.V.; Polyakov, A.S.; Zakharkin, B.S.; Mamaev, L.A.

    1993-01-01

    Normal functioning of the nuclear-power industry is only possible with a closed fuel cycle, including regeneration of the spent fuel from atomic power plants, the production and recycling of the secondary fuel, and localization of the radioactive waste. Despite the diversity of contemporary attitudes toward the structure of the nuclear fuel cycle around the world, the closure of the fuel cycle has been fundamental to the atomic-power industry in the USSR since the very beginning, and has taken on even greater significance in Russia today. From the beginning, the idea of a closed fuel cycle has been based essentially on one fundamental criterion: the concept of expanded productivity on the basis of fuel regeneration, i.e., the economic factor. Important as economic factors are, safety issues have taken on great significance in recent years: not only power-station reactors but all the ancillary stages of the fuel cycle must meet fundamentally new reliability, safety, and environmental hazards. The RT-1 plant is a versatile operation, regenerating spent fuel from VVER-440, BN-350, and BN-600 reactors, nuclear icebreakers and submarines, research reactors, and other power units. The plant can reprocess 400 ton/year of basic VVER-440 fuel. World-class modern processes have been introduced at the plant, meeting the necessary quality standards: zonal planning, remote operation to eliminate direct contact of the staff with radioactive material, extensive monitoring and control systems, multistage gas-purification systems, and new waste-treatment methods

  5. New measurement capabilities of mass spectrometry in the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Perrin, R.E.

    1979-01-01

    Three recent developments, when combined, have the potential for greatly improving accountability measurements in the nuclear fuel cycle. The techniques are particularly valuable when measuring the contents of vessels which are difficult to calibrate by weight or volume. Input dissolver accountability measurements, inparticular, benefit from the application of these techniques. Los Alamos Scientific Laboratory has developed the capability for isotopic analysis of U and Pu samples at the nanogram level with an accuracy of 0.1 relative %. The Central Bureau for Nuclear Materials Measurement in Geel, Belgium has developed the capability of preparing mixed, solid metal U and Pu spikes with an accuracy of better than 0.1 relative %. Idaho Nuclear Energy Laboratory and C.K. Mathews at Bhabha Atomic Research have demonstrated a technique for determining the ratio of sample size to total solution measured which is independent of both the weight and the volume of the solution being measured. The advantages and limitations of these techniques are discussed. An analytical scheme which takes advantage of the special features of these techniques is proposed. 4 refs

  6. System aspects on safeguards for the back-end of the Swedish nuclear fuel cycle

    International Nuclear Information System (INIS)

    Fritzell, Anni

    2008-03-01

    This thesis has investigated system aspects of safeguarding the back-end of the Swedish nuclear fuel cycle. These aspects include the important notion of continuity of knowledge, the philosophy of verifying measurements and the need to consider the safeguards system as a whole when expanding it to include the encapsulation facility and the geological repository. The research has been analytical in method both in the identification of concrete challenges for the safeguards community in Paper 1, and in the diversion path analysis performed in Paper 2. This method of work is beneficial for example when abstract notions are treated. However, as a suggestion for further work along these lines, a formal systems analysis would be advantageous, and may even reveal properties of the safeguards system that the human mind so far has been to narrow to consider. A systems analysis could be used to model a proposed safeguards approach with the purpose of finding vulnerabilities in its detection probabilities. From the results, capabilities needed to overcome these vulnerabilities could be deduced, thereby formulating formal boundary conditions. These could include: The necessary partial defect level for the NDA measurement; The level of redundancy required in the C/S system to minimize the risk of inconclusive results due to equipment failure; and, Requirements on the capabilities of seismic methods, etc. The field of vulnerability assessment as a tool for systems analysis should be of interest for the safeguards community, as a formal approach could give a new dimension to the credibility of safeguards systems

  7. The downstream side of the nuclear fuel cycle. Tome II: Electricity generating costs

    International Nuclear Information System (INIS)

    Bataille, Ch.; Galley, R.

    1999-01-01

    As part of the Office's continuing work in the nuclear field, Mr. Christian Bataille and Mr. Robert Galley, Members of Parliament for the Nord and Aube departements respectively, published in June 1998 the first part of their investigation into the downstream side of the nuclear fuel cycle, focusing on the work done in application of the law of 30 December 1991 concerning research into radioactive waste management. This document supplements that initial technical approach with a technical and economic study of the costs of generating electricity. To begin with, the performance of existing nuclear generating plant is examined, in particular the past, present and future contributions of this plant to the growth and competitiveness of the French economy. Secondly, the competitiveness of the different generating systems is analysed with a view to the construction of new facilities, using the method of discounted average costs which is at present the standard approach governing investment decisions, and identifying the different ways in which the said systems are dealt with as regards the cost categories considered. The potential contributions of external factor analysis and the calculation of external costs are then reviewed in order to evaluate the advantages and drawbacks of the different electricity generating systems on a more global basis. The report includes more than a hundred tables of data and cost curves upon which the Rapporteurs base their comments, conclusions and recommendations

  8. Seismic technology of nuclear fuel cycle facilities: A view of BNFL's approach and methods

    International Nuclear Information System (INIS)

    Morris, I.R.

    2001-01-01

    The approach BNFL employs in the seismic qualification of its nuclear fuel cycle facilities is described in this paper. The overall seismic qualification process from design to installation and commissioning is considered. The approach for new facilities, such as the Sellafield Mixed Oxide Fuel Plant and Windscale Vitrification Plant Line 3 currently under construction, is examined. (author)

  9. Nuclear fuel cycle facilities in the world (excluding the centrally planned economies)

    International Nuclear Information System (INIS)

    1979-01-01

    Information on the existing, under construction and planned fuel cycle facilities in the various countries is presented. Some thirty countries have activities related to different nuclear fuel cycle steps and the information covers the capacity, status, location, and the names of owners of the facilities

  10. Proceedings of a topical meeting on safety of the nuclear fuel cycle

    International Nuclear Information System (INIS)

    1996-01-01

    The topical meeting on the safety of the nuclear fuel cycle is composed of 17 papers grouped into four sessions which titles are: operational safety in nuclear fuel facilities; safety criteria and regulatory philosophy; plant hazard analysis and mitigation; plant experience and emergency planning

  11. Study of visualized simulation and analysis of nuclear fuel cycle system based on multilevel flow model

    International Nuclear Information System (INIS)

    Liu Jingquan; Yoshikawa, H.; Zhou Yangping

    2005-01-01

    Complex energy and environment system, especially nuclear fuel cycle system recently raised social concerns about the issues of economic competitiveness, environmental effect and nuclear proliferation. Only under the condition that those conflicting issues are gotten a consensus between stakeholders with different knowledge background, can nuclear power industry be continuingly developed. In this paper, a new analysis platform has been developed to help stakeholders to recognize and analyze various socio-technical issues in the nuclear fuel cycle sys- tem based on the functional modeling method named Multilevel Flow Models (MFM) according to the cognition theory of human being, Its character is that MFM models define a set of mass, energy and information flow structures on multiple levels of abstraction to describe the functional structure of a process system and its graphical symbol representation and the means-end and part-whole hierarchical flow structure to make the represented process easy to be understood. Based upon this methodology, a micro-process and a macro-process of nuclear fuel cycle system were selected to be simulated and some analysis processes such as economics analysis, environmental analysis and energy balance analysis related to those flows were also integrated to help stakeholders to understand the process of decision-making with the introduction of some new functions for the improved Multilevel Flow Models Studio, and finally the simple simulation such as spent fuel management process simulation and money flow of nuclear fuel cycle and its levelised cost analysis will be represented as feasible examples. (authors)

  12. On the use of time resolved laser-induced spectrofluorometry in the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Moulin, C.; Decambox, P.; Mauchien, P.; Davin, T.; Pradel, B.

    1991-01-01

    Time Resolved Laser-Induced Spectrofluorometry (TRLIS) has been used for actinides trace analysis and complexation analysis in the nuclear fuel cycle. Results obtained in the different fields such as in geology, in the Purex process, in the environment, in the medical and in waste storage assessment are presented. 4 figs., 6 refs

  13. Technology development for nuclear fuel cycle waste treatment - Decontamination, decommissioning and environmental restoration (1)

    International Nuclear Information System (INIS)

    Lee, Byung Jik; Won, Hui Jun; Yoon, Ji Sup and others

    1997-12-01

    Through the project of D econtamination, decommissioning and environmental restoration technology development , the following were studied. 1. Development of decontamination and repair technology for nuclear fuel cycle facilities 2. Development of dismantling technology 3. Environmental remediation technology development. (author). 95 refs., 45 tabs., 163 figs

  14. A review on the electrochemical applications of room temperature ionic liquids in nuclear fuel cycle

    International Nuclear Information System (INIS)

    Venkatesan, K.A.; Srinivasan, T.G.; Vasudeva Rao, P.R.

