WorldWideScience

Sample records for nuclear world bwr

  1. BWR type nuclear reactors

    International Nuclear Information System (INIS)

    Yamamoto, Toru.

    1987-01-01

    Purpose: To obtain reactor core characteristics with less changes in the excess reactivity due to fuel burnup even when the operation period varies. Constitution: In a BWR type reactor where fuel assemblies containing fuel rods incorporated with burnable poisons are arranged, the fuel assemblies are grouped into first fuel assemblies and second fuel assemblies. Then, the number of fuel rods incorporated with burnable poisons within the first fuel assemblies is made greater than that of the second fuel rods, while the concentration of the burnable poisons in the fuel rods incorporated with the burnable poisons in the first fuel assemblies is made lower than that of the fuel rods incorporated with the burnable poisons in the second fuel assemblies. In the BWR type reactor constituted in this way, the reactor core characteristics can be improved by changing the ratio between the first fuel assemblies and the second fuel assemblies charged to the reactor core, thereby decreasing the changes in the burnup of the excess reactivity. (Kamimura, M.)

  2. BWR type nuclear power plant

    International Nuclear Information System (INIS)

    Matsumoto, Kosuke.

    1991-01-01

    In a BWR type nuclear power plant in which reactor water in a reactor pressure vessel can be drained to a waste processing system by way of reactor recycling pipeways and remaining heat removal system pipeways, a pressurized air supply device is disposed for supplying air for pressurizing reactor water to the inside of the reactor pressure vessel by way of an upper head. With such a constitution, since the pressurized air sent from the pressurized air supply device above the reactor pressure vessel for the reactor water discharging pressure upon draining, the water draining pressure is increased compared with a conventional case and, accordingly, the amount of drained water is not reduced even in the latter half of draining. Accordingly, the draining efficiency can be improved and only a relatively short period of time is required till the completion of the draining, which can improve safety and save labors. (T.M.)

  3. BWR nuclear plant maintenance simulation

    International Nuclear Information System (INIS)

    Stuart, I.F.

    1985-01-01

    As early as 1977, the General Electric Company, USA, Nuclear Energy Operation was making plans to construct a maintenance-type simulator to support Training and Services. The Company's pioneering experience with control room simulators started in 1968 with the Dresden simulator and showed clearly the benefits of having such facilities for training, checkout of procedures and, in the case of maintenance, match-up of equipment or tools as needed. Since the dedication of the facility, it has proved to be an invaluable resource in the training of refuelling and servicing crews. The facility has also been extensively used as developmental and test facility for in-vessel servicing equipment and procedures. (author)

  4. Boiling water system of nuclear power plants (BWR)

    International Nuclear Information System (INIS)

    Martias Nurdin

    1975-01-01

    About 85% of the world electric generators are light water reactors. It shows that LWR is technologically and economically competitive with other generators. The Boiling Water Reactor (BWR) is one of the two systems in the LWR group. The techniques of BWR operation in several countries, especially low and moderate power BWR, are presented. The discussion is made in relation with the interconnection problems of electric installation in developing countries, including Indonesia, where the total electric energy installation is low. The high reliability and great flexibility of the operation of a boiling water reactor for a sufficiently long period are also presented. Component standardization for BWR system is discussed to get a better technological and economical performance for further development. (author)

  5. Requests on domestic nuclear data library from BWR design

    International Nuclear Information System (INIS)

    Maruyama, Hiromi

    2003-01-01

    Requests on the domestic nuclear data library JENDL and activities of the Nuclear Data Center have been presented from the perspective of BWR design and design code development. The requests include a standard multi-group cross section library, technical supports, and clarification of advantage of JENDL as well as requests from physical aspects. (author)

  6. Operator training simulator for BWR nuclear power plant

    International Nuclear Information System (INIS)

    Watanabe, Tadasu

    1988-01-01

    For the operation management of nuclear power stations with high reliability and safety, the role played by operators is very important. The effort of improving the man-machine interface in the central control rooms of nuclear power stations is energetically advanced, but the importance of the role of operators does not change. For the training of the operators of nuclear power stations, simulators have been used from the early stage. As the simulator facilities for operator training, there are the full scope simulator simulating faithfully the central control room of an actual plant and the small simulator mainly aiming at learning the plant functions. For BWR nuclear power stations, two full scope simulators are installed in the BWR Operator Training Center, and the training has been carried out since 1974. The plant function learning simulators have been installed in respective electric power companies as the education and training facilities in the companies. The role of simulators in operator training, the BTC No.1 simulator of a BWR-4 of 780 MWe and the BTC No.2 simulator of a BWR-5 of 1,100 MWe, plant function learning simulators, and the design of the BTC No.2 simulator and plant function learning simulators are reported. (K.I.)

  7. Facility of BWR type nuclear power plant

    International Nuclear Information System (INIS)

    Kubo, Mitsuji

    1998-01-01

    A condensate filtering device for cleaning condensate flown from a low pressure turbine and a condensate desalting device are connected by way of a condensate pipeline. Control rod drives (CRD) are disposed to the lower portion of BWR. A CRD pump and one end of a CRD feedwater pipeline are connected in series to the upstream of CRD. The other end of the CRD feedwater pipeline is connected to a CRD water taking pipeline branched from the condensate pipeline. Water is taken to the CRD from downstream of the condensate filtering device and upstream of a connecting portion between a low pressure heater drain pipeline and the condensate pipeline. Flow of impurities leached out of the condensate desalting device to the reactor can be suppressed, and rising of temperature of CRD water by the low pressure heater drain water is prevented. In addition, flowing of dissolved oxygen to the CRD system can be suppressed. (I.N.)

  8. LAPUR5 BWR stability analysis in Kuosheng nuclear power plant

    International Nuclear Information System (INIS)

    Kunlung Wu; Chunkuan Shih; Wang, J.R.; Kao, L.S.

    2005-01-01

    Full text of publication follows: Unstable oscillation of a nuclear power reactor core is one of the main reasons that causes minor core damage. Stability analysis needs to be performed to predict the potential problem as early as possible and to prevent core instability events from happening. Nuclear Regulatory Commission (NRC) requests all BWR licensees to examine each core reload and to impose operating limitations, as appropriate, to ensure compliance with GDC 10 and 12. GDC 10 requires that the reactor core be designed with appropriate margin to assure that specified acceptable fuel design limits will not be exceeded during any condition of normal operation, including anticipated operational occurrences. GDC 12 requires assurance that power oscillations which can result in conditions exceeding specified acceptable fuel design limits are either not possible or can be reliably and readily detected and suppressed. Therefore, the core instability is directly related to the fuel design limits. The core and channel DR (decay ratio) calculation are commonly performed to determine system's stability when new fuel designs are introduced in the core. In order to establish the independent analysis technology for BWR licensees and verifications, the Institute of Nuclear Energy Research (INER) has obtained agreement from NRC and implemented the 'Methodology and Procedure for Calculation of Core and Channel Decay Ratios with LAPUR', which was developed by the IBERINCO in 2001. LAPUR5 uses a multi-nodal description of the neutron dynamics, together with a distributed parameter model of the core thermal hydrodynamics to produce a space-dependent representation of the dynamics of a BWR in the frequency domain for small perturbations around a steady state condition. From the output of LAPUR5, the following results are obtained: global core decay ratio, out-of phase core decay ratio, and channel decay ratio. They are key parameters in the determination of BWR core stability

  9. Reduction of radiation exposure in Japanese BWR Nuclear Power Plants

    International Nuclear Information System (INIS)

    Morikawa, Yoshitake

    1995-01-01

    The reduction of occupational exposure to radiation during the annual inspection and maintenance outages of Japanese boiling water reactors (BWR) is one of the most important objectives for stable and reliable operation. It was shown that this radiation exposure is caused by radionuclides, such as Co-60, Co-58 and Mn-54 which are produced from the metal elements Co, Ni, and Fe present in the corrosion products of structural materials that had been irradiated by neutrons. Therefore, to reduce radiation sources and exposures in Japanese BWRs, attempts have been reinforced to remove corrosion products and activated corrosion products from the primary coolant system. This paper describes the progress of the application of these measures to Japanese BWRs. Most Japanese BWR-4 and BWR-5 type nuclear power plants started their commercial operations during the 1970s. With the elapse of time during operations, a problem came to the forefront, namely that occupational radiation exposure during plant outages gradually increased, which obstructed the smooth running of inspections and maintenance work. To overcome this problem, extensive studies to derive effective countermeasures for radiation exposure reduction were undertaken, based on the evaluation of the plants operation data

  10. Reduction of radiation exposure in Japanese BWR Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Morikawa, Yoshitake [ISOGO Nuclear Engineering Center, Yokohama (Japan)

    1995-03-01

    The reduction of occupational exposure to radiation during the annual inspection and maintenance outages of Japanese boiling water reactors (BWR) is one of the most important objectives for stable and reliable operation. It was shown that this radiation exposure is caused by radionuclides, such as Co-60, Co-58 and Mn-54 which are produced from the metal elements Co, Ni, and Fe present in the corrosion products of structural materials that had been irradiated by neutrons. Therefore, to reduce radiation sources and exposures in Japanese BWRs, attempts have been reinforced to remove corrosion products and activated corrosion products from the primary coolant system. This paper describes the progress of the application of these measures to Japanese BWRs. Most Japanese BWR-4 and BWR-5 type nuclear power plants started their commercial operations during the 1970s. With the elapse of time during operations, a problem came to the forefront, namely that occupational radiation exposure during plant outages gradually increased, which obstructed the smooth running of inspections and maintenance work. To overcome this problem, extensive studies to derive effective countermeasures for radiation exposure reduction were undertaken, based on the evaluation of the plants operation data.

  11. Operating experience with BWR nuclear power

    International Nuclear Information System (INIS)

    Bonsdorf, Magnus von.

    1986-01-01

    The two-unit nuclear power station in Olkiluoto on the western coast of Finland produces about 20 per cent of the electricity consumption of the country. The first unit, TVO-I was first connected to the national grid in September 1978 and TVO-II in February 1980. The original rated power output of each unit was 660 MWe, corresponding to the thermal power of 2000 MW from the reactor. Technical modifications allowed the power to be uprated by 8%. The operating statistics (load factors etc.) are given and the outage experience discussed. The radiological history shows very low radioactivity and dose levels have been maintained at the plant. (UK)

  12. Siemens Nuclear Power Corporation experience with BWR and PWR fuels

    International Nuclear Information System (INIS)

    Reparaz, A.; Smith, M.H.; Stephens, L.G.

    1992-01-01

    The large data base of fuel performance parameters available to Siemens Nuclear Power Corporation (SNP), and the excellent track record of innovation and fuel reliability accumulated over the last twenty-three years, allows SNP to have a clear insight on the characteristics of future developments in the area of fuel design. Following is a description of some of SNP's recent design innovations to prevent failures and to extend burnup capabilities. A goal paramount to the design and manufacture of BWR and PWR fuel is that of zero defects from any case during its operation in the reactor. Progress has already been made in achieving this goal. This paper summarized the cumulative failure rate of SNP fuel rod through January 1992

  13. An ecological interface design for BWR nuclear power plants

    International Nuclear Information System (INIS)

    Monta, K.; Itoh, J.

    1992-01-01

    An ecological interface design was applied to realize the support function for the operator's direct perception and analytical reasoning in the development of an intelligent man-machine system for BWR nuclear power plants. The abstraction-aggregation functional hierarchy representation of the work domain is a base of the ecological interface design. Another base is the concept of the level of cognitive control. The former was mapped into the interface to externalize the operator's normative mental model of the plants, which will reduce his/her cognitive work load and support knowledge-based problem solving. In addition, the same framework can be used for the analytical evaluation of man-machine interfaces. The information content and structure of a prototype interface were evaluated. This approach seems promising from these experiences. (author)

  14. Design and axial optimization of nuclear fuel for BWR reactors

    International Nuclear Information System (INIS)

    Garcia V, M.A.

    2006-01-01

    In the present thesis, the modifications made to the axial optimization system based on Tabu Search (BT) for the axial design of BWR fuel type are presented, developed previously in the Nuclear Engineering Group of the UNAM Engineering Faculty. With the modifications what is mainly looked is to consider the particular characteristics of the mechanical design of the GE12 fuel type, used at the moment in the Laguna Verde Nucleo electric Central (CNLV) and that it considers the fuel bars of partial longitude. The information obtained in this thesis will allow to plan nuclear fuel reloads with the best conditions to operate in a certain cycle guaranteeing a better yield and use in the fuel burnt, additionally people in charge in the reload planning will be favored with the changes carried out to the system for the design and axial optimization of nuclear fuel, which facilitate their handling and it reduces their execution time. This thesis this developed in five chapters that are understood in the following way in general: Chapter 1: It approaches the basic concepts of the nuclear energy, it describes the physical and chemical composition of the atoms as well as that of the uranium isotopes, the handling of the uranium isotope by means of the nuclear fission until arriving to the operation of the nuclear reactors. Chapter 2: The nuclear fuel cycle is described, the methods for its extraction, its conversion and its enrichment to arrive to the stages of the nuclear fuel management used in the reactors are described. Beginning by the radial design, the axial design and the core design of the nuclear reactor related with the fuel assemblies design. Chapter 3: the optimization methods of nuclear fuel previously used are exposed among those that are: the genetic algorithms method, the search methods based on heuristic rules and the application of the tabu search method, which was used for the development of this thesis. Chapter 4: In this part the used methodology to the

  15. Panorama of the BWR reactors - Evolution of the concept

    Energy Technology Data Exchange (ETDEWEB)

    Novotny, C.; Uhrig, E. [AREVA NP GmbH, Safety Engineering Department - PEPS-G (Germany)

    2012-01-15

    Nowadays, a fleet of more than 50 boiling water reactors (BWR) are in operation in the world. This article gives a short overview on the developments of nuclear power plants of the BWR type, with a focus on the European builds. It describes the technical bases from the early designs in the fifties, sketches the innovations of the sixties and seventies in the types BWR 69 and 72 (Baulinie 69 and 72) and gives an outlook of a possible next generation BWR. A promising approach in recent BWR developments is the the combination of passive safety systems with established design basis

  16. World nuclear energy paths

    International Nuclear Information System (INIS)

    Connolly, T.J.; Hansen, U.; Jaek, W.; Beckurts, K.H.

    1979-01-01

    In examing the world nuclear energy paths, the following assumptions were adopted: the world economy will grow somewhat more slowly than in the past, leading to reductions in electricity demand growth rates; national and international political impediments to the deployment of nuclear power will gradually disappear over the next few years; further development of nuclear power will proceed steadily, without serious interruption but with realistic lead times for the introduction of advanced technologies. Given these assumptions, this paper attempts a study of possible world nuclear energy developments, disaggregated on a regional and national basis. The scenario technique was used and a few alternative fuel-cycle scenarios were developed. Each is an internally consistent model of technically and economically feasible paths to the further development of nuclear power in an aggregate of individual countries and regions of the world. The main purpose of this modeling exercise was to gain some insight into the probable international locations of reactors and other nuclear facilities, the future requirements for uranium and for fuel-cycle services, and the problems of spent-fuel storage and waste management. The study also presents an assessment of the role that nuclear power might actually play in meeting future world energy demand

  17. World status - nuclear power

    International Nuclear Information System (INIS)

    Holmes, A.

    1984-01-01

    The problems of nuclear power are not so much anti-nuclear public opinion, but more the decrease of electricity consumption growth rate and the high cost of building reactors. Because of these factors, forecasts of world nuclear capacity have had to be reduced considerably over the last three years. The performance of reactors is considered. The CANDU reactor remains the world's best performer and overall tends to out-perform larger reactors. The nuclear plant due to come on line in 1984 are listed by country; this shows that nuclear capacity will increase substantially over a short period. At a time of stagnant demand this will make nuclear energy an important factor in the world energy balance. Nuclear power stations in operation and under construction in 1983 are listed and major developments in commercial nuclear power in 1983 are taken country by country. In most, the report is the same; national reactor ordering cut back because the expected increase in energy demand has not happened. Also the cost-benefit of nuclear over other forms of energy is no longer as favourable. The export opportunities have also declined as many of the less developed countries are unable to afford reactors. (U.K.)

  18. BWR Spent Nuclear Fuel Interfacial Bonding Efficiency Study

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jy-An John [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jiang, Hao [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-04-30

    The objective of this project is to perform a systematic study of spent nuclear fuel (SNF, also known as “used nuclear fuel” [UNF]) integrity under simulated transportation environments using the Cyclic Integrated Reversible-Bending Fatigue Tester (CIRFT) hot-cell testing technology developed at Oak Ridge National Laboratory (ORNL) in August 2013. Under Nuclear Regulatory Commission (NRC) sponsorship, ORNL completed four benchmark tests, four static tests, and twelve dynamic or cycle tests on H. B. Robinson (HBR) high burn-up (HBU) fuel. The clad of the HBR fuels was made of Zircaloy-4. Testing was continued in fiscal year (FY) 2014 using Department of Energy (DOE) funds. Additional CIRFT testing was conducted on three HBR rods; two specimens failed, and one specimen was tested to over 2.23 × 107 cycles without failing. The data analysis on all the HBR SNF rods demonstrated that it is necessary to characterize the fatigue life of the SNF rods in terms of (1) the curvature amplitude and (2) the maximum absolute of curvature extremes. The maximum extremes are significant because they signify the maximum tensile stress for the outer fiber of the bending rod. CIRFT testing has also addressed a large variation in hydrogen content on the HBR rods. While the load amplitude is the dominant factor that controls the fatigue life of bending rods, the hydrogen content also has an important effect on the lifetime attained at each load range tested. In FY 15, eleven SNF rod segments from the Limerick BWR were tested using the ORNL CIRFT equipment; one test under static conditions and ten tests under dynamic loading conditions. Under static unidirectional loading, a moment of 85 N·m was obtained at a maximum curvature of 4.0 m-1. The specimen did not show any sign of failure during three repeated loading cycles to a similar maximum curvature. Ten cyclic tests were conducted with amplitudes varying from 15.2 to 7.1 N·m. Failure was observed in nine of

  19. Nuclear power: 2004 world report - evaluation

    International Nuclear Information System (INIS)

    Anon.

    2005-01-01

    Last year, 2004, 441 nuclear power plants were available for power supply in 31 countries of the world. Nuclear generating capacity attained its highest level so far at an aggregate gross power of 385,854 MWe and an aggregate net power of 366,682 MWe, respectively. Nine different reactor lines are operated in commercial nuclear power plants. Light water reactors (PWR and BWR) again are in the lead with 362 plants. At year's end, 22 nuclear power plants with an aggregate gross power of 18,553 MWe and an aggregate net power, respectively, of 17,591 MWe were under construction in nine countries. Of these, twelve are light water reactors, nine are CANDU-type reactors, and one is a fast breeder reactor. So far, 104 commercial reactors with powers in excess of 5 MWe have been decommissioned in eighteen countries, most of them low-power prototype plants. 228 nuclear power plants of those in operation, i.e. slightly more than half, were commissioned in the 1980es. Nuclear power plant availabilities in terms of capacity and time again reached record levels. Capacity availability was 84.30%, availability in terms of time, 85.60%. The four nuclear power plants in Finland continue to be world champions in this respect with a cumulated average capacity availability of 90.30%. (orig.)

  20. World nuclear outlook 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-29

    As part of the EIA program to provide energy information, this analysis report presents the current status and projections through 2015 of nuclear capacity, generation, and fuel cycle requirements for all countries in the world using nuclear power to generate electricity for commercial use. It also contains information and forecasts of developments in the uranium market. Long-term projections of US nuclear capacity, generation, and spent fuel discharges for two different scenarios through 2040 are developed for the Department of Energy`s Office of Civilian Radioactive Waste Management (OCRWM). In turn, the OCRWM provides partial funding for preparation of this report. The projections of uranium requirements are provided to the Organization for Economic Cooperation and Development (OECD) for preparation of the Nuclear Energy Agency/OECD report, Summary of Nuclear Power and Fuel Cycle Data in OECD Member Countries.

  1. World nuclear outlook 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-01

    As part of the EIA program to provide energy information, this analysis report presents the current status and projections through 2010 of nuclear capacity, generation, and fuel cycle requirements for all countries in the world using nuclear power to generate electricity for commercial use. It also contains information and forecasts of developments in the uranium market. Long-term projections of US nuclear capacity, generation, and spent fuel discharges for three different scenarios through 2040 are developed for the Department of Energy`s Office of Civilian Radioactive Waste Management (OCRWM). In turn, the OCRWM provides partial funding for preparation of this report. The projections of uranium requirements are provided to the Organization for Economic Cooperation and Development (OECD) for preparation of the Nuclear Energy Agency/OECD report, Summary of Nuclear Power and Fuel Cycle Data in OECD Member Countries.

  2. World nuclear outlook 1994

    International Nuclear Information System (INIS)

    1994-12-01

    As part of the EIA program to provide energy information, this analysis report presents the current status and projections through 2010 of nuclear capacity, generation, and fuel cycle requirements for all countries in the world using nuclear power to generate electricity for commercial use. It also contains information and forecasts of developments in the uranium market. Long-term projections of US nuclear capacity, generation, and spent fuel discharges for three different scenarios through 2040 are developed for the Department of Energy's Office of Civilian Radioactive Waste Management (OCRWM). In turn, the OCRWM provides partial funding for preparation of this report. The projections of uranium requirements are provided to the Organization for Economic Cooperation and Development (OECD) for preparation of the Nuclear Energy Agency/OECD report, Summary of Nuclear Power and Fuel Cycle Data in OECD Member Countries

  3. World nuclear outlook 1995

    International Nuclear Information System (INIS)

    1995-01-01

    As part of the EIA program to provide energy information, this analysis report presents the current status and projections through 2015 of nuclear capacity, generation, and fuel cycle requirements for all countries in the world using nuclear power to generate electricity for commercial use. It also contains information and forecasts of developments in the uranium market. Long-term projections of US nuclear capacity, generation, and spent fuel discharges for two different scenarios through 2040 are developed for the Department of Energy's Office of Civilian Radioactive Waste Management (OCRWM). In turn, the OCRWM provides partial funding for preparation of this report. The projections of uranium requirements are provided to the Organization for Economic Cooperation and Development (OECD) for preparation of the Nuclear Energy Agency/OECD report, Summary of Nuclear Power and Fuel Cycle Data in OECD Member Countries

  4. Study of the Utilization BWR Type Nuclear Power Reactor for Desalination Process

    International Nuclear Information System (INIS)

    Itjeu Karliana; Sumijanto; Dhandhang Purwadi, M.

    2008-01-01

    The needs of fresh water increased by rapid population growth and industrials expansion, but these demands can not be prepared naturally. Following this case, seawater desalination becomes the primer option which can fulfill the need through the nuclear desalination technology. The coupled nuclear power reactor enables to supply thermal energy for auxiliary equipment and pumps operation. The utilization study of power reactor type BWR coupled with desalination process has been performed. The goal of study is to obtain characteristic data of desalted water specification which desalination system coupling with nuclear power plant produced energy for desalination process. The study is carried out by browsing data and information, and comprehensive review of thermal energy correlation between NPP with desalination process installation. According to reviewing are found that the thermal energy and electric power utilization from the nuclear power reactor are enable to remove the seawater to produce desalted water and also to operate auxiliary equipments. The assessment results is VK-300 reactor prototype, BWR type 250 MW(e) power are cogeneration unit can supplied hot steam temperature 285 °C to the extraction turbine to empower 150 MW electric power, and a part of hot steam 130 °C is use to operate desalination process and remind heat is distribute to the municipal and offices at that region. The coupled of VK-300 reactor power type BWR with desalination installation of MED type enable to produce desalted water with high quality distillate. Based on the economic calculation that the VK-300 reactor power of BWR type produced water distillate capacity is 300.000 m 3 /hour with cost US$ 0.58/m 3 . The coupling VK-300 reactor power type BWR with MED desalination plant is competitive economically. (author)

  5. Siemens Nuclear Power Corporation methods development for BWR/PWR reactor licensing

    International Nuclear Information System (INIS)

    Pruitt, D.W.

    1992-01-01

    This presentation addresses the Siemens Nuclear Power Corporation (SNP) perspective on the primary forces driving methods development in the nuclear industry. These forces are fuel design, computational environment and industry requirement evolution. The first segment of the discussion presents the SNP experience base. SNP develops, manufactures and licenses both BWR and PWR reload fuel. A review of this experience base highlights the accelerating rate at which new fuel designs are being introduced into the nuclear industry. The application of advanced BWR lattice geometries provides an example of fuel design trends. The second aspect of the presentation is the rapid evolution of the computing environment. The final subject in the presentation is the impact of industry requirements on code or methods development

  6. A World Nuclear University

    International Nuclear Information System (INIS)

    Yanev, Y.

    2004-01-01

    The paper discusses the mission and tasks of the World Nuclear University (WNU) established to build worldwide knowledge and support the effective use of nuclear techniques for solving the global human and environmental problems of 21 century and thereby support the global sustainable development. In this respect the WNU would build Human resources, Technical knowledge and Public Support. A Network of educational and research institutions with strong programmes in nuclear science and engineering will be created. The WNU Head quarters and Regional Centers will: 1) Facilitate agreement on curriculum and WNU certification curriculum 2) Develop and administer scholarships; 3) Foster educational exchanges within WNU family institutions; 4) Build core faculty for summer 1/2 year Masters degrees; 5) Co-ordinate research, grants and knowledge management research; 6) Operate think tank and public information service; 7) Emphasise key areas such as safeguards systems and the nuclear-renewable-hydrogen economy; 8) Oversee world-wide human resources pool; 9) Orchestrate alumni support for nuclear technology. The possible participants and possible location of the Regional Centres are given

  7. Development of advanced BWR

    International Nuclear Information System (INIS)

    Toyota, Masatoshi

    1982-01-01

    The Japanese technology and domestic production of BWR type nuclear power plants have been established through the experiences in the construction and operation of BWRs in addition to the technical agreement with the General Electric Co. In early days, the plants experienced some trouble such as stress corrosion cracking and some inconvenience in the operation and maintenance. The government, electric power companies and BWR manufacturers have endeavored to standardize and improve the design of LWRs for the purpose of improving the safety, reliability and the rate of operation and reducing the radiation exposure dose of plant workers. The first and second stages of the standardization and improvement of LWRs have been completed. Five manufacturers of BWRs in the world have continued the conceptual design of a new version of BWR power plants. It was concluded that this is the most desirable version of BWR nuclear power stations, but the technical and economic evaluation must be made before the commercial application. Six electric power companies and three manufacturers of BWRs in Japan set up the organization to develop the technology in cooperation. The internal pump system, the new control rod drive mechanism and others are the main features. (Kako, I.)

  8. Development and recent trend of design of BWR nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Kani, J [Tokyo Shibaura Electric Co. Ltd., Kawasaki, Kanagawa (Japan)

    1977-11-01

    Many improvements have been carried out in BWR nuclear power plants from BWR-1, represented by Dresden No. 1 plant, to the present BWR-6 as the capacity has increased. In Japan, the plants up to BWR-5 have been constructed. In addition, further fine design improvements are being performed in the complete domestic manufacturing of BRWs based on the operational experiences to date. A variety of investigations on the standardization of nuclear power facilities have been progressing under the leadership of Japanese Ministry of International Trade and Industry since 1975. In this standardization, it is intended to forward the plant design taking eight concrete items into consideration, mainly aiming at carrying cut unerringly the maintenance and inspection, reduction of exposure of employees to radiation, and improvements of the rate of operation of plants and equipment reliability. The containment vessel has been developed in three forms, from Mark 1 through 3, adopting the pressure control system consistently since BWR-2. Mark 1 and 2 were constructed in Japan. However, these designs sacrificed the workability and increased radiation exposure during maintenance as a result of placing emphasis on the safety facilities, therefore Toshiba Electric has investigated the advanced Mark 1 type. Its features are the design for improving the work efficiency in a containment vessel, reducing the radiation exposure of workers, shortening plant construction period, and considering the aseismatic capability. In addition, the following themes are being planned as future standardization: (1) electrically driven control rod driving system, (2) improved design of reactor core, and (3) internal pump system as compared with external re-circulation.

  9. Development and recent trend of disign of BWR nuclear power plants

    International Nuclear Information System (INIS)

    Kani, Jiro

    1977-01-01

    Many improvements have been carried out in BWR nuclear power plants from BWR-1, represented by Dresden No. 1 plant, to the present BWR-6 as the capacity has increased. In Japan, the plants up to BWR-5 have been constructed. In addition, further fine design improvements are being performed in the complete domestic manufacturing of BRWs based on the operational experiences to date. A variety of investigations on the standardization of nuclear power facilities have been progressing under the leadership of Japanese Ministry of International Trade and Industry since 1975. In this standardization, it is intended to forward the plant design taking eight concrete items into consideration, mainly aiming at carrying cut unerringly the maintenance and inspection, reduction of exposure of employees to radiation, and improvements of the rate of operation of plants and equipment reliability. The containment vessel has been developed in three forms, from Mark 1 through 3, adopting the pressure control system consistently since BWR-2. Mark 1 and 2 were constructed in Japan. However, these designs sacrificed the workability and increased radiation exposure during maintenance as a result of placing emphasis on the safety facilities, therefore Toshiba Electric has investigated the advanced Mark 1 type. Its features are the design for improving the work efficiency in a containment vessel, reducing the radiation exposure of workers, shortening plant construction period, and considering the aseismatic capability. In addition, the following themes are being planned as future standardization: (1) electrically driven control rod driving system, (2) improved design of reactor core, and (3) internal pump system as compared with external re-circulation. (Wakatsuki, Y.)

  10. From the nuclear world

    International Nuclear Information System (INIS)

    Anon.

    2015-01-01

    This document gathers pieces of information concerning nuclear industry worldwide. The most relevant are the following ones. China has announced the construction between 2020 and 2025 of the biggest particle accelerator in the world. The Finn government has agreed with the project of a spent fuel storage center, it was the last administrative step before the launching of the construction works. The quality of the steel of the pressure vessel of the Olkiluoto EPR has been assessed by the Finn nuclear safety authority (STUK). The French nuclear safety authority (ASN) has launched a test program for assessing the resistance of the pressure vessel of the Flamanville EPR as a consequence of the recent discovery of defects in the composition of the steel. A robot called SX1 has been designed to measure radiation in a continuous way by strolling about in a nuclear facility. As a consequence of a tense relationship with Russia, the Turkish government has stopped the construction (by Rosatom) of the Akkuyu nuclear plant. The Belgian government and the Electrabel company have signed an agreement for a 10 year extension of the operating life of the Doel 1 and 2 reactors. Chinese authorities have approved the construction of 4 new third generation reactors. (A.C.)

  11. From the nuclear world

    International Nuclear Information System (INIS)

    Anon.

    2016-01-01

    This document gathers pieces of information concerning nuclear industry worldwide. The most relevant are the following ones. CGN (China General Nuclear) will launched in 2017 the construction of a prototype of a small transportable modular reactor whose purpose is to produce electricity on a remote place like an island or aboard a boat for long-term missions. The Wylfa reactor (490 MWe) was decommissioned on December 30., 2015. Wylfa was the last Magnox type reactor operating in the world. In France a campaign of information and iodine drug dispatching has been launched for people living near nuclear power plants. The global cost of the CIGEO project whose aim is the disposal of high-level radioactive wastes has been estimated to 25 billions euros including construction costs, operating costs over a 100 year period and dismantling costs. The European Commission has warned France that the financial provisions made for the dismantling of nuclear facilities and the processing of the consequent wastes are not sufficient to cover the future costs. 4 reactors with a power of 1400 MWe each, are being built on the Barakah site in Abu Dhabi, works are on time and the first unit may operate end 2016. Wikileaks has accused AREVA of not taking all necessary measures for the protection of its employees at the Bakouma mine. AREVA denies the charges and affirms that regulations and safety requirements are the same as for its French sites whatever the country. The initiative 'Nuclear for Climate' gathering pro-nuclear associations worldwide, intends to remind the international community that nuclear energy is an important tool to fight climate change. The French site for the disposal of low-level radioactive wastes is facing saturation in the very short term while the volume of such wastes is expected to soar in the next decades as the dismantling programmes will gain in importance. A new policy for the management of such wastes is needed. (A.C.)

  12. The development of emergency core cooling systems in the PWR, BWR, and HWR Candu type of nuclear power plants

    International Nuclear Information System (INIS)

    Mursid Djokolelono.

    1976-01-01

    Emergency core cooling systems in the PWR, BWR, and HWR-Candu type of nuclear power plant are reviewed. In PWR and BWR the emergency cooling can be catagorized as active high pressure, active low pressure, and a passive one. The PWR uses components of the shutdown cooling system: whereas the BWR uses components of pressure suppression contaiment. HWR Candu also uses the shutdown cooling system similar to the PWR except some details coming out from moderator coolant separation and expensive cost of heavy water. (author)

  13. Dry well cooling systems in BWR type nuclear power plants

    International Nuclear Information System (INIS)

    Hanamura, Ikuo; Tada, Kenji.

    1986-01-01

    Purpose: To prevent the damages of pipeways due to salt damages at the surface of control rod drives in BWR type reactors. Constitution: In control rod drives and the lowermost area in the dry well in which surface corrosion and pitching have been resulted by the salt contents in air due to the increase in the humidity accompanying the lowering of the temperature, a blower is disposed to the upstream of the cooling coils and a portion of high temperature air returned to the lower cooler is replaced with a low temperature feed air to increase the feed temperature in the area. Further, by upwardly turning the downwarded feed air drawing port in which cold feed air has so far been descended as it is, the descendance of the cold air is suppressed. As a result, temperature lowering in the driving mechanisms and the lower area can be prevented to obtain a predetermined temperature, whereby the dewing on the surface can be prevented and thereby preventing the occurrence of corrosion and pitching. (Horiuchi, T.)

  14. Turbine protecting device in a BWR type nuclear power plant

    International Nuclear Information System (INIS)

    Kasuga, Hajime; Oka, Yoko.

    1984-01-01

    Purpose: To prevent highly humid steams from flowing into the turbine upon abnormal reduction in the reactor water level in order to ensure the turbine soundness, as well as in order to trip the turbine with no undesired effect on the reactor. Constitution: A protection device comprising a judging device and a timer are disposed in a BWR type reactor, in order to control a water level signal from a reactor water level gage. If the reactor water level is reduced during rated power operation, steams are kept to be generated due to decay heat although reactor is scramed. When a signal from the reactor water level detector is inputted to the protection device, a trip signal is outputted by way of a judging device after 15 second by means of the timer, when the main steam check valve is closed to trip the turbine. With this delay of time, abrupt increase in the pressure of the reactor due to sudden shutdown can be prevented. (Nakamoto, H)

  15. From the nuclear world

    International Nuclear Information System (INIS)

    Anon.

    2017-01-01

    This document gathers pieces of information from around the world concerning nuclear industry. The most relevant ones are the following. AREVA NP and EDF have created a new society EDVANCE to combine their engineering teams in the fields of reactor core design and construction. The German Constitutional Court considers as illegal the nuclear fuel tax that was implemented in 2010 to balance public finance and fund the remediation of the Ass salt mine. In France on the Tricastin AREVA's site the ATLAS laboratory has opened its doors, it is the laboratory that will perform all the environmental and industrial analyses of this site. In Japan the reactors 3 and 4 of the Takahama power plant have resumed operations. Today 5 nuclear power reactors are operating on Japanese soil. The Indian government has announced its intention to build heavy water cooled nuclear reactors based on an Indian design. 22 reactors are operating in India representing a total of 6780 MW and 5 others are being built. According to the 'SMR Start' consortium public-private partnership contracts have to be promoted in order to launch the small modular reactor (SMR) technology. (A.C.)

  16. Development of a coordinated control system for BWR nuclear power plant and HVDC transmission system

    International Nuclear Information System (INIS)

    Ishikawa, M.; Hara, T.; Hirayama, K.; Sekiya, K.

    1986-01-01

    The combined use of dc and ac transmissions or so-called hybrid transmission was under study, employing both dc and ac systems to enable stable transmission of 10,000 MW of electric power generated by the BWR nuclear plant, scheduled to be built about 800 km away from the center of the load. It was thus necessary to develop a hybrid power transmission control system, the hybrid power transmission system consisting of a high voltage dc transmission system (HVDC) and an ultrahigh ac transmission system (UHVAC). It was also necessary to develop a control system for HVDC transmission which protects the BWR nuclear power plant from being influenced by any change in transmission mode that occurs as a result of faults on the UHVAC side when the entire power of the BWR plant is being sent by the HVDC transmission. This paper clarifies the requirements for the HVDC system control during hybrid transmission and also during dc transmission. The control method that satisfies these requirements was studied to develop a control algorithm

  17. 2004 world nuclear power report - evaluation

    International Nuclear Information System (INIS)

    Anon.

    2004-01-01

    Last year, 2003, 439 nuclear power plants were available for electricity generation in 31 countries of the world. With an aggregate gross capacity of 380,489 MWe and an aggregate net capacity of 361,476MWe, nuclear generating capacity reached its highest level so far. Nine different reactor lines are operated in the commercial nuclear power plants. Light water reactors (PWR and BWR) continue to be in the lead with 355 plants. Twenty-nine nuclear power plants with an aggregate gross capacity of 24,222 MWe and an aggregate net capacity of 23,066 MWe were under construction in eleven countries. Of these, twenty are light water reactors, and seven are CANDU-type reactors. Ninety-nine commercial reactors with a capacity in excess of 5 MWe have so far been decommissioned in eighteen countries, most of them prototype plants of low power. 228 plants, i. e. slightly more than half of the number of plants currently in operation, were commissioned in the 1980s. The oldest commercial nuclear power plant in the world, Calder Hall unit 1, was disconnected from the power grid for good in its 48th year of operation in 2003. For the first time in ten years, the availability in terms of time and capacity of nuclear power plants has decreased from 83,80% in 2002 to 80.50%, and from 84.60% to 81.50%, respectively, in 2003. The main causes are prolonged outages of high-capacity plants in Japan as a consequence of administrative restrictions. The four nuclear power plants in Finland continue to be at the top of the list worldwide with a cumulated average availability of capacity of 90.30%. (orig.)

  18. 2002 Nuclear Power World Report - Evaluation

    International Nuclear Information System (INIS)

    Anon.

    2003-01-01

    Last year, in 2002, 441 nuclear power plants were available for power supply in 31 countries in the world. With an aggregate gross power of 377,359 MWe, and an aggregate net power of 359,429 MWe, respectively, the nuclear generating capacity reached its highest level so far. Nine different reactor lines are used in commercial facilities. Light water reactors (PWR and BWR) contribute 355 plants, which makes them the most common reactor line. In twelve countries, 32 nuclear power plants with an aggregate gross power of 26,842 MWe and an aggregate net power of 25,546 MWe, respectively, are under construction. Of these, 25 units are light water reactors while eight are CANDU-type plants. In eighteen countries, 94 commercial reactors with more than 5 MWe power have been decommissioned so far. Most of these plants are prototypes with low powers. 228 of the nuclear power plants currently in operation, i.e. slightly more than half of them, were commissioned in the eighties. The oldest commercial nuclear power plant, Calder Hall unit 1, supplied power into the public grid in its 47th year of operation in 2002. The availability in terms of time and capacity of nuclear power plants rose from 74.23% in 1991 to 83.40% in 2001. A continued rise to approx. 85% is expected for 2002. In the same way, the non-availability in terms of time (unscheduled) dropped from 6.90% to 3.48%. The four nuclear power plants in Finland are the world's leaders with a cumulated average capacity availability of 90.00%. (orig.) [de

  19. Device for detecting neutron flux in nuclear reactor. [BWR

    Energy Technology Data Exchange (ETDEWEB)

    Bessho, Y; Nishizawa, Y

    1976-07-30

    The object of the invention is to ensure accuracy in the operation of the nuclear reactor by reducing the difference that results between the readings of a Traversing Incore Probe (TIP) and a Local Power Range Monitor (LPRM) when the neutron flux distribution undergoes a change. In an apparatus for detecting neutrons in a nuclear reactor, an LPRM sensor comprising a layer containing a substance capable of nuclear fission, a section filled with argon gas and a collector is constructed so as to surround a TIP within a TIP guide tube at the height of the reactor axis. In this way, the LPRM detects the average value of neutron distribution in the region surrounding the TIP, so that no great difference between the readings of both the sensors is produced even if the neutron flux distribution is changed.

  20. Nuclear energy in the world

    International Nuclear Information System (INIS)

    Grippi, Sidney

    2006-01-01

    The chapter reports the nuclear energy beginning in the world including a chronology of the atomic bomb birth, the annual growth rate of electronuclear energy in the world, a comparison of energy production in thermoelectric bases

  1. Recent control and instrumentation systems for BWR nuclear power plant

    International Nuclear Information System (INIS)

    Fujii, Hiroaki; Higashikawa, Yuichi; Sato, Hideyuki

    1990-01-01

    For the needs of the more stable operation of nuclear power stations, the upgrading of the measurement and control system for BWRs has been promoted by positively introducing remarkably advancing electronic technology. Further, it is aimed at to construct the synthetic digitized measurement and control system for nuclear power stations to heighten the operation reliability in ABWRs. As the first step of the development in the synthetic digitization, the monitoring and control system for radioactive waste treatment was put in practical use for No.5 plant of Kashiwazaki, Kariwa Nuclear Power Station, Tokyo Electric Power Co., Inc. Hitachi Ltd. has promoted the development and the application to actual plants of the measurement and control system for BWRs, in which digital control technology, optical information transmission technology and the operation-supporting technology using a computer were utilized. Hereafter, it is intended to expand the application of digital measurement and control aiming at improving the reliability, operation performance and maintainability. The nuclear power plant control complex with advanced man-machine interface-90 (NUCAMM-90) was developed, and its application to actual plants is planned. (K.I.)

  2. Operation status display and monitoring system for BWR nuclear power plant

    International Nuclear Information System (INIS)

    Wakabayashi, Yasuo; Hayakawa, Hiroyasu; Kawamura, Atsuo; Kaneda, Mitsunori.

    1982-01-01

    Lately, the development of the system has been made for BWR plants, which monitors the operating status not only in normal operation but also in abnormal state and also for plant safety. Recently, the improvement of man-machine interface has been tried through the practical use of technique which displays data collectively on a CRT screen relating them mutually. As one of those results, the practical use of an electronic computer and color CRT display for No. 1 unit in the Fukushima No. 2 Nuclear Power Station (2F-1), Tokyo Electric Power Co., is described. Also, new centralized control panels containing such systems were used for the 1100 MWe BWR nuclear power plants now under construction, No. 3 unit of the Fukushima No. 2 Power Station and No. 1 unit of Kashiwazaki-Kariwa Nuclear Power Station (2F-3 and K-1, respectively). The display and monitoring system in 2F-1 plant is the first one in which a computer and color CRTs were practically employed for a BWR plant in Japan, and already in commercial operation. The advanced operating status monitoring system, to which the result of evaluation of the above system was added, was incorporated in the new centralized control panels presently under production for 2F-3 and K-1 plants. The outline of the system, the functions of an electronic computer, plant operating status monitor, surveillance test guide, the automation of plant operation and auxiliary operation guide are reported for these advanced monitoring system. It was confirmed that these systems are useful means to improve the man-machine communication for plant operation minitoring. (Wakatsuki, Y.)

  3. Analysis of the integrity of the pressure vessel of the BWR type nuclear reactor

    International Nuclear Information System (INIS)

    Silva Luna, O.

    1982-01-01

    The presssure vessel of a BWR type reactor was monitored for cracking during alternating events of its in-service life. The monitoring was to determine criticality of fractures catastrophic fractures and the velocity of fracture propagation. Detected cracks were evaluated as specified in ASME code section XI, of a minimum wall thickness of 2.5% crack growths were compared a) of 1/10 of the critical maximum size and b) at in-service inspection intervals according to ASME recommendations to be established at the Laguna Verde nuclear plant. Finally conclusions are made and discussed. (author)

  4. Recent technology for BWR nuclear steam turbine unit

    International Nuclear Information System (INIS)

    Moriya, Shin-ichi; Masuda, Toyohiko; Kashiwabara, Katsuto; Oshima, Yoshikuni

    1990-01-01

    As to the ABWR plants which is the third improvement standard boiling water reactor type plants, already the construction of a plant of 1356 MWe class for 50 Hz is planned. Hitachi Ltd. has accumulated the technology for the home manufacture of a whole ABWR plant including a turbine. As the results, the application of a butterfly type combination intermediate valve to No.5 plant in Kashiwazaki Kariwa Nuclear Power Station, Tokyo Electric Power Co., Inc., which began the commercial operation recently and later plants, the application of a moisture separating heater to No.4 plant in Hamaoka Nuclear Power Station, Chubu Electric Power Co., Inc., which is manufactured at present and later plants and so on were carried out. As to the steam turbine facilities for nuclear power generation manufactured by Hitachi Ltd., three turbines of 1100 MWe class for 50 Hz and one turbine for 60 Hz are in operation. As the new technologies for the steam turbines, the development of 52 in long last stage blades, the new design techniques for the rotor system, the moisture separating heater, the butterfly type combination intermediate valve, cross-around pipes and condensate and feedwater system are reported. (K.I.)

  5. World nuclear performance

    International Nuclear Information System (INIS)

    Muhlheim, M.D.

    1992-01-01

    This update, which appears regularly in each issue of Nuclear Safety, surveys the operations of those power reactors in the world, which have been issued operating licenses. Table I shows the number of such reactors and their net capacities as of June 30, 1992, the end of the three-month period covered in this report Table 2 lists the unit capacity and forced outage rate for each licensed reactor for each of the three-months covered in each report and the cumulative values of these parameters at the end of the covered quarter since the beginning of commercial operation. The Maximum Dependable Capacity (MDC) Unit Capacity (in percent) is defined as follows: (Net electrical energy generated during the reporting period x 100) divided by the product of the number of hours in the reporting period and the MDC of the reactor in question. The forced outage rate (in percent) is defined as: (The total number of hours in the reporting period during which the unit was inoperable as the result of a forced outage x 100) divided by the sum (forced outage hours + operating hours)

  6. Laguna Verde nuclear power plant: an experience to consider in advanced BWR design

    International Nuclear Information System (INIS)

    Fuentes Marquez, L.

    2001-01-01

    Laguna Verde is a BWR 5 containment Mark II. Designed by GE, two external re-circulation loops, each of them having two speed re-circulation pump and a flow control valve to define the drive flow and consequently the total core flow an power control by total core flow. Laguna Verde Design and operational experience has shown some insights to be considering in design for advanced BRW reactors in order to improve the potential of nuclear power plants. NSSS and Balance of plant design, codes used to perform nuclear core design, margins derived from engineering judgment, at the time Laguna Verde designed and constructed had conducted to have a plant with an operational license, generating with a very good performance and availability. Nevertheless, some design characteristics and operational experience have shown that potential improvements or areas of opportunity shall be focused in the advanced BWR design. Computer codes used to design the nuclear core have been evolved relatively fast. The computers are faster and powerful than those used during the design process, also instrumentation and control are becoming part of this amazing technical evolution in the industry. The Laguna Verde experience is the subject to share in this paper. (author)

  7. BUTREN-RC an hybrid system for the recharges optimization of nuclear fuels in a BWR

    International Nuclear Information System (INIS)

    Ortiz S, J.J.; Castillo M, J.A.; Valle G, E. del

    2004-01-01

    The obtained results with the hybrid system BUTREN-RC are presented that obtains recharges of nuclear fuel for a BWR type reactor. The system has implemented the methods of optimization heuristic taboo search and neural networks. The optimization it carried out with the technique of taboo search, and the neural networks, previously trained, were used to predict the behavior of the recharges of fuel, in substitution of commercial codes of reactor simulation. The obtained recharges of nuclear fuel correspond to 5 different operation cycles of the Laguna Verde Nuclear Power plant, Veracruz in Mexico. The obtained results were compared with the designs of this cycles. The energy gain with the recharges of fuel proposals is of approximately 4.5% with respect to those of design. The time of compute consumed it was considerably smaller that when a commercial code for reactor simulation is used. (Author)

  8. BWR type nuclear power plants and its operation method

    International Nuclear Information System (INIS)

    Shimura, Akira; Toshimitsu, Satoshi.

    1984-01-01

    Purpose: To improve the soundness of facilities by decreasing the dissolved oxygen density in primary coolants which causes stress corrosion crackings in pipelines or the likes upon reactor start-up. Method: After starting-up a condensate recycling pump and initiating the sealing for the gland seal portion in a turbine, the inside pressure of the main condenser is rendered negative by a condenser evacuating device. Then, recycling and agitation for the primary coolants in a pressure vessel of the nuclear reactor are started by the recycling pump, recycling and agitation for the coolants in the main condenser are further effected to promote the removal of dissolved oxygen in the primary coolants in the main condenser and the feedwater pipelines. Then, the upper space in the reactor pressure vessel is communicated with the main condenser. Then the substantial power-up is performed by the withdrawal of control rods while monitoring the dissolved oxygen density in the primary coolants within the pressure vessel, so that it may be kept as far as possible from the dangerous region for stress corrosions. (Yoshino, Y.)

  9. Basic evaluation on nuclear characteristics of BWR high burnup MOX fuel and core

    International Nuclear Information System (INIS)

    Nagano, M.; Sakurai, S.; Yamaguchi, H.

    1997-01-01

    MOX fuel will be used in existing commercial BWR cores as a part of reload fuels with equivalent operability, safety and economy to UO 2 fuel in Japan. The design concept should be compatible with UO 2 fuel design. High burnup UO 2 fuels are being developed and commercialized step by step. The MOX fuel planned to be introduced in around year 2000 will use the same hardware as UO 2 8 x 8 array fuel developed for a second step of UO 2 high burnup fuel. The target discharge exposure of this MOX fuel is about 33 GWd/t. And the loading fraction of MOX fuel is approximately one-third in an equilibrium core. On the other hand, it becomes necessary to minimize a number of MOX fuels and plants utilizing MOX fuel, mainly due to the fuel economy, handling cost and inspection cost in site. For the above reasons, it needed to developed a high burnup MOX fuel containing much Pu and a core with a large amount of MOX fuels. The purpose of this study is to evaluate basic nuclear fuel and core characteristics of BWR high burnup MOX fuel with batch average exposure of about 39.5 GWd/t using 9 x 9 array fuel. The loading fraction of MOX fuel in the core is within a range of about 50% to 100%. Also the influence of Pu isotopic composition fluctuations and Pu-241 decay upon nuclear characteristics are studied. (author). 3 refs, 5 figs, 3 tabs

  10. Investigation of control rod worth and nuclear end of life of BWR control rods

    International Nuclear Information System (INIS)

    Magnusson, Per

    2008-01-01

    This work has investigated the Control Rod Worth (CRW) and Nuclear End of Life (NEOL) values for BWR control rods. A study of how different parameters affect NEOL was performed with the transport code PHOENIX4. It was found that NEOL, expressed in terms of 10 B depletion, can be generalized beyond the conditions for which the rod is depleted, such as different power densities and void fractions, the corresponding variation in the NEOL will be about 0.2-0.4% 10 B. It was also found that NEOL results for different fuel types and different fuel enrichments have a variation of about 2-3% in 10 B depletion. A comparative study on NHOL and CRW was made between PHOENIX4 and the stochastic Monte Carlo code MCNP. It was found that there is a significant difference, both due to differences in the codes and to limitations in the geometrical modeling in PHOENIX4. Since MCNP is considered more physically correct, a methodology was developed to calculate the nuclear end of life of BWR control rods with MCNP. The advantages of the methodology are that it does not require other codes to perform the depletion of the absorber material, it can describe control rods of any design and it can deplete the control rod absorber material without burning the fuel. The disadvantage of the method is that is it time-consuming

  11. Nuclear news from the world

    International Nuclear Information System (INIS)

    Anon.

    2010-01-01

    The Monju breeder reactor (Japan) has diverged again after a shutdown period of 14 years. This prototype reactor was stopped in 1995 after a sodium leak from its cooling system had initiated a fire. The construction works of the third power reactor on Brazilian soil has begun on the Angra site. The Chinese advanced research reactor (CARR - 60 MWth) diverged for the first time on May 2010 the 13., its design nears that of the Australian Opale reactor. The first reactor of the Ling Ao Phase 2 has been commissioned, this reactor is the first Chinese model (CPR-1000) to be built, it is the fruit of the technological transfer agreements that were signed in 1992 and 1995 with Framatome. The Finn government has given its agreement for the extension of the storing capacity in deep geological layers of the Posiva Oy center, this capacity is now of 9000 tonnes of uranium. Russia and Namibia have signed an agreement for the exploration and exploitation of uranium mines. The 2 first BWR-type reactors (1350 MW) on American soil will be constructed in the state of Texas. Russia and Turkey have signed an agreement for the construction of the first nuclear power plant in Turkey, this plant will be composed of 4 reactors. A study shows that there is no supplementary health hazards in the surroundings of nuclear power plants in Spain. (A.C.)

  12. Impact analysis of modifying the composition of the nuclear fuel of a BWR with beryllium oxide

    International Nuclear Information System (INIS)

    Gallardo V, J. M.; Morales S, J. B.

    2013-10-01

    The beryllium oxide (Be O) presents excellent physical properties, especially its high thermal conductivity that contrasts clearly with that of the uranium dioxide (UO 2 ) used at the present as fuel in a great number of nuclear plants. The present work models a nuclear reactor cooled by light water in boiling with two external recirculation loops (BWR/5) using the code for the transitory analysis and postulated accidents Trac-B F1, implementing a UO 2 mixture and different fractions of Be O, with the objective of improving the thermal conductivity of the fuel. The numeric results and the realized analyses indicate that when adding a fraction in volume of 10% the central temperature decreases in 30.4% in stationary state, while during the large break loss of coolant accident the peak cladding temperature diminishes in 7%. Although the real interaction of the mixture has not been determined experimentally, the obtained results are promising. (Author)

  13. Nuclear fuel activity with minor actinides after their useful life in a BWR

    International Nuclear Information System (INIS)

    Martinez C, E.; Ramirez S, J. R.; Alonso V, G.

    2016-09-01

    Nuclear fuel used in nuclear power reactors has a life cycle, in which it provides energy, at the end of this cycle is withdrawn from the reactor core. This used fuel is known as spent nuclear fuel, a strong problem with this fuel is that when the fuel was irradiated in a nuclear reactor it leaves with an activity of approximately 1.229 x 10 15 Bq. The aim of the transmutation of actinides from spent nuclear fuel is to reduce the activity of high level waste that must be stored in geological repositories and the lifetime of high level waste; these two achievements would reduce the number of necessary repositories, as well as the duration of storage. The present work is aimed at evaluating the activity of a nuclear fuel in which radioactive actinides could be recycled to remove most of the radioactive material, first establishing a reference of actinides production in the standard nuclear fuel of uranium at end of its burning in a BWR, and a fuel rod design containing 6% of actinides in an uranium matrix from the enrichment tails is proposed, then 4 standard uranium fuel rods are replaced by 4 actinide bars to evaluate the production and transmutation of the same, finally the reduction of actinide activity in the fuel is evaluated. (Author)

  14. An analysis of instabilities of nuclear-coupled density-wave in BWR using modern frequency-domain control theory

    International Nuclear Information System (INIS)

    Zhao Yangping; Gao Huahun; Fu Longzhou

    1991-01-01

    A state-of-the-art multi-variable frequency-domain model has been developed for analysis of instabilities of nuclear-coupled density-wave in BWR core. The characteristic locus method is used for analysing the stability of BWR. A computer code-NUCTHIA has been derived. The model has been tested against the existing experimental data and compared with results of past single-variable analyses. By using the NUCTHIA code, the investigations of effects of main system parameters on BWW core stability have also been made. All the results are consistent with the experimental data

  15. Quantitative evaluation for training results of nuclear plant operator on BWR simulator

    International Nuclear Information System (INIS)

    Sato, Takao; Sato, Tatsuaki; Onishi, Hiroshi; Miyakita, Kohji; Mizuno, Toshiyuki

    1985-01-01

    Recently, the reliability of neclear power plants has largely risen, and the abnormal phenomena in the actual plants are rarely encountered. Therefore, the training using simulators becomes more and more important. In BWR Operator Training Center Corp., the training of the operators of BWR power plants has been continued for about ten years using a simulator having the nearly same function as the actual plants. The recent high capacity ratio of nuclear power plants has been mostly supported by excellent operators trained in this way. Taking the opportunity of the start of operation of No.2 simulator, effort has been exerted to quantitatively grasp the effect of training and to heighten the quality of training. The outline of seven training courses is shown. The technical ability required for operators, the items of quantifying the effect of training, that is, operational errors and the time required for operation, the method of quantifying, the method of collecting the data and the results of the application to the actual training are described. It was found that this method is suitable to quantify the effect of training. (Kako, I.)

  16. The unstoppable world nuclear development

    International Nuclear Information System (INIS)

    Dominguez, M. T.

    2009-01-01

    To meet energy needs and curb climate change, the number of reactors will continue to increase because more and more countries are going the need nuclear power. At present, there are 436 nuclear reactors in the world that produce 16% of the electricity, and another 48 units are under construction in all, 31 countries in the world use nuclear power to produce electricity, and some countries that do not have reactors, e.g. Poland and Italy, are seriously planning to include nuclear power in their energy mix. Global nuclear development is a reality; energy and environmental challenges have led to new support for nuclear power, which is a safe, stable emission-free source. (Author)

  17. World interest in nuclear desalination

    International Nuclear Information System (INIS)

    1969-01-01

    Nuclear power will be used in a desalination plant for the first time in a USSR plant now nearing completion. Studies are in progress to expand the concept of linking the power to chemical industries. These and other developing ideas were subjects of keen discussion by world experts at an Agency conference on nuclear desalination in Madrid. (author)

  18. BWR 90: The ABB advanced BWR design

    International Nuclear Information System (INIS)

    Haukeland, S.; Ivung, B.; Pedersen, T.

    1999-01-01

    ABB has two evolutionary advanced fight water reactors available today - the BWR 90 boiling water reactor and the System 80+ pressurised water reactor. The BWR 90 is based on the design, construction, commissioning and operation of the BWR 75 plants. The operation experience of the six plants of this advanced design has been very good. The average annual energy availability is above 90%, and the total power generation costs have been low. In the development of BWR 90 specific changes were introduced to the reference design, to adapt to technological progress, new safety requirements and to achieve cost savings. The thermal power rating of BWR 90 is 3800 MWth (providing a nominal 1374 MWe net), slightly higher dim that of the reference plant ABB Atom has taken advantage of margins gained using a new generation of its SVEA fuel to attain this power rating without major design modifications. The BWR 90 design was completed and offered to the TVO utility in Finland in 1991, as one of the contenders for the fifth Finnish nuclear power plant project. Thus, the design is available today for deployment in new plant projects. Utility views were incorporated through co-operation with the Finnish utility TVO, owner and operator of the two Olkiluoto plants of BWR 75 design. A review against the European Utility Requirement (EUR) set of requirements has been performed, since the design, in 1997, was selected by the EUR Steering Committee to be the first BWR to be evaluated against the EUR documents. The work is scheduled for completion in 1998. It will be the subject of an 'EUR Volume 3 Subset for BWR 90' document. ABB is continuing its BWR development work with the 'evolutionary' design BWR 90+. The primary design goal is to develop the BWR as a competitive option for the anticipated revival of the market for new nuclear plants beyond the turn of the century, as well as feeding ideas and inputs to the continuous modernisation efforts at operating plants. The development is

  19. A virtual nuclear world?

    International Nuclear Information System (INIS)

    Salve, R.

    1998-01-01

    The way in which virtual reality technology has so dramatically developed over the last few years has opened up the possibility of its application to various industrial processes. This article describes the possible uses of such a technique in nuclear power plants in various phases such as design, construction, operation or dismantling. (Author)

  20. World nuclear fuel cycle

    International Nuclear Information System (INIS)

    Anon.

    1979-01-01

    A coloured pull-out wall chart is presented showing the fuel cycle interests of the world. Place names are marked and symbols are used to indicate regions associated with uranium or thorium deposits, mining, milling, enrichment, reprocessing and fabrication. (UK)

  1. World nuclear performance report 2017

    International Nuclear Information System (INIS)

    Cobb, Jonathan

    2017-01-01

    World Nuclear Association recently published the 2017 edition of the World Nuclear Performance Report. The report presents key metrics that illustrate current performance, both of reactors currently operating and those under construction. The article highlights some of the most important findings of the report. The pace of new build will need to accelerate if nuclear energy is going to make a growing contribution to the global electricity generation mix, a requirement of many projections of future scenarios that aim to meet the objective of limiting the rise average temperatures to below two degrees Celsius, while at the same time meeting the growing worldwide demand for electricity.

  2. World nuclear performance report 2017

    Energy Technology Data Exchange (ETDEWEB)

    Cobb, Jonathan [World Nuclear Association, London (United Kingdom)

    2017-08-15

    World Nuclear Association recently published the 2017 edition of the World Nuclear Performance Report. The report presents key metrics that illustrate current performance, both of reactors currently operating and those under construction. The article highlights some of the most important findings of the report. The pace of new build will need to accelerate if nuclear energy is going to make a growing contribution to the global electricity generation mix, a requirement of many projections of future scenarios that aim to meet the objective of limiting the rise average temperatures to below two degrees Celsius, while at the same time meeting the growing worldwide demand for electricity.

  3. Recent operating experience during startup testing at latest 1100 MWe BWR-5 nuclear power plants

    International Nuclear Information System (INIS)

    Tanabe, Akira; Tateishi, Mizuo; Kajikawa, Makoto; Hayase, Yuichi.

    1986-01-01

    In June and September 1985, the latest two 1100 Mwe BWR-5 nuclear power plants started commercial operation about ten days earlier than initially expected without any unscheduled shutdown. These latest plants, 2F-3 and K-1, are characterized by an improved core with new 8 x 8 fuel assemblies, highly reliable control systems, advanced control room system and turbine steam full bypass system for full load rejection (2F3). This paper describes the following operating experiences gained during their startup testing. 1) Continuous operation at full load rejection. 2) Stable operation at natural circulating flow condition. 3) 31 and 23 hour short time start up operation. 4) 100-75-100 %, 1-8-1-14 hours daily load following operation. (author)

  4. Operational experience of human-friendly control and instrumentation systems for BWR nuclear power plants

    International Nuclear Information System (INIS)

    Makino, M.; Watanabe, T.; Suto, O.; Asahi, R.

    1987-01-01

    In recent BWR nuclear power plants in Japan, an advanced centralized monitoring and control system PODIA (Plant Operation by Displayed Information and Automation), which incorporates many operator aid functions, has been in operation since 1985. Main functions of the PODIA system as a computerized operator aid system are as follows. CRT displays for plant monitoring. Automatic controls and operation guides for plant operation. Stand-by status monitoring for engineered safety features during normal operation. Surveillance test procedure guides for engineered safety features. Integrated alarm display. The effectiveness of these functions have been proved through test and commercial operation. It has been obtained that operators have preferred PODIA much more than conventional monitoring and control systems

  5. World supply of nuclear energy

    International Nuclear Information System (INIS)

    Pecqueur, Michel.

