WorldWideScience

Sample records for nuclear system components

  1. Ventilation systems and components of nuclear power plants

    International Nuclear Information System (INIS)

    1997-01-01

    The most important radiation and nuclear safety requirements for the design and manufacture of nuclear power plant ventilation systems and components are presented in the guide. Also the regulatory activities of the Finnish Centre for Radiation and Nuclear Safety (STUK) as regards the ventilation systems and components are explained. Documents and data which shall be submitted to STUK during the various phases of the regulatory procedure relating to the design, construction, commissioning and operation of the nuclear power plants are presented. (13 refs.)

  2. Safety classification of nuclear power plant systems, structures and components

    International Nuclear Information System (INIS)

    1992-01-01

    The Safety Classification principles used for the systems, structures and components of a nuclear power plant are detailed in the guide. For classification, the nuclear power plant is divided into structural and operational units called systems. Every structure and component under control is included into some system. The Safety Classes are 1, 2 and 3 and the Class EYT (non-nuclear). Instructions how to assign each system, structure and component to an appropriate safety class are given in the guide. The guide applies to new nuclear power plants and to the safety classification of systems, structures and components designed for the refitting of old nuclear power plants. The classification principles and procedures applying to the classification document are also given

  3. Supervision of electrical and instrumentation systems and components at nuclear facilities

    International Nuclear Information System (INIS)

    1986-01-01

    The general guidelines for the supervision of nuclear facilities carried out by the Finnish Centre for Radiation and Nuclear Safety (STUK) are set forth in the guide YVL 1.1. This guide shows in more detail how STUK supervises the electrical and instrumentation systems and components of nuclear facilities

  4. The condition monitoring system of turbine system components for nuclear power plants

    International Nuclear Information System (INIS)

    Ono, Shigetoshi

    2013-01-01

    The thermal and nuclear power plants have been imposed a stable supply of electricity. To certainly achieve this, we built the plant condition monitoring system based on the heat and mass balance calculation. If there are some performance changes on the turbine system components of their power plants, the heat and mass balance of the turbine system will change. This system has ability to detect the abnormal signs of their components by finding the changes of the heat and mass balance. Moreover we note that this system is built for steam turbine cycle operating with saturated steam conditions. (author)

  5. On the classification of structures, systems and components of nuclear research and test reactors

    International Nuclear Information System (INIS)

    Mattar Neto, Miguel

    2009-01-01

    The classification of structures, systems and components of nuclear reactors is a relevant issue related to their design because it is directly associated with their safety functions. There is an important statement regarding quality standards and records that says Structures, systems, and components important to safety shall be designed, fabricated, erected, and tested to quality standards commensurate with the importance of the safety functions to be performed. The definition of the codes, standards and technical requirements applied to the nuclear reactor design, fabrication, inspection and tests may be seen as the main result from this statement. There are well established guides to classify structures, systems and components for nuclear power reactors such as the Pressurized Water Reactors but one can not say the same for nuclear research and test reactors. The nuclear reactors safety functions are those required to the safe reactor operation, the safe reactor shutdown and continued safe conditions, the response to anticipated transients, the response to potential accidents and the control of radioactive material. So, it is proposed in this paper an approach to develop the classification of structures, systems and components of these reactors based on their intended safety functions in order to define the applicable set of codes, standards and technical requirements. (author)

  6. Air-conditioning and ventilation systems and components of nuclear facilities

    International Nuclear Information System (INIS)

    2006-01-01

    The Guide defines the requirements for the design, implementation and operation of the air-conditioning and ventilation systems of nuclear facilities belonging to safety classes 3 and 4, and for the related documents to be submitted to STUK (Radiation and Nuclear Safety Authority, Finland). Furthermore, the Guide describes the inspections of air-conditioning and ventilation systems to be conducted by STUK during construction and operation of the facilities. As far as systems and components belonging to safety class 2 are concerned, STUK sets additional requirements case by case. In general, air-conditioning systems refer to systems designed to manage the indoor air cleanness, temperature, humidity and movement. In some rooms of a nuclear power plant, ventilation systems are also used to prevent radioactive materials from spreading outside the rooms. Guide YVL1.0 defines the safety principles concerning the air-conditioning and ventilation of nuclear power plants. Guide YVL2.0 gives the requirements for the design of nuclear power plant systems. In addition, YVLGuide groups 3, 4, 5 and 7 deal with the requirements for air-conditioning and ventilation systems with regard to the mechanical equipment, fire prevention, electrical systems, instrumentation and control technology, and the restriction of releases. The rules and regulations issued by the Ministry of the Environment and the Ministry of the Interior (RakMK, the Finnish building code) concerning the design and operation of air-conditioning and ventilation systems and the related fire protection design bases also apply to nuclear facilities. Exhaust gas treatment systems, condenser vacuum systems of boiling water reactor plants and leak collection systems are excluded from the scope of this Guide

  7. Development of a web-based fatigue life evaluation system for primary components in a nuclear power plant

    International Nuclear Information System (INIS)

    Seo, Hyong Won; Lee, Sang Min; Choi, Jae Boong; Kim, Young Jin; Choi, Sung Nam; Jang, Ki Sang; Hong, Sung Yull

    2004-01-01

    A nuclear power plant is composed of a number of primary components. Maintaining the integrity of these components is one of the most critical issues in nuclear industry. In order to maintain the integrity of these primary components, a complicated procedure is required including regular in-service inspection, failure assessment, fracture mechanics analysis, etc. Also, experts in different fields have to co-operate to resolve the integrity issues on the basis of inspection results. This integrity evaluation process usually takes long, and thus, is detrimental for the plant productivity. Therefore, an effective safety evaluation system is essential to manage the integrity issues on a nuclear power plant. In this paper, a web-based fatigue life evaluation system for primary components in nuclear power plant is proposed. This system provides engineering knowledge-based information and concurrent and collaborative working environment through internet, and thus, is expected to raise the efficiency of integrity evaluation procedures on primary components of a nuclear power plant

  8. Development of web-based integrity evaluation system for primary components in a nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S.M.; Kim, J.C.; Choi, J.B.; Kim, Y.J. [SAFE Research Center, Sungkyunkwan Univ., Suwon (Korea); Choi, S.N.; Jang, K.S.; Hong, S.Y. [Korea Electronic Power Research Inst., Daejeon (Korea)

    2004-07-01

    A nuclear power plant is composed of a number of primary components. Maintaining the integrity of these components is one of the most critical issues in nuclear industry. In order to maintain the integrity of these primary components, a complicated procedure is required including periodical in-service inspection, failure assessment, fracture mechanics analysis, etc. Also, experts in different fields have to co-operate to resolve the integrity issues on the basis of inspection results. This integrity evaluation process usually takes long, and thus, is detrimental for the plant productivity. Therefore, an effective safety evaluation system is essential to manage integrity issues on a nuclear power plant. In this paper, a web-based integrity evaluation system for primary components in a nuclear power plant is proposed. The proposed system, which is named as WEBIES (web-based integrity evaluation system), has been developed in the form of 3-tier system architecture. The system consists of three servers; application program server, user interface program server and data warehouse server. The application program server includes the defect acceptance analysis module and the fracture mechanics analysis module which are programmed on the basis of ASME sec. XI, appendix A. The data warehouse server provides data for the integrity evaluation including material properties, geometry information, inspection data and stress data. The user interface program server provides information to all co- workers in the field of integrity evaluation. The developed system provides engineering knowledge-based information and concurrent and collaborative working environment through internet, and thus, is expected to raise the efficiency of integrity evaluation procedures on primary components of a nuclear power plant. (orig.)

  9. Development of web-based integrity evaluation system for primary components in a nuclear power plant

    International Nuclear Information System (INIS)

    Lee, S.M.; Kim, J.C.; Choi, J.B.; Kim, Y.J.; Choi, S.N.; Jang, K.S.; Hong, S.Y.

    2004-01-01

    A nuclear power plant is composed of a number of primary components. Maintaining the integrity of these components is one of the most critical issues in nuclear industry. In order to maintain the integrity of these primary components, a complicated procedure is required including periodical in-service inspection, failure assessment, fracture mechanics analysis, etc. Also, experts in different fields have to co-operate to resolve the integrity issues on the basis of inspection results. This integrity evaluation process usually takes long, and thus, is detrimental for the plant productivity. Therefore, an effective safety evaluation system is essential to manage integrity issues on a nuclear power plant. In this paper, a web-based integrity evaluation system for primary components in a nuclear power plant is proposed. The proposed system, which is named as WEBIES (web-based integrity evaluation system), has been developed in the form of 3-tier system architecture. The system consists of three servers; application program server, user interface program server and data warehouse server. The application program server includes the defect acceptance analysis module and the fracture mechanics analysis module which are programmed on the basis of ASME sec. XI, appendix A. The data warehouse server provides data for the integrity evaluation including material properties, geometry information, inspection data and stress data. The user interface program server provides information to all co- workers in the field of integrity evaluation. The developed system provides engineering knowledge-based information and concurrent and collaborative working environment through internet, and thus, is expected to raise the efficiency of integrity evaluation procedures on primary components of a nuclear power plant. (orig.)

  10. Reliability analysis of nuclear component cooling water system using semi-Markov process model

    International Nuclear Information System (INIS)

    Veeramany, Arun; Pandey, Mahesh D.

    2011-01-01

    Research highlights: → Semi-Markov process (SMP) model is used to evaluate system failure probability of the nuclear component cooling water (NCCW) system. → SMP is used because it can solve reliability block diagram with a mixture of redundant repairable and non-repairable components. → The primary objective is to demonstrate that SMP can consider Weibull failure time distribution for components while a Markov model cannot → Result: the variability in component failure time is directly proportional to the NCCW system failure probability. → The result can be utilized as an initiating event probability in probabilistic safety assessment projects. - Abstract: A reliability analysis of nuclear component cooling water (NCCW) system is carried out. Semi-Markov process model is used in the analysis because it has potential to solve a reliability block diagram with a mixture of repairable and non-repairable components. With Markov models it is only possible to assume an exponential profile for component failure times. An advantage of the proposed model is the ability to assume Weibull distribution for the failure time of components. In an attempt to reduce the number of states in the model, it is shown that usage of poly-Weibull distribution arises. The objective of the paper is to determine system failure probability under these assumptions. Monte Carlo simulation is used to validate the model result. This result can be utilized as an initiating event probability in probabilistic safety assessment projects.

  11. Nuclear power plant systems, structures and components and their safety classification

    International Nuclear Information System (INIS)

    2000-01-01

    The assurance of a nuclear power plant's safety is based on the reliable functioning of the plant as well as on its appropriate maintenance and operation. To ensure the reliability of operation, special attention shall be paid to the design, manufacturing, commissioning and operation of the plant and its components. To control these functions the nuclear power plant is divided into structural and functional entities, i.e. systems. A systems safety class is determined by its safety significance. Safety class specifies the procedures to be employed in plant design, construction, monitoring and operation. The classification document contains all documentation related to the classification of the nuclear power plant. The principles of safety classification and the procedures pertaining to the classification document are presented in this guide. In the Appendix of the guide, examples of systems most typical of each safety class are given to clarify the safety classification principles

  12. Maintenance Management Support Systems for component aging estimation at nuclear power plants

    International Nuclear Information System (INIS)

    Shimizu, Shunichi; Ando, Yasumasa; Morioka, Toshihiko; Okuzumi, Naoaki

    1991-01-01

    Maintenance Management Support Systems (MMSSs) for nuclear power plants have been developed using component aging estimation methods and decision tree analysis for maintenance planning. The former evaluates actual component reliability through statistical analysis on field maintenance data. The latter provides preventive maintenance (PM) planning guidance using heuristic expert knowledge and estimated reliability parameters. The following aspects have been investigated: (1) A systematic and effective method of managing components/parts design information and field maintenance data (2) A method for estimating component aging based on a statistical analysis of field maintenance data (3) A method for providing PM planning guidance using estimated component reliability/performance parameters and decision tree analysis. Based on these investigations, two MMSSs were developed. One deals with 'general maintenance data', which are common to all component types and are amenable to common data handling. The other system deals with 'specific maintenance data', which are specific to an individual component type. Both systems provide PM planning guidance for PM cycles propriety and the PM work priority. The function of these systems were verified using simulated maintenance data. (author)

  13. Research on development model of nuclear component based on life cycle management

    International Nuclear Information System (INIS)

    Bao Shiyi; Zhou Yu; He Shuyan

    2005-01-01

    At present the development process of nuclear component, even nuclear component itself, is more and more supported by computer technology. This increasing utilization of the computer and software has led to the faster development of nuclear technology on one hand and also brought new problems on the other hand. Especially, the combination of hardware, software and humans has increased nuclear component system complexities to an unprecedented level. To solve this problem, Life Cycle Management technology is adopted in nuclear component system. Hence, an intensive discussion on the development process of a nuclear component is proposed. According to the characteristics of the nuclear component development, such as the complexities and strict safety requirements of the nuclear components, long-term design period, changeable design specifications and requirements, high capital investment, and satisfaction for engineering codes/standards, the development life-cycle model of nuclear component is presented. The development life-cycle model is classified at three levels, namely, component level development life-cycle, sub-component development life-cycle and component level verification/certification life-cycle. The purposes and outcomes of development processes are stated in detailed. A process framework for nuclear component based on system engineering and development environment of nuclear component is discussed for future research work. (authors)

  14. General requirements for pressure-retaining systems and components in CANDU nuclear power plants

    International Nuclear Information System (INIS)

    1991-11-01

    This standard specifies the general requirements for the design, fabrication and installation of pressure-retaining systems, components, and their supports in CANDU nuclear power plants. (16 figs., 2 tabs., 25 refs.)

  15. Development of an integrated database management system to evaluate integrity of flawed components of nuclear power plant

    International Nuclear Information System (INIS)

    Mun, H. L.; Choi, S. N.; Jang, K. S.; Hong, S. Y.; Choi, J. B.; Kim, Y. J.

    2001-01-01

    The object of this paper is to develop an NPP-IDBMS(Integrated DataBase Management System for Nuclear Power Plants) for evaluating the integrity of components of nuclear power plant using relational data model. This paper describes the relational data model, structure and development strategy for the proposed NPP-IDBMS. The NPP-IDBMS consists of database, database management system and interface part. The database part consists of plant, shape, operating condition, material properties and stress database, which are required for the integrity evaluation of each component in nuclear power plants. For the development of stress database, an extensive finite element analysis was performed for various components considering operational transients. The developed NPP-IDBMS will provide efficient and accurate way to evaluate the integrity of flawed components

  16. Application of the Safety Classification of Structures, Systems and Components in Nuclear Power Plants

    International Nuclear Information System (INIS)

    2016-04-01

    This publication describes how to complete tasks associated with every step of the classification methodology set out in IAEA Safety Standards Series No. SSG-30, Safety Classification of Structures, Systems and Components in Nuclear Power Plants. In particular, how to capture all the structures, systems and components (SSCs) of a nuclear power plant to be safety classified. Emphasis is placed on the SSCs that are necessary to limit radiological releases to the public and occupational doses to workers in operational conditions This publication provides information for organizations establishing a comprehensive safety classification of SSCs compliant with IAEA recommendations, and to support regulators in reviewing safety classification submitted by licensees

  17. Development of the software for the component reliability database system of Korean nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Han, Sang Hoon; Kim, Seung Hwan; Choi, Sun Young [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2002-03-01

    A study was performed to develop the system for the component reliability database which consists of database system to store the reliability data and softwares to analyze the reliability data.This system is a part of KIND (Korea Information System for Nuclear Reliability Database).The MS-SQL database is used to stores the component population data, component maintenance history, and the results of reliability analysis. Two softwares were developed for the component reliability system. One is the KIND-InfoView for the data storing, retrieving and searching. The other is the KIND-CompRel for the statistical analysis of component reliability. 4 refs., 13 figs., 7 tabs. (Author)

  18. Automated ultrasonic inspection of nuclear plant components

    International Nuclear Information System (INIS)

    Baron, J.A.; Dolbey, M.P.

    1982-01-01

    For reasons of safety and efficiency, automated systems are used in performing ultrasonic inspection of nuclear components. An automated system designed specifically for the inspection of headers in a nuclear plant is described. In-service inspection results obtained with this system are shown to correlate with pre-service inspection results obtained by manual methods

  19. Nuclear Plant Aging Research (NPAR) program plan: Components, systems, and structures

    International Nuclear Information System (INIS)

    1987-09-01

    The nuclear plant aging research described in this plan is intended to resolve issues related to the aging and service wear of equipment and systems and major components at commercial reactor facilities and their possible impact on plant safety. Emphasis has been placed on identification and characterization of the mechanisms of material and component degradation during service and evaluation of methods of inspection, surveillance, condition monitoring, and maintenance as means of mitigating such effects. Specifically, the goals of the program are as follows: (1) to identify and characterize aging and service wear effects which, if unchecked, could cause degradation of equipment, a systems, and major components and thereby impair plant safety; (2) to identify methods of inspection, surveillance, and monitoring, or of evaluating residual life of equipment, systems, and major components, which will ensure timely detection of significant aging effects prior to loss of safety function; and (3) to evaluate the effectiveness of storage, maintenance, repair, and replacement practices in mitigating the rate and extent of degradation caused by aging and service wear

  20. 10 CFR 50.69 - Risk-informed categorization and treatment of structures, systems and components for nuclear...

    Science.gov (United States)

    2010-01-01

    ..., systems and components for nuclear power reactors. (a) Definitions. Risk-Informed Safety Class (RISC)-1... functions. Risk-Informed Safety Class (RISC)-2 structures, systems and components (SSCs) means nonsafety-related SSCs that perform safety significant functions. Risk-Informed Safety Class (RISC)-3 structures...

  1. A computer-controlled electronic system for the ultrasonic NDT of components for nuclear power stations

    International Nuclear Information System (INIS)

    Rehrmann, M.; Harbecke, D.

    1987-01-01

    The paper describes an automatic ultrasonic testing system combined with a computer-controlled electronics system, called IMPULS I, for the non-destructive testing of components of nuclear reactors. The system can be used for both in-service inspection and for inspection during the manufacturing process. IMPUL I has more functions and less components than conventional ultrasonic systems, and the system gives good reproducible test results and is easy to operate. (U.K.)

  2. Intelligent Component Monitoring for Nuclear Power Plants

    International Nuclear Information System (INIS)

    Tsoukalas, Lefteri

    2010-01-01

    Reliability and economy are two major concerns for a nuclear power generation system. Next generation nuclear power reactors are being developed to be more reliable and economic. An effective and efficient surveillance system can generously contribute toward this goal. Recent progress in computer systems and computational tools has made it necessary and possible to upgrade current surveillance/monitoring strategy for better performance. For example, intelligent computing techniques can be applied to develop algorithm that help people better understand the information collected from sensors and thus reduce human error to a new low level. Incidents incurred from human error in nuclear industry are not rare and have been proven costly. The goal of this project is to develop and test an intelligent prognostics methodology for predicting aging effects impacting long-term performance of nuclear components and systems. The approach is particularly suitable for predicting the performance of nuclear reactor systems which have low failure probabilities (e.g., less than 10 -6 year -1 ). Such components and systems are often perceived as peripheral to the reactor and are left somewhat unattended. That is, even when inspected, if they are not perceived to be causing some immediate problem, they may not be paid due attention. Attention to such systems normally involves long term monitoring and possibly reasoning with multiple features and evidence, requirements that are not best suited for humans.

  3. Multi-component Self-Consistent Nuclear Energy System: On proliferation resistance aspect

    International Nuclear Information System (INIS)

    Shmelev, A.; Saito, M; Artisyuk, V.

    2000-01-01

    Self-Consistent Nuclear Energy System (SCNES) that simultaneously meets four requirements: energy production, fuel production, burning of radionuclides and safety is targeted at harmonization of nuclear energy technology with human environment. The main bulk of SCNES studies focus on a potential of fast reactor (FR) in generating neutron excess to keep suitable neutron balance. Proliferation resistance was implicitly anticipated in a fuel cycle with co-processing of Pu, minor actinides (MA) and some relatively short-lived fission products (FP). In a contrast to such a mono-component system, the present paper advertises advantage of incorporating accelerator and fusion driven neutron sources which could drastically improve characteristics of nuclear waste incineration. What important is that they could help in creating advanced Np and Pa containing fuels with double protection against uncontrolled proliferation. The first level of protection deals with possibility to approach long life core (LLC) in fission reactors. Extending the core life-time to reactor-time is beneficial from the proliferation resistance viewpoint since LLC would not necessarily require fuel management at energy producing site, with potential advantage of being moved to vendor site for spent fuel refabrication. Second level is provided by the presence of substantial amounts of 238 Pu and 232 U in these fuels that makes fissile nuclides in them isotopically protected. All this reveals an important advantage of a multi-component SCNES that could draw in developing countries without elaborated technological infrastructure. (author)

  4. HTGR nuclear heat source component design and experience

    International Nuclear Information System (INIS)

    Peinado, C.O.; Wunderlich, R.G.; Simon, W.A.

    1982-05-01

    The high-temperature gas-cooled reactor (HTGR) nuclear heat source components have been under design and development since the mid-1950's. Two power plants have been designed, constructed, and operated: the Peach Bottom Atomic Power Station and the Fort St. Vrain Nuclear Generating Station. Recently, development has focused on the primary system components for a 2240-MW(t) steam cycle HTGR capable of generating about 900 MW(e) electric power or alternately producing high-grade steam and cogenerating electric power. These components include the steam generators, core auxiliary heat exchangers, primary and auxiliary circulators, reactor internals, and thermal barrier system. A discussion of the design and operating experience of these components is included

  5. Safety philosophy and design principles for systems and components of nuclear power plant: external event

    International Nuclear Information System (INIS)

    Lopes, J.P.G.

    1986-01-01

    In nuclear power plants, some systems and components are designed to withstand external impacts. Such systems and components are those which have to perform their functions even during and after the occurrences of an earthquake, for example, fulfilling the safety objectives and avoiding the release of radioactive material to the environment. The aim of this report is to introduce the safety philosophy and design principles for systems/components to perform their functions during and after the occurrence of an earthquake, as applied by NUCLEN for Angra 2 and 3. (Author) [pt

  6. Time dependent unavailability analysis of nuclear safety systems considering periodically tested components

    International Nuclear Information System (INIS)

    Goes, Alexandre Gromann de Araujo

    1988-01-01

    It is of utmost importance to have a computer code in order to analyze how different parameters (like test duration time) affect the unavailability of safety systems of nuclear. In this context, a study was performed in order to evaluate the model employed by the FRANTIC computer code, which performs detailed calculations on the contribution to the system unavailability originated by hardware failures, component tests and repairs, aiming at considering the influence of different test schemes on the system unavailability. It was shown, by means of the results attained that the numerical model used by the FRANTIC code and the analytical model proposed by APOSTOLAKIS and CHU (4) give unavailability values much similar when the component tests are supposed to be perfect. When a test is supposed to be imperfect (that is, when it may induce a test is supposed to be imperfect (that is, when it may induce a failure on the component being tested), the analytical model presents more conservative results. (author)

  7. Development of in-service inspection plans for nuclear components at the Surry 1 nuclear power station

    International Nuclear Information System (INIS)

    Vo, T.V.; Simonen, F.A.; Doctor, S.R.; Smith, B.W.; Gore, B.F.

    1993-01-01

    As part of the nondestructive evaluation reliability program sponsored by the US Nuclear Regulatory Commission at Pacific Northwest Laboratory, a methodology has been developed for establishing in-service inspection priorities of nuclear power plant components. The method uses results of probabilistic risk assessment in conjunction with the techniques of failure modes and effects analysis to identify and prioritize the most risk-important systems and components for inspection at nuclear power plants. Surry nuclear power station unit 1 was selected for demonstrating the methodology. The specific systems selected for analysis were the reactor pressure vessel, the reactor coolant, the low pressure injection including the accumulators, and the auxiliary feedwater. The results provide a risk-based ranking of components that can be used to establish a prioritization of the components and a basis for developing improved in-service inspection plans at nuclear power plants

  8. Developments of integrity evaluation technology for pressurized components in nuclear power plant and IT based integrity evaluation system

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Jin; Choi, Jae Boong; Shim, Do Jun [Sungkyunkwan Univ., Seoul (Korea, Republic of)] (and others)

    2003-03-15

    The objective of this research is to develop an efficient evaluation technology and to investigate applicability of newly-developed technology, such as internet-based cyber platform, to operating power plants. Development of efficient evaluation systems for Nuclear Power Plant components, based on structural integrity assessment techniques, are increasingly demanded for safe operation with the increasing operating period of Nuclear Power Plants. The following five topics are covered in this project: development of assessment method for wall-thinned nuclear piping based on pipe test; development of structural integrity program for steam generator tubes with cracks of various shape; development of fatigue life evaluation system for mam components of NPP; development of internet-based cyber platform and integrity program for primary components of NPP; effect of aging on strength of dissimilar welds.

  9. Views on seismic design standardization of structures, systems and components of nuclear facilities

    International Nuclear Information System (INIS)

    Reddy, G.R.

    2011-01-01

    Structures, Systems and Components (SSCs) of nuclear facilities have to be designed for normal operating loads such as dead weight, pressure, temperature etc., and accidental loads such as earthquakes, floods, extreme, wind air craft impact, explosions etc. Manmade accidents such as aircraft impact, explosions etc., sometimes may be considered as design basis event and sometimes taken care by providing administrative controls. This will not be possible in the case of natural events such as earthquakes, flooding, extreme winds etc. Among natural events earthquakes are considered as most devastating and need to be considered as design basis event which has certain annual frequency specified in design codes. For example nuclear power plants are designed for a seismic event has 10000 year return period. It is generally felt that design of SSCs for earthquake loads is very time consuming and expensive. Conventional seismic design approaches demands for large number of supports for systems and components. This results in large space occupation and in turn creates difficulties for maintenance and in service inspection of systems and components. In addition, complete exercise of design need to be repeated for plants being located at different sites due to different seismic demands. However, advanced seismic response control methods will help to standardize the seismic design meeting the safety and economy. These methods adopt passive, semi active and active devices, and base isolators to control the seismic response. In nuclear industry, it is advisable to go for passive devices to control the seismic responses. Ideally speaking, these methods will make the designs made for normal loads can also satisfy the seismic demand without calling for change in material, geometry, layout etc. in the SSCs. This paper explain the basic ideas of seismic response control methods, demonstrate the effectiveness of control methods through case studies and eventually give the procedure to

  10. Requirements for class 1, 2, and 3 pressure-retaining systems and components in CANDU nuclear power plants

    International Nuclear Information System (INIS)

    1991-09-01

    This third edition of CAN/CSA-N285.1 supersedes the 1981 and 1975 editions. It provides the specific requirements for design, fabrication, and installation of Class 1, 2 and 3 pressure-retaining systems and components in CANDU nuclear power plants, and over pressure protection of the heat transport system. The general requirements for pressure-retaining systems and components are given in CSA Standard CAN/CSA-N285.0, with which Class 1, 2 and 3 systems and components must also comply

  11. IPRDS: component histories and nuclear plant aging

    International Nuclear Information System (INIS)

    Borkowski, R.J.; Kahl, W.K.

    1984-01-01

    A comprehensive assessment of nuclear power plant component operating histories, maintenance histories, and design and fabrication details is essential to understanding aging phenomena. As part of the In-Plant Reliability Data System (IPRDS), an attempt is being made to collect and analyze such information from a sampling of US nuclear power plants. Utilizing the IPRDS, one can reconstruct the failure history of the components and gain new insight into the causes and modes of failures resulting from normal or premature aging. This information assembled from the IPRDS can be combined with operating histories and postservice component inspection results for cradle-to-grave assessments of component aging under operating conditions. A comprehensive aging assessment can then be used to provide guidelines for improving the detection, monitoring, and mitigation of aging-related failures

  12. Computer-aided stress analysis system for nuclear plant primary components

    International Nuclear Information System (INIS)

    Murai, Tsutomu; Tokumaru, Yoshio; Yamazaki, Junko.

    1980-06-01

    Generally it needs a vast quantity of calculation to make the stress analysis reports of nuclear plant primary components. In Japan, especially, stress analysis reports are under obligation to make for each plant. In Mitsubishi Heavy Industries, Ltd., We have been making great efforts to rationalize the process of analysis for about these ten years. As the result of rationalization up to now, a computer-aided stress analysis system using graphic display, graphic tablet, data file, etc. was accomplished and it needs us only the least hand work. In addition we developed a fracture safety analysis system. And we are going to develop the input generator system for 3-dimensional FEM analysis by graphics terminals in the near future. We expect that when the above-mentioned input generator system is accomplished, it will be possible for us to solve instantly any case of problem. (author)

  13. Lifetime management for mechanical systems, structures and components in nuclear power plants

    International Nuclear Information System (INIS)

    Roos, E.; Herter, K.-H.; Schuler, X.

    2006-01-01

    Guidelines, codes and standards contain regulations and requirements with respect to the quality of mechanical systems, structures and components (SSC) of nuclear power plants. These concern safe operation during the total lifetime (lifetime management), safety against ageing phenomena (ageing management) as well as proof of integrity (e.g. break exclusion or avoidance of fracture). Within this field the ageing management is a key element. Depending on the safety-relevance of the SSC under observation including preventive maintenance various tasks are required in particular to clarify the mechanisms which contribute system-specifically to the damage of the components and systems and to define their controlling parameters which have to be monitored and checked. Appropriate continuous or discontinuous measures are to be considered in this connection. The approach to ensure a high standard of quality in operation and the management of the technical and organisational aspects are demonstrated and explained

  14. In-service inspection of electronics components, circuits and nuclear radiation detectors

    International Nuclear Information System (INIS)

    Darbhe, M.D.

    2002-01-01

    A nuclear reactor is a complex process plant. Like a nuclear power plant, the research reactors also employ various nuclear and process systems, the scope and number of such systems being plant-specific. In-service inspection of these systems is an important requirement and is applied at various levels of their constituent units such as detectors, electronics components, circuits and integrated systems. The sensors used cover a wide range such as neutronic, radiation, process (pressure, temperature, flow, level) and many others. The present discussion is limited to neutronic and radiation detectors. The electronic components used normally consist of passive components like resistors, capacitors, semiconductor components like diodes, transistors, analog integrated circuits and digital integrated circuits and electromagnetic relays, to name a few. In order to have a comprehensive surveillance and ISI plan, over the entire plant life, it is necessary to understand various mechanisms, which degrade the performance of these systems. These are discussed initially and later various ISI methods that are used on component-circuit or system level, to ensure optimum system performance, are discussed. The computerised systems, because of hardware and software considerations, have to be given special attention, and the same are discussed briefly

  15. Spain's nuclear components industry

    International Nuclear Information System (INIS)

    Kaibel, E.

    1985-01-01

    Spanish industrial participation in supply of components for nuclear power plants has grown steadily over the last fifteen years. The share of Spanish companies in work for the five second generation nuclear power plants increased to 50% of total capital investments. The necessity to maintain Spanish technology and production in the nuclear field is emphasized

  16. Lithuanian requirements for ageing management of systems and components important to safety of nuclear power plant

    International Nuclear Information System (INIS)

    Ramanauskiene, A.

    2000-01-01

    In this paper the Lithuanian requirements for ageing management of systems and components important to safety of Ignalina nuclear power plant (two RBMK-1500 water-cooled graphite moderated channel-type power reactors) are presented

  17. Remote nuclear green pellet processing system

    International Nuclear Information System (INIS)

    Cellier, Francis.

    1980-01-01

    An automated system for manufacturing nuclear fuel pellets for use in nuclear fuel elements of nuclear power reactors is described. The system comprises process components arranged vertically but not directly under each other within a single enclosure. The vertical-lateral arrangement provides for gravity flow of the product from one component to the next and for removal of each component without interference with the other components. The single enclosure eliminates time consuming transfer between separate enclosures of each component while providing three-sided access to the component through glove ports. (auth)

  18. Development of a web-based aging monitoring system for an integrity evaluation of the major components in a nuclear power plant

    International Nuclear Information System (INIS)

    Choi, Jae-Boong; Yeum, Seung-Won; Ko, Han-Ok; Kim, Young-Jin; Kim, Hong-Key; Choi, Young-Hwan; Park, Youn-Won

    2010-01-01

    Structural and mechanical components in a nuclear power plant are designed to operate for its entire service life. Recently, a number of nuclear power plants are being operated beyond their design life to produce more electricity without shutting down. The critical issue in extending a lifetime is to maintain the level of safety during the extended operation period while satisfying the international regulatory standards. However, only a small portion of these components are of great importance for a significant aging degradation which would deeply affect the long-term safety and reliability of the related facilities. Therefore, it is beneficial to build a monitoring system to measure an aging status. While a number of integrity evaluation systems have been developed for NPPs, a real-time aging monitoring system has not been proposed yet . This paper proposes an expert system for the integrity evaluation of nuclear power plants based on a Web-based Reality Environment (WRE). The proposed system provides the integrity assessment for the major mechanical components of a nuclear power plant under concurrent working environments. In the WRE, it is possible for users to understand a mechanical system such as its size, geometry, coupling condition etc. In conclusion, it is anticipated that the proposed system can be used for a more efficient integrity evaluation of the major components subjected to an aging degradation.

  19. Development of a web-based aging monitoring system for an integrity evaluation of the major components in a nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jae-Boong, E-mail: boong33@skku.ed [SAFE Research Centre, School of Mechanical Engineering, Sungkyunkwan University, 300 Chunchun-dong, Jangan-gu, Suwon, Kyonggi-do 440-746 (Korea, Republic of); Yeum, Seung-Won; Ko, Han-Ok; Kim, Young-Jin [SAFE Research Centre, School of Mechanical Engineering, Sungkyunkwan University, 300 Chunchun-dong, Jangan-gu, Suwon, Kyonggi-do 440-746 (Korea, Republic of); Kim, Hong-Key; Choi, Young-Hwan; Park, Youn-Won [Korea Institute of Nuclear Safety, 34 Gwahak-ro, Yusong-ku, Teajon 305-338 (Korea, Republic of)

    2010-01-15

    Structural and mechanical components in a nuclear power plant are designed to operate for its entire service life. Recently, a number of nuclear power plants are being operated beyond their design life to produce more electricity without shutting down. The critical issue in extending a lifetime is to maintain the level of safety during the extended operation period while satisfying the international regulatory standards. However, only a small portion of these components are of great importance for a significant aging degradation which would deeply affect the long-term safety and reliability of the related facilities. Therefore, it is beneficial to build a monitoring system to measure an aging status. While a number of integrity evaluation systems have been developed for NPPs, a real-time aging monitoring system has not been proposed yet . This paper proposes an expert system for the integrity evaluation of nuclear power plants based on a Web-based Reality Environment (WRE). The proposed system provides the integrity assessment for the major mechanical components of a nuclear power plant under concurrent working environments. In the WRE, it is possible for users to understand a mechanical system such as its size, geometry, coupling condition etc. In conclusion, it is anticipated that the proposed system can be used for a more efficient integrity evaluation of the major components subjected to an aging degradation.

  20. Use of expert systems in the structural safety assessment of of pressurized nuclear components

    International Nuclear Information System (INIS)

    Jovanovic, A.; Sturm, D.

    1990-01-01

    The paper describes research currently performed at MPA Stuttgart on development of expert systems and application of artificial intelligence methods and techniques, for structural safety assessment of power plant pressurized components. The research is done as an extension of preceding and existing large research programs of MPA, in the domain of structural safety of components. In this preceding research a waste amount of practical engineering knowledge and experience has been accumulated: development in the direction of AI-based systems is a way to use this knowledge more efficiently in future research and in the nuclear power plant practice. Applications on which the current research is focussed are expert systems applied for the leak-before-break analysis for the structural safety evaluation in high temperature regimes

  1. Development of integrity evaluation technology for pressurized components in nuclear power plant and IT based integrity evaluation system

    International Nuclear Information System (INIS)

    Kim, Young Jin; Choi, Jae Boong; Shim, Do Jun

    2004-02-01

    The objective of this research is to develop on efficient integrity evaluation technology and to investigate the applicability of the newly-developed technology such as internet-based cyber platform etc. to Nuclear Power Plant(NPP) components. The development of an efficient structural integrity evaluation system is necessary for safe operation of NPP as the increase of operating periods. Moreover, material test data as well as emerging structural integrity assessment technology are also needed for the evaluation of aged components. The following five topics are covered in this project: development of the wall-thinning evaluation program for nuclear piping; development of structural integrity evaluation criteria for steam generator tubes with cracks of various shape; development of fatigue life evaluation system for major components of NPP; ingegration of internet-based cyber platform and integrity evaluation program for primary components of NPP; effects of aging on strength of dissimilar welds

  2. Development of integrity evaluation technology for pressurized components in nuclear power plant and IT based integrity evaluation system

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Jin; Choi, Jae Boong; Shim, Do Jun [Sungkyunkwan Univ., Seoul (Korea, Republic of)] (and others)

    2004-02-15

    The objective of this research is to develop on efficient integrity evaluation technology and to investigate the applicability of the newly-developed technology such as internet-based cyber platform etc. to Nuclear Power Plant(NPP) components. The development of an efficient structural integrity evaluation system is necessary for safe operation of NPP as the increase of operating periods. Moreover, material test data as well as emerging structural integrity assessment technology are also needed for the evaluation of aged components. The following five topics are covered in this project: development of the wall-thinning evaluation program for nuclear piping; development of structural integrity evaluation criteria for steam generator tubes with cracks of various shape; development of fatigue life evaluation system for major components of NPP; ingegration of internet-based cyber platform and integrity evaluation program for primary components of NPP; effects of aging on strength of dissimilar welds.

  3. Quality assurance grading criteria for plant systems and components: Results from a pilot plant project at Grand Gulf Nuclear Station. Final report

    International Nuclear Information System (INIS)

    Parkinson, W.J.

    1995-12-01

    As part of the original design of a nuclear power plant, the NSSS vendor, architect/engineer and utility identified structures, systems and components (SSCs) as safety related and assigned them to a Q-list. A Q-list is usually very large, e.g. 75,000 components, which creates large ongoing annual operating costs for the utility. Operating experience and the greater knowledge of plant systems safety accumulated during the past 20 years have suggested that many components are not truly important to safety and do not warrant the Q-classification and the associated costs. The completion of Probabilistic Safety Analyses (PSAs) for many nuclear power plants has contributed to this greater knowledge. This report describes a practical application of PSA technology to modify the existing QA program at the Grand Gulf Nuclear Station. Section 1 introduces the term, QA Safety Significant (QASS), and relates it to the existing term, ''safety related''. Section 2 describes six deterministic criteria as a basis for classifying systems as QASS or non-QASS. An expert panel reviewed 421 systems at Grand Gulf Nuclear Station and identified 42 of them as QASS. All components in non-QASS systems are classified as non-QASS. For QASS systems, Section 3 describes five deterministic criteria for classifying components as QASS or non-QASS. By using these two sets of criteria, the expert panel found that the number of components requiring full QA compliance could be reduced by 24%. These results are summarized in Section 4

  4. Advancements in the design of safety-related systems and components of the MARS nuclear plant

    International Nuclear Information System (INIS)

    Caira, M.; Caruso, G.; Naviglio, A.; Sorabella, L.; Farello, C.E.

    1992-01-01

    In the paper, the advancements in the design of safety-related systems and components of the MARS nuclear plant, equipped with a 600 MW th PWR, are described. These advancements are due to the special safety features of this plant, which relies completely on inherent and passive safety. In particular, the new steps of the design of the innovative, completely passive, and with an unlimited autonomy Emergency core Cooling System are described, together with the characteristics of the last version of the steam generator, developed in a new design involving disconnecting components, for a fast erection and an easy maintenance. (author)

  5. Generic nuclear power plant component failure data bank

    International Nuclear Information System (INIS)

    Araujo Goes, A.G. de; Gibelli, S.M.O.

    1988-11-01

    This report consist in the development of a generic nuclear power plant component failure data bank. This data bank was implemented in a PC-XT microcomputer, IBM compatible, using the Open Access II program. Generic failure data tables for Westinghouse nuclear power plants and for general PWR power plants are presented. They are the final product of a research which included a preselection and a selection of data collected from the available sources in the library of CNEN (National Nuclear Energy Commission) and from the CIN/CNEN (Neclear Information Center). Futhermore, a proposal of evaluating models of average failure rates of pumps and valves are also presented. Through the electronic data bank one can easily have a generic view of failure rate ranges as well as failure models foe a certain component. It is very importante to develop procedures to collect and store generic failure data that can be quickly accessed, in order to update the Probabilistic Safety Study of Angra-1 and to used in studies which may have component failures of nuclear power plant safety systems. In the future, data specialization can be achieved by means of statistical calculations involving specific data collected from the operational experience of Angra-1 nuclear power plant and the generic data bank. (author) [pt

  6. Experimental Study of Nuclear Security System Components for Achieving the Intrusion Process via Sensor's Network System

    International Nuclear Information System (INIS)

    EL-Kafas, A.A.

    2011-01-01

    Cluster sensors are one of nuclear security system components which are used to detect any intrusion process of the nuclear sites. In this work, an experimental measuring test for sensor performance and procedures are presented. Sensor performance testing performed to determine whether a particular sensor will be acceptable in a proposed design. We have access to a sensors test field in which the sensor of interest is already properly installed and the parameters have been set to optimal levels by preliminary testing. The glass-breakage (G.B) and open door (O.D) sensors construction, operation and design for the investigated nuclear site are explained. Intrusion tests were carried out inside the field areas of the sensors to evaluate the sensor performance during the intrusion process. Experimental trials were performed for achieving the intrusion process via sensor network system. The performance and intrusion senses of cluster sensors inside the internal zones was recorded and evaluated. The obtained results explained that the tested and experimented G.B sensors have a probability of detection P (D) value 65% founded, and 80% P (D) of Open-door sensor

  7. IPRDS - Component histories and nuclear plant aging

    International Nuclear Information System (INIS)

    Borkowski, R.J.; Kahl, W.K.

    1984-01-01

    A comprehensive assessment of nuclear power plant component operating histories, maintenance histories, and design and fabrication details is essential to understanding aging phenomena. As part of the In-Plant Reliability Data System (IPRDS), an attempt is being made to collect and analyze such information from a sampling of U.S. nuclear power plants. Utilizing the IPRDS, one can reconstruct the failure history of the components and gain new insight into the causes and modes of failures resulting from normal or premature aging. This information assembled from the IPRDS can be combined with operating histories and postservice component inspection results for ''cradle-to-grave'' assessments of component aging under operating conditions. A comprehensive aging assessment can then be used to provide guidelines for improving the detection, monitoring, and mitigation of aging-related failures. The examples chosen for this paper illustrate two aging-related areas: the effects of an improved preventive maintenance policy in mitigating aging of a feedwater pump and the identification of reoccuring failures in parts of diesel generators

  8. Case study on the use of PSA methods: Determining safety importance of systems and components at nuclear power plants

    International Nuclear Information System (INIS)

    1991-04-01

    This case study emphasizes the step of probabilistic safety assessment (PSA) regarding identification of systems and components important to nuclear plant safety. An importance analysis involves combining information that is both qualitative and probabilistic in nature to generate a numerical ranking to determine the system and/or component failures that dominate the risk. Such a ranking can suggest where hardware, software, human factors and component design changes can be implemented to improve plant safety. Examples of using ranking methodology are described. A qualitative ranking criteria is discussed for components and systems that are not included in a PSA. 18 refs, 7 figs, 18 tabs

  9. Indigenous procurement of nuclear components at Tarapur (Paper No. 013)

    International Nuclear Information System (INIS)

    Verma, D.K.; Moss, V.J.

    1987-02-01

    The Tarapur Atomic Power Station (TAPS) was the first nuclear power station in developing countries and the first twin BWR units in the world. The Station has two units of boiling water reactor of very early design; along with its turbo-generator and supporting systems; constructed by M/s. I.G.E. on turnkey basis. Based on vendor recommendations initial operating spares for 5 years of operation were purchased from original equipment manufacturers. This does not call for the participation of the ultimate user; in the design, development, manufacture and quality control and user's participation remained confined to assemble the acceptable component(s) procured from original source in the assembly. As early as 1972, Plant initiated indigenising the nuclear components by gradually increasing the contribution of indigenous industry with due participation of the departmental agencies. Procurement of nuclear components requires development of engineering to an extent; where interphase communication between TAPS and counterpart indigenous industry is practicable to motivate them. Feedback from operation and maintenance practices is also utilised effectively. For some of the components initial sample were developed at TAPS and subsequently bulk fabrication was taken by industry. This paper describes manufacture, quality control during the process of manufacture and procurement of indigenous nuclear components relevant to Tarapur Atomic Power Station. (author)

  10. Development of life evaluation technology for nuclear power plant components

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Jin [Sungkyunkwan Univ., Seoul (Korea, Republic of); Kwon, J. D. [Yeungnam Univ., Gyeongsan (Korea, Republic of); Kang, K. J. [Chonnam National Univ., Gwangju (Korea, Republic of)] (and others)

    2001-03-15

    This research focuses on development of reliable life evaluation technology for nuclear power plant (NPP) components, and is divided into two parts, development of life evaluation systems for pressurized components and evaluation of applicability of emerging technology to operating plants. For the development of life evaluation system for nuclear pressure vessels, the following seven topics are covered: development of expert systems for integrity assessment of pressurized components, development of integrity evaluation systems of steam generator tubes, prediction of failure probability for NPP components based on probabilistic fracture mechanics, development of fatigue damage evaluation technique for plant life extension, domestic round robin analysis for pressurized thermal shock of reactor vessels, domestic round robin analysis of constructing P--T limit curves for reactor vessels, and development of data base for integrity assessment. For evaluation of applicability of emerging technology to operating plants, on the other hand, the following eight topics are covered: applicability of the Leak-Before-Break analysis to Cast S/S piping, collection of aged material tensile and toughness data for aged Cast S/S piping, finite element analyses for load carrying capacity of corroded pipes, development of Risk-based ISI methodology for nuclear piping, collection of toughness data for integrity assessment of bi-metallic joints, applicability of the Master curve concept to reactor vessel integrity assessment, measurement of dynamic fracture toughness, and provision of information related to regulation and plant life extension issues.

  11. Periodic inspection of CANDU nuclear power plant containment components

    International Nuclear Information System (INIS)

    1989-09-01

    This Standard is one in a series intended to provide uniform requirements for CANDU nuclear power plants. It provides requirements for the periodic inspection of containment components including the containment pressure suppression systems

  12. Multi-component nuclear energy system to meet requirement of self-consistency

    International Nuclear Information System (INIS)

    Saito, Masaki; Artisyuk, Vladimir; Shmelev, Anotolii; Korovin, Yorii

    2000-01-01

    Environmental harmonization of nuclear energy technology is considered as an absolutely necessary condition in its future successful development for peaceful use. Establishment of Self-Consistent Nuclear Energy System, that simultaneously meets four requirements - energy production, fuel production, burning of radionuclides and safety, strongly relies on the neutron excess generation. Implementation of external non-fission based neutron sources into fission energy system would open the possibility of approaching Multicomponent Self-Consistent Nuclear Energy System with unlimited fuel resources, zero radioactivity release and high protection against uncontrolled proliferation of nuclear materials. (author)

  13. Experience on environmental qualification of safety-related components for Darlington Nuclear Generating Station

    International Nuclear Information System (INIS)

    Yu, A.S.; Kukreti, B.M.