    2009-01-01

    A mini review on the electrochemical applications of room temperature ionic liquids (RTIL) in nuclear fuel cycle is presented. It is shown that how the fascinating properties of RTIL can be tuned to deliver desirable application in aqueous and non-aqueous reprocessing and in nuclear waste management. (author)

  15. Study of visualized simulation and analysis of nuclear fuel cycle system based on multilevel flow model

    Institute of Scientific and Technical Information of China (English)

    LIU Jing-Quan; YOSHIKAWA Hidekazu; ZHOU Yang-Ping

    2005-01-01

    Complex energy and environment system, especially nuclear fuel cycle system recently raised social concerns about the issues of economic competitiveness, environmental effect and nuclear proliferation. Only under the condition that those conflicting issues are gotten a consensus between stakeholders with different knowledge background, can nuclear power industry be continuingly developed. In this paper, a new analysis platform has been developed to help stakeholders to recognize and analyze various socio-technical issues in the nuclear fuel cycle system based on the functional modeling method named Multilevel Flow Models (MFM) according to the cognition theory of human being. Its character is that MFM models define a set of mass, energy and information flow structures on multiple levels of abstraction to describe the functional structure of a process system and its graphical symbol representation and the means-end and part-whole hierarchical flow structure to make the represented process easy to be understood. Based upon this methodology, a micro-process and a macro-process of nuclear fuel cycle system were selected to be simulated and some analysis processes such as economics analysis, environmental analysis and energy balance analysis related to those flows were also integrated to help stakeholders to understand the process of decision-making with the introduction of some new functions for the improved Multilevel Flow Models Studio, and finally the simple simulation such as spent fuel management process simulation and money flow of nuclear fuel cycle and its levelised cost analysis will be represented as feasible examples.

  16. Nuclear power, nuclear fuel cycle and waste management, 1980-1993

    International Nuclear Information System (INIS)

    1994-06-01

    This document lists all sales publications of the International Atomic Energy Agency dealing with Nuclear Power, Nuclear Fuel Cycle and Waste Management, issued during the period 1980-1993. It gives a short abstract of these publications along with contents and their costs in Austrian Schillings

  17. International symposium on nuclear fuel cycle and reactor strategies: Adjusting to new realities. Extended synopses

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-06-01

    The document includes extended synopses of 22 oral presentations and 44 poster presentations given at the International Symposium on Nuclear Fuel Cycle and Reactor Strategies: Adjusting to New Realities, held in Vienna, Austria, 3-6 June 1997. A separate indexing was prepared for each presentation.

  18. International symposium on nuclear fuel cycle and reactor strategies: Adjusting to new realities. Extended synopses

    International Nuclear Information System (INIS)

    1997-06-01

    The document includes extended synopses of 22 oral presentations and 44 poster presentations given at the International Symposium on Nuclear Fuel Cycle and Reactor Strategies: Adjusting to New Realities, held in Vienna, Austria, 3-6 June 1997. A separate indexing was prepared for each presentation

  19. To Recycle or Not to Recycle? An Intergenerational Approach to Nuclear Fuel Cycles

    NARCIS (Netherlands)

    Taebi, B.; Kloosterman, J.L.

    2007-01-01

    AbstractThis paper approaches the choice between the open and closed nuclear fuel cycles as a matter of intergenerational justice, by revealing the value conflicts in the production of nuclear energy. The closed fuel cycle improve sustainability in terms of the supply certainty of uranium and

  20. Separations in back-end of nuclear fuel cycle: overview of R and D activities

    International Nuclear Information System (INIS)

    Bansal, N.K.; Chitnis, R.R.

    2004-01-01

    This article discusses various areas in back-end of nuclear fuel cycle where R and D activities in separation science are actively pursued. Solvent extraction and ion-exchange are the main techniques where maximum developmental activities are underway. In addition to actual techniques, article also discusses the status of the studies especially where the process has been applied on larger scale. (author)

  1. Nuclear power. Nuclear fuel cycle and waste management. 1990-2002. International Atomic Energy Agency publications

    International Nuclear Information System (INIS)

    2002-02-01

    This document lists all sales publications of the International Atomic Energy Agency dealing with Nuclear Power, Nuclear Fuel Cycle and Waste Management, issued during the period 1990-2002. It gives a short abstract of these publications along with contents and their costs

  2. Nuclear Fuel Cycle Analysis by Integrated AHP and TOPSIS Method Using an Equilibrium Model

    International Nuclear Information System (INIS)

    Yoon, S. R.; Choi, S. Y.; Koc, W. I.

    2015-01-01

    Determining whether to break away from domestic conflict surrounding nuclear power and step forward for public consensus can be identified by transparent policy making considering public acceptability. In this context, deriving the best suitable nuclear fuel cycle for Korea is the key task in current situation. Assessing nuclear fuel cycle is a multicriteria decision making problem dealing with multiple interconnected issues on efficiently using natural uranium resources, securing an environment friendliness to deal with waste, obtaining the public acceptance, ensuring peaceful uses of nuclear energy, maintaining economic competitiveness compared to other electricity sources, and assessing technical feasibility of advanced nuclear energy systems. This paper performed the integrated AHP and TOPSIS analysis on three nuclear fuel cycle options against 5 different criteria including U utilization, waste management, material attractiveness, economics, and technical feasibility. The fuel cycle options analyzed in this paper are three different fuel cycle options as follows: PWR-Once through cycle(PWR-OT), PWR-MOX cycle, Pyro- SFR cycle. These fuel cycles are most likely to be adopted in the foreseeable future. Analytic Hierarchy Process (AHP) and TOPSIS (Technique for Order of Preference by Similarity to Ideal Solution). The analyzed nuclear fuel cycle options include the once-through cycle, the PWR-MOX recycle, and the Pyro-SFR recycle

  3. Nuclear Fuel Cycle Analysis by Integrated AHP and TOPSIS Method Using an Equilibrium Model

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, S. R. [University of Science and Technology, Daejeon (Korea, Republic of); Choi, S. Y. [UNIST, Ulju (Korea, Republic of); Koc, W. I. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    Determining whether to break away from domestic conflict surrounding nuclear power and step forward for public consensus can be identified by transparent policy making considering public acceptability. In this context, deriving the best suitable nuclear fuel cycle for Korea is the key task in current situation. Assessing nuclear fuel cycle is a multicriteria decision making problem dealing with multiple interconnected issues on efficiently using natural uranium resources, securing an environment friendliness to deal with waste, obtaining the public acceptance, ensuring peaceful uses of nuclear energy, maintaining economic competitiveness compared to other electricity sources, and assessing technical feasibility of advanced nuclear energy systems. This paper performed the integrated AHP and TOPSIS analysis on three nuclear fuel cycle options against 5 different criteria including U utilization, waste management, material attractiveness, economics, and technical feasibility. The fuel cycle options analyzed in this paper are three different fuel cycle options as follows: PWR-Once through cycle(PWR-OT), PWR-MOX cycle, Pyro- SFR cycle. These fuel cycles are most likely to be adopted in the foreseeable future. Analytic Hierarchy Process (AHP) and TOPSIS (Technique for Order of Preference by Similarity to Ideal Solution). The analyzed nuclear fuel cycle options include the once-through cycle, the PWR-MOX recycle, and the Pyro-SFR recycle.

  4. Volume reduction technology development for solid wastes from the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Oh, Won Zin; Lee, Kune Woo; Song, Kee Chan; Choi, Wang Kyu; Kim, Young Min

    1998-07-01

    A great deal of solid wastes, which have various physical, chemical, and radiological characteristics, are generated from the nuclear fuel cycle facility as well as radioactive gaseous and liquid wastes. The treatment of the large quantity of solid wastes from the nuclear fuel cycle have great technical, economical and social effects on the domestic policy decision on the nuclear fuel cycle, such as operation and maintenance of the facility, waste disposal, etc. Cement immobilization, super compaction, and electrochemical dissolution were selected as the volume reduction technologies for solid wastes, which will generated from the domestic nuclear fuel cycle facility in the future. And the assessment of annual arisings and the preliminary conceptual design of volume reduction processes were followed. Electrochemical decontamination of α-radionuclides from the spent fuel hulls were experimentally investigated, and showed the successful results. However, β/γ radioactivity did not reduce to the level below which hulls can be classified as the low-level radioactive waste and sent to the disposal site for the shallow land burial. The effects of the various process variables in the electrochemical decontamination were experimentally analysed on the process. (author). 32 refs., 32 tabs., 52 figs

  5. Is self-repayment of the nuclear fuel cycle plants profitable for national economy?

    International Nuclear Information System (INIS)

    Shevelev, Ya.V.

    1991-01-01

    The nuclear fuel cycle (NFC) plants should not be repaying in the optimal plan of nuclear economy development. Their losses are overlapped by superprofits of energy consumers. The loss in the national economy resulting from compulsory conversion of the NFC plants to self-repayment is estimated. 12 refs

  6. Regulatory control of radioactivity and nuclear fuel cycle in Canada

    International Nuclear Information System (INIS)

    Hamel, P.E.; Jennekens, J.H.

    1977-01-01

    The mining of pitchblende for the extraction of radium some four decades ago resulted in a largely unwanted by-product, uranium, which set the stage for Canada to be one of the first countires in the world to embark upon a nuclear energy program. From this somewhat unusual beginning, the Canadian program expanded beyond mining of uranium-bearing ores to include extensive research and development in the field of radio-isotope applications, research and power reactors, nuclear-fuel conversion and fabrication facilities, heavy-water production plants and facilities for the management of radioactive wastes. As in the case of any major technological development, nuclear energy poses certain risks on the part of those directly engaged in the industry and on the part of the general public. What characterizes these risks is not so much their physical nature as the absence of long-term experience and the confidence resulting from it. The early development of regulatory controls in the nuclear field in Canada was very much influenced by security considerations but subsequently evolved to include radiological protection and safety requirements commensurate with the expanding application of nuclear energy to a wide spectrum of peaceful uses. A review of Canadian nuclear regulatory experience will reveal that the risks posed by the peaceful uses of nuclear energy can be controlled in such a manner as to ensure a high level of safety. Recent events and development have shown however that emphasis on the risks associated with low-probability, high-consequence events must not be allowed to mask the importance of health and safety measures covering the entire fuel cycle

  7. An approach to the exemption from regulatory control of radioactive waste not linked to the nuclear fuel cycle in the European Community

    International Nuclear Information System (INIS)

    Schaller, K.H.

