WorldWideScience

Sample records for nuclear waste options

  1. Nuclear waste disposal: regional options for the Western Pacific

    International Nuclear Information System (INIS)

    Childs, I.

    1985-01-01

    The disposal of nuclear waste is a complex environmental problem involving the technology of containing a radiation hazard and the political problem of finding an acceptable site for a hazardous waste facility. The focus of discussion here is the degree to which Western Pacific countries are committed to nuclear power as an energy source, and the political and economic interdependencies in the region which will influence waste disposal options

  2. Environmental and waste disposal options in nuclear engineering curricula

    International Nuclear Information System (INIS)

    Elleman, T.S.; Gilligan, J.G.

    1991-01-01

    The strong national emphasis on waste and environmental issues has prompted increasing interest among nuclear engineering students in study options that will prepare them for careers in these areas. Student interest appears to focus principally on health physics, radioactive waste disposal, and environmental interactions with radionuclides. One motivation for this interest appears to be the growing national programs in environmental restoration and waste remediation that have produced fellowship support for nuclear engineering students as well as employment opportunities. Also, the recent National Academy of sciences study on nuclear engineering education specifically emphasized the importance of expanding nuclear engineering curricula and research programs to include a greater emphasis on radioactive waste and environmental issues. The North Carolina State University (NCSU) Department of Nuclear Engineering is attempting to respond to these needs through the development of course options that will allow students to acquire background in environmental subjects as a complement to the traditional nuclear engineering education

  3. Nuclear waste management: options and implications

    International Nuclear Information System (INIS)

    Bartlett, J.W.

    1976-01-01

    This paper addresses three topics relevant to the technology of waste management: an overview describing the types of waste and the status of technologies used to manage them, a review of high-level waste management, and final disposition of the waste

  4. Representing value judgements in the evaluation options for nuclear waste

    International Nuclear Information System (INIS)

    Watson, S.R.

    1985-08-01

    In this report we show how the concept of Best Practical Environmental Option for nuclear waste management may be articulated using the methods of Multi-attribute Value Analysis. The concept of characteristic weights is introduced to represent differences of opinion on the relative importance of different factors that may reasonably be held, and show how these may be used to summarise information for decision-makers in a concise way. (author)

  5. Wastes options

    International Nuclear Information System (INIS)

    Maes, M.

    1992-01-01

    After a description of the EEC environmental policy, some wastes families are described: bio-contaminant wastes (municipal and industrial), hospitals wastes, toxic wastes in dispersed quantities, nuclear wastes (radioactive and thermal), plastics compounds wastes, volatiles organic compounds, hydrocarbons and used solvents. Sources, quantities and treatments are given. (A.B.). refs., figs., tabs

  6. A Real Options Approach to Nuclear Waste Disposal in Sweden

    International Nuclear Information System (INIS)

    Soederkvist, Jonas; Joensson, Kristian

    2004-04-01

    This report is concerned with an investigation of how the real options approach can be useful for managerial decisions regarding the phase-out of nuclear power generation in Sweden. The problem of interest is the optimal time-schedule for phase-out activities, where the optimal time-schedule is defined in purely economical terms. The approach taken is actual construction and application of three real options models, which capture different aspects of managerial decisions. The first model concerns when investments in deep disposal facilities should optimally be made. Although the model is a rough simplification of reality, the result is clear. It is economically advantageous to postpone deep disposal forever. The second model focuses on how the uncertainty of future costs relates to managerial investment decisions. Construction of this model required some creativity, as the nuclear phase-out turns out to be quite a special project. The result from the second model is that there can be a value associated with deferral of investments due to the uncertainty of future costs, but the result is less clear-cut compared to the first model. In the third model, we extend an approach suggested by Louberge, Villeneuve and Chesney. The risk of a nuclear accident is introduced through this model and we develop its application to investigate the Swedish phase-out in particular, which implies that waste continuously disposed. In the third model, focus is shifted from investment timing to implementation timing. The results from the third model are merely qualitative, as it is considered beyond the scope of this work to quantitatively determine all relevant inputs. It is concluded that the phase-out of nuclear power generation in Sweden is not just another area of application for standard real options techniques. A main reason is that although there are a lot of uncertain issues regarding the phase-out, those uncertainties do not leave a lot of room for managerial flexibility if

  7. Analysis of some nuclear waste management options. Volume II. Appendices

    International Nuclear Information System (INIS)

    Berman, L.E.; Ensminger, D.A.; Giuffre, M.S.; Koplik, C.M.; Oston, S.G.; Pollak, G.D.; Ross, B.I.

    1978-01-01

    This report describes risk analyses performed on that portion of a nuclear fuel cycle which begins following solidification of high-level waste. Risks associated with handling, interim storage and transportation of the waste are assessed, as well as the long term implications of disposal in deep mined cavities. The risk is expressed in terms of expected dose to the general population and peak dose to individuals in the population. This volume consists of appendices which provide technical details of the work performed

  8. Analysis of some nuclear waste management options. Volume II. Appendices

    Energy Technology Data Exchange (ETDEWEB)

    Berman, L.E.; Ensminger, D.A.; Giuffre, M.S.; Koplik, C.M.; Oston, S.G.; Pollak, G.D.; Ross, B.I.

    1978-10-10

    This report describes risk analyses performed on that portion of a nuclear fuel cycle which begins following solidification of high-level waste. Risks associated with handling, interim storage and transportation of the waste are assessed, as well as the long term implications of disposal in deep mined cavities. The risk is expressed in terms of expected dose to the general population and peak dose to individuals in the population. This volume consists of appendices which provide technical details of the work performed.

  9. Shale: an overlooked option for US nuclear waste disposal

    Science.gov (United States)

    Neuzil, Christopher E.

    2014-01-01

    Toss a dart at a map of the United States and, more often than not, it will land where shale can be found underground. A drab, relatively featureless sedimentary rock that historically attracted little interest, shale (as used here, the term includes clay and a range of clay-rich rocks) is entering Americans’ consciousness as a new source of gas and oil. But shale may also offer something entirely different—the ability to safely and permanently house high-level nuclear waste.

  10. Nuclear Waste Vitrification in the U.S.: Recent Developments and Future Options

    International Nuclear Information System (INIS)

    Vienna, John D.

    2010-01-01

    Nuclear power plays a key role in maintaining current world wide energy growth while minimizing the greenhouse gas emissions. A disposition path for used nuclear fuel (UNF) must be found for this technology to achieve its promise. One likely option is the recycling of UNF and immobilization of the high-level waste (HLW) by vitrification. Vitrification is the technology of choice for immobilizing HLW from defense and commercial fuel reprocessing around the world. Recent advances in both recycling technology and vitrification show great promise in closing the nuclear fuel cycle in an efficient and economical fashion. This article summarizes the recent trends developments and future options in waste vitrification for both defense waste cleanup and closing the nuclear fuel cycle in the U.S.

  11. Radioactive waste management and spent nuclear fuel storing. Options and priorities

    International Nuclear Information System (INIS)

    Popescu, Ion

    2001-01-01

    As a member of the states' club using nuclear energy for peaceful applications, Romania approaches all the activities implied by natural uranium nuclear fuel cycle, beginning with uranium mining and ending with electric energy generation. Since, in all steps of the nuclear fuel cycle radioactive wastes are resulting, in order to protect the environment and the life, the correct and competent radioactive waste management is compulsory. Such a management implies: a. Separating the radioisotopes in all the effluences released into environment; b. Treating separately the radioisotopes to be each properly stored; c. Conditioning waste within resistant matrices ensuring long term isolation of the radioactive waste destined to final disposal; d. Building radioactive waste repositories with characteristics of isolation guaranteed for long periods of time. To comply with the provisions of the International Convention concerning the safety of the spent nuclear fuel and radioactive waste management, signed on 5 September 1997, Romania launched its program 'Management of Radioactive Wastes and Dry Storing of Spent Nuclear Fuel' having the following objectives: 1. Establishing the technology package for treating and conditioning the low and medium active waste from Cernavoda NPP to prepare them for final disposal; 2. Geophysical and geochemical investigations of the site chosen for the low and medium active final disposal (DFDSMA); 3. Evaluating the impact on environment and population of the DFDSMA; 4. Providing data necessary in the dry intermediate storing of spent nuclear fuel and the continuous and automated surveillance; 5. Establishing multiple barriers for spent nuclear fuel final disposal in order to establish the repository in granitic rocks and salt massives; 6. Designing and testing containers for final disposal of spent nuclear fuel guaranteeing the isolation over at least 500 years; 7. Computational programs for evaluation of radionuclide leakage in environment in

  12. Spent Nuclear Fuel Option Study on Hybrid Reactor for Waste Transmutation

    International Nuclear Information System (INIS)

    Hong, Seong Hee; Kim, Myung Hyun

    2016-01-01

    DUPIC nuclear fuel can be used in hybrid reactor by compensation of subcritical level through (U-10Zr) fuel. Energy production performance of Hyb-WT with DUPIC is grateful because it has high EM factor and performs waste transmutation at the same time. However, waste transmutation performance should be improved by different fissile fuel instead of (U-10Zr) fuel. SNF (Spent Nuclear Fuel) disposal is one of the problems in the nuclear industry. FFHR (Fusion-Fission Hybrid Reactor) is one of the most attractive option on reuse of SNF as a waste transmutation system. Because subcritical system like FFHR has some advantages compared to critical system. Subcritical systems have higher safety potential than critical system. Also, there is suppressed excess reactivity at BOC (Beginning of Cycle) in critical system, on the other hand there is no suppressed reactivity in subcritical system. Our research team could have designed FFHR for waste transmutation; Hyb-WT. Various researches have been conducted on fuel and coolant option for optimization of transmutation performance. However, Hyb-WT has technical disadvantage. It is required fusion power (Pfus) which is the key design parameter in FFHR is increased for compensation of decreasing subcritical level. As a result, structure material integrity is damaged under high irradiation condition by increasing Pfus. Also, deep burn of reprocessed SNF is limited by weakened integrity of structure material. Therefore, in this research, SNF option study will be conducted on DUPIC (Direct Use of Spent PWR Fuel in CANDU Reactor) fuel, TRU fuel and DUPIC + TRU mixed fuel for optimization of Hyb-WT performance. Goal of this research is design check for low required fusion power and high waste transmutation. In this paper, neutronic analysis is conducted on Hyb-WT with DUPIC nuclear fuel. When DUPIC nuclear fuel is loaded in fast neutron system, supplement fissile materials need to be loaded together for compensation of low criticality

  13. Spent Nuclear Fuel Option Study on Hybrid Reactor for Waste Transmutation

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Seong Hee; Kim, Myung Hyun [Kyung Hee University, Yongin (Korea, Republic of)

    2016-05-15

    DUPIC nuclear fuel can be used in hybrid reactor by compensation of subcritical level through (U-10Zr) fuel. Energy production performance of Hyb-WT with DUPIC is grateful because it has high EM factor and performs waste transmutation at the same time. However, waste transmutation performance should be improved by different fissile fuel instead of (U-10Zr) fuel. SNF (Spent Nuclear Fuel) disposal is one of the problems in the nuclear industry. FFHR (Fusion-Fission Hybrid Reactor) is one of the most attractive option on reuse of SNF as a waste transmutation system. Because subcritical system like FFHR has some advantages compared to critical system. Subcritical systems have higher safety potential than critical system. Also, there is suppressed excess reactivity at BOC (Beginning of Cycle) in critical system, on the other hand there is no suppressed reactivity in subcritical system. Our research team could have designed FFHR for waste transmutation; Hyb-WT. Various researches have been conducted on fuel and coolant option for optimization of transmutation performance. However, Hyb-WT has technical disadvantage. It is required fusion power (Pfus) which is the key design parameter in FFHR is increased for compensation of decreasing subcritical level. As a result, structure material integrity is damaged under high irradiation condition by increasing Pfus. Also, deep burn of reprocessed SNF is limited by weakened integrity of structure material. Therefore, in this research, SNF option study will be conducted on DUPIC (Direct Use of Spent PWR Fuel in CANDU Reactor) fuel, TRU fuel and DUPIC + TRU mixed fuel for optimization of Hyb-WT performance. Goal of this research is design check for low required fusion power and high waste transmutation. In this paper, neutronic analysis is conducted on Hyb-WT with DUPIC nuclear fuel. When DUPIC nuclear fuel is loaded in fast neutron system, supplement fissile materials need to be loaded together for compensation of low criticality

  14. Nuclear option

    Energy Technology Data Exchange (ETDEWEB)

    Kemm, K R

    1978-05-01

    The global outlook is that nuclear reactors are here to stay and South Africa has already entered the nuclear power stakes. This article discusses the rocketing oil prices, and the alternatives that can be used in power generation, the good safety record of the nuclear industry and the effect that South Africa's first nuclear power station should have on the environment.

  15. Options for Management of Spent Fuel and Radioactive Waste for Countries Developing New Nuclear Power Programmes

    International Nuclear Information System (INIS)

    2013-01-01

    start a nuclear power programme. The IAEA has published guidance on particular elements of radioactive waste and spent fuel management, such as establishing nuclear technical and regulatory infrastructure, relevant financing schemes, national policy and strategies, multinational approaches and other aspects linked to building nuclear power plants. The present publication is intended to provide a concise summary of key issues related to the development of a sound radioactive waste and spent nuclear fuel management system. It is designed to brief countries with small or newly established nuclear power programmes about the challenges of, and to describe current and potential alternatives for, managing spent fuel and radioactive waste arising during operation and decommissioning of nuclear power plants. The publication deals primarily with current technical options, but also considers possible future developments and discusses relevant legal, political, technical and safety issues. It identifies the role of, and potential actions to be adopted by, the international community, including the IAEA, in order to support the responsible introduction of nuclear power in interested countries

  16. Nuclear option

    International Nuclear Information System (INIS)

    Olson, P.S.

    1983-01-01

    The energy demand complexion of this country is always changing and promises to change in the future. The nuclear industry is responding to changing energy demands through standards writing activities. Since the oil embargo of 1973, there has been a change in the mix of fuels contributing to energy growth in this country; virtually all of the energy growth has come from coal and nuclear power. The predicted expansion of coal use by 1985, over 1977 level, is 37%, while the use of oil is expected to decline by 17%. Use of nuclear power is expected to increase 62% from the 1977 level. The feasibility of using nuclear energy to meet the needs of the USA for electric power is discussed

  17. Mixed waste management options

    International Nuclear Information System (INIS)

    Owens, C.B.; Kirner, N.P.

    1992-01-01

    Currently, limited storage and treatment capacity exists for commercial mixed waste streams. No commercial mixed waste disposal is available, and it has been estimated that if and when commercial mixed waste disposal becomes available, the costs will be high. If high disposal fees are imposed, generators may be willing to apply extraordinary treatment or regulatory approaches to properly dispose of their mixed waste. This paper explores the feasibility of several waste management scenarios and management options. Existing data on commercially generated mixed waste streams are used to identify the realm of mixed waste known to be generated. Each waste stream is evaluated from both a regulatory and technical perspective in order to convert the waste into a strictly low-level radioactive or a hazardous waste. Alternative regulatory approaches evaluated in this paper include a delisting petition) no migration petition) and a treatability variance. For each waste stream, potentially available treatment options are identified that could lead to these variances. Waste minimization methodology and storage for decay are also considered. Economic feasibility of each option is discussed broadly. Another option for mixed waste management that is being explored is the feasibility of Department of Energy (DOE) accepting commercial mixed waste for treatment, storage, and disposal. A study has been completed that analyzes DOE treatment capacity in comparison with commercial mixed waste streams. (author)

  18. TMI abnormal wastes disposal options

    International Nuclear Information System (INIS)

    Ayers, A.L. Jr.

    1984-03-01

    A substantial quantity of high beta-gamma/high-TRU contaminated wastes are expected from cleanup activities of Unit 2 of the Three Mile Island Nuclear Power Station. Those wastes are not disposable because of present regulatory constraints. Therefore, they must be stored temporarily. This paper discusses three options for storage of those wastes at the Idaho National Engineering Laboratory: (1) storage in temporary storage casks; (2) underground storage in vaults; and (3) storage in silos at a hot shop. Each option is analyzed and evaluated. Also included is a discussion of future disposal strategies, which might be pursued when a suitable federal or commercial repository is built

  19. Final report, Task 2: alternative waste management options, Nuclear Fuel Services, Inc., high level waste

    International Nuclear Information System (INIS)

    1978-01-01

    Of the alternatives considered for disposal of the high-level waste in tanks 8D2 and 8D4, the following process is recommended: homogenization of the contents of tank 8D2, centrifugation of the sludge and supernate, mixing of the 8D4 acid waste with the centrifuged sludge, and converting the mixture to a borosilicate glass using the Hanford spray calciner/in-can melter

  20. Thermal oxidation of nuclear graphite: A large scale waste treatment option

    Science.gov (United States)

    Jones, Abbie N.; Marsden, Barry J.

    2017-01-01

    This study has investigated the laboratory scale thermal oxidation of nuclear graphite, as a proof-of-concept for the treatment and decommissioning of reactor cores on a larger industrial scale. If showed to be effective, this technology could have promising international significance with a considerable impact on the nuclear waste management problem currently facing many countries worldwide. The use of thermal treatment of such graphite waste is seen as advantageous since it will decouple the need for an operational Geological Disposal Facility (GDF). Particulate samples of Magnox Reactor Pile Grade-A (PGA) graphite, were oxidised in both air and 60% O2, over the temperature range 400–1200°C. Oxidation rates were found to increase with temperature, with a particular rise between 700–800°C, suggesting a change in oxidation mechanism. A second increase in oxidation rate was observed between 1000–1200°C and was found to correspond to a large increase in the CO/CO2 ratio, as confirmed through gas analysis. Increasing the oxidant flow rate gave a linear increase in oxidation rate, up to a certain point, and maximum rates of 23.3 and 69.6 mg / min for air and 60% O2 respectively were achieved at a flow of 250 ml / min and temperature of 1000°C. These promising results show that large-scale thermal treatment could be a potential option for the decommissioning of graphite cores, although the design of the plant would need careful consideration in order to achieve optimum efficiency and throughput. PMID:28793326

  1. Thermal oxidation of nuclear graphite: A large scale waste treatment option.

    Directory of Open Access Journals (Sweden)

    Alex Theodosiou

    Full Text Available This study has investigated the laboratory scale thermal oxidation of nuclear graphite, as a proof-of-concept for the treatment and decommissioning of reactor cores on a larger industrial scale. If showed to be effective, this technology could have promising international significance with a considerable impact on the nuclear waste management problem currently facing many countries worldwide. The use of thermal treatment of such graphite waste is seen as advantageous since it will decouple the need for an operational Geological Disposal Facility (GDF. Particulate samples of Magnox Reactor Pile Grade-A (PGA graphite, were oxidised in both air and 60% O2, over the temperature range 400-1200°C. Oxidation rates were found to increase with temperature, with a particular rise between 700-800°C, suggesting a change in oxidation mechanism. A second increase in oxidation rate was observed between 1000-1200°C and was found to correspond to a large increase in the CO/CO2 ratio, as confirmed through gas analysis. Increasing the oxidant flow rate gave a linear increase in oxidation rate, up to a certain point, and maximum rates of 23.3 and 69.6 mg / min for air and 60% O2 respectively were achieved at a flow of 250 ml / min and temperature of 1000°C. These promising results show that large-scale thermal treatment could be a potential option for the decommissioning of graphite cores, although the design of the plant would need careful consideration in order to achieve optimum efficiency and throughput.

  2. Nuclear technology options

    International Nuclear Information System (INIS)

    Salvatores, Massimo

    2013-01-01

    Different strategies and motivations in different countries have led to diverse options. In Europe the SNETP (Sustainable Nuclear Energy Technology Platform) has the objective of developing R&D supporting GEN-II (present) and GEN-III nuclear systems under development; allowing sustainability and minimisation of waste burden, promoting advanced Gen-IV Fast Reactors; and accounting for a Nuclear Cogeneration Industrial Initiative. A remarkable initiative in the USA has been the promotion of small modular reactors (SMRs) – at less than 300 MWe in capacity, much smaller than typical reactors – which can be an ideal choice for (remote) areas which cannot support a larger reactor. Compact scalable design offers a host of potential safety, construction and economic benefits. More “upbeat” strategies are expected in other areas of the world where significant increase in nuclear energy demand is predicted in the next decades. If this growth materialises, future fuel cycles characteristics, feasibility and acceptability will be crucial. This paper will discuss different scenarios for future fuel cycles, resources optimisation and/or waste minimization, the range from full fast reactor deployment to phase-out, management of spent nuclear fuel and the significant potential benefits of advanced cycles. The next 45 years will be dominated by deployment of standard large or medium size plants operating for 60 years. Available resources do allow it. However, fuel cycle will be a growing and most challenging issue and early assessments will be needed for public acceptance and policy decisions.

  3. Partitioning-transmutation technology: a potential future nuclear waste management option

    International Nuclear Information System (INIS)

    Nakayama, S.; Morita, Y.; Nishihara, K.; Oigawa, H.

    2005-01-01

    Partitioning-transmutation technology (PT) will produce radioactive wastes of different physical and chemical properties and in different amounts from those generated in the current nuclear fuel cycle. To assess quantitatively the effects of PT on waste disposal, we first analyzed the amounts of the PT wastes, assumed conditioning for each type of the waste, and then made an attempt to estimate the repository area for disposal of the PT wastes. The properties of the hot Sr-Cs waste form are controlling factors in determining the size of the geologic repository. The disposal area could be reduced if the Sr-Cs fraction is disposed in a different subsurface repository or by long-term storage of the waste under institutional control. Disposal in a subsurface repository was found to comply with the Japanese law in terms of radioactivity constraint, through a performance assessment for disposal of the Sr-Cs fraction. (authors)

  4. Waste disposal options report. Volume 1

    International Nuclear Information System (INIS)

    Russell, N.E.; McDonald, T.G.; Banaee, J.; Barnes, C.M.; Fish, L.W.; Losinski, S.J.; Peterson, H.K.; Sterbentz, J.W.; Wenzel, D.R.

    1998-02-01

    This report summarizes the potential options for the processing and disposal of mixed waste generated by reprocessing spent nuclear fuel at the Idaho Chemical Processing Plant. It compares the proposed waste-immobilization processes, quantifies and characterizes the resulting waste forms, identifies potential disposal sites and their primary acceptance criteria, and addresses disposal issues for hazardous waste

  5. OPTION WEALTH AND BEQUEST VALUES: THE VALUE OF PROTECTING FUTURE GENERATIONS FROM THE HEALTH RISKS OF NUCLEAR WASTE STORAGE

    OpenAIRE

    Riddel, Mary C.; Shaw, W. Douglass

    2002-01-01

    We devise a simple model of intergenerational altruism under uncertainty. We present an estimable form of the model that relies on a few, plausible, assumptions. We apply the model to data collected in a survey of Southern Nevadans concerning the proposed Yucca Mountain Nuclear Waste Repository in Nye County, NV. We find strong evidence of a bequest motive. Approximately one third of the option wealth lost by households near the repository can be attributed to costs to future generations.

  6. Thermal control of high energy nuclear waste, space option. [mathematical models

    Science.gov (United States)

    Peoples, J. A.

    1979-01-01

    Problems related to the temperature and packaging of nuclear waste material for disposal in space are explored. An approach is suggested for solving both problems with emphasis on high energy density waste material. A passive cooling concept is presented which utilized conduction rods that penetrate the inner core. Data are presented to illustrate the effectiveness of the rods and the limit of their capability. A computerized thermal model is discussed and developed for the cooling concept.

  7. Management options for food production systems affected by a nuclear accident. Task 5: disposal of waste milk to sea

    International Nuclear Information System (INIS)

    Wilkins, B.; Woodman, R.; Nisbet, A.; Mansfield, P.

    2001-11-01

    In emergency exercises, discharge to sea is often put forward as a disposal option for waste milk, the intention being to use the outfalls for coolant water or liquid effluent at nuclear installations. However, so far the legislative constraints and the practical and scientific limitations of this option have not been fully considered. This report sets out the current legal position and evaluates the practicability of transporting milk from an affected farm to a suitable coastal facility for disposal. The effect of discharging milk into coastal water bodies has also been considered, bearing in mind that after a serious accident disposals could continue for several weeks

  8. Nuclear wastes: overview

    International Nuclear Information System (INIS)

    Billard, Isabelle

    2006-01-01

    Nuclear wastes are a major concern for all countries dealing with civil nuclear energy, whatever these countries have decided yet about reprocessing/storage options. In this chapter, a (exact) definition of a (radioactive) waste is given, together with definitions of waste classes and their characteristics (volumes, types etc.). The various options that are currently experienced in the world will be presented but focus will be put on the French case. Envision evolutions will be briefly presented. (author)

  9. Nuclear Option in Korea

    International Nuclear Information System (INIS)

    Han, K. I.

    2002-01-01

    With sixteen(16) operating nuclear units in Korea, the share of nuclear power generation reached 41% of the total electric power generation as of December 2000. A prediction is that it would further increase to 44.5% by year 2015 according to the national long term power development plan. Four units are currently under construction with 6 more units in order. With little domestic energy resource and increasing energy demand to support national economic growth, Korea has chosen nuclear power as one of the major energy sources to ensure stable power supply and to promote energy self-sufficiency. It has been recognized that nuclear power in Korea is not a selective option but rather a necessity. The Korean nuclear power development started with construction of a 600 MWe size reactor that was designed and constructed by foreign vendors. As the national grid capacity became larger, the size of nuclear units increased to 1000 MWe class. In the mean time, the need for nuclear technology self-reliance grew not only in operation and maintenance but also in construction, manufacturing and design. For this, a nuclear technology self-reliance program has been embarked with the support of the Government and utility, and the 1000 MWe class KSNP(Korean Standard Nuclear Power Plant) has been developed. The KSNPs are currently being designed, manufactured, constructed and operated by relevant Korean entities themselves. To fit into a larger capacity national grid and also to improve nuclear economic competitiveness, the 1400 MWe class KNGR(Korean Next Generation Reactor) design has been developed uprating the 1000 MWe KSNP design. Its construction project is currently under contract negotiation, and is planned to be finished by 2010. In the mean time, to be ready for future electric power market deregulation, the 600 MWe class small KSNP design is being developed downsizing the KSNP. A modular small size reactor, SMART(System Integrated Modular Advanced Reactor) is also being

  10. Disposal options for radioactive waste

    International Nuclear Information System (INIS)

    Olivier, J.P.

    1991-01-01

    On the basis of the radionuclide composition and the relative toxicity of radioactive wastes, a range of different options are available for their disposal. Practically all disposal options rely on confinement of radioactive materials and isolation from the biosphere. Dilution and dispersion into the environment are only used for slightly contaminated gaseous and liquid effluents produced during the routine operation of nuclear facilities, such as power plants. For the bulk of solid radioactive waste, whatever the contamination level and decay of radiotoxicity with time are, isolation from the biosphere is the objective of waste disposal policies. The paper describes disposal approaches and the various techniques used in this respect, such as shallow land burial with minimum engineered barriers, engineered facilities built at/near the surface, rock cavities at great depth and finally deep geologic repositories for long-lived waste. The concept of disposing long-lived waste into seabed sediment layers is also discussed, as well as more remote possibilities, such as disposal in outer space or transmutation. For each of these disposal methods, the measures to be adopted at institutional level to reinforce technical isolation concepts are described. To the extent possible, some comments are made with regard to the applicability of such disposal methods to other hazardous wastes. (au)

  11. Management options for food production systems affected by a nuclear accident. Task 6: landspreading as a waste disposal option for contaminated milk

    International Nuclear Information System (INIS)

    Marchant, J.K.; Nisbet, A.F.

    2002-01-01

    In the event of a nuclear accident, there may be significant quantities of agricultural produce that are contaminated with radionuclides and require disposal. The disposal of milk would be of particular concern, since the quantities of milk classed as waste could be substantial and extensive environmental damage could be caused if this was not disposed of appropriately. As part of contingency planning for potential nuclear accidents, the identification of practicable options for disposal of contaminated milk is therefore important. One of the potential options is disposal by landspreading. This report sets out the current legal position of the landspreading of contaminated milk on farmland, provides information on the current extent of landspreading by farmers and assesses the practicability of landspreading contaminated milk according to the following criteria: technical feasibility, capacity, cost, environmental impact, radiological impact and acceptability. Milk contaminated with radionuclides could be defined as a radioactive waste or an agricultural waste. If it were defined as a radioactive waste it would require disposal under the Radioactive Substances Act 1993. Decisions concerning the definition of contaminated milk area matter for the relevant government departments. In this report it was assumed that the milk would be defined as an agricultural waste. The Code of Good Agricultural Practice for the Protection of Water provides farmers with practical guidance for avoiding water pollution and the Code of Good Agricultural Practice for the Protection of Air provides them with practical guidance for avoiding air pollution. Farmers should follow both of these codes when landspreading milk. According to the Animal By-products Order, 1999 milk contaminated with radionuclides above the levels specified by the European Council at which marketing would be prohibited would constitute high risk material; landspreading would not then be permitted. This, however

  12. Technology transfer on long-term radioactive waste management - a feasible option for small nuclear programmes?

    International Nuclear Information System (INIS)

    Mele, I.; Mathieson, J.

    2007-01-01

    The EU project CATT - Co-operation and technology transfer on long-term radioactive waste management for Member States with small nuclear programmes investigated the feasibility of countries with small nuclear programmes implementing long-term radioactive waste management solutions within their national borders, through collaboration on technology transfer with those countries with advanced disposal concepts. The main project objective was to analyse the existing capabilities of technology owning Member States and the corresponding requirements of potential technology acquiring Member States and, based on the findings, to develop a number of possible collaboration models and scenarios that could be used in a technology transfer scheme. The project CATT was performed as a specific support action under the EU sixth framework programme and it brought together waste management organisations from six EU Member States: UK, Bulgaria, Germany, Lithuania, Slovenia and Sweden. In addition, the EC Joint Research Centre from the Netherlands also participated as a full partner. The paper summarises the analyses performed and the results obtained within the project. (author)

  13. Waste processing options

    International Nuclear Information System (INIS)

    Turney, J.; Miller, A.; Leventhal, L.; Naughton, M.

    1985-01-01

    Decontamination of components, facilities and sites is becoming an increasingly significant source of low-level waste. Another source, of potentially greater magnitude, is the decommissioning of nuclear reactor facilities. According to DOE, there are about 15 operating reactors that will be candidates for decommissioning by the end of the century. In addition, there are reactors such as Humboldt Bay, Dresden 1, and Indian Point, Unit 1, which have been shut down prior to their design life. Chemical decontamination of components and systems is a frequently used technique in controlling nuclear plant radiation exposure, and is especially useful during decommissioning. However, many of the solutions used pose a chemical or biological hazard, in addition to being radioactively contaminated. These hazards, if not ameliorated, may prohibit their disposal. Recent regulations, such as 10CFR Part 61(2), are focusing more attention on the non-radioactive aspects of radioactive waste. 10CFR Part 61 and the existing burial site licenses prohibit burial of waste which is chemically reactive, explosive under ambient conditions, produces toxic gases, vapors or fumes, or is pyrophoric. Additionally, the Barnwell license restricts organic chemicals which may affect the migration of radionuclides from the burial site. The NRC is studying additional restrictions on a class of these chemicals called chelating agents

  14. Variation in information use in the evaluation of the social acceptability of nuclear waste management options

    International Nuclear Information System (INIS)

    Allen, P.T.

    1991-01-01

    This article considers how technical information is used in forming judgements about such complex technological phenomena as nuclear waste management. Public understanding and acceptance of innovations is also considered, particularly where health and safety issues are involved. Education of the public is not a total solution. Many problems include political, social or ethical aspects which impinge on how they are judged by non-scientists. In addition, the vested interests of various parties must be weighed. A field-based experiment is described which is designed to illustrate the difference between ''normal'' and ''normative'' evaluation procedures used by both technically experienced and lay participants. (UK)

  15. Nuclear waste

    International Nuclear Information System (INIS)

    1992-05-01

    The Nuclear Waste Policy Act of 1982, as amended in 1987, directed the Secretary of Energy to, among other things, investigate Yucca Mountain, Nevada, as a potential site for permanently disposing of highly radioactive wastes in an underground repository. In April 1991, the authors testified on Yucca Mountain project expenditures before your Subcommittee. Because of the significance of the authors findings regrading DOE's program management and expenditures, you asked the authors to continue reviewing program expenditures in depth. As agreed with your office, the authors reviewed the expenditures of project funds made available to the Department of Energy's (DOE) Lawrence Livermore National Laboratory, which is the lead project contractor for developing a nuclear waste package that wold be used for disposing of nuclear waste at Yucca Mountain. This report discusses the laboratory's use of nuclear waste funds to support independent research projects and to manage Yucca Mountain project activities. It also discusses the laboratory's project contracting practices

  16. Nuclear waste

    International Nuclear Information System (INIS)

    Pligt, J. van der

    1989-01-01

    This chapter present a brief overview of the current situation of siting radioactive wastes. This is followed by an overview of various psychological approaches attempting to analyse public reactions to nuclear facilities. It will be argued that public reactions to nuclear waste factilities must be seen in the context of more general attitudes toward nuclear energy. The latter are not only based upon perceptions of the health and environmental risks but are built on values, and sets of attributes which need not be similar to the representations o the experts and policy-makers. The issue of siting nuclear waste facilities is also embedded in a wider moral and political domain. This is illustrated by the importance of equity issues in siting radioactive wastes. In the last section, the implications of the present line of argument for risk communication and public participation in decisions about siting radioactive wastes will be briefly discussed. (author). 49 refs

  17. Nuclear waste

    International Nuclear Information System (INIS)

    Anon.

    1996-01-01

    The NEA Nuclear Waste Bulletin has been prepared by the Radiation Protection and Waste Management Division of the OECD Nuclear Energy Agency to provide a means of communication amongst the various technical and policy groups within the waste management community. In particular, it is intended to provide timely and concise information on radioactive waste management activities, policies and programmes in Member countries and at the NEA. It is also intended that the Bulletin assists in the communication of recent developments in a variety of areas contributing to the development of acceptable technology for the management and disposal of nuclear waste (e.g., performance assessment, in-situ investigations, repository engineering, scientific data bases, regulatory developments, etc)

  18. Nuclear wastes

    International Nuclear Information System (INIS)

    2002-01-01

    This scientific document presents an introduction to the nuclear wastes problems, the separation process and the transmutation, the political and technical aspects of the storage, the radioprotection standards and the biological effects. (A.L.B.)

  19. Turning nuclear waste into glass

    Energy Technology Data Exchange (ETDEWEB)

    Pegg, Ian L.

    2015-02-15

    Vitrification has emerged as the treatment option of choice for the most dangerous radioactive waste. But dealing with the nuclear waste legacy of the Cold War will require state-of-the-art facilities and advanced glass formulations.

  20. Nuclear waste

    International Nuclear Information System (INIS)

    1990-01-01

    Each year, nuclear power plants, businesses, hospitals, and universities generate more than 1 million cubic feet of hardware, rags, paper, liquid waste, and protective clothing that have been contaminated with radioactivity. While most of this waste has been disposed of in facilities in Nevada, South Carolina, and Washington state, recent legislation made the states responsible - either individually, or through groups of states called compacts - for developing new disposal facilities. This paper discusses the states' progress and problems in meeting facility development milestones in the law, federal and state efforts to resolve issues related to mixed waste (low-level waste that also contains hazardous chemicals) and waste with very low levels of radioactivity, and the Department of Energy's progress in discharging the federal government's responsibility under the law to manage the most hazardous low-level waste

  1. Nuclear power and radioactive waste: a sub-seabed disposal option

    International Nuclear Information System (INIS)

    Deese, D.A.

    1978-01-01

    The radioactive waste disposal programs of most countries are still focused on investigation of land-based geologic formations as possible containment media for radioactive wastes. Important discoveries in geological oceanography and amazing advances in ocean engineering over the past decade have, however, led several countries to investigate another promising possibility for geologic disposal of radioactive waste--isolation within the deep seabed or sub-seabed disposal. Beyond the various technical advantages and disadvantages involved, use of the international seabed for radioactive waste disposal raises a multitude of social, economic, political, legal, institutional, and ethical issues. These issues are analyzed in this volume

  2. Radiation and environmental safety of spent nuclear fuel management options based on direct disposal or reprocessing and disposal of high-level radioactive waste

    International Nuclear Information System (INIS)

    Vuori, S.

    1996-05-01

    The report considers the various stages of two nuclear fuel cycle options: direct disposal and reprocessing followed by disposal of vitrified high-level waste. The comparative review is based on the results of previous international studies and concentrates on the radiation and environmental safety aspects of technical solutions based on today's technology. (23 refs., 7 figs., 4 tabs.)

  3. Nuclear waste

    International Nuclear Information System (INIS)

    1988-01-01

    The Department of Energy has proposed a draft plan for investigating the Yucca Mountain, Nevada, site to determine if it suitable for a waste repository. This fact sheet provides information on the status of DOE's and the Nuclear Regulatory Commission's efforts to streamline what NRC expects will be the largest and most complex nuclear-licensing proceeding in history, including the development of an electronic information management system called the Licensing Support System

  4. Nuclear waste

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    The Koeberg nuclear power station, planned to come on stream in 1984, is expected to save South Africa some six million t/annum of coal, and to contribute some 10 per cent of the country's electricity requirements. The use of nuclear energy will provide for growing national energy needs, and reduce high coal transport costs for power generation at the coast. In the long term, however, it gives rise to the controversial question of nuclear waste storage. The Atomic Energy Corporation of South Africa Ltd (AEC) recently announced the purchase of a site in Namaqualand (NW Cape) for the storage of low-level radioactive waste. The Nuclear Development Corporation of South Africa (Pty) Ltd, (NUCOR) will develop and operate the site. The South African Mining and Engineering Journal interviewed Dr P.D. Toens, manager of the Geology Department and Mr P.E. Moore, project engineer, on the subject of nuclear waste, the reasons behind Nucor's choice of site and the storage method

  5. Nuclear waste

    International Nuclear Information System (INIS)

    1989-01-01

    This paper reviews the Department of Energy's management of underground single-shell waste storage tanks at its Hanford, Washington, site. The tanks contain highly radioactive and nonradioactive hazardous liquid and solid wastes from nuclear materials production. Hundreds of thousands of gallons of these wastes have leaked, contaminating the soil, and a small amount of leaked waste has reached the groundwater. DOE does not collect sufficient data to adequately trace the migration of the leaks through the soil, and studies predicting the eventual environmental impact of tank leaks do not provide convincing support for DOE's conclusion that the impact will be low or nonexistent. DOE can do more to minimize the environmental risks associated with leaks. To reduce the environmental impact of past leaks, DOE may be able to install better ground covering over the tanks to reduce the volume of precipitation that drains through the soil and carries contaminants toward groundwater

  6. ENVIRONMENTAL RESEARCH BRIEF: WASTE REDUCTION ACTIVITIES AND OPTIONS FOR A NUCLEAR POWERED ELECTRICAL GENERATING STATION.

    Science.gov (United States)

    The U.S. Environmental Protection Agency (EPA) funded a project with the New Jersey Department of Environmental Protection and Energy (NJDEPE) to assist in conducting waste minimization assessments at thirty small- to medium-sized businesses in the state of New Jersey. One of th...

  7. Nuclear waste

    International Nuclear Information System (INIS)

    1990-06-01

    DOE estimates that disposing of radioactive waste from civilian nuclear power plants and its defense-related nuclear facilities could eventually end up costing $32 billion. To pay for this, DOE collects fees from utilities on electricity generated by nuclear power plants and makes payments from its defense appropriation. This report states that unless careful attention is given to its financial condition, the nuclear waste program is susceptible to future shortfalls. Without a fee increase, the civilian-waste part of the program may already be underfunded by at least $2.4 billion (in discounted 1988 dollars). Also, DOE has not paid its share of cost-about $480 million-nor has it disclosed this liability in its financial records. Indexing the civilian fee to the inflation rate would address one major cost uncertainty. However, while DOE intends to do this at an appropriate time, it does not use a realistic rate of inflation as its most probable scenario in assessing whether that time has arrived

  8. Nuclear waste

    International Nuclear Information System (INIS)

    1988-01-01

    As required by the Nuclear Waste Policy Act of 1982, the Department of Energy is to annually determine whether the waste disposal fee will produce sufficient revenues to offset the total estimated costs of the waste disposal program. In its June 1987 assessment, DOE recommended that the fee remain unchanged even though its analysis showed that at an inflation rate of 4 percent the current fee would result in end-of-program deficits ranging from $21 billion to $76 billion in 2085. The 1988 assessment calls for reduced total costs because of program changes. Thus, DOE may be able to begin using a realistic inflation rate in determining fee adequacy in 1988 without proposing a major fee increase

  9. Waste package emplacement borehole option study

    International Nuclear Information System (INIS)

    Streeter, W.S.

    1992-03-01

    This study evaluates the cost and thermal effects of various waste package emplacement configurations that differ in emplacement orientation, number of containers per borehole, and standoff distance at the potential Yucca Mountain nuclear waste repository. In this study, eight additional alternatives to the vertical and horizontal orientation options presented in the Site Characterization Plan Conceptual Design Report are considered. Typical panel layout configurations based on thermal analysis of the waste and cost estimates for design and construction, operations, and closure and decommissioning were made for each emplacement option. For the thermal analysis average waste 10 years out of reactor and the SIM code were used to determine whether the various configurations temperatures would exceed the design criteria for temperature. This study does not make a recommendation for emplacement configuration, but does provide information for comparison of alternatives

  10. CANDLE reactor: an option for simple, safe, high nuclear proliferation resistant , small waste and efficient fuel use reactor

    International Nuclear Information System (INIS)

    Sekimoto, H.

    2010-01-01

    The innovative nuclear energy systems have been investigated intensively for long period in COE-INES program and CRINES activities in Tokyo Institute of Technology. Five requirements; sustainability, safety, waste, nuclear-proliferation, and economy; are considered as inevitable requirements for nuclear energy. Characteristics of small LBE cooled CANDLE fast reactor developed in this Institute are discussed for these requirements. It satisfies clearly four requirements; safety, nonproliferation and safeguard, less wastes and sustainability. For the remaining requirement, economy, a high potential to satisfy this requirement is also shown

  11. Goals for nuclear waste management

    International Nuclear Information System (INIS)

    Watson, R.A.

    1978-01-01

    Establishing a publicly, politically, economically, and technologically acceptable waste management system for the fuel cycle is a necessary condition for accepting the nuclear program as a national energy option. Findings are given on the technology, politics, economics, morality, aesthetics, and societal impact of waste management. Proposed goals are outlined for the regulation of waste management

  12. Nuclear waste

    International Nuclear Information System (INIS)

    1991-01-01

    The Privacy Act of 1974 restricts both the type of information on private individuals that federal agencies may maintain in their records and the conditions under which such information may be disclosed. The Nuclear Regulatory Commission, which must approve DOE plans to build a nuclear waste repository at the Yucca Mountain site in Nevada, requires a quality assurance program to guarantee that studies of the site are done by qualified employees. Under such a program, the training and qualifications of DOE and contractor employees would be verified. This report reviews DOE's efforts to identify and resolve the implications of the Privacy Act for DOE's quality assurance program and how the delay in resolving Privacy Act issues may have affected preliminary work on the Yucca Mountain project

  13. Final report, Task 4: options for on-site management of Nuclear Fuel Services, Inc. high level waste

    International Nuclear Information System (INIS)

    1978-01-01

    Two on-site management options for handling the NFS high-level waste were analyzed: in-tank cement solidification and perpetual tank storage of the liquid waste. The cost of converting the 8D4 plus 8D2 waste to a cementitious solid, including mixing, grout preparation, and transfer to tank 8D1 would require $3,651,000; the cost of cooling the solidified solid for 15 years, plus the cost of filling the rest of the tank space and annulus with grout, plus the cost of minimum surveillance are $10,002,000. Modification of tank 8D2 would be required; prior to transfer of the waste, tank 8D1 would also be modified for cooling of the grout mass. Estimated costs of perpetual tank storage (replacing the existing neutralized waste tank after 10 years, then transferring contents at 50-y intervals for 1000 y, with replacement of ventilation system and auxiliaries at 30-y intervals) would require a sinking fund of $11,039,000. The acidic 8D4 waste would be transferred at 50-y intervals. The sinking fund requirements are sensitive to the difference between the interest rate and the escalation rate, and also to the time assumed from present to the first tank replacement

  14. Options for the ultimate storage of low and medium level radioactive wastes produced at Laguna Verde nuclear power plant

    International Nuclear Information System (INIS)

    Emeterio, Miguel

    1991-01-01

    The devoted time and still to be expend in prepare, execute and teach permanent and safe solutions to the problem of the evaluation of radioactive wastes reflects the political, economic and environmental importance with respect to public health and safety invested in this task, as well as, its technological challenges. In the case of Laguna Verde nuclear power plant, its low and medium level radioactive wastes are stored in the beginning in a temporal store with a capacity of 2000 m 3 sufficient to four years of normal operation; according to what it is necessary to select one of different ways of waste storage. Different technologies has been evaluated and the preliminary conclusion is that for Mexico the more feasible way to store radioactive wastes is in tumulus (Author)

  15. Nuclear waste

    International Nuclear Information System (INIS)

    1989-10-01

    The Department of Energy is awarding grants to the state of Nevada for the state's participation in DOE's program to investigate Yucca Mountain as a possible site for the disposal of civilian nuclear waste. This report has found that DOE's financial assistance budget request of $15 million for Nevada's fiscal year 1990 was not based on the amount the state requested but rather was derived by increasing Nevada's grant funds from the previous year in proportion to the increase that DOE requested for its own activities at the Nevada site. DOE's evaluations of Nevada's requests are performed too late to be used in DOE's budget formulation process because Nevada has been applying for financial assistance at about the same time that DOE submits its budget request to Congress

  16. Nuclear fuel waste disposal

    International Nuclear Information System (INIS)

    Allan, C.J.

    1993-01-01

    The Canadian concept for nuclear fuel waste disposal is based on disposing of the waste in a vault excavated 500-1000 m deep in intrusive igneous rock of the Canadian Shield. The author believes that, if the concept is accepted following review by a federal environmental assessment panel (probably in 1995), then it is important that implementation should begin without delay. His reasons are listed under the following headings: Environmental leadership and reducing the burden on future generations; Fostering public confidence in nuclear energy; Forestalling inaction by default; Preserving the knowledge base. Although disposal of reprocessing waste is a possible future alternative option, it will still almost certainly include a requirement for geologic disposal

  17. Radioactive waste management turning options into solution

    International Nuclear Information System (INIS)

    Neubauer, J.

    2000-10-01

    Most of the statements from representatives of different countries and institutions focused on the status of high level radioactive waste management, including spent fuel repositories. Speakers dealing with such topics were representatives from countries applying nuclear power for electricity production. They all reported about there national programs on technical and safety aspects of radioactive waste management. The panel discussion extended to questions on political sensitivities and public acceptance; in this respect, interesting developments are taking place in Finland and Sweden. It is expected that Finland will operate a final repository for spent fuel in 10 - 15 years from now, followed close by Sweden. Other countries, however, face decisions by policy makers and elected officials to postpone dealing with waste disposal concerns. In this connection there is relevant experience in our country, too - even in the absence of spent fuel or other high level waste to be dealt with. During personal discussions with representatives of other countries not using nuclear power it was confirmed that there are similar or shared experiences. Development of publicly -accepted solutions to radioactive waste management remains an important issue. Independent of the amount or the activity of radioactive waste, the public at large remains skeptical despite the agreement among experts that disposal can be safe, technically feasible and environmentally sound. In countries not using nuclear power there are only small quantities of low and intermediate level radioactive waste. Therefore, international co-operation among such countries should be an option. There was common understanding by representatives from Norway, Italy and Austria that international co-operation should be developed for treatment and disposal of such waste. For the moment however it has to be accepted that, for political reasons, it is not possible. Forced to deal with the lack of near-term solutions, the

  18. Nuclear waste - the unsolved problem

    International Nuclear Information System (INIS)

    Boyle, S.

    1986-01-01

    Nuclear waste is identified and the problems created by reprocessing are mentioned. The disposal option for low, intermediate and high-level radioactive wastes are discussed. Sites where disposal has taken place have been found to be unsatisfactory because of contamination and radionuclide migration. The Nuclear Industry Radioactive Waste Executive (NIREX) is not seen as having any more credibility than the other nuclear authorities involved (BNFL, UKAEA, CEGB). Until an adequate, publically acceptable, method of disposing of the wastes already created has been found the author states that no more should be created. (U.K.)

  19. Nuclear waste

    International Nuclear Information System (INIS)

    1990-07-01

    The state of Nevada opposed DOE's development of a nuclear waste repository at Yucca Mountain. As a result, disputes have arisen over how Nevada has spent financial assistance provided by DOE to pay the state's repository program costs. This report reviews Nevada's use of about $32 million in grant funds provided by DOE through June 1989 and found that Nevada improperly spent about $1 million. Nevada used as much as $683,000 for lobbying and litigation expenses that were unauthorized or were expressly prohibited by law, court decision, or grant terms; exceeded a legislative spending limit on socioeconomic studies by about $96,000; and used, contrary to grant terms, about $275,000 from one grant period to pay expenses incurred in the prior year. Also, Nevada did not always exercise adequate internal controls over grant funds, such as timely liquidation of funds advanced to contractors. A permissive approach to grant administration by DOE contributed to Nevada's inappropriate use of grant funds

  20. Nuclear wastes

    International Nuclear Information System (INIS)

    2004-01-01

    Here is made a general survey of the situation relative to radioactive wastes. The different kinds of radioactive wastes and the different way to store them are detailed. A comparative evaluation of the situation in France and in the world is made. The case of transport of radioactive wastes is tackled. (N.C.)

  1. The nuclear option

    International Nuclear Information System (INIS)

    De Villiers, J.W.L.

    1982-01-01

    Atomic Energy Board President, Dr J.W.L. de Villiers, looks at South Africa's power needs and seeks to justify the country's move into nuclear energy. South Africa's energy requirements, energy resources, future prospects for nuclear energy in South Africa and resource independence are discussed

  2. The nuclear option

    International Nuclear Information System (INIS)

    Herken, G.

    1992-01-01

    A development history and current status evaluation are presented for nuclear-thermal rocket propulsion systems applicable to interplanetary flight. While the most advanced current chemical rocket engines, such as the SSMEs of the Space Shuttle, produce specific impulses of the order of 450 secs, a nuclear-thermal rocket engine tested at Los Alamos in 1969 generated 845 secs; such specific impulse improvements could represent weeks or months of interplanetary travel time. Attention is given to the achievements of the historical Nuclear Engine for Rocket Vehicle Application, Helios, and Orion design programs, as well as to the current Vehicle for Interplanetary Space Transportation Applications, which is fusion-based

  3. Radiological protection criteria risk assessments for waste disposal options

    International Nuclear Information System (INIS)

    Hill, M.D.

    1982-01-01

    Radiological protection criteria for waste disposal options are currently being developed at the National Radiological Protection Board (NRPB), and, in parallel, methodologies to be used in assessing the radiological impact of these options are being evolved. The criteria and methodologies under development are intended to apply to all solid radioactive wastes, including the high-level waste arising from reprocessing of spent nuclear fuel (because this waste will be solidified prior to disposal) and gaseous or liquid wastes which have been converted to solid form. It is envisaged that the same criteria will be applied to all solid waste disposal options, including shallow land burial, emplacement on the ocean bed (sea dumping), geological disposal on land and sub-seabed disposal

  4. Nuclear wastes, a questionnaire

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    Questionnaire giving basic information for the public on nuclear wastes and radioactive waste management. Risk and regulations to reduce the risk to permissible limits are more particularly developed. A survey of radioactive wastes is made along the fuel cycle: production, processing, transport, disposal to end on effect of waste management on the cost of nuclear kWh [fr

  5. Partitioning and transmutation: Radioactive waste management option

    International Nuclear Information System (INIS)

    Stanculescu, A.

    2005-01-01

    Growing world population with increasing energy needs, especially in the developing countries, Threat of global warming due to CO 2 emissions demands non-fossil electricity production. Nuclear will have to be part of a sustainable mix of energy production options Figures show that 350 GWe worldwide capacity is 'nuclear'. Present worldwide spent fuel (containing high Pu inventory) and HLW would need large repositories. In view of the previous facts this lecture deals Partitioning and transmutation as radioactive waste management option. Partitioning and transmutation (P and T) is a complex technology i.e. advanced reprocessing, and demand transuranics fuel fabrication plants, as well as innovative and/or dedicated transmutation reactors. In addition to U, Pu, and 129 I, 'partitioning' extracts from the liquid high level waste the minor actinides (MA) and the long-lived fission products (LLFP) 99-Tc, 93-Zr, 135-Cs, 107-Pd, and 79-Se). 'Transmutation' requires fully new fuel fabrication plants and reactor technologies to be developed and implemented on industrial scale. Present LWRs are not suited for MA and LLFP transmutation (safety consideration, plant operation, poor incineration capability). Only specially licensed LWRs can cope with MOX fuel; for increased Pu loadings (up to 100%), special reactor designs (e.g., ABB80+) are required; a combination of these reactor types could allow Pu inventory stabilization. Long-term waste radiotoxicity can be effectively reduced only if transuranics are 'incinerated' through fission with very hard neutron spectra. New reactor concepts (dedicated fast reactors, Accelerator Driven Systems (ADS), fusion/fission hybrid reactors) have been proposed as transmuters/incinerators. Significant Pu+MAs incineration rates can be achieved in symbiotic scenarios: LWR-MOX and dedicated fast reactors; fast neutron spectrum ADS mainly for MA incineration; very high thermal flux ADS concepts could also provide a significant transuranics

  6. Nuclear waste vs. democracy

    International Nuclear Information System (INIS)

    Treichel, J.

    1999-01-01

    In the United States the storage and disposal of high-level nuclear waste is a highly contentious issue because under current plans the public is subjected to unaccepted, involuntary risks. The proposed federal policy includes the forced siting of a repository and interim storage facilities in Nevada, and the transport of waste across the entire nation through large cities and within 2 mile of over 50 million people. At its destination in Nevada, the residents would face coexistence with a facility housing highly radioactive wastes that remain dangerous for many thousands of years. Scientific predictions about the performance and safety of these facilities is highly uncertain and the people foresee possibly catastrophic threats to their health, safety and economic well-being for generations to come. The public sees this currently proposed plan as one that seeks to maximise the profits of the commercial nuclear industry through imposing risk and sacrifice to communities who reap no benefit. And there is no evidence that this plan is actually a solution to the problem. The American public has never had the opportunity to participate in the nuclear waste debate and government plans are presented to people as being necessary and inevitable. To allow democracy into the decisions could be costly to the nuclear industry and it might thwart the government program, but that is the nature of democracy. If the utilities are established to provide a public service, and the government is founded on the principle of public representation, then the nuclear waste debate must conform to those requirements. What we see in this case is a continuing change of rule and law to accommodate a corporate power and the subrogation of national principle. The result of this situation has been that the public exercises its only option - which is obstructing the federal plan. Because the odds are so heavily stacked in favour of government and industry and average citizens have so little access

  7. Nuclear waste

    International Nuclear Information System (INIS)

    1992-08-01

    In September 1989, a New York commission charged with choosing a site for a low-level radioactive waste disposal facility announced its intent to conduct limited investigations at five potential sites. In this paper the authors review the commission's site selection process. After discussions with your office, the authors agreed to determine if the commission's consideration and selection of the Taylor North site was consistent with its prescribed procedures for considering offered sites. The authors also agreed to identify technical and other issues that need to be addressed before the final site evaluation and the selection steps can be completed

  8. Nuclear waste management

    International Nuclear Information System (INIS)

    1982-12-01

    The subject is discussed, with special reference to the UK, under the headings: radiation; origins of the waste (mainly from nuclear power programme; gas, liquid, solid; various levels of activity); dealing with waste (methods of processing, storage, disposal); high-active waste (storage, vitrification, study of means of eventual disposal); waste management (UK organisation to manage low and intermediate level waste). (U.K.)