    1987-01-01

    The proliferation of Nuclear Power Plant safety concerns has lead to increasing attention over the Environmental Qualification (EQ) of Nuclear Power Plant Safety-Related Components to provide the assurance that the safety related equipment will meet their intended functions during normal operation and postulated accident conditions. The environmental qualification of these components is also a Licensing requirement for Darlington Nuclear Generating Station. This paper provides an overview of EQ and the experience of a pilot project, in the qualification of the Main Moderator System safety-related functions for the Darlington Nuclear Generating Station currently under construction. It addresses the various phases of qualification from the identification of the EQ Safety-Related Components List, definition of location specific service conditions (normal, adbnormal and accident), safety-related functions, Environmental Qualification Assessments and finally, an EQ system summary report for the Main Moderator System. The results of the pilot project are discussed and the methodology reviewed. The paper concludes that the EQ Program developed for Darlington Nuclear Generating Station, as applied to the qualification of the Main Moderator System, contained all the elements necessary in the qualification of safety-related equipment. The approach taken in the qualification of the Moderator safety-related equipment proves to provide a sound framework for the qualification of other safety-related components in the station

  14. Nuclear plant aging research - an overview (electrical and mechanical components)

    International Nuclear Information System (INIS)

    Vora, J.P.

    1985-01-01

    As the operating nuclear power plants advance in age there must be a conscious national and international effort to understand the influence and safety implications of aging and service wear of components and structures in nuclear power plants and develop measures which are practical and cost effective for timely mitigation of aging degradation that could significantly affect plant safety. The Office of Nuclear Regulatory Research has, therefore, initiated a multi-year, multi-disciplinary program on Nuclear Plant Aging Research (NPAR). The overall goals identified for the program are as follows: 1) to identify and characterize aging and service wear effects associated with electrical and mechanical components, interfaces, and systems whose failure could impair plant safety; 2) to identify and recommend methods of inspection, surveillance and condition monitoring of electrical and mechanical components and systems which will be effective in detecting significant aging effects prior to loss of safety function so that timely maintenance and repair or replacement can be implemented; and, 3) to identify and recommend acceptable maintenance practices which can be undertaken to mitigate the effects of aging and to diminish the rate and extent of degradation caused by aging and service wear. The specific research activities to be implemented to achieve these goals are described

  15. Preinspection of nuclear power plant systems

    International Nuclear Information System (INIS)

    1975-01-01

    The general plans of the systems affecting the safety of the nuclear power plants are accepted by the Institute of Radiation Protection (IRP) on the basis of the preinspection of the systems. This is the prerequisite of the preinspection of the structures and components belonging to these systems. Exceptionally, when separately agreed, the IRP may perform the preinspection of a separate structure or component, although the preinspection documentation of the whole system, e.g. the nuclear heat generating system, has not been accepted. This guide applies to the nuclear power plant systems that have been defined to be preinspected in the classification document accepted by the IRP

  16. 4. Nuclear power plant component failures

    International Nuclear Information System (INIS)

    1990-01-01

    Nuclear power plant component failures are dealt with in relation to reliability in nuclear power engineering. The topics treated include classification of failures, analysis of their causes and impacts, nuclear power plant failure data acquisition and processing, interdependent failures, and human factor reliability in nuclear power engineering. (P.A.). 8 figs., 7 tabs., 23 refs

  17. IR-360 nuclear power plant safety functions and component classification

    International Nuclear Information System (INIS)

    Yousefpour, F.; Shokri, F.; Soltani, H.

    2010-01-01

    The IR-360 nuclear power plant as a 2-loop PWR of 360 MWe power generation capacity is under design in MASNA Company. For design of the IR-360 structures, systems and components (SSCs), the codes and standards and their design requirements must be determined. It is a prerequisite to classify the IR-360 safety functions and safety grade of structures, systems and components correctly for selecting and adopting the suitable design codes and standards. This paper refers to the IAEA nuclear safety codes and standards as well as USNRC standard system to determine the IR-360 safety functions and to formulate the principles of the IR-360 component classification in accordance with the safety philosophy and feature of the IR-360. By implementation of defined classification procedures for the IR-360 SSCs, the appropriate design codes and standards are specified. The requirements of specific codes and standards are used in design process of IR-360 SSCs by design engineers of MASNA Company. In this paper, individual determination of the IR-360 safety functions and definition of the classification procedures and roles are presented. Implementation of this work which is described with example ensures the safety and reliability of the IR-360 nuclear power plant.

  18. IR-360 nuclear power plant safety functions and component classification

    Energy Technology Data Exchange (ETDEWEB)

    Yousefpour, F., E-mail: fyousefpour@snira.co [Management of Nuclear Power Plant Construction Company (MASNA) (Iran, Islamic Republic of); Shokri, F.; Soltani, H. [Management of Nuclear Power Plant Construction Company (MASNA) (Iran, Islamic Republic of)

    2010-10-15

    The IR-360 nuclear power plant as a 2-loop PWR of 360 MWe power generation capacity is under design in MASNA Company. For design of the IR-360 structures, systems and components (SSCs), the codes and standards and their design requirements must be determined. It is a prerequisite to classify the IR-360 safety functions and safety grade of structures, systems and components correctly for selecting and adopting the suitable design codes and standards. This paper refers to the IAEA nuclear safety codes and standards as well as USNRC standard system to determine the IR-360 safety functions and to formulate the principles of the IR-360 component classification in accordance with the safety philosophy and feature of the IR-360. By implementation of defined classification procedures for the IR-360 SSCs, the appropriate design codes and standards are specified. The requirements of specific codes and standards are used in design process of IR-360 SSCs by design engineers of MASNA Company. In this paper, individual determination of the IR-360 safety functions and definition of the classification procedures and roles are presented. Implementation of this work which is described with example ensures the safety and reliability of the IR-360 nuclear power plant.

  19. Safety surveillance of activities on nuclear pressure components in China

    International Nuclear Information System (INIS)

    Li Ganjie; Li Tianshu; Yan Tianwen

    2005-01-01

    The nuclear pressure components, which perform the nuclear safety functions, are one of the key physical barriers for nuclear safety. For the national strategy on further development of nuclear power and localization of nuclear pressure components, there still exist some problems in preparedness on the localization. As for the technical basis, what can not be overlooked is the management. Aiming at the current problems, National Nuclear Safety Administration (NNSA) has taken measures to strengthen the propagation and popularization of nuclear safety culture, adjust the review and approval policies for nuclear pressure components qualification license, establish more stringent management requirements, and enhance the surveillance of activities on nuclear pressure equipment. Meanwhile, NNSA has improved the internal management and the regulation efficiency on nuclear pressure components. At the same time, with the development and implementation of 'Rules on the Safety Regulation for Nuclear Safety Important Components' to be promulgated by the State Council of China, NNSA will complete and improve the regulation on nuclear pressure components and other nuclear equipment. (authors)

  20. LWR nuclear power plant component failures

    International Nuclear Information System (INIS)

    Schmidt, W.H.

    1980-10-01

    An analysis of the most significant light water reactor (LWR) nuclear power plant component failures, from information in the computerized Nuclear Safety Information Center (NSIC) data bank, shows that for both pressurized water reactor (PWR) and boiling water reactor (BWR) plants the component category most responsible for reactor shutdowns is valves. Next in importance for PWR shutdowns is steam generators followed by seals of all kinds. For BWR plants, seals, and pipes and pipe fittings are the second and third most important component failure categories which lead to reactor shutdown. The data are for records extending from early 1972 through September 1978. A list of the most significant component categories and a breakdown of the number of component citations for both PWR and BWR reactor types are presented

  1. Development of life evaluation technology for nuclear power plant components

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Jin; Kim, Yun Jae; Choi, Jae Boong [Sungkyunkwan Univ., Seoul (Korea, Republic of)] (and others)

    2002-03-15

    This project focuses on developing reliable life evaluation technology for nuclear power plant components, and is divided into two parts, development of a life evaluation system for nuclear pressure vessels and evaluation of applicability of emerging technology to operating plants. For the development of life evaluation system for nuclear pressure vessels, the following seven topics are covered in this project: defect assessment method for steam generator tubes, development of fatigue monitoring system, assessment of corroded pipes, domestic round robin analysis for constructing P-T limit curve for RPV, development of probabilistic integrity assessment technique, effect of aging on strength of dissimilar welds, applicability of LBB to cast stainless steel, and development of probabilistic piping fracture mechanics.

  2. KHIC's experience in the design and fabrication of nuclear components

    International Nuclear Information System (INIS)

    Suh, S.-C.

    1992-01-01

    Since 1980, Korea Heavy Industries ampersand Construction Company, Ltd. (KHIC) has specialized in the design and equipment supply for nuclear power facilities in Korea. In April 1987, KHIC became the prime contractor for the construction of Yonggwang 3 ampersand 4 (YGN 3 ampersand 4) nuclear power project. Accordingly, KHIC's technological self-reliance capability for the manufacturing processes of the primary system equipment and components has increased from 18% during the initial stage of Yonggwang 1 ampersand 2 (YGN 1 ampersand 2) project to 63% for YGN 3 ampersand 4 project. Self-reliance capability for the secondary system equipment and components has increased from 28% to 84% during the same period of time as well. The ultimate goal is to achieve complete and total assurance that our products are of the finest quality in the nuclear industry in the world market. Henceforth, we will be able to guarantee complete customer satisfaction and reliability of our products with safety assurance and leading edge technology

  3. NHI Component Technical Readiness Evaluation System

    International Nuclear Information System (INIS)

    Sherman, S.; Wilson, Dane F.; Pawel, Steven J.

    2007-01-01

    A decision process for evaluating the technical readiness or maturity of components (i.e., heat exchangers, chemical reactors, valves, etc.) for use by the U.S. DOE Nuclear Hydrogen Initiative is described. This system is used by the DOE NHI to assess individual components in relation to their readiness for pilot-scale and larger-scale deployment and to drive the research and development work needed to attain technical maturity. A description of the evaluation system is provided, and examples are given to illustrate how it is used to assist in component R and D decisions.

  4. Analysis of failed nuclear plant components

    International Nuclear Information System (INIS)

    Diercks, D.R.

    1993-01-01

    Argonne National Laboratory has conducted analyses of failed components from nuclear power-generating stations since 1974. The considerations involved in working with an analyzing radioactive components are reviewed here, and the decontamination of these components is discussed. Analyses of four failed components from nuclear plants are then described to illustrate the kinds of failures seen in service. The failures discussed are (1) intergranular stress-corrosion cracking of core spray injection piping in a boiling water reactor, (2) failure of canopy seal welds in adapter tube assemblies in the control rod drive head of a pressurized water reactor, (3) thermal fatigue of a recirculation pump shaft in a boiling water reactor, and (4) failure of pump seal wear rings by nickel leaching in a boiling water reactor

  5. Analysis of failed nuclear plant components

    International Nuclear Information System (INIS)

    Diercks, D.R.

    1992-07-01

    Argonne National Laboratory has conducted analyses of failed components from nuclear power generating stations since 1974. The considerations involved in working with and analyzing radioactive components are reviewed here, and the decontamination of these components is discussed. Analyses of four failed components from nuclear plants are then described to illustrate the kinds of failures seen in service. The failures discussed are (a) intergranular stress corrosion cracking of core spray injection piping in a boiling water reactor, (b) failure of canopy seal welds in adapter tube assemblies in the control rod drive head of a pressure water reactor, (c) thermal fatigue of a recirculation pump shaft in a boiling water reactor, and (d) failure of pump seal wear rings by nickel leaching in a boiling water reactor

  6. Application of environmentally-corrected fatigue curves to nuclear power plant components

    International Nuclear Information System (INIS)

    Ware, A.G.; Morton, D.K.; Nitzel, M.E.

    1996-01-01

    Recent test data indicate that the effects of the light water reactor (LWR) environment could significantly reduce the fatigue resistance of materials used in the reactor coolant pressure boundary components of operating nuclear power plants. Argonne National Laboratory has developed interim fatigue curves based on test data simulating LWR conditions, and published them in NUREG/CR-5999. In order to assess the significance of these interim fatigue curves, fatigue evaluations of a sample of the components in the reactor coolant pressure boundary of LWRs were performed. The sample consists of components from facilities designed by each of the four US nuclear steam supply system vendors. For each facility, six locations were studied including two locations on the reactor pressure vessel. In addition, there are older vintage plants where components of the reactor coolant pressure boundary were designed to codes that did not require an explicit fatigue analysis of the components. In order to assess the fatigue resistance of the older vintage plants, an evaluation was also conducted on selected components of three of these plants. This paper discusses the insights gained from the application of the interim fatigue curves to components of seven operating nuclear power plants

  7. Probabilistic methods in nuclear power plant component ageing analysis

    International Nuclear Information System (INIS)

    Simola, K.

    1992-03-01

    The nuclear power plant ageing research is aimed to ensure that the plant safety and reliability are maintained at a desired level through the designed, and possibly extended lifetime. In ageing studies, the reliability of components, systems and structures is evaluated taking into account the possible time- dependent decrease in reliability. The results of analyses can be used in the evaluation of the remaining lifetime of components and in the development of preventive maintenance, testing and replacement programmes. The report discusses the use of probabilistic models in the evaluations of the ageing of nuclear power plant components. The principles of nuclear power plant ageing studies are described and examples of ageing management programmes in foreign countries are given. The use of time-dependent probabilistic models to evaluate the ageing of various components and structures is described and the application of models is demonstrated with two case studies. In the case study of motor- operated closing valves the analysis are based on failure data obtained from a power plant. In the second example, the environmentally assisted crack growth is modelled with a computer code developed in United States, and the applicability of the model is evaluated on the basis of operating experience

  8. A pilot application of risk-based methods to establish in-service inspection priorities for nuclear components at Surry Unit 1 Nuclear Power Station

    International Nuclear Information System (INIS)

    Vo, T.; Gore, B.; Simonen, F.; Doctor, S.

    1994-08-01

    As part of the Nondestructive Evaluation Reliability Program sponsored by the US Nuclear Regulatory Commission, the Pacific Northwest Laboratory is developing a method that uses risk-based approaches to establish in-service inspection plans for nuclear power plant components. This method uses probabilistic risk assessment (PRA) results and Failure Modes and Effects Analysis (FEMA) techniques to identify and prioritize the most risk-important systems and components for inspection. The Surry Nuclear Power Station Unit 1 was selected for pilot applications of this method. The specific systems addressed in this report are the reactor pressure vessel, the reactor coolant, the low-pressure injection, and the auxiliary feedwater. The results provide a risk-based ranking of components within these systems and relate the target risk to target failure probability values for individual components. These results will be used to guide the development of improved inspection plans for nuclear power plants. To develop inspection plans, the acceptable level of risk from structural failure for important systems and components will be apportioned as a small fraction (i.e., 5%) of the total PRA-estimated risk for core damage. This process will determine target (acceptable) risk and target failure probability values for individual components. Inspection requirements will be set at levels to assure that acceptable failure probabilistics are maintained

  9. Component design challenges for the ground-based SP-100 nuclear assembly test

    International Nuclear Information System (INIS)

    Markley, R.A.; Disney, R.K.; Brown, G.B.

    1989-01-01

    The SP-100 ground engineering system (GES) program involves a ground test of the nuclear subsystems to demonstrate their design. The GES nuclear assembly test (NAT) will be performed in a simulated space environment within a vessel maintained at ultrahigh vacuum. The NAT employs a radiation shielding system that is comprised of both prototypical and nonprototypical shield subsystems to attenuate the reactor radiation leakage and also nonprototypical heat transport subsystems to remove the heat generated by the reactor. The reactor is cooled by liquid lithium, which will operate at temperatures prototypical of the flight system. In designing the components for these systems, a number of design challenges were encountered in meeting the operational requirements of the simulated space environment (and where necessary, prototypical requirements) while also accommodating the restrictions of a ground-based test facility with its limited available space. This paper presents a discussion of the design challenges associated with the radiation shield subsystem components and key components of the heat transport systems

  10. LIRA - License Renewal Assistant an expert system advisor for system and component screening

    International Nuclear Information System (INIS)

    Wood, R.M.; DeLuke, R.J.; Lu, Yi; Catron, S.R.

    1992-01-01

    In developing a license renewal application for a nuclear power plant, it is necessary to identify those systems and components for which age-related degradation must be evaluated and addressed in detail. One approach, used in the Monticello Lead Plant project, is to screen all plant systems and components, based on criteria developed by the Nuclear Utility Management and Resources Council (NUMARC). This paper describes an expert system developed as an assistant in the application of the screening methodology. 4 refs., 5 figs., 1 tab

  11. Analysis of failed nuclear plant components

    Science.gov (United States)

    Diercks, D. R.

    1993-12-01

    Argonne National Laboratory has conducted analyses of failed components from nuclear power- gener-ating stations since 1974. The considerations involved in working with and analyzing radioactive compo-nents are reviewed here, and the decontamination of these components is discussed. Analyses of four failed components from nuclear plants are then described to illustrate the kinds of failures seen in serv-ice. The failures discussed are (1) intergranular stress- corrosion cracking of core spray injection piping in a boiling water reactor, (2) failure of canopy seal welds in adapter tube assemblies in the control rod drive head of a pressurized water reactor, (3) thermal fatigue of a recirculation pump shaft in a boiling water reactor, and (4) failure of pump seal wear rings by nickel leaching in a boiling water reactor.

  12. Fabricating nuclear components

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    Activities of the Nuclear Engineering Division of Vickers Ltd., particularly fabrication of long slim tubular components for power reactors and the construction of irradiation loops and rigs, are outlined. The processes include hydraulic forming for fabrication of various types of tubes and outer cases of fuel transfer buckets, various specialised welding operations including some applications of the TIG process, and induction brazing of specialised assemblies. (U.K.)

  13. Human as a component of a nuclear material safeguard system

    International Nuclear Information System (INIS)

    Morgan, D.E.; Schechter, R.S.

    1978-01-01

    Many human vigilance experiments are summarized and principles are extracted which should be useful in designing and evaluating a nuclear material safeguard system. A human is a poor observer and is not a dependable part of any man-machine system when required to function as an observer. There are a few techniques which improve his performance by providing feedback. A conceptual model is presented which is helpful in design and evaluation of systems. There is some slight experimental support for the model. Finally, some techniques of time study and statistical control charting will be useful as a means of detecting nuclear diversion attempts

  14. Component nuclear containment structure

    International Nuclear Information System (INIS)

    Harstead, G.A.

    1979-01-01

    The invention described is intended for use primarily as a nuclear containment structure. Such structures are required to surround the nuclear steam supply system and to contain the effects of breaks in the nuclear steam supply system, or i.e. loss of coolant accidents. Nuclear containment structures are required to withstand internal pressure and temperatures which result from loss of coolant accidents, and to provide for radiation shielding during operation and during the loss of coolant accident, as well as to resist all other applied loads, such as earthquakes. The nuclear containment structure described herein is a composite nuclear containment structure, and is one which structurally combines two previous systems; namely, a steel vessel, and a lined concrete structure. The steel vessel provides strength to resist internal pressure and accommodate temperature increases, the lined concrete structure provides resistance to internal pressure by having a liner which will prevent leakage, and which is in contact with the concrete structure which provides the strength to resist the pressure

  15. Methodology of aging management in structures, systems and components of a nuclear power plant and its application to a pilot program in Laguna Verde

    International Nuclear Information System (INIS)

    Jarvio C, G.; Fernandez S, G.

    2009-10-01

    From its origin the nuclear power plants confront the effects of time and of environment, giving as result the aging of its structures, systems and components. In this document the general process is described for the establishment of Aging Management Program developed by IAEA. Following the program methodology is guaranteed that a nuclear power plant manages the aging effects appropriately and to make decisions for its solution, assuring the characteristic functions of structures, systems and components of same nuclear power plant. On the other hand, the implantation of an aging management program constitutes the base for development of a licence renovation program, like it can be the specific case of the Central Laguna Verde Units 1 and 2. (Author)

  16. Dynamic interaction of components, structure, and foundation of nuclear power facilities

    International Nuclear Information System (INIS)

    Pajuhesh, J.; Hadjian, A.H.

    1977-01-01

    A solution is formulated for the dynamic analysis of structures and components with different stiffness and damping characteristics, including the consideration of soil-structure interaction effects. Composite structures are often analysed approximately, in particular with regards to damping. For example, the reactor and other equipment in nuclear power plant structures are often analysed by assuming them uncoupled from the supporting structures. To achieve a better accuracy, the coupled system is hereby analysed as a composite component-structure-soil system. To demonstrate the assembly technique, two examples are considered: (a) a steel structure sitting on a concrete stem and linked by a steel bridge to another concrete structure, and (b) an actual model of a nuclear power plant containment structure. (Auth.)

  17. Systems integration processes for space nuclear electric propulsion systems

    International Nuclear Information System (INIS)

    Olsen, C.S.; Rice, J.W.; Stanley, M.L.

    1991-01-01

    The various components and subsystems that comprise a nuclear electric propulsion system should be developed and integrated so that each functions ideally and so that each is properly integrated with the other components and subsystems in the optimum way. This paper discusses how processes similar to those used in the development and intergration of the subsystems that comprise the Multimegawatt Space Nuclear Power System concepts can be and are being efficiently and effectively utilized for these purposes. The processes discussed include the development of functional and operational requirements at the system and subsystem level; the assessment of individual nuclear power supply and thruster concepts and their associated technologies; the conduct of systems integration efforts including the evaluation of the mission benefits for each system; the identification and resolution of concepts development, technology development, and systems integration feasibility issues; subsystem, system, and technology development and integration; and ground and flight subsystem and integrated system testing

  18. Nuclear fuel cycle system simulation tool based on high-fidelity component modeling

    Energy Technology Data Exchange (ETDEWEB)

    Ames, David E.,

    2014-02-01

    The DOE is currently directing extensive research into developing fuel cycle technologies that will enable the safe, secure, economic, and sustainable expansion of nuclear energy. The task is formidable considering the numerous fuel cycle options, the large dynamic systems that each represent, and the necessity to accurately predict their behavior. The path to successfully develop and implement an advanced fuel cycle is highly dependent on the modeling capabilities and simulation tools available for performing useful relevant analysis to assist stakeholders in decision making. Therefore a high-fidelity fuel cycle simulation tool that performs system analysis, including uncertainty quantification and optimization was developed. The resulting simulator also includes the capability to calculate environmental impact measures for individual components and the system. An integrated system method and analysis approach that provides consistent and comprehensive evaluations of advanced fuel cycles was developed. A general approach was utilized allowing for the system to be modified in order to provide analysis for other systems with similar attributes. By utilizing this approach, the framework for simulating many different fuel cycle options is provided. Two example fuel cycle configurations were developed to take advantage of used fuel recycling and transmutation capabilities in waste management scenarios leading to minimized waste inventories.

  19. Fusion technology development: first wall/blanket system and component testing in existing nuclear facilities

    International Nuclear Information System (INIS)

    Hsu, P.Y.S.; Bohn, T.S.; Deis, G.A.; Judd, J.L.; Longhurst, G.R.; Miller, L.G.; Millsap, D.A.; Scott, A.J.; Wessol, D.E.

    1980-12-01

    A novel concept to produce a reasonable simulation of a fusion first wall/blanket test environment employing an existing nuclear facility, the Engineering Test Reactor at the Idaho National Engineering Laboratory, is presented. Preliminary results show that an asymmetric, nuclear test environment with surface and volumetric heating rates similar to those expected in a fusion first wall/blanket or divertor chamber surface appears feasible. The proposed concept takes advantage of nuclear reactions within the annulus of an existing test space (15 cm in diameter and approximately 100 cm high) to provide an energy flux to the surface of a test module. The principal reaction considered involves 3 He in the annulus as follows: n + 3 He → p + t + 0.75 MeV. Bulk heating in the test module is accomplished by neutron thermalization, gamma heating, and absorption reactions involving 6 Li in the blanket breeding region. The concept can be extended to modified core configurations that will accommodate test modules of different sizes and types. It makes possible development testing of first wall/blanket systems and other fusion components on a scale and in ways not otherwise available until actual high-power fusion reactors are built

  20. System diagnostics using qualitative analysis and component functional classification

    International Nuclear Information System (INIS)

    Reifman, J.; Wei, T.Y.C.

    1993-01-01

    A method for detecting and identifying faulty component candidates during off-normal operations of nuclear power plants involves the qualitative analysis of macroscopic imbalances in the conservation equations of mass, energy and momentum in thermal-hydraulic control volumes associated with one or more plant components and the functional classification of components. The qualitative analysis of mass and energy is performed through the associated equations of state, while imbalances in momentum are obtained by tracking mass flow rates which are incorporated into a first knowledge base. The plant components are functionally classified, according to their type, as sources or sinks of mass, energy and momentum, depending upon which of the three balance equations is most strongly affected by a faulty component which is incorporated into a second knowledge base. Information describing the connections among the components of the system forms a third knowledge base. The method is particularly adapted for use in a diagnostic expert system to detect and identify faulty component candidates in the presence of component failures and is not limited to use in a nuclear power plant, but may be used with virtually any type of thermal-hydraulic operating system. 5 figures

  1. Effects of composition on properties in an 11-component nuclear waste glass system

    International Nuclear Information System (INIS)

    Chick, L.A.; Piepel, G.F.; Mellinger, G.B.; May, R.P.; Gray, W.J.; Buckwalter, C.Q.

    1981-09-01

    Ninety simplified nuclear waste glass compositions within an 11-component oxide composition matrix were tested for crystallinity, viscosity, volatility, and chemical durability. Empirical models of property response as a function of glass composition were developed using statistical experimental design and modeling techniques. A new statistical technique was developed to calculate the effects of oxide components on each property. Independent melts were used to check the prediction accuracy of the models

  2. Comparison between Japan and the United States in the frequency of events in equipment and components at nuclear power plants

    International Nuclear Information System (INIS)

    Shimada, Yoshio

    2007-01-01

    The Institute of Nuclear Safety System, Incorporated (INSS) conducted trend analyses until 2005 to compare the frequency of events in certain electrical components and instrumentation components at nuclear power plants between Japan and the United States. The results revealed that events have occurred approximately an order of magnitude less often in Japan than in the United States. This paper compared Japan and the United States in more detail in terms of how often events - events reported under the reporting standards of the Nuclear Information Archive (NUCIA) or the Institute of Nuclear Power Operations (INPO) - occurred in electrical components, instrumentation components and mechanical components at nuclear power plants. The results were as follows: (1) In regard to electrical components and instrumentation components, events have occurred one-eighth less frequently in Japan than in the United States, suggesting that the previous results were correct. (2) Events have occurred more often in mechanical components than electrical components and instrumentation components in both Japan and the United States, and there was a smaller difference in the frequency of events in mechanical components between the two countries. (3) Regarding mechanical components, it was found that events in the pipes for critical systems and equipment, such as reactor coolant systems, emergency core cooling systems, instrument and control systems, ventilating and air-conditioning systems, and turbine equipment, have occurred more often in Japan than in the United States. (4) The above observations suggest that there is little scope for reducing the frequency of events in electrical components and instrumentation components, but that mechanical components such as pipes for main systems like emergency core cooling systems and turbine equipment in the case of PWRs, could be improved by re-examining inspection methods and intervals. (author)

  3. Radio frequency system for nuclear fusion

    International Nuclear Information System (INIS)

    Kozeki, Shoichiro; Sagawa, Norimoto; Takizawa, Teruhiro

    1987-01-01

    The importance of radio frequency waves has been increasing in the area of nuclear fusion since they are indispensable for heating of plasma, etc. This report outlines radio frequency techniques used for nuclear fusion and describes the development of radio frequency systems (radio frequency plasma heating system and current drive system). Presently, in-depth studies are underway at various research institutes to achieve plasma heating by injection of radio frequency electric power. Three ranges of frequencies, ICRF (ion cyclotron range of frequency), LHRF (lower hybrid range of frequency) and ECRF (electron cyclotron range of frequency), are considered promissing for radio frequency heating. Candidate waves for plasma current driving include ECW (electron cyclotron wave), LHW (lower hybrid wave), MSW (magnetic sound wave), ICW (ion cyclotron wave) with minority component, and FW (fast wave). FW is the greatest in terms of current drive efficiency. In general, a radio frequency system for nuclear fusion consists of a radio frequency power source, transmission/matching circuit component and plasma connection component. (Nogami, K.)

  4. An approach to safety problems relating to ageing of nuclear power plant components

    International Nuclear Information System (INIS)

    Conte, M.; Deletre, G.; Henry, J.Y.; Le Meur, M.

    1989-10-01

    The safety of nuclear power plants, in France, is discussed. The attention is focused on the ageing phenomena, as a potential cause of the degradation of the systems functional capabilities. The allowance for ageing in design and its importance on safety, are analyzed. The understanding of phenomena relating to ageing and the components surveillance, are considered. As the effective ageing on the components of nuclear power plants is not fully understood, technical improvements and more accurate analysis are required

  5. Improving nuclear envelope dynamics by EBV BFRF1 facilitates intranuclear component clearance through autophagy.

    Science.gov (United States)

    Liu, Guan-Ting; Kung, Hsiu-Ni; Chen, Chung-Kuan; Huang, Cheng; Wang, Yung-Li; Yu, Cheng-Pu; Lee, Chung-Pei

    2018-02-26

    Although a vesicular nucleocytoplasmic transport system is believed to exist in eukaryotic cells, the features of this pathway are mostly unknown. Here, we report that the BFRF1 protein of the Epstein-Barr virus improves vesicular transport of nuclear envelope (NE) to facilitate the translocation and clearance of nuclear components. BFRF1 expression induces vesicles that selectively transport nuclear components to the cytoplasm. With the use of aggregation-prone proteins as tools, we found that aggregated nuclear proteins are dispersed when these BFRF1-induced vesicles are formed. BFRF1-containing vesicles engulf the NE-associated aggregates, exit through from the NE, and putatively fuse with autophagic vacuoles. Chemical treatment and genetic ablation of autophagy-related factors indicate that autophagosome formation and autophagy-linked FYVE protein-mediated autophagic proteolysis are involved in this selective clearance of nuclear proteins. Remarkably, vesicular transport, elicited by BFRF1, also attenuated nuclear aggregates accumulated in neuroblastoma cells. Accordingly, induction of NE-derived vesicles by BFRF1 facilitates nuclear protein translocation and clearance, suggesting that autophagy-coupled transport of nucleus-derived vesicles can be elicited for nuclear component catabolism in mammalian cells.-Liu, G.-T., Kung, H.-N., Chen, C.-K., Huang, C., Wang, Y.-L., Yu, C.-P., Lee, C.-P. Improving nuclear envelope dynamics by EBV BFRF1 facilitates intranuclear component clearance through autophagy.

  6. In-plant reliability data base for nuclear power plant components: data collection and methodology report

    International Nuclear Information System (INIS)

    Drago, J.P.; Borkowski, R.J.; Pike, D.H.; Goldberg, F.F.

    1982-07-01

    The development of a component reliability data for use in nuclear power plant probabilistic risk assessments and reliabiilty studies is presented in this report. The sources of the data are the in-plant maintenance work request records from a sample of nuclear power plants. This data base is called the In-Plant Reliability Data (IPRD) system. Features of the IPRD system are compared with other data sources such as the Licensee Event Report system, the Nuclear Plant Reliability Data system, and IEEE Standard 500. Generic descriptions of nuclear power plant systems formulated for IPRD are given

  7. Summary of component reliability data for probabilistic safety analysis of Korean standard nuclear power plant

    International Nuclear Information System (INIS)

    Choi, S. Y.; Han, S. H.

    2004-01-01

    The reliability data of Korean NPP that reflects the plant specific characteristics is necessary for PSA of Korean nuclear power plants. We have performed a study to develop the component reliability DB and S/W for component reliability analysis. Based on the system, we had have collected the component operation data and failure/repair data during plant operation data to 1998/2000 for YGN 3,4/UCN 3,4 respectively. Recently, we have upgraded the database by collecting additional data by 2002 for Korean standard nuclear power plants and performed component reliability analysis and Bayesian analysis again. In this paper, we supply the summary of component reliability data for probabilistic safety analysis of Korean standard nuclear power plant and describe the plant specific characteristics compared to the generic data

  8. Requirements for containment system components in CANDU nuclear power plants

    International Nuclear Information System (INIS)

    1988-02-01

    This Standard specifies the requirements and establishes the rules for design, fabrication, and installation of pressure-retaining containment system components. In this Standard the term 'components' includes non registered items

  9. Requirements for containment system components in CANDU nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1988-02-01

    This Standard specifies the requirements and establishes the rules for design, fabrication, and installation of pressure-retaining containment system components. In this Standard the term `components` includes non registered items.

  10. Ageing study of protection automation components of Olkiluoto nuclear power plant

    International Nuclear Information System (INIS)

    Simola, K.; Haenninen, S.

    1993-07-01

    A study on ageing of reactor protection system of the Olkiluoto nuclear power plant is described. The objective of the study was to present an ageing analysis approach and apply in to the automation chains of reactor protection system of the Olkiluoto nuclear power plant. The study includes the measuring instrumentation, the protection logics, and the control electronics of some pumps and valves. The analysis is based on the information collected on the structure of the system, environmental conditions and maintenance practices of components, and operating experience. Based on this information, the possible ageing effects of equipment and their safety significance are evaluated. (orig.). (15 refs., 16 figs., 12 tabs.)

  11. Structural analysis of nuclear components

    International Nuclear Information System (INIS)

    Ikonen, K.; Hyppoenen, P.; Mikkola, T.; Noro, H.; Raiko, H.; Salminen, P.; Talja, H.

    1983-05-01

    THe report describes the activities accomplished in the project 'Structural Analysis Project of Nuclear Power Plant Components' during the years 1974-1982 in the Nuclear Engineering Laboratory at the Technical Research Centre of Finland. The objective of the project has been to develop Finnish expertise in structural mechanics related to nuclear engineering. The report describes the starting point of the research work, the organization of the project and the research activities on various subareas. Further the work done with computer codes is described and also the problems which the developed expertise has been applied to. Finally, the diploma works, publications and work reports, which are mainly in Finnish, are listed to give a view of the content of the project. (author)

  12. High temperature brazing of primary-system components in the nuclear field

    International Nuclear Information System (INIS)

    Belicic, M.; Fricker, H.W.; Iversen, K.; Leukert, W.

    1981-01-01

    Apart from the well-known welding procedures, high-temperature brazing is successfully applied in the manufacture of primary components in the field of nuclear reactor construction. This technique is applied in all cases where apart from sufficient resistance and high production safety importance is laid on dimensional stability without subsequent mechanical processing of the components. High-temperature brazing is therefore very important in the manufacture of fuel rod spacers or control rod guide tubes. In this context, during one brazing process many brazing seams have to be produced in extremely narrow areas and within small tolerances. As basic materials precipitation hardening alloys with a high nickel percentage, austenitic Cr-Ni-steels or the zirconium alloy Zry 4 are used. Generally applied are: boron free nickel or zirconium brazing filler metals. (orig.)

  13. Testing and operation of nuclear air-cleaning systems in Qinshan NPP

    International Nuclear Information System (INIS)

    Yang Lin

    1993-01-01

    The components of nuclear air-cleaning system, system function, operational mode and the performance of cleaning components in Qinshan Nuclear Power Plant are described. The items, purpose, methods and results of in-place testing after the installation are also described in detail. The in-place testing verifies that nuclear air-cleaning systems in Qinshan Nuclear Power Plant are reliable and high effective. It also describes the points of the operational management. It is shown that the good operational management is the key which developed prescription function of nuclear air-cleaning systems. At present, Qinshan Nuclear Power Plant will be in full power, the normal operation of the system is satisfied with the demand of safe operation in Qinshan Nuclear Power Company

  14. Canadian programs on understanding and managing aging degradation of nuclear power plant components

    International Nuclear Information System (INIS)

    Chadha, J.A.; Pachner, J.

    1989-06-01

    Maintaining adequate safety and reliability of nuclear power plants and nuclear power plant life assurance and life extension are growing in importance as nuclear plants get older. Age-related degradation of plant components is complex and not fully understood. This paper provides an overview of the Canadian approach and the main activities and their results towards understanding and managing age-related degradation of nuclear power plant components, structures and systems. A number of pro-active programs have been initiated to anticipate, detect and mitigate potential aging degradation at an early stage before any serious impact on plant safety and reliability. These programs include Operational Safety Management Program, Nuclear Plant Life Assurance Program, systematic plant condition assessment, refurbishment and upgrading, post-service examination and testing, equipment qualification, research and development, and participation in the IAEA programs on safety aspects of nuclear power plant aging and life extension. A regulatory policy on nuclear power plants is under development and will be based on the domestic as well as foreign and international studies and experience

  15. Romanian network for structural integrity assessment of nuclear components

    International Nuclear Information System (INIS)

    Roth, Maria; Constantinescu, Dan Mihai; Brad, Sebastian; Ducu, Catalin

    2008-01-01

    Full text: Based of the Romanian option to develop and operate nuclear facilities, using as model the networks created at European level and taking into account the international importance of the structural integrity assessments for lifetime extension of the nuclear components, a national Project started since 2005 in the framework of the National Program 'Research of Excellence', Modulus I 2006-2008, managed by the Ministry of Education and Research. Entitled 'Integrated Network for Structural Integrity Monitoring of Critical Components in Nuclear Facilities', with the acronym RIMIS, the Project had two main objectives: - to elaborate a procedure applicable to the structural integrity assessment of the critical components used in Romanian nuclear facilities; - to integrate the national networking in a similar one, at European level, to enhance the scientific significance of Romanian R and D organizations as well as to increase the contribution to solving one of the major issue of the nuclear field. The paper aimed to present the activities performed in the Romanian institutes, involved in the Project, the final results obtained as part of the R and D activities, including experimental, theoretical and modeling ones regarding structural integrity assessment of nuclear components employed in CANDU type reactors. Also the activity carried out in the framework of the NULIFE network, created at European level of the FP6 Program and sustained by the RIMIS network will be described. (authors)

  16. Evaluation and mitigation of the degradation by corrosion in the components of the service water system of a nuclear power plant

    International Nuclear Information System (INIS)

    Salaices A, E.; Salaices, M.; Ovando, R.

    2005-01-01

    One of the main problems that face the nuclear power stations is the degradation by corrosion in the service water systems. The corrosion causes lost substantial in energy generation and a high cost in maintenance and repairs. In this work, the results of a study of the degradation by the MIC mechanisms (microorganisms influenced corrosion), incrustations in heat exchangers and erosion for solid particles in the components of a typical service water system of a nuclear plant are presented. Diverse mitigation options are analyzed for these mechanisms. In the analysis, it was used the CHECWORKS-CWA code to carry out the evaluation of the degradation so much as well as the mitigation of the caused damage. The results are presented in susceptibility indexes and degradation rates component-by-component. A significant decrement could be observed in the susceptibility to MIC when changing the operation conditions of stagnated flow to continuous flow. With respect to the erosion by solid particles, it was found a significant reduction of the damage it when adding filters to the system. Finally, in the case of the heat exchangers, it is shown that one of the more viable options to diminish incrustations and existent calcium deposits it is the reduction of the pH of the service water. (Author)

  17. Basic components of a national control system for nuclear materials

    International Nuclear Information System (INIS)

    Rabot, G.

    1986-01-01

    The paper presents the different aspects related to the organization and the functioning of a national control and accounting system for nuclear materials. The legal aspects and the relations with the IAEA are included

  18. Detection of instrument or component failures in a nuclear plant by Luenberger observers

    International Nuclear Information System (INIS)

    Wilburn, N.P.; Colley, R.W.; Alexandro, F.J.; Clark, R.N.

    1985-01-01

    A diagnostic system, which will distinguish between instrument failures (flowmeters, etc.) and component failures (valves, filters, etc.) that show the same symptoms, has been developed for nuclear Plants using Luenberger observers. Luenberger observers are online computer based modules constructed following the technology of Clark [3]. A seventh order model of an FFTF subsystem was constructed using the Advanced Continuous Simulation Language (ACSL) and was used to show through simulation that Luenberger observers can be applied to nuclear systems

  19. Modeling fabrication of nuclear components: An integrative approach

    Energy Technology Data Exchange (ETDEWEB)

    Hench, K.W.

    1996-08-01

    Reduction of the nuclear weapons stockpile and the general downsizing of the nuclear weapons complex has presented challenges for Los Alamos. One is to design an optimized fabrication facility to manufacture nuclear weapon primary components in an environment of intense regulation and shrinking budgets. This dissertation presents an integrative two-stage approach to modeling the casting operation for fabrication of nuclear weapon primary components. The first stage optimizes personnel radiation exposure for the casting operation layout by modeling the operation as a facility layout problem formulated as a quadratic assignment problem. The solution procedure uses an evolutionary heuristic technique. The best solutions to the layout problem are used as input to the second stage - a simulation model that assesses the impact of competing layouts on operational performance. The focus of the simulation model is to determine the layout that minimizes personnel radiation exposures and nuclear material movement, and maximizes the utilization of capacity for finished units.

  20. Application of NUREG/CR-5999 interim fatigue curves to selected nuclear power plant components

    International Nuclear Information System (INIS)

    Ware, A.G.; Morton, D.K.; Nitzel, M.E.

    1995-03-01

    Recent test data indicate that the effects of the light water reactor (LWR) environment could significantly reduce the fatigue resistance of materials used in the reactor coolant pressure boundary components of operating nuclear power plants. Argonne National Laboratory has developed interim fatigue curves based on test data simulating LWR conditions, and published them in NUREG/CR-5999. In order to assess the significance of these interim fatigue curves, fatigue evaluations of a sample of the components in the reactor coolant pressure boundary of LWRs were performed. The sample consists of components from facilities designed by each of the four U.S. nuclear steam supply system vendors. For each facility, six locations were studied, including two locations on the reactor pressure vessel. In addition, there are older vintage plants where components of the reactor coolant pressure boundary were designed to codes that did not require an explicit fatigue analysis of the components. In order to assess the fatigue resistance of the older vintage plants, an evaluation was also conducted on selected components of three of these plants. This report discusses the insights gained from the application of the interim fatigue curves to components of seven operating nuclear power plants

  1. Advanced Surveillance, Diagnostic and Prognostic Techniques in Monitoring Structures, Systems and Components in Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-09-15

    direction of research, development and demonstration in this area. The technologies discussed in this project are intended to establish the state of the art in surveillance, diagnostics and prognostics (SDP) technologies for equipment and process health monitoring in nuclear facilities. It is also intended to identify technology gaps and research needs of the nuclear industry in the area of SDP. The report draws on the conventional SDP technologies, as well as the latest tools, algorithms and techniques that have emerged over the last few years, especially in enabling technologies including fast data acquisition, data storage, data qualification and data analysis algorithms, such as empirical and physical modelling techniques. These new tools have made it possible to identify problems earlier and with better resolution. The significance of the material presented in this report is that it contributes not only to the current needs of the nuclear industry but also to the design improvements of the next generation of reactors. For example, the nuclear industry is currently striving to operate the plants for up to 80 years or more, as the value of nuclear assets has risen in recent years, resulting partly from environmental concerns with fossil energy production, as well as increased future demand for base load electricity. This long term operation (LTO) or life extension goal of the nuclear industry has stimulated renewed interest in more frequent monitoring of equipment to guard against ageing effects, not to mention the economic benefits that SDP implementation can produce, and contributions to radiation exposure that is as low as reasonably achievable, reduction of human errors, and optimized maintenance. Together with capabilities that enhance situational awareness, the technologies described in this report will enable more holistic management of plant structures, systems and components (SSCs), maintain high capacity factor in LTO and enable higher levels of safe operation

  2. Advanced Surveillance, Diagnostic and Prognostic Techniques in Monitoring Structures, Systems and Components in Nuclear Power Plants

    International Nuclear Information System (INIS)

    2013-01-01

    direction of research, development and demonstration in this area. The technologies discussed in this project are intended to establish the state of the art in surveillance, diagnostics and prognostics (SDP) technologies for equipment and process health monitoring in nuclear facilities. It is also intended to identify technology gaps and research needs of the nuclear industry in the area of SDP. The report draws on the conventional SDP technologies, as well as the latest tools, algorithms and techniques that have emerged over the last few years, especially in enabling technologies including fast data acquisition, data storage, data qualification and data analysis algorithms, such as empirical and physical modelling techniques. These new tools have made it possible to identify problems earlier and with better resolution. The significance of the material presented in this report is that it contributes not only to the current needs of the nuclear industry but also to the design improvements of the next generation of reactors. For example, the nuclear industry is currently striving to operate the plants for up to 80 years or more, as the value of nuclear assets has risen in recent years, resulting partly from environmental concerns with fossil energy production, as well as increased future demand for base load electricity. This long term operation (LTO) or life extension goal of the nuclear industry has stimulated renewed interest in more frequent monitoring of equipment to guard against ageing effects, not to mention the economic benefits that SDP implementation can produce, and contributions to radiation exposure that is as low as reasonably achievable, reduction of human errors, and optimized maintenance. Together with capabilities that enhance situational awareness, the technologies described in this report will enable more holistic management of plant structures, systems and components (SSCs), maintain high capacity factor in LTO and enable higher levels of safe operation

  3. Software Quality Assurance for Nuclear Safety Systems

    International Nuclear Information System (INIS)

    Sparkman, D R; Lagdon, R

    2004-01-01

    The US Department of Energy has undertaken an initiative to improve the quality of software used to design and operate their nuclear facilities across the United States. One aspect of this initiative is to revise or create new directives and guides associated with quality practices for the safety software in its nuclear facilities. Safety software includes the safety structures, systems, and components software and firmware, support software and design and analysis software used to ensure the safety of the facility. DOE nuclear facilities are unique when compared to commercial nuclear or other industrial activities in terms of the types and quantities of hazards that must be controlled to protect workers, public and the environment. Because of these differences, DOE must develop an approach to software quality assurance that ensures appropriate risk mitigation by developing a framework of requirements that accomplishes the following goals: (sm b ullet) Ensures the software processes developed to address nuclear safety in design, operation, construction and maintenance of its facilities are safe (sm b ullet) Considers the larger system that uses the software and its impacts (sm b ullet) Ensures that the software failures do not create unsafe conditions Software designers for nuclear systems and processes must reduce risks in software applications by incorporating processes that recognize, detect, and mitigate software failure in safety related systems. It must also ensure that fail safe modes and component testing are incorporated into software design. For nuclear facilities, the consideration of risk is not necessarily sufficient to ensure safety. Systematic evaluation, independent verification and system safety analysis must be considered for software design, implementation, and operation. The software industry primarily uses risk analysis to determine the appropriate level of rigor applied to software practices. This risk-based approach distinguishes safety

  4. The system of nuclear material control of Kazakhstan

    International Nuclear Information System (INIS)

    Yeligbayeva, G.Zh.