    1992-01-01

    When radioactive material is handled, treated, administered or stored, and spills or residues and contamination are foreseeable, there must be ways and means of distinguishing between a radioactive waste which needs no further registration and one needing appropriate control and regulation. This report examines the actual situation of exemption from regulatory control for unrestricted or conditional release for disposal of some radioactive waste produced outside the nuclear fuel cycle, particularly in hospitals, research and industry. Recently introduced dose-based and risk-based approaches to exemption are then summarized and their application to radioactive waste produced outside the nuclear fuel cycle is reviewed. It has been shown that current practices are generally safe, but that there is a clear need for harmonization among European Community Member States of exemption levels based on sound radiological protection criteria. 24 refs

  8. Study of advanced professional educational requirements relative to nuclear fuel cycle engineering in industry and government. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Jur, T.A.; Huhns, M.N.; Keating, D.A.; Orloff, D.I.; Rhodes, C.A.; Stanford, T.G.; Stephens, L.M.; Tatterson, G.B.; Van Brunt, V.

    1978-12-01

    Under contract with the U.S. Department of Energy, the College of Engineering at the University of South Carolina has conducted an assessment of educational needs among engineers working in nuclear fuel cycle related areas. The study was initiated as a regional effort focusing on the concentration of nuclear industry in the Southeast. Educational needs addressed were those at the post-baccalaureate professional level. The project was envisioned as providing base line information for the eventual implementation of a program in line with the needs of the Southeast's nuclear community. Specific objectives were to establish the content of such a program and to determine those specialized features which would make the program most attractive and useful.

  9. Study of advanced professional educational requirements relative to nuclear fuel cycle engineering in industry and government. Final report

    International Nuclear Information System (INIS)

    Jur, T.A.; Huhns, M.N.; Keating, D.A.; Orloff, D.I.; Rhodes, C.A.; Stanford, T.G.; Stephens, L.M.; Tatterson, G.B.; Van Brunt, V.

    1978-12-01

    Under contract with the U.S. Department of Energy, the College of Engineering at the University of South Carolina has conducted an assessment of educational needs among engineers working in nuclear fuel cycle related areas. The study was initiated as a regional effort focusing on the concentration of nuclear industry in the Southeast. Educational needs addressed were those at the post-baccalaureate professional level. The project was envisioned as providing base line information for the eventual implementation of a program in line with the needs of the Southeast's nuclear community. Specific objectives were to establish the content of such a program and to determine those specialized features which would make the program most attractive and useful

  10. The nuclear fuel cycle in the 21st century

    International Nuclear Information System (INIS)

    Todreas, Neil E.

    2004-01-01

    As we enter the 21st century and contemplate the deployment of Generation III+ machines and the development of Generation IV systems, the fuel cycle within which these reactors are to operate has become a predominant consideration. The four challenges to nuclear development of the 21st century of economics, safety, sustainability through spent fuel management and efficient fuel utilization, and proliferation resistance increasingly involve the front and back ends of the fuel cycle equally if not more than the design of the reactor which has reached a far higher level of maturity. It is tempting to accept the closed cycle with its promise of effective waste management as inevitable. The central questions, however, are the characteristics of the desired closed cycle, the relative advantages of thermal versus fast spectrum closed cycles, the character and pace of the transition to a closed cycle, and finally the most central question as to whether the closed cycle is indeed more desirable a choice than is an open cycle. The desired closed fuel cycle for the long term around which this paper is based is full actinide recycle with natural uranium feed and only fission products discharged to an ultimate waste repository. It is concluded that a major international research and development program to achieve this fuel cycle is important to pursue. However, the need to decide for the closed cycle and deploy it is not pressing for the next several decades. (author)

  11. Study of advanced professional educational requirements relative to nuclear fuel cycle engineering in industry and government. Final report

    International Nuclear Information System (INIS)

    Jur, T.A.; Huhns, M.N.; Keating, D.A.; Orloff, D.I.; Rhodes, C.A.; Stanford, T.G.; Stephens, L.M.; Tatterson, G.B.; Van Brunt, V.

    1978-12-01

    An assessment was conducted of educational needs among engineers working in nuclear fuel cycle-related areas, focusing on the nuclear industry in the Southeast. Educational needs addressed were those at the post-baccalaureate professional level. As a result of the study, a list of subject areas has been compiled as best representing the current content of an educational program. In addition to identifying subject areas, a set of course descriptions and reference materials has been developed around each subject. Each course description contains information regarding objectives, anticipated audience, and prerequisites and offers a suggested course outline. An initial modest program of implementation is recommended which would continue to concentrate on the Southeast as a target area

  12. Study of advanced professional educational requirements relative to nuclear fuel cycle engineering in industry and government. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Jur, T.A.; Huhns, M.N.; Keating, D.A.; Orloff, D.I.; Rhodes, C.A.; Stanford, T.G.; Stephens, L.M.; Tatterson, G.B.; Van Brunt, V.

    1978-12-01

    An assessment was conducted of educational needs among engineers working in nuclear fuel cycle-related areas, focusing on the nuclear industry in the Southeast. Educational needs addressed were those at the post-baccalaureate professional level. As a result of the study, a list of subject areas has been compiled as best representing the current content of an educational program. In addition to identifying subject areas, a set of course descriptions and reference materials has been developed around each subject. Each course description contains information regarding objectives, anticipated audience, and prerequisites and offers a suggested course outline. An initial modest program of implementation is recommended which would continue to concentrate on the Southeast as a target area.

  13. Advanced Ultrafast Spectroscopy for Chemical Detection of Nuclear Fuel Cycle Materials

    International Nuclear Information System (INIS)

    Villa-Aleman, E.; Houk, A.; Spencer, W.

    2017-01-01

    The development of new signatures and observables from processes related to proliferation activities are often related to the development of technologies. In our physical world, the intensity of observables is linearly related to the input drivers (light, current, voltage, etc.). Ultrafast lasers with high peak energies, opens the door to a new regime where the intensity of the observables is not necessarily linear with the laser energy. Potential nonlinear spectroscopic applications include chemical detection via remote sensing through filament generation, material characterization and processing, chemical reaction specificity, surface phenomena modifications, X-ray production, nuclear fusion, etc. The National Security Directorate laser laboratory is currently working to develop new tools for nonproliferation research with femtosecond and picosecond lasers. Prior to this project, we could only achieve laser energies in the 5 nano-Joule range, preventing the study of nonlinear phenomena. To advance our nonproliferation research into the nonlinear regime we require laser pulses in the milli-Joule (mJ) energy range. We have procured and installed a 35 fs-7 mJ laser, operating at one-kilohertz repetition rate, to investigate elemental and molecular detection of materials in the laboratory with potential applications in remote sensing. Advanced, nonlinear Raman techniques will be used to study materials of interest that are in a matrix of many materials and currently with these nonlinear techniques we can achieve greater than three orders of magnitude signal enhancement. This work studying nuclear fuel cycle materials with nonlinear spectroscopies will advance SRNL research capabilities and grow a core capability within the DOE complex.

  14. Advanced Ultrafast Spectroscopy for Chemical Detection of Nuclear Fuel Cycle Materials

    Energy Technology Data Exchange (ETDEWEB)

    Villa-Aleman, E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Houk, A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Spencer, W. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-09-29

    The development of new signatures and observables from processes related to proliferation activities are often related to the development of technologies. In our physical world, the intensity of observables is linearly related to the input drivers (light, current, voltage, etc.). Ultrafast lasers with high peak energies, opens the door to a new regime where the intensity of the observables is not necessarily linear with the laser energy. Potential nonlinear spectroscopic applications include chemical detection via remote sensing through filament generation, material characterization and processing, chemical reaction specificity, surface phenomena modifications, X-ray production, nuclear fusion, etc. The National Security Directorate laser laboratory is currently working to develop new tools for nonproliferation research with femtosecond and picosecond lasers. Prior to this project, we could only achieve laser energies in the 5 nano-Joule range, preventing the study of nonlinear phenomena. To advance our nonproliferation research into the nonlinear regime we require laser pulses in the milli-Joule (mJ) energy range. We have procured and installed a 35 fs-7 mJ laser, operating at one-kilohertz repetition rate, to investigate elemental and molecular detection of materials in the laboratory with potential applications in remote sensing. Advanced, nonlinear Raman techniques will be used to study materials of interest that are in a matrix of many materials and currently with these nonlinear techniques we can achieve greater than three orders of magnitude signal enhancement. This work studying nuclear fuel cycle materials with nonlinear spectroscopies will advance SRNL research capabilities and grow a core capability within the DOE complex.

  15. Nuclear fuel cycle in Japan : status and perspective

    International Nuclear Information System (INIS)

    Suzuki, Atsuyuki

    1996-01-01

    Nearly one third of electricity in Japan is being generated by nuclear fission primarily by light-water reactors. The industries to supply uranium fuel for these reactors have been well established including the capability for uranium enrichment. From the onset of nuclear program in Japan, a country with thin energy resources, the emphasis has been placed on maximizing the efficiency of uranium utilization. Thus the national nuclear program set forth by the Japan Atomic Energy Commission has consistently called for the establishment of closed fuel cycle, or for recycling of nuclear fuel. As part of such efforts in private sectors, the first commercial reprocessing plant is now under construction at Rokkasho-mura. The program to develop technologies for recycling nuclear fuel in a fast reactor system is also in progress steadily under the governmental support, while the Monju accident casts a long shadow on the future of fast reactor development in Japan. Even though the price of uranium has been stable at relatively low level in recent years, the uranium market in the longer time range is somewhat unpredictable. In Asian countries, a rapid growth of nuclear power production is foreseen in the 21st century. Under such circumstances, the effort to pursue the recycling option in Japan is important not only for its own energy security but also for stabilization of future uranium market in the world. The recycling option can also offer more flexible, easier and safer ways of radioactive waste management. Since the recycling option means utilization of plutonium in an industrial scale, special attention is inevitably required from the viewpoint of nuclear non-proliferation. It is the Japan's national policy to develop recycling technologies in compliance with the NPT and IAEA safeguard system as well as to maintain the transparency of its developmental program. (author)

  16. Nuclear fuel cycle cost estimation and sensitivity analysis of unit costs on the basis of an equilibrium model

    International Nuclear Information System (INIS)

    Kim, S. K.; Ko, W. I.; You, S. R.; Gao, R. X.