    1981-01-01

    At the end of 1980 nuclear energy accounted for 9% of the world production of electricity stemming from 262 power stations, utilising mainly the process of water reactors and representing an installed capacity of 142 GWe. This production, apparently limited, already represents the equivalent of 150 million TOE. The 600 nuclear power stations in service, under construction or ordered represent a total of 450 GWe. In 1985, their production ought to cover 15% of the world requirements of electricity, which corresponds to a doubling of the share of nuclear energy within 6 years. During these recent years, the development of nuclear energy has undergone a significant slowing down and the number of orders for new nuclear power stations has dropped considerably in particular in the United States. Considering the time required and the available industrial capacity, the accumulated capacity which could be installed worlwide by 1990 could attain 530 GWe, equivalent to 650 MTOE covering 24% of the world production of electricity and 7% of the world consumption of primary energy. A determined effort for the end of this century could end up by the installation of 1200 GWe of capacity, generating 1.5 GTOE. The share of nuclear energy would then represent 35% of the production of electricity [fr

  6. World nuclear developments after Chernobyl

    International Nuclear Information System (INIS)

    Rippon, S.

    1987-01-01

    1986 will inevitably go down in history as the year of Chernobyl, the consequences of which must be delays in and even withdrawals from the development of nuclear power. On the credit side, the Soviet Union has done a rapid and remarkable job in sealing the damaged reactor and rehabilitating the station and the area while improving the safety of its total program. Equally effective has been the response of the IAEA. In terms of nuclear power's claim as a major source of energy, nothing has changed as a result of Chernobyl. 15% of the world's electricity is now produced from nearly 400 power reactors. In comparison with any other energy form nuclear energy must rank high in terms of economy, safety and environmental effects. What has changed is the public perception of nuclear power, and the effort world-wide which will need to be made to restore public confidence

  7. World Council of Nuclear Workers

    International Nuclear Information System (INIS)

    Maisseu, Andre

    2007-01-01

    WONUC is an association of Trade Unions, Scientific Societies and Social Organizations of the employees, workers and professionals of the nuclear energy related industries and technologies; integrated by 35 Countries and 1.8 millions members. This paper expose the products and services that WONUC provide for the promotion of peaceful uses of nuclear energy and the result of their work around all the world

  8. Stability analysis of BWR nuclear-coupled thermal-hyraulics using a simple model

    Energy Technology Data Exchange (ETDEWEB)

    Karve, A.A.; Rizwan-uddin; Dorning, J.J. [Univ. of Virginia, Charlottesville, VA (United States)

    1995-09-01

    A simple mathematical model is developed to describe the dynamics of the nuclear-coupled thermal-hydraulics in a boiling water reactor (BWR) core. The model, which incorporates the essential features of neutron kinetics, and single-phase and two-phase thermal-hydraulics, leads to simple dynamical system comprised of a set of nonlinear ordinary differential equations (ODEs). The stability boundary is determined and plotted in the inlet-subcooling-number (enthalpy)/external-reactivity operating parameter plane. The eigenvalues of the Jacobian matrix of the dynamical system also are calculated at various steady-states (fixed points); the results are consistent with those of the direct stability analysis and indicate that a Hopf bifurcation occurs as the stability boundary in the operating parameter plane is crossed. Numerical simulations of the time-dependent, nonlinear ODEs are carried out for selected points in the operating parameter plane to obtain the actual damped and growing oscillations in the neutron number density, the channel inlet flow velocity, and the other phase variables. These indicate that the Hopf bifurcation is subcritical, hence, density wave oscillations with growing amplitude could result from a finite perturbation of the system even where the steady-state is stable. The power-flow map, frequently used by reactor operators during start-up and shut-down operation of a BWR, is mapped to the inlet-subcooling-number/neutron-density (operating-parameter/phase-variable) plane, and then related to the stability boundaries for different fixed inlet velocities corresponding to selected points on the flow-control line. The stability boundaries for different fixed inlet subcooling numbers corresponding to those selected points, are plotted in the neutron-density/inlet-velocity phase variable plane and then the points on the flow-control line are related to their respective stability boundaries in this plane.

  9. Parameter identification of a BWR nuclear power plant model for use in optimal control

    International Nuclear Information System (INIS)

    Volf, K.

    1976-02-01

    The problem being considered is the modeling of a nuclear power plant for the development of an optimal control system of the plant. Current system identification concepts, combining input/output information with a-priori structural information are employed. Two of the known parameter identification methods i.e., a least squares method and a maximum likelihood technique, are studied as ways of parameter identification from measurement data. A low order state variable stochastic model of a BWR nuclear power plant is presented as an application of this approach. The model consists of a deterministic and a noise part. The deterministic part is formed by simplified modeling of the major plant dynamic phenomena. The moise part models the effects of input random disturbances to the deterministic part and additive measurement noise. Most of the model parameters are assumed to be initially unknown. They are identified using measurement data records. A detailed high order digital computer simulation is used to simulate plant dynamic behaviour since it is not conceivable for experimentation of this kind to be performed on the real nuclear power plant. The identification task consists in adapting the performance of the simple model to the data acquired from this plant simulation ensuring the applicability of the techniques to measurement data acquired directly from the plant. (orig.) [de

  10. Experience and development of on-line BWR surveillance system at Onagawa nuclear power station unit-1

    International Nuclear Information System (INIS)

    Kishi, A.; Chiba, K.; Kato, K.; Ebata, S.; Ando, Y.; Sakamoto, H.

    1986-01-01

    ONAGAWA nuclear power station Unit-1 (Tohoku Electric Power Co.) is a BWR-4 nuclear power station of 524 MW electric power which started commercial operation in June 1984. To attain high reliability and applicability for ONAGAWA-1, Tohoku Electric Power Co. and Toshiba started a Research and Development project on plant surveillance and diagnosis from April 1982. Main purposes of this project are to: (1) Develop an on-line surveillance system and acquire its operating experience at a commercial BWR, (2) Assist in plant operation and maintenance by data acquisition and analysis, (3) Develop a new technique for plant surveillance and diagnosis. An outline of the project, operating experience gained from the on-line surveillance system and an introduction to new diagnosis techniques are reported in this paper. (author)

  11. Experiences with monitoring and control of microbiological growth in the standby service water system of a BWR nuclear power plant

    International Nuclear Information System (INIS)

    Zisson, P.S.; Whitaker, J.M.; Neilson, H.L.; Mayne, L.L.

    1995-01-01

    In 1989, the Unites States Nuclear Regulatory Commission formally recognized the potential for nuclear accidents resulting from microbiological causes. Such causes range from loss of heat transfer due to microbiological fouling, to loss of system integrity caused by microbiologically influenced corrosion (MIC). As a result of these potential problems, monitoring, mitigation, and control procedures must be developed by all regulated plants. In developing a control and mitigation strategy for the standby service water system of a boiling water reactor (BWR) nuclear power plant, numerous monitoring techniques were employed to evaluate effectiveness. This paper describes the monitoring techniques that were evaluated, and those that ultimately proved to be effective

  12. An application of the process computer and CRT display system in BWR nuclear power station

    International Nuclear Information System (INIS)

    Goto, Seiichiro; Aoki, Retsu; Kawahara, Haruo; Sato, Takahisa

    1975-01-01

    A color CRT display system was combined with a process computer in some BWR nuclear power plants in Japan. Although the present control system uses the CRT display system only as an output device of the process computer, it has various advantages over conventional control panel as an efficient plant-operator interface. Various graphic displays are classified into four categories. The first is operational guide which includes the display of control rod worth minimizer and that of rod block monitor. The second is the display of the results of core performance calculation which include axial and radial distributions of power output, exit quality, channel flow rate, CHFR (critical heat flux ratio), FLPD (fraction of linear power density), etc. The third is the display of process variables and corresponding computational values. The readings of LPRM, control rod position and the process data concerning turbines and feed water system are included in this category. The fourth category includes the differential axial power distribution between base power distribution (obtained from TIP) and the reading of each LPRM detector, and the display of various input parameters being used by the process computer. Many photographs are presented to show examples of those applications. (Aoki, K.)

  13. Cooperative control scheme for an HVDC system connected to an isolated BWR nuclear power plant

    International Nuclear Information System (INIS)

    Sakurai, T.; Goto, K.; Kawai, T.; Matori, I.; Nakao, T.; Watanabe, A.

    1983-01-01

    This paper describes a cooperative control system to achieve stable operation of an isolated BWR nuclear plant linked to an HVDC system. In the proposed control system, under normal conditions the power plant is controlled according to the generating power reference and the generator frequency deviation is adjusted by converter power control. Such frequency control is also effective in the case of AC-DC system faults. In addition to the frequency control, an overload control is provided with the HVDC system, where the DC transmission power in the sound poles is increased due to a fault detection signal from the faulty pole. Effects of the above mentioned control systems were studied using digital dynamic programs. The sets of simulation results confirmed that in the case of a DC single pole fault, the plant is able to continue operation without any use of the turbine speed control units even for a restarting failure in the faulty pole. In case of a DC two pole fault, the plant is able to continue operation, being assisted by turbine speed control units when restarting in the faulty poles succeeds. In case of an AC three-line to ground fault near the AC terminal of the converter at the sending or receiving end, the system is able to continue stable operation, being supplemented by the turbine control unit when the faulty section of the AC system is isolated by a main or back-up relaying system

  14. A nonlinear 3D real-time model for simulation of BWR nuclear power plants

    International Nuclear Information System (INIS)

    Ercan, Y.

    1982-02-01

    A nonlinear transient model for BWR nuclear power plants which consists of a 3D-core (subdivided into a number of superboxes, and with parallel flow and subcooled boiling), a top plenum, steam removal and feed water systems and main coolant recirculation pumps is given. The model describes the local core and global plant transient situation as dependent on both the inherent core dynamics and external control actions, i.e., disturbances such as motions of control rod banks, changes of mass flow rates of coolant, feed water and steam outlet. The case of a pressure-controlled reactor operation is also considered. The model which forms the basis for the digital code GARLIC-B (Er et al. 82) is aimed to be used on an on-site process computer in parallel to the actual reactor process (or even in predictive mode). Thus, special measures had to be taken into account in order to increase the computational speed and reduce the necessary computer storage. This could be achieved by - separating the neutron and power kinetics from the xenon-iodine dynamics, - treating the neutron kinetics and most of the thermodynamics and hydrodynamics in a pseudostationary way, - developing a special coupling coefficient concept to describe the neutron diffusion, calculating the coupling coefficients from a basic neutron kinetics code, - combining coarse mesh elements into superboxes, taking advantage of the symmetry properties of the core and - applying a sparse matrix technique for solving the resulting algebraic power equation system. (orig.) [de

  15. Safety Evaluation Report related to the final design approval of the GESSAR II BWR/6 Nuclear Island Design (Docket No. 50-447). Supplement No. 3

    International Nuclear Information System (INIS)

    1985-01-01

    Supplement 3 to the Safety Evaluation Report (SER) for the application filed by General Electric Company for the final design approval for the GE BWR/6 nuclear island design has been prepared by the Office of Nuclear Reactor Regulation of the Nuclear Regulatory Commission. This report supplements the GESSAR II SER (NUREG-0979), issued in April 1983, summarizing the results of the staff's safety review of the GESSAR II BWR/6 nuclear island design. Subject to favorable resolution of the items discussed in this supplement, the staff concludes that the GESSAR II design satisfactorily addresses the severe-accident concerns described in draft NUREG-1070

  16. Nuclear energy in Europe and the world

    International Nuclear Information System (INIS)

    Koenig, H.H.; Brown, Boveri und Cie A.G., Mannheim

    1982-01-01

    The author provides an account of opinions expressed at the 1982 Euratom Congress on the world's economical situation, public views on nuclear energy, the energy problem of the third world an on the development status of nuclear technology. (orig.) [de

  17. Nuclear power: 2006 world report - evaluation

    International Nuclear Information System (INIS)

    Anon.

    2007-01-01

    Last year, 2006, 437 nuclear power plants were available for power supply in 31 countries, 7 plants less than in 2005. One unit was commissioned for the first time, 8 nuclear power plants were decommissioned for good in 2006. At a cumulated gross power of 389,488 MWe and a cumulated net power of 370,441 MWe, respectively, worldwide nuclear generating capacity has reached a high level so far. Nine different reactor lines are operated in commercial plants: PWR, PWR-VVER, BWR, CANDU, D 2 O PWR, GCR, AGR, LWGR, and LMFBR. Light water reactors (PWR and BWR) continue to top the list with 358 plants. By the end of the year, 10 countries operated 29 nuclear power plants with an aggregate gross power of 25,367 MWe and an aggregate net power of 23,953 MWe, respectively. Of these, 21 are light water reactors, 5 are CANDU-type reactors, 2 are fast breeder and 1 a LWGR. 123 commercial reactors with an aggregate power in excess of 5 MWe have so far been decommissioned in 19 countries. Most of them are prototype plants of low power. About 70% of the nuclear power plants in operation, namely 304 plants, were commissioned in the eighties and nineties. The energy availability and operating availability factors of the nuclear power plants again reached peak levels: 82% for energy availability, and 83% for operating availability. The 4 nuclear power plants in Finland continue to be in the lead worldwide with a cumulated average operating capacity factor of 94%. (orig.)

  18. Nuclear power. 2008 world report - evaluation

    International Nuclear Information System (INIS)

    Anon.

    2010-01-01

    In 2008, 438 nuclear power plants were available for power supply in 31 countries, 1 plant less than in 2007. No unit was commissioned for the first time, 1 nuclear power plant was decommissioned for good in 2008. At a cumulated gross power of 392,597 MWe and a cumulated net power of 372,170 MWe, respectively, worldwide nuclear generating capacity has reached a high level. Nine different reactor lines are operated in commercial plants: PWR, PWR-VVER, BWR, CANDU, D2O PWR, GCR, AGR, LWGR, and LMFBR. Light water reactors (PWR and BWR) continue to top the list with 358 plants. By the end of 2008, in 14 countries 43 nuclear power plants with an aggregate gross power of 39,211 MWe and an aggregate net power of 36,953 MWe were under construction. Of these, 37 are light water reactors, 3 are CANDU-type reactors, 2 are fast breeder and 1 D2O-PWR. 124 commercial reactors with an aggregate power in excess of 5 MWe have so far been decommissioned in 19 countries. Most of them are prototype plants of low power. About 70% of the nuclear power plants in operation, namely 304 plants, were commissioned in the eighties and nineties. The energy availability and operating availability factors of the nuclear power plants reached good levels: 80.80% for operating availability and 80,00% for energy availability. The four nuclear power plants in Finland continuecontinue to be in the lead worldwide with a cumulated average operating capacity factor of 91,60%. (orig.)

  19. 2006 nuclear power world report

    International Nuclear Information System (INIS)

    Anon.

    2007-01-01

    At the turn of 2006/2007, 437 nuclear power plants were available for energy supply, or were being commissioned, in 31 countries of the world. This is seven plants less than at the turn of 2005/2006. The aggregate gross power of the plants amounted to approx. 389.5 GWe, the aggregate net power, to 370.5 GWe. This indicates a slight decrease of gross power by some 0.15 GWe compared to the level the year before, while the available net power increased, also slightly, by approx. 0.2 GWe. The Tarapur 3 nuclear generating unit in India, a D 2 O PWR of 540 MWe gross power, was newly commissioned. In 2006, 8 nuclear power plants in Europe (4 in the United Kingdom, 2 in Bulgaria, 1 each in the Slovak Republic and in Spain) discontinued power operation for good. 29 nuclear generating units, i.e. 6 plants more than at the end of 2005, were under construction in late 2006 in 9 countries with an aggregate gross power of approx. 25.5 GWe. Worldwide, some 40 new nuclear power plants are in the concrete project design, planning, and licensing phases; in some of these cases, contracts have already been signed. Net electricity generation in nuclear power plants worldwide in 2006 achieved another top ranking level of approx. 2,660 billion kWh (2005: approx. 2,750 billion kWh). Since the first generation of electricity in a nuclear power plant in the EBR-1 fast breeder (USA) on December 20, 1951, cumulated gross production has reached approx. 56,875 billion kWh, and operating experience has grown to some 12,399 reactor years. (orig.)

  20. 1999 Nuclear power world report

    International Nuclear Information System (INIS)

    Wesselmann, C.

    2000-01-01

    Last year, 1999, nuclear power plants were available for energy supply and under construction, respectively, in 33 countries. A total of 436 nuclear power plants with an aggregate net power of 350.228 MWe and an aggregate gross power of 366.988 MWe were in operation in 31 countries. Four units with an aggregate of 2.900 MWe, i.e. Civaux 2 in France, Kaiga 2 and Rajasthan 3 in India, and Wolsung-4 in the Republic of Korea, went critical for the first time or started commercial operation after having been synchronized with the power grid. After 26 years of operation, the BN 350 sodium cooled fast breeder was permanently decommissioned in Kazakhstan. The plant not only generated electricity (its capacity was 135 MWe) but also supplied process heat to a seawater desalination plant. In 1999, however, it did not contribute to the supply of electricity. In Sweden, unit 1 of the Barsebaeck nuclear power station (600 Mwe net) was decommissioned because of political decisions. This step entails financial compensation payments and substitute electricity generating capacity made available to the power plant operators. Net electricity generation in 1999 amounts to approx. 2.395 Twh, which marks a 100 TWh increase over the preceding year. Since the first generation of electricity from nuclear power in 1951, the cumulated world generation amounts to nearly 37.200 TWh of electricity, and experience in the operation of nuclear power plants has increased to 9414 years. Last year, 38 plants were under construction. This slight increase is due to the start of construction of a total of seven projects: Two each in Japan, the Republic of Korea and Taiwan, and one in China. Shares of nuclear power differ widely among the operator countries. They reach 75 per cent in France, 73 per cent in Lithuania, and 58 per cent in Belgium. With a share of approx. 20 per cent and more than 720 TWh, the US is the largest producer worldwide of electricity from nuclear power. As far as the aggregate

  1. World's trends in nuclear education

    International Nuclear Information System (INIS)

    Lartigue, J.; Martinez, T.

    2005-01-01

    Since the exhort of the International Atomic Energy Agency, in 1955, to promote the pacific uses of nuclear energy, countries that had developed military nuclear programs extended their research and training programs to cover pacific uses. Consequently, many programs on Nuclear Engineering and Nuclear Chemistry were established in those countries as well as in many others interested exclusively in the civil applications. Obviously, the new graduated curricula had the purpose to fulfil the manpower requirements of the growing nuclear market, so much in the power as in the applications fields, always keeping the high academic level required by the research and development of this technology. The slowing down in the nuclear power demand, evident in the nineties, caused a diminution in the matriculation in Nuclear Engineering degrees while that in Nuclear and Radiochemistry remained almost constant. Anyway, countries with defined nucleo electric programs took the necessary steps calling, frequently, for foreign personnel. Besides the nuclear power stagnation, the global growing of environmental pollution compelled several countries to transform their old Nuclear Centers in new Centers for Energy and Environmental Research, with the purpose to promote the research and development of all types of primary energy; in general, these new centers maintain their support to Nuclear and Radiochemistry activities. An important characteristic of these organisations (discussed in this work) is the collaboration they offer to universities for thesis work and experimental courses in these increasingly related fields. In fact, before the immediate world's problems of greenhouse and water scarcity, as well as the future demand of electricity, nuclear power returns as the long term solution and a bridge toward the Hydrogen Economy; however, better reactor's designs are required to fulfil such objectives. By now, analytical nuclear methods have proved their usefulness for pollutants

  2. 2009 nuclear power world report

    International Nuclear Information System (INIS)

    Anon.

    2010-01-01

    At the end of 2009, 437 nuclear power plants were available for energy supply in 30 countries of the world. This is 1 plant less than at the end of 2008. The aggregate gross power of the plants amounted to approx. 391.5 GWe, the aggregate net power, to 371.3 GWe. This capacity numbers are a little bit less than one year before (gross: 392.6 GWe, net: 372.2 GWe). Two units were commissioned in 2009; 1 unit in India (Rajasthan 5) and 1 unit in Japan (Tomari 3). Three nuclear power plant were shut down permanently in 2009 in Japan (Hamaoka 1 and Hamaoka 2) and in Lithuania (Ignalina 2). 52 nuclear generating units, i.e. 9 plants more than at the end of 2008, were under construction in late 2009 in 14 countries with an aggregate gross power of approx. 51.2 GWe. Worldwide, some 80 new nuclear power plants are in the concrete project design, planning, and licensing phases; in some of these cases license applications have been submitted or contracts have already been signed. Some 130 further projects are planned. Net electricity generation in nuclear power plants worldwide in 2009 achieved another reasonable ranking level of approx. 2,558 billion kWh (2008: approx. 2,628 billion kWh). Since the first generation of electricity in a nuclear power plant in the EBR-I fast breeder (USA) on December 20, 1951, cumulated net production has reached approx. 60,500 billion kWh, and operating experience has grown to some 13,950 reactor years. (orig.)

  3. 2010 nuclear power world report

    International Nuclear Information System (INIS)

    Anon.

    2011-01-01

    At the end of 2010, 443 nuclear power plants were available for energy supply in 30 countries of the world. This are 6 plants more than at the end of 2009. The aggregate gross power of the plants amounted to approx. 396,118 MWe, the aggregate net power, to 375,947 MWe. This capacity numbers are a little bit more than one year before (gross: 391,551 MWe, net: 371,331 MWe). Six unites were commissioned in 2010; 2 units in China and India each and one unit in the Republic of Korea and Russia each. One unit, the Fast Breeder Pilot Reactor Monju in Japan, was connected to the grid after a long-term shutdown. One nuclear power plant, the Prototype Fast Breeder Reactor Phenix in France, was shut down permanently in 2010. 62 nuclear generating units, i.e. 9 plants more than at the end of 2009, were under construction in late 2010 in 15 countries with an aggregate gross power of approx. 63,998 MWe. Worldwide, some 90 new nuclear power plants are in the concrete project design, planning, and licensing phases; in some of these cases license applications have been submitted or contracts have already been signed. Some 120 further projects are planned. Net electricity generation in nuclear power plants worldwide in 2010 achieved another reasonable ranking level of approx. 2,627.5 billion kWh (2009: approx. 2,558 billion kWh). Since the first generation of electricity in a nuclear power plant in the EBR-I fast breeder (USA) on December 20, 1951, cumulated net production has reached approx. 63,100 billion kWh, and operating experience has grown to some 14,400 reactor years. (orig.)

  4. Analysis of the accident at Fukushima Daiichi nuclear power plant in an A BWR reactor

    International Nuclear Information System (INIS)

    Escorcia O, D.; Salazar S, E.

    2016-09-01

    The present work aims to recreate the accident occurred at the Fukushima Daiichi nuclear power plant in Japan on March 11, 2011, making use of an academic simulator of forced circulation of the A BWR reactor provided by the IAEA to know the scope of this simulator. The simulator was developed and distributed by the IAEA for academic purposes and contains the characteristics and general elements of this reactor to be able to simulate transients and failures of different types, allowing also to observe the general behavior of the reactor, as well as several phenomena and present systems in the same. Is an educational tool of great value, but it does not have a scope that allows the training of plant operators. To recreate the conditions of the Fukushima accident in the simulator, we first have to know what events led to this accident, as well as the actions taken by operators and managers to reduce the consequences of this accident; and the sequence of events that occurred during the course of the accident. Differences in the nuclear power plant behavior are observed and interpreted throughout the simulation, since the Fukushima plant technology and the simulator technology are not the same, although they have several elements in common. The Fukushima plant had an event that by far exceeded the design basis, which triggered in an accident that occurred in the first place by a total loss of power supply, followed by the loss of cooling systems, causing a level too high in temperature, melting the core and damaging the containment accordingly, allowing the escape of hydrogen and radioactive material. As a result of the simulation, was determined that the scope of the IAEA academic simulator reaches the entrance of the emergency equipment, so is able to simulate almost all the events occurred at the time of the earthquake and the arrival of the tsunami in the nuclear power plant of Fukushima Daiichi. However, due to its characteristics, is not able to simulate later

  5. Study of environmental noise in a BWR plant like the Nuclear Power Plant Laguna Verde

    International Nuclear Information System (INIS)

    Tijerina S, F.; Cruz G, M.; Amador C, C.

    2013-10-01

    In all industry type the health costs generated by the noise are high, because the noise can cause nuisance and to harm the capacity to work when causing tension and to perturb the concentration, and in more severe cases to reach to lose the sense of the hearing in the long term. The noise levels in the industry have been designated for the different types of use like residential, commercial, and industrial and silence areas. The noise can cause accidents when obstructing the communications and alarm signs. For this reason the noise should be controlled and mitigated, at a low level as reasonably is possible, taking into account that the noise is an acoustic contamination. The present study determines a bases line of the environmental noise levels in a nuclear power plant BWR-5 as Laguna Verde, (like reference) to be able to determine and to give pursuit to the possible solutions to eliminate or to limit the noise level in the different job areas. The noise levels were registered with a meter of integrative noise level (sonometer) and areas of noise exposure levels mapping the general areas in the buildings were established, being the registered maximum level of 96.94 dba in the building of the Reactor-elevation 0.65 m under the operation conditions of Extended Power Up rate (EPU) of 120% PTN. Knowing that the exposition to noises and the noise dose in the job place can influence in the health and in the safety of the workers, are extensive topics that they should be analyzed for separate as they are: to) the effects in the health of the exposure to the noise, b) how measuring the noise, c) the methods and technologies to combat and to control the noise in the industry by part of engineering area and d) the function of the industrial safety bodies as delegates of the health and safety in the task against the noise in the job. (author)

  6. Nuclear power world report 2013

    International Nuclear Information System (INIS)

    Anon.

    2014-01-01

    At the end of 2013, 435 nuclear power plants were available for energy supply in 31 countries of the world. This means that the number decreased by 2 units compared to the previous year's number on 31 December 2012. The aggregate gross power of the plants amounted to approx. 398,861 MWe, the aggregate net power, to 378,070 MWe (gross: 392,793 MWe, net: 372,572 MWe, new data base as of 2013: nameplate capacities). Four units were commissioned in 2014; three units in China and one in India. Eight units were shut down permanently in 2013; 2 units in Japan, and four units in the USA. Two units in Canada were declared permanently shut-down after a long-term shutdown. 70 nuclear generating units - 2 more than at the end of 2012 - were under construction in late 2013 in 15 countries with an aggregate gross power of approx. 73,814 MWe and net power of approx. 69,279 MWe. Six new projects have been started in 2013 in four countries (Belarus, China, the Republic of Korea, and the United Arab Emirates). Worldwide, some 125 new nuclear power plants are in the concrete project design, planning, and licensing phases; in some of these cases license applications have been submitted or contracts have already been signed. Some 100 further projects are planned. Net electricity generation in nuclear power plants worldwide in 2013 achieved a level of approx. 2,364.15 billion (109) kWh (2012: approx. 2,350.80 billion kWh). Since the first generation of electricity in a nuclear power plant in the EBR-I fast breeder (USA) on December 20, 1951, cumulated net production has reached approx. 70,310 billion kWh, and operating experience has grown to some 15,400 reactor years. (orig.)

  7. Nuclear power world report 2013

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2014-07-15

    At the end of 2013, 435 nuclear power plants were available for energy supply in 31 countries of the world. This means that the number decreased by 2 units compared to the previous year's number on 31 December 2012. The aggregate gross power of the plants amounted to approx. 398,861 MWe, the aggregate net power, to 378,070 MWe (gross: 392,793 MWe, net: 372,572 MWe, new data base as of 2013: nameplate capacities). Four units were commissioned in 2014; three units in China and one in India. Eight units were shut down permanently in 2013; 2 units in Japan, and four units in the USA. Two units in Canada were declared permanently shut-down after a long-term shutdown. 70 nuclear generating units - 2 more than at the end of 2012 - were under construction in late 2013 in 15 countries with an aggregate gross power of approx. 73,814 MWe and net power of approx. 69,279 MWe. Six new projects have been started in 2013 in four countries (Belarus, China, the Republic of Korea, and the United Arab Emirates). Worldwide, some 125 new nuclear power plants are in the concrete project design, planning, and licensing phases; in some of these cases license applications have been submitted or contracts have already been signed. Some 100 further projects are planned. Net electricity generation in nuclear power plants worldwide in 2013 achieved a level of approx. 2,364.15 billion (109) kWh (2012: approx. 2,350.80 billion kWh). Since the first generation of electricity in a nuclear power plant in the EBR-I fast breeder (USA) on December 20, 1951, cumulated net production has reached approx. 70,310 billion kWh, and operating experience has grown to some 15,400 reactor years. (orig.)

  8. BWR Spent Nuclear Fuel Integrity Research and Development Survey for UKABWR Spent Fuel Interim Storage

    Energy Technology Data Exchange (ETDEWEB)

    Bevard, Bruce Balkcom [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Mertyurek, Ugur [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Belles, Randy [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Scaglione, John M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-10-01

    The objective of this report is to identify issues and support documentation and identify and detail existing research on spent fuel dry storage; provide information to support potential R&D for the UKABWR (United Kingdom Advanced Boiling Water Reactor) Spent Fuel Interim Storage (SFIS) Pre-Construction Safety Report; and support development of answers to questions developed by the regulator. Where there are gaps or insufficient data, Oak Ridge National Laboratory (ORNL) has summarized the research planned to provide the necessary data along with the schedule for the research, if known. Spent nuclear fuel (SNF) from nuclear power plants has historically been stored on site (wet) in spent fuel pools pending ultimate disposition. Nuclear power users (countries, utilities, vendors) are developing a suite of options and set of supporting analyses that will enable future informed choices about how best to manage these materials. As part of that effort, they are beginning to lay the groundwork for implementing longer-term interim storage of the SNF and the Greater Than Class C (CTCC) waste (dry). Deploying dry storage will require a number of technical issues to be addressed. For the past 4-5 years, ORNL has been supporting the U.S. Department of Energy (DOE) in identifying these key technical issues, managing the collection of data to be used in issue resolution, and identifying gaps in the needed data. During this effort, ORNL subject matter experts (SMEs) have become expert in understanding what information is publicly available and what gaps in data remain. To ensure the safety of the spent fuel under normal and frequent conditions of wet and subsequent dry storage, intact fuel must be shown to: 1.Maintain fuel cladding integrity; 2.Maintain its geometry for cooling, shielding, and subcriticality; 3.Maintain retrievability, and damaged fuel with pinhole or hairline cracks must be shown not to degrade further. Where PWR (pressurized water reactor) information is

  9. BUTREN-RC an hybrid system for the recharges optimization of nuclear fuels in a BWR; BUTREN-RC un sistema hibrido para la optimizacion de recargas de combustible nuclear en un BWR

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz S, J.J.; Castillo M, J.A. [ININ, Carretera Mexico-Toluca Km. 36.5, 52045 Estado de Mexico (Mexico); Valle G, E. del [IPN, ESFM, 07738 Mexico D.F. (Mexico)

    2004-07-01

    The obtained results with the hybrid system BUTREN-RC are presented that obtains recharges of nuclear fuel for a BWR type reactor. The system has implemented the methods of optimization heuristic taboo search and neural networks. The optimization it carried out with the technique of taboo search, and the neural networks, previously trained, were used to predict the behavior of the recharges of fuel, in substitution of commercial codes of reactor simulation. The obtained recharges of nuclear fuel correspond to 5 different operation cycles of the Laguna Verde Nuclear Power plant, Veracruz in Mexico. The obtained results were compared with the designs of this cycles. The energy gain with the recharges of fuel proposals is of approximately 4.5% with respect to those of design. The time of compute consumed it was considerably smaller that when a commercial code for reactor simulation is used. (Author)

  10. Clean energy : nuclear energy world

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-10-15

    This book explains the nuclear engineering to kids with easy way. There are explanations of birth of nuclear energy such as discover of nuclear and application of modern technology of nuclear energy, principles and structure of nuclear power plant, fuel, nuclear waste management, use of radiation for medical treatment, food supplies, industry, utilization of neutron. It indicates the future of nuclear energy as integral nuclear energy and nuclear fusion energy.

  11. Technical Basis for Peak Reactivity Burnup Credit for BWR Spent Nuclear Fuel in Storage and Transportation Systems

    Energy Technology Data Exchange (ETDEWEB)

    Marshall, William BJ J [ORNL; Ade, Brian J [ORNL; Bowman, Stephen M [ORNL; Gauld, Ian C [ORNL; Ilas, Germina [ORNL; Mertyurek, Ugur [ORNL; Radulescu, Georgeta [ORNL

    2015-01-01

    Oak Ridge National Laboratory and the United States Nuclear Regulatory Commission have initiated a multiyear project to investigate application of burnup credit for boiling-water reactor (BWR) fuel in storage and transportation casks. This project includes two phases. The first phase (1) investigates applicability of peak reactivity methods currently used in spent fuel pools (SFPs) to storage and transportation systems and (2) evaluates validation of both reactivity (keff) calculations and burnup credit nuclide concentrations within these methods. The second phase will focus on extending burnup credit beyond peak reactivity. This paper documents the first phase, including an analysis of lattice design parameters and depletion effects, as well as both validation components. Initial efforts related to extended burnup credit are discussed in a companion paper. Peak reactivity analyses have been used in criticality analyses for licensing of BWR fuel in SFPs over the last 20 years. These analyses typically combine credit for the gadolinium burnable absorber present in the fuel with a modest amount of burnup credit. Gadolinium burnable absorbers are used in BWR assemblies to control core reactivity. The burnable absorber significantly reduces assembly reactivity at beginning of life, potentially leading to significant increases in assembly reactivity for burnups less than 15–20 GWd/MTU. The reactivity of each fuel lattice is dependent on gadolinium loading. The number of gadolinium-bearing fuel pins lowers initial lattice reactivity, but it has a small impact on the burnup and reactivity of the peak. The gadolinium concentration in each pin has a small impact on initial lattice reactivity but a significant effect on the reactivity of the peak and the burnup at which the peak occurs. The importance of the lattice parameters and depletion conditions are primarily determined by their impact on the gadolinium depletion. Criticality code validation for BWR burnup

  12. Treatment of core components from nuclear power plants with PWR and BWR reactors - 16043

    International Nuclear Information System (INIS)

    Viermann, Joerg; Friske, Andreas; Radzuweit, Joerg

    2009-01-01

    During operation of a Nuclear Power Plant components inside the RPV get irradiated. Irradiation has an effect on physical properties of these components. Some components have to be replaced after certain neutron doses or respectively after a certain operating time of the plant. Such components are for instance water channels and control rods from Boiling Water Reactors (BWR) or control elements, poisoning elements and flow restrictors from Pressurized Water Reactors (PWR). Most of these components are stored in the fuel pool for a certain time after replacement. Then they have to be packaged for further treatment or for disposal. More than 25 years ago GNS developed a system for disposal of irradiated core components which was based on a waste container suitable for transport, storage and disposal of Intermediate Level Waste (ILW), the so-called MOSAIK R cask. The MOSAIK R family of casks is subject of a separate presentation at the ICEM 09 conference. Besides the MOSAIK R cask the treatment system developed by GNS comprised underwater shears to cut the components to size as well as different types of equipment to handle the components, the shears and the MOSAIK R casks in the fuel pool. Over a decade of experience it showed that this system although effective needed improvement for BWR plants where many water channels and control rods had to be replaced after a certain operating time. Because of the large numbers of components the time period needed to cut the components in the pool had a too big influence on other operational work like rearranging of fuel assemblies in the pool. The system was therefore further developed and again a suitable cask was the heart of the solution. GNS developed the type MOSAIK R 80 T, a cask that is capable to ship the unsegmented components with a length of approx. 4.5 m from the Power plants to an external treatment centre. This treatment centre consisting of a hot cell installation with a scrap shear, super-compactor and a heavy

  13. Experimental and analytical studies for a BWR nuclear reactor building. Evaluation of soil-structure interaction behaviour

    International Nuclear Information System (INIS)

    Mizuno, N.; Tsushima, Y.

    1975-01-01

    This paper evaluates the spatial characteristics of dynamic properties, especially soil-structure interaction behaviour, of the BWR nuclear building by experimental and analytical studies. It is well known that the damping effects in soil-structure interaction are remarkable on the building with short periods by the dissipation of vibrational energy to the soil. The authors have previously reported an analytical method for estimating the damping effects the properties of which are characterized as follows: 1) The complex damping is used, because the so-called structural damping may be more suitable for estimating the damping effects of an elastic structure. 2) H. Tajimi's theory is used for estimating the dynamical soil-foundation stiffness with the dissipation of vibrational energy on the elastic half-space soil. In this paper, an approximate explanation is presented in regard to the more developmental mathematical method for estimating the damping effects than the above-mentioned previous method, which is 'Modes Superposition Method for Multi-Degrees of Freedom System' with the constant complex stiffness showing the structural damping effects and the dynamical soil-foundation stiffness approximated by the linear or quadratic functions of the eigenvalues. An approximate explanation is presented in regard to the experimental results of the No. 1 reactor building (BWR) of Hamaoka Nuclear Power Station, The Chubu Electric Power Co., Ltd. (Auth.)

  14. Impact analysis of modifying the composition of the nuclear fuel of a BWR with beryllium oxide; Analisis del impacto de modificar la composicion del combustible nuclear de un BWR con oxido de berilio

    Energy Technology Data Exchange (ETDEWEB)

    Gallardo V, J. M.; Morales S, J. B., E-mail: euqrop@hotmail.com [UNAM, Facultad de Ingenieria, Ciudad Universitaria, 04510 Mexico D. F. (Mexico)

    2013-10-15

    The beryllium oxide (Be O) presents excellent physical properties, especially its high thermal conductivity that contrasts clearly with that of the uranium dioxide (UO{sub 2}) used at the present as fuel in a great number of nuclear plants. The present work models a nuclear reactor cooled by light water in boiling with two external recirculation loops (BWR/5) using the code for the transitory analysis and postulated accidents Trac-B F1, implementing a UO{sub 2} mixture and different fractions of Be O, with the objective of improving the thermal conductivity of the fuel. The numeric results and the realized analyses indicate that when adding a fraction in volume of 10% the central temperature decreases in 30.4% in stationary state, while during the large break loss of coolant accident the peak cladding temperature diminishes in 7%. Although the real interaction of the mixture has not been determined experimentally, the obtained results are promising. (Author)

  15. Nuclear fuel activity with minor actinides after their useful life in a BWR; Actividad del combustible nuclear con actinidos menores despues de su vida util en un reactor BWR

    Energy Technology Data Exchange (ETDEWEB)

    Martinez C, E.; Ramirez S, J. R.; Alonso V, G., E-mail: eduardo.martinez@inin.gob.mx [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2016-09-15

    Nuclear fuel used in nuclear power reactors has a life cycle, in which it provides energy, at the end of this cycle is withdrawn from the reactor core. This used fuel is known as spent nuclear fuel, a strong problem with this fuel is that when the fuel was irradiated in a nuclear reactor it leaves with an activity of approximately 1.229 x 10{sup 15} Bq. The aim of the transmutation of actinides from spent nuclear fuel is to reduce the activity of high level waste that must be stored in geological repositories and the lifetime of high level waste; these two achievements would reduce the number of necessary repositories, as well as the duration of storage. The present work is aimed at evaluating the activity of a nuclear fuel in which radioactive actinides could be recycled to remove most of the radioactive material, first establishing a reference of actinides production in the standard nuclear fuel of uranium at end of its burning in a BWR, and a fuel rod design containing 6% of actinides in an uranium matrix from the enrichment tails is proposed, then 4 standard uranium fuel rods are replaced by 4 actinide bars to evaluate the production and transmutation of the same, finally the reduction of actinide activity in the fuel is evaluated. (Author)

  16. Emerging nuclear suppliers in the Third World

    International Nuclear Information System (INIS)

    Stahl, K.

    1990-01-01

    The emergence of new supplier states of nuclear technology within the Third World has raised concern, if those nuclear supplier states will promote an unrestricted and uncontrolled transfer of nuclear technology to developing countries and augment the risk of nuclear weapons proliferation. The article analyses the nuclear export capacities, nuclear exports and the export policy of Argentina, Brazil and India. Argentina is considered as the most important emerging nuclear supplier state in the Third World. Nuclear exports have to be authorisized by the government in all three states and will be covered by IAEA-safeguards in the recipient country. The three states will exercise restraint in the transfer of sensitive nuclear technology. Nuclear exports of Argentina, Brazil and India so far will not augment the danger of nuclear weapons proliferation. (orig./HSCH) [de

  17. Nuclear danger in the modern world

    International Nuclear Information System (INIS)

    Sulejmenov, O.O.

    2000-01-01

    It is noted, that nowadays a nuclear danger proceeds from nuclear depositions of countries having own nuclear weapons. Since Kazakhstan is one of the first country in the world which fulfilled regulations of Lisbon Protocol and liquidated own nuclear potential, author regards that Kazakhstan have moral right for initiating process of attachment to Comprehensive Nuclear Test Ban Treaty by countries having nuclear weapon. Now for Kazakhstan there are urgent problems: financing of post-conversion processes; re-cultivation of territory contaminated by residuals from nuclear weapons test; rehabilitation of population health, damaged from test of mass destruction weapon. Scientists of Kazakhstan estimated damage from nuclear test on Kazakstan territory in 10 billion dollars. It is necessary international efforts of all public organizations of the world for all world sites. One of the financing source could be means from reduction of nuclear arms production

  18. Nuclear Power Plants in the World

    International Nuclear Information System (INIS)

    2003-01-01

    The Japan Atomic Industrial Forum (JAIF) used every year to summarize a trend survey on the private nuclear power plants in the world in a shape of the 'Nuclear power plants in the world'. In this report, some data at the end of 2002 was made up on bases of answers on questionnaires from 65 electric power companies and other nuclear organizations in 28 countries and regions around the world by JAIF. This report is comprised of 19 items, and contains generating capacity of the plants; current status of Japan; trends of generating capacity of operating the plants, the plant orders and generating capacity of the plants; world nuclear capacity by reactor type; status of MOX use in the world; location of the plants; the plants in the world; directory of the plants; nuclear fuel cycle facilities; and so forth. (J.P.N.)

  19. Nuclear power plants in the world

    International Nuclear Information System (INIS)

    2008-01-01

    The Japan Atomic Industrial Forum, Inc. (JAIF) used every year to summarize a trend survey on the private nuclear power plants in the world in a shape of the 'Nuclear power plants in the world'. In this report, some data at the end of 2007/2008 was made up on bases of answers on questionnaires from electric power companies and other nuclear organizations around the world by JAIF. This report is comprised of 18 items, and contains generating capacity of the plants; effect of the Niigata-ken chuetsu-oki earthquake; current status of Japan; trends of generating capacity of operating the plants, the plant orders and generating capacity of the plants; world nuclear capacity by reactor type; status of MOX use in the world; location of the plants; the plants in the world; directory of the plants; nuclear fuel cycle facilities, and so forth. (J.P.N.)

  20. Nuclear Power Plants in the World

    International Nuclear Information System (INIS)

    2004-01-01

    The Japan Atomic Industrial Forum, Inc. (JAIF) used every year to summarize a trend survey on the private nuclear power plants in the world in a shape of the 'Nuclear power plants in the world'. In this report, some data at the end of 2003 was made up on bases of answers on questionnaires from 81 electric power companies and other nuclear organizations in 33 countries and regions around the world by JAIF. This report is comprised of 19 items, and contains generating capacity of the plants; current status of Japan; trends of generating capacity of operating the plants, the plant orders and generating capacity of the plants; world nuclear capacity by reactor type; status of MOX use in the world; location of the plants; the plants in the world; directory of the plants; nuclear fuel cycle facilities; and so forth. (J.P.N.)

  1. The World Nuclear Industry Status Report: 1992

    International Nuclear Information System (INIS)

    Flavin, Christopher; Lenssen, Nicholas; Froggatt, Antony; Willis, John; Kondakji, Assad; Schneider, Mycle

    1992-05-01

    The World Nuclear Industry Status Report provides a comprehensive overview of nuclear power plant data, including information on operation, production and construction. The WNISR assesses the status of new-build programs in current nuclear countries as well as in potential newcomer countries. This first WNISR Report was issued in 1992 in a joint publication with WISE-Paris, Greenpeace International and the World Watch Institute, Washington

  2. Nuclear power in the developing world

    International Nuclear Information System (INIS)

    Poneman, D.

    1982-01-01

    This book explores the increasingly urgent issue of nuclear power policies in developing countries. It examines the motives which drive nuclear policies in the developing world and explores how security and economic objectives, domestic politics, and foreign influence shape nuclear policies, enriching the analysis with examples from South American, African and Asian experiences. (author)

  3. The World Nuclear Industry Status Report 2013

    International Nuclear Information System (INIS)

    Schneider, Mycle; Froggatt, Antony; Hosokawa, Komei; Thomas, Steve; Yamaguchi, Yukio; Hazemann, Julie; Bradford, Peter A.

    2013-07-01

    Two years after the Fukushima disaster started unfolding on 11 March 2011, its impact on the global nuclear industry has become increasingly visible. Global electricity generation from nuclear plants dropped by a historic 7 percent in 2012, adding to the record drop of 4 percent in 2011. This World Nuclear Industry Status Report 2013 (WNISR) provides a global overview of the history, the current status and the trends of nuclear power programs worldwide. It looks at nuclear reactor units in operation and under construction. Annex 1 provides 40 pages of detailed country-by-country information. A specific chapter assesses the situation in potential newcomer countries. For the second time, the report looks at the credit-rating performance of some of the major nuclear companies and utilities. A more detailed chapter on the development patterns of renewable energies versus nuclear power is also included. Annex 6 provides an overview table with key data on the world nuclear industry by country. The 2013 edition of the World Nuclear Industry Status Report also includes an update on nuclear economics as well as an overview of the status, on-site and off-site, of the challenges triggered by the Fukushima disaster. However, this report's emphasis on recent post-Fukushima developments should not obscure an important fact: as previous editions (see www.WorldNuclearReport.org) detail, the world nuclear industry already faced daunting challenges long before Fukushima, just as the U.S. nuclear power industry had largely collapsed before the 1979 Three Mile Island accident. The nuclear promoters' invention that a global nuclear renaissance was flourishing until 3/11 is equally false: Fukushima only added to already grave problems, starting with poor economics. The performance of the nuclear industry over the year from July 2012 to July 2013 is summed up in this report

  4. Nuclear: Energy of the World

    International Nuclear Information System (INIS)

    Thailand Institute of Nuclear Technology

    2007-08-01

    Full text: The 10 t h conference on the nuclear science and technology was held on 16-17 August 2007 in Bangkok. This conference contain paper on non-power applications of nuclear technology in medicine, agriculture and industry. These application include irradiation of food for des infestation tram technologies used in diagnosis and therapy and radiation chemistry important to industrial processes. Some technologies which evolved from the development of nuclear power industry are also discussed

  5. Exxon Nuclear WREM-based NJP-BWR ECCS evaluation model and example application to the Oyster Creek Plant

    International Nuclear Information System (INIS)

    Krysinski, T.L.; Bjornard, T.A.; Steves, L.H.

    1975-01-01

    A proposed integrated ECCS model for non-jet pump boiling water reactors is presented, using the RELAP4-EM/BLOWDOWN and RELAP4-EM/SMALL BREAK portions of the Exxon Nuclear WREM-based Generic PWR Evaluation Model coupled with the ENC NJP-BWR Fuel Heatup Model. The results of the application of the proposed model to Oyster Creek are summarized. The results of the break size sensitivity study using the proposed model for the Oyster Creek Plant are presented. The application of the above results yielded the MAPLHGR curves. Included are a description of the proposed non-jet pump boiling water reaction evaluation model, justification of its conformance with TOCFR50, Appendix K, the adopted Oyster Creek plant model, and results of the analysis and sensitivity studies. (auth)

  6. Nuclear World Order and Nonproliferation

    Energy Technology Data Exchange (ETDEWEB)

    Joeck, N

    2007-02-05

    The decision by India and Pakistan in May 1998 to conduct nuclear weapon tests and declare themselves as nuclear weapon states challenged South Asian regional stability calculations, US nonproliferation policy, and prevailing assumptions about international security. A decade later, the effects of those tests are still being felt and policies are still adjusting to the changed global conditions. This paper will consider non- and counter-proliferation policy options for the United States and Pakistan as they work as partners to prevent the transfer of nuclear technology and further nuclear proliferation.

  7. Application of tearing modulus stability concepts to nuclear piping. Final report. [PWR; BWR

    Energy Technology Data Exchange (ETDEWEB)

    Cotter, K.H.; Chang, H.Y.; Zahoor, A.

    1982-02-01

    The recently developed tearing modulus stability concept was successfully applied to several boiling water reactor (BWR) and pressurized water reactor (PWR) piping systems. Circumferentially oriented through-the-thickness cracks were postulated at numerous locations in each system. For each location, the simplified tearing stability methods developed in USNRC Report NUREG/CR-0838 were used to determine crack stability. The J-T diagram was used to present the results of the computations. The piping systems considered included Type 304 stainless steel as well as A106 carbon steel materials. These systems were analyzed using the piping analysis computer code MINK.

  8. Experimental and analytical studies for a BWR nuclear reactor building evaluation of soil-structure interaction behavior

    International Nuclear Information System (INIS)

    Mizuno, N.; Tsushima, Y.

    1975-01-01

    The purpose of this paper is to evaluate the spatial characteristics of dynamic properties, especially soil-structure interaction behavior, or the BWR nuclear reactor building by experimental and analytical studies. An analytical method (SMIRT-1 Paper K 2/4) for estimating the damping effects is reported. The complex damping is used, because the so-called structural damping may be more suitable for estimating the damping effects of an elastic structure. H. Tajimi's theory is used for estimating the dynamical soil-foundation stiffness with the dissipation of vibrational energy on the elastic half-space soil. An approximate explanation is presented in regard to the more developmental mathematical method for estimating the damping effects than the above-mentioned previous method, which is 'Modes Superposition Method for Multi-Degrees of Freedom System' with the constant complex stiffness showing the structural damping effects and the dynamical soil-foundation stiffness approximated by the linear or quadratic functions of the eigenvalues. Next, an approximate explanation is presented in regard to the experimental results of the No.1 reactor building (BWR) of Hamaoka Nuclear Power Station, The Chubu Electric Power Co., Ltd. The regression analyses of the experimental resonance curves by one degree system show that the critical damping ratio is larger than the 0.10 used in the design for the fundamental natural period. It is attempted to simulate the experimental results by the above-mentioned method. The simulated model is a fourty-eight degrees of freedom spring mass system because of the eight masses for the eight floors including the base foundation and the six degrees of freedom for a mass

  9. The World Nuclear Industry Status Report 2004

    International Nuclear Information System (INIS)

    Schneider, Mycle; Froggatt, Antony

    2004-12-01

    Fifty years ago, in September 1954, the head of the US Atomic Energy Commission stated that nuclear energy would become 'too cheap to meter': The cost to produce energy by nuclear power plants would be so low that the investment into electricity meters would not be justified. By coincidence the US prophecy came within three months of the announcement of the world's first nuclear power plant being connected to the grid in.. the then Soviet Union. In June 2004, the international nuclear industry celebrated the anniversary of the grid connection at the site of the world's first power reactor in Obninsk, Russia, under the original slogan '50 Years of Nuclear Power - The Next 50 Years'. This report aims to provide a solid basis for analysis into the prospects for the nuclear power industry. Twelve years ago, the Worldwatch Institute in Washington, WISE-Paris and Greenpeace International published the World Nuclear Industry Status Report 1992. In the current international atmosphere of revival of the nuclear revival debate - it has been a periodically recurring phenomenon for the past twenty years - two of the authors of the 1992 report, now independent consultants, have carried out an updated review of the status of the world nuclear industry. The performance of the nuclear industry over the past year is summed up in this report

  10. Validations of BWR nuclear design code using ABWR MOX numerical benchmark problems

    International Nuclear Information System (INIS)

    Takano, Shou; Sasagawa, Masaru; Yamana, Teppei; Ikehara, Tadashi; Yanagisawa, Naoki

    2017-01-01

    BWR core design code package (the HINES assembly code and the PANACH core simulator), being used for full MOX-ABWR core design, has been benchmarked against the high-fidelity numerical solutions as references, for the purpose of validating its capability of predicting the BWR core design parameters systematically from UO 2 to 100% MOX cores. The reference solutions were created by whole core critical calculations using MCNPs with the precisely modeled ABWR cores both in hot and cold conditions at BOC and EOC of the equilibrium cycle. A Doppler-Broadening Rejection Correction (DCRB) implemented MCNP5-1.4 with ENDF/B-VII.0 was mainly used to evaluate the core design parameters, except for effective delayed neutron fraction (β eff ) and prompt neutron lifetime (l) with MCNP6.1. The discrepancies in the results between the design codes HINES-PANACH and MCNPs for the core design parameters such as the bundle powers, hot pin powers, control rod worth, boron worth, void reactivity, Doppler reactivity, β eff and l, are almost within target accuracy, leading to the conclusion that HINES-PANACH has sufficient fidelity for application to full MOX-ABWR core design. (author)

  11. World warms to nuclear power

    International Nuclear Information System (INIS)

    Mortimer, N.

    1989-01-01

    The greenhouse effect and global warming is a major environmental issue. The nuclear industry has taken this opportunity to promote itself as providing clean energy without implication in either the greenhouse effect or acid rain. However, it is acknowledged that nuclear power does have its own environment concerns. Two questions are posed -does nuclear power contribute to carbon dioxide emissions and can nuclear power provide a realistic long-term solution to global warming? Although nuclear power stations do not emit carbon dioxide, emissions occur during the manufacture of reactor components, the operation of the nuclear fuel cycle and especially, during the mining and processing of the uranium ore. It is estimated that the supply of high grade ores will last only 23 years, beyond that the carbon dioxide emitted during the processing is estimated to be as great as the carbon dioxide emitted from an coal-fired reactor. Fast breeder reactors are dismissed as unable to provide an answer, so it is concluded that nuclear technology has only a very limited role to play in countering global warming.(UK)

  12. World nuclear directory. 6. ed.

    International Nuclear Information System (INIS)

    Wilson, C.W.J.

    1981-01-01

    The purpose of the directory is to provide a comprehensive, worldwide guide to organizations which conduct, promote, or encourage research into atomic energy. The term research is interpreted fairly generously. The directory is intended to be a reference source useful to scientists and administrators in the nuclear field, to information workers, librarians, journalists, market researchers, and others. It therefore includes nuclear research institutes; government departments; public corporations; industrial firms; electricity generating boards; learned and professional societies; and universities, polytechnics, and other institutes of higher education with nuclear departments. (author)

  13. Nuclear security in a transformed world

    International Nuclear Information System (INIS)

    Gottfried, K.; Dean, J.

    1991-01-01

    In the wake of the failed coup attempt in the Soviet Union, the world stands hopeful that a new era of international peace and cooperation lies ahead. President Bush's unilateral reductions in tactical nuclear weapons and in the alert levels of US forces, coupled with President Gorbachev's largely reciprocal actions, are important steps toward realizing that hope. While bold in the context of recent arms control history, however, these actions are modest in the face of the current enormous opportunity and the shifting threats the world now faces. Even with these welcome unilateral actions, the likely continued presence of thousands of nuclear weapons throughout many of the Soviet republics, the temporary uncertainty over central government command during the coup, and fuller knowledge of Iraq's aggressive efforts to build a nuclear bomb serve as stark reminders that the danger of nuclear catastrophe has not disappeared. Although a deliberate attack by the Soviet Union against the US or Europe is now almost inconceivable, nuclear weapons continue to pose significant threats to US security and world peace. These threats fall into three broad categories: a persistent risk of regional nuclear war involving countries other than the Soviet Union that are already in possession of nuclear weapons or capable of building them; the spread of nuclear weapons to other countries; accidental or unauthorized use. To meet this new challenge, three key steps must be taken: reduce dramatically Soviet and US nuclear arsenals; negotiate restrictions on the arsenals of other nuclear powers; strengthen the nuclear nonproliferation regime

  14. Serpent: an alternative for the nuclear fuel cells analysis of a BWR; SERPENT: una alternativa para el analisis de celdas de combustible nuclear de un BWR

    Energy Technology Data Exchange (ETDEWEB)

    Silva A, L.; Del Valle G, E. [IPN, Escuela Superior de Fisica y Matematicas, Av. Instituto Politecnico Nacional s/n, U.P. Adolfo Lopez Mateos, Edificio 9, Col. San Pedro Zacatenco, 07738 Mexico D. F. (Mexico); Gomez T, A. M., E-mail: lidi.s.albarran@gmail.com [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2013-10-15

    In the last ten years the diverse research groups in nuclear engineering of the Universidad Nacional Autonoma de Mexico and Instituto Politecnico Nacional (UNAM, IPN), as of research (Instituto Nacional de Investigaciones Nucleares, ININ) as well as the personnel of the Nuclear Plant Management of the Comision Federal de Electricidad have been using the codes Helios and /or CASMO-4 in the generation of cross sections (X S) of nuclear fuel cells of the cores corresponding to the Units 1 and 2 of the nuclear power plant of Laguna Verde. Both codes belong to the Studsvik-Scandpower Company who receives the payment for the use and their respective maintenance. In recent years, the code Serpent appears among the nuclear community distributed by the OECD/Nea which does not has cost neither in its use neither in its maintenance. The code is based on the Monte Carlo method and makes use of the processing in parallel. In the Escuela Superior de Fisica y Matematicas of the IPN, the personnel has accumulated certain experience in the use of Serpent under the direction of personal of the ININ; of this experience have been obtained for diverse fuel burned, the infinite multiplication factor for three cells of nuclear fuel, without control bar and with control bar for a known thermodynamic state fixed by: a) the fuel temperature (T{sub f}), b) the moderator temperature (T{sub m}) and c) the vacuums fraction (α). Although was not realized any comparison with the X S that the codes Helios and CASMO-4 generate, the results obtained for the infinite multiplication factor show the prospective tendencies with regard to the fuel burned so much in the case in that is not present the control bar like when it is. The results are encouraging and motivate to the study group to continue with the X S generation of a core in order to build the respective library of nuclear data as a following step and this can be used for the codes PARCS, of USA NRC, DYN3D of HZDR, or others developed locally

  15. World nuclear power plant capacity

    International Nuclear Information System (INIS)

    1991-01-01

    This report provides the background information for statistics and analysis developed by NUKEM in its monthly Market Report on the Nuclear Fuel Cycle. The assessments in this Special Report are based on the continuous review of individual nuclear power plant projects. This Special Report begins with tables summarizing a variety of nuclear power generating capacity statistics for 1990. It continues with a brief review of the year's major events regarding each country's nuclear power program. The standard NUKEM Market Report tables on nuclear plant capacity are given on pages 24 and 25. Owing to space limitations, the first year shown is 1988. Please refer to previous Special Reports for data covering earlier years. Detailed tables for each country list all existing plants as well as those expected by NUKEM to be in commercial operation by the end of 2005. An Appendix containing a list of abbreviations can be found starting on page 56. Only nuclear power plants intended for civilian use are included in this Special Report. Reactor lifetimes are assumed to be 35 years for all light water reactors and 30 years for all other reactor types, unless other data or definite decommissioning dates have been published by the operators. (orig./UA) [de

  16. The World Nuclear Industry Status Report 2012

    International Nuclear Information System (INIS)

    Schneider, Mycle; Froggatt, Antony; Hazemann, Julie

    2012-07-01

    Twenty years after its first edition, World Nuclear Industry Status Report 2012 portrays an industry suffering from the cumulative impacts of the world economic crisis, the Fukushima disaster, ferocious competitors and its own planning and management difficulties. The report provides a global overview of the history, the current status and trends of nuclear power programs in the world. It looks at units in operation and under construction. Annex 1 also provides detailed country-by-country information. A specific chapter assesses the situation in potential newcomer countries. For the first time, the report looks at the credit-rating performance of some of the major nuclear companies and utilities. A more detailed chapter on the development patterns of renewable energies versus nuclear power is also included. The performance of the nuclear industry over the 18 months since the beginning of 2011 is summed up in this report

  17. World nuclear fuel market. Eighteenth annual meeting

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    The papers presented at the eighteenth World Nuclear Fuels Market meeting are cataloged separately. This volume includes information on the following areas of interest: world uranium enrichment capacity and enriched uranium inventories; the impact of new enrichment technologies; predictions of future market trends; non-proliferation aspects of nuclear trade; and a debate as to whether uranium can be successfully traded on a commodities exchange

  18. BWR 90 and BWR 90+: Two advanced BWR design generations from ABB

    International Nuclear Information System (INIS)

    Haukeland, S.; Ivung, B.; Pedersen, T.

    1999-01-01

    ABB has two evolutionary advanced light water reactors available today - the BWR 90 boiling water reactor and the System 80+ pressurised water reactor. The BWR 90 is based on the design, construction, commissioning and operation of the BWR 75 plants. The operation experience of the six plants of this advanced design has been very good. The average annual energy availability is above 90%, and total power generation costs have been low. When developing the BWR 90 specific changes were introduced to a reference design, to adapt to technological progress, new safety requirements and to achieve cost savings. The thermal power rating of BWR 90 is 3800 MWth (providing a nominal 1374 MWe net), slightly higher than that of the reference plant ABB Atom has taken advantage of margins gained using a new generation of its SVEA fuel to attain this power rating without major design modifications. The BWR 90 design was completed and offered to the TVO utility in Finland in 1991, as one of the contenders for the fifth Finnish nuclear power plant project. Hence, the design is available today for deployment in new plant projects. Utility views were incorporated through co-operation with the Finnish utility TVO, owner and operator of the two Olkiluoto plants of BWR 75 design. A review against the European Utility Requirement (EUR) set of requirements has been performed, since the design, in 1997, was selected by the EUR Steering Committee to be the first BWR to be evaluated against the EUR documents. The review work was completed in 1998. It will be the subject of an 'EUR Volume 3 Subset for BWR 90' document. ABB is continuing its BWR development work with an 'evolutionary' design called BWR 90+, which aims at developing the BWR as a competitive option for the anticipated revival of the market for new nuclear plants beyond the turn of the century, as well as feeding ideas and inputs to the continuous modernisation efforts at operating plants. The development is performed by ABB Atom

  19. Changing world of nuclear power

    International Nuclear Information System (INIS)

    Godlewski, N.Z.; Payne, J.; Tompkins, B.