    2001-01-01

    Full text: The State system for nuclear material control consists of three integral components. The efficiency of each is to guarantee the non-proliferation regime in Kazakhstan. The components are the following: accounting, export and import control and physical protection of nuclear materials. First, the implementation of the goals of accounting and control bring into force, by the organization of the system for accounting and measurement of nuclear materials to determine present quantity. Organizing the accounting for nuclear material at facilities will ensure the efficiency of accountancy and reporting information. This defines the effectiveness of the state system for the accounting for the Kazakhstan's nuclear materials. Currently, Kazakhstan's nuclear material is fully safeguarded in designated secure locations. Kazakhstan has a nuclear power plant, 4 research reactors and a fuel fabrication plant. The governmental information system for nuclear materials control consist of two level: Governmental level - KAEA collects reports from facilities and prepares the reports for International Atomic Energy Agency, keeping of supporting documents and other necessary information, a data base of export and import, a data base of nuclear material inventory. Facility level - registration and processing information from key measurement points, formation the facility's nuclear materials accounting database. All facilities have computerized systems. Currently, all facilities are safeguarded under IAEA safeguarding standards, through IAEA inspections. Annually, IAEA verifies all nuclear materials at all Kazakhstan nuclear facilities. The government reporting system discloses the existence of all nuclear material and its transfer intended for interaction through the export control system and the nuclear control accounting system. Nuclear material export is regulated by the regulations of the Nuclear Export Control Law. The standard operating procedure is the primary means for

  5. Performance of materials in the component cooling water systems of pressurized water reactors

    International Nuclear Information System (INIS)

    Lee, B.S.

    1993-01-01

    The component cooling water (CCW) system provides cooling water to several important loads throughout the plant under all operating conditions. An aging assessment CCW systems in pressurized water reactors (PWRs) was conducted as part of Nuclear Plant Aging Research Program (NPAR) instituted by the US Nuclear Regulatory Commission. This paper presents some of the results on the performances of materials in respect of their application in CCW Systems. All the CCW system failures reported to the Nuclear Plant Reliability Data System (NPRDS) from January 1988 to June 1990 were reviewed; it is concluded that three of the main contributors to CCW system failures are valves, pumps, and heat exchangers. This study identified the modes and causes of failure for these components; most of the causes for the aging-related failures could be related to the performance of materials. Also, in this paper the materials used for these components are reviewed, and there aging mechanisms under CCW system conditions are discussed

  6. Narrow gap mechanised arc welding in nuclear components manufactured by AREVA NP

    International Nuclear Information System (INIS)

    Peigney, A.

    2007-01-01

    Nuclear components require welds of irreproachable and reproducible quality. Moreover, for a given welding process, productivity requirements lead to reduce the volume of deposited metal and thus to use narrow gap design. In the shop, narrow gap Submerged Arc Welding process (SAW) is currently used on rotating parts in flat position for thicknesses up to 300 mm. Welding is performed with one or two wires in two passes per layer. In Gas Tungsten Arc Welding process (GTAW), multiple applications can be found because this process presents the advantage of allowing welding in all positions. Welding is performed in one or two passes per layer. The process is used in factory and on the nuclear sites for assembling new components but also for replacing components and for repairs. Presently, an increase of productivity of the process is sought through the use of hot wire and/or two wires. Concerning Gas Metal Arc Welding process (GMAW), its use is growing for nuclear components, including narrow gap applications. This process, limited in its applications in the past on account of the defects it generated, draws benefit from the progress of the welding generators. Then it is possible to use this efficient process for high security components such as those of nuclear systems. It is to be noted that the process is applicable in the various welding positions as it is the case for GTAW, while being more efficient than the latter. This paper presents the state of the art in the use of narrow gap mechanised arc welding processes by AREVA NP units. (author) [fr

  7. Test to prove the resistance to incidents of components of electric and control systems in the safety containment of nuclear power plants

    International Nuclear Information System (INIS)

    1982-01-01

    The marginal program for proving the suitability of safety-relevant components of electric and control systems in the safety containment during a loss-of-coolant incident is described. Variant test conditions are established in the component-specific test program. Special attention has been paid to the representation of the course of pressure and temperature for the performance test of the valve room of the Nuclear Power Plant Philippsburg 2. (DG) [de

  8. Process information systems in nuclear reprocessing

    International Nuclear Information System (INIS)

    Jaeschke, A.; Keller, H.; Orth, H.

    1987-01-01

    On a production management level, a process information system in a nuclear reprocessing plant (NRP) has to fulfill conventional operating functions and functions for nuclear material surveillance (safeguards). Based on today's state of the art of on-line process control technology, the progress in hardware and software technology allows to introduce more process-specific intelligence into process information systems. Exemplified by an expert-system-aided laboratory management system as component of a NRP process information system, the paper demonstrates that these technologies can be applied already. (DG) [de

  9. Aging management and PLEX in Swiss nuclear power plants and prioritization of safety class 2 and 3 components

    International Nuclear Information System (INIS)

    Fuchs, R.; Stejskal, J.

    2000-01-01

    In this presentation ageing management of systems and components important to safety of the Swiss nuclear power plants are presented. Status of electrical components, status of mechanical components as well as status of civil structures are reviewed. The scheme of the high pressure core spray system is included

  10. Component aging and reliability trends in Loviisa Nuclear Power Plant

    International Nuclear Information System (INIS)

    Jankala, K.E.; Vaurio, J.K.

    1989-01-01

    A plant-specific reliability data collection and analysis system has been developed at the Loviisa Nuclear Power Plant to perform tests for component aging and analysis of reliability trends. The system yields both mean values an uncertainty distribution information for reliability parameters to be used in the PSA project underway and in living-PSA applications. Several different trend models are included in the reliability analysis system. Simple analytical expressions have been derived from the parameters of these models, and their variances have been obtained using the information matrix. This paper is focused on the details of the learning/aging models and the estimation of their parameters and statistical accuracies. Applications to the historical data of the Loviisa plant are presented. The results indicate both up- and down-trends in failure rates as well as individuality between nominally identical components

  11. Prognostic Health Monitoring System: Component Selection Based on Risk Criteria and Economic Benefit Assessment

    International Nuclear Information System (INIS)

    Pham, Binh T.; Agarwal, Vivek; Lybeck, Nancy J.; Tawfik, Magdy S.

    2012-01-01

    Prognostic health monitoring (PHM) is a proactive approach to monitor the ability of structures, systems, and components (SSCs) to withstand structural, thermal, and chemical loadings over the SSCs planned service lifespan. The current efforts to extend the operational license lifetime of the aging fleet of U.S. nuclear power plants from 40 to 60 years and beyond can benefit from a systematic application of PHM technology. Implementing a PHM system would strengthen the safety of nuclear power plants, reduce plant outage time, and reduce operation and maintenance costs. However, a nuclear power plant has thousands of SSCs, so implementing a PHM system that covers all SSCs requires careful planning and prioritization. This paper therefore focuses on a component selection that is based on the analysis of a component's failure probability, risk, and cost. Ultimately, the decision on component selection depends on the overall economical benefits arising from safety and operational considerations associated with implementing the PHM system. (author)

  12. Digital Components in Swedish NPP Power Systems

    International Nuclear Information System (INIS)

    Karlsson, Mattias; Eriksson, Tage

    2015-01-01

    Swedish nuclear power plants have over the last 20 years of operation modernised or exchanged several systems and components of the electrical power system. Within these works, new components based on digital technology have been employed in order to realize functionality that was previously achieved by using electro-mechanical or analogue technology. Components and systems such as relay protection, rectifiers, inverters, variable speed drives and diesel-generator sets are today equipped with digital components. Several of the systems and components fulfil functions with a safety-role in the NPP. Recently, however, a number of incidents have occurred which highlight deficiencies in the design or HMI of the equipment, which warrants questions whether there are generic problems with some applications of digital components that needs to be addressed. The use of digital components has presented cost effective solutions, or even the only available solution on the market enabling a modernisation. The vast majority of systems using digital components have been operating without problems and often contribute to improved safety but the challenge of non-detectable, or non-identifiable, failure modes remain. In this paper, the extent to which digital components are used in Swedish NPP power systems will be presented including a description of typical applications. Based on data from maintenance records and fault reports, as well as interviews with designers and maintenance personnel, the main areas where problems have been encountered and where possible risks have been identified will be described. The paper intends to investigate any 'tell-tales' that could give signals of unwanted behaviour. Furthermore, particular benefits experienced by using digital components will be highlighted. The paper will also discuss the safety relevance of these findings and suggest measures to improve safety in the application of digital components in power systems. (authors)

  13. Nuclear component design ontology building based on ASME codes

    International Nuclear Information System (INIS)

    Bao Shiyi; Zhou Yu; He Shuyan

    2005-01-01

    The adoption of ontology analysis in the study of concept knowledge acquisition and representation for the nuclear component design process based on computer-supported cooperative work (CSCW) makes it possible to share and reuse numerous concept knowledge of multi-disciplinary domains. A practical ontology building method is accordingly proposed based on Protege knowledge model in combination with both top-down and bottom-up approaches together with Formal Concept Analysis (FCA). FCA exhibits its advantages in the way it helps establish and improve taxonomic hierarchy of concepts and resolve concept conflict occurred in modeling multi-disciplinary domains. With Protege-3.0 as the ontology building tool, a nuclear component design ontology based ASME codes is developed by utilizing the ontology building method. The ontology serves as the basis to realize concept knowledge sharing and reusing of nuclear component design. (authors)

  14. Results of an aging-related failure survey of light water safety systems and components

    International Nuclear Information System (INIS)

    Meale, B.M.; Satterwhite, D.G.; MacDonald, P.E.

    1988-01-01

    The collection and evaluation of operating experience data are necessary in determining the effects of aging on the safety of operating nuclear plants. This paper presents the final results of a two-year research effort evaluating aging impacts on components in light water reactor systems. This research was performed as a part of the Nuclear Plant Aging Research program, sponsored by the US Nuclear Regulatory Commission. Two unique types of data analyses were performed. In the first, an aging-survey study, aging-related failure data for fifteen light water reactor systems were obtained from the Nuclear Plant Reliability Data System (NPRDS). These included safety, support, and power conversion systems. A computerized sort of these records classified each record into one of five generic categories, based on the utility's choice of the failure's NPRDS cause category. Systems and components within the systems that were most affected by aging were identified. In the second analysis, information on aging-related reported causes of failures was evaluated for component failures reported to NPRDS for auxiliary feedwater, high pressure injection, service water, and Class 1E electrical power distribution systems. 3 refs., 13 figs., 4 tabs

  15. Polyphophoinositides components of plant nuclear membranes

    International Nuclear Information System (INIS)

    Hendrix, K.W.; Boss, W.F.

    1987-01-01

    The polyphosphoinositides, phosphatidylinositol monophosphate (PIP) and phosphatidylinositol bisphosphate (PIP 2 ), have been shown to be important components in signal transduction in many animal cells. Recently, these lipids have been found to be associated with plasma membrane but not microsomal membrane isolated from fusogenic wild carrot cells; however, in that study the lipids of the nuclear membrane were not analyzed. Since polyphosphoinositides had been shown to be associated with the nuclear membranes as well as the plasma membrane in some animal cells, it was important to determine whether they were associated with plant nuclear membranes as well. Cells were labeled for 18h with [ 3 H] inositol and the nuclei were isolated by a modification of the procedure of Saxena et al. Preliminary lipid analyses indicate lower amount of PIP and PIP 2 in nuclear membranes compared to whole protoplasts. This suggests that the nuclear membranes of carrot cells are not enriched in PIP and PIP 2 ; however, the Triton X-100 used during the nuclear isolation procedure may have affected the recovery of the lipids. Experiments are in progress to determine the effects of Triton X-100 on lipid extraction

  16. Modeling Chilled-Water Storage System Components for Coupling to a Small Modular Reactor in a Nuclear Hybrid Energy System

    Science.gov (United States)

    Misenheimer, Corey Thomas

    The intermittency of wind and solar power puts strain on electric grids, often forcing carbonbased and nuclear sources of energy to operate in a load-follow mode. Operating nuclear reactors in a load-follow fashion is undesirable due to the associated thermal and mechanical stresses placed on the fuel and other reactor components. Various Thermal Energy Storage (TES) elements and ancillary energy applications can be coupled to nuclear (or renewable) power sources to help absorb grid instabilities caused by daily electric demand changes and renewable intermittency, thereby forming the basis of a candidate Nuclear Hybrid Energy System (NHES). During the warmer months of the year in many parts of the country, facility air-conditioning loads are significant contributors to the increase in the daily peak electric demand. Previous research demonstrated that a stratified chilled-water storage tank can displace peak cooling loads to off-peak hours. Based on these findings, the objective of this work is to evaluate the prospect of using a stratified chilled-water storage tank as a potential TES reservoir for a nuclear reactor in a NHES. This is accomplished by developing time-dependent models of chilled-water system components, including absorption chillers, cooling towers, a storage tank, and facility cooling loads appropriate for a large office space or college campus, as a callable FORTRAN subroutine. The resulting TES model is coupled to a high-fidelity mPower-sized Small Modular Reactor (SMR) Simulator, with the goal of utilizing excess reactor capacity to operate several sizable chillers in order to keep reactor power constant. Chilled-water production via single effect, lithium bromide (LiBr) absorption chillers is primarily examined in this study, although the use of electric chillers is briefly explored. Absorption chillers use hot water or low-pressure steam to drive an absorption-refrigeration cycle. The mathematical framework for a high-fidelity dynamic

  17. Analysis of appraisal tool of system security engineering capability maturity based on component

    International Nuclear Information System (INIS)

    Liu Zhenghai; Yang Xiaohua; Zou Shuliang; Liu Yachun; Xiao Jiantian; Liu Zhiming

    2012-01-01

    Spent Fuel Reprocessing is a part of nuclear fuel cycle and is the inevitably choice of nuclear power sustainable development. Reprocessing needs to face with radiological, criticality, chemical hazards. Besides using the tradition appraisal methods based on the security goals, it is a beneficial supplement that using the appraisal method of system security engineering capability maturity model based on the process. Experts should check and approve large numbers of documents during the appraisal based on system security engineering capability maturity model, so it is necessary that developing a tool to assist the expert to complete the appraisal. The method of developing software based on component is highly effective, nimble and reliable. Component technology is analyzed, the methods of extraction model domain components and general components is introduced, and the appraisal system is developed based on component technology. (authors)

  18. Nuclear reactor sealing system

    International Nuclear Information System (INIS)

    McEdwards, J.A.

    1983-01-01

    A liquid metal-cooled nuclear reactor sealing system is disclosed. The nuclear reactor includes a vessel sealed at its upper end by a closure head. The closure head comprises at least two components, one of which is rotatable; and the two components define an annulus therebetween. The sealing system includes at least a first and second inflatable seal disposed in series in an upper portion of the annulus. The system further includes a dip seal extending into a body of insulation located adjacent a bottom portion of the closure head. The dip seal comprises a trough formed by a lower portion of one of the components, and a seal blade pendently supported from the other component and extending downwardly into the trough. A body of liquid metal is contained in the trough which submerges a portion of the seal blade. The seal blade is provided with at least one aperture located above the body of liquid metal for providing fluid communication between the annulus intermediate the dip seal and the inflatable seals, and a body of cover gas located inside the vessel. There also is provided means for introducing a purge gas into the annulus intermediate the inflatable seals and the seal blade. The purge gas is introduced in an amount sufficient to substantially reduce diffusion of radioactive cover gas or sodium vapor up to the inflatable seals. The purge gas mixes with the cover gas in the reactor vessel where it can be withdrawn from the vessel for treatment and recycle to the vessel

  19. Safety aspects of nuclear power plant component aging

    International Nuclear Information System (INIS)

    Conte, M.; Deletre, G.; Henry, J.Y.

    1988-01-01

    The safety of nuclear plants depends on the capacity of the systems they are composed to perform the functions they were designed for. The identification and understanding of phenomena liable to degrade this operational capacity thus constitute one of the safety problems for which allowance must be made at the earliest stage of a project. Aging, a natural and hence unavoidable process affecting all the components of an installation, was identified at a very early stage as being one of these phenomena. The investigation and implementation of solutions to the safety problems associated to aging make it necessary to: defining the domain in which the consequences of aging are to be evaluated, identifying the parameters involved, identifying the components sensitive to these parameters, understanding the mechanisms which govern its evolution. The results of qualification tests, and of tests and checks carried out at different stages of construction and operation, as well as allowance for operating experience, constitute the necessary basis for establishing or improving the regulatory requirements. The procedures for validating components and systems of the installation are also drawn up on the basis of these tests. Finally, the actions initiated within the scope of research and development programmes supply the additional data necessary for such validation, and provide the indispensable support for knowledge improvement

  20. Study of a simplified method of evaluating the economic maintenance importance of components in nuclear power plant system

    International Nuclear Information System (INIS)

    Aoki, Takayuki; Takagi, Toshiyuki; Kodama, Noriko

    2014-01-01

    Safety risk importance of components in nuclear power plants has been evaluated based on the probabilistic risk assessment and used for the decisions in various plant managements. But economic risk importance of the components has not been discussed very much. Therefore, this paper discusses risk importance of the components from the viewpoint of plant economic efficiency and proposes a simplified evaluation method of the economic risk importance (or economic maintenance importance). As a result of consideration, the followings were obtained. (1) A unit cost of power generation is selected as a performance indicator and can be related to a failure rate of components in nuclear power plant which is a result of maintenance. (2) The economic maintenance importance has to major factors, i.e. repair cost at component failure and production loss associated with plant outage due to component failure. (3) The developed method enables easy understanding of economic impacts of plant shutdown or power reduction due to component failures on the plane which adopts the repair cost in vertical axis and the production loss in horizontal axis. (author)

  1. Chloroplast two-component systems: evolution of the link between photosynthesis and gene expression.

    Science.gov (United States)

    Puthiyaveetil, Sujith; Allen, John F

    2009-06-22

    Two-component signal transduction, consisting of sensor kinases and response regulators, is the predominant signalling mechanism in bacteria. This signalling system originated in prokaryotes and has spread throughout the eukaryotic domain of life through endosymbiotic, lateral gene transfer from the bacterial ancestors and early evolutionary precursors of eukaryotic, cytoplasmic, bioenergetic organelles-chloroplasts and mitochondria. Until recently, it was thought that two-component systems inherited from an ancestral cyanobacterial symbiont are no longer present in chloroplasts. Recent research now shows that two-component systems have survived in chloroplasts as products of both chloroplast and nuclear genes. Comparative genomic analysis of photosynthetic eukaryotes shows a lineage-specific distribution of chloroplast two-component systems. The components and the systems they comprise have homologues in extant cyanobacterial lineages, indicating their ancient cyanobacterial origin. Sequence and functional characteristics of chloroplast two-component systems point to their fundamental role in linking photosynthesis with gene expression. We propose that two-component systems provide a coupling between photosynthesis and gene expression that serves to retain genes in chloroplasts, thus providing the basis of cytoplasmic, non-Mendelian inheritance of plastid-associated characters. We discuss the role of this coupling in the chronobiology of cells and in the dialogue between nuclear and cytoplasmic genetic systems.

  2. Canisters and nonfuel components at commercial nuclear reactors

    International Nuclear Information System (INIS)

    Gibbard, K.; Thorpe, J.; Moore, R.S.

    1995-01-01

    The Energy Information Administration of the U.S. Department of Energy (DOE) collects data annually from commercial nuclear power reactors via the Nuclear Fuel Data survey, Form RW-859. Over the past three years, the survey has collected data on the quantities and types of nonfuel components and on the quantities and contents of canisters in storage at reactor sites. This paper focuses on the annual changes in the data, specific implications of these changes, and lessons that should be applied to future revisions of the study. The total number of canisters reported by utilities for each year from 1986 to 1993 is listed. Changes in the quantities of nonfuel components report by General Reactors from 1992 to 1993 are also provided. Comparisons of canister and nonfuel components components data from year to year and from reactor to reactor point out that survey questions on these topics have been interpreted differently by reactor personnel

  3. Reliability of sprinkler systems. Exploration and analysis of data from nuclear and non-nuclear installations

    International Nuclear Information System (INIS)

    Roenty, V.; Keski-Rahkonen, O.; Hassinen, J.P.

    2004-12-01

    Sprinkler systems are an important part of fire safety of nuclear installations. As a part of effort to make fire-PSA of our utilities more quantitative a literature survey from open sources worldwide of available reliability data on sprinkler systems was carried out. Since the result of the survey was rather poor quantitatively, it was decided to mine available original Finnish nuclear and non-nuclear data, since nuclear power plants present a rather small device population. Sprinklers are becoming a key element for the fire safety in modern, open non-nuclear buildings. Therefore, the study included both nuclear power plants and non-nuclear buildings protected by sprinkler installations. Data needed for estimating of reliability of sprinkler systems were collected from available sources in Finnish nuclear and non-nuclear installations. Population sizes on sprinkler system installations and components therein as well as covered floor areas were counted individually from Finnish nuclear power plants. From non-nuclear installations corresponding data were estimated by counting relevant things from drawings of 102 buildings, and plotting from that sample needed probability distributions. The total populations of sprinkler systems and components were compiled based on available direct data and these distributions. From nuclear power plants electronic maintenance reports were obtained, observed failures and other reliability relevant data were selected, classified according to failure severity, and stored on spreadsheets for further analysis. A short summary of failures was made, which was hampered by a small sample size. From non-nuclear buildings inspection statistics from years 1985.1997 were surveyed, and observed failures were classified and stored on spreadsheets. Finally, a reliability model is proposed based on earlier formal work, and failure frequencies obtained by preliminary data analysis of this work. For a model utilising available information in the non-nuclear

  4. System, structure, and component evaluation for life-cycle management

    International Nuclear Information System (INIS)

    Hanley, N.E.; Banerjee, A.K.; Woods, P.B.; Perrin, J.S.; Marian, F.A.

    1992-01-01

    In recent years, many nuclear organizations and utilities have studied the possibility of extending the service life of nuclear power plants beyond the original license period. From these studies, recommendations have resulted for maintaining the option of future decisions concerning operating license renewal. Several of the recommendations are considered beneficial to the management and operation of nuclear plants in meeting many of their near-term goals. In 1986, Public Service Electric and Gas (PSE and G) concluded that a full-scale nuclear plant license renewal program for their Salem 1 and 2 and Hope Creek nuclear stations was not cost-effective at that time. Rather, it would be better served if the nuclear plant life extension (PLEX) option were maintained for future consideration. To help plan for the life extension option, a strategic 5-yr life cycle management (LCM) program was begun. In support of the LCM program, evaluations for the following Salem structures and components were performed: (1) intake structures, (2) reactor vessel support, (3) containment liner, and (4) containment structure (below grade). This paper discusses the systems, structures, and components (SSC) evaluation methodology and, as an example, discusses the evaluation performed for reactor vessel support

  5. Technology development for special nuclear components

    International Nuclear Information System (INIS)

    Sanatkumar, A.

    1994-01-01

    One of the attractive features of Candu Pressurised Heavy Water Reactor design which influenced the decision to make it the foundation of our nuclear power programme, is that its main components (calandria, end shields, coolant channel components) are relatively simple - in comparison with reactor pressure vessel and associated components of Boiling Water Reactors or Pressurised Water Reactors - and considered to be within the scope of manufacture of developing countries. Over the last two decades, India has been very successful in technology development in many important and critical areas. We are now about to launch the construction of the first 500 MWe PHWR project at Tarapur. In this context, this paper focuses attention on some of the aspects relating to self-reliance in design, engineering and manufacture of these special components as currently perceived. (author). 3 refs

  6. Component configuration control system development at EBR-II

    International Nuclear Information System (INIS)

    Monson, L.R.; Stratton, R.C.

    1984-01-01

    One ofthe major programs being pursued by the EBR-II Division of Argonne National Laboratory is to improve the reliability of plant control and protection systems. This effort involves looking closely at the present state of the art and needs associated with plant diagnostic, control and protection systems. One of the areas of development at EBR-II involves a component configuration control system (CCCS). This system is a computerized control and planning aid for the nuclear power operator

  7. Structural mechanics of nuclear plant components

    International Nuclear Information System (INIS)

    Roche, R.

    1986-10-01

    Sound structural analysis are needed for designing safe and reliable components, hence his play is very important in nuclear industry. This report is a provisional writing on the good practice in structural mechanics. Emphasis is put on non elastic analysis, damage appraisal, fatigue, fracture mechanics and also on elevated temperature behaviour [fr

  8. Chemical immobilization of fission products reactive with nuclear reactor components

    International Nuclear Information System (INIS)

    Grossman, L.N.; Kaznoff, A.I.; Clukey, H.V.

    1975-01-01

    This invention teaches a method of immobilizing deleterious fission products produced in nuclear fuel materials during nuclear fission chain reactions through the use of additives. The additives are disposed with the nuclear fuel materials in controlled quantities to form new compositions preventing attack of reactor components, especially nuclear fuel cld, by the deleterious fission products. (Patent Office Record)

  9. A pilot application of risk-informed methods to establish inservice inspection priorities for nuclear components at Surry Unit 1 Nuclear Power Station. Revision 1

    International Nuclear Information System (INIS)

    Vo, T.V.; Phan, H.K.; Gore, B.F.; Simonen, F.A.; Doctor, S.R.

    1997-02-01

    As part of the Nondestructive Evaluation Reliability Program sponsored by the US Nuclear Regulatory Commission, the Pacific Northwest National Laboratory has developed risk-informed approaches for inservice inspection plans of nuclear power plants. This method uses probabilistic risk assessment (PRA) results to identify and prioritize the most risk-important components for inspection. The Surry Nuclear Power Station Unit 1 was selected for pilot application of this methodology. This report, which incorporates more recent plant-specific information and improved risk-informed methodology and tools, is Revision 1 of the earlier report (NUREG/CR-6181). The methodology discussed in the original report is no longer current and a preferred methodology is presented in this Revision. This report, NUREG/CR-6181, Rev. 1, therefore supersedes the earlier NUREG/CR-6181 published in August 1994. The specific systems addressed in this report are the auxiliary feedwater, the low-pressure injection, and the reactor coolant systems. The results provide a risk-informed ranking of components within these systems

  10. Five-Axis Ultrasonic Additive Manufacturing for Nuclear Component Manufacture

    Science.gov (United States)

    Hehr, Adam; Wenning, Justin; Terrani, Kurt; Babu, Sudarsanam Suresh; Norfolk, Mark

    2017-03-01

    Ultrasonic additive manufacturing (UAM) is a three-dimensional metal printing technology which uses high-frequency vibrations to scrub and weld together both similar and dissimilar metal foils. There is no melting in the process and no special atmosphere requirements are needed. Consequently, dissimilar metals can be joined with little to no intermetallic compound formation, and large components can be manufactured. These attributes have the potential to transform manufacturing of nuclear reactor core components such as control elements for the High Flux Isotope Reactor at Oak Ridge National Laboratory. These components are hybrid structures consisting of an outer cladding layer in contact with the coolant with neutron-absorbing materials inside, such as neutron poisons for reactor control purposes. UAM systems are built into a computer numerical control (CNC) framework to utilize intermittent subtractive processes. These subtractive processes are used to introduce internal features as the component is being built and for net shaping. The CNC framework is also used for controlling the motion of the welding operation. It is demonstrated here that curved components with embedded features can be produced using a five-axis code for the welder for the first time.

  11. Life Cycle Management Managing the Aging of Critical Nuclear Plant Components

    International Nuclear Information System (INIS)

    Meyer, Theodore A.; Elder, G. Gary; Llovet, Ricardo

    2002-01-01

    Life Cycle Management is a structured process to manage equipment aging and long-term equipment reliability for nuclear plant Systems, Structures and Components (SSCs). The process enables the identification of effective repair, replace, inspect, test and maintenance activities and the optimal timing of the activities to maximize the economic value to the nuclear plant. This paper will provide an overview of the process and some of the tools that can be used to implement the process for the SSCs deemed critical to plant safety and performance objectives. As nuclear plants strive to reduce costs, extend life and maximize revenue, the LCM process and the supporting tools summarized in this paper can enable development of a long term, cost efficient plan to manage the aging of the plant SSCs. (authors)

  12. Tests of qualification of national components of nuclear power plants under design basis accident

    International Nuclear Information System (INIS)

    Mesquita, A.Z.

    1990-01-01

    With the purpose of qualifying national components of nuclear power plants, whose working must be maintained during and after an accident, the Thermohydraulic Division of CDTN have done tests to check the equipment stability, under Design Basis Accident conditions. Until this moment, the following components were tested: electrical junction boxes (connectors); coating systems for wall, inside cover and steel containment; hydraulics components of personnel and equipment airlock. This work describes the test instalation, the tests performed and its results. The components tested, in a general way, fulfil the specified requirements. (author) [pt

  13. Sensor Failure Detection of FASSIP System using Principal Component Analysis

    Science.gov (United States)

    Sudarno; Juarsa, Mulya; Santosa, Kussigit; Deswandri; Sunaryo, Geni Rina

    2018-02-01

    In the nuclear reactor accident of Fukushima Daiichi in Japan, the damages of core and pressure vessel were caused by the failure of its active cooling system (diesel generator was inundated by tsunami). Thus researches on passive cooling system for Nuclear Power Plant are performed to improve the safety aspects of nuclear reactors. The FASSIP system (Passive System Simulation Facility) is an installation used to study the characteristics of passive cooling systems at nuclear power plants. The accuracy of sensor measurement of FASSIP system is essential, because as the basis for determining the characteristics of a passive cooling system. In this research, a sensor failure detection method for FASSIP system is developed, so the indication of sensor failures can be detected early. The method used is Principal Component Analysis (PCA) to reduce the dimension of the sensor, with the Squarred Prediction Error (SPE) and statistic Hotteling criteria for detecting sensor failure indication. The results shows that PCA method is capable to detect the occurrence of a failure at any sensor.

  14. Assessment and management of ageing of major nuclear power plant components important to safety: Metal components of BWR containment systems

    International Nuclear Information System (INIS)

    2000-10-01

    At present, there are over four hundred operational nuclear power plants (NPPs) in IAEA Member States. Operating experience has shown that ineffective control of the ageing degradation of the major NPP components (e.g. caused by unanticipated phenomena and by operating, maintenance or manufacturing errors) can jeopardize plant safety and also plant life. Ageing in these NPPs must therefore be effectively managed to ensure the availability of design functions throughout the plant service life. From the safety perspective, this means controlling within acceptable limits the ageing degradation and wear-out of plant components important to safety so that adequate safety margins remain, i.e. integrity and functional capability in excess of normal operating requirements. This TECDOC is one in a series of reports on the assessment and management of ageing of the major NPP components important to safety. The reports are based on experience and practices of NPP operators, regulators, designers, manufacturers, and technical support organizations and a widely accepted Methodology for the Management of Ageing of NPP Components Important to Safety, which was issued by the IAEA in 1992. The current practices for the assessment of safety margins (fitness for service) and the inspection, monitoring and mitigation of ageing degradation of selected components of Canada deuterium-uranium (CANDU) reactors, boiling water reactors (BWRs), pressurized water reactors (PWRs), and water moderated, water cooled energy reactors (WWERs) are documented in the reports. These practices are intended to help all involved directly and indirectly in ensuring the safe operation of NPPs, and to provide a common technical basis for dialogue between plant operators and regulators when dealing with age related licensing issues. The guidance reports are directed toward technical experts from NPPs and from regulatory, plant design, manufacturing and technical support organizations dealing with specific

  15. Investigation on legislation necessity of qualification of quality assurance auditors for civilian nuclear components

    International Nuclear Information System (INIS)

    Zhu Hong

    2004-01-01

    The paper discusses the actual state and legislation necessity of administration for qualification of quality assurance auditors engaging in nuclear component activities in our country, and presents the tentative idea for establishing qualification system of quality assurance auditors. (author)

  16. Understanding Nuclear Safety Culture: A Systemic Approach

    International Nuclear Information System (INIS)

    Afghan, A.N.

    2016-01-01

    The Fukushima accident was a systemic failure (Report by Director General IAEA on the Fukushima Daiichi Accident). Systemic failure is a failure at system level unlike the currently understood notion which regards it as the failure of component and equipment. Systemic failures are due to the interdependence, complexity and unpredictability within systems and that is why these systems are called complex adaptive systems (CAS), in which “attractors” play an important role. If we want to understand the systemic failures we need to understand CAS and the role of these attractors. The intent of this paper is to identify some typical attractors (including stakeholders) and their role within complex adaptive system. Attractors can be stakeholders, individuals, processes, rules and regulations, SOPs etc., towards which other agents and individuals are attracted. This paper will try to identify attractors in nuclear safety culture and influence of their assumptions on safety culture behavior by taking examples from nuclear industry in Pakistan. For example, if the nuclear regulator is an attractor within nuclear safety culture CAS then how basic assumptions of nuclear plant operators and shift in-charges about “regulator” affect their own safety behavior?

  17. Interaction of electromagnetic pulse with commercial nuclear-power-plant systems

    Energy Technology Data Exchange (ETDEWEB)

    Ericson, D.M. Jr.; Strawe, D.F.; Sandberg, S.J.; Jones, V.K.; Rensner, G.D.; Shoup, R.W.; Hanson, R.J.; Williams, C.B.

    1983-02-01

    This study examines the interaction of the electromagnetic pulse from a high altitude nuclear burst with commercial nuclear power plant systems. The potential vulnerability of systems required for safe shutdown of a specific nuclear power plant are explored. EMP signal coupling, induced plant response and component damage thresholds are established using techniques developed over several decades under Defense Nuclear Agency sponsorship. A limited test program was conducted to verify the coupling analysis technique as applied to a nuclear power plant. The results are extended, insofar as possible, to other nuclear plants.

  18. Interaction of electromagnetic pulse with commercial nuclear-power-plant systems

    International Nuclear Information System (INIS)

    Ericson, D.M. Jr.; Strawe, D.F.; Sandberg, S.J.; Jones, V.K.; Rensner, G.D.; Shoup, R.W.; Hanson, R.J.; Williams, C.B.

    1983-02-01

    This study examines the interaction of the electromagnetic pulse from a high altitude nuclear burst with commercial nuclear power plant systems. The potential vulnerability of systems required for safe shutdown of a specific nuclear power plant are explored. EMP signal coupling, induced plant response and component damage thresholds are established using techniques developed over several decades under Defense Nuclear Agency sponsorship. A limited test program was conducted to verify the coupling analysis technique as applied to a nuclear power plant. The results are extended, insofar as possible, to other nuclear plants

  19. Development of interface technology for nuclear hydrogen production system

    International Nuclear Information System (INIS)

    Lee, Ki Young; Park, J. K.; Chang, J. H.

    2012-06-01

    These works focus on the development of attainment indices for nuclear hydrogen key technologies, the analysis of the hydrogen production process and the performance estimation for hydrogen production systems, and the assessment of the nuclear hydrogen production economy. The codes for analyzing the hydrogen production economy are developed for calculating the unit production cost of nuclear hydrogen. We developed basic R and D quality management methodology to meet design technology of VHTR's needs. By putting it in practice, we derived some problems and solutions. We distributed R and D QAP and Q and D QAM to each teams and these are in operation. Computer simulations are performed for estimating the thermal efficiency for the electrodialysis component likely to adapting as one of the hydrogen production system in Korea and EED-SI process known as the key components of the hydrogen production systems. Using the commercial codes, the process diagrams and the spread-sheets were produced for the Bunsen reaction process, Sulphuric Acid dissolution process and HI dissolution process, respectively, which are the key components composing of the SI process

  20. Modular core component support for nuclear reactor

    International Nuclear Information System (INIS)

    Finch, L.M.; Anthony, A.J.

    1975-01-01

    The core of a nuclear reactor is made up of a plurality of support modules for containing components such as fuel elements, reflectors and control rods. Each module includes a component support portion located above a grid plate in a low-pressure coolant zone and a coolant inlet portion disposed within a module receptacle which depends from the grid plate into a zone of high-pressure coolant. Coolant enters the module through aligned openings within the receptacle and module inlet portion and flows upward into contact with the core components. The modules are hydraulically balanced within the receptacles to prevent expulsion by the upward coolant forces. (U.S.)

  1. Quality assurance in nuclear fuel element component supply

    International Nuclear Information System (INIS)

    Jenkins, B.P.

    1987-01-01

    The paper describes the application of Quality Assurance to nuclear fuel element component supply. The Quality Assurance programme includes integrated procurement, purchasing, surveillance and receipt inspection functions. Purchasing policy is based on a consistent preference for competitive tendering. Multiple sourcing is used to encourage competitive pricing and increase security of supply. A receipt inspection facility is maintained to ensure the high product quality levels demanded by the nuclear industry. (U.K.)

  2. Quality assurance during the manufacture of nuclear power plant components

    International Nuclear Information System (INIS)

    Mueller, J.

    1976-01-01

    Apart from the special requirements of quality assurance in the production of components for the nuclear industry, in particular nuclear power stations, the author discusses special methods of quality control in the testing of welded joints. (TK) [de

  3. Nuclear plant-aging research on reactor protection systems

    International Nuclear Information System (INIS)

    Meyer, L.C.

    1988-01-01

    This report presents the rsults of a review of the Reactor Trip System (RTS) and the Engineered Safety Feature Actuating System (ESFAS) operating experiences reported in Licensee Event Reports (LER)s, the Nuclear Power Experience data base, Nuclear Plant Reliability Data System, and plant maintenance records. Our purpose is to evaluate the potential significance of aging, including cycling, trips, and testing as contributors to degradation of the RTS and ESFAS. Tables are presented that show the percentage of events for RTS and ESFAS classified by cause, components, and subcomponents for each of the Nuclear Steam Supply System vendors. A representative Babcock and Wilcox plant was selected for detailed study. The US Nuclear Regulatory Commission's Nuclear Plant Aging Research guidelines were followed in performing the detailed study that identified materials susceptible to aging, stressors, environmental factors, and failure modes for the RTS and ESFAS as generic instrumentation and control systems. Functional indicators of degradation are listed, testing requirements evaluated, and regulatory issues discussed

  4. Order in large and chaos in small components of nuclear wave functions

    International Nuclear Information System (INIS)

    Soloviev, V.G.

    1992-06-01

    An investigation of the order and chaos of the nuclear excited states has shown that there is order in the large and chaos in the small quasiparticle or phonon components of the nuclear wave functions. The order-to-chaos transition is treated as a transition from the large to the small components of the nuclear wave function. The analysis has shown that relatively large many-quasiparticle components of the wave function at an excitation energy (4-8)MeV may exist. The large many-quasiparticle components of the wave functions of the neutron resonances are responsible for enhanced E1-, M1- and E2-transition probabilities from neutron resonance to levels lying (1-2)MeV below them. (author)

  5. Service life monitoring of the main components at the Temelin nuclear power plant

    International Nuclear Information System (INIS)

    Hahn, J.; Vincour, D.

    2007-01-01

    Knowledge and experience gained from the introduction and periodical implementation of life assessment of the major components of the Temelin nuclear power plant is summarized. The initial Soviet technical design of the plant did not incorporate lifetime monitoring and evaluation, therefore it was completed with demonstrative strength and lifetime calculations from Czech companies. Moreover, a Westinghouse primary circuit diagnosis and monitoring system, including the monitoring of temperature and pressure cycles for low-cycle fatigue evaluation, was installed at the plant. The DIALIFE code for the calculation of mainly the low-cycle fatigue of the key pressure components, was developed and installed subsequently as a superstructure to the monitoring system. (author)

  6. Nuclear power plant component protection

    International Nuclear Information System (INIS)

    Michel, E.; Ruf, R.; Dorner, H.

    1976-01-01

    Described is a nuclear power plant installation which includes a concrete biological shield forming a pit in which a reactor pressure vessel is positioned. A steam generator on the outside of the shield is connected with the pressure vessel via coolant pipe lines which extend through the shield, the coolant circulation being provided by a coolant pump which is also on the outside of the shield. To protect these components on the outside of the shield and which are of mainly or substantially cylindrical shape, semicylindrical concrete segments are interfitted around them to form complete outer cylinders which are retained against outward separation radially from the components, by rings of high tensile steel which may be interspaced so closely that they provide, in effect, an outer steel cylinder. The invention is particularly applicable to pressurized-water coolant reactor installations

  7. Off-line programming and simulation in handling nuclear components

    International Nuclear Information System (INIS)

    Baker, C.P.

    1993-10-01

    IGRIP was used to create a simulation of the robotic workcell design for handling components at the PANTEX nuclear arms facility. This initial simulation identified problems with the customer's proposed worker layout, and allowed a correction to be proposed. Refinement of the IGRIP simulation allowed the design and construction of a workcell mock-up and accurate off-line programming of the system. IGRIP's off-line programming capabilities are being used to develop the motion control code for the workcell. PNLs success in this area suggests that simulation and off-line programming may be valuable tools for developing robotics in some automation resistant industries

  8. EBaLM-THP - A neural network thermohydraulic prediction model of advanced nuclear system components

    International Nuclear Information System (INIS)

    Ridluan, Artit; Manic, Milos; Tokuhiro, Akira

    2009-01-01

    In lieu of the worldwide energy demand, economics and consensus concern regarding climate change, nuclear power - specifically near-term nuclear power plant designs are receiving increased engineering attention. However, as the nuclear industry is emerging from a lull in component modeling and analyses, optimization for example using ANN has received little research attention. This paper presents a neural network approach, EBaLM, based on a specific combination of two training algorithms, error-back propagation (EBP), and Levenberg-Marquardt (LM), applied to a problem of thermohydraulics predictions (THPs) of advanced nuclear heat exchangers (HXs). The suitability of the EBaLM-THP algorithm was tested on two different reference problems in thermohydraulic design analysis; that is, convective heat transfer of supercritical CO 2 through a single tube, and convective heat transfer through a printed circuit heat exchanger (PCHE) using CO 2 . Further, comparison of EBaLM-THP and a polynomial fitting approach was considered. Within the defined reference problems, the neural network approach generated good results in both cases, in spite of highly fluctuating trends in the dataset used. In fact, the neural network approach demonstrated cumulative measure of the error one to three orders of magnitude smaller than that produce via polynomial fitting of 10th order

  9. Influence of nuclear radiation and laser beams on optical fibers and components

    Directory of Open Access Journals (Sweden)

    Pantelić Slađana N.

    2011-01-01

    Full Text Available The influence of nuclear radiation and particles has been the object of investigation for a long time. For new materials and systems the research should be continued. Human activities in various environments, including space, call for more detailed research. The role of fibers in contemporary communications, medicine, and industry increases. Fibers, their connections and fused optics components have one type of tasks - the transmission of information and power. The other type of tasks is reserved for fiber lasers: quantum generators and amplifiers. The third type of tasks is for fiber sensors, including high energy nuclear physics. In this paper we present some chosen topics in the mentioned areas as well as our experiments with nuclear radiation and laser beams to fiber and bulk materials of various nature (glass, polymer, metallic, etc..

  10. Detecting and mitigating aging in component cooling water systems

    International Nuclear Information System (INIS)

    Lofaro, R.J.

    1991-01-01

    The time-dependent effects of aging on component cooling water (CCW) systems in nuclear power plants has been studied and documented as part of a research program sponsored by the US Nuclear Regulatory Commission. It was found that age related degradation leads to failures in the CCW system which can result in an increase in system unavailability, if not properly detected and mitigated. To identify effective methods of managing this degradation, information on inspection, monitoring, and maintenance practices currently available was obtained from various operating plants and reviewed. The findings were correlated with the most common aging mechanisms and failure modes and a compilation of aging detection and mitigation practices was formulated. This paper discusses the results of this work

  11. Detecting and mitigating aging in component cooling water systems

    International Nuclear Information System (INIS)

    Lofaro, R.J.; Aggarwal, S.

    1992-01-01

    The time-dependent effects of aging on component cooling water (CCW) systems in nuclear power plants has been studied and documented as part of a research program sponsored by the US Nuclear Regulatory Commission. It was found that age related degradation leads to failures in the CCW system which can result in an increase in system unavailability, if not properly detected and mitigated. To identify effective methods of managing this degradation, information on inspection, monitoring, and maintenance practices currently available was obtained from various operating plants and reviewed. The findings were correlated with the most common aging mechanisms and failure modes, and a compilation of aging detection and mitigation practices was formulated. This paper discusses the results of this work

  12. Experimental qualification of nuclear components

    Energy Technology Data Exchange (ETDEWEB)

    Alliot, P; Fronte, T; Genty, F [FRAMATOME - Cedex 16, Paris la Defense (France)

    1988-07-01

    In the process of showing the adequacy of the seismic design of French PWR reactor, Fermat has repeatedly used dynamic testing on actual nuclear reactor components both on site and in manufacturing shops. The objective and results of a few representative examples of this on-site experimental verification are presented in this paper: the experimental dynamic analysis of a manipulator crane; the investigation of the seismic behaviour of fuel storage racks equipped with aseismic bearing devices. Difficulties to select satisfactory testing methods are also discussed for the particular case of the electrical cabinets. (author)

  13. Experimental qualification of nuclear components

    International Nuclear Information System (INIS)

    Alliot, P.; Fronte, T.; Genty, F.

    1988-01-01

    In the process of showing the adequacy of the seismic design of French PWR reactor, Fermat has repeatedly used dynamic testing on actual nuclear reactor components both on site and in manufacturing shops. The objective and results of a few representative examples of this on-site experimental verification are presented in this paper: the experimental dynamic analysis of a manipulator crane; the investigation of the seismic behaviour of fuel storage racks equipped with aseismic bearing devices. Difficulties to select satisfactory testing methods are also discussed for the particular case of the electrical cabinets. (author)

  14. Human reliability in non-destructive inspections of nuclear power plant components: modeling and analysis

    Energy Technology Data Exchange (ETDEWEB)

    Vasconcelos, Vanderley de; Soares, Wellington Antonio; Marques, Raíssa Oliveira; Silva Júnior, Silvério Ferreira da; Raso, Amanda Laureano, E-mail: vasconv@cdtn.br, E-mail: soaresw@cdtn.br, E-mail: raissaomarques@gmail.com, E-mail: silvasf@cdtn.br, E-mail: amandaraso@hotmail.com [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2017-07-01

    Non-destructive inspection (NDI) is one of the key elements in ensuring quality of engineering systems and their safe use. NDI is a very complex task, during which the inspectors have to rely on their sensory, perceptual, cognitive, and motor skills. It requires high vigilance once it is often carried out on large components, over a long period of time, and in hostile environments and restriction of workplace. A successful NDI requires careful planning, choice of appropriate NDI methods and inspection procedures, as well as qualified and trained inspection personnel. A failure of NDI to detect critical defects in safety-related components of nuclear power plants, for instance, may lead to catastrophic consequences for workers, public and environment. Therefore, ensuring that NDI methods are reliable and capable of detecting all critical defects is of utmost importance. Despite increased use of automation in NDI, human inspectors, and thus human factors, still play an important role in NDI reliability. Human reliability is the probability of humans conducting specific tasks with satisfactory performance. Many techniques are suitable for modeling and analyzing human reliability in NDI of nuclear power plant components. Among these can be highlighted Failure Modes and Effects Analysis (FMEA) and THERP (Technique for Human Error Rate Prediction). The application of these techniques is illustrated in an example of qualitative and quantitative studies to improve typical NDI of pipe segments of a core cooling system of a nuclear power plant, through acting on human factors issues. (author)

  15. Human reliability in non-destructive inspections of nuclear power plant components: modeling and analysis

    International Nuclear Information System (INIS)

    Vasconcelos, Vanderley de; Soares, Wellington Antonio; Marques, Raíssa Oliveira; Silva Júnior, Silvério Ferreira da; Raso, Amanda Laureano

    2017-01-01

    Non-destructive inspection (NDI) is one of the key elements in ensuring quality of engineering systems and their safe use. NDI is a very complex task, during which the inspectors have to rely on their sensory, perceptual, cognitive, and motor skills. It requires high vigilance once it is often carried out on large components, over a long period of time, and in hostile environments and restriction of workplace. A successful NDI requires careful planning, choice of appropriate NDI methods and inspection procedures, as well as qualified and trained inspection personnel. A failure of NDI to detect critical defects in safety-related components of nuclear power plants, for instance, may lead to catastrophic consequences for workers, public and environment. Therefore, ensuring that NDI methods are reliable and capable of detecting all critical defects is of utmost importance. Despite increased use of automation in NDI, human inspectors, and thus human factors, still play an important role in NDI reliability. Human reliability is the probability of humans conducting specific tasks with satisfactory performance. Many techniques are suitable for modeling and analyzing human reliability in NDI of nuclear power plant components. Among these can be highlighted Failure Modes and Effects Analysis (FMEA) and THERP (Technique for Human Error Rate Prediction). The application of these techniques is illustrated in an example of qualitative and quantitative studies to improve typical NDI of pipe segments of a core cooling system of a nuclear power plant, through acting on human factors issues. (author)

  16. Cable handling system for use in a nuclear reactor

    International Nuclear Information System (INIS)

    Crosgrove, R.O.; Larson, E.M.; Moody, E.