  9. Nuclear waste

    International Nuclear Information System (INIS)

    England-Joseph, J.

    1991-03-01

    This paper discusses the Department of Energy's (DOE) procedures for annually assessing the adequacy of the fee that utilities pay for disposal of spent (used) nuclear fuel. In a June 1990 report, it was recommended, among other things, that the Congress authorize DOE to automatically adjust the fee each year on the basis of an inflation index. At that time, DOE also favored fee indexing; however, it subsequently reversed its position. Because of this change, it is now believe that Congress should require DOE to index the fee to the rate of inflation

  10. The future of the nuclear option

    International Nuclear Information System (INIS)

    Frost, B.R.T.

    1992-01-01

    This paper reports on the future of the nuclear option. No nuclear power reactors have been ordered in the U.S.A. since 1975, but the number of operating reactors has increased to the 115 operating today. The demand for electric power continues to grow. At this time, concern over the environmental effects of fossil fuels has grown; global warming and acid rain effects are major determinants of energy policy. In these circumstances nuclear power may be the only viable option to meet the growing demand for electricity. In the past decade the nuclear power industry has addressed its major critics by standardizing designs, improving operator training, and developing safe methods of disposing of waste products. Fast breeder reactors have taken a new lease on life through the American Integral Fast Reactor (IFR) design which is inherently safe, proliferation resistant, and helps the waste-disposal problem. It will probably not be commercially available until well into the next century. The extension of reactor life raises questions of long-term thermal and radiation effects

  11. Mixed Waste Management Options: 1995 Update. National Low-Level Waste Management Program

    Energy Technology Data Exchange (ETDEWEB)

    Kirner, N.; Kelly, J.; Faison, G.; Johnson, D. [Foster Wheeler Environmental Corp. (United States)

    1995-05-01

    In the original mixed Waste Management Options (DOE/LLW-134) issued in December 1991, the question was posed, ``Can mixed waste be managed out of existence?`` That study found that most, but not all, of the Nation`s mixed waste can theoretically be managed out of existence. Four years later, the Nation is still faced with a lack of disposal options for commercially generated mixed waste. However, since publication of the original Mixed Waste Management Options report in 1991, limited disposal capacity and new technologies to treat mixed waste have become available. A more detailed estimate of the Nation`s mixed waste also became available when the US Environmental Protection Agency (EPA) and the US Nuclear Regulatory Commission (NRC) published their comprehensive assessment, titled National Profile on Commercially Generated Low-Level Radioactive Mixed Waste (National Profile). These advancements in our knowledge about mixed waste inventories and generation, coupled with greater treatment and disposal options, lead to a more applied question posed for this updated report: ``Which mixed waste has no treatment option?`` Beyond estimating the volume of mixed waste requiring jointly regulated disposal, this report also provides a general background on the Atomic Energy Act (AEA) and the Resource Conservation and Recovery Act (RCRA). It also presents a methodical approach for generators to use when deciding how to manage their mixed waste. The volume of mixed waste that may require land disposal in a jointly regulated facility each year was estimated through the application of this methodology.

  12. Mixed Waste Management Options: 1995 Update. National Low-Level Waste Management Program

    International Nuclear Information System (INIS)

    Kirner, N.; Kelly, J.; Faison, G.; Johnson, D.

    1995-05-01

    In the original mixed Waste Management Options (DOE/LLW-134) issued in December 1991, the question was posed, ''Can mixed waste be managed out of existence?'' That study found that most, but not all, of the Nation's mixed waste can theoretically be managed out of existence. Four years later, the Nation is still faced with a lack of disposal options for commercially generated mixed waste. However, since publication of the original Mixed Waste Management Options report in 1991, limited disposal capacity and new technologies to treat mixed waste have become available. A more detailed estimate of the Nation's mixed waste also became available when the US Environmental Protection Agency (EPA) and the US Nuclear Regulatory Commission (NRC) published their comprehensive assessment, titled National Profile on Commercially Generated Low-Level Radioactive Mixed Waste (National Profile). These advancements in our knowledge about mixed waste inventories and generation, coupled with greater treatment and disposal options, lead to a more applied question posed for this updated report: ''Which mixed waste has no treatment option?'' Beyond estimating the volume of mixed waste requiring jointly regulated disposal, this report also provides a general background on the Atomic Energy Act (AEA) and the Resource Conservation and Recovery Act (RCRA). It also presents a methodical approach for generators to use when deciding how to manage their mixed waste. The volume of mixed waste that may require land disposal in a jointly regulated facility each year was estimated through the application of this methodology

  13. Alternative disposal options for transuranic waste

    International Nuclear Information System (INIS)

    Loomis, G.G.

    1994-01-01

    Three alternative concepts are proposed for the final disposal of stored and retrieved buried transuranic waste. These proposed options answer criticisms of the existing U.S. Department of Energy strategy of directly disposing of stored transuranic waste in deep, geological salt formations at the Waste Isolation Pilot Plant (WIPP) in Carlsbad, New Mexico. The first option involves enhanced stabilization of stored waste by thermal treatment followed by convoy transportation and internment in the existing WIPP facility. This concept could also be extended to retrieved buried waste with proper permitting. The second option involves in-state, in situ internment using an encapsulating lens around the waste. This concept applies only to previously buried transuranic waste. The third option involves sending stored and retrieved waste to the Nevada Test Site and configuring the waste around a thermonuclear device from the U.S. or Russian arsenal in a specially designed underground chamber. The thermonuclear explosion would transmute plutonium and disassociate hazardous materials while entombing the waste in a national sacrifice area

  14. Sustainability Features of Nuclear Fuel Cycle Options

    Directory of Open Access Journals (Sweden)

    Stefano Passerini

    2012-09-01

    Full Text Available The nuclear fuel cycle is the series of stages that nuclear fuel materials go through in a cradle to grave framework. The Once Through Cycle (OTC is the current fuel cycle implemented in the United States; in which an appropriate form of the fuel is irradiated through a nuclear reactor only once before it is disposed of as waste. The discharged fuel contains materials that can be suitable for use as fuel. Thus, different types of fuel recycling technologies may be introduced in order to more fully utilize the energy potential of the fuel, or reduce the environmental impacts and proliferation concerns about the discarded fuel materials. Nuclear fuel cycle systems analysis is applied in this paper to attain a better understanding of the strengths and weaknesses of fuel cycle alternatives. Through the use of the nuclear fuel cycle analysis code CAFCA (Code for Advanced Fuel Cycle Analysis, the impact of a number of recycling technologies and the associated fuel cycle options is explored in the context of the U.S. energy scenario over 100 years. Particular focus is given to the quantification of Uranium utilization, the amount of Transuranic Material (TRU generated and the economics of the different options compared to the base-line case, the OTC option. It is concluded that LWRs and the OTC are likely to dominate the nuclear energy supply system for the period considered due to limitations on availability of TRU to initiate recycling technologies. While the introduction of U-235 initiated fast reactors can accelerate their penetration of the nuclear energy system, their higher capital cost may lead to continued preference for the LWR-OTC cycle.

  15. Japanese Nuclear Waste Avatars

    International Nuclear Information System (INIS)

    Wynn Kirby, Peter; Stier, Daniel

    2016-01-01

    Japan's cataclysmic 2011 tsunami has become a vast, unwanted experiment in waste management. The seismic event and resulting Fukushima Daiichi radiation crisis created an awkwardly fortuitous rupture in Japanese nuclear practice that exposed the lax and problematic management of nuclear waste in this country to broader scrutiny, as well as distortions in its very conception. This article looks at the full spectrum of nuclear waste in post-tsunami Japan, from spent fuel rods to contorted reactor containment, and the ways that nuclear waste mirrors or diverges from more quotidian waste practices in Japanese culture. Significantly, the Fukushima Daiichi plant itself and its erstwhile banal surroundings have themselves transmuted into an unwieldy form of nuclear waste. The immense challenges of the Fukushima Daiichi site have stimulated a series of on-the-fly innovations that furnish perspective on more everyday nuclear waste practices in the industry. While some HLW can be reprocessed for limited use in today's reactors, it cannot be ignored that much of Japan's nuclear waste is simply converted into other forms of waste. In a society that has long been fixated on segregating filth, maintaining (imagined) purity, and managing proximity to pollution, the specter of nuclear waste looms over contemporary Japan and its ongoing debates over resources, risk, and Japanese nuclear identity itself

  16. Assessment of waste management options in the oil and gas industry in Ghana using nuclear analytical techniques

    International Nuclear Information System (INIS)

    Ahialey, W. K.

    2013-07-01

    Ghana's oil find is growing steadily as more discoveries are being made. Oil and gas exploration and production coupled with their related activities produce wastes. These wastes could be put into three primary categories such as produced water, drilling cuttings and associated wastes (any other waste related with the exploration, development and production of crude oil or natural gas). These wastes may contain varying amount of contaminants such as heavy metals, suspended solid particles and radioactive materials such as Ra-226 or Rn-228, product of U-238 decay that occur in some geologic formations and sediments. The main objective of this study is to assess the waste management practices in the oil and gas industry in Ghana by qualification and quantification of waste generated during exploration and production, examining the system put in place by oil and gas companies to manage these wastes and also determine some basic contaminants in some of these wastes brought to shore for management. Waste samples were taken from Tema Oil Refinery (TOR) and Zeal Environmental Technology Limited at Takoradi. The samples were analyzed by Neutron Activation Analysis (NAA) and Flame Atomic Absorption Spectrometry (FAAS) analytical methods to determine heavy metals (Pb, Cd, Cr, Hg, As, Ag, Ba, Se) in the oily waste water, oil based mud, block and ash samples. The results showed that the levels of heavy metals were below the EPA permissible limit for discharge into the natural drainage except the level of Pb in the mud samples taken from Zeal before treatment. The levels ranged from 3.99mg/l to 7.44mgl. Even though these levels were above 0.1mg/l discharge standard limit, there was no cause for alarm because the levels dropped below the EPA limit after treatment. Furthermore, the quantity of general garbage deposited in the landfill at Takoradi be Zeal Environmental Technology Limited from 2011 to 2012 increased from 497m 3 to 1,314.29m 3 respectively. (author)

  17. Whither nuclear waste disposal?

    International Nuclear Information System (INIS)

    Cotton, T.A.

    1990-01-01

    With respect to the argument that geologic disposal has failed, I do not believe that the evidence is yet sufficient to support that conclusion. It is certainly true that the repository program is not progressing as hoped when the Nuclear Waste Policy Act of 1982 established a 1998 deadline for initial operation of the first repository. The Department of Energy (DOE) now expects the repository to be available by 2010, and tat date depends upon a finding that the Yucca Mountain site - the only site that DOE is allowed by law to evaluate - is in fact suitable for use. Furthermore, scientific evaluation of the site to determine its suitability is stopped pending resolution of two lawsuits. However, I believe it is premature to conclude that the legal obstacles are insuperable, since DOE just won the first of the two lawsuits, and chances are good it will win the second. The concept of geologic disposal is still broadly supported. A recent report by the Board on Radioactive Waste Management of the National Research Council noted that 'There is a worldwide scientific consensus that deep geological disposal, the approach being followed in the United States, is the best option for disposing of high-level radioactive waste'. The U.S. Nuclear Regulatory Commission (USNRC) recently implicitly endorsed this view in adopting an updated Waste Confidence position that found confidence that a repository could be available in the first quarter of the next century - sufficient time to allow for rejection of Yucca Mountain and evaluation of a new site

  18. Whither nuclear waste disposal?

    Energy Technology Data Exchange (ETDEWEB)

    Cotton, T A [JK Research Associates, Silver Spring, MD (United States)

    1990-07-01

    With respect to the argument that geologic disposal has failed, I do not believe that the evidence is yet sufficient to support that conclusion. It is certainly true that the repository program is not progressing as hoped when the Nuclear Waste Policy Act of 1982 established a 1998 deadline for initial operation of the first repository. The Department of Energy (DOE) now expects the repository to be available by 2010, and tat date depends upon a finding that the Yucca Mountain site - the only site that DOE is allowed by law to evaluate - is in fact suitable for use. Furthermore, scientific evaluation of the site to determine its suitability is stopped pending resolution of two lawsuits. However, I believe it is premature to conclude that the legal obstacles are insuperable, since DOE just won the first of the two lawsuits, and chances are good it will win the second. The concept of geologic disposal is still broadly supported. A recent report by the Board on Radioactive Waste Management of the National Research Council noted that 'There is a worldwide scientific consensus that deep geological disposal, the approach being followed in the United States, is the best option for disposing of high-level radioactive waste'. The U.S. Nuclear Regulatory Commission (USNRC) recently implicitly endorsed this view in adopting an updated Waste Confidence position that found confidence that a repository could be available in the first quarter of the next century - sufficient time to allow for rejection of Yucca Mountain and evaluation of a new site.

  19. Radioactivity and nuclear waste

    International Nuclear Information System (INIS)

    Saas, A.

    1996-01-01

    Radioactive wastes generated by nuclear activities must be reprocessed using specific treatments before packaging, storage and disposal. This digest paper gives first a classification of radioactive wastes according to their radionuclides content activity and half-life, and the amount of wastes from the different categories generated each year by the different industries. Then, the radiotoxicity of nuclear wastes is evaluated according to the reprocessing treatments used and to their environmental management (surface storage or burial). (J.S.)

  20. Low-level radioactive waste management options

    International Nuclear Information System (INIS)

    Schmalz, R.F.

    1989-01-01

    This paper discusses the non-technical problems associated with the social and political obstacles to the secure disposal of low level radioactive waste. The author reviews thirty years' experience managing non-military wastes. The merits of available options are considered

  1. Nuclear waste management

    International Nuclear Information System (INIS)

    Rodger, W.A.

    1985-01-01

    Most of our activities have always produced waste products of one sort or another. Huxley gives a humorous account of wastes throughout antiquity. So it should come as no surprise that some radioactive materials end up as waste products requiring management and disposal. Public perception of nuclear waste hazards places them much higher on the ''worry scale'' than is justified by the actual hazard involved. While the public perception of these hazards appears to revolve mostly around high-level wastes, there are several other categories of wastes that must also be controlled and managed. The major sources of radioactive wastes are discussed

  2. Minor actinide transmutation - a waste management option

    International Nuclear Information System (INIS)

    Koch, L.

    1986-01-01

    The incentive to recycle minor actinides results from the reduction of the long-term α-radiological risk rather than from a better utilization of the uranium resources. Nevertheless, the gain in generated electricity by minor actinide transmutation in a fast breeder reactor can compensate for the costs of their recovery and make-up into fuel elements. Different recycling options of minor actinides are discussed: transmutation in liquid metal fast breeder reactors (LMFBRs) is possible as long as plutonium is not recycled in light water reactors (LWRs). In this case a minor actinide burner with fuel of different composition has to be introduced. The development of appropriate minor actinide fuels and their properties are described. The irradiation experiments underway or planned are summarized. A review of minor actinide partitioning from the PUREX waste stream is given. From the present constraints of LMFBR technology a reduction of the long-term α-radiological risk by a factor of 200 is deduced relative to that from the direct storage of spent LWR fuel. Though the present accumulation of minor actinides is low, nuclear transmutation may be needed when nuclear energy production has grown. (orig.)

  3. Nuclear waste disposal

    International Nuclear Information System (INIS)

    Lindblom, U.; Gnirk, P.

    1982-01-01

    The subject is discussed under the following headings: the form and final disposal of nuclear wastes; the natural rock and groundwater; the disturbed rock and the groundwater; long-term behavior of the rock and the groundwater; nuclear waste leakage into the groundwater; what does it all mean. (U.K.)

  4. Nuclear waste management

    International Nuclear Information System (INIS)

    Wyatt, A.

    1978-01-01

    The Canadian Nuclear Association has specific views on the following aspects of waste management: a) public information and public participation programs should be encouraged; b) positive political leadership is essential; c) a national plan and policy are necessary; d) all hazardous materials should receive the same care as radioactive wastes; e) power plant construction need not be restricted as long as there is a commitment to nuclear waste management; f) R and D should be funded consistently for nuclear waste management and ancillary topics like alternative fuel cycles and reprocessing. (E.C.B.)

  5. Nuclear waste disposal

    International Nuclear Information System (INIS)

    Schueller, W.

    1976-01-01

    The article cites and summarizes the papers on the topics: economic and ecological importance of waste management, reprocessing of nuclear fuel and recycling of uranium and plutonium, waste management and final storage, transports and organizational aspects of waste management, presented at this symposium. (HR/AK) [de

  6. Process arrangement options for Defense waste immobilization

    International Nuclear Information System (INIS)

    1980-02-01

    Current plans are to immobilize the SRP high-level liquid wastes in a high integrity form. Borosilicate glass was selected in 1977 as the reference waste form and a mjaor effort is currently underway to develop the required technology. A large new facility, referred to as the Defense Waste Processing Facility (DWPF) is being designed to carry out this mission, with project authorization targeted for 1982 and plant startup in 1989. However, a number of other process arrangements or manufacturing strategies, including staging the major elements of the project or using existing SRP facilities for some functions, have been suggested in lieu of building the reference DWPF. This study assesses these various options and compares them on a technical and cost basis with the DWPF. Eleven different manufacturing options for SRP defense waste solidification were examined in detail. These cases are: (1) vitrification of acid waste at current generation rate; (2) vitrification of current rate acid waste and caustic sludge; (3 and 4) vitrification of the sludge portion of neutralized waste; (5) decontamination of salt cake and storage of concentrated cesium and strontium for later immobilization; (6) processing waste in a facility with lower capacity than the DWPF; (7) processing waste in a combination of existing and new facilities; (8) waste immobilization in H Canyon; (9) vitrification of both sludge and salt; (10) DWPF with onsite storage; (11) deferred authorization of DWPF

  7. Nuclear waste landscapes

    International Nuclear Information System (INIS)

    Solomon, B.D.; Cameron, D.M.

    1990-01-01

    In this paper the authors explore the time dimension in nuclear waste disposal, with the hope of untangling future land use issues for a full range of radioactive waste facilities. The longevity and hazards presented by nuclear reactor irradiated (spent) fuel and liquid reprocessing waste are well known. Final repositories for these highly radioactive wastes, to be opened early in the 21st Century, are to be located deep underground in rural locations throughout the developed world. Safety concerns are addressed by engineered and geological barriers containing the waste containers, as well as through geographic isolation from heavily populated areas. Yet nuclear power plants (as well as other applications of atomic energy) produce an abundance of other types of radioactive wastes. These materials are generally known as low level wastes (LLW) in the United States, though their level of longevity and radioactivity can vary dramatically

  8. Waste disposal options report. Volume 2

    International Nuclear Information System (INIS)

    Russell, N.E.; McDonald, T.G.; Banaee, J.; Barnes, C.M.; Fish, L.W.; Losinski, S.J.; Peterson, H.K.; Sterbentz, J.W.; Wenzel, D.R.

    1998-02-01

    Volume 2 contains the following topical sections: estimates of feed and waste volumes, compositions, and properties; evaluation of radionuclide inventory for Zr calcine; evaluation of radionuclide inventory for Al calcine; determination of k eff for high level waste canisters in various configurations; review of ceramic silicone foam for radioactive waste disposal; epoxides for low-level radioactive waste disposal; evaluation of several neutralization cases in processing calcine and sodium-bearing waste; background information for EFEs, dose rates, watts/canister, and PE-curies; waste disposal options assumptions; update of radiation field definition and thermal generation rates for calcine process packages of various geometries-HKP-26-97; and standard criteria of candidate repositories and environmental regulations for the treatment and disposal of ICPP radioactive mixed wastes

  9. Waste disposal options report. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    Russell, N.E.; McDonald, T.G.; Banaee, J.; Barnes, C.M.; Fish, L.W.; Losinski, S.J.; Peterson, H.K.; Sterbentz, J.W.; Wenzel, D.R.

    1998-02-01

    Volume 2 contains the following topical sections: estimates of feed and waste volumes, compositions, and properties; evaluation of radionuclide inventory for Zr calcine; evaluation of radionuclide inventory for Al calcine; determination of k{sub eff} for high level waste canisters in various configurations; review of ceramic silicone foam for radioactive waste disposal; epoxides for low-level radioactive waste disposal; evaluation of several neutralization cases in processing calcine and sodium-bearing waste; background information for EFEs, dose rates, watts/canister, and PE-curies; waste disposal options assumptions; update of radiation field definition and thermal generation rates for calcine process packages of various geometries-HKP-26-97; and standard criteria of candidate repositories and environmental regulations for the treatment and disposal of ICPP radioactive mixed wastes.

  10. Nuclear waste disposal: Gambling on Yucca Mountain

    International Nuclear Information System (INIS)

    Ginsburg, S.

    1995-01-01

    This document describes the historical aspects of nuclear energy ,nuclear weapons usage, and development of the nuclear bureaucracy in the United States, and discusses the selection and siting of Yucca Mountain, Nevada for a federal nuclear waste repository. Litigation regarding the site selection and resulting battles in the political arena and in the Nevada State Legislature are also presented. Alternative radioactive waste disposal options, risk assessments of the Yucca Mountain site, and logistics regarding the transportation and storage of nuclear waste are also presented. This document also contains an extensive bibliography

  11. Vitrified waste option study report

    International Nuclear Information System (INIS)

    Lopez, D.A.; Kimmitt, R.R.

    1998-02-01

    A open-quotes Settlement Agreementclose quotes between the Department of Energy and the State of Idaho mandates that all radioactive high-level waste (HLW) now stored at the Idaho Chemical Processing Plant (ICPP) will be treated so that it is ready to be moved out of Idaho for disposal by a target date of 2035. This report investigates vitrification treatment of all ICPP calcine, including the existing and future HLW calcine resulting from calcining liquid Sodium-Bearing Waste (SBW). Currently, the SBW is stored in the tank farm at the ICPP. Vitrification of these wastes is an acceptable treatment method for complying with the Settlement Agreement. This method involves vitrifying the calcined waste and casting the vitrified mass into stainless steel canisters that will be ready to be moved out of the Idaho for disposal by 2035. These canisters will be stored at the Idaho National Engineering and Environmental Laboratory (INEEL) until they are sent to a HLW national repository. The operating period for vitrification treatment will be from 2013 through 2032; all HLW will be treated and in storage by the end of 2032

  12. Vitrified waste option study report

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, D.A.; Kimmitt, R.R.

    1998-02-01

    A {open_quotes}Settlement Agreement{close_quotes} between the Department of Energy and the State of Idaho mandates that all radioactive high-level waste (HLW) now stored at the Idaho Chemical Processing Plant (ICPP) will be treated so that it is ready to be moved out of Idaho for disposal by a target date of 2035. This report investigates vitrification treatment of all ICPP calcine, including the existing and future HLW calcine resulting from calcining liquid Sodium-Bearing Waste (SBW). Currently, the SBW is stored in the tank farm at the ICPP. Vitrification of these wastes is an acceptable treatment method for complying with the Settlement Agreement. This method involves vitrifying the calcined waste and casting the vitrified mass into stainless steel canisters that will be ready to be moved out of the Idaho for disposal by 2035. These canisters will be stored at the Idaho National Engineering and Environmental Laboratory (INEEL) until they are sent to a HLW national repository. The operating period for vitrification treatment will be from 2013 through 2032; all HLW will be treated and in storage by the end of 2032.

  13. Development of integrated waste management options for irradiated graphite

    Directory of Open Access Journals (Sweden)

    Alan Wareing

    2017-08-01

    Full Text Available The European Treatment and Disposal of Irradiated Graphite and other Carbonaceous Waste project sought to develop best practices in the retrieval, treatment, and disposal of irradiated graphite including other irradiated carbonaceous waste such as structural material made of graphite, nongraphitized carbon bricks, and fuel coatings. Emphasis was given on legacy irradiated graphite, as this represents a significant inventory in respective national waste management programs. This paper provides an overview of the characteristics of graphite irradiated during its use, primarily as a moderator material, within nuclear reactors. It describes the potential techniques applicable to the retrieval, treatment, recycling/reuse, and disposal of these graphite wastes. Considering the lifecycle of nuclear graphite, from manufacture to final disposal, a number of waste management options have been developed. These options consider the techniques and technologies required to address each stage of the lifecycle, such as segregation, treatment, recycle, and ultimate disposal in a radioactive waste repository, providing a toolbox to aid operators and regulators to determine the most appropriate management strategy. It is noted that national waste management programs currently have, or are in the process of developing, respective approaches to irradiated graphite management. The output of the Treatment and Disposal of Irradiated Graphite and other Carbonaceous Waste project is intended to aid these considerations, rather than dictate them.

  14. Development of integrated waste management options for irradiated graphite

    Energy Technology Data Exchange (ETDEWEB)

    Wareing, Alan; Abrahamsen-Mills, Liam; Fowler, Linda; Jarvis, Richard; Banford, Anthony William [National Nuclear Laboratory, Warrington (United Kingdom); Grave, Michael [Doosan Babcock, Gateshead (United Kingdom); Metcalfe, Martin [National Nuclear Laboratory, Gloucestershire (United Kingdom); Norris, Simon [Radioactive Waste Management Limited, Oxon (United Kingdom)

    2017-08-15

    The European Treatment and Disposal of Irradiated Graphite and other Carbonaceous Waste project sought to develop best practices in the retrieval, treatment, and disposal of irradiated graphite including other irradiated carbonaceous waste such as structural material made of graphite, nongraphitized carbon bricks, and fuel coatings. Emphasis was given on legacy irradiated graphite, as this represents a significant inventory in respective national waste management programs. This paper provides an overview of the characteristics of graphite irradiated during its use, primarily as a moderator material, within nuclear reactors. It describes the potential techniques applicable to the retrieval, treatment, recycling/reuse, and disposal of these graphite wastes. Considering the lifecycle of nuclear graphite, from manufacture to final disposal, a number of waste management options have been developed. These options consider the techniques and technologies required to address each stage of the lifecycle, such as segregation, treatment, recycle, and ultimate disposal in a radioactive waste repository, providing a toolbox to aid operators and regulators to determine the most appropriate management strategy. It is noted that national waste management programs currently have, or are in the process of developing, respective approaches to irradiated graphite management. The output of the Treatment and Disposal of Irradiated Graphite and other Carbonaceous Waste project is intended to aid these considerations, rather than dictate them.

  15. Impact of Nuclear Energy Futures on Advanced Fuel Cycle Options

    International Nuclear Information System (INIS)

    Dixon, B.W.; Piet, S.J.

    2004-01-01

    The Nuclear Waste Policy Act requires the Secretary of Energy to inform Congress before 2010 on the need for a second geologic repository for spent nuclear fuel. By that time, the spent fuel discharged from current commercial reactors will exceed the statutory limit of the first repository. There are several approaches to eliminate the need for another repository in this century. This paper presents a high-level analysis of these spent fuel management options in the context of a full range of possible nuclear energy futures. The analysis indicates the best option to implement varies depending on the nuclear energy future selected

  16. Levelized cost-risk reduction prioritization of waste disposal options

    International Nuclear Information System (INIS)

    Wilkinson, V.K.; Young, J.M.

    1992-01-01

    The prioritization of solid waste disposal options in terms of reduced risk to workers, the public, and the environment has recently generated considerable governmental and public interest. In this paper we address the development of a methodology to establish priorities for waste disposal options, such as incineration, landfills, long-term storage, waste minimization, etc. The study is one result of an overall project to develop methodologies for Probabilistic Risk Assessments (PRAs) of non-reactor nuclear facilities for the US Department of Energy. Option preferences are based on a levelized cost-risk reduction analysis. Option rankings are developed as functions of disposal option cost and timing, relative long- and short-term risks, and possible accident scenarios. We examine the annual costs and risks for each option over a large number of years. Risk, in this paper, is defined in terms of annual fatalities (both prompt and long-term) and environmental restoration costs that might result from either an accidental release or long-term exposure to both plant workers and the public near the site or facility. We use event timing to weigh both costs and risks; near-term costs and risks are discounted less than future expenditures and fatalities. This technique levels the timing of cash flows and benefits by converting future costs and benefits to present value costs and benefits. We give an example Levelized Cost-Benefit Analysis of incinerator location options to demonstrate the methodology and required data

  17. Options contracts in the nuclear fuel industry

    International Nuclear Information System (INIS)

    Fuller, D.M.

    1995-01-01

    This article discusses options trading in the nuclear fuels industry. Although there now exists no formal options market in the nuclear industry, flexibilities, or embedded options, are actually quite common in the long-term supply contracts. The value of these flexibilities can be estimated by applying the methods used to evaluate options. The method used is the Black-Scholes Model, and it is applied to a number of examples

  18. Nuclear waste issue

    International Nuclear Information System (INIS)

    Ryhanen, V.

    2000-01-01

    A prerequisite for future use of nuclear energy in electricity production is safe management of the radioactive wastes generated by nuclear power industry. A number of facilities have been constructed for different stages of nuclear waste management around the world, for example for conditioning of different kind of process wastes and for intermediate storage of spent nuclear fuel. Difficulties have often been encountered particularly when trying to advance plans for final stage of waste management, which is permanent disposal in stable geological formations. The main problems have not been technical, but poor public acceptance and lack of necessary political decisions have delayed the progress in many countries. However, final disposal facilities are already in operation for low- and medium-level nuclear wastes. The most challenging task is the development of final disposal solutions for long-lived high-level wastes (spent fuel or high-level reprocessing waste). The implementation of deep geological repositories for these wastes requires persistent programmes for technology development, siting and safety assessments, as well as for building public confidence in long-term safety of the planned repositories. Now, a few countries are proceeding towards siting of these facilities, and the first high-level waste repositories are expected to be commissioned in the years 2010 - 2020. (author)

  19. America's nuclear waste backlog

    International Nuclear Information System (INIS)

    Benenson, R.

    1981-01-01

    This report discusses three topics: concern and controversy relating to nuclear waste; high-level waste storage and politics of waste disposal. The most pressing waste disposal problem concerns spent fuel assemblies from commercial nuclear power plants. It was expected that commercial spent fuel would be sent to commercial reprocessing plants. The feasibility of commercial reprocessing in the United States is contingent on the expansion of the nuclear power industry. The current high-level liquid waste inventory is about 77 million gallons. These are stored at Richland, Washington; Aiken, South Carolina; and Idaho Falls, Idaho. The only commercial high-level wastes ever produced are stored at the defunct reprocessing facility at West Valley, New York. A high-level waste repository must be capable of isolating wastes that will remain dangerous for thousands of years. Salt has long been considered the most suitable medium for high-level and transuranic waste disposal. The timetable for opening a deep geological repository is one of the issues that will have to be dealt with by Congress. The 97th Congress appears ready to act on high-level nuclear waste legislation. Even opponents of nuclear expansion admit the necessity of legislation. Even if Congress gets its act together, it does not mean that the nuclear waste issue is gone. There are still unknowns - future of reprocessing, the needs and demands of the military; the health of the nuclear power industry; the objections of residents in potential site areas; the possibility of a state veto, and the unsolved technological problems in geologic site selection

  20. Nuclear waste disposal

    International Nuclear Information System (INIS)

    Hare, Tony.

    1990-01-01

    The Save Our Earth series has been designed to appeal to the inquiring minds of ''planet-friendly'' young readers. There is now a greater awareness of environmental issues and an increasing concern for a world no longer able to tolerate the onslaught of pollution, the depletion of natural resources and the effects of toxic chemicals. Each book approaches a specific topic in a way that is exciting and thought-provoking, presenting the facts in a style that is concise and appropriate. The series aims to demonstrate how various environmental subjects relate to our lives, and encourages the reader to accept not only responsibility for the planet, but also for its rescue and restoration. This volume, on nuclear waste disposal, explains how nuclear energy is harnessed in a nuclear reactor, what radioactive waste is, what radioactivity is and its effects, and the problems and possible solutions of disposing of nuclear waste. An awareness of the dangers of nuclear waste is sought. (author)

  1. Politics of nuclear waste

    International Nuclear Information System (INIS)

    Colglazier, E.W. Jr.

    1982-01-01

    In November of 1979, the Program in Science, Technology and Humanism and the Energy Committee of the Aspen Institute organized a conference on resolving the social, political, and institutional conflicts over the permanent siting of radioactive wastes. This book was written as a result of this conference. The chapters provide a comprehensive and up-to-date overview of the governance issues connected with radioactive waste management as well as a sampling of the diverse views of the interested parties. Chapter 1 looks in depth of radioactive waste management in the United States, with special emphasis on the events of the Carter Administration as well as on the issues with which the Reagen administration must deal. Chapter 2 compares waste management policies and programs among the industralized countries. Chapter 3 examines the factional controversies in the last administration and Congress over nuclear waste issues. Chapter 4 examines the complex legal questions involved in the federal-state conflicts over nuclear waste management. Chapter 5 examines the concept of consultation and concurrence from the perspectives of a host state that is a candidate for a repository and an interested state that has special concerns regarding the demonstration of nuclear waste disposal technology. Chapter 6 examines US and European perspectives concerning public participation in nuclear waste management. Chapter 7 discusses propaganda in the issues. The epilogue attempts to assess the prospects for consensus in the United States on national policies for radioactive waste management. All of the chapter in this book should be interpreted as personal assessments

  2. Politics of nuclear waste

    Energy Technology Data Exchange (ETDEWEB)

    Colglazier, E.W. Jr. (eds.)

    1982-01-01

    In November of 1979, the Program in Science, Technology and Humanism and the Energy Committee of the Aspen Institute organized a conference on resolving the social, political, and institutional conflicts over the permanent siting of radioactive wastes. This book was written as a result of this conference. The chapters provide a comprehensive and up-to-date overview of the governance issues connected with radioactive waste management as well as a sampling of the diverse views of the interested parties. Chapter 1 looks in depth of radioactive waste management in the United States, with special emphasis on the events of the Carter Administration as well as on the issues with which the Reagen administration must deal. Chapter 2 compares waste management policies and programs among the industralized countries. Chapter 3 examines the factional controversies in the last administration and Congress over nuclear waste issues. Chapter 4 examines the complex legal questions involved in the federal-state conflicts over nuclear waste management. Chapter 5 examines the concept of consultation and concurrence from the perspectives of a host state that is a candidate for a repository and an interested state that has special concerns regarding the demonstration of nuclear waste disposal technology. Chapter 6 examines US and European perspectives concerning public participation in nuclear waste management. Chapter 7 discusses propaganda in the issues. The epilogue attempts to assess the prospects for consensus in the United States on national policies for radioactive waste management. All of the chapter in this book should be interpreted as personal assessments. (DP)

  3. French programs for advanced waste management options

    Energy Technology Data Exchange (ETDEWEB)

    Salvatores, M [CEA-DRN (France); Schapira, J P [CNRS-IN2P3 (France); Mouney, H [EDF-DE (France)

    1997-11-01

    Several organisms (CEA, CNRS, EdF, etc.) are cooperating in France on Accelerator-Driven Systems (ADS). The major motivation is the investigation of innovative options for the radioactive waste management. The paper describes the ongoing activities and future directions of this cooperative effort in the field of ADS. 11 refs, 3 figs.

  4. Transmuting nuclear waste

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    With the problems of disposing of nuclear waste material increasingly the cause for widespread concern, attention is turning to possible new techniques for handling discarded radioactive material and even putting it to good use

  5. Nuclear fuel waste disposal

    International Nuclear Information System (INIS)

    Merrett, G.J.; Gillespie, P.A.

    1983-07-01

    This report discusses events and processes that could adversely affect the long-term stability of a nuclear fuel waste disposal vault or the regions of the geosphere and the biosphere to which radionuclides might migrate from such a vault

  6. Nuclear Waste and Ethics

    Energy Technology Data Exchange (ETDEWEB)

    Damveld, Herman [Groningen (Netherlands)

    2003-10-01

    In the past years in almost all conferences on storage of nuclear waste, ethics has been considered as an important theme. But what is ethics? We will first give a sketch of this branch of philosophy. We will then give a short explanation of the three principal ethical theories. In the discussion about storage of nuclear waste, the ethical theory of utilitarianism is often implicitly invoked. In this system future generations weigh less heavily than the present generation, so that people of the future are not considered as much as those now living. We reject this form of reasoning. The discussion about nuclear waste is also sometimes pursued from ethical points of departure such as equality and justice. But many loose ends remain in these arguments, which gives rise to the question of whether the production and storage of nuclear waste is responsible.

  7. Nuclear Waste and Ethics

    International Nuclear Information System (INIS)

    Damveld, Herman

    2003-01-01

    In the past years in almost all conferences on storage of nuclear waste, ethics has been considered as an important theme. But what is ethics? We will first give a sketch of this branch of philosophy. We will then give a short explanation of the three principal ethical theories. In the discussion about storage of nuclear waste, the ethical theory of utilitarianism is often implicitly invoked. In this system future generations weigh less heavily than the present generation, so that people of the future are not considered as much as those now living. We reject this form of reasoning. The discussion about nuclear waste is also sometimes pursued from ethical points of departure such as equality and justice. But many loose ends remain in these arguments, which gives rise to the question of whether the production and storage of nuclear waste is responsible

  8. Nuclear Waste Fund management

    International Nuclear Information System (INIS)

    Rosselli, R.

    1984-01-01

    The Nuclear Waste Policy Act of 1982 (NWPA) established two separate special bank accounts: the Nuclear Waste Fund (NWF) was established to finance all of the Federal Government activities associated with the disposal of High-Level Waste (HLW) or Spent Nuclear Fuel (SNF). The Interim Storage Fund (ISF) is the financial mechanism for the provision of Federal Interim Storage capacity, not to exceed 1900 metric tons of SNF at civilian power reactors. The management of these funds is discussed. Since the two funds are identical in features and the ISF has not yet been activated, the author's remarks are confined to the Nuclear Waste Fund. Three points discussed include legislative features, current status, and planned activities

  9. Transmuting nuclear waste

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1992-04-15

    With the problems of disposing of nuclear waste material increasingly the cause for widespread concern, attention is turning to possible new techniques for handling discarded radioactive material and even putting it to good use.

  10. Nuclear waste solutions

    Science.gov (United States)

    Walker, Darrel D.; Ebra, Martha A.

    1987-01-01

    High efficiency removal of technetium values from a nuclear waste stream is achieved by addition to the waste stream of a precipitant contributing tetraphenylphosphonium cation, such that a substantial portion of the technetium values are precipitated as an insoluble pertechnetate salt.

  11. Nuclear waste for NT

    International Nuclear Information System (INIS)

    Nelson, Brendan

    2005-01-01

    The Northern Territory may be powerless to block the dumping of low-level nuclear waste in the Territory under legislation introduced into Parliament by Minister for Education Science and Training, Dr Brendan Nelson, in October. Despite strong opposition to the dumping of nuclear waste in the NT, the Australian Government will be able to send waste to one of the three nominated Commonwealth-owned Defence sites within the NT under the Commonwealth Radioactive Waste Management Bill 2005 and the Commonwealth Radioactive Waste Management (Related Amendment) Bill 2005. The Bills veto recently drafted NT legislation designed to scuttle the plans. Low-level nuclear waste is stored at more than 100 sites around Australia, including hospitals, factories, universities and defence facilities. Medical isotopes produced at Lucas Heights and provided for medical procedures are the source of much of this waste, including some 16 cubic metres currently held at Darwin Hospital. Dr Nelson stressed that the Government would take all die necessary steps to comply with safety and regulatory precautions, including handling waste in line with relevant environmental, nuclear safety and proliferation safeguards

  12. High level nuclear wastes

    International Nuclear Information System (INIS)

    Lopez Perez, B.

    1987-01-01

    The transformations involved in the nuclear fuels during the burn-up at the power nuclear reactors for burn-up levels of 33.000 MWd/th are considered. Graphs and data on the radioactivity variation with the cooling time and heat power of the irradiated fuel are presented. Likewise, the cycle of the fuel in light water reactors is presented and the alternatives for the nuclear waste management are discussed. A brief description of the management of the spent fuel as a high level nuclear waste is shown, explaining the reprocessing and giving data about the fission products and their radioactivities, which must be considered on the vitrification processes. On the final storage of the nuclear waste into depth geological burials, both alternatives are coincident. The countries supporting the reprocessing are indicated and the Spanish programm defined in the Plan Energetico Nacional (PEN) is shortly reviewed. (author) 8 figs., 4 tabs

  13. Reasons for the nuclear power option

    International Nuclear Information System (INIS)

    Rotaru, I.; Glodeanu, F.; Mauna, T.

    1994-01-01

    Technical, economical and social reasons, strongly supporting the nuclear power option are reviewed. The history of Romanian nuclear power program is outlined with a particular focus on the Cernavoda Nuclear Power Plant project. Finally the prospective of nuclear power in Romania are assessed

  14. Cementitious waste option scoping study report

    International Nuclear Information System (INIS)

    Lee, A.E.; Taylor, D.D.

    1998-02-01

    A Settlement Agreement between the Department of Energy (DOE) and the State of Idaho mandates that all high-level radioactive waste (HLW) now stored at the Idaho Chemical Processing Plant (ICPP) on the Idaho National Engineering and Environmental Laboratory (INEEL) will be treated so that it is ready to be moved out of Idaho for disposal by a target date of 2035. This study investigates the nonseparations Cementitious Waste Option (CWO) as a means to achieve this goal. Under this option all liquid sodium-bearing waste (SBW) and existing HLW calcine would be recalcined with sucrose, grouted, canisterized, and interim stored as a mixed-HLW for eventual preparation and shipment off-Site for disposal. The CWO waste would be transported to a Greater Confinement Disposal Facility (GCDF) located in the southwestern desert of the US on the Nevada Test Site (NTS). All transport preparation, shipment, and disposal facility activities are beyond the scope of this study. CWO waste processing, packaging, and interim storage would occur over a 5-year period between 2013 and 2017. Waste transport and disposal would occur during the same time period

  15. Cementitious waste option scoping study report

    Energy Technology Data Exchange (ETDEWEB)

    Lee, A.E.; Taylor, D.D.

    1998-02-01

    A Settlement Agreement between the Department of Energy (DOE) and the State of Idaho mandates that all high-level radioactive waste (HLW) now stored at the Idaho Chemical Processing Plant (ICPP) on the Idaho National Engineering and Environmental Laboratory (INEEL) will be treated so that it is ready to be moved out of Idaho for disposal by a target date of 2035. This study investigates the nonseparations Cementitious Waste Option (CWO) as a means to achieve this goal. Under this option all liquid sodium-bearing waste (SBW) and existing HLW calcine would be recalcined with sucrose, grouted, canisterized, and interim stored as a mixed-HLW for eventual preparation and shipment off-Site for disposal. The CWO waste would be transported to a Greater Confinement Disposal Facility (GCDF) located in the southwestern desert of the US on the Nevada Test Site (NTS). All transport preparation, shipment, and disposal facility activities are beyond the scope of this study. CWO waste processing, packaging, and interim storage would occur over a 5-year period between 2013 and 2017. Waste transport and disposal would occur during the same time period.

  16. Nuclear waste: good news

    International Nuclear Information System (INIS)

    Gay, Michel

    2014-01-01

    The author states that the problem of nuclear wastes is solved. He states that 90 per cent of radioactive wastes are now permanently managed and that technical solutions for deep geological storage and for transmutation will soon solve the problem for the remaining 10 pc. He states that geological storage will be funded (it is included in electricity price). He denounces why these facts which he consider as good news, do not prevail. He proposes several documents in appendix: a text explaining the nuclear fuel cycle in France, and an extract of a report made by the national inventory of radioactive materials and wastes

  17. Nuclear Fuel Cycle Evaluation and Real Options

    Directory of Open Access Journals (Sweden)

    L. Havlíček

    2008-01-01

    Full Text Available The first part of this paper describes the nuclear fuel cycle. It is divided into three parts. The first part, called Front-End, covers all activities connected with fuel procurement and fabrication. The middle part of the cycle includes fuel reload design activities and the operation of the fuel in the reactor. Back-End comprises all activities ensuring safe separation of spent fuel and radioactive waste from the environment. The individual stages of the fuel cycle are strongly interrelated. Overall economic optimization is very difficult. Generally, NPV is used for an economic evaluation in the nuclear fuel cycle. However the high volatility of uranium prices in the Front-End, and the large uncertainty of both economic and technical parameters in the Back-End, make the use of NPV difficult. The real option method is able to evaluate the value added by flexibility of decision making by a company under conditions of uncertainty. The possibility of applying this method to the nuclear fuel cycle evaluation is studied. 

  18. Nuclear fuel waste disposal

    International Nuclear Information System (INIS)

    1982-01-01

    This film for a general audience deals with nuclear fuel waste management in Canada, where research is concentrating on land based geologic disposal of wastes rather than on reprocessing of fuel. The waste management programme is based on cooperation of the AECL, various universities and Ontario Hydro. Findings of research institutes in other countries are taken into account as well. The long-term effects of buried radioactive wastes on humans (ground water, food chain etc.) are carefully studied with the help of computer models. Animated sequences illustrate the behaviour of radionuclides and explain the idea of a multiple barrier system to minimize the danger of radiation hazards

  19. Nuclear waste management news

    International Nuclear Information System (INIS)

    Stoeber, H.

    1987-01-01

    In view of the fact that nuclear waste management is an important factor determining the future perspectives of the peaceful uses of nuclear energy, it seems suitable to offer those who are interested in this matter a source of well-founded, concise information. This first newsletter will be followed by others at irregular intervals, reviewing the latest developments and the state of the art in West Germany and abroad. The information presented in this issue reports the state of the art of nuclear waste management in West Germany and R and D activities and programmes, refers to conferences or public statements, and reviews international relations and activities abroad. (orig.) [de

  20. Nuclear Waste Fund management

    International Nuclear Information System (INIS)

    Mills, L.

    1984-01-01

    The Nuclear Waste Policy Acts requires that DOE enter into contracts with nuclear utilities and others to accept their nuclear wastes at some unspecified date, at some unspecified rate, hopefully starting in 1998. Contracts between DOE and the states, and with civilian and other government agencies must be sufficiently detailed to secure competitive bids on definable chunks of work at a fixed-cost basis with incentives. The need is stressed for a strong central program for the selection of contractors on the basis of competitive bidding on a fixed price basis to perform the task with defined deliverables

  1. Nuclear waste in Seibersdorf

    International Nuclear Information System (INIS)

    Anon.

    1988-01-01

    Forschungszentrum Seibersdorf (short: Seibersdorf) is the company operating the research reactor ASTRA. A controversy arose, initied by the Greens and some newspapers on the fact that the waste conditioning plant in Seibersdorf treated not only Austrian waste (from hospitals etc.) but also a large quantity of ion exchange resins from the Caorso nuclear power station, against payment. The author argues that it is untenable that an Austrian institution (peaceful use of nuclear energy in Austria being abandoned by a referendum) should support nuclear power abroad. There is also a short survey on nuclear waste conditioning and an account of an exchange of letters, between the Seibersdorf and the Ecology Institute on the claim of being an 'independent measuring institution' of food, soil, etc. samples. The author argues that the Ecology Institute is the sole independent institution in Austria because it is part of the ecology- and antinuclear movement, whereas Seibersdorf is dependent on the state. (qui)

  2. Nuclear waste - a fresh perspective

    International Nuclear Information System (INIS)

    Tammemagi, H.Y.

    1996-01-01

    Rather than looking at the nuclear waste problem in isolation, it should be viewed in the broader context of how society disposes of all of its wastes. A comparison of radioactive and non-radioactive wastes shows, contrary to popular perception, that the properties of these two waste types are actually very similar. However, the methods of regulation and management of the two waste types are very different. It is time that these differences were reconciled - both the nuclear and the non-nuclear waste industries have a lot to gain. There are three main categories of (non-nuclear) waste: municipal wastes, hazardous wastes, and industrial wastes. Rather than treating each of these waste types in separate, isolated compartments, there should be an integration of the principles and regulations involved in their management. The non-nuclear waste industry has much to learn from the nuclear approach

  3. Processing of nuclear waste

    International Nuclear Information System (INIS)

    Hennelly, E.J.

    1981-01-01

    The processing of nuclear waste to transform the liquid waste from fuel reprocessing activities is well defined. Most solid waste forms, if they are cooled and contain diluted waste, are compatible with many permanent storage environments. The public acceptance of methods for disposal is being delayed in the US because of the alternatives studies of waste forms and repositories now under way that give the impression of indecision and difficulty for the disposal of HLW. Conservative programs that dilute and cool solid waste are under way in France and Sweden and demonstrate that a solution to the problem is available now. Research and development should be directed toward improving selected methods rather than seeking a best method, which at best, may always be illusory

  4. MHR fuel cycle options for future sustainability of nuclear power

    International Nuclear Information System (INIS)

    Baxter, Alan; Venneri, Francesco; Rodriguez, Carmelo; Fikani, Michael

    2005-01-01

    The future sustainability of the nuclear option is not significantly tied to the level of resources. For example, current high quality uranium reserves (∼3.34x10 6 tons) are enough for more than 55 years at present consumption rates (IAEA estimate). Doubling of the present uranium ore price (∼$26/kg) could create about a tenfold increase in resources, providing more than 550 years of supply at present rates (World Nuclear Association estimate). There are also thorium reserves which are estimated to be about three times those of uranium, and would allow for a significant increase in annual consumption levels. The key to a sustainable nuclear future is really tied to the political and technical problems of long term waste disposal, and the perceived risks of nuclear weapons proliferation. Thus fuel cycle options for a sustainable nuclear future must address and solve these issues. High temperature, Gas-Cooled, Graphite Moderated, reactors (MHRs) have nuclear and operational characteristics to provide multiple fuel cycle options to solve these issues. Three fuel cycles for the MHD are described in this paper, and their capabilities for meeting a sustainable nuclear future in terms of nuclear waste minimization and destruction, and reduction of proliferation risk, are discussed. (author)

  5. Nuclear waste: The 10,000-year challenge

    International Nuclear Information System (INIS)

    Dolan, E.F.; Scariano, M.M.

    1993-01-01

    Treatment, storage, and disposal of nuclear waste has a long history and presents immediate issues to be resolved. This book attempts to inform a broadly based readership of the complexities of nuclear waste management by summarizing (1) physics of radioactive energy; (2) its potential health and environmental effects; and (3) the treatment, storage, and disposal options for different types of radioactive waste. However, the longest section in the book deals with DOE's plans for transportation and permanent storage of nuclear powerplant wastes under the Nuclear Waste Policy Act of 1982. The book's presentation of the problem of nuclear waste is uncritical and based primarily on dramatic anecdotes and confidently worded DOE documents

  6. Radioactive wastes of Nuclear Industry

    International Nuclear Information System (INIS)

    1995-01-01

    This conference studies the radioactive waste of nuclear industry. Nine articles and presentations are exposed here; the action of the direction of nuclear installations safety, the improvement of industrial proceedings to reduce the waste volume, the packaging of radioactive waste, the safety of radioactive waste disposal and environmental impact studies, a presentation of waste coming from nuclear power plants, the new waste management policy, the international panorama of radioactive waste management, the international transport of radioactive waste, finally an economic analysis of the treatment and ultimate storage of radioactive waste. (N.C.)

  7. Effluent treatment options for nuclear thermal propulsion system ground tests

    International Nuclear Information System (INIS)

    Shipers, L.R.; Brockmann, J.E.

    1992-01-01

    A variety of approaches for handling effluent from nuclear thermal propulsion system ground tests in an environmentally acceptable manner are discussed. The functional requirements of effluent treatment are defined and concept options are presented within the framework of these requirements. System concepts differ primarily in the choice of fission-product retention and waste handling concepts. The concept options considered range from closed cycle (venting the exhaust to a closed volume or recirculating the hydrogen in a closed loop) to open cycle (real time processing and venting of the effluent). This paper reviews the strengths and weaknesses of different methods to handle effluent from nuclear thermal propulsion system ground tests

  8. Swedish nuclear waste efforts

    International Nuclear Information System (INIS)

    Rydberg, J.

    1981-09-01

    After the introduction of a law prohibiting the start-up of any new nuclear power plant until the utility had shown that the waste produced by the plant could be taken care of in an absolutely safe way, the Swedish nuclear utilities in December 1976 embarked on the Nuclear Fuel Safety Project, which in November 1977 presented a first report, Handling of Spent Nuclear Fuel and Final Storage of Vitrified Waste (KBS-I), and in November 1978 a second report, Handling and Final Storage of Unreprocessed Spent Nuclear Fuel (KBS II). These summary reports were supported by 120 technical reports prepared by 450 experts. The project engaged 70 private and governmental institutions at a total cost of US $15 million. The KBS-I and KBS-II reports are summarized in this document, as are also continued waste research efforts carried out by KBS, SKBF, PRAV, ASEA and other Swedish organizations. The KBS reports describe all steps (except reprocessing) in handling chain from removal from a reactor of spent fuel elements until their radioactive waste products are finally disposed of, in canisters, in an underground granite depository. The KBS concept relies on engineered multibarrier systems in combination with final storage in thoroughly investigated stable geologic formations. This report also briefly describes other activities carried out by the nuclear industry, namely, the construction of a central storage facility for spent fuel elements (to be in operation by 1985), a repository for reactor waste (to be in operation by 1988), and an intermediate storage facility for vitrified high-level waste (to be in operation by 1990). The R and D activities are updated to September 1981

  9. Crystallization behavior of nuclear waste forms

    International Nuclear Information System (INIS)

    Rusin, J.M.; Lokken, R.O.; May, R.P.; Wald, J.W.

    1981-09-01

    Several waste form options have been or are being developed for the immobilization of high-level wastes. The final selection of a waste form must take into consideration both waste form product as well as process factors. Crystallization behavior has an important role in nuclear waste form technology. For glass or vitreous waste forms, crystallization is generally controlled to a minimum by appropriate glass formulation and heat treatment schedules. With glass ceramic waste forms, crystallization is essential to convert glass products to highly crystalline waste forms with a minimum residual glass content. In the case of ceramic waste forms, additives and controlled sintering schedules are used to contain the radionuclides in specific tailored crystalline phases

  10. Safeguards on nuclear waste

    International Nuclear Information System (INIS)

    Crawford, D.W.

    1995-01-01

    Safeguards and security policies within the Department of Energy (DOE) have been implemented in a graded fashion for the protection, control and accountability of nuclear materials. This graded philosophy has meant that safeguards on low-equity nuclear materials, typically considered of low diversion attractiveness such as waste, has been relegated to minimal controls. This philosophy has been and remains today an acceptable approach for the planning and implementation of safeguards on this material. Nuclear waste protection policy and guidance have been issued due to a lack of clear policy and guidance on the identification and implementation of safeguards controls on waste. However, there are issues related to safe-guarding waste that need to be clarified. These issues primarily stem from increased budgetary and resource pressures to remove materials from safeguards. Finally, there may be an unclear understanding, as to the scope and content of vulnerability assessments required prior to terminating safeguards on waste and other discardable materials and where the authority should lie within the Department for making decisions regarding safeguards termination. This paper examines these issues and the technical basis for Departmental policy for terminating safeguards on waste

  11. Managing the nation's nuclear waste. Overview: Nuclear Waste Policy Act

    International Nuclear Information System (INIS)

    1985-10-01

    Signed into law by the President on January 7, 1983, the Nuclear Waste Policy Act established a national policy for safely storing, transporting, and disposing of spent nuclear fuel and high-level radioactive waste. This overview presents the following information on the Nuclear Waste Policy Act: (1) background; (2) permanent repository; (3) siting guidelines and mission plan; (4) monitored retrievable storage; and (5) nuclear waste funds. (DT)

  12. Why partition nuclear waste

    International Nuclear Information System (INIS)

    Cohen, J.J.