    1987-01-01

    Efforts to integrate the Washington meetings of the American Nuclear Society and the Atomic Industrial Forum included joint plenary sessions and combined criticism of DOE actions regarding the selection of a second repository for radioactive wastes. The meetings also looked beyond the Chernobyl accident to point out that some countries can no longer reject nuclear power, but the industry must develop post-accident plans for plants in order to reduce risks. Speakers warned against over-reacting and the need to keep emergency planning flexible. Other speakers concluded that the Chernobyl design was not so much at fault as the decision to build larger versions of the standardized design. The pursuit of excellence in plant design and performance, the need to resolve regulatory problems involving the inclusion of nuclear plants in utility rate bases, and the economics of low-level waste disposal, were other topics covered

  20. Safety Evaluation Report related to the final design approval of the GESSAR II BWR/6 Nuclear Island design, Docket No. 50-447

    International Nuclear Information System (INIS)

    1983-04-01

    The Safety Evaluation Report for the application filed by General Electric Company for the Final Design Approval for the General Electric Standard Safety Analysis Report (GESSAR II FSAR) has been prepared by the Office of Nuclear Reactor Regulation of the Nuclear Regulatory Commission. This report summarizes the results of the staff's safety review of the GESSAR II BWR/6 Nuclear Island Design. Subject to favorable resolution of items discussed in the Safety Evaluation Report, the staff concludes that the facilities referencing GESSAR II, subject to approval of the balance-of-plant design, can conform with the provisions of the Act and the regulations of the Nuclear Regulatory Commission

  1. World Integrated Nuclear Evaluation System: Model documentation

    International Nuclear Information System (INIS)

    1991-12-01

    The World Integrated Nuclear Evaluation System (WINES) is an aggregate demand-based partial equilibrium model used by the Energy Information Administration (EIA) to project long-term domestic and international nuclear energy requirements. WINES follows a top-down approach in which economic growth rates, delivered energy demand growth rates, and electricity demand are projected successively to ultimately forecast total nuclear generation and nuclear capacity. WINES could be potentially used to produce forecasts for any country or region in the world. Presently, WINES is being used to generate long-term forecasts for the United States, and for all countries with commercial nuclear programs in the world, excluding countries located in centrally planned economic areas. Projections for the United States are developed for the period from 2010 through 2030, and for other countries for the period starting in 2000 or 2005 (depending on the country) through 2010. EIA uses a pipeline approach to project nuclear capacity for the period between 1990 and the starting year for which the WINES model is used. This approach involves a detailed accounting of existing nuclear generating units and units under construction, their capacities, their actual or estimated time of completion, and the estimated date of retirements. Further detail on this approach can be found in Appendix B of Commercial Nuclear Power 1991: Prospects for the United States and the World

  2. World nuclear generating capacity 1993/94

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    This article is the annual summary of world nuclear generating capacity for 1994. A global summary is first provided, reviewing total installed capacity and growth in installed capacity over the next five years. A more detailed discussion of the nuclear efforts in 34 countries follows, with a tabular listing of nuclear projects in each of these countries. The listing includes reactor supplier, reactor type, size, current status, and date of commercial operation

  3. Nuclear energetics all over the world

    International Nuclear Information System (INIS)

    Wojcik, T.

    2000-01-01

    The actual state and tendencies of nuclear power further development for different world regions have been presented and discussed. The problem of safety of energetic nuclear reactors, radioactive waste management and related problems have been discussed in respect of regulations in different countries. The economical aspects of nuclear energetics in comparison with different fossil fuel power plants exploitation costs has been presented as well. The official state of international organizations (IAEA, WANO, HASA etc.) have been also shown in respect to subject presented

  4. An application of risk-informed evaluation on MOVs and AOVs for Taiwan BWR-type nuclear power plants

    International Nuclear Information System (INIS)

    Ting, K.; Chen, K.T.; Li, Y.C.; Hwang, S.H.; Chien, F.T.; Kang, J.C.

    2008-01-01

    Implementing a risk-informed inservice testing (RI-IST) program provides a good aspect to the nuclear power plant licensee as an alternating program in the current ASME Section XI and 10 CFR 50.55a relevant testing programs. RI-IST concentrates testing resources on highly significant components, reduces excess testing burden, increases plant's availability, decreases dose rate on the plant's staff and also reduces cost on plant's operation and maintenance under nuclear safety expectations. Furthermore, RI-IST also gives a feature on prospective licensing change basis to a nuclear power plant's licensee. This study will focus on safety-related and PRA-molded motor-operated valves (MOVs) and air-operated valves (AOVs) under the inservice testing program in boiling water reactor (BWR)-type nuclear power plant. As MOVs and AOVs have crucial safety functions throughout the nuclear power plant's safety systems, the steady operation and performance of MOVs and AOVs will definitely ensure that the nuclear power plant operates under safety expectations; therefore, this is the key reason to implement risk-informed evaluation for MOVs and AOVs in this study and being able to provide the safety significance classification for MOVs and AOVs under the current IST program to the plant's management. As a pilot study of RI-IST, the methodology of qualitative assessment will incorporate with probabilistic risk assessment (PRA) analyzing MOVs' and AOVs' safety significance within the current PRA model. The evaluating result will then classify its safety significance into a high-safety significant component (HSSC) and a low-safety significant component (LSSC) for MOVs and AOVs based on relevant regulatory criteria. With this initiating achievement, it can provide a cornerstone for further studies on the other types of valves and pumps in RI-IST program and also provide a valuable reference as proposing license change to the licensee

  5. Elecnuc. Nuclear power plants in the world

    International Nuclear Information System (INIS)

    2003-01-01

    This 2003 version of Elecnuc contents information, data and charts on the nuclear power plants in the world and general information on the national perspectives concerning the electric power industry. The following topics are presented: 2002 highlights; characteristics of main reactor types and on order; map of the French nuclear power plants; the worldwide status of nuclear power plants on 2002/12/3; units distributed by countries; nuclear power plants connected to the Grid by reactor type groups; nuclear power plants under construction; capacity of the nuclear power plants on the grid; first electric generations supplied by a nuclear unit; electrical generation from nuclear plants by country at the end 2002; performance indicator of french PWR units; trends of the generation indicator worldwide from 1960 to 2002; 2002 cumulative Load Factor by owners; nuclear power plants connected to the grid by countries; status of license renewal applications in Usa; nuclear power plants under construction; Shutdown nuclear power plants; exported nuclear power plants by type; exported nuclear power plants by countries; nuclear power plants under construction or order; steam generator replacements; recycling of Plutonium in LWR; projects of MOX fuel use in reactors; electricity needs of Germany, Belgium, Spain, Finland, United Kingdom; electricity indicators of the five countries. (A.L.B.)

  6. List of the world's nuclear power plants

    International Nuclear Information System (INIS)

    Kempken, M.

    1984-01-01

    This list published once a year presents, subdivided into countries, data on all nuclear power plants in operation, under construction, or for which a contract has been placed, referring to the following aspects: Year the contract has been placed, name and/or size, owner or operator, design type, manufacturers, net output, first year of commercial operation, and total electricity output up to the data June 30, 1984. Two additional tables present a survey on the world's nuclear power plants, also grouped by countries, and the largest commercially used nuclear power plants of the world. (UA) [de

  7. Performances of nuclear installations in the world

    International Nuclear Information System (INIS)

    Pate, Z.T.

    1999-01-01

    During the last years the operators of nuclear power plants in the world, have realized numerous improvements. This success is imputable to several factors, especially an important data exchange. The Chernobyl accident, in 1986, provoked the creation of the World Association of Nuclear Operators (W.A.N.O.). It allowed to exchange information and to develop cooperation in order to go beyond cultural barriers, linguistics and policies. Then, operators in the world have brought important improvements in matter of safety, reliability. (N.C.)

  8. Nuclear Power Plants in the World

    International Nuclear Information System (INIS)

    2000-01-01

    The Japan Atomic Industrial Forum (JAIF) used every year to summarize a trend survey on the private nuclear power plants in the world in a shape of the 'Developmental trends on nuclear power plants in the world'. In this report, some data at the end of 1999 was made up on bases of answers on questionnaires from 72 electric companies in 31 nations and regions in the world by JAIF. This report is comprised of 19 items, and contains generating capacity of the plants; current status of Japan; trends of generating capacity of operating the plants, the plant orders and generating capacity of the plants; world nuclear capacity by reactor type; location of the plants; the plants in the world; and so forth. And, it also has some survey results on the 'Liberalization of electric power markets and nuclear power generation' such as some 70% of respondents in nuclear power for future option, gas-thermal power seen as power source with most to gain from liberalization, merits on nuclear power generation (environmental considerations and supply stability), most commonly voiced concern about new plant orders in poor economy, and so forth. (G.K.)

  9. Nuclear: a world without worker?

    International Nuclear Information System (INIS)

    Fournier, Pierre; Maziere, M.

    2014-01-01

    After having recalled some characteristics of the electro-nuclear sector in terms of employment (direct and indirect jobs, average age, number of persons controlled on the radiological level, exposure with respect to work location), the author outlines that workers of this sector are seldom evoked whereas investments, incidents and accidents are generally the main evoked and commented topics. He proposes some explanations about this image of the nuclear sector. He reports an incident which occurred in Marcoule and outlines how a set of imperfectly managed events resulted in this incident. He also outlines the importance of the role of workers and the difficulty to make the right choice in such situations. As a conclusion, the author draws some lessons, and particularly outlines that the commitment of workers should be put forward

  10. World nuclear power plant capacity

    International Nuclear Information System (INIS)

    Anon.

    1981-01-01

    Worldwide, there were 249 power reactors in operation at the end of 1980, with a net electrical capacity of about 142 GW. In Canada the ten reactors in operation had a combined capacity of about 5.5 GW. Another 14 under construction will produce an additional 9.9 GW. Four Canadian reactors were in the world's top ten in terms of capacity factor in 1980, and six were in the top ten in terms of lifetime performance. Data tabulated for the Canadian reactors are: location, power, operator, date of first power. For the rest of the world, a table gives the number of reactors of each type and their capacity. (N.D.H.)

  11. Nuclear power in the developing world

    International Nuclear Information System (INIS)

    Sokolov, Y.

    2005-01-01

    Current trends in the interest in nuclear power development confirm important changes in opinions around the world about nuclear power's future. Much of the expansion of nuclear power in the sustainable development scenarios takes place in developing countries. For these countries to introduce nuclear power, they need to pass through three main steps: energy planning, infrastructure development and then deployment. The paper gives an overview of the IAEA's activity in this area. In order to meeting the energy needs of developed and developing countries, developing a global vision for nuclear energy, assessing and clarifying the afford ability and acceptability requirements for large-scale nuclear energy use in the 21st century in both developed and developed countries, facilitating international cooperation in developing different types of new generation nuclear energy systems which meet these requirement, and facilitating international discussions aimed at establishing enhanced institutional system acceptable to both developed and developing countries

  12. Nuclear power in a changing world

    International Nuclear Information System (INIS)

    Taylor, J.

    1996-01-01

    Nuclear power has a future that will only be fully realised if it is shown to be a solution to some of the world's most pressing energy, and associated environmental, problems. This can only be done if nuclear power itself ceases to be perceived as a problem by the public, interest groups, governments and financial institutions. In public relations terms, this means removing the persistent distortions and misconceptions about the nuclear industry. Environmentally, it involves showing that nuclear power is the only alternative energy source which does not contribute to climate change, preserves rare minerals and recycles its raw materials. Governments must be persuaded to see that nuclear power is the only economic answer to the growing energy demand arising from increased industrialisation and population growth. Financiers need convincing that nuclear power is the investment of the future and generators that it is the lowest cost economic and environmental option. The future of nuclear power depends on meeting these challenges. (UK)

  13. The World Nuclear University: New partnership in nuclear education

    International Nuclear Information System (INIS)

    2007-07-01

    The important role which the IAEA plays in assisting Member States in the preservation and enhancement of nuclear knowledge and in facilitating international collaboration in this area has been recognized by the General Conference of the International Atomic Energy Agency in resolutions GC(46)/RES/11B, GC(47)/RES/10B, GC(48)/RES/13 and GC(50)/RES/13. A continued focus of IAEA activities in managing nuclear knowledge is to support Member States to secure and sustain human resources for the nuclear sector, comprising both the replacement of retiring staff and building of new capacity. The IAEA assists Member States, particularly developing ones, in their efforts to sustain nuclear education and training in all areas of nuclear technology for peaceful purposes, which is a necessary prerequisite for succession planning, in particular through the networking of nuclear education and training, including activities of the World Nuclear University (WNU) and the Asian Network for Education in Nuclear Technology (ANENT). The report on the attached CD-ROM, The World Nuclear University: New Partnership in Nuclear Education, gives an overview of the history of the development of the World Nuclear University and related IAEA activities and contains an analysis and recommendations from the first WNU Summer Institute, held in 2005 in the USA

  14. World survey of nuclear power

    International Nuclear Information System (INIS)

    Rippon, S.

    1988-01-01

    In 1987, nuclear power was still expanding worldwide, but in a climate of increasing short-term uncertainty. During 1987, 23 new reactors started supplying electricity, for a total of 415, of which 13 were prevented from producing. Total installed capacity was 295 GWe. A further 111 power reactors, to supply 102 GWe, were under construction. The widely differing situations in the following countries are discussed: USA, Italy, France, Belgium, F.R. Germany, UK, China, Japan, Taiwan, S. Korea, India, USSR, Bulgaria, Czechoslovakia, German D.R., Hungary, Romania, Argentina

  15. World Health Organization on nuclear power

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    A report published by the World Health Organization in cooperation with, and at the instigation of, the Belgian authorities, is summarised. The report was prepared by an international multidisciplinary working group, and concentrated on the somatic and genetic risks from ionising radiation, the environmental effects of nuclear power from the mining of uranium to the disposal of waste and the probability and consequences of accidents, sabotage and theft of nuclear materials. In general positive to nuclear power, the report nevertheless recommends for RESEARCH AND EVALUATION IN SEVERAL SECTORS: The duties of the authorities in providing full and open information on the consequences of the exploitation of nuclear power are emphasised. (JIW)

  16. The World Nuclear Industry Status Report 2015

    International Nuclear Information System (INIS)

    Schneider, Mycle; Froggatt, Antony; Hazemann, Julie; Katsuta, Tadahiro; Ramana, M.V.; Thomas, Steve; Porritt, Jonathon

    2015-07-01

    The World Nuclear Industry Status Report 2015 provides a comprehensive overview of nuclear power plant data, including information on operation, production and construction. The WNISR assesses the status of new-build programs in current nuclear countries as well as in potential newcomer countries. Japan without nuclear power for a full calendar year for the first time since the first commercial nuclear power plant started up in the country 50 years ago. Nuclear plant construction starts plunge from fifteen in 2010 to three in 2014. 62 reactors under construction - five fewer than a year ago - of which at least three-quarters delayed. In 10 of the 14 building countries all projects are delayed, often by years. Five units have been listed as 'under construction' for over 30 years. Share of nuclear power in global electricity mix stable at less than 11% for a third year in a row. AREVA, technically bankrupt, downgraded to 'junk' by Standard and Poor's, sees its share value plunge to a new historic low on 9 July 2015-a value loss of 90 percent since 2007 China, Germany, Japan-three of the world's four largest economies-plus Brazil, India, Mexico, the Netherlands, and Spain, now all generate more electricity from non-hydro renewables than from nuclear power. These eight countries represent more than three billion people or 45 percent of the world's population. In the UK, electricity output from renewable sources, including hydropower, overtook the output from nuclear. Compared to 1997, when the Kyoto Protocol on climate change was signed, in 2014 there was an additional 694 TWh per year of wind power and 185 TWh of solar photovoltaics- each exceeding nuclear's additional 147 TWh

  17. Nuclear energy in a nuclear weapon free world

    Energy Technology Data Exchange (ETDEWEB)

    Pilat, Joseph [Los Alamos National Laboratory

    2009-01-01

    The prospect of a nuclear renaissance has revived a decades old debate over the proliferation and terrorism risks of the use of nuclear power. This debate in the last few years has taken on an added dimension with renewed attention to disarmament. Increasingly, concerns that proliferation risks may reduce the prospects for realizing the vision of a nuclear-weapon-free world are being voiced.

  18. The world nuclear power engineering. 1998 year

    International Nuclear Information System (INIS)

    Preobrazhenskaya, L.B.

    2000-01-01

    The purpose of this article consists in the analysis of the state and prospects of the world nuclear power engineering development. The data on the ratio and value of electrical energy obtained at the NPPs in the world in 1998, the specific capital expenditures on the NPPs construction by 2005, the forecast for the capacity of all NPPs by 2020 are presented. The progress in developing nuclear power engineering conditioned by improvement of the NPPs operation, optimization of their life-cycle and developing of new NPPs projects is noted [ru

  19. Prospects for the world nuclear energy market

    Energy Technology Data Exchange (ETDEWEB)

    1976-04-01

    Over the last few years projections of nuclear power generating capacity growth for the next two decades have progressively decreased. Dwindling load growth, increasing load lead time, costs of delays and high cost inflation, industrial recession, and fuel cycle delays are discussed as the main causes of the setback. The state of the fuel cycle business in the world market is examined and data are presented and discussed for predicted world supply and demand. Nuclear plans and fuel policies and requirements are then examined for individual countries.

  20. Nuclear energy and the developing world

    International Nuclear Information System (INIS)

    Mustafa, A.

    1982-01-01

    The importance of cooperation between the developed and developing countries with regard to nuclear power is discussed. Moves towards global interdependence were strengthened when OAPEC was set up with proposals for cooperation and depletion of world reserves of gas and oil will encourage this. Developing countries will increasingly look to nuclear power to meet their energy needs, particularly in the light of depleting oil and gas reserves, their increasing cost and the possible 'greenhouse effect' produced by fossil fuels. International cooperation concerning uranium reserves, reprocessing and technology transfer may need World Bank funding. (U.K.)

  1. The World Nuclear University Summer Institute

    International Nuclear Information System (INIS)

    Rivard, D.; McIntyre, M.

    2007-01-01

    The World Nuclear University (WNU) Summer Institute is a six weeks intensive training program aimed to develop a global leadership in the field of nuclear sciences and technologies. The topics covered include global setting, international regimes, technology innovation and nuclear industry operations. This event has been held annually since 2005. Mark McIntyre and Dominic Rivard attended this activity as a personal initiative. In this paper they will present the WNU and its Summer Institute, share their participation experience and discuss as well of some technical content covered during the Institute, highlighting the benefits this brought to their careers. (author)

  2. Evaluation of the cracking by stress corrosion in nuclear reactor environments type BWR

    International Nuclear Information System (INIS)

    Arganis J, C. R.

    2010-01-01

    The stress corrosion cracking susceptibility was studied in sensitized, solution annealed 304 steel, and in 304-L welded with a heat treatment that simulated the radiation induced segregation, by the slow strain rate test technique, in a similar environment of a boiling water reactor (BWR), 288 C, 8 MPa, low conductivity and a electrochemical corrosion potential near 200 mV. vs. standard hydrogen electrode (She). The electrochemical noise technique was used for the detection of the initiation and propagation of the cracking. The steels were characterized by metallographic studies with optical and scanning electronic microscopy and by the electrochemical potentiodynamic reactivation of single loop and double loop. In all the cases, the steels present delta ferrite. The slow strain rate tests showed that the 304 steel in the solution annealed condition is susceptible to transgranular stress corrosion cracking (TGSCC), such as in a normalized condition showed granulated. In the sensitized condition the steel showed intergranular stress corrosion cracking, followed by a transition to TGSCC. The electrochemical noise time series showed that is possible associated different time sequences to different modes of cracking and that is possible detect sequentially cracking events, it is means, one after other, supported by the fractographic studies by scanning electron microscopy. The parameter that can distinguish between the different modes of cracking is the re passivation rate, obtained by the current decay rate -n- in the current transients. This is due that the re passivation rate is a function of the microstructure and the sensitization. Other statistic parameters like the localized index, Kurtosis, Skew, produce results that are related with mixed corrosion. (Author)

  3. Nuclear energy education scenario around the world

    International Nuclear Information System (INIS)

    Barabas, Roberta de Carvalho; Sabundjian, Gaiane

    2013-01-01

    Nuclear energy has been used as a source of clean energy with many benefits. Nevertheless, it is still addressed with prejudice. The atomic bombing of Hiroshima and Nagasaki during World War II (1945), the Three Mile Island accident (1979), Chernobyl accident (1986), the crash of the cesium-137 in Goiana, Brazil (1987), and the recent accident in Fukushima (2011) may have been responsible for the negative image of nuclear energy. Researches on education have been conducted with students concerning the conceptual and practical issues of nuclear energy. This work aims to review the literature about nuclear energy education around the world in both, elementary school and high school. Since most educational researches on nuclear energy were published after 1980, this literature review covered the researches that have been published since 1980. The data were presented in chronological order. The results from the literature review provided a clear visualization of the global nuclear energy educational scenario, showing that the theme is still addressed with prejudice due to an incorrect view of nuclear energy and a limited view of its benefits. Concerning the science textbooks, the literature reports that the theme should be better addressed, encouraging students to research more about it. The data from this literature review will serve as a reference for a future proposal for a teaching training program for Brazilian science/physics high school teachers using a new teaching approach. (author)

  4. Nuclear energy education scenario around the world

    Energy Technology Data Exchange (ETDEWEB)

    Barabas, Roberta de Carvalho; Sabundjian, Gaiane, E-mail: praroberta@uol.com.br, E-mail: gdjian@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-07-01

    Nuclear energy has been used as a source of clean energy with many benefits. Nevertheless, it is still addressed with prejudice. The atomic bombing of Hiroshima and Nagasaki during World War II (1945), the Three Mile Island accident (1979), Chernobyl accident (1986), the crash of the cesium-137 in Goiana, Brazil (1987), and the recent accident in Fukushima (2011) may have been responsible for the negative image of nuclear energy. Researches on education have been conducted with students concerning the conceptual and practical issues of nuclear energy. This work aims to review the literature about nuclear energy education around the world in both, elementary school and high school. Since most educational researches on nuclear energy were published after 1980, this literature review covered the researches that have been published since 1980. The data were presented in chronological order. The results from the literature review provided a clear visualization of the global nuclear energy educational scenario, showing that the theme is still addressed with prejudice due to an incorrect view of nuclear energy and a limited view of its benefits. Concerning the science textbooks, the literature reports that the theme should be better addressed, encouraging students to research more about it. The data from this literature review will serve as a reference for a future proposal for a teaching training program for Brazilian science/physics high school teachers using a new teaching approach. (author)

  5. Assessment and management of ageing of major nuclear power plant components important to safety: Metal components of BWR containment systems

    International Nuclear Information System (INIS)

    2000-10-01

    At present, there are over four hundred operational nuclear power plants (NPPs) in IAEA Member States. Operating experience has shown that ineffective control of the ageing degradation of the major NPP components (e.g. caused by unanticipated phenomena and by operating, maintenance or manufacturing errors) can jeopardize plant safety and also plant life. Ageing in these NPPs must therefore be effectively managed to ensure the availability of design functions throughout the plant service life. From the safety perspective, this means controlling within acceptable limits the ageing degradation and wear-out of plant components important to safety so that adequate safety margins remain, i.e. integrity and functional capability in excess of normal operating requirements. This TECDOC is one in a series of reports on the assessment and management of ageing of the major NPP components important to safety. The reports are based on experience and practices of NPP operators, regulators, designers, manufacturers, and technical support organizations and a widely accepted Methodology for the Management of Ageing of NPP Components Important to Safety, which was issued by the IAEA in 1992. The current practices for the assessment of safety margins (fitness for service) and the inspection, monitoring and mitigation of ageing degradation of selected components of Canada deuterium-uranium (CANDU) reactors, boiling water reactors (BWRs), pressurized water reactors (PWRs), and water moderated, water cooled energy reactors (WWERs) are documented in the reports. These practices are intended to help all involved directly and indirectly in ensuring the safe operation of NPPs, and to provide a common technical basis for dialogue between plant operators and regulators when dealing with age related licensing issues. The guidance reports are directed toward technical experts from NPPs and from regulatory, plant design, manufacturing and technical support organizations dealing with specific

  6. Nuclear-coupled thermal-hydraulic nonlinear stability analysis using a novel BWR reduced order model. Pt. 1. The effects of using drift flux versus homogeneous equilibrium models

    International Nuclear Information System (INIS)

    Dokhane, A.; Henning, D.; Chawla, R.; Rizwan-Uddin

    2003-01-01

    BWR stability analysis at PSI, as at other research centres, is usually carried out employing complex system codes. However, these do not allow a detailed investigation of the complete manifold of all possible solutions of the associated nonlinear differential equation set. A novel analytical, reduced order model for BWR stability has been developed at PSI, in several successive steps. In the first step, the thermal-hydraulic model was used for studying the thermal-hydraulic instabilities. A study was then conducted of the one-channel nuclear-coupled thermal-hydraulic dynamics in a BWR by adding a simple point kinetic model for neutron kinetics and a model for the fuel heat conduction dynamics. In this paper, a two-channel nuclear-coupled thermal-hydraulic model is introduced to simulate the out-of phase oscillations in a BWR. This model comprises three parts: spatial mode neutron kinetics with the fundamental and fist azimuthal modes; fuel heat conduction dynamics; and thermal-hydraulics model. This present model is an extension of the Karve et al. model i.e., a drift flux model is used instead of the homogeneous equilibrium model for two-phase flow, and lambda modes are used instead of the omega modes for the neutron kinetics. This two-channel model is employed in stability and bifurcation analyses, carried out using the bifurcation code BIFDD. The stability boundary (SB) and the nature of the Poincare-Andronov-Hopf bifurcation (PAF-B) are determined and visualized in a suitable two-dimensional parameter/state space. A comparative study of the homogeneous equilibrium model (HEM) and the drift flux model (DFM) is carried out to investigate the effects of the DFM parameters the void distribution parameter C 0 and the drift velocity V gi -on the SB, the nature of PAH bifurcation, and on the type of oscillation mode (in-phase or out-of-phase). (author)

  7. The nuclear spread: a Third World view

    International Nuclear Information System (INIS)

    Kapur, A.

    1980-01-01

    The view of the Third World of nuclear power and international relations is contrasted with that of the superpowers. Aspects considered include the Non-Proliferation Treaty, factors for and against proliferation, regional and international environments, vertical versus horizontal proliferation. (U.K.)

  8. Map of the world's nuclear power plants

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    A pull-out wall chart is presented showing on a coloured map the locations of the world's nuclear power plants and indicating the type of reactor and number of units. The information is also included in an accompanying table which lists the stations alphabetically. (U.K.)

  9. German nuclear expansion: state, capital, world market

    International Nuclear Information System (INIS)

    Galvan, C.G.

    1988-01-01

    This paper intends to discuss the technological development as it happened in Germany or, better, it places in the scene of world market, where it did. In the attention center is the big achievement of pacific use of atomic technology: the nuclear power plants, which the new energy is used in electric generation. (C.M.)

  10. Nuclear weapons and the World Court ruling

    International Nuclear Information System (INIS)

    Singh, J.

    1998-01-01

    based on the initiatives by non-governmental organizations, the World Health Organisation (WHO) Assembly asked the International Court of Justice for an advisory opinion in 1993 whether, considering the environmental and health consequences, the use of nuclear weapons by a state in war or other armed conflict would be a breach of its obligations under international law. The World Court decided that it was not able to give an advisory opinion as requested, because of the fact that questions of use of force and such like were beyond the scope of specialized agencies like the WHO. The Court has ruled that the international community, especially the five nuclear weapon states have not only an obligation to negotiate a treaty for total nuclear disarmament, but also have an obligation to conclude such treaty. We may expect that the nuclear weapon states will cynically disregard the ruling of the World Court as they have been doing to the basic obligation itself in pursuit of nuclear hegemony. But the remaining 150 countries or so also bear a responsibility to keep nudging the recalcitrant states into implementing their commitments to disarm

  11. Safe nuclear power for the Third World

    International Nuclear Information System (INIS)

    Johnson, W.R.; Lyon, C.F.; Redick, J.R.

    1989-01-01

    It is clear that using nuclear power for the generation of electricity is one way of reducing the emissions of CO 2 and other gases that contribute to the greenhouse effect. Equally clear is the fact that the reduction can be magnified by converting domestic, commercial, and industrial power-consuming activities from the direct use of fossil fuel sources to electrical energy. A major area for future progress in limiting CO 2 emissions is in the Third World, where population growth and expectations for a higher social and economic standard of living portend vast increases in future energy use. A number of problems come to mind as one contemplates the widespread expansion of nuclear energy use into the Third World. The authors propose a method involving the marriage of two currently evolving concepts by which nuclear electrical generation can be expanded throughout the world in a manner that will address these problems. The idea is to form multinational independent electric generating companies, or nuclear electric companies (NECs), that would design, build, operate, and service a standardized fleet of nuclear power plants. The plants would be of the Integral Fast Reactor (IFR) design, now under development at Argonne National Laboratory, and, in particular, a commercial conceptualization of the IFR sponsored by General Electric Company, the Power Reactor Inherently Safe Module (PRISM)

  12. Nuclear physics accelerator facilities of the world

    International Nuclear Information System (INIS)

    1991-12-01

    this report is intended to provide a convenient summary of the world's major nuclear physics accelerator facility with emphasis on those facilities supported by the US Department of Energy (DOE). Previous editions of this report have contained only DOE facilities. However, as the extent of global collaborations in nuclear physics grows, gathering summary information on the world's nuclear physics accelerator facilities in one place is useful. Therefore, the present report adds facilities operated by the National Science Foundation (NSF) as well as the leading foreign facilities, with emphasis on foreign facilities that have significant outside user programs. The principal motivation for building and operating these facilities is, of course, basic research in nuclear physics. The scientific objectives for this research were recently reviewed by the DOE/NSF Nuclear Science Advisory Committee, who developed a long range plan, Nuclei, Nucleons, and Quarks -- Nuclear Science in the 1990's. Their report begins as follows: The central thrust of nuclear science is the study of strongly interacting matter and of the forces that govern its structure and dynamics; this agenda ranges from large- scale collective nuclear behavior through the motions of individual nucleons and mesons, atomic nuclei, to the underlying distribution of quarks and gluons. It extends to conditions at the extremes of temperature and density which are of significance to astrophysics and cosmology and are conducive to the creation of new forms of strongly interacting matter; and another important focus is on the study of the electroweak force, which plays an important role in nuclear stability, and on precision tests of fundamental interactions. The present report provides brief descriptions of the accelerator facilities available for carrying out this agenda and their research programs

  13. Elecnuc. Nuclear power plants in the world

    International Nuclear Information System (INIS)

    2000-01-01

    This small booklet summarizes in tables all the numerical data relative to the nuclear power plants worldwide. These data come from the French CEA/DSE/SEE Elecnuc database. The following aspects are reviewed: 1999 highlights; main characteristics of the reactor types in operation, under construction or on order; map of the French nuclear power plants; worldwide status of nuclear power plants at the end of 1999; nuclear power plants in operation, under construction and on order; capacity of nuclear power plants in operation; net and gross capacity of nuclear power plants on the grid and in commercial operation; grid connection forecasts; world electric power market; electronuclear owners and share holders in EU, capacity and load factor; first power generation of nuclear origin per country, achieved or expected; performance indicator of PWR units in France; worldwide trend of the power generation indicator; 1999 gross load factor by operator; nuclear power plants in operation, under construction, on order, planned, cancelled, shutdown, and exported; planning of steam generators replacement; MOX fuel program for plutonium recycling. (J.S.)

  14. The World Nuclear Industry Status Report 2014

    International Nuclear Information System (INIS)

    Schneider, Mycle; Froggatt, Antony; Ayukawa, Yurika; Burnie, Shaun; Piria, Raffaele; Thomas, Steve; Hazemann, Julie; Suzuki, Tatsujiro

    2014-07-01

    The World Nuclear Industry Status Report 2014 provides a comprehensive overview of nuclear power plant data, including information on operation, production and construction. The WNISR assesses the status of new-build programs in current nuclear countries as well as in potential newcomer countries. A 20-page chapter on nuclear economics looks at the rapidly changing market conditions for nuclear power plants, whether operating, under construction, or in the planning stage. Reactor vendor strategies and the 'Hinkley Point C Deal' are analyzed in particular. The performance on financial markets of major utilities is documented. The WNISR2013 featured for the first time a Fukushima Status Report that triggered widespread media and analyst attention. The 2014 edition entirely updates that Fukushima chapter. The Nuclear Power vs. Renewable Energy chapter that provides comparative data on investment, capacity, and generation has been greatly extended by a section on system issues. How does nuclear power perform in systems with high renewable energy share? Is this the end of traditional baseload/ peak-load concepts? Finally, the 45-page Annex 1 provides a country-by-country overview of all 31 countries operating nuclear power plants, with extended Focus sections on China, Japan, and the United States

  15. World nuclear fuel cycle requirements 1990

    International Nuclear Information System (INIS)

    1990-01-01

    This analysis report presents the projected requirements for uranium concentrate and uranium enrichment services to fuel the nuclear power plants expected to be operating under three nuclear supply scenarios. Two of these scenarios, the Lower Reference and Upper Reference cases, apply to the United States, Canada, Europe, the Far East, and other countries with free market economies (FME countries). A No New Orders scenario is presented only for the United States. These nuclear supply scenarios are described in Commercial Nuclear Power 1990: Prospects for the United States and the World (DOE/EIA-0438(90)). This report contains an analysis of the sensitivities of the nuclear fuel cycle projections to different levels and types of projected nuclear capacity, different enrichment tails assays, higher and lower capacity factors, changes in nuclear fuel burnup levels, and other exogenous assumptions. The projections for the United States generally extend through the year 2020, and the FME projections, which include the United States, are provided through 2010. The report also presents annual projections of spent nuclear fuel discharges and inventories of spent fuel. Appendix D includes domestic spent fuel projections through the year 2030 for the Lower and Upper Reference cases and through 2040, the last year in which spent fuel is discharged, for the No New Orders case. These disaggregated projections are provided at the request of the Department of Energy's Office of Civilian Radioactive Waste Management

  16. World electricity: will nuclear doubts affect growth

    International Nuclear Information System (INIS)

    Baum, Vladimir.

    1986-01-01

    The world has shown a healthy appetite for electricity even during the years of high energy prices. Between 1970 and 1985 worldwide electricity production increased by 92%, from 4,906.7 terawatt hours (TWh) to 9,421.7 TWh (1TWh = 10 9 KWh). In the same period total world energy consumption rose by 44.8% from 220.2 exajoules to 318.8 EJ (1 EJ = 23.88 million tonnes of oil equivalent). The major part of this growth occurred in the 1970s. Over the last five years, from 1980 to 1985, world energy consumption inched forward only by 7.2%, while notwithstanding widespread economic recession, electricity production advanced by 16.1%, with nuclear power responsible for an increasing share. These figures are tabulated and analysed on a worldwide regional basis. The amount of electricity produced by nuclear power plants is given, and the situation in particular countries noted. The projected future electricity demand and future nuclear electricity generating capacity are given. The effect of the Chernobyl incident is assessed. It may prove to be the beginning of the end of nuclear energy or just an unfortunate hiccough in its progress. (U.K.)

  17. Study of environmental noise in a BWR plant like the Nuclear Power Plant Laguna Verde; Estudio de ruido ambiental en una planta BWR como la Central Nuclear Laguna Verde

    Energy Technology Data Exchange (ETDEWEB)

    Tijerina S, F.; Cruz G, M.; Amador C, C., E-mail: francisco.tijerina@cfe.gob.mx [Comision Federal de Electricidad, Central Nucleoelectrica Laguna Verde, Subgerencia de Ingenieria, Carretera Cardel-Nautla Km. 42.5, Alto Lucero, Veracruz (Mexico)

    2013-10-15

    In all industry type the health costs generated by the noise are high, because the noise can cause nuisance and to harm the capacity to work when causing tension and to perturb the concentration, and in more severe cases to reach to lose the sense of the hearing in the long term. The noise levels in the industry have been designated for the different types of use like residential, commercial, and industrial and silence areas. The noise can cause accidents when obstructing the communications and alarm signs. For this reason the noise should be controlled and mitigated, at a low level as reasonably is possible, taking into account that the noise is an acoustic contamination. The present study determines a bases line of the environmental noise levels in a nuclear power plant BWR-5 as Laguna Verde, (like reference) to be able to determine and to give pursuit to the possible solutions to eliminate or to limit the noise level in the different job areas. The noise levels were registered with a meter of integrative noise level (sonometer) and areas of noise exposure levels mapping the general areas in the buildings were established, being the registered maximum level of 96.94 dba in the building of the Reactor-elevation 0.65 m under the operation conditions of Extended Power Up rate (EPU) of 120% PTN. Knowing that the exposition to noises and the noise dose in the job place can influence in the health and in the safety of the workers, are extensive topics that they should be analyzed for separate as they are: to) the effects in the health of the exposure to the noise, b) how measuring the noise, c) the methods and technologies to combat and to control the noise in the industry by part of engineering area and d) the function of the industrial safety bodies as delegates of the health and safety in the task against the noise in the job. (author)

  18. BWR AXIAL PROFILE

    International Nuclear Information System (INIS)

    Huffer, J.

    2004-01-01

    The purpose of this calculation is to develop axial profiles for estimating the axial variation in burnup of a boiling water reactor (BWR) assembly spent nuclear fuel (SNF) given the average burnup of an assembly. A discharged fuel assembly typically exhibits higher burnup in the center and lower burnup at the ends of the assembly. Criticality safety analyses taking credit for SNF burnup must account for axially varying burnup relative to calculations based on uniformly distributed assembly average burnup due to the under-burned tips. Thus, accounting for axially varying burnup in criticality analyses is also referred to as accounting for the ''end effect'' reactivity. The magnitude of the reactivity change due to ''end effect'' is dependent on the initial assembly enrichment, the assembly average burnup, and the particular axial profile characterizing the burnup distribution. The set of bounding axial profiles should incorporate multiple BWR core designs and provide statistical confidence (95 percent confidence that 95 percent of the population is bound by the profile) that end nodes are conservatively represented. The profiles should also conserve the overall burnup of the fuel assembly. More background on BWR axial profiles is provided in Attachment I

  19. The World Nuclear Industry Status Report 2017

    International Nuclear Information System (INIS)

    Schneider, Mycle; Froggatt, Antony; Hazemann, Julie; Katsuta, Tadahiro; Ramana, M.V.; Rodriguez, Juan C.; Ruedinger, Andreas; Stienne, Agnes

    2017-09-01

    The World Nuclear Industry Status Report 2017 (WNISR2017) provides a comprehensive overview of nuclear power plant data, including information on operation, production and construction. The WNISR assesses the status of new-build programs in current nuclear countries as well as in potential newcomer countries. The WNISR2017 edition includes a new assessment from an equity analyst view of the financial crisis of the nuclear sector and some of its biggest industrial players. The Fukushima Status Report provides not only an update on onsite and offsite issues six years after the beginning of the catastrophe, but also the latest official and new independent cost evaluations of the disaster. Focus chapters provide in-depth analysis of France, Japan, South Korea, the United Kingdom and the United States. The Nuclear Power vs. Renewable Energy chapter provides global comparative data on investment, capacity, and generation from nuclear, wind and solar energy. Finally, Annex 1 presents a country-by-country overview of all other countries operating nuclear power plants

  20. World's energy appetite may crave nuclear power

    International Nuclear Information System (INIS)

    Fulkerson, W.; Anderson, T.D.

    1996-01-01

    As scientists come to agree that global warming is a real phenomenon, it may be time to jumpstart the stalled nuclear industry. World population is expected to double by the end of the 21st century, and the lion's share of growth will be in developing nations. open-quotes More people and more economic activity will require more energy,close quotes say William Fulkerson, a senior fellow at the Joint Institute for Energy and the Environment in Knoxville, Tennessee, and Truman D. Anderson, formerly director of planning at Oak Ridge National Laboratory. There are only three viable options to fossil fuel plants, the authors say: nuclear fission, nuclear fusion, and such renewable energy sources as solar and wind. The advantages of nuclear energy are well known, the authors say. open-quotes It emits no greenhouse gases, and potentially it can be expanded almost without limit anywhere in the world, providing the controversies that surround it can be resolved.close quotes However, to garner public acceptance, a new generation of supersafe nuclear reactors, invulnerable to terrorism and conversion to weapons, will need to be developed, the authors say

  1. World nuclear fuel market. Seventeenth annual meeting

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    The papers presented at the seventeenth World Nuclear Fuels Market meeting are cataloged individually. This volume includes information on the following areas of interest: historical and current aspects of the uranium and plutonium market with respect to supply and demand, pricing, spot market purchasing, and other market phenomena; impact of reprocessing and recycling uranium, plutonium, and mixed oxide fuels; role of individual countries in the market: Hungary, Germany, the Soviet Union, Czechoslovakia, France, and the US; the impact of public opinion and radioactive waste management on the nuclear industry, and a debate regarding long term versus short term contracting by electric utilities for uranium and enrichment services

  2. Development and management of world nuclear power in 2012

    International Nuclear Information System (INIS)

    2012-01-01

    It deals with development and management of nuclear power of foreign countries by the 1st of January 2012 with tables and figures, which includes outline of investigation, operation experience of nuclear power plant of the world, the cardinal number according to the type of operating power plant of the world, using Mox of the world and site of nuclear power plant of the world. There are list of world nuclear power plant, explanation of abbreviations, address book of nuclear power plant of the world and table and figure of major nuclear fuel cycle.

  3. Instant release fraction corrosion studies of commercial UO2 BWR spent nuclear fuel

    Science.gov (United States)

    Martínez-Torrents, Albert; Serrano-Purroy, Daniel; Sureda, Rosa; Casas, Ignasi; de Pablo, Joan

    2017-05-01

    The instant release fraction of a spent nuclear fuel is a matter of concern in the performance assessment of a deep geological repository since it increases the radiological risk. Corrosion studies of two different spent nuclear fuels were performed using bicarbonate water under oxidizing conditions to study their instant release fraction. From each fuel, cladded segments and powder samples obtained at different radial positions were used. The results were normalised using the specific surface area to permit a comparison between fuels and samples. Different radionuclide dissolution patterns were studied in terms of water contact availability and radial distribution in the spent nuclear fuel. The relationship between the results of this work and morphological parameters like the grain size or irradiation parameters such as the burn-up or the linear power density was studied in order to increase the understanding of the instant release fraction formation.

  4. Instant release fraction corrosion studies of commercial UO{sub 2} BWR spent nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Martínez-Torrents, Albert, E-mail: albert.martinez@ctm.com.es [Fundació CTM Centre Tecnològic, Plaça de la Ciència 2, 08243 Manresa (Spain); Serrano-Purroy, Daniel [European Commission, DG Joint Research Centre - JRC, Directorate G - Nuclear Safety & Security, Department G.III, P.O. Box 2340, D-76125 Karlsruhe (Germany); Sureda, Rosa [Fundació CTM Centre Tecnològic, Plaça de la Ciència 2, 08243 Manresa (Spain); Casas, Ignasi [Department of Chemical Engineering, Universitat Politècnica de Catalunya – Barcelona Tech, Eduard Maristany 14, 08019 Barcelona (Spain); Pablo, Joan de [Fundació CTM Centre Tecnològic, Plaça de la Ciència 2, 08243 Manresa (Spain); Department of Chemical Engineering, Universitat Politècnica de Catalunya – Barcelona Tech, Eduard Maristany 14, 08019 Barcelona (Spain)

    2017-05-15

    The instant release fraction of a spent nuclear fuel is a matter of concern in the performance assessment of a deep geological repository since it increases the radiological risk. Corrosion studies of two different spent nuclear fuels were performed using bicarbonate water under oxidizing conditions to study their instant release fraction. From each fuel, cladded segments and powder samples obtained at different radial positions were used. The results were normalised using the specific surface area to permit a comparison between fuels and samples. Different radionuclide dissolution patterns were studied in terms of water contact availability and radial distribution in the spent nuclear fuel. The relationship between the results of this work and morphological parameters like the grain size or irradiation parameters such as the burn-up or the linear power density was studied in order to increase the understanding of the instant release fraction formation.

  5. Trouble at the world's nuclear dustbin

    International Nuclear Information System (INIS)

    Adkins, J.

    1984-01-01

    Radioactive discharges from the Windscale nuclear fuel reprocessing plant in England's lake district temporarily closed 15 miles of shoreline and continues to raise safety questions in this recreational area. The plant receives high-level radioactive wastes and spent fuel from 36 power plants around the world for reprocessing. The site is also a storage point for 1550 tons of oxide waste waiting for additional reprocessing capacity. Pipelines carry 2.2 million gallons of low-level wastes into the Irish Sea each day. Five hundred pounds of weapons grade plutonium also entered the sea from a World War II munitions depot. Accidents have also contributed to the radioactive debris that has accumulated on sandy beaches. Pressure from Greenpeace and the Barrow Action Group helped to expedite an extensive cleanup program, but activity on the beaches is still highly restricted. British Nuclear Fuels remains undaunted by its negative public relations problems. 4 figures

  6. Serpent: an alternative for the nuclear fuel cells analysis of a BWR

    International Nuclear Information System (INIS)

    Silva A, L.; Del Valle G, E.; Gomez T, A. M.

    2013-10-01

    In the last ten years the diverse research groups in nuclear engineering of the Universidad Nacional Autonoma de Mexico and Instituto Politecnico Nacional (UNAM, IPN), as of research (Instituto Nacional de Investigaciones Nucleares, ININ) as well as the personnel of the Nuclear Plant Management of the Comision Federal de Electricidad have been using the codes Helios and /or CASMO-4 in the generation of cross sections (X S) of nuclear fuel cells of the cores corresponding to the Units 1 and 2 of the nuclear power plant of Laguna Verde. Both codes belong to the Studsvik-Scandpower Company who receives the payment for the use and their respective maintenance. In recent years, the code Serpent appears among the nuclear community distributed by the OECD/Nea which does not has cost neither in its use neither in its maintenance. The code is based on the Monte Carlo method and makes use of the processing in parallel. In the Escuela Superior de Fisica y Matematicas of the IPN, the personnel has accumulated certain experience in the use of Serpent under the direction of personal of the ININ; of this experience have been obtained for diverse fuel burned, the infinite multiplication factor for three cells of nuclear fuel, without control bar and with control bar for a known thermodynamic state fixed by: a) the fuel temperature (T f ), b) the moderator temperature (T m ) and c) the vacuums fraction (α). Although was not realized any comparison with the X S that the codes Helios and CASMO-4 generate, the results obtained for the infinite multiplication factor show the prospective tendencies with regard to the fuel burned so much in the case in that is not present the control bar like when it is. The results are encouraging and motivate to the study group to continue with the X S generation of a core in order to build the respective library of nuclear data as a following step and this can be used for the codes PARCS, of USA NRC, DYN3D of HZDR, or others developed locally in the

  7. World nuclear fuel cycle requirements 1989

    International Nuclear Information System (INIS)

    1989-01-01

    This analysis report presents the projected requirements for uranium concentrate and uranium enrichment services to fuel the nuclear power plants expected to be operating under two nuclear supply scenarios. These two scenarios, the Lower Reference and Upper Reference cases, apply to the United States, Canada, Europe, the Far East, and other countries in the World Outside Centrally Planned Economic Areas (WOCA). A No New Orders scenarios is also presented for the Unites States. This report contains an analysis of the sensitivities of the nuclear fuel cycle projections to different levels and types of projected nuclear capacity, different enrichment tails assays, higher and lower capacity factors, changes in nuclear fuel burnup levels, and other exogenous assumptions. The projections for the United States generally extend through the year 2020, and the WOCA projections, which include the United States, are provided through 2010. The report also presents annual projections of spent nuclear fuel; discharges and inventories of spent fuel. Appendix D includes domestic spent fuel projections through the year 2020 for the Lower and Upper Reference cases and through 2036, the last year in which spent fuel is discharged, for the No New Orders case

  8. Calculation of the neutron flux and fluence in the covering of the nucleus and the vessel of a BWR; Calculo del flujo neutronico y fluencia en la envolvente del nucleo y la vasija de un reactor nuclear BWR

    Energy Technology Data Exchange (ETDEWEB)

    Martinez C, E.; Del Valle G, E. [IPN, Escuela Superior de Fisica y Matematicas, U. P. Adolfo Lopez Mateos, Col. Lindavista, 07738 Mexico D. F. (Mexico); Longoria G, L. C., E-mail: evalle@esfm.ipn.mx [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2011-11-15

    One of the main objectives related with the safety in any nuclear power plant, including the nuclear power plant of Laguna Verde, is to guarantee the structural integrity of the pressure vessel of the reactor. To identify and quantifying the damage caused be neutron irradiation in the vessel of any nuclear reactor, is necessary to know as much the neutron flux as the fluence that it has been receiving during their time of operation life, since the observables damages by means of tests mechanics are products of micro-structural effects, induced by neutron irradiation, therefore, is important the study and prediction of the neutron flux to have a better knowledge of the damage that are receiving these materials. In our calculation the code DORT was used, which solves the transport equation in discreet coordinates and in two dimensions (x-y, r-{theta} and r-z), in accord to the regulator guide, it requires to make and approach of the neutron flux in three dimensions by means of the Synthesis Method. Whit this method is possible to achieve a representation of the flux in 3D combining or synthesizing the calculated fluxes by DORT code in r-{theta}, r-z and r. In this work the application of the Synthesis Method is presented, according to the Regulator Guide 1.190, to determine the fluxes 3D in the interns of a BWR using three different space meshes. (Author)

  9. World nuclear performance report 2016. A new study by World Nuclear Association

    Energy Technology Data Exchange (ETDEWEB)

    Cobb, Jonathan [World Nuclear Association, London (United Kingdom)

    2016-08-15

    A larger number of nuclear power units are under construction than at any other time in the last 25 years, and with another ten new reactors coming online 2015 demonstrated improving new build performance all round. The existing global fleet, totally 439 by year-end, generated roughly 10 % of the world's electricity, making up around one-third of the world's low-carbon electricity supply. Nevertheless, there are challenges ahead for the global nuclear industry. The World Nuclear Association's vision for the future global electricity system consists of a diverse mix of low-carbon technologies - where renewables, nuclear and a fossil fuels work together in harmony to ensure a reliable, affordable and clean energy supply.

  10. World nuclear performance report 2016. A new study by World Nuclear Association

    International Nuclear Information System (INIS)

    Cobb, Jonathan

    2016-01-01

    A larger number of nuclear power units are under construction than at any other time in the last 25 years, and with another ten new reactors coming online 2015 demonstrated improving new build performance all round. The existing global fleet, totally 439 by year-end, generated roughly 10 % of the world's electricity, making up around one-third of the world's low-carbon electricity supply. Nevertheless, there are challenges ahead for the global nuclear industry. The World Nuclear Association's vision for the future global electricity system consists of a diverse mix of low-carbon technologies - where renewables, nuclear and a fossil fuels work together in harmony to ensure a reliable, affordable and clean energy supply.

  11. The moisture conditions of nuclear reactor concrete containment walls - an example for a BWR reactor

    Energy Technology Data Exchange (ETDEWEB)

    Nilsson, L.O.; Johansson, P. [Lund Institute of Technology, Laboratory of Building Materials, PO Box 118, 221 00 Lund (Sweden)

    2006-07-01

    A method is presented on how to quantify the moisture conditions of nuclear concrete containment walls. The method is based on first quantifying the boundary conditions at the outer and inner surfaces and then describing the moisture fixation and moisture transport within the concrete wall. The temperature and humidity conditions of the outdoor air and of the air close to the wall surfaces are monitored for a period of time and the vapour contents in the different points are compared. From the differences between the vapour contents the sources of moisture are identified and quantified. The previous and future climatic conditions are then predicted. An example is given for the conditions in the containment walls at Barsebaeck nuclear power plant, where moisture measurements have been performed in situ and on samples taken from the walls. (authors)

  12. Development of a dynamic model of a BWR nuclear power plant

    International Nuclear Information System (INIS)

    Nonboel, E.

    1975-12-01

    A description is given of a one-dimensional steady-state model of a high-pressure steam turbine, a low-pressure steam turbine, a moisture separator, a reheater, a condenser, feedwater heaters and feedwater pump for a nuclear power plant. The model is contained in the program ''TURBPLANT''. The dynamic part of this model is presented in part II of this report. (author)

  13. The world nuclear industry status report 2007

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, M.; Froggatt, A

    2007-11-15

    The status and perspectives of the nuclear industry in the world have been subject to a large number of publications and considerable media attention over the last few years. The present report attempts to provide solid elements of key information for intelligent analysis and informed decision-making. As of 1 November 2007 there are 439 nuclear reactors operating in the world. That is five less than five years ago. There are 32 units listed by the International Atomic Energy Agency (IAEA) as 'under construction'. That is about 20 less than in the late 1990's. In 1989 a total of 177 nuclear reactors had been operated in what are now the 27 EU Member States. That number shrank to 146 units as of 1 November 2007. In 1992 the Worldwatch Institute in Washington, WISE-Paris and Greenpeace International published the first World Nuclear Industry Status Report. As a first updated review in 2004 showed the 1992 analyses proved correct. In reality, the combined installed nuclear capacity of the 436 units operating in the world in the year 2000 was less than 352,000 megawatts - to be compared with the forecast of the International Atomic Energy Agency (IAEA) from the 1970's of up to 4,450,000 megawatts. Today the 439 worldwide operating reactors total 371,000 megawatts. Nuclear power plants provide 16% of the electricity, 6% of the commercial primary energy and 2-3% of the final energy in the world - the tendency is downwards - less than hydropower alone. Twenty-one of the 31 countries operating nuclear power plants decreased their share of nuclear power within the electricity mix if compared with 2003. The average age of the operating power plants is 23 years. Some nuclear utilities envisage reactor lifetimes of 40 years or more. Considering the fact that the average age of all 117 units that have already been closed is equally about 22 years, the doubling of the operational lifetime seems already rather optimistic. However, we have assumed an average

  14. The world nuclear industry status report 2007

    International Nuclear Information System (INIS)

    Schneider, M.; Froggatt, A.

    2007-11-01

    The status and perspectives of the nuclear industry in the world have been subject to a large number of publications and considerable media attention over the last few years. The present report attempts to provide solid elements of key information for intelligent analysis and informed decision-making. As of 1 November 2007 there are 439 nuclear reactors operating in the world. That is five less than five years ago. There are 32 units listed by the International Atomic Energy Agency (IAEA) as 'under construction'. That is about 20 less than in the late 1990's. In 1989 a total of 177 nuclear reactors had been operated in what are now the 27 EU Member States. That number shrank to 146 units as of 1 November 2007. In 1992 the Worldwatch Institute in Washington, WISE-Paris and Greenpeace International published the first World Nuclear Industry Status Report. As a first updated review in 2004 showed the 1992 analyses proved correct. In reality, the combined installed nuclear capacity of the 436 units operating in the world in the year 2000 was less than 352,000 megawatts - to be compared with the forecast of the International Atomic Energy Agency (IAEA) from the 1970's of up to 4,450,000 megawatts. Today the 439 worldwide operating reactors total 371,000 megawatts. Nuclear power plants provide 16% of the electricity, 6% of the commercial primary energy and 2-3% of the final energy in the world - the tendency is downwards - less than hydropower alone. Twenty-one of the 31 countries operating nuclear power plants decreased their share of nuclear power within the electricity mix if compared with 2003. The average age of the operating power plants is 23 years. Some nuclear utilities envisage reactor lifetimes of 40 years or more. Considering the fact that the average age of all 117 units that have already been closed is equally about 22 years, the doubling of the operational lifetime seems already rather optimistic. However, we have assumed an average lifetime of 40 years

  15. The World Nuclear University: Addressing global needs. London, 4 September 2003. Inauguration ceremony, World Nuclear University

    International Nuclear Information System (INIS)

    ElBaradei, M.

    2003-01-01

    For some time, there has been a growing awareness of the need for succession planning in the nuclear industry, to ensure that we cultivate a new generation of young people with the proper education and skills to replace the aging nuclear workforce as its members retire. Today's inauguration of the 'World Nuclear University' (WNU) is the most substantive action taken to date to address this need. This is a challenge, because the widespread perception clearly exists that nuclear energy is a dying field. The IAEA, with its constituency of 135 Member States, is hopeful that this will truly become a World Nuclear University. Almost 2 billion people, nearly one third of the population of the planet, remain without access to modern energy supplies - a shortfall that could be addressed, at least in part, by nuclear energy. But any major expansion in the future use of nuclear power will only be feasible if the nuclear industry is successful in developing innovative reactor and fuel cycle technology - as well as operational and regulatory approaches - that effectively address concerns related to cost competitiveness, safety and security, proliferation resistance and waste disposal. And global development needs go well beyond the electricity sector. The IAEA's recognition of these situations underlies our assistance to Member States, through which we try to address areas of high national priority wherever nuclear technology provides the best option for success. A significant part of that effort lies in the development of human capacity - through training and education in how to apply nuclear technology safely and effectively. 'Atoms for Peace' is a vision nearly five decades old, focused on using nuclear science for the advancement of humankind. It is my hope that this 'World Nuclear University' can be an effective instrument towards the achievement of that vision

  16. Review of world nuclear power programs

    International Nuclear Information System (INIS)

    Rippon, S.

    1978-01-01

    Political, economic and environmental decisions are still affecting the growth of nuclear power generation throughout the world, but there are signs that proven past performance and increasing prices of energy from conventional sources are becoming overriding factors. In the USA, some uncertainty has been created by the moratorium on reprocessing enacted by the 1978 Non-Proliferation Act. The uncertainty has spread to importers of nuclear fuel and technology, but there is increasing international acceptance of the International Nuclear Fuel Cycle Evaluation. Isotope separation capacity to be installed by the US government, by the joint European organization Urenco and by the French Eurodif should ease the supply of fuel. There is little progress on waste-management policy in the USA, but in Germany a company (DWK) has been formed and a site for a rocksalt repository has been designated at Gorleben. In the UK the Windscale inquiry has a positive significance for nuclear energy generally as well as for reprocessing. An inquiry in Sweden has also come to positive conclusions. The status of nuclear energy in these and a number of other countries is discussed in terms of political and national policies. (N.D.H.)

  17. Physical protection of nuclear facilities. Quarterly progress report, July--September 1978. [PWR; BWR

    Energy Technology Data Exchange (ETDEWEB)

    Chapman, L.D. (ed.)

    1979-01-01

    Major activities during the fourth quarter of FY78 included (1) the vital area analysis of operational reactors and characterization of the Standardized Nuclear Unit Power Plant System (SNUPPS), (2) the algorithm development of a new pathfinding computer code, (3) the completion of contractor-supported work for the component generic data base, (4) the refinement of tests related to human parameters modeling, and (5) the addition of improvements to and demonstration of the Safeguards Automated Facility Evaluation (SAFE), Safeguards Network Analysis Procedure (SNAP), and Fixed-Site Neutralization Model (FSNM) methodologies.

  18. Facility for processing the condensates from nuclear power plants (BWR and PWR)

    International Nuclear Information System (INIS)

    Lucker, Georges.

    1975-01-01

    A plant for the processing of the condensates from boiling water or pressurized water nuclear power plants is presented. A series of couples of units for the processing of the condensates through mixed beds of ion exchange resins simultaneously ensures the filtration and demineralization of the condensates. When the resins are saturated, each mixed bed is transferred into a unit of regeneration of said resins. Each processing unit is a sphere made of a stainless material, and provided with a plurality of air and water pipes allowing the admission and evacuation of the various elements to be successively controlled [fr

  19. Nuclear physics in colourful worlds. Quantumchromodynamics and nuclear binding

    International Nuclear Information System (INIS)

    Muether, H.; Engelbrecht, C.A.; Brown, G.E.

    1987-01-01

    When quantumchromodynamics (QCD) is generalized from SU(3) to an SU(N c ) gauge theory, where N c is the number of colours, it depends on only two parameters: N c and the bare quark mass m q . A more general understanding of nuclear physics can be achieved by considering what it would be like in worlds with the number of colours different from 3, and bare quark masses different from the 'empirical' ones. Such an investigation can be carried out within a framework of meson-exchange interactions. The empirical binding energy of nuclear matter results from a very near cancellation between attractive and repulsive terms which are two orders of magnitude larger and may be expected to depend sensitively on the parameters of QCD. It is indeed found that our world is wedged into a small corner of the two-dimensional manifold of m q versus N c . If the number of colours were decreased by one, or the bare quark masses raised by more than 20%, nuclear matter would become unbound. By tracing the origin of this state of affairs, one obtains a clearer picture of the relative importance of various effects on the behaviour of the bulk nuclear matter. In particular, correlations like those embodied in the Coester band of saturation points appear to have a broader degree of validity than is implied by fits to the actual physical world only. (orig.)

  20. Studies on the aseismatic property of BWR type nuclear power stations

    International Nuclear Information System (INIS)

    Kasai, Hiroaki

    1978-01-01

    The social requirements for the safety of nuclear power stations are very severe, and in Japan where earthquakes occur frequently, consideration is given so that reactors are shut off safely in case of very large earthquakes which scarcely occur and keep that state. Nuclear power stations are the integrated system combining numerous equipments so as to demonstrate the prescribed functions, and there is large difference in the roles regarding safety of respective equipments. Therefore it is important to maintain the overall safety effectively. All buildings, equipments and pipings are classified according to the degree of importance, and the design is carried out so as to give the aseismatic property corresponding to the degree of importance. The tests and researches concerning the aseismatic property are roughly divided into those for establishing reasonable design conditions, those concerning the improvement of accuracy of the analysis of earthquake response, and those concerning the demonstration of the maintenance of functions. In this paper, the recent state of typical examples is described, such as making of artificial earthquake waves, analysis of building-ground system, vibration experiment on fuel assemblies and demonstration test on control rod insertion. In case of carrying out the design with large earthquake acceleration, it is necessary to evaluate earthquake response accurately by the analysis close to reality. (Kako, I.)

  1. The situation of the nuclear energy in the world

    International Nuclear Information System (INIS)

    Souza, Jair Albo Marques de

    1996-12-01

    This work presents an overview of the nuclear energy in the world. It approaches the following main topics: kinds of nuclear power plants; operation experience of the nuclear plants; environmental and social aspects of the nuclear energy; economic aspects of the nuclear energy; development of the reactors technology and supply of the nuclear fuel

  2. The World Nuclear Industry Status Report 2016

    International Nuclear Information System (INIS)

    Schneider, Mycle; Froggatt, Antony; Hazemann, Julie; Katsuta, Tadahiro; Ramana, M.V.; Fairlie, Ian; Maltini, Fulcieri; Thomas, Steve; Kaaberger, Tomas

    2016-07-01

    The World Nuclear Industry Status Report 2015 provides a comprehensive overview of nuclear power plant data, including information on operation, production and construction. The WNISR assesses the status of new-build programs in current nuclear countries as well as in potential newcomer countries. Nuclear power generation in the world increased by 1.3%, entirely due to a 31% increase in China. Ten reactors started up in 2015-more than in any other year since 1990-of which eight were in China. Construction on all of them started prior to the Fukushima disaster. Eight construction starts in the world in 2015-to which China contributed six-down from 15 in 2010 of which 10 were in China. No construction starts in the world in the first half of 2016. The number of units under construction is declining for the third year in a row, from 67 reactors at the end of 2013 to 58 by mid-2016, of which 21 are in China. China spent over US$100 billion on renewables in 2015, while investment decisions for six nuclear reactors amounted to US$18 billion. Eight early closure decisions taken in Japan, Sweden, Switzerland, Taiwan and the U.S. Nuclear phase-out announcements in the U.S. (California) and Taiwan. In nine of the 14 building countries all projects are delayed, mostly by several years. Six projects have been listed for over a decade, of which three for over 30 years. China is no exception here, at least 10 of 21 units under construction are delayed. With the exception of United Arab Emirates and Belarus, all potential newcomer countries delayed construction decisions. Chile suspended and Indonesia abandoned nuclear plans. AREVA has accumulated US$11 billion in losses over the past five years. French government decides euro 5.6 billion bailout and breaks up the company. Share value 95 percent below 2007 peak value. State utility EDF struggles with US$ 41.5 billion debt, downgraded by S and P. Chinese utility CGN, EDF partner for Hinkley Point C, loses 60% of its share value

  3. Nuclear power for the Third World

    International Nuclear Information System (INIS)

    Egan, J.R.; Arungu-Olende, S.