    1982-01-01

    A cable handling system for use in an installation such as a nuclear reactor is disclosed herein along with relevant portions of the reactor which, in a preferred embodiment, is a liquid metal fast breeder reactor. The cable handling system provides a specific way of interconnecting certain internal reactor components with certain external components, through an assembly of rotatable plugs. Moreover, this is done without having to disconnect these components from one another during rotation of the plugs and yet without interfering with other reactor components in the vicinity of the rotating plugs and cable handling system

  17. Prevent recurrence of nuclear disaster (4). Future tasks in the field of structure and components

    International Nuclear Information System (INIS)

    Okamoto, Koji; Takagi, Toshiyuki; Ueda, Susumu

    2012-01-01

    Structure and components subcommittee under the special committee of seismic safety of nuclear power stations of the Atomic Energy Society of Japan discussed future activities related with technical problems of seismic design of structures, components and piping system and evaluation of seismic effects in collaboration with the Japan Society of Mechanical Engineers. These problems were arranged by 'logic of seismic safety' and tabulated just enough, and then their roadmap was prepared. This article described selected relevant problems and discussed safety margins of seismic design and their related problems, referring to state of countermeasures and evaluated results of nuclear power stations after Great East Japan Earthquake occurred in March 11, 2011. Main problems were related with seismic safety margins of structure and components, consideration of ground motion index, rationalization and upgrade of seismic design, application of new technology, integrity evaluation of structure and components after or at earthquake, and upgrade of seismic probabilistic risk assessment methodology. (T. Tanaka)

  18. Proof of fatigue strength of ferritic and austenitic nuclear components

    Energy Technology Data Exchange (ETDEWEB)

    Roos, E.; Herter, K.H.; Schuler, X.; Weissenberg, T. [Materialpruefungsanstalt, Univ. Stuttgart (Germany)

    2009-07-01

    For the construction, design and operation of nuclear components and systems the appropriate technical codes and standards provide material data, detailed stress analysis procedures and a design philosophy which guarantees a reliable behaviour of the structural components throughout the specified lifetime. Especially for cyclic stress evaluation the different codes and standards provide different fatigue analyses procedures to be performed considering the various mechanical and thermal loading histories and geometric complexities of the components. For the fatigue design curves used as limiting criteria the influence of different factors like e.g., environment, surface finish and temperature must be taken into consideration in an appropriate way. Fatigue tests were performed with low alloy steels as well as with Nb- and Ti-stabilized German austenitic stainless steels in air and simulated high temperature boiling water reactor environment. The experimental results are compared and valuated with the mean data curves in air as well as with mean data curves under high temperature water environment published in the international literature. (orig.)

  19. Development of stretcher component robots for rescue against nuclear disaster

    International Nuclear Information System (INIS)

    Iwano, Yuki; Osuka, Koichi; Amano, Hisanori

    2006-01-01

    This paper studies the rescue robots to rescue people in an area polluted with radioactive leakage in nuclear power institutions. In particular, we propose the rescue system which consists of a group of small mobile robots. First, small traction robots set the posture of the fainted victims to carry easily, and carry them to the safety space with the mobile robots for the stretcher composition. In this paper, we confirm that the stretcher component robots could transport and convey a 40 [kg] dummy doll. And, we also show an application usage of stretcher robot. (author)

  20. Accelerator-based systems for plutonium destruction and nuclear waste transmutation

    International Nuclear Information System (INIS)

    Arthur, E.D.

    1994-01-01

    Accelerator-base systems are described that can eliminate long-lived nuclear materials. The impact of these systems on global issues relating to plutonium minimization and nuclear waste disposal can be significant. An overview of the components that comprise these systems is given, along with discussion of technology development status and needs. A technology development plan is presented with emphasis on first steps that would demonstrate technical performance

  1. RSE-M: In-Service Inspection Rules for Mechanical Components of PWR Nuclear Islands

    International Nuclear Information System (INIS)

    2016-01-01

    The RSE-M code defines in-service inspection operations. It applies to pressure equipment used in PWR plants, as well as spare parts for such equipment. The RSE-M code does not apply to equipment made from materials other than metal. It is based on the RCC-M code for requirements relating to the design and fabrication of mechanical components. Use: The inspection rules specified in the RSE-M code describe the standard requirements of best practice within the French nuclear industry, based on its own feedback from operating several nuclear units and partly supplemented with requirements stipulated by French regulations. To date, the 58 units in France's nuclear infrastructure enforce the in-service inspection rules of the RSE-M code. Operation of 30 commissioned units in China's nuclear infrastructure, corresponding to the M310, CPR-1000 and CPR-600 reactors, is based on the RSE-M code (since 2007, use of AFCEN codes has been required by NNSA for Generation II+ reactors). Contents of the 2016 Edition: Volume I - Rules: Section A - General rules, Section B - Specific rules for class 1 components, Section C - Specific rules for class 2 or 3 components, Section D - Specific rules for components not assigned to any particular RSE-M class; Volume II - Appendices 1 to 8: Appendices 1.0 to 1.9: supporting appendices for the general requirements, Appendix 2.1: appendix associated with chap. 2000 Requalifications, Hydraulic Proof Tests and Hydraulic Tests, Appendices 4.1 to 4.4: appendices associated with chap. 4000 Examination techniques, Appendices 5.1 to 5.8 and RPP2: appendices associated with chap. 5000 Mechanical and Materials, Appendices 8.1 to 8.2: appendices associated with chap. 8000 Maintenance Operations; Volume III: Appendix 3.1 - Visit tables: main primary and secondary systems, EPR pre-service inspection program, Class 2 or 3 vessels; Appendix 3.2 - Inspection Plans For Non-Nuclear Pressure Equipment

  2. Security Hardened Cyber Components for Nuclear Power Plants: Phase I SBIR Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Franusich, Michael D. [SpiralGen, Inc., Pittsburgh, PA (United States)

    2016-03-18

    SpiralGen, Inc. built a proof-of-concept toolkit for enhancing the cyber security of nuclear power plants and other critical infrastructure with high-assurance instrumentation and control code. The toolkit is based on technology from the DARPA High-Assurance Cyber Military Systems (HACMS) program, which has focused on applying the science of formal methods to the formidable set of problems involved in securing cyber physical systems. The primary challenges beyond HACMS in developing this toolkit were to make the new technology usable by control system engineers and compatible with the regulatory and commercial constraints of the nuclear power industry. The toolkit, packaged as a Simulink add-on, allows a system designer to assemble a high-assurance component from formally specified and proven blocks and generate provably correct control and monitor code for that subsystem.

  3. Structural integrity monitoring of critical components in nuclear facilities

    International Nuclear Information System (INIS)

    Roth, Maria; Constantinescu, Dan Mihai; Brad, Sebastian; Ducu, Catalin; Malinovschi, Viorel

    2007-01-01

    Full text: The paper presents the results obtained as part of the Project 'Integrated Network for Structural Integrity Monitoring of Critical Components in Nuclear Facilities', RIMIS, a research work underway within the framework of the Ministry of Education and Research Programme 'Research of Excellence'. The main objective of the Project is to constitute a network integrating the national R and D institutes with preoccupations in the structural integrity assessment of critical components in the nuclear facilities operating in Romania, in order to elaborate a specific procedure for this field. The degradation mechanisms of the structural materials used in the CANDU type reactors, operated by Unit 1 and Unit 2 at Cernavoda (pressure tubes, fuel elements sheaths, steam generator tubing) and in the nuclear facilities relating to reactors of this type as, for instance, the Hydrogen Isotopes Separation facility, will be investigated. The development of a flexible procedure will offer the opportunity to extend the applications to other structural materials used in the nuclear field and in the non-nuclear fields as well, in cooperation with other institutes involved in the developed network. The expected results of the project will allow the integration of the network developed at national level in the structures of similar networks operating within the EU, the enhancement of the scientific importance of Romanian R and D organizations as well as the increase of our country's contribution in solving the major issues of the nuclear field. (authors)

  4. Concept of a new method for fatigue monitoring of nuclear power plant components

    International Nuclear Information System (INIS)

    Zafosnik, M.; Cizelj, L.

    2007-01-01

    Fatigue is one of the well-understood aging mechanisms affecting mechanical components in many industrial facilities including nuclear power plants. Operational experience of nuclear power plants worldwide to date confirmed adequate design of safety related components against fatigue. In some cases however, for example when the plant life extension is envisioned, it may be very useful to monitor the remaining fatigue life of safety related components. Nuclear power plants components are classified into safety classes regarding their importance in mitigating the consequences of hypothetic accidents. Service life of components subjected to fatigue loading can be estimated with Usage Factor uk. A concept of the new method aiming both at monitoring the current state of the component and predicting its remaining lifetime in the life-extension conditions is presented. The method is based on determination of partial Usage Factor of components in which operating transients will be considered and compared to design transients. (author)

  5. Safety device and machine system of nuclear power plant

    International Nuclear Information System (INIS)

    1978-10-01

    It introduces principle and kinds of heat power including heat balance and nuclear power. It explains a lot of technical terms about the nuclear power system, which are primary loop, reactor, steam generator, primary coolant pump and pressurizer in PWR, chemical and volume control system, component cooling system, safety injection system, and spent fuel cooling and storage system in auxiliary system, liquid solid and gaseous waste disposal system in radwaste disposal, gland sealing system, turbine instrumentation, turning gear, hydrogen cooling system, condenser, feedwater heater, degenerate heater, auxiliary heat exchanger, centrifugal pump, rotary reciprocating and tank and pressure vessel.

  6. Study of wet blasting of components in nuclear power stations

    International Nuclear Information System (INIS)

    Hall, J.

    1999-12-01

    This report looks at the method of wet blasting radioactive components in nuclear power stations. The wet blaster uses pearl shaped glass beads with the dimensions of 150-250 μm mixed with water as blasting media. The improved design, providing outer operator's positions with proper radiation protection and more efficient blasting equipment has resulted in a lesser dose taken by the operators. The main reason to decontaminate components in nuclear power plants is to enable service on these components. On components like valves, pump shafts, pipes etc. oxides form and bind radiation. These components are normally situated at some distance from the reactor core and will mainly suffer from radiation from so called activation products. When a component is to be decontaminated it can be decontaminated to a radioactive level where it will be declassified. This report has found levels ranging from 150-1000 Bq/kg allowing declassification of radioactive materials. This difference is found between different countries and different organisations. The report also looks at the levels of waste generated using wet blasting. This is done by tracking the contamination to determine where it collects. It is either collected in the water treatment plant or collected in the blasting media. At Barsebaeck the waste levels, from de-contaminating nearly 800 components in one year, results in a waste volume of about 0,250 m 3 . This waste consists of low and medium level waste and will cost about 3 600 EURO to store. The conclusions of the report are that wet blasting is an indispensable way to treat contaminated components in modern nuclear power plants. The wet blasting equipment can be improved by using a robot enabling the operators to remotely treat components from the outer operator's positions. There they will benefit from better radiation protection thus further reduce their taken dose. The wet blasting equipment could also be used to better control the levels of radioactivity on

  7. Study of wet blasting of components in nuclear power stations

    Energy Technology Data Exchange (ETDEWEB)

    Hall, J

    1999-12-01

    This report looks at the method of wet blasting radioactive components in nuclear power stations. The wet blaster uses pearl shaped glass beads with the dimensions of 150-250 {mu}m mixed with water as blasting media. The improved design, providing outer operator's positions with proper radiation protection and more efficient blasting equipment has resulted in a lesser dose taken by the operators. The main reason to decontaminate components in nuclear power plants is to enable service on these components. On components like valves, pump shafts, pipes etc. oxides form and bind radiation. These components are normally situated at some distance from the reactor core and will mainly suffer from radiation from so called activation products. When a component is to be decontaminated it can be decontaminated to a radioactive level where it will be declassified. This report has found levels ranging from 150-1000 Bq/kg allowing declassification of radioactive materials.This difference is found between different countries and different organisations. The report also looks at the levels of waste generated using wet blasting. This is done by tracking the contamination to determine where it collects. It is either collected in the water treatment plant or collected in the blasting media. At Barsebaeck the waste levels, from de-contaminating nearly 800 components in one year, results in a waste volume of about 0,250 m{sup 3}. This waste consists of low and medium level waste and will cost about 3 600 EURO to store. The conclusions of the report are that wet blasting is an indispensable way to treat contaminated components in modern nuclear power plants. The wet blasting equipment can be improved by using a robot enabling the operators to remotely treat components from the outer operator's positions. There they will benefit from better radiation protection thus further reduce their taken dose. The wet blasting equipment could also be used to better control the levels of

  8. Seismic proving tests on the reliability for large components and equipment of nuclear power plants

    International Nuclear Information System (INIS)

    Ohno, Tokue; Tanaka, Nagatoshi

    1988-01-01

    Since Japan has destructive earthquakes frequently, the structural reliability for large components and equipment of nuclear power plants are rigorously required. They are designed using sophisticated seismic analyses and have not yet encountered a destructive earthquake. When nuclear power plants are planned, it is very important that the general public understand the structural reliability during and after an earthquake. Seismic Proving Tests have been planned by Ministry of International Trade and Industry (Miti) to comply with public requirement in Japan. A large-scale high-performance vibration table was constructed at Tasted Engineering Laboratory of Nuclear Power Engineering Test Center (NU PEC), in order to prove the structural reliability by vibrating the test model (of full scale or close to the actual size) in the condition of a destructive earthquake. As for the test models, the following four items were selected out of large components and equipment important to the safety: Reactor Containment Vessel; Primary Coolant Loop or Primary Loop Recirculation System; Reactor Pressure Vessel; and Reactor Core Internals. Here is described a brief of the vibration table, the test method and the results of the tests on PWR Reactor Containment Vessel and BWR Primary Loop Recirculation System (author)

  9. Passive cooling system for nuclear reactor containment structure

    Science.gov (United States)

    Gou, Perng-Fei; Wade, Gentry E.

    1989-01-01

    A passive cooling system for the contaminant structure of a nuclear reactor plant providing protection against overpressure within the containment attributable to inadvertent leakage or rupture of the system components. The cooling system utilizes natural convection for transferring heat imbalances and enables the discharge of irradiation free thermal energy to the atmosphere for heat disposal from the system.

  10. Nuclear power systems: Their safety

    International Nuclear Information System (INIS)

    Myers, L.C.

    1993-01-01

    Mankind utilizes energy in many forms and from a variety of sources. Canada is one of a growing number of countries which have chosen to embrace nuclear-electric generation as a component of their energy systems. As of August 1992 there were 433 power reactors operating in 35 countries and accounting for more than 15% of the world's production of electricity. In 1992, thirteen countries derived at least 25% of their electricity from nuclear units, with France leading at nearly 70%. In the same year, Canada produced about 16% of its electricity from nuclear units. Some 68 power reactors are under construction in 16 countries, enough to expand present generating capacity by close to 20%. No human endeavour carries the guarantee of perfect safety and the question of whether or not nuclear-electric generation represents an 'acceptable' risk to society has long been vigorously debated. Until the events of late April 1986, nuclear safety had indeed been an issue for discussion, for some concern, but not for alarm. The accident at the Chernobyl reactor in the USSR has irrevocably changed all that. This disaster brought the matter of nuclear safety back into the public mind in a dramatic fashion. This paper discusses the issue of safety in complex energy systems and provides brief accounts of some of the most serious reactor accidents which have occurred to date. (author). 7 refs

  11. Ranking of risk significant components for the Davis-Besse Component Cooling Water System

    International Nuclear Information System (INIS)

    Seniuk, P.J.

    1994-01-01

    Utilities that run nuclear power plants are responsible for testing pumps and valves, as specified by the American Society of Mechanical Engineers (ASME) that are required for safe shutdown, mitigating the consequences of an accident, and maintaining the plant in a safe condition. These inservice components are tested according to ASME Codes, either the earlier requirements of the ASME Boiler and Pressure Vessel Code, Section XI, or the more recent requirements of the ASME Operation and Maintenance Code, Section IST. These codes dictate test techniques and frequencies regardless of the component failure rate or significance of failure consequences. A probabilistic risk assessment or probabilistic safety assessment may be used to evaluate the component importance for inservice test (IST) risk ranking, which is a combination of failure rate and failure consequences. Resources for component testing during the normal quarterly verification test or postmaintenance test are expensive. Normal quarterly testing may cause component unavailability. Outage testing may increase outage cost with no real benefit. This paper identifies the importance ranking of risk significant components in the Davis-Besse component cooling water system. Identifying the ranking of these risk significant IST components adds technical insight for developing the appropriate test technique and test frequency

  12. The safety related aspects of pressure components in nuclear power plants

    International Nuclear Information System (INIS)

    Lindackers, K.H.

    1979-01-01

    Over the last two years the safety philosophy for nuclear power plants in the Federal Republic of Germany has changed considerably, as everyone working in the field perceives. The original and appropriate philosophy of risk minimalisation through graduated safety barriers has been more and more replaced by the utopian goal of total prevention of any damage. The reasons for this development are discussed briefly especially regarding pressure components. The very numerous pressure components of a nuclear power station are not all of equal importance with respect to safety. Although considerable efforts have been made, it has not been possible, to date, to achieve an agreement between operators, manufacturers, licensing authorities, independent experts, and other specialists about the safety related classification of the manifold pressure bearing parts in nuclear power stations. The background of this extremely regrettable situation is explained. In the last part of the paper the author suggests a simple and clear safety philosophy for pressure components in nuclear power stations. This philosophy is orientated both on Safety Regulations of the Radiation Protection Decree ('Strahlenschutzverordnung') of the 13th October 1976 and on the Safety Criteria for Nuclear Power Stations from 21st October 1977. Only a simple, clear framework can make a contribution to the further improvement of the already exceptional safety of nuclear facilities and to the removal of obstacles in the licensing procedure which, taken as a whole, tie up skilled personnel to a senseless degree, involve considerable financial expenditure, and have no relevance for the safety of nuclear power plants. (orig.) [de

  13. Reliability of piping system components. Volume 1: Piping reliability - A resource document for PSA applications

    Energy Technology Data Exchange (ETDEWEB)

    Nyman, R; Erixon, S; Tomic, B; Lydell, B

    1995-12-01

    SKI has undertaken a multi-year research project to establish a comprehensive passive component failure database, validate failure rate parameter estimates and establish a model framework for integrating passive component failures in existing PSAs. Phase 1 of the project produced a relational database on worldwide piping system failure events in the nuclear and chemical industries. This phase 2 report gives a graphical presentation of piping system operating experience, and compares key failure mechanisms in commercial nuclear power plants and chemical process industry. Inadequacies of traditional PSA methodology are addressed, with directions for PSA methodology enhancements. A data-driven-and-systems-oriented analysis approach is proposed to enable assignment of unique identities to risk-significant piping system component failures. Sufficient operating experience does exist to generate quality data on piping failures. Passive component failures should be addressed by today`s PSAs to allow for aging analysis and effective, on-line risk management. 111 refs, 36 figs, 20 tabs.

  14. Reliability of piping system components. Volume 1: Piping reliability - A resource document for PSA applications

    International Nuclear Information System (INIS)

    Nyman, R.; Erixon, S.; Tomic, B.; Lydell, B.

    1995-12-01

    SKI has undertaken a multi-year research project to establish a comprehensive passive component failure database, validate failure rate parameter estimates and establish a model framework for integrating passive component failures in existing PSAs. Phase 1 of the project produced a relational database on worldwide piping system failure events in the nuclear and chemical industries. This phase 2 report gives a graphical presentation of piping system operating experience, and compares key failure mechanisms in commercial nuclear power plants and chemical process industry. Inadequacies of traditional PSA methodology are addressed, with directions for PSA methodology enhancements. A data-driven-and-systems-oriented analysis approach is proposed to enable assignment of unique identities to risk-significant piping system component failures. Sufficient operating experience does exist to generate quality data on piping failures. Passive component failures should be addressed by today's PSAs to allow for aging analysis and effective, on-line risk management. 111 refs, 36 figs, 20 tabs

  15. Replacement of major nuclear power plant components for service life extension

    International Nuclear Information System (INIS)

    Novak, S.

    1987-01-01

    Problems are discussed associated with replacement of nuclear power plant components with the aim to extend their original scheduled life. The existing foreign experience shows that it is technically feasible to replace practically all basic components for which the necessity of replacement is established. Data is summed up on the replacement of steam generators in US and West German nuclear power plants showing the duration of the job, the total consumption of manhours, the collective dose equivalent and the cost. Attention is also focused on implemented and projected replacements of circulation pipes in nuclear power plants abroad. Based on these figures, the cost is estimated of the replacement of the reactor vessel and the steam generators for WWER-440 nuclear power plants. The conclusion is arrived at that even based on a conservative estimate, the extension by 20 years of the service life of a nuclear power plant is economically more effective than the construction of a new plant. (Z.M.) 2 tabs., 15 refs., 3 figs

  16. Virtual enterprise model for the electronic components business in the Nuclear Weapons Complex

    Energy Technology Data Exchange (ETDEWEB)

    Ferguson, T.J.; Long, K.S.; Sayre, J.A. [Sandia National Labs., Albuquerque, NM (United States); Hull, A.L. [Sandia National Labs., Livermore, CA (United States); Carey, D.A.; Sim, J.R.; Smith, M.G. [Allied-Signal Aerospace Co., Kansas City, MO (United States). Kansas City Div.

    1994-08-01

    The electronic components business within the Nuclear Weapons Complex spans organizational and Department of Energy contractor boundaries. An assessment of the current processes indicates a need for fundamentally changing the way electronic components are developed, procured, and manufactured. A model is provided based on a virtual enterprise that recognizes distinctive competencies within the Nuclear Weapons Complex and at the vendors. The model incorporates changes that reduce component delivery cycle time and improve cost effectiveness while delivering components of the appropriate quality.

  17. Modern technical diagnostic system for the main components of powerful turbine generator

    International Nuclear Information System (INIS)

    Ezovit, G.P.; Uglyarenko, V.P.; Burlaka, S.I.; Goroz, N.I.; Orinin, S.E.; Komaritsa, V.N.; Zav'yalov, D.N.; Mazurenko, O.A.

    2011-01-01

    The modern diagnostic system to monitor the technical state of a powerful turbine generator is considered. This system permits the detection of defects in its main components and cooling system at the early stage of their development, prevention of damage and, as a consequence, emergency shutdown of nuclear power units

  18. Fault diagnosis of main coolant pump in the nuclear power station based on the principal component analysis

    International Nuclear Information System (INIS)

    Feng Junting; Xu Mi; Wang Guizeng

    2003-01-01

    The fault diagnosis method based on principal component analysis is studied. The fault character direction storeroom of fifteen parameters abnormity is built in the simulation for the main coolant pump of nuclear power station. The measuring data are analyzed, and the results show that it is feasible for the fault diagnosis system of main coolant pump in the nuclear power station

  19. Two component memory of Rotstein effect in nuclear emulsions

    International Nuclear Information System (INIS)

    Gushchin, E.M.; Lebedev, A.N.; Somov, S.V.; Timofeev, M.K.; Tipografshchik, G.I.

    1991-01-01

    Two sharply differing memory components - fast and slow -are simultaneously detected during investigation into the controlled mode of fast charged particle detection in simple nuclear emulsions, with the emulsion trace sensitivity, corresponding to these components, being about 5 time different. The value of memory time is T m ≅40 μs for fast memory and T m ≅3.5 ms for the slow one. The detection of two Rotstein effect memory components confirms the correctness of the trap model

  20. Design, maintenance and lifetime of nuclear components

    International Nuclear Information System (INIS)

    Noel, R.L.; Eisenhut, D.G.; Carey, J.J.; Reynes, L.J.

    1989-01-01

    Division D of SMiRT deals with experience feedback relating to the in-service behavior of nuclear components, the design and construction of this equipment, its maintenance and the evaluation and management of its lifetime. The nuclear industry now having reached maturity, with more than 300 units in service worldwide, these problems are now of predominant importance to the activity of the industry and in its development programs. This applies particularly to the problems relating to the lifetime of nuclear plants, problems which are rightly of such concern both to the utilities, in view of the enormous investments involved, and also to the safety authorities. These contributions have been reviewed for the purpose of analyzing the essential points. This analysis highlights the considerable advances achieved during the recent decades in design and maintenance methods and practices. It also identifies the areas in which progress still remains to be made

  1. Scaling Analysis Techniques to Establish Experimental Infrastructure for Component, Subsystem, and Integrated System Testing

    Energy Technology Data Exchange (ETDEWEB)

    Sabharwall, Piyush [Idaho National Laboratory (INL), Idaho Falls, ID (United States); O' Brien, James E. [Idaho National Laboratory (INL), Idaho Falls, ID (United States); McKellar, Michael G. [Idaho National Laboratory (INL), Idaho Falls, ID (United States); Housley, Gregory K. [Idaho National Laboratory (INL), Idaho Falls, ID (United States); Bragg-Sitton, Shannon M. [Idaho National Laboratory (INL), Idaho Falls, ID (United States)

    2015-03-01

    Hybrid energy system research has the potential to expand the application for nuclear reactor technology beyond electricity. The purpose of this research is to reduce both technical and economic risks associated with energy systems of the future. Nuclear hybrid energy systems (NHES) mitigate the variability of renewable energy sources, provide opportunities to produce revenue from different product streams, and avoid capital inefficiencies by matching electrical output to demand by using excess generation capacity for other purposes when it is available. An essential step in the commercialization and deployment of this advanced technology is scaled testing to demonstrate integrated dynamic performance of advanced systems and components when risks cannot be mitigated adequately by analysis or simulation. Further testing in a prototypical environment is needed for validation and higher confidence. This research supports the development of advanced nuclear reactor technology and NHES, and their adaptation to commercial industrial applications that will potentially advance U.S. energy security, economy, and reliability and further reduce carbon emissions. Experimental infrastructure development for testing and feasibility studies of coupled systems can similarly support other projects having similar developmental needs and can generate data required for validation of models in thermal energy storage and transport, energy, and conversion process development. Experiments performed in the Systems Integration Laboratory will acquire performance data, identify scalability issues, and quantify technology gaps and needs for various hybrid or other energy systems. This report discusses detailed scaling (component and integrated system) and heat transfer figures of merit that will establish the experimental infrastructure for component, subsystem, and integrated system testing to advance the technology readiness of components and systems to the level required for commercial

  2. Aseismic foundation system for nuclear power stations

    International Nuclear Information System (INIS)

    Jolivet, F.; Richli, M.

    1977-01-01

    The aseismic foundation system, as described in this paper, is a new development, which makes it possible to build standard nuclear power stations in areas exposed to strong earthquakes. By adopting proven engineering concepts in design and construction of components, great advantages are achieved in the following areas: safety and reliability; efficiency; design schedule; cost. The need for an aseismic foundation system will arise more and more, as a large part of nuclear power station sites are located in highly seismic zones or must meet high intensity earthquake criteria due to the lack of historic data. (Auth.)

  3. Statistics of Shared Components in Complex Component Systems

    Science.gov (United States)

    Mazzolini, Andrea; Gherardi, Marco; Caselle, Michele; Cosentino Lagomarsino, Marco; Osella, Matteo

    2018-04-01

    Many complex systems are modular. Such systems can be represented as "component systems," i.e., sets of elementary components, such as LEGO bricks in LEGO sets. The bricks found in a LEGO set reflect a target architecture, which can be built following a set-specific list of instructions. In other component systems, instead, the underlying functional design and constraints are not obvious a priori, and their detection is often a challenge of both scientific and practical importance, requiring a clear understanding of component statistics. Importantly, some quantitative invariants appear to be common to many component systems, most notably a common broad distribution of component abundances, which often resembles the well-known Zipf's law. Such "laws" affect in a general and nontrivial way the component statistics, potentially hindering the identification of system-specific functional constraints or generative processes. Here, we specifically focus on the statistics of shared components, i.e., the distribution of the number of components shared by different system realizations, such as the common bricks found in different LEGO sets. To account for the effects of component heterogeneity, we consider a simple null model, which builds system realizations by random draws from a universe of possible components. Under general assumptions on abundance heterogeneity, we provide analytical estimates of component occurrence, which quantify exhaustively the statistics of shared components. Surprisingly, this simple null model can positively explain important features of empirical component-occurrence distributions obtained from large-scale data on bacterial genomes, LEGO sets, and book chapters. Specific architectural features and functional constraints can be detected from occurrence patterns as deviations from these null predictions, as we show for the illustrative case of the "core" genome in bacteria.

  4. RCC-M - Design and Conception Rules for Mechanical Components of PWR Nuclear Islands

    International Nuclear Information System (INIS)

    2007-01-01

    The design and construction rules applicable to mechanical components of PWR Nuclear Islands (RCC-M) are a part of the collection of design and construction rules for nuclear power plants. It covers the rules applicable to the design and manufacture of pressure boundaries of mechanical equipment of pressurized water reactors (PWR). The pressure components subject to the RCC-M are specified in A 4000. They include the reactor fluid systems (primary, secondary and auxiliary systems) and other components which are not subject to pressure: vessel internals, supports for pressure components subject to the RCC-M, nuclear island storage tanks. When a pressure equipment is subject to the RCC-M, all its elements subject to pressure are also, in accordance with the provisions of A 4000, and these elements are the same class as the component. In this case all the provisions of the RCC-M are applicable: design, procurement, manufacture, inspection and pressure testing. Elements which are not subject to pressure and which are subject to the RCC-M may be covered within the Code by limited specific provisions (procurement of materials for example). The other rules applicable to this equipment must be in contractual form. The assemblies comprising pressure equipment assembled by a manufacturer to constitute an integrated and functional whole, shall be subject to the rules indicated in this Code. Main objectives of Code Requirements are to ensure the integrity and mechanical stability over the equipment design life. Function ability and operability of equipment are not directly addressed in the Code. The RCC-M contributes to ensuring compliance with regulatory requirements. These requirements depend on the applicable regulatory context. The RCC-M is representative of the state of the art as concerns the design and manufacture of PWR components, ensuring an overall safety level tested through experience. The RCC-M consists of five sections, which provide rules for the design and

  5. A support vector machine integrated system for the classification of operation anomalies in nuclear components and systems

    International Nuclear Information System (INIS)

    Rocco S, Claudio M.; Zio, Enrico

    2007-01-01

    A support vector machine (SVM) approach to the classification of transients in nuclear power plants is presented. SVM is a machine-learning algorithm that has been successfully used in pattern recognition for cluster analysis. In the present work, single- and multiclass SVM are combined into a hierarchical structure for distinguishing among transients in nuclear systems on the basis of measured data. An example of application of the approach is presented with respect to the classification of anomalies and malfunctions occurring in the feedwater system of a boiling water reactor. The data used in the example are provided by the HAMBO simulator of the Halden Reactor Project

  6. Nuclear analysis techniques as a component of thermoluminescence dating

    Energy Technology Data Exchange (ETDEWEB)

    Prescott, J R; Hutton, J T; Habermehl, M A [Adelaide Univ., SA (Australia); Van Moort, J [Tasmania Univ., Sandy Bay, TAS (Australia)

    1997-12-31

    In luminescence dating, an age is found by first measuring dose accumulated since the event being dated, then dividing by the annual dose rate. Analyses of minor and trace elements performed by nuclear techniques have long formed an essential component of dating. Results from some Australian sites are reported to illustrate the application of nuclear techniques of analysis in this context. In particular, a variety of methods for finding dose rates are compared, an example of a site where radioactive disequilibrium is significant and a brief summary is given of a problem which was not resolved by nuclear techniques. 5 refs., 2 tabs.

  7. Nuclear analysis techniques as a component of thermoluminescence dating

    Energy Technology Data Exchange (ETDEWEB)

    Prescott, J.R.; Hutton, J.T.; Habermehl, M.A. [Adelaide Univ., SA (Australia); Van Moort, J. [Tasmania Univ., Sandy Bay, TAS (Australia)

    1996-12-31

    In luminescence dating, an age is found by first measuring dose accumulated since the event being dated, then dividing by the annual dose rate. Analyses of minor and trace elements performed by nuclear techniques have long formed an essential component of dating. Results from some Australian sites are reported to illustrate the application of nuclear techniques of analysis in this context. In particular, a variety of methods for finding dose rates are compared, an example of a site where radioactive disequilibrium is significant and a brief summary is given of a problem which was not resolved by nuclear techniques. 5 refs., 2 tabs.

  8. Some experience from seismic check-ups of components of Mochovce nuclear power plant

    International Nuclear Information System (INIS)

    Masopust, R.

    1987-01-01

    The first Czechoslovak nuclear power plant with the so-called partial anti-seismic design will be built in Mochovce. The evaluation of seismic resistance is prescribed only for equipment and systems which secure the safe reactor shutdown, the withdrawal of residual heat and prevent uncontrolled release of radioactivity into the environment. The following variants were compared in the calculation analysis of the primary loop of the WWER-440 reactor for the Mochovce nuclear power plant: the seismically unsecured loop of a usual design for WWER-440 nuclear power plants, the loop provided with mechanical or hydraulic dampers and the loop provided with viscose shock absorbers. The tests showed that technically most suitable is the use of viscose shock absorbers which do not completely block the movement of the system during the earthquake but absorb it intensively. The viscose shock absorbers are also much cheaper than the dampers. Briefly described is experience with the experimental evaluation of the seismic resistance of components of the Mochovce nuclear power plant. Great difficulty was encountered by the non-existence in Czechoslovakia of a seismic table allowing simultaneous excitation in the vertical and horizontal directions. (Z.M.). 18 refs

  9. Estimation of component failure rates for PSA on nuclear power plants 1982-1997

    International Nuclear Information System (INIS)

    Kirimoto, Yukihiro; Matsuzaki, Akihiro; Sasaki, Atsushi

    2001-01-01

    Probabilistic safety assessment (PSA) on nuclear power plants has been studied for many years by the Japanese industry. The PSA methodology has been improved so that PSAs for all commercial LWRs were performed and used to examine for accident management.On the other hand, most data of component failure rates in these PSAs were acquired from U.S. databases. Nuclear Information Center (NIC) of Central Research Institute of Electric Power Industry (CRIEPI) serves utilities by providing safety- , and reliability-related information on operation and maintenance of the nuclear power plants, and by evaluating the plant performance and incident trends. So, NIC started a research study on estimating the major component failure rates at the request of the utilities in 1988. As a result, we estimated the hourly-failure rates of 47 component types and the demand-failure rates of 15 component types. The set of domestic component reliability data from 1982 to 1991 for 34 LWRs has been evaluated by a group of PSA experts in Japan at the Nuclear Safety Research Association (NSRA) in 1995 and 1996, and the evaluation report was issued in March 1997. This document describes the revised component failure rate calculated by our re-estimation on 49 Japanese LWRs from 1982 to 1997. (author)

  10. Contributions to the research programs in nuclear and industrial electronics, domestic production of instrumentation, safety and control systems and equipment for nuclear reactors and auxiliary installations

    International Nuclear Information System (INIS)

    Talpariu, C; Talpariu, J.; Matei, C.

    2001-01-01

    Domestic production of component system and equipment for the control and safety of nuclear facilities was one of the priority objective of the Nuclear Research Institute Pitesti. The problems addressed were particularly related to design and production of analog and digital equipment for measurements, triggering and display of the values of process parameters as well as to regulating complex functions of this equipment. Associated to this effort were the research works concerning: - reliability and in-service life-time of the electronic components and equipment in the safety and control systems for nuclear processes; - radiation endurance of industrial electronic components; utilization of whirling currents in calandria tube testing; - expert systems and applications in nuclear reactor control and safety; design and testing methods of process real time software packages for safety in control critical systems for nuclear domain. There are presented characteristics of the following equipment: 1. amplifier for ionization chambers with triggering comparator circuits for the CANDU 600 reactor shut down system; 2. amplifier for ionization chambers without triggering comparator circuits for power regulating system; 3. safety and regulating computerized system for C9 and C5 cans; 4. acquisition system for dosimetric data in nuclear facilities; 5. program able digital comparator for the reactor shut down system; 6. stationary gamma areal monitors for CANDU 600 reactors and other nuclear facilities

  11. The effects of age on nuclear power plant containment cooling systems

    Energy Technology Data Exchange (ETDEWEB)

    Lofaro, R.; Subudhi, M.; Travis, R.; DiBiasio, A.; Azarm, A. [Brookhaven National Lab., Upton, NY (United States); Davis, J. [Science Applications International Corp., New York, NY (United States)

    1994-04-01

    A study was performed to assess the effects of aging on the performance and availability of containment cooling systems in US commercial nuclear power plants. This study is part of the Nuclear Plant Aging Research (NPAR) program sponsored by the US Nuclear Regulatory Commission. The objectives of this program are to provide an understanding of the aging process and how it affects plant safety so that it can be properly managed. This is one of a number of studies performed under the NPAR program which provide a technical basis for the identification and evaluation of degradation caused by age. The effects of age were characterized for the containment cooling system by reviewing and analyzing failure data from national databases, as well as plant-specific data. The predominant failure causes and aging mechanisms were identified, along with the components that failed most frequently. Current inspection, surveillance, and monitoring practices were also examined. A containment cooling system unavailability analysis was performed to examine the potential effects of aging by increasing failure rates for selected components. A commonly found containment spray system design and a commonly found fan cooler system design were modeled. Parametric failure rates for those components in each system that could be subject to aging were accounted for in the model to simulate the time-dependent effects of aging degradation, assuming no provisions are made to properly manage it. System unavailability as a function of increasing component failure rates was then calculated.

  12. The effects of age on nuclear power plant containment cooling systems

    International Nuclear Information System (INIS)

    Lofaro, R.; Subudhi, M.; Travis, R.; DiBiasio, A.; Azarm, A.; Davis, J.

    1994-04-01

    A study was performed to assess the effects of aging on the performance and availability of containment cooling systems in US commercial nuclear power plants. This study is part of the Nuclear Plant Aging Research (NPAR) program sponsored by the US Nuclear Regulatory Commission. The objectives of this program are to provide an understanding of the aging process and how it affects plant safety so that it can be properly managed. This is one of a number of studies performed under the NPAR program which provide a technical basis for the identification and evaluation of degradation caused by age. The effects of age were characterized for the containment cooling system by reviewing and analyzing failure data from national databases, as well as plant-specific data. The predominant failure causes and aging mechanisms were identified, along with the components that failed most frequently. Current inspection, surveillance, and monitoring practices were also examined. A containment cooling system unavailability analysis was performed to examine the potential effects of aging by increasing failure rates for selected components. A commonly found containment spray system design and a commonly found fan cooler system design were modeled. Parametric failure rates for those components in each system that could be subject to aging were accounted for in the model to simulate the time-dependent effects of aging degradation, assuming no provisions are made to properly manage it. System unavailability as a function of increasing component failure rates was then calculated

  13. Statistics of Shared Components in Complex Component Systems

    Directory of Open Access Journals (Sweden)

    Andrea Mazzolini

    2018-04-01

    Full Text Available Many complex systems are modular. Such systems can be represented as “component systems,” i.e., sets of elementary components, such as LEGO bricks in LEGO sets. The bricks found in a LEGO set reflect a target architecture, which can be built following a set-specific list of instructions. In other component systems, instead, the underlying functional design and constraints are not obvious a priori, and their detection is often a challenge of both scientific and practical importance, requiring a clear understanding of component statistics. Importantly, some quantitative invariants appear to be common to many component systems, most notably a common broad distribution of component abundances, which often resembles the well-known Zipf’s law. Such “laws” affect in a general and nontrivial way the component statistics, potentially hindering the identification of system-specific functional constraints or generative processes. Here, we specifically focus on the statistics of shared components, i.e., the distribution of the number of components shared by different system realizations, such as the common bricks found in different LEGO sets. To account for the effects of component heterogeneity, we consider a simple null model, which builds system realizations by random draws from a universe of possible components. Under general assumptions on abundance heterogeneity, we provide analytical estimates of component occurrence, which quantify exhaustively the statistics of shared components. Surprisingly, this simple null model can positively explain important features of empirical component-occurrence distributions obtained from large-scale data on bacterial genomes, LEGO sets, and book chapters. Specific architectural features and functional constraints can be detected from occurrence patterns as deviations from these null predictions, as we show for the illustrative case of the “core” genome in bacteria.

  14. Procurement and quality control of components important to safety in nuclear engineering projects

    International Nuclear Information System (INIS)

    Zhang Zhihua; Zhang Yiyun

    2006-01-01

    The procurement and quality control of components is a very important work in the nuclear engineering. This paper introduces the project management techniques, such as how to make a plan of components purchase in nuclear engineering. This paper discussed the classification of components, evaluation of the potential suppliers, invitation of bids, exchange of design details with the suppliers, quality assurance and quality assurance audit, and the equipment checks before acceptance and some engineering experiences. (authors)

  15. Application of a model-based fault detection system to nuclear plant signals

    International Nuclear Information System (INIS)

    Gross, K.C.; Singer, R.M.; Wegerich, S.W.; Herzog, J.P.; VanAlstine, R.; Bockhorst, F.

    1997-01-01

    To assure the continued safe and reliable operation of a nuclear power station, it is essential that accurate online information on the current state of the entire system be available to the operators. Such information is needed to determine the operability of safety and control systems, the condition of active components, the necessity of preventative maintenance, and the status of sensory systems. To this end, ANL has developed a new Multivariate State Estimation Technique (MSET) which utilizes advanced pattern recognition methods to enhance sensor and component operational validation for commercial nuclear reactors. Operational data from the Crystal River-3 (CR-3) nuclear power plant are used to illustrate the high sensitivity, accuracy, and the rapid response time of MSET for annunciation of a variety of signal disturbances

  16. Manufacturing of nuclear power components in CDM

    International Nuclear Information System (INIS)

    Krishnan, J.; Jawale, S.B.

    2002-01-01

    Full text: In the nuclear research programme in India, Dr. H.J. Bhabha, the architecture of the Indian Nuclear programme felt a need for proto-type development and precision manufacturing facility to fulfill the requirements of mechanical components in establishing the manufacturing capability for the successful and self sustained nuclear programme. Centre for Design and Manufacture (CDM) hitherto known as CWS was established in 1964 to cater to the specific requirements of DAE and other associated units like ISRO, DRDO. Since then CDM has made multiple technological achievements and changes towards high quality products. The acquisition of up-to-date machines during High-Tech facility under VIII Plan project and Advance Precision Fabrication facility under IX Plan project has changed the capability of CDM towards CAD, CAM, CAE and CNC machining centres. Considering the rapid growth in the design and manufacturing, it was renamed as Centre for Design and Manufacture in March 2002, with the mission of quality output through group effort and team work

  17. Recent advances in the TIG welding process and the application of the welding of nuclear components

    International Nuclear Information System (INIS)

    Lucas, W.; Males, B.O.

    1982-01-01

    Recent advances in the field of precision arc welding techniques and infacilities for production of nuclear power plant components arc presented. Of the precision welding techniques, pulsed TIG welding, pulsed plasma arc welding, hot-wire TIG welding, and pulsed inert-gas metal-arc welding. In the field of weld cladding, GMA plasma welding is cited as an alternative to submerged-arc welding with a strip electrode. Transistors and computer-controlled welding systems get a special mention. Applications of TIG welding in the UK are cited, e.g. welding of components for the AGR nuclear power plant and construction of equipment for repair work in feedwater pipes of the MAGNOX reactor. (orig.) [de

  18. Thermoelectric-Driven Sustainable Sensing and Actuation Systems for Fault-Tolerant Nuclear Incidents

    Energy Technology Data Exchange (ETDEWEB)

    Longtin, Jon [Stony Brook Univ., NY (United States)

    2016-02-08

    The Fukushima Daiichi nuclear incident in March 2011 represented an unprecedented stress test on the safety and backup systems of a nuclear power plant. The lack of reliable information from key components due to station blackout was a serious setback, leaving sensing, actuation, and reporting systems unable to communicate, and safety was compromised. Although there were several independent backup power sources for required safety function on site, ultimately the batteries were drained and the systems stopped working. If, however, key system components were instrumented with self-powered sensing and actuation packages that could report indefinitely on the status of the system, then critical system information could be obtained while providing core actuation and control during off-normal status for as long as needed. This research project focused on the development of such a self-powered sensing and actuation system. The electrical power is derived from intrinsic heat in the reactor components, which is both reliable and plentiful. The key concept was based around using thermoelectric generators that can be integrated directly onto key nuclear components, including pipes, pump housings, heat exchangers, reactor vessels, and shielding structures, as well as secondary-side components. Thermoelectric generators are solid-state devices capable of converting heat directly into electricity. They are commercially available technology. They are compact, have no moving parts, are silent, and have excellent reliability. The key components to the sensor package include a thermoelectric generator (TEG), microcontroller, signal processing, and a wireless radio package, environmental hardening to survive radiation, flooding, vibration, mechanical shock (explosions), corrosion, and excessive temperature. The energy harvested from the intrinsic heat of reactor components can be then made available to power sensors, provide bi-directional communication, recharge batteries for other

  19. Thermoelectric-Driven Sustainable Sensing and Actuation Systems for Fault-Tolerant Nuclear Incidents

    International Nuclear Information System (INIS)

    Longtin, Jon

    2015-09-01

    The Fukushima Daiichi nuclear incident in March 2011 represented an unprecedented stress test on the safety and backup systems of a nuclear power plant. The lack of reliable information from key components due to station blackout was a serious setback, leaving sensing, actuation, and reporting systems unable to communicate, and safety was compromised. Although there were several independent backup power sources for required safety function on site, ultimately the batteries were drained and the systems stopped working. If, however, key system components were instrumented with self-powered sensing and actuation packages that could report indefinitely on the status of the system, then critical system information could be obtained while providing core actuation and control during off-normal status for as long as needed. This research project focused on the development of such a self-powered sensing and actuation system. The electrical power is derived from intrinsic heat in the reactor components, which is both reliable and plentiful. The key concept was based around using thermoelectric generators that can be integrated directly onto key nuclear components, including pipes, pump housings, heat exchangers, reactor vessels, and shielding structures, as well as secondary-side components. Thermoelectric generators are solid-state devices capable of converting heat directly into electricity. They are commercially available technology. They are compact, have no moving parts, are silent, and have excellent reliability. The key components to the sensor package include a thermoelectric generator (TEG), microcontroller, signal processing, and a wireless radio package, environmental hardening to survive radiation, flooding, vibration, mechanical shock (explosions), corrosion, and excessive temperature. The energy harvested from the intrinsic heat of reactor components can be then made available to power sensors, provide bi-directional communication, recharge batteries for other

  20. Application of 3-dimensional CAD modeling system in nuclear plants

    International Nuclear Information System (INIS)

    Suwa, Minoru; Saito, Shunji; Nobuhiro, Minoru

    1990-01-01

    Until now, the preliminary work for mutual components in nuclear plant were readied by using plastic models. Recently with the development of computer graphic techniques, we can display the components on the graphics terminal, better than with use of plastic model and actual plants. The computer model can be handled, both telescopically and microscopically. A computer technique called 3-dimensional CAD modeling system was used as the preliminary work and design system. Through application of this system, database for nuclear plants was completed in arrangement step. The data can be used for piping design, stress analysis, shop production, testing and site construction, in all steps. In addition, the data can be used for various planning works, even after starting operation of plant. This paper describes the outline of the 3-dimensional CAD modeling system. (author)

  1. Identification of seismically risk-sensitive systems and components in nuclear power plants: feasibility study

    International Nuclear Information System (INIS)

    Azarm, M.; Boccio, J.; Farahzad, P.