    1976-01-01

    A cursory review of literature dealing with various separatory processes involved in the handling of high-level liquid nuclear waste discloses that, for the most part, discussion centers on separation procedures and methodology for handling the resulting fractions, particularly the actinide wastes. There appears to be relatively little discussion on the incentives or motivations for performing these separations in the first place. Discussion is often limited to the assumption that we must separate out ''long-term'' from our ''short-term'' management problems. This paper deals with that assumption and devotes primary attention to the question of ''why partition waste'' rather than the question of ''how to partition waste'' or ''what to do with the segregated waste.''

  13. Nuclear options in Latin America

    International Nuclear Information System (INIS)

    1983-11-01

    An account is given of the Treaty of Tlatelolco, 1967, providing for the designation of Latin America as a Nuclear Weapon-Free Zone (NWFZ); additional protocols attached to the Treaty are available for signature by States outside the region. The Treaty is administered by the Organisation for the Prohibition of Nuclear Weapons in Latin America (OPANAL). Reference is made to its latest meeting, held in May 1983. The present paper also discusses the following: Non-Proliferation Treaty (with references to safeguards agreements concluded between each State and the IAEA); nuclear suppliers' group; peaceful nuclear explosions; nuclear energy programmes in Latin America. (U.K.)

  14. Ten questions on nuclear wastes

    International Nuclear Information System (INIS)

    Guillaumont, R.; Bacher, P.

    2004-01-01

    The authors give explanations and answers to ten issues related to nuclear wastes: when a radioactive material becomes a waste, how radioactive wastes are classified and particularly nuclear wastes in France, what are the risks associated with radioactive wastes, whether the present management of radioactive wastes is well controlled in France, which wastes are raising actual problems and what are the solutions, whether amounts and radio-toxicity of wastes can be reduced, whether all long life radionuclides or part of them can be transmuted, whether geologic storage of final wastes is inescapable, whether radioactive material can be warehoused over long durations, and how the information on radioactive waste management is organised

  15. Nuclear waste management policy in France

    International Nuclear Information System (INIS)

    Lefevre, J.F.

    1983-01-01

    The object of the nuclear waste management policy in France has always been to protect the worker and the public from unacceptable risks. The means and the structures developed to reach this objective, however, have evolved with time. One fact has come out ever more clearly over the years: Nuclear waste problems cannot be considered in a piecemeal fashion. The French nuclear waste management structure and policy aim at just this global approach. Responsibilities have been distributed between the main partners: the waste producers and conditioners, the research teams, the safety authorities, and the long-term waste manager, National Radioactive Waste Management Agency. The main technical options adopted for waste forms are embedding in hydraulic binders, bitumen, or thermosetting resins for low-level waste (LLW) and medium-level waste (MLW), and vitrification for high-level, liquid wastes. One shallow land disposal site for LLW and MLW has been in operation since 1969, the Centre of La Manche. Alpha-bearing and high-level waste will be disposed of by deep geological storage, possibly in granite formations. Further RandD aims mainly at improving present-day practices, developing more durable, long-term, alpha-bearing waste for all solid waste forms and going into all aspects of deep geological disposal characterization

  16. Attitudes to nuclear waste

    International Nuclear Information System (INIS)

    Sjoeberg, L.; Drottz-Sjoeberg, B.M.

    1993-08-01

    This is a study of risk perception and attitudes with regard to nuclear waste. Two data sets are reported. In the first set, data were obtained from a survey of the general population, using an extensive questionnaire. The second set constituted a follow-up 7 years later, with a limited number of questions. The data showed that people considered the topic of nuclear waste risks to be very important and that they were not convinced that the technological problems had been solved. Experts associated with government agencies were moderately trusted, while those employed by the nuclear industry were much distrusted by some respondents, and very much trusted by others. Moral obligations to future generations were stressed. A large portion (more than 50 per cent) of the variances in risk perception could be explained by attitude to nuclear power, general risk sensitivity and trust in expertise. Most background variables, except gender, had little influence on risk perception and attitudes. The follow-up study showed that the attitude to nuclear power had become more positive over time, but that people still doubted that the problems of nuclear waste disposal had been solved. 49 refs

  17. Overview of nuclear waste disposal in space

    International Nuclear Information System (INIS)

    Rice, E.E.; Priest, C.C.

    1981-01-01

    One option receiving consideration by the Department of Energy (DOE) is the space disposal of certain high-level nuclear wastes. The National Aeronautics and Space Administration is assessing the space disposal option in support of DOE studies on alternatives for nuclear waste management. The space disposal option is viewed as a complement, since total disposal of fuel rods from commercial power plants is not considered to be economically practical with Space Shuttle technology. The space disposal of certain high-level wastes may, however, provide reduced calculated and perceived risks. The space disposal option in conjunction with terrestrial disposal may offer a more flexible and lower risk overall waste management system. For the space disposal option to be viable, it must be demonstrated that the overall long-term risks associated with this activity, as a complement to the mined geologic repository, would be significantly less than the long-term risk associated with disposing of all the high-level waste. The long-term risk benefit must be achieved within an acceptable short-term and overall program cost. This paper briefly describes space disposal alternatives, the space disposal destination, possible waste mixes and forms, systems and typical operations, and the energy and cost analysis

  18. Public attitudes regarding nuclear wastes

    International Nuclear Information System (INIS)

    Rankin, W.L.

    1978-01-01

    This paper traces the history of public attitudes regarding nuclear waste issues. A majority of the public has recently developed the attitude that nuclear wastes are a serious problem, and a small percentage of the public opposes nuclear power mainly because of nuclear waste issues. However, a majority of the public has confidence in the ability of technologists to solve the problems associated with nuclear waste disposal. Finally, the attitudes of nuclear technologists regarding waste disposal differed greatly from the attitudes of other groups, especially environmentalists

  19. Waste management - nuclear style

    International Nuclear Information System (INIS)

    McCall, P.

    1977-01-01

    Possible ways of disposing of highly radioactive wastes arising from the United Kingdom nuclear industry are briefly reviewed: projecting into outer space, dumping in containers in the ocean, or storage on land. The problems in each case and, in particular, the risks of environmental contamination from marine or land disposal, are discussed. (U.K.)

  20. Nuclear waste repository siting

    International Nuclear Information System (INIS)

    Soloman, B.D.; Cameron, D.M.

    1987-01-01

    This paper discusses the geopolitics of nuclear waste disposal in the USA. Constitutional choice and social equity perspectives are used to argue for a more open and just repository siting program. The authors assert that every potential repository site inevitably contains geologic, environmental or other imperfections and that the political process is the correct one for determining sites selected

  1. Nuclear Waste Education Project

    International Nuclear Information System (INIS)

    1989-01-01

    In summary, both the Atlanta and Albuquerque pilot seminars achieved the Nuclear Waste Education Project's goal of informing citizens on both the substance and the process of nuclear waste policy so that they can better participate in future nuclear waste decisions. Nuclear waste issues are controversial, and the seminars exposed the nature of the controversy, and utilized the policy debates to create lively and provocative sessions. The format and content of any citizen education curriculum must be made to fit the particular goal that has been chosen. If the Department of Energy and the LWVEF decide to continue to foster an informed dialogue among presenters and participants, the principles of controversial issues education would serve this goal well. If, however, the Department of Energy and/or the LWVEF decide to go beyond imparting information and promoting a lively discussion of the issues, towards some kind of consensus-building process, it would be appropriate to integrate more interactive sessions into the format. As one evaluator wrote, ''In-depth participation in finding solutions or establishing policy -- small group discussion'' would have been preferable to the plenary sessions that mostly were in the form of lectures and expert panel discussion. The evaluator continued by saying, ''Since these [small group discussions] would require more time commitment, they might be part of follow-up workshops focused on particular topics.''

  2. Nuclear waste management

    International Nuclear Information System (INIS)

    Wicks, G.G.; Ross, W.A.

    1984-01-01

    Papers from the Second International Symposium on Ceramics in Nuclear Waste Management, held during the American Ceramic Society's 85th Annual Meeting, comprise this eighth volume in the Advances in Ceramics series. The 81 papers included in this volume were compiled by George G. Wicks, of Savannah River Lab, and Wayne A. Ross, of Battelle, Pacific Northwest Labs

  3. Nuclear waste - perceptions and realities

    International Nuclear Information System (INIS)

    Wilkinson, D.

    1984-01-01

    This paper discusses the complex scientific, sociological, political and emotive aspects of nuclear waste. The public perception of the hazards and risks, to present and future generations, in the management of nuclear wastes are highlighted. The cost of nuclear waste management to socially acceptable and technically achievable standards is discussed. (UK)

  4. Ukraine's non-nuclear option

    International Nuclear Information System (INIS)

    Batiouk, V.

    1992-01-01

    It seems that only yesterday the dilemma confronting our world was not that of war or peace but rather of life or death for mankind, the reason being mainly the prospect of mass annihilation which became increasingly vivid with each and every new explosive nuclear device added to the already existing enormous stockpiles of warheads of mass annihilation. Against this gloomy background of a despairingly reckless arms race, the long-awaited signs began to appear. First the United States and the Soviet Union found it possible to initiate the process by cutting into their immeasurable nuclear arsenals, then Ukraine declared its intention to become non-nuclear by the end of 1994. All the newly independent States, of the former Soviet Union, except Russia, also agreed to renounce possession of nuclear arms. The declarations were put into effect and the most recent specific action was the removal by 6 may 1992 of all short-range nuclear weapons from Ukrainian territory to Russian soil with a view to their ultimate dismantlement. The signature on 23 May 1992 in Lisbon by four ex-Soviet States (Belarus, Kazakhstan, Russia and Ukraine) and the United States of a Protocol to the 1991 Treaty on the Reduction of Strategic Offensive Weapons (START), significantly lowered the risk of nuclear war. By this accord Belarus, Kazakhstan and Ukraine agreed to destroy or turn over to Russia all strategic nuclear warheads and to accede ''in the shortest possible time to the 1968 Nuclear Non-proliferation Treaty''. In early May, Ukraine proposed to remove all nuclear weapons from the Black Sea and make it a zone of peace

  5. Who wants nuclear waste

    International Nuclear Information System (INIS)

    Fernie, John; Openshaw, Stanley

    1986-01-01

    The criteria involved in selecting sites for disposal of low and short-lived intermediate-level radioactive wastes are explained. The wastes and the sources are identified and the current procedure for their disposal, at Drigg, next to the Sellafield reprocessing plant, is given. If alternative sites could be found for non-Sellafield-produced wastes the lifetime of the Drigg site could be extended. The sites chosen by NIREX (Nuclear Industry Radioactive Waste Executive) have to be cost effective. Indeed, those identified are conveniently situated and would not incur excessive transport costs. However, more remote sites may have to be chosen, even at greater transport cost, because of public protests. Even this may not be satisfactory because the transportation itself incurs risks. (UK)

  6. Commercial nuclear-waste management

    International Nuclear Information System (INIS)

    Andress, D.A.

    1981-04-01

    This report is primarily concerned with nuclear waste generated by commercial power operations. It is clear, however, that the total generation of commercial nuclear waste does not tell the whole story, there are sizeable stockpiles of defense nuclear wastes which will impact areas such as total nuclide exposure to the biosphere and the overall economics of waste disposal. The effects of these other nuclear waste streams can be factored in as exogenous inputs. Their generation is essentially independent of nuclear power operations. The objective of this report is to assess the real-world problems associated with nuclear waste management and to design the analytical framework, as appropriate, for handling nuclear waste management issues in the International Nuclear Model. As such, some issues that are not inherently quantifiable, such as the development of environmental Impact Statements to satisfy the National Environmental Protection Act requirements, are only briefly mentioned, if at all

  7. Nuclear waste. Last stop Siberia?

    International Nuclear Information System (INIS)

    Popova, L.

    2006-01-01

    Safe and environmentally sound management of nuclear waste and spent fuel is an unresolved problem of nuclear power. But unlike other nuclear nations, Russia has much more problems with nuclear waste. Russia inherited these problems from the military programs and decades of nuclear fuel cycle development. Nuclear waste continue to mount, while the government does not pay serious enough attention to the solution of the waste problem and considers to increase the capacity of nuclear power plants (NPPs). There are more than 1000 nuclear waste storages in Russia.1 More than 70 million tons of the solid waste has been accumulated by the year 2005, including 14 million tons of tails of the decommissioned uranium mine in the North Caucasus. President Putin said that ''infrastructure of the waste processing is extremely insufficient''. (orig.)

  8. Final disposal of nuclear waste

    Energy Technology Data Exchange (ETDEWEB)

    Anon,

    1995-10-01

    The nuclear industry argues that high level radioactive waste can be safely disposed of in deep underground repositories. As yet, however, no such repositories are in use and the amount of spent nuclear fuel in ponds and dry storage is steadily increasing. Although the nuclear industry further argues that storage is a safe option for up to 50 years and has the merit of allowing the radioactivity of the fuel to decay to a more manageable level, the situation seems to be far from ideal. The real reasons for procrastination over deep disposal seem to have as much to do with politics as safe technology. The progress of different countries in finding a solution to the final disposal of high level waste is examined. In some, notably the countries of the former Soviet Union, cost is a barrier; in others, the problem has not yet been faced. In these countries undertaking serious research into deep disposal there has been a tendency, in the face of opposition from environmental groups, to retreat to sites close to existing nuclear installations and to set up rock laboratories to characterize them. These sites are not necessarily the best geologically, but the laboratories may end up being converted into actual repositories because of the considerable financial investment they represent. (UK).

  9. Final disposal of nuclear waste

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    The nuclear industry argues that high level radioactive waste can be safely disposed of in deep underground repositories. As yet, however, no such repositories are in use and the amount of spent nuclear fuel in ponds and dry storage is steadily increasing. Although the nuclear industry further argues that storage is a safe option for up to 50 years and has the merit of allowing the radioactivity of the fuel to decay to a more manageable level, the situation seems to be far from ideal. The real reasons for procrastination over deep disposal seem to have as much to do with politics as safe technology. The progress of different countries in finding a solution to the final disposal of high level waste is examined. In some, notably the countries of the former Soviet Union, cost is a barrier; in others, the problem has not yet been faced. In these countries undertaking serious research into deep disposal there has been a tendency, in the face of opposition from environmental groups, to retreat to sites close to existing nuclear installations and to set up rock laboratories to characterize them. These sites are not necessarily the best geologically, but the laboratories may end up being converted into actual repositories because of the considerable financial investment they represent. (UK)

  10. Tergiversating the price of nuclear waste storage

    International Nuclear Information System (INIS)

    Mills, R.L.

    1984-01-01

    Tergiversation, the evasion of straightforward action of clearcut statement of position, was a characteristic of high-level nuclear waste disposal until the US Congress passed the Nuclear Waste Policy Act of 1982. How the price of waste storage is administered will affect the design requirements of monitored retrievable storage (MRS) facilities as well as repositories. Those decisions, in part, are internal to the Department of Energy. From the utility's viewpoint, the options are few but clearer. Reprocessing, as performed in Europe, is not a perfect substitute for MRS. The European reprocess-repository sequence will not yield the same nuclear resource base as the American MRS-repository scheme. For the future price of the energy resource represented by nuclear waste, the author notes that tergiversation continues. 3 references

  11. Ceramics in nuclear waste management

    Energy Technology Data Exchange (ETDEWEB)

    Chikalla, T D; Mendel, J E [eds.

    1979-05-01

    Seventy-three papers are included, arranged under the following section headings: national programs for the disposal of radioactive wastes, waste from stability and characterization, glass processing, ceramic processing, ceramic and glass processing, leaching of waste materials, properties of nuclear waste forms, and immobilization of special radioactive wastes. Separate abstracts were prepared for all the papers. (DLC)

  12. Transmutation of long-lived nuclear waste

    International Nuclear Information System (INIS)

    Abrahams, K.

    1992-10-01

    Nuclear waste disposal in geologically stable repositories is considered to be safe and effective, and the assumptions, which lead to very long term predictions seem to be satisfied. As possibilities to perturb repositories, can never be entirely excluded, it could be an attractive option to reduce the toxicity of waste by supplementing the uranium-plutonium cycle with minor actinide burning cycles. In this option the amount of mining waste is limited at the same time because uranium is used economically. If requests for reduction of long-lived actinide waste would result in much higher costs for nuclear energy, the innovative thorium-uranium cycle might become competitive. It is of vital interest that efforts are now being internationalized in networks to make proper use of experience from past civil and military programs. Visions for almost pollution-free energy production could arise if well prepared minds are concentrated on this issue. (author). 5 refs., 2 figs., 1 tab

  13. Options for the disposal of high-level radioactive waste

    International Nuclear Information System (INIS)

    Mitchell, N.T.; Laughton, A.S.; Webb, G.A.M.

    1977-01-01

    The management of radioactive waste within the fuel cycle, especially the high-level wastes from reprocessing of nuclear fuel, is currently a matter of particular concern. In the short term (meaning a timescale of tens of years) management by engineered storage is considered to provide a satisfactory solution. Beyond this, however, the two main alternative options which are considered in the paper are: (a) disposal by burial into geologic formations on land; and (b) disposal by emplacement into or onto the seabed. Status of our present knowledge on the land and seabed disposal options is reviewed together with an assessment of the extent to which their reliability and safety can be judged on presently available information. Further information is needed on the environmental behaviour of radioactivity in the form of solidified waste in both situations in order to provide a more complete, scientific assessment. Work done so far has clarified the areas where further research is most needed - for instance modelling of the environmental transfer processes associated with the seabed option. This is discussed together with an indication of the research programmes which are now being pursued

  14. Disposal of nuclear wastes

    International Nuclear Information System (INIS)

    Albrecht, E.; Kuehn, K.

    1977-01-01

    Final storage of nuclear wastes in the salt mine at Asse is described. Until the end of 1976, all in all 73,000 containers with slightly radioactive wastes were deposited there within the framework of a test programme - the Asse pit is a pilot plant. Final storage of medium active waste was started in 1972. So far, about 1,150 barrels with medium active waste were deposited. Storage techniques applied, radiation exposure of the personnel and experience gained so far are reported on in this context. Final storage at Asse of highly active wastes developing decay heat is still in a preparatory stage, as here radiation as well as heat problems have to be mastered. Technical mining activities for the recoverable storage of highly-active, heat-developing wastes in the form of ceramic glasses are still in a planning phase, whereas advance work, e.g. cutting storage chambers out of seams 775 m thick have already begun. (HPH) [de

  15. Problems of nuclear waste

    International Nuclear Information System (INIS)

    Rodionov, D.

    1999-01-01

    An enormous stockpile of nuclear weapons was reduced during the Cold War as a result of frantic Soviet-US competition, accompanied by considerable radioactive pollution of the environment. This pollution was inevitable. Former adversaries began to sober only recently. As a result, areas of weapons complexes both in the USA (Hanford, Savannah, Oak Ridge) and in Russia (Chelyabinsk-65, Tomsk-7, Krasnoyarsk-25) look like battlefields of the Cold War. A Nuclear weapon-free world will only be achieved (if at all) after reaching changes in the principles that guide state policies and actions. A nuclear-waste-free world implies that the environment's radioactive pollution of a military nature would be eliminated and all potential dangers from civil nuclear energy prevented. This can be attained after solution of some economic, political and social problems

  16. BS degree in nuclear engineering or a nuclear option

    International Nuclear Information System (INIS)

    Williams on, T.G.

    1988-01-01

    Many nuclear engineering educators are concerned about the health of nuclear engineering academic departments. As part of a review of the BS nuclear engineering degree program at the University of Virginia, the authors surveyed several local utilities with operating nuclear plants about their needs for nuclear engineering graduates. The perception of many of the utility executives about a nuclear engineering degree and about a nuclear option in another engineering curriculum does not agree with the way the authors view these two degrees. The responses to two of the survey questions were of particular interest: (1) does your company have a preference between nuclear engineering graduates and graduates in other fields with a nuclear option? (2) what do you consider to be a minimum level of education in nuclear engineering for a nuclear option in mechanical engineering? All of the four utilities that were surveyed stated a preference for mechanical or electrical engineers with a nuclear option, although two indicated that there are certain jobs for which a nuclear engineering graduate is desired

  17. Nuclear waste vault sealing

    International Nuclear Information System (INIS)

    Gyenge, M.

    1980-01-01

    A nuclear waste vault must be designed and built to ensure adequate isolation of the nuclear wastes from human contact. Consequently, after a vault has been fully loaded, it must be adequately sealed off to prevent radionuclide migration which may be provided by circulating groundwater. Vault sealing entails four major aspects, i.e.: (a) vault grouting; (b) borehole sealing; (c) buffer packing; and (d) backfilling. Of particular concern in vault sealing are the physical and chemical properties of the sealing material, its long-term durability and stability, and the techniques used for its emplacement. Present sealing technology and sealing materials are reviewed in terms of the particular needs of vault sealing. Areas requiring research and development are indicated

  18. Nuclear wastes: research programs

    International Nuclear Information System (INIS)

    Anon.

    2003-01-01

    The management of long-living and high level radioactive wastes in France belongs to the framework of the December 30, 1991 law which defines three ways of research: the separation and transmutation of radionuclides, their reversible storage or disposal in deep geologic formations, and their processing and surface storage during long duration. Research works are done in partnership between public research and industrial organizations in many French and foreign laboratories. Twelve years after its enforcement, the impact of this law has overstepped the simple research framework and has led to a deep reflection of the society about the use of nuclear energy. This short paper presents the main results obtained so far in the three research ways, the general energy policy of the French government, the industrial progresses made in the framework of the 1991 law and the international context of the management of nuclear wastes. (J.S.)

  19. Nuclear waste: the political realities

    International Nuclear Information System (INIS)

    Arnott, D.

    1983-01-01

    The land dumping of nuclear waste has again come to the attention of anti-nuclear groups, environmentalists and the media, following the announcement of the proposed sites for intermediate-level nuclear waste at Billingham and Bedford. Opposition has already surfaced on a large scale, with public meetings in both areas and a revitalisation of the waste dumping network. This article explains some of the political realities in the nuclear debate, and suggests how we can tackle the issue of waste dumping, remembering that, even if the industry closes tomorrow, there are vast quantities of waste which must be safely and democratically dealt with. (author)

  20. Nuclear energy: a necessary option

    International Nuclear Information System (INIS)

    Robles N, A. G.; Ramirez S, J. R.; Esquivel E, J.

    2017-09-01

    With the decree of the Energy Reform and with the creation of the Electricity Industry and Energy Transition Laws; nuclear energy is incorporated into these as a source of clean energy. Currently, the share of electricity generation using conventional technologies is 80% and clean technologies of 20% of which hydroelectric plants represent 50% of these. While the operation of hydroelectric, wind, solar plants, etc. have contributed to reduce greenhouse gas emissions (GGE), the global effort to mitigate climate change has not observed the expected results, according to the meeting of COP 21 in Paris, where 196 countries agreed, unanimously, to limit the increase of the temperature at 2 degrees Celsius or less for before the year 2100. In Paris, Mexico voluntarily submitted its national mitigation and adaptation contribution to climate change by issuing 162 M ton of CO 2eq as a goal to 2030, that is a ΔGGE of -22%. This means that the electricity sector should contribute to the reduction of 139 M ton of CO 2eq and a ΔGGE of -31%. According to some experts, the goal of reducing gases for the sector could be achieved during the period defined in the Agreement, provided that the share of clean energies is added as established in the Energy Reform and the Development Program of the National Electric System 2016-2030, which establishes the addition of 35,532 MW (62%) of installed capacity in clean technologies, where nuclear energy participates with 4,191 MW (7%) that is, 2,651 MW more. Thus, this article aims to show the importance of the use of nuclear energy in the electricity sector to reduce GGE, achieve international commitments and combat climate change. (Author)

  1. Risks from nuclear waste

    International Nuclear Information System (INIS)

    Liljenzin, J.O.; Rydberg, J.

    1996-11-01

    The first part of this review discusses the importance of risk. If there is any relation between the emotional and rational risk perceptions (for example, it is believed that increased knowledge will decrease emotions), it will be a desirable goal for society, and the nuclear industry in particular, to improve the understanding by the laymen of the rational risks from nuclear energy. This review surveys various paths to a more common comprehension - perhaps a consensus - of the nuclear waste risks. The second part discusses radioactivity as a risk factor and concludes that it has no relation in itself to risk, but must be connected to exposure leading to a dose risk, i.e. a health detriment, which is commonly expressed in terms of cancer induction rate. Dose-effect relations are discussed in light of recent scientific debate. The third part of the report describes a number of hazard indexes for nuclear waste found in the literature and distinguishes between absolute and relative risk scales. The absolute risks as well as the relative risks have changed over time due to changes in radiological and metabolic data and by changes in the mode of calculation. To judge from the literature, the risk discussion is huge, even when it is limited to nuclear waste. It would be very difficult to make a comprehensive review and extract the essentials from that. Therefore, we have chosen to select some publications, out of the over 100, which we summarize rather comprehensively; in some cases we also include our remarks. 110 refs, 22 figs

  2. Risks from nuclear waste

    Energy Technology Data Exchange (ETDEWEB)

    Liljenzin, J.O.; Rydberg, J. [Radiochemistry Consultant Group, Vaestra Froelunda (Sweden)

    1996-11-01

    The first part of this review discusses the importance of risk. If there is any relation between the emotional and rational risk perceptions (for example, it is believed that increased knowledge will decrease emotions), it will be a desirable goal for society, and the nuclear industry in particular, to improve the understanding by the laymen of the rational risks from nuclear energy. This review surveys various paths to a more common comprehension - perhaps a consensus - of the nuclear waste risks. The second part discusses radioactivity as a risk factor and concludes that it has no relation in itself to risk, but must be connected to exposure leading to a dose risk, i.e. a health detriment, which is commonly expressed in terms of cancer induction rate. Dose-effect relations are discussed in light of recent scientific debate. The third part of the report describes a number of hazard indexes for nuclear waste found in the literature and distinguishes between absolute and relative risk scales. The absolute risks as well as the relative risks have changed over time due to changes in radiological and metabolic data and by changes in the mode of calculation. To judge from the literature, the risk discussion is huge, even when it is limited to nuclear waste. It would be very difficult to make a comprehensive review and extract the essentials from that. Therefore, we have chosen to select some publications, out of the over 100, which we summarize rather comprehensively; in some cases we also include our remarks. 110 refs, 22 figs.

  3. Nuclear waste management: a perspective

    International Nuclear Information System (INIS)

    Leuze, R.E.

    1980-01-01

    The scope of our problems with nuclear waste management is outlined. Present and future inventories of nuclear wastes are assessed for risk. A discussion of what is presently being done to solve waste management problems and what might be done in the future are presented

  4. Self-disposal option for heat-generating waste - 59182

    International Nuclear Information System (INIS)

    Ojovan, Michael I.; Poluektov, Pavel P.; Kascheev, Vladimir A.

    2012-01-01

    Self-descending heat generating capsules can be used for disposal of dangerous radioactive wastes in extremely deep layers of the Earth preventing any release of radionuclides into the biosphere. Self-disposal option for heat-generating radioactive waste such as spent fuel, high level reprocessing waste or spent sealed radioactive sources, known also as rock melting concept, was considered in the 70's as a viable alternative disposal option by both Department of Energy in the USA and Atomic Industry Ministry in the USSR. Self-disposal is currently reconsidered as a potential alternative route to existing options for solving the nuclear waste problem and is associated with the renaissance of nuclear industry. Self- disposal option utilises the heat generated by decaying radionuclides of radioactive waste inside a heavy and durable capsule to melt the rock on its way down. As the heat from radionuclides within the capsule partly melts the enclosing rock, the relatively low viscosity and density of the silicate melt allow the capsule to be displaced upwards past the heavier capsule as it sinks. Eventually the melt cools and solidifies (e.g. vitrifies or crystallizes), sealing the route along which the capsule passed. Descending or self-disposal continues until enough heat is generated by radionuclides to provide partial melting of surrounding rock. Estimates show that extreme depths of several tens and up to hundred km can be reached by capsules which could never be achieved by other techniques. Self- disposal does not require complex and expensive disposal facilities and provides a minimal footprint used only at operational stage. It has also an extremely high non- proliferation character and degree of safety. Utilisation of heat generated by relatively short-lived radionuclides diminishes the environmental uncertainties of self-disposal and increases the safety of this concept. Self-sinking heat-generating capsules could be launched from the bottom of the sea as

  5. The nuclear energy option an alternative for the 90s

    CERN Document Server

    Cohen, Bernard L

    1990-01-01

    University of Pittsburgh physicist Cohen provides accessible, scientifically sound risk analyses of the energy options that he believes must be exercised in the next 10 years. This update of his work on public energy policy stands opposed to the stack of recent greenhouse effect-oriented titles by proposing more nuclear power plants (including fuel reprocessing plants) as statistically the safest, most environmentally sound solution. Cohen advances the debate on energy policy for all sides by first quantifying the human health costs of coal- and oil-generated electricity, and by debunking solar technology's deus ex machina role. In this context, Cohen looks at issues surrounding nuclear power since Three Mile Island, such as the "unsolved problem" of nuclear waste disposal and the "China Syndrome." Media people especially are urged to re-examine "nuclear hysteria" (no one ever writes about " deadly natural gas," Cohen notes), and even anti-nuclear activists will find the study's appendices and notes a sourceb...

  6. Technical and economic evaluation of controlled disposal options for very low level radioactive wastes

    International Nuclear Information System (INIS)

    Robinson, P.J.; Vance, J.N.

    1990-08-01

    Over the past several years, there has been considerable interest by the nuclear industry in the Nuclear Regulatory Commission (NRC) explicitly defined an activity level in plant waste materials at which the radiological impacts would be so low as to be considered Below Regulatory Concern (BRC). In January 1989, Electric Power Research Institute (EPRI) completed an extensive industry research effort to develop the technical bases for establishing criteria for the disposal of very low activity wastes in ordinary disposal facilities. The Nuclear Management and Resources Council (NUMARC), with assistance from the Edison Electric Institute (EEI) and the Electric Power Research Institute (EPRI), drafted a petition titled: ''Petition for Rulemaking Regarding Disposal of Below Regulatory Concern Radioactive Wastes from Commercial Nuclear Power Plants.'' Subsequent to the industry making a final decision for submittal of the drafted BRC petition, EPRI was requested to evaluate the technical and economic impact of six BRC options. These options are: take no action in pursuing a BRC waste exemption, petition the NRC for authorization to disposal of any BRC waste in any ordinary disposal facility, limit disposal of BRC waste to the nuclear power plant site, limit disposal of BRC waste to the nuclear power plant site and other utility owned property, petition for a mixed waste exemption, and petition for single waste stream exemptions in sequence (i.e. soil, followed by sewage sludge, etc.). The petition and technical bases were written to support the disposal of any BRC waste type in any ordinary disposal facility. These documents do not provide all of the technical and economic information needed to completely assessment the BRC options. This report provides the technical and economic basis for a range of options concerning disposal of very low activity wastes. 3 figs., 20 tabs

  7. Selection of efficient options for processing and storage of radioactive waste in countries with small amounts of waste generation

    International Nuclear Information System (INIS)

    2003-09-01

    The report is intended to assist decision makers in countries using nuclear energy for non-power applications to organize their waste management practices. It describes methodologies, criteria and options for the selection of appropriate technologies for processing and storage of low and intermediate level radioactive waste from different nuclear applications. The report reviews both technical and non-technical factors important for decision making and planning, and for implementation of waste management activities at the country and facility levels. It makes practical recommendations for the selection of particular technologies for different scales of waste generation. These wastes may arise from production of radionuclides and their application in industry, agriculture, medicine, education and research. The report also considers waste generated at research reactors, research centers and research laboratories using radioisotopes, as well as waste from decommissioning of research reactors and small nuclear facilities such as hot cells, laboratories and irradiation facilities. Management of uranium mining and milling waste and management of spent fuel from research reactors are not considered in this report. Discussed in detail are: the basic legal, regulatory, administrative and technical requirements set up in a national waste management system and review of the factors and components affecting the selection of an appropriate national waste management system. the origins and characteristics of radioactive waste from different nuclear applications. the technical factors that might affect the selection of waste processing and storage technologies, the main waste management steps, information on available technologies, the basis for planning of waste processing and storage and the selection of a particular option for radioactive waste processing and storage in countries with a different scale of nuclear applications

  8. Selection of efficient options for processing and storage of radioactive waste in countries with small amounts of waste generation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-09-01

    The report is intended to assist decision makers in countries using nuclear energy for non-power applications to organize their waste management practices. It describes methodologies, criteria and options for the selection of appropriate technologies for processing and storage of low and intermediate level radioactive waste from different nuclear applications. The report reviews both technical and non-technical factors important for decision making and planning, and for implementation of waste management activities at the country and facility levels. It makes practical recommendations for the selection of particular technologies for different scales of waste generation. These wastes may arise from production of radionuclides and their application in industry, agriculture, medicine, education and research. The report also considers waste generated at research reactors, research centers and research laboratories using radioisotopes, as well as waste from decommissioning of research reactors and small nuclear facilities such as hot cells, laboratories and irradiation facilities. Management of uranium mining and milling waste and management of spent fuel from research reactors are not considered in this report. Discussed in detail are: the basic legal, regulatory, administrative and technical requirements set up in a national waste management system and review of the factors and components affecting the selection of an appropriate national waste management system. the origins and characteristics of radioactive waste from different nuclear applications. the technical factors that might affect the selection of waste processing and storage technologies, the main waste management steps, information on available technologies, the basis for planning of waste processing and storage and the selection of a particular option for radioactive waste processing and storage in countries with a different scale of nuclear applications.

  9. The international politics of nuclear waste

    International Nuclear Information System (INIS)

    Blowers, A.; Lowry, D.; Solomon, B.D.

    1993-01-01

    This book depicts the wide diversity and the striking similarities in the international politics of nuclear waste management, using good organization and well defined terminology. The authors provide a background of geography, geology and demographics, and provide informed and common-sensical observations and conclusions. They question the ethics of leaving nuclear wastes where they are and waiting for better solutions, and they put forward a rational set of siting options, including coupling repository plans with environmental enhancement programs such as protection of coastal access, landscape improvements, and erosion control

  10. Waste from decommissioning of nuclear power plants

    International Nuclear Information System (INIS)

    Nielsen, P.O.

    1992-05-01

    This report is based on the assumption that all twelve nuclear power plants will be shut down no later than A.D. 2010, as was decided by the parliament after the referendum on the future of nuclear power in Sweden. The recent 'Party agreement on the energy policy' of January 15, 1991 does, indeed, leave the door open for an extension of the operational period for the nuclear reactors. This will, however, not change the recommendations and conclusions drawn in this report. The report consists of two parts. Part 1 discusses classification of waste from decommissioning and makes comparisons with the waste arising from reactor operation. Part 2 discusses the documentation required for decommissioning waste. Also this part of the report draws parallels with the documentation required by the authorities for the radioactive waste arising from operation of the nuclear power plants. To some extent these subjects depend on the future use of the nuclear power plant sites after decommissioning of the plants. The options for future site use are briefly discussed in an appendix to the report. There are many similarities between the waste from reactor operations and the waste arising from dismantling and removal of decommissioned nuclear power plants. Hence it seems natural to apply the same criteria and recommendations to decommissioning waste as those presently applicable to reactor waste. This is certainly true also with respect to documentation, and it is strongly recommended that the documentation requirements on decommissioning waste are made identical, or at least similar, to the documentation requirements for reactor waste in force today. (au)

  11. Nuclear Waste Fund management

    International Nuclear Information System (INIS)

    Hobart, L.

    1984-01-01

    The Nuclear Waste Fund involves a number of features which make it a unique federal program. Its primary purpose is to finance one of the largest and most controversial public works programs in the history of the United States. Despite the program's indicated size and advance publicity, no one knows exactly where the anticipated projects will be built, who will construct them, what they will look like when they are done or how they will be operated and by whom. Implimentation of this effort, if statutory targets are actually met, covers a 16-year period. To cover the costs of the program, the Federal Government will tax nuclear power at the rate of 1 mil per kilowatt hour generated. This makes it one of the biggest and longest-lived examples of advance collections for construction work in progress in the history of the United States. While the Department of Energy is authorized to collect funds for the program the Nuclear Regulatory Commission has the authority to cut off this revenue stream by the shutdown of particular reactors or particular reactor types. If all goes well, the Federal Government will begin receiving spent nuclear fuel by 1998, continuing to assess a fee which will cover operating and maintenance costs. If all does not go well, the Federal Government and/or utilities will have to take other steps to solve the problem of permanent disposal. Should the latter circumstance prevail, presumably not only used to date but the $7.5 billion would be spent. The Nuclear Waste Policy Act of 1982, contains no clear provision for utility refunds in that case

  12. Disposal Options for Low and Intermediate-Level Radioactive Waste: Comparative Study

    International Nuclear Information System (INIS)

    Abdellatif, M.M.

    2013-01-01

    This study presents the status of current disposal options for Low and Intermediate- Level Radioactive Waste (LILRW) generated in different countries and outlines the potential for future disposal option/s of these wastes in Egypt. Since approaches used in other countries may provide useful lessons for managing Egyptian radioactive wastes. This study was based on data for19 countries repositories and we focused on 6 countries, which considered as leaders in the field of disposal of rad waste. Several countries have plans for repositories which are sufficiently advanced that it was based on their own of their extensive experience with nuclear power generation and with constructing and operating LLRW disposal facilities. On the other hand, our programme for site selection and host rock characterization for low and intermediate level radioactive waste disposal is under study. We are preparing our criteria for selecting a national repository for LIL rad waste.

  13. Nuclear wastes management

    International Nuclear Information System (INIS)

    2005-01-01

    This document is the proceedings of the debate that took place at the French Senate on April 13, 2005 about the long-term French policy of radioactive wastes management. The different points tackled during the debate concern: the 3 axes of research of the 1991 law, the public acceptance about the implementation of repositories, the regional economic impact, the cost and financing, the lack of experience feedback, the reversibility or irreversibility of the storage, the share of nuclear energy in the sustainable development policy, the European Pressurized Reactor (EPR) project, the privatization of Electricite de France (EdF) etc. (J.S.)

  14. Waste canister for storage of nuclear wastes

    Science.gov (United States)

    Duffy, James B.

    1977-01-01

    A waste canister for storage of nuclear wastes in the form of a solidified glass includes fins supported from the center with the tips of the fins spaced away from the wall to conduct heat away from the center without producing unacceptable hot spots in the canister wall.

  15. Waste canister for storage of nuclear wastes

    International Nuclear Information System (INIS)

    Duffy, J.B.

    1977-01-01

    A waste canister for storage of nuclear wastes in the form of a solidified glass includes fins supported from the center with the tips of the fins spaced away from the wall to conduct heat away from the center without producing unacceptable hot spots in the canister wall. 4 claims, 4 figures

  16. Nuclear waste processing

    International Nuclear Information System (INIS)

    Nienhuys, K.; Noordegraaf, D.

    1977-04-01

    This report is composed with a view to the discussions around the selection of a site in F.R.Germany near the Netherlands' border for a fuel reprocessing plant. Most of the scientific data available are placed side by side, especially those which are contradictory in order to promote better judgement of affairs before governmental decisions are made. The report comprises a brief introduction to nuclear power plants, fuel cycle, radioactive materials and their properties. Next the transportation of wastes from the nuclear power plants to the reprocessing plants is dealt with more extensively, including the processing and the effluents of as well as the experiences with operational reprocessing plants. The hazards from manipulation of radioactive materials accidents and theft are outlined in each case, followed by a problem discussion. The appendix illustrates the German concept of 'industrial park for after-treatment and disposal'

  17. Ghana and the nuclear power option

    International Nuclear Information System (INIS)

    Fletcher, J.J.; Ennison, I.

    2000-01-01

    For every country, dependable and continuous supply of electricity is a prerequisite for ensuring sustainable development. In Ghana, Ghanaians have currently known the consequences of disrupted and inadequate supply of electricity. Globally too the call of ''Agenda 21'' of the Rio de Janeiro Conference (Earth Summit) to engage in the development and supply of electricity in a sustainable manner imposes on us certain limitations in our choice of energy option to utilise. Taking into account the high economic and population growths with the subsequent increase in demand for electricity in the 21st century, the fact that Ghana has no coal and imports oil which will be in dwindling supply in the 21st century and that the total hydro supply in Ghana will not be sufficient for our electricity demand in the next century, this paper proposes that Ghana starts now to plan for the introduction of the nuclear option so that in the long term we may have in place an environmentally friendly, dependable and reliable supply of energy. The paper also highlights the economic competitiveness of nuclear power over the other energy options in Ghana and addresses the apprehension and misunderstanding surrounding the nuclear power option. (author)

  18. Review of options for managing iodine-125 wastes

    International Nuclear Information System (INIS)

    Lock, P.J.; Wakerley, M.W.

    1991-01-01

    Data on the nature, radioactive content and management options used for I-125 wastes that are produced in England and Wales and fall within the provisions of the Radioactive Substances Act 1960 have been collated. The options for, and impacts of the disposal of these wastes have been reviewed and discussed. In addition storage for decay has been reviewed. The necessary storage requirements and methods of storage for the various waste forms have been examined. Conclusions are drawn with respect to the potential/suitability of the various waste management options. (author)

  19. Science, society, and America's nuclear waste: Unit 1, Nuclear waste

    International Nuclear Information System (INIS)

    1992-01-01

    This is unit 1 in a four-unit secondary curriculum. It is intended to provide information about scientific and societal issues related to the management of spent nuclear fuel from generation of electricity at nuclear powerplants and high-level radioactive waste from US national defense activities. The curriculum, supporting classroom activities, and teaching materials present a brief discussion of energy and electricity generation, including that produced at nuclear powerplants; information on sources, amounts, location, and characteristics of spent nuclear fuel and high-level radioactive waste; sources, types and effects of radiation; US policy for managing and disposing of spent nuclear fuel and high-level radioactive waste and what other countries are doing; and the components of the nuclear waste management system

  20. Nuclear waste disposal in space

    Science.gov (United States)

    Burns, R. E.; Causey, W. E.; Galloway, W. E.; Nelson, R. W.

    1978-01-01

    Work on nuclear waste disposal in space conducted by the George C. Marshall Space Flight Center, National Aeronautics and Space Administration, and contractors are reported. From the aggregate studies, it is concluded that space disposal of nuclear waste is technically feasible.

  1. Geological disposal of nuclear waste

    International Nuclear Information System (INIS)

    1979-01-01

    Fourteen papers dealing with disposal of high-level radioactive wastes are presented. These cover disposal in salt deposits, geologic deposits and marine disposal. Also included are papers on nuclear waste characterization, transport, waste processing technology, and safety analysis. All of these papers have been abstracted and indexed

  2. The perspectives of nuclear option for Croatia

    International Nuclear Information System (INIS)

    Feretic, D.

    2004-01-01

    In order to satisfy the expected level of electricity consumption in Croatia it will be necessary, as a minimum, until the year 2020 to install about 2000 MW in new power plants. Gas and coal fired plants presently are main competitors to nuclear power plants. In near future it my be different due to expected problems with gas availability and cost increase and also in adverse environmental impact (particularly due to CO 2 emissions) of coal fired plants. Nuclear power plants have advantage not only in economics of produced energy but also in impact to the environment. Preservation of knowledge obtained during construction of NPP Krsko is also an important reason to maintain nuclear option. Pre construction and construction period for new plants (particularly for coal fired and nuclear plants) could be long so that timely start of preparatory activities is indispensable to meet the required schedule.(author)

  3. The wastes of nuclear fission

    International Nuclear Information System (INIS)

    Doubre, H.

    2005-01-01

    In this paper the author presents the problems of the radioactive wastes generated by the nuclear fission. The first part devoted to the fission phenomenon explains the incident neutron energy and the target nuclei role. The second part devoted to the nuclear wastes sources presents the production of wastes upstream of the reactors, in the reactors and why these wastes are dangerous. The third part discusses the radioactive wastes management in France (classification, laws). The last part details the associated research programs: the radionuclides separation, the disposal, the underground storage, the transmutation and the thorium cycle. (A.L.B.)

  4. Storage of nuclear wastes

    International Nuclear Information System (INIS)

    Ahlstroem, P.E.

    1988-01-01

    The Swedish system of handling and storage of nuclear wastes is well-developed. Existing plants and systems provide great freedom of action and flexibility regarding future development and decisions of ultimate storage of the spent fuel. The interim storage in CLAB - Central interim storage facility for spent nuclear fuel - could continue without any safety related problems for more than 40 years. In practice the choice of ultimate treatment system is not locked until the encapsulation of the fuel starts. At the same time it is of importance that the generation benefiting by the nuclear power production also be responsible for the development of the ultimate storage system and not unnecessarily postpones important decisions. The ultimate storage system for spent fuel could and should be developed within existing schedule. At the same time is should be worked out to provide coming generations with possibilities to do the type of supervision they like without maintenance and supervision requiring to become a prerequisite for a safe function. (O.S.)

  5. Nuclear spent fuel management. Experience and options

    International Nuclear Information System (INIS)

    1986-01-01

    Spent nuclear fuel can be stored safely for long periods at relatively low cost, but some form of permanent disposal will eventually be necessary. This report examines the options for spent fuel management, explores the future prospects for each stage of the back-end of the fuel cycle and provides a thorough review of past experience and the technical status of the alternatives. Current policies and practices in twelve OECD countries are surveyed

  6. Nuclear energy - option for the future. Proceedings

    International Nuclear Information System (INIS)

    1996-01-01

    The goal of this conference was to analyse the future national and international problems arising with energy supplies with regard to the large mass flows and CO 2 flows involved in the use of nuclear energy. The following topics are dealt with: - nuclear energy, world-wide energy management and developments in Europe and Asia - disposal and ultimate waste disposal, plutonium management, an assessment of the Chernobyl accident 10 years on - new reactor developments in the energy mix - the costs arising with nuclear energy in the energy mix. In view of the demand made by climate researchers, to reduce CO 2 , and the additional construction work planned in the eastern and Asian areas, it will remain necessary for the Federal Republic of Germany,too, to maintain the know-how and technology for nuclear energy generation. (orig./DG)

  7. Status of nuclear waste management

    International Nuclear Information System (INIS)

    Kittel, J.H.

    1980-01-01

    This paper discusses what nuclear waste is and where it comes from, what the technical strategies are for disposing of this waste, compares the toxicity of nuclear waste to other materials that are more familiar to us, and finally, comments on why it is taking so long to get on with the job of isolating nuclear waste permanently. The author believes that the technical solutions for the management and disposal of high-level and low-level nuclear waste are adequately in hand. The issues that are delaying the implementation of this technology are almost entirely related to sociological and political considerations. High-level nuclear waste can be safely stored and isolated through a multiple barrier approach. Although it is a hazardous material and must be handled properly, its toxicity diminishes rapidly. It then becomes less hazardous than other materials that we deal with everyday in routine industrial or household operations. The disposal of low-level waste has not attracted as much public attention as high-level waste management. Nevertheless, it is just as important to the public. For example, the use of radioactive isotopes in medicine, and the many lives that are saved as a result, would be very greatly reduced if medical institutions had no place to dispose of their radioactive waste. The management of uranium mill tailings is similar in many technical aspects to low-level waste management. Institutional issues, however, have not become as important in the case of mill tailings disposal

  8. Nuclear waste: The problem that won't go away

    International Nuclear Information System (INIS)

    Lenssen, N.

    1991-01-01

    This book presents an overview of the problems of permanent and safe disposal of nuclear waste. The introduction has a brief history of the politics of nuclear waste. Major sections of the book include the following: permanent hazards of nuclear waste, including examples and the politics; health and radiation (history of recommended dosages, health risks, and problems of environmental transport are included); They call it disposal talks about technical options for dealing with nuclear waste, the actual number of sites in different countries, and the inadequacies of scientific knowledge in this area; Technical Fixes? Includes a discussion of other suggested ways of handling nuclear waste; The politics of nuclear waste and beyond illusion conclude the book. 105 refs., 5 tabs

  9. The problematic of nuclear wastes

    International Nuclear Information System (INIS)

    Rozon, D.

    2004-01-01

    Within the frame of a project of modification of radioactive waste storage installations, and of refurbishing the Gentilly-2 nuclear plant (Quebec, Canada), the author first gives an overview and comments assessments of the volume and nature of nuclear wastes produced by Canadian nuclear power plants. He presents the Canadian program of nuclear waste management (history, Seaborn assessment Commission, mission of the SGDN-NWMO). He discusses the relationship between risk and dose, the risk duration, and the case of non radioactive wastes. He discusses energy challenges in terms of CO 2 emissions and with respect to climate change, proposes an alternative scenario on a long term, compares nuclear energy and wind energy, and discusses the nuclear technology evolution

  10. Characterization of INEL compactible wastes, compactor options study, and recommendations

    International Nuclear Information System (INIS)

    Gillins, R.L.; Larsen, M.M.; Aldrich, W.C.

    1986-03-01

    This report provides the results of a detailed characterization and evaluation of low-level radioactive waste generated at the Idaho National Engineering Laboratory (INEL) and an evaluation of compactors available commercially. The results of these evaluations formed the basis for a study of compactor options suitable for compacting INEL-generated low-level waste. Seven compactor options were evaluated. A decision analysis performed on the results of the compactor option study and cost analysis showed that a 200-ton box compactor and a 5000-ton box supercompactor were the best options for an INEL compaction facility other than the RWMC. Two compactor locations were considered: WERF and CPP. The WERF location is recommended on the basis of existing facilities to house the compactor and store the waste, the presence of a trained waste-handling staff, and the desirability of maintaining a single location for processing INEL-generated low-level waste

  11. A Quantitative Analysis of the Reversibility of Nuclear Waste Storage: Waste Re-utilization

    International Nuclear Information System (INIS)

    Gollier, Christian; Devezeaux de Lavergne, Jean-Guy

    2001-01-01

    The reversibility of nuclear waste storage can be justified on various economic grounds, including the eventuality that future generations may wish to recover this waste in order to re-utilise it. Real options theory is used to cost this option. By including the value of this option in the cost/benefit analysis, it is possible to determine what present generations should spend to organise this reversibility. Taking current values of the materials contained in the waste, and taking into account the low growth trend of such values, we show that the reversibility value of a waste storage site is derisory

  12. Glass containing radioactive nuclear waste

    International Nuclear Information System (INIS)

    Boatner, L.A.; Sales, B.C.

    1985-01-01

    Lead-iron phosphate glasses containing a high level of Fe 2 O 3 for use as a storage medium for high-level-radioactive nuclear waste. By combining lead-iron phosphate glass with various types of simulated high-level nuclear waste, a highly corrosion resistant, homogeneous, easily processed glass can be formed. For corroding solutions at 90 C, with solution pH values in the range between 5 and 9, the corrosion rate of the lead-iron phosphate nuclear waste glass is at least 10 2 to 10 3 times lower than the corrosion rate of a comparable borosilicate nuclear waste glass. The presence of Fe 2 O 3 in forming the lead-iron phosphate glass is critical. Lead-iron phosphate nuclear waste glass can be prepared at temperatures as low as 800 C, since they exhibit very low melt viscosities in the 800 to 1050 C temperature range. These waste-loaded glasses do not readily devitrify at temperatures as high as 550 C and are not adversely affected by large doses of gamma radiation in H 2 O at 135 C. The lead-iron phosphate waste glasses can be prepared with minimal modification of the technology developed for processing borosilicate glass nuclear waste forms. (author)

  13. Nuclear wastes: lets talk about

    International Nuclear Information System (INIS)

    1995-01-01

    This colloquium is entirely devoted to the problem of nuclear wastes management and to the anxiety of the French public opinion with respect to radioactive wastes in general. Nuclear wastes, generally are perceived as the unique problem of nuclear industry and as a new and unknown problem for which no solutions have been proposed so far. The aim of this colloquium is to demonstrate that such solutions exist and that, probably, they have been more thoroughly examined than in other industrial sectors. The two first talks give the inventory of possible solutions and the policy followed by nuclear operators for the conditioning and packaging of radioactive wastes. The other talks give the point of view of the producers and of the managers of nuclear wastes and the legal aspects of the management and storage of nuclear wastes, in particular the December 30, 1991 law. A particular attention is given to the importance of communication and public information in the successful management of nuclear wastes. (J.S.)

  14. Aspects of nuclear waste management

    International Nuclear Information System (INIS)

    Moberg, L.

    1990-10-01

    Six areas of concern in nuclear waste management have been dealt with in a four-year Nordic research programme. They include work in two international projects, Hydrocoin dealing with modelling of groundwater flow in crystalline rock, and Biomovs, concerned with biosphere models. Geologic questions of importance to the prediction of future behaviour are examined. Waste quantities from the decommissioning of nuclear power stations are estimated, and total amounts of waste to be transported in the Nordic countries are evaluated. Waste amounts from a hypothetical reactor accident are also calculated. (au)

  15. Nuclear waste. Storage at Vaalputs

    International Nuclear Information System (INIS)

    Anon.

    1984-01-01

    The Vaalputs nuclear waste dump site in Namaqualand is likely to be used to store used fuel from Koeberg, as well as low and intermediate waste. It is argued that Vaalputs is the most suitable site in the world for the disposal of nuclear waste. The Vaalputs site is sparsely populated, there are no mineral deposits of any value, the agricultural potential is minimal. It is a typical semi-desert area. Geologically it lend itself towards the ground-storage of used nuclear fuel

  16. Nuclear waste solidification

    Science.gov (United States)

    Bjorklund, William J.

    1977-01-01

    High level liquid waste solidification is achieved on a continuous basis by atomizing the liquid waste and introducing the atomized liquid waste into a reaction chamber including a fluidized, heated inert bed to effect calcination of the atomized waste and removal of the calcined waste by overflow removal and by attrition and elutriation from the reaction chamber, and feeding additional inert bed particles to the fluidized bed to maintain the inert bed composition.

  17. Nuclear waste solidification

    International Nuclear Information System (INIS)

    Bjorklund, W.J.