    1980-01-01

    Two new technical developments greatly expand the potential market for nuclear reactors in the Third World by making them technically feasible for small electrical systems: a 200-megawatt-electric (MWe) prefabricated pressurized water reactor that can be mass-produced to provide electricity at costs approaching those realized by more common 1,000-MWe models; and a highly sophisticated sequential-logic control system for electrical-transmission systems. Together, these developments could expand the potential market for nuclear reactors in the developing countries by an additional 100 units or more in this century. In so doing, they threaten to retard development of the indigenous technological infrastructure that is critically important to less-developed countries

  4. From the nuclear world, no.5

    International Nuclear Information System (INIS)

    Anon.

    2016-01-01

    This document gathers information from around the world and concerning nuclear industry. The most relevant is the following. The British government has given its agreement for the construction of 2 EPR by EDF Energy at Hinkley Point. The Hinkley Point project will generate more than 1700 jobs in France. The EPR being built in Finland will operate in 2018. The electrical car is sustainable only in the countries where low-carbon electricity production is important which is the case of France thanks to nuclear energy. In the framework of the ICERR cooperation, 2 research reactors of CEA: Isis (Saclay) and RJH (being built at Cadarache) and their experimental facilities will be used by Slovenia, Tunisia and Morocco through joint research projects. In China 6 AP1000 units will be built on 3 sites in the Yangtze region. China and Turkey have signed an agreement concerning the organisation of nuclear safety authority. In Turkey a site for a 3. nuclear power plant is being selected. (A.C.)

  5. World nuclear fuel cycle requirements, 1988

    International Nuclear Information System (INIS)

    1988-01-01

    This report contains an analysis of the sensitivities of the nuclear fuel cycle projections to different levels and types of projected nuclear capacity, different enrichment tails assays, higher and lower capacity factors, changes in nuclear fuel burnup levels, and other exogenous assumptions. The projections for the United States generally extend through the year 2020, and the (WOCA) World Outside Centrally Planned Economic Areas projections, which include the United States, are provided through 2010. The report also presents annual projections of spent nuclear fuel discharges and inventories of spent fuel. Appendix E includes aggregated domestic spent fuel projections through the year 2020 for the Lower and Upper References cases and through 2037, the last year in which spent fuel is discharged, for the No New Orders case. Annual projections of spent fuel discharges through the year 2037 for individual US reactors in the No New Orders cases are included for the first time in Appendix H. These disaggregated projections are provided at the request of the Department of Energy's Office of Civilian Radioactive Waste Management

  6. Storing the world's spent nuclear fuel

    International Nuclear Information System (INIS)

    Barkenbus, J.N.; Weinberg, A.M.; Alonso, M.

    1985-01-01

    Given the world's prodigious future energy requirements and the inevitable depletion of oil and gas, it would be foolhardy consciously to seek limitations on the growth of nuclear power. Indeed, the authors continue to believe that the global nuclear power enterprise, as measured by installed reactor capacity, can become much larger in the future without increasing proliferation risks. To accomplish this objective will require renewed dedication to the non-proliferation regime, and it will require some new initiatives. Foremost among these would be the establishment of a spent fuel take-back service, in which one or a few states would retrieve spent nuclear fuel from nations generating it. The centralized retrieval of spent fuel would remove accessible plutonium from the control of national leaders in non-nuclear-weapons states, thereby eliminating the temptation to use this material for weapons. The Soviets already implement a retrieval policy with the spent fuel generated by East European allies. The authors believe that it is time for the US to reopen the issue of spent-fuel retrieval, and thus to strengthen its non-proliferation policies and the nonproliferation regime in general. 7 references

  7. World nuclear fuel cycle requirements 1985

    International Nuclear Information System (INIS)

    Moden, R.; O'Brien, B.; Sanders, L.; Steinberg, H.

    1985-01-01

    Projections of uranium requirements (both yellowcake and enrichment services) and spent fuel discharges are presented, corresponding to the nuclear power plant capacity projections presented in ''Commercial Nuclear Power 1984: Prospects for the United States and the World'' (DOE/EIA-0438(85)) and the ''Annual Energy Outlook 1984:'' (DOE/EIA-0383(84)). Domestic projections are provided through the year 2020, with foreign projections through 2000. The domestic projections through 1995 are consistent with the integrated energy forecasts in the ''Annual Energy Outlook 1984.'' Projections of capacity beyond 1995 are not part of an integrated energy foreccast; the methodology for their development is explained in ''Commercial Nuclear Power 1984.'' A range of estimates is provided in order to capture the uncertainty inherent in such forward projections. The methodology and assumptions are also stated. A glossary is provided. Two appendixes present additional material. This report is of particular interest to analysts involved in long-term planning for the disposition of radioactive waste generated from the nuclear fuel cycle. 14 figs., 18 tabs

  8. Development of remote control decontamination machines for BWR nuclear power plants

    International Nuclear Information System (INIS)

    Miyakawa, Minoru; Nozawa, Katsuro; Yamada, Masuji; Mizutani, Takeshi; Onozuka, Kazuaki

    1981-01-01

    The dose rate of radiation on the surfaces of equipments and in rooms tends to increase as radioactive substances accumulate with the continuous operation of nuclear power stations. The decontamination works to remove radioactive substances are carried out to prevent the exposure of workers in the case of inspection and repair. In order to reduce the exposure of decontamination workers, to save labor and to shorten decontamination time, Chubu Electric Power Co., Inc., has developed the decontamination machines for the walls of reactor wells, the walls and bottoms of equipment pits, the internal surfaces of suppression chambers, and the internal surfaces of tanks. The decontamination machines have several remote-handling functions: (a) brushing up with sprinkling against complicate surface such as a wall with step, (b) vertical transfer of brushing position with sucking force, (c) sucking out slurries under the water of storage pool or inside the pressure-supression pool, (d) horizontal transfer of suction position with electric motors. (J.P.N.)

  9. BWR zinc addition Sourcebook

    International Nuclear Information System (INIS)

    Garcia, Susan E.; Giannelli, Joseph F.; Jarvis, Alfred J.

    2014-01-01

    Boiling Water Reactors (BWRs) have been injecting zinc into the primary coolant via the reactor feedwater system for over 25 years for the purpose of controlling primary system radiation fields. The BWR zinc injection process has evolved since the initial application at the Hope Creek Nuclear Station in 1986. Key transitions were from the original natural zinc oxide (NZO) to depleted zinc oxide (DZO), and from active zinc injection of a powdered zinc oxide slurry (pumped systems) to passive injection systems (zinc pellet beds). Zinc addition has continued through various chemistry regimes changes, from normal water chemistry (NWC) to hydrogen water chemistry (HWC) and HWC with noble metals (NobleChem™) for mitigation of intergranular stress corrosion cracking (IGSCC) of reactor internals and primary system piping. While past reports published by the Electric Power Research Institute (EPRI) document specific industry experience related to these topics, the Zinc Sourcebook was prepared to consolidate all of the experience gained over the past 25 years. The Zinc Sourcebook will benefit experienced BWR Chemistry, Operations, Radiation Protection and Engineering personnel as well as new people entering the nuclear power industry. While all North American BWRs implement feedwater zinc injection, a number of other BWRs do not inject zinc. This Sourcebook will also be a valuable resource to plants considering the benefits of zinc addition process implementation, and to gain insights on industry experience related to zinc process control and best practices. This paper presents some of the highlights from the Sourcebook. (author)

  10. The World Nuclear University - A pillar of the nuclear renaissance

    Energy Technology Data Exchange (ETDEWEB)

    Nigon, Jean-Louis [World Nuclear University Working Groups, Carlton House, 22a St. James' s Square, London SW1Y 4JH (United Kingdom)

    2006-07-01

    The World Nuclear University was founded with the support of four leading international nuclear institutions - two of them inter-governmental organisations (IAEA and OECD/NEA), the other two bodies serving the industry and its operators (WNA and WANO). Inaugurated in September 2003 on the 50. anniversary of President Eisenhower's Atoms for Peace speech, the WNU started working a year later upon the arrival of the first staff members. Today there is a tremendous disparity in the nuclear industry between the pace of the unfolding nuclear renaissance, which is gathering momentum by the day, and the slower pace at which we are educating a new generation of nuclear scientists and engineers. The WNU aims to be instrumental in creating a network of leading institutions of nuclear learning in order to help fill this gap. The emerging worldwide partnership aims to: - Enhance nuclear education amongst its members, - Establish globally accepted standards in academic and professional qualification, and - Elevate the prestige of the nuclear profession. Prior to the establishment of WNU, many leading educational institutions of nuclear learning had already launched cooperation on a regional basis, as follows (country or region/network): United States/NEDHO (Nuclear Engineering Department Head Organization); Canada/UNENE (University Network of Excellence in Nuclear Engineering in Canada); Asia/ANENT (Asian Network for Education in Nuclear Technology); Europe/ENEN (European Nuclear Education Network); Russia/WNU Russian Branch. Thus the WNU can be seen to a certain extent as a 'network of networks', although it should be stressed that many of the current WNU members did not belong to already existing networks. By creating a global network, the WNU avoids the duplication of efforts and limits the total number of staff required. The WNU does not lose sight of the fact, however, that local problems should be solved locally. Ten Working Groups share between them the

  11. The World Nuclear University - A pillar of the nuclear renaissance

    International Nuclear Information System (INIS)

    Nigon, Jean-Louis

    2006-01-01

    The World Nuclear University was founded with the support of four leading international nuclear institutions - two of them inter-governmental organisations (IAEA and OECD/NEA), the other two bodies serving the industry and its operators (WNA and WANO). Inaugurated in September 2003 on the 50. anniversary of President Eisenhower's Atoms for Peace speech, the WNU started working a year later upon the arrival of the first staff members. Today there is a tremendous disparity in the nuclear industry between the pace of the unfolding nuclear renaissance, which is gathering momentum by the day, and the slower pace at which we are educating a new generation of nuclear scientists and engineers. The WNU aims to be instrumental in creating a network of leading institutions of nuclear learning in order to help fill this gap. The emerging worldwide partnership aims to: - Enhance nuclear education amongst its members, - Establish globally accepted standards in academic and professional qualification, and - Elevate the prestige of the nuclear profession. Prior to the establishment of WNU, many leading educational institutions of nuclear learning had already launched cooperation on a regional basis, as follows (country or region/network): United States/NEDHO (Nuclear Engineering Department Head Organization); Canada/UNENE (University Network of Excellence in Nuclear Engineering in Canada); Asia/ANENT (Asian Network for Education in Nuclear Technology); Europe/ENEN (European Nuclear Education Network); Russia/WNU Russian Branch. Thus the WNU can be seen to a certain extent as a 'network of networks', although it should be stressed that many of the current WNU members did not belong to already existing networks. By creating a global network, the WNU avoids the duplication of efforts and limits the total number of staff required. The WNU does not lose sight of the fact, however, that local problems should be solved locally. Ten Working Groups share between them the activities of the

  12. Analysis of dose rates received around the storage pool for irradiated control rods in a BWR nuclear power plant

    International Nuclear Information System (INIS)

    Rodenas, J.; Abarca, A.; Gallardo, S.

    2011-01-01

    BWR control rods are activated by neutron reactions in the reactor. The dose produced by this activity can affect workers in the area surrounding the storage pool, where activated rods are stored. Monte Carlo (MC) models for neutron activation and dose assessment around the storage pool have been developed and validated. In this work, the MC models are applied to verify the expected reduction of dose when the irradiated control rod is hanged in an inverted position into the pool.

  13. Development of a computer program of fast calculation for the pre design of advanced nuclear fuel 10 x 10 for BWR type reactors

    International Nuclear Information System (INIS)

    Perusquia, R.; Montes, J.L.; Ortiz, J.J.

    2005-01-01

    In the National Institute of Nuclear Research (ININ) a methodology is developed to optimize the design of cells 10x10 of assemble fuels for reactors of water in boil or BWR. It was proposed a lineal calculation formula based on a coefficients matrix (of the change reason of the relative power due to changes in the enrichment of U-235) for estimate the relative powers by pin of a cell. With this it was developed the computer program of fast calculation named PreDiCeldas. The one which by means of a simple search algorithm allows to minimize the relative power peak maximum of cell or LPPF. This is achieved varying the distribution of U-235 inside the cell, maintaining in turn fixed its average enrichment. The accuracy in the estimation of the relative powers for pin is of the order from 1.9% when comparing it with results of the 'best estimate' HELIOS code. With the PreDiCeldas it was possible, at one minimum time of calculation, to re-design a reference cell diminishing the LPPF, to the beginning of the life, of 1.44 to a value of 1.31. With the cell design with low LPPF is sought to even design cycles but extensive that those reached at the moment in the BWR of the Laguna Verde Central. (Author)

  14. BWR condensate filtration studies

    International Nuclear Information System (INIS)

    Wilson, J.A.; Pasricha, A.; Rekart, T.E.

    1993-09-01

    Poor removal of particulate corrosion products (especially iron) from condensate is one of the major problems in BWR systems. The presence of activated corrosion products creates ''hot spots'' and increases piping dose rates. Also, fuel efficiency is reduced and the risk of fuel failure is increased by the deposit of corrosion products on the fuel. Because of these concerns, current EPRI guidelines call for a maximum of 2 ppb of iron in the reactor feedwater with a level of 0.5 ppb being especially desirable. It has become clear that conventional deep bed resins are incapable of meeting these levels. While installation of prefilter systems is an option, it would be more economical for plants with naked deep beds to find an improved bead resin for use in existing systems. BWR condensate filtration technologies are being tested on a condensate side stream at Hope Creek Nuclear Generating Station. After two years of testing, hollow fiber filters (HFF) and fiber matrix filters (FMF), and low crosslink cation resin, all provide acceptable results. The results are presented for pressure drop, filtration efficiency, and water quality measurements. The costs are compared for backwashable non-precoat HFF and FMF. Results are also presented for full deep bed vessel tests of the low crosslink cation resin

  15. Summary of nuclear fuel reprocessing activities around the world

    International Nuclear Information System (INIS)

    Mellinger, P.J.; Harmon, K.M.; Lakey, L.T.

    1984-11-01

    This review of international practices for nuclear fuel reprocessing was prepared to provide a nontechnical summary of the current status of nuclear fuel reprocessing activities around the world. The sources of information are widely varied

  16. Connected analysis nuclear-thermo-hydraulic of parallel channels of a BWR reactor using distributed computation; Analisis acoplado nuclear-termohidraulico de canales paralelos de un reactor BWR empleando computacion distribuida

    Energy Technology Data Exchange (ETDEWEB)

    Campos Gonzalez, Rina Margarita

    2007-07-15

    This work consists of the integration of three models previously developed which are described widely in Literature: model of the thermo-hydraulic channel, model of the modal neutronic and the model of the recirculation bows. The tool used for this connection of models is the PVM system, Parallel Virtual Machine that allowed paralleling the model by means of the concept of distributed computation. The purpose of making this connection of models is the one of obtaining a more complete tool than better represents the real configuration and the phenomenology of the nucleus of a BWR reactor, thus obtaining better results. In addition to maintaining the flexibility to improve the resulting model at any time, since the very complex or sophisticated models are difficult to improve being impossible to modify the equations they use and can include variables that are not of primary importance in the tackled problem or that mask relations among variables due to the excess of results. Also maintaining the flexibility for adding component of models or systems of the BWR reactor, all of this following the modeling needs. The Swedish Ringhals power plant was chosen to characterize the resulting connected model for counting on a Stability Benchmark that offers the opportunity to count on real plant data. Besides that in case 9 of cycle 14 of this Benchamark oscillations outside phase appeared, which are from great interest because the detection systems that register the average of the power of the nucleus do not detect them. Additionally in this work the model of the recirculation bows as an independent module is obtained in an individual way, since this model belongs to another work and works connected to the reactor vessel. The model of the recirculation bows is able to model several transients of interest, as it is shown in the Appendix A of this work, among which are found the tripping of recirculation pumps or the transference at low or high velocity of them. The scope of the

  17. GARLIC-B. A digital code for real-time calculation of the transient behaviour of nodal and global core and plant parameters of BWR nuclear power plants

    International Nuclear Information System (INIS)

    Ercan, Y.; Hoeld, A.; Lupas, O.

    1982-04-01

    A program description of the code GARLIC-B is given. The code is based on a nonlinear transient model for BWR nuclear power plants which consist of a 3D-core, a top plenum, steam removal and feed water systems and a downcomer with main coolant recirculation pumps. The core is subdivided into a number of superboxes and flow channels with different coolant mass flow rates. Subcooled boiling within these channels has an important reactivity feed back effect and has to be taken also into account. The code computes the local and global core and plant transient situation as dependent on both the inherent core dynamics and external control actions, i.e., disturbances such as motions of control rod banks, changes of mass flow rates of coolant, feed water and steam outlet. The case of a pressure-controlled reactor operation is also considered. (orig./GL) [de

  18. Development of next BWR plant

    International Nuclear Information System (INIS)

    Moriya, Kumiaki; Tanikawa, Naoshi; Kinoshita, Shoichiro; Utena, Shunsuke

    1995-01-01

    It is expected that BWR power generation will be main nuclear power generation for long period hereafter, and in the ABWRs being constructed at present, the safety, reliability, operation performance, economical efficiency and so on are further heightend as compared with conventional BWRs. On the other hand, in order to cope with future social change, the move to develop the next reactor type following ABWRs was begun already by the cooperation of electirc power companies and plant manufacturers. Hitachi Ltd. has advanced eagerly the development of new light water reactors. Also the objective of BWR power generation hereafter is to heighten the safety, reliability, operation performance and economical efficiency, and the development has been advanced, aiming at bearing the main roles of nuclear power generation. At present, ABWRs are under construction as No. 6 and 7 plants in Kashiwazaki Kariwa Nuclear Power Station, Tokyo Electric Power Co., Inc. In order to let ABWRs take root, the further improvement of economy by the standardization, the rationalization by revising the specification and the improvement of machinery and equipment is necessary. As the needs of the development of next generation BWRs, the increase of power output, the heightening of safety and economical efficiency are discussed. The concept of the next generation BWR plant aiming at the start of operation around 2010 is shown. (K.I.)

  19. Development of next BWR plant

    Energy Technology Data Exchange (ETDEWEB)

    Moriya, Kumiaki; Tanikawa, Naoshi; Kinoshita, Shoichiro; Utena, Shunsuke [Hitachi Ltd., Ibaraki (Japan). Hitachi Works

    1995-04-01

    It is expected that BWR power generation will be main nuclear power generation for long period hereafter, and in the ABWRs being constructed at present, the safety, reliability, operation performance, economical efficiency and so on are further heightend as compared with conventional BWRs. On the other hand, in order to cope with future social change, the move to develop the next reactor type following ABWRs was begun already by the cooperation of electirc power companies and plant manufacturers. Hitachi Ltd. has advanced eagerly the development of new light water reactors. Also the objective of BWR power generation hereafter is to heighten the safety, reliability, operation performance and economical efficiency, and the development has been advanced, aiming at bearing the main roles of nuclear power generation. At present, ABWRs are under construction as No. 6 and 7 plants in Kashiwazaki Kariwa Nuclear Power Station, Tokyo Electric Power Co., Inc. In order to let ABWRs take root, the further improvement of economy by the standardization, the rationalization by revising the specification and the improvement of machinery and equipment is necessary. As the needs of the development of next generation BWRs, the increase of power output, the heightening of safety and economical efficiency are discussed. The concept of the next generation BWR plant aiming at the start of operation around 2010 is shown. (K.I.).

  20. State-of-the-art of world nuclear power

    International Nuclear Information System (INIS)

    Margulova, T.Kh.

    1987-01-01

    World-wide development of nuclear power is reviewed in short. It noted, that by the 1970 the overall capacity of world nuclear power plants have been reached 24 GW and the cost of nuclear power became equal the cost of power generated at coal-fired stations. By the end of 1985 the LWR-type reactors generated 87 per sent of overale nuclear capacity. Especially considerable developmet of nuclear power have been achieved in France, where 50 per sent of power consumption is provided with nuclear power

  1. INTERNET and information about nuclear sciences. The world wide web virtual library: nuclear sciences

    International Nuclear Information System (INIS)

    Kuruc, J.

    1999-01-01

    In this work author proposes to constitute new virtual library which should centralize the information from nuclear disciplines on the INTERNET, in order to them to give first and foremost the connection on the most important links in set nuclear sciences. The author has entitled this new virtual library The World Wide Web Library: Nuclear Sciences. By constitution of this virtual library next basic principles were chosen: home pages of international organizations important from point of view of nuclear disciplines; home pages of the National Nuclear Commissions and governments; home pages of nuclear scientific societies; web-pages specialized on nuclear problematic, in general; periodical tables of elements and isotopes; web-pages aimed on Chernobyl crash and consequences; web-pages with antinuclear aim. Now continue the links grouped on web-pages according to single nuclear areas: nuclear arsenals; nuclear astrophysics; nuclear aspects of biology (radiobiology); nuclear chemistry; nuclear company; nuclear data centres; nuclear energy; nuclear energy, environmental aspects of (radioecology); nuclear energy info centres; nuclear engineering; nuclear industries; nuclear magnetic resonance; nuclear material monitoring; nuclear medicine and radiology; nuclear physics; nuclear power (plants); nuclear reactors; nuclear risk; nuclear technologies and defence; nuclear testing; nuclear tourism; nuclear wastes; nuclear wastes. In these single groups web-links will be concentrated into following groups: virtual libraries and specialized servers; science; nuclear societies; nuclear departments of the academic institutes; nuclear research institutes and laboratories; centres, info links

  2. Reactors of different types in the world nuclear power

    International Nuclear Information System (INIS)

    Simonov, K.V.

    1991-01-01

    The status of the world nuclear power is briefly reviewed. It is noted that PWR reactors have decisive significance in the world power. The second place is related to gas-cooled graphite-moderated reactors. Channel-type heavy water moderated reactors are relatively important. Nuclear power future is associated with fast liquid-metal cooled breeder reactors

  3. Is a nuclear weapon-free world desirable?

    International Nuclear Information System (INIS)

    Tertrais, Bruno

    2009-01-01

    In this article, the author shows that a nuclear weapon-free world would probably be more dangerous than today's world because benefits of the existence of nuclear weapons are probably more important that the risks related to their existence. He outlines that nuclear deterrence has been very efficient for these last 65 years. He states that the disappearance of nuclear weapons could be envisaged only after a large transformation of safety conditions, but that such transformations are actually not at all under way. It would indeed require peaceful and democratic world governance

  4. Cost and implications of a middle-term program for storage of spent fuel in a nuclear power station (BWR)

    International Nuclear Information System (INIS)

    Mochon, J.L.; Quintana, R.

    1978-01-01

    The experience gained with the Cofrentes Nuclear Power Station Project is presented. Originally the station had two spent fuel storage pools, in the fuel building, plus a little pool inside the containment, and all were to be fitted with extensive aluminium storage racks with a total capacity for 1+-1/3 cores. Due to the present world situation with regard to the ''back-end''of the fuel cycle, it was decided to enlarge the pools size and to change the design of the racks, to obtain a final storage capacity of 5+-1/4 cores, so covering over 18 years of operation. The changes introduced in the project, as well as its costs, and the possibilities of election still open are examined in the paper. (author)

  5. Cost and implications of a middle-term program for storage of spent fuel in a nuclear power station (BWR)

    International Nuclear Information System (INIS)

    Mochon, J.L.; Quintana, R.

    1978-01-01

    The paper is based on the experience gained with the Cofrentes Nuclear Power Station Project. Originally, the station had two spent fuel storage pools, in the fuel building, plus a little pool inside the containment, and all were to be fitted with extensive aluminum storage racks with a total capacity for 1+1/3 cores. Due to the present world situation with regard to the 'back-end' of the fuel cycle, it was decided to enlarge the pools' size and to change the design of the racks, to obtain a final storage capacity of 5+1/4 cores, so covering over 18 years of operation. The changes introduced in the project, as well as its costs, and the possibilities of election still open are examined in the paper

  6. Investigation on Current Status of World Nuclear Education and Training

    International Nuclear Information System (INIS)

    Shin, J. Y.; Min, M. J.; Noh, B. C.

    2010-04-01

    All over the world, the interest of nuclear energy is increasing and the expectations of it are getting more as one of the most practical alternative energy resources. However, since 1990s, as a lot of nuclear specialists are being retired, now the problem of manpower shortage is taken into consideration for all of us and will be continued until 2011. In this point of view, the good quality of the professional nuclear training and education systems and the nuclear education centers are requested in order to breed and supply the next generation nuclear scientists and engineers. Thus, the objective of this study is to explore the current status of world nuclear education for both of nuclear power countries and potential nuclear power utilization countries in the near future. This report introduces the importance of nuclear energy, the current status of world nuclear power plants operation and the contribution of nuclear energy. Besides, it also includes the nuclear energy development plan of potential nuclear developing countries in the near future. In addition, this study also explores the nuclear training and education systems of the nuclear development countries and the current status of nuclear education in various fields such as government, industries, nuclear power plants ect. Especially, as considering the status of nuclear education classified such as Asia, the Americas, East and West Europe, the Middle East and Africa, it shows the different characteristics of nuclear education systems in each regions aimed to identify the good practices on the nuclear education systems. Finally, through observation of international cooperation and networks of the various nuclear organizations, this will be contributed to the development of nuclear education for member states and be suggested the various of the direction of development for nuclear education in Korea. The report presents in the basis of the recent status data of the world nuclear education systems collected

  7. Elecnuc. Nuclear power plants in the world

    International Nuclear Information System (INIS)

    2005-01-01

    This 2005 edition of the Elecnuc booklet summarizes in tables all numerical data relative to the nuclear power plants worldwide. These data come from the PRIS database managed by the IAEA. The following aspects are reviewed: 2004 highlights; main characteristics of reactor types; map of the French nuclear power plants on 2005/01/01; worldwide status of nuclear power plants at the end of 2004; units distributed by countries; nuclear power plants connected to the grid by reactor-type group; nuclear power plants under construction on 2004; evolution of nuclear power plant capacities connected to the grid; first electric generations supplied by a nuclear unit; electrical generation from nuclear power plants by country at the end 2004; performance indicator of PWR units in France; trend of the generation indicator worldwide; 2004 load factor by owners; units connected to the grid by countries at 12/31/2004; status of licence renewal applications in USA; nuclear power plants under construction at 12/31/2004; shutdown reactors; exported nuclear capacity in net MWe; exported and national nuclear capacity connected to the grid; exported nuclear power plants under construction or order; exported and national nuclear capacity under construction or order; recycling of plutonium in LWR; Mox licence plant projects; Appendix - historical development; acronyms, glossary

  8. Strategies of operation cycles in BWR type reactors

    International Nuclear Information System (INIS)

    Molina, D.; Sendino, F.

    1996-01-01

    The article analyzes the operation cycles in BWR type reactors. The cycle size of operation is the consequence on the optimization process of the costs with the technical characteristics of nuclear fuel and the characteristics of demand and production. The authors analyze the cases of Garona NP and Cofrentes NP, both with BWR reactors. (Author)

  9. World nuclear fuel cycle requirements 1991

    Energy Technology Data Exchange (ETDEWEB)

    1991-10-10

    The nuclear fuel cycle consists of mining and milling uranium ore, processing the uranium into a form suitable for generating electricity, burning'' the fuel in nuclear reactors, and managing the resulting spent nuclear fuel. This report presents projections of domestic and foreign requirements for natural uranium and enrichment services as well as projections of discharges of spent nuclear fuel. These fuel cycle requirements are based on the forecasts of future commercial nuclear power capacity and generation published in a recent Energy Information Administration (EIA) report. Also included in this report are projections of the amount of spent fuel discharged at the end of each fuel cycle for each nuclear generating unit in the United States. The International Nuclear Model is used for calculating the projected nuclear fuel cycle requirements. 14 figs., 38 tabs.

  10. Iran plans world's fourth biggest nuclear programme

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    Power requirements of projected power generation to 1992, and fuel reserves, in Iran are submitted. The current nuclear programme is outlined. 34000 MWe of nuclear power is planned for the end of the century. (U.K.)

  11. Elecnuc. Nuclear power plants in the world

    International Nuclear Information System (INIS)

    1998-01-01

    This small booklet summarizes in tables all the numerical data relative to the nuclear power plants worldwide. These data come from the French CEA/DSE/SEE Elecnuc database. The following aspects are reviewed: 1997 highlights; main characteristics of the reactor types in operation, under construction or on order; map of the French nuclear power plants; worldwide status of nuclear power plants at the end of 1997; nuclear power plants in operation, under construction and on order; capacity of nuclear power plants in operation; net and gross capacity of nuclear power plants on the grid and in commercial operation; forecasts; first power generation of nuclear origin per country, achieved or expected; performance indicator of PWR units in France; worldwide trend of the power generation indicator; nuclear power plants in operation, under construction, on order, planned, cancelled, shutdown, and exported; planning of steam generators replacement; MOX fuel program for plutonium recycling. (J.S.)

  12. World nuclear fuel cycle requirements 1991

    International Nuclear Information System (INIS)

    1991-01-01

    The nuclear fuel cycle consists of mining and milling uranium ore, processing the uranium into a form suitable for generating electricity, ''burning'' the fuel in nuclear reactors, and managing the resulting spent nuclear fuel. This report presents projections of domestic and foreign requirements for natural uranium and enrichment services as well as projections of discharges of spent nuclear fuel. These fuel cycle requirements are based on the forecasts of future commercial nuclear power capacity and generation published in a recent Energy Information Administration (EIA) report. Also included in this report are projections of the amount of spent fuel discharged at the end of each fuel cycle for each nuclear generating unit in the United States. The International Nuclear Model is used for calculating the projected nuclear fuel cycle requirements. 14 figs., 38 tabs

  13. Nuclear power and international cooperation - perceptions of the third world

    International Nuclear Information System (INIS)

    Khan, M.A.

    1983-01-01

    The views of the Third World that need to be given consideration in international nuclear policy-making are presented in the following topical sections: background summary of developing countries energy needs and sources, incentives for nuclear power development in developing countries, the need for nuclear cooperation, the Non-proliferation Treaty, erosion of confidence of the recipient states in the reliability of international cooperation agreements, and perceptions of the Third World regarding energy and proliferation

  14. Nuclear technology and the developing world

    International Nuclear Information System (INIS)

    Walsh, Kathleen

    2005-01-01

    The early 21st century has magnified the dangers posed by proliferation of weapons of mass destruction (WMD). Nonetheless, cooperative efforts to thwart this trade have grown considerably more difficult and the challenges more complicated. The ubiquitous nature of dual-use technology, the application of terrorist tactics for mass destruction on 9/11, the emergence of a more unilateralist US foreign policy, and the world's ever-expanding economic relations have all made more arduous the task of stemming proliferation of WMD, their precursors, and delivery systems. All of these challenges have been highlighted in recent years, but it is the last of these - the changing nature of the global economy- that is perhaps least analyzed but also most essential to improving international cooperation on nonproliferation. Many of today's proliferation concerns are familiar problems exacerbated by accelerating levels of international trade and investment. For example, controlling sensitive exports has become more complicated as officials, industry leaders, and nonproliferation experts must struggle simultaneously to find ways to ensure the flow of exports to legitimate buyers and supply chain partners who increasingly span the globe. Similarly, competitive enterprises today place a premium on rapid delivery and the speed of transactions. This in turn has increased pressures placed on officials around the world to reduce the time they spend evaluating each licensing decision, even as these assessments become more difficult as global investors move deeper into the developing world. Furthermore, the emergence of developing economies as second-tier suppliers with the potential to transship critically sensitive technologies to third parties is another complicating factor and a consequence of the globalizing economy. Science, technology, and industry research and development activities with dual-use applications are also becoming increasingly international endeavors, facilitated

  15. World nuclear power generation market and prospects of industry reorganization

    International Nuclear Information System (INIS)

    Murakami, Tomoko

    2007-01-01

    In late years there are many trends placing nuclear energy with important energy in various countries in the world due to a remarkable rise to an energy price, importance of energy security and a surge of recognition to a global environment problem. Overseas nuclear industry's acquisition by a Japanese nuclear power plant maker and its capital or business tie-up with an overseas company, were announced in succession in 2006. A nuclear power plant maker has played an extremely important role supporting wide technology in all stages of a design, construction, operation and maintenance in a nuclear power generation business. After having surveyed the recent trend of world nuclear power generation situation, a background and the summary of these acquisition/tie-ups made were investigated and analyzed to consider the influence that movement of such an industry gives a world nuclear power generation market. (T. Tanaka)

  16. Nuclear power : world and Australia - a long-term view

    Energy Technology Data Exchange (ETDEWEB)

    Ford, G W.K.

    1989-01-01

    Developments in world and Australian activities relating to nuclear power and the nuclear fuel cycle are reviewed. Main issues addressed include environment, energy sources, uranium mining, enrichment, reactor design, fuel reprocessing and waste disposal. The benefits for Australia through its involvement in all stages of the nuclear fuel cycle are also discussed.

  17. BWR type reactor core

    International Nuclear Information System (INIS)

    Tatemichi, Shin-ichiro.

    1981-01-01

    Purpose: To eliminate the variation in the power distribution of a BWR type reactor core in the axial direction even if the flow rate is increased or decreased by providing a difference in the void coefficient between the upper part and the lower parts of the reactor core, and increasing the void coefficient at the lower part of the reactor core. Constitution: The void coefficient of the lower region from the center to the lower part along the axial direction of a nuclear fuel assembly is increased to decrease the dependence on the flow rate of the axial power distribution of the nuclear fuel assembly. That is, a water/fuel ratio is varied, the water in non-boiled region is increased or the neutron spectrum is varied so as to vary the void coefficient. In order to exemplify it, the rate of the internal pellets of the fuel rod of the nuclear fuel assembly or the shape of the channel box is varied. Accordingly, the power does not considerably vary even if the flow rate is altered since the power is varied in the power operation. (Yoshihara, H.)

  18. Updating of the costs of the nuclear fuels of the equilibrium reloading of the A BWR and EPR reactors

    International Nuclear Information System (INIS)

    Ortega C, R.F.

    2008-01-01

    In the last two and a half years, the price of the uranium in the market spot has ascended of US$20.00 dollars by lb U 3O 8 in January, 2005 to a maximum of US$137.00 dollars by Ib U 3 O 8 by the middle of 2007. At the moment this price has been stabilized in US$90.00 dollars by Ib U 3 O 8 such for the market spot, like for the long term contracts. In this work the reasons of this increment are analyzed, as well as their impact in the fuel prices of the balance recharge of the advanced reactors of boiling water (A BWR) and of the advanced water at pressure reactors (EPR). (Author)

  19. Nuclear threshold countries in the Third World

    International Nuclear Information System (INIS)

    Stahl, K.

    1990-01-01

    The article analyses the nuclear-technological capacities and the danger of nuclear weapons proliferation in the six nuclear threshold countries: Argentina, Brazil, India, Pakistan, Israel and South Africa. All six states have developed sensitive nuclear facilities that are not covered by IAEA-safeguards. The risk of nuclear proliferation in Argentina and Brazil is considered at present as non-existent. The economic and especially the nuclear cooperation between the two states and the mutual visits of the unsafeguarded nuclear facilities has promoted a process of confidence building and political detente between them. The risk of nuclear weapons proliferation in the Middle East is considered high. It is estimated that Israel already has built up a nuclear weapons arsenal. The growing political influence of nationalistic groups in India and Pakistan, that favour a course of confrontation between the two states, have augmented the risk of nuclear proliferation in both states. South Africa is economically and militarily clearly dominating its black ruled neighbours. The Apartheid-regime is at present negociating with the nuclear weapons states about its adherence to the NPT, but demands political, economic and military concessions in exchange for its adherence to the treaty. (orig./HSCH) [de

  20. Directory of nuclear power plants in the world, 1985

    International Nuclear Information System (INIS)

    Fujii, Haruo

    1985-01-01

    This book presents technical information and estimates trends of load factors and construction costs of nuclear power plants. Particularly road maps indicating plants are drawn in, which would be practical in visiting them. The data used here are directly confirmed by operators in every part of the world. Therefore, they reflect up-to-date nuclear power developments and its future. This allows wide and exact understanding of world's nuclear power. Chapter 1 presents nuclear power growth around the world and estimates forecasts based on information from electric power companies: nuclear power growths and the growths in the number of reactors around the world, in WOCA (World outside the Centrally Planned Economies Area), in CPEA (Centrally Planned Economies Area) are analyzed in detail. Chapter 2 presents nuclear power plants on maps by country. The maps show exact locations of nuclear power plants with local cities around them, rivers and lakes. For convenience, symbols are given to aid in identifying the types of reactors. Chapter 3 presents general information of nuclear power plants. Also the addresses of operators, all segments of nuclear power supply industries and nuclear organizations are included. For convenience, the index of nuclear power plants is added. Chapter 4 presents technical information, road maps in large scales and photographs of nuclear power plants in the world. The road maps show exact locations of plants. Chapter 5 presents operating experiences, load factors, refuelling and maintenance outages. The trends of data are analyzed both regionally (WOCA, CPEA) and world-widely. Chapter 6 presents trends of construction costs, component costs as percent of total construction costs and direct costs, and construction durations. (J.P.N.)

  1. Current nuclear programmes in third world countries

    International Nuclear Information System (INIS)

    Gillespie, Anna.

    1992-01-01

    Since 1964, when China became the fifth declared nuclear weapons state NWS (joining the US, Soviet Union, Britain and France), no other state has openly declared a nuclear capacity. But four states - Israel, South Africa, India and Pakistan - are now believed to have such a capacity. This chapter will briefly document the nuclear weapons programmes of these four 'threshold' countries which possess the industrial infrastructure to enable them to produce nuclear weapons' but assiduously refrain from publicly expressing any interest in acquiring such weapons. The chapter will go on to discuss those states which are not on the threshold but which are attempting to become nuclear-capable through building the necessary technology or acquiring it on the international market. The political motivation for these countries to 'go nuclear', and the assistance they have received in this endeavour from the NWSs themselves, will also be discussed. (author)

  2. Nuclear weapons, a danger for our world

    International Nuclear Information System (INIS)

    Broda, E.

    1977-01-01

    This report is about an exhibition about the danger of the increasing amount of nuclear-weapons and was presented in the occasion of the second special meeting of the UN General Assembly (1982). This report describes the causes of a nuclear-war and analyses the causes of the bomb-drop of Hiroshima and Nagasaki as well as possible causes of a bombing of New York City and long-term-consequences of nuclear radiation. Furthermore it lists problems with a higher priority than the armament of nuclear-arms. (kancsar)

  3. The BWR Stability Issue

    International Nuclear Information System (INIS)

    D'Auria, F.

    2008-01-01

    The purpose of this paper is to supply general information about Boiling Water Reactor (BWR) stability. The main concerned topics are: phenomenological aspects, experimental database, modelling features and capabilities, numerical models, three-dimensional modelling, BWR system performance during stability, stability monitoring and licensing aspects.

  4. The role of nuclear power in the world

    International Nuclear Information System (INIS)

    Goodman, E.I.

    1977-01-01

    The role of nuclear energy in the world is discussed from the near term and long term. For the period through the mid 1980s sufficient nuclear capacity is considered critical to forestall serious shortages of oil and possible high prices leading to economic stagnation. Over the next 30-35 years it is estimated that world nuclear power will reach a capacity of approx. 3 million megawatts electrical when world electrical capacity will be about 8 million megawatts. With this nuclear capacity and if a annual growth rate of 5% is achieved for coal, oil and gas would remain at their present rate of consumption and would be increasingly reserved for specialized uses where substitution is not feasible. Caution is stressed, however, especially in using long term forecasts except for overall guidance and even in short term projections frequent up-dating and revision is recommended. The factors which have inhibited nuclear power growth are discussed including: 1) rapidly rising capital costs and financing problems, 2) rising and uncertain fuel cycle costs, 3) uncertainties in licensing and public acceptance. Despite the foregoing, nuclear power still retains an economic edge over fossil-fired units in substantial portions of the world. Assuming satisfactory solution of its major problems it is estimated that about 27-40% of the electrical capacity of developing countries will be nuclear by the year 2000. This nuclear capacity will comprise approx. 20% of the world's total nuclear power capacity around the turn of the century. (orig.) [de

  5. The world nuclear market and its prospects

    International Nuclear Information System (INIS)

    Anon.

    2010-07-01

    This market study of the nuclear industry presents: 1 - the dynamics of nuclear markets: organisation of the nuclear industry (fuel cycle, reactors), market analysis and key figures (uranium production, conversion and enrichment, fuel fabrication, reactor manufacturing, spent fuel reprocessing), strengths in presence and competition structure (companies ranking, market shares, positioning); 2 - nuclear renaissance and its basis: a suitable answer to the present day energy and environmental challenges (carbon-free energy and low volatility of fuel price), conjunction of favourable conditions (security of fuel supplies, political support, necessity of plants renewal), three main uncertainties (waste management, safety aspect, public opinion weight); 3 - perspectives of development at the 2030 prospects: data (scope of renaissance, market size), sector reconfiguration scenarios (evolution of competition, reconfiguration paths, concentration trend); 4 - analysis of the strategy of 13 companies, suppliers of the nuclear industry, with their key figures, positioning and strategy (production capacity, partnerships, external growth investments, new technical developments etc.). (J.S.)

  6. Synergistic failure of BWR internals

    International Nuclear Information System (INIS)

    Ware, A. G.; Chang, T.Y.

    1999-01-01

    Boiling Water Reactor (BWR) core shrouds and other reactor internals important to safety are experiencing intergranular stress corrosion cracking (IGSCC). The United States Nuclear Regulatory Commission has followed the problem, and as part of its investigations, contracted with the Idaho National Engineering and Environmental Laboratory to conduct a risk assessment. The overall project objective is to assess the potential consequences and risks associated with the failure of IGSCC-susceptible BWR vessel internals, with specific consideration given to potential cascading and common mode effects. An initial phase has been completed in which background material was gathered and evaluated, and potential accident sequences were identified. A second phase is underway to perform a simplified, quantitative probabilistic risk assessment on a representative high-power BWR/4. Results of the initial study conducted on the jet pumps show that any cascading failures would not result in a significant increase in the core damage frequency. The methodology is currently being extended to other major reactor internals components

  7. BWR control blade replacement strategies

    Energy Technology Data Exchange (ETDEWEB)

    Kennard, M W [Stoller Nuclear Fuel, NAC International, Pleasantville, NY (United States); Harbottle, J E [Stoller Nuclear Fuel, NAC International, Thornbury, Bristol (United Kingdom)

    2000-02-01

    The reactivity control elements in a BWR, the control blades, perform three significant functions: provide shutdown margin during normal and accident operating conditions; provide overall core reactivity control; and provide axial power shaping control. As such, the blades are exposed to the core's neutron flux, resulting in irradiation of blade structural and absorber materials. Since the absorber depletes with time (if B{sub 4}C is used, it also swells) and the structural components undergo various degradation mechanisms (e.g., embrittlement, corrosion), the blades have limits on their operational lifetimes. Consequently, BWR utilities have implemented strategies that aim to maximize blade lifetimes while balancing operational costs, such as extending a refuelling outage to shuffle high exposure blades. This paper examines the blade replacement strategies used by BWR utilities operating in US, Europe and Asia by assembling information related to: the utility's specific blade replacement strategy; the impact the newer blade designs and changes in core operating mode were having on those strategies; the mechanical and nuclear limits that determined those strategies; the methods employed to ensure that lifetime limits were not exceeded during operation; and blade designs used (current and replacement blades). (author)

  8. BWR control blade replacement strategies

    International Nuclear Information System (INIS)

    Kennard, M.W.; Harbottle, J.E.

    2000-01-01

    The reactivity control elements in a BWR, the control blades, perform three significant functions: provide shutdown margin during normal and accident operating conditions; provide overall core reactivity control; and provide axial power shaping control. As such, the blades are exposed to the core's neutron flux, resulting in irradiation of blade structural and absorber materials. Since the absorber depletes with time (if B 4 C is used, it also swells) and the structural components undergo various degradation mechanisms (e.g., embrittlement, corrosion), the blades have limits on their operational lifetimes. Consequently, BWR utilities have implemented strategies that aim to maximize blade lifetimes while balancing operational costs, such as extending a refuelling outage to shuffle high exposure blades. This paper examines the blade replacement strategies used by BWR utilities operating in US, Europe and Asia by assembling information related to: the utility's specific blade replacement strategy; the impact the newer blade designs and changes in core operating mode were having on those strategies; the mechanical and nuclear limits that determined those strategies; the methods employed to ensure that lifetime limits were not exceeded during operation; and blade designs used (current and replacement blades). (author)

  9. Compact modular BWR (CM-BWR)

    International Nuclear Information System (INIS)

    Fennern, Larry; Boardman, Charles; Carroll, Douglas G.; Hida, Takahiko

    2003-01-01

    A preliminary assessment has shown that a small 350 MWe BWR reactor can be placed within a close fitting steel containment vessel that is 7.1 meters inside diameter. This allows the technology and manufacturing capability currently used to fabricate large ABWR reactor vessels to be used to provide a factory fabricated containment vessel for a 350 MWe BWR. When a close fitted steel containment is combined with a passive closed loop isolation condenser system and a natural circulating reactor system that contains a large water inventory, primary system leaks cannot uncover the core. This eliminates many of the safety systems needed in response to a LOCA that are common to large, conventional plant designs including. Emergency Core Flooding, Automatic Depressurization System, Active Residual Heat Removal, Safety Related Auxiliary Cooling, Safety Related Diesel Generators, Hydrogen Re-Combiners, Ex-vessel Core Retention and Cooling. By fabricating the containment in a factory and eliminating most of the conventional safety systems, the construction schedule is shortened and the capital cost reduced to levels that would not otherwise be possible for a relatively small modular BWR. This makes the CM-BWR a candidate for applications where smaller incremental power additions are desired relative to a large ALWR or where the local infrastructure is not able to accommodate a conventional ALWR plant rated at 1350 MWe or more. This paper presents a preliminary design description of a Compact Modular BWR (CM-BWR) whose design features dramatically reduce the size and cost of the reactor building and associated safety systems. (author)

  10. Nuclear energy in the world future

    International Nuclear Information System (INIS)

    Haefele, W.; Jaek, W.

    1983-01-01

    Starting from the actual position in the electricity market nuclear energy will grow up to the stabilizing factor in this field. The market penetration of breeding and fusion systems, therefore, will be the next important milestones of nuclear energy development. On the other hand nuclear energy as well as the electric grid itself are good examples for the reconstruction of the non-electric energy market which is dominated by resource and environmental problems. To overcome these problems the installation of a refining step for fossil energy resources and a new transport system besides the electric grid are the next steps toward a crisis-proof energy supply system. (orig.) [de

  11. After the world court opinion: Towards a world without nuclear weapons

    International Nuclear Information System (INIS)

    Roche, D.

    1998-01-01

    With the World Court advisory opinion on the treat or use of nuclear weapons, a new moment has arrived in the 51-year history of atomic bomb. The highest legal body in the world has said that governments must not only pursue but conclude negotiations leading to total nuclear disarmament. Both a sharp focus and a comprehensive action are required in developing public support and political action towards a safer, more peaceful world. Three-pronged interrelated course of action is proposed: a Nuclear Weapon Convention; reduction in conventional arms and control of arms trade; and new spending priorities or sustainable development

  12. The nuclear spread: a third world view

    International Nuclear Information System (INIS)

    Kapur, A.

    1980-01-01

    The subject is discussed under the following sections: introduction to Non-Proliferation Treaty; background factors (context in which nuclear weapon states, non-nuclear weapon states and prominent hard-core potential proliferators must operate); the NPT constituency; proliferation factors for and against duality of decisions; vertical vs horizontal proliferation; implications for the NPT regime; a new approach; the 1980 agenda; regional security; the South Asian scene. (U.K.)

  13. Nuclear power plants 1995 - a world survey

    International Nuclear Information System (INIS)

    Anon.

    1996-01-01

    The atw Statistics Report compiled by atw lists 428 nuclear power plants with 363 397 gross MWe in operation in 30 countries in late 1995. Another 62 units with 55 180 gross MWe were under construction in 18 countries. This adds up to a total of 490 units with an aggregate 418 577 MWe. In the course of 1995 four units in four countries started commercial operation. In the survey of electricity generation in 1995 for which no information was made available from China and Kasachstan, a total of 417 nuclear power plants were covered. In the year under review they generated an aggregate 2 282 614 GWH, which is 3.4% more than in the previous year. The highest nuclear generation again was recorded in the USA with 705 771 GWh, followed by France with 377 021 GWh. The Grohnde power station in Germany attained the maximum annual production figure of 11 359 GWh. The survey includes nine tables indicating the generating performance of each nuclear power plant, the development of electricity generation in nuclear plants, and status of nuclear power plants at the end of 1995 arranged by countries, types of reactors, and reactor manufacturers. (orig.) [de

  14. A nuclear-weapon-free world and true disarmament

    International Nuclear Information System (INIS)

    Salvini, G.

    1999-01-01

    This preliminary note about is important to consider when discussing hopes of achieving a nuclear-weapon-free world. Without a serious effort to establish intelligent, powerful bodies to control and judge the behavior of the nations on Earth, whatever they future weapons may be, the objective to reach a nuclear-weapon-free world may even succeed, but it is not enough to stop wars and death. Even more than that: if taken alone, as the 'Great Way', it could prove negative, for it could slow down the general effort to achieve peace on out planet. A nuclear-weapon-free world is of course a very good idea but two points must be discussed: how to achieve the nuclear-weapon-free world; and what will happen afterwards. Some considerations on the second point are made

  15. World market of nuclear fuel: new capabilities and difficulties

    International Nuclear Information System (INIS)

    Maks, A.; Kening, R.

    1992-01-01

    History of beginning, state and development prospects of the world market of nuclear fuel are considered. In detail is discussed the role of countries, being at the former USSR territory, in the uranium production and its market deliveries

  16. GPE-BWR and the containment venting and filtering issue

    International Nuclear Information System (INIS)

    Palomo, J.; Santiago, J. de

    1988-01-01

    The Spanish Boiling Water Reactor Owner's Group (GPE-BWR) is formed by three utilities, owning four units: Santa Maria de Garona (46 MWe, BWR3, Mark I containment), Cofrentes (975 MWe, BWR6, Mark III containment) and Valdecaballeros (2x975 MWe, BWR6, Mark III containment) - all of the reactors having been supplied by General Electric. One of the GPE-BWR's several committees is the Safety and Licensing Committee, which follows up the evolution of severe accident topics and particularly the containment venting and filtering issue. In September 1987, the Consejo de Seguridad Nuclear (CSN), the Spanish Regulatory Body, asked the GPE-BWR to define its position on the installation of a containment venting system. The GPE-BWR created a Working Group which presented a Report on Containment Venting to the CSN in January 1987 gathered from: the US Nuclear Regulatory Commission (NRC); some US utilities; and several European countries, especially France, Germany and Sweden. CSN's review of the containment venting Report and the Action Plan proposed by the GPE-BWR finished in April 1988. The conclusion of the Report and the proposed Action Plan take into account the US NRC's identified open items on severe accidents and the R and D programs scheduled to close these items

  17. Can world answer the new nuclear necessity?

    International Nuclear Information System (INIS)

    Finon, D.

    2003-09-01

    Thanks to climatic change policies and to the prospective studies about the depletion of oil and gas reserves, a new chance will be given to nuclear energy. However, even if the nuclear industry has become more transparent, more attentive to the public preoccupations, and permanently looking for a demonstration of its safety, the institutional bases of its re-start up (the participating decision processes and the competing framework of electric markets) are much less favourable than those of its initial technological development. The future of nuclear energy is not warranted except if a strong consensus happens in dominating countries about the real or assumed catastrophic consequences of the greenhouse effect and if this sudden awareness changes the public opinion about the specific risks of nuclear energy and radioactive wastes. The uncertainty which will remain during, at least, the next 15 years will greatly complicate the choices of the nuclear industry and of the governments. For this reason, a paradoxical effort has to be made for the promotion of energy efficiency and renewable energy sources. (J.S.)

  18. U.S. Department Of Energy's nuclear engineering education research: highlights of recent and current research-II. 7. Hybrid Reactor Simulation and 3-D Information Display of BWR Out-of-Phase Oscillation

    International Nuclear Information System (INIS)

    Edwards, Robert; Huang, Zhengyu

    2001-01-01

    The real-time hybrid reactor simulation (HRS) capability of the Penn State TRIGA reactor has been recently expanded for BWR out-of-phase behavior. Out-of-phase oscillation is a phenomenon that occurs at BWRs. During this kind of event, half of the core can significantly oscillate out of phase with the other half, while the average power reported by the neutronic instrumentation may show a much lower amplitude for the oscillations. The HRS will be used for development and validation of stability monitoring and control techniques as part of an ongoing U.S. Department of Energy Nuclear Engineering Education and Research grant. The Penn State TRIGA reactor is used to simulate BWR fundamental mode power dynamics. The first harmonic mode power, together with detailed thermal hydraulics of boiling channels of both fundamental mode and first harmonic mode, is simulated digitally in real time with a computer. Simulations of boiling channels provide reactivity feedback to the TRIGA reactor, and the TRIGA reactor's power response is in turn fed into the channel simulations and the first harmonic mode power simulation. The combination of reactor power response and the simulated first harmonic power response with spatial distribution functions thus mimics the stability phenomena actually encountered in BWRs. The digital simulations of the boiling channels are performed by solving conservation equations for different regions in the channel with C-MEX S-functions. A fast three-dimensional (3-D) reactor power display of modal BWR power distribution was implemented using MATLAB graphics capability. Fundamental mode, first harmonic, together with the total power distribution over the reactor cross section, are displayed. Because of the large amount of computation for BWR boiling channel simulation and real-time data processing and graph generation, one computer is not sufficient to handle these jobs in the hybrid reactor simulation environment. A new three-computer setup has been

  19. The Nuclear Non-Proliferation Treaty: Regulating Nuclear Weapons around the World

    Science.gov (United States)

    Middleton, Tiffany Willey

    2010-01-01

    In May 2010, scientists, national security experts, and state delegates from nations around the world will convene in New York for the 2010 Nuclear Non-Proliferation Treaty Review Conference. They will review current guidelines for nuclear testing and possession of nuclear weapons in accordance with the Nuclear Non-Proliferation Treaty of 1968,…

  20. Nuclear safeguards and security in a changing world

    International Nuclear Information System (INIS)

    Badolato, E.V.

    1986-01-01

    Two major crises of 1986 - the Chernobyl nuclear accident and international terrorism have had the effect of making what everyone does even more critically important for U.S. national security and for the security of the world. Chernobyl can be a starting point for efforts to make nuclear power systems safer and more benign. It also poses very basic questions for nuclear arms control activities. A fundamental objective of the Administration's arms control policy is to achieve substantial and equitable reductions in U.S. and Soviet nuclear forces with effective verification. However, Chernobyl served to remind the U.S. once again of the obsessive secretiveness of the Soviet Union and the difficulties of obtaining information on Soviet nuclear weapon activities. All of this points to the importance of developing improved monitoring technologies and obtaining Soviet agreement on on-site inspection. Nuclear safeguards and security developments in response to a changing world are the topic of discussion in this paper

  1. Nuclear power for Third World countries: A necessary evil

    International Nuclear Information System (INIS)

    Ratsch, U.

    1984-01-01

    The possible role of nuclear energy for typical spheres of life and energy-related services in the Third World is discussed, starting alternatives to nuclear energy in each case. The sequence of the life spheres shows a categorization of the energy need as rural and urban. (DG) [de

  2. Nuclear power development around the world

    International Nuclear Information System (INIS)

    Rippon, Simon.

    1986-01-01

    In 1985, in the world as a whole, 43 power reactors with a total capacity of 42.7 GWe entered into regular commercial operation. Such is the dearth of orders, that by 1992 there may be no power reactors commissioned in the non-communist world, yet there are some encouraging prospects for the mid to late nineties. Performance, developments, prospects and political climate in the following areas are considered: USA, Western Europe, Eastern Europe, Finland, Japan, Taiwan, Republic of Korea, India, China, USSR, Egypt, Turkey and South America

  3. New nuclear projects in the world. Sustainable Nuclear Energy

    International Nuclear Information System (INIS)

    Leon, P. T.

    2011-01-01

    Nuclear power has experienced a major boom in the last few years, primarily because it is a non-CO 2 emitting energy source, it can be produced at competitive costs and it can boost a country's security of supply. there are still two issues to be addressed in relation to the currently used technologies: the degree to which the energy content of nuclear fuel is used, and wastes. A solution to both these aspects would ut nuclear power in the category of sustainable energy. The article provides details on current nuclear plans in the wold, the impact of the Fukushima accident on different countries nuclear plans and the European initiatives for sustainable nuclear energy development. (Author)

  4. Secondary systems of PWR and BWR

    International Nuclear Information System (INIS)

    Schindler, N.

    1981-01-01

    The secondary systems of a nuclear power plant comprises the steam, condensate and feedwater cycle, the steam plant auxiliary or ancillary systems and the cooling water systems. The presentation gives a general review about the main systems which show a high similarity of PWR and BWR plants. (orig./RW)

  5. Brave new worlds for nuclear medicine

    International Nuclear Information System (INIS)

    Cassels, Derek.

    1979-01-01

    This article of a general nature discusses the radioisotopes produced by the Atomic Energy of Canada Limited Commercial Products Division. Cobalt treatment units are being used successfully throughout the world and cobalt units are becoming increasingly important in sterilizing medical supplies. This technology may be extended to kill bacteria and insects responsible for food spoilage. (TI)

  6. Nuclear energy

    International Nuclear Information System (INIS)

    2007-01-01

    This digest document was written by members of the union of associations of ex-members and retired people of the Areva group (UARGA). It gives a comprehensive overview of the nuclear industry world, starting from radioactivity and its applications, and going on with the fuel cycle (front-end, back-end, fuel reprocessing, transports), the nuclear reactors (PWR, BWR, Candu, HTR, generation 4 systems), the effluents from nuclear facilities, the nuclear wastes (processing, disposal), and the management and safety of nuclear activities. (J.S.)

  7. Great expectations. Projections of nuclear power around the world

    International Nuclear Information System (INIS)

    McDonald, Alan; Rogner, Hans-Holger; Gritsevskyi, Andrii

    2009-01-01

    In its 2008 edition of Energy, Electricity and Nuclear Power Estimates for the Period to 2030, the International Atomic Energy Agency (IAEA) has again revised its projections for nuclear power upwards. Every year since 1981 the IAEA has published 2 updated projections for the world's nuclear power generating capacity, a low projection and a high projection. The low projection is a down to earth, business-as-usual projection. The high projection takes into account government and corporate announcements about longer-term plans for nuclear investments as well as potential new national policies, e.g., to combat climate change. The results for the 2008 projections are presented. In the low projection, the projected nuclear power capacity in 2030 is 473 GW(e), some 27% higher than today's 372 GW(e). In the high projection, nuclear capacity in 2030 is 748 GW(e), double today's capacity. But while projections for nuclear power's future rose, its share of the world's electricity generation today dropped from 15% in 2006 to 14% in 2007. The main reason is that while total global electricity generation rose 4.8% from 2007 to 2008, nuclear electricity actually dropped slightly. The overall message from the IAEA's 2008 edition of Energy, Electricity and Nuclear Power Estimates for the Period to 2030 is that global electricity use will grow significantly, that nuclear power will have to expand more rapidly than it has done recently in order to maintain its share, and that nuclear power can meet the challenge. (orig.)

  8. BWR plant analyzer development at BNL

    International Nuclear Information System (INIS)

    Cheng, H.S.; Wulff, W.; Mallen, A.N.; Lekach, S.V.; Stritar, A.; Cerbone, R.J.

    1985-01-01

    Advanced technology for high-speed interactive nuclear power plant simulations is of great value for timely resolution of safety issues, for plant monitoring, and for computer-aided emergency responses to an accident. Presented is the methodology employed at BNL to develop a BWR plant analyzer capable of simulating severe plant transients at much faster than real-time process speeds. Five modeling principles are established and a criterion is given for selecting numerical procedures and efficient computers to achieve the very high simulation speeds. Typical results are shown to demonstrate the modeling fidelity of the BWR plant analyzer

  9. Correlating activity incorporation with properties of oxide films formed on material samples exposed to BWR and PWR coolants in Finnish nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Bojinov, M.; Kinnunen, P.; Laitinen, T.; Maekelae, K.; Saario, T.; Sirkiae, P. [VTT Industrial Systems, Espoo (Finland); Buddas, T.; Halin, M.; Kvarnstroem, R.; Tompuri, K. [Fortum Power and Heat Oy, Loviisa Power Plant, Loviisa (Finland); Helin, M.; Muttilainen, E.; Reinvall, A. [Teollisuuden Voima Oy, Olkiluoto (Finland)

    2002-07-01

    The extent of activity incorporation on primary circuit surfaces in nuclear power plants is connected to the chemical composition of the coolant, to the corrosion behaviour of the material surfaces and to the structure and properties of oxide films formed on circuit surfaces due to corrosion. Possible changes in operational conditions may induce changes in the structure of the oxide films and thus in the rate of activity incorporation. To predict these changes, experimental correlations between water chemistry, oxide films and activity incorporation, as well as mechanistic understanding of the related phenomena need to be established. In order to do this, flow-through cells with material samples and facilities for high-temperature water chemistry monitoring have been installed at Olkiluoto unit 1 (BWR) and Loviisa unit 1 (PWR) in spring 2000. The cells are being used for two major purposes: To observe the changes in the structure and activity levels of oxide films formed on material samples exposed to the primary coolant. Correlating these observations with the abundant chemical and radiochemical data on coolant composition, dose rates etc. collected routinely by the plant, as well as with high-temperature water chemistry monitoring data such as the corrosion potentials of relevant material samples, the redox potential and the high-temperature conductivity of the primary coolant. We describe in this paper the scope of the work, give examples of the observations made and summarize the results on oxide films that have been obtained during one full fuel cycle at both plants. (authors)

  10. The new competition in the world market for nuclear reactors

    International Nuclear Information System (INIS)

    Finon, Dominique

    2014-01-01

    The current revival in the world market for nuclear reactors, notwithstanding Fukushima, completes the re-composition of the world's nuclear industry that started in the early 1990's and which has displaced nuclear power's centre of gravity towards Asia. In this new context, the capability to provide full-fledged financing for the buyers and to set up consortia that may include the operator have become major advantages at this stage, relegating to a lower order the ability to supply reactors with a high level of safety. (author)

  11. BWR type reactors

    International Nuclear Information System (INIS)

    Watanabe, Shoichi

    1986-01-01

    Purpose: To enable to remove water not by way of mechanical operation in a reactor core and improve the fuel economy in BWR type reactors. Constitution: A hollow water removing rod of a cross-like profile made of material having a smaller neutron absorption cross section than the moderator is disposed to the water gap for each of unit structures composed of four fuel assemblies, and water is charged and discharged to and from the water removing rod. Water is removed from the water removing rod to decrease the moderators in the water gap to carry out neutron spectrum shift operation from the initial to the medium stage of reactor core cycles. At the final stage of the cycle, airs in the water removing rod are extracted and the moderator is introduced. The moderator is filled and the criticality is maintained with the accumulated nuclear fission materials. The neutron spectrum shift operation can be attained by eliminating hydrothermodynamic instability and using a water removing rod of a simple structure. (Horiuchi, T.)