    1983-06-01

    An approach for the identification of risk-sensitive components in a nuclear power plant during and after a seismic event is described. Application of the methodology to two hypothetical power plants - a Boiling Water Reactor and a Pressurized Water Reactor - are presented and the results are given in tabular and graphical form. Conclusions drawn and lessons learned through the course of this study, based on the relative importance of various accident scenarios and sensitivity analyses, are discussed. In addition, the areas that may need further investigation are identified

  2. Predictive based monitoring of nuclear plant component degradation using support vector regression

    International Nuclear Information System (INIS)

    Agarwal, Vivek; Alamaniotis, Miltiadis; Tsoukalas, Lefteri H.

    2015-01-01

    Nuclear power plants (NPPs) are large installations comprised of many active and passive assets. Degradation monitoring of all these assets is expensive (labor cost) and highly demanding task. In this paper a framework based on Support Vector Regression (SVR) for online surveillance of critical parameter degradation of NPP components is proposed. In this case, on time replacement or maintenance of components will prevent potential plant malfunctions, and reduce the overall operational cost. In the current work, we apply SVR equipped with a Gaussian kernel function to monitor components. Monitoring includes the one-step-ahead prediction of the component's respective operational quantity using the SVR model, while the SVR model is trained using a set of previous recorded degradation histories of similar components. Predictive capability of the model is evaluated upon arrival of a sensor measurement, which is compared to the component failure threshold. A maintenance decision is based on a fuzzy inference system that utilizes three parameters: (i) prediction evaluation in the previous steps, (ii) predicted value of the current step, (iii) and difference of current predicted value with components failure thresholds. The proposed framework will be tested on turbine blade degradation data.

  3. Automatic acoustic and vibration monitoring system for nuclear power plants

    International Nuclear Information System (INIS)

    Tothmatyas, Istvan; Illenyi, Andras; Kiss, Jozsef; Komaromi, Tibor; Nagy, Istvan; Olchvary, Geza

    1990-01-01

    A diagnostic system for nuclear power plant monitoring is described. Acoustic and vibration diagnostics can be applied to monitor various reactor components and auxiliary equipment including primary circuit machinery, leak detection, integrity of reactor vessel, loose parts monitoring. A noise diagnostic system has been developed for the Paks Nuclear Power Plant, to supervise the vibration state of primary circuit machinery. An automatic data acquisition and processing system is described for digitalizing and analysing diagnostic signals. (R.P.) 3 figs

  4. Nuclear reactor insulation and preheat system

    International Nuclear Information System (INIS)

    Wampole, N.C.

    1978-01-01

    An insulation and preheat system is disclosed for preselected components of a fluid cooled nuclear reactor. A gas tight barrier or compartment of thermal insulation surrounds the selected components and includes devices to heat the internal atmosphere of the ocmpartment. An external surface of the compartment of enclosure is cooled, such as by a circulating fluid. The heating devices provide for preheating of the components, as well as maintenance of a temperature sufficient to ensure that the reactor coolant fluid will not solidify during shutdown. The external cooling limits the heat transferred to other plant structures, such as supporting concrete and steel. The barrier is spaced far enough from the surrounded components so as to allow access for remote or manual inspection, maintenance, and repair

  5. Nuclear chromodynamics: applications of QCD to relativistic multiquark systems

    International Nuclear Information System (INIS)

    Brodsky, S.J.; Ji, C.R.

    1984-07-01

    We review the applications of quantum chromodynamics to nuclear multiquark systems. In particular, predictions are given for the deuteron reduced form factor in the high momentum transfer region, hidden color components in nuclear wavefunctions, and the short distance effective force between nucleons. A new antisymmetrization technique is presented which allows a basis for relativistic multiquark wavefunctions and solutions to their evolution to short distances. Areas in which conventional nuclear theory conflicts with QCD are also briefly reviewed. 48 references

  6. ITER nuclear components, preparing for the construction and R&D results

    Science.gov (United States)

    Ioki, K.; Akiba, M.; Barabaschi, P.; Barabash, V.; Chiocchio, S.; Daenner, W.; Elio, F.; Enoeda, M.; Ezato, K.; Federici, G.; Gervash, A.; Grebennikov, D.; Jones, L.; Kajiura, S.; Krylov, V.; Kuroda, T.; Lorenzetto, P.; Maruyama, S.; Merola, M.; Miki, N.; Morimoto, M.; Nakahira, M.; Ohmori, J.; Onozuka, M.; Rozov, V.; Sato, K.; Strebkov, Yu; Suzuki, S.; Tanchuk, V.; Tivey, R.; Utin, Yu

    2004-08-01

    Progress has been made in the preparation of the procurement specifications for key nuclear components of ITER. Detailed design of the vacuum vessel (VV) and in-vessel components is being performed to consider fabrication methods and non-destructive tests (NDT). R&D activities are being carried out on vacuum vessel UT inspection with waves launched at an angle of 20° or 30°, on flow distribution tests of a two-channel model, on fabrication and testing of FW mock-ups and panels, on the blanket flexible support as a complete system including the housing, on the blanket co-axial pipe connection with guard vacuum for leak detection, and on divertor vertical target prototypes. The results give confidence in the validity of the design and identify possibilities of attractive alternate fabrication methods.

  7. Risk-based priorities for inspection of nuclear pressure boundary components at selected LWRs

    International Nuclear Information System (INIS)

    Vo, T.V.; Simonen, F.A.; Gore, B.F.; Doctor, S.R.; Smith, B.W.

    1990-01-01

    Data from existing probabilistic risk assessments for eight representative nuclear power plants were used to identify and prioritize the most relevant systems to plant safety. The objective of this paper is to assess current in-service inspection requirements for pressure boundary systems and components, and to develop recommendations for improvements. This study demonstrates the feasibility of using risk-based methods to develop plant-specific inspection plans. Results for the eight representative plants also indicate generic trends that suggest improvements in current inspection plans now based on priorities set in accordance with code definitions of Class 1, 2, and 3 systems

  8. Risk-based priorities for inspection of nuclear pressure boundary components at selected LWRs

    International Nuclear Information System (INIS)

    Vo, T.V.; Simonen, F.A.; Gore, B.F.; Doctor, S.R.; Smith, B.W.

    1990-03-01

    Data from existing probabilistic risk assessments for eight representative nuclear power plants were used to identify and prioritize the most relevant systems to plant safety. The objective was to assess current in-service inspection requirements for pressure boundary systems and components, and to develop recommendations for improvements. This study demonstrates the feasibility of using risk-based methods to develop plant-specific inspection plans. Results for the eight representative plants also indicate generic trends that suggest improvements in current inspection plans now based on priorities set in accordance with code definitions of Class 1, 2, and 3 systems. 2 refs., 4 figs., 5 tabs

  9. The effects of aging on electrical and I ampersand C components: Results of US Nuclear Plant Aging Research

    International Nuclear Information System (INIS)

    Aggarwal, S.K.; Gunther, W.E.

    1993-01-01

    The US NRC's hardware oriented engineering research program for plant aging and degradation monitoring has achieved results in the area of electrical, control, and instrumentation (ECI) components used in nuclear power plants (NPPs). The principal goals of the program, known as the Nuclear Power Plant Aging Research (NPAR) Program, are to understand the effects of age-related degradation in NPPs and how to manage and mitigate them effectively. This paper describes how these goals have been achieved for key ECI components used in the safety systems of NPPs. The status of relevant on-going and planned research projects is also provided

  10. The effects of aging on electrical and I ampersand C components: Results of US nuclear plant aging research

    International Nuclear Information System (INIS)

    Aggarwal, S.K.; Gunther, W.E.

    1991-01-01

    The US NRC's hardware oriented engineering research program for plant aging and degradation monitoring has achieved results in the area of electrical, control, and instrumentation (ECI) components used in nuclear power plants (NPPs). The principal goals of the program, known as the Nuclear Power Plant Aging Research (NPAR) Program, are to understand the effects of age-related degradation in NPPs and how to manage and mitigate them effectively. This paper describes how these goals have been achieved for key ECI components used in the safety systems of NPPs. The status of relevant on-going and planned research projects is also provided

  11. Commercial Off-the-Shelf (COTS) Components and Enterprise Component Information System (eCIS)

    Energy Technology Data Exchange (ETDEWEB)

    John Minihan; Ed Schmidt; Greg Enserro; Melissa Thompson

    2008-06-30

    The purpose of the project was to develop the processes for using commercial off-the-shelf (COTS) parts for WR production and to put in place a system for implementing the data management tools required to disseminate, store, track procurement, and qualify vendors. Much of the effort was devoted to determining if the use of COTS parts was possible. A basic question: How does the Nuclear Weapons Complex (NWC) begin to use COTS in the weapon Stockpile Life Extension Programs with high reliability, affordability, while managing risk at acceptable levels? In FY00, it was determined that a certain weapon refurbishment program could not be accomplished without the use of COTS components. The elements driving the use of COTS components included decreased cost, greater availability, and shorter delivery time. Key factors that required implementation included identifying the best suppliers and components, defining life cycles and predictions of obsolescence, testing the feasibility of using COTS components with a test contractor to ensure capability, as well as quality and reliability, and implementing the data management tools required to disseminate, store, track procurement, and qualify vendors. The primary effort of this project then was to concentrate on the risks involved in the use of COTS and address the issues of part and vendor selection, procurement and acceptance processes, and qualification of the parts via part and sample testing. The Enterprise Component Information System (eCIS) was used to manage the information generated by the COTS process. eCIS is a common interface for both the design and production of NWC components and systems integrating information between SNL National Laboratory (SNL) and the Kansas City Plant (KCP). The implementation of COTS components utilizes eCIS from part selection through qualification release. All part related data is linked across an unclassified network for access by both SNL and KCP personnel. The system includes not

  12. A protection system of low temperature thermo-supply nuclear reactor

    International Nuclear Information System (INIS)

    Jiang Binsen

    1988-09-01

    A Protection system of low temperature thermo-supply nuclear reactor is introduced. It is the first protection system, which is designed and manufactred on the basis of Chinese National Standard GB 4083-83 'General Safety Principle of Nuclear Reactor Protection System', to be considered under the circumstances of industry level in China. Advantages of the protection system are as follows: 1)The single failure criteria can fully be fulfilled by the protection system. 2) On-line testing system can be used for detecting all of failure components and quick identifying the failure points in the system. 3) It is convenience for maintenacnce of the system. To complete this project is very important and helpful in promoting the development of the protection system and safety operation of nuclear reactor in China

  13. Cooperation of nuclear, thermal and hydroelectric power plants in the power system

    International Nuclear Information System (INIS)

    1984-01-01

    The conference heard 36 papers of which 23 were incorporated in INIS. The subjects discussed were: the development of power industry in Czechoslovakia, methods of statistical analysis of data regarding nuclear power plant operation, the incorporation of WWER nuclear power plants in the power supply system, the standardization of nuclear power plants, the service life of components, use of nuclear energy sources, performance of the reactor accident protection system, the use of nuclear power and heating plants in Hungary, risk analysis, optimization of nuclear power plants, accidents caused by leakage of the primary and secondary circuit. (J.P.)

  14. Radiation control system of nuclear power plants

    International Nuclear Information System (INIS)

    Kapisovsky, V.; Kosa, M.; Melichar, Z.; Moravek, J.; Jancik, O.

    1977-01-01

    The SYRAK system is being developed for in-service radiation control of the V-1 nuclear power plant. Its basic components are an EC 1010 computer, a CAMAC system and communication means. The in-service release of radionuclides is measured by fuel can failure detection, by monitoring rare gases in the coolant, by gamma spectrometric coolant monitoring and by iodine isotopes monitoring in stack disposal. (O.K.)

  15. 2-component heating systems

    Energy Technology Data Exchange (ETDEWEB)

    Radtke, W

    1987-03-01

    The knowledge accumulated only recently of the damage to buildings and the hazards of formaldehyde, radon and hydrocarbons has been inducing louder calls for ventilation, which, on their part, account for the fact that increasing importance is being attached to the controlled ventilation of buildings. Two-component heating systems provide for fresh air and thermal comfort in one. While the first component uses fresh air blown directly and controllably into the rooms, the second component is similar to the Roman hypocaustic heating systems, meaning that heated outer air is circulating under the floor, thus providing for hot surfaces and thermal comfort. Details concerning the two-component heating system are presented along with systems diagrams, diagrams of the heating system and tables identifying the respective costs. Descriptions are given of the two systems components, the fast heat-up, the two-component made, the change of air, heat recovery and control systems. Comparative evaluations determine the differences between two-component heating systems and other heating systems. Conclusive remarks are dedicated to energy conservation and comparative evaluations of costs. (HWJ).

  16. Integrated network for structural integrity monitoring of critical components in nuclear facilities, RIMIS

    International Nuclear Information System (INIS)

    Roth, Maria; Constantinescu, Dan Mihai; Brad, Sebastian; Ducu, Catalin; Malinovschi, Viorel

    2008-01-01

    The round table aims to join specialists working in the research area of the Romanian R and D Institutes and Universities involved in structural integrity assessment of materials, especially those working in the nuclear field, together with the representatives of the end user, the Cernavoda NPP. This scientific event will offer the opportunity to disseminate the theoretical, experimental and modelling activities, carried out to date, in the framework of the National Program 'Research of Excellence', Module I 2006-2008, managed by the National Authority for Scientific Research. Entitled 'Integrated Network for Structural Integrity Monitoring of Critical Components in Nuclear Facilities, RIMIS, the project has two main objectives: 1. - to elaborate a procedure applicable to the structural integrity assessment of critical components used in Romanian nuclear facilities (CANDU type Reactor, Hydrogen Isotopes Separation installations); 2. - to integrate the national networking into a similar one of European level, and to enhance the scientific significance of Romanian R and D organisations as well as to increase the contribution in solving major issues of the nuclear field. The topics of the round table will be focused on: 1. Development of a Structural Integrity Assessment Methodology applicable to the nuclear facilities components; 2. Experimental investigation methods and procedures; 3. Numeric simulation of nuclear components behaviour; 4. Further activities to finalize the assessment procedure. Also participations and contributions to sustain the activity in the European Network NULIFE, FP6 will be discussed. (authors)

  17. Nuclear Bi-Brayton system for aircraft propulsion

    International Nuclear Information System (INIS)

    Pierce, B.L.

    1979-01-01

    Recent studies have shown the desirability of new system concept for nuclear aircraft propulsion utilizing the Bi-Brayton system concept, permits coupling of a gas cooled reactor to the power transmission and conversion system in a manner such as to fulfill the safety criteria while eliminating the need for a high temperature intermediate heat exchanger or shaft penetrations of the containment vessel. This system has been shown to minimize the component development required and to allow reduction in total propulsion system weight. This paper presents a description of the system concept and the results of the definition and evaluation studies to date. Parametric and reference system definition studies have been performed. The closed-cycle Bi-Brayton system and component configurations and weight estimates have been derived. Parametric evaluation and cycle variation studies have been performed and interpreted. 7 refs

  18. Time-independent and time-dependent contributions to the unavailability of standby safety system components

    International Nuclear Information System (INIS)

    Lofgren, E.V.; Uryasev, S.; Samanta, P.

    1997-01-01

    The unavailability of standby safety system components due to failures in nuclear power plants is considered to involve a time-independent and a time-dependent part. The former relates to the component's unavailability from demand stresses due to usage, and the latter represents the component's unavailability due to standby-time stresses related to the environment. In this paper, data from the nuclear plant reliability data system (NPRDS) were used to partition the component's unavailability into the contributions from standby-time stress (i.e., due to environmental factors) and demand stress (i.e., due to usage). Analyses are presented of motor-operated valves (MOVs), motor-driven pumps (MDPs), and turbine-driven pumps (TDPs). MOVs fail predominantly (approx. 78 %) from environmental factors (standby-time stress failures). MDPs fail slightly more frequently from demand stresses (approx. 63 %) than standby-time stresses, while TDPs fail predominantly from standby-time stresses (approx. 78 %). Such partitions of component unavailability have many uses in risk-informed and performance-based regulation relating to modifications to Technical Specification, in-service testing, precise determination of dominant accident sequences, and implementation of maintenance rules

  19. Classification of transportation packaging and dry spent fuel storage system components according to importance to safety

    International Nuclear Information System (INIS)

    Tyacke, M.J.; McConnell, J.W. Jr.; Ayers, A.L. Jr.; O'Connor, S.C.; Jankovich, J.P.

    1996-01-01

    The Idaho National Engineering Laboratory prepared a technical report for the Office of Nuclear Material Safety and Safeguards of the US Nuclear Regulatory Commission, entitled Classification of Transportation Packaging and Dry Spent Fuel Storage System Components According to Importance to Safety, NUREG/CR-6407. This paper provides the results of that report. It also presents the graded approach for classification of components used in transportation packagings and dry spent fuel storage systems. This approach provides a method for identifying the classification of components according to importance to safety within transportation packagings and dry spent fuel storage systems. Record retention requirements are discussed to identify the documentation necessary to validate that the individual components were fabricated in accordance with their assigned classification. A review of the existing regulations pertaining to transportation packagings and dry storage systems was performed to identify current requirements. The general types of transportation packagings and dry storage systems are identified. The methodology used in this paper is based on Regulatory Guide 7.10, Establishing Quality Assurance Programs for Packaging Used in the Transport of Radioactive Material. This paper also includes a list of generic components for each of the general types of transportation packagings and spent fuel storage systems, with a classification category assigned to each component. Several examples concerning the safety importance of components are presented

  20. Lubrication of nuclear reactor components

    International Nuclear Information System (INIS)

    Wild, E.; Mack, K.J.

    1978-01-01

    Safe operation of liquid metal cooled nuclear reactors requires a knowledge of the tribological behaviour of contacting components at high temperatures with slow relative movement at high frictional loads in a chemically aggressive environment. Experiments have been performed on various material combinations in liquid sodium and argon. Because of the small sliding movements, hydrodynamic lubrication is not expected and thus surface finish is an important factor. Tests have been performed on brushed, ground and lapped surfaces. Among the material combinations tested a CrC-coating on a 1.4961 stainless steel substrate performed well. Friction coefficients of 0.35-0.5 in argon and 0.1-1.2 in liquid sodium were recorded. (author)

  1. Aspects for selection of materials and fabrication processes for nuclear component manufacturing

    International Nuclear Information System (INIS)

    Pernstich, K.

    1980-01-01

    For components of the Nuclear steam supply System of Light Water Reactors an extremely high safety standard is required. These requirements only can be met by adequate selection of materials and fabrication processes and their proper application in combination with strict quality assurance and control measurements. A general overview of the basic aspects to be considered in this connection is presented together with an indication of the present state of art for the main materials and fabrication processes. (author) [pt

  2. Nuclear reactor power supply system

    International Nuclear Information System (INIS)

    Cook, B.M.

    1982-01-01

    The redundant signals from the sensor assemblies measuring the process parameters of a nuclear reactor power supply are transmitted each in its turn to a protection system which operates to actuate the protection apparatus for signals indicating off-process conditions. Each sensor assembly includes a number of like sensors measuring the same parameters. The sets of process signals derived from the sensor assemblies are each in its turn transmitted from the protection system to the control system which impresses control signals on the reactor or its components to counteract the tendency for conditions to drift off-normal status requiring operation of the protection system. A parameter signal selector prevents a parameter signal which differs from the other parameter signals of the set by more than twice the allowable variation from passing to the control system. Test signals are periodically impressed by a test unit on a selected pair of a selection unit and control channels. This arrangement eliminates the possibility that a single component failure which may be spurious will cause an inadvertent trip of the reactor during test. (author)

  3. Data support system for controlling decentralised nuclear power industry facilities through uninterruptible condition monitoring

    Directory of Open Access Journals (Sweden)

    Povarov Vladimir

    2018-01-01

    Full Text Available The article describes the automated uninterruptible multi-parameter system for monitoring operational vulnerability of critical NPP components, which differs from existing ones by being universally applicable for analysing mechanical damage of nuclear power unit components. The system allows for performing routine assessment of metal structures. The assessment of strained condition of a deteriorating component is based on three-dimensional finite element simulation with calculations adjusted with reference to in-situ measurements. A program for calculation and experimental analysis of maximum load and durability of critical area forms the core of uninterruptible monitoring system. The knowledge base on performance of the monitored components in different operating conditions and the corresponding comprehensive analysis of strained condition and deterioration rates compose the basis of control system data support, both for operating nuclear power units and robotic maintenance and repair systems.

  4. Planned reliability in the transport and installation of large nuclear components

    International Nuclear Information System (INIS)

    Bieler, L.

    1988-01-01

    The transport and installation of heavy and bulky large components require detailed planning of all jobs and activities, trained and experienced personnel and corresponding technical equipment for reliable and quality-assured implementation. The correct approach to the planning and implementation of such transports and installations has been confirmed by years of successful performance of these jobs e.g. in reactor pressure vessels and steam generators for nuclear power plants. Large components for nuclear power plants are truly extreme examples but will be all the better suited for demonstrating the problems inherent in transport and installation. (orig.) [de

  5. RCC-M: Design and construction rules for mechanical components of PWR nuclear islands

    International Nuclear Information System (INIS)

    2017-01-01

    AFCEN's RCC-M code concerns the mechanical components designed and manufactured for pressurized water reactors (PWR). It applies to pressure equipment in nuclear islands in safety classes 1, 2 and 3, and certain non-pressure components, such as vessel internals, supporting structures for safety class components, storage tanks and containment penetrations. RCC-M covers the following technical subjects: sizing and design, choice of materials and procurement. Fabrication and control, including: associated qualification requirements (procedures, welders and operators, etc.), control methods to be implemented, acceptance criteria for detected defects, documentation associated with the different activities covered, and quality assurance. The design, manufacture and inspection rules defined in RCC-M leverage the results of the research and development work pioneered in France, Europe and worldwide, and which have been successfully used by industry to design and build PWR nuclear islands. AFCEN's rules incorporate the resulting feedback. Use: France's last 16 nuclear units (P'4 and N4); 4 CP1 reactors in South Africa (2) and Korea (2); 44 M310 (4), CPR-1000 (28), CPR-600 (6), HPR-1000 (4) and EPR (2) reactors in service or undergoing construction in China; 4 EPR reactors in Europe: Finland (1), France (1) and UK (2). Content: Section I - nuclear island components, subsection 'A': general rules, subsection 'B': class 1 components, subsection 'C': class 2 components, subsection 'D': class 3 components, subsection 'E': small components, subsection 'G': core support structures, subsection 'H': supports, subsection 'J': low pressure or atmospheric storage tanks, subsection 'P': containment penetration, subsection 'Q': qualification of active mechanical components, subsection 'Z': technical appendices; section II - materials; section III - examination

  6. Study on the Safety Classification Criteria of Mechanical Systems and Components for Open Pool-Type Research Reactors

    International Nuclear Information System (INIS)

    Belal, Al Momani; Jo, Jong Chull

    2013-01-01

    This paper describes a new compromised safety classification approach based on the comparative study of the different practices in safety classification of mechanical systems and components of open pool-type RRs, which have been adopted by several developed countries in the nuclear power area. It is hoped that the proposed safety classification criteria will be used to develop a harmonized consensus international standard. Different safety classification criteria for systems, structures, and components (SSCs) of nuclear reactors are used among the countries that export or import nuclear reactor technology, which may make the nuclear technology trade and exchange difficult. Thus, such various different approaches of safety classification need to be compromised to establish a global standard. This article proposes practicable optimized criteria for safety classification of SSCs for open pool-type research reactors (RRs)

  7. Study on the Safety Classification Criteria of Mechanical Systems and Components for Open Pool-Type Research Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Belal, Al Momani [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Jo, Jong Chull [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2013-10-15

    This paper describes a new compromised safety classification approach based on the comparative study of the different practices in safety classification of mechanical systems and components of open pool-type RRs, which have been adopted by several developed countries in the nuclear power area. It is hoped that the proposed safety classification criteria will be used to develop a harmonized consensus international standard. Different safety classification criteria for systems, structures, and components (SSCs) of nuclear reactors are used among the countries that export or import nuclear reactor technology, which may make the nuclear technology trade and exchange difficult. Thus, such various different approaches of safety classification need to be compromised to establish a global standard. This article proposes practicable optimized criteria for safety classification of SSCs for open pool-type research reactors (RRs)

  8. Dynamic interactions of components, structure, and foundation of nuclear power facilities

    International Nuclear Information System (INIS)

    Pajuhesh, J.; Hadjian, A.H.

    1977-01-01

    A solution is formulated for the dynamic analysis of structures and components with different stiffness and damping characteristics, including the consideration of soil-structure interaction effects. Composite structures are often analysed approximately, in particular with regards to damping. For example, the reactor and other equipment in nuclear power plant structures are often analysed by assuming them uncoupled from the supporting structures. To achieve a better accuracy, the coupled system is hereby analysed as a composite component-structure-soil system. Although derivation of mass and stiffness matrices for the component-structure-soil system is a simple problem, the determination of the damping characteristics of such a system is more complex. This emphasis on the proper evaluation of system damping is warranted on the grounds that, when resonance conditions occur, the response amplitude is governed to a significant degree by the system damping. The damping information is usually available for each sub-structure separately with its based fixed or devoid of rigid-body modes of motion. The rigid-body motions are often free of damping resistance but sometimes, such as in the case of soil-structure interaction, or in the case of aerodynamic resistance, are uniquely defined. The composite damping matrix for the complete structure is hereby derived from the above-mentioned information. Thus, the damping matrix is first obtained for the free-free model of each sub-structure (the model containing the structural degrees of freedom together with rigid-body modes of motion), and then the submatrices for the free-free models are assembled to form the composite damping matrix in acccordance with an assembly technique relating the sub-structure coordinates to the global coordinates of the composite structure

  9. Failure modes of safety-related components at fires on nuclear power plants

    International Nuclear Information System (INIS)

    Aaslund, A.

    2000-03-01

    Probabilistic assessment methods can be used to identify specific plant vulnerabilities. Application of such methods can also facilitate selection among system design alternatives available for safety enhancements. The quality of assessment results is however strongly dependent on realistic and accurate input data for modelling of system component behaviour and failure modes during conditions to be assessed. Use of conservative input data may not lead to results providing guidance on safety upgrades. Adequate input data for probabilistic assessments seems to be lacking for at least failure modes of some electrical components when exposed to a fire. This report presents an attempt to improve the situation with respect to such input data. In order to take advantage of information in existing documentation of fire incident occurrences some of the lessons learned from the fire at Browns Ferry Nuclear Power Plant on March 22, 1975 are discussed in this report. Also a summary of results from different fire tests of electrical cables presented in a fire risk analysis report is a part of the references. The failure modes used to describe fire-induced damage are 'open circuit' and 'hot short' which seems to be commonly accepted terms within the branch. Definitions of the terms are included in the report. Effects of the failure modes when occurring in some of the channels of the reactor protection system are discussed with respect to the existing design of the reactor protection system at Ringhals 2 nuclear power unit. Experiences from the Browns Ferry fire and results from fire tests of electrical cables indicate that the dominating failure mode for electrical cables is 'open circuit'. An 'open circuit' failure leads to circuit disjunction and loss of continuity. The circuit can no longer transmit its signal or power. When affecting channels of the reactor protection system an 'open circuit' failure can cause extensive inadvertent actions of safety related equipment

  10. Application of risk-based methods for inspection of nuclear power plant components

    International Nuclear Information System (INIS)

    Balkey, K.R.

    1992-01-01

    In-service inspections (ISIs) can play a significant role in minimizing equipment and structural failures. All aspects of inspections, i.e., objectives, method, timing, and the acceptance criteria for detected flaws can affect the probability of component failure. Where ISI programs exist, they are primarily based on prior experience and engineering judgment. At best, some include an implicit consideration of risk (probability of failure multiplied by consequence). Since late 1988, a multidisciplined American Society of Mechanical Engineers (ASME) Research Task Force on Risk-Based Inspection Guidelines has been addressing the general question of how to formally incorporate risk considerations into plans and requirements for the ISI of components and structural systems. The task force and steering committee that guided the project have concluded that appropriate analytical methods exist for evaluating and quantifying risks associated with pressure boundary and structural failures. With the support of about a dozen industry and government organizations, the research group has recommended a general methodology for establishing a risk-based inspection program that could be applied to any nuclear system or structural system

  11. On estimating the fracture probability of nuclear graphite components

    International Nuclear Information System (INIS)

    Srinivasan, Makuteswara

    2008-01-01

    The properties of nuclear grade graphites exhibit anisotropy and could vary considerably within a manufactured block. Graphite strength is affected by the direction of alignment of the constituent coke particles, which is dictated by the forming method, coke particle size, and the size, shape, and orientation distribution of pores in the structure. In this paper, a Weibull failure probability analysis for components is presented using the American Society of Testing Materials strength specification for nuclear grade graphites for core components in advanced high-temperature gas-cooled reactors. The risk of rupture (probability of fracture) and survival probability (reliability) of large graphite blocks are calculated for varying and discrete values of service tensile stresses. The limitations in these calculations are discussed from considerations of actual reactor environmental conditions that could potentially degrade the specification properties because of damage due to complex interactions between irradiation, temperature, stress, and variability in reactor operation

  12. Plenum separator system for pool-type nuclear reactors

    International Nuclear Information System (INIS)

    Sharbaugh, J.E.

    1983-01-01

    This invention provides a plenum separator system for pool-type nuclear reactors which substantially lessens undesirable thermal effects on major components. A primary feature of the invention is the addition of one or more intermediate plena, containing substantially stagnant and stratified coolant, which separate the hot and cold plena and particularly the hot plena from critical reactor components. This plenum separator system also includes a plurality of components which together form a dual pass flow path annular region spaced from the reactor vessel wall by an annular gas space. The bypass flow through the flow path is relatively small and is drawn from the main coolant pumps and discharged to an intermediate plenum

  13. Analysis of changes in the fuel component of the cost of electricity in the transition to a closed fuel cycle in nuclear power system

    International Nuclear Information System (INIS)

    Gurin, Andrey V.; Alekseev, P.N.

    2017-01-01

    This paper presents a study of scenarios of transition to a closed fuel cycle in the system of nuclear power, built basing on resource availability requirements at the stage of full life-cycle reactors. Conventionally, there are three main scenarios for the development of nuclear energy: with VVER reactors operating in an open fuel cycle; with VVER reactors operating in a closed fuel cycle; and co-operating VVER and BN, operating in a closed fuel cycle. For the considered scenarios, a quantitative estimation of change in time of material balances were performed, including spent fuel balance, balance of plutonium, reprocessed and depleted uranium, radioactive waste, and the analysis of the fuel component of the cost of electricity.

  14. Analysis of changes in the fuel component of the cost of electricity in the transition to a closed fuel cycle in nuclear power system

    Energy Technology Data Exchange (ETDEWEB)

    Gurin, Andrey V. [National Research Centre ' ' Kurchatov Institute' ' , Moscow (Russian Federation); Alekseev, P.N.

    2017-09-15

    This paper presents a study of scenarios of transition to a closed fuel cycle in the system of nuclear power, built basing on resource availability requirements at the stage of full life-cycle reactors. Conventionally, there are three main scenarios for the development of nuclear energy: with VVER reactors operating in an open fuel cycle; with VVER reactors operating in a closed fuel cycle; and co-operating VVER and BN, operating in a closed fuel cycle. For the considered scenarios, a quantitative estimation of change in time of material balances were performed, including spent fuel balance, balance of plutonium, reprocessed and depleted uranium, radioactive waste, and the analysis of the fuel component of the cost of electricity.

  15. Condition Based Prognostics of Passive Components - A New Era for Nuclear Power Plant Life Management

    International Nuclear Information System (INIS)

    Bakhtiari, S.; Mohanty, S.; Prokofiev, I.; Tregoning, R.

    2012-01-01

    As part of a research project sponsored by the U.S. NRC, Argonne National Laboratory (ANL) conducted scoping studies to identify viable and promising sensors and techniques for in-situ inspection and real-time monitoring of degradation in nuclear power plant (NPP) systems, structures, and components (SSC). Significant advances have been made over the past two decades toward development of online monitoring (OLM) techniques for detection, diagnostics, and prognostics of degradation in active nuclear power plant (NPP) components (e.g., pumps, valves). However, early detection of damage and degradation in safety-critical passive components, (e.g. piping, tubing pressure vessel), is challenging, and will likely remain so for the foreseeable future. Ensuring the structural integrity of the reactor pressure vessel (RPV) and piping systems in particular is a prerequisite to long term safe operation of NPPs. The current practice is to implement inservice inspection (ISI) and preventive maintenance programs. While these programs have generally been successful, they are limited in that information is only obtained during plant outages. Additionally, these inspections, often the critical path in the outage schedule, are costly, time consuming, and involve potentially high dose to nondestructive examination/evaluation (NDE) personnel. A viable plant-wide on-line structural health monitoring program for continuous and automatic monitoring of critical SSCs could be a more effective approach for guarding against unexpected failures. Specifically, OLM information about the current condition of the SSCs could be input to an online prognostics (OLP) system to forecast their remaining useful life in real time. This paper provides an overview of scoping studies performed at ANL on assessing the viability of OLM and OLP systems for real time and automated monitoring and remaining of condition and the remaining useful life of passive components in NPPs. (author)

  16. Concrete component aging and its significance relative to life extension of nuclear power plants

    International Nuclear Information System (INIS)

    Naus, D.J.

    1986-09-01

    The objectives of this study are to (1) expand upon the work that was initiated in the first two Electric Power Research Institute studies relative to longevity and life extension considerations of safety-related concrete components in light-water reactor (LWR) facilities and (2) provide background that will logically lead to subsequent development of a methodology for assessing and predicting the effects of aging on the performance of concrete-based materials and components. These objectives are consistent with Nuclear Plant Aging Research (NPAR) Program goals: (1) to identify and characterize aging and service wear effects that, if unchecked, could cause degradation of structures, components, and systems and, thereby, impair plant safety; (2) to identify methods of inspection, surveillance, and monitoring or of evaluating residual life of structures, components, and systems that will ensure timely detection of significant aging effects before loss of safety function; and (3) to evaluate the effectiveness of storage, maintenance, repair, and replacement practices in mitigating the rate and extent of degradation caused by aging and service wear

  17. NUCLEBRAS' installations for tests of nuclear power plants components

    International Nuclear Information System (INIS)

    Vasconcelos Paiva, I.P. de; Horta, J.A.L.; Avelar Esteves, F. de; Pinheiro, R.B.

    1983-05-01

    The reasons for NUCLEBRAS' Nuclear Technology Development Center to implement a laboratory for supporting Brazilian manufacturers, giving to them the means for performing functional tests of industrial products, are presented. A brief description of the facilities under construction: the Components Test Loop and the Facility for Testing N.P.P. Components under Accident Conditions, and of other already in operation, is given, as well as its objectives and main technical characteristics. Some test results already obtained are also presented. (Author) [pt

  18. Fracture mechanics and fatigue evaluation of nuclear reactor components

    International Nuclear Information System (INIS)

    Mattar Neto, Miguel; Andrade, Arnaldo H.P. de; Maneschy, Eduardo

    1995-01-01

    This paper presents a theoretical study available in the available literature for evaluation the environmental effects on the lifetime of nuclear power plant components. The author's motivation is to provide some technical tools to identify what research development could be done in this area

  19. Development of a Versatile Ultrasonic Internal Pipe/Vessel Component Monitor for In-Service Inspection of Nuclear Reactor Components

    Energy Technology Data Exchange (ETDEWEB)

    Searfass, Clifford T. [Structural Integrity Associates, Inc., State College, PA (United States); Malinowski, Owen M. [Structural Integrity Associates, Inc., State College, PA (United States); Van Velsor, Jason K. [Structural Integrity Associates, Inc., State College, PA (United States)

    2015-03-22

    The stated goal of this work was to develop a versatile system which could accurately measure vessel and valve internal vibrations and cavitation formation under in-service conditions in nuclear power plants, ultrasonically. The developed technology will benefit the nuclear power generation industry by allowing plant operators to monitor valve and vessel internals during operation. This will help reduce planned outages and plant component failures. During the course of this work, Structural Integrity Associates, Inc. gathered information from industry experts that target vibration amplitudes to be detected should be in the range of 0.001-in to 0.005-in (0.025-mm to 0.127-mm) and target vibration frequency ranges which should be detected were found to be between 0-Hz and 300-Hz. During the performed work, an ultrasonic measuring system was developed which utilized ultrasonic pulse-echo time-of-flight measurements to measure vibration frequency and amplitude. The developed system has been shown to be able to measure vibration amplitudes as low as 0.0008-in (0.020-mm) with vibration frequencies in the range of 17-Hz to 1000-Hz. Therefore, the developed system was able to meet the industry needs for vibration measurement. The developed ultrasonic system was also to be able to measure cavitation formation by monitoring the received ultrasonic time- and frequency-domain signals. This work also demonstrated the survivability of commercially available probes at temperatures up to 300-F for several weeks.

  20. Application of fatigue monitoring system in PWR nuclear power plant

    International Nuclear Information System (INIS)

    Piao Lei

    2014-01-01

    Fatigue failure is one form of equipment failure of nuclear power plant, influencing equipment lifetime and lifetime extension. Fatigue monitoring system can track real thermal transient at fatigue sensitive components, establish a basis for fatigue analyses based on realistic operating loads, identify unexpected operational transients, optimize the plant behavior by improved operating modes, provide supporting data for lifetime management, enhance security of plant and reduce economical loss. Fatigue monitoring system has been applied in many plants and is required to be applied in Generation-III nuclear power plant. It is necessary to develop the fatigue monitoring system with independent intellectual property rights and improve the competitiveness of domestic Generation-III nuclear power technology. (author)

  1. The selection of field component reliability data for use in nuclear safety studies

    International Nuclear Information System (INIS)

    Coxson, B.A.; Tabaie, Mansour

    1990-01-01

    The paper reviews the user requirements for field component failure data in nuclear safety studies, and the capability of various data sources to satisfy these requirements. Aspects such as estimating the population of items exposed to failure, incompleteness, and under-reporting problems are discussed. The paper takes as an example the selection of component reliability data for use in the Pre-Operational Safety Report (POSR) for Sizewell 'B' Power Station, where field data has in many cases been derived from equipment other than that to be procured and operated on site. The paper concludes that the main quality sought in the available data sources for such studies is the ability to examine failure narratives in component reliability data systems for equipment performing comparable duties to the intended plant application. The main benefit brought about in the last decade is the interactive access to data systems which are adequately structured with regard to the equipment covered, and also provide a text-searching capability of quality-controlled event narratives. (author)

  2. Seismic fragility of nuclear power plant components (Phase II)

    International Nuclear Information System (INIS)

    Bandyopadhyay, K.K.; Hofmayer, C.H.; Kassir, M.K.; Pepper, S.E.

    1990-02-01

    As part of the Component Fragility Program which was initiated in FY 1985, three additional equipment classes have been evaluated. This report contains the fragility results and discussions on these equipment classes which are switchgear, I and C panels and relays. Both low and medium voltage switchgear assemblies have been considered and a separate fragility estimate for each type is provided. Test data on cabinets from the nuclear instrumentation/neutron monitoring system, plant/process protection system, solid state protective system and engineered safeguards test system comprise the BNL data base for I and C panels (NSSS). Fragility levels have been determined for various failure modes of switchgear and I ampersand C panels, and the deterministic results are presented in terms of test response spectra. In addition, the test data have been evaluated for estimating the respective probabilistic fragility levels which are expressed in terms of a median value, an uncertainty coefficient, a randomness coefficient and an HCLPF value. Due to a wide variation of relay design and the fragility level, a generic fragility level cannot be established for relays. 7 refs., 13 figs., 12 tabs

  3. Methodology for identifying boundaries of systems important to safety in CANDU nuclear power plants

    International Nuclear Information System (INIS)

    Therrien, S.; Komljenovic, D.; Therrien, P.; Ruest, C.; Prevost, P.; Vaillancourt, R.

    2007-01-01

    This paper presents a methodology developed to identify the boundaries of the systems important to safety (SIS) at the Gentilly-2 Nuclear Power Plant (NPP), Hydro-Quebec. The SIS boundaries identification considers nuclear safety only. Components that are not identified as important to safety are systematically identified as related to safety. A global assessment process such as WANO/INPO AP-913 'Equipment Reliability Process' will be needed to implement adequate changes in the management rules of those components. The paper depicts results in applying the methodology to the Shutdown Systems 1 and 2 (SDS 1, 2), and to the Emergency Core Cooling System (ECCS). This validation process enabled fine tuning the methodology, performing a better estimate of the effort required to evaluate a system, and identifying components important to safety of these systems. (author)

  4. Study on the establishment of effective nuclear export system

    International Nuclear Information System (INIS)

    Kim, Byung Koo; So, Dong Sup; Baik, Dae Hyun; Kwack, Eun Ho; Shin, Jang Soo; Yoon, Wan Ki; Park, Wan Soo; Kim, Hyun Tae.

    1997-02-01

    To improve Korean nuclear export control system, the modification of the present export license procedure for the nuclear equipment and materials and the classification of control items and their related technologies are required. And it is also necessary to make a database of the original countries who have the right of prior consent. For the efficient export control of LWR items to DPRK, it is desirable to manage the export license scheme of nuclear reactor facility as a total package, and to prepare a control regime for the retransfer of nuclear reactor component such as reactor coolant pump and nuclear fuel whose technologies are not self-reliant. It is especially essential to prepare a systematic procedure for the supply of nuclear equipment and materials to DPRK in order to meet international guidelines of NSG and others through an accord on the nuclear cooperation between Republic of Korea (ROK) and DPRK. The principal elements to be included in the accord are the range of cooperation, the restriction within the peaceful uses, prior consent right in case of retransfer of important nuclear reactor components and of storage, transfer and changes of nuclear fuels, application of safeguards to the supplied Trigger list items, physical protection of nuclear material, requirement of the return of nuclear equipment and materials, and restriction right for the suspension or termination of the agreement. (author). 40 refs., 5 tabs., 8 figs

  5. Nuclear Reactor Component Code CUPID-I: Numerical Scheme and Preliminary Assessment Results

    International Nuclear Information System (INIS)

    Cho, Hyoung Kyu; Jeong, Jae Jun; Park, Ik Kyu; Kim, Jong Tae; Yoon, Han Young

    2007-12-01

    A component scale thermal hydraulic analysis code, CUPID (Component Unstructured Program for Interfacial Dynamics), is being developed for the analysis of components of a nuclear reactor, such as reactor vessel, steam generator, containment, etc. It adopted three-dimensional, transient, two phase and three-field model. In order to develop the numerical schemes for the three-field model, various numerical schemes have been examined including the SMAC, semi-implicit ICE, SIMPLE, Row Scheme and so on. Among them, the ICE scheme for the three-field model was presented in the present report. The CUPID code is utilizing unstructured mesh for the simulation of complicated geometries of the nuclear reactor components. The conventional ICE scheme that was applied to RELAP5 and COBRA-TF, therefore, were modified for the application to the unstructured mesh. Preliminary calculations for the unstructured semi-implicit ICE scheme have been conducted for a verification of the numerical method from a qualitative point of view. The preliminary calculation results showed that the present numerical scheme is robust and efficient for the prediction of phase changes and flow transitions due to a boiling and a flashing. These calculation results also showed the strong coupling between the pressure and void fraction changes. Thus, it is believed that the semi-implicit ICE scheme can be utilized for transient two-phase flows in a component of a nuclear reactor

  6. Nuclear Reactor Component Code CUPID-I: Numerical Scheme and Preliminary Assessment Results

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Hyoung Kyu; Jeong, Jae Jun; Park, Ik Kyu; Kim, Jong Tae; Yoon, Han Young

    2007-12-15

    A component scale thermal hydraulic analysis code, CUPID (Component Unstructured Program for Interfacial Dynamics), is being developed for the analysis of components of a nuclear reactor, such as reactor vessel, steam generator, containment, etc. It adopted three-dimensional, transient, two phase and three-field model. In order to develop the numerical schemes for the three-field model, various numerical schemes have been examined including the SMAC, semi-implicit ICE, SIMPLE, Row Scheme and so on. Among them, the ICE scheme for the three-field model was presented in the present report. The CUPID code is utilizing unstructured mesh for the simulation of complicated geometries of the nuclear reactor components. The conventional ICE scheme that was applied to RELAP5 and COBRA-TF, therefore, were modified for the application to the unstructured mesh. Preliminary calculations for the unstructured semi-implicit ICE scheme have been conducted for a verification of the numerical method from a qualitative point of view. The preliminary calculation results showed that the present numerical scheme is robust and efficient for the prediction of phase changes and flow transitions due to a boiling and a flashing. These calculation results also showed the strong coupling between the pressure and void fraction changes. Thus, it is believed that the semi-implicit ICE scheme can be utilized for transient two-phase flows in a component of a nuclear reactor.

  7. ITER nuclear components, preparing for the construction and R and D results

    Energy Technology Data Exchange (ETDEWEB)

    Ioki, K. E-mail: iokik@itereu.de; Akiba, M.; Barabaschi, P.; Barabash, V.; Chiocchio, S.; Daenner, W.; Elio, F.; Enoeda, M.; Ezato, K.; Federici, G.; Gervash, A.; Grebennikov, D.; Jones, L.; Kajiura, S.; Krylov, V.; Kuroda, T.; Lorenzetto, P.; Maruyama, S.; Merola, M.; Miki, N.; Morimoto, M.; Nakahira, M.; Ohmori, J.; Onozuka, M.; Rozov, V.; Sato, K.; Strebkov, Yu.; Suzuki, S.; Tanchuk, V.; Tivey, R.; Utin, Yu

    2004-08-01

    Progress has been made in the preparation of the procurement specifications for key nuclear components of ITER. Detailed design of the vacuum vessel (VV) and in-vessel components is being performed to consider fabrication methods and non-destructive tests (NDT). R and D activities are being carried out on vacuum vessel UT inspection with waves launched at an angle of 20 deg. or 30 deg. , on flow distribution tests of a two-channel model, on fabrication and testing of FW mock-ups and panels, on the blanket flexible support as a complete system including the housing, on the blanket co-axial pipe connection with guard vacuum for leak detection, and on divertor vertical target prototypes. The results give confidence in the validity of the design and identify possibilities of attractive alternate fabrication methods.