    2015-01-01

    This paper examines the difference in the value of the nuclear fuel cycle cost calculated by the deterministic and probabilistic methods on the basis of an equilibrium model. Calculating using the deterministic method, the direct disposal cost and Pyro-SFR (sodium-cooled fast reactor) nuclear fuel cycle cost, including the reactor cost, were found to be 66.41 mills/kWh and 77.82 mills/kWh, respectively (1 mill = one thousand of a dollar, i.e., 10-3 $). This is because the cost of SFR is considerably expensive. Calculating again using the probabilistic method, however, the direct disposal cost and Pyro-SFR nuclear fuel cycle cost, excluding the reactor cost, were found be 7.47 mills/kWh and 6.40 mills/kWh, respectively, on the basis of the most likely value. This is because the nuclear fuel cycle cost is significantly affected by the standard deviation and the mean of the unit cost that includes uncertainty. Thus, it is judged that not only the deterministic method, but also the probabilistic method, would also be necessary to evaluate the nuclear fuel cycle cost. By analyzing the sensitivity of the unit cost in each phase of the nuclear fuel cycle, it was found that the uranium unit price is the most influential factor in determining nuclear fuel cycle costs.

  17. Systems Analysis of an Advanced Nuclear Fuel Cycle Based on a Modified UREX+3c Process

    Energy Technology Data Exchange (ETDEWEB)

    E. R. Johnson; R. E. Best

    2009-12-28

    The research described in this report was performed under a grant from the U.S. Department of Energy (DOE) to describe and compare the merits of two advanced alternative nuclear fuel cycles -- named by this study as the “UREX+3c fuel cycle” and the “Alternative Fuel Cycle” (AFC). Both fuel cycles were assumed to support 100 1,000 MWe light water reactor (LWR) nuclear power plants operating over the period 2020 through 2100, and the fast reactors (FRs) necessary to burn the plutonium and minor actinides generated by the LWRs. Reprocessing in both fuel cycles is assumed to be based on the UREX+3c process reported in earlier work by the DOE. Conceptually, the UREX+3c process provides nearly complete separation of the various components of spent nuclear fuel in order to enable recycle of reusable nuclear materials, and the storage, conversion, transmutation and/or disposal of other recovered components. Output of the process contains substantially all of the plutonium, which is recovered as a 5:1 uranium/plutonium mixture, in order to discourage plutonium diversion. Mixed oxide (MOX) fuel for recycle in LWRs is made using this 5:1 U/Pu mixture plus appropriate makeup uranium. A second process output contains all of the recovered uranium except the uranium in the 5:1 U/Pu mixture. The several other process outputs are various waste streams, including a stream of minor actinides that are stored until they are consumed in future FRs. For this study, the UREX+3c fuel cycle is assumed to recycle only the 5:1 U/Pu mixture to be used in LWR MOX fuel and to use depleted uranium (tails) for the makeup uranium. This fuel cycle is assumed not to use the recovered uranium output stream but to discard it instead. On the other hand, the AFC is assumed to recycle both the 5:1 U/Pu mixture and all of the recovered uranium. In this case, the recovered uranium is reenriched with the level of enrichment being determined by the amount of recovered plutonium and the combined amount

  18. Systems Analysis of an Advanced Nuclear Fuel Cycle Based on a Modified UREX+3c Process

    International Nuclear Information System (INIS)

    Johnson, E.R.; Best, R.E.

    2009-01-01

    The research described in this report was performed under a grant from the U.S. Department of Energy (DOE) to describe and compare the merits of two advanced alternative nuclear fuel cycles -- named by this study as the 'UREX+3c fuel cycle' and the 'Alternative Fuel Cycle' (AFC). Both fuel cycles were assumed to support 100 1,000 MWe light water reactor (LWR) nuclear power plants operating over the period 2020 through 2100, and the fast reactors (FRs) necessary to burn the plutonium and minor actinides generated by the LWRs. Reprocessing in both fuel cycles is assumed to be based on the UREX+3c process reported in earlier work by the DOE. Conceptually, the UREX+3c process provides nearly complete separation of the various components of spent nuclear fuel in order to enable recycle of reusable nuclear materials, and the storage, conversion, transmutation and/or disposal of other recovered components. Output of the process contains substantially all of the plutonium, which is recovered as a 5:1 uranium/plutonium mixture, in order to discourage plutonium diversion. Mixed oxide (MOX) fuel for recycle in LWRs is made using this 5:1 U/Pu mixture plus appropriate makeup uranium. A second process output contains all of the recovered uranium except the uranium in the 5:1 U/Pu mixture. The several other process outputs are various waste streams, including a stream of minor actinides that are stored until they are consumed in future FRs. For this study, the UREX+3c fuel cycle is assumed to recycle only the 5:1 U/Pu mixture to be used in LWR MOX fuel and to use depleted uranium (tails) for the makeup uranium. This fuel cycle is assumed not to use the recovered uranium output stream but to discard it instead. On the other hand, the AFC is assumed to recycle both the 5:1 U/Pu mixture and all of the recovered uranium. In this case, the recovered uranium is reenriched with the level of enrichment being determined by the amount of recovered plutonium and the combined amount of the

  19. Development of the decommissioning techniques for nuclear fuel cycle facilities

    International Nuclear Information System (INIS)

    Tanimoto, Ken-ichi; Sugaya, Toshikatsu; Hara, Mitsuo; Kikuchi, Yutaka; Tobita, Hiroo; Enokido, Yuji

    1992-01-01

    Being developed the basement techniques such as measurement, decontamination, dismantling, remote handling and data base. For the elevating and systematizing the basement techniques, thinking over the application, forward to the facility decommissionings in the future, including the technique of waste treatment in WDF and the achievement using the dismantling and recycling technique in renewaling the research facilities. (author)

  20. Decree No. 2967 of 7 December 1979 on the regulation of activities in the nuclear fuel cycle

    International Nuclear Information System (INIS)

    1980-01-01

    Within the framework of the national energy plan, and for the purpose of ensuring the supply of uranium for nuclear power plants in Spain, this Decree reorganises and develops the duties and responsibilities of the National Uranium Undertaking (ENUSA) set up by Decree No. 3322 of 23 December 1971. ENUSA is a public undertaking, wholly controlled by the State, with a majority capital held by the National Institute for Industry and participation by the Junta de Energia Nuclear, which advises it in connection with research and development. ENUSA is responsible for the development of industrial and commercial activities related to the nuclear fuel cycle. While the Junta de Energia Nuclear remains responsible for final storage of radioactive waste, ENUSA is henceforth in charge of other activities in execution of the national plan for prospection for and investigation of uranium. (NEA) [fr

  1. Social impact theory based modeling for security analysis in the nuclear fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    Woo, Tae Ho [Systemix Global Co. Ltd., Seoul (Korea, Republic of)

    2015-03-15

    The nuclear fuel cycle is investigated for the perspective of the nuclear non-proliferation. The random number generation of the Monte-Carlo method is utilized for the analysis. Five cases are quantified by the random number generations. These values are summed by the described equations. The higher values are shown in 52{sup nd} and 73{sup rd} months. This way could be a useful obligation in the license of the plant construction. The security of the nuclear fuel cycle incorporated with nuclear power plants (NPPs) is investigated using social impact theory. The dynamic quantification of the theory shows the non-secured time for act of terrorism which is considered for the non-secured condition against the risk of theft in nuclear material. For a realistic consideration, the meta-theoretical framework for modeling is performed for situations where beliefs, attributes or behaviors of an individual are influenced by those of others.

  2. Measures of the Environmental Footprint of the Front End of the Nuclear Fuel Cycle

    International Nuclear Information System (INIS)

    Carlsen, Brett; Tavrides, Emily; Schneider, Erich

    2010-01-01

    Previous estimates of environmental impacts associated with the front end of the nuclear fuel cycle have focused primarily on energy consumption and CO2 emissions. Results have varied widely. Section 2 of this report provides a summary of historical estimates. This study revises existing empirical correlations and their underlying assumptions to fit to a more complete set of existing data. This study also addresses land transformation, water withdrawals, and occupational and public health impacts associated with the processes of the front end of the once-through nuclear fuel cycle. These processes include uranium mining, milling, refining, conversion, enrichment, and fuel fabrication. Metrics are developed to allow environmental impacts to be summed across the full set of front end processes, including transportation and disposition of the resulting depleted uranium.

  3. Measures of the Environmental Footprint of the Front End of the Nuclear Fuel Cycle

    Energy Technology Data Exchange (ETDEWEB)

    Brett Carlsen; Emily Tavrides; Erich Schneider

    2010-08-01

    Previous estimates of environmental impacts associated with the front end of the nuclear fuel cycle have focused primarily on energy consumption and CO2 emissions. Results have varied widely. Section 2 of this report provides a summary of historical estimates. This study revises existing empirical correlations and their underlying assumptions to fit to a more complete set of existing data. This study also addresses land transformation, water withdrawals, and occupational and public health impacts associated with the processes of the front end of the once-through nuclear fuel cycle. These processes include uranium mining, milling, refining, conversion, enrichment, and fuel fabrication. Metrics are developed to allow environmental impacts to be summed across the full set of front end processes, including transportation and disposition of the resulting depleted uranium.