  12. BWR type reactor

    International Nuclear Information System (INIS)

    Okano, Shigeru.

    1992-01-01

    In a BWR type reactor, control rod drives are disposed in the upper portion of a reactor pressure vessel, and a control rod guide tube is disposed in adjacent with a gas/liquid separator at a same height, as well as a steam separator is disposed in the control rod guide tube. The length of a connection rod can be shortened by so much as the control rod guide tube and the gas/liquid separator overlapping with each other. Since the control rod guide tube and the gas/liquid separator are at the same height, the number of the gas/liquid separators to be disposed is decreased and, accordingly, even if the steam separation performance by the gas/liquid separator is lowered, it can be compensated by the steam separator of the control rod guide tube. In view of the above, since the direction of emergent insertion of the control rod is not against gravitational force but it is downward direction utilizing the gravitational force, reliability for the emergent insertion of the control rod can be further improved. Further, the length of the connection rod can be minimized, thereby enabling to lower the height of the reactor pressure vessel. The construction cost for the nuclear power plant can be reduced. (N.H.)

  13. Nuclear Policy and World Order: Why Denuclearization. World Order Models Project. Occasional Paper Number Two.

    Science.gov (United States)

    Falk, Richard A.

    The monograph examines the relationship of nuclear power to world order. The major purpose of the document is to stimulate research, education, dialogue, and political action for a just and peaceful world order. The document is presented in five chapters. Chapter I stresses the need for a system of global security to counteract dangers brought…

  14. Analysis of the microstructural evolution of the damage by neutron irradiation in the pressure vessel of a nuclear power reactor BWR

    International Nuclear Information System (INIS)

    Moranchel y R, M.

    2012-01-01

    Nuclear reactor pressure vessel type BWR, installed in Mexico and in many other countries, are made of an alloy of low carbon steel. The American Society for Testing and Materials (Astm) classifies this alloy as A533-B, class 1. Both the vessel and other internal structures are continuously exposed to the neutron flux from the reactions of fission in nuclear fuel. A large number of neutrons reach the vessel and penetrate certain depth depending on their energy. Its penetration in the neutron collides with the nuclei of the atoms out of their positions in the crystal lattice of steel, producing vacancies, interstitial, segregations, among other defects, capable of affecting its mechanical properties. Analyze the micro-structural damage to the vessel due to neutron irradiation, is essential for reasons of integrity of this enclosure and safety of any nuclear power plant. The objective of this thesis work is theoretical and experimentally determine the microstructural damage of a type nuclear reactor vessel steel BWR, due to neutron radiation from the reactor core, using microscopic and spectroscopic techniques as well as Monte Carlo simulation. Microscopy Optical, Scanning Electron Microscopy, Transmission Electron Microscopy, Energy Dispersion of X-rays Spectrometry and X-rays Diffractometry were the techniques used in this research. These techniques helped in the characterization of both the basis of design of pressure vessel steel and steel irradiated, after eight years of neutron irradiation on the vessel, allowing know the surface morphology and crystal structures of the previous steel and post-irradiation, analyze the change in the microstructure of the steel vessel, morphological damage to surface level in an irradiated sample, among which are cavities in the order of microns produced by Atomic displacements due to the impact of neutronic, above all in the first layers of thickness of the vessel, the effect of swelling, regions of greater damage and Atomic

  15. Paths to a nuclear world with reliable safeguards

    International Nuclear Information System (INIS)

    Zebroski, E.L.

    1978-01-01

    The effectiveness of safeguards in the nuclear industry in reducing proliferation is surveyed. Several basic topics relative to proliferation which are discussed are: (1) ''the recognition that 'proliferation' encompasses at least four different issues which may require distinct approaches and policies;'' (2) ''in the context of the regulatory process by which the perceived risks to society are managed;'' (3) ''in the context of the realistic options and objectives for an attainable world nuclear structure;'' and (4) ''in the perception of the public and of decision-makers of the attainable reduction in risks - and at what costs - and the recognition of the extent to which some costs have already been accrued.'' Options open to the world are: (1) a structured nuclear world, (2) an unstructured nuclear world, or (3) a benign energy world. Current US policy of denial of nuclear energy by indefinite delay is seen as indirectly pointing the US toward option 1 or 3, as the basic cause of American economic decline, and as a root cause of many international tensions resulting from the US decline. Certain alternate approaches to a breeder-type reactor program or to fuel reprocessing which should contribute to a more proliferation-resistant nuclear program are briefly discussed

  16. INIS: Nuclear information helping the world

    International Nuclear Information System (INIS)

    Atieh, T.

    2005-01-01

    The International Nuclear Information System of the IAEA, called INIS is the leading information source on peaceful application of nuclear sciences and technology. It is based on international cooperation and decentralized responsibilities. The INIS secretariat cooperates with 114 national and 19 international centres. INIS comprises more than 2.6 mill bibliographic references and more than 600 non-conventional full text papers. INIS assists the user to locate information in his/her field of interest over the time and informs about colleagues as well as the locations of research. INIS offers a single point of access to current and historical information, reliable and value-added information, ensures worldwide visibility for the researcher and addresses the need of developing and developed countries

  17. BWR Refill-Reflood Program. Final report

    International Nuclear Information System (INIS)

    Myers, L.L.

    1983-09-01

    The BWR Refill-Reflood Program is part of the continuing Loss of Coolant Accident (LOCA) research in the United States which is jointly sponsored by the Nuclear Regulatory Commission, the Electric Power Research Institute, and the General Electric Company. The current program expanded the focus of this research to include full scale experimental evaluations of multidimensional and multichannel effects during system refill. The program has also made major contributions to the BWR version of the Transient Reactor Analysis Code (TRAC) which has been developed cooperatively with the Idaho National Engineering Laboratory (INEL) for application to BWR transients. A summary description of the complete program is provided including the principal findings and main conclusions of the program. The results of the program have shown that multidimensional and parallel channel effects have the potential to significantly improve the system response over that observed in single channel tests

  18. Study and characterization of noble metal deposits on similar rusty surfaces to those of the reactor U-1 type BWR of nuclear power station of Laguna Verde

    International Nuclear Information System (INIS)

    Flores S, V. H.

    2011-01-01

    In the present investigation work, were determined the parameters to simulate the conditions of internal oxidation reactor circulation pipes of the nuclear power plant of Laguna Verde in Veracruz. We used 304l stainless steel cylinders with two faces prepared with abrasive paper of No. 600, with the finality to obtain similar surface to the internal circulation piping nuclear reactor. Oxides was formed within an autoclave (Autoclave MEX-02 unit B), which is a device that simulates the working conditions of the nuclear reactor, but without radiation generated by the fission reaction within the reactor. The oxidation conditions were a temperature of 280 C and pressure of 8 MPa, similar conditions to the reactor operating in nuclear power plant of Laguna Verde in Veracruz, Mexico (BWR conditions), with an average conductivity of 4.58 ms / cm and 2352 ppb oxygen to simulate normal water chemistry NWC. Were obtained deposits of noble metal oxides formed on 304l stainless steel samples, in a 250 ml autoclave at a temperature range of 180 to 200 C. The elements that were used to deposit platinum-rhodium (Pt-Rh) with aqueous Na 2 Pt (OH) 6 and Na 3 Rh (NO 2 ) 6 , Silver (Ag) with an aqueous solution of AgNO 3 , zirconium (Zr) with aqueous Zr O (NO 3 ) and ZrO 2 , and zinc (Zn) in aqueous solution of Zn (NO 3 ) 2 under conditions of normal water chemistry. Also there was the oxidation of 304l stainless steel specimens in normal water chemistry with a solution of Zinc (Zn) (NWC + Zn). Oxidation of the specimens in water chemistry with a solution of zinc (Zn + NWC) was prepared in two ways: within the MEX-02 autoclave unit A in a solution of zinc and a flask at constant temperature in zinc solution. The oxides formed and deposits were characterized by scanning electron microscopy, energy dispersive X-ray analysis, elemental field analysis and X-ray diffraction. By other hand was evaluated the electrochemical behavior of the oxides formed on the surface of 304l stainless steel

  19. World nuclear capacity and fuel cycle requirements 1992

    International Nuclear Information System (INIS)

    1992-12-01

    This analysis report presents the current status and projections of nuclear capacity, generation, and fuel cycle requirements for all countries in the world using nuclear power to generate electricity for commercial use. Long-term projections of US nuclear capacity, generation, fuel cycle requirements, and spent fuel discharges for three different scenarios through 2030 are provided in support of the Department of Energy's activities pertaining to the Nuclear Waste Policy Act of 1982 (as amended in 1987). The projections of uranium requirements also support the Energy Information Administration's annual report, Domestic Uranium Mining and Milling Industry: Viability Assessment for the Lower and Upper Reference case scenarios were obtained from the Office of Integrated Analysis and Forecasting, Energy Information Administration. Most of these projections were developed using the World Integrated Nuclear Evaluation System (WINES) model

  20. The World Nuclear University and its Summer Institute

    Energy Technology Data Exchange (ETDEWEB)

    Borysova, Irina [World Nuclear Association - WNA, Summer Institute of the World Nuclear University - WNU, 22a Saint James' s Sq., SW1Y 4JH London (United Kingdom)

    2008-07-01

    The World Nuclear University is a global partnership committed to enhancing international education and leadership in the peaceful applications of nuclear science and technology. The central elements of the WNU partnership are: - The global organizations of the nuclear industry: WNA and WANO; - The inter-governmental nuclear agencies: IAEA and OECD-NEA; - Leading institutions of nuclear learning in some thirty countries. The WNU was inaugurated in 2003 as a non-profit corporation. Operationally, the WNU is a public-private partnership. On the public side, the WNUCC's multinational secretariat is composed mainly of nuclear professionals supplied by governments; the IAEA further assists with financial support for certain WNU activities. On the private side, the nuclear industry provides administrative, logistical and financial support via the WNA. WNU activities fall into six programmatic categories: 1. Facilitate Multinational Academic Cooperation. 2. Build Nuclear Leadership. 3. Foster Policy Consensus on Institutional and Technological Innovation. 4. Enhance Public Understanding. 5. Shape Scientific and Regulatory Consensus on Issues Affecting Nuclear Operations. 6. Strengthen International Workforce Professionalism. This presentation will describe the WNU programmes addressed to young professionals. Among such programmes, the flagship of the WNU is the WNU Summer Institute. This unique six-week course occurs in a different country each year, offering an inspiring career opportunity for some 100 outstanding young nuclear professionals and academics from around the world. The WNU-SI programme combines an extensive series of 'big picture' presentations from world-class experts with daily team-building exercises. In the process, WNU Fellows become part of a global network of future nuclear leaders. Other WNU programmes for younger generation in the nuclear industry will also be briefly covered in this presentation. (author)

  1. World list of nuclear power plants

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    Twice each year Nuclear News sends a questionnaire to each utility or agency on this list, asking for corrections or additions to the information listed. In cases where a response is not received, we try to follow up by phone or facsimile, though this is not always possible for plants outside the United States. The criterion for listing a unit is that either an order or a letter of intent has been signed for the reactor. In cases where the definition of open-quotes letter of intentclose quotes may be ambiguous, or where a special situation exists, the judgment of the utility is followed as to whether a plant should be included

  2. Status and Trends of Nuclear Power World-wide

    International Nuclear Information System (INIS)

    Gueorguiev, B.; Spiegelberg-Planer, R.

    1996-01-01

    The reliable and adequate supply of energy, especially electricity, is necessary not only for economic development but to enhance the quality of life. Nuclear power is a proven technology which already supplies about 17% of the world''s electricity generation. In 1995, seven countries produce more than 40% of their electricity from nuclear power plants: Lithuanian, France, Belgium, Sweden, Bulgaria, Slovak and Hungary. It is quite clear that many countries are heavily reliant on nuclear power and are well beyond the point where nuclear power could be replaced by some other source, so, nuclear power remains one of the few technologically proven, economically promising and environmentally benign energy sources. An important factor in the continued development of nuclear power is the extent to which nuclear generated electricity remains economically competitive. Factors such as plant availability, standardisation of systems, components and equipment, as well as the cost of equipment to meet safety and environmental regulations play also an important role in determining the relative competitiveness of nuclear power plants. Many operating organizations have already impressive results in the reduction of plant unavailability. The number of nuclear power plants currently operating with annual availability factor exceeding 85% is increasing. Good performance of some operators should establish performance targets for operators everywhere. The International Atomic Energy Agency (IAEA) has the only international and almost complete information system, the Power Reactor Information System (PRIS) with nuclear power plant status and performance data. This paper presents the current status of nuclear power plants, according to information contained in the IAEA. It discusses the plant performance indicators available in PRIS and the improvement trend in the performance of nuclear power plants based on these indicators. It also presents the future trends of nuclear power focusing

  3. BWR stability analysis at Brookhaven National Laboratory

    International Nuclear Information System (INIS)

    Wulff, W.; Cheng, H.S.; Mallen, A.N.; Rohatgi, U.S.

    1991-01-01

    Following the unexpected, but safely terminated, power and flow oscillations in the LaSalle-2 Boiling Water Reactor (BWR) on March 9, 1988, the Nuclear Regulatory Commission (NRC) Offices of Nuclear Reactor Regulation (NRR) and of Analysis and Evaluation of Operational Data (AEOD) requested that the Office of Nuclear Regulatory Research (RES) carry out BWR stability analyses, centered around fourteen specific questions. Ten of the fourteen questions address BWR stability issues in general and are dealt with in this paper. The other four questions address local, out-of-phase oscillations and matters of instrumentation; they fall outside the scope of the work reported here. It was the purpose of the work documented in this report to answer ten of the fourteen NRC-stipulated questions. Nine questions are answered by analyzing the LaSalle-2 instability and related BWR transients with the BNL Engineering Plant Analyzer (EPA) and by performing an uncertainty assessment of the EPA predictions. The tenth question is answered on the basis of first principles. The ten answers are summarized

  4. Nuclear energy and the modern world

    International Nuclear Information System (INIS)

    1971-01-01

    The International Atomic Energy Agency is an autonomous organization within the United Nations system, with its headquarters in Vienna, Austria. Its objectives, as defined in its Statute, are to 'seek to accelerate and enlarge the contribution of atomic energy to peace, health and prosperity throughout the world', and to 'ensure, so far as it is able, that assistance provided by it or at its request or under its supervision or control is not used in such a way as to further any military purpose'. This issue of the Bulletin contains a series of articles describing some of the ways in which the Agency works to fulfil its role. (author)

  5. World nuclear capacity and fuel cycle requirements, November 1993

    International Nuclear Information System (INIS)

    1993-01-01

    This analysis report presents the current status and projections of nuclear capacity, generation, and fuel cycle requirements for all countries in the world using nuclear power to generate electricity for commercial use. Long-term projections of US nuclear capacity, generation, fuel cycle requirements, and spent fuel discharges for three different scenarios through 2030 are provided in support of the Department of Energy's activities pertaining to the Nuclear Waste Policy Act of 1982 (as amended in 1987). The projections of uranium requirements also support the Energy Information Administration's annual report, Domestic Uranium Mining and Milling Industry: Viability Assessment

  6. Nuclear weapons proliferation as a world order problem

    International Nuclear Information System (INIS)

    Falk, R.

    1977-01-01

    World-order concerns have intensified recently in light of mounting evidence that a weapons capability will soon be within easy reach of more and more governments and of certain nongovernmental groupings as well. One reliable source estimates that by 1985 as many as fifty countries could ''produce enough plutonium each year for at least several dozen nuclear explosives.'' In an even more immediate sense, ''economic competition among nuclear suppliers today could soon lead to a world in which twenty or more nations are but a few months from a nuclear weapons force.'' Three developments have created this ''world order'' sense of concern: (1) increased pace of civilian nuclear power deployment globally as a consequence of rising oil prices, unreliability of oil supplies, and reality of dwindling oil reserves in any case; (2) actuality of India's nuclear explosion in May 1974 which demonstrated vividly how any state that pursues a ''civilian'' program can also develop its own weapons capability; and (3) the intensification of competition for international nuclear sales which makes it increasingly evident that nonproliferation goals are no longer compatible with the pursuit of national commercial advantage; essentially, this reality has emerged from a break in the American monopoly over civilian nuclear technology and the willingness of French and German suppliers to provide all elements of the nuclear fuel cycle, including enrichment and reprocessing facilities,to any nation that feels it can afford to buy them; the German-Brazilian deal (worth at least $4 billion) has proven to be the equivalent in the commercial realm of India's ''peaceful'' nuclear explosion. Such developments disclose the alarming prospect that easier access to nuclear technology will make it relatively simple and thus more likely for a beleaguered government or a desperate political actor of any sort to acquire and possibly use nuclear weapons

  7. An analytical study on excitation of nuclear-coupled thermal-hydraulic instability due to seismically induced resonance in BWR

    Energy Technology Data Exchange (ETDEWEB)

    Hirano, Masashi [Japan Atomic Energy Research Institute, Ibaraki-ken (Japan)

    1997-07-01

    This paper describes the results of a scoping study on seismically induced resonance of nuclear-coupled thermal-hydraulic instability in BWRs, which was conducted by using TRAC-BF1 within a framework of a point kinetics model. As a result of the analysis, it is shown that a reactivity insertion could occur accompanied by in-surge of coolant into the core resulted from the excitation of the nuclear-coupled instability by the external acceleration. In order to analyze this phenomenon more in detail, it is necessary to couple a thermal-hydraulic code with a three-dimensional nuclear kinetics code.

  8. Organizational analysis and safety for utilities with nuclear power plants: an organizational overview. Volume 1. [PWR; BWR

    Energy Technology Data Exchange (ETDEWEB)

    Osborn, R.N.; Olson, J.; Sommers, P.E.; McLaughlin, S.D.; Jackson, M.S.; Scott, W.G.; Connor, P.E.

    1983-08-01

    This two-volume report presents the results of initial research on the feasibility of applying organizational factors in nuclear power plant (NPP) safety assessment. A model is introduced for the purposes of organizing the literature review and showing key relationships among identified organizational factors and nuclear power plant safety. Volume I of this report contains an overview of the literature, a discussion of available safety indicators, and a series of recommendations for more systematically incorporating organizational analysis into investigations of nuclear power plant safety.

  9. Organizational analysis and safety for utilities with nuclear power plants: perspectives for organizational assessment. Volume 2. [PWR; BWR

    Energy Technology Data Exchange (ETDEWEB)

    Osborn, R.N.; Olson, J.; Sommers, P.E.; McLaughlin, S.D.; Jackson, M.S.; Nadel, M.V.; Scott, W.G.; Connor, P.E.; Kerwin, N.; Kennedy, J.K. Jr.

    1983-08-01

    This two-volume report presents the results of initial research on the feasibility of applying organizational factors in nuclear power plant (NPP) safety assessment. Volume 1 of this report contains an overview of the literature, a discussion of available safety indicators, and a series of recommendations for more systematically incorporating organizational analysis into investigations of nuclear power plant safety. The six chapters of this volume discuss the major elements in our general approach to safety in the nuclear industry. The chapters include information on organizational design and safety; organizational governance; utility environment and safety related outcomes; assessments by selected federal agencies; review of data sources in the nuclear power industry; and existing safety indicators.

  10. Managing nuclear weapons in a changing world: Proceedings

    International Nuclear Information System (INIS)

    1992-01-01

    The Center for Security and Technology Studies was established at the Lawrence Livermore National Laboratory to support long-range technical studies on issues of importance to US national security. An important goal of the Center is to bring together Laboratory staff and the broader outside community through a program of technical studies, visitors, symposia, seminars, workshops, and publications. With this in mind, the Center and LLNL's Defense Systems Program sponsored a conference on Managing Nuclear Weapons in a Changing World held on November 17--18,1992. The first day of the meeting focused on nuclear weapons issues in the major geographical areas of the world. On the second day, the conference participants discussed what could be done to manage, control, and account for nuclear weapons in this changing world. Each of the talks and the concluding panel discussion are being indexed as separate documents

  11. Managing nuclear weapons in a changing world: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-31

    The Center for Security and Technology Studies was established at the Lawrence Livermore National Laboratory to support long-range technical studies on issues of importance to US national security. An important goal of the Center is to bring together Laboratory staff and the broader outside community through a program of technical studies, visitors, symposia, seminars, workshops, and publications. With this in mind, the Center and LLNL`s Defense Systems Program sponsored a conference on Managing Nuclear Weapons in a Changing World held on November 17--18,1992. The first day of the meeting focused on nuclear weapons issues in the major geographical areas of the world. On the second day, the conference participants discussed what could be done to manage, control, and account for nuclear weapons in this changing world. Each of the talks and the concluding panel discussion are being indexed as separate documents.

  12. WRENDA 83/84. World request list for nuclear data

    International Nuclear Information System (INIS)

    Piksaikin, V.

    1983-11-01

    WRENDA 83/84 is the eighth edition of the World Request List for Nuclear Data. This list is produced from a computer file of nuclear data requests, maintained by the Nuclear Data Section of the International Atomic Energy Agency (IAEA). The requests are provided by official bodies, such as national nuclear data committees, through four regional data centers serving all Member States of the IAEA. Each request included indicates: that the estimated accuracy of the nuclear data available does not satisfy the requirements encountered, and that, consequently, new data measurements and/or data evaluations with improved accuracy are highly desirable. WRENDA is intended to serve as a guide to experimentalists, evaluators and administrators when planning nuclear data measurement and evaluation programs. The requests in this edition come from 15 different countries and one international organization. (author)

  13. Nuclear power: a route out of world crisis

    International Nuclear Information System (INIS)

    Jeffs, Eric.

    1981-01-01

    Presentations at the Eleventh World Energy Conference in September 1980 are highlighted, with the emphasis on nuclear energy. High oil prices have adversely affected the economies of many countries, but especially the less developed countries (LDC). The extent to which nuclear power can help the LDCs in the near future is limited by the size of their electricity grids. In the more developed countries, the discussion of nuclear energy is dominated by perceived need and public acceptance. The crisis of confidence in nuclear energy is not completely global. Both France and the COMECON countries have ambitious long-range plans, including nuclear combined heat and power units, and the more advanced developing countries, such as Argentina, Brazil, Korea and Mexico, are also pressing ahead with nuclear programs. (NDH)

  14. 1984 availability of the world's nuclear power plants

    International Nuclear Information System (INIS)

    Szeless, A.; Oszuszky, F.

    1985-01-01

    This survey of the availability of the world's nuclear power plants in 1984 coveres 250 units (the CMEA countries excluded) with an aggregate 184,500 MWe, which are arranged by types of reactor and geographic distribution. The utilization of nuclear power plant capacity attained an average of 66% in 1984, which is an increase by 3 percentage points in the utilization of capacity over the previous year's level (63%). Capacity utilization in pressurized water reactors 1984 (69%) was 4 percentage points higher than it was in boiling water reactors (65%). The ranking list of the world's nuclear power plants is headed by one heavy water reactor and one gas cooled reactor each (98%), followed by five generating units, i.e., two pressurized water reactors, two boiling water reactors, and one heavy water reactor (all 95%). The best German nuclear power plants were Grafenrheinfeld (89%, position No. 20) and Unterweser and Stade (88%, position No. 25). (orig.) [de

  15. World nuclear atlas. A step toward energy transition

    International Nuclear Information System (INIS)

    Lepage, Corinne; Laborde, Xemartin

    2015-01-01

    Illustrated by more than 120 maps and figures, this book proposes an overview of the world nuclear industry, of its development, and of the various strategies chosen within the perspective of energy transition. It proposes an overview of the status of nuclear energy in the world (presentation of the nuclear energy, development during the X X century, uranium production, fuel production and processing, the nuclear reactor industry), addresses the main controversies (health and environmental impact, waste management, opacity of the information, major accidents), the new challenges faced by the nuclear sector (a difficult assessment of huge costs, competition with renewable energies, a competitive environment, a technological uncertainty, transparency and democracy), the solutions chosen by big countries (USA, China, India, Japan, Europe, the German energy transition), and proposes a focus on France which is the only country which chose an all-nuclear strategy (history, nuclear installations, main actors, the myth of the French energy independence, the post-Fukushima French fleet, the case of the Fessenheim reactor, the EPR in question, the challenge of waste storage with the Cigeo project, the debate on the nuclear cost)

  16. The prospects for the world nuclear energy market

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    Over the last few years projections of nuclear power generating capacity growth for the next two decades have progressively decreased. Dwindling load growth, increasing load lead time, costs of delays and high cost inflation, industrial recession and fuel cycle delays are discussed as the main causes of the setback. The state of the fuel cycle business in the world market is examined and data are presented and discussed for predicted world supply and demand. Nuclear plans and fuel policies and requirements are then examined for individual countries. (U.K.)

  17. Nuclear energy - stabilising factor in the world economy

    International Nuclear Information System (INIS)

    Legassov, V.; Feoktistov, L.; Kouzmine, I.

    1986-01-01

    One of the most important factors for international stability is the development of the economy, reducing the risk of local armed conflicts which could escalate into world-wide nuclear war. Economic progress which plays such a vital part is in turn heavily dependent on energy supplies. The article takes a brief look at the role of nuclear power in this context. (B.M.S.)

  18. World Nuclear Association Design Change Management

    International Nuclear Information System (INIS)

    Waddington, John Geoffrey

    2013-01-01

    This presentation treats of design change management in the regulation of nuclear fleets. It covers activities of the WNA/CORDEL/Design Change Management Task Force, including views on the roles of vendors, owner's groups, utility and design authority, WANO and the regulators. The presentation highlights differences of capabilities between large utilities with strong technical staff and smaller utilities that require support and expertise from others. It also notes the current expectation that licensees are solely responsible for the safety of the design and operation of their plants and for maintaining a full understanding and knowledge of the design within licensee's own organization in an internal entity called design authority. It encourages regulators to re-examine this expectation for design changes, arguing that while large utilities maybe be able to deal with design changes, the smaller utilities may be challenged due to their small size and lack of appropriate expertise. It further notes that the original designer must be involved in the management of design changes. In addition, the presentation emphasizes benefits of standardization in design and regulatory expectations internationally, including the benefits of increasing safety and economy. The author provides that the CORDEL Working Group uses international standardization to mean that each vendor's design can be built by a vendor, and ordered by a utility, in every country and be able to meet national regulations without significant changes other than adaptations to meet site requirements. In this discussion, he highlights the aircraft industry as an example and notes the need for internationally agreed mechanisms for design change as well as the need for formal, agreed (internationally) role for the designer to play throughout the fleet lifetime

  19. Power oscillations in BWR reactors

    International Nuclear Information System (INIS)

    Espinosa P, G.

    2002-01-01

    One of the main problems in the operation of BWR type reactors is the instability in power that these could present. One type of oscillations and that is the objective of this work is the named density wave, which is attributed to the thermohydraulic processes that take place in the reactor core. From the beginnings of the development of BWR reactors, the stability of these has been an important aspect in their design, due to its possible consequences on the fuel integrity. The reactor core operates in two phase flow conditions and it is observed that under certain power and flow conditions, power instabilities appear. Studying this type of phenomena is complex, due to that a reactor core is constituted approximately by 27,000 fuel bars with different distributions of power and flow. The phenomena that cause the instability in BWR reactors continue being matter of scientific study. In the literature mainly in nuclear subject, it can be observed that exist different methods and approximations for studying this type of phenomena, nevertheless, their results are focused to establish safety limits in the reactor operation, instead of studying in depth of the knowledge about. Also in this line sense of the reactor data analysis, the oscillations characteristic frequencies are obtained for trying to establish if the power is growing or decreasing. In addition to that before mentioned in this paper it is presented a rigorous study applying the volumetric average method, for obtaining the vacuum waves propagation velocities and its possible connection with the power oscillations. (Author)

  20. Nuclear power in the Western world to 2020

    International Nuclear Information System (INIS)

    Evans, N.

    1983-01-01

    In this report we present our current view of the likely growth of nuclear power in the Western World to 2020. The results of the study indicate that the high nuclear growth rates predicted in the mid-1970s were far too optimistic. In the majority of countries which looked to nuclear power in the years following the first oil price rise of 1973, programmes for nuclear expansion have been reduced as a result of falling electricity demand, escalating costs and technical problems. In some cases the nuclear option has been abandoned completely. To the end of the century our nuclear capacity estimates, made on a country-by-country basis, reflect the general uncertainty regarding nuclear power now felt by many power utility planners. Within this general picture, exceptions emerge, however, France being the most notable. For the long-term we have assumed that the contribution made by nuclear power to energy supply will increase, as pressures on fossil fuel prices grow and energy imports become a major barrier to economic growth. However, this is not a sanguine pro-nuclear picture, as we admit a great deal of uncertainty into our estimates, and acknowledge that some countries will continue to reject nuclear power. Rather, we believe it to be a pragmatic view of the future which attempts to address the problems that constraints on energy inevitably bring, while recognising the economic, social and institutional difficulties that are a peculiar feature of this particular source of energy supply. (author)

  1. The Application of Nuclear Technology for a Better World

    International Nuclear Information System (INIS)

    Ita, E.B.

    2015-01-01

    Nuclear Technology is widely used in different areas and sector of our economy to better man kind and his environment. Peaceful applications of nuclear technology have several benefits to the world today. It is widely believed that nuclear technology is mainly used mainly for the production of electricity (Nuclear Power Plants – NPPs). Many are not aware of the other numerous benefits of nuclear technology. Nuclear technology can be applied in different fields for numerous benefits. Different sectors Nuclear Technology application can improve the living standard of man and his environment: – Food and Agriculture; – Medicine; – Industrial; – Energy; – Education; — Research and Development; – Environment. The benefits of the application of nuclear technology cannot be over emphasised. These benefits range from the improved quality of purified water we drink, the textiles we wear, improved quality of stored grains for preservation of foods, water analyses, improved transportation system work, drugs production, medical tests and analysis, clean environment through radioisotope techniques etc. The application of nuclear technology also gives a safer, greener, healthier and pollution free environment and atmosphere for human habitation. In my poster, the numerous benefits of the various applications of Nuclear Technology will be clearly enumerated and heighted. (author)

  2. Radiological effects of a nuclear power plant on a river system, as demonstrated by the Gundremmingen BWR on the Danube

    International Nuclear Information System (INIS)

    Herrmann, H.; Ruf, M.; Huebel, K.; Luensmann, W.

    1975-01-01

    The Gundremmingen Nuclear Power Plant (boiling water reactor, 237 MW(e)), on the Upper Danube, has been in operation since 1967. Radiological data have been collected throughout its period of operation. The behaviour of the radioactive waste products in the ecological system of the Upper Danube (water, sediments, suspended solids, water-plants, fish) has been analysed in connection with environmental contamination, the uptake capacity of the Danube, and the possible pathways to man. As a result of the investigations, it seems possible to build further nuclear power plants on the Danube, if their rates of release of radioactivity are similar to those at Gundremmingen. (author)

  3. World-wide termination of nuclear energy application

    International Nuclear Information System (INIS)

    Quirin, W.

    1991-01-01

    It is easy to require the widely discussed termination of nuclear energy application, but it is hardly possible to realise it, unless one is prepared to accept enormous economic and ecological problems. The article investigates, whether the other energy carriers or energy saving methods, respectively, would be in a position to replace the nuclear energy. Thereby the aspects of securing the supply and its economy are of considerable importance. The author describes furthermore the effects of terminating nuclear energy on the growing world population and the economy of trading countries. Ecological problems that may also be aggravated are dealt with, too. (orig.) [de

  4. Development of BWR [boiling water reactor] and PWR [pressurized water reactor] event descriptions for nuclear facility simulator training

    International Nuclear Information System (INIS)

    Carter, R.J.; Bovell, C.R.

    1987-01-01

    A number of tools that can aid nuclear facility training developers in designing realistic simulator scenarios have been developed. This paper describes each of the tools, i.e., event lists, events-by-competencies matrices, and event descriptions, and illustrates how the tools can be used to construct scenarios

  5. List of key words with classification for a standard safety report for nuclear power plants with PWR or BWR

    International Nuclear Information System (INIS)

    1976-01-01

    Under the efforts of improving the licensing procedure for nuclear power plants, the Federal Minister of the Interior set up a task group of experts of the manufacturers and operators of nuclear power plants, the assessors (Technische Ueberwachungsvereine, TUeVs), the Institute for Reactor Safety of the TUeVs, the licensing authorities of the Laender, and the Federal Ministry of the Interior which worked out a list of key words for writing the safety report for nuclear power plants with PWRs and BWRs. This list of key words is published herewith in order to encourage its application when writing or assessing safety reports for nuclear power plants and in order to present the opportunity to make proposals for improvement to a group as large as possible. At a later date, it is intended to incorporate the list of key words as soon as sufficient experience from the practical application will justify this, it is intended to incorporate the list of key words in a general administrative regulation. (orig.) [de

  6. BWR and PWR chemistry operating experience and perspectives

    International Nuclear Information System (INIS)

    Fruzzetti, K.; Garcia, S.; Lynch, N.; Reid, R.

    2014-01-01

    It is well recognized that proper control of water chemistry plays a critical role in ensuring the safe and reliable operation of Boiling Water Reactors (BWRs) and Pressurized Water Reactors (PWRs). State-of-the-art water chemistry programs reduce general and localized corrosion of reactor coolant system, steam cycle equipment, and fuel cladding materials; ensure continued integrity of cycle components; and reduce radiation fields. Once a particular nuclear plant component has been installed or plant system constructed, proper water chemistry provides a global tool to mitigate materials degradation problems, thereby reducing the need for costly repairs or replacements. Recognizing the importance of proper chemistry control and the value in understanding the relationship between chemistry guidance and actual operating experience, EPRI continues to collect, monitor, and evaluate operating data from BWRs and PWRs around the world. More than 900 cycles of valuable BWR and PWR operating chemistry data has been collected, including online, startup and shutdown chemistry data over more than 10 years (> 20 years for BWRs). This paper will provide an overview of current trends in BWR and PWR chemistry, focusing on plants in the U.S.. Important chemistry parameters will be highlighted and discussed in the context of the EPRI Water Chemistry Guidelines requirements (i.e., those parameters considered to be of key importance as related to the major goals identified in the EPRI Guidelines: materials integrity; fuel integrity; and minimizing plant radiation fields). Perspectives will be provided in light of recent industry initiatives and changes in the EPRI BWR and PWR Water Chemistry Guidelines. (author)

  7. The feasibility of nuclear power development in the Arab world

    International Nuclear Information System (INIS)

    Boukhars, A.

    2009-01-01

    In recent years, many Arab countries have manifested an interest in the development of peaceful uses of nuclear technology. This intent, however, was viewed by many commentators through geopolitical and security lens. In contrast with this view, this paper argues for the feasibility and desirability of nuclear power development in the Arab world based on sound economic considerations and economic development needs. The first part of the paper will, therefore, examine the reasons behind the initiatives currently being developed to acquire nuclear energy. The second part will highlight the promise of nuclear power development. The concluding section will illustrate how recognition of the economic motivation for investing in nuclear power generation is important to avoid a misrepresentation of intentions. (Author)

  8. The 'World Institute for Nuclear Security' - News note

    International Nuclear Information System (INIS)

    Hautecouverture, Benjamin

    2008-12-01

    This article comments the creation of the World Institute for Nuclear Security (WINS) in September 2008 in Vienna. The creation of this institution is the result of a project initiated by the USA in 2004. The author recalls the process which leaded to this creation: workshops organised by the Nuclear Threat Initiative (NTI) and the Institute for Nuclear Materials Management (INMM), creation of a coordination committee, and expert meeting in Baden. He indicates how the WINS is financed (by the NTI, the US DoE, and Norway) and its future costs. He briefly describes its structure and operation, its mission, scope and activities (11 fields of activity have been defined). He recalls the various international instruments (conventions, resolutions, institutions, initiatives) related to nuclear security and to the struggle against nuclear threat and terrorism, and indicates how the WINS considers them (an insufficient and inefficient, but existing support). He finally indicates issues to be addressed to better define the WINS' role

  9. World electricity generation, nuclear power, and oil markets

    International Nuclear Information System (INIS)

    1990-01-01

    Striking changes have characterized the world's production and use of energy over the past 15 years. Most prominent have been the wide price fluctuations, politicization of world oil prices and supply, along with profound changes in patterns of production and consumption. This report, based on a study by energy analysts at Science Concepts, Inc., in the United States, traces changes in world energy supply since 1973-74 - the time of the first oil ''price shocks''. In so doing, it identifies important lessons for the future. The study focused in particular on the role of the electric power sector because the growth in fuel use in it has been accomplished without oil. Instead, the growth has directly displaced oil. In the pre-1973 era, the world relied increasingly on oil for many energy applications, including the production of electricity. By 1973, more than on-fourth of the world's electricity was produced by burning oil. By 1987, however, despite a large increase in electric demand, the use of oil was reigned back to generating less than 10% of the world's electricity. Nuclear power played a major role in this turnaround. From 1973-87, analysts at Science Concepts found, nuclear power displaced the burning of 11.7 billion barrels of oil world-wide and avoided US $323 billion in oil purchases

  10. Data feature: World nuclear power plant capacity 1991

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    At this point, the future of the nuclear power industry remains largely in doubt. The gloomy predictions about global warming have done little to convince politicians and the public of the benefits of nuclear power. Meanwhile, the setbacks to nuclear have continued apace: The United States has failed to take the expected lead in ordering new nuclear plants. And President-elect Bill Clinton does not consider nuclear a major part of his energy strategy. The situation looks equally bleak in other countries. Canada's biggest utility, Ontario Hydro, was forced under intense political pressure to defer its ambitious nuclear expansion program until after the year 2010. In Europe, the suspension of France's Superphenix fast-breeder reactor in June could stop progress on the technology indefinitely. And the Finnish parliament dropped plans for expansion of nuclear power from its national energy strategy. Developing and semi-industrialized countries, such as Brazil and Argentina, have shown little progress, taking upwards of twenty years to complete plants already under construction. Nuclear's problems seem always to hinge on economics. Nuclear has little chance of revival during the current global recession, especially in countries fighting for their long-term economic survival. That is why NUKEM believes nuclear power will not grow much in the CIS and Eastern Europe beyond the projects already in the advanced stages of construction. What's more, the longer countries such as Italy, the Netherlands, Spain, Switzerland and Finland keep their nuclear expansion plans on hold, the harder it will be to get the political support to restart them. So far in 1992, only two nuclear plants, with a combined capacity of 1,520 MWe, have gone into commercial operation. One more 1,330 MWe reactor may start up by year's end. By then, NUKEM expects world nuclear plant capacity to stand at 330.3 GWe

  11. Nuclear Science Outreach in the World Year of Physics

    Science.gov (United States)

    McMahan, Margaret

    2006-04-01

    The ability of scientists to articulate the importance and value of their research has become increasingly important in the present climate of declining budgets, and this is most critical in the field of nuclear science ,where researchers must fight an uphill battle against negative public perception. Yet nuclear science encompasses important technical and societal issues that should be of primary interest to informed citizens, and the need for scientists trained in nuclear techniques are important for many applications in nuclear medicine, national security and future energy sources. The NSAC Education Subcommittee Report [1] identified the need for a nationally coordinated effort in nuclear science outreach, naming as its first recommendation that `the highest priority for new investment in education be the creation by the DOE and NSF of a Center for Nuclear Science Outreach'. This talk will review the present status of public outreach in nuclear science and highlight some specific efforts that have taken place during the World Year of Physics. [1] Education in Nuclear Science: A Status Report and Recommendations for the Beginning of the 21^st Century, A Report of the DOE/NSF Nuclear Science Advisory Committee Subcommittee on Education, November 2004, http://www.sc.doe.gov/henp/np/nsac/docs/NSACCReducationreportfinal.pdf.

  12. World energy needs and their impact on nuclear reactor development

    International Nuclear Information System (INIS)

    Foell, W.K.

    1977-01-01

    This presentation will place primary emphasis upon energy demand. The presentation will cover the following areas: energy reserves and resources; energy demand: past and future (mid-and long-term); industrialized regions of the world; developing countries: Mexico and Iran as examples; and potential impact on nuclear development

  13. The situation of nuclear power in the world

    International Nuclear Information System (INIS)

    1995-03-01

    This report presents a world panorama of nuclear power for electricity generation purposes. The economic aspects, the fuel cycle market, the reactor technology development, as well as environmental aspects are presented. This report is updated annually and the present issue covers the situation up to December 1993. (F.E.). 196 refs, 23 figs, 28 tabs

  14. RELAP4/MOD5: a computer program for transient thermal-hydraulic analysis of nuclear reactors and related systems. User's manual. Volume I. RELAP4/MOD5 description. [PWR and BWR

    Energy Technology Data Exchange (ETDEWEB)

    1976-09-01

    RELAP4 is a computer program written in FORTRAN IV for the digital computer analysis of nuclear reactors and related systems. It is primarily applied in the study of system transient response to postulated perturbations such as coolant loop rupture, circulation pump failure, power excursions, etc. The program was written to be used for water-cooled (PWR and BWR) reactors and can be used for scale models such as LOFT and SEMISCALE. Additional versatility extends its usefulness to related applications, such as ice condenser and containment subcompartment analysis. Specific options are available for reflood (FLOOD) analysis and for the NRC Evaluation Model.

  15. Thermal performance of a buried nuclear waste storage container storing a hybrid mix of PWR and BWR spent fuel rods

    International Nuclear Information System (INIS)

    Johnson, G.L.

    1988-09-01

    Lawrence Livermore National Laboratory will design, model, and test nuclear waste packages for use at the Nevada Nuclear Waste Storage Repository at Yucca Mountain, Nevada. One such package would store lightly packed spent fuel rods from both pressurized and boiling water reactors. The storage container provides the primary containment of the nuclear waste and the spent fuel rod cladding provides secondary containment. A series of transient conduction and radiation heat transfer analyses was run to determine for the first 1000 yr of storage if the temperature of the tuff at the borehole wall ever falls below 97/degree/C and whether the cladding of the stored spent fuel ever exceeds 350/degree/C. Limiting the borehole to temperatures of 97/degree/C or greater helps minimize corrosion by assuring that no condensed water collects on the container. The 350/degree/C cladding limit minimizes the possibility of creep-related failure in the spent fuel rod cladding. For a series of packages stored in a 8 x 30 m borehole grid where each package contains 10-yr-old spent fuel rods generating 4.74 kW or more, the borehole wall stays above 97/degree/C for the full 1000-yr analysis period

  16. Development status of compact containment BWR

    International Nuclear Information System (INIS)

    Heki, H.; Nakamaru, M.; Mori, H.; Sekiguchi, K.; Kuroki, M.; Arai, K.; Hida, T.

    2005-01-01

    In Japan, increase of nuclear plant unit capacity has been promoted to take advantage of economies of scale while further enhancing safety and reliability. As a result, more than 50 units of nuclear power plants are playing important role in electric power generation. However, the factors, such as stagnant growth in the recent electricity demand, limitation in electricity grid capacity and limited in initial investment avoiding risk, will not be in favor of large plant outputs. The reactor concept considered in this paper has a small power output, a compact containment and a simplified BWR configuration with comprehensive safety features. The Compact Containment Boiling Water Reactor (CCR), which is being developed with matured BWR technologies together with innovative systems/components, will provide attractiveness for the energy market in the world due to its flexibility in energy demands as well as in site conditions, its high potential in reducing investment risk and its safety feature facilitating public acceptance. The flexibility is achieved by CCR's mid/small power output of 400 MWe class and capability of long operating cycle (refueling intervals). The high investment potential is expected from CCR's simplification/innovation in design such as natural circulation core cooling with the bottom located short core, top mounted upper entry control rod drives (CRDs) with ring-type dryers and simplified ECCS system with high pressure resistible primary containment vessel (PCV) concept. The natural circulation core eliminates recirculation pumps as well as needs for maintenance of such pumps. The top mounted upper entry CRDs enable the bottom located short core in RPV. The safety feature mainly consists of large water inventory above the core without large penetration below the top of the core, passive cooling system by isolation condenser (IC), high pressure resistible PCV and in-vessel retention (IVR) capability. The large inventory increases the system response

  17. World nuclear generating capacity and uranium requirements to 2005

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    The outlook for the world nuclear power industry through 2005 is more positive than some may believe. Installed nuclear electric generating capacity is forecast to grow at an average rate of 2.4 percent per year, and reach 448 gigawatts electric (GWe) by 2005. Consequently, annual world uranium requirements also will grow, reaching over 200 million pounds equivalent U 3 O 8 by 2005. This article presents data and summarizes installed nuclear generating capacity and charts its increase as a function of time through the year 2005. This data is also charted by reactor type as well as reactor status: under construction, planned, or estimated future construction. In a similar fashion, the data is also charted by country and continent. Historical and projected data is also given for capacity factor

  18. An experience in World Nuclear University-Summer Institute 2012

    International Nuclear Information System (INIS)

    Suzilawati Mohd Sarowi

    2013-01-01

    Full-text: World Nuclear University-Summer Institute (WNU-SI) has been held annually since 2005 in Cristchurh College, Oxford, London. This six weeks course is attended by 80-90 young professionals, or fellow from 20-25 countries across the world. The WNU-SI is designed not only to discuss the full spectrum of issues surrounding nuclear energy, but also emphasis on team building, cultural awareness and the development of leadership potential in multinational environment. Interestingly, the mentors play their role base on their experience in leading the nuclear industry throughout the globe. At the end of the course, the participant could understand the most important issues address in the industry with global perspective, experience and learn from practical teamwork internationally. Finally, this course is believed to be a step in developing a worldwide network among the fellows to support each other in their careers. This paper will discuss the experience gained in WNU-SI 2012. (author)

  19. BWR water chemistry impurity studies

    International Nuclear Information System (INIS)

    Ljungberg, L.G.; Korhonen, S.; Renstroem, K.; Hofling, C.G.; Rebensdorff, B.

    1990-03-01

    Laboratory studies were made on the effect of water impurities on environmental cracking in simulated BWR water of stainless steel, low alloy steel and nickel-base alloys. Constant elongation rate tensile (CERT) tests were run in simulated normal water chemistry (NWC), hydrogen water chemistry (HWC), or start-up environment. Sulfate, chloride and copper with chloride added to the water at levels of a fraction of a ppM were found to be extremely deleterious to all kinds of materials except Type 316 NG. Other detrimental impurities were fluoride, silica and some organic acids, although acetic acid was beneficial. Nitrate and carbon dioxide were fairly inoccuous. Corrosion fatigue and constant load tests on compact tension specimens were run in simulated normal BWR water chemistry (NWC) or hydrogen water chemistry (HWC), without impurities or with added sulfate or carbon dioxide. For sensitized Type 304 SS in NWC, 0.1 ppM sulfate increased crack propagation rates in constant load tests by up to a factor of 100, and in fatigue tests up to a factor of 10. Also, cracking in Type 316 nuclear grade SS and Alloy 600 was enhanced, but to a smaller degree. Carbon dioxide was less detrimental than sulfate. 3 figs., 4 tabs

  20. Impact of fusion-fission hybrids on world nuclear future

    International Nuclear Information System (INIS)

    Abdel-Khalick, S.; Jansen, P.; Kessler, G.; Klumpp, P.

    1980-08-01

    An investigation has been conducted to examine the impact of fusion-fission hybrids on world nuclear future. The primary objectives of this investigation have been: (1) to determine whether hybrids can allow us to meet the projected nuclear component of the world energy demand within current estimates of uranium resources without fast breeders, and (2) to identify the preferred hybrid concept from a resource standpoint. The results indicate that hybrids have the potential to lower the world uranium demand to values well below the resource base. However, the time window for hybrid introduction is quite near and narrow (2000-2020). If historical market penetration rates are assumed, the demand will not be met within the resource base unless hybrids are coupled to the breeders. The results also indicate that from a resource standpoint hybrids which breed their own tritium and have a low blanket energy multiplication are preferable. (orig.) [de

  1. Impact of fusion-fission hybrids on world nuclear future

    International Nuclear Information System (INIS)

    Abdel-Khalik, S.I.

    1980-01-01

    An investigation has been conducted to examine the impact of fusion-fission hybrids on world nuclear future. The primary objectives of this investigation have been (1) to determine whether hybrids can allow us to meet the projected nuclear component of the world energy demand within current estimates of uranium resources with or without fast breeders, and (2) to identify the preferred hybrid concept from a resource standpoint. The results indicate that hybrids have the potential to lower the world uranium demand to values well below the resource base. However, the time window for hybrid introduction is quite near and narrow (2000-2020). If historical market penetration rates are assumed, the demand will not be met within the resource base unless hybrides are coupled to the breeders. The results also indicate that from a resource standpaint hybrids which breed their own tritium and have a low blanket energy multiplication are preferable. (orig.) [de

  2. Impact of fusion-fission hybrids on world nuclear future

    International Nuclear Information System (INIS)

    Abdel-Khalik, S.I.; Jansen, P.; Kessler, G.; Klumpp, P.

    1981-01-01

    An investigation has been conducted to examine the impact of fusion-fission hybrids on world nuclear future. The primary objectives of this investigation have been: (1) to determine whether hybrids can allow us to meet the projected nuclear component of the world energy demand within current estimates of uranium resources with or without fast breeders, and (2) to identify the preferred hybrid concept from a resource standpoint. The results indicate that hybrids have the potential to lower the world uranium demand to values well below the resource base. However, the time window for hybrid introduction is quite near and narrow (2000-2020). If historical market penetration rates are assumed, the demand will not be met within the resource base unless hybrids are coupled to the breeders. The results also indicate that from a resource standpoint hybrids which breed their own tritium and have a low blanket energy multiplication are preferable. (orig.) [de

  3. Thermal performance of a buried nuclear waste storage container storing a hybrid mix of PWR and BWR spent fuel rods

    International Nuclear Information System (INIS)

    Johnson, G.L.

    1991-11-01

    Lawrence Livermore National Laboratory will design, model, and test nuclear waste packages for use at the Nevada Nuclear Waste Storage Repository at Yucca Mountain, Nevada. On such package would store tightly packed spent fuel rods from both pressurized and boiling water reactors. The storage container provides the primary containment of the nuclear waste and the spent fuel rod cladding provides secondary containment. A series of transient conduction and radiation heat transfer analyses was run to determine for the first 1000 yr of storage if the temperature of the tuff at the borehole wall ever falls below 97 degrees C and whether the cladding of the stored spent fuel ever exceeds 350 degrees C. Limiting the borehole to temperatures of 97 degrees C or greater helps minimize corrosion by assuring that no condensed water collects on the container. The 350 degrees C cladding limit minimizes the possibility of creep- related failure in the spent fuel rod cladding. For a series of packages stored in a 8 x 30 m borehole grid where each package contains 10-yr-old spent fuel rods generating 4.74 kW or more, the borehole wall stays above 97 degrees C for the full 10000-yr analysis period. For the 4.74-kW load, the peak cladding temperature rises to just below the 350 degrees C limit about 4 years after emplacement. If the packages are stored using the spacing specified in the Site Characterization Plan (15 ft x 126 ft), a maximum of 4.1 kW per container may be stored. If the 0.05-m-thick void between the container and the borehole wall is filled with loosely packed bentonite, the peak cladding temperature rises more than 40 degrees C above the allowed cladding limit. In all cases the dominant heat transfer mode between container components is thermal radiation

  4. The bomb, the dark side of the nuclear world

    International Nuclear Information System (INIS)

    Collin, J.M.

    2009-01-01

    The reality of the nuclear world can be summarized in few words: a world arsenal of 26000 bombs, enough uranium and plutonium and the know-how to make much more, multiple non-proliferation and weapons limitation treaties which have troubles regulating the diffusion of this technology, indelible environmental and sanitary marks left by 2059 tests, governments secretly wishing to assume this supreme power attribute, a black market, spies and dealers, but also: opponents, political leaders, local representatives and non-governmental organizations who militate for a nuclear weapon-free world. However, this burning question paradoxically remains obscure to citizens and its obscure aspect is relayed by media and politicians. This book aims at decoding the wheels of the international nuclear weapons situation: from the five official nuclear powers to the proliferation actors, from the defense policies to the risks of accidents and the stakes of disarmament, from the bomb fabrication to its devastating effects. It shows how this ultimate weapon has durably pervaded the defense policies and strategies of countries who own it, and how difficult it will be to reconsider this situation

  5. Nuclear astrophysics of worlds in the string landscape

    International Nuclear Information System (INIS)

    Hogan, Craig J.

    2006-01-01

    Motivated by landscape models in string theory, cosmic nuclear evolution is analyzed allowing the standard model Higgs expectation value w to take values different from that in our world (w≡1), while holding the Yukawa couplings fixed. Thresholds are estimated, and astrophysical consequences are described, for several sensitive dependences of nuclear behavior on w. The dependence of the neutron-proton mass difference on w is estimated based on recent calculations of strong isospin symmetry breaking, and is used to derive the threshold of neutron-stable worlds, w≅0.6±0.2. The effect of a stable neutron on nuclear evolution in the big bang and stars is shown to lead to radical differences from our world, such as a predominance of heavy r-process and s-process nuclei and a lack of normal galaxies, stars, and planets. Rough estimates are reviewed of w thresholds for deuteron stability and the pp and pep reactions dominant in many stars. A simple model of nuclear resonances is used to estimate the w dependence of overall carbon and oxygen production during normal stellar nucleosynthesis; carbon production is estimated to change by a fraction ≅15(1-w). Radical changes in astrophysical behavior seem to require changes in w of more than a few percent, even for the most sensitive phenomena

  6. World Nuclear University School of Uranium Production: Eight years' experience

    International Nuclear Information System (INIS)

    Trojacek, J.

    2014-01-01

    The World Nuclear University School of Uranium Production was established by DIAMO, state enterprise in 2006 year under the auspices of the World Nuclear University in London in partnership with international nuclear organizations – OECD/NEA and IAEA. Using the expertise and infrastructure of DIAMO State Enterprise, in conjuction with national and international universities, scientific institutions, regulatory authorities and other individual experts, the “school” covers its mission with the aim to provide world-class training on all aspects of uranium production cycle to equip operators, regulators and executives with the knowledge and expertise needed to provide expanded, environmentally-sound uranium mining throughout the world: • to educate students on all aspects of uranium production cycle including exploration, planning, development, operation, remediation and closure of uranium production facilities; • to improve the state of the art of uranium exploration, mining and mine remediation through research and development; • to provide a forum for the exchange of information on the latest uranium mining technologies and experiences – best practices.

  7. Global Nuclear Fuel launches GNF{sub 3} and NSF: The most reliable BWR fuel just got better

    Energy Technology Data Exchange (ETDEWEB)

    Cantonwine, P.; Schneider, R.; Hunt, B.

    2015-11-01

    Bases on evolutionary design changes and advanced technology developed by Global Nuclear Fuel (GNF), the GNF3 fuel assembly is designed to offer customers with improved fuel economics, increased performance and flexibility in operation while maintaining the superior reliability of GNF2, the most reliable design in GNFs history. In addition to improved fuel utilization and performance, GNF3 is designed and manufactured to be more resistant to debris capture, to eliminate channel control blade interference concerns, and to exhibit to best available corrosion resistance of any boiling water reactor fuel. While delivering fuel cycle savings and reliability benefits with GNF3, GNF maintains a similar licensing and operating basis to GNF2, thereby minimizing fuel transition risks. GNF3 is available in lead use assembly quantities to customers today. Eight GNF3 lead use assemblies are in operation at two utilities in the USA GNF3 is scheduled to be available for full reloads in 2018. (Author)

  8. BWR radiation buildup control with ionic zinc

    International Nuclear Information System (INIS)

    Marble, W.J.; Wood, C.J.; Leighty, C.E.; Green, T.A.

    1986-01-01

    In 1983 a hypothesis was disclosed which suggested that the presence of ionic zinc in the reactor water of the BWR could reduce radiation buildup. This hypothesis was developed from correlations of plant data, and subsequently, from laboratory experiments which demonstrated clearly that ionic zinc inhibits the corrosion of stainless steel. The benefits of zinc addition have been measured at the Vallecitos Nuclear Center under and EPRI/GE project. Experimentation and analyses have been performed to evaluate the impact of intentional zinc addition on the IGSCC characteristics of primary system materials and on the performance of the nuclear fuel. It has been concluded that no negative effects are expected. The author conclude that the intentional addition of ionic zinc to the BWR reactor water at a concentration of approximately 10 ppb will provide major benefits in controlling the Co-60 buildup on primary system stainless steel surfaces. The intentional addition of zinc is now a qualified technique for use in BWRs

  9. Necessity of nuclear energy in energetic world context

    International Nuclear Information System (INIS)

    Lopez Rodriguez, M.

    1981-01-01

    Different opinions on nuclear energy make the middle citizen feel confounded and wonder hundreds of questions to wwhich an easy reply is not found. May be if nuclear energy is really necessary, the first of these questions, without noticing that necessity is a vague concept with a double interpretation. To some, those support a total change in the actual society into more primitive situations, the energy pattern the world has chosen -both the East and West models- is annoying, and they consider a pattern based on ''soft energies''to be the solution to the social scheme they imagined. To others, those who think on an economic, industrial and social development in the countries, it should be based on a strong energy pattern, which could supply what the world needs more and more, nuclear energy is, at least nowadays, an unavoidable necessity and an inevitable option. The document shown has been prepared on the conclusions of the most recent works on the subject, and it is deduced from all of them what everybody considers to be the future energy demand for the year 2000 and its distribution into energy sources, nuclear energy includes. The two basic parameters for tAe valuation of this demand are the increasing of population and gross national product. Available energy resources are mentioned on the document and, mainly, the nuclear capacity of each country. (author) [es

  10. Analysis of the microstructural evolution of the damage by neutron irradiation in the pressure vessel of a nuclear power reactor BWR; Analisis de la evolucion microestructural del dano por irradiacion neutronica en la vasija de presion de un reactor nuclear de potencia BWR

    Energy Technology Data Exchange (ETDEWEB)

    Moranchel y R, M.

    2012-07-01

    Nuclear reactor pressure vessel type BWR, installed in Mexico and in many other countries, are made of an alloy of low carbon steel. The American Society for Testing and Materials (Astm) classifies this alloy as A533-B, class 1. Both the vessel and other internal structures are continuously exposed to the neutron flux from the reactions of fission in nuclear fuel. A large number of neutrons reach the vessel and penetrate certain depth depending on their energy. Its penetration in the neutron collides with the nuclei of the atoms out of their positions in the crystal lattice of steel, producing vacancies, interstitial, segregations, among other defects, capable of affecting its mechanical properties. Analyze the micro-structural damage to the vessel due to neutron irradiation, is essential for reasons of integrity of this enclosure and safety of any nuclear power plant. The objective of this thesis work is theoretical and experimentally determine the microstructural damage of a type nuclear reactor vessel steel BWR, due to neutron radiation from the reactor core, using microscopic and spectroscopic techniques as well as Monte Carlo simulation. Microscopy Optical, Scanning Electron Microscopy, Transmission Electron Microscopy, Energy Dispersion of X-rays Spectrometry and X-rays Diffractometry were the techniques used in this research. These techniques helped in the characterization of both the basis of design of pressure vessel steel and steel irradiated, after eight years of neutron irradiation on the vessel, allowing know the surface morphology and crystal structures of the previous steel and post-irradiation, analyze the change in the microstructure of the steel vessel, morphological damage to surface level in an irradiated sample, among which are cavities in the order of microns produced by Atomic displacements due to the impact of neutronic, above all in the first layers of thickness of the vessel, the effect of swelling, regions of greater damage and Atomic

  11. Nuclear power reactors in the world. Apr 1985 ed.

    International Nuclear Information System (INIS)

    1985-01-01

    This is the fifth edition of Reference Data Series No. 2, Nuclear Power Reactors in the World, which replaces the Agency's publication Power Reactors in Member States. This bulletin contains the following summarized information on nuclear power reactors in the world: General information as of the end of 1984 on reactors operating or under construction and such additional information on planned and shutdown reactors as is available; Performance data on major reactor types operating in the Agency's Member States. The information is collected by the Agency by circulating questionnaires to the Member States through the designated national correspondents. The replies are used to maintain computerized files on general and design data of and operating experience with reactors

  12. Nuclear research reactors in the world. May 1987 ed.

    International Nuclear Information System (INIS)

    1987-01-01

    This is the second edition of Reference Data Series No.3, Nuclear Research Reactors in the World, which replaces the Agency's publications Power and Research Reactors in Member States and Research Reactors in Member States. This booklet contains general information, as of the end of May 1987, on research reactors in operation, under construction, planned, and shut down. The information is collected by the Agency through questionnaires sent to the Member States through the designated national correspondents. 11 figs, 19 tabs

  13. Assessment and management of ageing of major nuclear power plant components important to safety: BWR pressure vessel internals

    International Nuclear Information System (INIS)

    2005-10-01

    At present, there are over four hundred operational nuclear power plants (NPPs) in IAEA Member States. Operating experience has shown that ineffective control of the ageing degradation of the major NPP components (caused for instance by unanticipated phenomena and by operating maintenance or manufacturing errors) can jeopardize plant safety and also plant life. Ageing in these NPPs must be therefore effectively managed to ensure the availability of design functions throughout the plant service life. From the safety perspective, this means controlling, within acceptable limits, the ageing degradation and ware out of components important to safety so that adequate safety margins remain, i.e. integrity and functional capability in excess of normal operating requirements. This TECDOC is one in a series of guidance reports on the assessment and management of ageing of the major NPP components important to safety. The reports are based on experience and practices of NPP operators, regulators, designers, manufacturers, and technical support organizations and a widely accepted Methodology for the Management of Ageing of NPP Components Important to Safety, which was issued by the IAEA in 1992. Since the reports are written from a safety perspective, they do not address life or life cycle management of plant components, which involves economic considerations. The current practices for the assessment of safety margins (fitness for service) and the inspection, monitoring and mitigation of ageing degradation of selected components of heavy water moderated reactors (HWRs), boiling water reactors (BWRs), pressurized water reactors (PWRs), and water moderated, water cooled energy reactors (WWERs) are documented in the reports. These practices are intended to help all involved directly and indirectly in ensuring the safe operation of NPPs, and also to provide a common technical basis for dialogue between plant operators and regulators when dealing with age related licensing issues

  14. Assessment and management of ageing of major nuclear power plant components important to safety: BWR pressure vessels

    International Nuclear Information System (INIS)

    2005-10-01

    At present, there are over four hundred operational nuclear power plants (NPPs) in IAEA Member States. Operating experience has shown that ineffective control of the ageing degradation of the major NPP components (caused for instance by unanticipated phenomena and by operating, maintenance or manufacturing errors) can jeopardize plant safety and also plant life. Ageing in these NPPs must be therefore effectively managed to ensure the availability of design functions throughout the plant service life. From the safety perspective, this means controlling, within acceptable limits, the ageing degradation and wear out of plant components important to safety so that adequate safety margins remain, i.e. integrity and functional capability in excess of normal operating requirements. This TECDOC is one in a series of reports on the assessment and management of ageing of the major NPP components important to safety. The reports are based on experience and practices of NPP operators, regulators, designers, manufacturers and technical support organizations and a widely accepted Methodology for the Management of Ageing of NPP Components Important to Safety, which was issued by the IAEA in 1992. Since the reports are written from a safety perspective, they do not address life or life cycle management of plant components, which involves economic considerations. The current practices for the assessment of safety margins (fitness for service) and the inspection, monitoring and mitigation of ageing degradation of selected components of Canada deuterium-uranium (CANDU) reactors, boiling water reactors (BWRs), pressurized water reactors (PWRs), and water moderated, water cooled energy reactors (WWERs) are documented in the reports. These practices are intended to help all involved directly and indirectly in ensuring the safe operation of NPPs, and also to provide a common technical basis for dialogue between plant operators and regulators when dealing with age related licensing issues

  15. A Physicist's Journey In The Nuclear Power World

    Science.gov (United States)

    Starr, Chauncey

    2000-03-01

    As a participant in the development of civilian nuclear power plants for the past half century, the author presents some of his insights to its history that may be of interest to today's applied physicists. Nuclear power development has involved a mixture of creative vision, science, engineering, and unusual technical, economic, and social obstacles. Nuclear power programs were initiated during the euphoric era of public support for new science immediately following World War II -- a support that lasted almost two decades. Subsequently, nuclear power has had to face a complex mix of public concerns and criticism. The author's involvment in some of these circumstances will be anecdotally described. Although the physics of fission and its byproducts remains at the heart of all nuclear reactor designs, its embodiment in practical energy sources has been shaped by the limitations of engineering primarily and economics secondarily. Very influential has been the continuing interplay with the military's weapons and propulsion programs, and the government's political policies. In this respect, nuclear power's history provides a learning experience that may be applicable to some of the large scale demonstration projects that physicists pursue today.