  8. Pulse shaping amplifier (PSA) for nuclear spectroscopy system

    International Nuclear Information System (INIS)

    Lombigit, L.; Maslina Mohd Ibrahim; Nolida Yusup; Nur Aira Abdul Rahman; Yong, C.F.

    2014-01-01

    Pulse Shaping Amplifier (PSA) is an essential components in nuclear spectroscopy system. This networks have two functions; to shape the output pulse and performs noise filtering. In this paper, we describes procedure for design and development of a pulse shaping amplifier which can be used for nuclear spectroscopy system. This prototype was developed using high performance electronics devices and assembled on a FR4 type printed circuit board. Performance of this prototype was tested by comparing it with an equivalent commercial spectroscopy amplifier (Model SILENA 7611). The test results show that the performance of this prototype is comparable to the commercial spectroscopic amplifier. (author)

  9. A methodology for on-line fatigue life monitoring of Indian nuclear power plant components

    International Nuclear Information System (INIS)

    Mukhopadhyay, N.K.; Dutta, B.K.; Kushawaha, H.S.

    1992-01-01

    Fatigue is one of the most important aging effects of nuclear power plant components. Information about accumulation of fatigue helps in assessing structural degradation of the components. This assists in-service inspection and maintenance and may also support future life extension program of a plant. In the present report a methodology is being proposed for monitoring on line fatigue life of nuclear power plant components using available plant instrumentations. Major factors affecting fatigue life of a nuclear power plant components are the fluctuations of temperature, pressure and flow rate. Green's function technique is used in on line fatigue monitoring as computation time is much less than finite element method. A code has been developed which computes temperature and stress Green's functions in 2-D and axisymmetric structure by finite element method due to unit change in various fluid parameters. A post processor has also been developed which computes the temperature and stress responses using corresponding Green's functions and actual fluctuation in fluid parameters. In this post processor, the multiple site problem is solved by superimposing single site Green's function technique. It is also shown that Green's function technique is best suited for on line fatigue life monitoring of nuclear power plant components. (author). 6 refs., 43 figs

  10. Natural circulating passive cooling system for nuclear reactor containment structure

    Science.gov (United States)

    Gou, Perng-Fei; Wade, Gentry E.

    1990-01-01

    A passive cooling system for the contaminant structure of a nuclear reactor plant providing protection against overpressure within the containment attributable to inadvertent leakage or rupture of the system components. The cooling system utilizes natural convection for transferring heat imbalances and enables the discharge of irradiation free thermal energy to the atmosphere for heat disposal from the system.

  11. Canisters and nonfuel components at commercial nuclear reactors

    International Nuclear Information System (INIS)

    Gibbard, K.; Disbrow, J.

    1994-01-01

    This paper discusses detailed data on canisters and nonfuel components (NFC) at US commercial nuclear power reactors. A wide variety of NFC have been reported on the Form RW-859, open-quotes Nuclear Fuel Dataclose quotes survey. They may have been integral with an assembly, noncanistered in baskets, destined for disposal as low-level radioactive waste, or stored in canisters. Similarly, data on the family of canistered spent nuclear fuel (SNF) in storage pools was compiled. Approximately 85 percent of the 40,194 pieces of nonfuel assembly (NFA) hardware reported were integral with an assembly. This represents data submitted by 95 of the 107 reactors in 10 generic assembly classes. In addition, a total of 286 canisters have been reported as being in storage pools as of December 31, 1992. However, an additional 264 open baskets were also reported to contain miscellaneous SNF and nonfuel materials, garbage and debris. All of these 286 canisters meet the dimensional envelope requirements specified for disposal for open-quotes standard fuelclose quotes under the Standard Contract for Disposal of Spent Nuclear Fuel and/or High-Level Radioactive Waste (10 CFR 961); most of the baskets do not

  12. Nuclear plant reliability data system. 1979 annual reports of cumulative system and component reliability

    International Nuclear Information System (INIS)

    1979-01-01

    The primary purposes of the information in these reports are the following: to provide operating statistics of safety-related systems within a unit which may be used to compare and evaluate reliability performance and to provide failure mode and failure rate statistics on components which may be used in failure mode effects analysis, fault hazard analysis, probabilistic reliability analysis, and so forth

  13. Engineering factors influencing Corbicula fouling in nuclear-service water systems

    International Nuclear Information System (INIS)

    Henager, C.H.; Johnson, K.I.; Page, T.L.

    1983-06-01

    Corbicula fouling is a continuing problem in nuclear-service water systems. More knowledge of biological and engineering factors is needed to develop effective detection and control methods. A data base on Corbicula fouling was compiled from nuclear and non-nuclear power stations and industries using raw water. This data base was used in an analysis to identify systems and components which are conducive to fouling by Corbicula. Bounds on several engineering parameters such as velocity and temperature which support Corbicula growth are given. Service water systems found in BWR and PWR reactors are listed and those that show fouling are identified. Possible safety implications of Corbicula fouling are discussed for specific service water systems. Several effective control methods in current use include backflushing with heated water, centrifugal strainers, and continuous chlorination during spawning seasons

  14. High-temperature-structural design and research and development for reactor system components

    International Nuclear Information System (INIS)

    Matsumura, Makoto; Hada, Mikio

    1985-01-01

    The design of reactor system components requires high-temperature-structural design guide with the consideration of the creep effect of materials related to research and development on structural design. The high-temperature-structural design guideline for the fast prototype reactor MONJU has been developed under the active leadership by Power Reactor and Nuclear Fuel Development Corporation and Toshiba has actively participated to this work with responsibility on in-vessel components, performing research and development programs. This paper reports the current status of high-temperature-structural-design-oriented research and development programs and development of analytical system including stress-evaluation program. (author)

  15. Systems approach to nuclear waste glass development

    International Nuclear Information System (INIS)

    Jantzen, C.M.

    1986-01-01

    Development of a host solid for the immobilization of nuclear waste has focused on various vitreous wasteforms. The systems approach requires that parameters affecting product performance and processing be considered simultaneously. Application of the systems approach indicates that borosilicate glasses are, overall, the most suitable glasses for the immobilization of nuclear waste. Phosphate glasses are highly durable; but the glass melts are highly corrosive and the glasses have poor thermal stability and low solubility for many waste components. High-silica glasses have good chemical durability, thermal stability, and mechanical stability, but the associated high melting temperatures increase volatilization of hazardous species in the waste. Borosilicate glasses are chemically durable and are stable both thermally and mechanically. The borosilicate melts are generally less corrosive than commercial glasses, and the melt temperature miimizes excessive volatility of hazardous species. Optimization of borosilicate waste glass formulations has led to their acceptance as the reference nuclear wasteform in the United States, United Kingdom, Belgium, Germany, France, Sweden, Switzerland, and Japan

  16. Storage, handling and movement of fuel and related components at nuclear power plants

    International Nuclear Information System (INIS)

    1979-01-01

    The report describes in general terms the various operations involved in the handling of fresh fuel, irradiated fuel, and core components such as control rods, neutron sources, burnable poisons and removable instruments. It outlines the principal safety problems in these operations and provides the broad safety criteria which must be observed in the design, operation and maintenance of equipment and facilities for handling, transferring, and storing nuclear fuel and core components at nuclear power reactor sites

  17. Development of portable laser peening systems for nuclear power reactors

    International Nuclear Information System (INIS)

    Chida, Itaru; Uehara, Takuya; Yoda, Masaki; Miyasaka, Hiroyuki; Kato, Hiromi

    2009-01-01

    Stress corrosion cracking (SCC) is the major factor to reduce the reliability of aged reactor components. Toshiba has developed various laser-based maintenance and repair technologies and applied them to existing nuclear power plants. Laser-based technology is considered to be the best tool for remote processing in nuclear power plants, and particularly so for the maintenance and repair of reactor core components. Accessibility could be drastically improved by a simple handling system owing to the absence of reactive force against laser irradiation and the flexible optical fiber. For the preventive maintenance, laser peening technology was developed and applied to reactor components in operating BWRs and PWRs. Laser peening is a novel process to improve residual stress from tensile to compressive on material surface layer by irradiating focused high-power laser pulses in water without any surface preparations. Laser peening systems, which deliver laser pulses with mirrors or through an optical fiber, were developed and have been applied to preventive maintenance against SCC in nuclear power reactors since 1999. Each system was composed of laser oscillators, a beam delivery system, a laser irradiation head, remote handling equipment and a monitor/control system. Beam delivery with mirrors was accomplished through alignment/tracking functions with sufficient accuracy. Reliable fiber-delivery was attained by the development of a novel input coupling optics and an irradiation head with auto-focusing. Recently, we have developed portable laser peening (PLP) system which could employ both mirror- and fiber- delivery technologies. Size and weight of the PLP system for BWR bottom was almost 1/25 compared to the previous system. PLP system would be the applicable to both BWRs and PWRs as one of the maintenance technologies. (author)

  18. Nuclear instrumentation system operating experience and nuclear instrument testing in the EBR-II

    International Nuclear Information System (INIS)

    Yingling, G.E.; Curran, R.N.

    1980-01-01

    In March of 1972 three wide range nuclear channels were purchased from Gulf Atomics Corporation and installed in EBR-II as a test. The three channels were operated as a test until April 1975 when they became a permanent part of the reactor shutdown system. Also described are the activities involved in evaluating and qualifying neutron detectors for LMFBR applications. Included are descriptions of the ANL Components Technology Division Test Program and the EBR-II Nuclear Instrument Test Facilities (NITF) used for the in-reactor testing and a summary of program test results from EBR-II

  19. Nuclear Material Control and Accountability System Effectiveness Tool (MSET)

    International Nuclear Information System (INIS)

    Powell, Danny H.; Elwood, Robert H. Jr.; Roche, Charles T.; Campbell, Billy J.; Hammond, Glenn A.; Meppen, Bruce W.; Brown, Richard F.

    2011-01-01

    A nuclear material control and accountability (MC and A) system effectiveness tool (MSET) has been developed in the United States for use in evaluating material protection, control, and accountability (MPC and A) systems in nuclear facilities. The project was commissioned by the National Nuclear Security Administration's Office of International Material Protection and Cooperation. MSET was developed by personnel with experience spanning more than six decades in both the U.S. and international nuclear programs and with experience in probabilistic risk assessment (PRA) in the nuclear power industry. MSET offers significant potential benefits for improving nuclear safeguards and security in any nation with a nuclear program. MSET provides a design basis for developing an MC and A system at a nuclear facility that functions to protect against insider theft or diversion of nuclear materials. MSET analyzes the system and identifies several risk importance factors that show where sustainability is essential for optimal performance and where performance degradation has the greatest impact on total system risk. MSET contains five major components: (1) A functional model that shows how to design, build, implement, and operate a robust nuclear MC and A system (2) A fault tree of the operating MC and A system that adapts PRA methodology to analyze system effectiveness and give a relative risk of failure assessment of the system (3) A questionnaire used to document the facility's current MPC and A system (provides data to evaluate the quality of the system and the level of performance of each basic task performed throughout the material balance area (MBA)) (4) A formal process of applying expert judgment to convert the facility questionnaire data into numeric values representing the performance level of each basic event for use in the fault tree risk assessment calculations (5) PRA software that performs the fault tree risk assessment calculations and produces risk importance

  20. CORROSION ISSUES ASSOCIATED WITH AUSTENITIC STAINLESS STEEL COMPONENTS USED IN NUCLEAR MATERIALS EXTRACTION AND SEPARATION PROCESSES

    Energy Technology Data Exchange (ETDEWEB)

    Mickalonis, J.; Louthan, M.; Sindelar, R.

    2012-12-17

    This paper illustrated the magnitude of the systems, structures and components used at the Savannah River Site for nuclear materials extraction and separation processes. Corrosion issues, including stress corrosion cracking, pitting, crevice corrosion and other corrosion induced degradation processes are discussed and corrosion mitigation strategies such as a chloride exclusion program and corrosion release testing are also discussed.

  1. Development of an intelligent annunciation system for nuclear power plants

    International Nuclear Information System (INIS)

    Kim, Chang-Gi; Che, Myoung-Eun

    1997-01-01

    Yonggwang Nuclear Units 1 and 2 have developed an intelligent annunciation system to replace the existing obsolete system and to enhance operator support. The new annunciation system, which is currently operating at both units, uses the distributed control technology to enhance reliability and to provide versatile function to operations and maintenance personnel. The hardware and software configuration is based on redundancy so that a component failure would not initiate system malfunction. The data base of the new system provides, through a touch screen, an automatic alarm response procedure for selected alarms, which increases availability of information for plant operation. Other KEPCO nuclear units and the fossil plants are considering installing the new system. (author). 6 figs, 2 tabs

  2. Development of an intelligent annunciation system for nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chang-Gi; Che, Myoung-Eun [Instrumentation and Control, Yonggwang Nuclear Units 1 and 2, Korea Electric Power Corp. (Korea, Republic of)

    1997-09-01

    Yonggwang Nuclear Units 1 and 2 have developed an intelligent annunciation system to replace the existing obsolete system and to enhance operator support. The new annunciation system, which is currently operating at both units, uses the distributed control technology to enhance reliability and to provide versatile function to operations and maintenance personnel. The hardware and software configuration is based on redundancy so that a component failure would not initiate system malfunction. The data base of the new system provides, through a touch screen, an automatic alarm response procedure for selected alarms, which increases availability of information for plant operation. Other KEPCO nuclear units and the fossil plants are considering installing the new system. (author). 6 figs, 2 tabs.

  3. Science, society, and America's nuclear waste: Unit 4, The waste management system

    International Nuclear Information System (INIS)

    1992-01-01

    This is unit 4 (The Waste Management System) in a four-unit secondary curriculum. It is intended to provide information about scientific and societal issues related to the management of spent nuclear fuel from generation of electricity at nuclear powerplants and high-level radioactive waste from US national defense activities. The curriculum, supporting classroom activities, and teaching materials present a brief discussion of energy and electricity generation, including that produced at nuclear powerplants; information on sources, amounts, location, and characteristics of spent nuclear fuel and high-level radioactive waste; sources, types and effects of radiation; US policy for managing and disposing of spent nuclear fuel and high-level radioactive waste and what other countries are doing; and the components of the nuclear waste management system

  4. Applications of ultrasonic phased array technique during fabrication of nuclear tubing and other components for the Indian nuclear power program

    International Nuclear Information System (INIS)

    Kapoor, K.

    2015-01-01

    Ultrasonic phased array technique has been applied in fabrication of nuclear fuel and structural at NFC. The integrity of the nuclear fuel and structural components is most crucial as they are exposed to severe environment during operation leading to rapid degradation of its properties during its lifecycle. Nuclear Fuel Complex has mandate for the fabrication of the nuclear fuel and core structurals for Indian PHWRs/BWR, sub-assemblies for the PFBR and steam generator tubing for PFBR and PHWRs which are the most critical materials for the Indian Nuclear Power program. NDE during fabrication of these materials is thus most crucial as it provides the confidence to the designer for safe operation during its lifetime. Many of these techniques have to be developed in-house to meet unique requirements of high sensitivity, resolution and shape of the components. Some of the advancements in the NDE during the fabrication include use of ultrasonic phased array which is detailed in this paper

  5. State-of-art report on digital I and C system reliability issues for nuclear power plants

    International Nuclear Information System (INIS)

    Hwang, In Koo; Lee, Dong Gyoung; Cha, Kyung Ho; Kwon, Kee Choon; Wood, Richard T.

    2000-01-01

    As the instrumentation and control (Iand C) equipment suppliers tend to provide digital components rather than conventional analog type components for instrument and control systems of nuclear power plants(NPPs), it is unavoidable to adopt digital equipment for safety I and C systems as well as non-safety systems. However, the full introduction of digital equipment to I and C systems of nuclear power plants raises several concerns which have not been considered for conventional analog I and C systems. The two major examples of the issues of digital systems are electromagnetic compatibility (EMC) and software reliability. KAERI invited a technical expert, Dr. Richard T. Wood, from Oak Ridge National Laboratory (ORNL) in Unites States and held seminars to recognize the state-of-art of the above issues and to share the information on techniques dealing with the problems. Dr. Wood has been working on the development of EMC guidelines and technical basis in using digital equipment for safety systems in nuclear power plants on the sponsorship of US Nuclear Regulatory Commission (NRC). Being based on his statements and discussions during his visit, this report describes technical considerations and issues on digital safety I and C system application in NPPs, EMC methods, environmental effects vulnerable to digital components, reliability assurance methods, etc. (author)

  6. Short-range components of nuclear forces: Experiment versus mythology

    International Nuclear Information System (INIS)

    Kukulin, V. I.; Platonova, M. N.

    2013-01-01

    The present-day situation around the description of various (central, spin-orbit, and tensor) components of short-range nuclear forces is discussed. A traditional picture of these interactions based on the idea of one-meson exchange is contrasted against numerous results of recent experiments. As is shown in the present study, these results often deviate strongly from the predictions of traditional models. One can therefore state that such models are inapplicable to describing short-range nuclear forces and that it is necessary to go over from a traditional description to some alternative QCD-based (or QCD-motivated) picture. This means that, despite the widespread popularity of traditional concepts of short-range nuclear forces and their applicability in many particular cases, these concepts are not more than scientific myths that show their inconsistency when analyzed from the viewpoint of the modern experiment

  7. Nuclebras' installations for performance tests of nuclear power plants components

    International Nuclear Information System (INIS)

    Vasconcelos Paiva, I.P. de; Avelar Esteves, F. de; Horta, J.A.L.; Resende, M.F.R.; Pinheiro, R.B.

    1984-01-01

    The reasons for Nuclebras' Nuclear Technology Development Center to implement a laboratory for supporting Brazilian manufactures, giving to them the means for performing functional tests of industrial products, are presented. A brief description of facilities under construction: the components Test Loop and Facility for Testing N.P.P. components under Accident conditions, and other already in operation, as well as its objectives and main technical characteristics. Some test results had already obtained are also presented. (Author) [pt

  8. Savannah River Plant's Accountability Inventory Management System (AIMS) (Nuclear materials inventory control)

    International Nuclear Information System (INIS)

    Croom, R.G.

    1976-06-01

    The Accountability Inventory Management System (AIMS) is a new computer inventory control system for nuclear materials at the Savannah River Plant, Aiken, South Carolina. The system has two major components, inventory files and system parameter files. AIMS, part of the overall safeguards program, maintains an up-to-date record of nuclear material by location, produces reports required by ERDA in addition to onplant reports, and is capable of a wide range of response to changing input/output requirements through use of user-prepared parameter cards, as opposed to basic system reprogramming

  9. Packet-switched data communication system of the Paks Nuclear Power Plant, Hungary

    International Nuclear Information System (INIS)

    Szuegyi, M.

    1991-01-01

    Data communication systems are inherent components of the computer network of nuclear power plants. In the PNPP, Hungary, a new packet-switched network has been installed, based on the X25 protocol. It was developed in the framework of the Information Infrastructure Development project of the country. The most important system and software components of the new packet-switched communication system and computer network installed at PNPP are described. (R.P.) 4 refs.; 1 fig

  10. Evaluation of the Waste Isolation Pilot Plant classification of systems, structures and components

    International Nuclear Information System (INIS)

    1985-07-01

    A review of the classification system for systems, structures, and components at the Waste Isolation Pilot Plant (WIPP) was performed using the WIPP Safety Analysis Report (SAR) and Bechtel document D-76-D-03 as primary source documents. The regulations of the US Nuclear Regulatory Commission (NRC) covering ''Disposal of High level Radioactive Wastes in Geologic Repositories,'' 10 CFR 60, and the regulations relevant to nuclear power plant siting and construction (10 CFR 50, 51, 100) were used as standards to evaluate the WIPP design classification system, although it is recognized that the US Department of Energy (DOE) is not required to comply with these NRC regulations in the design and construction of WIPP. The DOE General Design Criteria Manual (DOE Order 6430.1) and the Safety Analysis and Review System for AL Operation document (AL 54f81.1A) were reviewed in part. This report includes a discussion of the historical basis for nuclear power plant requirements, a review of WIPP and nuclear power plant classification bases, and a comparison of the codes and standards applicable to each quality level. Observations made during the review of the WIPP SAR are noted in the text of this reoport. The conclusions reached by this review are: WIPP classification methodology is comparable to corresponding nuclear power procedures. The classification levels assigned to WIPP systems are qualitatively the same as those assigned to nuclear power plant systems

  11. Calculations of atomic magnetic nuclear shielding constants based on the two-component normalized elimination of the small component method

    Science.gov (United States)

    Yoshizawa, Terutaka; Zou, Wenli; Cremer, Dieter

    2017-04-01

    A new method for calculating nuclear magnetic resonance shielding constants of relativistic atoms based on the two-component (2c), spin-orbit coupling including Dirac-exact NESC (Normalized Elimination of the Small Component) approach is developed where each term of the diamagnetic and paramagnetic contribution to the isotropic shielding constant σi s o is expressed in terms of analytical energy derivatives with regard to the magnetic field B and the nuclear magnetic moment 𝝁 . The picture change caused by renormalization of the wave function is correctly described. 2c-NESC/HF (Hartree-Fock) results for the σiso values of 13 atoms with a closed shell ground state reveal a deviation from 4c-DHF (Dirac-HF) values by 0.01%-0.76%. Since the 2-electron part is effectively calculated using a modified screened nuclear shielding approach, the calculation is efficient and based on a series of matrix manipulations scaling with (2M)3 (M: number of basis functions).

  12. Lifetime assessment and lifetime management for key components of nuclear power plants

    International Nuclear Information System (INIS)

    Dou Yikang; Sun Hanhong; Qu Jiadi

    2000-01-01

    On the bases of investigation on recent development of plant lifetime management in the world, the author gives some points of view on how to establish plant lifetime assessment (PLA) and management (PLM) systems for Chinese nuclear power plants. The main points lie in: 1) safety regulatory organizations, utilities and R and D institutes work cooperatively for PLA and PLM; 2) PLA and PLM make a interdependent cycle, which means that a good PLM system ensures authentic input for PLA, while veritable PLA provides valuable feedback for PLM improvement; 3) PLA and PLM should be initiated for some key components. The author also analyzes some important problems to be tackled in PLA and PLM from the view angle of a R and D institute

  13. Metal plutonium conversion to components of nuclear reactor fuel

    International Nuclear Information System (INIS)

    Subbotin, V.G.; Panov, A.V.; Mashirev, V.P.

    2000-01-01

    Capabilities of different technologies for plutonium conversion to the fuel components of nuclear reactors are studied. Advantages and shortcomings of aqueous and nonaqueous methods of plutonium treatment are shown. Proposals to combine and coordinate efforts of world scientific and technological community in solving problems concerning plutonium of energetic and weapon origin treatment were put forward. (authors)

  14. Metal plutonium conversion to components of nuclear reactor fuel

    Energy Technology Data Exchange (ETDEWEB)

    Subbotin, V.G.; Panov, A.V. [Russian Federal Nuclear Center, ALL-Russian Science and Research, Institute of Technical Physics, Snezhinsk (Russian Federation); Mashirev, V.P. [ALL-Russian Science and Research Institute of Chemical Technology, Moscow (Russian Federation)

    2000-07-01

    Capabilities of different technologies for plutonium conversion to the fuel components of nuclear reactors are studied. Advantages and shortcomings of aqueous and nonaqueous methods of plutonium treatment are shown. Proposals to combine and coordinate efforts of world scientific and technological community in solving problems concerning plutonium of energetic and weapon origin treatment were put forward. (authors)

  15. Power conditioning for space nuclear reactor systems

    Science.gov (United States)

    Berman, Baruch

    1987-01-01

    This paper addresses the power conditioning subsystem for both Stirling and Brayton conversion of space nuclear reactor systems. Included are the requirements summary, trade results related to subsystem implementation, subsystem description, voltage level versus weight, efficiency and operational integrity, components selection, and shielding considerations. The discussion is supported by pertinent circuit and block diagrams. Summary conclusions and recommendations derived from the above studies are included.

  16. Development of high-reliability control system for nuclear power plants

    International Nuclear Information System (INIS)

    Asami, K.; Yanai, K.; Hirose, H.; Ito, T.

    1983-01-01

    In Japan, many nuclear power generating plants are in operation and under construction. There is a general awareness of the problems in connection with nuclear power generation and strong emphasis is put on achieving highly reliable operation of nuclear power plants. Hitachi has developed a new high-reliability control system. NURECS-3000 (NUclear Power Plant High-REliability Control System), which is applied to the main control systems, such as the reactor feedwater control system, the reactor recirculation control system and the main turbine control system. The NURECS-3000 system was designed taking into account the fact that there will be failures, but the aim is for the system to continue to function correctly; it is therefore a fault-tolerant system. It has redundant components which can be completely isolated from each other in order to prevent fault propagation. The system has a hierarchical configuration, with a main controller, consisting of a triplex microcomputer system, and sub-loop controllers. Special care was taken to ensure the independence of these subsystems. Since most of the redundant system failures are caused by common-mode failures and the reliability of redundant systems depends on the reliability of the common-mode parts, the aim was to minimize these parts. (author)

  17. Age-dependent risk-based methodology and its application to prioritization of nuclear power plant components and to maintenance for managing aging using PRAs

    International Nuclear Information System (INIS)

    Levy, I.S.; Vesely, W.E.

    1990-01-01

    This paper is based on a study to demonstrate several important ways that the age-dependent risk-based methodology developed by the Nuclear Plant Aging Research (NPAR) Program may be applied to resolving important issues related to the aging of nuclear power plant systems, structures, and components (SSCs). The study was sponsored by the NPAR Program of the Division of Engineering, Office of Nuclear Regulatory Research of the U.S. Nuclear Regulatory Commission (NRC). Initiated on the basis of a Users Need Request, the age-dependent risk-based methodology has been under development by the NPAR Program for several years. In this methodology, the time-dependent change in a component's risk contribution is the product of two factors: (1) the risk importance of the component (e.g., the change in its risk contribution when it is assumed to be totally unavailable to perform its intended safety function) and (2) the change in its unavailability with time. This change in the component's unavailability with time is a function of the component's aging rate and plant inspection and maintenance practices. The methodology permits evaluations of the age-dependent risk contributions from both single- and multiple-components. Principal results and conclusions generated by the methodology demonstrations are discussed

  18. Cooling system for auxiliary reactor component

    International Nuclear Information System (INIS)

    Fujihira, Tomoko.

    1991-01-01

    A cooling system for auxiliary reactor components comprises three systems, that is, two systems of reactor component cooling water systems (RCCW systems) and a high pressure component cooling water system (HPCCW system). Connecting pipelines having partition valves are intervened each in a cooling water supply pipeline to an emmergency component of each of the RCCW systems, a cooling water return pipeline from the emmergency component of each of the RCCW systems, a cooling water supply pipeline to each of the emmergency components of one of the RCCW system and the HPCCW system and a cooling water return pipeline from each of the emmergency components of one of the RCCW system and the HPCCW system. With such constitution, cooling water can be supplied also to the emmergency components in the stand-by system upon periodical inspection or ISI, thereby enabling to improve the backup performance of the emmergency cooling system. (I.N.)

  19. 10 CFR 110.26 - General license for the export of nuclear reactor components.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false General license for the export of nuclear reactor components. 110.26 Section 110.26 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) EXPORT AND IMPORT OF... Denmark Finland France Germany Greece Indonesia Ireland Italy Japan Latvia Lithuania Luxembourg...

  20. IAEA activity on operator support systems in nuclear power plants

    International Nuclear Information System (INIS)

    Dounaev, V.; Fujita, Y.; Juslin, K.; Haugset, K.; Lux, I.; Naser, J.

    1994-01-01

    Various operator support systems for nuclear power plants are already operational or under development in the IAEA Member States. Operator support systems are based on intelligent data processing and, in addition to plant operation, they are also becoming more important for safety. A key feature of operator support systems is their availability to restructure data to increase its relevance for a given situation. This can improve the user's ability to identify plant mode, system state, and component state and to identify and diagnose faults. Operator support systems can also assist the user in planning and implementing corrective actions to improve the nuclear power plant's availability and safety. In September 1991, the IAEA Committee for Contractual Scientific Services approved the Co-ordinated Research Programme (CRP) on ''Operator Support Systems in Nuclear Power Plants'' in the framework of the Project ''Man-Machine Interface Studies''. The main objective of this programme is to provide guidance and technology transfer for the development and implementation of operator support systems. This includes the experience with human-machine interfaces and closely related issues such as instrumentation and control, the use of computers in nuclear power plants, and operator qualification. (author)

  1. Component Control System for a Vehicle

    Science.gov (United States)

    Fraser-Chanpong, Nathan (Inventor); Spain, Ivan (Inventor); Dawson, Andrew D. (Inventor); Bluethmann, William J. (Inventor); Lee, Chunhao J. (Inventor); Vitale, Robert L. (Inventor); Guo, Raymond (Inventor); Waligora, Thomas M. (Inventor); Akinyode, Akinjide Akinniyi (Inventor); Reed, Ryan M. (Inventor)

    2016-01-01

    A vehicle includes a chassis, a modular component, and a central operating system. The modular component is supported by the chassis. The central operating system includes a component control system, a primary master controller, and a secondary master controller. The component control system is configured for controlling the modular component. The primary and secondary master controllers are in operative communication with the component control system. The primary and secondary master controllers are configured to simultaneously transmit commands to the component control system. The component control system is configured to accept commands from the secondary master controller only when a fault occurs in the primary master controller.

  2. Prognostic Health Management System: Component Selection Based on Risk Criteria and Economic Benefit Assessment

    International Nuclear Information System (INIS)

    Pham, B.T.; Agarwal, V.; Lybeck, N.J.; Tawfik, M.S.

    2012-01-01

    Long-term operation (LTO), i.e., beyond 60 years, of the current fleet of nuclear power plants (NPPs) is an important element in the overall energy stability of the United States in coming decades. Problem Statement and Proposed Approach: - For LTO of NPPs, early and proactive diagnosis of degradation at systems, structures, and components (SSCs) level is required; - Periodic maintenance versus Proactive maintenance; - Prognostic Health Monitoring (PHM) can be used to better manage aging and degradation mechanisms, including emerging mechanisms; - Selection of components is crucial for implementing the PHM system; - Approach is to develop a quantitative framework that aids systematic identification of plant components that are selected for cost-effective PHM.

  3. Science, society, and America's nuclear waste: Unit 4, The waste management system

    International Nuclear Information System (INIS)

    1992-01-01

    This is the teachers guide to unit 4, (The Waste Management System), of a four-unit secondary curriculum. It is intended to provide information about scientific and societal issues related to the management of spent nuclear fuel from generation of electricity at nuclear powerplants and high-level radioactive waste from US national defense activities. The curriculum, supporting classroom activities, and teaching materials present a brief discussion of energy and electricity generation, including that produced at nuclear powerplants; information on sources, amounts, location, and characteristics of spent nuclear fuel and high-level radioactive waste; sources, types and effects of radiation; US policy for managing and disposing of spent nuclear fuel and high-level radioactive waste and what other countries are doing; and the components of the nuclear waste management system

  4. Method for fault diagnosis of digital control systems in nuclear power plant

    International Nuclear Information System (INIS)

    Suzuki, Satoshi; Nagaoka, Yukio; Ohga, Yukiharu; Ito, Tetsuo

    1990-01-01

    This paper presents a method for localizing faulty components of control systems by replaceable parts such as print boards and cables, in a large scale plant like a nuclear power plant. Most of today's control systems form a distributed configuration including many digital controllers interconnected by data communication networks. Usually, to localize the faulty components in nuclear plant control systems, suspected faulty components are narrowed down by executing manual tests to examine whether the objects are normal or abnormal based on design documents and personnel know-how, besides the uses of self-diagnosis functions built into the control systems. In the present method, procedures of various tests including the know-how and checking of self-diagnosis functions are provided as knowledge of tests. The tests to be executed is determined by considering failure probabilities of objects, and easiness and effectiveness of testing. Then, the suspects are narrowed down sequentially based on the test result. In checking feasibility of this diagnosis method for a simulated control system, intended faults are satisfactorily localized. This method is confirmed to be practicable for diagnosis of large scale digital control systems. (author)

  5. A numerical simulation package for analysis of neutronics and thermal fluids of space nuclear power and propulsion systems

    International Nuclear Information System (INIS)

    Anghaie, S.; Feller, G.J.; Peery, S.D.; Parsley, R.C.

    1993-01-01

    A system of computer codes for engineering simulation and in-depth analysis of nuclear and thermal fluid design of nuclear thermal rockets is developed. The computational system includes a neutronic solver package, a thermal fluid solver package and a propellant and materials property package. The Rocket Engine Transient Simulation (ROCETS) system code is incorporated with computational modules specific to nuclear powered engines. ROCETS features a component based performance architecture that interfaces component modules into the user designed configuration, interprets user commands, creates an executable FORTRAN computer program, and executes the program to provide output to the user. Basic design features of the Pratt ampersand Whitney XNR2000 nuclear rocket concept and its operational performance are analyzed and simulated

  6. C-E Nuclear Power Businesses Quality Management of Manufacturing and Design and its impact on Reliability of C-E Supplied Components

    Energy Technology Data Exchange (ETDEWEB)

    Mawhinney, D. [Combustion Engineering, Inc., Windsor (United States)

    1989-04-15

    To attain and sustain this objective, Nuclear Power Businesses has established a quality system for design and manufacturing of Nuclear Steam Supply System components, nuclear fuel and operating plant systems and services. Today's quality system has been designed, developed and refined over the past forty (40) years. This system is a dynamic one, based on solid quality principles, accepted industry standards and practices, complies with the ASME Code and 10 CFRP 50, Appendix B, but within the bounds of mandated requirements is adaptable to unique client needs. Nuclear Power Businesses is successfully implementing its quality philosophy through management and organizational commitment, strong leadership, teamwork and use of modern quality techniques. The quality system at C-E Nuclear Power Businesses has been developed in response to changing requirements over the past forty years. It is still changing today. The effectiveness of the system is evidenced by the superior performance of C-E Nuclear Power Businesses supplied Ness's. The system includes management involvement and awareness involvement and awareness and ensures that all employees are aware of Nuclear Power Businesses' quality goals. The system has a strong quality organization that establishes uniform policies and assures compliance. In addition, the system promotes open communication and prompt, permanent corrective action. Although we believe our system, as they exist today, meet or exceed client requirements, they are continuously reviewed and adjusted to improve their usefulness to make them more cost effective.

  7. C-E Nuclear Power Businesses Quality Management of Manufacturing and Design and its impact on Reliability of C-E Supplied Components

    International Nuclear Information System (INIS)

    Mawhinney, D.

    1989-01-01

    To attain and sustain this objective, Nuclear Power Businesses has established a quality system for design and manufacturing of Nuclear Steam Supply System components, nuclear fuel and operating plant systems and services. Today's quality system has been designed, developed and refined over the past forty (40) years. This system is a dynamic one, based on solid quality principles, accepted industry standards and practices, complies with the ASME Code and 10 CFRP 50, Appendix B, but within the bounds of mandated requirements is adaptable to unique client needs. Nuclear Power Businesses is successfully implementing its quality philosophy through management and organizational commitment, strong leadership, teamwork and use of modern quality techniques. The quality system at C-E Nuclear Power Businesses has been developed in response to changing requirements over the past forty years. It is still changing today. The effectiveness of the system is evidenced by the superior performance of C-E Nuclear Power Businesses supplied Ness's. The system includes management involvement and awareness involvement and awareness and ensures that all employees are aware of Nuclear Power Businesses' quality goals. The system has a strong quality organization that establishes uniform policies and assures compliance. In addition, the system promotes open communication and prompt, permanent corrective action. Although we believe our system, as they exist today, meet or exceed client requirements, they are continuously reviewed and adjusted to improve their usefulness to make them more cost effective

  8. Component Fragility Research Program: Phase 1 component prioritization

    International Nuclear Information System (INIS)

    Holman, G.S.; Chou, C.K.

    1987-06-01

    Current probabilistic risk assessment (PRA) methods for nuclear power plants utilize seismic ''fragilities'' - probabilities of failure conditioned on the severity of seismic input motion - that are based largely on limited test data and on engineering judgment. Under the NRC Component Fragility Research Program (CFRP), the Lawrence Livermore National Laboratory (LLNL) has developed and demonstrated procedures for using test data to derive probabilistic fragility descriptions for mechanical and electrical components. As part of its CFRP activities, LLNL systematically identified and categorized components influencing plant safety in order to identify ''candidate'' components for future NRC testing. Plant systems relevant to safety were first identified; within each system components were then ranked according to their importance to overall system function and their anticipated seismic capacity. Highest priority for future testing was assigned to those ''very important'' components having ''low'' seismic capacity. This report describes the LLNL prioritization effort, which also included application of ''high-level'' qualification data as an alternate means of developing probabilistic fragility descriptions for PRA applications

  9. HVAC System Replacements for the Spanish Nuclear Fleet

    Energy Technology Data Exchange (ETDEWEB)

    Izquierdo, J.; Gensollen, T.; Pérez, C.

    2015-07-01

    The European Union and its Member States have established regulations to phase out ozone-depleting chlorofluorocarbons (CFCs). The chiller systems installed at the Spanish nuclear fleet contained zone depleting refrigerants (such as R-11, R-12, and R-22), which are being phased out of service. Due to the different material and thermodynamic properties of the replacement refrigerant (e.g. R-134A), a complete chiller system replacement is needed to comply with the EU regulations for CFCs. Delivering state of the art HVAC and Chiller systems that comply with the Nuclear Plant design basis, licensing basis, system and component specifications as well as European Union (EU) and Spanish codes and standards can be challenging for products purchased from US based manufacturers. Procurement specifications and Request for Quotes (RFQs) issued today for the procurement of original Plant components and systems will contain references to numerous codes and standards that were not in effect at the time the original components were specified and procured. The reference to EU and Spanish codes and standards that are unfamiliar to the HVAC suppliers can lead to uncertainty and concern related to specification compliance. The unnecessary burden of ambiguous codes and standards complicates the proposal process and introduces pricing uncertainty and contract risk. A review of the EU and Spanish national codes and standards that are often referenced in HVAC system related RFQs need to be performed to determine what codes and standards are applicable to HVAC systems designed, manufactured and tested in the US for export to Spain for installation in Spanish NPPs. Lessons learned and best practices should be applied to help both the Supplier (HVAC OEM) and the Purchaser Plant Operator) to optimize the procurement process and improve the quality of offerings to comply with applicable codes and standards. (Author)

  10. The socio-technical system and nuclear safety

    International Nuclear Information System (INIS)

    Stefanescu, Petre; Mihailescu, Nicolae; Dragusin, Octavian

    1999-01-01

    In the field of nuclear safety there have been defined notions like 'technical factors' and 'human factors'. The technical factors depend on designing and manufacturing of components/equipment, actually depend on the people's work. The study of human factors consists in analyzing and recommending the terms that allow an individual to be a reliable and safety agent. Accordingly, he/she is placed in working conditions corresponding to human abilities, associating the means of three levels: - designing, i.e. the action upon the technical system and upon work organization; - correction, i.e. the action upon the evolution of the technical system and organizing; - formation/training, i.e. action upon operators. The paper presents a characterization of the socio-technical system and on this basis discusses the issue of individual adjustment to the socio-technical system and reciprocally, the issue of the socio-technical system adjustment to the individual. Concepts as: ergonomics, physical medium, man/machine interface and support of the operator, man/machine task sharing, the work organizing are put in relation with the central subject, the nuclear safety

  11. National Reachback Systems for Nuclear Security: State-of-play report: ERNCIP Thematic Group Radiological and Nuclear Threats to Critical Infrastructure: Deliverable of task 3.1b

    OpenAIRE

    TOIVONEN H.; HUBERT Schoech; REPPENHAGEN GRIM P.; PIBIDA Leticia; JAMES Mark; ZHANG Weihua; PERÄJÄRVI K.

    2015-01-01

    Operational systems for nuclear security in Finland, France, Denmark, UK, US and Canada were reviewed. The Finnish case is a holistic approach to Nuclear Security Detection Architecture, as defined by the International Atomic Energy Agency; reachback is only one component of the system, albeit an important crosscutting element of the detection architecture. The French and US studies concentrate on the reachback itself. The Danish nuclear security system is information-driven, relying on th...

  12. Fabrication of high performance components for Indian nuclear reactors

    International Nuclear Information System (INIS)

    Jayaraj, R.N.

    2011-01-01

    Nuclear Fuel Complex (NFC), a Unit of the Department of Atomic Energy (DAE) has been engaged for well over three-and-half decades in the manufacture of fuels for Pressurized Heavy Water Reactors (PHWRs) and Boiling Water Reactors (BWRs). All the fuel assembly components, like, fuel clad tubes, end plugs, spacers, spacer grids etc. are also being manufactured at NFC in Zirconium alloy material. Apart from the regular production of these components and finished fuel assemblies, NFC has also been engaged in the production of Zirconium alloy reactor core structurals, like, pressure tubes, calandria tubes, garter springs and reactivity control mechanisms for PHWRs and square channels for BWRs. While all these structural components are produced through standardized flow sheets, there have been continuous innovations carried out in the processes to meet the ever increasing end-use characteristics laid down by the utilities. The paper enumerates various aspects of different technologies developed at NFC for the manufacture of high performance components for reactor applications

  13. The maintenance optimization of structural components in nuclear power plants

    International Nuclear Information System (INIS)

    Bryla, P.; Ardorino, F.; Aufort, P.; Jacquot, J.P.; Magne, L.; Pitner, P.; Verite, B.; Villain, B.; Monnier, B.

    1997-10-01

    An optimization process, called 'OMF-Structures', is developed by Electricite de France (EDF) in order to extend the current 'OMF' Reliability Centered Maintenance to piping structural components. The Auxiliary Feedwater System of a 900 MW French nuclear plant has been studied in order to lay the foundations of the method. This paper presents the currently proposed principles of the process. The principles of the OMF-Structures process include 'Risk-Based Inspection' concepts within an RCM process. Two main phases are identified: The purpose of the first phase is to select the risk-significant failure modes and associated elements. This phase consists of two major steps: potential consequences evaluation and reliability performance evaluation. The second phase consists of the definition of preventive maintenance programs for piping elements that are associated with risk-significant failure modes. (author)

  14. Development of a web-based monitoring system using operation parameters for the main component in nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Son, Dong Chan; An Kang Il; Hong, Suk Young; Lee, Jeong Soo; Lee, Kwang Yeol; Shin, Sun Hee; Lee, Chun Wha; Son, So Hee [Daesang Information Technology Co., Ltd., Seoul (Korea, Republic of)

    2003-03-15

    The frequency of the damage is increasing, which is caused by the fatigue, according to the increase of running of nuclear power plants. So we need to acquire the reliance of design data to estimate the fatigue and damage of major machinery that might happen as time-dependent crack growth characterization. The research is focused on keeping operating record of nuclear power plants about major machinery which consists of a nuclear reactor pressure boarder on each excessive operating condition including normal operating and extraordinary operating by estimating fracture mechanical movements on real time and fatigue about major nuclear power plants machinery, which are acquired the pressure and temperature data. For further details about the scope and contents of R and D are following: development of H/W that is necessary to acquire operating real time data of heating and hydraulic power, selection of a safety variable about major system by each type (the fourth unit), communication protocol development for connecting between CARE system data base server and fatigue monitoring system data base server, development of connecting database for controlling and storing of heating and hydraulic power operating data, real time monitoring system development based on web using JAVA.

  15. Risk and safety analysis of nuclear systems

    CERN Document Server

    Lee, John C

    2011-01-01

    The book has been developed in conjunction with NERS 462, a course offered every year to seniors and graduate students in the University of Michigan NERS program. The first half of the book covers the principles of risk analysis, the techniques used to develop and update a reliability data base, the reliability of multi-component systems, Markov methods used to analyze the unavailability of systems with repairs, fault trees and event trees used in probabilistic risk assessments (PRAs), and failure modes of systems. All of this material is general enough that it could be used in non-nuclear a

  16. The systems approach to spent fuel and high level nuclear waste management

    International Nuclear Information System (INIS)

    Norman, N.A.

    1987-01-01

    Based on the prior successful experience in the application of systems engineering techniques to large, complex, multi-participant programs the U.S. DOE has elected to apply the systems engineering process to the U.S. High Level Nuclear Waste Management Program (HLNWMP). Features of the systems engineering process as it applies to the U.S. HLNWMP and the importance of the component interdependencies are descirbed. Four principle components of the U.S. HLW Managment System are also given. They are the reactors or defense sources, transportation system, interium storoge modes, and the final repository. (Huang)

  17. Evaluation and mitigation of the degradation by corrosion in the components of the service water system of a nuclear power plant; Evaluacion y mitigacion de la degradacion por corrosion en los componentes del sistema de agua de servicio de una planta nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Salaices A, E.; Salaices, M.; Ovando, R. [IIE, Av. Reforma 113 Col. Palmira, 62490 Cuernavaca, Morelos (Mexico)]. e-mail: sal@iie.org.mx

    2005-07-01

    One of the main problems that face the nuclear power stations is the degradation by corrosion in the service water systems. The corrosion causes lost substantial in energy generation and a high cost in maintenance and repairs. In this work, the results of a study of the degradation by the MIC mechanisms (microorganisms influenced corrosion), incrustations in heat exchangers and erosion for solid particles in the components of a typical service water system of a nuclear plant are presented. Diverse mitigation options are analyzed for these mechanisms. In the analysis, it was used the CHECWORKS-CWA code to carry out the evaluation of the degradation so much as well as the mitigation of the caused damage. The results are presented in susceptibility indexes and degradation rates component-by-component. A significant decrement could be observed in the susceptibility to MIC when changing the operation conditions of stagnated flow to continuous flow. With respect to the erosion by solid particles, it was found a significant reduction of the damage it when adding filters to the system. Finally, in the case of the heat exchangers, it is shown that one of the more viable options to diminish incrustations and existent calcium deposits it is the reduction of the pH of the service water. (Author)

  18. Theoretical Study of H/D Isotope Effects on Nuclear Magnetic Shieldings Using an ab initio Multi-Component Molecular Orbital Method

    Directory of Open Access Journals (Sweden)

    Masanori Tachikawa

    2013-05-01

    Full Text Available We have theoretically analyzed the nuclear quantum effect on the nuclear magnetic shieldings for the intramolecular hydrogen-bonded systems of σ-hydroxy acyl aromatic species using the gauge-including atomic orbital technique combined with our multi-component density functional theory. The effect of H/D quantum nature for geometry and nuclear magnetic shielding changes are analyzed. Our study clearly demonstrated that the geometrical changes of hydrogen-bonds induced by H/D isotope effect (called geometrical isotope effect: GIE is the dominant factor of deuterium isotope effect on 13C chemical shift.

  19. Progress of nuclear safety for symbiosis and sustainability advanced digital instrumentation, control and information systems for nuclear power plants

    CERN Document Server

    Yoshikawa, Hidekazu

    2014-01-01

    This book introduces advanced methods of computational and information systems allowing readers to better understand the state-of-the-art design and implementation technology needed to maintain and enhance the safe operation of nuclear power plants. The subjects dealt with in the book are (i) Full digital instrumentation and control systems and human?machine interface technologies (ii) Risk? monitoring methods for large and? complex? plants (iii) Condition monitors for plant components (iv) Virtual and augmented reality for nuclear power plants and (v) Software reliability verification and val

  20. ETGAR - Information system for abnormal occurrences in nuclear power plants

    International Nuclear Information System (INIS)

    Baram, J.; Nagar, M.; Pultorak, G.