  4. Uranium recovery from waste of the nuclear fuel cycle plants at IPEN-CNEN/SP, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Freitas, Antonio A.; Ferreira, Joao C.; Zini, Josiane; Scapin, Marcos A.; Carvalho, Fatima Maria Sequeira de, E-mail: afreitas@ipen.b, E-mail: jcferrei@ipen.b, E-mail: jzini@ipen.b, E-mail: mascapin@ipen.b, E-mail: fatimamc@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    Sodium diuranate (DUS) is a uranium concentrate produced in monazite industry with 80% typical average grade of U{sup 3}O{sup 8}, containing sodium, silicon, phosphorus, thorium and rare earths as main impurities. Purification of such concentrate was achieved at the nuclear fuel cycle pilot plants of uranium at IPEN by nitric dissolution and uranium extraction into an organic phase using TBP/Varsol, while the aqueous phase retains impurities and a small quantity of non extracted uranium; both can be recovered later by precipitation with sodium hydroxide. Then the residual sodium diuranate goes to a long term storage at a safeguards deposit currently reaching 20 tonnes. This work shows how uranium separation and purification from such bulk waste can be achieved by ion exchange chromatography, aiming at decreased volume and cost of storage, minimization of environmental impacts and reduction of occupational doses. Additionally, the resulting purified uranium can be reused in nuclear fuel cycle.(author)

  5. Social impact theory based modeling for security analysis in the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Woo, Tae Ho

    2015-01-01

    The nuclear fuel cycle is investigated for the perspective of the nuclear non-proliferation. The random number generation of the Monte-Carlo method is utilized for the analysis. Five cases are quantified by the random number generations. These values are summed by the described equations. The higher values are shown in 52 nd and 73 rd months. This way could be a useful obligation in the license of the plant construction. The security of the nuclear fuel cycle incorporated with nuclear power plants (NPPs) is investigated using social impact theory. The dynamic quantification of the theory shows the non-secured time for act of terrorism which is considered for the non-secured condition against the risk of theft in nuclear material. For a realistic consideration, the meta-theoretical framework for modeling is performed for situations where beliefs, attributes or behaviors of an individual are influenced by those of others.

  6. Statistical model for forecasting uranium prices to estimate the nuclear fuel cycle cost

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sung Ki; Ko, Won Il; Nam, Hyoon [Nuclear Fuel Cycle Analysis, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Kim, Chul Min; Chung, Yang Hon; Bang, Sung Sig [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2017-08-15

    This paper presents a method for forecasting future uranium prices that is used as input data to calculate the uranium cost, which is a rational key cost driver of the nuclear fuel cycle cost. In other words, the statistical autoregressive integrated moving average (ARIMA) model and existing engineering cost estimation method, the so-called escalation rate model, were subjected to a comparative analysis. When the uranium price was forecasted in 2015, the margin of error of the ARIMA model forecasting was calculated and found to be 5.4%, whereas the escalation rate model was found to have a margin of error of 7.32%. Thus, it was verified that the ARIMA model is more suitable than the escalation rate model at decreasing uncertainty in nuclear fuel cycle cost calculation.

  7. Statistical model for forecasting uranium prices to estimate the nuclear fuel cycle cost

    International Nuclear Information System (INIS)

    Kim, Sung Ki; Ko, Won Il; Nam, Hyoon; Kim, Chul Min; Chung, Yang Hon; Bang, Sung Sig

    2017-01-01

    This paper presents a method for forecasting future uranium prices that is used as input data to calculate the uranium cost, which is a rational key cost driver of the nuclear fuel cycle cost. In other words, the statistical autoregressive integrated moving average (ARIMA) model and existing engineering cost estimation method, the so-called escalation rate model, were subjected to a comparative analysis. When the uranium price was forecasted in 2015, the margin of error of the ARIMA model forecasting was calculated and found to be 5.4%, whereas the escalation rate model was found to have a margin of error of 7.32%. Thus, it was verified that the ARIMA model is more suitable than the escalation rate model at decreasing uncertainty in nuclear fuel cycle cost calculation

  8. Emerging Trends in the Nuclear Fuel Cycle: Implications for Waste Management

    International Nuclear Information System (INIS)

    Spradley, L.; Camper, L.; Rehmann, M.

    2009-01-01

    There are emerging trends in the nuclear fuel cycle that have implications for waste management. This paper will discuss activities in both the front-end and back-end of the nuclear fuel cycle for the U.S. Nuclear Regulatory Commission (NRC)-regulated entities. Particular focus will be given to the front-end which includes uranium recovery facilities, conversion facilities, and enrichment facilities. The back-end activities include progress on the proposed high-level waste geologic repository at Yucca Mountain, NV and efforts to reprocess spent nuclear fuel or down-blend HEU. While there are potential environmental impacts due to construction and dismantling of fuel cycle facilities, this paper focuses on the operational waste stream that will need to be managed as a result of fuel-cycle facilities. (authors)

  9. Physicochemical characteristics of uranium microparticles collected at nuclear fuel cycle plants

    International Nuclear Information System (INIS)

    Kaurov, G.; Stebelkov, V.; Kolesnikov, O.; Frolov, D.

    2001-01-01

    Any industrial process is accompanied by appearance of some quantity of microparticles of processed matter in the environment in immediate proximity to the manufacturing object. These particles can be transferred in atmosphere and can be collected at some distances from the plant. The determination of characteristics of industrial dust microparticles at nuclear fuel cycle plants (form, size, structure of surface, elemental composition, isotopic composition, presence of fission products, presence of activation products) in conjunction with the ability to connect these characteristics with certain nuclear manufacturing processes can become the main technical method of detecting of undeclared nuclear activity. Systematization of the experimental data on morphology, elemental and isotopic composition of uranium microparticles, collected at nuclear fuel cycle plants, is given. The purpose of this work is to establish the relationship between morphological characteristics of uranium dust microparticles and types of nuclear manufacture and to define the reference attributes of the most informative microparticles

  10. Study on advanced nuclear fuel cycle of PWR/CANDU synergism

    International Nuclear Information System (INIS)

    Xie Zhongsheng; Huo Xiaodong

    2002-01-01

    According to the concrete condition that China has both PWR and CANDU reactors, one of the advanced nuclear fuel cycle strategy of PWR/CANDU synergism ws proposed, i.e. the reprocessed uranium of spent PWR fuel was used in CANDU reactor, which will save the uranium resource, increase the energy output, decrease the quantity of spent fuels to be disposed and lower the cost of nuclear power. Because of the inherent flexibility of nuclear fuel cycle in CANDU reactor, the transition from the natural uranium to the recycled uranium (RU) can be completed without any changes of the structure of reactor core and operation mode. Furthermore, because of the low radiation level of RU, which is acceptable for CANDU reactor fuel fabrication, the present product line of fuel elements of CANDU reactor only need to be shielded slightly, also the conditions of transportation, operation and fuel management need not to be changed. Thus this strategy has significant practical and economical benefit

  11. The importance for Bulgaria of multilateral approaches to the back-end of the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Necheva, Ch.; McCombie, Ch.

    2005-01-01

    Bulgaria has a comparatively small nuclear program, but this provides a significant contribution of about 45% to the total electricity production in the country. There are 4 WWER units in operation at Kozloduy NPP and the national energy policy foresees construction of a further plant, Belene NPP. Further development of the nuclear option is dependent on the assurance of both fresh nuclear fuel supply and long-term management of spent fuel and high level waste. Because of the technical and economic challenges involved, international co-operation (bilateral and multilateral) in the back-end of the nuclear fuel cycle is a strategic issue of prime importance. This approach is very politically and socially sensitive at home and abroad and requires international consensus on the legal framework. For Bulgaria, as a producer of nuclear energy which relies on imported fresh nuclear fuel, an option of major interest is to seek a final solution for dealing with spent fuel in co-operation with the supplier of fresh fuel, i.e. Russia at present. But Bulgaria does not address only this option. In parallel, Kozloduy NPP is an organizational member of the international association ARIUS, established in 2002 in Baden, Switzerland. Thus the country also directly supports the mission of Arius, namely the promotion of concepts for safe, secure, economic and politically and socially acceptable regional and international storage and disposal of spent fuel and HLW. Bulgaria also participates directly in the SAPIERR project that was initiated by Arius under the 6 Framework Programme of the European Commission in order to study the concept of regional repositories to be shared by European partners. The range of Bulgarian waste management activities - including practical issues at the power plants, national studies on waste treatment, and involvement in the bilateral and multinational approaches described above - ensures that the country continues to maintain the necessary technical

  12. The nuclear fuel cycle back-end: purposes and outlook

    International Nuclear Information System (INIS)

    Boullis, B.

    2010-01-01

    The recycling of spent fuels appears as the only way to get a sustainable nuclear energy. Uranium and plutonium recycling technologies are already implemented in France but they require to be upgraded in order to follow the technical evolutions of reactors. The research topics concerning recycling are: -) the adaptation of recycling technologies to higher burn-ups and to the use of Mox fuels, -) to improve the recycling technologies in terms of waste production, -) to prepare the multi-recycling of spent fuels from fast reactors, and -) to go ahead in the recycling policy by separating minor actinides in order to transmute them. (A.C.)