  16. Sustainable Nuclear Fuel Cycles and World Regional Issues

    Directory of Open Access Journals (Sweden)

    Aleksandra Schwenk-Ferrero

    2012-06-01

    Full Text Available In the present paper we have attempted to associate quantified impacts with a forecasted nuclear energy development in different world regions, under a range of hypotheses on the energy demand growth. It gives results in terms of availability of uranium resources, required deployment of fuel cycle facilities and reactor types. In particular, the need to achieve short doubling times with future fast reactors is investigated and quantified in specific world regions. It has been found that a crucial feature of any world scenario study is to provide not only trends for an idealized “homogeneous” description of the global world, but also trends for different regions in the world. These regions may be selected using rather simple criteria (mostly of a geographical type, in order to apply different hypotheses for energy demand growth, fuel cycle strategies and the implementation of various reactor types for the different regions. This approach was an attempt to avoid focusing on selected countries, in particular on those where no new significant energy demand growth is expected, but instead to provide trends and conclusions that account for the features of countries that will be major players in the world energy development in the future.

  17. Nuclear desalination in the Arab world. Part I: Relevant data

    International Nuclear Information System (INIS)

    Mekhemar, S.; Karameldin, A.

    2003-01-01

    Middle Eastern and North African countries suffer from a shortage of fresh water resources. Statistical analysis shows that fresh water resources in these countries constitute less than 13% of the average world resources per capita. In the Arab world, the rapid increase in population and an increase in living standards led to a greater demand for fresh water and electricity. Accordingly, the Arab world has assumed (a leading role in the) desalination industry, contributing about 60% of total world production. Desalination processes are highly power intensive. Thus, different types of energies are used to bridge the gap between these processes and the general increased demand in production. Projections for water and electricity demand in the Arab world, up to 2030, are made according to population and its growth rates. The present study (according to these projections) indicates that population in the Arab world will double by the year 2030. At that time, domestic and industrial water demand will be 360 million m 3 d -1 ; meanwhile, electrical power consumption will be 4.5 trillion kWh d -1 . Accordingly, the Advanced Inherent Safe Nuclear Power Plants adapted for water-electricity co-generation could meet the demand, as a clean energy source. (author)

  18. Nuclear power programs in the world's developed and developing countries

    International Nuclear Information System (INIS)

    Czibolya, L.

    1983-01-01

    The significance of nuclear power in the world's energy balance related to fossile energy sources is discussed. The general trend of declination of the national power programs could be observed from the seventies as a result of the oil crisis and the economic recession. The main features of the national energy programs including the ratio of the different energy sources in the power supply, the distribution of power production among the different types of nuclear reactors, the time schedules of the national nuclear power programs are reviewed through the examples of some developed and developing countries: USA, FRG, Canada, Japan, France, Sweden, the Soviet Union, Czechoslovakia, Bulgaria, Hungary, Romania, India, and the Republic of Korea. (V.N.)

  19. World: 2508 nuclear tera-watts hour in 1999

    International Nuclear Information System (INIS)

    Anon.

    2000-01-01

    In 1999, the nuclear power plants have produced 2508 tera-watts hour, that is to say 16% of the normal electricity production or 35% of the European electric production. At the end of 1999, 443 reactors were in operation, 53 were in building and 13 put in an order in the world. 5 reactors have been coupled to the network in South Korea, in France, in India, in Slovakia and 2 have been definitively stopped (Kazakhstan and Sweden). 1999 has seen the beginning of construction for 8 reactors (China, South Korea, Japan and Taiwan). The nuclear power has covered 40 % of needs for 8 countries: France (75%), Lithuania (73%) Belgium (58%), Sweden (46%), Slovakia (45%), Ukraine (43.5%), South Korea ( 43%), Bulgaria ( 41.5%). 18 countries have used nuclear energy to cover at least 25% of their needs. (N.C.)

  20. Nuclear Power Reactors in the World. 2013 Ed

    International Nuclear Information System (INIS)

    2013-01-01

    Nuclear Power Reactors in the World is an annual publication that presents the most recent data pertaining to nuclear power reactors in IAEA Member States. This thirty-third edition of Reference Data Series No. 2 provides a detailed comparison of various statistics through 31 December 2012. The tables and figures contain the following information: - General statistics on nuclear reactors in IAEA Member States; - Technical data on specific reactors that are either planned, under construction or operational, or that have been shut down or decommissioned; - Performance data on reactors operating in IAEA Member States, as reported to the IAEA. The data compiled in this publication is a product of the IAEA's Power Reactor Information System (PRIS). The PRIS database is a comprehensive source of data on all nuclear power reactors in the world. It includes specification and performance history data on operational reactors as well as on reactors under construction or in the decommissioning process. The IAEA collects data through designated national correspondents in Member States

  1. Nuclear Power Reactors in the World. 2014 Ed

    International Nuclear Information System (INIS)

    2014-01-01

    Nuclear Power Reactors in the World is an annual publication that presents the most recent data pertaining to nuclear power reactors in IAEA Member States. This thirty-fourth edition of Reference Data Series No. 2 provides a detailed comparison of various statistics up to and including 31 December 2013. The tables and figures contain the following information: — General statistics on nuclear reactors in IAEA Member States; — Technical data on specific reactors that are either planned, under construction or operational, or that have been shut down or decommissioned; — Performance data on reactors operating in IAEA Member States, as reported to the IAEA. The data compiled in this publication is a product of the IAEA’s Power Reactor Information System (PRIS). The PRIS database is a comprehensive source of data on all nuclear power reactors in the world. It includes specification and performance history data on operational reactors as well as on reactors under construction or in the decommissioning process. The IAEA collects this data through designated national correspondents in Member States

  2. Review of international solutions to NEACRP benchmark BWR lattice cell problems

    International Nuclear Information System (INIS)

    Halsall, M.J.

    1977-12-01

    This paper summarises international solutions to a set of BWR benchmark problems. The problems, posed as an activity sponsored by the Nuclear Energy Agency Committee on Reactor Physics, were as follows: 9-pin supercell with central burnable poison pin, mini-BWR with 4 pin-cells and water gaps and control rod cruciform, full 7 x 7 pin BWR lattice cell with differential U 235 enrichment, and full 8 x 8 pin BWR lattice cell with water-hole, Pu-loading, burnable poison, and homogenised cruciform control rod. Solutions have been contributed by Denmark, Japan, Sweden, Switzerland and the UK. (author)

  3. BWR stability analysis

    International Nuclear Information System (INIS)

    Valtonen, K.

    1990-01-01

    The objective of this study has been to examine TVO-I oscillation incident, which occured in February 22.1987 and to find out safety implications of oscillations in ATWS incidents. Calculations have been performed with RAMONA-3B and TRAB codes. RAMONA-3B is a BWR transient analysis code with three-dimencional neutron kinetics and nonequilibrium, nonhomogeneous thermal hydraulics. TRAB code is a one-dimencional BWR transient code which uses methods similar to RAMONA-3B. The results have shown that both codes are capable of analyzing of the oscillation incidents. Both out-of-phase and in-phase oscillations are possible. If the reactor scram fails (ATWS) during oscillations the severe fuel failures are always possible and the reactor core may exceed the prompt criticality

  4. Neutron activation analysis and activity in the vessel steel of a BWR reactor for their study without radiological risks in microscopy and spectrometry; Analisis de activacion neutronica y actividad en el acero de la vasija de un reactor nuclear tipo BWR para su estudio sin riesgos radiologicos en microscopia y espectrometria

    Energy Technology Data Exchange (ETDEWEB)

    Moranchel, M.; Garcia B, A. [IPN, Escuela Superior de Fisica y Matematicas, Departamento de Fisica, Unidad Profesional Adolfo Lopez Mateos, Zacatenco, 07738 Mexico D. F. (Mexico); Longoria G, L. C., E-mail: mmoranchel@ipn.mx [IAEA, Department of Technical Cooperation, Division for Latin America, Room B1109 Wagramerstrasse 5, PO Box 100, A-1400, Vienna (Austria)

    2012-07-01

    The vessel material of nuclear reactors is subject to irradiation damage induced by the bombardment of neutrons coming from the reactor core. Neutrons are classified as fast and thermal, which produce different effects. Fast neutrons cause damage to the material by dislocation or displacement of atoms in the crystal structure, while the effect of thermal neutrons is a nuclear transmutation that can significantly change the properties of the material. The type and intensity of damage is based on the characteristics of the material, the flow of neutrons and the modes of neutrons interaction with the atomic structures of the material, among others. This work, alluding to nuclear transmutation, makes an analysis of neutron activation of all isotopes in a steel boiling water nuclear reactor (BWR) vessel. An analytical expression is obtained in order to model activity of steel, on the basis of the weight percentage of its atomic components. Its activity is theoretically estimated in a witness sample of the same material as that of the vessel, placed within the nuclear reactor since the beginning of its commercial operation in April 1995, up to August 2010. It was theoretically determined that the witness sample, with a 0.56 g mass (1 x 1 x 0.07 cm{sup 3} dimensions or equivalent) does not present a radiological risks during the stage of preparation, observation and analysis of it in electron microscopy and X-ray diffraction equipment s. The theoretical results were checked experimentally by measuring the activity of the sample by means of gamma spectrometry, measurement of the exposure levels around the sample, as well as the induced level to whole body and limbs, using thermo-luminescent dosimetry (TLD). As a result of the theoretical analysis, new chemical elements are predicted, as a result of the activation phenomena and radioactive decay, whose presence can be a fundamental factor of change in the properties of the vessel. This work is a preamble to the

  5. Nuclear power plant life management in a changing business world

    International Nuclear Information System (INIS)

    2000-01-01

    At the end of 1999, there were 348 nuclear power plants connected to the grid in OECD Member countries, representing a total capacity of 296 GWe and generating some 24% of their electricity. One third of these nuclear power plants had been in operation for over 20 years. The demand for electricity throughout OECD countries is increasing steadily but the construction of new nuclear power plants has become increasingly difficult. Many utilities would like to keep existing nuclear power plants operating for as long as they can continue to function safely and economically because. extending the lifetime of nuclear power plants is a substitute to constructing new plants. Therefore, nuclear plant life management (PLIM) has been carried out in many OECD Member countries and has played a very important role in the nuclear generation field. Nuclear power plant owners seek to economically optimise the output from their plants, taking into consideration internal and external influences, as well as equipment reliability and maintenance workload. Nuclear power plant life management and extension is generally an attractive option for utilities supplying electricity because of its low marginal cost and low investment risk. PLIM has become an important issue in the context of changing business circumstances caused by regulatory reform of the electricity market. Specifically, the economic aspect of PLIM has become an important focus in the competitive electricity market. The international workshop on 'Plant Life Management in a Changing Business World' was hosted by the United States Department of Energy (USDOE) in co-operation with the Electric Power Research Institute (EPRI) and the Nuclear Energy Institute (NEI) in Washington, DC, on 26-27 June 2000. Some 50 senior utility executives and policy makers from 12 Member countries, the International Energy Agency (IEA) and the European Commission (EC) attended the meeting. The objective of the workshop was to examine the status of

  6. Nuclear weapons proliferation and the new world order

    International Nuclear Information System (INIS)

    Krause, J.

    1994-01-01

    The proliferation of nuclear weapons has become the priority safety problem since the end of the cold war. The danger that new nuclear states may arise from the former Soviet Union, the limited effectiveness of existing control systems, the increased attractiveness of nuclear weapons for countries in which a 'safety vacuum' has developed since the withdrawal of American and Russian forces, as well as the danger that additional nuclear states (China, India, Pakistan) may become unstable or disintegrate, make it necessary to explore and show the ensuing risks. The study contains analyses from well-respected experts from Germany, Russia, Japan and the USA. They show how the changes in regional security situations could lead to nuclear risks under certain circumstances, and the likely international consequences. A second point of emphasis consens the feasibility of new approaches or instruments in international non-proliferatic policy. New possibilities for the improvement of excisting control systems and the extension of international consensus on an intensification of the non-proliferation regime are offered by the changes in world politics. (orig.) [de

  7. World atlas of nuclear industry: civil and military

    International Nuclear Information System (INIS)

    Alexandre, Nicolas

    2011-01-01

    Todays, with the energy supplies and global warming concerns, nuclear energy in making a come-back, witness the numerous nuclear programs launched or re-launched in the US, in Europe, China and India. In parallel, on the military side, the deterrence strategy remains in the center of security politics of big powers. This atlas takes stock of the overall issues linked with the nuclear technology: production, civil applications (power generation, medicine etc..), military usages (naval propulsion, weapons). It answers the main questions of this complex world, often dominated by secrecy: who does what in the nuclear domain in France? Is an accident, like the Chernobyl's one, possible today in Europe? What solutions for radioactive wastes? Do we take risks when we export our reactor technologies to Middle-East countries? Are we at the dawn of a new arms rush? What do international agreements foresee in this domain? Taking into account the costs, the hazards and the advantages of nuclear industry, the atlas shows that it is possible to establish solid technical and legal barriers between its civil and military sides. (J.S.)

  8. New Nuclear Fuel Disposition Opportunities in a Changed World

    International Nuclear Information System (INIS)

    Barrett, L.H.

    2006-01-01

    The world's economic, security, environmental, and technological situation has changed significantly in the last several years and these changes bring new opportunities for substantial policy improvements and redirections in the used nuclear fuel management arena. The passage of new energy legislation; the need for more US nuclear energy; growing state, national and international momentum for carbon emission and other air pollutant reductions; post September 11. Homeland Security threat reduction improvements; desires to improve global nuclear security; rapidly emerging needs for clean electricity supplies in developing countries; and the technological advancements in advanced fuel cycle technologies provide a substantial foundation for future enhancements and improvements in current used nuclear fuel management programs. Past progress, lessons learned, and new used fuel/waste management technological innovations coupled with current and future economic, security, and environmental issues can create new approaches that can help the Federal government meet its obligations while simultaneously addressing many of the difficult regional/state issues that have historically hindered progress. This paper will examine and integrate the synergy of these issues to explore options and discuss possible new opportunities in the vitally important area of spent fuel management and the entire back end of the nuclear fuel cycle. (authors)

  9. TRAC-BWR development

    International Nuclear Information System (INIS)

    Weaver, W.L.; Rouhani, S.Z.

    1983-01-01

    The TRAC-BD1/MOD1 code containing many new or improved models has been assembled and is undergoing developmental assessment and testing and should be available shortly. The preparation of the manual for this code version is underway and should be available to the USNRC and their designated contractors by April of 1984. Finally work is currently underway on a fast running version of TRAC-BWR which will contain a one-dimensional neutron kinetics model

  10. From the nuclear stalemate to a nuclear-weapon free world. In memory of Klaus Fuchs

    International Nuclear Information System (INIS)

    Flach, Guenter; Fuchs-Kittowski, Klaus

    2012-01-01

    The following topics were dealt with: The first soviet atomic bomb and Klaus Fuchs, in illusory worlds of Andrei Sakharov, Edward Teller, and Klaus Fuchs, Klaus Fuchs as grandfather of the hydrogen bomb, memories of and thinking about Klaus Fuchs, the Scottish years of Klaus Fuchs 1937-1941, Klaus Fuchs in the mirror of the Venona documents, Gernot Zippe and the ultracentrifuge or east-west technology transfer in the cold war, secret impulses for the soviet nuclear project, responsibility of knowledge with anti-facism, philosophy, and science as well as peace as the first human right in the work of Klaus Fuchs, the request of Klaus Fuchs for a lasting peace, Klaus Fuchs in Daniel Granin's roman ''Escape to Russia'', ways to a nuclear-weapon free world, Otto Hahn and the declarations of Mainau and Goettingen, nuclear winter, initiatives of the GDR for the prohibition of weapons of mass destruction, nuclear weapons in negative entropy, militarism and antimilitarism of the nuclear age, contributions of the young Klaus Fuchs to statistical physics, nuclear disarmament and the peaceful use of nuclear energy, the responsibility of the scientists for a socially effective and efficient energy change, Berlin-Bucher contributions to a world free of biological weapons. (HSI)

  11. Review of nuclear power costs around the world

    International Nuclear Information System (INIS)

    Bennett, L.L.; Karousakis, P.M.; Moynet, G.

    1983-01-01

    This paper presents highlights of nuclear power costs around the world from studies carried out by the IAEA and by UNIPEDE. Emphasis is placed on trends within each country of key parameters which affect both investment costs and total power generation costs, including construction and project durations, size of units, regulatory environment, scope of project, fuel cycle costs and general economic conditions. A synthesis of these trends, taking into consideration both nuclear and coal-fired plant capital and fuel costs as they are estimated to evolve in the near and medium term, is presented in terms of nuclear-to-coal cost ratios for both plant investment costs and total generating costs. The plant investment costs are expressed as ''overnight'' or ''fore'' costs, in constant money, for plants expected to enter commercial operation in the early 1990s. Pertinent assumptions are based on conditions prevailing in the particular country under review. These studies indicate that in most countries nuclear plant investment costs are rising more rapidly than the costs for coal-fired plants. A major cause for the rapid rise in nuclear plant costs is the drastic lengthening of project duration in most countries. France, as a notable exception, has been able to maintain a stable and reasonably short project time. In spite of the rapidly escalating nuclear plant investment costs, nuclear electricity generation has an economic advantage over coal in Europe and Canada and is competitive with coal in the eastern and midwestern parts of the United States of America (USA). The availability of abundant, low-cost coal gives coal-fired generation an economic advantage in the western USA. (author)

  12. Market-sharing approach to the world nuclear sales problem

    International Nuclear Information System (INIS)

    Ribicoff, A.A.

    1976-01-01

    The recent decisions by West Germany and France to sell nuclear fuel facilities to Brazil and Pakistan, respectively, mark the first sharp divergence by major industrial nations from long-established U.S. nonproliferation policy. Thus far, the U.S. has been ineffective in seeking to persuade Germany and France not to proceed with them. This indicates a serious weakness in the execution of American nonproliferation policy, which if left uncorrected, could result in the rapid spread of nuclear weapons material and capability around the world. It is clear that complex problems are raised by the concept of market-sharing. A principal advocate, Dr. Lawrence Scheinman from ERDA, says that traditional arguments against market-sharing do not qualify as reasons against the concept. He does identify three basic arguments against market-sharing, which the author discusses in this article, namely: (1) reactor market-sharing is contrary to U.S. anti-cartel policy and in violation of antitrust laws; (2) other nuclear supplier countries would reject a market-sharing arrangement; and (3) the recipient countries of the Third World would view it as a nuclear cartel and refuse to do business with it. The author advocates that at the very least, the U.S. should enter the next round of supplier negotiations prepared to propose multinational arrangements for closing the commercial nuclear fuel cycle and for making all weapons-grade material generated by the fuel cycle unavailable to any nation on a sovereign basis. The U.S. should also make clear that it would view with the gravest concern the continuation of the present export policies of West Germany and France

  13. Nuclear energy; Le nucleaire

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    This digest document was written by members of the union of associations of ex-members and retired people of the Areva group (UARGA). It gives a comprehensive overview of the nuclear industry world, starting from radioactivity and its applications, and going on with the fuel cycle (front-end, back-end, fuel reprocessing, transports), the nuclear reactors (PWR, BWR, Candu, HTR, generation 4 systems), the effluents from nuclear facilities, the nuclear wastes (processing, disposal), and the management and safety of nuclear activities. (J.S.)

  14. BWR mechanics and materials technology update

    International Nuclear Information System (INIS)

    Kiss, E.

    1983-01-01

    This paper discusses technical results obtained from a variety of important programs underway at General Electric's Nuclear Engineering Division. The principal objective of these programs is to qualify and improve BWR product related technologies that fall broadly under the disciplines of Applied Mechanics and Materials Engineering. The paper identifies and deals with current technical issues that are of general importance to the LWR industry albeit the specific focus is directed to the development and qualification of analytical predictive methods and criteria, and improved materials for use in the design of the BWR. In this paper, specific results and accomplishments are summarized to provide a braod perspective of technology advances. Results are presented in sections which discuss: dynamic analysis and modeling; fatigue and fracture evaluation; materials engineering advances; and flow induced vibration. (orig.)

  15. The situation of the nuclear energy in the world; A situacao da energia nucleoeletrica no mundo

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Jair Albo Marques de [and others

    1996-12-01

    This work presents an overview of the nuclear energy in the world. It approaches the following main topics: kinds of nuclear power plants; operation experience of the nuclear plants; environmental and social aspects of the nuclear energy; economic aspects of the nuclear energy; development of the reactors technology and supply of the nuclear fuel.

  16. The situation of the nuclear energy in the world (Oct. 1991)

    International Nuclear Information System (INIS)

    1991-10-01

    This work presents an overview of the nuclear energy in the world. It approaches the following main topics: kinds of nuclear power plants; operation experience of the nuclear plants; environmental and social aspects of the nuclear energy; economic aspects of the nuclear energy; development of the reactors technology and supply of the nuclear fuel

  17. The situation of the nuclear energy in the world (Sep. 1992)

    International Nuclear Information System (INIS)

    Souza, Jair Albo Marques de

    1992-09-01

    This work presents an overview of the nuclear energy in the world. It approaches the following main topics: kinds of nuclear power plants; operation experience of the nuclear plants; environmental and social aspects of the nuclear energy; economic aspects of the nuclear energy; development of the reactors technology and supply of the nuclear fuel

  18. Nuclear Power Reactors in the World. 2016 Ed

    International Nuclear Information System (INIS)

    2016-01-01

    Nuclear Power Reactors in the World is an annual publication that presents the most recent data pertaining to reactor units in IAEA Member States. This thirty-sixth edition of Reference Data Series No. 2 provides a detailed comparison of various statistics up to and including 31 December 2015. The tables and figures contain the following information: — General statistics on nuclear reactors in IAEA Member States; — Technical data on specific reactors that are either planned, under construction or operational, or that have been shut down or decommissioned; — Performance data on reactors operating in IAEA Member States, as reported to the IAEA. The data compiled in this publication is a product of the IAEA’s Power Reactor Information System (PRIS). The PRIS database is a comprehensive source of data on all nuclear power reactors in the world. It includes specification and performance history data on operational reactors as well as on reactors under construction or in the decommissioning process. Data is collected by the IAEA via designated national correspondents in Member States

  19. From the Old to the New World of Nuclear Physics

    Science.gov (United States)

    Stuewer, Roger H.

    Physicists passed from the Old to the New World of Nuclear Physics in the two decades between the first and second world wars. The transition occurred against the background of the Great War, the postwar hyperinflation in Germany and Austria, and the greatest intellection migrations in history after the Nazi Civil Service law of 1933, the Anschlussof Austria in March 1938, and the Fascist anti-Semitic laws that fall. It involved Rutherford's discovery of artificial disintegration, Pettersson and Kirsch's challenge of it, and the concomitant rise and fall of Rutherford's satellite model of the nucleus; Gamow's quantum-mechanical theory of alpha decay and his liquid-drop model of the nucleus; the discoveries of deuterium and the deuteron, neutron, and positron, and the inventions of the Cockcroft-Walton accelerator and the cyclotron; the influence of the seventh Solvay Conference; Joliot and Curie's discovery of artificial radioactivity; Pauli's neutrino hypothesis, Fermi's theory of beta decay, and his discovery of the efficacy of slow neutrons in producing nuclear reactions; Bohr's theory of the compound nucleus and Breit and Wigner's theory of neutron-nucleus resonances; and the discovery of nuclear fission, Meitner and Frisch's interpretation of it, and Bohr and Fermi revelation of both in America.

  20. BWR type nuclear power plant

    International Nuclear Information System (INIS)

    Nei, Hiromichi; Hashiguchi, Isao; Inai, Nobuhiko.

    1996-01-01

    A heat exchanger is disposed between a reactor pressure vessel and a turbine, an inlet of a primary circuit of the heat exchanger is connected to a steam pipeline, an exit of the primary circuit of the heat exchanger is connected to a primary coolant pipeline, the primary coolant pipeline is connected to a feed water pipeline, a secondary circuit steam pipeline connected to the heat exchanger is connected to the turbine and a condensate circuit from the turbine is connected to the secondary coolant pipeline connected to the heat exchanger. Steams generated in the reactor are once flown into the heat exchanger to heat secondary coolants indirectly in the heat exchanger, and the generated steams are introduced to the steam turbine. Incondensible gases generated from the reactor and inflowing to the primary side of the heat exchanger are introduced, together with a portion of the steams, to a small-sized condensator passing through steam pipelines in the vicinity of a water surface in a hot well for storing condensed water and disposed at the lower portion of the heat exchanger, the steams and the incondensible gases are separated, and the incondensible gases are processed in an extraction system. Then, steam condition is improved to an over-heat state, and no large-sized shieldings are necessary. (N.H.)

  1. Nuclear power reactors in the world. April 1990 ed.

    International Nuclear Information System (INIS)

    1990-01-01

    This is the tenth edition of Reference Data Series No. 2, Nuclear Power Reactors in the World, which is published once per year, to present the most recent reactor data available to the Agency. It contains the following summarized information: General information as of the end of 1989 on power reactors operating or under construction, and shut down; Performance data on reactors operating in the Agency's Member States, as reported to the IAEA. The information is collected by the Agency by circulating questionnaires to the Member States through the designated national correspondents. The replies are used to maintain computerized files on general and design data of, and operating experience with, power reactors. The Agency's power reactor information system (PRIS) comprising the above files provides all the information and data previously published in the Agency's Power Reactors in Member States and currently published in the Agency's Operating Experience with Nuclear Power Stations in Member States

  2. Nuclear power reactors in the world. Apr 1991 ed.

    International Nuclear Information System (INIS)

    1991-01-01

    This is the eleventh edition of Reference Data Series No. 2, Nuclear Power Reactors in the World, which is published once per year, to present the most recent reactor data available to the Agency. It contains the following summarized information: General information as of the end of 1990, on power reactors operating or under construction, and shut down; performance data on reactors operating in the Agency's Member States, as reported to the IAEA. This information is collected by the Agency by circulating questionnaires to the Member States through the designated national correspondents. The replies are used to maintain computerized files on general and design data of, and operating experience with, power reactors. The Agency's Power Reactor Information System (PRIS) comprising the above files provides all the information and data previously published in the Agency's Power Reactors in Member States and currently published in the Agency's Operating Experience with Nuclear Power Stations in Member States. 5 figs, 19 tabs

  3. How many nuclear stocks in the world in 2015?

    International Nuclear Information System (INIS)

    Le Guelte, G.

    2005-01-01

    The examination conference of the non-proliferation treaty which will take place in May 2, 2005, will be corrupted by the unanimous reprobation against the 5 states which are still perennializing their nuclear stocks, while they committed themselves to eliminate them. The sustain of the non-proliferation policy is crumbling down and the possibilities of clandestine activities are growing up. Instead of explaining their join reprobation against the policy of these states, the participants will probably spread the image of a divided, disillusioned, ineffective and at a loss world. It is not excluded that in the next 10 or 15 years, about 20 states will still have their nuclear weapons. (J.S.)

  4. Russian nuclear industry and the perspectives on the world market

    International Nuclear Information System (INIS)

    Nefedov, G. F.

    2008-01-01

    The development of the NPP capacities in Russia is presented. Federal Target Program 'Development of the Nuclear Power Industry of Russia in 2007-2010 and till 2015' (Government Decree of October 06 2006) is adopted. The scope of financing under the Program till 2015 is €41bill., of which budget financing is €19 bln. The goals are: to launch 10 new NPP units and to start 10 more projects by 2015; to actively promote the Russian nuclear fuel cycle organizations production on the world markets; to expand NPP construction and and operation outside Russia. The institutional reform to meet the goals is presented. NPP with russian VVER projects worldwide are presented

  5. The world's nuclear future - built on material success

    Science.gov (United States)

    Ion, Sue

    2010-07-01

    In our energy hungry world of the twenty-first century, the future of electricity generation must meet the twin challenges of security of supply and reduced carbon emissions. The expectations for nuclear power programmes to play a part in delivering success on both counts, grows ever higher. The nuclear industry is poised on a renaissance likely to dwarf the heady days of the 1960s and early 1970s. Global supply chain and project management challenges abound, now just as then. The science and engineering of materials will be key to the successful deployment and operation of a new generation of reactor systems and their associated fuel cycles. Understanding and predicting materials performance will be key to achieving life extension of existing assets and underpinning waste disposal options, as well as giving confidence to the designers, their financial backers and governments across the globe, that the next generation of reactors will deliver their full potential.

  6. Nuclear power reactors in the world. April 2000 ed.

    International Nuclear Information System (INIS)

    2000-01-01

    Nuclear data presented in this annual publication are based on actual statistical data collected by the IAEA Power Reactor Information System (PRIS). Energy and electricity data for 1999 are estimated since latest available information from the Statistical Office of the United Nations is for 1997. Population data originate from the 'World Population Prospects' (revision 1999) published by the Population Division of the UN Statistical office, and the 1999 values are estimates. The future growth of energy, electricity and nuclear power up to 2020 is presented as low and high estimates in order to encompass the uncertainties associated with the future. These estimates should be viewed as very general growth trends whose validity must constantly be subjected to critical review

  7. China and the post-cold-war nuclear world

    International Nuclear Information System (INIS)

    Nakatsuji, Keiji

    1997-01-01

    On May 15, 1995, only a few days after the indefinite extension of the Non-Proliferation Treaty, China tested a nuclear bomb. The rapid growth in China's defence spending is also alarming. Against the spirit of international non-proliferation regimes, China has sold missile components to Pakistan, a research reactor and an electromagnetic isotope separation facility to Iran. In addition to the repression of human rights domestically, in China as well as in Tibet, no one can ignore the possibility of a serious international conflict over the Spratly Islands. This paper examines whether China will pose a grave future threat to world peace or whether, fearing international isolation, it will become a guardian of the international non-proliferation regime. In other words, the paper aims to set straight the record of China's recent nuclear policy

  8. Hosting and operation of world nuclear University Radiation School

    Energy Technology Data Exchange (ETDEWEB)

    Lee, T. J.; Nam, Y. M.; Sun, J. B.; Lee, B. J.; Kim, H. J.; Yoo, B. D.; Noh, S. P.; Lee, Y. K.

    2012-07-15

    The purpose of this project is to cultivate new-generation global leaders in the radiation fields through hosting and managing WNU RT School and create globalization foundation in the radiation technology and industry. The scope of this project is to develop the WNU RT school programme, strengthen the promotion for oversea participants' involvement, open the WNU RT School on the endeavor, and thus analyze and evaluate the result of the WNU RT School. The WNU RT school, so as to change radiation-field young scientists in the world to new global leaders in the future, successfully opened from May 12 to June 1 at Deajeon. The WNU, WNA(World Nuclear Association) leads, managed the event, and KAERI, KINS, KHNP, and KRA co-holded the event as well. Many 39 scientists from Russia, Australia, Netherlands, and other 16 countries joined in the event and they were satisfied with a lot of lectures, practices, lab-training, etc.

  9. List of the nuclear power plants in the world

    International Nuclear Information System (INIS)

    Bebin, J.

    1980-12-01

    The world list of nuclear power stations concerns all the units definitely ordered, whether in operation, definitely shut down, in any stage of construction or even put back to an indefinite date. Cancelled power stations are mentioned, save those cancelled during the present year. Shut down power stations are included in 'power stations ordered' but are deducted as from the date of closure. The complex of power stations is divided into two lists: List A (classified by name of builder) and List B (classified by country) [fr

  10. Power plant and utility performance: how world-record outages are being achieved in the USA

    International Nuclear Information System (INIS)

    Anon.

    1997-01-01

    Two record-breaking refuelling outages at power reactors in the USA are described. The first, at Browns Ferry 3 BWR, was accomplished in 19 days 39 minutes - a shorter time than for an General Electric BWR anywhere in the world hitherto. The management attribute this success to planning, personnel and performance. As well as refuelling, inspections and maintenance, major modifications were carried out. These included the completion of the installation of digital feedwater reactor level control and digital feedwater heater level control. The second outage, at South Texas Project 2 BWR, at 17 days 14 hours and 10 minutes was the fastest yet recorded for any US nuclear unit. This achievement is ascribed to excellent outage preparation and scheduling, the superior condition of the plant equipment and teamwork and safety consciousness on behalf of the plant personnel. Finally, brief consideration is given to the nuclear performance recovery programme of Commonwealth Edison and Ontario Hydro Nuclear. (UK)

  11. Progress to a nuclear-weapon-free world through tactical nuclear arms control

    International Nuclear Information System (INIS)

    Matseiko, Youri

    1999-01-01

    At a time when, after some years of passivity, nuclear disarmament is becoming more of an urgent item on the international agenda and receiving accordingly more attention on the part of politicians and non-governmental experts. This is partly reflected in the Report of the Canberra Commission, and the statement on nuclear weapons by international generals and admirals. At the same time some developments such as uncertainties with START II ratification and the process of NATO enlargement make the task of nuclear arms control even more demanding. What is needed now is to pursue at last without any further delay negotiations on effective measures relating to the cessation of the nuclear arms race and to nuclear disarmament. And these effective measures must include both strategic and tactical nuclear weapons. Only a sustained commitment at the highest political level will legitimate serious discussions of the elimination option and ensure that resources and personnel are devoted to finding solutions to the problems associated with moving to zero, and to crafting appropriate transition strategies. In the absence of such a commitment, the nations of the world may never reach the point at which the desirability and feasibility of a nuclear-free world can be evaluated with greater certainty. This Pugwash Conference is trying to make a modest contribution in helping to make possible such a vitally important commitment

  12. Nuclear desalination in the Arab world - Part II: Advanced inherent and passive safe nuclear reactors

    International Nuclear Information System (INIS)

    Karameldin, A.; Samer S. Mekhemar

    2004-01-01

    Rapid increases in population levels have led to greater demands for fresh water and electricity in the Arab World. Different types of energies are needed to contribute to bridging the gap between increased demand and production. Increased levels of safeguards in nuclear power plants have became reliable due to their large operational experience, which now exceeds 11,000 years of operation. Thus, the nuclear power industry should be attracting greater attention. World electricity production from nuclear power has risen from 1.7% in 1970 to 17%-20% today. This ratio had increased in June 2002 to reach more than 30%, 33% and 42% in Europe, Japan, and South Korea respectively. In the Arab World, both the public acceptance and economic viability of nuclear power as a major source of energy are greatly dependent on the achievement of a high level of safety and environmental protection. An assessment of the recent generation of advanced reactor safety criteria requirements has been carried out. The promising reactor designs adapted for the Arab world and other similar developing countries are those that profit from the enhanced and passive safety features of the new generation of reactors, with a stronger focus on the effective use of intrinsic characteristics, simplified plant design, and easy construction, operation and maintenance. In addition, selected advanced reactors with a full spectrum from small to large capacities, and from evolutionary to radical types, which have inherent and passive safety features, are discussed. The relevant economic assessment of these reactors adapted for water/electricity cogeneration have been carried out and compared with non-nuclear desalination methods. This assessment indicates that, water/electricity cogeneration by the nuclear method with advanced inherent and passive safe nuclear power plants, is viable and competitive. (author)

  13. World Nuclear Association position statement: Safe management of nuclear waste and used nuclear fuel

    International Nuclear Information System (INIS)

    Saint-Pierre, Sylvain

    2006-01-01

    This WNA Position Statement summarises the worldwide nuclear industry's record, progress and plans in safely managing nuclear waste and used nuclear fuel. The global industry's safe waste management practices cover the entire nuclear fuel-cycle, from the mining of uranium to the long-term disposal of end products from nuclear power reactors. The Statement's aim is to provide, in clear and accurate terms, the nuclear industry's 'story' on a crucially important subject often clouded by misinformation. Inevitably, each country and each company employs a management strategy appropriate to a specific national and technical context. This Position Statement reflects a confident industry consensus that a common dedication to sound practices throughout the nuclear industry worldwide is continuing to enhance an already robust global record of safe management of nuclear waste and used nuclear fuel. This text focuses solely on modern civil programmes of nuclear-electricity generation. It does not deal with the substantial quantities of waste from military or early civil nuclear programmes. These wastes fall into the category of 'legacy activities' and are generally accepted as a responsibility of national governments. The clean-up of wastes resulting from 'legacy activities' should not be confused with the limited volume of end products that are routinely produced and safely managed by today's nuclear energy industry. On the significant subject of 'Decommissioning of Nuclear Facilities', which is integral to modern civil nuclear power programmes, the WNA will offer a separate Position Statement covering the industry's safe management of nuclear waste in this context. The paper's conclusion is that the safe management of nuclear waste and used nuclear fuel is a widespread, well-demonstrated reality. This strong safety record reflects a high degree of nuclear industry expertise and of industry responsibility toward the well-being of current and future generations. Accumulating

  14. Virtual nuclear capabilities and deterrence in a world without nuclear weapons. VERTIC research report no. 3

    International Nuclear Information System (INIS)

    Paloczi-Horvath, G.

    1998-01-01

    'Virtual nuclear capabilities' (VNC) can be defined as the ability of a state not equipped wth nuclear weapons to produce them within a matter of months or years, using fissile material and/or technological skills and materials available to it. 'Virtual nuclear deterrence' (VND) would use these capabilities to a specific end. It could be a temporary posture adopted by former nuclear weapon states as a guarantee against nuclear weapon 'break out'. VND could hence reinforce a temporary security architecture, even if in this instance 'temporary' might mean up to around ten years. In the context of getting to 'zero', VND could not be an end in itself, but rather serve as an element of the security architecture of a world free of nuclear weapons. VND would only be adopted by the acknowledged nuclear weapon states (NWS) - China, France, the Russian Federation, the United Kingdom and the United States of America - after the commit to complete nuclear disarmament, sign the appropriate treaties and perceive the temporary adoption of this form of deterrence to be in their political and security interests. As with the NWS, VND will only be accepted as an interim form of security by the de facto nuclear weapon states (DFNWS) - India, Israel and Pakistan - when they can be assured that their virtual security interests would be guaranteed by other means after they sign a nuclear disarmament treaty. There are several alternative approaches to VND. These range from various types of precise or explicit virtual deterrence to more implicit or tacit forms. An explicit VND posture might allow materials and capabilities relevant to the construction of a nuclear weapon to be retained under verified arrangements for a limited time. This report explains why explicit VND would not be a reliable tool for reinforcing a nuclear disarmament treaty, as it could undermine the treaty's whole purpose. An implicit VND posture would not permit the retention of any weapons-related fissile material or

  15. Seismic risk assessment of a BWR: status report

    International Nuclear Information System (INIS)

    Chuang, T.Y.; Bernreuter, D.L.; Wells, J.E.; Johnson, J.J.

    1985-02-01

    The seismic risk methodology developed in the US NRC Seismic Safety Margins Research Program (SSMRP) was demonstrated by its application to the Zion nuclear power plant, a pressurized water reactor (PWR). A detailed model of Zion, including systems analysis models (initiating events, event trees, and fault trees), SSI and structure models, and piping models was developed and analyzed. The SSMRP methodology can equally be applied to a boiling water reactor (BWR). To demonstrate its applicability, to identify fundamental differences in seismic risk between a PWR and a BWR, and to provide a basis of comparison of seismic risk between a PWR and a BWR when analyzed with comparable methodology and assumptions, a seismic risk analysis is being performed on the LaSalle County Station nuclear power plant

  16. The first Summer Institute of the World Nuclear University - a personal record

    International Nuclear Information System (INIS)

    Denk, W.; Fischer, C.; Seidl, M.

    2005-01-01

    The first World Nuclear University Summer Institute was held at Idaho Falls, USA, between July 9 and August 20, 2005. The event was hosted by the Institute of Nuclear Science and Engineering of Idaho State University (ISU) and by the Idaho National Laboratory (INL), which has been planned to be the central nuclear technology research institution in the United States. The World Nuclear University (WNU) was founded in 2003 by the International Atomic Energy Agency (IAEA), the OECD Nuclear Energy Agency (OECD-NEA), the World Association of Nuclear Operators (WANO), and the World Nuclear Association (WNA) as a global association fo scientific and educational institutions in the nuclear field. The first WNU Summer Institute was designed at IAEA in Vienna in the course of the following year and planned by the WNU Coordinating Centre in London. The six weeks of lectures and presentations arranged by the World nuclear University in Idaho Falls are described in detail from the participants' perspective. (orig.)

  17. Utility experience with BWR-PSMS

    International Nuclear Information System (INIS)

    Bond, G.R.

    1986-01-01

    The BWR Power Shape Monitoring System (BWR-PSMS) has proven to be an effective and versatile tool for core monitoring. GPU Nuclear Corporation's (GPUN) Oyster Creek plant has been involved in the PSMS development since its inception, having been selected by EPRI as the initial demonstration site. Beginning with Cycle 10, Oyster Creek has been applying the BWR-PSMS as the primary core monitoring tool. Although the system has been in operation at Oyster Creek for the past several cycles, this is the first time the PSMS was used to monitor compliance to the plant technical specifications, to guide adherence to vendore fuel maneuvering recommendations and to develop data for certain performance records such as fuel burnup, isotopic accounting, etc. This paper will discuss the bases for the decision to apply PSMS as the fundamental core monitoring system, the experience in implementing the PSMS in this mode, activities currently underway or planned related to PSMS, and potential future extensions and applications of PSMS at Oyster Creek

  18. Scaling and uncertainty in BWR instability problems

    International Nuclear Information System (INIS)

    Di Auria, F.; Pellicoro, V.

    1995-01-01

    This paper deals with a critical review of activities, performed at the DCMN of Pisa University, in relation to the thermo-hydraulic oscillations in two-phase systems. Stability analyses, including model development and achievement of experimental data, are generally performed for BWRs in order to achieve the following objectives: to reach a common understanding in relation to the predictive capabilities of system codes and to the influence of various parameters on the instability; to establish a data base for the qualification of the analytical tools already or becoming available; to set-up qualified tools (code/models + nodalization + user assumption) suitable for predicting the unstable behaviour of the nuclear plants of interest (current BWR, SBWR, ABWR and RBMK). These considerations have been the basis for the following researches: 1) proposal of the Boiling Instability Program (BIP) (1) 2) evaluation of stability tests in PIPER-ONE apparatus (2) 3) coupled thermal-hydraulic and neutronic instabilities in the LaSalle-2 BWR plant (3) 4) participation to the NEA-OECD BWR Benchmark (4) The RELAP/MOD2 and RELAP5/MOD3 codes have been used. (author)

  19. BWR recirculation pump diagnostic expert system

    International Nuclear Information System (INIS)

    Chiang, S.C.; Morimoto, C.N.; Torres, M.R.

    2004-01-01

    At General Electric (GE), an on-line expert system to support maintenance decisions for BWR recirculation pumps for nuclear power plants has been developed. This diagnostic expert system is an interactive on-line system that furnishes diagnostic information concerning BWR recirculation pump operational problems. It effectively provides the recirculation pump diagnostic expertise in the plant control room continuously 24 hours a day. The expert system is interfaced to an on-line monitoring system, which uses existing plant sensors to acquire non-safety related data in real time. The expert system correlates and evaluates process data and vibration data by applying expert rules to determine the condition of a BWR recirculation pump system by applying knowledge based rules. Any diagnosis will be automatically displayed, indicating which pump may have a problem, the category of the problem, and the degree of concern expressed by the validity index and color hierarchy. The rules incorporate the expert knowledge from various technical sources such as plant experience, engineering principles, and published reports. These rules are installed in IF-THEN formats and the resulting truth values are also expressed in fuzzy terms and a certainty factor called a validity index. This GE Recirculation Pump Expert System uses industry-standard software, hardware, and network access to provide flexible interfaces with other possible data acquisition systems. Gensym G2 Real-Time Expert System is used for the expert shell and provides the graphical user interface, knowledge base, and inference engine capabilities. (author)

  20. BWR internals life assurance

    International Nuclear Information System (INIS)

    Herrera, M.L.; Stancavage, P.P.

    1988-01-01

    Boiling water reactor (BWR) internal components play an important role in power plant life extension. Many important internals were not designed for easy removal and changes in material properties and local environmental effects due to high radiation makes stress corrosion cracking more likely and more difficult to correct. Over the past several years, operating experience has shown that inspection, monitoring and refurbishment can be accomplished for internal structures with existing technology. In addition, mitigation techniques which address the causes of degradation are available to assure that life extension targets can be met. This paper describes the many considerations and aspects when evaluating life extension for reactor vessel internals

  1. The HAMBO BWR simulator of HAMMLAB

    International Nuclear Information System (INIS)

    Karlsson, Tommy; Jokstad, Haakon; Meyer, Brita D.; Nihlwing, Christer; Norrman, Sixten; Puska, Eija Karita; Raussi, Pekka; Tiihonen, Olli

    2001-02-01

    Modernisation of control rooms of the nuclear power plants has been a major issue in Sweden and Finland the last few years, and this will continue in the years to come. As an aid in the process of introducing new technology into the control rooms, the benefit of having an experimental simulator where proto typing of solutions can be performed, has been emphasised by many plants. With this as a basis, the BWR plants in Sweden and Finland decided to fund, in co-operation with the Halden Project, an experimental BWR simulator based on the Forsmark 3 plant in Sweden. The BWR simulator development project was initiated in January 1998. VTT Energy in Finland developed the simulator models with the aid of their APROS tool, while the operator interface was developed by the Halden Project. The simulator was thoroughly tested by experienced HRP personnel and professional Forsmark 3 operators, and accepted by the BWR utilities in June 2000. The acceptance tests consisted of 19 well-defined transients, as well as the running of the simulator from full power down to cold shutdown and back up again with the use of plant procedures. This report describes the HAMBO simulator, with its simulator models, the operator interface, and the underlying hardware and software infrastructure. The tools used for developing the simulator, APROS, Picasso-3 and the Integration Platform, are also briefly described. The acceptance tests are described, and examples of the results are presented, to illustrate the level of validation of the simulator. The report concludes with an indication of the short-term usage of the simulator. (Author)

  2. 2012 nuclear power world report; Kernenergie Weltreport 2012

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2013-06-15

    At the end of 2012, 437 nuclear power plants were available for energy supply in 31 countries of the world. This means that the number was unchanged compared to the previous year's number on 31 December 2011. The aggregate gross power of the plants amounted to approx. 392,793 MWe, the aggregate net power, to 372,572 MWe. This indicates a slight increase of gross and net capacity (gross: 389,367 MWe, net: 369,371 MWe) Two units were commissioned in 2012; 1 unit in China and the Republic of Korea each. Two reactors in Canada resumed commercial operation after a long-term shutdown. The units have been layed-up since the mid 1990ies. Four units were shut down permanently in 2012; 2 units in the United Kingdom, and one unit in Canada and Spain each. The shut-downs in the United Kingdom and Canada have been planned on a long-term base. 68 nuclear generating units - 5 more than at the end of 2011 - were under construction in late 2012 in 14 countries with an aggregate gross power of approx. 70,933 MWe and net power of approx. 66,244 MWe. 9 new projects have been started in 2012 in 3 countries (China, United Arab Emirates, USA). Worldwide, some 110 new nuclear power plants are in the concrete project design, planning, and licensing phases; in some of these cases license applications have been submitted or contracts have already been signed. Some 100 further projects are planned. Net electricity generation in nuclear power plants worldwide in 2012 achieved a level of approx. 2,346.16 billion kWh (2011: approx. 2,497.1 billion kWh). The main cause for the lower production have been the permanent shut-downs of almost all nuclear power plants in Japan since the natural disaster on 11 March 2011. Since the first generation of electricity in a nuclear power plant in the EBR-I fast breeder (USA) on December 20, 1951, cumulated net production has reached approx. 67,946 billion kWh, and operating experience has grown to some 15,050 reactor years. (orig.)

  3. Nuclear energy world Report 2012. September 2013 update

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2013-11-15

    At the end of 2012, 437 nuclear power plants were available for energy supply in 31 countries of the world. This means that the number was unchanged compared to the previous year's number on 31 December 2011. The aggregate gross power of the plants amounted to approx. 392,793 MWe, the aggregate net power, to 372,572 MWe. This indicates a slight increase of gross and net capacity (gross: 389,367 MWe, net: 369,371 MWe). Two units were commissioned in 2012; one unit in China and the Republic of Korea each. Two reactors in Canada resumed commercial operation after a long-term shutdown. The units have been layed-up since the mid 1990ies. Four units were shut down permanently in 2012; 2 units in the United Kingdom, and one unit in Canada and Spain each. The shut-downs in the United Kingdom and Canada have been planned on a long-term base. 68 nuclear generating units - 5 more than at the end of 2011 - were under construction in late 2012 in 14 countries with an aggregate gross power of approx. 70,933 MWe and net power of approx. 66,244 MWe. 9 new projects have been started in 2012 in three countries (China, United Arab Emirates, USA). Worldwide, some 110 new nuclear power plants are in the concrete project design, planning, and licensing phases; in some of these cases license applications have been submitted or contracts have already been signed. Some 100 further projects are planned. Net electricity generation in nuclear power plants worldwide in 2012 achieved a level of approx. 2,350.80 billion (109) kWh (2011: approx. 2,497.10 billion kWh). The main cause for the lower production have been the permanent shut-downs of almost all nuclear power plants in Japan since the natural disaster on 11 March 2011. Since the first generation of electricity in a nuclear power plant in the EBR-I fast breeder (USA) on December 20, 1951, cumulated net production has reached approx. 67,950 billion kWh, and operating experience has grown to some 15,050 reactor years. (orig.)

  4. Nuclear research reactors in the world. June 1988 ed.

    International Nuclear Information System (INIS)

    1988-01-01

    This is the third edition of Reference Data Series No. 3, Nuclear Research Reactors in the World, which replaces the Agency's publications Power and Research Reactors in Member States and Research Reactors in Member States. This booklet contains general information, as of the end of June 1988, on research reactors in operation, under construction, planned, and shut down. The information is collected by the Agency through questionnaires sent to the Member States through the designated national correspondents. All data on research reactors, training reactors, test reactors, prototype reactors and critical assemblies are stored in the IAEA Research Reactor Data Base (RRDB) system. This system contains all the information and data previously published in the Agency's publication Power and Research Reactors in Member States as well as additional information. 12 figs, 19 tabs

  5. Dissolution experiments of commercial PWR (52 MWd/kgU) and BWR (53 MWd/kgU) spent nuclear fuel cladded segments in bicarbonate water under oxidizing conditions. Experimental determination of matrix and instant release fraction

    Science.gov (United States)

    González-Robles, E.; Serrano-Purroy, D.; Sureda, R.; Casas, I.; de Pablo, J.

    2015-10-01

    The denominated instant release fraction (IRF) is considered in performance assessment (PA) exercises to govern the dose that could arise from the repository. A conservative definition of IRF comprises the total inventory of radionuclides located in the gap, fractures, and the grain boundaries and, if present, in the high burn-up structure (HBS). The values calculated from this theoretical approach correspond to an upper limit that likely does not correspond to what it will be expected to be instantaneously released in the real system. Trying to ascertain this IRF from an experimental point of view, static leaching experiments have been carried out with two commercial UO2 spent nuclear fuels (SNF): one from a pressurized water reactor (PWR), labelled PWR, with an average burn-up (BU) of 52 MWd/kgU and fission gas release (FGR) of 23.1%, and one from a boiling water reactor (BWR), labelled BWR, with an average BU of and 53 MWd/kgU and FGR of 3.9%. One sample of each SNF, consisting of fuel and cladding, has been leached in bicarbonate water during one year under oxidizing conditions at room temperature (25 ± 5)°C. The behaviour of the concentration measured in solution can be divided in two according to the release rate. All radionuclides presented an initial release rate that after some days levels down to a slower second one, which remains constant until the end of the experiment. Cumulative fraction of inventory in aqueous phase (FIAPc) values has been calculated. Results show faster release in the case of the PWR SNF. In both cases Np, Pu, Am, Cm, Y, Tc, La and Nd dissolve congruently with U, while dissolution of Zr, Ru and Rh is slower. Rb, Sr, Cs and Mo, dissolve faster than U. The IRF of Cs at 10 and 200 days has been calculated, being (3.10 ± 0.62) and (3.66 ± 0.73) for PWR fuel, and (0.35 ± 0.07) and (0.51 ± 0.10) for BWR fuel.

  6. Nuclear Power, Nuclear Fuel Cycle and Sustainable Development in a Changing World

    International Nuclear Information System (INIS)

    Arakawa, Yoshitaka

    2000-01-01

    Important changes concerning nuclear energy are coming to the fore, such as economic competitiveness compared to other energy resources, requirement for severe measures to mitigate man-made greenhouse gas (GHG) emission, due to the rise of energy demand in Central and Eastern Europe and Asia and to the greater public concern with respect to the nuclear safety, particularly related to spent fuel and radioactive waste disposal. Global safety culture, as well as well focused nuclear research and development programs for safer and more efficient nuclear technology manifest themselves in a stronger and effective way. Information and data on nuclear technology and safety are disseminated to the public in timely, accurate and understandable fashion. Nuclear power is an important contributor to the world's electricity needs. In 1999, it supplied roughly one sixth of global electricity. The largest regional percentage of electricity generated through nuclear power last year was in western Europe (30%). The nuclear power shares in France, Belgium and Sweden were 75%, 58% and 47%, respectively. In North America, the nuclear share was 20% for the USA and 12% for Canada. In Asia, the highest figures were 43% for the Republic of Korea and 36% for Japan. In 1998, twenty-three nations produced uranium of which, the ten biggest producers (Australia, Canada, Kazakhstan, Namibia, Niger, the Russian Federation, South Africa, Ukraine, USA and Uzbekistan) supplied over 90% of the world's output. In 1998, world uranium production provided only about 59% of world reactor requirements. In OECD countries, the 1998 production could only satisfy 39% of the demand. The rest of the requirements were satisfied by secondary sources including civilian and military stockpiles, uranium reprocessing and re-enrichment of depleted uranium. With regard to the nuclear fuel industry, an increase in fuel burnup, higher thermal rates, longer fuel cycle and the use of mixed uranium-plutonium oxide (MOX

  7. Price formation and market mechanisms in world nuclear fuel markets

    International Nuclear Information System (INIS)

    Neff, T.L.

    1991-01-01

    The structure of world markets for uranium, UF6 and enriched uranium product (EUP) have changed greatly since the 1970s. In the old model, firms specializing in mining, conversion, enrichment and fabrication played independent and sequential steps in the making of nuclear fuel. The great majority of users dealt directly with primary suppliers. Competition took place among suppliers at each stage of the fuel cycle and price formation occurred independently for each stage. Long-term contracts directly between primary supplier and end user dominated, whether for U3O8, conversion, enrichment or fabrication. The old model is effectively gone. uranium producers compete with traders, some of whom can offer a much larger menu of products and terms than primary suppliers. Where once there was a straight engineering-like sequence of processing from uranium to EUP for end use, today things are often reversed and far more complicated, with de-enrichment, de-conversion, loans, swaps, and other transactions. Those able to bring financial and entrepreneurial skills to bear on this complexity have an advantage. Long-term contracts between primary producers and end users no longer dominate new transactions, especially in the critical role of price formation - the process of determining or discovery of the market price. These changes have raised the question of whether participants in the nuclear fuel market need, or could benefit from, new institutional mechanisms, specifically some sort of formal exchange or commodity market

  8. Nuclear power reactors in the world. April 2005 ed

    International Nuclear Information System (INIS)

    2005-01-01

    This is the twenty-fifth edition of Reference Data Series No. 2, Nuclear Power Reactors in the World, which is published once per year, to present the most recent reactor data available to the Agency. It contains the following summarized information: - General information as of the end of 2004 on power reactors operating or under construction, and shut down; - Performance data on reactors operating in the Agency's Member States, as reported to the IAEA. The information is collected by the Agency by circulating questionnaires to Member States through the designated national correspondents. The replies are used to maintain computerized files on general and design data of, and operating experience with, power reactors. The Agency's Power Reactor Information System (PRIS) comprising the above files provides all the information and data previously published in the Agency's Power Reactors in Member States and currently published in the Agency's Operating Experience with Nuclear Power Stations in Member States and available at the Internet address http://www.iaea.org/programmes/a2

  9. Nuclear Society of Russia: Ten years in the world nuclear community

    Energy Technology Data Exchange (ETDEWEB)

    Ponomarev-Stepnoi, N.N.; Gagarinski, A.Yu.

    2000-07-01

    the analysis of nuclear energy production trends and--most importantly for relations with the mass media and the public--crisis information (latest examples: Tokaimura, the virtual Y2K crisis, etc.), have become important sources of information for the NSR. It should be emphasized that the financial participation of the Russian Minatom (maintained at the insistent request of the NSR) in the NucNet system provides sufficiently wide dissemination of operative nuclear information not only through the NSR headquarters but also via its regional branches and separate enterprises. From its side, NSR has assumed the responsibility for the adequate flow of information on Russian nuclear events to NucNet. As a living and developing organism, the NSR wants to respond to its time's challenges. Several prospective directions could be among the NSR information exchange plans: (1) Independent international analysis of the problems of the use of nuclear energy, which is presently in a stagnation period but with future large-scale development, is as possible today as it never had been before. (2) In the field of public relations, many achievements of Russian and US specialists (in the form of articles, analyzing nuclear energy on the popular and highly professional level) stay inaccessible to others because of the language barrier. A possible joint ANS/NSR project on selection, translation, and exchange of such materials, with their further wide publication, represents an obvious reserve in their societies' information activities. (3) The International Youth Nuclear Congress project (proposed by the Russian nuclear youth and supported by ANS and ENS), conceived as a bridge between generations and a forum for opinion exchange between young nuclear specialists from various countries, deserves further development and appropriation of permanent status in the activities of the world nuclear societies.

  10. Nuclear Society of Russia: Ten years in the world nuclear community

    International Nuclear Information System (INIS)

    Ponomarev-Stepnoi, N.N.; Gagarinski, A.Yu.

    2000-01-01

    nuclear energy production trends and--most importantly for relations with the mass media and the public--crisis information (latest examples: Tokaimura, the virtual Y2K crisis, etc.), have become important sources of information for the NSR. It should be emphasized that the financial participation of the Russian Minatom (maintained at the insistent request of the NSR) in the NucNet system provides sufficiently wide dissemination of operative nuclear information not only through the NSR headquarters but also via its regional branches and separate enterprises. From its side, NSR has assumed the responsibility for the adequate flow of information on Russian nuclear events to NucNet. As a living and developing organism, the NSR wants to respond to its time's challenges. Several prospective directions could be among the NSR information exchange plans: (1) Independent international analysis of the problems of the use of nuclear energy, which is presently in a stagnation period but with future large-scale development, is as possible today as it never had been before. (2) In the field of public relations, many achievements of Russian and US specialists (in the form of articles, analyzing nuclear energy on the popular and highly professional level) stay inaccessible to others because of the language barrier. A possible joint ANS/NSR project on selection, translation, and exchange of such materials, with their further wide publication, represents an obvious reserve in their societies' information activities. (3) The International Youth Nuclear Congress project (proposed by the Russian nuclear youth and supported by ANS and ENS), conceived as a bridge between generations and a forum for opinion exchange between young nuclear specialists from various countries, deserves further development and appropriation of permanent status in the activities of the world nuclear societies

  11. BWR shutdown analyzer using artificial intelligence (AI) techniques

    International Nuclear Information System (INIS)

    Cain, D.G.

    1986-01-01

    A prototype alarm system for detecting abnormal reactor shutdowns based on artificial intelligence technology is described. The system incorporates knowledge about Boiling Water Reactor (BWR) plant design and component behavior, as well as knowledge required to distinguish normal, abnormal, and ATWS accident conditions. The system was developed using a software tool environment for creating knowledge-based applications on a LISP machine. To facilitate prototype implementation and evaluation, a casual simulation of BWR shutdown sequences was developed and interfaced with the alarm system. An intelligent graphics interface for execution and control is described. System performance considerations and general observations relating to artificial intelligence application to nuclear power plant problems are provided

  12. Improvement for BWR operator training

    International Nuclear Information System (INIS)

    Kurisu, Takanori; Takahashi, Yoshitaka; Harada, Mitsuhiro; Takahashi, Iwao.

    1988-01-01

    BWR Operator Training Center was founded in April, 1971, and in April, 1974, training was begun, since then, 13 years elapsed. During this period, the curriculum and training facilities were strengthened to meet the training needs, and the new training techniques from different viewpoint were developed, thus the improvement of training has been done. In this report, a number of the training techniques which have been developed and adopted recently, and are effective for the improvement of the knowledge and skill of operators are described. Recently Japanese nuclear power stations have been operated at stable high capacity factor, accordingly the chance of experiencing the occurrence of abnormality and the usual start and stop of plants decreased, and the training of operators using simulators becomes more important. The basic concept on training is explained. In the standard training course and the short period fundamental course, the development of the guide for reviewing lessons, the utilization of VTRs and the development of the techniques for diagnosing individual degree of learning were carried out. The problems, the points of improvement and the results of these are reported. (Kako, I.)