    1977-01-01

    High level liquid waste solidification is achieved on a continuous basis by atomizing the liquid waste and introducing the atomized liquid waste into a reaction chamber including a fluidized, heated inert bed to effect calcination of the atomized waste and removal of the calcined waste by overflow removal and by attrition and elutriation from the reaction chamber, and feeding additional inert bed particles to the fluidized bed to maintain the inert bed composition

  18. National energy planning with nuclear option

    International Nuclear Information System (INIS)

    Soetrisnanto, Arnold Y.; Hastowo, Hudi; Soentono, Soedyartomo

    2002-01-01

    National energy planning with nuclear option. Energy planning development is a part of the sustainable development that supports the attainment of national development goals. The objective of the study is to support the national planning and decision-making process in the energy and electric sector in Indonesia with nuclear option for period of 1998-2027. This study performs the provision of detailed economic sector and regional energy demand projection by MAED simulation model based on the economic and population scenarios. The optimization of the future energy supply such as electricity supply taking all known Indonesian energy sources and all relevant technologies into consideration by MARKAL Model. The results shows that Indonesia's need for final energy is forecasted to increase two times, from 4028,4 PJ at the beginning of study become 8145,6 PJ at the end of study. Performing the sensitivity study, it is predicted that nuclear energy could be introduced in the Java-Bali electricity grid about year 2016

  19. Engineering Options Assessment Report. Nitrate Salt Waste Stream Processing

    Energy Technology Data Exchange (ETDEWEB)

    Anast, Kurt Roy [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-11-13

    This report examines and assesses the available systems and facilities considered for carrying out remediation activities on remediated nitrate salt (RNS) and unremediated nitrate salt (UNS) waste containers at Los Alamos National Laboratory (LANL). The assessment includes a review of the waste streams consisting of 60 RNS, 29 above-ground UNS, and 79 candidate below-ground UNS containers that may need remediation. The waste stream characteristics were examined along with the proposed treatment options identified in the Options Assessment Report . Two primary approaches were identified in the five candidate treatment options discussed in the Options Assessment Report: zeolite blending and cementation. Systems that could be used at LANL were examined for housing processing operations to remediate the RNS and UNS containers and for their viability to provide repackaging support for remaining LANL legacy waste.

  20. Engineering Options Assessment Report: Nitrate Salt Waste Stream Processing

    Energy Technology Data Exchange (ETDEWEB)

    Anast, Kurt Roy [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-11-18

    This report examines and assesses the available systems and facilities considered for carrying out remediation activities on remediated nitrate salt (RNS) and unremediated nitrate salt (UNS) waste containers at Los Alamos National Laboratory (LANL). The assessment includes a review of the waste streams consisting of 60 RNS, 29 aboveground UNS, and 79 candidate belowground UNS containers that may need remediation. The waste stream characteristics were examined along with the proposed treatment options identified in the Options Assessment Report . Two primary approaches were identified in the five candidate treatment options discussed in the Options Assessment Report: zeolite blending and cementation. Systems that could be used at LANL were examined for housing processing operations to remediate the RNS and UNS containers and for their viability to provide repackaging support for remaining LANL legacy waste.

  1. Advanced waste forms from spent nuclear fuel

    International Nuclear Information System (INIS)

    Ackerman, J.P.; McPheeters, C.C.

    1995-01-01

    More than one hundred spent nuclear fuel types, having an aggregate mass of more than 5000 metric tons (2700 metric tons of heavy metal), are stored by the United States Department of Energy. This paper proposes a method for converting this wide variety of fuel types into two waste forms for geologic disposal. The method is based on a molten salt electrorefining technique that was developed for conditioning the sodium-bonded, metallic fuel from the Experimental Breeder Reactor-II (EBR-II) for geologic disposal. The electrorefining method produces two stable, optionally actinide-free, high-level waste forms: an alloy formed from stainless steel, zirconium, and noble metal fission products, and a ceramic waste form containing the reactive metal fission products. Electrorefining and its accompanying head-end process are briefly described, and methods for isolating fission products and fabricating waste forms are discussed

  2. Nuclear waste transmutation

    International Nuclear Information System (INIS)

    Salvatores, M.; Zaetta, A.; Delpech, M.; Girard, C.; Slessarev, I.; Tommasi, J.

    1994-01-01

    A deep repository for safe long-term storage of long-lived radioactive materials (waste) arising from nuclear fuel irradiation in reactors is a need generally accepted, whatever the strategy envisaged for further use of the irradiated fuel (e.g.: reprocessing and re-use of uranium and plutonium; no reprocessing and final disposal). To assess the impact on the environment of a waste repository, one is lead naturally to consider the impact of radiation on man and to define the radiotoxicity of the different isotopes. The toxicity of the materials stored in a repository is function of time and at a given time is the sum of the activities of each radionuclide multiplied by appropriate danger coefficients. This time dependent sum R, is a source of 'potential' radiotoxicity. It has been pointed out (in reference 1), that R does not measure 'risk', which has to take into account 'actual pathways and probability of radioactive release to the biosphere'. It is well understood that (e.g. in the case of spent PWR fuel) the main contributor to R are actinides, Pu being the main component (see table I). In the case of risk, the situation is by far more complex and dependent on the modeling of different geological environments. In the analysis made in reference 1 the predominant role of Tc-99, I-129 and Cs-135 has been pointed out. The same analysis also stresses that actinides will be by far less relevant with respect to the highly soluble and mobile fission products. (authors). 13 refs., 2 tabs., 2 figs

  3. Training options for countering nuclear smuggling

    International Nuclear Information System (INIS)

    Ball, D Y; Erickson, S A

    1999-01-01

    The burden of stopping a nuclear smuggling attempt at the border rests most heavily on the front-line customs inspector. He needs to know how to use the technological tools at his disposal, how to discern tell-tale anomalies in export documents and manifests, how to notice psychological signs of a smuggler's tension, and how to search anything that might hide nuclear material. This means that assistance in the counter-nuclear smuggling training of customs officers is one of the most critical areas of help that the United States can provide. This paper discusses the various modes of specialized training, both in the field and in courses, as well as the types of assistance that can be provided. Training for nuclear customs specialists, and supervisors and managers of nuclear smuggling detection systems is also important, and differs from front-line inspector training in several aspects. The limitations of training and technological tools such as expert centers that will overcome these limitations are also discussed. Training assistance planned by DOE/NN-43 to Russia within the Second Line of Defense program is discussed in the light of these options, and future possibilities for such training are projected

  4. Energy and the environment: 'the nuclear option'

    International Nuclear Information System (INIS)

    Hawley, Robert

    1997-01-01

    The world's consumption of primary energy continues to rise rapidly, mainly because of the developing countries who cannot yet provide the services essential to improving the quality of life. Increasing energy consumption, the effect it will have on the world's finite resources and, more importantly, on the environment, leave the world's population facing serious challenges. This paper will briefly consider the power generation technology options that offer sustainable development including the role that nuclear power plays today, and will need to play in the next century, to preserve and improve the quality of life worldwide. (author)

  5. New materials options for nuclear systems

    International Nuclear Information System (INIS)

    Jones, R.H.; Garner, F.A.; Bruemmer, S.M.; Gelles, D.S.

    1989-01-01

    Development of new materials for nuclear reactor systems is continuing to produce options for improved reactor designs. Materials with reduced environment-induced crack growth is a key materials issue for the light water reactor (LWR) industry while the development of low activation ferritic, austenitic and vanadium alloys has been an active area for materials development for fusion reactor structural applications. Development of advanced materials such as metal matrix and ceramic matrix composites for reactor systems have received a limited amount of attention. (author)

  6. Nuclear waste management. Pioneering solutions from Finland

    International Nuclear Information System (INIS)

    Rasilainen, Kari

    2016-01-01

    Presentation outline: Background: Nuclear energy in Finland; Nuclear Waste Management (NWM) Experiences; Low and Intermediate Level Waste (LILW); High Level Waste - Deep Geological Repository (DGR); NWM cost estimate in Finland; Conclusions: World-leading expert services

  7. Underground nuclear waste storage backed

    International Nuclear Information System (INIS)

    Long, J.R.

    1978-01-01

    Latest to hold hearings on nuclear waste disposal problems is the Senate Commerce Subcommittee on Science, Technology and Space. Testimonies by John M. Deutch, Rustum Roy (presenting results of National Research Council panel on waste solidification), and Darleane C. Hoffman are summarized

  8. Nuclear wastes; Dechets nucleaires

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    Here is made a general survey of the situation relative to radioactive wastes. The different kinds of radioactive wastes and the different way to store them are detailed. A comparative evaluation of the situation in France and in the world is made. The case of transport of radioactive wastes is tackled. (N.C.)

  9. Radioactive Waste Generation in Pyro-SFR Nuclear Fuel Cycle

    International Nuclear Information System (INIS)

    Gao, Fanxing; Park, Byung Heung; Ko, Won Il

    2011-01-01

    Which nuclear fuel cycle option to deploy is of great importance in the sustainability of nuclear power. SFR fuel cycle employing pyroprocessing (named as Pyro- SFR Cycle) is one promising fuel cycle option in the near future. Radioactive waste generation is a key criterion in nuclear fuel cycle system analysis, which considerably affects the future development of nuclear power. High population with small territory is one special characteristic of ROK, which makes the waste management pretty important. In this study, particularly the amount of waste generation with regard to the promising advanced fuel cycle option was evaluated, because the difficulty of deploying an underground repository for HLW disposal requires a longer time especially in ROK

  10. Hot isostatic press waste option study report

    International Nuclear Information System (INIS)

    Russell, N.E.; Taylor, D.D.

    1998-02-01

    A Settlement Agreement between the Department of Energy and the State of Idaho mandates that all high-level radioactive waste now stored at the Idaho Chemical Processing Plant be treated so that it is ready to move out of Idaho for disposal by the target date of 2035. This study investigates the immobilization of all Idaho Chemical Processing Plant calcine, including calcined sodium bearing waste, via the process known as hot isostatic press, which produces compact solid waste forms by means of high temperature and pressure (1,050 C and 20,000 psi), as the treatment method for complying with the settlement agreement. The final waste product would be contained in stainless-steel canisters, the same type used at the Savannah River Site for vitrified waste, and stored at the Idaho National Engineering and Environmental Laboratory until a national geological repository becomes available for its disposal. The waste processing period is from 2013 through 2032, and disposal at the High Level Waste repository will probably begin sometime after 2065

  11. Hot isostatic press waste option study report

    Energy Technology Data Exchange (ETDEWEB)

    Russell, N.E.; Taylor, D.D.

    1998-02-01

    A Settlement Agreement between the Department of Energy and the State of Idaho mandates that all high-level radioactive waste now stored at the Idaho Chemical Processing Plant be treated so that it is ready to move out of Idaho for disposal by the target date of 2035. This study investigates the immobilization of all Idaho Chemical Processing Plant calcine, including calcined sodium bearing waste, via the process known as hot isostatic press, which produces compact solid waste forms by means of high temperature and pressure (1,050 C and 20,000 psi), as the treatment method for complying with the settlement agreement. The final waste product would be contained in stainless-steel canisters, the same type used at the Savannah River Site for vitrified waste, and stored at the Idaho National Engineering and Environmental Laboratory until a national geological repository becomes available for its disposal. The waste processing period is from 2013 through 2032, and disposal at the High Level Waste repository will probably begin sometime after 2065.

  12. Permanent Disposal of Nuclear Waste in Salt

    Science.gov (United States)

    Hansen, F. D.

    2016-12-01

    Salt formations hold promise for eternal removal of nuclear waste from our biosphere. Germany and the United States have ample salt formations for this purpose, ranging from flat-bedded formations to geologically mature dome structures. Both nations are revisiting nuclear waste disposal options, accompanied by extensive collaboration on applied salt repository research, design, and operation. Salt formations provide isolation while geotechnical barriers reestablish impermeability after waste is placed in the geology. Between excavation and closure, physical, mechanical, thermal, chemical, and hydrological processes ensue. Salt response over a range of stress and temperature has been characterized for decades. Research practices employ refined test techniques and controls, which improve parameter assessment for features of the constitutive models. Extraordinary computational capabilities require exacting understanding of laboratory measurements and objective interpretation of modeling results. A repository for heat-generative nuclear waste provides an engineering challenge beyond common experience. Long-term evolution of the underground setting is precluded from direct observation or measurement. Therefore, analogues and modeling predictions are necessary to establish enduring safety functions. A strong case for granular salt reconsolidation and a focused research agenda support salt repository concepts that include safety-by-design. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. Author: F. D. Hansen, Sandia National Laboratories

  13. Identification and evaluation of alternative radioactive waste categorisation options

    International Nuclear Information System (INIS)

    Maul, P.R.; Smith, G.M.; Stenhouse, M.J.; Watkins, B.M.

    1996-09-01

    The purpose of the research described in this report was to consider the options for future UK radioactive waste categorisation, to evaluate the advantages and disadvantages of each option and, as a result, to identify any which might be viable practical alternatives to the current arrangements. The review process included meetings with large and small waste producers, a wider consultation exercise using a questionnaire, a presentation to RWMAC, and discussion with representatives of the UK regulators. These consultations provided the basis for the formulation and evaluation of a number of alternative waste categorisation schemes. (UK)

  14. 77 FR 19278 - Informational Meeting on Nuclear Fuel Cycle Options

    Science.gov (United States)

    2012-03-30

    ... DEPARTMENT OF ENERGY Informational Meeting on Nuclear Fuel Cycle Options AGENCY: Office of Fuel... activities leading to a comprehensive evaluation and screening of nuclear fuel cycle options in 2013. At this... fuel cycle options developed for the evaluation and screening provides a comprehensive representation...

  15. Nuclear waste information made accessible: A case study

    International Nuclear Information System (INIS)

    Willis, Y.A.; Morris, W.R.

    1987-01-01

    The Nuclear Industry has made great technical strides toward the safe and efficient management of nuclear waste but public acceptance and cooperation lag far behind. The challenge is to better inform the public of the technical options available to safely manage the various types of nuclear wastes. Westinghouse responded to this challenge by creating the Nuclear Waste Management Outreach Program with the goal to make nuclear waste information accessible as well as available. The Outreach Program is an objective informational seminar series comprises of modules which may be adopted to various audiences. The seminars deal with radioactive wastes and the legislative and regulatory framework within which the Industry must function. The Outreach Program provides a forum to present relevant information, encourage an interchange of ideas and experiences, elicit feedback, and it provides for field site visits where feasible and appropriate. The program has been well received by the participants including technologists, government officials, educators, and the general public

  16. Vitrification chemistry and nuclear waste

    International Nuclear Information System (INIS)

    Plodinec, M.J.

    1985-01-01

    The vitrification of nuclear waste offers unique challenges to the glass technologist. The waste contains 50 or 60 elements, and often varies widely in composition. Most of these elements are seldom encountered in processing commercial glasses. The melter to vitrify the waste must be able to tolerate these variations in composition, while producing a durable glass. This glass must be produced without releasing hazardous radionuclides to the environment during any step of the vitrification process. Construction of a facility to convert the nearly 30 million gallons of high-level nuclear waste at the Savannah River Plant into borosilicate glass began in late 1983. In developing the vitrification process, the Savannah River Laboratory has had to overcome all of these challenges to the glass technologist. Advances in understanding in three areas have been crucial to our success: oxidation-reduction phenomena during glass melting; the reaction between glass and natural wastes; and the causes of foaming during glass melting

  17. Problems with military nuclear waste

    International Nuclear Information System (INIS)

    Lawless, W.F.

    1985-01-01

    Spent fuel elements contain the largest amount of radioactivity, but commercial spent fuel is not presently being reprocessed in the US, so the wastes are left contained within spent fuel assemblies and are not immediately accessible to the environment. By reprocessing military spent fuel to separate plutonium and unspent uranium from the highly radioactive and high-heat fission product waste, known as high-level waste (99.5% fission products and about 0.5% plutonium and uranium), nuclear weapons manufacture produces more dangerous radioactive wastes than do current commercial processes. The Department of Energy standards should be subject to an environmental impact study. 27 references

  18. A case for reviving the nuclear option

    International Nuclear Information System (INIS)

    Smith, S.H. Jr.

    1991-01-01

    The US simply cannot afford to ignore an energy source that provides the economic, environmental, and strategic benefits that nuclear power has provided over the past three decades. Compared to the mix of coal, oil, and gas that would have been used to generate electricity in its absence, nuclear power has saved American consumers almost $5 billion in electricity charges since 1973; has cut annual SO 2 emissions by 5 million tons, NO x emissions by 2 million tons, and CO 2 emissions by 128 million tons; and has reduced annual oil imports by 270 million barrels. Indications are that the new advanced design reactors presently under development will be able to provide consumers with competitively priced electricity for decades to come. However, political issues, not technical ones, stand in the way. The industry is doing its part to make nuclear energy a viable option. But the industry cannot do it alone. Universities, environmental groups, political organizations, and others also have important roles to play

  19. Public attitudes about nuclear waste

    International Nuclear Information System (INIS)

    Bisconti, A.S.

    1991-01-01

    There is general agreement that nuclear waste is an important national issue. It certainly is important to the industry. congress, too, gives high priority to nuclear waste disposal. In a recent pool by Reichman, Karten, Sword, 300 congressional staffers named nuclear waste disposal as the top nuclear energy-related legislative issue for Congress to address. In this paper most of the data the author discusses are from national polls that statistically represent the opinions of all American adults all across the country, as well as polls conducted in Nevada that statistically represent the opinions of all adults in that state. All the polls were by Cambridge Reports and have a margin of error of ± 3%

  20. Public and nuclear waste management

    International Nuclear Information System (INIS)

    Zinberg, D.

    1979-01-01

    Public concern on nuclear power is centered on the waste disposal problem. Some of the environmentalist and anti-nuclear movements are discussed, both in USA and abroad. The public is skeptical in part because of the secrecy legacy, although scientists are still largely trusted. However, the scientists are far from united in their viewpoints on the nuclear issue. The task for scientists are to put into perspective the limits to scientific knowledge and to interpret this knowledge to the public

  1. Encapsulation of nuclear wastes

    International Nuclear Information System (INIS)

    Arnold, J.L.; Boyle, R.W.

    1978-01-01

    Toxic waste materials are encapsulated by the method wherein the waste material in liquid or finely divided solid form is uniformly dispersed in a vinyl ester resin or an unsaturated polyester and the resin cured under conditions that the exotherm does not rise above the temperature at which the integrity of the encapsulating material is destroyed

  2. A new option for exploitage of future nuclear energy. Accelerator driven radioactive clean nuclear power system

    International Nuclear Information System (INIS)

    Ding Dazhao

    2000-01-01

    Nuclear energy is an effective, clean and safe energy resource. But some shortages of the nuclear energy system presently commercial available obstruct further development of the nuclear energy by heavy nuclear fission. Those are final disposal of the high level radioactive waste, inefficient use of the uranium resource and safety issue of the system. Innovative technical option is seeking for by the nuclear scientific community in recent ten years in aiming to overcome these obstacles, namely, accelerator driven sub-critical system (ADS). This hybrid system may bridge over the gap between presently commercial available nuclear power system and the full exploitation of the fusion energy. The basic principle of ADS is described and its capability in waste transmutation, conversion of the nuclear fuel are demonstrated by two examples--AD-fast reactor and AD-heavy water thermal reactor. The feasibility of ADS and some projects in US, Japan, etc are briefly discussed. The rationale in promoting the R and D of ADS in China is emphasized as China is at the beginning stage of its ambitious project in construction of the nuclear power

  3. Storage - Nuclear wastes are overflowing

    International Nuclear Information System (INIS)

    Dupin, Ludovic

    2016-01-01

    This article highlights that the dismantling of French nuclear installations will generate huge volumes of radioactive wastes and that France may lack space to store them. The Cigeo project (underground storage) only concerns 0.2 per cent of the nuclear waste volume produced by France in 50 years. If storage solutions exist for less active wastes, they will soon be insufficient, notably because of the quantity of wastes produced by the dismantling of existing reactors and fuel processing plants. Different assessments of these volumes are evoked. In order to store them, the ANDRA made a second call for innovating projects which would enable a reduction of this volume by 20 to 30 per cent. The article also evokes projects selected after the first call for projects. They mainly focus on nuclear waste characterization which will result in a finer management of wastes regarding their storage destination. Cost issues and the opposition of anti-nuclear NGOs are still obstacles to the development of new sites

  4. Waste management considerations in nuclear facility decommissioning

    International Nuclear Information System (INIS)

    Elder, H.K.; Murphy, E.S.

    1981-01-01

    Decommissioning of nuclear facilities involves the management of significant quantities of radioactive waste. This paper summarizes information on volumes of waste requiring disposal and waste management costs developed in a series of decommissioning studies performed for the U.S. Nuclear Regulatory Commission by the Pacific Northwest Laboratory. These studies indicate that waste management is an important cost factor in the decommissioning of nuclear facilities. Alternatives for managing decommissioning wastes are defined and recommendations are made for improvements in waste management practices

  5. Hanford Waste Vitrification Plant capacity increase options

    International Nuclear Information System (INIS)

    Larson, D.E.

    1996-04-01

    Studies are being conducted by the Hanford Waste Vitrification Plant (HWVP) Project on ways to increase the waste processing capacity within the current Vitrification Building structural design. The Phase 1 study on remote systems concepts identification and extent of capacity increase was completed. The study concluded that the HWVP capacity could be increased to four times the current capacity with minor design adjustments to the fixed facility design, and the required design changes would not impact the current footprint of the vitrification building. A further increase in production capacity may be achievable but would require some technology development, verification testing, and a more systematic and extensive engineering evaluation. The primary changes included a single advance melter with a higher capacity, new evaporative feed tank, offgas quench collection tank, ejector venturi scrubbers, and additional inner canister closure station,a smear test station, a new close- coupled analytical facility, waste hold capacity of 400,000 gallon, the ability to concentrate out-of-plant HWVP feed to 90 g/L waste oxide concentration, and limited changes to the current base slab construction package

  6. Implications of theories of asteroid and comet impact for policy options for management of spent nuclear fuel and high-level radioactive wastes

    Science.gov (United States)

    Trask, Newell J.

    1994-01-01

    Concern with the threat posed by terrestrial asteroid and comet impacts has heightened as the catastrophic consequences of such events have become better appreciated. Although the probabilities of such impacts are very small, a reasonable question for debate is whether such phenomena should be taken into account in deciding policy for the management of spent fuel and high-level radioactive waste. The rate at which asteroid or comet impacts would affect areas of surface storage of radioactive waste is about the same as the estimated rate at which volcanic activity would affect the Yucca Mountain area. The Underground Retrievable Storage (URS) concept could satisfactorily reduce the risk from cosmic impact with its associated uncertainties in addition to providing other benefits described by previous authors.

  7. Implications of theories of asteroid and comet impact for policy options for management of spent nuclear fuel and high-level radioactive wastes

    International Nuclear Information System (INIS)

    Trask, N.J.

    1994-01-01

    Concern with the threat posed by terrestrial asteroid and comet impacts has heightened as the catastrophic consequences of such events have become better appreciated. Although the probabilities of such impacts are very small, a reasonable question for debate is whether such phenomena should be taken into account in deciding policy for the management of spent fuel and high-level radioactive waste. The rate at which asteroid or comet impacts would affect areas of surface storage of radioactive waste is about the same as the estimated rate at which volcanic activity would affect the Yucca Mountain area. The Underground Retrievable Storage (URS) concept could satisfactorily reduce the risk from cosmic impact with its associated uncertainties in addition to providing other benefits described by previous authors

  8. Impact of Nuclear Energy Futures on Advanced Fuel Cycle Options

    International Nuclear Information System (INIS)

    Brent W. Dixon; Steven J. Piet

    2004-01-01

    The Nuclear Waste Policy Act requires the Secretary of Energy to inform Congress before 2010 on the need for a second geologic repository for spent nuclear fuel. By that time, the spent fuel discharged from current commercial reactors will exceed the statutory limit of the first repository (63,000 MTiHM commercial, 7,000 MT non-commercial). There are several approaches to eliminate the need for another repository in this century. This paper presents a high-level analysis of these spent fuel management options in the context of a full range of possible nuclear energy futures. The analysis indicates the best option to implement varies depending on the nuclear energy future selected. The first step in understanding the need for different spent fuel management approaches is to understand the size of potential spent fuel inventories. A full range of potential futures for domestic commercial nuclear energy is considered. These energy futures are as follows: 1. Existing License Completion - Based on existing spent fuel inventories plus extrapolation of future plant-by-plant discharges until the end of each operating license, including known license extensions. 2. Extended License Completion - Based on existing spent fuel inventories plus a plant-by-plant extrapolation of future discharges assuming on all operating plants having one 20-year extension. 3. Continuing Level Energy Generation - Based on extension of the current ∼100 GWe installed commercial base and average spent fuel discharge of 2100 MT/yr through the year 2100. 4. Continuing Market Share Generation - Based on a 1.8% compounded growth of the electricity market through the year 2100, matched by growing nuclear capacity and associated spent fuel discharge. 5. Growing Market Share Generation - Extension of current nuclear capacity and associated spent fuel discharge through 2100 with 3.2% growth representing 1.5% market growth (all energy, not just electricity) and 1.7% share growth. Share growth results in

  9. Multi-criteria Evaluation of Nuclear Option

    International Nuclear Information System (INIS)

    Feretic, D.; Tomsic, Z.; Jaksic, D.

    2002-01-01

    When evaluating power system expansion scenarios there is a need to take into consideration a range of measurable and non-measurable impacts. Measurable impacts are fixed and variable production costs and, recently, external costs. Non-measurable impacts include public attitude to certain energy technology and investor's risk in achieving the expected profit (regulatory and political risk). Public attitude has a large and sometimes essential impact on decision-making. It is mostly associated with the expected environmental impact of a potential power plant and can be divided in rational and non-rational part. Rational part, which is in proportion with scientifically approved environmental impact of energy options (inversely proportional to external costs) is relatively small, while the other, non-rational category which is not proportional with the actual environmental impact (especially in the case of nuclear power), is much larger. Investor's risk in achieving the expected profit is mostly associated with possible changes of domestic or foreign regulations or policy that can influence power plant operation and long-term fuel availability and price. Two factors that affect decision-making should be distinguished. The first is the total impact of certain non-measurable factor and the other is the impact of certain technology on that non-measurable factor like public impact, for example. The objective of multi-criteria evaluation, after weighting and quantification of all impacts is to determine the most acceptable power system expansion option. In the article a simplified quantification will be made of measurable (investment costs, annual maintenance costs, fuel price, indirect costs of power plants) and non-measurable (public attitude, investor's risk) elements that affect future investment decision. For that purpose possible relative values of non-measurable impacts of different options will be determined (their weights and impact on relative increase of annual

  10. Treating nuclear waste

    International Nuclear Information System (INIS)

    Marriott, R.; Henyey, F.S.; Hochstim, A.R.

    1984-01-01

    A method of decreasing the amount of relatively long-lived fission products in radioactive waste materials comprises the steps of: separating relatively short-lived radioactive nuclides and stable nuclides from the waste material and storing at least some of them, exposing the remaining waste to a neutron flux in order to induce transmutations, separating the relatively short-lived radioactive nuclides and stable nuclides from the exposed materials and storing at least some of them, and repeating the exposure and separation steps

  11. Glasses and nuclear waste vitrification

    International Nuclear Information System (INIS)

    Ojovan, Michael I.

    2012-01-01

    Glass is an amorphous solid material which behaves like an isotropic crystal. Atomic structure of glass lacks long-range order but possesses short and most probably medium range order. Compared to crystalline materials of the same composition glasses are metastable materials however crystallisation processes are kinetically impeded within times which typically exceed the age of universe. The physical and chemical durability of glasses combined with their high tolerance to compositional changes makes glasses irreplaceable when hazardous waste needs immobilisation for safe long-term storage, transportation and consequent disposal. Immobilisation of radioactive waste in glassy materials using vitrification has been used successfully for several decades. Nuclear waste vitrification is attractive because of its flexibility, the large number of elements which can be incorporated in the glass, its high corrosion durability and the reduced volume of the resulting wasteform. Vitrification involves melting of waste materials with glass-forming additives so that the final vitreous product incorporates the waste contaminants in its macro- and micro-structure. Hazardous waste constituents are immobilised either by direct incorporation into the glass structure or by encapsulation when the final glassy material can be in form of a glass composite material. Both borosilicate and phosphate glasses are currently used to immobilise nuclear wastes. In addition to relatively homogeneous glasses novel glass composite materials are used to immobilise problematic waste streams. (author)

  12. Can shale safely host US nuclear waste?

    Science.gov (United States)

    Neuzil, C.E.

    2013-01-01

    "Even as cleanup efforts after Japan’s Fukushima disaster offer a stark reminder of the spent nuclear fuel (SNF) stored at nuclear plants worldwide, the decision in 2009 to scrap Yucca Mountain as a permanent disposal site has dimmed hope for a repository for SNF and other high-level nuclear waste (HLW) in the United States anytime soon. About 70,000 metric tons of SNF are now in pool or dry cask storage at 75 sites across the United States [Government Accountability Office, 2012], and uncertainty about its fate is hobbling future development of nuclear power, increasing costs for utilities, and creating a liability for American taxpayers [Blue Ribbon Commission on America’s Nuclear Future, 2012].However, abandoning Yucca Mountain could also result in broadening geologic options for hosting America’s nuclear waste. Shales and other argillaceous formations (mudrocks, clays, and similar clay-rich media) have been absent from the U.S. repository program. In contrast, France, Switzerland, and Belgium are now planning repositories in argillaceous formations after extensive research in underground laboratories on the safety and feasibility of such an approach [Blue Ribbon Commission on America’s Nuclear Future, 2012; Nationale Genossenschaft für die Lagerung radioaktiver Abfälle (NAGRA), 2010; Organisme national des déchets radioactifs et des matières fissiles enrichies, 2011]. Other nations, notably Japan, Canada, and the United Kingdom, are studying argillaceous formations or may consider them in their siting programs [Japan Atomic Energy Agency, 2012; Nuclear Waste Management Organization (NWMO), (2011a); Powell et al., 2010]."

  13. Glass and nuclear wastes

    International Nuclear Information System (INIS)

    Sombret, C.

    1982-10-01

    Glass shows interesting technical and economical properties for long term storage of solidified radioactive wastes by vitrification or embedding. Glass composition, vitrification processes, stability under irradiation, thermal stability and aqueous corrosion are studied [fr

  14. French people and nuclear wastes

    International Nuclear Information System (INIS)

    D'Iribarne, Ph.

    2005-01-01

    On March 21, 2005, the French minister of industry gave to the author of this document, the mission to shade a sociological light on the radioactive wastes perception by French people. The objective of this study was to supply an additional information before the laying down in 2006 of the decisions about the management of high-level and long-lived radioactive wastes. This inquiry, carried out between April 2004 and March 2005, stresses on the knowledge and doubts of the questioned people, on the vision they have of radioactive wastes and of their hazards, and on their opinion about the actors in concern (experts, nuclear companies, government, anti-nuclear groups, public). The last two parts of the report consider the different ways of waste management under study today, and the differences between the opinion of people living close to the Bure site and the opinion of people living in other regions. (J.S.)

  15. Equity and nuclear waste disposal

    International Nuclear Information System (INIS)

    Shrader-Frechette, K.

    1994-01-01

    Following the recommendations of the US National Academy of Sciences and the mandates of the 1987 Nuclear Waste Policy Amendments Act, the US Department of Energy has proposed Yucca Mountain, Nevada as the site of the world's first permanent repository for high-level nuclear waste. The main justification for permanent disposal (as opposed to above-ground storage) is that it guarantees safety by means of waste isolation. This essay argues, however, that considerations of equity (safer for whom?) undercut the safety rationale. The article surveys some prima facie arguments for equity in the distribution of radwaste risks and then evaluates four objections that are based, respectively, on practicality, compensation for risks, scepticism about duties to future generations, and the uranium criterion. The conclusion is that, at least under existing regulations and policies, permanent waste disposal is highly questionable, in part, because it fails to distribute risk equitably or to compensate, in full, for this inequity

  16. Nuclear waste and nimby

    Energy Technology Data Exchange (ETDEWEB)

    Marshall, W

    1986-06-01

    A report of the Tizard lecture by Lord Marshall, chairman of the UK CEGB, on the health risks associated with the disposal of radioactive wastes is given. The risks from inhalation and ingestion of various types of radioactive waste disposal are compared to the risks from radioactive material occurring naturally in the average garden soil in the UK occupying one tenth of an acre. The relative potential health risk from inhalation of coal ash is also contrasted.

  17. New Technological Options to Manage High Level Waste

    International Nuclear Information System (INIS)

    Gonzalez Romero, E. M.

    2007-01-01

    Nuclear energy renaissance and its expansion in time and space has renewed the need for minimization technologies applicable to nuclear wastes. The minimization technologies include new power reactor concepts, Generation IV, and dedicated technologies like Partitioning and Transmutation of the actinides contained in the spent fuel. These technologies apply the principle of classification and recycling to the spent fuel to transform what at present is an environmental hazard into an energy source. the waste minimization technologies are also relevant for countries planning the reduction or phase-out of nuclear energy, as they will allow minimizing the size and number of the final waste repositories. Present estimations indicate that reductions as large as a factor 100 in the amount (radiotoxicity) of long lived nuclear waste are feasibly, with a modest increase on the final electricity cost. (Author)

  18. Direct cementitious waste option study report

    International Nuclear Information System (INIS)

    Dafoe, R.E.; Losinski, S.J.

    1998-02-01

    A settlement agreement between the Department of Energy (DOE) and the State of Idaho mandates that all high-level radioactive waste (HLW) now stored at the Idaho Chemical Processing Plant (ICPP) will be treated so that it is ready to be moved out of Idaho for disposal by a target data of 2035. This study investigates the direct grouting of all ICPP calcine (including the HLW dry calcine and those resulting from calcining sodium-bearing liquid waste currently residing in the ICPP storage tanks) as the treatment method to comply with the settlement agreement. This method involves grouting the calcined waste and casting the resulting hydroceramic grout into stainless steel canisters. These canisters will be stored at the Idaho National Engineering and Environmental Laboratory (INEEL) until they are sent to a national geologic repository. The operating period for grouting treatment will be from 2013 through 2032, and all the HLW will be treated and in interim storage by the end of 2032

  19. Direct cementitious waste option study report

    Energy Technology Data Exchange (ETDEWEB)

    Dafoe, R.E.; Losinski, S.J.

    1998-02-01

    A settlement agreement between the Department of Energy (DOE) and the State of Idaho mandates that all high-level radioactive waste (HLW) now stored at the Idaho Chemical Processing Plant (ICPP) will be treated so that it is ready to be moved out of Idaho for disposal by a target data of 2035. This study investigates the direct grouting of all ICPP calcine (including the HLW dry calcine and those resulting from calcining sodium-bearing liquid waste currently residing in the ICPP storage tanks) as the treatment method to comply with the settlement agreement. This method involves grouting the calcined waste and casting the resulting hydroceramic grout into stainless steel canisters. These canisters will be stored at the Idaho National Engineering and Environmental Laboratory (INEEL) until they are sent to a national geologic repository. The operating period for grouting treatment will be from 2013 through 2032, and all the HLW will be treated and in interim storage by the end of 2032.

  20. Nuclear waste glass corrosion mechanisms

    International Nuclear Information System (INIS)

    Jantzen, C.M.

    1987-04-01

    Dissolution of nuclear waste glass occurs by corrosion mechanisms similar to those of other solids, e.g., metallurgical and mineralogic systems. Metallurgical phenomena such as active corrosion, passivation and immunity have been observed to be a function of the glass composition and the solution pH. Hydration thermodynamics was used to quantify the role of glass composition and its effect on the solution pH during dissolution. A wide compositional range of natural, lunar, medieval, and nuclear waste glasses, as well as some glass-ceramics were investigated. The factors observed to affect dissolution in deionized water are pertinent to the dissolution of glass in natural environments such as the groundwaters anticipated to interact with nuclear waste glass in a geologic repository. The effects of imposed pH and oxidation potential (Eh) conditions existing in natural environments on glass dissolution is described in the context of Pourbaix diagrams, pH potential diagrams, for glass

  1. Ethical aspects on Nuclear Waste

    International Nuclear Information System (INIS)

    Persson, Lars

    1989-01-01

    In an ethical assessment of how we shall deal with nuclear waste, one of the chief questions that arises is how to initiate action while at the same time taking into consideration uncertainties which are unavoidable seen from a long-term perspective. By means of different formulation and by proceeding from various starting-points, a two edged objective is established vis-a-vis repository facilities: safety in operation combined with reparability, with controls not necessary, but not impossible. Prerequisites for the realization of this objective are the continued advancement of knowledge and refinement of the qualifications required to deal with nuclear waste. The ethical considerations above could be the bases for the future legislation in the field of nuclear energy waste. (author)

  2. Advanced nuclear fuel cycles and radioactive waste management

    International Nuclear Information System (INIS)

    2006-01-01

    This study analyses a range of advanced nuclear fuel cycle options from the perspective of their effect on radioactive waste management policies. It presents various fuel cycle options which illustrate differences between alternative technologies, but does not purport to cover all foreseeable future fuel cycles. The analysis extends the work carried out in previous studies, assesses the fuel cycles as a whole, including all radioactive waste generated at each step of the cycles, and covers high-level waste repository performance for the different fuel cycles considered. The estimates of quantities and types of waste arising from advanced fuel cycles are based on best available data and experts' judgement. The effects of various advanced fuel cycles on the management of radioactive waste are assessed relative to current technologies and options, using tools such as repository performance analysis and cost studies. (author)

  3. Nuclear power and radioactive waste

    International Nuclear Information System (INIS)

    Grimston, M.

    1991-03-01

    The gap between the relative perceptions in the area of nuclear waste is wide. The broad view of the industry is that the disposal of nuclear waste is not a serious technical problem, and that solutions are already available to provide safe disposal of all our waste. The broad view of those who oppose the industry is that radioactive waste is so unpleasant, and will remain lethal for so long, that no acceptable policy will ever be developed, and so production of such waste (except, oddly, the significant amounts arising from uses of radioactive materials in medicine, agriculture, industrial safety research, etc) should stop immediately. This booklet will not attempt to describe in great detail the technicalities of the United Kingdom nuclear industry's current approach to radioactive waste: such issues are described in detail in other publications, especially those by Nirex. It is our intention to outline some of the main issues involved, and to associate these issues with the divergence in perceptions of various parties. (author)

  4. Underground storage of nuclear waste

    International Nuclear Information System (INIS)

    Russell, J.E.

    1977-06-01

    The objective of the National Waste Terminal Storage (NWTS) Program is to provide facilities in various deep geologic formations at multiple locations in the United States which will safely dispose of commerical radioactive waste. The NWTS Program is being administered for the Energy Research and Development Administration (ERDA) by the Office of Waste Isolation (OWI), Union Carbide Corporation, Nuclear Division. OWI manages projects that will lead to the location, construction, and operation of repositories, including all surface and underground engineering and facility design projects and technical support projects. 7 refs., 5 figs

  5. Underground storage of nuclear waste

    Energy Technology Data Exchange (ETDEWEB)

    Russell, J E

    1977-12-01

    The objective of the National Waste Terminal Storage (NWTS) Program is to provide facilities in various deep geologic formations at multiple locations in the United States which will safely dispose of commercial radioactive waste. The NWTS Program is being administered for the Energy Research and Development Administration (ERDA) by the Office of Waste Isolation (OWI), Union Carbide Corporation, Nuclear Division. OWI manages projects that will lead to the location, construction, and operation of repositories, including all surface and underground engineering and facility design projects and technical support projects.

  6. Underground storage tank integrated demonstration: Evaluation of pretreatment options for Hanford tank wastes

    International Nuclear Information System (INIS)

    Lumetta, G.J.; Wagner, M.J.; Colton, N.G.; Jones, E.O.

    1993-06-01

    Separation science plays a central role inn the pretreatment and disposal of nuclear wastes. The potential benefits of applying chemical separations in the pretreatment of the radioactive wastes stored at the various US Department of Energy sites cover both economic and environmental incentives. This is especially true at the Hanford Site, where the huge volume (>60 Mgal) of radioactive wastes stored in underground tanks could be partitioned into a very small volume of high-level waste (HLW) and a relatively large volume of low-level waste (LLW). The cost associated with vitrifying and disposing of just the HLW fraction in a geologic repository would be much less than those associated with vitrifying and disposing of all the wastes directly. Futhermore, the quality of the LLW form (e.g., grout) would be improved due to the lower inventory of radionuclides present in the LLW stream. In this report, we present the results of an evaluation of the pretreatment options for sludge taken from two different single-shell tanks at the Hanford Site-Tanks 241-B-110 and 241-U-110 (referred to as B-110 and U-110, respectively). The pretreatment options examined for these wastes included (1) leaching of transuranic (TRU) elements from the sludge, and (2) dissolution of the sludge followed by extraction of TRUs and 90 Sr. In addition, the TRU leaching approach was examined for a third tank waste type, neutralized cladding removal waste

  7. Comparative evaluation of radioactive waste management options. Final report

    International Nuclear Information System (INIS)

    Appel, D.; Kreusch, J.; Neumann, W.

    2001-05-01

    A comprehensive presentation of the various radioactive waste options under debate has not been made so far, let alone a comparative evaluation of the options with respect to their substantiated or assumed advantages or drawbacks. However, any appropriate discussion about the pros and cons of the specific options for final decision making has to be based on a comprehensive knowledge base drawn from profound comparative evaluation of essential options. Therefore, the study reported in this publication was to serve three major purposes: Presentation of the conditions and waste management policies and approaches in selected countries, in order to compile information about the various policy goals and the full scope of argumentation, as well as the range of individual arguments used for or against specific options. - Derivation of a methodology for evaluation, including development of criteria for a comparative and qualitative evaluation of options. - Identification of possible implications for a waste management strategy for Germany, derived from the results of the comparative evaluation and the examination of the reasonings and argumentation used in the various countries. (orig./CB) [de

  8. Impact assessment of waste management options in Singapore.

    Science.gov (United States)

    Tan, Reginald B H; Khoo, Hsien H

    2006-03-01

    This paper describes the application of life cycle assessment for evaluating various waste management options in Singapore, a small-island city state. The impact assessment method by SimaPro is carried out for comparing the potential environmental impacts of waste treatment options including landfilling, incineration, recycling, and composting. The inventory data include gases and leachate from landfills, air emissions and energy recovery from incinerators, energy (and emission) savings from recycling, composting gases, and transport pollution. The impact assessment results for climate change, acidification, and ecotoxicity show that the incineration of materials imposes considerable harm to both human health and the environment, especially for the burning of plastics, paper/cardboard, and ferrous metals. The results also show that, although some amount of energy can be derived from the incineration of wastes, these benefits are outweighed by the air pollution (heavy metals and dioxins/furans) that incinerators produce. For Singapore, landfill gases and leachate generate minimal environmental damage because of the nation's policy to landfill only 10% of the total disposed wastes. Land transportation and separation of waste materials also pose minimal environmental damage. However, sea transportation to the landfill could contribute significantly to acidification because of the emissions of sulfur oxides and nitrogen oxides from barges. The composting of horticultural wastes hardly imposes any environmental damage. Out of all the waste strategies, the recycling of wastes offers the best solution for environmental protection and improved human health for the nation. Significant emission savings can be realized through recycling.

  9. Nuclear Fuel Cycle Options Catalog: FY16 Improvements and Additions

    Energy Technology Data Exchange (ETDEWEB)

    Price, Laura L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Barela, Amanda Crystal [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Schetnan, Richard Reed [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Walkow, Walter M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-08-31

    The United States Department of Energy, Office of Nuclear Energy, Fuel Cycle Technology Program sponsors nuclear fuel cycle research and development. As part of its Fuel Cycle Options campaign, the DOE has established the Nuclear Fuel Cycle Options Catalog. The catalog is intended for use by the Fuel Cycle Technologies Program in planning its research and development activities and disseminating information regarding nuclear energy to interested parties. The purpose of this report is to document the improvements and additions that have been made to the Nuclear Fuel Cycle Options Catalog in the 2016 fiscal year.

  10. Nuclear Fuel Cycle Options Catalog FY15 Improvements and Additions.

    Energy Technology Data Exchange (ETDEWEB)

    Price, Laura L. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Barela, Amanda Crystal [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Schetnan, Richard Reed [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Walkow, Walter M. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)

    2015-11-01

    The United States Department of Energy, Office of Nuclear Energy, Fuel Cycle Technology Program sponsors nuclear fuel cycle research and development. As part of its Fuel Cycle Options campaign, the DOE has established the Nuclear Fuel Cycle Options Catalog. The catalog is intended for use by the Fuel Cycle Technologies Program in planning its research and development activities and disseminating information regarding nuclear energy to interested parties. The purpose of this report is to document the improvements and additions that have been made to the Nuclear Fuel Cycle Options Catalog in the 2015 fiscal year.

  11. Environmental analysis of closure options for waste sites at the Savannah River Plant

    International Nuclear Information System (INIS)

    Gordon, D.E.; King, C.M.; Looney, B.B.; Stephenson, D.E.; Johnson, W.F.

    1987-01-01

    Previously acceptable waste management practices (e.g., the use of unlined seepage basins) for discarding of wastes from nuclear materials production has resulted in occasional cases of groundwater contamination beneath some disposal sites, mainly in water-table aquifers. Groundwater contaminants include volatile organic compounds, heavy metals, radionuclides, and other chemicals. The closure of active and inactive waste sites that have received hazardous and/or low-level radioactive materials at the Savannah River Plant (SRP) is planned as part of an overall program to protect groundwater quality. DOE developed and submitted to Congress a groundwater protection plan for SRP. This initial plan and subsequent revisions provide the basis for closure of SRP waste sites to comply with applicable groundwater protection requirements. An environmental analysis of the closure options for the criteria waste sites that have received hazardous and/or low-level radioactive wastes was conducted to provide technical support. The several parts of this environmental analysis include description of geohydrologic conditions; determination of waste inventories; definition of closure options; modeling of environmental pathways; assessment of risk; and analysis of project costs. Each of these components of the overall analysis is described in turn in the following paragraphs. Production operations at SRP have generated a variety of solid, hazardous, and low-level radioactive waste materials. Several locations onplant have been used as waste disposal sites for solid and liquid wastes. Seventy-six individual waste sites at 45 distinct geographical locations on SRP have received hazardous, low-level radioactive, or mixed wastes. These waste sites can be categorized into 26 groupings according to the function of the waste disposed. 15 refs., 6 figs., 5 tabs

  12. Nuclear energy - an option for Croatian sustainable development

    International Nuclear Information System (INIS)

    Mikulicic, V.; Skanata, D.; Simic, Z.

    1996-01-01

    The uncertainties of growth in Croatian future energy, particularly electricity demand, together with growing environmental considerations and protection constraints, are such that Croatia needs to have flexibility to respond by having the option of expanding the nuclear sector. The paper deals with nuclear energy as an option for croatian sustainable economic development. The conclusion is that there is a necessity for extended use of nuclear energy in Croatia because most certainly nuclear energy can provide energy necessary to sustain progress. (author)

  13. Arctic Nuclear Waste Assessment Program

    International Nuclear Information System (INIS)

    Edson, R.

    1995-01-01

    The Arctic Nuclear Waste Assessment Program (ANWAP) was initiated in 1993 as a result of US congressional concern over the disposal of nuclear materials by the former Soviet Union into the Arctic marine environment. The program is comprised of appr. 70 different projects. To date appr. ten percent of the funds has gone to Russian institutions for research and logistical support. The collaboration also include the IAEA International Arctic Seas Assessment Program. The major conclusion from the research to date is that the largest signals for region-wide radionuclide contamination in the Arctic marine environment appear to arise from the following: 1) atmospheric testing of nuclear weapons, a practice that has been discontinued; 2) nuclear fuel reprocessing wastes carried in the Arctic from reprocessing facilities in Western Europe, and 3) accidents such as Chernobyl and the 1957 explosion at Chelyabinsk-65

  14. Nuclear waste transmutation

    International Nuclear Information System (INIS)

    Leray, S.

    1995-01-01

    Accelerators can play a role in the disposal of long-lived radioactive waste: an alternative to the storage in deep underground repositories might transmuting long-lived elements into stable or short-lived ones in subcritical systems driven by spallation neutrons. These neutrons would be produced by a high intensity, intermediate energy proton accelerator irradiating a heavy target. Similar systems have also been proposed to produce energy with a minimized waste inventory. Since a good knowledge of the spallation process is essential for designing and optimizing the target-blanket assembly, new programmes aimed at studying spallation reactions are in progress. (author). 6 figs

  15. Review of Nuclear Thermal Propulsion Ground Test Options

    Science.gov (United States)

    Coote, David J.; Power, Kevin P.; Gerrish, Harold P.; Doughty, Glen

    2015-01-01

    High efficiency rocket propulsion systems are essential for humanity to venture beyond the moon. Nuclear Thermal Propulsion (NTP) is a promising alternative to conventional chemical rockets with relatively high thrust and twice the efficiency of highest performing chemical propellant engines. NTP utilizes the coolant of a nuclear reactor to produce propulsive thrust. An NTP engine produces thrust by flowing hydrogen through a nuclear reactor to cool the reactor, heating the hydrogen and expelling it through a rocket nozzle. The hot gaseous hydrogen is nominally expected to be free of radioactive byproducts from the nuclear reactor; however, it has the potential to be contaminated due to off-nominal engine reactor performance. NTP ground testing is more difficult than chemical engine testing since current environmental regulations do not allow/permit open air testing of NTP as was done in the 1960's and 1970's for the Rover/NERVA program. A new and innovative approach to rocket engine ground test is required to mitigate the unique health and safety risks associated with the potential entrainment of radioactive waste from the NTP engine reactor core into the engine exhaust. Several studies have been conducted since the ROVER/NERVA program in the 1970's investigating NTP engine ground test options to understand the technical feasibility, identify technical challenges and associated risks and provide rough order of magnitude cost estimates for facility development and test operations. The options can be divided into two distinct schemes; (1) real-time filtering of the engine exhaust and its release to the environment or (2) capture and storage of engine exhaust for subsequent processing.

  16. A nuclear fuel cycle system dynamic model for spent fuel storage options

    International Nuclear Information System (INIS)

    Brinton, Samuel; Kazimi, Mujid

    2013-01-01

    Highlights: • Used nuclear fuel management requires a dynamic system analysis study due to its socio-technical complexity. • Economic comparison of local, regional, and national storage options is limited due to the public financial information. • Local and regional options of used nuclear fuel management are found to be the most economic means of storage. - Abstract: The options for used nuclear fuel storage location and affected parameters such as economic liabilities are currently a focus of several high level studies. A variety of nuclear fuel cycle system analysis models are available for such a task. The application of nuclear fuel cycle system dynamics models for waste management options is important to life-cycle impact assessment. The recommendations of the Blue Ribbon Committee on America’s Nuclear Future led to increased focus on long periods of spent fuel storage [1]. This motivated further investigation of the location dependency of used nuclear fuel in the parameters of economics, environmental impact, and proliferation risk. Through a review of available literature and interactions with each of the programs available, comparisons of post-reactor fuel storage and handling options will be evaluated based on the aforementioned parameters and a consensus of preferred system metrics and boundary conditions will be provided. Specifically, three options of local, regional, and national storage were studied. The preliminary product of this research is the creation of a system dynamics tool known as the Waste Management Module (WMM) which provides an easy to use interface for education on fuel cycle waste management economic impacts. Initial results of baseline cases point to positive benefits of regional storage locations with local regional storage options continuing to offer the lowest cost

  17. Immobilized low-level waste disposal options configuration study

    International Nuclear Information System (INIS)

    Mitchell, D.E.

    1995-02-01

    This report compiles information that supports the eventual conceptual and definitive design of a disposal facility for immobilized low-level waste. The report includes the results of a joint Westinghouse/Fluor Daniel Inc. evaluation of trade-offs for glass manufacturing and product (waste form) disposal. Though recommendations for the preferred manufacturing and disposal option for low-level waste are outside the scope of this document, relative ranking as applied to facility complexity, safety, remote operation concepts and ease of retrieval are addressed

  18. Regulating nuclear fuel waste

    International Nuclear Information System (INIS)

    1995-01-01

    When Parliament passed the Atomic Energy Control Act in 1946, it erected the framework for nuclear safety in Canada. Under the Act, the government created the Atomic Energy Control Board and gave it the authority to make and enforce regulations governing every aspect of nuclear power production and use in this country. The Act gives the Control Board the flexibility to amend its regulations to adapt to changes in technology, health and safety standards, co-operative agreements with provincial agencies and policy regarding trade in nuclear materials. This flexibility has allowed the Control Board to successfully regulate the nuclear industry for more than 40 years. Its mission statement 'to ensure that the use of nuclear energy in Canada does not pose undue risk to health, safety, security and the environment' concisely states the Control Board's primary objective. The Atomic Energy Control Board regulates all aspects of nuclear energy in Canada to ensure there is no undue risk to health, safety, security or the environment. It does this through a multi-stage licensing process

  19. Turbopump options for nuclear thermal rockets

    International Nuclear Information System (INIS)

    Bissell, W.R.; Gunn, S.V.

    1992-07-01

    Several turbopump options for delivering liquid nitrogen to nuclear thermal rocket (NTR) engines were evaluated and compared. Axial and centrifugal flow pumps were optimized, with and without boost pumps, utilizing current design criteria within the latest turbopump technology limits. Two possible NTR design points were used, a modest pump pressure rise of 1,743 psia and a relatively higher pump pressure rise of 4,480 psia. Both engines utilized the expander cycle to maximize engine performance for the long duration mission. Pump suction performance was evaluated. Turbopumps with conventional cavitating inducers were compared with zero NPSH (saturated liquid in the tanks) pumps over a range of tank saturation pressures, with and without boost pumps. Results indicate that zero NSPH pumps at high tank vapor pressures, 60 psia, are very similar to those with the finite NPSHs. At low vapor pressures efficiencies fall and turbine pressure ratios increase leading to decreased engine chamber pressures and or increased pump pressure discharges and attendant high-pressure component weights. It may be concluded that zero tank NSPH capabilities can be obtained with little penalty to the engine systems but boost pumps are needed if tank vapor pressure drops below 30 psia. Axial pumps have slight advantages in weight and chamber pressure capability while centrifugal pumps have a greater operating range. 10 refs

  20. Scientific basis for nuclear waste management XX

    International Nuclear Information System (INIS)

    Gray, W.J.; Triay, I.R.

    1997-01-01

    The proceedings are divided into the following topical sections: Glass formulations and properties; Glass/water interactions; Cements in radioactive waste management; Ceramic and crystalline waste forms; Spent nuclear fuel; Waste processing and treatment; Radiation effects in ceramics, glasses, and nuclear waste materials; Waste package materials; Radionuclide solubility and speciation; Radionuclide sorption; Radionuclide transport; Repository backfill; Performance assessment; Natural analogues; Excess plutonium dispositioning; and Chernobyl-related waste disposal issues. Papers within scope have been processed separately for inclusion on the data base

  1. An option for the management of radioactive waste in Argentina

    International Nuclear Information System (INIS)

    Jinchuk, D.

    2001-01-01

    Argentina has an active nuclear program, started in the 50's, which includes two nuclear power plants (NPPs) in operation and one under construction, providing 12% of power generated in the country. Together with eight research reactors, complete facilities at the front and back end of the fuel cycle, such as radioisotope production plants and supporting laboratories in four atomic centers with an extensive research and development (R and D) program and an independent nuclear regulatory authority, constitute the backbone of the country's nuclear activities, employing in total approximately 4500 people. These activities, together with the future decommissioning of nuclear facilities, generate a considerable amount of nuclear waste which needs to be treated properly according to international practices and standards. The safe management of these wastes has being always one of Comision Nacional de Energia Atomica's (CNEA) top priorities. (author)

  2. Preliminary study of the nuclear power option in Belarus

    International Nuclear Information System (INIS)

    Grusha, N.M.; Kazazyan, V.T.; Malykhin, A.P.; Mikhalevich, A.A.; Yakushau, A.P.; Yaroshevich, O.I.