  13. Current Status of Advanced Nuclear Fuel Cycle technologies

    International Nuclear Information System (INIS)

    Hwang, Yong Soo; Lee, Jong Hyun

    2009-07-01

    To expand the use of nuclear energy, SNF from nuclear power plants must be managed in a safe and environmental friendly and the problem of decreasing uranium should be solved. To resolve this, a dry processing technology Pyroprocessing is focused on. The government started to develop of Pyroprocessing technology in 1997. According to the decision of government based of Atomic Energy Commission in December 2008, the Korea Atomic Energy Research Institute will construct PRIDE (Pyroprocess Integrated Inactive DEmonstration Facility) by 2011 to prove a consistent process. If Pyroprocessing technology will be developed in the near future, the size of radioactive waste disposal site can be reduced to 100 times compared to the direct disposal. When this technology will be connected to Fast Reactor. high level nuclear waste management of Hundreds of thousands of years may be reduced to hundreds years. However for the commercialization of Pyroprocessing technology, there are some problems to solve. First, because of none commercial facilities in the world of executive experience, so that the facility design, measurement. management and material flow, the critical need for data accumulation. Second, High-level nuclear waste have been known to generate more than the wet methods, it should continue to reduce technology development. In addition, a careful consideration of the residual uranium generating on process also can maximize the efficiency of reducing. The new concept is being developed in Korea Atomic Energy Research Institute Pyroprocessing technology and nuclear waste processing technology to overcome these drawbacks sUQQested a way

  14. FCXSEC: multigroup cross-section libraries for nuclear fuel cycle shielding calculations

    International Nuclear Information System (INIS)

    Ford, W.E. III; Webster, C.C.; Diggs, B.R.; Pevey, R.E.; Croff, A.G.

    1980-05-01

    Starting with the pseudo-composition-independent VITAMIN-C cross-sectin library, composition-dependent fine-(171n-36γ) and broad-group (22n-21γ) self-shielded AMPX master, broad-group microscopic ANISN-formatted, and broad-group macroscopic ANISN-formatted cross-section libraries were generated to be used for nuclear fuel cycle shielding calculations. The specifications for the data and the procedure used to prepare the libraries are described

  15. Tri-n-butyl phosphate - the universal solvent for the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Naylor, A.; Eccles, H.

    1988-01-01

    Tri-n-butyl phosphates (TBP) is now Widely used in the processes of solvent extraction, especially in those, used in nuclear fuel cycle. Problems, related with actinide separation and purification, can be solved easily by accurate sampling of diluent, concentration and purification degree of a solvent, aqueous phase acidity and temperature. Physical and chemical properties of TBP, mechanism of actinide solvent extraction, TBP hydrolysis and radiolysis are considered

  16. Regional and global environmental behaviour of radionuclides from the nuclear fuel cycle

    International Nuclear Information System (INIS)

    1983-02-01

    The operation of nuclear fuel cycle facilities entails the discharge of radioactive effluents to both the atmosphere and aquatic environment. These effluents may contain radionuclides which may be subject of concern for their long-range environmental consequences, in particular, in assessing the health detriment to populations in regions beyond the local environment. The present document reviews information on radionuclides, their environmental pathways and processes and related models and summarizes experiences and studies in this field

  17. Time-resolved laser-induced fluorescence in the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Moulin, C.; Decambox, P.; Mauchien, P.; Petit, A.

    1995-01-01

    Time-Resolved Laser-Induced Fluorescence (TRLIF) is a very sensitive and selective method that has been used for actinides and lanthanides analysis in the nuclear fuel cycle. This technique has been used in different fields such as in geology, in the Purex process, in the environment, in the medical and in waste storage assessment. Spectroscopic data, limits of detection and results obtained in previously quoted fields are presented. (author)

  18. Nuclear power, nuclear fuel cycle and waste management, 1986-1999. International Atomic Energy Agency publications

    International Nuclear Information System (INIS)

    2000-04-01

    This catalogue lists all sales publications of the International Atomic Energy Agency dealing with nuclear power and nuclear fuel cycle and waste management and issued during the period of 1986-1999. Some earlier titles which form part of an established series or are still considered of importance have been included. Most publications are in English. Proceedings of conferences, symposia and panels of experts may contain papers in languages other than English, but all of these papers have abstracts in English

  19. Safety of and regulations for nuclear fuel cycle facilities. Report of a technical committee meeting

    International Nuclear Information System (INIS)

    2001-05-01

    In order to compile information on the nature of the safety concerns and current status of the regulations concerning nuclear fuel cycle facilities in Member States, an IAEA Technical Committee meeting on this topic was convened from 8 to 12 May 2000 in Vienna. The present publication contains the results of this meeting. The contributions of the participants in Annex 3 exemplify the work done in some Member States to develop an adequate regulatory framework to oversee the safe operation of these facilities

  20. Nuclear and radiological safety nuclear power nuclear fuel cycle and waste management

    International Nuclear Information System (INIS)

    1997-05-01

    This catalogue lists all sales publications of the International Atomic Energy Agency dealing with Nuclear and Radiological Safety, Nuclear Power and Nuclear Fuel Cycle and Waste Management and issued during the period of 1995-1996. Most publications are in English. Proceedings of conferences, symposia and panels of experts may contain some papers in languages other than English (Arabic, Chinese, French, Russian or Spanish), but all these papers have abstracts in English

  1. Nuclear power, nuclear fuel cycle and waste management: Status and trends, 1993

    International Nuclear Information System (INIS)

    1993-09-01

    This report was jointly prepared by the Division of Nuclear Power and the Division of Nuclear Fuel Cycle and Waste Management as part of an annual overview of both global nuclear industry activities and related IAEA programmes. This year's report focuses on activities during 1992 and the status at the end of that year. The trends in the industry are projected to 2010. Special events and highlights of IAEA activities over the past year are also presented. Refs, figs and tabs

  2. Physical security in multinational nuclear-fuel-cycle operations

    International Nuclear Information System (INIS)

    Willrich, M.

    1977-01-01

    Whether or not multinationalization will reduce or increase risks of theft or sabotage will depend on the form and location of the enterprise, the precise nature of the physical security arrangements applied to the enterprise, and the future course of crime and terrorism in the nuclear age. If nuclear operations are multinationalized, the host government is likely to insist on physical security measures that are at least as stringent as those for a national or private enterprise subject to its jurisdiction. At the same time, the other participants will want to be sure the host government, as well as criminal groups, do not steal nuclear material from the facility. If designed to be reasonably effective, the physical security arrangements at a multinational nuclear enterprise seem likely to reduce the risk that any participating government will seek to divert material from the facility for use in a nuclear weapons program. Hence, multinationalization and physical security will both contribute to reducing the risks of nuclear weapons proliferation to additional governments. If economic considerations dominate the timing, scale and location of fuel-cycle facilities, the worldwide nuclear power industry is likely to develop along lines where the problems of physical security will be manageable. If, however, nuclear nationalism prevails, and numerous small-scale facilities become widely dispersed, the problem of security against theft and sabotage may prove to be unmanageable. It is ironic, although true, that in attempting to strengthen its security by pursuing self-sufficiency in nuclear power, a nation may be reducing its internal security against criminal terrorists

  3. Future regional nuclear fuel cycle cooperation in East Asia: Energy security costs and benefits

    International Nuclear Information System (INIS)

    Hippel, David von; Hayes, Peter; Kang, Jungmin; Katsuta, Tadahiro

    2011-01-01

    Economic growth in East Asia has rapidly increased regional energy, and especially, electricity needs. Many of the countries of East Asia have sought or are seeking to diversify their energy sources and bolster their energy supply and/or environmental security by developing nuclear power. Rapid development of nuclear power in East Asia brings with it concerns regarding nuclear weapons proliferation associated with uranium enrichment and spent nuclear fuel management. This article summarizes the development and analysis of four different scenarios of nuclear fuel cycle management in East Asia, including a scenario where each major nuclear power user develops uranium enrichment and reprocessing of spent fuel individually, scenarios featuring cooperation in the full fuel cycle, and a scenario where reprocessing is avoided in favor of dry cask storage of spent fuel. The material inputs and outputs and costs of key fuel cycle elements under each scenario are summarized. - Highlights: → We evaluate four scenarios of regional nuclear fuel cycle cooperation in East Asia and the Pacific. → The scenarios cover fuel supply, enrichment, transport, reprocessing, and waste management. → We evaluate nuclear material flows, energy use, costs, and qualitative energy security impacts. → Regional cooperation on nuclear fuel cycle issues can help to enhance energy security. → A regional scenario in which reprocessing is rapidly phased out shows security and cost advantages.

  4. Materials reliability in the back end of the nuclear fuel cycle

    International Nuclear Information System (INIS)

    1987-05-01

    Operating experience of nuclear fuel cycle facilities has proved that the performance and availability of key equipment largely depend on the reliability of its construction materials. In general, the materials of construction have performed well in accordance with the design criteria of equipment. In some cases, however, materials failure problems have been encountered, the causes of which are related to their corrosion and mechanical degradation. In response to the growing interest in these topics, the IAEA convened the Technical Committee Meeting on ''Materials Reliability in the Back-End of the Nuclear Fuel Cycle'' at its Headquarters from September 2 to 5, 1986. This Technical Document contains the 15 papers presented during the Meeting. Material aspects of the following fields of the back-end of the nuclear fuel cycle are covered: interim and long-term storage of spent fuel; final disposal of spent fuel; storage and vitrification of High Level Liquid Wastes (HLLW); long-term storage of High Level Wastes (HLW); and spent fuel treatment

  5. Technical Publications as Indicators for Nuclear Fuel Cycle Declarable Activities

    International Nuclear Information System (INIS)

    Schuler, R.; El Gebaly, A.; Feldman, Y.; Gagne, D.; Schot, P.-M.; Ferguson, M.