  13. Standard Technical Specifications, General Electric plants, BWR/4

    International Nuclear Information System (INIS)

    1992-09-01

    This NUREG contains improved Standard Technical Specifications (STS) for General Electric Plants, BWR/4, and documents the positions of the Nuclear Regulatory Commission based on the BWR Owners Group's proposed STS. This document is the result of extensive technical meetings and discussions among the NRC staff, the Nuclear Steam Supply System (NSSS) Owners Groups, the NSSS vendors, and the Nuclear Management and Resources Council (NUMARC). The improved STS were developed based on the criteria in the interim Commission Policy Statement on Technical Specification Improvements for Nuclear Power Reactors, dated February 6, 1987. The improved STS will be used as the basis for individual nuclear power specifications. This report contains three volumes. This document, Volume 2, contains the Bases for Chapters 2.0 and 3.0, and Sections 3.1--3.3 of the improved STS

  14. Simplified compact containment BWR plant

    International Nuclear Information System (INIS)

    Heki, H.; Nakamaru, M.; Tsutagawa, M.; Hiraiwa, K.; Arai, K.; Hida, T.

    2004-01-01

    The reactor concept considered in this paper has a small power output, a compact containment and a simplified BWR configuration with comprehensive safety features. The Compact Containment Boiling Water Reactor (CCR), which is being developed with matured BWR technologies together with innovative systems/components, is expected to prove attractive in the world energy markets due to its flexibility in regard to both energy demands and site conditions, its high potential for reducing investment risk and its safety features facilitating public acceptance. The flexibility is achieved by CCR's small power output of 300 MWe class and capability of long operating cycle (refueling intervals). CCR is expected to be attractive from view point of investment due to its simplification/innovation in design such as natural circulation core cooling with the bottom located short core, internal upper entry control rod drives (CRDs) with ring-type dryers and simplified ECCS system with high pressure containment concept. The natural circulation core eliminates recirculation pumps and the maintenance of such pumps. The internal upper entry CRDs reduce the height of the reactor vessel (RPV) and consequently reduce the height of the primary containment vessel (PCV). The safety features mainly consist of large water inventory above the core without large penetration below the top of the core, passive cooling system by isolation condenser (IC), passive auto catalytic recombiner and in-vessel retention (IVR) capability. The large inventory increases the system response time in the case of design-base accidents, including loss of coolant accidents. The IC suppresses PCV pressure by steam condensation without any AC power. The recombiner decreases hydrogen concentration in the PCV in the case of a severe accident. Cooling the molten core inside the RPV if the core should be damaged by loss of core coolability could attain the IVR. The feasibility of CCR safety system has been confirmed by LOCA

  15. The BWR owners' group planning guide for life extension

    International Nuclear Information System (INIS)

    Smith, S.K.; Lehnert, D.F.; Locke, R.K.

    1991-01-01

    Extending the operating life of a commercial nuclear power plant has been shown to be economically beneficial to both the utility and the electric customer. As such, many utilities are planning and implementing plant life extension (PLEX) programs. A document has been developed which provides guidance to utilities in formulating a PLEX program plant for one or more boiling water reactor (BWR) plants. The guide has been developed by the BWR Owners' Group Plant Life Extension Committee. The principal bases for this guide were the BWR Pilot and Lead Plant Programs. These programs were used as models to develop the 'base plan' described in this guide. By formulating their program plant utilizing the base plan, utilities will be able to maximize the use of existing evaluations and results. The utility planner will build upon the base plan by adding any tasks or features that are unique to their programs. (author)

  16. An overview of the BWR ECCS strainer blockage issues

    International Nuclear Information System (INIS)

    Serkiz, A.W.; Marshall, M.L. Jr.; Elliott, R.

    1996-01-01

    This Paper provides a brief overview of actions taken in the mid 1980s to resolve Unresolved Safety Issue (USI) A-43, open-quotes Containment Emergency Sump Performance,close quotes and their relationship to the BWR strainer blockage issue; the importance of insights gained from the Barseback-2 (a Swedish BWR) incident in 1992 and from ECCS strainer testing and inspections at the Perry nuclear power plant in 1992 and 1993; an analysis of an US BWR/4 with a Mark I containment; an international community sharing of knowledge relevant to ECCS strainer blockage, additional experimental programs; and identification of actions needed to resolve the strainer blockage issue and the status of such efforts

  17. BWR fuel performance

    International Nuclear Information System (INIS)

    Baily, W.E.; Armijo, J.S.; Jacobson, J.; Proebstle, R.A.

    1979-01-01

    The General Electric experience base on BWR fuel includes over 29,000 fuel assemblies which contain 1,600,000 fuel rods. Over the last five years, design, process and operating changes have been introduced which have had major effects in improving fuel performance. Monitoring this fuel performance in BWRs has been accomplished through cooperative programs between GE and utilities. Activities such as plant fission product monitoring, fuel sipping and fuel and channel surveillance programs have jointly contributed to the value of this extensive experience base. The systematic evaluation of this data has established well-defined fuel performance trends which provide the assurance and confidence in fuel reliability that only actual operating experience can provide

  18. BWR type reactors

    International Nuclear Information System (INIS)

    Yano, Ryoichi; Sato, Takashi; Osaki, Masahiko; Hirayama, Fumio; Watabe, Atsushi.

    1980-01-01

    Purpose: To effectively eliminate radioactive substances released upon loss of coolant accidents in BWR type reactors. Constitution: A high pressure gas jetting device having a plurality of small aperture nozzles is provided above a spray nozzle, that is, at the top of a dry well. The jetting device is connected to a vacuum breaker provided in a pressure suppression chamber. Upon loss of coolant accident, coolants are sprayed from the spray nozzle and air or nitrogen is jetted from the gas jetting device as well. Then, the gases in the dry well are disturbed, whereby radioactive iodine at high concentration liable to be accumulated in the dry well is forced downwardly, dissolved in the spray water and eliminated. (Ikeda, J.)

  19. Study and characterization of noble metal deposits on similar rusty surfaces to those of the reactor U-1 type BWR of nuclear power station of Laguna Verde; Estudio y caracterizacion de depositos de metales nobles sobre superficies oxidadas similares a las del reactor de la Central de Laguna Verde (CNLV) U1 del tipo BWR

    Energy Technology Data Exchange (ETDEWEB)

    Flores S, V. H.

    2011-07-01

    In the present investigation work, were determined the parameters to simulate the conditions of internal oxidation reactor circulation pipes of the nuclear power plant of Laguna Verde in Veracruz. We used 304l stainless steel cylinders with two faces prepared with abrasive paper of No. 600, with the finality to obtain similar surface to the internal circulation piping nuclear reactor. Oxides was formed within an autoclave (Autoclave MEX-02 unit B), which is a device that simulates the working conditions of the nuclear reactor, but without radiation generated by the fission reaction within the reactor. The oxidation conditions were a temperature of 280 C and pressure of 8 MPa, similar conditions to the reactor operating in nuclear power plant of Laguna Verde in Veracruz, Mexico (BWR conditions), with an average conductivity of 4.58 ms / cm and 2352 ppb oxygen to simulate normal water chemistry NWC. Were obtained deposits of noble metal oxides formed on 304l stainless steel samples, in a 250 ml autoclave at a temperature range of 180 to 200 C. The elements that were used to deposit platinum-rhodium (Pt-Rh) with aqueous Na{sub 2}Pt (OH){sub 6} and Na{sub 3}Rh (NO{sub 2}){sub 6}, Silver (Ag) with an aqueous solution of AgNO{sub 3}, zirconium (Zr) with aqueous Zr O (NO{sub 3}) and ZrO{sub 2}, and zinc (Zn) in aqueous solution of Zn (NO{sub 3}){sub 2} under conditions of normal water chemistry. Also there was the oxidation of 304l stainless steel specimens in normal water chemistry with a solution of Zinc (Zn) (NWC + Zn). Oxidation of the specimens in water chemistry with a solution of zinc (Zn + NWC) was prepared in two ways: within the MEX-02 autoclave unit A in a solution of zinc and a flask at constant temperature in zinc solution. The oxides formed and deposits were characterized by scanning electron microscopy, energy dispersive X-ray analysis, elemental field analysis and X-ray diffraction. By other hand was evaluated the electrochemical behavior of the oxides

  20. A world class nuclear research reactor complex for South Africa's nuclear future

    International Nuclear Information System (INIS)

    Keshaw, Jeetesh

    2008-01-01

    South Africa recently made public its rather ambitious goals pertaining to nuclear energy developments in a Draft Policy and Strategy issued for public comment. Not much attention was given to an important tool for nuclear energy research and development, namely a well equipped and maintained research reactor, which on its own does not do justice to its potential, unless it is fitted with all the ancillaries and human resources as most first world countries have. In South Africa's case it is suggested to establish at least one Nuclear Energy Research and Development Centre at such a research reactor, where almost all nuclear energy related research can be carried out on par with some of the best in the world. The purpose of this work is to propose how this could be done, and motivate why it is important that it be done with great urgency, and with full involvement of young professionals, if South Africa wishes to face up to the challenges mentioned in the Draft Strategy and Policy. (authors)

  1. A world class nuclear research reactor complex for South Africa's nuclear future

    Energy Technology Data Exchange (ETDEWEB)

    Keshaw, Jeetesh [South African Young Nuclear Professional Society, PO Box 9396, Centurion, 0157 (South Africa)

    2008-07-01

    South Africa recently made public its rather ambitious goals pertaining to nuclear energy developments in a Draft Policy and Strategy issued for public comment. Not much attention was given to an important tool for nuclear energy research and development, namely a well equipped and maintained research reactor, which on its own does not do justice to its potential, unless it is fitted with all the ancillaries and human resources as most first world countries have. In South Africa's case it is suggested to establish at least one Nuclear Energy Research and Development Centre at such a research reactor, where almost all nuclear energy related research can be carried out on par with some of the best in the world. The purpose of this work is to propose how this could be done, and motivate why it is important that it be done with great urgency, and with full involvement of young professionals, if South Africa wishes to face up to the challenges mentioned in the Draft Strategy and Policy. (authors)

  2. New nuclear weapon states and their impact on Third World regional conflicts

    International Nuclear Information System (INIS)

    Mazrui, A.A.

    1986-01-01

    The paper examines the new nuclear weapon states and their impact on third world regional conflicts. Nuclear technology in South Africa, nuclear terrorism and the Arab/Israeli conflict, Islam and the nuclear age, Egypt and the Non-Proliferation Treaty, and the 'masculinity' of warfare, are all discussed. (UK)

  3. Seismic risk assessment of a BWR

    International Nuclear Information System (INIS)

    Wells, J.E.; Bernreuter, D.L.; Chen, J.C.; Lappa, D.A.; Chuang, T.Y.; Murray, R.C.; Johnson, J.J.

    1987-01-01

    The simplified seismic risk methodology developed in the USNRC Seismic Safety Margins Research Program (SSMRP) was demonstrated by its application to the Zion nuclear power plant (PWR). The simplified seismic risk methodology was developed to reduce the costs associated with a seismic risk analysis while providing adequate results. A detailed model of Zion, including systems analysis models (initiating events, event trees, and fault trees), SSI and structure models, and piping models, was developed and used in assessing the seismic risk of the Zion nuclear power plant (FSAR). The simplified seismic risk methodology was applied to the LaSalle County Station nuclear power plant, a BWR; to further demonstrate its applicability, and if possible, to provide a basis for comparing the seismic risk from PWRs and BWRs. (orig./HP)

  4. New competition in the world market of nuclear reactors

    International Nuclear Information System (INIS)

    Finon, D.

    2005-01-01

    As nuclear orders are picking up a little, there are strengths competing against one another in the world industry of reactors, an industry that has been deeply affected for twenty years, by the smallness of the market and the reorganization of the electromechanical industry. Competition remains particularly difficult, even though, in terms of exports, national markets in industrialized countries such as the American market and European market are now open to foreign newcomers. One of the reasons of the difficulty is the increased commercial competition based on advanced reactor techniques untested due to strong faith in technology leading to forget the learning difficulties of older reactor types. On a narrow market, demanding and with very specific political interference, the reasoning is not like on an ordinary capital equipment market. Each builder tries to sell by relying on the assets it has in addition to the offered price and related services: industrial reputation and experience that play confusedly when untested advanced reactors are competing with one another, credit terms offered by the State and the government's influence on the market of emerging economies, the backing o the State's financial insurance in the event of risks taken in the sale of turnkey untested reactors. In the competition of the five manufacturers in the export market, American builders do not seem to have the best place, though even the leading position of Framatome ANP shows some limits. (author)

  5. A BWR licensing experience in the USA

    International Nuclear Information System (INIS)

    Powers, J.; Ogura, C.; Arai, K.; Thomas, S.; Mookhoek, B.

    2015-09-01

    The US-Advanced Boiling Water Reactor (A BWR), certified by the United States Nuclear Regulatory Commission (US NRC), is a third generation, evolutionary boiling water reactor design which is the reference for the South Texas Project Units 3 and 4 (STP3-4) Combined License Application (Cola). Nuclear Innovation North America (Nina) is the License Applicant for this new build project, and Toshiba is the selected primary technology contractor. The STP3-4 project has finished the US NRC technical review of the Cola through the final meeting of the Advisory Committee on Reactor Safeguards (ACRS), and the Final Safety Evaluation Report (FSER) is scheduled to be issued by the US NRC in the middle of 2015. The next steps are to support the Mandatory Hearing process, and voting by the NRC commissioners on the motion to grant the Combined License, which is scheduled beginning of 2016 according to US NRC schedule as of March 30, 2015. This paper summarizes the history and progress of the US-A BWR licensing, including the experiences of the Licensee, Nina, and Toshiba as the Epc team worked through the Code of Federal Regulations Title 10 (10-Cfr) Part 52 process, and provides some perspectives on how the related licensing material would also be of value within a 10-Cfr Part 50, two-step process to minimize schedule and financial risks which could arise from ongoing technical developments and regulatory reviews. (Author)

  6. A BWR licensing experience in the USA

    Energy Technology Data Exchange (ETDEWEB)

    Powers, J.; Ogura, C. [Toshiba America Nuclear Energy, Charlotte, North Carolina (United States); Arai, K. [Toshiba Corporation, Yokohama, Kanagawa (Japan); Thomas, S.; Mookhoek, B., E-mail: jim.powers@toshiba.com [Nuclear Innovation North America, Lake Jackson, Texas (United States)

    2015-09-15

    The US-Advanced Boiling Water Reactor (A BWR), certified by the United States Nuclear Regulatory Commission (US NRC), is a third generation, evolutionary boiling water reactor design which is the reference for the South Texas Project Units 3 and 4 (STP3-4) Combined License Application (Cola). Nuclear Innovation North America (Nina) is the License Applicant for this new build project, and Toshiba is the selected primary technology contractor. The STP3-4 project has finished the US NRC technical review of the Cola through the final meeting of the Advisory Committee on Reactor Safeguards (ACRS), and the Final Safety Evaluation Report (FSER) is scheduled to be issued by the US NRC in the middle of 2015. The next steps are to support the Mandatory Hearing process, and voting by the NRC commissioners on the motion to grant the Combined License, which is scheduled beginning of 2016 according to US NRC schedule as of March 30, 2015. This paper summarizes the history and progress of the US-A BWR licensing, including the experiences of the Licensee, Nina, and Toshiba as the Epc team worked through the Code of Federal Regulations Title 10 (10-Cfr) Part 52 process, and provides some perspectives on how the related licensing material would also be of value within a 10-Cfr Part 50, two-step process to minimize schedule and financial risks which could arise from ongoing technical developments and regulatory reviews. (Author)

  7. Nuclear power plants in the world - 2010 edition

    International Nuclear Information System (INIS)

    2010-01-01

    This small booklet summarizes in tables all data relative to the nuclear power plants worldwide. These data come from the IAEA's PRIS and AREVA-CEA's GAIA databases. The following aspects are reviewed: 2009 highlights, Main characteristics of reactor types, Map of the French nuclear power plants on 2010/01/01, Worldwide status of nuclear power plants (12/31/2009), Units distributed by countries, Nuclear power plants connected to the Grid- by reactor type groups, Nuclear power plants under construction on 2009, Evolution of nuclear power plants capacities connected to the grid, First electric generations supplied by a nuclear unit in each country, Electrical generation from nuclear power plants by country at the end 2009, Performance indicator of french PWR units, Evolution of the generation indicators worldwide by type, Nuclear operator ranking according to their installed capacity, Units connected to the grid by countries at 12/31/2009, Status of licence renewal applications in USA, Nuclear power plants under construction at 12/31/2009, Shutdown reactors, Exported nuclear capacity in net MWe, Exported and national nuclear capacity connected to the grid, Exported nuclear power plants under construction, Exported and national nuclear capacity under construction, Nuclear power plants ordered at 12/31/2009, Long term shutdown units at 12/31/2009, COL applications in the USA, Recycling of Plutonium in reactors and experiences, Mox licence plants projects, Appendix - historical development, Meaning of the used acronyms, Glossary

  8. Elecnuc - Nuclear power plants in the world - 2009 edition

    International Nuclear Information System (INIS)

    2009-01-01

    This small booklet summarizes in tables all data relative to the nuclear power plants worldwide. These data come from the IAEA's PRIS and AREVA-CEA's GAIA databases. The following aspects are reviewed: 2008 highlights, Main characteristics of reactor types, Map of the French nuclear power plants on 2008/01/01, Worldwide status of nuclear power plants (12/31/2008), Units distributed by countries, Nuclear power plants connected to the Grid- by reactor type groups, Nuclear power plants under construction on 2008, Evolution of nuclear power plants capacities connected to the grid, First electric generations supplied by a nuclear unit in each country, Electrical generation from nuclear powe plants by country at the end 2008, Performance indicator of french PWR units, Evolution of the generation indicators worldwide by type, Nuclear operator ranking according to their installed capacity, Units connected to the grid by countries at 12/31/2008, Status of licence renewal applications in USA, Nuclear power plants under construction at 12/31/2008, Shutdown reactors, Exported nuclear capacity in net MWe, Exported and national nuclear capacity connected to the grid, Exported nuclear power plants under construction, Exported and national nuclear capacity under construction, Nuclear power plants ordered at 12/31/2008, Long term shutdown units at 12/31/2008, COL applications in the USA, Recycling of Plutonium in reactors and experiences, Mox licence plants projects, Appendix - historical development, Meaning of the used acronyms, Glossary

  9. ELECNUC Nuclear power plants in the world - 2013 edition

    International Nuclear Information System (INIS)

    2013-01-01

    This small booklet summarizes in a series of tables the figures relative to the nuclear power plants worldwide. Data come from the IAEA's PRIS database and from specific I-tese studies. The following aspects are reviewed: 2012 highlights; Main characteristics of reactor types; Map of the French nuclear power plants on 2012/01/01; Worldwide status of nuclear power plants (12/31/2012); Units distributed by countries; Nuclear power plants connected to the Grid- by reactor type groups; Nuclear power plants under construction on 2012; Evolution of nuclear power plants capacities connected to the grid; First electric generations supplied by a nuclear unit in each country; Electrical generation from nuclear power plants by country at the end 2012; Performance indicator of french PWR units; Evolution of the generation indicators worldwide by type; Nuclear operator ranking according to their installed capacity; Units connected to the grid by countries at 12/31/2012; Status of licence renewal applications in USA; Nuclear power plants under construction at 12/31/2012; Shutdown reactors; Exported nuclear capacity in net MWe; Exported and national nuclear capacity connected to the grid; Exported nuclear power plants under construction; Exported and national nuclear capacity under construction; Nuclear power plants ordered at 12/31/2012; Long term shutdown units at 12/31/2012; COL (Combined Licence) applications in the USA; Recycling of Plutonium in reactors and experiences; Mox licence plants projects; Appendix - historical development; Meaning of the used acronyms; Glossary

  10. Seismic PRA of a BWR plant

    International Nuclear Information System (INIS)

    Nishio, Masahide; Fujimoto, Haruo

    2014-01-01

    Since the occurrence of nuclear power plant accidents in the Fukushima Daichi nuclear power station, the regulatory framework on severe accident (SA) has been discussed in Japan. The basic concept is to typify and identify the accident sequences leading to core/primary containment vessel (PCV) damage and to implement SA measures covering internal and external events extensively. As Japan is an earthquake-prone country and earthquakes and tsunami are important natural external events for nuclear safety of nuclear power plants, JNES performed the seismic probabilistic risk assessment (PRA) on a typical nuclear power plant and evaluated the dominant accident sequences leading to core/PCV damage to discuss dominant scenarios of severe accident (SA). The analytical models and the results of level-1 seismic PRA on a 1,100 MWe BWR-5 plant are shown here. Seismic PRA was performed for a typical BWR5 plant. Initiating events with large contribution to core damage frequency are the loss of all AC powers (station blackout) and the large LOCA. The top of dominant accident sequences is the simultaneous occurrence of station blackout and large LOCA. Important components to core damage frequency are electric power supply equipment. It needs to keep in mind that the results are influenced on site geologic characteristic to a greater or lesser. In the process of analysis, issues such as conservative assumptions related to damages of building or structure and success criteria for excessive LOCA are left to be resolved. These issues will be further studied including thermal hydric analysis in the future. (authors)

  11. BWR emergency procedure guidelines

    International Nuclear Information System (INIS)

    Post, J.S.; Karner, E.F.; Stratman, R.A.

    1984-01-01

    This chapter describes plans for dealing with reactor accidents developed by the Boiling Water Reactor (BWR) Owners' Group in response to post-Three Mile Island US NRC requirements. The devised Emergency Procedure Guidelines (EPGs), applicable to all BWRs, are symptom-based rather than event-based. According to the EPGs, the operator does not need to identify what event is occurring in the plant in order to decide what action to take, but need only observe the symptoms (values and trends of key control parameters) which exist and take appropriate action to control these symptoms. The original objective was to provide reactor operator guidance in responding to a small break loss-of-coolant accident (LOCA), but subsequent revisions have included other types of reactor accidents. Topics considered include the reactor pressure vessel (RPV) control guideline, the primary containment control guideline, the secondary containment control guideline, the radioactivity release control guideline, multiple failures vs. the design basis, safe limits vs. technical specifications, the technical status, licensing, and implementation. The EPGs are based upon maintaining both adequate core cooling and primary containment integrity

  12. High Fidelity BWR Fuel Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Su Jong [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-08-01

    This report describes the Consortium for Advanced Simulation of Light Water Reactors (CASL) work conducted for completion of the Thermal Hydraulics Methods (THM) Level 3 milestone THM.CFD.P13.03: High Fidelity BWR Fuel Simulation. High fidelity computational fluid dynamics (CFD) simulation for Boiling Water Reactor (BWR) was conducted to investigate the applicability and robustness performance of BWR closures. As a preliminary study, a CFD model with simplified Ferrule spacer grid geometry of NUPEC BWR Full-size Fine-mesh Bundle Test (BFBT) benchmark has been implemented. Performance of multiphase segregated solver with baseline boiling closures has been evaluated. Although the mean values of void fraction and exit quality of CFD result for BFBT case 4101-61 agreed with experimental data, the local void distribution was not predicted accurately. The mesh quality was one of the critical factors to obtain converged result. The stability and robustness of the simulation was mainly affected by the mesh quality, combination of BWR closure models. In addition, the CFD modeling of fully-detailed spacer grid geometry with mixing vane is necessary for improving the accuracy of CFD simulation.

  13. World-wide cooperation in nuclear power: a canadian perspective

    International Nuclear Information System (INIS)

    Whelan, D.

    2000-01-01

    This paper presents the point of view of Canadian Authorities about the future of nuclear activities. Generally speaking, OECD countries will be focusing their efforts on plant refurbishment, maintenance and life extension while non-OECD countries will be facing capacity expansion needs. This duality will favour collaboration in the nuclear field between OECD and other countries. Key areas for enhanced cooperation will be: nuclear technology, nuclear safety, regulations, waste management, non-proliferation and financing

  14. Nuclear Strategy and World Order: The United States Imperative.

    Science.gov (United States)

    Beres, Louis Rene

    The current U.S. nuclear strategy goes beyond the legitimate objective of survivable strategic forces to active preparation for nuclear war. The Reagan administration strategy rejects minimum deterrence and prepares for a nuclear war that might be protracted and controlled. The strategy reflects the understanding that a combination of counterforce…

  15. Reactor safety study. An assessment of accident risks in U. S. commercial nuclear power plants. Executive summary: main report. [PWR and BWR

    Energy Technology Data Exchange (ETDEWEB)

    1975-10-01

    Information is presented concerning the objectives and organization of the reactor safety study; the basic concepts of risk; the nature of nuclear power plant accidents; risk assessment methodology; reactor accident risk; and comparison of nuclear risks to other societal risks.

  16. Level controlling system in BWR type reactors

    International Nuclear Information System (INIS)

    Joge, Toshio; Higashigawa, Yuichi; Oomori, Takashi.

    1981-01-01

    Purpose: To reasonably attain fully automatic water level control in the core of BWR type nuclear power plants. Constitution: A feedwater flow regulation valve for reactor operation and a feedwater flow regulation valve for starting are provided at the outlet of a motor-driven feedwater pump in a feedwater system, and these valves are controlled by a feedwater flow rate controller. While on the other hand, a damp valve for reactor clean up system is controlled either in ''computer'' mode or in ''manual'' mode selected by a master switch, that is, controlled from a computer or the ON-OFF switch of the master switch by way of a valve control analog memory and a turn-over switch. In this way, the water level in the nuclear reactor can be controlled in a fully automatic manner reasonably at the starting up and shutdown of the plant to thereby provide man power saving. (Seki, T.)

  17. Highlights of the IAEA scientific forum: Nuclear science: Physics helping the world

    International Nuclear Information System (INIS)

    Richter, B.

    2005-01-01

    The conclusions drawn at the Scientific Forum during the 49th regular Session of the IAEA General Conference entitled 'Nuclear Physics: Helping the World' are as follows. Physics is indeed helping the world and the IAEA, applications of nuclear are continuing to grow, nuclear power is likely to increase dramatically, work on 'Beyond Kyoto' should begin and nuclear should be part of any 'Clean Development Mechanism'. IAEA should look again at the role of R and D in safeguards, IAEA should look at safety issues in newly nuclear countries, internationalizing the fuel cycle is right IF one can do it

  18. The Three Mile Island accident, a world premiere for nuclear energy

    International Nuclear Information System (INIS)

    Bouvier, Yves

    2015-01-01

    When it happened on 28 March 1979, the accident at the Three Mile Island nuclear power station in Pennsylvania took experts and operators by surprise. Although human losses were minor, this world shaking media event significantly changed public attitudes towards nuclear energy and put a definitive stop to the development of nuclear power in the USA. (author)

  19. Nuclear power in the world: Its present status and development trends

    International Nuclear Information System (INIS)

    Bennett, L.L.

    1994-01-01

    Present status of nuclear power development in the world is presented showing data on power reactors in operation and under construction, on growth of nuclear electricity generation since 1970, the distribution of nuclear electricity generation during 1993. Development trends in the field are also outlined. 7 figs, 5 tabs

  20. Estimation of dose rate around the spent control rods of a BWR; Estimacion de la rapidez de dosis alrededor de las barras de control gastadas de un BWR

    Energy Technology Data Exchange (ETDEWEB)

    Cancino P, G.

    2016-10-01

    The energy can come from fossil renewable sources (solar (natural gas, oil), wind, hydro, tidal, geothermal, biomass, bio energy and nuclear. Nuclear power can be obtained by fission reactions and fusion (still under investigation) atomic nuclei. Fission, is a partition of a very heavy nucleus (Uranium 235, for example) into two lighter nuclei. Much of the world's electric power is generated from the energy released by fission processes. In a nuclear power reactor, light water as the BWR, there are many important elements that allow safe driving operation, one of them are the elements or control systems, the burnable poison or neutron absorber inherently allow control power reactor. The control rods, which consist mostly of stainless steel and absorbing elements (such as boron carbide, hafnium, cadmium, among others) of thermal neutrons is able to initiate, regulate or stop the reactor power. These, due to the use of depleted burned or absorbing material and therefore reach their lifespan, which can be 15 years or have other values depending on the manufacturer. Control rods worn should be removed, stored or confined in expressly places. Precisely at this stage arises the importance of knowing their radiological condition to manipulate safely and without incident to the people health responsible for conducting these proceedings state arises. This thesis consists in the estimation of the dose rate in spent control rod made of boron carbide, from a typical BWR reactor. It will be estimated by direct radiation measurements with measurement equipment for radiotherapy ionization chamber, in six spent control rods, which were taken at different reactor operating cycles and are in a spent fuel pool. Using bracket electromechanical and electronic equipment for positioning and lifting equipment for radiation measurement around the control rod in the axial and radial arrangement for proper scanning. Finally will be presented a graphic corresponding to the dose

  1. Decommissioning of nuclear facilities: a growing activity in the world

    International Nuclear Information System (INIS)

    Anasco, Raul

    2001-01-01

    Nuclear power plants and nuclear facilities are no different from normal buildings and factories. Eventually, they become worn-out or old fashioned, too expensive to maintain or remodel. Decommissioning a nuclear facility is different from retiring other types because of the radioactivity involved. The most important consideration in nuclear decommissioning is to protect workers and the public from exposure to harmful levels of radiation. General criteria and strategies for the decommissioning of nuclear facilities are described as well as the present decommissioning activities of the Argentine CNEA (author)

  2. Nuclear Power, its Waste in the World and in Turkey

    OpenAIRE

    Temiz, Fatih

    2017-01-01

    Nuclear power plants were born in 1950s. Taking only 30 grams of used fuel annually for a person’s energy consumption many countries built their own nuclear power plants. In this story, there is the fuel on one hand and the waste on the other. In general sense, used up fuel rods from nuclear reactors and the waste from reprocessing plants are referred to as nuclear waste. These wastes can be stored for decades in the cooling pools of nuclear reacto...

  3. Maximum thermal loading test of BWR fuel assembly

    International Nuclear Information System (INIS)

    Nakajima, Yoshitaka; Yoshimura, Kunihiro; Nakamura, Satoshi; Ishizuka, Takao.

    1987-01-01

    Various proving tests on the reliability of nuclear power plants have been conducted at the Nuclear Power Engineering Test Center and at the Japan Power Plant Engineering and Inspection Corporation. The tests were initiated at the request of the Ministry of International Trade and Industry (MITI). Toshiba undertook one of the proving tests on the reliability of nuclear fuel assembly; the maximum thermal loading test of BWR fuel assembly from the Nuclear Power Engineering Test Center. These tests are part of the proving tests mentioned above, and their purpose is to confirm the reliability of the thermal hydraulic engineering techniques. Toshiba has been engaged for the past nine years in the design, fabrication and testing of the equipment. For the project, a test model fuel assembly was used to measure the critical power of the BWR fuel assembly and the void and fluidity of the coolant. From the test results, it has been confirmed that the heat is transferred safely from the fuel assembly to the coolant in the BWR nuclear power plant. In addition, the propriety and reliability of the thermal hydraulic engineering techniques for the fuel assembly have been proved. (author)

  4. The third-world response to anti-nuclear proliferation strategy

    International Nuclear Information System (INIS)

    Poulose, T.T.

    1978-01-01

    The discriminatory aspect of the NPT and its implications for the nuclear have-nots are discussed. India's refusal to sign the NPT and misgivings it has created in the 'Nuclear haves' are explained. It is emphasised that India should retain the nuclear option, even though the option at present stands renounced voluntarily, in order to bargain with the nuclear weapons powers for nuclear disarmament. India may even give up PNEs as a price in return for Comprehensive Test Ban Treaty. It has also been pointed out that the nuclear weapons powers and other nuclear suppliers are using the NPT as a political weapon, to deny technical details to the developing nations. The approach of the nuclear haves to the NPT is technical and that of the nuclear have-nots is political. Third world's demand is that nuclear proliferation must be differentiated from the dissemination of nuclear technology. (M.G.B.)

  5. BWR NSSS design basis documentation

    International Nuclear Information System (INIS)

    Vij, R.S.; Bates, R.E.

    2004-01-01

    In 1985 an incident at Toledo Edison's Davis Besse plant caused the U.S. Nuclear Regulatory Commission (NRC) to re-evaluate the technical information that the utilities had readily available to support the design of their plants. The Design Basis programs, currently on going in most U.S. utilities, have been the nuclear industry's response to the needs identified by this re-evaluation. In order to understand the Design Basis programs which have been implemented by the U.S. nuclear utilities, it is necessary to understand the problem as it was perceived by the nuclear industry (the utilities, the original NSSS designers and the regulators) after the Davis-Besse incident, the subsequent programs undertaken by the industry under the leadership of INPO and NUMARC, the NRC's actions, and the overall evolution of the industry's vision in relation to this problem. This paper presents the history of the design basis efforts from the first recognition of the problem by the NRC after the Davis-Besse incident, describes the actions taken by the NRC, INPO, NUMARC, the U.S. utilities and the NSSS designers, and brings the problem statement up-to-date in relation to the vision presently held by the U.S. nuclear industry. It then presents a technical discussion to develop a detailed definition of design basis information to support the problem statement. The information originally supplied by the NSSS designers during the plant design and construction is discussed as well as its relationship to the previously defined design basis information. This section of the paper concludes by defining the additional information needed by nuclear utilities to satisfy the requirements developed from the problem statement. Having developed a definition of the additional information (i.e., information not originally supplied during design and construction) required to solve the design basis problem as it is presently perceived by the U.S. nuclear industry, the paper then discusses design basis

  6. Fuel gases generation in the primary contention during a coolant loss accident in a nuclear power plant with reactor type BWR

    International Nuclear Information System (INIS)

    Salaices, M.; Salaices, E.; Ovando, R.; Esquivias, J.

    2011-11-01

    During an accident design base of coolant loos, the hydrogen gas can accumulate inside the primary contention as a result of several generation mechanisms among those that are: 1) the reaction metal-water involving the zirconium of the fuel cladding and the reactor coolant, 2) the metals corrosion for the solutions used in the emergency cooling and dew of the contention, and 3) the radio-decomposition of the cooling solutions of post-accident emergency. In this work the contribution of each generation mechanism to the hydrogen total in the primary contention is analyzed, considering typical inventories of zirconium, zinc, aluminum and fission products in balance cycle of a reactor type BWR. In the analysis the distribution model of fission products and hydrogen production proposed in the regulator guide 1.7, Rev. 2 of the US NRC was used. The results indicate that the mechanism that more contributes to the hydrogen generation at the end of a period of 24 hours of initiate the accident is the radio-decomposition of the cooling solutions of post-accident emergency continued by the reaction metal-water involving the zirconium of the fuel cladding with the reactor coolant, and lastly the aluminum and zinc oxidation present in the primary contention. However, the reaction metal-water involving the zirconium of the fuel cladding and the reactor coolant is the mechanism that more contributes to the hydrogen generation in the first moments after the accident. This study constitutes the first part of the general analysis of the generation, transport and control of fuel gases in the primary contention during a coolant loss accident in BWRs. (Author)

  7. For a world governance of the civil and military nuclear

    International Nuclear Information System (INIS)

    Gere, Francois

    2010-04-01

    This report first proposes an overview of the history of the emergence of the civil and military nuclear activities, of their relationship and of their distinction. It notably refers to some initiatives like Atoms for Peace in 1953, and the ups and downs of arms control. It discusses the relationship between the power of States and their nuclear capacities, the motivations for the acquisition of nuclear weapons, the disturbance created by nuclear weapons, the emergence of the notion of non proliferation and the evolution of the perception of the national interest. It comments the relationship between war and military nuclear, the role of military nuclear in peace keeping, the role of civil nuclear for peace through sustainable development and compensation of inequalities, the relationship between nuclear and terrorism. The second part describes the evolutions for the century to come (end of Cold War, new energy needs, preservation of the planet) and discusses the possible ban of nuclear weapons. Several proposals are then formulated to strengthen the foundations of a new diplomacy, to act at the institutional level (notably through existing or proposed bodies, for verification and financing), and to elaborate a new social contract about the nuclear

  8. BWR Services maintenance training program

    International Nuclear Information System (INIS)

    Cox, J.H.; Chittenden, W.F.

    1979-01-01

    BWR Services has implemented a five-phase program to increase plant availability and capacity factor in operating BWR's. One phase of this program is establishing a maintenance training program on NSSS equipment; the scope encompasses maintenance on both mechanical equipment and electrical control and instrumentation equipment. The program utilizes actual product line equipment for practical Hands-on training. A total of 23 formal courses will be in place by the end of 1979. The General Electric Company is making a multimillion dollar investment in facilities to support this training. These facilities are described

  9. Phenomenology of BWR fuel assembly degradation

    Science.gov (United States)

    Kurata, Masaki; Barrachin, Marc; Haste, Tim; Steinbrueck, Martin

    2018-03-01

    Severe accidents occurred at the Fukushima-Daiichi Nuclear Power Station (FDNPS) which required an immediate re-examination of fuel degradation phenomenology. The present paper reviews the updated knowledge on the phenomenology of the fuel degradation, focusing mainly on the BWR fuel assembly degradation at the macroscopic scale and that of the individual interactions at the meso-scale. Oxidation of boron carbide (B4C) control rods potentially generates far larger amounts of heat and hydrogen under BWR accident conditions. All integral tests with B4C control rods or control blades have shown early failure, liquefaction, relocation and oxidation of B4C starting at temperatures around 1250 °C, well below the significant interaction temperatures of UO2-Zry. These interactions or reactions potentially influence the progress of fuel degradation in the early phase. The steam-starved conditions, which are being discussed as a likely scenario at the FDNPS accident, highly influence the individual interactions and potentially lead the fuel degradation in non-prototypical directions. The detailed phenomenology of individual interactions and their influence on the transient and on the late phase of the severe accidents are also discussed.

  10. BWR Assembly Optimization for Minor Actinide Recycling

    International Nuclear Information System (INIS)

    Maldonado, G. Ivan; Christenson, John M.; Renier, J.P.; Marcille, T.F.; Casal, J.

    2010-01-01

    The Primary objective of the proposed project is to apply and extend the latest advancements in LWR fuel management optimization to the design of advanced boiling water reactor (BWR) fuel assemblies specifically for the recycling of minor actinides (MAs). A top-level objective of the Advanced Fuel Cycle Systems Analysis program element of the DOE NERI program is to investigate spent fuel treatment and recycling options for current light water reactors (LWRs). Accordingly, this project targets to expand the traditional scope of nuclear fuel management optimization into the following two complementary specific objectives: (1) To develop a direct coupling between the pin-by-pin within-bundle loading control variables and core-wide (bundle-by-bundle) optimization objectives, (2) to extend the methodology developed to explicitly encompass control variables, objectives, and constraints designed to maximize minor actinide incineration in BWR bundles and cycles. The first specific objective is projected to 'uncover' dormant thermal margin made available by employing additional degrees of freedom within the optimization process, while the addition of minor actinides is expected to 'consume' some of the uncovered thermal margin. Therefore, a key underlying goal of this project is to effectively invest some of the uncovered thermal margin into achieving the primary objective.

  11. Current Status of World Nuclear Fuel Cycle Technology (II): Japan

    International Nuclear Information System (INIS)

    Jeong, Chang Joon; Ko, Won Il

    2007-06-01

    Japan needs to import around 80% of its energy requirements. In 1966, the first nuclear power plant began operation, nuclear energy has been a national strategic priority since 1973. Currently, 55 reactors provide around 30% of the country's electricity. Japanese energy policy has been conducted by the energy security and minimization of dependence of energy imports. The main factors regarding nuclear power are: - Continue to have nuclear power as a main factor of electricity production. - Recycle uranium and plutonium, and start domestic reprocessing from 2005. - Continue to develop fast breeder reactors to increase uranium utilization. - Promote the nuclear transparency to the public, emphasizing safety and non-proliferation. Also, the prospects of Asia's nuclear energy growth has been reviewed

  12. A world-class design for the Chinese Nuclear Program

    International Nuclear Information System (INIS)

    Ruiz, A.; Valero, E.

    1999-01-01

    Under the name Grupo Nuclear SEPI, the companies BWE, ENDESA, ENSA, ENRESA, ENUSA and INITEC, in a partnership in SEPI and with extensive experience in the nuclear sector, have in the last few years been coordinating technical and commercial actions targeted primarily at the Chinese nuclear market. These actions have been carried out under Westinghouse's leadership, for the purpose of providing a 1000 MWe nuclear Power plant design tailored to the local requirements defined by experts and authorities of the People's Republic of China (project CPWR 1000). (Author)

  13. Safety analysis of thorium-based fuels in the General Electric Standard BWR

    International Nuclear Information System (INIS)

    Colby, M.J.; Townsend, D.B.; Kunz, C.L.

    1980-06-01

    A denatured (U-233/Th)O 2 fuel assembly has been designed which is energy equivalent to and hardware interchangeable with a modern boiling water reactor (BWR) reference reload assembly. Relative to the reference UO 2 fuel, the thorium fuel design shows better performance during normal and transient reactor operation for the BWR/6 product line and will meet or exceed current safety and licensing criteria. Power distributions are flattened and thermal operating margins are increased by reduced steam void reactivity coefficients caused by U-233. However, a (U-233/Th)O 2 -fueled BWR will likely have reduced operating flexibility. A (U-235/Th)O 2 -fueled BWR should perform similar to a UO 2 -fueled BWR under all operating conditions. A (Pu/Th)O 2 -fueled BWR may have reduced thermal margins and similar accident response and be less stable than a UO 2 -fueled BWR. The assessment is based on comparisions of point model and infinite lattice predictions of various nuclear reactivity parameters, including void reactivity coefficients, Doppler reactivity coefficients, and control blade worths

  14. Development and future perspective of nuclear power plants. Current status and future prospect of world nuclear power plants

    International Nuclear Information System (INIS)

    Kobayashi, Masaharu

    2013-01-01

    Fukushima Daiichi NPS accidents occurred on 11 March 2011 brought about great effects on nuclear development not only in Japan but also in the world. In Japan restart of operation of periodically inspected nuclear power plants (NPPs) could not be allowed except Oi NPPs two units and most parties except Liberal Democratic Party (LDP) pledged to possibly phasing out nuclear power at House of Councillors election in July and public opinion was mostly against nuclear power after the accident. LDP clearly stated that, with the inauguration of new government last December, Japan would not pursuing the policy of the prior government of possibly phasing out nuclear power by the 2030s, but would instead make a 'zero-base' review of energy policy. Germany decided to close eight reactors immediately and remaining nine by the end of 2022. For many countries, nuclear power would play an important role in achieving energy security and sustainable development goals. In 2011 NPPs 6 units started operation with 2 units under construction, and in 2012 NPPs 3 units started operation with 7 units under construction. At present there are now over 400 NPPs operating in 31 countries and world trend seemed nuclear development was continued and number of countries newly deploying NPPs was increasing as much as eighteen. This article presented current status and future prospect of world NPPs in details. Japan would like to share its experiences and information obtained from the accident with the world and also promote NPPs overseas to meet the world's expectations. (T. Tanaka)

  15. Reactor safety study. An assessment of accident risks in U. S. commercial nuclear power plants. Appendices VII, VIII, IX, and X. [PWR and BWR

    Energy Technology Data Exchange (ETDEWEB)

    1975-10-01

    Information is presented concerning the release of radioactivity in reactor accidents; physical processes in reactor meltdown accidents; safety design rationale for nuclear power plants; and design adequacy.

  16. Stability of transition to a world without nuclear weapons: Technical problems of verification

    International Nuclear Information System (INIS)

    Zhigalov, V.

    1998-01-01

    A serious psychological barrier to acceptance of the concept for achieving the nuclear-weapon-free world is fear of facing the prospect that one or more nations or extremist political groups might develop their own nuclear weapons. Actually this is a question of stability of the nuclear-weapon-free world. From this point of view the most effective system of verification is an absolute necessity. This system must ensure detection of so called undeclared nuclear activity at early stage. Scientists of Russian nuclear centers are working today on solving this problem. This paper is considered to be a comprehensive attempt to analyze the technical and organizational aspects of the problems of transition to a nuclear-weapons-free world, setting aside the difficulties of resolving purely political problems

  17. The role of nuclear power in the world

    International Nuclear Information System (INIS)

    Csik, B.J.

    1976-01-01

    A forecast, going beyond the year 2000, is made of the development of the various energy carriers, in particular nuclear energy. The further development of nuclear energy, as one of the main pillars in future energy supply, is shown to be inevitable. (UA) [de

  18. New nuclear projects in the world. Sustainable Nuclear Energy; Nuevos proyectos nucleares en el mundo. energia nuclear sostenible

    Energy Technology Data Exchange (ETDEWEB)

    Leon, P. T.

    2011-07-01

    Nuclear power has experienced a major boom in the last few years, primarily because it is a non-CO{sub 2} emitting energy source, it can be produced at competitive costs and it can boost a country's security of supply. there are still two issues to be addressed in relation to the currently used technologies: the degree to which the energy content of nuclear fuel is used, and wastes. A solution to both these aspects would ut nuclear power in the category of sustainable energy. The article provides details on current nuclear plans in the wold, the impact of the Fukushima accident on different countries nuclear plans and the European initiatives for sustainable nuclear energy development. (Author)

  19. BWR and ABWR operating experience

    International Nuclear Information System (INIS)

    Nagai, Kimio; Takayama, Yoshito; Shimizu, Shunichi

    1998-01-01

    The first commercial operation of a nuclear power plant in Japan was in 1969. At present, there are 52 nuclear power plants operating in the country, accounting for about 35% of the total electricity generated and about 20 % of the total capacity of electricity generation facilities in Japan. Moreover, Japan has had the highest facility utilization rate, which is an indicator of operational safety, among the top four nuclear-generation countries (U.S.A., France, Germany, and Japan) every year since 1993, and has maintained a utilization rate of more than 80% since 1995. Toshiba has supported plant operation and maintenance in 19 nuclear power plants. The overall facility utilization rate of these plants attained a record of 86.4% in fiscal 1996. Furthermore, the averaged rates over the past three fiscal years from 1995 to 1997 have been the highest in the world among plant constructors such as GE, WH, and Siemens. (author)

  20. Current status of light water reactor and Hitachi's technical improvements for BWR

    International Nuclear Information System (INIS)

    Miki, Minoru; Ohki, Arahiko.

    1984-01-01

    Gradual technical improvements in Japan over the years has improved the reliability of light water reactors, and has achieved the highest capacity factor level in the world. Commercial operation of Fukushima 2-2 (1,100 MW) of the Tokyo Electric Power Co. was started in February, 1984, as the first standardized BWR base plant, ushering in a new age of domestic light water reactor technology. The ABWR (1,300 MW class) has been developed as Japan's next generation light water reactor, with construction aimed at the latter half of the 1980's. Hitachi's extensive efforts range from key nuclear equipment to various related robots, directed at improving safety, reliability, and the capacity factor, while reducing radiation exposure. This paper presents an outline of Hitachi's participation in the light water reactor's improvement and standardization, and the current status of our role in the international cooperation plan for the ABWR. (author)

  1. Elecnuc. Nuclear power plants in the world. 1997

    International Nuclear Information System (INIS)

    Maubacq, F.; Tailland, C.

    1997-04-01

    This small booklet provides information about all type of nuclear power plants worldwide. It is based on the data taken from the CEA/DSE/SEE Elecnuc database. The content comprises: the 1996 highlights, the main characteristics of the different type of reactors in operation or under construction, the map of the French nuclear power plant sites, the worldwide status of nuclear power plants at the end of 1996, the nuclear power plants in operation, under construction or on order (by groups of reactor-types), the power capacity evolution of power plants in operation, the net and gross capacity of the power plants on the grid, the commercial operation and grid connection forecasts, the first achieved or expected power generation supplied by a nuclear reactor for each country and the power generation from nuclear reactors, the performance indicator of the PWR units in France, the trends of the power generation indicator worldwide, the nuclear power plants in operation, under construction, on order, planned, cancelled, decommissioned and exported worldwide, the schedule of steam generator replacements, and the MOX fuel plutonium recycling programme. (J.S.)

  2. Current nuclear non-proliferation policies in the world

    International Nuclear Information System (INIS)

    Kurosawa, Mitsuru

    1997-01-01

    Although a global nuclear confrontation between the U.S. and the Soviet Union has disappeared, many challenges to nuclear non-proliferation have emerged. Sources of concern, like a nuclear weapon program by Iraq and suspicions of North Korea have caused the adoption of a variety of political and technical measures in order to meet these challenges in the post-Cold War era. This paper describes the following ten policies for non-proliferation: 1) Strengthening the NPT; 2) Nuclear reduction; 3) CTBT and cut-off treaty; 4) Establishment of NWFZs; 5) Counterproliferation; 6) Strengthening the IAEA Safeguards; 7) Control and disposal of nuclear material from dismantled nuclear weapons; 8) Export control; 9) Registration of plutonium; and 10) Actions against nuclear smuggling. The first four measures can be said to be mainly political policies, the fifth measure (counterproliferation), can be categorized as basically a military policy, and the last five measures can be said to be technical. (J.P.N.)

  3. Development of a computer program of fast calculation for the pre design of advanced nuclear fuel 10 x 10 for BWR type reactors; Desarrollo de un program de computo de calculo rapido para el prediseno de celdas de combustible nuclear avanzado 10 x 10 para reactores de agua en ebullicion

    Energy Technology Data Exchange (ETDEWEB)

    Perusquia, R.; Montes, J.L.; Ortiz, J.J. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)]. e-mail: mrpc@nuclear.inin.mx

    2005-07-01

    In the National Institute of Nuclear Research (ININ) a methodology is developed to optimize the design of cells 10x10 of assemble fuels for reactors of water in boil or BWR. It was proposed a lineal calculation formula based on a coefficients matrix (of the change reason of the relative power due to changes in the enrichment of U-235) for estimate the relative powers by pin of a cell. With this it was developed the computer program of fast calculation named PreDiCeldas. The one which by means of a simple search algorithm allows to minimize the relative power peak maximum of cell or LPPF. This is achieved varying the distribution of U-235 inside the cell, maintaining in turn fixed its average enrichment. The accuracy in the estimation of the relative powers for pin is of the order from 1.9% when comparing it with results of the 'best estimate' HELIOS code. With the PreDiCeldas it was possible, at one minimum time of calculation, to re-design a reference cell diminishing the LPPF, to the beginning of the life, of 1.44 to a value of 1.31. With the cell design with low LPPF is sought to even design cycles but extensive that those reached at the moment in the BWR of the Laguna Verde Central. (Author)

  4. Nuclear Insurance Pools: World-wide Practice and Prospective

    International Nuclear Information System (INIS)

    Reitsma, S. M. S.

    2000-01-01

    The following paper explains why Nuclear Insurance Pools were established, how they operate and what insurance protection they offer to the operations of nuclear installations. It will be shown that the clear interrelationship of the Pool-insurance operations, both on a national and an international level, has resulted in a transparency of each individual Pool-Member's exposure, which enables him to make the highest possible commitment to nuclear risks. Finally, some views will be given as regards the future prospective for the long proven method of pooling this particularly sensitive class of business. (author)

  5. Cooperative Security: The Nuclear Strategy for an Uncertain World

    National Research Council Canada - National Science Library

    Wilkinson, John L

    1996-01-01

    Nuclear weapons must be dramatically reduced, if not eliminated, and greater reliance must be placed on conventional capabilities But the reduction question is how deep, how fast, and how much risk...

  6. The plutonium nuclear file: threat on the living world

    International Nuclear Information System (INIS)

    Morichaud, J.P.

    2002-01-01

    This book wishes to demonstrate the uselessness and dangerousness of the use of plutonium in the nuclear industry. It makes a synthesis about this radioelement and gives some arguments to the debate on the French energy choices. (J.S.)

  7. The future of nuclear power: A world-wide perspective

    Science.gov (United States)

    Aktar, Ismail

    This study analyzes the future of commercial nuclear electric generation worldwide using the Environmental Kuznets Curve (EKC) concept. The Tobit panel data estimation technique is applied to analyze the data between 1980 and 1998 for 105 countries. EKC assumes that low-income countries increase their nuclear reliance in total electric production whereas high-income countries decrease their nuclear reliance. Hence, we expect that high-income countries should shut down existing nuclear reactors and/or not build any new ones. We encounter two reasons for shutdowns: economic or political/environmental concerns. To distinguish these two effects, reasons for shut down are also investigated by using the Hazard Model technique. Hence, the load factor of a reactor is used as an approximation for economic reason to shut down the reactor. If a shut downed reactor had high load factor, this could be attributable to political/environmental concern or else economic concern. The only countries with nuclear power are considered in this model. The two data sets are created. In the first data set, the single entry for each reactor is created as of 1998 whereas in the second data set, the multiple entries are created for each reactor beginning from 1980 to 1998. The dependent variable takes 1 if operational or zero if shut downed. The empirical findings provide strong evidence for EKC relationship for commercial nuclear electric generation. Furthermore, higher natural resources suggest alternative electric generation methods rather than nuclear power. Economic index as an institutional variable suggests higher the economic freedom, lower the nuclear electric generation as expected. This model does not support the idea to cut the carbon dioxide emission via increasing nuclear share. The Hazard Model findings suggest that higher the load factor is, less likely the reactor will shut down. However, if it is still permanently closed downed, then this could be attributable to political

  8. WRENDA 76/77. World request list for nuclear data

    International Nuclear Information System (INIS)

    Lessler, R.M.

    1976-08-01

    The nuclear data request lists for fission reactors, fusion reactors and nuclear safeguards development appear in Parts II, III and IV, respectively, of this document. Supporting information which is pertinent to only one of the request lists has been collected in sections immediately preceding the relevant request list. Information applicable to all the request lists appears in Part I. Expansions of codes used in the request lists can be found in the appendices at the end of the document

  9. Nuclear proliferation and terrorism in the post-9/11 world

    CERN Document Server

    Hafemeister, David

    2016-01-01

    This book fills a clear gap in the literature for a technically-focused book covering nuclear proliferation and related issues post-9/11. Using a concept-led approach which serves a broad readership, it provides detailed overview of nuclear weapons, nuclear proliferation and international nuclear policy. The author addresses topics including offensive and defensive missile systems, command and control, verification, weapon effects, and nuclear testing. A chronology of nuclear arms is presented including detailed discussion of the Cold War, proliferation, and arms control treaties. The book is tailored to courses on nuclear proliferation, and the general reader will also find it a fascinating introduction to the science and strategy behind international nuclear policy in the modern era. “Finally, a spritely, accessible overview of the nuclear world in historical context from someone who has both seen it from the U.S. State Department and Congressional policy trenches and taught it for 43 years. A gift to bot...

  10. Latest experiences in inspecting the inside of BWR vessel shields

    Energy Technology Data Exchange (ETDEWEB)

    Alberdi, R.; Gonzalez, E.

    2001-07-01

    In the last few years, the owners of BWR nuclear power plants have been forced to address new fuel shield inspection requirements, TECNATOM has responded to this situation by launching the TEIDE projects, which include development of an inspection machine and the corresponding Non-Destructive Tests to examine the inside of this shield. With these projects, TECNATOM has performed more than 12 fuel shield inspections in different countries. This article describes the experience gained in the last three years. (Author)

  11. U.S. congressional attitudes and policies affecting nuclear power development in the world

    International Nuclear Information System (INIS)

    McCormack, M.

    1976-01-01

    The world future for nuclear power is even now being formed by policies and decisions of many governments and international organizations. Congressman McCormack looks to the United States for revived and stronger leadership in strengthening the web of institutions and international relations to permit the world to reap the benefits of nuclear power without a destabilizing spread of nuclear weapons. He says Congress will have a major role in shaping that nuclear future. The tensions between Congress and the executive branch that are part of the U.S. system of separation of powers can help to test and strengthen future policy on international nuclear power. The point of no return along the course of nuclear evolution is approaching and the author asks: will we press on to create an acceptable balance between benefits of nuclear power and the risk that expanded use may increase proliferation--or will we turn back toward nuclear isolationism. Mr. McCormack opts for vigorous legislative, executive and diplomatic initiatives to sustain U.S. nuclear leadership so that we can accelerate and influence world measures to prevent proliferation while developing uranium and thorium as future world energy resources

  12. Evaluation of internal flooding in a BWR

    International Nuclear Information System (INIS)

    Shiu, K.; Papazoglou, I.A.; Sun, Y.H.; Anavim, E.; Ilberg, D.

    1985-01-01

    Flooding inside a nuclear power station is capable of concurrently disabling redundant safety systems. This paper presents the results of a recent review study performed on internally-generated floods inside a boiling water reactor (BWR) reactor building. The study evaluated the flood initiator frequency due to either maintenance or ruptures using Markovian models. A time phased event tree approach was adopted to quantify the core damage frequency based on the flood initiator frequency. It is found in the study that the contribution to the total core damage due to internal flooding events is not insignificant and is comparable to other transient contributors. The findings also indicate that the operator plays an important role in the prevention as well as the mitigation of a flooding event

  13. Advanced technology for BWR operator training simulator

    International Nuclear Information System (INIS)

    Shibuya, Akira; Fujita, Eimitsu; Nakao, Toshihiko; Nakabaru, Mitsugu; Asaoka, Kouchi.

    1991-01-01

    This paper describes an operator training simulator for BWR nuclear power plants which went into service recently. The simulator is a full scope replica type simulator which faithfully replicates the control room environment of the reference plant with six main control panels and twelve auxiliary ones. In comparison with earlier simulators, the scope of the simulation is significantly extended in both width and depth. The simulation model is also refined in order to include operator training according to sympton-based emergency procedure guidelines to mitigate the results in accident cases. In particular, the core model and the calculational model of the radiation intensity distribution, if radioactive materials were released, are improved. As for simulator control capabilities by which efficient and effective training can be achieved, various advanced designs are adopted allowing easy use of the simulators. (author)

  14. Manufacturing technology and process for BWR fuel

    International Nuclear Information System (INIS)

    Kato, Shigeru

    1996-01-01

    Following recent advanced technologies, processes and requests of the design changes of BWR fuel, Nuclear Fuel Industries, Ltd. (NFI) has upgraded the manufacturing technology and honed its own skills to complete its brand-new automated facility in Tokai in the latter half of 1980's. The plant uses various forms of automation throughout the manufacturing process: the acceptance of uranium dioxide powder, pelletizing, fuel rod assembling, fuel bundle assembling and shipment. All processes are well computerized and linked together to establish the integrated control system with three levels of Production and Quality Control, Process Control and Process Automation. This multi-level system plays an important role in the quality assurance system which generates the highest quality of fuels and other benefits. (author)

  15. BWR plant advanced central control panel PODIA

    International Nuclear Information System (INIS)

    Fujii, K.; Hayakawa, H.; Ikeda, Y.; Neda, T.; Suto, O.; Takamiya, S.

    1983-01-01

    BWR plant central control panels have become more and more enlarged and complicated recently due to the magnification of the scale of a plant and the requirement to reinforce safety. So, it is important to make communication between men and the complicated central control panel smooth. Toshiba has developed an advanced central control panel, named PODIA, which uses many computers and color CRTs, and PODIA is now in the stage of application to practical plants. In this article, the writers first touch upon control functions transition in the central control room, the PODIA position concerning the world-wide trend in this technology phase and the human engineering on the design. Then they present concrete design concepts for the control board and computer system which constitute PODIA

  16. A BWR Safety and Operability Improvements

    International Nuclear Information System (INIS)

    Sawyer, Craig D.

    1993-01-01

    The A BWR is the culmination of 30 years of design, development and operating experience of BWRs around the world. It represents across the board improvements is safety, operation and maintenance practices (O and M), economics, radiation exposure and rad waste generation. More than ten years and $20m5 went into the design and development of its new features, and it is now under construction in Japan. This paper concentrates on the safety and operability improvements. In the safety area, more than a decade improvement in core damage frequency (CDFR) has been assessed by formal PIRA techniques, with CDFR less than 10 -6 /year. Severe accident mitigation has also been formally addressed in the design. Plant operations were simplified by incorporation of better materials, optimum use of redundancy in mechanical and electrical equipment so that on-line maintenance can be performed, by better arrangements which account for required maintenance practices, and by an advanced control room

  17. Deterring nuclear-armed Third World dictators: a targeting strategy for the emerging threat.

    OpenAIRE

    Gellene, David J.

    1992-01-01

    Approved for public release; distribution unlimited. The continuing efforts of several developing nations to acquire nuclear weapons indicates that the United States may be required to implement a deterrence policy aimed at authoritarian regimes in the Third World. Therefore. U. S. decision-makers must re-evaluate the conceptual foundations of American deterrence policy. This research suggests a solution to the problem of deterring nuclear-capable Third World nations from using...

  18. Perspectives of development of the nuclear market in the world

    International Nuclear Information System (INIS)

    2006-09-01

    Since the end of the second oil shock, the context has never been as favorable as today for a re-launching of nuclear energy. The growth of energy demand requires heavy investments in new power production capacities. The explosion of fossil fuel prices and the implementation of the carbon trade market in Europe have burdened the competitiveness and price of electricity generated from these energy sources. New and renewable energies will not be capable to take up the challenge of production capacities and thus the nuclear power appears as the inevitable solution, despite the investments needed and the problem of wastes management. Moreover, most nuclear plants in operation today were built during the 1970-1980 era and, despite their lifetime extension, the USA, France, Japan, Russia and Germany will have to replace 80 to 100% of their nuclear park within the next 20 years. Taking into account the administrative and construction delays, the investment decisions will have to be taken in the coming years. This study answers the following questions: what reactor technologies dominate the market today? What are the forces in presence at each sector of the nuclear industry? What is the weight of each market segment? Who are the operators positioned in the market of 3. generation reactors? What will be the size of the market by 2030? What are the most attractive markets? Who are the best positioned groups to capture these markets? This study is based on the analysis of 14 representative groups of the nuclear sector: vertically integrated operators, fuel cycle front-end specialists, reactor construction specialists and atypical nuclear fuel companies. (J.S.)