    1975-01-01

    The need for extensive information on systems and components arises early in the planning stage of a nuclear power plant. This information is equally necessary during the building of the plant and during the licensing process. Another type of information helps preventive maintenance during the operating life of the plant. In the case of abnormal occurrences additional information on their possible consequences and on possible ways of handling them, is essential. To cover these four needs, the ETGAR system, which at present covers mostly PWR and BWR type nuclear power plants, collects and evaluates information on abnormal occurrences in nuclear power plants. The information is coded, using a three-level coding scheme for systems and components, and put on magnetic tape. A search program enables the retrieval of any pertinent information from the data base. The sources for the ETGAR data base are reports on abnormal occurrences in nuclear power plants. Most of them are USAEC dockets, originated at U.S.A. power plants. The relevant documents are accessible through a standard query run for ETGAR in the INIS data base which is maintained by the INIS centre in Israel. This query retrieves every two weeks all the documents which come under the ETGAR scope and these are handed as microfiches to the ETGAR evaluators after each INIS run. The evaluation and coding of the documents, the ETGAR coding scheme and the computer programs are described. (B.G.)

  1. Emerging nuclear energy systems and nuclear weapon proliferation

    International Nuclear Information System (INIS)

    Gsponer, A.; Sahin, S.; Jasani, B.

    1983-01-01

    Generally when considering problems of proliferation of nuclear weapons, discussions are focused on horizontal proliferation. However, the emerging nuclear energy systems currently have an impact mainly on vertical proliferation. The paper indicates that technologies connected with emerging nuclear energy systems, such as fusion reactors and accelerators, enhance the knowledge of thermonuclear weapon physics and will enable production of military useful nuclear materials (including some rare elements). At present such technologies are enhancing the arsenal of the nuclear weapon states. But one should not forget the future implications for horizontal proliferation of nuclear weapons as some of the techniques will in the near future be within the technological and economic capabilities of non-nuclear weapon states. Some of these systems are not under any international control. (orig.) [de

  2. Development of a three dimensional elastic plastic analysis system for the integrity evaluation of nuclear power plant components

    International Nuclear Information System (INIS)

    Huh, Nam Su; Im, Chang Ju; Kim, Young Jin; Pyo, Chang Ryul; Park, Chi Yong

    2000-01-01

    In order to evaluate the integrity of nuclear power plant components, the analysis based on fracture mechanics is crucial. For this purpose, finite element method is popularly used to obtain J-integral. However, it is time consuming to design the finite element model of a cracked structure. Also, the J-integral should by verified by alternative methods since it may differ depending on the calculation method. The objective of this paper is to develop a three-dimensional elastic-plastic J-integral analysis system which is named as EPAS program. The EPAS program consists of an automatic mesh generator for a through-wall crack and a surface crack, a solver based on ABAQUS program, and a J-integral calculation program which provides DI (Domain Integral) and EDI (Equivalent Domain Integral) based J-integral calculation. Using the EPAS program, an optimized finite element model for a cracked structure can be generated and corresponding J-integral can be obtained subsequently

  3. Development of support system for nuclear power plant piping

    International Nuclear Information System (INIS)

    Horino, Satoshi

    1987-01-01

    Ishikawajima-Harima Heavy Industries Co., Ltd. has advanced the development of Integrated Nuclear Plant Piping System (INUPPS) for nuclear power plants since 1980, and continued its improvement up to now. This time as its component, a piping support system (PISUP) has been developed. The piping support system deals with the structures such as piping supports and the stands for maintenance and inspection, and as for standard supporting structures, it builds up automatically the structures including the selection of optimum members by utilizing the standard patterns in cooperation with the piping design system including piping stress analysis. As for the supporting structures deviating from the standard, by amending a part of the standard patterns in dialogue from, structures can be built up. By using the data produced in this way, this system draws up consistently a design book, production management data and so on. From the viewpoint of safety, particular consideration is given to the aseismatic capability of nuclear power plants, and piping is fundamentally designed regidly to avoid resonance. It is necessary to make piping supports so as to have sufficient strength and rigidity. The features of the design of piping supports for nuclear power plant, the basic concept of piping support system, the constitution of the software and hardware, the standard patterns and the structural patterns of piping support system and so on are described. (Kako, I.)

  4. Study on the Operating Strategy of HVAC Systems for Nuclear Decommissioning Plant

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sung-hwan; Han, Sung-heum; Lee, Jae-gon [KHNP CRI, Daejeon (Korea, Republic of)

    2016-10-15

    According as Kori nuclear power plant unit 1 was determined to be defueled in 2017, various studies on nuclear plant decommissioning have been performed. In nuclear decommissioning plant, HVAC systems with large fan and electric coil have to be operated for long periods of time to support various types of work from defueled phase to final dismantling phase. So, in view of safety and utility costs, their overall operating strategy need to be established prior to defueled phase. This study presents HVAC system operating strategy at each decommissioning phase, that is, defueled plant operating phase, SSCs(systems, structures, components) decontamination and dismantling phases. In defueled plant operating phase, all fuel assemblies in reactor vessel are transferred to spent fuel pool(SFP) permanently. In defueled plant operation phase, reduction of the operating system trains is more practicable than the introduction of new HVAC components with reduced capacity. And, based on the result of the accident analyses for this phase, HVAC design bases such as MCR habitability requirement can be mitigated. According to these results, associated SSCs also can be downgraded. In similar approach, at each phase of plant decommissioning, proper inside design conditions and operating strategies should be re-established.

  5. An introduction to the design, commissioning and operation of nuclear air cleaning systems for Qinshan Nuclear Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Xinliang Chen; Jiangang Qu; Minqi Shi [Shanghai Nuclear Engineering Research and Design Institute (China)] [and others

    1995-02-01

    This paper introduces the design evolution, system schemes and design and construction of main nuclear air cleaning components such as HEPA filter, charcoal adsorber and concrete housing etc. for Qinshan 300MW PWR Nuclear Power Plant (QNPP), the first indigenously designed and constructed nuclear power plant in China. The field test results and in-service test results, since the air cleaning systems were put into operation 18 months ago, are presented and evaluated. These results demonstrate that the design and construction of the air cleaning systems and equipment manufacturing for QNPP are successful and the American codes and standards invoked in design, construction and testing of nuclear air cleaning systems for QNPP are applicable in China. The paper explains that the leakage rate of concrete air cleaning housings can also be assured if sealing measures are taken properly and embedded parts are designed carefully in the penetration areas of the housing and that the uniformity of the airflow distribution upstream the HEPA filters can be achieved generally no matter how inlet and outlet ducts of air cleaning unit are arranged.

  6. Development of a web-based monitoring system using operation parameters for the main component in nuclear power plants

    International Nuclear Information System (INIS)

    Son, Dong Chan; An, Kung Il; Hong, Suk Young; Lee, Jeong Soo; Jung, Duk Jin; Shin, Sun Hee; Son, So Hee

    2004-02-01

    The frequency of the damage is increasing, which is caused by the fatigue, according to the increase of running of nuclear power plants. So we need to acquire the reliance of design data to estimate the fatigue and damage of major machinery that might happen as time-dependent crack growth characterization. The research is focused on keeping operating record of nuclear power plants about major machinery which consists of a nuclear reactor pressure boarder on each excessive operating condition including normal operating and extraordinary operating by estimating fracture mechanical movements on real time and fatigue about major nuclear power plants machinery, which are acquired the pressure and temperature data. For further details about the scope and contents of R and D are following. Development of H/W that is necessary to acquire operating real time data of heating and hydraulic power. Selection of a safety variable about major system by each type (the four NPP, all unit). Communication protocol development for connecting between CARE system data base server and fatigue monitoring system data base server. Development of connecting database for controlling and storing of heating and hydraulic power operating data. Real time monitoring system development based on Web using JAVA

  7. Development of a web-based monitoring system using operation parameters for the main component in nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Son, Dong Chan; An, Kung Il; Hong, Suk Young; Lee, Jeong Soo; Jung, Duk Jin; Shin, Sun Hee; Son, So Hee [Daesang Information Technology Co., Ltd., Seoul (Korea, Republic of)

    2004-02-15

    The frequency of the damage is increasing, which is caused by the fatigue, according to the increase of running of nuclear power plants. So we need to acquire the reliance of design data to estimate the fatigue and damage of major machinery that might happen as time-dependent crack growth characterization. The research is focused on keeping operating record of nuclear power plants about major machinery which consists of a nuclear reactor pressure boarder on each excessive operating condition including normal operating and extraordinary operating by estimating fracture mechanical movements on real time and fatigue about major nuclear power plants machinery, which are acquired the pressure and temperature data. For further details about the scope and contents of R and D are following. Development of H/W that is necessary to acquire operating real time data of heating and hydraulic power. Selection of a safety variable about major system by each type (the four NPP, all unit). Communication protocol development for connecting between CARE system data base server and fatigue monitoring system data base server. Development of connecting database for controlling and storing of heating and hydraulic power operating data. Real time monitoring system development based on Web using JAVA.

  8. Conceptual benefits of passive nuclear power plants and their effect on component design

    International Nuclear Information System (INIS)

    DeVine, J.C. Jr.

    1996-01-01

    Today, nearly ten years after the advanced light water reactor (ALWR) Program was conceived by US utility leaders, and a decade and a half since a new nuclear power plant was ordered in the US, the ALWR passive plant is coming into its own. This design concept, a midsized simplified light water reactor, features extremely reliable passive systems for accident prevention and mitigation and combines proven experience with state-of-the-art engineering and human factors. It is now emerging as the front runner to become the next generation reactor in the US and perhaps around the world. Although simple and straightforward in concept, the passive plant is in many respects a significant departure from previous trends in reactor engineering. Successful implementation of this concept presents numerous challenges to the designers of passive plant systems and components. This paper provides a brief history of the ALWR program, it outlines the ALWR passive plant design objectives and principles, and it summarizes with examples their implications on component design. (orig.)

  9. Criteria adopted by the Argentine Nuclear Regulatory Authority for assessing digital systems related to safety

    International Nuclear Information System (INIS)

    Terrado, Carlos A.; Chiossi, Carlos E.; Felizia, Eduardo R.; Roca, Jose L.; Sajaroff, Pedro M.

    2004-01-01

    Following the technological evolution in Instrumentation and Control (I and C) design, analog components are replaced by digital in almost every industry. Due to growing challenges of obsolescence and increasing maintenance costs, licensees of nuclear and radioactive installations are increasingly upgrading or replacing their existing I and C analog systems and components. In existing installations, this involves analog to digital replacements. In new installations design, the use of digital I and C systems is being considered from the very beginning, becoming a good alternative, even in safety applications. Up to now, in Argentina, there is no specific rules for safety-related digital systems, every safety system, analog or digital, must comply with the same generic regulations. The Nuclear Regulatory Authority is now developing criteria to assess digital systems related to safety in nuclear and radioactive installations. In this paper some of those criteria, based on local research and the recognized state of the art, are explained. From a regulatory point of view, the use of digital technology often raises new technical and licensing issues, particularly for safety-related applications. Examples include new failure modes, the potential for common-cause failure of redundant components, electromagnetic interference (EMI), software verification and validation, configuration management and a more exhaustive quality assurance system. The mentioned criteria comprehend the design, operation, maintenance and acquisition of digital systems and components important to safety. The main topics covered are: requirements specifications for digital systems, planning and documentation for digital system development, effectiveness of a digital system, commercial off the shelf (COTS) treatment and considerations involving tools for software development. (author)

  10. Online monitoring and diagnostic system on RA-6 nuclear reactor

    International Nuclear Information System (INIS)

    Garcia Peyrano, O. A.; Marticorena, M.; Koch, R. G.; Martinez, J. S; Berruti, G. E.; Nunez, W. M.; Gonzales, L. A.; Tarquini, L. D.; Sotelo, J. P

    2009-01-01

    This paper presents the Online Automatic Monitoring and Diagnostic System for mechanical components, installed on RA-6 Nuclear Reactor (San Carlos de Bariloche, Argentina). This system has been designed, installed and set-up by the Vibrations and Mechatronics Laboratory (Centro Atomico Bariloche, Comision Nacional de Energia Atomica) and Sitrack.com Argentina SA. This system provides an online mechanical diagnostic of the main reactor components, allowing incipient failures to be early detected and identified, avoiding unscheduled shut-downs and reducing maintenance times. The diagnostic is accomplished by an online analysis of the vibratory signature of the mechanical components, obtained by vibrations sensors on the main pump and the decay tank. The mechanical diagnostic and the main operational parameters are displayed on the reactor control room and published on the internet. [es

  11. Future Direction of the Instrumentation and Control System for Security of Nuclear Facilities

    International Nuclear Information System (INIS)

    Kim, Woo Jin; Kim, Jae Kwang

    2014-01-01

    Instrumentation and control systems are pervasively used as a vital component in modern industries. Nuclear facilities, such as nuclear power plants (NPPs), originally use I and C systems for plant status monitoring, processes control, and many other purposes. After some events that raised security concerns, application areas of I and C systems have been expanded to physical protection of nuclear material and facilities. As nuclear policies over the world are strengthening security issues, the future direction of roles and technical requirements of security related I and C systems is described: An introduction of I and C systems, especially digitalized I and C systems, to security of nuclear facilities requires many careful considerations, such as system integration, verification and validation (V/V), etc. Institute of Nuclear Nonproliferation and Control (KINAC) established 'International Nuclear Nonproliferation and Security Academy, INSA' in 2014. One of the main achievements of INSA is test-bed implementation for technical criteria development of nuclear facilities' physical protection systems (PPSs) as well as for education and training of those systems. The test bed was modified and improved more suitably from the previous version to modern PPSs including state-of-the-art I and C technologies. KINAC is confident in the new test bed to become a fundamental technical basis of security related I and C systems in near future

  12. Applications of Axiomatic Design in Developing Nuclear Systems

    Energy Technology Data Exchange (ETDEWEB)

    Heo, Gyunyoung [Kyung Hee University, Seoul (Korea, Republic of)

    2007-10-15

    The first step of designing nuclear systems starts with the identification of the top-level requirements given by stake holders and regulatory authorities. A detailed design of structure, system and component then follows. Design is divided into two processes: 'synthesis' and 'analysis.' While synthesis is the process of decision making on parameters, analysis is the process of optimizing the parameters selected. It is known from experience that the mistakes made in the synthesis process, particularly of a conceptual stage, are never completely corrected in the analysis process, which is more serious in designing complex safety critical systems such as nuclear power plants. It should be also noted that we normally believe that synthesis is only driven by engineers' heuristic knowledge. This paper proposes the applications of Axiomatic Design (AD), which is a design management tool as slightly opposed to this conventional view. I hypothesize that the design management using design axioms reduces uncertainty and subjectivity particularly at a conceptual phase so that a safer nuclear system can be developed while reducing cost in view of the system's entire life cycle. I will describe the notion of AD and introduce a few case studies.

  13. Nuclear power plants. Electrical equipment of the safety system. Qualification

    International Nuclear Information System (INIS)

    2001-01-01

    This International Standard applies to electrical parts of safety systems employed at nuclear power plants, including components and equipment of any interface whose failure could affect unfavourably properties of the safety system. The standard also applies to non-electrical safety-related interfaces. Furthermore, the standard describes the generic process of qualification certification procedures and methods of qualification testing and related documentation. (P.A.)

  14. Reactor component automatic grapple

    International Nuclear Information System (INIS)

    Greenaway, P.R.

    1982-01-01

    A grapple for handling nuclear reactor components in a medium such as liquid sodium which, upon proper seating and alignment of the grapple with the component as sensed by a mechanical logic integral to the grapple, automatically seizes the component. The mechanical logic system also precludes seizure in the absence of proper seating and alignment. (author)

  15. Nondestructive testing of nuclear reactor components integrity

    International Nuclear Information System (INIS)

    Mala, M.; Miklos, M.

    2011-01-01

    Nuclear energy must respond to current challenges in the energy market. The significant parameters are increase of the nuclear fuel price, closed fuel cycle, reduction and safe and the final disposal of high level radioactive waste. Nowadays, the discussions on suitable energy mix are taking place not only here in Czech Republic, but also in many other European countries. It is necessary to establish an appropriate ratio among the production of electricity from conventional, nuclear and renewable energy sources. Also, it is necessary to find ways how to streamline the economy, central part of the nuclear fuel cycle and thereby to increase the competitiveness of nuclear energy. This streamlining can be carried out by improving utilization of existing nuclear fuel with maintaining a high degree of nuclear facilities safety. Increasing operational reliability and safety together with increasing utilization of nuclear fuel place increasing demands on monitoring of changes during fuel burnup. The potential fuel assembly damages in light water reactors are prevented by the introduction of new procedures and programs of the fuel assembly monitoring. One of them is the Post Irradiation Inspection Program (PIIP) which is a good tool for monitoring of chemical regime impact on the fuel assembly cladding behavior. Main nondestructive techniques that are used at nuclear power plants for the fuel assembly integrity evaluation are ultrasonic measurements, eddy current measurements, radiographic testing, acoustic techniques and others. Ultrasonic system is usual tool for leak fuel rod evaluation and it is also used at Temelin NPP. Since 2009, Temelin NPP has cooperated with Research Center Rez Ltd in frame of PIIP program at both units WWER 1000. This program was established for US VVantage6 fuel assemblies and also it continues for Russian TVSA-T fuel assemblies. (author)

  16. Component reliability criticality or importance metrics for systems with degrading components

    NARCIS (Netherlands)

    Peng, H.; Coit, D.W.; Feng, Q.

    2012-01-01

    This paper proposes two new importance measures: one new importance measure for systems with -independent degrading components, and another one for systems with -correlated degrading components. Importance measures in previous research are inadequate for systems with degrading components because

  17. Evaluation of Nuclear Hydrogen Production System

    International Nuclear Information System (INIS)

    Park, Won Seok; Park, C. K.; Park, J. K. and others

    2006-04-01

    The major objective of this work is tow-fold: one is to develop a methodology to determine the best VHTR types for the nuclear hydrogen demonstration project and the other is to evaluate the various hydrogen production methods in terms of the technical feasibility and the effectiveness for the optimization of the nuclear hydrogen system. Both top-tier requirements and design requirements have been defined for the nuclear hydrogen system. For the determination of the VHTR type, a comparative study on the reference reactors, PBR and PBR, was conducted. Based on the analytic hierarchy process (AHP) method, a systematic methodology has been developed to compare the two VHTR types. Another scheme to determine the minimum reactor power was developed as well. Regarding the hydrogen production methods, comparison indices were defined and they were applied to the IS (Iodine-Sulfur) scheme, Westinghouse process, and the, high-temperature electrolysis method. For the HTE, IS, and MMI cycle, the thermal efficiency of hydrogen production were systematically evaluated. For the IS cycle, an overall process was identified and the functionality of some key components was identified. The economy of the nuclear hydrogen was evaluated, relative to various primary energy including natural gas coal, grid-electricity, and renewable. For the international collaborations, two joint research centers were established: NH-JRC between Korea and China and NH-JDC between Korea and US. Currently, several joint researches are underway through the research centers

  18. Survey of artificial intelligence methods for detection and identification of component faults in nuclear power plants

    International Nuclear Information System (INIS)

    Reifman, J.

    1997-01-01

    A comprehensive survey of computer-based systems that apply artificial intelligence methods to detect and identify component faults in nuclear power plants is presented. Classification criteria are established that categorize artificial intelligence diagnostic systems according to the types of computing approaches used (e.g., computing tools, computer languages, and shell and simulation programs), the types of methodologies employed (e.g., types of knowledge, reasoning and inference mechanisms, and diagnostic approach), and the scope of the system. The major issues of process diagnostics and computer-based diagnostic systems are identified and cross-correlated with the various categories used for classification. Ninety-five publications are reviewed

  19. Project of mechanical components for nuclear power plants

    International Nuclear Information System (INIS)

    Amaral, J.A.R. do; Farias Brito David, D. de

    1984-01-01

    The equipment foreseen to be part of a nuclear power plant must show high quality and safety due to the presence of radioactivity. Besides the perfect functioning during the rigid operating conditions, some postulated loadings are foreseen, like earthquake and loss of coolant accidents, which must be also considered in the design of the components. The design and calculation's concept and development, the interactions with the piping and civil designs, as well as their influences in the licensing process with the authorities are described. (Author) [pt

  20. Safety case for the disposal of spent nuclear fuel at Olkiluoto. Description of the disposal system 2012

    International Nuclear Information System (INIS)

    2012-12-01

    Description of the Disposal System sits within Posiva Oy's Safety Case 'TURVA-2012' report portfolio and has the objective presenting the initial state of the disposal system for the safety case for the disposal of spent nuclear fuel at Olkiluoto, Finland. Disposal system is an entity composed of a repository system and surface environment. The repository system includes the spent nuclear fuel, canister, buffer, backfill, and closure components as well as the host rock. The repository system components have assigned safety functions (except for the spent nuclear fuel) and are subject to requirements. The initial state is presented for each component, and references to the main supporting reports are given to guide the reader for more details. Conditions for each component vary in time and space, due to the time of emplacement and due to the tolerances set for the compositions, geometries and other properties depending on the component. The disposal operation is foreseen to commence ∼ 2020. At the beginning of the postclosure period, around 2120, all the engineered components have been installed and the operation is finalised. The system evolution during the operational phase is discussed in detail in Performance Assessment. The initial state for the host rock is defined to be essentially equal to the baseline conditions prior to starting the construction of the underground characterisation facility ONKALO. For the surface environment, the initial state is the present conditions prevailing. For any other component of the disposal system, the initial state is defined as the state it has when the direct control over that specific part of the system ceases and only limited information can be made available on the subsequent development of conditions in that part of the system or its near field. (orig.)

  1. Safety case for the disposal of spent nuclear fuel at Olkiluoto. Description of the disposal system 2012

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-12-15

    Description of the Disposal System sits within Posiva Oy's Safety Case 'TURVA-2012' report portfolio and has the objective presenting the initial state of the disposal system for the safety case for the disposal of spent nuclear fuel at Olkiluoto, Finland. Disposal system is an entity composed of a repository system and surface environment. The repository system includes the spent nuclear fuel, canister, buffer, backfill, and closure components as well as the host rock. The repository system components have assigned safety functions (except for the spent nuclear fuel) and are subject to requirements. The initial state is presented for each component, and references to the main supporting reports are given to guide the reader for more details. Conditions for each component vary in time and space, due to the time of emplacement and due to the tolerances set for the compositions, geometries and other properties depending on the component. The disposal operation is foreseen to commence {approx} 2020. At the beginning of the postclosure period, around 2120, all the engineered components have been installed and the operation is finalised. The system evolution during the operational phase is discussed in detail in Performance Assessment. The initial state for the host rock is defined to be essentially equal to the baseline conditions prior to starting the construction of the underground characterisation facility ONKALO. For the surface environment, the initial state is the present conditions prevailing. For any other component of the disposal system, the initial state is defined as the state it has when the direct control over that specific part of the system ceases and only limited information can be made available on the subsequent development of conditions in that part of the system or its near field. (orig.)

  2. Some current engineering topics in nuclear power plant components

    International Nuclear Information System (INIS)

    Amana, M.

    1977-01-01

    An analysis based on the principle of fracture mechanics, is presented for several engineering problems occuring in nuclear power plant components. The specific problems covered are: underclad cracking; stress corrosion cracking; cracks in HAZ of nozzle weld; feedwater nozzle corner crack; shift of transition temperature due to neutron irradiation; LWR local-ECC thermal shock experiment; and design and material selection of RPV in terms of fracture mechanics. (B.R.H.)

  3. Nuclear Power Plant Mechanical Component Flooding Fragility Experiments Status

    Energy Technology Data Exchange (ETDEWEB)

    Pope, C. L. [Idaho State Univ., Pocatello, ID (United States); Savage, B. [Idaho State Univ., Pocatello, ID (United States); Johnson, B. [Idaho State Univ., Pocatello, ID (United States); Muchmore, C. [Idaho State Univ., Pocatello, ID (United States); Nichols, L. [Idaho State Univ., Pocatello, ID (United States); Roberts, G. [Idaho State Univ., Pocatello, ID (United States); Ryan, E. [Idaho State Univ., Pocatello, ID (United States); Suresh, S. [Idaho State Univ., Pocatello, ID (United States); Tahhan, A. [Idaho State Univ., Pocatello, ID (United States); Tuladhar, R. [Idaho State Univ., Pocatello, ID (United States); Wells, A. [Idaho State Univ., Pocatello, ID (United States); Smith, C. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2017-07-24

    This report describes progress on Nuclear Power Plant mechanical component flooding fragility experiments and supporting research. The progress includes execution of full scale fragility experiments using hollow-core doors, design of improvements to the Portal Evaluation Tank, equipment procurement and initial installation of PET improvements, designation of experiments exploiting the improved PET capabilities, fragility mathematical model development, Smoothed Particle Hydrodynamic simulations, wave impact simulation device research, and pipe rupture mechanics research.

  4. A framework for selecting suitable control technologies for nuclear power plant systems

    International Nuclear Information System (INIS)

    Kisner, R.A.

    1992-01-01

    New concepts continue to emerge for controlling systems, subsystems, and components and for monitoring parameters, characteristics, and vital signs in nuclear power plants. The steady stream of new control theories and the evolving state of control software exacerbates the difficulty of selecting the most appropriate control technology for nuclear power plant systems. As plant control room operators increase their reliance on computerized systems, the integration of monitoring, diagnostic, and control functions into a uniform and understandable environment becomes imperative. A systematic framework for comparing and evaluating the overall usefulness of control techniques is needed. This paper describes nine factors that may be used to evaluate alternative control concepts. These factors relate to a control system's potential effectiveness within the context of the overall environment, including both human and machine components. Although not an in-depth study, this paper serves to outline an evaluation framework based on several measures of utility. 32 refs

  5. RSMASS-D nuclear thermal propulsion and bimodal system mass models

    Science.gov (United States)

    King, Donald B.; Marshall, Albert C.

    1997-01-01

    Two relatively simple models have been developed to estimate reactor, radiation shield, and balance of system masses for a particle bed reactor (PBR) nuclear thermal propulsion concept and a cermet-core power and propulsion (bimodal) concept. The approach was based on the methodology developed for the RSMASS-D models. The RSMASS-D approach for the reactor and shield sub-systems uses a combination of simple equations derived from reactor physics and other fundamental considerations along with tabulations of data from more detailed neutron and gamma transport theory computations. Relatively simple models are used to estimate the masses of other subsystem components of the nuclear propulsion and bimodal systems. Other subsystem components include instrumentation and control (I&C), boom, safety systems, radiator, thermoelectrics, heat pipes, and nozzle. The user of these models can vary basic design parameters within an allowed range to achieve a parameter choice which yields a minimum mass for the operational conditions of interest. Estimated system masses are presented for a range of reactor power levels for propulsion for the PBR propulsion concept and for both electrical power and propulsion for the cermet-core bimodal concept. The estimated reactor system masses agree with mass predictions from detailed calculations with xx percent for both models.

  6. Nuclear plant service water system aging degradation assessment: Phase 1

    International Nuclear Information System (INIS)

    Jarrell, D.B.; Johnson, A.B. Jr.; Zimmerman, P.W.; Gore, M.L.

    1989-06-01

    The initial phase of an aging assessment of nuclear power plant service water systems (SWSs) was performed by the Pacific Northwest Laboratory to support the Nuclear Regulatory Commission Nuclear Plant Aging Research (NPAR) program. The SWS was selected for study because of its essential role in the mitigation of and recovery from accident scenarios involving the potential for core-melt. The objectives of the SWS task under the NPAR program are to identify and characterize the principal aging degradation mechanisms relevant to this system and assess their impact on operational readiness, and to provide a methodology for the mitigation of aging on the service water aspect of nuclear plant safety. The first two of these objectives have been met and are covered in this Phase 1 report. A review of available literature and data-base information indicated that motor operated valve torque switches (an electro-mechanical device) were the prime suspect in component service water systems failures. More extensive and detailed data obtained from cooperating utility maintenance records and personnel accounts contradicted this conclusion indicating that biologic and inorganic accumulation and corrosive attack of service water on component surfaces were, in fact, the primary degradation mechanisms. A review of the development of time dependent risk assessment (aging) models shows that, as yet, this methodology has not been developed to a degree where implementation is reliable. Improvements in the accuracy of failure data documentation and time dependent risk analysis methodology should yield significant gains in relating aging phenomena to probabilistic risk assessment. 23 refs., 8 figs., 10 tabs

  7. Distributed Control Systems in New Nuclear Power Plants

    International Nuclear Information System (INIS)

    Doerfler, Joseph

    2008-01-01

    With the growing demand for energy many countries have expressed interest in constructing new plants over the next 15 to 20 years. These expectations have presented a challenge to the nuclear industry to provide a high volume of construction. A key strategy to meet this challenge is developing an advanced nuclear power plant design that allows for a modular construction, a high level of standardization, passive safety features, reduced number of components, and a short bid-to-build time. In addition, the implementation of the plant control system has evolved as new technologies emerge to support these goals. The purpose of this paper is to discuss the ways that the distributed control and information systems in the new generation of nuclear power plants will differ from those currently in service. The new designs provide opportunities to improve overall performance through the use of bus technology, a video display driven Human System Interface, enhanced diagnostics and improved maintenance features. However, the new technologies must fully address requirements for cyber security and high reliability. This paper will give an overview of new technology, improvements, as well as emerging issues in new plant design. (authors)

  8. Distributed Control Systems in New Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Doerfler, Joseph [Westinghouse Electric Company, 4350 Northern Pike, Monroeville, PA 15146 (United States)

    2008-07-01

    With the growing demand for energy many countries have expressed interest in constructing new plants over the next 15 to 20 years. These expectations have presented a challenge to the nuclear industry to provide a high volume of construction. A key strategy to meet this challenge is developing an advanced nuclear power plant design that allows for a modular construction, a high level of standardization, passive safety features, reduced number of components, and a short bid-to-build time. In addition, the implementation of the plant control system has evolved as new technologies emerge to support these goals. The purpose of this paper is to discuss the ways that the distributed control and information systems in the new generation of nuclear power plants will differ from those currently in service. The new designs provide opportunities to improve overall performance through the use of bus technology, a video display driven Human System Interface, enhanced diagnostics and improved maintenance features. However, the new technologies must fully address requirements for cyber security and high reliability. This paper will give an overview of new technology, improvements, as well as emerging issues in new plant design. (authors)

  9. Reliability for systems of degrading components with distinct component shock sets

    International Nuclear Information System (INIS)

    Song, Sanling; Coit, David W.; Feng, Qianmei

    2014-01-01

    This paper studies reliability for multi-component systems subject to dependent competing risks of degradation wear and random shocks, with distinct shock sets. In practice, many systems are exposed to distinct and different types of shocks that can be categorized according to their sizes, function, affected components, etc. Previous research primarily focuses on simple systems with independent failure processes, systems with independent component time-to-failure, or components that share the same shock set or type of shocks. In our new model, we classify random shocks into different sets based on their sizes or function. Shocks with specific sizes or function can selectively affect one or more components in the system but not necessarily all components. Additionally the shocks from the different shock sets can arrive at different rates and have different relative magnitudes. Preventive maintenance (PM) optimization is conducted for the system with different component shock sets. Decision variables for two different maintenance scheduling problems, the PM replacement time interval, and the PM inspection time interval, are determined by minimizing a defined system cost rate. Sensitivity analysis is performed to provide insight into the behavior of the proposed maintenance policies. These models can be applied directly or customized for many complex systems that experience dependent competing failure processes with different component shock sets. A MEMS (Micro-electro mechanical systems) oscillator is a typical system subject to dependent and competing failure processes, and it is used as a numerical example to illustrate our new reliability and maintenance models

  10. Robotic control architecture development for automated nuclear material handling systems

    International Nuclear Information System (INIS)

    Merrill, R.D.; Hurd, R.; Couture, S.; Wilhelmsen, K.

    1995-02-01

    Lawrence Livermore National Laboratory (LLNL) is engaged in developing automated systems for handling materials for mixed waste treatment, nuclear pyrochemical processing, and weapon components disassembly. In support of these application areas there is an extensive robotic development program. This paper will describe the portion of this effort at LLNL devoted to control system architecture development, and review two applications currently being implemented which incorporate these technologies

  11. Operating experiences with passive systems and components in German nuclear power plants

    International Nuclear Information System (INIS)

    Maqua, M.

    1996-01-01

    Operating experience with passive systems and components is limited to the equipment installed in existing NPPs. In German power plants, this experience is available for equipment of the IAEA categories A, C and D. The presentation is focused on typical examples out of these three categories. An overview is given on the number of reported events and typical failure modes. Selected failures are discussed in detail. 1 ref., 6 figs, 7 tabs

  12. Operating experiences with passive systems and components in German nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Maqua, M [Gesellschaft fuer Anlagen- und Reaktorsicherheit mbH (GRS), Koeln (Germany)

    1996-12-01

    Operating experience with passive systems and components is limited to the equipment installed in existing NPPs. In German power plants, this experience is available for equipment of the IAEA categories A, C and D. The presentation is focused on typical examples out of these three categories. An overview is given on the number of reported events and typical failure modes. Selected failures are discussed in detail. 1 ref., 6 figs, 7 tabs.

  13. Proposed risk evaluation guidelines for use by the DOE-AL Nuclear Explosive Safety Division in evaluating proposed shipments of nuclear components

    International Nuclear Information System (INIS)

    Just, R.A.; Love, A.F.

    1997-10-01

    The licensing requirements of 10 CFR 71 (US Code of Federal Regulations) are the primary criteria used to license proposed US Department of Energy (DOE) shipments of nuclear components. However, if a shipment cannot meet 10 CFR 71 requirements, a Transportation System Risk Assessment (TSRA) is prepared to document: (1) the degree of compliance of proposed DOE shipments of nuclear components with applicable federal regulations, and (2) the risk associated with the proposed shipments. The Nuclear Explosive Safety Division (NESD) of the Department of Energy, Albuquerque Area Office (DOE-AL) is responsible for evaluating TSRAs and for preparing Safety Evaluation Reports (SERs) to authorize the off-site transport. Hazards associated with the transport may include the presence of fissile material, chemically and radiologically toxic uranium, and ionizing radiation. The Nuclear Regulatory Commission (NRC) has historically considered only radiological hazards in licensing the transport of radiological material because the US Department of Transportation considers licensing requirements of nonradiological (i.e., chemically toxic) hazards. The requirements of 10 CFR 71 are based primarily on consideration of radiological hazards. For completeness, this report provides information for assessing the effects of chemical toxicity. Evaluating the degree of compliance with the requirements of 10 CFR 71 is relatively straightforward. However, there are few precedents associated with developing TSRA risk assessments for packages that do not comply with all of the requirements of 10 CFR 71. The objective of the task is to develop Risk Evaluation Guidelines for DOE-AL to use when evaluating a TSRA. If the TSRA shows that the Risk Evaluation Guidelines are not exceeded, then from a risk perspective the TSRA should be approved if there is evidence that the ALARA (as low as reasonably achievable) principle has been applied

  14. Component reliability for electronic systems

    CERN Document Server

    Bajenescu, Titu-Marius I

    2010-01-01

    The main reason for the premature breakdown of today's electronic products (computers, cars, tools, appliances, etc.) is the failure of the components used to build these products. Today professionals are looking for effective ways to minimize the degradation of electronic components to help ensure longer-lasting, more technically sound products and systems. This practical book offers engineers specific guidance on how to design more reliable components and build more reliable electronic systems. Professionals learn how to optimize a virtual component prototype, accurately monitor product reliability during the entire production process, and add the burn-in and selection procedures that are the most appropriate for the intended applications. Moreover, the book helps system designers ensure that all components are correctly applied, margins are adequate, wear-out failure modes are prevented during the expected duration of life, and system interfaces cannot lead to failure.

  15. Improved Management of Part Safety Classification System for Nuclear Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jin Young; Park, Youn Won; Park, Heung Gyu; Park, Hyo Chan [BEES Inc., Daejeon (Korea, Republic of)

    2016-10-15

    As, in recent years, many quality assurance (QA) related incidents, such as falsely-certified parts and forged documentation, etc., were reported in association with the supply of structures, systems, components and parts to nuclear power plants, a need for a better management of safety classification system was addressed so that it would be based more on the level of parts . Presently, the Korean nuclear power plants do not develop and apply relevant procedures for safety classifications, but rather the safety classes of parts are determined solely based on the experience of equipment designers. So proposed in this paper is a better management plan for safety equipment classification system with an aim to strengthen the quality management for parts. The plan was developed through the analysis of newly introduced technical criteria to be applied to parts of nuclear power plant.

  16. Prototype of an expert system based nuclear power plant information systems

    International Nuclear Information System (INIS)

    Vegh, J.; Bodnar, M.; Buerger, L.; Tanyi, M.; Sefesik, F.

    1994-01-01

    The components and functioning of the GPCS information system applicable for intelligent process monitoring and alarm generation in a WWER-440 type nuclear power plant are described. The prototype system has been developed by using the G2 expert system, plant measurements were simulated by a WWER-440 compact simulator and by archive replay sessions performed by the VERONA-u core monitoring system. The GPCS contains an object oriented description of the basic subsystems of the plant and concentrates on the fast evaluation/displaying of measurements and alarms. The high-level information reflecting actual plant safety status is synthesized from primary measured data, by forming global alarms and by evaluating logical diagrams. (author). 10 refs, 4 figs

  17. Safety assessment of primary system components at the USNRC

    Energy Technology Data Exchange (ETDEWEB)

    Serpan, C Z; Chen, C Y; Taboada, A

    1988-12-31

    This document deals with the safety assessment in nuclear reactor components at the USNRC. The USNRC regulations and requirements concerning nuclear reactor design and operations are presented, together with guides and standards which describe how the actions should be implemented. The safety assessment relies on fracture analysis and Non Destructive Examination (NDE). (TEC).

  18. Nuclear fuel cycle system analysis

    International Nuclear Information System (INIS)

    Ko, W. I.; Kwon, E. H.; Kim, S. G.; Park, B. H.; Song, K. C.; Song, D. Y.; Lee, H. H.; Chang, H. L.; Jeong, C. J.

    2012-04-01

    The nuclear fuel cycle system analysis method has been designed and established for an integrated nuclear fuel cycle system assessment by analyzing various methodologies. The economics, PR(Proliferation Resistance) and environmental impact evaluation of the fuel cycle system were performed using improved DB, and finally the best fuel cycle option which is applicable in Korea was derived. In addition, this research is helped to increase the national credibility and transparency for PR with developing and fulfilling PR enhancement program. The detailed contents of the work are as follows: 1)Establish and improve the DB for nuclear fuel cycle system analysis 2)Development of the analysis model for nuclear fuel cycle 3)Preliminary study for nuclear fuel cycle analysis 4)Development of overall evaluation model of nuclear fuel cycle system 5)Overall evaluation of nuclear fuel cycle system 6)Evaluate the PR for nuclear fuel cycle system and derive the enhancement method 7)Derive and fulfill of nuclear transparency enhancement method The optimum fuel cycle option which is economical and applicable to domestic situation was derived in this research. It would be a basis for establishment of the long-term strategy for nuclear fuel cycle. This work contributes for guaranteeing the technical, economical validity of the optimal fuel cycle option. Deriving and fulfillment of the method for enhancing nuclear transparency will also contribute to renewing the ROK-U.S Atomic Energy Agreement in 2014

  19. An advanced NSSS integrity monitoring system for Shin-Kori nuclear units 3 and 4

    International Nuclear Information System (INIS)

    Oh, Y. G.; Kim, H. B.; Galin, S. R.; Kim, S. H.; Lee, S. J.

    2009-01-01

    The advanced design features of NSSS (Nuclear Steam Supply System) Integrity Monitoring System for Shin-Kori Nuclear Units 3 and 4 are summarized herein. During the overall system design and detailed component design processes, many design improvements have been made for the system. The major design changes are: 1) the application of a common software platform for all subsystems, 2) the implementation of remote access, control and monitoring capabilities, and 3) the equipment redesign and rearrangement that has simplified the system architecture. Changes give an effect on cabinet size, number of cables, cyber-security, graphic user interfaces, and interfaces with other monitoring systems. The system installation and operation for Shin-Kori Nuclear Units 3 and 4 will be more convenient than those for previous Korean nuclear units in view of its remote control capability, automated test functions, improved user interface functions, and much less cabling. (authors)

  20. An Advanced NSSS Integrity Monitoring System for Shin-Kori Nuclear Units 3 and 4

    Science.gov (United States)

    Oh, Yang Gyun; Galin, Scott R.; Lee, Sang Jeong

    2010-12-01

    The advanced design features of NSSS (Nuclear Steam Supply System) Integrity Monitoring System for Shin-Kori Nuclear Units 3 and 4 are summarized herein. During the overall system design and detailed component design processes, many design improvements have been made for the system. The major design changes are: 1) the application of a common software platform for all subsystems, 2) the implementation of remote access, control and monitoring capabilities, and 3) the equipment redesign and rearrangement that has simplified the system architecture. Changes give an effect on cabinet size, number of cables, cyber-security, graphic user interfaces, and interfaces with other monitoring systems. The system installation and operation for Shin-Kori Nuclear Units 3 and 4 will be more convenient than those for previous Korean nuclear units in view of its remote control capability, automated test functions, improved user interface functions, and much less cabling.

  1. Nuclear-powered artificial heart system

    International Nuclear Information System (INIS)

    Pouchot, W.D.; Lehrfeld, D.

    1976-01-01

    As reported to the 9th IECEC, a bench model version of a nuclear-powered artificial heart system to be used as a replacement for the natural heart was constructed and tested as part of a broader U.S. ERDA program. A report is given of the system design and integration, bench testing, and field support equipment of an implantable and advanced version of the bench model incorporating some of the component developments reported to the 10th IECEC. The basic elements of the system are a 32-watt Pu-238 heat source, a Stirling engine thermal converter, a coupling mechanism, and a mechanical blood pump drive actuating, alternatively, two artificial ventricles of polymeric material. As tested on the bench using a mock circulation, the system provides approximately 9 liters/minute at 120/80 mm Hg aortic pressure. At 190/145 mm Hg aortic pressure, the maximum flow decreases to about 7 liters/minute

  2. Age-Related Degradation of Nuclear Power Plant Structures and Components

    International Nuclear Information System (INIS)

    Braverman, J.; Chang, T.-Y.; Chokshi, N.; Hofmayer, C.; Morante, R.; Shteyngart, S.

    1999-01-01

    This paper summarizes and highlights the results of the initial phase of a research project on the assessment of aged and degraded structures and components important to the safe operation of nuclear power plants (NPPs). A review of age-related degradation of structures and passive components at NPPs was performed. Instances of age-related degradation have been collected and reviewed. Data were collected from plant generated documents such as Licensing Event Reports, NRC generic communications, NUREGs and industry reports. Applicable cases of degradation occurrences were reviewed and then entered into a computerized database. The results obtained from the review of degradation occurrences are summarized and discussed. Various trending analyses were performed to identify which structures and components are most affected, whether degradation occurrences are worsening, and what was the most common aging mechanisms. The paper also discusses potential aging issues and degradation-susceptible structures and passive components which would have the greatest impact on plant risk

  3. A Nuclear Safety System based on Industrial Computer

    International Nuclear Information System (INIS)

    Kim, Ji Hyeon; Oh, Do Young; Lee, Nam Hoon; Kim, Chang Ho; Kim, Jae Hack

    2011-01-01

    The Plant Protection System(PPS), a nuclear safety Instrumentation and Control (I and C) system for Nuclear Power Plants(NPPs), generates reactor trip on abnormal reactor condition. The Core Protection Calculator System (CPCS) is a safety system that generates and transmits the channel trip signal to the PPS on an abnormal condition. Currently, these systems are designed on the Programmable Logic Controller(PLC) based system and it is necessary to consider a new system platform to adapt simpler system configuration and improved software development process. The CPCS was the first implementation using a micro computer in a nuclear power plant safety protection system in 1980 which have been deployed in Ulchin units 3,4,5,6 and Younggwang units 3,4,5,6. The CPCS software was developed in the Concurrent Micro5 minicomputer using assembly language and embedded into the Concurrent 3205 computer. Following the micro computer based CPCS, PLC based Common-Q platform has been used for the ShinKori/ShinWolsong units 1,2 PPS and CPCS, and the POSAFE-Q PLC platform is used for the ShinUlchin units 1,2 PPS and CPCS. In developing the next generation safety system platform, several factors (e.g., hardware/software reliability, flexibility, licensibility and industrial support) can be considered. This paper suggests an Industrial Computer(IC) based protection system that can be developed with improved flexibility without losing system reliability. The IC based system has the advantage of a simple system configuration with optimized processor boards because of improved processor performance and unlimited interoperability between the target system and development system that use commercial CASE tools. This paper presents the background to selecting the IC based system with a case study design of the CPCS. Eventually, this kind of platform can be used for nuclear power plant safety systems like the PPS, CPCS, Qualified Indication and Alarm . Pami(QIAS-P), and Engineering Safety

  4. A Nuclear Safety System based on Industrial Computer

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ji Hyeon; Oh, Do Young; Lee, Nam Hoon; Kim, Chang Ho; Kim, Jae Hack [Korea Electric Power Corporation Engineering and Construction, Daejeon (Korea, Republic of)

    2011-05-15

    The Plant Protection System(PPS), a nuclear safety Instrumentation and Control (I and C) system for Nuclear Power Plants(NPPs), generates reactor trip on abnormal reactor condition. The Core Protection Calculator System (CPCS) is a safety system that generates and transmits the channel trip signal to the PPS on an abnormal condition. Currently, these systems are designed on the Programmable Logic Controller(PLC) based system and it is necessary to consider a new system platform to adapt simpler system configuration and improved software development process. The CPCS was the first implementation using a micro computer in a nuclear power plant safety protection system in 1980 which have been deployed in Ulchin units 3,4,5,6 and Younggwang units 3,4,5,6. The CPCS software was developed in the Concurrent Micro5 minicomputer using assembly language and embedded into the Concurrent 3205 computer. Following the micro computer based CPCS, PLC based Common-Q platform has been used for the ShinKori/ShinWolsong units 1,2 PPS and CPCS, and the POSAFE-Q PLC platform is used for the ShinUlchin units 1,2 PPS and CPCS. In developing the next generation safety system platform, several factors (e.g., hardware/software reliability, flexibility, licensibility and industrial support) can be considered. This paper suggests an Industrial Computer(IC) based protection system that can be developed with improved flexibility without losing system reliability. The IC based system has the advantage of a simple system configuration with optimized processor boards because of improved processor performance and unlimited interoperability between the target system and development system that use commercial CASE tools. This paper presents the background to selecting the IC based system with a case study design of the CPCS. Eventually, this kind of platform can be used for nuclear power plant safety systems like the PPS, CPCS, Qualified Indication and Alarm . Pami(QIAS-P), and Engineering Safety

  5. Monitoring ageing of components in nuclear plants

    International Nuclear Information System (INIS)

    Fritz, M.R.