    2015-01-01

    The Department of Safeguards aims to provide credible assurances to the international community that States are fulfiling their safeguards obligations in that all nuclear material remains in peaceful use. It does so in part by developing and implementing methodologies for early detection of undeclared activities or misuse of nuclear material or technology, based on large and diverse sources of information. Analyzing scientific, technical and patent information allows analysts in the Department to understand the technology available to a State, to forecast possible technical developments, to map collaborative research activities within and across States, and compare that information with declarations received by the State for completeness and correctness. Furthermore, with regard to patent information, scientists or companies want to make sure their intellectual property is protected; accordingly, patents are frequently filed before the information is published elsewhere, making patent information also an early indicator of relevant activities. Dealing with such large information sources requires the use of an innovative methodology conducting analysis. The Department has recently begun to examine the efficacy of link analysis tools to help carry out its mission. Using the link analysis platform Palantir, the authors conducted several case studies with the aim of deriving sound analytical results from large amounts of technical information within a reasonable time frame. The authors used data sets of bibliographic references from the IAEA International Nuclear Information System (INIS),Web of Science, Science Direct and data on worldwide patents from the European Patent Office (EPO). Based on these case studies, the authors are developing methodologies for the efficient application of link analysis to scientific and technical information, thus strengthening the Department's information collection and analysis capabilities and the overall process of State

  6. Transmutation of radioactive waste: Effect on the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Rasmussen, N.C.; Pigford, T.H.

    1997-01-01

    A committee of the National Research Council reviewed three concepts for transmuting radionuclides recovered from the chemical reprocessing of commercial light-water-reactor (LWR) fuel: LWR transmutation reactors fueled with recycled actinides, advanced liquid-metal reactors (ALMRs), and accelerator-driven subcritical reactors for transmutation of waste (ATW). The concepts were evaluated in terms of: (1) the extent to which waste disposal would benefit from transmutation, (2) time required to reduce the total inventory of radionuclides in the waste and fuel cycle, (3) the complexity of the overall transmutation system, (4) the extent of new development required, and (5) institutional and economic problems of operating such systems. Transmutation could affect geologic disposal of waste by reducing the inventory of transuranics (TRUs), fission products, and other radionuclides in the waste. Reducing the inventory of transuranics does not necessarily affect radiation doses to people who use contaminated ground water if the dissolution rate of transuranics in waste is controlled by elemental solubilities. However, reducing inventories of Am and Pu would decrease potential hazards from human intrusion. The likelihood for underground nuclear criticality would also be reduced. The long-lived fission products Tc-99, I-129, Cs-135 and others typically contribute most to the long-term radiation doses to future populations who use contaminated water from the repository. Their transmutation requires thermal or epithermal neutrons, readily available in LWR and ATW transmutors. ALMR and LWR transmutors would require several hundred years to reduce the total transuranic inventory by even a factor of 10 at constant electric power, and thousands of years for a hundred-fold reduction. For the same electrical power, the ATW could reduce total transuranic inventory about tenfold more rapidly, because of its very high thermal-neutron flux. However, extremely low process losses would be

  7. Proceeding of the Fifth Scientific Presentation on Nuclear Fuel Cycle: Development of Nuclear Fuel Cycle Technology in Third Millennium; Presentasi Ilmiah Daur Bahan Bakar Nuklir V: Pengembangan Teknologi Daur Bahan Bakar Nuklir Dalam Menyongsong Milenium Ketiga

    Energy Technology Data Exchange (ETDEWEB)

    Suripto, A; Sastratenaya, A S; Sutarno, D [National Atomic Energy Agency, Serpong (Indonesia); and others

    2000-03-08

    The proceeding contains papers presented in the Fifth Scientific Presentation on Nuclear Fuel Element Cycle with theme of Development of Nuclear Fuel Cycle Technology in Third Millennium, held on 22 February in Jakarta, Indonesia. These papers were divided by three groups that are technology of exploration, processing, purification and analysis of nuclear materials; technology of nuclear fuel elements and structures; and technology of waste management, safety and management of nuclear fuel cycle. There are 35 papers indexed individually. (id)

  8. Australia's role in the nuclear fuel cycle. A report to the Prime Minister by the Australian Science and Technology Council (ASTEC)

    International Nuclear Information System (INIS)

    1984-05-01

    Results of an inquiry which was initiatd by the Australian Government in Novembr 1983 and which examined Australia's nuclear safeguards arrangements, the opportunities for Australia to advance the cause of nuclear non-proliferation, the adequacy of existing technology for the handling and disposal of radioactive wastes and ways in which Australia can further contribute to the development of safe disposal methods are presented. The report is also known as the Slatyer Inquiry. The 25 recommendations cover: export of Australia's uranium; participation in disarmament and arms control negotiations; the non-provision of nuclear items to non-NPT states; proposals for nuclear weapons free zones; guidelines for the supply of nuclear items; physical protection of nuclear material; regulating the storage and use of sensitive nuclear material; minimising the numbers of facilities such as enrichment and reprocessing plants; Australian participation in the nuclear fuel cycle; supporting safeguards operations by providing resources to the IAEA; supporting the IAEA's Program of Technical Assistance and Co-operation; participation in the IAEA; implementation of safeguards agreements; physical protection of nuclear materials during shipment; publicising administrative arrangements of safeguards agreements; limitation of releases of radioactive effluents; disposal of low and intermediate level wastes; standards for radiation exposure associated with uranium mining and milling; safety and environmental monitoring aspects of uranium mining and milling; a registry of radioactive tailings and waste disposal sites; ocean dumping; research into HLW disposal; support for R and D on Synroc and guidelines for HLW disposal

  9. Radiation and physical protection challenges at advanced nuclear fuel cycle facilities

    International Nuclear Information System (INIS)

    Pickett, Susan E.

    2008-01-01

    Full text: The purpose of this study is to examine challenges and opportunities for radiation protection in advanced nuclear reactors and fuel facilities proposed under the Generation IV (GEN IV) initiative which is examining and pursuing the exploration and development of advanced nuclear science and technology; and the Global Nuclear Energy Partnership (GNEP), which seeks to develop worldwide consensus on enabling expanded use of economical, carbon-free nuclear energy to meet growing energy demand. The International Energy Agency projects nuclear power to increase at a rate of 1.3 to 1.5 percent a year over the next 20 years, depending on economic growth. Much of this growth will be in Asia, which, as a whole, currently has plans for 40 new nuclear power plants. Given this increase in demand for new nuclear power facilities, ranging from light water reactors to advanced fuel processing and fabrication facilities, it is necessary for radiation protection and physical protection technologies to keep pace to ensure both worker and public health. This paper is based on a review of current initiatives and the proposed reactors and facilities, primarily the nuclear fuel cycle facilities proposed under the GEN IV and GNEP initiatives. Drawing on the Technology Road map developed under GEN IV, this work examines the potential radiation detection and protection challenges and issues at advanced reactors, including thermal neutron spectrum systems, fast neutron spectrum systems and nuclear fuel recycle facilities. The thermal neutron systems look to improve the efficiency of production of hydrogen or electricity, while the fast neutron systems aim to enable more effective management of actinides through recycling of most components in the discharged fuel. While there are components of these advanced systems that can draw on the current and well-developed radiation protection practices, there will inevitably be opportunities to improve the overall quality of radiation

  10. Status of nuclear fuel reprocessing, spent fuel storage, and high-level waste disposal. Nuclear Fuel Cycle Committee, California Energy Resources Conservation and Development Commission. Draft report

    International Nuclear Information System (INIS)

    Anon.

    1978-01-01

    An analysis of the current status of technologies and issues in the major portions of the back-end of the nuclear fuel cycle is presented. The discussion on nuclear fuel reprocessing covers the reprocessing requirement, reprocessing technology assessment, technology for operation of reprocessing plants, and approval of reprocessing plants. The chapter devoted to spent fuel storage covers the spent fuel storge problem, the legislative response, options for maintaining full core discharge capacity, prospective availability of alterntive storage options, and the outlook for California. The existence of a demonstrated, developed high-level waste disposal technology is reviewed. Recommendations for Federal programs on high-level waste disposal are made

  11. Nuclear fuel cycle and reactor strategies: Adjusting to new realities. Contributed papers

    International Nuclear Information System (INIS)

    1997-12-01

    The International Symposium on Nuclear Fuel Cycle and Reactor Strategies: Adjusting to New Realities was held from 3 to 6 June 1997 in Vienna, Austria. It was organized by the International Atomic Energy Agency (IAEA) in co-operation with the European Commission, the Nuclear Energy Agency of the OECD (OECD/NEA) and the Uranium Institute (UI). More than 300 participants from more than 40 countries and 5 organizations took part. The reason for organizing the symposium was to face the new realities in the nuclear fuel cycle and to come to conclusions on how these new realities should be addressed. In the light of these objectives, international working groups prepared key issue papers on six topics that were selected as the central themes for consideration at the symposium. An International Steering Group composed of the representatives of 12 countries and three international organizations co-ordinated the work of the six working groups. Each of the six working groups wrote a key issue paper. These key issue papers are published as a separate publication. During the symposium, addresses and papers presented by leading experts and policy makers provided additional information in these fields. The key issues were explored further in discussions by the participants and a panel of experts, which helped to highlight the main problems to be addressed in designing the policies for the nuclear fuel cycle in the next 50 years. Special emphasis was placed on the problem of disposition of separated plutonium of civil origin and of plutonium originating from the dismantlement of nuclear weapons. This TECDOC contains all the papers presented, together with a summary of the symposium and a list of participants