    1999-01-01

    The Republic of Belarus possesses an economy with many energy intensive branches. At the same time the share of domestic energy resources is about 15% of total energy demand. The share of the payment for primary energy resources reaches 60% or USD 2 billion of the total energy import. That is comparable with the annual state budget. In addition to that, about half of the installed capacities have reached their operation life and 90% of the units have to be retrofitted or replaced until 2010. Thus, the problem of energy supply is one of the most important ones for Belarus' economy. The nuclear power appears to be one of the possible ways for solving the energy demand problem in Belarus which has, as in case of many countries of Central and South-Eastern Europe, limited energy resources. In 1992 - 1994 the works for studying the possibility of NPP siting were recommenced and six relatively competitive sites have been chosen out from 54 possible locations for NPP siting. Parallely, works on assessment of environmental NPP effect in these sites were carried out. As concerning the reactors to be purchased and installed in the sites selected, the following options were taken into consideration: PWR of American Company WESTINGHOUSE; PWR N4 of France Company FRAMATOME; PWR KONVOI of German Company SIEMENS. Also promising are the new generation of Russian Reactor NPP, namely NPP - 91, NPP - 92 and NPP with NGWWER - 640 reactors. Preliminary assessment having in view the feasibility characteristics, safety, reliability as well as the degree of completion shows the Russian projects NPP - 92 and NGWWER - 640 as more preferably at present. Concerning the radioactive waste management, sites for storing low and medium active waste have been determined as well as regions for high active waste disposal. At present Belarus Republic disposes of a definite production, engineering and scientific potential, which can be used when the nuclear power program will be launched. Construction

  3. The Geopolitics of Nuclear Waste.

    Science.gov (United States)

    Marshall, Eliot

    1991-01-01

    The controversy surrounding the potential storage of nuclear waste at Yucca Mountain, Nevada, is discussed. Arguments about the stability of the site and the groundwater situation are summarized. The role of the U.S. Department of Energy and other political considerations are described. (CW)

  4. Assessment of Used Nuclear Fuel Inventory Relative to Disposition Options

    International Nuclear Information System (INIS)

    Wagner, John C.; Peterson, Joshua L.; Mueller, Don; Gehin, Jess C.; Worrall, Andrew; Taiwo, Temitope; Nutt, Mark; Williamson, Mark A.; Todosow, Mike; Wigeland, Roald; Halsey, William; Omberg, Ronald; Swift, Peter; Carter, Joe

    2013-01-01

    This paper presents a technical assessment of the current inventory [∼70,150 metric tons of heavy metal (MTHM) as of 2011] of U.S.-discharged used nuclear fuel (UNF) to support decisions regarding fuel cycle strategies and research, development and demonstration (RD and D) needs. The assessment considered discharged UNF from commercial nuclear electricity generation and defense and research programs and determined that the current UNF inventory can be divided into the following three categories: 1. Disposal - excess material that is not needed for other purposes; 2. Research - material needed for RD and D purposes to support waste management (e.g., UNF storage, transportation, and disposal) and development of alternative fuel cycles (e.g., separations and advanced fuels/reactors); and 3. Recycle/Recovery - material with inherent and/or strategic value. A set of key assumptions and attributes relative to the disposition options was used to categorize the current UNF inventory. Based on consideration of RD and D needs, time frames and material needs for deployment of alternative fuel cycles, characteristics of the current UNF inventory, and possible uses to support national security interests, it was determined that the vast majority of the category, without the need for retrieval for reuse or research purposes. Access to the material in the Research and Recycle/Recovery categories should be retained to support RD and D needs and national security interests. This assessment does not assume any decision about future fuel cycle options or preclude any potential options, including those with potential recycling of commercial UNF, since the ∼2,000 MTHM that is generated annually could provide the feedstock needed for deployment of alternative fuel cycles.

  5. Review of nuclear waste isolation

    International Nuclear Information System (INIS)

    Richard, B.H.

    1978-06-01

    On Jun 22 and 23, 1978, Rockwell Hanford Operations assembled a committee of their personnel, subcontractors, and representatives of other waste isolation programs for a review of nuclear waste isolation. Appendix A lists the participants and their affiliations; Appendix B indicates the agenda. The purpose of the review was to gather experts in the areas pertaining to isolation of nuclear waste to discuss three basic issues that must be addressed in isolation studies. These were: the paths of transport to the biosphere; the barriers needed for containment; and the isolation time necessary for each radioactive isotope. In that these issues are media dependent, the basalt medium was emphasized. Conclusions of the review are described

  6. Issues related to public perception of radioactive waste management options

    International Nuclear Information System (INIS)

    Taylor, D.M.

    2007-01-01

    Public perceptions about radioactive waste are generally rather or even strongly negative. They are also very poorly informed. This is rather unfortunate as it is these perceptions that appear to greatly influence the Public views on nuclear energy in general. This, in turn, has had an influence on political decisions. On the other hand, in a very clear majority of the Member States of the European Union, the Public have already indicated that they would be ready to accept the important role of nuclear in their future energy mix as long as all the radioactive wastes can be safely managed. However perceptions about nuclear energy and radioactive waste should be seen in the context of the Public wider perceptions on energy and, in particular, the role in the future of different sources. It may be wrong for political decisions on nuclear energy in the future to rely to heavily on the Public perceptions. (author)

  7. Boesmanland gains from nuclear wastes

    International Nuclear Information System (INIS)

    Smit, I.

    1984-01-01

    It is being claimed that the geobotany of the Boesmanland will gain from the use of the farm Vaalputs for radioactive waste disposal from the Koeberg nuclear power station. Only 1 km 2 of the 10 000 ha that was bought for the purpose will be used for the disposal of low-level radioactive wastes and 2 m 3 to 3 m 3 per year will be used for the storage of high-level radioactive wastes. The rest of the area, Nucor plans to develop as a nature reserve, restoring the natural botany and ecology. Before Vaalputs was selected as site for radioactive waste disposal, a regional analysis was done. According to this there is more or less 500 people staying within a radius of 25km from the farm. Geological surveys showed no mineral deposits of economic value. During the past 100 million years the area was also free from seismic activity

  8. Nuclear Materials: Reconsidering Wastes and Assets - 13193

    International Nuclear Information System (INIS)

    Michalske, T.A.

    2013-01-01

    The nuclear industry, both in the commercial and the government sectors, has generated large quantities of material that span the spectrum of usefulness, from highly valuable ('assets') to worthless ('wastes'). In many cases, the decision parameters are clear. Transuranic waste and high level waste, for example, have no value, and is either in a final disposition path today, or - in the case of high level waste - awaiting a policy decision about final disposition. Other materials, though discardable, have intrinsic scientific or market value that may be hidden by the complexity, hazard, or cost of recovery. An informed decision process should acknowledge the asset value, or lack of value, of the complete inventory of materials, and the structure necessary to implement the range of possible options. It is important that informed decisions are made about the asset value for the variety of nuclear materials available. For example, there is a significant quantity of spent fuel available for recycle (an estimated $4 billion value in the Savannah River Site's (SRS) L area alone); in fact, SRS has already blended down more than 300 metric tons of uranium for commercial reactor use. Over 34 metric tons of surplus plutonium is also on a path to be used as commercial fuel. There are other radiological materials that are routinely handled at the site in large quantities that should be viewed as strategically important and / or commercially viable. In some cases, these materials are irreplaceable domestically, and failure to consider their recovery could jeopardize our technological leadership or national defense. The inventories of nuclear materials at SRS that have been characterized as 'waste' include isotopes of plutonium, uranium, americium, and helium. Although planning has been performed to establish the technical and regulatory bases for their discard and disposal, recovery of these materials is both economically attractive and in the national interest. (authors)

  9. Nuclear Materials: Reconsidering Wastes and Assets - 13193

    Energy Technology Data Exchange (ETDEWEB)

    Michalske, T.A. [Savannah River National Laboratory (United States)

    2013-07-01

    The nuclear industry, both in the commercial and the government sectors, has generated large quantities of material that span the spectrum of usefulness, from highly valuable ('assets') to worthless ('wastes'). In many cases, the decision parameters are clear. Transuranic waste and high level waste, for example, have no value, and is either in a final disposition path today, or - in the case of high level waste - awaiting a policy decision about final disposition. Other materials, though discardable, have intrinsic scientific or market value that may be hidden by the complexity, hazard, or cost of recovery. An informed decision process should acknowledge the asset value, or lack of value, of the complete inventory of materials, and the structure necessary to implement the range of possible options. It is important that informed decisions are made about the asset value for the variety of nuclear materials available. For example, there is a significant quantity of spent fuel available for recycle (an estimated $4 billion value in the Savannah River Site's (SRS) L area alone); in fact, SRS has already blended down more than 300 metric tons of uranium for commercial reactor use. Over 34 metric tons of surplus plutonium is also on a path to be used as commercial fuel. There are other radiological materials that are routinely handled at the site in large quantities that should be viewed as strategically important and / or commercially viable. In some cases, these materials are irreplaceable domestically, and failure to consider their recovery could jeopardize our technological leadership or national defense. The inventories of nuclear materials at SRS that have been characterized as 'waste' include isotopes of plutonium, uranium, americium, and helium. Although planning has been performed to establish the technical and regulatory bases for their discard and disposal, recovery of these materials is both economically attractive and in the

  10. Hydrologic information needs for evaluating waste disposal options

    Energy Technology Data Exchange (ETDEWEB)

    Huff, D.D.

    1983-01-01

    Before waste disposal options can be assessed, an objective or set of criteria for evaluation must be established. For hydrologists, the objective is to ensure that ground water and surface water do not become contaminated beyond acceptable limits as a result of waste disposal operations. The focus here is on the information required to quantify hydrologic transport of potential contaminants from the disposal site. It is important to recognize that the composition of the waste, its physical and chemical form, and the intended disposal methods (e.g., surface spreading, incineration, shallow land burial, or interment in a deep geologic repository) must either be specified a priori or set forth as specific options for evaluation, because these factors influence the nature of the hydrologic data needs. The hydrologic information needs of major importance are given together with specific measurable variables to be determined.

  11. Nuclear Waste, Risks and Sustainable Development

    International Nuclear Information System (INIS)

    Karlsson, Mikael; Swahn, Johan

    2006-01-01

    The proposed Swedish nuclear waste project is not in line with the three principles of sustainable development. In some aspects, it is not even compatible with Swedish law and ought therefore not to be given a permit under present circumstances. In our view, a number of measures need to be taken to improve the likelihood that the waste repository will promote and not further jeopardise sustainable development. One obvious measure would be to follow the recommendations concerning polluter pays principle put forward by the 2004 governmental committee. Further, it can be credible argued that the focus of the present disposal process has not been to find the best site and method from environmental point of view. If the precautionary principle is to be applied (and Swedish law is to be followed), alternative methods and sites have to be examined to see if they could provide better long-term safety. Concerning method, there are options that deserve much more attention such as so called 'deep boreholes'. In this approach the nuclear waste is placed in deep boreholes at depths of 2-4 km. Studies show that the long-term environmental safety and the possibility of hindering intentional intrusion may improve using the deep borehole method. Regarding localisation, one option would be to avoid siting the repository on the coast, but in what is called a 'recharge area'. In such an area groundwater on a regional scale travels downwards into the bedrock and it may take 50 000 years for a release of radioactivity to reach the surface, compared to less than 100 years with a coastal siting. Evidently, there may be better methods and sites than those now proposed by the Swedish nuclear industry. These options must be examined in detail before a decision is taken to implement the KBS method at a coastal site. If such methods or sites are found better they have to be used in the first place. Improvements are also necessary when it comes to public participation. We believe it is possible

  12. Nuclear Waste, Risks and Sustainable Development

    Energy Technology Data Exchange (ETDEWEB)

    Karlsson, Mikael [Swedish Society for Nature Conservation, Stockholm (Sweden); Swahn, Johan [Swedish NGO Office for Nuclear Waste Review (MKG), Goeteborg (Sweden)

    2006-09-15

    The proposed Swedish nuclear waste project is not in line with the three principles of sustainable development. In some aspects, it is not even compatible with Swedish law and ought therefore not to be given a permit under present circumstances. In our view, a number of measures need to be taken to improve the likelihood that the waste repository will promote and not further jeopardise sustainable development. One obvious measure would be to follow the recommendations concerning polluter pays principle put forward by the 2004 governmental committee. Further, it can be credible argued that the focus of the present disposal process has not been to find the best site and method from environmental point of view. If the precautionary principle is to be applied (and Swedish law is to be followed), alternative methods and sites have to be examined to see if they could provide better long-term safety. Concerning method, there are options that deserve much more attention such as so called 'deep boreholes'. In this approach the nuclear waste is placed in deep boreholes at depths of 2-4 km. Studies show that the long-term environmental safety and the possibility of hindering intentional intrusion may improve using the deep borehole method. Regarding localisation, one option would be to avoid siting the repository on the coast, but in what is called a 'recharge area'. In such an area groundwater on a regional scale travels downwards into the bedrock and it may take 50 000 years for a release of radioactivity to reach the surface, compared to less than 100 years with a coastal siting. Evidently, there may be better methods and sites than those now proposed by the Swedish nuclear industry. These options must be examined in detail before a decision is taken to implement the KBS method at a coastal site. If such methods or sites are found better they have to be used in the first place. Improvements are also necessary when it comes to public participation. We

  13. Can nuclear waste be stored safely at Yucca mountain?

    International Nuclear Information System (INIS)

    Whipple, C.G.

    1996-01-01

    In 1987 the federal government narrowed to one its long-term options for disposing of nuclear waste: storing it permanently in a series of caverns excavated out of the rock deep below Yucca mountain in southern Nevada. Whether it makes sense at this time to dispose permanently of spent fuel and radioactive waste in a deep geologic repository is hotly disputed. But the Nuclear Waste Policy Act amendements of 1987 decree that waste be consolidated in Yucca Mountain if the mountain is found suitable. Meanwhile the spent fuel continues to pile up across the country, and 1998 looms, adding urgency to the question: What can science tell us about the ability of the mountain to store nuclear waste safely? This paper discusses this issue and describes how studies of the mountain's history and geology can contribute useful insights but not unequivocal conclusions

  14. Costs of mixed low-level waste stabilization options

    International Nuclear Information System (INIS)

    Schwinkendorf, W.E.; Cooley, C.R.

    1998-01-01

    Selection of final waste forms to be used for disposal of DOE's mixed low-level waste (MLLW) depends on the waste form characteristics and total life cycle cost. In this paper the various cost factors associated with production and disposal of the final waste form are discussed and combined to develop life-cycle costs associated with several waste stabilization options. Cost factors used in this paper are based on a series of treatment system studies in which cost and mass balance analyses were performed for several mixed low-level waste treatment systems and various waste stabilization methods including vitrification, grout, phosphate bonded ceramic and polymer. Major cost elements include waste form production, final waste form volume, unit disposal cost, and system availability. Production of grout costs less than the production of a vitrified waste form if each treatment process has equal operating time (availability) each year; however, because of the lower volume of a high temperature slag, certification and handling costs and disposal costs of the final waste form are less. Both the total treatment cost and life cycle costs are higher for a system producing grout than for a system producing high temperature slag, assuming equal system availability. The treatment costs decrease with increasing availability regardless of the waste form produced. If the availability of a system producing grout is sufficiently greater than a system producing slag, then the cost of treatment for the grout system will be less than the cost for the slag system, and the life cycle cost (including disposal) may be less depending on the unit disposal cost. Treatment and disposal costs will determine the return on investment in improved system availability

  15. Geopolitics of nuclear waste

    International Nuclear Information System (INIS)

    Marshall, E.

    1991-01-01

    More debate has begun over questions related to the safety of high-level waste disposal at the Yucca Mountain site in the Nevada desert. An engineering geologists, Jerry Szymanski, one of the Department of Energy's (DOE) own staffers in Las Vegas, has proposed that the $15-billion repository would sit on top of an intensely active structure that, if altered by an earthquake, would send a slug of ground water up from deep within the mountain into the waste storage area. This theory has already been slammed in two formal reviews and has virtually no support among geologists. However, enough doubt has been raised that much more geological testing will be necessary to prove or disprove Szymanski's theory. Nevada state officials are also using all methods to thwart or block the project. The question of the origin of a series of calcium carbonate and opal veins exposed in an exploratory pit, trench 14, near the top of the mountain is also far from answered. The DOE and US Geological Survey may have to collect much more information on the quantity, size, and location of carbonate sites in the area at a high financial outlay to the US government before a complete case on the origin of the material in trench 14 can be made

  16. Nuclear waste: Status of DOE's nuclear waste site characterization activities

    International Nuclear Information System (INIS)

    1987-01-01

    Three potential nuclear waste repository sites have been selected to carry out characterization activities-the detailed geological testing to determine the suitability of each site as a repository. The sites are Hanford in south-central Washington State, Yucca Mountain in southern Nevada, and Deaf Smith in the Texas Panhandle. Two key issues affecting the total program are the estimations of the site characterization completion data and costs and DOE's relationship with the Nuclear Regulatory Commission which has been limited and its relations with affected states and Indian tribes which continue to be difficult

  17. Nuclear wastes and public trust

    International Nuclear Information System (INIS)

    Flynn, J.; Slovic, P.

    1993-01-01

    Citing public fear and mistrust, strong opposition to the proposed Yucca Mountain repository site, and less-than-exemplary performance by the Department of Energy (DOE), two private researchers believe present high-level radioactive waste-disposal plans may have to be scrapped. Government and the nuclear industry may have to start over. Policy makers should seek to develop new relationships with communities and states where suitable disposal sites exist. These relationships may require that citizen groups and local institutions be given unprecedented authority in locating and operating such facilities. Contrary to popular impressions, there is still time to take a new approach. The US Nuclear Regulatory Commission says present on-site storage arrangements offer a safe alternative for 100 years or more. The sense of immediate crisis and cries for immediate solutions should be calmed and a more considered strategy brought to the public debate. For starters, the researchers propose that the problems of defense waste be separated from the problems of commercial waste. They also suggest that DOE be assigned responsibility for defense waste and a new agency be created to handle high-level commercial waste

  18. A utility's perspective on the Nuclear Waste Policy Act

    International Nuclear Information System (INIS)

    Berry, W.W.

    1985-01-01

    The Nuclear Waste Policy Act is especially important to utilities because their customers pay for the disposal program, and the program is vital to nuclear operations and reconsideration of the nuclear option. DOE's accomplishments in implementing the Act are noteworthy, but we are concerned that some of them have been achieved later than specified by the schedule in the Act. We make recommendations regarding disposal fees, defense wastes, and shipping casks. Virginia Power has adopted a three-part strategy relying mainly on developing dry cask storage to solve the company's interim storage problems

  19. Future spent nuclear fuel and radioactive waste infrastructure in Norway

    International Nuclear Information System (INIS)

    Soerlie, A.A.

    2002-01-01

    In Norway a Governmental Committee was appointed in 1991 to make an evaluation of the future steps that need to be taken in Norway to find a final solution for the spent nuclear fuel and for some other radioactive waste for which a disposal option does not exist today. The report from the Committee is now undergoing a formal hearing process. Based on the Committees recommendation and comments during the hearing the responsible Ministry will take a decision on future infrastructure in Norway for the spent nuclear fuel. This will be decisive for the future management of spent nuclear fuel and radioactive waste in Norway. (author)

  20. Waste from nuclear power plants

    International Nuclear Information System (INIS)

    1980-01-01

    The report presents proposals for organizing and financing of the treatment and deposition of spent fuel and radioactive waste. Decommissioning of plants is taken into consideration. The proposals refer to a program of twelve reactors. A relatively complete model for the handling of radioactive waste in Sweden is at hand. The cost for the years 1980 to 2000 is estimated at approx 1040 million SKr. Also the expense to dispose of the rest of the waste is calculated up to the year 2060, when the waste is planned to be put into final deposit. The state must have substantial influence over the organization which should be closely connected to the nuclear industry. Three different types of organization are discussed, namely (i) a company along with a newly created authority, (ii) a company along with the existing Nuclear Power Inspectorate or (iii) a company along with a board of experts. The proposals for financing the cost of handling nuclear waste are given in chief outlines. The nuclear industry should reserve means to special funds. The allocations are calculated to 1.4 oere per delivered kWh up to and including the year 1980. The accumulated allocations for 1979 should thus amount to 1310 million SKr. The charge for supervision and for certain research and development is recommended to be 0.1 oere per kWh which corresponds to approx 23 million SKr for 1980. The funds should be assured by binding agreements which must be approved by the state. The amounts are given in the monetary value of the year 1979. (G.B.)

  1. Contributions of basic nuclear physics to the nuclear waste management

    Science.gov (United States)

    Flocard, Hubert

    2002-04-01

    Nuclear fission is presently a contested method of electricity production. The issue of nuclear waste management stands out among the reasons why. On the other hand, the nuclear industry has demonstrated its capacity to reliably generate cheap electricity while producing negligible amounts of greenhouse gases. These assets explain why this form of energy is still considered among the options for the long term production of electricity at least in developed countries. However, in order to tackle the still not adequately answered question of the waste, new schemes may have to be considered. Among those which have been advanced recently, the less polluting cycles such as those based on Thorium rather than Uranium and/or the transmutation of the minor actinides and some long lived fission products of the present cycle have been actively investigated. In both cases, it turns that the basic knowledge underlying these methods is either missing or incomplete. This situation opens a window of opportunity for useful contributions from basic nuclear physicists. This article describes some of them and presents the ongoing activities as well as some of the projects put forth for the short or medium term. .

  2. Nuclear waste and hazardous waste in the public perception

    Energy Technology Data Exchange (ETDEWEB)

    Kruetli, Pius; Seidl, Roman; Stauffacher, Michael [ETH Zurich (Switzerland). Inst. for Environmental Decisions

    2015-07-01

    The disposal of nuclear waste has gained attention of the public for decades. Accordingly, nuclear waste has been a prominent issue in natural, engineer and social science for many years. Although bearing risks for todays and future generations hazardous waste in contrast is much less an issue of public concern. In 2011, we conducted a postal survey among Swiss Germans (N = 3.082) to learn more about, how nuclear waste is perceived against hazardous waste. We created a questionnaire with two versions, nuclear waste and hazardous waste, respectively. Each version included an identical part with well-known explanatory factors for risk perception on each of the waste types separately and additional questions directly comparing the two waste types. Results show that basically both waste types are perceived similarly in terms of risk/benefit, emotion, trust, knowledge and responsibility. However, in the direct comparison of the two waste types a complete different pattern can be observed: Respondents perceive nuclear waste as more long-living, more dangerous, less controllable and it, furthermore, creates more negative emotions. On the other hand, respondents feel more responsible for hazardous waste and indicate to have more knowledge about this waste type. Moreover, nuclear waste is perceived as more carefully managed. We conclude that mechanisms driving risk perception are similar for both waste types but an overarching negative image of nuclear waste prevails. We propose that hazardous waste should be given more attention in the public as well as in science which may have implications on further management strategies of hazardous waste.

  3. Nuclear waste and hazardous waste in the public perception

    International Nuclear Information System (INIS)

    Kruetli, Pius; Seidl, Roman; Stauffacher, Michael

    2015-01-01

    The disposal of nuclear waste has gained attention of the public for decades. Accordingly, nuclear waste has been a prominent issue in natural, engineer and social science for many years. Although bearing risks for todays and future generations hazardous waste in contrast is much less an issue of public concern. In 2011, we conducted a postal survey among Swiss Germans (N = 3.082) to learn more about, how nuclear waste is perceived against hazardous waste. We created a questionnaire with two versions, nuclear waste and hazardous waste, respectively. Each version included an identical part with well-known explanatory factors for risk perception on each of the waste types separately and additional questions directly comparing the two waste types. Results show that basically both waste types are perceived similarly in terms of risk/benefit, emotion, trust, knowledge and responsibility. However, in the direct comparison of the two waste types a complete different pattern can be observed: Respondents perceive nuclear waste as more long-living, more dangerous, less controllable and it, furthermore, creates more negative emotions. On the other hand, respondents feel more responsible for hazardous waste and indicate to have more knowledge about this waste type. Moreover, nuclear waste is perceived as more carefully managed. We conclude that mechanisms driving risk perception are similar for both waste types but an overarching negative image of nuclear waste prevails. We propose that hazardous waste should be given more attention in the public as well as in science which may have implications on further management strategies of hazardous waste.

  4. Review of available options for low level radioactive waste disposal

    International Nuclear Information System (INIS)

    1992-07-01

    The scope of this report includes: descriptions of the options available; identification of important elements in the selection process; discussion and assessment of the relevance of the various elements for the different options; cost data indicating the relative financial importance of different parts of the systems and the general cost level of a disposal facility. An overview of the types of wastes included in low level waste categories and an approach to the LLW management system is presented. A generic description of the disposal options available and the main activities involved in implementing the different options are described. Detailed descriptions and cost information on low level waste disposal facility concepts in a number of Member States are given. Conclusions from the report are summarized. In addition, this report provides a commentary on various aspects of land disposal, based on experience gained by IAEA Member States. The document is intended to complement other related IAEA publications on LLW management and disposal. It also demonstrates that alternatives solutions for the final disposal of LLW are available and can be safely operated but the choice of an appropriate solution must be a matter for national strategy taking into account local conditions. 18 refs, 16 figs, 1 tab

  5. Nuclear waste management and implication for geological disposals in South Korea

    Energy Technology Data Exchange (ETDEWEB)

    Woo, Tae Ho; Chang, Kyung Bae [The Cyber Univ. of Korea, Seoul (Korea, Republic of). Dept. of Mechanical and Control Engineering

    2017-10-15

    The master plan of permanent nuclear waste repository had been published in South Korea. The high-level nuclear waste repository should be available in 2053. In this study, six possible nuclear waste forms are simulated by Helium ions. The geological repository is comparative easy and cheap considering the international nuclear act of the nuclear nonproliferation treaty (NPT). How ever, there could be some new technologies of the nuclear waste treatment like the pyroprocessing. Transmutation is another option, which is very expensive with current technology.

  6. Nuclear waste disposal site

    International Nuclear Information System (INIS)

    Mallory, C.W.; Watts, R.E.; Sanner, W.S. Jr.; Paladino, J.B.; Lilley, A.W.; Winston, S.J.; Stricklin, B.C.; Razor, J.E.

    1988-01-01

    This patent describes a disposal site for the disposal of toxic or radioactive waste, comprising: (a) a trench in the earth having a substantially flat bottom lined with a layer of solid, fluent, coarse, granular material having a high hydraulic conductivity for obstructing any capillary-type flow of ground water to the interior of the trench; (b) a non-rigid, radiation-blocking cap formed from a first layer of alluvium, a second layer of solid, fluent, coarse, granular material having a high hydraulic conductivity for blocking any capillary-type flow of water between the layer of alluvium and the rest of the cap, a layer of water-shedding silt for directing surface water away from the trench, and a layer of rip-rap over the silt layer for protecting the silt layer from erosion and for providing a radiation barrier; (c) a solidly-packed array of abutting modules of uniform size and shape disposed in the trench and under the cap for both encapsulating the wastes from water and for structurally supporting the cap, wherein each module in the array is slidable movable in the vertical direction in order to allow the array of modules to flexibly conform to variations in the shape of the flat trench bottom caused by seismic disturbances and to facilitate the recoverability of the modules; (d) a layer of solid, fluent, coarse, granular materials having a high hydraulic conductivity in the space between the side of the modules and the walls of the trench for obstructing any capillary-type flow of ground water to the interior of the trench; and (e) a drain and wherein the layer of silt is sloped to direct surface water flowing over the cap into the drain

  7. Nuclear power: A competitive option? Annex 3

    International Nuclear Information System (INIS)

    Bertel, E.; Wilmer, P.

    2002-01-01

    Because the future development of nuclear power will depend largely on its economic performance compared to alternatives, the OECD Nuclear Energy Agency (NEA) investigates continuously the economic aspects of nuclear power. This paper provides key findings from a series of OECD studies on projected costs of generating electricity and other related NEA activities. It addresses the cost economics necessary for nuclear units to be competitive, and discusses the challenges and opportunities currently faced by nuclear power. (author)

  8. Options for Healthcare Waste Management and Treatment in China

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Healthcare waste management and treatment is one of the national priority tasks of China's Tenth Five-Year Plan.Numerous installations disposing medical waste have already operated the project or under construction to the operation in 2006. This paper focuses on the assessment of existing and fu~re options to handle medical waste (MW). Internationally available and so far in China applied technologies and management practice are analysed, including the problems how to materials. Non-hazardous MW can be managed and treated in analogue to municipal solid waste (MSW). In most of the European countries decentralised hospital incinerators have been, because of high operation costs and pollution problems,widely banned and replaced by pre-treatment technologies at the source and centralised incineration plants for hazardous MW.Information for adapting and further developing MW management solutions and treatment technologies in China and applying the most appropriate MWM practice is provided.

  9. Ethical aspects of nuclear waste

    International Nuclear Information System (INIS)

    Persson, L.

    1988-01-01

    The reasoning made by us leads to a double conclusion: a repository should be constructed so that controls and corrective measures are unnecessary, while at the same time not making them impossible. In other words, our generation should neither put the entire responsibility for maintenance of repositories in future generations' hands; nor should we deny future generations the possibility of taking control. By means of different formulations and by proceeding from various basic ideas, a dual objective is established about repository facilities: safety in operation combined with ease of service ability without mandatory but executable control. Prerequisities are the continued advancement of knowledge and refinement of the qualifications required to deal with nuclear waste. The ethical considerations should be included in the bases for future legislation on radioactive waste. Nuclear scientists should consider these points before they can form a foundation to the legislation process

  10. Nuclear waste forms for actinides

    Science.gov (United States)

    Ewing, Rodney C.

    1999-01-01

    The disposition of actinides, most recently 239Pu from dismantled nuclear weapons, requires effective containment of waste generated by the nuclear fuel cycle. Because actinides (e.g., 239Pu and 237Np) are long-lived, they have a major impact on risk assessments of geologic repositories. Thus, demonstrable, long-term chemical and mechanical durability are essential properties of waste forms for the immobilization of actinides. Mineralogic and geologic studies provide excellent candidate phases for immobilization and a unique database that cannot be duplicated by a purely materials science approach. The “mineralogic approach” is illustrated by a discussion of zircon as a phase for the immobilization of excess weapons plutonium. PMID:10097054

  11. Nuclear waste - where to go?

    International Nuclear Information System (INIS)

    Dornsiepen, Ulrich

    2015-01-01

    The question of the final di9sposal of nuclear waste is a problem of international importance. The solution of the problem is of increasing urgency; the discussion is controversial and implies a lot of emotions. In Germany there is consensus that the nuclear wastes have to be disposed within the country in deep geological formations. This kind of final disposal is predominantly a geological problem and has to be solved from the geological point of view. The geologist Ulrich Dornsiepen presents the problems of the final disposal in an objective way without ideology and generally understandable. Such a presentation is necessary since the public information and participation is demanded but the open geological questions and their scientific solutions are never explained for the public. [de

  12. Nuclear waste: A cancer cure?

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    In a marriage of strange bedfellows, scientists at one of the country's most contaminated nuclear waste sites are collaborating with medical researchers to turn nuclear waste into an experimental therapy for cancer. Patients with Hodgkin's disease and brain, ovarian, and breast cancers may be able to receive the new radiatio-based treatments in the next five to ten years. Recently, scientists at the Hanford site found a way to chemically extract a pure form of the radioisotope yttrium-90 from strontium-90, a by-product of plutonium production. Yttrium-90 is being tested in clinical trials at medical centers around the country as a treatment for various types of cancers, and the initial results are encouraging. The advantage of yttrium-90 over other radioisotopes is its short half-life

  13. Time to rethink nuclear waste storage

    International Nuclear Information System (INIS)

    Flynn, J.; Kasperson, R.; Kunreuther, H.; Slovic, P.

    1992-01-01

    The authors feel that given the levels of public opposition and distrust, congress should scrap the current nuclear waste storage program and reconsider the options. They observe that no compelling reason currently exists for siting a permanent repository at an early date. Technology developed in the past decade, especially dry-cask storage, provides assurance that wastes from commercial reactors can be stored safely for a lengthy period at current sites. In the longer term, reprocessing may reduce the volume of high-level wastes; storage elsewhere than in a geological repository may prove attractive; and experimental techniques such as transmutation - aimed at radically reducing the amount of time that wastes remain highly radioactive - could help solve the problem. In the meantime, the authors suggest that the US must begin a long-term effort to engage the public in a process of active collaboration. In doing so, the US has much to learn from other countries, where innovative approaches and techniques have began to establish public confidence

  14. Nuclear Power Options Viability Study. Volume 3. Nuclear discipline topics

    International Nuclear Information System (INIS)

    Trauger, D.B.; White, J.D.; Bowers, H.I.

    1986-09-01

    Innovative reactor concepts are described and evaluated in accordance with criteria established in the study. The reactors to be studied were chosen on the basis of three ground rules: (1) the potential for commercialization between 2000-2010, (2) economic competiveness with coal-fired plants, and (3) the degree of passive safety in the design. The concepts, classified by coolants, were light water reactors, liquid metal reactors, and high temperature reactors, and most were of modular design. All the concepts appear to be potentially viable in the time frame selected, but the information available is not adequate for a definitive evaluation of their economic competitiveness. This volume primarily reports in greater detail on several topics from the study. These are: Construction, Economics, Regulation, Safety and Economic Risk, Nuclear Waste Transportation and Disposal, and Market Acceptance. Although treated generically, the topics are presented in the context of the reactor concepts of the study

  15. Nuclear Power Options Viability Study. Volume 3. Nuclear discipline topics

    Energy Technology Data Exchange (ETDEWEB)

    Trauger, D B; White, J D; Bowers, H I; Braid, R B; Cantor, R A; Daniels, L; Davis, R M; Delene, J G; Gat, U; Hood, T C

    1986-09-01

    Innovative reactor concepts are described and evaluated in accordance with criteria established in the study. The reactors to be studied were chosen on the basis of three ground rules: (1) the potential for commercialization between 2000-2010, (2) economic competiveness with coal-fired plants, and (3) the degree of passive safety in the design. The concepts, classified by coolants, were light water reactors, liquid metal reactors, and high temperature reactors, and most were of modular design. All the concepts appear to be potentially viable in the time frame selected, but the information available is not adequate for a definitive evaluation of their economic competitiveness. This volume primarily reports in greater detail on several topics from the study. These are: Construction, Economics, Regulation, Safety and Economic Risk, Nuclear Waste Transportation and Disposal, and Market Acceptance. Although treated generically, the topics are presented in the context of the reactor concepts of the study.

  16. Proposed radiological protection criteria for waste disposal options

    International Nuclear Information System (INIS)

    Hill, M.D.

    1981-01-01

    Criteria which are based solely on the consequences of releases of radionuclides, that is doses to man, are inappropriate for decisions on the acceptability of many of the disposal options for solid wastes. The risks associated with disposal options in which the intention is to isolate wastes from the biosphere for any length of time have two major components: the probability that a release of radionuclides will occur and the probability that subsequent radiation doses will give rise to deleterious effects. It is therefore necessary to develop criteria which embody the basic radiological principle of keeping risks to acceptable levels and take account of both components of risk. In this paper proposed criteria are described and some of the implications of adopting these criteria are discussed. (author)

  17. Plasma filtering techniques for nuclear waste remediation.

    Science.gov (United States)

    Gueroult, Renaud; Hobbs, David T; Fisch, Nathaniel J

    2015-10-30

    Nuclear waste cleanup is challenged by the handling of feed stocks that are both unknown and complex. Plasma filtering, operating on dissociated elements, offers advantages over chemical methods in processing such wastes. The costs incurred by plasma mass filtering for nuclear waste pretreatment, before ultimate disposal, are similar to those for chemical pretreatment. However, significant savings might be achieved in minimizing the waste mass. This advantage may be realized over a large range of chemical waste compositions, thereby addressing the heterogeneity of legacy nuclear waste. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Utilizing waste heat. Energy recovery options for trade and industry

    Energy Technology Data Exchange (ETDEWEB)

    Krieg, W

    1988-08-01

    The article shows options for efficient and low-cost thermal energy recovery. Heat recovery involves a number of problems, e.g. the type of waste heat, the uses of the energy recovered, and the best way of utilizing it. There is no generally applicable way of solving these problems. Some practical examples are presented. Economically efficient solutions require detailed technical knowledge as well as a good portion of creativity and imagination. (BR).

  19. Waste disposal[1997 Scientific Report of the Belgian Nuclear Research Centre

    Energy Technology Data Exchange (ETDEWEB)

    Neerdael, B.; Marivoet, J.; Put, M.; Verstricht, J.; Van Iseghem, P.; Buyens, M.

    1998-07-01

    The primary mission of the Waste Disposal programme at the Belgian Nuclear Research Centre SCK/CEN is to propose, develop, and assess solutions for the safe disposal of radioactive waste. In Belgium, deep geological burial in clay is the primary option for the disposal of High-Level Waste and spent nuclear fuel. The main achievements during 1997 in the following domains are described: performance assessment, characterization of the geosphere, characterization of the waste, migration processes, underground infrastructure.

  20. Nuclear waste transmutation

    International Nuclear Information System (INIS)

    Salvatores, M.; Girard, C.; Delpech, M.; Slessarev, I.; Tommasi, J.

    1994-01-01

    Waste management strategies foresee the use of a deep geological repository either for final disposal of irradiated fuel or, after reprocessing and reuse of U and Pu for final disposal of long-lived radio-active materials. In the second case, partitioning and transmutation of these materials can be considered to reduce the impact of radiation on man due to the storage. On the basis of the SPIN programme developed by CEA in this field, the main features of transmutation is presented. The goal to achieve and the criteria to use are quite difficult to establish. The rights para-meters to characterize the risk are the potential radiotoxicity in the the repository and the residual radiotoxicity at the outlet. Transmutation studies in CEA used the potential radiotoxicity which is based on well-known parameters and less precise hazardous factors. The second point to appreciate the trans- mutation interest is to dispose of a criteria for the radio-radiotoxicity reduction. As there is no general agreement, we try to have a toxicity as low as possible within reasonable technical limits. To reduce the long term radio- toxicity, Pu, minor actinides and some long-lived fission products have to be transmuted. To assess the feasibility of such trans-mutation in reactors or advanced systems, one has to consider constraints on neutronic balance, safety, fuel cycle, technology , economy. Taking in account the main conclusions of this analysis, parametric studies of homogeneous and heterogenous transmutation permit a choice of promising solutions. Goals are to use every long-lived element with a minimized production of other long- lived elements in order to obtain an appreciable radiotoxicity reduction. It implies multi recycling of Pu which favours fast neutron reactors and different strategies of multi recycling for Np, Am, Cm. Multi recycling makes the results strongly dependant of losses. Researches to obtain the high partitioning efficiency needed are in progress. Calculations

  1. Nuclear wastes: fission

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    Progress is reported on investigations of transuranics in soils and plants that have demonstrated the importance of valence state, complexation, competing elements, migration down the soil profile, and weathering cycles in governing transuranic, 129 I and 99 Tc availability to plants and, in the case of Pu, to the consuming animals. In the latter case, it was demonstrated, for the first time, that ingestion of plant tissues containing Pu may result in greater transfer across the gut compared to gavaging animals with inorganic Pu solutions, underscoring the importance of detailed studies of the soil, plant, and animal factors influencing uptake by the ingestion pathway. Further evidence of the importance of the ingestion pathway was provided in studies of foliar interception of airborne transuranic elements in which it was shown that Pu in particles in the respiratory size range were effectively intercepted and retained by plants, and significant quantities of intercepted Pu were transported to roots and seeds. Similar studies on the terrestrial ingestion pathway have been initiated with other actinides including, U, Am, Cm, and Np. Radioecological field studies were directed toward establishment of pertinent ingestion pathways and exposure levels through description of habitat types, population densities, and, in several instances, dosimetry, for major insects, reptiles, birds, and mammalian species. These studies were extended to agricultural ecosystems through definition of the uptake of long-lived nuclides and digestibility in cattle of several forage species. In studies on a pond ecosystem at the nuclear fuel reprocessing plant, Pu and Am uptake rates were studied for major biotic components including organic floc, algae, fish, and ducks. The results indicated that assimilation of transuranics by the biota and export from the pond system were low compared to the total inventory

  2. Organic diagenesis in commercial nuclear wastes

    International Nuclear Information System (INIS)

    Toste, A.P.; Lechner-Fish, T.J.

    1988-01-01

    The nuclear industry currently faces numerous challenges. Large volumes of already existing wastes must be permanently disposed using environmentally acceptable technologies. Numerous criteria must be addressed before wastes can be permanently disposed. Waste characterization is certainly one of the key criteria for proper waste management. some wastes are complex melting pots of inorganics, radiochemicals, and, occasionally, organics. It is clear, for example, that organics have been used extensively in nuclear operations, such as waste reprocessing, and continue to be used widely as solvents, decontamination agents, etc. The authors have analyzed the organic content of many kinds of nuclear wastes, ranging from commercial to defense wastes. In this paper, the finale analyses are described of three commercial wastes: one waste from a pressurized water reactor (PWR) and two wastes from a boiling water reactor (BWR). The PWR waste is a boric acid concentrate waste. The two BWR wastes, BWR wastes Nos. 1 and 2, are evaporator concentrates of liquid wastes produced during the regeneration of ion-exchange resins used to purify reactor process water. In preliminary analyses, which were reported previously, a few know organics and myriad unknowns were detected. Recent reexamination of mass-spectral data, coupled with reanalysis of the wastes, has resulted in the firm identification of the unknowns. Most of the compounds, over thirty distinct organics, are derived from the degradation, or diagenesis, of source-term organics, revealing, for the first time, that organic diagenesis in commercial wastes is both vigorous and varied

  3. National Option of China's Nuclear Energy Systems for Spent Fuel Management

    Energy Technology Data Exchange (ETDEWEB)

    Gao, R.X. [University of Science and Technology, Daejeon (Korea, Republic of); Ko, W. I.; Lee, S. H. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    Along with safety concerns, these long standing environmental challenges are the major factors influencing the public acceptance of nuclear power. Although nuclear power plays an important role in reducing carbon emissions from energy generation, this could not fully prove it as a sustainable energy source unless we find a consensus approach to treat the nuclear wastes. There are currently no countries that have completed a whole nuclear fuel cycle, and the relative comparison of the reprocessing spent fuel options versus direct disposal option is always a controversial issue. Without exception, nowadays, China is implementing many R and D projects on spent fuel management to find a long-term solution for nuclear fuel cycle system transition, such as deep geological repositories for High Level Waste (HLW), Pu Reduction by Solvent Extraction (PUREX) technology, and fast reactor recycling Mixed U-Pu Oxide (MOX) fuels, etc. This paper integrates the current nation's projects of back-end fuel cycle, analyzes the consequences of potential successes, failures and delays in the project development to future nuclear fuel cycle transition up to 2100. We compared the dynamic results of four scenarios and then assessed relative impact on spent fuel management. The result revealed that the fuel cycle transition of reprocessing and recycling of spent fuel would bring advantages to overall nuclear systems by reducing high level waste inventory, saving natural uranium resources, and reducing plutonium management risk.

  4. Waste management in the nuclear engineering curriculum

    International Nuclear Information System (INIS)

    Tulenko, J.S.

    1989-01-01

    One of the most significant challenges facing the nuclear industry is to successfully close the nuclear fuel cycle and effectively demonstrate to the public that nuclear wastes do not present a health risk. This issue is currently viewed by many as the most important issue affecting public acceptance of nuclear power, and it is imperative that nuclear engineers be able to effectively address the question of nuclear waste from both a generation and disposal standpoint. To address the issue, the area of nuclear waste management has been made one of the fields of specialized study in the Department of Nuclear Engineering Sciences at the University of Florida. The study of radioactive waste management at the University of Florida is designed both for background for the general nuclear engineering student and for those wishing to specialize in it as a multidiscipline study area involving the Departments of Nuclear Engineering Sciences, Environmental Sciences, Material Science and Engineering, Geology, Civil Engineering, and Industrial Engineering

  5. How available is the nuclear option

    International Nuclear Information System (INIS)

    Hannum, W.H.

    1982-01-01

    Energy ministers and heads of government of the major industrialized countries specify that we must make much greater use of nuclear energy by the end of this century. Developing countries give ample warning that their needs are just beginning to be felt. Experts are unanimous that the age of oil is finished and that coal and nuclear must be used to displace oil. Yet the facts today point in a different direction. What is the problem. Is more nuclear really needed. Is it really available. There is no technological factor that would preclude a much-larger role for nuclear energy. The conclusion must be that, despite all the brave pronouncements, decision makers do not want nuclear. This chapter considers some of the bases for this conclusion and deals with the reasons for concluding that there are no current technological impediments to nuclear energy

  6. A Study on Optimized Management Options for the Wolsong Low- and Intermediate - Level Waste Disposal Center in Korea - 13479

    Energy Technology Data Exchange (ETDEWEB)

    Park, JooWan; Kim, DongSun; Choi, DongEun [Korea Radioactive Waste Management Corporation, Korea 89, Bukseongno, Gyeongju, 780-050 (Korea, Republic of)

    2013-07-01

    The safe and effective management of radioactive waste is a national task required for sustainable generation of nuclear power and for energy self-reliance in Korea. Currently, for permanent disposal of low- and intermediate-level waste (LILW), the Wolsong LILW Disposal Center (WLDC) is under construction. It will accommodate a total of 800,000 drums at the final stage after stepwise expansion. As an implementing strategy for cost-effective development of the WLDC, various disposal options suitable for waste classification schemes would be considered. It is also needed an optimized management of the WLDC by taking a countermeasure of volume reduction treatment. In this study, various management options to be applied to each waste class are analyzed in terms of its inventory and disposal cost. For the volume reduction and stabilization of waste, the vitrification and plasma melting methods are considered for combustible and incombustible waste, respectively. (authors)

  7. Sustaining the nuclear power option in Malaysia

    International Nuclear Information System (INIS)

    Jamal Khaer bin Ibrahim.

    1989-01-01

    This paper describes the approach taken to establish the information base required prior to a decision on a nuclear power programme, and the strategy adopted and the rationale behind the development of the basic core expertise on nuclear reactor technology. The effect of a lack of decision on the question of nuclear power generation on efforts to build this core technical expertise is also described. (author)

  8. Attitudes of the public about nuclear wastes

    International Nuclear Information System (INIS)

    Rankin, W.L.; Nealey, S.M.

    1978-01-01

    The disposal of nuclear wastes has become an important public issue in the past few years. In 1960, only a very small percentage of the American public questioned the safety of waste disposal methods, and no one opposed nuclear power for waste disposal reasons. By 1974, however, a slight majority of the public believed that the disposal of nuclear wastes was a serious problem associated with nuclear power, and from 1975 on, a small percentage of the public has opposed nuclear power for waste disposal reasons. More individuals believe that the technology is not available for acceptable waste management compared to the number of individuals who believe that the technology does exist. However, a majority of the public believe that modern technology can solve the waste disposal problem. Finally, nuclear technologists evaluate waste disposal problems differently from other groups. For instance, nuclear technologists believe that short-term safety is more important than long-term safety regarding waste disposal, while other groups, especially environmentalists, believe that long-term safety is more important than short-term safety. Nuclear technologists are willing to accept a higher level of waste management-related risk than other groups and evaluate waste disposal problems as being less severe than other societal problems

  9. Solidification of radioactive liquid wastes. A comparison of treatment options for spent resins and concentrates

    International Nuclear Information System (INIS)

    Roth, A.; Willmann, F.; Ebata, M.; Wendt, S.

    2008-01-01

    . Different installations are available for spent resin or concentrate drying. Such methods produce suitable waste products for final disposal and achieve additional volume reduction factors for final disposal. On the other hand, design of the treatment plant as well as the subsequent drum handling and interim storage plants have to consider the high concentration of radioactivity in the final waste product and have to deal with appropriate packages, remote controlled operations and shielding. The presentation will briefly introduce exemplary examples for the mentioned treatment options and report on results achieved with it in nuclear installations. Further on, the paper will discuss the evaluation of the advantages and disadvantages of the treatment options relative to the characteristics of the wastes and the environment to be considered (availability of repository, existing or assumed repository, acceptance criteria etc. (authors)

  10. Accelerators and alternative nuclear fuel management options

    International Nuclear Information System (INIS)

    Harms, A.A.

    1983-01-01

    The development of special accelerators suggests the po tential for new directions in nuclear energy systems evolution. Such directions point towards a more acceptable form of nuclear energy by reason of the consequent accessibility of enhanced fuel management choices. Essential and specifically directed research and development activity needs to be under taken in order to clarify and resolve a number of technical issues

  11. Nuclear waste/nuclear power: their futures are linked

    International Nuclear Information System (INIS)

    Skoblar, L.T.

    1981-01-01

    This paper briefly reviews current aspects of radioactive waste disposal techniques and transportation. Addressed are high-level and low-level radioactive wastes, interim spent fuel storage and transportation. The waste options being explored by DOE are listed. Problems of public acceptance will be more difficult to overcome than technical problems

  12. Uranium Resource Availability Analysis of Four Nuclear Fuel Cycle Options

    International Nuclear Information System (INIS)

    Youn, S. R.; Lee, S. H.; Jeong, M. S.; Kim, S. K.; Ko, W. I.

    2013-01-01

    Making the national policy regarding nuclear fuel cycle option, the policy should be established in ways that nuclear power generation can be maintained through the evaluation on the basis of the following aspects. To establish the national policy regarding nuclear fuel cycle option, that must begin with identification of a fuel cycle option that can be best suited for the country, and the evaluation work for that should be proceeded. Like all the policy decision, however, a certain nuclear fuel cycle option cannot be superior in all aspects of sustain ability, environment-friendliness, proliferation-resistance, economics, technologies, which make the comparison of the fuel cycle options very complicated. For such a purpose, this paper set up four different fuel cycle of nuclear power generation considering 2nd Comprehensive Nuclear Energy Promotion Plan(CNEPP), and analyzed material flow and features in steady state of all four of the fuel cycle options. As a result of an analysis on material flow of each nuclear fuel cycle, it was analyzed that Pyro-SFR recycling is most effective on U resource availability among four fuel cycle option. As shown in Figure 3, OT cycle required the most amount of U and Pyro-SFR recycle consumed the least amount of U. DUPIC recycling, PWR-MOX recycling, and Pyro-SFR recycling fuel cycle appeared to consumed 8.2%, 12.4%, 39.6% decreased amount of uranium respectively compared to OT cycle. Considering spent fuel can be recycled as potential energy resources, U and TRU taken up to be 96% is efficiently used. That is, application period of limited uranium natural resources can be extended, and it brings a great influence on stable use of nuclear energy

  13. Chemical risks from nuclear waste repositories

    International Nuclear Information System (INIS)

    Persson, L.

    1988-01-01

    Studies concerning the chemical risks of nuclear waste are reviewed. The radiological toxicity of the material is of primary concern but the potential nonradiological toxicity should not be overlooked as the chemotoxic substances may reach the biosphere from a nuclear waste repository. In the report is concluded that the possible chemotoxic effects of a repository for nuclear waste should be studied as a part of the formal risk assessment of the disposal concept. (author)

  14. Sedimentary modelling and nuclear-waste disposal

    International Nuclear Information System (INIS)

    Van Loon, A.J.

    1982-01-01

    Nuclear energy is an important source of energy. Recently a slow down is experienced in its growth rate, due to the following factors: a) the supposed shortage of uranium; b) the fear for the consequences of nuclear accident, and c) the problem of nuclear wastes. Two types of waste are distinguished: a) fission products and actinides, and b) operational waste. The United States have started a program that must lead in 1989 to the first final storage of such waste in salt. Open-pit mines and oil-well drilling are discussed as possible solutions for operational waste storage

  15. On-site waste storage assuring the success of on-site, low-level nuclear waste storage

    International Nuclear Information System (INIS)

    Preston, E.L.

    1986-01-01

    Waste management has reached paramount importance in recent years. The successful management of radioactive waste is a key ingredient in the successful operation of any nuclear facility. This paper discusses the options available for on-site storage of low-level radioactive waste and those options that have been selected by the Department of Energy facilities operated by Martin Marietta Energy Systems, Inc. in Oak Ridge, Tennessee. The focus of the paper is on quality assurance (QA) features of waste management activities such as accountability and retrievability of waste materials and waste packages, retrievability of data, waste containment, safety and environmental monitoring. Technical performance and careful documentation of that performance are goals which can be achieved only through the cooperation of numerous individuals from waste generating and waste managing organizations, engineering, QA, and environmental management

  16. Nuclear waste: beyond Faust and fate

    International Nuclear Information System (INIS)

    Maxey, M.N.

    1979-01-01

    Regarding development of the nuclear industry and the resulting turmoil over generation of nuclear wastes, Dr. Maxey presents as a fundamental bioethical principle for organizing evidence and dealing with conflicting opinions the following formulation: social justice requires an equitable mangement of potential hazards that might have harmful health effects and unjustifiable social consequences. By equitable management she means: (1) comprehensively informing policymakers about the broad spectrum of hazards; (2) make comparisons of actual costs to reduce the effects; and (3) only then make policies and set standards that will get the most public protection out of a finite amount of money. Translating this principle into public policy is no easy task, since opponents have developed several arguments that appeal to nonscientific moral and ethical premises. Briefly, these statements can be summarized as: (a) indefinite delay of high-level waste disposal facilities is regarded as morally preferable to a policy of implementing one of several currently available options, and (b) it is claimed that involuntary risks of radiation exposure imposed on present and unconsulted future generations violate ethical principles of social justice and equity. Dr. Maxey uses most of the article in countering these premises and finally suggests the following bioethical principle for guidance: any involuntary risks imposed by social policies for radiation protection must be congruent with, must not be in excess of, and may be reasonably less than, those involuntary risks imposed by the naturally occurring toxic elements and harmful effects from our natural environment

  17. Transmutation of nuclear waste in nuclear reactors

    International Nuclear Information System (INIS)

    Abrahams, K.; Kloosterman, J.L.; Pilate, S.; Wehmann, U.K.

    1996-03-01

    The objective of this joint study of ECN, Belgonucleaire, and Siemens is to investigate possibilities for transmutation of nuclear waste in regular nuclear reactors or in special transmutation devices. Studies of possibilities included the limits and technological development steps which would be needed. Burning plutonium in fast reactors, gas-cooled high-temperature reactors and light water reactors (LWR) have been considered. For minor actinides the transmutation rate mainly depends on the content of the minor actinides in the reactor and to a much less degree on the fact whether one uses a homogeneous system (with the actinides mixed into the fuel) or a heterogeneous system. If one wishes to stabilise the amount of actinides from the present LWRs, about 20% of all nuclear power would have to be generated in special burner reactors. It turned out that reactor transmutation of fission products would require considerable recycling efforts and that the time needed for a substantial transmutation would be rather long for the presently available levels of the neutron flux. If one would like to design burner systems which can serve more light water reactors, a large effort would be needed and other burners (possibly driven by accelerators) should be considered. (orig.)

  18. The international politics of nuclear waste

    International Nuclear Information System (INIS)

    Blowers, Andrew; Lowry, David; Solomon, B.D.