  19. Analysis of the accident at Fukushima Daiichi nuclear power plant in an A BWR reactor; Analisis del accidente de la planta nucleoelectrica de Fukushima Daiichi en un reactor tipo ABWR

    Energy Technology Data Exchange (ETDEWEB)

    Escorcia O, D. [UNAM, Facultad de Ingenieria, Ciudad Universitaria, 04510 Ciudad de Mexico (Mexico); Salazar S, E., E-mail: daniel.escorcia.ortiz@gmail.com [UNAM, Facultad de Ingenieria, Laboratorio de Analisis en Ingenieria de Reactores Nucleares, 62250 Jiutepec, Morelos (Mexico)

    2016-09-15

    The present work aims to recreate the accident occurred at the Fukushima Daiichi nuclear power plant in Japan on March 11, 2011, making use of an academic simulator of forced circulation of the A BWR reactor provided by the IAEA to know the scope of this simulator. The simulator was developed and distributed by the IAEA for academic purposes and contains the characteristics and general elements of this reactor to be able to simulate transients and failures of different types, allowing also to observe the general behavior of the reactor, as well as several phenomena and present systems in the same. Is an educational tool of great value, but it does not have a scope that allows the training of plant operators. To recreate the conditions of the Fukushima accident in the simulator, we first have to know what events led to this accident, as well as the actions taken by operators and managers to reduce the consequences of this accident; and the sequence of events that occurred during the course of the accident. Differences in the nuclear power plant behavior are observed and interpreted throughout the simulation, since the Fukushima plant technology and the simulator technology are not the same, although they have several elements in common. The Fukushima plant had an event that by far exceeded the design basis, which triggered in an accident that occurred in the first place by a total loss of power supply, followed by the loss of cooling systems, causing a level too high in temperature, melting the core and damaging the containment accordingly, allowing the escape of hydrogen and radioactive material. As a result of the simulation, was determined that the scope of the IAEA academic simulator reaches the entrance of the emergency equipment, so is able to simulate almost all the events occurred at the time of the earthquake and the arrival of the tsunami in the nuclear power plant of Fukushima Daiichi. However, due to its characteristics, is not able to simulate later

  20. Characteristics of fluctuating pressure generated in BWR main steam lines

    International Nuclear Information System (INIS)

    Takahashi, Shiro; Okuyama, Keita; Tamura, Akinori

    2009-01-01

    The BWR-3 steam dryer in the Quad Cities Unit 2 Nuclear Power Plant was damaged by high cycle fatigue due to acoustic-induced vibration. The dryer failure was as attributed to flow-induced acoustic resonance at the stub pipes of safety relief valves (SRVs) in the main steam lines (MSLs). The acoustic resonance was considered to be generated by interaction between the sound field and an unstable shear layer across the closed side branches with SRV stub pipes. We have started a research program on BWR dryers to develop their loading evaluation methods. Moreover, it has been necessary to evaluate the dryer integrity of BWR-5 plants which are the main type of BWR in Japan. In the present study, we used 1/10-scale BWR tests and analyses to investigate the flow-induced acoustic resonance and acoustic characteristics in MSLs. The test apparatus consisted of a steam dryer, a steam dome and 4 MSLs with 20 SRV stub pipes. A finite element method (FEM) was applied for the calculation of three-dimensional wave equations in acoustic analysis. We demonstrated that remarkable fluctuating pressures occurred in high and low frequency regions. High frequency fluctuating pressures was generated by the flow-induced acoustic resonance in the SRV stub pipes. Low frequency fluctuating pressure was generated in an MSL with the dead leg. The frequency of the latter almost coincided with the natural frequency of the MSL with the dead leg. The amplitude of the fluctuating pressures in the multiple stub pipes became more intense because of interaction between them compared with that in the single stub pipe. Acoustic analysis results showed that the multiple stub pipes caused several natural frequencies in the vicinity of the natural frequency of the single stub pipe and several modes of the standing wave in the MSLs. (author)

  1. Metallurgical factors that contribute to cracking in BWR piping

    International Nuclear Information System (INIS)

    Weeks, J.R.

    1975-01-01

    During the fall of 1974 and early winter of 1975, cracks have been discovered in the 4 in. bypass lines of several Boiling Water Reactors (BWR's) in the United States. Further, similar cracks were discovered at two BWR's in Japan during the same period. More recently, cracks have been discovered in the core spray piping and in a furnace-sensitized ''safe end'' and adjacent ''dutchman'' at the Dresden Nuclear Power Station, Unit No. 2. Although inspections at all other U.S. BWR's have not disclosed further instances of cracking in core spray piping, leaking cracks have been found in the core spray piping of two BWR's overseas. Metallurgical examinations of these cracks are not yet complete. The following observations have been made to date. All cracks (except those in the furnace-sensitized safe end and dutchman) occurred in seamless type 304 stainless steel piping or in elbows fabricated from such piping, in the outer heat affected zone of either field or shop welds, in lines isolated from the main primary coolant flow during full power operation, except for the not yet examined cracks in the Monticello bypass lines. The cracks are exclusively intergranular, and occur in metal that has been lightly sensitized by the welding process, with only intermittent grain boundary carbides. They developed in the areas of peak axial residual stresses from welding rather than in the most heavily sensitized areas. No fatigue striations have been found on the fracture surfaces. The evidence received to date strongly indicates that these cracks were caused by intergranular stress corrosion of weld-sensitized stainless steel by BWR water containing greater than 0.2 ppM oxygen. The possible role of fatigue or alternating stresses in this corrosion is not clear. Further, not all the cracks detected to date necessarily have occurred by the same mechanism

  2. World situation of atomic energy and nuclear fuel cycle

    International Nuclear Information System (INIS)

    Szili, G.

    1978-01-01

    At the International Conference organized by the IAEA in May 1976, several sections dealt with problems of the production of atomic energy and of the nuclear fuel cycle. However, the whole spectrum of these problems was discussed including problems of economic policy, politics and ethical problems, too. Reports were presented on trends of the development of atomic energy in developed and developing countries. Besides the systems of nuclear power plants and the trends of their development, the Conference attached prominent importance to the supply of nuclear fuels and to the fuel cycle, respectively. Owing to important factors, the reprocessing of the spent nuclear fuel was emphasized. The problem area of the treatment of radioactive wastes, the protection of workers in immediate contact and of environment against radiations, the possibilities of ensuring nuclear safety, the degrees of hazards and the methods of protection of fast breeder reactors and up-to-date equipments were discussed. In contrast to earlier conferences the complex problem of the correlation of atomic energy to public opinion played an important role, too. (P.J.)

  3. Estimation of dose rate around the spent control rods of a BWR

    International Nuclear Information System (INIS)

    Cancino P, G.

    2016-01-01

    The energy can come from fossil renewable sources (solar (natural gas, oil), wind, hydro, tidal, geothermal, biomass, bio energy and nuclear. Nuclear power can be obtained by fission reactions and fusion (still under investigation) atomic nuclei. Fission, is a partition of a very heavy nucleus (Uranium 235, for example) into two lighter nuclei. Much of the world's electric power is generated from the energy released by fission processes. In a nuclear power reactor, light water as the BWR, there are many important elements that allow safe driving operation, one of them are the elements or control systems, the burnable poison or neutron absorber inherently allow control power reactor. The control rods, which consist mostly of stainless steel and absorbing elements (such as boron carbide, hafnium, cadmium, among others) of thermal neutrons is able to initiate, regulate or stop the reactor power. These, due to the use of depleted burned or absorbing material and therefore reach their lifespan, which can be 15 years or have other values depending on the manufacturer. Control rods worn should be removed, stored or confined in expressly places. Precisely at this stage arises the importance of knowing their radiological condition to manipulate safely and without incident to the people health responsible for conducting these proceedings state arises. This thesis consists in the estimation of the dose rate in spent control rod made of boron carbide, from a typical BWR reactor. It will be estimated by direct radiation measurements with measurement equipment for radiotherapy ionization chamber, in six spent control rods, which were taken at different reactor operating cycles and are in a spent fuel pool. Using bracket electromechanical and electronic equipment for positioning and lifting equipment for radiation measurement around the control rod in the axial and radial arrangement for proper scanning. Finally will be presented a graphic corresponding to the dose

  4. Current status and prospects of France's nuclear sector and France's vision of the nuclear renaissance throughout the world

    International Nuclear Information System (INIS)

    Bugat, Alain

    2007-01-01

    Industrial companies are merging of forging alliances, and are competing for the securing of a stable supply of uranium resources; different states are discussing in order to establish partnership or cooperation agreements, on both the bilateral or multilateral side. in other words, the nuclear scene is more changing and active than ever. This burst of activity is motivated by the renewed interest in the nuclear energy throughout the world. In order to meet the expectation of more and more people wanting to have access to energy, nuclear energy has to face important challenges: the highest level of safety is required, the nuclear waste must be dealt with in a responsible and sustainable way, and the trust and acceptance of the public must be consolidated. France, being a long time supporter of nuclear energy is of course an actor of this Renaissance, and is strengthening its nuclear sector in order to meet the criteria expressed above. i will detail in my speech what are the steps taken in france in order to do so, and share my view of what should be a sustainable development of nuclear energy in the world, providing electricity while keeping a clean record on safety and non proliferation matters. We are clearly at a turning point in the history of nuclear energy, perfectly illustrated by the shift in the position of a quite large number of environmentalists, considering now nuclear as a sound option in order to produce base load energy without emitting greenhouse effect gas. Given the constraints at stake, it seems clear that more and more countries will turn to nuclear for their energy needs. It is up to us, the advanced countries in this field, gathered here today in Korea, to help this happen. It is up to us to lead the way, and show the world that electricity can be produced from nuclear with the highest standards of safety at competitive come along with no additional threat regarding non proliferation issues. All the major nuclear countries, including of

  5. Prospects of uranium supply-demand situation in world nuclear power development

    International Nuclear Information System (INIS)

    Chen Zuyi; Wang Xingwu

    2010-01-01

    Based on the newest materials and data published by authoritative organizations, this paper introduces the near-term and medium to long-term development situation of world nuclear power, summarizes the main characteristics of recent world uranium production, preliminarily analyses the relationship between uranium supply and demand to 2030. It is suggested that from the view-point of whole world, uranium resources are fully sufficient for the near-term and medium to long-term world uranium production and uranium demand of nuclear power. World uranium production can meet the near-term uranium demand for nuclear power. However, a big supply-demand gap may exist after 2015 as world nuclear power will be developed with high speed. In case if all const ruction plans of new uranium mines and production- expansion plans of existing uranium mines will be completed on time, it is quite possible for the world uranium production to meet the long-term uranium demand of nuclear power development. (authors)

  6. Commercial nuclear power: prospects for the United States and the world

    International Nuclear Information System (INIS)

    1986-01-01

    This analysis report presents the current status and outlook for commercial nuclear power reactors for all countries in the world outside centrally planned economic areas (WOCA). Information regarding operable reactors in countries with centrally planned economies is presented in an appendix. The report provides documentation of the US nuclear capacity and generation projections through 1995. Projections for US nuclear capacity and generation through 2020 are presented for various nuclear power supply scenarios. These long-term projections are provided in support of the Department of Energy's activities pertaining to the Nuclear Waste Policy Act of 1982 and are used to produce the projections of fuel cycle requirements and spent fuel discharges

  7. Analysis of reactor strategies to meet world nuclear energy demands

    International Nuclear Information System (INIS)

    Ligon, D.M.; Brogli, R.H.

    1979-07-01

    A number of reactor deployment strategies for long-term nuclear system development are analyzed from a global perspective in terms of resource utilization and economic benefits. Two time frames are chosen: 1975 - 2025 and 1975 - 2050. Uranium demand for various strategies is compared with uranium supply assuming different production capabilities and resource base. The analysis shows that a given reactor deployment strategy could strongly influence the extent of uranium exploration and production. Power systems cost comparisons are made to identify clearly competitive or non-competitive reactors. The sensitivity of power cost to different uranium price projections and nuclear demands is also examined. The results indicate that breeders are necessary to support a long-term nuclear power system. Advanced converter-breeder symbiotic systems, particularly those operating on the Th/U-233 cycle, have clear advantages in terms of resources and economics

  8. mobile nuclear energy power plants for Turkey and III. world

    International Nuclear Information System (INIS)

    Oezden, H.

    2001-01-01

    It is estimated that if there is no alternative energy source, there will be increase in building nuclear energy power plants. This source of energy and know how along with technology must be put into the possession of Turkey. Since almost all of Turkey is 1 st degree earthquake region and in view of the regional political instability, the requirement of ample amount of water for prolonged times, the density of settlement, environmental problems, high cost of building nuclear energy power plants it becomes necessary to think about their application techniques. In this study, mobile nuclear energy power plants having a wide area of use in conditions prevailing in Turkey , their draft drawings for making them by using metal/steel are shown. The positive-negative aspects of the topic is presented for discussions

  9. Assessment of safety of the nuclear installations of the world

    International Nuclear Information System (INIS)

    Thomas, B.A.; Pozniakov, N.; Banga, U.

    1992-01-01

    Incidents and accidents periodically remind us that preventive measures at nuclear installations are not fully reliable. Although sound design is widely recognized to be prerequisite for safe operation, it is not sufficient. An active management that compensates for the weak aspects of the installations design by redundant operational provisions, is the key factor to ensure safe operation. Safety of nuclear installations cannot be assessed on an emotional basis. Since 1986, accurate safety assessment techniques based on an integrated approach to operational safety have been made available by the ASSET services and are applicable to any industrial process dealing with nuclear materials. The ASSET methodology enables to eliminate in advance the Root Causes of the future accidents by introducing practical safety culture principles in the current managerial practices

  10. Sensitive nuclear activities in certain free world countries

    International Nuclear Information System (INIS)

    1986-01-01

    A concise, ready reference is provided for use in reviewing license applications for exporting to several countries for possible need of referral to DOE. For each country, nuclear explosive and sensitive nuclear activities, such as enrichment, reprocessing, heavy water production, and fabrication of fuel containing plutonium, are listed, as well as the organizations and installations responsible for such activities. Some activities are also included that are not sensitive but are closely related and could easily lead to sensitive activities. The countries covered are: Australia, Belgium, Canada, Denmark, Federal Republic of Germany, France, Greece, Iceland, Italy, Japan, Luxembourg, the Netherlands, New Zealand, Norway, Portugal, Turkey, and the United States

  11. The perspectives of the nuclear market development in the world

    International Nuclear Information System (INIS)

    2006-09-01

    Since the end of the second petroleum crisis the context has never been so favourable to the nuclear return. This situation is also realized by the implementing of the CO 2 emission quotas. Thinking that the renewable energies are not sufficient, this study presents the nuclear power as an imperative solution. The different technological channels are detailed. It provides also informations on the different operators of the market, the market volume in 2030, the more attractive markets and the groups ready to capture the market. (A.L.B.)

  12. Twenty years of development and transformation in exploiting nuclear energy in the world

    International Nuclear Information System (INIS)

    Khazaneh, R.

    1992-01-01

    Problems concern to exploiting nuclear energy in the world in two decades from 1970-1990 is briefly investigated. Historical prelude of technical evolution of nuclear energy is included to be recognized the relevant events occurred in the seventies. The intention is to give general information to those who have not sufficient time to study deeply in the field

  13. Current Status of World Nuclear Fuel Cycle Technology (I): Canada and Latin America

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hang Bok; Ko, Won Il

    2007-05-15

    Canada produces about one third of the world's uranium mine output, most of it from two new mines. After 2007 Canadian production is expected to increase further as more new mines come into production. About 15% of Canada's electricity comes from nuclear power, using indigenous technology, and 18 reactors provide over 12,500 MWe of power. Mexico has two nuclear reactors generating almost 5% of its electricity. Its first commercial nuclear power reactor began operating in 1989. There is some government support for expanding nuclear energy to reduce reliance on natural gas. Argentina has two nuclear reactors generating nearly one tenth of its electricity. Its first commercial nuclear power reactor began operating in 1974. Brazil has two nuclear reactors generating 4% of its electricity. Its first commercial nuclear power reactor began operating in 1982.

  14. Current Status of World Nuclear Fuel Cycle Technology (I): Canada and Latin America

    International Nuclear Information System (INIS)

    Choi, Hang Bok; Ko, Won Il

    2007-05-01

    Canada produces about one third of the world's uranium mine output, most of it from two new mines. After 2007 Canadian production is expected to increase further as more new mines come into production. About 15% of Canada's electricity comes from nuclear power, using indigenous technology, and 18 reactors provide over 12,500 MWe of power. Mexico has two nuclear reactors generating almost 5% of its electricity. Its first commercial nuclear power reactor began operating in 1989. There is some government support for expanding nuclear energy to reduce reliance on natural gas. Argentina has two nuclear reactors generating nearly one tenth of its electricity. Its first commercial nuclear power reactor began operating in 1974. Brazil has two nuclear reactors generating 4% of its electricity. Its first commercial nuclear power reactor began operating in 1982

  15. Meeting world energy needs. The economic and environmental aspects of the nuclear option

    International Nuclear Information System (INIS)

    Ward, D.P.; Chalpin, D.M.

    1994-01-01

    Tabulated capital, operating, and overall production costs for nuclear, coal, and gas-fuelled power show that nuclear power is a viable option for meeting the world's energy needs. The advantage of nuclear, otherwise limited to certain markets, is seen to be much greater when credit is taken for environmental factors, namely emissions of carbon dioxide and acidic gases by fossil-fuelled plants. 5 figs

  16. Building public confidence in the world's nuclear industry

    International Nuclear Information System (INIS)

    Duncan, C.D.

    1996-01-01

    Public confidence in the nuclear industry requires two things, which are trust and understanding. Trust is an emotional response based upon an instinctive reaction. Understanding, on the other hand, is an intellectual response based upon facts. To gain public confidence, both of these levels must be communicated and proactive strategies must be implemented to do this. To achieve this objective will require confidence and courage in communication programs. Each company operating in the nuclear sector must be proactive in building its individual reputation and must not retreat from controversy. Similarly, each industry body must continue the Herculean task of building understanding. The nuclear industry has powerful arguments. ICI, BP or Ford did not achieve their licences to operate by keeping their heads down, they achieved their current market positions by building a positive corporate reputation within their respective industrial contexts over many decades. In order to achieve a similar position for the nuclear industry and the companies, their examples must be followed. If it is continued to 'keep the heads down' in the trenches, public opinion will surely bury within it. (G.K.)

  17. Iodine-129 dose to the world population from the nuclear power industry

    International Nuclear Information System (INIS)

    Kocher, D.C.; Till, J.E.

    1979-01-01

    Because of the 15.7 million-year half life for 129 I and the mobility of iodine in the environment, releases of 129 I result in potential radiological impacts on the entire world population essentially in perpetuity. This paper presents estimates of dose to the world population from releases of 129 I by the world nuclear power industry during the years 1975 to 2020

  18. Elecnuc. Nuclear power plants in the world; Elecnuc. Les centrales nucleaires dans le monde

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    This 2003 version of Elecnuc contents information, data and charts on the nuclear power plants in the world and general information on the national perspectives concerning the electric power industry. The following topics are presented: 2002 highlights; characteristics of main reactor types and on order; map of the French nuclear power plants; the worldwide status of nuclear power plants on 2002/12/3; units distributed by countries; nuclear power plants connected to the Grid by reactor type groups; nuclear power plants under construction; capacity of the nuclear power plants on the grid; first electric generations supplied by a nuclear unit; electrical generation from nuclear plants by country at the end 2002; performance indicator of french PWR units; trends of the generation indicator worldwide from 1960 to 2002; 2002 cumulative Load Factor by owners; nuclear power plants connected to the grid by countries; status of license renewal applications in Usa; nuclear power plants under construction; Shutdown nuclear power plants; exported nuclear power plants by type; exported nuclear power plants by countries; nuclear power plants under construction or order; steam generator replacements; recycling of Plutonium in LWR; projects of MOX fuel use in reactors; electricity needs of Germany, Belgium, Spain, Finland, United Kingdom; electricity indicators of the five countries. (A.L.B.)

  19. An A BWR demonstration simulator for training and developing technical staff

    International Nuclear Information System (INIS)

    Powers, J.; Yonezawa, H.; Aoyagi, Y.; Kataoka, K.

    2015-09-01

    The US-Advanced Boiling Water Reactor (A BWR), certified by the US NRC, is a third generation, evolutionary boiling water reactor design which is the reference for the South Texas Project Units 3 and 4 (STP3-4) Combined License Application (Cola). Nuclear Innovation North America (Nina) is the License Applicant for this new build project, and Toshiba is the selected primary technology contractor. Toshiba has developed a Demonstration Simulator of the A BWR control room that provides a realistic experience for training and education on BWR principles and operations fundamentals. The Demonstration Simulator is located in the Toshiba America Nuclear Energy (Tane) office in Charlotte, North Carolina and is composed of standard office computer equipment set up in a specific arrangement that is representative of the layout of an A BWR control room. The Demonstration Simulator is not intended for licensed operator training, but can provide a framework for encouraging entry level technically oriented nuclear workers to enter the operations field; strengthening the linkage between university energy field curricula and real-life application of theory; and, improving understanding of integrated plant operations for developing station technical staff. This paper describes the A BWR Demonstration Simulator and its applications for training and educating future nuclear workers. (Author)

  20. An A BWR demonstration simulator for training and developing technical staff

    Energy Technology Data Exchange (ETDEWEB)

    Powers, J. [Toshiba America Nuclear Energy, Charlotte, North Carolina (United States); Yonezawa, H.; Aoyagi, Y.; Kataoka, K., E-mail: jim.powers@toshiba.com [Toshiba Corporation, Kawasaki, Kanagawa (Japan)

    2015-09-15

    The US-Advanced Boiling Water Reactor (A BWR), certified by the US NRC, is a third generation, evolutionary boiling water reactor design which is the reference for the South Texas Project Units 3 and 4 (STP3-4) Combined License Application (Cola). Nuclear Innovation North America (Nina) is the License Applicant for this new build project, and Toshiba is the selected primary technology contractor. Toshiba has developed a Demonstration Simulator of the A BWR control room that provides a realistic experience for training and education on BWR principles and operations fundamentals. The Demonstration Simulator is located in the Toshiba America Nuclear Energy (Tane) office in Charlotte, North Carolina and is composed of standard office computer equipment set up in a specific arrangement that is representative of the layout of an A BWR control room. The Demonstration Simulator is not intended for licensed operator training, but can provide a framework for encouraging entry level technically oriented nuclear workers to enter the operations field; strengthening the linkage between university energy field curricula and real-life application of theory; and, improving understanding of integrated plant operations for developing station technical staff. This paper describes the A BWR Demonstration Simulator and its applications for training and educating future nuclear workers. (Author)

  1. Cooperative Security: A New Paradigm For A World Without Nuclear Weapons?

    Directory of Open Access Journals (Sweden)

    Marc Finaud

    2013-11-01

    Full Text Available If there is a loose consensus on aiming at a world free of nuclear weapons in the future, there are clear oppositions as to the timeframe as well as the means for achieving this goal. The approach to nuclear disarmament followed to date has only yielded limited success because it has been conceived in isolation from global and regional security environments and threat perceptions. A new paradigm should thus be sought in order to reconcile nuclear powers’ security doctrines with global aspirations for a safer world, and ensure that nuclear powers derive their security less from others’ insecurity but from mutually beneficial cooperative security. This should not become a pretext for preserving nuclear weapons for ever. It will on the contrary require parallel tracks addressing the initial motivations for acquiring nuclear weapons and other weapons of mass destruction (WMD, in particular in the context of regional conflicts, as well as dealing with the current issues necessarily related to nuclear disarmament (missile defence, weaponization of space, conventional imbalances and future weapon systems. Ultimately, in a globalised nuclear-weapon free world, state security will not require nuclear weapons because it will be inserted into a broader network encompass­ing all aspects of security addressed in cooperative and multilateral approaches.

  2. Outlook for world nuclear power generation and long-term energy supply and demand situations

    International Nuclear Information System (INIS)

    Matsuo, Yuhji

    2012-01-01

    In this article, the author presents a long-term outlook for the world's nuclear generating capacity, taking into account the nuclear policy changes after Fukushima Daiichi nuclear power plant accident. World primary energy demand will grow from 11.2 billion tons of oil equivalent (toe) in 2009 to 17.3 billion toe in 2035. Along with this rapid increase in global energy consumption, the world's nuclear generating capacity will grow from 392 GW in 2010 to 484 GW in 2020 and 574 GW in 2035 in the 'Reference scenario'. Even in the 'Low nuclear scenario', where the maximum impact of Fukushima accident to the nuclear policies of each government is assumed, it will continue to grow in the future, exceeding 500 GW in 2035. In particular, Asian countries such as China and India will lead the growth both in the energy demand and in the nuclear power capacity. Therefore, it is essential to better ensure the safety of nuclear power generation. It is important for technologically developed countries, including Japan, to make active contributions to the establishment of a global nuclear safety control system. On the other hand, energy security and global warming will continue to be major issues, which will make it indispensable to make the best effort to save energy and expand renewable energy utilization. Japan is competitive in energy-saving and environmental conservation technologies, thus further development and utilization of there technologies should be a key option of Japan's growth growth strategy in the future. (author)

  3. The World Nuclear Industry Status Report 2010-2011. Nuclear Power in a Post-Fukushima World. 25 years after the Chernobyl accident

    International Nuclear Information System (INIS)

    Schneider, Mycle; Froggatt, Antony; Thomas, Steve; Hazemann, Julie; Mastny, Lisa

    2011-04-01

    The report provides the reader with the basic quantitative and qualitative facts about nuclear power plants in operation, under construction, and in planning phases throughout the world. It assesses the economic performance of past and current nuclear projects and compares their development to that of leading renewable energy sources. An extensive annex provides a country-by-country analysis of nuclear programs around the world. The report also includes the first published overview of reactions to the catastrophe in Japan. But developments even prior to March 11, when the Fukushima crisis began, illustrate that the international nuclear industry has been unable to stop the slow decline of nuclear energy. Not enough new units are coming online, and the world's reactor fleet is aging quickly. Moreover, it is now evident that nuclear power development cannot keep up with the pace of its renewable energy competitors. Annual renewables capacity additions have been outpacing nuclear start-ups for 15 years. In the United States, the share of renewables in new capacity additions skyrocketed from 2 percent in 2004 to 55 percent in 2009, with no new nuclear coming on line. In 2010, for the first time, worldwide cumulated installed capacity of wind turbines (193 GW), small hydro (80 GW, excluding large hydro) biomass and waste-to-energy plants (65 GW), and solar power (43 GW) reached 381 GW, outpacing the installed nuclear capacity of 375 GW prior to the Fukushima disaster. Total investment in renewable energy technologies has been estimated at $243 billion in 2010. As of April 1, 2011, there were 437 nuclear reactors operating in the world-seven fewer than in 2002. The International Atomic Energy Agency (IAEA) currently lists 64 reactors as 'under construction' in 14 countries. By comparison, at the peak of the industry's growth phase in 1979, there were 233 reactors being built concurrently. In 2008, for the first time since the beginning of the nuclear age, no new unit was

  4. BWR power uprate

    International Nuclear Information System (INIS)

    Berry, K.K.

    2004-01-01

    This paper discusses the program developed by GE Nuclear Energy (GE) to increase the power output of Boiling Water Reactors (BWRs). For the implementation of power uprate, this unique approach reduces the cost, the uncertainty and the level of effort for both the utility and the licensing authority. (author)

  5. Performances of nuclear installations in the world; Performances des installations nucleaires dans le monde

    Energy Technology Data Exchange (ETDEWEB)

    Pate, Z.T. [World Association of Nuclear Operators (WANO), 75 - Paris (France)

    1999-01-01

    During the last years the operators of nuclear power plants in the world, have realized numerous improvements. This success is imputable to several factors, especially an important data exchange. The Chernobyl accident, in 1986, provoked the creation of the World Association of Nuclear Operators (W.A.N.O.). It allowed to exchange information and to develop cooperation in order to go beyond cultural barriers, linguistics and policies. Then, operators in the world have brought important improvements in matter of safety, reliability. (N.C.)

  6. Improvement for BWR operator training

    International Nuclear Information System (INIS)

    Tsuchiya, Toshio; Masuda, Hisao; Isono, Tomoyuki; Noji, Kunio; Togo, Toshiki

    1989-01-01

    BWR Operator Training Center Corporation (BTC) was established in April 1971 for the purpose of training the operators from all BWR utilities in Japan. Since April 1974, more than 2600 operators and 1000 shift teams have been trained with the full-scope simulators in BTC up to the end of March 1988. To get the satisfactory results of the training, BTC has been making every effort to improve the facilities, the training materials, the instruction methods and the curricula. In this paper, such a series of recent improvements in the instruction methods and the curricula are presented that are effective to expand the knowledge and to improve the skills of middle or senior class operators. (author)

  7. Future World of Illicit Nuclear Trade: Mitigating the Threat

    Science.gov (United States)

    2013-07-29

    David Albright and Corey Gay , “Taiwan: Nuclear Nightmare Averted,” Bulletin of the Atomic Scientists, January/February 1998, vol. 54, issue 1, p. 54. 8...38 Figure 6: A photo of a model of the IR-1 centrifuge in Iran, showing four aluminum rotor tubes and three bellows. The top and bottom tubes ...are painted black, possibly intended to help control the temperatures along the rotor assembly. The small tubing wrapped around the outside of the

  8. IAEA world survey on nuclear power plant personnel training

    International Nuclear Information System (INIS)

    1999-01-01

    Training of personnel is acknowledged to be essential for safe and reliable operation of nuclear power plants. The preparation of this TECDOC was recommended by the IAEA International Working group on Nuclear Power Plant Personnel Training and Qualification and represents a unique compilation of information including all aspects of NPP personnel training from 23 Member States and 129 training organizations. The basic aims of this survey are: to provide a worldwide overview of all aspects of NPP personnel training; to foster both national and international cooperation between organizations involved in nuclear training; to provide the means of exchange of experiences and practices in systematic approach to training (SAT). The survey provides information for each corresponding country on the: national system and organization of training; job positions for which SAT is used; training programmes for key operations, maintenance, instructor and other jobs; role of management and the regulatory body; training facilities; recommended training practices; availability of training personnel from organizations outside the country; and contact points. The three main parts of the publication are the summary, the analysis of training programmes for each job position and the analysis of training resources, and the country reports

  9. INIS: new world-wide nuclear information system

    International Nuclear Information System (INIS)

    Ohmori, Eiichi; Furuya, Minoru

    1976-01-01

    A new search system utilizing Atomindex is expounded. The nuclear information system of United States of America will be shifted to the larger scale system, Atomindex, at the moment of discontinuing the publication of Nuclear Science Abstract (NSA). This shifting exerts large or small influence upon the information systems of the other countries. The Atomindex is a publication of the International Nuclear Information System (INIS), and it includes most market unavailable reports. It is delivered through the clearing house to the users. Main differences between INIS and NSA are illustrated. Each piece of literature is listed under one or more descriptor pairs. Each pair is composed of the main heading and its qualifier, both of which are descriptors. Atomindex employs four working languages, namely English, French, Russian and Spanish. However, a version in the original language, even when this is not a working language can be recorded on magnetic tapes. Many special characters (suffixes, Greek, etc.) as well as alphabet are used, and italic type or boldface can be designated, so that the quality of Atomindex is better than that of NSA. The tapes for SDI and RS will be utilized as on-line real time systems. The second generation that utilizes the computer seems to be superseding the first generation that turns over the abstracts page by page. (Iwakiri, K.)

  10. A BWR 24-month cycle analysis using multicycle techniques

    International Nuclear Information System (INIS)

    Hartley, K.D.

    1993-01-01

    Boiling water reactor (BWR) fuel cycle design analyses have become increasingly challenging in the past several years. As utilities continue to seek improved capacity factors, reduced power generation costs, and reduced outage costs, longer cycle lengths and fuel design optimization become important considerations. Accurate multicycle analysis techniques are necessary to determine the viability of fuel designs and cycle operating strategies to meet reactor operating requirements, e.g., meet thermal and reactivity margin constraints, while minimizing overall fuel cycle costs. Siemens Power Corporation (SPC), Nuclear Division, has successfully employed multi-cycle analysis techniques with realistic rodded cycle depletions to demonstrate equilibrium fuel cycle performance in 24-month cycles. Analyses have been performed by a BWR/5 reactor, at both rated and uprated power conditions

  11. Updating of the costs of the nuclear fuels of the equilibrium reloading of the A BWR and EPR reactors; Actualizacion de los costos de combustible nuclear de la recarga de equilibrio de los reactores ABWR y EPR

    Energy Technology Data Exchange (ETDEWEB)

    Ortega C, R.F. [FI-UNAM, 04510 Mexico D.F. (Mexico)]. e-mail: rortega@fi-b.unam.mx

    2008-07-01

    In the last two and a half years, the price of the uranium in the market spot has ascended of US$20.00 dollars by lb U{sub 3O}8 in January, 2005 to a maximum of US$137.00 dollars by Ib U{sub 3}O{sub 8} by the middle of 2007. At the moment this price has been stabilized in US$90.00 dollars by Ib U{sub 3}O{sub 8} such for the market spot, like for the long term contracts. In this work the reasons of this increment are analyzed, as well as their impact in the fuel prices of the balance recharge of the advanced reactors of boiling water (A BWR) and of the advanced water at pressure reactors (EPR). (Author)

  12. Worst accident in the world. Chernobyl: the end of the nuclear dream

    Energy Technology Data Exchange (ETDEWEB)

    Hawkes, N; Lean, G; Leigh, D; McKie, R; Pringle, P; Wilson, A

    1986-01-01

    This is the full story of Chernobyl, before, during and after the reactor accident in April 1986. The scene is set at Chernobyl in the Ukraine. The nature of radioactivity, the risks and the health hazards posed by radioactivity and the world-wide nuclear energy scene are then discussed, followed by the particular nuclear situation in Russia. This includes the background to the nuclear power industry in Russia - its history, personnel and management, and ultimately the building of the Chernobyl nuclear power plant. The accident itself is then explained, minute by minute. The consequences, both short-term and long-term, on the immediate area and the rest of Europe are discussed. These are the medical effects on humans, the effects on the environment and the effect on the nuclear policies of the whole world.

  13. BWR alloy 182 stress Corrosion Cracking Experience

    International Nuclear Information System (INIS)

    Horn, R.M.; Hickling, J.

    2002-01-01

    Modern Boiling Water Reactors (BWR) have successfully operated for more than three decades. Over that time frame, different materials issues have continued to arise, leading to comprehensive efforts to understand the root cause while concurrently developing different mitigation strategies to address near-term, continued operation, as well as provide long-term paths to extended plant life. These activities have led to methods to inspect components to quantify the extent of degradation, appropriate methods of analysis to quantify structural margin, repair designs (or strategies to replace the component function) and improved materials for current and future application. The primary materials issue has been the occurrence of stress corrosion cracking (SCC). While this phenomenon has been primarily associated with austenitic stainless steel, it has also been found in nickel-base weldments used to join piping and reactor internal components to the reactor pressure vessel consistent with fabrication practices throughout the nuclear industry. The objective of this paper is to focus on the history and learning gained regarding Alloy 182 weld metal. The paper will discuss the chronology of weld metal cracking in piping components as well as in reactor internal components. The BWR industry has pro-actively developed inspection processes and procedures that have been successfully used to interrogate different locations for the existence of cracking. The recognition of the potential for cracking has also led to extensive studies to understand cracking behavior. Among other things, work has been performed to characterize crack growth rates in both oxygenated and hydrogenated environments. The latter may also be relevant to PWR systems. These data, along with the understanding of stress corrosion cracking processes, have led to extensive implementation of appropriate mitigation measures. (authors)

  14. Power generator in BWR type reactors

    International Nuclear Information System (INIS)

    Yoshida, Kenji.

    1984-01-01

    Purpose: To enable to perform stable and dynamic conditioning operation for nuclear fuels in BWR type reactors. Constitution: The conditioning operation for the nuclear fuels is performed by varying the reactor core thermal power in a predetermined pattern by changing the predetermined power changing pattern of generator power, the rising rate of the reactor core thermal power and the upper limit for the rising power of the reactor core thermal power are calculated and the power pattern for the generator is corrected by a power conditioning device such that the upper limit for the thermal power rising rate and the upper limit for the thermal power rising rate are at the predetermined levels. Thus, when the relation between the reactor core thermal power and the generator electrical power is fluctuated, the fluctuation is detected based on the variation in the thermal power rising rate and the limit value for the thermal power rising rate, and the correction is made to the generator power changing pattern so that these values take the predetermined values to thereby perform the stable conditioning operation for the nuclear fuels. (Moriyama, K.)

  15. Commercial nuclear power 1988: Prospects for the United States and the world

    International Nuclear Information System (INIS)

    1988-01-01

    This report presents historical data on commercial nuclear power in the United States, with projections of domestic nuclear capacity and generation through the year 2020. The report also gives country-specific projections of nuclear capacity and generation through the year 2010 for other countries in the world outside centrally planned economic areas (WOCA). Information is also presented regarding operable reactors and those under construction in countries with centrally planned economies. This report presents three different nuclear supply scenarios. The Optimistic-case scenario, included in previous issues of this report, has been deleted. 7 figs; 36 tabs

  16. The radiance of France; nuclear power and national identity after world war 2

    International Nuclear Information System (INIS)

    Hecht, G.

    2004-01-01

    This book discusses the early history of French nuclear power within its social and political context from the end of world war 2 to 1970. The author describes the creation of the nuclear reactors, the work at the reactor sites, and the impact of nuclear power on local communities. Information on the French atomic bomb program is also included. The conflicts and negotiations surrounding the nuclear programs are detailed, and the importance of the programs to French national identity is made clear. An excellent bibliography and extensive footnotes are provided

  17. BWR power oscillation evaluation methodologies in core design

    International Nuclear Information System (INIS)

    Hotta, Akitoshi

    1995-01-01

    At the initial stage of BWR development, the power oscillation due to the nuclear-thermal interaction originated in random boiling phenomena and nuclear void feedback was feared. But it was shown that under the high pressure condition in the normal operation of recent commercial BWRs, the core is in very stable state. However, power oscillation events have been observed in actual machines, and it is necessary to do the stability evaluation that sufficiently reflects the detailed operation conditions of actual plants. As the cause of power oscillation events, the instability of control system and nuclear-thermal coupling instability are important, and their mechanisms are explained. As the model for analyzing the stability of BWR core, the nuclear-thermal coupling model in frequency domain is the central existence. As the information for the design, the parameters of fuel assemblies, and the nuclear parameters and the thermohydraulic parameters of cores are enumerated. LAPUR-TSI is a nuclear-thermal coupling model. The analysis system in the software of Tokyo Electric Power Co. is outlined, and the analysis model was verified. (K.I.)

  18. Complete BWR--EM LOCA analysis using the WRAP--EM system

    International Nuclear Information System (INIS)

    Beckmeyer, R.R.; Gregory, M.V.; Buckner, M.R.

    1979-01-01

    The Water Reactor Analysis Package, Evaluation Model (WRAP--EM), provides a complete analysis of postulated loss-of-coolant accidents (LOCA's) in light--water nuclear power reactors. The system is being developed at the Savannah River Laboratory (SRL) for use by the Nuclear Regulatory Commission (NRC) to interpret and evaluate reactor vendor, evaluation model (EM) analyses. The initial version of the WRAP--EM system for analysis of boiling water reactors (BWR's) is operational. To demonstrate the complete capability of the WRAP--BWR--EM system, a LOCA analysis has been performed for the Hope Creek Plant

  19. Public acceptance of nuclear power: some ethical issues. [Position statement of World Council of Churches

    Energy Technology Data Exchange (ETDEWEB)

    Abrecht, P; Arungu-Olende, S; Francis, J M; de Gaspar, D; Nashed, W; Nwosu, B C.E.; Rose, D J; Shinn, R L

    1977-12-01

    The World Council of Churches favors the widest possible discussion of nuclear power issues with the immediate purpose of raising the level of public awareness of the social, political, and technical risks that are inevitably associated with the large-scale and accelerating adoption of nuclear power generation. Its general position on nuclear energy is presented as follows. (A) The availability of nuclear energy is a controversial feature of today's world in that it affords the opportunity to provide a large fraction of the world's energy needs, counter-balanced by the exceptional nature of the risks involved, and other problems related to the employment of large-scale, capital-intensive high technology. (B) The maturity of the nuclear energy system is not yet such as to justify its worldwide application; the consequences of large-scale expansion of nuclear energy production are still relatively poorly understood and require further assessment. (C) The rights of access to nuclear technology should be preserved to the extent that the nuclear ''haves'' may not deny the nuclear ''have nots'' by any form of exclusive consultation. (D) There should be sufficient discussion of the factors governing access to nuclear technology to bring all nations to a new awareness of its risks and uncertainties as well as its opportunities; and the collective responsibility for monitoring and administering safeguards should reside with the IAEA rather than with individual governments. (E) Public confidence in the use of nuclear energy, seriously shaken in recent years, can be revived only by the widest possible public discussion of the technical options and of the value judgements underlying present patterns of energy consumption.

  20. The World After Proliferation, Deterrence and Disarmament if the Nuclear Taboo is Broken

    International Nuclear Information System (INIS)

    Fitzpatrick, M.

    2009-01-01

    he nuclear taboo is customarily seen as a black and white norm, separating the world of the familiar from that of an unknowable afterlife.1 Nina Tannenwald argues that 'once the threshold between use and non-use is crossed, one is immediately in a new world with all the unimaginable consequences that could follow'. It is not correct, however, to say that the consequences are 'unimaginable'. They are certainly unpredictable, but one can imagine at least some of the consequences. This article attempts to do so with regard to consequences for proliferation, deterrence and disarmament. If the nuclear taboo were broken, whether by design, accident, miscalculation, or a breakdown of command and control, one of the more easily imagined consequences would be the collapse of the Nuclear Non- Proliferation Treaty (NPT). It is safe to assume that the use of nuclear weapons in war for the first time since 1945 would be a transformational event. But would nuclear use spell the failure of deterrence and doom the prospects of a nuclear-weapons free world, making obsolete much of the current thinking about nuclear disarmament and nuclear deterrence? Not every nuclear use scenario would necessarily break the lock on the nuclear Pandora's Box. A 'demonstration shot', for example, would not have the same impact as nuclear obliteration of a city. Both would be breaches of the taboo, but the use of a single nuclear bomb probably would not disrupt the status quo as thoroughly as would a massive attack or a two-way exchange. Breaching the taboo would not necessarily reverse the powerful norm and tradition that has developed in the last 60+ years against use of nuclear weapons. There is no compelling logic to assume that nuclear weapons would thereby become re-legitimized as instruments of war. The breaking of the nuclear taboo could actually spur either or both of two opposite reactions: an increased salience of nuclear weapons and a stimulus to disarmament. Which impulse prevails will

  1. The World After Proliferation, Deterrence and Disarmament if the Nuclear Taboo is Broken

    Energy Technology Data Exchange (ETDEWEB)

    Fitzpatrick, M.

    2009-07-01

    he nuclear taboo is customarily seen as a black and white norm, separating the world of the familiar from that of an unknowable afterlife.1 Nina Tannenwald argues that 'once the threshold between use and non-use is crossed, one is immediately in a new world with all the unimaginable consequences that could follow'. It is not correct, however, to say that the consequences are 'unimaginable'. They are certainly unpredictable, but one can imagine at least some of the consequences. This article attempts to do so with regard to consequences for proliferation, deterrence and disarmament. If the nuclear taboo were broken, whether by design, accident, miscalculation, or a breakdown of command and control, one of the more easily imagined consequences would be the collapse of the Nuclear Non- Proliferation Treaty (NPT). It is safe to assume that the use of nuclear weapons in war for the first time since 1945 would be a transformational event. But would nuclear use spell the failure of deterrence and doom the prospects of a nuclear-weapons free world, making obsolete much of the current thinking about nuclear disarmament and nuclear deterrence? Not every nuclear use scenario would necessarily break the lock on the nuclear Pandora's Box. A 'demonstration shot', for example, would not have the same impact as nuclear obliteration of a city. Both would be breaches of the taboo, but the use of a single nuclear bomb probably would not disrupt the status quo as thoroughly as would a massive attack or a two-way exchange. Breaching the taboo would not necessarily reverse the powerful norm and tradition that has developed in the last 60+ years against use of nuclear weapons. There is no compelling logic to assume that nuclear weapons would thereby become re-legitimized as instruments of war. The breaking of the nuclear taboo could actually spur either or both of two opposite reactions: an increased salience of nuclear weapons and a stimulus to

  2. Present state and long term planning on nuclear power plants in principal countries in the world

    International Nuclear Information System (INIS)

    Nomura, Junichi

    1978-01-01

    The situation of nuclear power stations and the long term planning in each major country in the world were summarized, but the situation is changing from time to time, therefore it is difficult to make the long term prediction. The advanced countries in terms of nuclear power established the long term plans to adopt nuclear power generation largely owing to the oil crisis, but thereafter the revision was carried out again and again in respective countries. The developing countries already started the operation of nuclear power generation occupy only 2 to 3% of the total installed capacity in the world, but the countries constructing or planning nuclear power generation are many, and if the operation will be started as scheduled, their capacity will reach 30 million kW by 1985, and occupy about 10% of the total installed capacity of nuclear power generation in the world. As for the range of investigation of this report, the countries where the long term plans are unknown or the number of construction is small, Japan, Great Britain, USA and communist countries are excluded. As a rule, the light water reactors with power output of more than 200,000 kW are listed. The number of nuclear power plants in operation, under construction and in planning stage, national situation, long term plan, and others in each country are described. (Kako, I.)

  3. SCORE-EVET: a computer code for the multidimensional transient thermal-hydraulic analysis of nuclear fuel rod arrays. [BWR; PWR

    Energy Technology Data Exchange (ETDEWEB)

    Benedetti, R. L.; Lords, L. V.; Kiser, D. M.

    1978-02-01

    The SCORE-EVET code was developed to study multidimensional transient fluid flow in nuclear reactor fuel rod arrays. The conservation equations used were derived by volume averaging the transient compressible three-dimensional local continuum equations in Cartesian coordinates. No assumptions associated with subchannel flow have been incorporated into the derivation of the conservation equations. In addition to the three-dimensional fluid flow equations, the SCORE-EVET code ocntains: (a) a one-dimensional steady state solution scheme to initialize the flow field, (b) steady state and transient fuel rod conduction models, and (c) comprehensive correlation packages to describe fluid-to-fuel rod interfacial energy and momentum exchange. Velocity and pressure boundary conditions can be specified as a function of time and space to model reactor transient conditions such as a hypothesized loss-of-coolant accident (LOCA) or flow blockage.

  4. Reactor safety study. An assessment of accident risks in U. S. commercial nuclear power plants. Appendices III and IV. [PWR and BWR

    Energy Technology Data Exchange (ETDEWEB)

    1975-10-01

    The items listed below summarize the detail sections which follow: a listing of definitions and a discussion of the general treatment of data within the random variable approach as utilized by the study; a tabulation of the assessed data base containing failure classifications, final assessed ranges utilized in quantification and reference source values considered in determining the ranges; a discussion of nuclear power plant experience that was used to validate the data assessment by testing its applicability as well as to check on the adequacy of the model to incorporate typical real incidents; an expanded presentation of the data assessment giving information on applicability considerations; a discussion of test and maintenance data including comparisons of models with experience data; and special topics, including assessments required for the initiating event probabilities and human error data and modeling.

  5. BWR Steam Dryer Alternating Stress Assessment Procedures

    Energy Technology Data Exchange (ETDEWEB)

    Morante, R. J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Hambric, S. A. [Brookhaven National Lab. (BNL), Upton, NY (United States); Ziada, S. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2016-12-01

    This report presents an overview of Boiling Water Reactor (BWR) steam dryer design; the fatigue cracking failures that occurred at the Quad Cities (QC) plants and their root causes; a history of BWR Extended Power Uprates (EPUs) in the USA; and a discussion of steam dryer modifications/replacements, alternating stress mechanisms on steam dryers, and structural integrity evaluations (static and alternating stress).

  6. Nuclear power plants in the world, as of December 31, 1983. 2. ed.

    International Nuclear Information System (INIS)

    1984-01-01

    A List of Nuclear Power Plants all over the world is made every year by JAIF, based on an annual survey on reactors in operation, under construction, on oder, and planned throughout the world. The English version of the List is published now for the second time. The present survey was to find the present status of the world's nuclear power plants as of the end December 1983 as well as changes or new developments during 1983 in the countries listed. The results of the survey are 302 reactors in operation for 198,508.6 MWe, 210 reactors under construction for 205,852 MWe, 13 reactors on order for 10,038 MWe and 134 planned reactors for 134,902 MWe, a total of 659 reactors and a total gross nuclear power generating capacity of 549,300.6 MWe. (author)

  7. Can the future, world-wide energy supply be achieved without nuclear energy?

    International Nuclear Information System (INIS)

    Kugeler, K.

    1995-01-01

    In the future the world-wide energy demand is going to increase considerably. The use of nuclear energy will continuously grow if the demand of climate researchers for a reduction of the world-wide CO 2 emission is fulfilled and if the possible contribution of regenerative energy sources is assessed realistically. In the future a world-wide use of nuclear energy will be realised according to even higher safety standards. The modification of the German Atom Law, which determines the limitation of damage caused to the reactor plant for future reactors fulfils this demand. The efforts in the field of nuclear technical development will concentrate on the proof of the required safety properties. (orig.) [de

  8. Commercial nuclear power: prospects for the United States and the world

    International Nuclear Information System (INIS)

    Mayes, F.; Gielecki, M.; Diedrich, R.; Hewlett, J.; Murphy, T.

    1985-01-01

    This analysis report presents the current status and outlook for commercial nuclear power reactors for all countries in the world outside centrally planned economic areas (WOCA). Information regarding operable reactors in countries with centrally planned economies is also presented. The report provides documentation of the US middle-case nuclear capacity and generation projections through 1995 that are presented in the Annual Energy Outlook 1984. Additionally, US nuclear capacity and generation projections through 2020 are presented for various nuclear power supply scenarios. These long-term projections are provided in support of the Department of Energy's activities pertaining to the Nuclear Waste Policy Act of 1982. The projections for foreign nuclear capacity through 1990 supplant the preliminary foreign WOCA projections presented in the Annual Energy Outlook 1984 and are supplemented by WOCA country-specific projections through the year 2000

  9. Current status of nuclear power in the United States and around the world.

    Science.gov (United States)

    McKlveen, J W

    1990-09-01

    Nuclear energy's share of the world electricity market has been growing over the past 35 years. In 1989, eight generating units entered commercial operation abroad and three new units were licensed in the U.S. In early 1990, Mexico became the 26th country to produce electricity from nuclear power. Currently the 426 operating reactors supply one sixth of the world's total electrical capacity. Fourteen countries have now operated nuclear plants for 20 or more years. Since 1980, France has been the leader in the use of nuclear power and currently generates three quarters of its electricity from 54 nuclear plants. The U.S. has 112 nuclear plants, the largest number of any country in the world. These plants satisfy almost 20 percent of U.S. electrical energy requirements. Last year Three Mile Island, the would-be icon for everything that is wrong with the nuclear industry was rated as the most efficient nuclear plant in the world. The worldwide trend toward acceptance of nuclear is improving slightly, but many political and societal issues need to be resolved. Whereas recent polls indicate that a majority of the people realize nuclear must be a major contributor to the energy mix of the future, many are reluctant to support the technology until the issue of waste disposal has been resolved. Fears of another Chernobyl, lack of capital, and a new anti-nuclear campaign by Greenpeace will keep the nuclear debate alive in many countries. Additional stumbling blocks in the U.S. include the need to develop a new generation of improved reactor designs which emphasize passive safety features, standardized designs and a stream-lined federal licensing process. Nuclear power is really not dead. Even environmentalists are starting to give it another look. A nuclear renaissance will occur in the U.S. How soon or under what conditions remain to be seen. The next crisis in the U.S. will not be a shortage of energy, rather a shortage of electricity.(ABSTRACT TRUNCATED AT 250 WORDS)

  10. Tritium in liquid phase in a BWR-5 like Laguna Verde; Tritio en fase liquida en un BWR-5 como Laguna Verde

    Energy Technology Data Exchange (ETDEWEB)

    Tijerina S, F.; Vargas A, A.; Cardenas J, J., E-mail: francisco.tijerina@cfe.gob.mx [Comision Federal de Electricidad, Central Nucleoelectrica Laguna Verde, Subgerencia de Ingenieria, Carretera Veracruz-Medellin Km 7.5, Veracruz (Mexico)

    2011-11-15

    In boiling water reactors (BWR), the tritium (H{sub 3}) takes place mainly as a result of ternary fissions in the nuclear reactors, of those which 75% are in gaseous form and 25% in liquid form. In the liquid phase, the tritium is transported to the pipes of the primary coolant toward condensed tanks or tanks of drainage excesses of radioactive equipment, located in external areas of a BWR, as well as to the processes of radioactive wastes to be able to be directed to the liquid effluents. For that reason, is necessary to know the possible routes of the transport and processes of the tritium in a BWR to control this radioisotope in the site of the event of leaks in equipment s and buried pipes, avoiding that emigrates toward underground flowing and an impact to the environment and to the people in general. (Author)

  11. NUCDAS: a database of nuclear criticality data around the world

    International Nuclear Information System (INIS)

    Komuro, Yuichi; Sakai, Tomohiro

    1999-01-01

    The NUCDAS database, which contains great numbers of nuclear criticality data and subcritical limit data described in criticality safety handbooks of Japan and foreign countries, has been developed at JAERI. The database was designed to perform quick search on criticality data and subcritical limits and to draw their curves for comparison. So, criticality data among handbooks can be shown on the screen and/or printed on the paper. The database runs on the Apple Macintosh computer and written in 4th Dimension, a relational database software for the Macintosh. This tool provides powerful search and sort capabilities. An appropriate graphic software (e.g. KaleidaGraph) is used to draw a graph of selected criticality data. NUCDAS will be demonstrated in the poster presentation. NUCEF'98 participants who are interested in NUCDAS will be able to operate Macintosh with the database and will be encouraged to give us some comments on it for modifications. Though all messages on the screen are written in Japanese, don't worry. (author)

  12. Overview of the older nuclear power stations in the world

    International Nuclear Information System (INIS)

    Fuchs, H.; Zuend, H.

    1991-01-01

    The oldest reactors in the world which are still operative are of the Magnox type. These will probably reach that 'useful' service life of 40 years over the next 6 - 10 years and will then be closed down. Light water reactors will not reach this age for another 10 - 15 years since the vast majority of the first pioneering systems have already been closed down. However, these created the preconditions for later systems to achieve service lives of 40 years or more. A consideration of the ageing mechanisms of reactors shows that 'old' is not a suitable criterion for taking a decision as to whether a reactor should be shut down or not. The major criterion for a decision of this kind is safety. Older plants in particular, often have large reserves so that the safety targets can still be maintained even after the useful service life has expired by simply adding sensible equipment. What constitutes 'sensible' equipment must also be considered from a financial point of view. The important thing is that each case requires individual consideration. 1 fig., 4 tabs., 12 refs

  13. Statistical analysis in the design of nuclear fuel cells and training of a neural network to predict safety parameters for reactors BWR

    International Nuclear Information System (INIS)

    Jauregui Ch, V.

    2013-01-01

    In this work the obtained results for a statistical analysis are shown, with the purpose of studying the performance of the fuel lattice, taking into account the frequency of the pins that were used. For this objective, different statistical distributions were used; one approximately to normal, another type X 2 but in an inverse form and a random distribution. Also, the prediction of some parameters of the nuclear reactor in a fuel reload was made through a neuronal network, which was trained. The statistical analysis was made using the parameters of the fuel lattice, which was generated through three heuristic techniques: Ant Colony Optimization System, Neuronal Networks and a hybrid among Scatter Search and Path Re linking. The behavior of the local power peak factor was revised in the fuel lattice with the use of different frequencies of enrichment uranium pines, using the three techniques mentioned before, in the same way the infinite multiplication factor of neutrons was analyzed (k..), to determine within what range this factor in the reactor is. Taking into account all the information, which was obtained through the statistical analysis, a neuronal network was trained; that will help to predict the behavior of some parameters of the nuclear reactor, considering a fixed fuel reload with their respective control rods pattern. In the same way, the quality of the training was evaluated using different fuel lattices. The neuronal network learned to predict the next parameters: Shutdown Margin (SDM), the pin burn peaks for two different fuel batches, Thermal Limits and the Effective Neutron Multiplication Factor (k eff ). The results show that the fuel lattices in which the frequency, which the inverted form of the X 2 distribution, was used revealed the best values of local power peak factor. Additionally it is shown that the performance of a fuel lattice could be enhanced controlling the frequency of the uranium enrichment rods and the variety of the gadolinium

  14. Nuclear

    International Nuclear Information System (INIS)

    2014-01-01

    This document proposes a presentation and discussion of the main notions, issues, principles, or characteristics related to nuclear energy: radioactivity (presence in the environment, explanation, measurement, periods and activities, low doses, applications), fuel cycle (front end, mining and ore concentration, refining and conversion, fuel fabrication, in the reactor, back end with reprocessing and recycling, transport), the future of the thorium-based fuel cycle (motivations, benefits and drawbacks), nuclear reactors (principles of fission reactors, reactor types, PWR reactors, BWR, heavy-water reactor, high temperature reactor of HTR, future reactors), nuclear wastes (classification, packaging and storage, legal aspects, vitrification, choice of a deep storage option, quantities and costs, foreign practices), radioactive releases of nuclear installations (main released radio-elements, radioactive releases by nuclear reactors and by La Hague plant, gaseous and liquid effluents, impact of releases, regulation), the OSPAR Convention, management and safety of nuclear activities (from control to quality insurance, to quality management and to sustainable development), national safety bodies (mission, means, organisation and activities of ASN, IRSN, HCTISN), international bodies, nuclear and medicine (applications of radioactivity, medical imagery, radiotherapy, doses in nuclear medicine, implementation, the accident in Epinal), nuclear and R and D (past R and D programmes and expenses, main actors in France and present funding, main R and D axis, international cooperation)

  15. Development of RBWR (Resource-renewable BWR) for environmental burden reduction of radioactive wastes

    International Nuclear Information System (INIS)

    Hino, Tetsushi; Ohtsuka, Masaya; Moriya, Kumiaki; Matsuura, Masayoshi

    2014-01-01

    Accumulation of long-life transuranium elements produced as by-products with uranium fuel burning became an issue of nuclear power. Hitachi had been developing the reactor with transuranium elements burning as fuels based on BWR type reactors successfully used as commercial reactors: RBWR (Resource-renewable BWR). Efficient transmutation and fissioning of transuranium elements needed adjustment of in-core neutron energy spectra distribution better for nuclear reaction of transuranium elements. Taking advantage of characteristics of BWR type reactors with neutron spectra hardening more easily adjustable than other type of reactors, multiple recycling and fissioning transuranium elements as fuels could make environmental burden reduction of radioactive wastes and efficient use of resources compatible. This article described the concept and history of RBWR and showed its specifications and reactor core characteristics. (T. Tanaka)

  16. Standard Technical Specifications, General Electric plants, BWR/4

    International Nuclear Information System (INIS)

    1992-09-01

    This NUREG contains improved Standard Technical Specifications (STS) for General Electric Plants, BWR/6, and documents the positions of the Nuclear Regulatory Commission based on the BWR Owners Group's proposed STS. This document is the result of extensive technical meetings and discussions among the NRC staff, the Nuclear Steam Supply System (NSSS) Owners Groups, the NSSS vendors, and the Nuclear Management and Resources Council (NUMARC). The improved STS were developed based on the criteria in the interim Commission Policy Statement on Technical Specification Improvements for Nuclear Power Reactors, dated February 6, 1987. The improved STS will be used as the basis for individual nuclear power plant licensees to develop improved plant-specific technical specifications. This report contains three volumes. This document Volume 1 contains the Specifications for all chapters and sections of the improved STS. Volume 2 contains the Bases for Chapters 2.0 and 3.0, and Sections 3.1--3.3 of the improved STS. Volume 3 contains the Bases for Sections 3.4--3.10 of the improved STS

  17. Standard Technical Specifications, General Electric Plants, BWR/6

    International Nuclear Information System (INIS)

    1992-09-01

    This NUREG contains improved Standard Technical Specifications (STS) for General Electric Plants, BWR/4, and documents the positions of the Nuclear Regulatory Commission based on the BWR Owners Group's proposed STS. This document is the result of extensive technical meetings and discussions among the NRC staff, the Nuclear Steam Supply System (NSSS) Owners Groups, the NSSS vendors, and the Nuclear Management and Resources Council (NUMARC). The improved STS were developed based on the criteria in the interim Commission Policy Statement on Technical Specification Improvements for Nuclear Power Reactors, dated February 6, 1987. The improved STS will be used as the basis for individual nuclear power plant licensees to develop improved plant-specific technical specifications. This report contains three volumes. Volume 1 contains the Specifications for all chapters and sections of the improved STS. Volume 2 contains the Bases for Chapters 2.0 and 3.0, and Sections 3.1--3.3 of the improved STS. Volume 3, contains the Bases for Sections 3.4--3.10 of the improved STS

  18. Transmutation of minor actinide using BWR fueled mixed oxide

    International Nuclear Information System (INIS)

    Susilo, Jati

    2000-01-01

    Nuclear spent fuel recycle has a strategic importance in the aspect of nuclear fuel economy and prevention of its spread-out. One among other application of recycle is to produce mixed oxide fuel (Mo) namely mixed Plutonium and uranium oxide. As for decreasing the burden of nuclear high level waste (HLW) treatment, transmutation of minor actinide (MA) that has very long half life will be carried out by conversion technique in nuclear reactor. The purpose of this study was to know influence of transition fuel cell regarding the percent weight of transmutation MA in the BWR fueled MOX. Calculation of cell BWR was used SRAC computer code, with assume that the reactor in equilibrium. The percent weight of transmutation MA to be optimum by increasing the discharge burn-up of nuclear fuel, raising ratio of moderator to fuel volume (Vm/Vf), and loading MA with percent weight about 3%-6% and also reducing amount of percent weight Pu in MOX fuel. For mixed fuel standard reactor, reactivity value were obtained between about -50pcm ∼ -230pcm for void coefficient and -1.8pcm ∼ -2.6pcm for fuel temperature coefficient

  19. BWR type reactors

    International Nuclear Information System (INIS)

    Hayashi, Katsuhisa; Watanabe, Shigeru.

    1983-01-01

    Purpose: To simplify the structure of control rod driving systems, as well as improve the safety and maintainability thereof. Constitution: Control-rod-guide tubes are disposed vertically above the reactor core and control-rod drives are disposed further thereabove, by which the control rods are moved upwardly and downwardly from above the reactor core through the guide tubes. Further, a partitioning cylinder is provided between the inner cirumferential wall at the upper portion of a pressure vessel and the control-rod-guide tubes and a gas-liquid separator is disposed to the space between the partitioning cylinder and the pressure vessel wall, to which steams generated in the reactor core are introduced. In such a structure of the reactor, since all of the control rods are inserted or extracted by the control rod drive system from above the reactor core, if the control rod drives or the likes should fail and accidentally drop the control rods, they exert in the direction of suppressing the nuclear reaction, whereby the safety can be improved. (Sekiya, K.)

  20. BWR type reactor

    International Nuclear Information System (INIS)

    Watanabe, Shoichi

    1988-01-01

    Purpose: To inhibit the lowering of the neutron moderation effect due to voids in the upper portion of the reactor core, thereby flatten the axial power distribution. Constitution: Although it has been proposed to enlarge the diameter at the upper portion of a water rod thereby increasing the moderator in the upper portion, since the water rod situates within the channel box, the increase in the capacity thereof is has certain limit. In the present invention, it is designed such that the volume of the region at the outside of the channel box for the fuel assembly to which non-boiling water in the non-boiling water region can enter is made greater in the upper portion than in the lower portion of the reactor core. Thus, if the moderator density in the upper portion of the reactor core should be decreased due to the generation of the voids, the neutron moderating effect in the upper portion of the reactor core is not lowered as compared with the lower portion of the reactor core and, accordingly, the axial power distribution can be flattening more as compared with that in the conventional nuclear reactors. (Takahashi, M.)