  12. Nuclear fuel cycle and reactor strategies: Adjusting to new realities. Contributed papers

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-01

    The International Symposium on Nuclear Fuel Cycle and Reactor Strategies: Adjusting to New Realities was held from 3 to 6 June 1997 in Vienna, Austria. It was organized by the International Atomic Energy Agency (IAEA) in co-operation with the European Commission, the Nuclear Energy Agency of the OECD (OECD/NEA) and the Uranium Institute (UI). More than 300 participants from more than 40 countries and 5 organizations took part. The reason for organizing the symposium was to face the new realities in the nuclear fuel cycle and to come to conclusions on how these new realities should be addressed. In the light of these objectives, international working groups prepared key issue papers on six topics that were selected as the central themes for consideration at the symposium. An International Steering Group composed of the representatives of 12 countries and three international organizations co-ordinated the work of the six working groups. Each of the six working groups wrote a key issue paper. These key issue papers are published as a separate publication. During the symposium, addresses and papers presented by leading experts and policy makers provided additional information in these fields. The key issues were explored further in discussions by the participants and a panel of experts, which helped to highlight the main problems to be addressed in designing the policies for the nuclear fuel cycle in the next 50 years. Special emphasis was placed on the problem of disposition of separated plutonium of civil origin and of plutonium originating from the dismantlement of nuclear weapons. This TECDOC contains all the papers presented, together with a summary of the symposium and a list of participants. Refs, figs, tabs.

  13. Probabilistic safety analysis for nuclear fuel cycle facilities, an exemplary application for a fuel fabrication plant

    International Nuclear Information System (INIS)

    Gmal, B.; Gaenssmantel, G.; Mayer, G.; Moser, E.F.

    2013-01-01

    In order to assess the risk of complex technical systems, the application of the Probabilistic Safety Assessment (PSA) in addition to the Deterministic Safety Analysis becomes of increasing interest. Besides nuclear installations this applies to e. g. chemical plants. A PSA is capable of expanding the basis for the risk assessment and of complementing the conventional deterministic analysis, by which means the existing safety standards of that facility can be improved if necessary. In the available paper, the differences between a PSA for a nuclear power plant and a nuclear fuel cycle facility (NFCF) are discussed in shortness and a basic concept for a PSA for a nuclear fuel cycle facility is described. Furthermore, an exemplary PSA for a partial process in a fuel assembly fabrication facility is described. The underlying data are partially taken from an older German facility, other parts are generic. Moreover, a selected set of reported events corresponding to this partial process is taken as auxiliary data. The investigation of this partial process from the fuel fabrication as an example application shows that PSA methods are in principle applicable to nuclear fuel cycle facilities. Here, the focus is on preventing an initiating event, so that the system analysis is directed to the modeling of fault trees for initiating events. The quantitative results of this exemplary study are given as point values for the average occurrence frequencies. They include large uncertainties because of the limited documentation and data basis available, and thus have only methodological character. While quantitative results are given, further detailed information on process components and process flow is strongly required for robust conclusions with respect to the real process. (authors)

  14. Problems in complying with regulations related to low activity materials: Nuclear fuel cycle issues

    International Nuclear Information System (INIS)

    Coates, R.

    1997-01-01

    The range of issues relating to exemption and clearance within the nuclear fuel cycle is reviewed. It is concluded that current regulatory systems and the underpinning technical criteria are potentially inflexible and over-conservative, resulting in an imbalance in the use of society's resources. Proposals are developed for establishing practical requirements which would ensure that resource allocation is commensurate with the magnitude of the risks and in broad proportion to the other risks affecting society. Such an approach would be consistent with the concept of sustainability and could support wider public acceptance of these issues. Within this approach the practical distinction between exemption and clearance is challenged. (author)

  15. Model development for quantitative evaluation of nuclear fuel cycle alternatives and its application

    International Nuclear Information System (INIS)

    Ko, Won Il

    2000-02-01

    This study addresses the quantitative evaluation of the proliferation resistance and the economics which are important factors of the alternative nuclear fuel cycle system. In this study, model was developed to quantitatively evaluate the proliferation resistance of the nuclear fuel cycles, and a fuel cycle cost analysis model was suggested to incorporate various uncertainties in the fuel cycle cost calculation. The proposed models were then applied to Korean environment as a sample study to provide better references for the determination of future nuclear fuel cycle system in Korea. In order to quantify the proliferation resistance of the nuclear fuel cycle, the proliferation resistance index was defined in imitation of an electrical circuit with an electromotive force and various electrical resistance components. In this model, the proliferation resistance was described an a relative size of the barrier that must be overcome in order to acquire nuclear weapons. Therefore, a larger barriers means that the risk of failure is great, expenditure of resources is large and the time scales for implementation is long. The electromotive force was expressed as the political motivation of the potential proliferators, such as an unauthorized party or a national group to acquire nuclear weapons. The electrical current was then defined as a proliferation resistance index. There are two electrical circuit models used in the evaluation of the proliferation resistance: the series and the parallel circuits. In the series circuit model of the proliferation resistance, a potential proliferator has to overcome all resistance barriers to achieve the manufacturing of the nuclear weapons. This phenomenon could be explained by the fact that the IAEA(International Atomic Energy Agency)'s safeguards philosophy relies on the defense-in-depth principle against nuclear proliferation at a specific facility. The parallel circuit model was also used to imitate the risk of proliferation for

  16. Nuclear-fuel-cycle education: Module 5. In-core fuel management

    International Nuclear Information System (INIS)

    Levine, S.H.

    1980-07-01

    The purpose of this project was to develop a series of educational modules for use in nuclear-fuel-cycle education. These modules are designed for use in a traditional classroom setting by lectures or in a self-paced, personalized system of instruction. This module on in-core fuel management contains information on computational methods and theory; in-core fuel management using the Virginia Polytechnic Institute and State University computer modules; pressurized water reactor in-core fuel management; boiling water reactor in-core fuel management; and in-core fuel management for gas-cooled and fast reactors

  17. Technology, safety and costs of decommissioning reference nuclear fuel cycle facilities

    International Nuclear Information System (INIS)

    Elder, H.K.

    1986-05-01

    The radioactive wastes expected to result from decommissioning nuclear fuel cycle facilities are reviewed and classified in accordance with 10 CFR 61. Most of the wastes from the MOX plant (exclusive of the lagoon wastes) will require interim storage (11% Class A 49 m 3 ; 89% interim storage, 383 m 3 ). The MOX plant lagoon wastes are Class A waste (2930 m 3 ). All of the wastes from the U-Fab and UF 6 plants are designated as Class A waste (U-Fab 1090 m 3 , UF 6 1259 m 3 )

  18. Preliminary design and analysis on nuclear fuel cycle for fission-fusion hybrid spent fuel burner

    International Nuclear Information System (INIS)

    Chen Yan; Wang Minghuang; Jiang Jieqiong

    2012-01-01

    A wet-processing-based fuel cycle and a dry-processing were designed for a fission-fusion hybrid spent fuel burner (FDS-SFB). Mass flow of SFB was preliminarily analyzed. The feasibility analysis of initial loaded fuel inventory, recycle fuel fabrication and spent fuel reprocessing were preliminarily evaluated. The results of mass flow of FDS-SFB demonstrated that the initial loaded fuel inventory, recycle fuel fabrication and spent fuel reprocessing of nuclear fuel cycle of FDS-SFB is preliminarily feasible. (authors)

  19. The future of nuclear power determines tasks of Ukraines nuclear fuel cycle

    International Nuclear Information System (INIS)

    Paton, B.Ye.; Neklyudov, I.M.; Krasnorutskij, V.S.

    2013-01-01

    This study provides a brief analysis on the status and development of nuclear power in the world. The present results of physical and engineering development demonstrate that in the longer term, nuclear energy as a key macro energy source is able to secure the existence and development of mankind. Based on the demand for sustainable socioeconomic existence of Ukraine as a state, there have been determined major tasks for the development of nuclear fuel cycle of Ukraine that have to be implemented at present and in the medium term

  20. Introduction of Thorium in the Nuclear Fuel Cycle. Short- to long-term considerations

    International Nuclear Information System (INIS)

    Allibert, M.; Merle-Lucotte, E.; Ghetta, V.; Ault, T.; Krahn, S.; Wymer, R.; Croff, A.; Baron, P.; Chauvin, N.; Eschbach, R.; Rimpault, G.; Serp, J.; Bergeron, A.; Bromley, B.; Floyd, M.; Hamilton, H.; Hyland, B.; Wojtaszek, D.; McDonald, M.; Collins, E.; Cornet, S.; Michel-Sendis, F.; ); Feinberg, O.; Ignatiev, V.; Hesketh, K.; Kelly, J.F.; Porsch, D.; Vidal, J.; Taiwo, T.; Uhlir, J.; Van Den Durpel, L.; Van Den Eynde, G.; Vitanza, C.; Butler, Gregg; Cornet, Stephanie; Dujardin, Thierry; Greneche, Dominique; Nordborg, Claes; Rimpault, Gerald; Van Den Durpel, Luc; Michel-Sendis, Franco

    2015-01-01

    Since the beginning of the nuclear era, significant scientific attention has been given to thorium's potential as a nuclear fuel. Although the thorium fuel cycle has never been fully developed, the opportunities and challenges that might arise from the use of thorium in the nuclear fuel cycle are still being studied in many countries and in the context of diverse international programmes around the world. This report provides a scientific assessment of thorium's potential role in nuclear energy both in the short to longer term, addressing diverse options, potential drivers and current impediments to be considered if thorium fuel cycles are to be pursued. (authors)