    1991-01-01

    The dilemma of disposing nuclear waste is likened to dealing with the menace of the Ring in Tolkein's 'Lord of the Ring'; there are only two courses open 'to hide the Ring or to unmake it; both are beyond our power'. This book attempts an understanding of the contemporary politics of radioactive waste. Chapters 1 and 2 set out the background and historical context for the current position where the options have been narrowed by public opposition. The main story of the book looks at the situation in the United Kingdom, but comparisons are drawn with the USA, western Germany, Sweden and France. The studies spanned six years and are based on visits, discussions and observations. The last chapter asks the question-what are the political conditions necessary for the development of publicly acceptable policies for the management of radioactive wastes ? As Tolkein put it 'we should seek a final end of this menace, even if we do not hope to make one'. (UK)

  19. Handling nuclear waste over long periods

    International Nuclear Information System (INIS)

    Ancelin, B.; Chenevier, E.

    1983-01-01

    The handling of nuclear waste over long periods throws up new problems, such as the safety for a very long term and the employment of economic logic in order to justify choices involving extended time scales. The result is a very great difficulty of apprehension of the problem by the specialists as well as by the public. A clear policy decision, associated with a coherent administrative organization, will therefore have to make up for an impossible technical-economical optimization of the various possible options. The difficulty of simple technical choices is only going to reinforce this wish; the absence of a global and comparative measuring system is responsible for the fact that in this field the passions often override many of the scientific truths [fr

  20. Global Nuclear Energy Partnership Waste Treatment Baseline

    International Nuclear Information System (INIS)

    Gombert, Dirk; Ebert, William; Marra, James; Jubin, Robert; Vienna, John

    2008-01-01

    The Global Nuclear Energy Partnership (GNEP) program is designed to demonstrate that a proliferation-resistant and sustainable integrated nuclear fuel cycle can be commercialized and used internationally. Alternative stabilization concepts for byproducts and waste streams generated by fuel recycling processes were evaluated and a baseline set of waste forms was recommended for the safe disposition of waste streams. Specific waste forms are recommended based on the demonstrated or expected commercial practicability and technical maturity of the processes needed to make the waste forms, and expected performance of the waste form materials when disposed. Significant issues remain in developing technologies to process some of the wastes into the recommended waste forms, and a detailed analysis of technology readiness may lead to the choice of a different waste form than what is recommended herein. Evolving regulations could also affect the selection of waste forms. (authors)

  1. Global Nuclear Energy Partnership Waste Treatment Baseline

    Energy Technology Data Exchange (ETDEWEB)

    Gombert, Dirk; Ebert, William; Marra, James; Jubin, Robert; Vienna, John [Idaho National laboratory, 2525 Fremont Ave., Idaho Falls, ID 83402 (United States)

    2008-07-01

    The Global Nuclear Energy Partnership (GNEP) program is designed to demonstrate that a proliferation-resistant and sustainable integrated nuclear fuel cycle can be commercialized and used internationally. Alternative stabilization concepts for byproducts and waste streams generated by fuel recycling processes were evaluated and a baseline set of waste forms was recommended for the safe disposition of waste streams. Specific waste forms are recommended based on the demonstrated or expected commercial practicability and technical maturity of the processes needed to make the waste forms, and expected performance of the waste form materials when disposed. Significant issues remain in developing technologies to process some of the wastes into the recommended waste forms, and a detailed analysis of technology readiness may lead to the choice of a different waste form than what is recommended herein. Evolving regulations could also affect the selection of waste forms. (authors)

  2. Global Nuclear Energy Partnership Waste Treatment Baseline

    Energy Technology Data Exchange (ETDEWEB)

    Dirk Gombert; William Ebert; James Marra; Robert Jubin; John Vienna

    2008-05-01

    The Global Nuclear Energy Partnership program (GNEP) is designed to demonstrate a proliferation-resistant and sustainable integrated nuclear fuel cycle that can be commercialized and used internationally. Alternative stabilization concepts for byproducts and waste streams generated by fuel recycling processes were evaluated and a baseline of waste forms was recommended for the safe disposition of waste streams. Waste forms are recommended based on the demonstrated or expected commercial practicability and technical maturity of the processes needed to make the waste forms, and performance of the waste form materials when disposed. Significant issues remain in developing technologies to process some of the wastes into the recommended waste forms, and a detailed analysis of technology readiness and availability may lead to the choice of a different waste form than what is recommended herein. Evolving regulations could also affect the selection of waste forms.

  3. Nuclear waste management, reactor decommisioning, nuclear liability and public attitudes

    International Nuclear Information System (INIS)

    Green, R.E.

    1982-01-01

    This paper deals with several issues that are frequently raised by the public in any discussion of nuclear energy, and explores some aspects of public attitudes towards nuclear-related activities. The characteristics of the three types of waste associated with the nuclear fuel cycle, i.e. mine/mill tailings, reactor wastes and nuclear fuel wastes, are defined, and the methods currently being proposed for their safe handling and disposal are outlined. The activities associated with reactor decommissioning are also described, as well as the Canadian approach to nuclear liability. The costs associated with nuclear waste management, reactor decommissioning and nuclear liability are also discussed. Finally, the issue of public attitudes towards nuclear energy is addressed. It is concluded that a simple and comprehensive information program is needed to overcome many of the misconceptions that exist about nuclear energy and to provide the public with a more balanced information base on which to make decisions

  4. Nuclear energy from radioactive waste

    International Nuclear Information System (INIS)

    Schwarzenberg, M.

    1998-01-01

    The global energy demand is increasing. Sound forecasts indicate that by the year 2020 almost eight thousand million people will be living on our planet, and generating their demand for energy will require conversion of about 20 thousand million tonnes of coal equivalents a year. Against this background scenario, a new concept for energy generation elaborated by nuclear scientists at CERN attracts particular interest. The concept describing a new nuclear energy source and technology intends to meet the following principal requirements: create a new energy source that can be exploited in compliance with extremely stringent safety requirements; reduce the amount of long-lived radioactive waste; substantially reduce the size of required radwaste repositories; use easily available natural fuels that will not need isotopic separation; prevent the risk of proliferation of radioactive materials; process and reduce unwanted actinides as are generated by the operation of current breeder reactors; achieve high efficiency both in terms of technology and economics. (orig./CB) [de

  5. Management options for food production systems affected by a nuclear accident. Task 2 options for minimising the production of contaminated milk

    CERN Document Server

    Smith, J G; Mercer, J A; Nisbet, A F; Wilkins, B T

    2002-01-01

    This report describes an evaluation of three possible means by which the production of waste milk could be reduced following a nuclear accident. The three options studied are the reduction of contaminated pasture in the diet, the drying off of lactating dairy cattle and the slaughter of dairy cattle. The practicability of each of these is considered using criteria such as technical feasibility, capacity, cost, impact and acceptability, where appropriate. In theory reductions in waste milk arisings can be achieved with each option, however, there are a number of limitations associated with their practical application.

  6. Management options for food production systems affected by a nuclear accident. Task 2: options for minimising the production of contaminated milk

    International Nuclear Information System (INIS)

    Smith, J.G.; Nisbet, A.F.; Mercer, J.A.; Brown, J.; Wilkins, B.T.

    2002-01-01

    This report describes an evaluation of three possible means by which the production of waste milk could be reduced following a nuclear accident. The three options studied are the reduction of contaminated pasture in the diet, the drying off of lactating dairy cattle and the slaughter of dairy cattle. The practicability of each of these is considered using criteria such as technical feasibility, capacity, cost, impact and acceptability, where appropriate. In theory reductions in waste milk arisings can be achieved with each option, however, there are a number of limitations associated with their practical application. (author)

  7. Concepts and strategies for management of nuclear wastes

    International Nuclear Information System (INIS)

    1979-11-01

    Three modes of reactor strategies are chosen and discussed; (1) Once-through type light water reactor, (2) U-Pu cycle light water reactor, and (3) U-Pu cycle fast breeder reactor. The arising of wastes in each mode of nuclear fuel cycle is first estimated for unit nuclear power generation of 1 GWe.year and the amount of wastes to be managed in each year is then calculated. Assuming the 2nd and the 3rd reprocessing plants are not operative, the decrease of waste arising is also estimated, which, nevertheless, claims the need for spent fuel storage pools. In addition, the arisings of decommissioning wastes are evaluated to identify their effect on waste management. Based on above fact, a generic logic of waste management is brought about, placing major emphasis on volume reduction, barrier- and decay-effects. According to the characteristics, the wastes arisen at each stage of nuclear fuel cycle can be categorized into (1) extremely low-level waste, (2) low- and intermediate-level waste, (3) alpha-waste and (4) high-level waste, and the suitable isolation periods for the specified categories can be set by the aid of hazard index, suggesting that the disposal options may possibly be selected. The waste disposal gives environmental impacts through dispersion and migration of contained nuclides into biosphere; the dispersion and migration paths are investigated and a mathematical expression to evaluate the impacts as dose commitment is presented. A multi-barrier concept is proposed since combined artificial and natural barriers have possibility of lengthening the migration path to enable safe disposal. Finally, items of research/development in waste management are represented from the viewpoints of (1) establishment of management system, (2) safety assessment covering verification of technology and system, and (3) regulation, giving recommendations for national policy making as well as for international co-operation. (JPN)

  8. Questioning nuclear waste substitution: a case study.

    Science.gov (United States)

    Marshall, Alan

    2007-03-01

    This article looks at the ethical quandaries, and their social and political context, which emerge as a result of international nuclear waste substitution. In particular it addresses the dilemmas inherent within the proposed return of nuclear waste owned by Japanese nuclear companies and currently stored in the United Kingdom. The UK company responsible for this waste, British Nuclear Fuels Limited (BNFL), wish to substitute this high volume intermediate-level Japanese-owned radioactive waste for a much lower volume of much more highly radioactive waste. Special focus is given to ethical problems that they, and the UK government, have not wished to address as they move forward with waste substitution. The conclusion is that waste substitution can only be considered an ethical practice if a set of moderating conditions are observed by all parties. These conditions are listed and, as of yet, they are not being observed.

  9. Integrated model of Korean spent fuel and high level waste disposal options - 16091

    International Nuclear Information System (INIS)

    Hwang, Yongsoo; Miller, Ian

    2009-01-01

    This paper describes an integrated model developed by the Korean Atomic Energy Research Institute (KAERI) to simulate options for disposal of spent nuclear fuel (SNF) and reprocessing products in South Korea. A companion paper (Hwang and Miller, 2009) describes a systems-level model of Korean options for spent nuclear fuel (SNF) management in the 21. century. The model addresses alternative design concepts for disposal of SNF of different types (Candu, PWR), high level waste, and fission products arising from a variety of alternative fuel cycle back ends. It uses the GoldSim software to simulate the engineered system, near-field and far-field geosphere, and biosphere, resulting in long-term dose predictions for a variety of receptor groups. The model's results allow direct comparison of alternative repository design concepts, and identification of key parameter uncertainties and contributors to receptor doses. (authors)

  10. Standardization's role in revitalizing the nuclear option

    International Nuclear Information System (INIS)

    Ward, J.E.

    1986-01-01

    Considering the moribund status of the nuclear industry, something has to be done in the near-term to reverse the decaying economics of nuclear power. Standardization can turn around nuclear economics in the short term and in the longer term can foster a significant return to nuclear power. In the short term the industry needs to take advantage of those current designs that have proved their worth by excellent operating records. These designs can be replicated taking advantage of the complete status of the design and the construction techniques already in place. In the longer term it needs to develop preapproved designs and sites. Further, it must develop a discipline within the system of regulation as well as within the utility management to accept a power design as is. They cannot afford customized regulation nor customized design. Traditional institutional structures may also be up for grabs as utilities struggle to be more cost-effective. Generating companies may plan a significant role in the future of electric utilities. This kind of emphasis will also provide an impetus for the use of cost-effective, standardized designs that can be the catalyst for nuclear power's resurgence

  11. Impact of advanced fuel cycle options on waste management policies

    International Nuclear Information System (INIS)

    Gordelier, Stan; Cavedon, Jean-Marc

    2006-01-01

    OECD/NEA has performed a study on the impact of advanced fuel cycle options on waste management policies with 33 experts from 12 member countries, 1 non-member country and 2 international organizations. The study extends a series of previous ones on partitioning and transmutation (P and T) issues, focusing on the performance assessments for repositories of high-level waste (HLW) arising from advanced fuel cycles. This study covers a broader spectrum than previous studies, from present industrial practice to fully closed cycles via partially closed cycles (in terms of transuranic elements); 9 fuel cycle schemes and 4 variants. Elements of fuel cycles are considered primarily as sources of waste, the internal mass flows of each scheme being kept for the sake of mass conservation. The compositions, activities and heat loads of all waste flows are also tracked. Their impact is finally assessed on the waste repository concepts. The study result confirms the findings from the previous NEA studies on P and T on maximal reduction of the waste source term and maximal use of uranium resources. In advanced fuel cycle schemes the activity of the waste is reduced by burning first plutonium and then minor actinides and also the uranium consumption is reduced, as the fraction of fast reactors in the park is increased to 100%. The result of the repository performance assessments, analysing the effect of different HLW isotopic composition on repository performance and on repository capacity, shows that the maximum dose released to biosphere at any time in normal conditions remains, for all schemes and for all the repository concepts examined, well below accepted radiation protection thresholds. The major impact is on the detailed concept of the repositories, through heat load and waste volume. Advanced fuel cycles could allow a repository to cover waste produced from 5 to 20 times more electricity generation than PWR once-through cycle. Given the flexibility of the advanced fuel

  12. Nuclear Option for a Secure and Sustainable Energy Supply

    International Nuclear Information System (INIS)

    Kolundzija, V.; Mesarovic, M.

    2002-01-01

    Present energy policy is required to ensure a balance between security of supply, competitiveness and environmental requirements. Recent changes involved by deregulation and liberalization of electricity and natural gas markets even strengthen such a policy. However, dependency on external energy sources carries risks that have to be managed since a large proportion of both oil and gas reserves are found in politically unstable regions. Electrical energy is a fundamental prerequisite for a civilized life and an essential commodity, but it cannot be stored and this restricts the extent to which there can be a real free market for electricity. Therefore, relying on imports of electricity to a large extent may prove unsecure because this requires a true, completely open market in which the opportunities for cross-border trade are effective and balanced and transport connections are adequate. This is equally applied to the countries in the South-Eastern Europe, despite very good prospects for development of the regional electricity market there. In this regard, the use of nuclear energy has not any risk associated with external dependency because there are abundant quantities of uranium available world-wide from many diverse sources. The inherent mitigation of supply risk associated with the use of uranium should act as an incentive to the further use of nuclear energy. In addition, already very large stocks of fuel assemblies and fuel-making materials available, especially when these are measured in terms of power generating capacity per year at current production rates. It is, therefore, very important for any country to recognize such strategic aspect of nuclear energy when addressing the issue of security of power supply. Nuclear option is in a unique position to restore its original role of the main source of energy with an increased attention paid to the security of electricity supply as well as regulatory changes affecting fossil fuels, particularly with due

  13. The nuclear option in Canada - why it is gaining ground

    International Nuclear Information System (INIS)

    Hopwood, J.M.; Alizadeh, A.; Hedges, K.R.; Tighe, P.

    2005-01-01

    Over the last five years, the nuclear option in Canada has gone from 'off-the-radar' to an essential part of the energy debate. In Ontario, in particular, building new nuclear plants, along with life-extension of existing plants, has been recommended by government commissions as one of the vital energy-supply options to be pursued. Both life-extension and introduction of new nuclear power plants are complicated by uncertainties in the energy market, and by changes in the organizational and policy environment. Public and policy-maker recognition of the nuclear role are steadily growing, but commercial conditions to support nuclear projects are still difficult to define and obtain. In Canada, as in many OECD countries, the need to add to electricity infrastructure is becoming apparent. Life-extension of existing nuclear units, and projects to build new unit, are being planned. The key challenges, once energy policy issues have been addressed, are mainly commercial. Based on its successful experience with overseas projects such as Quinshan, and on its evolutionary approach to design of new, advanced power plants, AECL is well placed to meet these challenges and launch a new round of nuclear projects. Overall, the Canadian perspective is towards increasing support for the nuclear option. Canada is poised to join the vanguard of the broadening nuclear power expansion. (orig.)

  14. Development of comprehensive waste acceptance criteria for commercial nuclear waste

    International Nuclear Information System (INIS)

    O'Hara, F.A.; Miller, N.E.; Ausmus, B.S.; Yates, K.R.; Means, J.L.; Christensen, R.N.; Kulacki, F.A.

    1979-01-01

    A detailed methodology is presented for the identification of the characteristics of commercial nuclear waste which may require criteria. This methodology is analyzed as a six-step process which begins with identification of waste operations and proceeds until the waste characteristics affecting the potential release of radionuclides are determined. All waste types and operations were analyzed using the methodology presented. Several illustrative example are included. It is found that thirty-three characteristics can be identified as possibly requiring criteria

  15. Nuclear waste repository simulation experiments

    International Nuclear Information System (INIS)

    Rothfuchs, T.; Wieczorek, K.; Feddersen, H.K.; Staupendahl, G.; Coyle, A.J.; Kalia, H.; Eckert, J.

    1986-12-01

    This document is the third joint annual report on the Cooperative German-American 'Brine Migration Tests' that are in progress at the Asse salt mine in the Federal Republic of Germany (FRG). This Government supported mine serves as an underground test facility for research and development (R and D)-work in the field of nuclear waste repository research and simulation experiments. The tests are designed to simulate a nuclear waste repository to measure the effects of heat and gamma radiation on brine migration, salt decrepitation, disassociation of brine, and gases collected. The thermal mechanical behavior of salt, such as room closure, stresses and changes of the properties of salt are measured and compared with predicted behavior. This document covers the following sections: Issues and test objectives: This section presents issues that are investigated by the Brine Migration Test, and the test objectives derived from these issues; test site: This section describes the test site location and geology in the Asse mine; test description: A description of the test configuration, procedures, equipment, and instrumentation is given in this section; actual test chronology: The actual history of the test, in terms of the dates at which major activities occured, is presented in this section. Test results: This section presents the test results observed to data and the planned future work that is needed to complete the test; conclusions and recommendations: This section summarizes the conclusions derived to date regarding the Brine Migration Test. Additional work that would be useful to resolve the issues is discussed. (orig.)

  16. 21st century challenges and opportunities for nuclear waste management

    International Nuclear Information System (INIS)

    McKinley, I.G.

    2009-01-01

    The technical arguments for massive expansion of nuclear power generation are convincing, but such a renaissance requires public acceptance. For diehard nuclear opponents, criticism now focuses on its Achilles heel - the unsolved (and often claimed to be insoluble) problem of disposal of the resultant long-lived waste. In fact, the geological disposal of nuclear waste can be managed safely with existing technology and should really be touted as one of the advantages of this option. Clearly, there is a major challenge in communicating disposal safety to key stakeholders in order to realise this benefit. Nevertheless, the growth of environmental concern about global warming and the present economic climate may present opportunities to initiate dialogue with relevant communities, allowing the attractions of hosting future disposal facilities to be seen. Rather than being the archetypal focus for NIMBY reactions, maybe within a few years we can look forward to growing competition to host geological repositories for radioactive waste.(Author)

  17. Disposal of slightly contaminated radioactive wastes from nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Minns, J.L. [Nuclear Regulatory Commission, Washington, DC (United States)

    1995-02-01

    With regard to the disposal of solid wastes, nuclear power plants basically have two options, disposal in a Part 61 licensed low-level waste site, or receive approval pursuant to 20.2002 for disposal in a manner not otherwise authorized by the NRC. Since 1981, the staff has reviewed and approved 30 requests for disposal of slightly contaminated radioactive materials pursuant to Section 20.2002 (formerly 20.302) for nuclear power plants located in non-Agreement States. NRC Agreement States have been delegated the authority for reviewing and approving such disposals (whether onsite or offsite) for nuclear power plants within their borders. This paper describes the characteristics of the waste disposed of, the review process, and the staff`s guidelines.

  18. Determining ''Best Practicable Environmental Options'' for final waste disposal of radioactive waste

    International Nuclear Information System (INIS)

    Smith, Graham

    1999-01-01

    This presentation discusses some ideas on what the Best Practical Environmental Option (BPEO) process should include. A BPEO study to help develop a radioactive waste management strategy should not only look at post-closure safety of a facility. In the UK there was a 1986 Study of BPEOs for management of low and intermediate level radioactive wastes. This study tried to answer important questions such as (1) What are the practical options, (2) Which wastes should go to shallow burial, (3) Which wastes should go to sea disposal, (4) How does storage compare with disposal and (5) What are the cost and environmental trade-offs. The presentation discusses what was done to answer the questions. The BPEO Study resulted in major improved effort to characterise waste, much greater quantitative understanding of where and when the real costs, and environmental and radiological impacts arise. All options would be useful within a national strategy. But there was clearly a need for resolution of political acceptance problems, integration of policy with other hazardous waste management, and stronger legal framework

  19. Organic analyses of mixed nuclear wastes

    International Nuclear Information System (INIS)

    Toste, A.P.; Lucke, R.B.; Lechner-Fish, T.J.; Hendren, D.J.; Myers, R.B.

    1987-04-01

    Analytical methods are being developed for the organic analysis of nuclear wastes. Our laboratory analyzed the organic content of three commercial wastes and an organic-rich, complex concentrate waste. The commercial wastes contained a variety of hydrophobic and hydrophilic organics, at concentrations ranging from nanomolar to micromolar. Alkyl phenols, chelating and complexing agents, as well as their degradation products, and carboxylic acids were detected in the commercial wastes. The complex concentrate waste contained chelating and complexing agents, as well as numerous degradation products, at millimolar concentrations. 75.1% of the complex concentrate waste's total organic carbon content has been identified. The presence of chelator fragments in all of the wastes analyzed, occasionally at elevated concentrations, indicates that organic diagenesis, or degradation, in nuclear wastes is both widespread and quite vigorous. 23 refs., 3 tabs

  20. Options for the decontamination of alpha-bearing liquid wastes

    International Nuclear Information System (INIS)

    Carley-Macauly, K.W.; Gutman, R.G.; Hooper, E.W.; Logsdail, D.H.; Rees, J.H.; Simpson, M.P.; Smyth, M.J.; Turner, A.D.

    1984-08-01

    This document reviews the processes potentially available, and their state of development, for the removal of alpha activity from aqueous waste streams. In present practice, most such streams are treated by precipitation, usually with an iron hydroxide, but the potential role and limitations of other precipitants, of ion exchange techniques and solvent extraction are also discussed as well as newer electrochemical methods. Because of the importance of precipitation, and the fact the α-activity often occurs in suspended form in wastes, the methods for solids separation and concentration are considered in some detail, together with other physical processes such as evaporation. The equipment and operational aspects are also discussed, particularly for precipitation, ion exchange and solvent extraction treatments. The conclusions relate to an extensive table in which the different methods are compared. The optimum treatment or combination of treatments will depend on the waste stream and other circumstances (particularly on the chemical and radiological constituents of the waste, and its rate of arising) and the aim of this work is to give an initial guide to the choice among the options. (author)

  1. Transport and nuclear waste disposal

    International Nuclear Information System (INIS)

    Wild, E.

    1999-01-01

    The author assesses both past and future of nuclear waste disposal in Germany. The failure of the disposal concept is, he believes, mainly the fault of the Federal Government. On the basis of the Nuclear Energy Act, the government is obliged to ensure that ultimate-storage sites are established and operated. Up to the present, however, the government has failed - apart from the episode in Asse and Morsleben and espite existing feasible proposals in Konrad and Gorleben - to achieve this objective. This negative development is particularly evident from the projects which have had to be prematurely abandoned. The costs of such 'investment follies' meanwhile amount to several billion DM. At least 92% of the capacity in the intermediate-storage sites are at present unused. Following the closure of the ultimate-storage site in Morsleben, action must be taken to change over to long-term intermediate-storage of operational waste. The government has extensive intermediate-storage capacity at the intermediate-storage site Nord in Greifswald. There, the wate originally planned for storage in Morsleben could be intermediately stored at ERAM-rates. Nuclear waste transportation, too, could long ago have been resumed, in the author's view. For the purpose of improving the transport organisation, a new company was founded which represents exclusively the interests of the reprocessing firms at the nuclear power stations. The author's conclusion: The EVU have done their homework properly and implemented all necessary measures in order to be able to resume transport of fuel elements as soon as possible. The generating station operators favour a solution based upon agreement with the Federal Government. The EVU have already declared their willingness - in the event of unanimous agreement - to set up intermediate-storage sites near the power stations. The ponds in the generating stations, however, are unsuitable for use as intermediate-storage areas. If intermediate-storage areas for

  2. State of nuclear waste management of German nuclear power stations

    International Nuclear Information System (INIS)

    1983-01-01

    The waste management of nuclear power plants in the Federal Republic of Germany is today prevailing in the public discussion. Objections raised in this connection, e.g. that the nuclear waste management has been omitted from the development of peaceful utilization of nuclear energy or remained insolved, are frequently accepted without examination, and partly spread as facts. This is, however, not the truth: From the outset in 1955 the development of nuclear technology in the Federal Republic of Germany has included investigations of the problems of reprocessing and non-detrimental disposal of radioactive products, and the results have been compiled in a national nuclear waste management concept. (orig.) [de

  3. Solidification of radioactive liquid wastes, Treatment options for spent resins and concentrates - 16405

    International Nuclear Information System (INIS)

    Roth, Andreas

    2009-01-01

    of a final repository site, the built-up of additional volume has to be considered as very critical. Moreover, corrosive effects on cemented drums during long-term interim storage at the surface have raised doubts about the long-term stability of such waste products. In order to avoid such disadvantages solidification methods have been improved in order to get a well-defined product with a better load factor of wastes in the matrix. In a complete different approach, other technologies solidify the liquid radioactive wastes without adding of any inactive material by means of drying. Different installations are available for spent resin or concentrate drying. Such methods produce suitable waste products for final disposal and achieve additional volume reduction factors for final disposal. On the other hand, design of the treatment plant as well as the subsequent drum handling and interim storage plants have to consider the high concentration of radioactivity in the final waste product and have to deal with appropriate packages, remote controlled operations and shielding. The presentation will briefly introduce examples for the mentioned treatment options and report on results achieved with it in nuclear installations with WH (Westinghouse)/ HANSA (Hansa Projekt Anlagentechnik GmbH) technologies. Further on, the paper will discuss the evaluation of the advantages and disadvantages of the treatment options relative to the characteristics of the wastes and the environment to be considered (availability of repository, existing or assumed repository, acceptance criteria etc.). In conclusion such self assessment regarding priorities, background and goals is essential for the selection of a suitable approach. - The industry can address the various specific needs with proven technologies and services; - Westinghouse/ Hansa Projekt Anlagentechnik have served various customers around the globe under different regulatory environment with successful equipment deliveries and

  4. Nuclear waste in public acceptance

    International Nuclear Information System (INIS)

    Vastchenko, Svetlana V.

    2003-01-01

    The existing problem on a faithful acceptance of nuclear information by population is connected, to a considerable extent, with a bad nuclear 'reputation' because of a great amount of misrepresented and false information from 'the greens'. In contrast to a bare style of professionals often neglecting an emotional perception, a loud voice of 'the greens' appeals both to the head, and to the heart of the audience. People pattern their behaviour weakly on problems of safe application of different irradiation sources in industry, conditions of life, medicine and everyday life. Radiation danger of some sources is often exaggerated (computers, nuclear technologies, radiation treatment) and the danger of the others is, on the contrary, underestimated (nuclear and roentgen methods of diagnostics and medical treatment). The majority of our citizens do not know which level of radiation is normal and safe, which ways radioactive substances intake into the organism of a human being and how to diminish the dose load on the organism by simple measures. Only specialists can be orientated themselves in a great number of radiation units. Low level of knowledge of the population and false conceptions are connected with the fact that they are mainly informed about nuclear technologies from mass media, where the voice of 'Greenpeace' is loudly sounded, but they often give misrepresented and false information doing it in the very emotional form. In contrast to them, scientists-professionals often ignore a sensitive part of apprehending of information and do not attach importance to it. As a rule, the style of specialists is of a serious academician character when they meet with the public. People preconception to nuclear waste and distrust to a positive information concerning nuclear technologies are explained, to a considerable extent, by a bivalent type of thinking when people operate by two opposite conceptions only, such as 'there is' or 'there is not' (there is or there is not

  5. Nuclear waste in public acceptance

    Energy Technology Data Exchange (ETDEWEB)

    Vastchenko, Svetlana V. [Joint Institute for Power and Nuclear Research - Sosny / National Academy of Science, A.K.Krasin Str., 99, Minsk 220109 (Belarus)

    2003-07-01

    The existing problem on a faithful acceptance of nuclear information by population is connected, to a considerable extent, with a bad nuclear 'reputation' because of a great amount of misrepresented and false information from 'the greens'. In contrast to a bare style of professionals often neglecting an emotional perception, a loud voice of 'the greens' appeals both to the head, and to the heart of the audience. People pattern their behaviour weakly on problems of safe application of different irradiation sources in industry, conditions of life, medicine and everyday life. Radiation danger of some sources is often exaggerated (computers, nuclear technologies, radiation treatment) and the danger of the others is, on the contrary, underestimated (nuclear and roentgen methods of diagnostics and medical treatment). The majority of our citizens do not know which level of radiation is normal and safe, which ways radioactive substances intake into the organism of a human being and how to diminish the dose load on the organism by simple measures. Only specialists can be orientated themselves in a great number of radiation units. Low level of knowledge of the population and false conceptions are connected with the fact that they are mainly informed about nuclear technologies from mass media, where the voice of 'Greenpeace' is loudly sounded, but they often give misrepresented and false information doing it in the very emotional form. In contrast to them, scientists-professionals often ignore a sensitive part of apprehending of information and do not attach importance to it. As a rule, the style of specialists is of a serious academician character when they meet with the public. People preconception to nuclear waste and distrust to a positive information concerning nuclear technologies are explained, to a considerable extent, by a bivalent type of thinking when people operate by two opposite conceptions only, such as 'there is

  6. Current problems of nuclear arms: some options

    International Nuclear Information System (INIS)

    Bocharov, I.F.

    1992-01-01

    Possible solutions of certain problems of the soviet nuclear weapons resulting from spontaneously changing military-political situation and social-economical living conditions on geostrategical space of the former USSR are discussed. Reliable stabilization of military-political situation on the former USSR territory is required for solving the above problems, which in its turn will possibly require active efforts of the international community. The idea on creation the Committee on non-prolifiration by the UN Security Council is proposed

  7. Nuclear waste and nuclear ethics. Societal and ethical aspects of retrievable storage of nuclear waste

    International Nuclear Information System (INIS)

    Damveld, H.; Van den Berg, R.J.

    2000-01-01

    The aim of the literature study on the title subject is to provide information to researchers, engineers, decision makers, administrators, and the public in the Netherlands on the subject of retrievable storage of nuclear waste, mainly from nuclear power plants. Conclusions and recommendations are formulated with respect to retrievability and ethics, sustainability, risk assessment, information transfer, environmental impacts, and discussions on radioactive waste storage. 170 refs

  8. The politics of nuclear-waste disposal

    International Nuclear Information System (INIS)

    Tarricone, P.

    1994-01-01

    After 72 days of public hearings and testimony from more than 100 witnesses, the first commission of its kind in the US found that politics--not science and engineering--led to the selection of Martinsville, Ill. as the host site for a nuclear-waste-disposal facility. This article examines how the plan to dispose of nuclear waste in Martinsville ultimately unraveled

  9. Waste management and the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Molinari, J.

    1982-01-01

    The present lecture deals with energy needs and nuclear power, the importance of waste and its relative place in the fuel cycle, the games of controversies over nuclear waste in the strategies of energy and finally with missions and functions of the IAEA for privileging the rational approach and facilitating the transfer of technology. (RW)

  10. Concept for Underground Disposal of Nuclear Waste

    Science.gov (United States)

    Bowyer, J. M.

    1987-01-01

    Packaged waste placed in empty oil-shale mines. Concept for disposal of nuclear waste economically synergistic with earlier proposal concerning backfilling of oil-shale mines. New disposal concept superior to earlier schemes for disposal in hard-rock and salt mines because less uncertainty about ability of oil-shale mine to contain waste safely for millenium.

  11. Techno-economical Analysis of High Level Waste Storage and Disposal Options

    International Nuclear Information System (INIS)

    Bace, M.; Trontl, K.; Vrankic, K.

    2002-01-01

    Global warming and instability of gas and oil prices are redefining the role of nuclear energy in electrical energy production. A production of high-level radioactive waste (HLW), during the nuclear power plant operation and a danger of high level waste mitigation to the environment are considered by the public as a main obstacle of accepting the nuclear option. As economical and technical aspects of the back end of fuel cycle will affect the nuclear energy acceptance the techno-economical analysis of different methods for high level waste storage and disposal has to be performed. The aim of this paper is to present technical and economical characteristics of different HLW storage and disposal technologies. The final choice of a particular HLW management method is closely connected to the selection of a fuel cycle type: open or closed. Wet and dry temporary storage has been analyzed including different types of spent fuel pool capacity increase methods, different pool location (at reactor site and away from reactor site) as well as casks and vault system of dry storage. Since deep geological deposition is the only disposal method with a realistic potential, we focused our attention on that disposal technology. Special attention has been given to the new idea of international and regional disposal location. The analysis showed that a coexistence of different storage methods and deep geological deposition is expected in the future, regardless of the fuel cycle type. (author)

  12. Nuclear Power Options Viability Study. Volume 4. Bibliography

    Energy Technology Data Exchange (ETDEWEB)

    Trauger, D B; White, J D; Sims, J W [eds.

    1986-09-01

    Documents in the Nuclear Power Options Viability Study (NPOVS) bibliography are classified under one of four headings or categories as follows: nuclear options; light water reactors; liquid metal reactors; and high temperature reactors. The collection and selection of these documents, beginning early in 1984 and continuing through March of 1986, was carried out in support of the study's objective: to explore the viabilities of several nuclear electric power generation options for commercial deployment in the United States between 2000 and 2010. There are approximately 550 articles, papers, reports, and books in the bibliography that have been selected from some 2000 surveyed. The citations have been made computer accessible to facilitate rapid on-line retrieval by keyword, author, corporate author, title, journal name, or document number.

  13. Nuclear Power Options Viability Study. Volume 4. Bibliography

    International Nuclear Information System (INIS)

    Trauger, D.B.; White, J.D.; Sims, J.W.

    1986-09-01

    Documents in the Nuclear Power Options Viability Study (NPOVS) bibliography are classified under one of four headings or categories as follows: nuclear options; light water reactors; liquid metal reactors; and high temperature reactors. The collection and selection of these documents, beginning early in 1984 and continuing through March of 1986, was carried out in support of the study's objective: to explore the viabilities of several nuclear electric power generation options for commercial deployment in the United States between 2000 and 2010. There are approximately 550 articles, papers, reports, and books in the bibliography that have been selected from some 2000 surveyed. The citations have been made computer accessible to facilitate rapid on-line retrieval by keyword, author, corporate author, title, journal name, or document number

  14. Economical viability of the nuclear option in Mexico

    International Nuclear Information System (INIS)

    Ortiz, R.; Alonso, G.; Sanchez, J.

    2006-01-01

    Due to the high volatility of the gas prices and the concern for CO2 emissions, the nuclear option seems to be an option that needs to consider in a electricity expansion portfolio. In this paper a levelized electricity cost analysis is performed to compared different scenarios of electricity generation using combined cycles by using gas and nuclear power stations. The scenarios comprises different discount rates for the investment that goes from 5% to 12%, gas prices from 4.44 USD/mmBTU to 7 USD/mmBTU and overnight cost for Nuclear Power Plants from 1200 USD/kW to 1600 USD/kW. The overall cash flow including investment is analyzed during the whole life of the power plants to test the convenience of the best option in the long run

  15. Spallator: a new option for nuclear power

    Energy Technology Data Exchange (ETDEWEB)

    Steinberg, M.; Grand, P.; Takahashi, H.; Powell, J.R.; Kouts, H.J.

    1983-06-01

    The principles of the spallator reactor are reviewed. Advances in linear accelerator technology allow the design and construction of high current (hundreds of mA) continuous wave high energy (thousands of MeV) proton machines in the near term. Spallation neutronic calculations building on existing experimental results, indicate substantial neutron yields on uranium targets. Spallator target assembly designs based on water cooled reactor technology indicate operable efficient systems. Fuel cycles are presented which supply fissile material to thermal power reactors and reduce fission product waste. Preliminary comparative analysis indicates an economically competitive system in which a single purpose self-sufficient spallator supplies fuel to a number of LWRs. The spallator assures a long-term LWR power reactor economy. International interest in advancing the technology is indicated.

  16. Spallator: a new option for nuclear power

    International Nuclear Information System (INIS)

    Steinberg, M.; Grand, P.; Takahashi, H.; Powell, J.R.; Kouts, H.J.

    1983-06-01

    The principles of the spallator reactor are reviewed. Advances in linear accelerator technology allow the design and construction of high current (hundreds of mA) continuous wave high energy (thousands of MeV) proton machines in the near term. Spallation neutronic calculations building on existing experimental results, indicate substantial neutron yields on uranium targets. Spallator target assembly designs based on water cooled reactor technology indicate operable efficient systems. Fuel cycles are presented which supply fissile material to thermal power reactors and reduce fission product waste. Preliminary comparative analysis indicates an economically competitive system in which a single purpose self-sufficient spallator supplies fuel to a number of LWRs. The spallator assures a long-term LWR power reactor economy. International interest in advancing the technology is indicated

  17. Public concerns and choices regarding nuclear-waste repositories

    International Nuclear Information System (INIS)

    Rankin, W.L.; Nealey, S.M.

    1981-06-01

    Survey research on nuclear power issues conducted in the late 1970's has determined that nuclear waste management is now considered to be one of the most important nuclear power issues both by the US public and by key leadership groups. The purpose of this research was to determine the importance placed on specific issues associated with high-level waste disposal. In addition, policy option choices were asked regarding the siting of both low-level and high-level nuclear waste repositories. A purposive sampling strategy was used to select six groups of respondents. Averaged across the six respondent groups, the leakage of liquid wastes from storage tanks was seen as the most important high-level waste issue. There was also general agreement that the issue regarding water entering the final repository and carrying radioactive wastes away was second in importance. Overall, the third most important issue was the corrosion of the metal containers used in the high-level waste repository. There was general agreement among groups that the fourth most important issue was reducing safety to cut costs. The fifth most important issue was radioactive waste transportation accidents. Overall, the issues ranked sixth and seventh were, respectively, workers' safety and earthquakes damaging the repository and releasing radioactivity. The eighth most important issue, overall, was regarding explosions in the repository from too much radioactivity, which is something that is not possible. There was general agreement across all six respondent groups that the two least important issues involved people accidentally digging into the site and the issue that the repository might cost too much and would therefore raise electricity bills. These data indicate that the concerns of nuclear waste technologists and other public groups do not always overlap

  18. Life cycle assessment of bagasse waste management options

    International Nuclear Information System (INIS)

    Kiatkittipong, Worapon; Wongsuchoto, Porntip; Pavasant, Prasert

    2009-01-01

    Bagasse is mostly utilized for steam and power production for domestic sugar mills. There have been a number of alternatives that could well be applied to manage bagasse, such as pulp production, conversion to biogas and electricity production. The selection of proper alternatives depends significantly on the appropriateness of the technology both from the technical and the environmental points of view. This work proposes a simple model based on the application of life cycle assessment (LCA) to evaluate the environmental impacts of various alternatives for dealing with bagasse waste. The environmental aspects of concern included global warming potential, acidification potential, eutrophication potential and photochemical oxidant creation. Four waste management scenarios for bagasse were evaluated: landfilling with utilization of landfill gas, anaerobic digestion with biogas production, incineration for power generation, and pulp production. In landfills, environmental impacts depended significantly on the biogas collection efficiency, whereas incineration of bagasse to electricity in the power plant showed better environmental performance than that of conventional low biogas collection efficiency landfills. Anaerobic digestion of bagasse in a control biogas reactor was superior to the other two energy generation options in all environmental aspects. Although the use of bagasse in pulp mills created relatively high environmental burdens, the results from the LCA revealed that other stages of the life cycle produced relatively small impacts and that this option might be the most environmentally benign alternative

  19. An introduction to nuclear waste immobilisation

    International Nuclear Information System (INIS)

    Ojovan, M.I.; Lee, W.E.

    2005-08-01

    Safety and environmental impact is of uppermost concern when dealing with the movement and storage of nuclear waste. The 20 chapters in this book cover all important aspects of immobilisation, from nuclear decay, to regulations, to new technologies and methods. Significant focus is given to the analysis of the various matrices used in transport: cement, bitumen and glass, with the greatest attention being given to glass. The last chapter concentrates on the performance assessment of each matrix, and on new developments of ceramics and glass composite materials, thermochemical methods and in-situ metal matrix immobilisation. The book thoroughly covers all issues surrounding nuclear waste: from where to locate nuclear waste in the environment, through nuclear waste generation and sources, treatment schemes and technologies, immobilisation technologies and waste forms, disposal and long term behaviour. Particular attention is paid to internationally approved and worldwide-applied approaches and technologies

  20. The political challenges of nuclear waste

    International Nuclear Information System (INIS)

    Andren, Mats; Strandberg, Urban

    2005-01-01

    This anthology is made up of nine essays on the nuclear waste issue, both its political, social and technical aspects, with the aim to create a platform for debate and planning of research. The contributions are titled: 'From clean energy to dangerous waste - the regulatory management of nuclear power in the Swedish welfare society. An economic-historic review , 'The course of the high-level waste into the national political arena', 'The technical principles behind the Swedish repository for spent fuels', 'Waste, legitimacy and local citizenship', 'Nuclear issues in societal planning', 'Usefulness or riddance - transmutation or just disposal?', 'National nuclear fuel policy in an European Union?', 'Conclusion - the challenges of the nuclear waste issue', 'Final words - about the need for critical debate and multi-disciplinary research'

  1. Safety Aspects of Nuclear Waste Treatment

    International Nuclear Information System (INIS)

    Glubrecht, H.

    1986-01-01

    In the nuclear fuel cycle - like in most other industrial processes - some waste is produced which can be harmful to the environment and has to be stored safely and isolated from the Biosphere. This radioactive waste can be compared with toxic chemical waste under many aspects, but it has some special features, some of which make its handling more difficult, others make it easier. The difficulties are that radioactive waste does not only affect living organisms after incorporation, but also from some distance through its radiation. Therefore this waste has not only to be encapsuled, but also shielded. At higher concentrations radioactive waste produces heat and this has to be continuously derived from the storage area. On the other hand the control of even extremely small amounts of radioactive waste is very much easier than that of toxic chemical waste due to the high sensitivity of radiation detection methods. Furthermore radioactive waste is not persistent like most of the chemical waste. Of course some components will decay only after millennia, but a high percentage of radioactive waste becomes inactive after days, weeks or years. An important feature of safety aspects related to nuclear waste is the fact that problems of its treatment and storage have been discussed from the very beginning of Nuclear Energy Technology - what has not been the case in relation to most other industrial wastes

  2. Shipments of nuclear fuel and waste: are they really safe

    International Nuclear Information System (INIS)

    1977-10-01

    The safety aspects of shipping nuclear fuels and radioactive wastes are discussed by considering: US regulations on the shipment of hazardous and radioactive materials, types of radioactive wastes; packaging methods, materials, and specifications; design of shipping containers; evaluation of the risk potential under normal shipping conditions and in accident situations. It is concluded that: the risk of public catastrophe has been eliminated by strict standards, engineering design safety, and operational care; the long-term public burden of not transporting nuclear materials is likely to be higher than the risks of carefully controlled transportation, considering the various options available; and the likelihood of death, injury, or serious property damage from the nuclear aspects of nuclear transportation is thousands of times less than the likelihood of death, injury, or serious property damage from more common hazards, such as automobile accidents, boating accidents, accidental poisoning, gunshot wounds, fires, or even falls

  3. Development of real options model for nuclear power plants

    International Nuclear Information System (INIS)

    Ono, Kenji

    2004-01-01

    As the Japanese electricity market is deregulated, it becomes more important for electric utilities to recognize their financial risks and to adopt strategic and scientific decision making methodology. We have developed two models for valuation of Japanese nuclear power plants to support utilities' decision making. One is a net present value (NPV) model using discounted cash flow analysis method. Another is a real options model. This model is based on strict financial technology theory and can calculate value of early retirement, life extension and new unit addition options of nuclear units under electricity price uncertainty. This can also derive an optimal period for retirement, life extension and new unit addition. (author)

  4. OCRWM International Cooperation in Nuclear Waste Management

    International Nuclear Information System (INIS)

    Jackson, R.; Levich, R.; Strahl, J.

    2002-01-01

    With the implementation of nuclear power as a major energy source, the United States is increasingly faced with the challenges of safely managing its inventory of spent nuclear materials. In 2002, with 438 nuclear power facilities generating electrical energy in 31 nations around the world, the management of radioactive material including spent nuclear fuel and high-level radioactive waste, is an international concern. Most of the world's nuclear nations maintain radioactive waste management programs and have generally accepted deep geologic repositories as the long-term solution for disposal of spent nuclear fuel and high-level radioactive waste. Similarly, the United States is evaluating the feasibility of deep geologic disposal at Yucca Mountain, Nevada. This project is directed by the U.S. Department of Energy's Office of Civilian Radioactive Waste Management (OCRWM), which has responsibility for managing the disposition of spent nuclear fuel produced by commercial nuclear power facilities along with U.S. government-owned spent nuclear fuel and high-level radioactive waste. Much of the world class science conducted through the OCRWM program was enhanced through collaboration with other nations and international organizations focused on resolving issues associated with the disposition of spent nuclear fuel and high-level radioactive waste

  5. ENVI Model Development for Korean Nuclear Spent Fuel Options Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Sunyoung; Jeong, Yon Hong; Han, Jae-Jun; Lee, Aeri; Hwang, Yong-Soo [Korea Institute of Nuclear Nonproliferation and Control, Daejeon (Korea, Republic of)

    2015-10-15

    The disposal facility of the spent nuclear fuel will be operated from 2051. This paper presents the ENVI code developed by GoldSim Software to simulate options for managing spent nuclear fuel (SNF) in South Korea. The ENVI is a simulator to allow decision-makers to assist to evaluate the performance for spent nuclear fuel management. The multiple options for managing the spent nuclear fuel including the storage and transportation are investigated into interim storage, permanent disposal in geological repositories and overseas and domestic reprocessing. The ENVI code uses the GoldSim software to simulate the logistics of the associated activities. The result by the ENVI model not only produces the total cost to compare among the multiple options but also predict the sizes and timings of different facilities required. In order to decide the policy for spent nuclear management this purpose of this paper is to draw the optimum management plan to solve the nuclear spent fuel issue in the economical aspects. This paper is focused on the development of the ENVI's logic and calculations to simulate four options(No Reprocessing, Overseas Reprocessing, Domestic Reprocessing, and Overseas and Domestic Reprocessing) for managing the spent nuclear fuel in South Korea. The time history of the spent nuclear fuel produced from both the existing and future NPP's can be predicted, based on the Goldsim software made available very user friendly model. The simulation result will be used to suggest the strategic plans for the spent nuclear fuel management.

  6. ENVI Model Development for Korean Nuclear Spent Fuel Options Analysis

    International Nuclear Information System (INIS)

    Chang, Sunyoung; Jeong, Yon Hong; Han, Jae-Jun; Lee, Aeri; Hwang, Yong-Soo

    2015-01-01

    The disposal facility of the spent nuclear fuel will be operated from 2051. This paper presents the ENVI code developed by GoldSim Software to simulate options for managing spent nuclear fuel (SNF) in South Korea. The ENVI is a simulator to allow decision-makers to assist to evaluate the performance for spent nuclear fuel management. The multiple options for managing the spent nuclear fuel including the storage and transportation are investigated into interim storage, permanent disposal in geological repositories and overseas and domestic reprocessing. The ENVI code uses the GoldSim software to simulate the logistics of the associated activities. The result by the ENVI model not only produces the total cost to compare among the multiple options but also predict the sizes and timings of different facilities required. In order to decide the policy for spent nuclear management this purpose of this paper is to draw the optimum management plan to solve the nuclear spent fuel issue in the economical aspects. This paper is focused on the development of the ENVI's logic and calculations to simulate four options(No Reprocessing, Overseas Reprocessing, Domestic Reprocessing, and Overseas and Domestic Reprocessing) for managing the spent nuclear fuel in South Korea. The time history of the spent nuclear fuel produced from both the existing and future NPP's can be predicted, based on the Goldsim software made available very user friendly model. The simulation result will be used to suggest the strategic plans for the spent nuclear fuel management

  7. The IAEA project on nuclear and non-nuclear wastes

    International Nuclear Information System (INIS)

    Seitz, Roger

    1998-01-01

    Radioactive and chemotoxic agents are common in electricity generation waste. Data and assessments illustrate that nuclear and non-nuclear fuel chains result in waste posing potential long-term hazards. Efforts are focussed on filling data gaps and approaches for comparing impacts of radioactive and chemotoxic agents

  8. Review of the nuclear waste disposal problem

    International Nuclear Information System (INIS)

    Poch, L.A.; Wolsko, T.D.

    1979-10-01

    Regardless of future nuclear policy, a nuclear waste disposal problem does exist and must be dealt with. Even a moratorium on new nuclear plants leaves us with the wastes already in existence and wastes yet to be generated by reactors in operation. Thus, technologies to effectively dispose of our current waste problem must be researched and identified and, then, disposal facilities built. The magnitude of the waste disposal problem is a function of future nuclear policy. There are some waste disposal technologies that are suitable for both forms of HLW (spent fuel and reprocessing wastes), whereas others can be used with only reprocessed wastes. Therefore, the sooner a decision on the future of nuclear power is made the more accurately the magnitude of the waste problem will be known, thereby identifying those technologies that deserve more attention and funding. It is shown that there are risks associated with every disposal technology. One technology may afford a higher isolation potential at the expense of increased transportation risks in comparison to a second technology. Establishing the types of risks we are willing to live with must be resolved before any waste disposal technology can be instituted for widespread commercial use

  9. Nuclear Waste Management. Semiannual progress report, October 1984-March 1985

    Energy Technology Data Exchange (ETDEWEB)

    McElroy, J.L.; Powell, J.A. (comps.)

    1985-06-01

    Progress reports are presented for the following studies on radioactive waste management: defense waste technology; nuclear waste materials characterization center; and supporting studies. 19 figs., 29 tabs.

  10. Nuclear Waste Management. Semiannual progress report, October 1984-March 1985

    International Nuclear Information System (INIS)

    McElroy, J.L.; Powell, J.A.

    1985-06-01

    Progress reports are presented for the following studies on radioactive waste management: defense waste technology; nuclear waste materials characterization center; and supporting studies. 19 figs., 29 tabs

  11. Materials aspects of nuclear waste isolation

    International Nuclear Information System (INIS)

    Bennett, J.W.

    1984-01-01

    This paper is intended to provide an overview of the nuclear waste repository performance requirements and the roles which we expect materials to play in meeting these requirements. The objective of the U.S. Dept. of Energy's (DOE) program is to provide for the safe, permanent isolation of high-level radioactive wastes from the public. The Nuclear Waste Policy Act of 1982 (the Act) provides the mandate to accomplish this objective by establishing a program timetable, a schedule of procedures to be followed, and program funding (1 mil/kwhr for all nuclear generated electricity). The centerpiece of this plan is the design and operation of a mined geologic repository system for the permanent isolation of radioactive wastes. A nuclear waste repository contains several thousand acres of tunnels and drifts into which the nuclear waste will be emplaced, and several hundred acres for the facilities on the surface in which the waste is received, handled, and prepared for movement underground. With the exception of the nuclear material-related facilities, a repository is similar to a standard mining operation. The difference comes in what a repository is supposed to do - to contain an isolate nuclear waste from man and the environment

  12. Managing nuclear waste from power plants

    International Nuclear Information System (INIS)

    Keeney, R.L.; Winterfeldt, D. von

    1994-01-01

    National strategies to manage nuclear waste from commercial nuclear power plants are analyzed and compared. The current strategy is to try to operate a repository at Yucca Mountain, Nevada, to dispose storage at a centralized facility or next to nuclear power plants. If either of these is pursued now, the analysis assumes that a repository will be built in 2100 for waste not subsequently put to use. The analysis treats various uncertainties: whether a repository at Yucca Mountain would be licensed, possible theft and misuse of the waste, innovations in repository design and waste management, the potential availability of a cancer cure by 2100, and possible future uses of nuclear waste. The objectives used to compare alternatives include concerns for health and safety, environmental and socioeconomic impacts, and direct economic costs, as well as equity concerns (geographical, intergenerational, and procedural), indirect economic costs, as well as equity concerns (geographical, intergenerational, and procedural), indirect economic costs to electricity ratepayers, federal government responsibility to manage nuclear waste, and implications of theft and misuse of nuclear waste. The analysis shows that currently building an underground repository at Yucca Mountain is inferior to other available strategies by the equivalent of $10,000 million to $50,000 million. This strongly suggests that this policy should be reconsidered. A more detailed analysis using the framework presented would help to define a new national policy to manage nuclear waste. 36 refs., 3 figs., 17 tabs

  13. Radioactive waste from nuclear power stations and other nuclear facilities

    International Nuclear Information System (INIS)

    Jelinek-Fink, P.

    1976-01-01

    After estimating the amounts of liquid and solid radioactive wastes that will be produced in nuclear power plants, reprocessing plants, by the fuel cycle industry, and in the nuclear research centers in the FRG until 1990, it is reported on the state of technology and on the tendencies in the development of processing radioactive waste. The paper also describes, how waste disposal is managed by those producing radioactive waste (see above), and discusses the future development of the complex of waste disposal from the industry's point of view. (HR/LN) [de

  14. Nuclear waste disposal educational forum

    International Nuclear Information System (INIS)

    1982-01-01

    In keeping with a mandate from the US Congress to provide opportunities for consumer education and information and to seek consumer input on national issues, the Department of Energy's Office of Consumer Affairs held a three-hour educational forum on the proposed nuclear waste disposal legislation. Nearly one hundred representatives of consumer, public interest, civic and environmental organizations were invited to attend. Consumer affairs professionals of utility companies across the country were also invited to attend the forum. The following six papers were presented: historical perspectives; status of legislation (Senate); status of legislation (House of Representatives); impact on the legislation on electric utilities; impact of the legislation on consumers; implementing the legislation. All six papers have been abstracted and indexed for the Energy Data Base

  15. Chemistry of nuclear waste disposal

    International Nuclear Information System (INIS)

    Zimmer, E.

    1981-01-01

    In extractive purification of the low-enriched uranium fuel element (UO 2 -particle fuel element with SiC coating) no problems arise in the PUREX-process which have not already been solved when reprocessing LWR-type reactor and breeder fuel elements. Concerning the HTR-type reactor fuel elements containing thorium, there are two process cycles behind the head end; the pure U-235 is reprocessed in the same manner as the low-enriched uranium fuel, and the thorium, which is the bigger fraction, is reprocessed together with U-233 in the same manner as the mixed oxides. Only the CO 2 -off gas system, which contains krypton and carbon 14, leads to difficulties in nuclear waste disposal. (DG) [de

  16. A global nuclear waste repository

    Science.gov (United States)

    Lin, Wunan

    As a concerned scientist, I think that having a global nuclear waste repository is a reachable goal for human beings. Maybe through this common goal, mankind can begin to treat each other as brothers and sisters. So far, most human activities are framed by national boundaries, which are purely arbitrary. Breaking through these national boundaries will be very beneficial to human beings.Formation of the International Geosphere-Biosphere Program in 1986 indicates a growing awareness on the part of scientists regarding Earth as a system. The Apollo missions gave us a chance to look back at Earth from space. That perspective emphasized that our Earth is just one system: our only home. It is in deed a lonely boat in the high sea of dark space. We must take good care of our “boat.”

  17. Arisings and management of nuclear wastes

    International Nuclear Information System (INIS)

    Dejonghe, P.; Heremans, R.; Proost, J.; Voorde, N. van de

    1978-01-01

    The paper contains a brief description of volumes and composition of radioactive wastes expected to occur in Belgium, taking into account the present nuclear program. Various conditioning and management techniques are described and discussed. Some discussion is paid to disposal of conditioned radioactive wastes either into the ocean (low level) or in geologic formations (long lived or high level wastes). Some ideas are given as to the structure optimization in radioactive waste management and the associated R and D. (author)

  18. Managing nuclear waste: the underground perspective

    Energy Technology Data Exchange (ETDEWEB)

    1982-01-01

    A simplified, very-general overview of the history of nuclear waste management is presented. The sources of different wastes of different levels of radioactivity are discussed. The current governmental program, including three DOE programs currently studying the problems of isolating waste in geological repositories, is discussed briefly. The general thrust of ensuing articles in the same magazine dealing with different facets of the waste-management program is outlined. (BLM)

  19. Waste processing system for nuclear power plant

    International Nuclear Information System (INIS)

    Higashinakagawa, Emiko; Tezuka, Fuminobu; Maesawa, Yukishige; Irie, Hiromitsu; Daibu, Etsuji.

    1996-01-01

    The present invention concerns a waste processing system of a nuclear power plant, which can reduce the volume of a large amount of plastics without burying them. Among burnable wastes and plastic wastes to be discarded in the power plant located on the sea side, the plastic wastes are heated and converted into oils, and the burnable wastes are burnt using the oils as a fuel. The system is based on the finding that the presence of Na 2 O, K 2 O contained in the wastes catalytically improves the efficiency of thermal decomposition in a heating atmosphere, in the method of heating plastics and converting them into oils. (T.M.)

  20. Alternative solidified forms for nuclear wastes

    International Nuclear Information System (INIS)

    McElroy, J.L.; Ross, W.A.

    1976-01-01

    Radioactive wastes will occur in various parts of the nuclear fuel cycle. These wastes have been classified in this paper as high-level waste, intermediate and low-level waste, cladding hulls, and residues. Solidification methods for each type of waste are discussed in a multiple barrier context of primary waste form, applicable coatings or films, matrix encapsulation, canister, engineered structures, and geological storage. The four major primary forms which have been most highly developed are glass for HLW, cement for ILW, organics for LLW, and metals for hulls

  1. International Nuclear Waste Management Fact Book

    International Nuclear Information System (INIS)

    Leigh, I.W.

    1994-05-01

    International Nuclear Waste Management Fact Book has been compiled in an effort to provide current data concerning fuel cycle and waste management facilities, R ampersand D programs, and key personnel in 24 countries, including the US, four multinational agencies and 21 nuclear societies. This publication succeeds the previously issued International Nuclear Fuel Cycle Fact Book (PNL-3594), which appeared annually for 13 years. While the title is different, there are no substantial changes in the content

  2. Nuclear fuel waste policy in Canada

    International Nuclear Information System (INIS)

    Brown, P.A.; Letourneau, C.

    1999-01-01

    The 1996 Policy Framework for Radioactive Waste established the approach in Canada for dealing with all radioactive waste, and defined the respective roles of Government and waste producers and owners. The Policy Framework sets the stage for the development of institutional and financial arrangements to implement long-term waste management solutions in a safe, environmentally sound, comprehensive, cost-effective and integrated manner. For nuclear fuel waste, a 10-year environmental review of the concept to bury nuclear fuel waste bundles at a depth of 500 m to 1000 m in stable rock of the Canadian Shield was completed in March 1998. The Review Panel found that while the concept was technically safe, it did not have the required level of public acceptability to be adopted at this time as Canada's approach for managing its nuclear fuel waste. The Panel recommended that a Waste Management Organization be established at arm's length from the nuclear industry, entirely funded by the waste producers and owners, and that it be subject to oversight by the Government. In its December 1998 Response to the Review Panel, the Government of Canada provided policy direction for the next steps towards developing Canada's approach for the long-term management of nuclear fuel waste. The Government chose to maintain the responsibility for long-term management of nuclear fuel waste close with the producers and owners of the waste. This is consistent with its 1996 Policy Framework for Radioactive Waste. This approach is also consistent with experience in many countries. In addition, the federal government identified the need for credible federal oversight. Cabinet directed the Minister of NRCan to consult with stakeholders, including the public, and return to ministers within 12 months with recommendations on means to implement federal oversight. (author)

  3. Nuclear waste problem: does new Europe need new nuclear energy?

    International Nuclear Information System (INIS)

    Alekseev, P.; Dudnikov, A.; Subbotin, S.

    2003-01-01

    Nuclear Energy for New Europe - what does it mean? New Europe - it means in first order joined Europe. And it is quite clear that also efforts in nuclear energy must be joined. What can be proposed as a target of joint efforts. Improvement of existing plants, technologies, materials? - Certainly, but it is performed already by designers and industry themselves. There exists a problem, which each state using nuclear energy faces alone. It is nuclear waste problem. Nowadays nuclear waste problem is not completely solved in any country. It seems reasonable for joining Europe to join efforts in solving this problem. A satisfactory solution would reduce a risk connected with nuclear waste. In addition to final disposal problem solution it is necessary to reduce total amount of nuclear waste, that means: reducing the rates of accumulation of long-lived dangerous radionuclides; reducing the existing amounts of these radionuclides by transmutation. These conditions can be satisfied in reasonable time by burning of minor actinides and, if possible, by transmutation of long-lived fission products. However we can use this strategy effectively if we will design and construct nuclear energy as a system of which components are united by nuclear fuel cycle as a system-forming factor. The existing structures and approaches may become insufficient for new Europe. Therefore among the initial steps in considering nuclear waste problem must be considering possible promising fuel cycles for European nuclear energy. So, does new Europe need new nuclear energy? It seems, yes. (author)

  4. Approach to studying the nuclear power option in Malaysia

    International Nuclear Information System (INIS)

    Jamal Khair Ibrahim; Mohamad Zam Zam

    1986-01-01

    As a rapid growth in industrialisation and population policy, energy consumption in Malaysia has increased cosiderably. The nation is pursuing a course of diversification of primary energy sources: gas, hydro, coal and oil. Recently nuclear power programme is assessed and evaluated as another energy option in the fuel strategy. Studies of infrastructure, manpower technological and other related considerations are included. Impacts and policy implications of the introduction of nuclear power in Malaysia are also discussed. (A.J.)

  5. Nuclear chemistry research for the safe disposal of nuclear waste

    International Nuclear Information System (INIS)

    Fanghaenel, Thomas

    2011-01-01

    The safe disposal of high-level nuclear waste and spent nuclear fuel is of key importance for the future sustainable development of nuclear energy. Concepts foresee the isolation of the nuclear waste in deep geological formations. The long-term radiotoxicity of nuclear waste is dominated by plutonium and the minor actinides. Hence it is essential for the performance assessment of a nuclear waste disposal to understand the chemical behaviour of actinides in a repository system. The aqueous chemistry and thermodynamics of actinides is rather complex in particular due to their very rich redox chemistry. Recent results of our detailed study of the Plutonium and Neptunium redox - and complexation behaviour are presented and discussed. (author)

  6. Science, Society, and America's Nuclear Waste: Nuclear Waste, Unit 1. Teacher Guide. Second Edition.

    Science.gov (United States)

    Department of Energy, Washington, DC. Office of Civilian Radioactive Waste Management, Washington, DC.

    This guide is Unit 1 of the four-part series Science, Society, and America's Nuclear Waste produced by the U.S. Department of Energy's Office of Civilian Radioactive Waste Management. The goal of this unit is to help students establish the relevance of the topic of nuclear waste to their everyday lives and activities. Particular attention is…

  7. New options for developing of nuclear energy using an accelerator-driven reactor

    International Nuclear Information System (INIS)

    Takahashi, Hiroshi.

    1997-01-01

    Fissile fuel can be produced at a high rate using an accelerator-driven Pu-fueled subcritical fast reactor. Thus, the necessity of early introduction of the fast reactor can be moderated. High reliability of the proton accelerator, which is essential to implementing an accelerator-driven reactor in the nuclear energy field can be achieved by a slight extension of the accelerator's length, with only a small economical penalty. Subcritical operation provides flexible nuclear energy options including high neutron economy producing the fuel, transmuting high-level wastes, such as minor actinides, and of converting efficiently the excess Pu and military Pu into proliferation-resistant fuel

  8. Prospects of nuclear waste management and radioactive waste management

    International Nuclear Information System (INIS)

    Koprda, V.

    2015-01-01

    The policy of radioactive waste management in the Slovak Republic is based on the principles defined by law on the National Nuclear Fund (NJF) and sets basic objectives: 1 Safe and reliable nuclear decommissioning; 2 The minimization of radioactive waste; 3. Selection of a suitable fuel cycle; 4 Safe storage of radioactive waste (RAW) 5 Security chain management of radioactive waste and spent nuclear fuel (SNF); 6 Nuclear safety; 7 The application of a graduated approach; 8 Respect of the principle 'a polluter pays'; 9 Objective decision-making process; 10 Responsibility. In connection with the above objectives, it appears necessary to build required facilities that are listed in this article.

  9. The storage of nuclear waste in concrete

    International Nuclear Information System (INIS)

    Sabine, T.M.

    2004-01-01

    Full text: This project was undertaken to investigate the setting of cement with a view to using concrete as a medium for the 'dilution and dispersion' of low-level nuclear waste. This is the preferred option for this category of waste chosen in 1981 by the International Atomic Agency (IAEA), which is a standing committee of the United Nations. This method has never been used because of the 'nimby (Not In My Back Yard)' syndrome. This syndrome, which is not logical, as shown by the Chernobyl accident in 1989, never the less is very popular. In this country we apply a weighting factor based on money. Imagine if we chose Vaucluse as a site to deposit waste. The backyards of the wealthy have high fences. In contrast the backyards of the residents of remote areas in South Australia have a low, or non-existent, fence. This is the criterion we used for the British bomb tests in the 50's and are using for waste now. Dilution in concrete is much fairer. The social equity is provided by the fact that the social groups consuming more energy will use more concrete, and will be more exposed to any slight hazards resulting from this use. It should be remembered that, while Australia does not use nuclear power for the generation of electricity, we produce and sell about 20 percent of the world's uranium. Uranium is not an uncommon element. Earth. It is about as common as nickel. The total amount of low-level nuclear waste accumulated in Australia after 40 years is 3,500 cubic metres. The dilution factor in the amounts of concrete we produce would easily satisfy IAEA standards. The starting point for the concrete project is the work of two eminent French chemists. Their interest probably arose from the very long lifetime of the Roman fortifications in the south of France, which have lasted for thousands of years. Lavoisier, in 1765, suggested that during hydration, very small crystals are produced which are 'so entangled with each other that a very hard mass results'. Le

  10. Plasma Mass Filters For Nuclear Waste Reprocessing

    International Nuclear Information System (INIS)

    Fetterman, Abraham J.; Fisch, Nathaniel J.

    2011-01-01

    Practical disposal of nuclear waste requires high-throughput separation techniques. The most dangerous part of nuclear waste is the fission product, which contains the most active and mobile radioisotopes and produces most of the heat. We suggest that the fission products could be separated as a group from nuclear waste using plasma mass filters. Plasmabased processes are well suited to separating nuclear waste, because mass rather than chemical properties are used for separation. A single plasma stage can replace several stages of chemical separation, producing separate streams of bulk elements, fission products, and actinoids. The plasma mass filters may have lower cost and produce less auxiliary waste than chemical processing plants. Three rotating plasma configurations are considered that act as mass filters: the plasma centrifuge, the Ohkawa filter, and the asymmetric centrifugal trap.

  11. Nuclear waste disposal technology for Pacific Basin countries

    International Nuclear Information System (INIS)

    Langley, R.A. Jr.; Brothers, G.W.

    1981-01-01

    Safe long-term disposal of nuclear wastes is technically feasible. Further technological development offers the promise of reduced costs through elimination of unnecessary conservatism and redundance in waste disposal systems. The principal deterrents to waste disposal are social and political. The issues of nuclear waste storage and disposal are being confronted by many nuclear power countries including some of the Pacific Basin nuclear countries. Both mined geologic and subseabed disposal schemes are being developed actively. The countries of the Pacific Basin, because of their geographic proximity, could benefit by jointly planning their waste disposal activities. A single repository, of a design currently being considered, could hold all the estimated reprocessing waste from all the Pacific Basin countries past the year 2010. As a start, multinational review of alterntive disposal schemes would be beneficial. This review should include the subseabed disposal of radwastes. A multinational review of radwaste packaging is also suggested. Packages destined for a common repository, even though they may come from several countries, should be standardized to maximize repository efficiency and minimize operator exposure. Since package designs may be developed before finalization of a repository scheme and design, the packages should not have characteristics that would preclude or adversely affect operation of desirable repository options. The sociopolitical problems of waste disposal are a major deterrent to a multinational approach to waste disposal. The elected representatives of a given political entity have generally been reluctant to accept the waste from another political entity. Initial studies would, nevertheless, be beneficial either to a common solution to the problem, or to aid in separate solutions

  12. Reactor-based management of used nuclear fuel: assessment of major options.

    Science.gov (United States)

    Finck, Phillip J; Wigeland, Roald A; Hill, Robert N

    2011-01-01

    This paper discusses the current status of the ongoing Advanced Fuel Cycle Initiative (AFCI) program in the U.S. Department of Energy that is investigating the potential for using the processing and recycling of used nuclear fuel to improve radioactive waste management, including used fuel. A key element of the strategies is to use nuclear reactors for further irradiation of recovered chemical elements to transmute certain long-lived highly-radioactive isotopes into less hazardous isotopes. Both thermal and fast neutron spectrum reactors are being studied as part of integrated nuclear energy systems where separations, transmutation, and disposal are considered. Radiotoxicity is being used as one of the metrics for estimating the hazard of used fuel and the processing of wastes resulting from separations and recycle-fuel fabrication. Decay heat from the used fuel and/or wastes destined for disposal is used as a metric for use of a geologic repository. Results to date indicate that the most promising options appear to be those using fast reactors in a repeated recycle mode to limit buildup of higher actinides, since the transuranic elements are a key contributor to the radiotoxicity and decay heat. Using such an approach, there could be much lower environmental impact from the high-level waste as compared to direct disposal of the used fuel, but there would likely be greater generation of low-level wastes that will also require disposal. An additional potential waste management benefit is having the ability to tailor waste forms and contents to one or more targeted disposal environments (i.e., to be able to put waste in environments best-suited for the waste contents and forms). Copyright © 2010 Health Physics Society

  13. The present situation of nuclear wastes

    International Nuclear Information System (INIS)

    Courtois, Charles

    2012-01-01

    This Power Point presentation contains graphs, tables and comments on different aspects of nuclear wastes: origin in France (fuel composition, long-life and short life wastes), definition of the different types of wastes (with respect to their life and their activity level), fuel cycle (processing of the different wastes, actors in France, waste management), waste characterization (controls, tests), laws on wastes published in 1991 (objectives with respect to separation and transmutation technologies, to storage possibilities, to conditioning and long term storage) and in 2006 (which defines a national plan for radioactive material and waste management, and a research program), the French national inventory, low activity wastes (production and storage), the transmutation technology (notably the Astrid project), the geological storage (the Cigeo project for a geological storage), and the situation in other countries

  14. The importance of university research in maintaining the nuclear option

    International Nuclear Information System (INIS)

    Bruschi, H.J.; Hochreiter, L.E.

    1991-01-01

    The role of the university in maintaining and revitalizing the nuclear option should have four goals. First, it must attract highly skilled students who have an interest in math and science and help foster their interest in nuclear science and engineering. Next, it must present a state-of-the-art educational program that contains meaningful research to maintain these students. The third goal of nuclear engineering departments is to provide the nontechnical student a fair assessment of benefits and risks associated with commercial nuclear power relative to other sources of electricity. Lastly, it must effectively communicate to all students a compelling vision of nuclear power as a vital energy resource that will grow. The most difficult role for the university is to successfully convey a future for those in the nuclear science and engineering program

  15. Radiological impacts of spent nuclear fuel management options

    International Nuclear Information System (INIS)

    Riotte, H.; Lazo, T.; Mundigl, S.

    2000-01-01

    An important technical study on radiological impacts of spent nuclear fuel management options, recently completed by the NEA, is intended to facilitate informed international discussions on the nuclear fuel cycle. The study compares the radiological impacts on the public and on nuclear workers resulting from two approaches to handling spent fuel from nuclear power plants: - the reprocessing option, that includes the recycling of spent uranium fuel, the reuse of the separated plutonium in MOX fuel, and the direct disposal of spent MOX fuel; and the once-through option, with no reprocessing of spent fuel, and its direct disposal. Based on the detailed research of a group of 18 internationally recognised experts, under NEA sponsorship, the report concludes that: The radiological impacts of both the reprocessing and the non-reprocessing fuel cycles studied are small, well below any regulatory dose limits for the public and for workers, and insignificantly low as compared with exposures caused by natural radiation. The difference in the radiological impacts of the two fuel cycles studied does not provide a compelling argument in favour of one option or the other. The study also points out that other factors, such as resource utilisation efficiency, energy security, and social and economic considerations would tend to carry more weight than radiological impacts in decision-making processes. (authors)

  16. Third Finnish-German seminar on nuclear waste management 1986

    International Nuclear Information System (INIS)

    Lamberg, L.

    1988-01-01

    The scope of the seminar was to provide an interdisciplinary forum for exchange of information and experiences in the field of nuclear waste management. The highlights of the seminar focused on the following topics: overall reviews, waste products, nearfield phenomena, site investigations, performance assessment and decommissioning. All together 20 papers were presented. Reviews, status reports and experimental studies dealt with general research programs and current research and development activities including regulatory aspects. Extensive discussions provided and opportunity to identify issues and options for further research

  17. Options identification programme for demonstration of nuclear desalination

    International Nuclear Information System (INIS)

    1996-08-01

    This report responds to Resolutions GC(XXXVIII)/RES/7 in 1994 and GC(XXXIX)/RES/15 in 1995 at the IAEA General Conference, which requested the Director General to initiate a two year Options Identification Programme to identify and define practical options for demonstration of nuclear desalination and to submit a report on this programme to the General Conference of 1996. This programme was implemented by a Working Group, consisting of experts from interested Member States and IAEA staff, through a combination of periodic meetings and individual work assignments. It resulted in identification of a few practical options, based on reactor and desalination technologies which are themselves readily available without further development being required at the time of demonstration. The report thus provides a perspective how to proceed with demonstration of nuclear desalination, which is expected to help solving the potable water supply problem in the next century. Refs, figs, tabs

  18. A review on technological options of waste to energy for effective management of municipal solid waste.

    Science.gov (United States)

    Kumar, Atul; Samadder, S R

    2017-11-01

    Approximately one-fourth population across the world rely on traditional fuels (kerosene, natural gas, biomass residue, firewood, coal, animal dung, etc.) for domestic use despite significant socioeconomic and technological development. Fossil fuel reserves are being exploited at a very fast rate to meet the increasing energy demands, so there is a need to find alternative sources of energy before all the fossil fuel reserves are depleted. Waste to energy (WTE) can be considered as a potential alternative source of energy, which is economically viable and environmentally sustainable. The present study reviewed the current global scenario of WTE technological options (incineration, pyrolysis, gasification, anaerobic digestion, and landfilling with gas recovery) for effective energy recovery and the challenges faced by developed and developing countries. This review will provide a framework for evaluating WTE technological options based on case studies of developed and developing countries. Unsanitary landfilling is the most commonly practiced waste disposal option in the developing countries. However, developed countries have realised the potential of WTE technologies for effective municipal solid waste management (MSWM). This review will help the policy makers and the implementing authorities involved in MSWM to understand the current status, challenges and barriers for effective management of municipal solid waste. This review concluded WTE as a potential renewable source of energy, which will partly meet the energy demand and ensure effective MSWM. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Nuclear waste management: A review of issues

    International Nuclear Information System (INIS)

    Angino, E.E.

    1985-01-01

    The subject of radioactive waste management and burial is a subject that raises strong emotional and political issues and generates sharp technical differences of opinion. The overall problem can be subdivided into the three major categories of (1) credibility and emotionalism, (2) technology, and (3) nuclear waste isolation and containment. An area of concern desperately in need of attention is that of proper public education on all aspects of the high-level radioactive-waste (rad-waste) burial problem. A major problem related to the rad-waste issue is the apparent lack of an official, all-encompassing U.S. policy for nuclear waste management, burial, isolation, and regulation. It is clear from all past technical reports that disposal of rad wastes in an appropriate geologic horizon is the best ultimate solution to the waste problem. After 25 y of dealing with the high-level radioactive waste problem, the difficulty is that no proposed plan has to date been tested properly. It is this indecision and reaction that has contributed in no small way to the public perception of inability to solve the problem. One major change that has occurred in the last few years was the enactment of the Nuclear Waste Policy Act of 1982. This act mandates deadlines, guidelines, and state involvement. It is time that strong differences of opinions be reconciled. One must get on with the difficult job of selecting the best means of isolating and burying these wastes before the task becomes impossible

  20. Final disposal of high levels waste and spent nuclear fuel

    International Nuclear Information System (INIS)

    Gelin, R.

    1984-05-01

    Foreign and international activities on the final disposal of high-level waste and spent nuclear fuel have been reviewed. A considerable research effort is devoted to development of acceptable disposal options. The different technical concepts presently under study are described in the report. Numerous studies have been made in many countries of the potential risks to future generations from radioactive wastes in underground disposal repositories. In the report the safety assessment studies and existing performance criteria for geological disposal are briefly discussed. The studies that are being made in Canada, the United States, France and Switzerland are the most interesting for Sweden as these countries also are considering disposal into crystalline rocks. The overall time-tables in different countries for realisation of the final disposal are rather similar. Normally actual large-scale disposal operations for high-level wastes are not foreseen until after year 2000. In the United States the Congress recently passed the important Nuclear Waste Policy Act. It gives a rather firm timetable for site-selection and construction of nuclear waste disposal facilities. According to this act the first repository for disposal of commercial high-level waste must be in operation not later than in January 1998. (Author)

  1. Dossier: management of nuclear wastes. Research, results

    International Nuclear Information System (INIS)

    Anon.

    2001-01-01

    The researches carried out since many years on nuclear wastes have led to two main ways of management: the long-term conditioning of radio-elements and their advanced separation. The French atomic energy commission (CEA) has chosen to take up also the transmutation challenge, a way to transform long-living radioactive wastes into short-living radioactive wastes or stable compounds. The transmutation programs are based both on simulation and experiments with a huge international collaboration. This dossier presents in a digest way the research activity carried out on nuclear wastes processing and management at the CEA. (J.S.)

  2. The Canadian nuclear fuel waste management program

    International Nuclear Information System (INIS)

    Dixon, R.S.

    1984-12-01

    The Canadian Nuclear Fuel Waste Management Program involves research into the storage and transportation of used nuclear fuel, immobilization of fuel waste, and deep geological disposal of the immobilized waste. The program is now in the fourth year of a ten-year generic research and development phase. The objective of this phase of the program is to assess the safety and environmental aspects of the deep underground disposal of immobilized fuel waste in plutonic rock. The objectives of the research for each component of the program and the progress made to the end of 1983 are described in this report

  3. Case histories of EA documents for nuclear waste

    International Nuclear Information System (INIS)

    Vocke, R.W.

    1985-01-01

    Nuclear power programs and policies in the United States have been subject to environmental assessment under the National Environmental Policy Act (NEPA) since 1971. NEPA documentation prepared for programmatic policy decision-making within the nuclear fuel cycle and concurrent federal policy are examined as they relate to radioactive waste management in this paper. Key programmatic environmental impact statements that address radioactive waste management include: the Atomic Energy Commission document on management of commercial high-level and transuranium-contaminated radioactive waste, which focussed on development of engineered retrievable surface storage facilities (RSSF); the Nuclear Regulatory Commission (NRC) document on use of recycled plutonium in mixed oxide fuel in light water cooled reactors, which focussed on plutonium recycle and RSSF; the NRC statement on handling of spent light water power reactor fuel, which focussed on spent fuel storage; and the Department of Energy (DOE) statement on management of commercially generated radioactive wastes, which focussed on development of deep geologic repositories. DOE is currently pursuing the deep geologic repository option, with monitored retrievable storage as a secondary option

  4. Nuclear power- the inevitable option for future energy needs

    International Nuclear Information System (INIS)

    Prasad, Y.S.R.

    1995-01-01

    In the ensuring era development and deployment of electrical power sources will be governed by environmental changes, energy security and economical competitiveness. In the energy-mix scenario nuclear power has the potential and will make significant contributions in the coming decades. It is certain that nuclear power will continue to play a vital role in bridging the widening gap of demand and availability of energy in the years to come. In sum and substance, with the limited energy options available with India, nuclear power must assume greater share to meet the rapidly growing energy demands. Fortunately, country has a sound base for achieving the goal. 14 tabs., 3 figs

  5. Nuclear waste repository design and construction

    International Nuclear Information System (INIS)

    Bohlke, B.M.; Monsees, J.E.

    1987-01-01

    Extensive underground excavation will be required for construction of a mined geologic repository for nuclear waste. Hundreds of thousands of feet of drift will be required based on the conceptual layout design for each candidate nuclear waste repository. Comparison of boring and blasting excavation methods are discussed, as are special design and construction requirements (e.g., quality assurance procedures and performance assessment) for the nuclear waste repository. Comparisons are made between boring and blasting construction methods for the repository designs proposed for salt, volcanic tuff, and basalt

  6. Survey on non-nuclear radioactive waste

    International Nuclear Information System (INIS)

    2003-11-01

    On request from the Swedish Radiation Protection Authority, the Swedish government has in May 2002 set up a non-standing committee for non-nuclear radioactive waste. The objective was to elaborate proposals for a national system for the management of all types of non-nuclear radioactive wastes with special consideration of inter alia the polluter pays principle and the responsibility of the producers. The committee will deliver its proposals to the government 1 December 2003. SSI has assisted the committee to the necessary extent to fulfill the investigation. This report is a summery of SSI's background material concerning non-nuclear radioactive waste in Sweden

  7. Toxic and hazardous waste disposal. Volume 4. New and promising ultimate disposal options

    International Nuclear Information System (INIS)

    Pojasek, R.B.

    1980-01-01

    Separate abstrats were prepared for four of the eighteen chapters of this book which reviews several disposal options available to the generators of hazardous wastes. The chapters not abstracted deal with land disposal of hazardous wastes, the solidification/fixation processes, waste disposal by incineration and molten salt combustion and the use of stabilized industrial waste for land reclamation and land farming

  8. Exemption from regulatory control of nuclear wastes

    International Nuclear Information System (INIS)

    1992-01-01

    The guide specifies the principles and criteria for the exemption of the low-level radioactive wastes for disposal, reuse or recycle. The basic radiation protection criteria are consistent with those given in the IAEA Safety Series No. 89. The guide allows two options for exemption: unrestricted or restricted. Unrestricted exemption is possible if the waste meets fairly strict activity levels. In case of restricted exemption, the receiver and further treatment of disposal of waste must be adequately specified and the compliance with radiation protection criteria must be analyzed. Some guidance on the methods for monitoring the activity in waste is also given. (5 refs.)

  9. Conceptual waste packaging options for deep borehole disposal

    Energy Technology Data Exchange (ETDEWEB)

    Su, Jiann -Cherng [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Hardin, Ernest L. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)

    2015-07-01

    -profile threaded connections at each end. The internal-flush design would be suitable for loading waste that arrives from the originating site in weld-sealed, cylindrical canisters. Internal, tapered plugs with sealing filet welds would seal the tubing at each end. The taper would be precisely machined onto both the tubing and the plug, producing a metal-metal sealing surface that is compressed as the package is subjected to hydrostatic pressure. The lower plug would be welded in place before loading, while the upper plug would be placed and welded after loading. Conceptual Waste Packaging Options for Deep Borehole Disposal July 30, 2015 iv Threaded connections between packages would allow emplacement singly or in strings screwed together at the disposal site. For emplacement on a drill string the drill pipe would be connected directly into the top package of a string (using an adapter sub to mate with premium semi-flush tubing threads). Alternatively, for wireline emplacement the same package designs could be emplaced singly using a sub with wireline latch, on the upper end. Threaded connections on the bottom of the lowermost package would allow attachment of a crush box, instrumentation, etc.

  10. Modeling of nuclear waste disposal by rock melting

    International Nuclear Information System (INIS)

    Heuze, F.E.

    1982-04-01

    Today, the favored option for disposal of high-level nuclear wastes is their burial in mined caverns. As an alternative, the concept of deep disposal by rock melting (DRM) also has received some attention. DRM entails the injection of waste, in a cavity or borehole, 2 to 3 kilometers down in the earth crust. Granitic rocks are the prime candidate medium. The high thermal loading initially will melt the rock surrounding the waste. Following resolidification, a rock/waste matrix is formed, which should provide isolation for many years. The complex thermal, mechanical, and hydraulic aspects of DRM can be studied best by means of numerical models. The models must accommodate the coupling of the physical processes involved, and the temperature dependency of the granite properties, some of which are subject to abrupt discontinuities, during α-β phase transition and melting. This paper outlines a strategy for such complex modeling

  11. Rock mechanics for hard rock nuclear waste repositories

    International Nuclear Information System (INIS)

    Heuze, F.E.

    1981-09-01

    The mined geologic burial of high level nuclear waste is now the favored option for disposal. The US National Waste Terminal Storage Program designed to achieve this disposal includes an extensive rock mechanics component related to the design of the wastes repositories. The plan currently considers five candidate rock types. This paper deals with the three hard rocks among them: basalt, granite, and tuff. Their behavior is governed by geological discontinuities. Salt and shale, which exhibit behavior closer to that of a continuum, are not considered here. This paper discusses both the generic rock mechanics R and D, which are required for repository design, as well as examples of projects related to hard rock waste storage. The examples include programs in basalt (Hanford/Washington), in granitic rocks (Climax/Nevada Test Site, Idaho Springs/Colorado, Pinawa/Canada, Oracle/Arizona, and Stripa/Sweden), and in tuff

  12. Option managing for radioactive metallic waste from the decommissioning of Kori Unit 1

    Energy Technology Data Exchange (ETDEWEB)

    Kessel, David S.; Kim, Chagn Lak [KEPCO International Nuclear Graduate School (KINGS), Ulsan (Korea, Republic of)

    2017-06-15

    The purpose of this paper is to evaluate several leading options for the management of radioactive metallic waste against a set of general criteria including safety, cost effectiveness, radiological dose to workers and volume reduction. Several options for managing metallic waste generated from decommissioning are evaluated in this paper. These options include free release, controlled reuse, and direct disposal of radioactive metallic waste. Each of these options may involve treatment of the metal waste for volume reduction by physical cutting or melting. A multi-criteria decision analysis was performed using the Analytic Hierarchy Process (AHP) to rank the options. Melting radioactive metallic waste to produce metal ingots with controlled reuse or free release is found to be the most effective option.

  13. An analysis of international nuclear fuel supply options

    Science.gov (United States)

    Taylor, J'tia Patrice

    As the global demand for energy grows, many nations are considering developing or increasing nuclear capacity as a viable, long-term power source. To assess the possible expansion of nuclear power and the intricate relationships---which cover the range of economics, security, and material supply and demand---between established and aspirant nuclear generating entities requires models and system analysis tools that integrate all aspects of the nuclear enterprise. Computational tools and methods now exist across diverse research areas, such as operations research and nuclear engineering, to develop such a tool. This dissertation aims to develop methodologies and employ and expand on existing sources to develop a multipurpose tool to analyze international nuclear fuel supply options. The dissertation is comprised of two distinct components: the development of the Material, Economics, and Proliferation Assessment Tool (MEPAT), and analysis of fuel cycle scenarios using the tool. Development of MEPAT is aimed for unrestricted distribution and therefore uses publicly available and open-source codes in its development when possible. MEPAT is built using the Powersim Studio platform that is widely used in systems analysis. MEPAT development is divided into three modules focusing on: material movement; nonproliferation; and economics. The material movement module tracks material quantity in each process of the fuel cycle and in each nuclear program with respect to ownership, location and composition. The material movement module builds on techniques employed by fuel cycle models such as the Verifiable Fuel Cycle Simulation (VISION) code developed at the Idaho National Laboratory under the Advanced Fuel Cycle Initiative (AFCI) for the analysis of domestic fuel cycle. Material movement parameters such as lending and reactor preference, as well as fuel cycle parameters such as process times and material factors are user-specified through a Microsoft Excel(c) data spreadsheet

  14. Nuclear, energy, environment, wastes, society - NEEDS

    International Nuclear Information System (INIS)

    2013-01-01

    This document presents the seven projects based on partnerships between several bodies, companies and agencies (CNRS, CEA, Areva, EDF, IRSN, ANDRA, BRGM) on research programmes on nuclear systems and scenarios, on resources (mines, processes, economy), on the processing and packaging of radioactive wastes, on the behaviour of materials for storage, on the impact of nuclear activities on the environment, on the relationship between nuclear, risks and society, and on materials for nuclear energy

  15. 10 CFR 1.18 - Advisory Committee on Nuclear Waste.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Advisory Committee on Nuclear Waste. 1.18 Section 1.18... Panels, Boards, and Committees § 1.18 Advisory Committee on Nuclear Waste. The Advisory Committee on Nuclear Waste (ACNW) provides advice to the Commission on all aspects of nuclear waste management, as...

  16. Science, society, and America's nuclear waste: Unit 3, The Nuclear Waste Policy Act

    International Nuclear Information System (INIS)

    1992-01-01

    This teachers guide is unit 3, the nuclear waste policy act, in a four-unit secondary curriculum. It is intended to provide information about scientific and societal issues related to the management of spent nuclear fuel from generation of electricity at nuclear powerplants and high-level radioactive waste from US national defense activities. The curriculum, supporting classroom activities, and teaching materials present a brief discussion of energy and electricity generation, including that produced at nuclear power plants; information on sources, amounts, location, and characteristics of spent nuclear fuel and high-level radioactive waste; sources, types and effects of radiation; US policy for managing and disposing of spent nuclear fuel and high-level radioactive waste and what other countries are doing; and the components of the nuclear waste management system

  17. Science, society, and America's nuclear waste: Unit 3, The Nuclear Waste Policy Act

    International Nuclear Information System (INIS)

    1992-01-01

    This is the 3rd unit, (The Nuclear Waste Policy Act) a four-unit secondary curriculum. It is intended to provide information about scientific and societal issues related to the management of spent nuclear fuel from generation of electricity at nuclear powerplants and high-level radioactive waste from US national defense activities. The curriculum, supporting classroom activities, and teaching materials present a brief discussion of energy and electricity generation, including that produced at nuclear powerplants; information on sources, amounts, location, and characteristics of spent nuclear fuel and high-level radioactive waste; sources, types and effects of radiation; US policy for managing and disposing of spent nuclear fuel and high-level radioactive waste and what other countries are doing; and the components of the nuclear waste management system

  18. Energies and media nr 33. Niger. Conditions for the nuclear sector. Waste disposal

    International Nuclear Information System (INIS)

    2010-11-01

    After having evoked the situation of ARLIT's employees who are held as hostages in Niger, and some comments on recent events in the nuclear sector in different countries (energy policy and projects in India, in China, in the USA with opportunities for the French nuclear industry, and in Germany, Belgium, France), this publication discusses the issue of nuclear waste disposal. After having briefly recalled the content of the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management, it discusses the option of waste storage in deep geological formation, an option which has been chosen by several countries. It questions whether sea beds will ever be a storage option. It comments the case of Germany, of the United States where the storage of high level and long-lived wastes is still facing major problems

  19. Credible nuclear waste management: a legislative perspective

    International Nuclear Information System (INIS)

    Jeffords, J.M.

    1978-01-01

    The past credibility of the AEC, ERDA, and NRC, along with the present credibility of DOE and NRC, are questioned. The results of voter responses to a moratorium on expansion of nuclear power are linked to the question of past credibility of these Federal agencies. It is proposed that the future of nuclear power be linked directly to the Executive Branch of the government via a new bureaucracy, a Waste Management Authority. This new bureaucracy would be completely separated from the construction or licensing phase of nuclear power, except it would have final say over any nuclear power expansion pending an acceptable solution to the waste reprocessing question

  20. Public policy issues in nuclear waste management

    International Nuclear Information System (INIS)

    Nealey, S.M.; Radford, L.M.

    1978-10-01

    This document aims to raise issues and to analyze them, not resolve them. The issues were: temporal equity, geographic and socioeconomic equity, implementation of a nuclear waste management system, and public involvement

  1. Nuclear Waste Disposal: Alternatives to Yucca Mountain

    National Research Council Canada - National Science Library

    Holt, Mark

    2009-01-01

    Congress designated Yucca Mountain, NV, as the nation's sole candidate site for a permanent high-level nuclear waste repository in 1987, following years of controversy over the site-selection process...

  2. Towards a strategy on nuclear waste

    International Nuclear Information System (INIS)

    Church, C.

    1984-01-01

    An account is given of campaigns to stop various aspects of nuclear power, particularly those concerned with the management of radioactive wastes. Some proposals are made for further specific campaigns. (U.K.)

  3. Transport packages for nuclear material and waste

    International Nuclear Information System (INIS)

    1997-01-01

    The regulations and responsibilities concerning the transport packages of nuclear materials and waste are given in the guide. The approval procedure, control of manufacturing, commissioning of the packaging and the control of use are specified. (13 refs.)

  4. Radioactive waste management policy for nuclear power

    International Nuclear Information System (INIS)

    Andrei, V.; Glodeanu, F.; Simionov, V.

    1998-01-01

    Nuclear power is part of energy future as a clean and environmental friendly source of energy. For the case of nuclear power, two specific aspects come more often in front of public attention: how much does it cost and what happens with radioactive waste. The competitiveness of nuclear power vs other sources of energy is already proved in many developed and developing countries. As concerns the radioactive wastes treatment and disposal, industrial technologies are available. Even final solutions for disposal of high level radioactive waste, including spent fuel, are now fully developed and ready for large scale implementation. Policies and waste management strategies are established by all countries having nuclear programs. Once, the first nuclear power reactor was commissioned in Romania, and based on the national legal provisions, our company prepared the first issue of a general strategy for radioactive waste management. The general objective of the strategy is to dispose the waste according to adequate safety standards protecting the man and the environment, without undue burden on future generations. Two target objectives were established for long term: an interim spent fuel dry storage facility and a low and intermediate level waste repository. A solution for spent fuel disposal will be implemented in the next decade, based on international experience. Principles for radioactive waste management, recommended by IAEA are closely followed in the activities of our company. The continuity of responsibilities is considered to be very important. The radioactive waste management cost will be supported by the company. A tax on unit price of electricity will be applied. The implementation of radioactive waste management strategy includes as a major component the public information. A special attention will be paid by the company to an information program addressed to different categories of public in order to have a better acceptance of our nuclear power projects

  5. Risk decisions and nuclear waste

    International Nuclear Information System (INIS)

    Hansson, S.O.

    1987-11-01

    The risk concept is multidimensional, and much of its contents is lost in the conventional reduction to a unidimensional and quantifiable term. Eight major dimensions of the risk concept are discussed, among them the time factor and the lack-of-knowledge factor. The requirements of a rational discourse are discussed, in general and in relation to risk issues. It is concluded that no single method for the comparison and assessment of risks can be seen as the only rational method. Different methods can all be rational, although based on different values. Risk evaluations cannot be performed as expert assessments, divorced from the political decision process. Instead, risk evaluation must be seen as an essentially political process. Public participation is necessary in democratic decision-making on risks as well as on other issues. Important conclusions can be drawn for the management of nuclear waste, concerning specifications for the technical solution, the need for research on risk concepts, and the decision-making process. (orig.)

  6. Transmutation of radioactive nuclear waste

    International Nuclear Information System (INIS)

    Toor, A; Buck, R

    2000-01-01

    Lack of a safe disposal method for radioactive nuclear waste (RNW) is a problem of staggering proportion and impact. A typical LWR fission reactor will produce the following RNW in one year: minor actinides (i.e. 237 Np, 242-243 Am, 243-245 Cm) ∼40 kg, long-lived fission products (i.e, 99 Tc, 93 Zr, 129 I, 135 Cs) ∼80 kg, short lived fission products (e.g. 137 Cs, 90 Sr) ∼50kg and plutonium ∼280 kg. The total RNW produced by France and Canada amounts to hundreds of metric tonnes per year. Obtaining a uniform policy dealing with RNW has been blocked by the desire on one hand to harvest the energy stored in plutonium to benefit society and on the other hand the need to assure that the stockpile of plutonium will not be channeled into future nuclear weapons. In the meantime, the quantity and handling of these materials represents a potential health hazard to the world's population and particularly to people in the vicinity of temporary storage facilities. In the U.S., societal awareness of the hazards associated with RNW has effectively delayed development of U.S. nuclear fission reactors during the past decade. As a result the U.S. does not benefit from the large investment of resources in this industry. Reluctance to employ nuclear energy has compelled our society to rely increasingly on non-reusable alternative energy sources; coal, oil, and natural gas. That decision has compounded other unresolved global problems such as air pollution, acid rain, and global warming. Relying on these energy sources to meet our increasing energy demands has led the U.S. to increase its reliance on foreign oil; a policy that is disadvantageous to our economy and our national security. RNW can be simplistically thought of as being composed of two principal components: (1) actinides with half lives up to 10 6 years and (2) the broad class of fission fragments with typical half lives of a few hundred years. One approach to the RNW storage problem has been to transmute the

  7. SRNL CRP progress report [Development of Melt Processed Ceramics for Nuclear Waste Immobilization

    Energy Technology Data Exchange (ETDEWEB)

    Amoroso, J. [Savannah River National Laboratory, Aiken, SC (United States); Marra, J. [Savannah River National Laboratory, Aiken, SC (United States)

    2014-10-02

    A multi-phase ceramic waste form is being developed at the Savannah River National Laboratory (SRNL) for treatment of secondary waste streams generated by reprocessing commercial spent nuclear. The envisioned waste stream contains a mixture of transition, alkali, alkaline earth, and lanthanide metals. Ceramic waste forms are tailored (engineered) to incorporate waste components as part of their crystal structure based on knowledge from naturally found minerals containing radioactive and non-radioactive species similar to the radionuclides of concern in wastes from fuel reprocessing. The ability to tailor ceramics to mimic naturally occurring crystals substantiates the long term stability of such crystals (ceramics) over geologic timescales of interest for nuclear waste immobilization [1]. A durable multiphase ceramic waste form tailored to incorporate all the waste components has the potential to broaden the available disposal options and thus minimize the storage and disposal costs associated with aqueous reprocessing.

  8. SRNL CRP progress report [Development of Melt Processed Ceramics for Nuclear Waste Immobilization

    International Nuclear Information System (INIS)

    Amoroso, J.; Marra, J.

    2014-01-01

    A multi-phase ceramic waste form is being developed at the Savannah River National Laboratory (SRNL) for treatment of secondary waste streams generated by reprocessing commercial spent nuclear fuel. The envisioned waste stream contains a mixture of transition, alkali, alkaline earth, and lanthanide metals. Ceramic waste forms are tailored (engineered) to incorporate waste components as part of their crystal structure based on knowledge from naturally found minerals containing radioactive and non-radioactive species similar to the radionuclides of concern in wastes from fuel reprocessing. The ability to tailor ceramics to mimic naturally occurring crystals substantiates the long term stability of such crystals (ceramics) over geologic timescales of interest for nuclear waste immobilization [1]. A durable multiphase ceramic waste form tailored to incorporate all the waste components has the potential to broaden the available disposal options and thus minimize the storage and disposal costs associated with aqueous reprocessing

  9. Nuclear waste: A problem of perspective

    International Nuclear Information System (INIS)

    Williams, I.G.K.

    1979-01-01

    In the light of the suspicion to be felt in the public towards the problem of nuclear waste management, the author in his article attempts to correct the impression created by somewhat sensational reports in the daily press by giving a more accurate description of nuclear waste management. He points out that responsible and fruitful research work has been done and should be made known to the public. (RB) [de

  10. Federalist strategy for nuclear waste management

    International Nuclear Information System (INIS)

    Lee, K.N.

    1980-01-01

    The federal government plans to rely on a policy of consultation and concurrence with state governments in developing nuclear waste repositories. The weaknesses of the concurrence approach are analyzed, and an alternative institutional framework for locating a waste repository is proposed: a siting jury that provides representation for state and local interests, while maintaining a high level of technical review. The proposal could be tested in the siting of away-from-reactor storage facilities for spent nuclear fuel. 1 table

  11. Status of technology for nuclear waste management

    International Nuclear Information System (INIS)

    Lieberman, J.A.

    1984-01-01

    In the area of low- and intermediate-level radioactive wastes the successful development and application of specific management technologies have been demonstrated over the years. The major area in which technology remains to be effectively implemented is in the management of high-level wastes from the nuclear fuel cycle. Research and development specifically directed at the management of high-level radioactive wastes in the USA and other countries is briefly reviewed in the article introduced

  12. Waste management in Canadian nuclear programs

    International Nuclear Information System (INIS)

    Dyne, P.J.

    1975-08-01

    The report describes the wide-ranging program of engineering developments and applications to provide the Canadian nuclear industry with the knowledge and expertise it needs to conduct its waste management program. The need for interim dry storage of spent fuel, and the storage and ultimate disposal of waste from fuel reprocessing are examined. The role of geologic storage in AECL's current waste management program is also considered. (R.A.)

  13. Management of radioactive waste nuclear power plants

    International Nuclear Information System (INIS)

    Dlouhy, Z.; Marek, J.

    1976-01-01

    The authors give a survey of the sources, types and amounts of radioactive waste in LWR nuclear power stations (1,300 MWe). The amount of solid waste produced by a Novovorenezh-type PWR reactor (2 x 400 resp. 1 x 1,000 MWe) is given in a table. Treatment, solidification and final storage of radioactive waste are shortly discussed with special reference to the problems of final storage in the CSR. (HR) [de

  14. New Mexicans debate nuclear waste disposal

    International Nuclear Information System (INIS)

    Lepkowski, W.

    1979-01-01

    A brief survey of the background of the Waste Isolation Plant (WIPP) at Carlsbad, New Mexico and the forces at play around WIPP is presented. DOE has plans to establish by 1988 an underground repository for nuclear wastes in the salt formations near Carlsbad. Views of New Mexicans, both pro and con, are reviewed. It is concluded that DOE will have to practice public persuasion to receive approval for the burial of wastes in New Mexico

  15. Overview assessment of nuclear-waste management

    International Nuclear Information System (INIS)

    Burton, B.W.; Gutschick, V.P.; Perkins, B.A.

    1982-08-01

    After reviewing the environmental control technologies associated with Department of Energy nuclear waste management programs, we have identified the most urgent problems requiring further action or follow-up. They are in order of decreasing importance: (1) shallow land disposal technology development; (2) active uranium mill tailings piles; (3) uranium mine dewatering; (4) site decommissioning; (5) exhumation/treatment of transuranic waste at Idaho National Engineering Laboratory; (6) uranium mine spoils; and (7) medical/institutional wastes. 7 figures, 33 tables

  16. Civil engineering challenge with nuclear waste

    International Nuclear Information System (INIS)

    Day, D.

    1985-01-01

    The civil engineer can help to solve the problems in disposing of nuclear waste in a deep geologic formation. The site for a nuclear waste repository must be carefully selected so that the geology provides the natural barrier between the waste and the accessible environment specified by the NRC and the EPA. This engineer is familiar with the needed structure and conditions of the host and surrounding rocks, and also the hydraulic mechanisms for limiting the migration of water in the rocks. To dispose of the nuclear waste underground requires stable and long-lasting shafts and tunnels such as civil engineers have designed and constructed for many other uses. The planning, design and construction of the ground surface facilities for a nuclear waste repository involves civil engineering in many ways. The transporation of heavy, metal shielded casks requires special attention to the system of highways and railroads accessing the repository. Structures for handling the shipping casks and transferring the waste onsite and into the deep geologic formation need special considerations. The structures must provide the NRC required containment, including hot cells for remote handling. Therefore, structural design strives for buildings, ventilation structures, shaft headframes, etc., to be earthquake and tornado-proof. These important design bases and considerations for the civil engineer working on a nuclear waste repository are discussed in this paper

  17. Radioactive waste management from nuclear facilities

    International Nuclear Information System (INIS)

    2005-06-01

    This report has been published as a NSA (Nuclear Systems Association, Japan) commentary series, No. 13, and documents the present status on management of radioactive wastes produced from nuclear facilities in Japan and other countries as well. Risks for radiation accidents coming from radioactive waste disposal and storage together with risks for reactor accidents from nuclear power plants are now causing public anxiety. This commentary concerns among all high-level radioactive waste management from nuclear fuel cycle facilities, with including radioactive wastes from research institutes or hospitals. Also included is wastes produced from reactor decommissioning. For low-level radioactive wastes, the wastes is reduced in volume, solidified, and removed to the sites of storage depending on their radioactivities. For high-level radioactive wastes, some ten thousand years must be necessary before the radioactivity decays to the natural level and protection against seismic or volcanic activities, and terrorist attacks is unavoidable for final disposals. This inevitably results in underground disposal at least 300 m below the ground. Various proposals for the disposal and management for this and their evaluation techniques are described in the present document. (S. Ohno)

  18. Nuclear Waste Primer: A Handbook for Citizens.

    Science.gov (United States)

    Weber, Isabelle P.; Wiltshire, Susan D.

    This publication was developed with the intention of offering the nonexpert a concise, balanced introduction to nuclear waste. It outlines the dimensions of the problem, discussing the types and quantities of waste. Included are the sources, types, and hazards of radiation, and some of the history, major legislation, and current status of both…

  19. A plan for Soviet nuclear waste

    International Nuclear Information System (INIS)

    Stone, R.

    1992-01-01

    If environmentalist forces are successful, the Russian government may soon establish the country's first comprehensive program for dealing with nuclear waste. Later this month the Russian parliament, back from its summer recess, is expected to begin considering a bill on this topic. A draft copy indicates that Russia is starting with the basics: It orders the government to develop a means of insulting waste from the environment, to form a national waste processing program, and to create a registry for tracking where spent atomic fuel is stored or buried. The bill comes on the heels of a November 1991 decree by Russian President Boris Yeltsin to step up efforts to deal with nuclear waste issues and to create a government registry of nuclear waste disposal sites by 1 January 1993. The former Soviet Union has come under fire from environmentalists for dumping low- and intermediate-level nuclear wastes in the Arctic Ocean and for improperly storing waste at sites in the southern Urals and Belarus. Adding to the bill's urgency is the fact that Russia is considering sites for underground repositories for high-level waste at Tomsk, Krasnoyarsk, Chelyabinsk, and on the Kola Peninsula

  20. Nuclear waste management: storage and disposal aspects

    International Nuclear Information System (INIS)

    Patterson, B.D.; Dave, S.A.; O'Connell, W.J.

    1980-01-01

    Long-term disposal of nuclear wastes must resolve difficulties arising chiefly from the potential for contamination of the environment and the risk of misuse. Alternatives available for storage and disposal of wastes are examined in this overview paper. Guidelines and criteria which may govern in the development of methods of disposal are discussed

  1. Disposal of high-activity nuclear wastes

    International Nuclear Information System (INIS)

    Hamilton, E.I.

    1983-01-01

    A discussion is presented on the deep sea ocean disposal for high-activity nuclear wastes. The following topics are covered: effect of ionizing radiation on marine ecosystems; pathways by which radionuclides are transferred to man from the marine environment; information about releases of radioactivity to the sea; radiological protection; storage and disposal of radioactive wastes and information needs. (U.K.)

  2. Safety in depth for nuclear waste disposal

    Energy Technology Data Exchange (ETDEWEB)

    Ringwood, T [Australian National Univ., Canberra. Research School of Earth Sciences

    1980-11-27

    A nuclear waste disposal strategy is described in which the radionuclides are immobilised in widely-dispersed drill holes in an extremely stable and leach resistant titanate ceramic form (SYNROC) at depths of 1500 to 4000 metres. The advantages of this method over that of burying such wastes in large centralised mined repositories at 500 to 700 metres in suitable geological strata are examined.

  3. The management of nuclear waste

    International Nuclear Information System (INIS)

    1982-01-01

    This film explains how radioactive wastes arise and how they are treated so as to minimise effect on man and the environment. The nature of the wastes, whether solid, liquid or gas, and their classification as low, intermediate or high, depending on their type and the degree of radioactivity, and with the treatment, disposal, containment and dispersal of wastes are described. (author)

  4. The nuclear waste in France

    International Nuclear Information System (INIS)

    Anon.

    2006-01-01

    French people are expecting from authorities that it become possible to recycle the radioactive wastes in order to make them disappear or to transform them in ordinary wastes without radioactivity, and in waiting for this time we can be organised to monitor these waste in order to react without delay if for any reason they become dangerous. (N.C.)

  5. Legal aspects of nuclear waste management

    International Nuclear Information System (INIS)

    Hofmann, H.

    1981-01-01

    The result of the study is that the nuclear waste management defined by sect. 9a of the Atomic Energy Law cannot be realized without violating the constitution or other relevant laws. This evaluation of the nuclear waste management concept is based on an in-depth discussion of technological difficulties involved in nuclear waste management, and on the examination of all existing rules and regulations (Radiation Protection Ordinance, intermediate storage and burial, and reprocessing) at home and abroad, which lead to legal aspects of nuclear waste management which, according to established German law, are to be characterized as being 'unclear'. The author demonstrates especially the lack of precision in law of the term 'radioactive waste'. He points out that a sufficient regulation on the dismantlement of nuclear reactors is missing and he sets forth uncertainties relating to administrative law which are involved in bringing in private companies for burial as it is provided by law. The concluding constitutional assessment of the nuclear waste management regulation of the Atomic Energy Law shows that sect. 9a of the Atomic Energy Law does not meet completely constitutional requirements. (orig./HP) [de

  6. The legal system of nuclear waste disposal

    International Nuclear Information System (INIS)

    Dauk, W.

    1983-01-01

    This doctoral thesis presents solutions to some of the legal problems encountered in the interpretation of the various laws and regulations governing nuclear waste disposal, and reveals the legal system supporting the variety of individual regulations. Proposals are made relating to modifications of problematic or not well defined provisions, in order to contribute to improved juridical security, or inambiguity in terms of law. The author also discusses the question of the constitutionality of the laws for nuclear waste disposal. Apart from the responsibility of private enterprise to contribute to safe treatment or recycling, within the framework of the integrated waste management concept, and apart from the Government's responsibility for interim or final storage of radioactive waste, there is a third possibility included in the legal system for waste management, namely voluntary measures taken by private enterprise for radioactive waste disposal. The licence to be applied for in accordance with section 3, sub-section (1) of the Radiation Protection Ordinance is interpreted to pertain to all measures of radioactive waste disposal, thus including final storage of radioactive waste by private companies. Although the terminology and systematic concept of nuclear waste disposal are difficult to understand, there is a functionable system of legal provisions contained therein. This system fits into the overall concept of laws governing technical safety and safety engineering. (orig./HSCH) [de

  7. Volume reduction options for the management of low-level radioactive wastes

    International Nuclear Information System (INIS)

    Clark, D.E.; Lerch, R.E.

    1977-01-01

    This paper examines volume reduction options that are now or soon will be available for low-level wastes. These wastes generally are in the form of combustible solids, noncombustible solids, and wet wastes (solid/liquid). Initially, the wastes are collected and stored onsite. Preconditioning may be required, e.g., sorting, shredding, and classifying the solids into combustible and noncombustible fractions. The volume of combustible solids can be reduced by compaction, incineration/pyrolysis, acid digestion, or molten salt combustion. Options for reducing the volume of noncombustible solids include compaction, size reduction and decontamination, meltdown-casting, dissolution and electropolishing. Burnable wet wastes (e.g., organic wastes) can be evaporated or combusted; nonburnable wet wastes can be treated by various evaporative or nonevaporative processes. All radioactive waste processing operations result in some equipment contamination and the production of additional radioactively contaminated wastes (secondary wastes). 23 figures

  8. Nuclear options: is the climate right for nuclear power?

    International Nuclear Information System (INIS)

    Switkowski, Z.E.

    2009-01-01

    An increasing number of countries around the world are turning to nuclear power to meet growing demand for electricity, avoid use of fossil fuels, reduce greenhouse gas emissions and diversify their energy mix away from a dominant supplier. Australia is following a different path. Does this make strategic sense?

  9. Nuclear Waste Disposal Program 2016

    International Nuclear Information System (INIS)

    2016-12-01

    This comprehensive brochure published by the Swiss National Cooperative for the Disposal of Radioactive Waste (NAGRA) discusses the many important steps in the management of radioactive waste that have already been implemented in Switzerland. The handling and packaging of waste, its characterisation and inventorying, as well as its interim storage and transport are examined. The many important steps in Swiss management of radioactive waste already implemented and wide experience gained in carrying out the associated activities are discussed. The legal framework and organisational measures that will allow the selection of repository sites are looked at. The various aspects examined include the origin, type and volume of radioactive wastes, along with concepts and designs for deep geological repositories and the types of waste to be stored therein. Also, an implementation plan for the deep geological repositories, the required capacities and the financing of waste management activities are discussed as is NAGRA’s information concept. Several diagrams and tables illustrate the program

  10. Perspective on long-range nuclear energy options

    International Nuclear Information System (INIS)

    Harms, W.O.

    1977-01-01

    The study group whose effort is presented here concluded that the United States urgently needs to have a breeder option available for possible deployment before the year 2000 primarily because of uncertainties in the availability of fossil fuels and uranium supplies. It was recommended that the U/Pu LMFBR program proceed as planned, including prompt construction of the CRBRP and its associated fuel cycle facilities. Alternative cycle studies should be pursued, but without significantly delaying the current program. There are technological choices which, in suitable political contexts, may somewhat reduce proliferation risks; of these, only those that employ breeders preserve the breeder option (and the nuclear option in the long term. These alternatives must be coupled with political agreements to have any significant effect on proliferation potential internationally. These same political agreements should suffice to control the U/Pu breeder cycle; there is only a difference in degree between the U/Pu and the denatured Th/U-233 cycles

  11. Nuclear Energy: A Competitive and Safe Option, The EDF Experience

    International Nuclear Information System (INIS)

    Colas, F.

    1998-01-01

    Today, nuclear energy seems challenged by fossil energies, especially gas. However, the 1997's French government survey over energy options still places nuclear energy at the top of the list. The reasons why and how safe nuclear energy is still competitive are detailed in this paper. Most recent data from EDF's reactor will be discussed in terms of environmental and electricity production issues. The methods and management used to attain these results are explained for the different phases: design, construction, operation, and maintenance. The beneficial aspects over industrial development and local employment will be underlined. The influence of nuclear energy on EDF's financial results are shown, from past programme to today's operation. As most of french reactors are designed to adapt their output to the changes of load in the national grid, results are, as a conclusion, discussed in a small and medium electrical grid perspective. (author)

  12. Radiation Effects in Nuclear Waste Materials

    International Nuclear Information System (INIS)

    Weber, William J.

    2005-01-01

    The objective of this project is to develop a fundamental understanding of radiation effects in glasses and ceramics, as well as the influence of solid-state radiation effects on aqueous dissolution kinetics, which may impact the performance of nuclear waste forms and stabilized nuclear materials. This work provides the underpinning science to develop improved glass and ceramic waste forms for the immobilization and disposition of high-level tank waste, excess plutonium, plutonium residues and scrap, other actinides, and other nuclear waste streams. Furthermore, this work is developing develop predictive models for the performance of nuclear waste forms and stabilized nuclear materials. Thus, the research performed under this project has significant implications for the immobilization of High-Level Waste (HLW) and Nuclear Materials, two mission areas within the Office of Environmental Management (EM). With regard to the HLW mission, this research will lead to improved understanding of radiation-induced degradation mechanisms and their effects on dissolution kinetics, as well as development of predictive models for waste form performance. In the Nuclear Materials mission, this research will lead to improvements in the understanding of radiation effects on the chemical and structural properties of materials for the stabilization and long-term storage of plutonium, highly-enriched uranium, and other actinides. The research uses plutonium incorporation, ion-beam irradiation, and electron-beam irradiation to simulate the effects of alpha decay and beta decay on relevant glasses and ceramics. The research under this project has the potential to result in improved glass and ceramic materials for the stabilization and immobilization of high-level tank waste, plutonium residues and scraps, surplus weapons plutonium, highly-enriched uranium, other actinides, and other radioactive materials

  13. Natural analogues of nuclear waste glass corrosion

    International Nuclear Information System (INIS)

    Abrajano, T.A. Jr.; Ebert, W.L.; Luo, J.S.

    1999-01-01

    This report reviews and summarizes studies performed to characterize the products and processes involved in the corrosion of natural glasses. Studies are also reviewed and evaluated on how well the corrosion of natural glasses in natural environments serves as an analogue for the corrosion of high-level radioactive waste glasses in an engineered geologic disposal system. A wide range of natural and experimental corrosion studies has been performed on three major groups of natural glasses: tektite, obsidian, and basalt. Studies of the corrosion of natural glass attempt to characterize both the nature of alteration products and the reaction kinetics. Information available on natural glass was then compared to corresponding information on the corrosion of nuclear waste glasses, specifically to resolve two key questions: (1) whether one or more natural glasses behave similarly to nuclear waste glasses in laboratory tests, and (2) how these similarities can be used to support projections of the long-term corrosion of nuclear waste glasses. The corrosion behavior of basaltic glasses was most similar to that of nuclear waste glasses, but the corrosion of tektite and obsidian glasses involves certain processes that also occur during the corrosion of nuclear waste glasses. The reactions and processes that control basalt glass dissolution are similar to those that are important in nuclear waste glass dissolution. The key reaction of the overall corrosion mechanism is network hydrolysis, which eventually breaks down the glass network structure that remains after the initial ion-exchange and diffusion processes. This review also highlights some unresolved issues related to the application of an analogue approach to predicting long-term behavior of nuclear waste glass corrosion, such as discrepancies between experimental and field-based estimates of kinetic parameters for basaltic glasses

  14. Radiation Effects in Nuclear Waste Materials

    International Nuclear Information System (INIS)

    Weber, William J.; Wang, Lumin; Hess, Nancy J.; Icenhower, Jonathan P.; Thevuthasan, Suntharampillai

    2003-01-01

    The objective of this project is to develop a fundamental understanding of radiation effects in glasses and ceramics, as well as the influence of solid-state radiation effects on aqueous dissolution kinetics, which may impact the performance of nuclear waste forms and stabilized nuclear materials. This work provides the underpinning science to develop improved glass and ceramic waste forms for the immobilization and disposition of high-level tank waste, excess plutonium, plutonium residues and scrap, other actinides, and other nuclear waste streams. Furthermore, this work is developing develop predictive models for the performance of nuclear waste forms and stabilized nuclear materials. Thus, the research performed under this project has significant implications for the immobilization of High-Level Waste (HLW) and Nuclear Materials, two mission areas within the Office of Environmental Management (EM). With regard to the HLW mission, this research will lead to improved understanding of radiation-induced degradation mechanisms and their effects on dissolution kinetics, as well as development of predictive models for waste form performance. In the Nuclear Materials mission, this research will lead to improvements in the understanding of radiation effects on the chemical and structural properties of materials for the stabilization and long-term storage of plutonium, highly-enriched uranium, and other actinides. The research uses plutonium incorporation, ion-beam irradiation, and electron-beam irradiation to simulate the effects of alpha decay and beta decay on relevant glasses and ceramics. The research under this project has the potential to result in improved glass and ceramic materials for the stabilization and immobilization of high-level tank waste, plutonium residues and scraps, surplus weapons plutonium, highly-enriched uranium, other actinides, and other radioactive materials

  15. Natural analogues of nuclear waste glass corrosion.

    Energy Technology Data Exchange (ETDEWEB)

    Abrajano, T.A. Jr.; Ebert, W.L.; Luo, J.S.

    1999-01-06

    This report reviews and summarizes studies performed to characterize the products and processes involved in the corrosion of natural glasses. Studies are also reviewed and evaluated on how well the corrosion of natural glasses in natural environments serves as an analogue for the corrosion of high-level radioactive waste glasses in an engineered geologic disposal system. A wide range of natural and experimental corrosion studies has been performed on three major groups of natural glasses: tektite, obsidian, and basalt. Studies of the corrosion of natural glass attempt to characterize both the nature of alteration products and the reaction kinetics. Information available on natural glass was then compared to corresponding information on the corrosion of nuclear waste glasses, specifically to resolve two key questions: (1) whether one or more natural glasses behave similarly to nuclear waste glasses in laboratory tests, and (2) how these similarities can be used to support projections of the long-term corrosion of nuclear waste glasses. The corrosion behavior of basaltic glasses was most similar to that of nuclear waste glasses, but the corrosion of tektite and obsidian glasses involves certain processes that also occur during the corrosion of nuclear waste glasses. The reactions and processes that control basalt glass dissolution are similar to those that are important in nuclear waste glass dissolution. The key reaction of the overall corrosion mechanism is network hydrolysis, which eventually breaks down the glass network structure that remains after the initial ion-exchange and diffusion processes. This review also highlights some unresolved issues related to the application of an analogue approach to predicting long-term behavior of nuclear waste glass corrosion, such as discrepancies between experimental and field-based estimates of kinetic parameters for basaltic glasses.

  16. Case histories of environmental assessment documents for nuclear waste

    International Nuclear Information System (INIS)

    Vocke, R.W.

    1985-01-01

    Nuclear power programs and policies in the United States have been subject to environmental assessment under the National Environmental Policy Act (NEPA) since 1971. NEPA documentation prepared for programmatic policy decision-making fuel cycle and concurrent federal policy are examined as they relate to radioactive waste management in this paper. Key programmatic environmental impact statements that address radioactive waste management include: the Atomic Energy Commission document on management of commercial high level and transuranium-contaminated radioactive waste, which focussed on development of engineered retrievable surface storage facilities (RSSF); the Nuclear Regulatory Commission (NRC) document on use of recycled plutonium in mixed oxide fuel in light water cooled reactors, which focussed on plutonium recycle and RSSF; the NRC statement on handling of spent light water power reactor fuel, which focussed on spent fuel storage; and the Department of Energy (DOE) statement on management of commercially generated radioactive wastes, which focussed on development of deep geologic repositories. DOE is currently pursuing the deep geologic repository option, with monitored retrievable storage as a secondary option

  17. A disposal centre for immobilized nuclear waste

    International Nuclear Information System (INIS)

    1980-02-01

    This report describes a conceptual design of a disposal centre for immobilized nuclear waste. The surface facilities consist of plants for the preparation of steel cylinders containing nuclear waste immobilized in glass, shaft headframe buildings and all necessary support facilities. The underground disposal vault is located on one level at a depth of 1000 m. The waste cylinders are emplaced into boreholes in the tunnel floors. All surface and subsurface facilities are described, operations and schedules are summarized, and cost estimates and manpower requirements are given. (auth)

  18. Social dimensions of nuclear waste disposal

    Energy Technology Data Exchange (ETDEWEB)

    Grunwald, Armin [Karlsruhe Institute of Technology, Karlsruhe (Germany). Inst. for Technology Assessment and Systems Analysis

    2015-07-01

    Nuclear waste disposal is a two-faceted challenge: a scientific and technological endeavour, on the one hand, and confronted with social dimensions, on the other. In this paper I will sketch the respective social dimensions and will give a plea for interdisciplinary research approaches. Relevant social dimensions of nuclear waste disposal are concerning safety standards, the disposal 'philosophy', the process of determining the disposal site, and the operation of a waste disposal facility. Overall, cross-cutting issues of justice, responsibility, and fairness are of major importance in all of these fields.

  19. Social dimensions of nuclear waste disposal

    International Nuclear Information System (INIS)

    Grunwald, Armin

    2015-01-01

    Nuclear waste disposal is a two-faceted challenge: a scientific and technological endeavour, on the one hand, and confronted with social dimensions, on the other. In this paper I will sketch the respective social dimensions and will give a plea for interdisciplinary research approaches. Relevant social dimensions of nuclear waste disposal are concerning safety standards, the disposal 'philosophy', the process of determining the disposal site, and the operation of a waste disposal facility. Overall, cross-cutting issues of justice, responsibility, and fairness are of major importance in all of these fields.

  20. Use of comparative assessment framework for comparison of geological nuclear waste and CO2 disposal technologies

    Energy Technology Data Exchange (ETDEWEB)

    Streimikiene, Dalia

    2010-09-15

    Comparative assessment of few future energy and climate change mitigation options for Lithuania in 2020 performed indicated that nuclear and combined cycle gas turbine technologies are very similar energy options in terms of costs taking into account GHG emission reduction costs. Comparative assessment of these energy options requires evaluation of the potentials and costs for geological CO2 and nuclear waste storage as the main uncertainties in comparative assessment of electricity generation technologies are related with these back-end technologies. The paper analyses the main characteristics of possible geological storage of CO2 and NW options in Lithuania.

  1. Choosing the nuclear power option: Factors to be considered

    International Nuclear Information System (INIS)

    Gueorguiev, B.; Mahadeva Rao, K.V.

    2000-01-01

    To plan and develop a nuclear power program, policies must be formulated and decided at different stages and at different levels by the government and its organizations, by the utility and by other organizations in industry and research and education, each within its sphere of interest and influence. The purpose of this paper is to highlight areas where policy decisions are needed, the options available, what they mean and the contexts in which they should be considered. (author)

  2. World Nuclear Association position statement: Safe management of nuclear waste and used nuclear fuel

    International Nuclear Information System (INIS)

    Saint-Pierre, Sylvain

    2006-01-01

    This WNA Position Statement summarises the worldwide nuclear industry's record, progress and plans in safely managing nuclear waste and used nuclear fuel. The global industry's safe waste management practices cover the entire nuclear fuel-cycle, from the mining of uranium to the long-term disposal of end products from nuclear power reactors. The Statement's aim is to provide, in clear and accurate terms, the nuclear industry's 'story' on a crucially important subject often clouded by misinformation. Inevitably, each country and each company employs a management strategy appropriate to a specific national and technical context. This Position Statement reflects a confident industry consensus that a common dedication to sound practices throughout the nuclear industry worldwide is continuing to enhance an already robust global record of safe management of nuclear waste and used nuclear fuel. This text focuses solely on modern civil programmes of nuclear-electricity generation. It does not deal with the substantial quantities of waste from military or early civil nuclear programmes. These wastes fall into the category of 'legacy activities' and are generally accepted as a responsibility of national governments. The clean-up of wastes resulting from 'legacy activities' should not be confused with the limited volume of end products that are routinely produced and safely managed by today's nuclear energy industry. On the significant subject of 'Decommissioning of Nuclear Facilities', which is integral to modern civil nuclear power programmes, the WNA will offer a separate Position Statement covering the industry's safe management of nuclear waste in this context. The paper's conclusion is that the safe management of nuclear waste and used nuclear fuel is a widespread, well-demonstrated reality. This strong safety record reflects a high degree of nuclear industry expertise and of industry responsibility toward the well-being of current and future generations. Accumulating

  3. A study on the alternative option for nuclear policy

    Energy Technology Data Exchange (ETDEWEB)

    Choi, J. W.; Choi, H. J.; Lee, J. Y.; Cho, D. K.; Jeon, K. S.; Park, S. W.; Hahn, D. H.; Yoon, J. S.; Lee, K. S. [KAERI, Daejeon (Korea, Republic of)

    2008-02-15

    Since a decision-making by intuitive judgement under uncertain future conditions can not select an optimum alternative, reaching an agreement for alternatives between experts requires a development of several scientific opinion collection methodologies and performing these methodologies. Therefore, opinion collection for all points related to the nuclear energy, public hearing induction related researches and the acts, procedure, etc. performed in developed countries such as U.S, U.K, France, etc. are reviewed and analyzed in this research. And after the analysis of domestic spent nuclear fuel management plan, Task Force Team composed of experts in several related areas is organized to suggest strategies and directions which are necessary for making a national policy. Beside, Task Force Team selects an optimum technical alternative by the analysis and comparison in depth between these technical alternatives to establish the policy direction. They also established the procedures such as opinion collecting, etc. through policy conference and forum and suggested the technical data related nuclear policy which supports the nuclear policy conference. Results from this research are expected to decrease the trial and error that has been occurred in the present policy-making procedure such as radioactive waste repository related procedure and contribute for socio-cultural stability. Moreover, opinion collection plan for developing a nuclear policy alternative is expected to contribute for making a nuclear policy in the nuclear policy conference so that the nuclear technology will be enhanced more.

  4. A study on the alternative option for nuclear policy

    International Nuclear Information System (INIS)

    Choi, J. W.; Choi, H. J.; Lee, J. Y.; Cho, D. K.; Jeon, K. S.; Park, S. W.; Hahn, D. H.; Yoon, J. S.; Lee, K. S.

    2008-02-01

    Since a decision-making by intuitive judgement under uncertain future conditions can not select an optimum alternative, reaching an agreement for alternatives between experts requires a development of several scientific opinion collection methodologies and performing these methodologies. Therefore, opinion collection for all points related to the nuclear energy, public hearing induction related researches and the acts, procedure, etc. performed in developed countries such as U.S, U.K, France, etc. are reviewed and analyzed in this research. And after the analysis of domestic spent nuclear fuel management plan, Task Force Team composed of experts in several related areas is organized to suggest strategies and directions which are necessary for making a national policy. Beside, Task Force Team selects an optimum technical alternative by the analysis and comparison in depth between these technical alternatives to establish the policy direction. They also established the procedures such as opinion collecting, etc. through policy conference and forum and suggested the technical data related nuclear policy which supports the nuclear policy conference. Results from this research are expected to decrease the trial and error that has been occurred in the present policy-making procedure such as radioactive waste repository related procedure and contribute for socio-cultural stability. Moreover, opinion collection plan for developing a nuclear policy alternative is expected to contribute for making a nuclear policy in the nuclear policy conference so that the nuclear technology will be enhanced more

  5. Corrosion of simulated nuclear waste glass

    International Nuclear Information System (INIS)

    Music, S.; Ristic, M.; Gotic, M.; Foric, J.

    1988-01-01

    In this study the preparation and characterization of borosilicate glasses of different chemical composition were investigated. Borosilicate glasses were doped with simulated nuclear waste oxides. The chemical corrosion in water of these glasses was followed by measuring the leach rates as a function of time. It was found that a simulated nuclear waste glass with the chemical composition (weight %), 15.61% Na 2 O, 10.39% B 2 O 3 , 45.31% SiO 2 , 13.42% ZnO, 6.61% TiO 2 and 8.66% waste oxides, is characterized by low melting temperature and with good corrosion resistance in water. Influence of passive layers on the leaching behaviour of nuclear waste glasses is discussed. (author) 20 refs.; 7 figs.; 4 tabs

  6. Nuclear waste package fabricated from concrete

    International Nuclear Information System (INIS)

    Pfeiffer, P.A.; Kennedy, J.M.

    1987-03-01

    After the United States enacted the Nuclear Waste Policy Act in 1983, the Department of Energy must design, site, build and operate permanent geologic repositories for high-level nuclear waste. The Department of Energy has recently selected three sites, one being the Hanford Site in the state of Washington. At this particular site, the repository will be located in basalt at a depth of approximately 3000 feet deep. The main concern of this site, is contamination of the groundwater by release of radionuclides from the waste package. The waste package basically has three components: the containment barrier (metal or concrete container, in this study concrete will be considered), the waste form, and other materials (such as packing material, emplacement hole liners, etc.). The containment barriers are the primary waste container structural materials and are intended to provide containment of the nuclear waste up to a thousand years after emplacement. After the containment barriers are breached by groundwater, the packing material (expanding sodium bentonite clay) is expected to provide the primary control of release of radionuclide into the immediate repository environment. The loading conditions on the concrete container (from emplacement to approximately 1000 years), will be twofold; (1) internal heat of the high-level waste which could be up to 400 0 C; (2) external hydrostatic pressure up to 1300 psi after the seepage of groundwater has occurred in the emplacement tunnel. A suggested container is a hollow plain concrete cylinder with both ends capped. 7 refs

  7. Proceedings of the International Conference: Nuclear option in countries with small and medium electricity grid

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-12-31

    The conference of Croatian Nuclear Society ``Nuclear option in countries with small and medium electricity grid`` is based on experience from last conference of Croatian Nuclear Society in Opatija and on the same philosophy of serving the needs of small or medium present or future user countries. Session topics reflect some current emphasis, such as accommodation of Kyoto restriction on CO{sub 2} emission, or liability and insurance for nuclear damage. In order to achieve best safety and operational standards these countries with limited human and material resources must put greater emphasis on their rational and efficient use. Consequently the world wide developments on innovative reactors` systems and improved concepts for fuel utilisation and waste disposal are substantial interest. Appropriate selections of reactor technology, fuel cycle and decommission strategies are of paramount importance. There are very successful examples of achieving safety and good operational records, so the exchange of experience and cooperation amongst that group of countries would be of great value. As in the future of nuclear energy there will be many more countries with only small or medium nuclear systems, collecting specific experience and cooperation between the like countries will be an additional value to the now prevailing equipment supplier - national utility relationships. Here is presented nine sessions: 1. Energy Options in Countries with Small and Medium Grids 2. Reactors for Small and Medium Electricity Grids 3. Operation and Maintenance Experience 4. Deterministic Safety Analysis 5. Probabilistic Safety Analysis 6. Radioactive Waste Management and Decommissioning 7. Public Relations 8. Emergency Preparedness 9. Liability and Insurance for Nuclear Damage

  8. Proceedings of the International Conference: Nuclear option in countries with small and medium electricity grid

    International Nuclear Information System (INIS)

    1998-01-01

    The conference of Croatian Nuclear Society ''Nuclear option in countries with small and medium electricity grid'' is based on experience from last conference of Croatian Nuclear Society in Opatija and on the same philosophy of serving the needs of small or medium present or future user countries. Session topics reflect some current emphasis, such as accommodation of Kyoto restriction on CO 2 emission, or liability and insurance for nuclear damage. In order to achieve best safety and operational standards these countries with limited human and material resources must put greater emphasis on their rational and efficient use. Consequently the world wide developments on innovative reactors' systems and improved concepts for fuel utilisation and waste disposal are substantial interest. Appropriate selections of reactor technology, fuel cycle and decommission strategies are of paramount importance. There are very successful examples of achieving safety and good operational records, so the exchange of experience and cooperation amongst that group of countries would be of great value. As in the future of nuclear energy there will be many more countries with only small or medium nuclear systems, collecting specific experience and cooperation between the like countries will be an additional value to the now prevailing equipment supplier - national utility relationships. Here is presented nine sessions: 1. Energy Options in Countries with Small and Medium Grids 2. Reactors for Small and Medium Electricity Grids 3. Operation and Maintenance Experience 4. Deterministic Safety Analysis 5. Probabilistic Safety Analysis 6. Radioactive Waste Management and Decommissioning 7. Public Relations 8. Emergency Preparedness 9. Liability and Insurance for Nuclear Damage

  9. Comparison and evaluation of nuclear power plant options for geosynchronous power stations

    International Nuclear Information System (INIS)

    Williams, J.R.

    1975-01-01

    A solution to the safety, safeguards, and radwaste disposal problems of nuclear power is to locate the breeder reactor power plants far out in geosynchronous orbit and beam the power to earth with microwaves. The generation of nuclear power in space is technologically feasible and has already been demonstrated on a small scale. It has also been shown that high efficiency microwave transmission of power from synchronous orbit to earth is feasible and is not hazardous. The reactor safety problem would be virtually eliminated because of the remoteness of the satellite power station in geosynchronous orbit. The worst possible accident at such a plant would have negligible effect on the earth, certainly less than the high altitude nuclear explosions which have been conducted in the past. Accidental re-entry from geosynchronous orbit could not occur because of the very large velocity change required. The safeguards problem can be virtually eliminated by adopting the following procedures: 1) The plant is initially started up using U-235 fuel or bred plutonium or U-233 from another geosynchronous power plant, 2) Once the plant is operating, only nonhazardous fertile materials (thorium or depleted uranium) are shipped up from earth, 3) The fissile fuel is bred and used in space, and none of this highly toxic fissile material is ever returned to earth. The radioactive waste could be concentrated and ejected in canisters into deep space away from the earth. The geosynchronous nuclear power plant offers unlimited nuclear power without nuclear hazards or nuclear pollution, but at somewhat higher cost. Whether or not society will be willing to pay these higher costs of nuclear power from space, or whether new energy resources such as nuclear fusion or solar power become feasible, remains to be seen. A prudent course to follow would be to give careful consideration to all future options for large scale energy generation, including the option of nuclear power from space

  10. Nuclear waste : Is everthing under control ?

    OpenAIRE

    Giuliani, Gregory; De Bono, Andréa; Kluser, Stéphane; Peduzzi, Pascal

    2007-01-01

    50 years after the opening of the world's first civil nuclear power station, very little radioac- tive waste produced has been permanently disposed of. Moreover, the average age of today's reactors is approximately 22 years, meaning most of them will be decommissioned over the next decades. All of these wastes will have to be disposed of even if no more nuclear reactors are built. But is it wise to take further advantage of the “nuclear path”, without proven and widely-utilized solutions to t...

  11. Nuclear waste incineration technology status

    Energy Technology Data Exchange (ETDEWEB)

    Ziegler, D.L.; Lehmkuhl, G.D.; Meile, L.J.

    1981-07-15

    The incinerators developed and/or used for radioactive waste combustion are discussed and suggestions are made for uses of incineration in radioactive waste management programs and for incinerators best suited for specific applications. Information on the amounts and types of radioactive wastes are included to indicate the scope of combustible wastes being generated and in existence. An analysis of recently developed radwaste incinerators is given to help those interested in choosing incinerators for specific applications. Operating information on US and foreign incinerators is also included to provide additional background information. Development needs are identified for extending incinerator applications and for establishing commercial acceptance.

  12. Nuclear waste incineration technology status

    International Nuclear Information System (INIS)

    Ziegler, D.L.; Lehmkuhl, G.D.; Meile, L.J.

    1981-01-01

    The incinerators developed and/or used for radioactive waste combustion are discussed and suggestions are made for uses of incineration in radioactive waste management programs and for incinerators best suited for specific applications. Information on the amounts and types of radioactive wastes are included to indicate the scope of combustible wastes being generated and in existence. An analysis of recently developed radwaste incinerators is given to help those interested in choosing incinerators for specific applications. Operating information on US and foreign incinerators is also included to provide additional background information. Development needs are identified for extending incinerator applications and for establishing commercial acceptance

  13. Nuclear energy: a necessary option; Energia nuclear: una opcion necesaria

    Energy Technology Data Exchange (ETDEWEB)

    Robles N, A. G. [Comision Federal de Electricidad, Periferico Sur No. 4156, Col. Jardines del Pedregal, 01900 Ciudad de Mexico (Mexico); Ramirez S, J. R.; Esquivel E, J., E-mail: ambar.robles@cfe.gob.mx [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2017-09-15

    With the decree of the Energy Reform and with the creation of the Electricity Industry and Energy Transition Laws; nuclear energy is incorporated into these as a source of clean energy. Currently, the share of electricity generation using conventional technologies is 80% and clean technologies of 20% of which hydroelectric plants represent 50% of these. While the operation of hydroelectric, wind, solar plants, etc. have contributed to reduce greenhouse gas emissions (GGE), the global effort to mitigate climate change has not observed the expected results, according to the meeting of COP 21 in Paris, where 196 countries agreed, unanimously, to limit the increase of the temperature at 2 degrees Celsius or less for before the year 2100. In Paris, Mexico voluntarily submitted its national mitigation and adaptation contribution to climate change by issuing 162 M ton of CO{sub 2eq} as a goal to 2030, that is a ΔGGE of -22%. This means that the electricity sector should contribute to the reduction of 139 M ton of CO{sub 2eq} and a ΔGGE of -31%. According to some experts, the goal of reducing gases for the sector could be achieved during the period defined in the Agreement, provided that the share of clean energies is added as established in the Energy Reform and the Development Program of the National Electric System 2016-2030, which establishes the addition of 35,532 MW (62%) of installed capacity in clean technologies, where nuclear energy participates with 4,191 MW (7%) that is, 2,651 MW more. Thus, this article aims to show the importance of the use of nuclear energy in the electricity sector to reduce GGE, achieve international commitments and combat climate change. (Author)

  14. Future-proof radioactive waste treatment technologies for nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Buettner, Klaus; Braehler, Georg [NUKEM Technologies Engineering Services GmbH, Alzenau (Germany)

    2014-08-15

    In order to select the optimal treatment method for radioactive waste three options can be considered. First, to treat the radioactive waste only to allow long term interim storage until the waste acceptance criteria are defined and the disposal sites are operable. Second, to select treatment methods just in compliance with the current state of discussion with the regard to the above. Third, taking also the future development in the field of waste acceptance criteria and disposal into account. When developing waste treatment systems for Nuclear Power Plants NUKEM Technologies follows the following targets, minimisation of the amount of radioactive waste, maximisation of free release material, volume reduction, avoidance of unwanted materials in the waste package, as well as efficient waste treatment solutions (low investment, high volume reduction). With its technologies produced waste packages fulfil the most stringent waste acceptance criteria.

  15. Anticipating Potential Waste Acceptance Criteria for Defense Spent Nuclear Fuel

    International Nuclear Information System (INIS)

    Rechard, R.P.; Lord, M.E.; Stockman, C.T.; McCurley, R.D.

    1997-01-01

    The Office of Environmental Management of the U.S. Department of Energy is responsible for the safe management and disposal of DOE owned defense spent nuclear fuel and high level waste (DSNF/DHLW). A desirable option, direct disposal of the waste in the potential repository at Yucca Mountain, depends on the final waste acceptance criteria, which will be set by DOE's Office of Civilian Radioactive Waste Management (OCRWM). However, evolving regulations make it difficult to determine what the final acceptance criteria will be. A method of anticipating waste acceptance criteria is to gain an understanding of the DOE owned waste types and their behavior in a disposal system through a performance assessment and contrast such behavior with characteristics of commercial spent fuel. Preliminary results from such an analysis indicate that releases of 99Tc and 237Np from commercial spent fuel exceed those of the DSNF/DHLW; thus, if commercial spent fuel can meet the waste acceptance criteria, then DSNF can also meet the criteria. In large part, these results are caused by the small percentage of total activity of the DSNF in the repository (1.5%) and regulatory mass (4%), and also because commercial fuel cladding was assumed to provide no protection

  16. Characterization of glass and glass ceramic nuclear waste forms

    International Nuclear Information System (INIS)

    Lutze, W.; Borchardt, J.; De, A.K.

    1979-01-01

    Characteristics of solidified nuclear waste forms, glass and glass ceramic compositions and the properties (composition, thermal stability, crystallization, phase behavior, chemical stability, mechanical stability, and radiation effects) of glasses and glass ceramics are discussed. The preparation of glass ceramics may be an optional step for proposed vitrification plants if tailored glasses are used. Glass ceramics exhibit some improved properties with respect to glasses. The overall leach resistance is similar to that of glasses. An increased leach resistance may become effective for single radionuclides being hosted in highly insoluble crystal phases mainly when higher melting temperatures are applicable in order to get more leach resistant residual glass phases. The development of glass ceramic is going on. The technological feasibility is still to be demonstrated. The potential gain of stability when using glass ceramics qualifies the material as an alternative nuclear waste form

  17. Nuclear Waste Disposal in Space: BEP's Best Hope?

    International Nuclear Information System (INIS)

    Coopersmith, Jonathan

    2006-01-01

    The best technology is worthless if it cannot find a market Beam energy propulsion (BEP) is a very promising technology, but faces major competition from less capable but fully developed conventional rockets. Rockets can easily handle projected markets for payloads into space. Without a new, huge demand for launch capability, BEP is unlikely to gain the resources it needs for development and application. Launching tens of thousands of tons of nuclear waste into space for safe and permanent disposal will provide that necessary demand while solving a major problem on earth. Several options exist to dispose of nuclear waste, including solar orbit, lunar orbit, soft lunar landing, launching outside the solar system, and launching into the sun

  18. Evaluating nuclear power as the next baseload generation option

    International Nuclear Information System (INIS)

    Jackson, K.J.; Sanford, M.O.

    1992-01-01

    Numerous factors must be taken into account when planning to meet baseload generating needs of the next century. Examining nuclear power as an option to meet these needs offers significant challenges with respect to evaluating and managing the business risks. This paper describes one mechanism to accomplish this while continuing to participate in industry activities targeted at advancing the nuclear option. One possible model of pursuing high-risk, long-term projects, like nuclear power, is to spread these risks among the project participants and for each organization to commit slowly. With this model of progressive engagement, participants may invest in early information gathering with the objective of uncertainty reduction at preliminary stages in the project, before large investments must be made. For nuclear power, a partnership between a utility (or utility group) and a supplier team may well be the best means of implementing such a model. A partnership also provides opportunity to develop the long-term relationships within the industry which are imperative

  19. Nuclear waste management at DOE

    International Nuclear Information System (INIS)

    Perge, A.F.

    1979-01-01

    DOE is responsible for interim storage for some radioactive wastes and for the disposal for most of them. Of the wastes that have to be managed a significant part are a result of treatment systems and devices for cleaning gases. The long term waste management objectives place minimal reliance on surveillance and maintenance. Thus, the concerns about the chemical, thermal, and radiolytic degradation of wastes require technology for converting the wastes to forms acceptable for long term isolation. The strategy of the DOE airborne radioactive waste management program is to increase the service life and reliability of filters; to reduce filter wastes; and in anticipation of regulatory actions that would require further reductions in airborne radioactive releases from defense program facilities, to develop improved technology for additional collection, fixation, and long-term management of gaseous wastes. Available technology and practices are adequate to meet current health and safety standards. The program is aimed primarily at cost effective improvements, quality assurance, and the addition of new capability in areas where more restrictive standards seem likely to apply in the future

  20. Nuclear waste management: a challenge to Federalism

    International Nuclear Information System (INIS)

    Lucas, P.

    1979-01-01

    The controversy over state/Federal authority over waste disposal has already had a significant effect regardless of the choice Congress ultimately makes between an informal deference to state will and a statutory authorization of state control over Federal repositories. The highly emotional issue of local disposal of nuclear waste and the assertions of state control over waste disposal have made the nation and the Federal bureaucracy more aware of the status of the waste management program. State resistance to Federal siting efforts and the passage of state waste disposal legislation has compelled the Federal government to provide the states with a larger role in waste management. State power to exclude Federal repositories would give states additional political leverage. Ideally, public attention and effective state veto power will contribute to a more successful program, without impeding progress toward the immediate goal of siting and developing permanent repositories

  1. Influences of microbiology on nuclear waste disposal

    International Nuclear Information System (INIS)

    Dunk, M.

    1991-05-01

    This study was carried out to determine the effects of microbial activity on the disposal of nuclear waste. The areas chosen for study include nutrient availability (both organic and inorganic), the effect of increased pH and potential gas generation from the waste. Microbes from various soil habitats could grow on a variety of cellulose-based substrates including simulant waste. Increased pH did not appear to greatly effect the growth of these microbes. Gas generation by microbes growing on a simulant waste was determined over an extended period under a variety of nutritional conditions. The simulant waste was a good substrate for microbes and adding inorganic nutrients did not significantly affect the final yield of gas; extrapolated to about 14.6 3 gas per tonne of waste. The experiments have highlighted a number of areas for further research and they are currently being addressed. (author)

  2. Extreme scenarios for nuclear waste repositories

    Energy Technology Data Exchange (ETDEWEB)

    Brown, M J [Harvard Univ., Cambridge, MA (USA). Div. of Applied Sciences; Crouch, E [Harvard Univ., Cambridge, MA (USA). Energy and Environmental Policy Center

    1982-09-01

    Two extreme scenarios for release of radioactive waste have been constructed. In the first, a volcanic eruption releases 1 km/sup 2/ of an underground nuclear waste repository, while in the second, waste enters the drinking water reservoir of a major city. With pessimistic assumptions, upper bounds on the number of cancers due to radiation are calculated. In the volcano scenario, the effects of the waste are smaller than the effects of natural radioactivity in the volcanic dust if the delay between emplacement and eruption exceeds 2000 yr. The consequences of the waste in drinking water depend on the survival time of the canisters and the rate of leaching of the nuclides from the waste matrix. For a canister life of 400 yr and a leach time of 6300 yr the cancer rate in the affected area would increase by 25%.

  3. A feasibility study on nuclear power options in Mongolia

    International Nuclear Information System (INIS)

    Minato, A.; Sekimoto, H.; Amartaivan, T.

    2010-10-01

    There is a growing interest among utilities in the United States in small and medium reactors due primarily to the smaller investment and perhaps shorter construction time involved as compared to those large reactors. The potential market for small reactors (those below 300 M We) exists, specially with sizes of 50 and 100 M We. A feasibility study was conducted on nuclear power options for Ulaanbaatar, Mongolia, a country which has a potential market for small reactors. The study was focused on an optimization of a combination of coal-fired and nuclear power plants taking into account Mongolia's future nuclear program plan, future population and economic growth, and the increased electricity and district heating demands. (Author)

  4. Nuclear wastes: where is the problem?

    International Nuclear Information System (INIS)

    Sorin, Francis

    2015-01-01

    While addressing societal as well as ethical aspects, the author proposes a presentation of the different management modes which are applied to the different categories of nuclear wastes. He describes the strategy adopted in France with the deep storage, and discusses its safety by assessing its impact on health and on the environment in time. In the first chapter, the author presents the different types of nuclear wastes, their origin, and the related problem of exposure to radioactivity for the most dangerous ones. In the second chapter, he presents the French sector of nuclear waste management, outlines the role of the ANDRA, and the acknowledged know-how and expertise. The third chapter describes the different management modes for the five different waste categories. The author recalls and outlines the legal background, the strategic choices and the importance of the underground laboratory for the storage of high-level wastes. He discusses the challenges, safety approaches and cost issues associated with the geologic storage. He discusses the future of such storage, its possible evolutions and radioactive impact. He discusses issues related to dysfunctions, failures, altered scenarios. He finally gives its opinion on the current debate about radioactive nuclear wastes

  5. Mechanical properties of nuclear waste glasses

    International Nuclear Information System (INIS)

    Connelly, A.J.; Hand, R.J.; Bingham, P.A.; Hyatt, N.C.

    2011-01-01

    The mechanical properties of nuclear waste glasses are important as they will determine the degree of cracking that may occur either on cooling or following a handling accident. Recent interest in the vitrification of intermediate level radioactive waste (ILW) as well as high level radioactive waste (HLW) has led to the development of new waste glass compositions that have not previously been characterised. Therefore the mechanical properties, including Young's modulus, Poisson's ratio, hardness, indentation fracture toughness and brittleness of a series of glasses designed to safely incorporate wet ILW have been investigated. The results are presented and compared with the equivalent properties of an inactive simulant of the current UK HLW glass and other nuclear waste glasses from the literature. The higher density glasses tend to have slightly lower hardness and indentation fracture toughness values and slightly higher brittleness values, however, it is shown that the variations in mechanical properties between these different glasses are limited, are well within the range of published values for nuclear waste glasses, and that the surveyed data for all radioactive waste glasses fall within relatively narrow range.

  6. Development of nuclear waste concrete drum

    International Nuclear Information System (INIS)

    Wen Yinghui

    1995-06-01

    The raw materials selection and the properties for nuclear waste concrete drum, the formula and properties of the concrete, the specification and technical quality requirement of the drum were described. The manufacture essentials and technology, the experiments and checks as well as the effective quality control and quality assurance carried out in the course of production were presented. The developed nuclear waste drum has a simple structure, easily available raw materials and rational formula for concrete. The compressive strength of the drum is more than 70 MPa, the tensile strength is more than 5 MPa, the nitrogen permeability is (2.16∼3.6) x 10 -18 m 2 . The error of the drum in dimensions is +-2 mm. The external surface of the drum is smooth. The drum accords with China standards in the sandy surface, void and crack. The results shows China has the ability to develop and manufacture nuclear waste concrete container and lays the foundation for standardization and series of the nuclear waste container for packing and transporting nuclear wastes in China. (5 figs., 10 tabs.)

  7. Closing the nuclear option: scenarios for societal change

    International Nuclear Information System (INIS)

    Copulos, M.R.

    1978-01-01

    On November 8, 1976, the Natural Resources Defense Council petitioned the Nuclear Regulatory Commission, requesting that the Commission hold hearings for the purpose of making a definitive determination that nuclear wastes could be disposed of safely. NRDC also requested that until such a determination was made the Commission ''...refrain from acting finally to grant pending or future requests for reactor operating licenses...'' On June 27, 1977, the Commission denied NRDC's petition. As a result, on November 7th of that year, NRDC filed suit in the Second Circuit Court asking the court to reverse the Commission's decision and require ''...the agency to conduct a rulemaking proceeding to determine whether radioactive wastes generated by commercial nuclear reactors can be and will be disposed of safely, prior to reactor licensing....'' The consequences of the most likely outcome of this litigation is examined to estimate our nation's future ability to provide electricity to its people. Capability margins were chosen as the primary indicator of overall reliability of the bulk power generation system. Four scenarios were used in the examination: (1) assumes shutdown is complete but that coal production meets it current targets; (2) assumes that the shutdown only affects plants scheduled to come on line after 1978, and again, no problems in meeting stated coal-conversion goals; (3) examines the possible slower growth of coal caused by existing institutional constraints; and (4) combines this possibility with a post-1978 nuclear moratorium

  8. Safety Aspects of Radioactive Waste Management in Different Nuclear Fuel Cycle Policies, a Comparative Study

    International Nuclear Information System (INIS)

    Gad Allah, A.A.

    2009-01-01

    With the increasing demand of energy worldwide, and due to the depletion of conventional natural energy resources, energy policies in many countries have been devoted to nuclear energy option. On the other hand, adopting a safe and reliable nuclear fuel cycle concept guarantees future nuclear energy sustain ability is a vital request from environmental and economic point of views. The safety aspects of radioactive waste management in the nuclear fuel cycle is a topic of great importance relevant to public acceptance of nuclear energy and the development of nuclear technology. As a part of nuclear fuel cycle safety evaluation studies in the department of nuclear fuel cycle safety, National Center for Nuclear Safety and Radiation Control (NCNSRC), this study evaluates the radioactive waste management policies and radiological safety aspects of three different nuclear fuel cycle policies. The once-through fuel cycle (OT- fuel cycle) or the direct spent fuel disposal concept for both pressurized light water reactor ( PWR) and pressurized heavy water reactor (PHWR or CANDU) systems and the s elf-generated o r recycling fuel cycle concept in PWR have been considered in the assessment. The environmental radiological safety aspects of different nuclear fuel cycle options have been evaluated and discussed throughout the estimation of radioactive waste generated from spent fuel from these fuel cycle options. The decay heat stored in the spent fuel was estimated and a comparative safety study between the three fuel cycle policies has been implemented

  9. Waste minimization: A team approach at McGuire nuclear

    International Nuclear Information System (INIS)

    Poteat, E.L.

    1995-01-01

    The production of radioactive waste and its subsequent disposal is a costly proposition. Burial of low-level waste (LLW), if available at all, is expensive and getting more so. The availability of disposal options is often subject to the whims and vagaries of political forces that cannot be predicted, let alone controlled in any way by the members of the nuclear community. On-site storage is a limited and, quite often, an extremely difficult process to put into place. After LLW has been generated, various volume reduction techniques are available, but these can vary widely in cost and effectiveness. If and when new disposal sites are available, the waste acceptance criteria may be such that some or all of the volume reduction processes will not produce an acceptable final waste form. Consequently, the best thing to do is probably deceptively simple: Do not generate the waste in the first place. This is the philosophy that McGuire nuclear station operates under, and this paper discusses the team approach that has been developed to support this idea

  10. A multi-criteria decision analysis assessment of waste paper management options.

    Science.gov (United States)

    Hanan, Deirdre; Burnley, Stephen; Cooke, David

    2013-03-01

    The use of Multi-criteria Decision Analysis (MCDA) was investigated in an exercise using a panel of local residents and stakeholders to assess the options for managing waste paper on the Isle of Wight. Seven recycling, recovery and disposal options were considered by the panel who evaluated each option against seven environmental, financial and social criteria. The panel preferred options where the waste was managed on the island with gasification and recycling achieving the highest scores. Exporting the waste to the English mainland for incineration or landfill proved to be the least preferred options. This research has demonstrated that MCDA is an effective way of involving community groups in waste management decision making. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Nuclear waste disposal: perspective of a geochemist

    International Nuclear Information System (INIS)

    Sengupta, Pranesh; Dey, G.K.

    2011-01-01

    Satisfying the growing requirement in an environment friendly way is one of the most important tasks we need to accomplish these days. Considering the restricted non-renewable energy resources and limited technological progresses achieved in the renewable energy sectors in India, nuclear energy appears to be one of the most lucrative solutions towards the forthcoming energy crisis. Successful implementation of nuclear energy program however requires careful execution of high level nuclear waste management activities. One very important aspect of this process is to identify and develop suitable inert matrix(ces) for conditioning of nuclear waste(s) using natural analogue studies. And this establishes the very vital linkage between geochemical studies and nuclear waste immobilization. One good example of such an interdisciplinary approach can be seen in the methodologies adopted for immobilization of sulfate bearing high level nuclear wastes (SO 4 -HLW). It has been reported on several occasions that sulfur-rich melt get separated from silicate melt within magma chamber. Similar process has also been witnessed within vitrification furnaces whenever an attempt has been made to condition SO 4 -HLW within borosilicate glass matrices. Since such liquid-liquid phase separation leads to multiple difficulties in connection to radionuclide immobilization and plant scale vitrification processes, solutions were sought from natural analogue studies. Such as integrated approach ultimately resulted in establishing two different methodologies e.g. (i) modifying the borosilicate network through introduction of Ba 2+ cation; a process being followed in India and (ii) using phosphatic melt as a host instead of borosilicate melt; a process being followed in Russia. Detail of these two routes and the geochemical linkage in nuclear waste immobilization will be discussed.(author)

  12. New nuclear programmes must not neglect waste management - 59077

    International Nuclear Information System (INIS)

    McCombie, Charles

    2012-01-01

    Many established nuclear power programmes have learned to their dismay that waste management and disposal are not tasks that can be postponed at will if public and political acceptance is a prerequisite for progress. In fact, some programmes that recognised this back in the 1970's and 1980's moved into leading positions in repository development. This happened, for example, in Sweden and Switzerland where already in the 1970's Laws were passed specifying that safe disposal must be demonstrated before new nuclear plants could operate. In recent years, it has become recognised that, in order to ensure that the radioactive wastes in any country are managed safely, it is necessary to have an established legislative and regulatory framework and also to create the necessary organizations for implementation and for oversight of waste management operations and facility development. Guidance on these issues is given in the Joint Convention and a number of other IAEA documents. The IAEA, and also the EC, have in addition published key overarching advisory documents for new nuclear programmes. These are useful for strategic planning but, when it comes to actual implementation projects, the advice tends to imply that all nuclear programmes, however large or small, should be pressing ahead urgently towards early operation of geological repositories. In practice, however, in small programmes there are neither economic nor technical drivers for early implementation of deep geological repositories. Constructing simpler facilities for the disposal of the larger volume of low-level wastes has higher priority. Nevertheless, in all countries political decisions have to be taken and policies set in place to ensure that geological disposal will implemented without unjustified delay. This paper distils out a set of key messages for new programmes. Amongst the most critical are the following. Even if disposal is far off, planning and organization should begin at the initiation of the

  13. A multi-criteria decision analysis assessment of waste paper management options

    International Nuclear Information System (INIS)

    Hanan, Deirdre; Burnley, Stephen; Cooke, David

    2013-01-01

    Highlights: ► Isolated communities have particular problems in terms of waste management. ► An MCDA tool allowed a group of non-experts to evaluate waste management options. ► The group preferred local waste management solutions to export to the mainland. ► Gasification of paper was the preferred option followed by recycling. ► The group concluded that they could be involved in the decision making process. - Abstract: The use of Multi-criteria Decision Analysis (MCDA) was investigated in an exercise using a panel of local residents and stakeholders to assess the options for managing waste paper on the Isle of Wight. Seven recycling, recovery and disposal options were considered by the panel who evaluated each option against seven environmental, financial and social criteria. The panel preferred options where the waste was managed on the island with gasification and recycling achieving the highest scores. Exporting the waste to the English mainland for incineration or landfill proved to be the least preferred options. This research has demonstrated that MCDA is an effective way of involving community groups in waste management decision making

  14. A multi-criteria decision analysis assessment of waste paper management options

    Energy Technology Data Exchange (ETDEWEB)

    Hanan, Deirdre [Department of Design, Development, Environment and Materials, The Open University, Walton Hall, Milton Keynes, MK7 6AA (United Kingdom); Burnley, Stephen, E-mail: s.j.burnley@open.ac.uk [Department of Design, Development, Environment and Materials, The Open University, Walton Hall, Milton Keynes, MK7 6AA (United Kingdom); Cooke, David [Department of Design, Development, Environment and Materials, The Open University, Walton Hall, Milton Keynes, MK7 6AA (United Kingdom)

    2013-03-15

    Highlights: ► Isolated communities have particular problems in terms of waste management. ► An MCDA tool allowed a group of non-experts to evaluate waste management options. ► The group preferred local waste management solutions to export to the mainland. ► Gasification of paper was the preferred option followed by recycling. ► The group concluded that they could be involved in the decision making process. - Abstract: The use of Multi-criteria Decision Analysis (MCDA) was investigated in an exercise using a panel of local residents and stakeholders to assess the options for managing waste paper on the Isle of Wight. Seven recycling, recovery and disposal options were considered by the panel who evaluated each option against seven environmental, financial and social criteria. The panel preferred options where the waste was managed on the island with gasification and recycling achieving the highest scores. Exporting the waste to the English mainland for incineration or landfill proved to be the least preferred options. This research has demonstrated that MCDA is an effective way of involving community groups in waste management decision making.

  15. Management of radioactive waste from nuclear applications

    International Nuclear Information System (INIS)

    1997-01-01

    Radioactive waste arises from the generation of nuclear energy and from the production of radioactive materials and their applications in industry, agriculture, research and medicine. The importance of safe management of radioactive waste for the protection of human health and the environment has long been recognized and considerable experience has been gained in this field. Technical expertise is a prerequisite for safe and cost-effective management of radioactive waste. A training course is considered an effective tool for providing technical expertise in various aspects of waste management. The IAEA, in co-operation with national authorities concerned with radioactive waste management, has organized and conducted a number of radioactive waste management training courses. The results of the courses conducted by the IAEA in 1991-1995 have been evaluated at consultants meetings held in December 1995 and May 1996. This guidance document for use by Member States in arranging national training courses on the management of low and intermediate level radioactive waste from nuclear applications has been prepared as the result of that effort. The report outlines the various requirements for the organization, conduct and evaluation of training courses in radioactive waste management and proposes an annotated outline of a reference training course

  16. Science, Society, and America's Nuclear Waste: The Nuclear Waste Policy Act, Unit 3. Teacher Guide. Second Edition.

    Science.gov (United States)

    Department of Energy, Washington, DC. Office of Civilian Radioactive Waste Management, Washington, DC.

    This guide is Unit 3 of the four-part series, Science, Society, and America's Nuclear Waste, produced by the U.S. Department of Energy's Office of Civilian Radioactive Waste Management. The goal of this unit is to identify the key elements of the United States' nuclear waste dilemma and introduce the Nuclear Waste Policy Act and the role of the…

  17. Transuranic elements and nuclear wastes

    International Nuclear Information System (INIS)

    Bowen, V.T.

    1974-01-01

    The contamination of oceans and marine life by transuranic elements (elements of atomic number greater than 92) is the main concern of this paper. Wastes of three different types, low-level, intermediate-level, and high-level, are considered. Fallout of Pu and other transuranics is discussed as it affects marine biogeochemistry and geochemistry. Different paths of absorption or uptake under various conditions of release are pointed out in some detail. The transfer of radioactivity to mammals from marine sources is considered in some detail. Waste disposal practices at Windscale are reviewed. It is concluded that the problems associated with transuranic wastes in oceans and marine life are very complex. Monitoring of waste release and uptake is concluded to not be enough. Each situation of release of transuranics to the environment should be treated as an experiment and milked for all the information that it can reveal. The tremendous expenditure of money and manpower necessary for such an undertaking is stressed

  18. Nuclear waste isolation activities report

    International Nuclear Information System (INIS)

    1980-12-01

    Included are: a report from the Deputy Assistant Secretary, a summary of recent events, new literature, a list of upcoming waste management meetings, and background information on DOE's radwaste management programs

  19. Trilingual vocabulary of nuclear waste management

    International Nuclear Information System (INIS)

    Jacob, H.

    1996-01-01

    This reference document is produced in cooperation with partners in the Union Latine, an international organization dedicated to promoting the Romance languages. In 1992 acting on a request submitted by the Montreal Environment Section of the Translation Bureau, the Terminology and Standardization Directorate published an in-house glossary containing 2500 entries on nuclear waste management. The glossary was produced by scanning bilingual terms in the reports submitted to Atomic Energy of Canada Limited by the Siting Process Task Force on Low-Level Radioactive Waste Disposal. Because the scale of the nuclear waste management problem has grown considerably since then, the glossary needed to be expanded and revised. The Vocabulary contains some 1000 concepts for a total of approximately 3000 terms in each of the three languages, english, french and spanish. Special attention has been given to defining basic physical concepts, waste classifications and disposal methods

  20. DOE states reheat nuclear waste debate

    International Nuclear Information System (INIS)

    Crawford, M.

    1985-01-01

    After decades of struggling with the issue, Congress in late 1982 established a firm plan for burying growing volumes of nuclear reactor wastes. But 2 l/2 years later the waste disposal debate is as hot as ever. Utility companies, environmentalists, federal officials, and state governments are again clashing - this time over the way the program is proceeding. The Nuclear Waste Policy Act calls for the Department of Energy to start accepting wastes in 1998 at the first of two planned repositories. Selection of this first repository site was mandated for early 1987, but program delays at DOE have pushed the decision back to March 1991. Despite this postponement and other schedule slips, the Department still aims to meet Congress's 1998 deadline. But states, Indian tribes, and environmentalists fear the site selection process will be compromised and want the start up date rolled back