    1992-01-01

    There are several mechanisms of ageing or damage in nuclear components, of which the best known can be classified into three categories: generalized damage mechanisms (wear, corrosion, erosion,...), local damage phenomena (fatigue, corrosion,...) and material property degradations. For ageing evaluation, the first requirement is a good understanding of the damage mechanisms and the determination of the kinetic laws and major influencing factors. When these factors are measurable physical parameters, ageing monitoring and periodic evaluation of damage level become possible. From the set of tools available for ageing evaluation, four are presented here in more detail: the transient logging procedure, the defect injuriousness analysis, the fatigue meter, the probabilistic approach to structural integrity. (author)

  6. Monitoring ageing of components in nuclear plants

    Energy Technology Data Exchange (ETDEWEB)

    Fritz, M R [FRAMATOME, Paris (France)

    1992-07-01

    There are several mechanisms of ageing or damage in nuclear components, of which the best known can be classified into three categories: generalized damage mechanisms (wear, corrosion, erosion,...), local damage phenomena (fatigue, corrosion,...) and material property degradations. For ageing evaluation, the first requirement is a good understanding of the damage mechanisms and the determination of the kinetic laws and major influencing factors. When these factors are measurable physical parameters, ageing monitoring and periodic evaluation of damage level become possible. From the set of tools available for ageing evaluation, four are presented here in more detail: the transient logging procedure, the defect injuriousness analysis, the fatigue meter, the probabilistic approach to structural integrity. (author)

  7. Static and dynamic high power, space nuclear electric generating systems

    International Nuclear Information System (INIS)

    Wetch, J.R.; Begg, L.L.; Koester, J.K.

    1985-01-01

    Space nuclear electric generating systems concepts have been assessed for their potential in satisfying future spacecraft high power (several megawatt) requirements. Conceptual designs have been prepared for reactor power systems using the most promising static (thermionic) and the most promising dynamic conversion processes. Component and system layouts, along with system mass and envelope requirements have been made. Key development problems have been identified and the impact of the conversion process selection upon thermal management and upon system and vehicle configuration is addressed. 10 references

  8. Operating Experience of Digital, Software-based Components Used in I and C and Electrical Systems in German NPPs

    International Nuclear Information System (INIS)

    Blum, Stefanie; Lochthofen, Andre; Quester, Claudia; Arians, Robert

    2015-01-01

    In recent years, many components in instrumentation and control (I and C) and electrical systems of nuclear power plants (NPPs) were replaced by digital, software-based components. Due to the more complex structure, software-based I and C and electrical components show the potential for new failure mechanisms and an increasing number of failure possibilities, including the potential for common cause failures. An evaluation of the operating experience of digital, software-based components may help to determine new failure modes of these components. In this paper, we give an overview over the results of the evaluation of the operating experience of digital, software-based components used in I and C and electrical systems in NPPs in Germany. (authors)

  9. Membrane systems and their use in nuclear power plants. Treatment of primary coolant

    Energy Technology Data Exchange (ETDEWEB)

    Kus, Pavel; Bartova, Sarka; Skala, Martin; Vonkova, Katerina [Research Centre Rez, Husinec-Rez (Czech Republic). Technological Circuits Innovation Dept.; Zach, Vaclav; Kopa, Roman [CEZ a.s., Temelin (Czech Republic). Nuclear Power Plant Temelin

    2016-03-15

    In nuclear power plants, drained primary coolant containing boric acid is currently treated in the system of evaporators and by ion exchangers. Replacement of the system of evaporators by membrane system (MS) will result in lower operating cost mainly due to lower operation temperature. In membrane systems the feed primary coolant is separated into two output streams: retentate and permeate. Retentate stream consists of the concentrated boric acid solution together with other components, while permeate stream consists of purified water. Results are presented achieved by testing a pilot-plant unit of reverse osmosis in nuclear power plant (NPP) Temelin.

  10. Murine Leukemia Virus Uses TREX Components for Efficient Nuclear Export of Unspliced Viral Transcripts

    Directory of Open Access Journals (Sweden)

    Toshie Sakuma

    2014-03-01

    Full Text Available Previously we reported that nuclear export of both unspliced and spliced murine leukemia virus (MLV transcripts depends on the nuclear export factor (NXF1 pathway. Although the mRNA export complex TREX, which contains Aly/REF, UAP56, and the THO complex, is involved in the NXF1-mediated nuclear export of cellular mRNAs, its contribution to the export of MLV mRNA transcripts remains poorly understood. Here, we studied the involvement of TREX components in the export of MLV transcripts. Depletion of UAP56, but not Aly/REF, reduced the level of both unspliced and spliced viral transcripts in the cytoplasm. Interestingly, depletion of THO components, including THOC5 and THOC7, affected only unspliced viral transcripts in the cytoplasm. Moreover, the RNA immunoprecipitation assay showed that only the unspliced viral transcript interacted with THOC5. These results imply that MLV requires UAP56, THOC5 and THOC7, in addition to NXF1, for nuclear export of viral transcripts. Given that naturally intronless mRNAs, but not bulk mRNAs, require THOC5 for nuclear export, it is plausible that THOC5 plays a key role in the export of unspliced MLV transcripts.

  11. Nuclear material control systems for nuclear power plants

    International Nuclear Information System (INIS)

    1975-06-01

    Paragraph 70.51(c) of 10 CFR Part 70 requires each licensee who is authorized to possess at any one time special nuclear material in a quantity exceeding one effective kilogram to establish, maintain, and follow written material control and accounting procedures that are sufficient to enable the licensee to account for the special nuclear material in his possession under license. While other paragraphs and sections of Part 70 provide specific requirements for nuclear material control systems for fuel cycle plants, such detailed requirements are not included for nuclear power reactors. This guide identifies elements acceptable to the NRC staff for a nuclear material control system for nuclear power reactors. (U.S.)

  12. Experiences from maintaining the reliability of a nuclear standby diesel generator system

    International Nuclear Information System (INIS)

    Tammi, P.

    1982-01-01

    The nuclear standby diesel generator system is quite complicated comprising several mechanical and electrotechnical components, on which the reliability of the system is depending. It is an important support system of the plant safety system, and like the safety system it is composed of separate redundant units. The Loviisa nuclear power station has eight diesel generators. The first four of them were taken into operation in 1976. When the frequency of some mechanical failures showed increase, a project was started at the end of 1980 with the intention to find out potential failure possibilities and means for prevention of failures. The work has been mainly concentrated on improving the reliability of the diesel engines. (Auth.)

  13. Effect of component aging on PWR control rod drive systems

    International Nuclear Information System (INIS)

    Grove, E.; Gunther, W.; Sullivan, K.

    1992-01-01

    An aging assessment of PWR control rod drive (CRD) systems has been completed as part of the US NRC Nuclear Plant Aging Research (NPAR) Program. The design, construction, maintenance, and operation of the Babcock ampersand Wilcox (B ampersand W), Combustion Engineering (CE), and Westinghouse (W) systems were evaluated to determine the potential for degradation as each system ages. Operating experience data were evaluated to identify the predominant failure modes, causes, and effects. This, coupled with an assessment of the materials of construction and operating environment, demonstrate that each design is subject to degradation, which if left unchecked, could affect its safety function as the plant ages. An industry survey, conducted with the assistance of EPRI and NUMARC, identified current CRD system maintenance and inspection practices. The results of this survey indicate that some plants have performed system modifications, replaced components, or augmented existing preventive maintenance practices in response to system aging. The survey results also supported the operating experience data, which concluded that the timely replacement of degraded components, prior to failure, was not always possible using existing condition monitoring techniques. The recommendations presented in this study also include a discussion of more advanced monitoring techniques, which provide trendable results capable of detecting aging

  14. Strain components of nuclear-reactor-type concretes during first heat cycle

    International Nuclear Information System (INIS)

    Khoury, G.A.

    1995-01-01

    Strains of three advanced-gas-cooled-reactor-type nuclear reactor concretes were measured during the first heat cycle and their relative thermal stability determined. It was possible to isolate for the first time the shrinkage component for the period during heating. Predictions of the residual strains for the loaded specimens can be made by simple superposition of creep and shrinkage components up to a certain critical temperature, which for basalt concrete is about 500 C and for limestone concrete is about 200-300 C. Above the critical temperature, an expansive ''cracking'' strain component is present. It is shown that the strain behaviour of concrete provides a sensitive indication of its thermal stability during heating and subsequent cooling. (orig.)

  15. A Procedure for Determination of Degradation Acceptance Criteria for Structures and Passive Components in Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Nie, J.; Braverman, J.; Hofmayer, C.; Choun, Y-S.; Hahm, D.; Choi, I-K.

    2012-01-30

    The Korea Atomic Energy Research Institute (KAERI) has been collaborating with Brookhaven National Laboratory since 2007 to develop a realistic seismic risk evaluation system which includes the consideration of aging of structures and components in nuclear power plants (NPPs). This collaboration program aims at providing technical support to a five-year KAERI research project, which includes three specific areas that are essential to seismic probabilistic risk assessment: (1) probabilistic seismic hazard analysis, (2) seismic fragility analysis including the effects of aging, and (3) a plant seismic risk analysis. The understanding and assessment of age-related degradations of structures, systems, and components and their impact on plant safety is the major goal of this KAERI-BNL collaboration. Four annual reports have been published before this report as a result of the collaboration research.

  16. Nuclear networking.

    Science.gov (United States)

    Xie, Wei; Burke, Brian

    2017-07-04

    Nuclear lamins are intermediate filament proteins that represent important structural components of metazoan nuclear envelopes (NEs). By combining proteomics and superresolution microscopy, we recently reported that both A- and B-type nuclear lamins form spatially distinct filament networks at the nuclear periphery of mouse fibroblasts. In particular, A-type lamins exhibit differential association with nuclear pore complexes (NPCs). Our studies reveal that the nuclear lamina network in mammalian somatic cells is less ordered and more complex than that of amphibian oocytes, the only other system in which the lamina has been visualized at high resolution. In addition, the NPC component Tpr likely links NPCs to the A-type lamin network, an association that appears to be regulated by C-terminal modification of various A-type lamin isoforms. Many questions remain, however, concerning the structure and assembly of lamin filaments, as well as with their mode of association with other nuclear components such as peripheral chromatin.

  17. An estimation method of system failure frequency using both structure and component failure data

    International Nuclear Information System (INIS)

    Takaragi, Kazuo; Sasaki, Ryoichi; Shingai, Sadanori; Tominaga, Kenji

    1981-01-01

    In recent years, the importance of reliability analysis is appreciated for large systems such as nuclear power plants. A reliability analysis method is described for a whole system, using structure failure data for its main working subsystem and component failure data for its safety protection subsystem. The subsystem named main working system operates normally, and the subsystem named safety protection system acts as standby or protection. Thus the main and the protection systems are given mutually different failure data; then, between the subsystems, there exists common mode failure, i.e. the component failure affecting the reliability of both two. A calculation formula for sytem failure frequency is first derived. Then, a calculation method with digraphs is proposed for conditional system failure probability. Finally the results of numerical calculation are given for the purpose of explanation. (J.P.N.)

  18. Heuristic decision model for intelligent nuclear power systems design

    International Nuclear Information System (INIS)

    Nassersharif, B.; Portal, M.G.; Gaeta, M.J.

    1989-01-01

    The objective of this project was to investigate intelligent nuclear power systems design. A theoretical model of the design process has been developed. A fundamental process in this model is the heuristic decision making for design (i.e., selection of methods, components, materials, etc.). Rule-based expert systems do not provide the completeness that is necessary to generate good design. A new method, based on the fuzzy set theory, has been developed and is presented here. A feedwater system knowledge base (KB) was developed for a prototype software experiment to benchmark the theory

  19. Comparison of control systems applied to the handling of radioactive reactor components

    International Nuclear Information System (INIS)

    Robinson, C.; Harris, E.G.; Dyer, P.C.; Williams, J.G.B.

    1985-01-01

    The first generation of nuclear power stations have individual reactors each incorporating complete facilities for servicing components and refuelling. In the later designs, each power station has two reactors which are connected by a central block. This central block contains one set of facilities to service both reactors, but to improve the station capability, some of these are to be replicated. The central block incorporates a hoist well which was used during construction for the accessing of complete components. On completion of this work, the physical size of the hoist well is such as to permit the incorporation of additional facilities if these are shown to be operationally and economically desirable. Since a number of years of power operation has elapsed, the advantages of back-fitting to existing fuel-handling facilities has been illustrated. Since the mechanical arrangements and operating procedures are substantially similar for both the original and new handling facilities, the paper will illustrate the control systems provided for each. The configuration of the system is arranged to have two channels of control which complies with the current standard requirements in the United Kingdom. These requirements are more stringent than when the existing facility was designed and constructed, as described in the relevant sections of the paper. The new system has been designed and is being manufactured to comply with the Central Electricity Generating Board standard for nuclear fuel route interlock and control systems. (author)

  20. EDF ageing management program of nuclear components: a safety and economical issue

    International Nuclear Information System (INIS)

    Faidy, C.

    2005-01-01

    Ageing management of Nuclear Power Plants is an essential issue for utilities, in term of safety and availability and corresponding economical consequences. Practically all nuclear countries have developed a systematic program to deal with ageing of components on their plants. This paper presents the ageing management program developed by EDF and that are compared with different other approaches in other countries (IAEA guidelines and GALL report). The paper presents a general overview of the programs, the major results, recommendations and conclusions. (author)

  1. Reliability of some ageing nuclear power plant system: a simple stochastic model

    Energy Technology Data Exchange (ETDEWEB)

    Suarez-Antola, Roberto [Catholic University of Uruguay, Montevideo (Uruguay). School of Engineering and Technologies; Ministerio de Industria, Energia y Mineria, Montevideo (Uruguay). Direccion Nacional de Energia y Tecnologia Nuclear; E-mail: rsuarez@ucu.edu.uy

    2007-07-01

    The random number of failure-related events in certain repairable ageing systems, like certain nuclear power plant components, during a given time interval, may be often modelled by a compound Poisson distribution. One of these is the Polya-Aeppli distribution. The derivation of a stationary Polya-Aeppli distribution as a limiting distribution of rare events for stationary Bernouilli trials with first order Markov dependence is considered. But if the parameters of the Polya-Aeppli distribution are suitable time functions, we could expect that the resulting distribution would allow us to take into account the distribution of failure-related events in an ageing system. Assuming that a critical number of damages produce an emergent failure, the above mentioned results can be applied in a reliability analysis. It is natural to ask under what conditions a Polya-Aeppli distribution could be a limiting distribution for non-homogeneous Bernouilli trials with first order Markov dependence. In this paper this problem is analyzed and possible applications of the obtained results to ageing or deteriorating nuclear power plant components are considered. The two traditional ways of modelling repairable systems in reliability theory: the 'as bad as old' concept, that assumes that the replaced component is exactly under the same conditions as was the aged component before failure, and the 'as good as new' concept, that assumes that the new component is under the same conditions of the replaced component when it was new, are briefly discussed in relation with the findings of the present work. (author)

  2. Reliability of some ageing nuclear power plant systems: a simple stochastic model

    International Nuclear Information System (INIS)

    Suarez Antola, R.

    2007-01-01

    The random number of failure-related events in certain repairable ageing systems, like certain nuclear power plant components, during a given time interval, may be often modelled by a compound Poisson distribution. One of these is the Polya-Aeppli distribution. The derivation of a stationary Polya-Aeppli distribution as a limiting distribution of rare events for stationary Bernouilli trials with first order Markov dependence is considered. But if the parameters of the Polya-Aeppli distribution are suitable time functions, we could expect that the resulting distribution would allow us to take into account the distribution of failure-related events in an ageing system. Assuming that a critical number of damages produce an emergent failure, the abovementioned results can be applied in a reliability analysis. It is natural to ask under what conditions a Polya-Aeppli distribution could be a limiting distribution for non-homogeneous Bernouilli trials with first order Markov dependence. In this paper this problem is analyzed and possible applications of the obtained results to ageing or deteriorating nuclear power plant components are considered. The two traditional ways of modelling repairable systems in reliability theory: the - as bad as old - concept, that assumes that the replaced component is exactly under the same conditions as was the aged component before failure, and the - as good as new - concept, that assumes that the new component is under the same conditions of the replaced component when it was new, are briefly discussed in relation with the findings of the present work

  3. Emotional stability components of human performance problems

    International Nuclear Information System (INIS)

    Wexler, R.H.

    1987-01-01

    Over half of all significant events that occur in nuclear plants involve human performance problems. There is increasing worldwide recognition that human performance problems have a significant impact on the safety, cost, and efficiency of nuclear plant operations. Emotional stability components have an important direct and indirect impact on human performance problems. This paper examines emotional stability components that are currently incorporated into human performance evaluation systems (HPES) in nuclear plants. It describes HPES programs being developed around the world, the emotional stability components that are currently referred to in these programs, and suggestions for improving HPES programs through a greater understanding of emotion stability components. A review of emotional stability components that may hinder or promote a plant environment that encourages the voluntary reporting and correction of human error is also presented

  4. New regulatory requirements of HVAC ventilation systems in nuclear installations Spanish

    International Nuclear Information System (INIS)

    Sierra, J. J.

    2011-01-01

    Ventilation systems serve a number of functions vital to the safe operation of nuclear facilities: the renewal of air, cooling components, prevent the release of contaminated air into the environment under both normal operating and accident, or ensure habitability of the control rooms in all situations.

  5. Strategy for determining life expectancy in mechanical components in an overall system

    International Nuclear Information System (INIS)

    Tenckhoff, E.; Erve, M.

    1990-01-01

    The safety standard at a nuclear power station achieved at the time of commissioning on the basis of the state of the art during the design and construction stage has to be maintained over the entire working life of the unit. Original design life expectancy is under review in the light of new safety experience and developments. The results of such analysis can serve not only preventive maintenance purposes but also as the basis for supporting and extending the planned or approved working life; they help increase availability. A comprehensive analysis strategy to establish the actual condition and residual life expectancy of components, systems and complete units has been developed by Siemens/KWU. The results of this analysis can lead to action to extend the life expectancy of components and systems and improvements in systems and subsystems. This report quotes a number of examples. 6 figs

  6. Conceptual design of a digital control system for nuclear criticality experiments

    International Nuclear Information System (INIS)

    Rojas, S.P.

    1994-04-01

    Nuclear criticality is a concern in many areas of nuclear engineering including waste management, nuclear weapons testing and design, basic nuclear research, and nuclear reactor design and analysis. As in many areas of science and engineering, experimental work conducted in this field has provided a wealth of data and insight essential to the formulation of theory and the advancement in knowledge of fissioning systems. In light of the many diverse applications of nuclear criticality, there is a continuing interest to learn and understand more about the fundamental physical processes through continued experimentation. This thesis addresses the problem of setting up and programming a microprocessor-based digital control system (PLC) for a proposed critical experiment using, among other devices, a stepper motor, a joystick control mechanism, and switches. This experiment represents a revised configuration to test cylindrical nuclear waste packages. A Monte Carlo numerical study for the proposed critical assembly has been performed in order to illustrate how results from numerical calculations are used in the process of assembling the control system and to corroborate previous experimental data. In summary, a control system utilizing some common devices necessary to perform a critical experiment (stepper motor, push-buttons, etc.) has been assembled. Control components were sized using the results of a probabilistic computer code (MCNP). Finally, a program was written that illustrates the coupling between the hardware and the devices being controlled in the new test fixture

  7. Shaking table test and dynamic response analysis of 3-D component base isolation system using multi-layer rubber bearings and coil springs

    Energy Technology Data Exchange (ETDEWEB)

    Tsutsumi, Hideaki; Yamada, Hiroyuki; Ebisawa, Katsumi; Shibata, Katsuyuki [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Fujimoto, Shigeru [Toshiba Corp., Tokyo (Japan)

    2001-06-01

    Introduction of the base isolation technique into the seismic design of nuclear power plant components as well as buildings has been expected as one of the effective countermeasure to reduce the seismic force applied to components. A research program on the base isolation of nuclear components has been carried out at the Japan Atomic Energy Research Institute (JAERI) since 1991. A methodology and a computer code (EBISA: Equipment Base Isolation System Analysis) for evaluating the failure frequency of the nuclear component with the base isolation were developed. In addition, a test program, which is concerned with the above development, aiming at improvement of failure frequency analysis models in the code has been conducted since 1996 to investigate the dynamic behavior and to verify the effectiveness of component base isolation systems. Two base isolation test systems with different characteristics were fabricated and static and dynamic characteristics were measured by static loading and free vibration tests. One which consists of ball bearings and air springs was installed on the test bed to observe the dynamic response under natural earthquake motion. The effect of base isolation system has been observed under several earthquakes. Three-dimensional response and effect of base isolation of another system using multi-layer-rubber-bearings and coil springs has been investigated under various large earthquake motions by shaking table test. This report describes the results of the shaking table tests and dynamic response analysis. (author)

  8. Nuclear integrated database and design advancement system

    International Nuclear Information System (INIS)

    Ha, Jae Joo; Jeong, Kwang Sub; Kim, Seung Hwan; Choi, Sun Young.

    1997-01-01

    The objective of NuIDEAS is to computerize design processes through an integrated database by eliminating the current work style of delivering hardcopy documents and drawings. The major research contents of NuIDEAS are the advancement of design processes by computerization, the establishment of design database and 3 dimensional visualization of design data. KSNP (Korea Standard Nuclear Power Plant) is the target of legacy database and 3 dimensional model, so that can be utilized in the next plant design. In the first year, the blueprint of NuIDEAS is proposed, and its prototype is developed by applying the rapidly revolutionizing computer technology. The major results of the first year research were to establish the architecture of the integrated database ensuring data consistency, and to build design database of reactor coolant system and heavy components. Also various softwares were developed to search, share and utilize the data through networks, and the detailed 3 dimensional CAD models of nuclear fuel and heavy components were constructed, and walk-through simulation using the models are developed. This report contains the major additions and modifications to the object oriented database and associated program, using methods and Javascript.. (author). 36 refs., 1 tab., 32 figs

  9. Global existence and blow-up phenomena for two-component Degasperis-Procesi system and two-component b-family system

    OpenAIRE

    Liu, Jingjing; Yin, Zhaoyang

    2014-01-01

    This paper is concerned with global existence and blow-up phenomena for two-component Degasperis-Procesi system and two-component b-family system. The strategy relies on our observation on new conservative quantities of these systems. Several new global existence results and a new blowup result of strong solutions to the two-component Degasperis- Procesi system and the two-component b-family system are presented by using these new conservative quantities.

  10. The information system of the Spanish nuclear power plants: DACNE

    International Nuclear Information System (INIS)

    Diez M, Jose E.

    1995-01-01

    DACNE information system is a set of two databases aimed at collecting and retrieving information related to operation of the Spanish nuclear power plants. The first one is the Operation Events Database and the second is the Reliability Components Database. The system was designed and developed by UNESA and came into operation early in 1989. A significant amount of data is currently stored in the system available for information exchange and for supporting operational programs. (author). 6 figs., 4 tabs

  11. Reliability Data Handbook for Piping Components in Nordic Nuclear Power Plants - R Book, Phase 2

    International Nuclear Information System (INIS)

    Hedtjaern Swaling, Vidar; Olsson, Anders

    2011-02-01

    This report presents results of a long research and development project financed by the regulatory body Straalsaekerhetsmyndigheten (SSM) (former SKI), the Swedish nuclear power plant licensees. The report presents a harmonized method for estimating Reliability Data for Piping Components in ASME code class 1 and 2 piping components (R-Book). Data in the R-Book is measured based on 'data driven' strategy. This first version of the R-Book comprises rupture frequencies and failure rates for all systems where ASME Code Class 1 or 2 events could be found in the OECD OPDE database. Nordic and Non-Nordic data are presented separately. Worldwide experience data is used to set up the relevant calculation cases, i.e. intersections of attributes for which there are at least one event present

  12. Nuclear safety considerations with emphasis on instrumentation and control systems

    International Nuclear Information System (INIS)

    Beare, J.W.

    1978-01-01

    The conceptual model of a nuclear power plant in Canada is that it consists basically of two kinds of systems. The first kind is the process systems, that is, those structures and components associated with the production of nuclear energy and its conversion to other forms of energy. The second kind is the special safety systems, whose purpose it is to protect the public in the event of a serious failure in the process systems which might otherwise lead to unacceptable radiological consequences. Quantitative limits are set on the unavailability of the special safety systems. These limits are low enough to be consistent with low overall risk and yet can be demonstrated by test during operation of the plant. Low unavailability is an important but not the only condition required for low unrealiability for the special safety systems. The special safety systems minimize the chance of a cross-linked failure particularly under the conditions experienced as a result of the more severe types of postulated serious process failures. Nuclear power plants must also withstand, without a major hazard to the public, certain rare events associated with natural phenomena or man-made activities off-site and also certain in-plant events such as fire or break-up of a turbine-generator which might have a cross-linking effect on process and safety systems. In the latest designs, Canadian nuclear power plants have emergency systems to deal with such events. The emergency systems have an enhanced degree of physical and functional separation from other plant systems. (author)

  13. Component Repair Times Obtained from MSPI Data

    Energy Technology Data Exchange (ETDEWEB)

    Eide, Steven A. [Curtiss-Wright/Scietech, Ketchum, ID (United States); Cadwallader, Lee [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-05-01

    Information concerning times to repair or restore equipment to service given a failure is valuable to probabilistic risk assessments (PRAs). Examples of such uses in modern PRAs include estimation of the probability of failing to restore a failed component within a specified time period (typically tied to recovering a mitigating system before core damage occurs at nuclear power plants) and the determination of mission times for support system initiating event (SSIE) fault tree models. Information on equipment repair or restoration times applicable to PRA modeling is limited and dated for U.S. commercial nuclear power plants. However, the Mitigating Systems Performance Index (MSPI) program covering all U.S. commercial nuclear power plants provides up-to-date information on restoration times for a limited set of component types. This paper describes the MSPI program data available and analyzes the data to obtain median and mean component restoration times as well as non-restoration cumulative probability curves. The MSPI program provides guidance for monitoring both planned and unplanned outages of trains of selected mitigating systems deemed important to safety. For systems included within the MSPI program, plants monitor both train UA and component unreliability (UR) against baseline values. If the combined system UA and UR increases sufficiently above established baseline results (converted to an estimated change in core damage frequency or CDF), a “white” (or worse) indicator is generated for that system. That in turn results in increased oversight by the US Nuclear Regulatory Commission (NRC) and can impact a plant’s insurance rating. Therefore, there is pressure to return MSPI program components to service as soon as possible after a failure occurs. Three sets of unplanned outages might be used to determine the component repair durations desired in this article: all unplanned outages for the train type that includes the component of interest, only

  14. Design of a fault diagnosis system for next generation nuclear power plants

    International Nuclear Information System (INIS)

    Zhao, K.; Upadhyaya, B.R.; Wood, R.T.

    2004-01-01

    A new design approach for fault diagnosis is developed for next generation nuclear power plants. In the nuclear reactor design phase, data reconciliation is used as an efficient tool to determine the measurement requirements to achieve the specified goal of fault diagnosis. In the reactor operation phase, the plant measurements are collected to estimate uncertain model parameters so that a high fidelity model can be obtained for fault diagnosis. The proposed algorithm of fault detection and isolation is able to combine the strength of first principle model based fault diagnosis and the historical data based fault diagnosis. Principal component analysis on the reconciled data is used to develop a statistical model for fault detection. The updating of the principal component model based on the most recent reconciled data is a locally linearized model around the current plant measurements, so that it is applicable to any generic nonlinear systems. The sensor fault diagnosis and process fault diagnosis are decoupled through considering the process fault diagnosis as a parameter estimation problem. The developed approach has been applied to the IRIS helical coil steam generator system to monitor the operational performance of individual steam generators. This approach is general enough to design fault diagnosis systems for the next generation nuclear power plants. (authors)

  15. Seismic fragility of nuclear power plant components. Phase I

    International Nuclear Information System (INIS)

    Bandyopadhyay, K.K.; Hofmayer, C.H.

    1986-06-01

    As part of the Component Fragility Research Program, sponsored by the US Nuclear Regulatory Commission, BNL is involved in establishing seismic fragility levels for various nuclear power plant equipment by identifying, collecting and analyzing existing test data from various sources. In Phase I of this program, BNL has reviewed approximately seventy test reports to collect fragility or high level test data for switchgears, motor control centers and similar electrical cabinets, valve actuators and numerous electrical devices of various manufacturers and models. This report provides an assessment and evaluation of the data collected in Phase I. The fragility data for medium voltage and low voltage switchgears and motor control centers are analyzed using the test response spectra (TRS) as a measure of the fragility level. The analysis reveals that fragility levels can best be described by a group of TRS curves corresponding to various failure modes. The lower-bound curve indicates the initiation of malfunctioning or structural damage; whereas, the upper-bound curve corresponds to overall failure of the equipment based on known failure modes. High level test data for some components are included in the report. These data indicate that some components are inherently strong and do not exhibit any failure mode even when tested at the vibration limit of a shake table. The common failure modes are identified in the report. The fragility levels determined in this report have been compared with those used in the PRA and Seismic Margin Studies. It appears that the BNL data better correlate with the HCLPF (High Confidence of a Low Probability of Failure) level used in Seismic Margin Studies and can improve this level as high as 60% for certain applications. Specific recommendations are provided for proper application of BNL fragility data to other studies

  16. Ship-Based Nuclear Energy Systems for Accelerating Developing World Socioeconomic Advance

    Science.gov (United States)

    Petroski, Robert; Wood, Lowell

    2014-07-01

    Technological, economic, and policy aspects of supplying energy to newly industrializing and developing countries using ship-deployed nuclear energy systems are described. The approach analyzed comprises nuclear installations of up to gigawatt scale deployed within currently mass-produced large ship hulls which are capable of flexibly supplying energy for electricity, water desalination and district heating-&-cooling with low latencies and minimized shoreside capital expenditures. Nuclear energy is uniquely suited for mobile deployment due to its combination of extraordinary energy density and high power density, which enable enormous supplies of energy to be deployed at extremely low marginal costs. Nuclear installations on ships also confer technological advantages by essentially eliminating risk from earthquakes, tsunamis, and floods; taking advantage of assured access to an effectively unlimited amount of cooling water, and involving minimal onshore preparations and commitments. Instances of floating nuclear power stations that have been proposed in the past, some of which are currently being pursued, have generally been based on conventional LWR technology, moreover without flexibility or completeness of power output options. We consider nuclear technology options for their applicability to the unique opportunities and challenges of a marine environment, with special attention given to low-pressure, high thermal margin systems with continuous and assured afterheat dissipation into the ambient seawater. Such systems appear promising for offering an exceptionally high degree of safety while using a maximally simple set of components. We furthermore consider systems tailored to Developing World contexts, which satisfy societal requirements beyond electrification, e.g., flexible sourcing of potable water and HVAC services, servicing time-varying user requirements, and compatibility with the full spectrum of local renewable energy supplies, specifically including

  17. Nuclear power systems: Their safety. Current issue review

    International Nuclear Information System (INIS)

    Myers, L.C.

    1994-04-01

    Human beings utilize energy in many forms and from a variety of sources. A number of countries have chosen nuclear-electric generation as a component of their energy system. At the end of 1992, there were 419 power reactors operating in 29 countries, accounting for more than 15% of the world's production of electricity. In 1992, 13 countries derived at least 25% of their electricity from nuclear units, with Lithuania leading at just over 78%, followed closely by France at 72%. In the same year, Canada produced about 16% of its electricity from nuclear units. Some 53 power reactors are under construction in 14 countries outside the former USSR. Within the ex-USSR countries, six new reactors are currently under construction. No human endeavour carries the guarantee of perfect safety and the question of whether of not nuclear-electric generation represents an 'acceptable' risk to society has long been vigorously debated. Until the events of late April 1986 in the then Soviet Union, nuclear safety had indeed been an issue for discussion, for some concern, but not for alarm. The accident at the Chernobyl reactor irrevocably changed all that. This disaster brought the matter of nuclear safety into the public mind in a dramatic fashion. Subsequent opening of the ex-Soviet nuclear power program to outside scrutiny has done little to calm people's concerns about the safety of nuclear power in that part of the world. This paper discusses the issue of safety in complex energy systems and provides brief accounts of some of the most serious reactor accidents that have occurred to date, as well as more recent, less dramatic events touching on the safety issue. (author). 7 refs

  18. Improvement to surface lagging systems in a nuclear reactor, particularly of the fast neutron type

    International Nuclear Information System (INIS)

    Lemercier, Guy.

    1979-01-01

    Improvements to surface lagging systems in a nuclear reactor, particularly of the fast neutron kind. This system is composed of an assembly of panels each formed of a stack of metal fabric or trellis held against the surface to be protected, by a double fixing system comprising (a) a tubular component passing through a hole in the panel and applying it against the surface through a bearing plate, and (b) a bolt fitted in the centre of the tubular component, also secured to the surface and holding a washer capable of preventing the fall of the tubular component and the panel should the tubular component fracture [fr

  19. Nuclear Analyses of Indian LLCB Test Blanket System in ITER

    Science.gov (United States)

    Swami, H. L.; Shaw, A. K.; Danani, C.; Chaudhuri, Paritosh

    2017-04-01

    Heading towards the Nuclear Fusion Reactor Program, India is developing Lead Lithium Ceramic Breeder (LLCB) tritium breeding blanket for its future fusion Reactor. A mock-up of the LLCB blanket is proposed to be tested in ITER equatorial port no.2, to ensure the overall performance of blanket in reactor relevant nuclear fusion environment. Nuclear analyses play an important role in LLCB Test Blanket System design & development. It is required for tritium breeding estimation, thermal-hydraulic design, coolants process design, radioactive waste management, equipment maintenance & replacement strategies and nuclear safety. The nuclear behaviour of LLCB test blanket module in ITER is predicated in terms of nuclear responses such as tritium production, nuclear heating, neutron fluxes and radiation damages. Radiation shielding capability of LLCB TBS inside and outside bio-shield was also assessed to fulfill ITER shielding requirements. In order to supports the rad-waste and safety assessment, nuclear activation analyses were carried out and radioactivity data were generated for LLCB TBS components. Nuclear analyses of LLCB TBS are performed using ITER recommended nuclear analyses codes (i.e. MCNP, EASY), nuclear cross section data libraries (i.e. FENDL 2.1, EAF) and neutronic model (ITER C-lite v.l). The paper describes a comprehensive nuclear performance of LLCB TBS in ITER.

  20. Design and evaluation of physical protection systems of nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    An, Jin Soo; Lee, Hyun Chul; Hwang, In Koo; Kwack, Eun Ho; Choi, Yung Myung

    2001-06-01

    Nuclear material and safety equipment of nuclear facilities are required to be protected against any kind of theft or sabotage. Physical protection is one of the measures to prevent such illegally potential threats for public security. It should cover all the cases of use, storage, and transportation of nuclear material. A physical protection system of a facility consists of exterior intrusion sensors, interior intrusion sensors, an alarm assessment and communication system, entry control systems, access delay equipment, etc. The design of an effective physical protection system requires a comprehensive approach in which the designers define the objective of the system, establish an initial design, and evaluate the proposed design. The evaluation results are used to determine whether or not the initial design should be modified and improved. Some modelling techniques are commonly used to analyse and evaluate the performance of a physical protection system. Korea Atomic Energy Research Institute(KAERI) has developed a prototype of software as a part of a full computer model for effectiveness evaluation for physical protection systems. The input data elements for the prototype, contain the type of adversary, tactics, protection equipment, and the attributes of each protection component. This report contains the functional and structural requirements defined in the development of the evaluation computer model.

  1. On Nuclear Molecules Built up from sup 1 sup 3 sup 2 Sn Components

    CERN Document Server

    Swiatecki, W J

    2003-01-01

    The possible existence of nuclear quasi-molecules built up from sup 1 sup 3 sup 2 Sn components is investigated. The crucial question is whether the extra stability of the doubly magic sup 1 sup 3 sup 2 Sn nuclei makes them sufficiently rigid to be able to withstand the strains imposed by their mutual interactions. It is argued that if the simplest quasi-molecular dumbbell configuration were found to be (meta-)stable, then triangular and even tetrahedral structures might have comparable barriers against disintegration and comparable spontaneous fission lifetimes. These are estimated using simplifying assumptions. As regards the dumbbell's stability, one may relate this to the existence of a potential energy pocket in the deformation energy landscape of a fissioning sup 2 sup 6 sup 4 Fm nucleus, and to the presence of ''bimodal'' fission in heavy Fm isotopes. Further experimental and theoretical studies of such systems may be relevant for answering the question concerning nuclear quasi-molecules.

  2. Proposal of a system for fuel elements inspection of CDTN TRIGA nuclear reactor

    International Nuclear Information System (INIS)

    Rodrigues, Rogerio Rivail; Mesquita, Amir Zacarias

    2013-01-01

    The CDTN has in its facilities a TRIGA-type nuclear reactor. The reactor's cooling water must be treated and managed with the goal of keeping its low conductivity to minimize corrosion of the reactor components, mainly of fuel elements (FE), and reduce the level of radioactivity. The aim of this paper is to present a proposal for the development of a system for verification of some possible leaks in FE nuclear research reactors, based on the sipping test. This type of testing is a way to check for leaks of fission products from fuel element of nuclear research reactor. In the future, when the test will do, it will have a correlation between the components found in the reactor cooling water pool and integrity of nuclear fuel elements. The device development and its application will be presented here, covering results that were not previously investigated yet, giving originality to this project. (author)

  3. Full system chemical decontamination used in nuclear decommissioning

    International Nuclear Information System (INIS)

    Elder, George; Rottner, Bernard; Braehler, Georg

    2012-01-01

    The decommissioning of nuclear power stations at the end of the operational period of electricity generation offers technical challenges in the safe dismantling of the facility and the minimization of radioactive waste arising from the decommissioning activities. These challenges have been successfully overcome as demonstrated by decommissioning of the first generation of nuclear power plants. One of the techniques used in decommissioning is that of chemical decontamination which has a number of functions and advantages as given here: 1. Removal of contamination from metal surfaces in the reactors cooling systems. 2. Reduction of radioactive exposure to decommissioning workers 3. Minimization of metal waste by decontamination and recycling of metal components 4. Control of contamination when dismantling reactor and waste systems 5. Reduction in costs due to lower radiation fields, lower contamination levels and minimal metal waste volume for disposal. One such chemical decontamination technology was developed for the Electric Power Research Institute (EPRI) by Bradtec (Bradtec is an ONET Technologies subsidiary) and is known as the EPRI DFD system. This paper gives a description of the EPRI DFD system, and highlights the experience using the system. (orig.)

  4. Study of reactor Brayton power systems for nuclear electric spacecraft

    Science.gov (United States)

    1979-01-01

    The feasibility of using Brayton power systems for nuclear electric spacecraft was investigated. The primary performance parameters of systems mass and radiator area were determined for systems from 100 to 1000 kW sub e. Mathematical models of all system components were used to determine masses and volumes. Two completely independent systems provide propulsion power so that no single-point failure can jeopardize a mission. The waste heat radiators utilize armored heat pipes to limit meteorite puncture. The armor thickness was statistically determined to achieve the required probability of survival. A 400 kW sub e reference system received primary attention as required by the contract. The components of this system were defined and a conceptual layout was developed with encouraging results. An arrangement with redundant Brayton power systems having a 1500 K (2240 F) turbine inlet temperature was shown to be compatible with the dimensions of the space shuttle orbiter payload bay.

  5. Applying of USB interface technique in nuclear spectrum acquisition system

    International Nuclear Information System (INIS)

    Zhou Jianbin; Huang Jinhua

    2004-01-01

    This paper introduces applying of USB technique and constructing nuclear spectrum acquisition system via PC's USB interface. The authors choose the USB component USB100 module and the W77E58μc to do the key work. It's easy to apply USB interface technique, when USB100 module is used. USB100 module can be treated as a common I/O component for the μc controller, and can be treated as a communication interface (COM) when connected to PC' USB interface. It's easy to modify the PC's program for the new system with USB100 module. The authors can smoothly change from ISA, RS232 bus to USB bus. (authors)

  6. A Study on the Maintenance Effectiveness Assessment for Active Components

    International Nuclear Information System (INIS)

    Lim, Woo Sang; Oh, Seung Jong

    2006-01-01

    One of the key tasks in the periodic safety review (PSR) of nuclear power plant is to assess the aging management of structures, systems and components (SSC). The evaluation can be categorized by two parts, passive and active components. Unlike the passive components, active components are periodically maintained and replaced with new components, so the evaluation of aging mechanism of the passive components such as erosion, corrosion is not applicable to the evaluation of active components of nuclear power plant. For active components, they will maintain capability to fulfill its design function if preventive maintenance effectiveness is proper. In this paper, the assessment based on the reliability and availability of the active components of the domestic nuclear power plants is examined

  7. Intellectual decision-making system in the context of potentially dangerous nuclear power facilities

    Directory of Open Access Journals (Sweden)

    Danilov Alexander

    2018-01-01

    Full Text Available The article deals with intelligent operation decision support system under condition of potentially hazardous nuclear facilities. The proposed system is referred to the class of advising systems and does not make final decisions in case of deviations of parameters to be analyzed, but generates general ways to solve an encountered problem and issues a set of recommendations for the plant personnel. In the article a fuzzy logic tool is used as mathematic tool. Lessons learnt from operation of nuclear facilities demonstrate that existing critical components (parts, areas, welding joints are subject to increased failure under conditions of high operational loads, including beyond design loads and negative environmental impact. Usually in that situation there is probability of equipment integrity failure, when the unit is at power, with severe defect downing. For instance, the coolant leak and potential development of initial penetration defect to critical dimensions. In other words, in fact, the final observable result is always one – formation and development of operational crack which jeopardizes design integrity of the component and, accordingly, seriously compromises the nuclear power unit operation. The proposed situational model is linked with real knowledge data base where generated situational pairs are stored. The expert system is used for knowledge data base formation. Actually the proposed system consists of two independent fuzzy systems. From mathematical tool point of view, the advantage of such systems combination is lack of defuzzification unit in the first system and fuzzification unit in the second one.

  8. Simulation-based expert system for nuclear reactor control and diagnostics. Progress report

    International Nuclear Information System (INIS)

    Lee, J.C.; Martin, W.R.

    1986-01-01

    This research concerns the development of artificial intelligence (AI) techniques suitable for application to the diagnostics and control of nuclear power plant systems. The overall objective of the current effort is to build a prototype simulation-based expert system for diagnosing accidents in nuclear reactors. The system is being designed to analyze plant data heuristically using fuzzy logic to form a set of hypotheses about a particular transient. Hypothesis testing, fault magnitude estimation and transient analysis is performed using simulation programs to model plant behavior. An adaptive learning technique has been developed for achieving accurate simulations of plant dynamics using low-order physical models of plant components. The results of the diagnostics and simulation analysis of the plant transient are to be analyzed by an expert system for final diagnoses and control guidance. To date, significant progress has been made toward achieving the primary goals of this project. Based on a critical safety functions approach, an overall design for the nuclear plant expert system has been developed. The methodology for performing diagnostic reasoning on plant signals has been developed and the algorithms implemented and tested. A methodology for utilizing the information contained in the physical models of plant components has also been developed. This work included the derivation of a unique Kalman filtering algorithm for using power plant data to systematically improve on-line simulations through the judicious adjustment of key model parameters. A few simulation models of key plant components have been developed and implemented to demonstrate the method on a realistic accident scenario. The chosen transient is a loss of feed flow exasperated by a stuck open relief valve, similar to the initiating event of the Three Mile Island Unit 2 accident in 1979

  9. Nuclear electronic components of surface contamination monitor based on multi-electrode proportional counter

    International Nuclear Information System (INIS)

    Du Xiangyang; Zhang Yong; Han Shuping; Rao Xianming; Fang Jintu

    2001-01-01

    The nuclear electronic components applying in Portal Monitor and Hands and Feet Surface Contamination Monitor were based on modern integrated circuit are introduced. The detailed points in circuit design and manufacturing technique are analyzed

  10. Design and evaluation of warning systems: application to nuclear power plants

    International Nuclear Information System (INIS)

    Pe Benito-Claudio, C.

    1986-01-01

    This study starts by defining and explaining key concepts about warning, both as a process and a system. Thereafter, it presents a quantitative, probabilistic, and decision-oriented methodology for designing and evaluating a warning system. It illustrates the methodology for the case of rare, controllable, and potentially disastrous technological events, such as accidents in nuclear power plants. The methodology covers and links the three principal components of a warning system - signal (which is mainly technical), warning dissemination, and warning response (which are mainly social) - thereby allowing the relative evaluation of technological and social measures for reducing risks. Analytical principles and techniques of risk and decision analyses are applied. It defines a probabilistic performance measure to characterize each component of a warning system, and a value measure to assess the overall effectiveness of the system. An important aspect of this work is the integration, into one analytical model, of the results of engineering studies, such as probabilistic risk assessments of nuclear power plants, and of empirical findings on human response to warning in sociological research. The models, calculations, and sensitivity analyses are done with influence diagrams that are both intuitive and mathematical. This work puts particular emphasis on the study of behavioral response of individuals to warning

  11. A geographical information based multimedia information system development for nuclear control

    International Nuclear Information System (INIS)

    Kim, H. T.; Park, S. S.; Lee, J. S.; Lee, J. W.; Shin, J. S.

    2000-01-01

    Current information technology is centered on the internet and changes our daily working pattern, particularly with multimedia information. Rapid development of information processing hardware and software has enabled us to deploy multimedia information management system of low hit counts and small amount of information volume on the desktop computer and publish multimedia information directly to the workgroup intranet with no particular additional hardware and software. Success of the timely development of the information system depends on the adoption of the proper direction and scale of information technology. The nuclear control mainly consists of safeguards, physical protection and export/import control. This paper provides an investigation on the application of openly available multiple media information to the nuclear control information management system. Information system with spatial map, image data including satellite imagery, audio, and video makes users easy to understand the current status and communicate each other easily. The Digital Terrain Elevation Data (DTED) Level 0 of the U.S. NIMA (National Imagery and Mapping Agency) is used as a base map. The multimedia information system is mainly built with Microsoft PowerPoint 2000 and Office Web component. A database with the second normal form was applied to the Office Web component. The importance of the information security was stressed

  12. Recycle and reuse of materials and components from waste streams of nuclear fuel cycle facilities

    International Nuclear Information System (INIS)

    2000-01-01

    All nuclear fuel cycle processes utilize a wide range of equipment and materials to produce the final products they are designed for. However, as at any other industrial facility, during operation of the nuclear fuel cycle facilities, apart from the main products some byproducts, spent materials and waste are generated. A lot of these materials, byproducts or some components of waste have a potential value and may be recycled within the original process or reused outside either directly or after appropriate treatment. The issue of recycle and reuse of valuable material is important for all industries including the nuclear fuel cycle. The level of different materials involvement and opportunities for their recycle and reuse in nuclear industry are different at different stages of nuclear fuel cycle activity, generally increasing from the front end to the back end processes and decommissioning. Minimization of waste arisings and the practice of recycle and reuse can improve process economics and can minimize the potential environmental impact. Recognizing the importance of this subject, the International Atomic Energy Agency initiated the preparation of this report aiming to review and summarize the information on the existing recycling and reuse practice for both radioactive and non-radioactive components of waste streams at nuclear fuel cycle facilities. This report analyses the existing options, approaches and developments in recycle and reuse in nuclear industry

  13. Advanced chemistry management system for nuclear power plants

    International Nuclear Information System (INIS)

    Maeda, Katsuji; Kobayashi, Yasuhiro; Nagasawa, Katsumi

    2000-01-01

    Chemistry control in a boiling water reactor (BWR) plant has a close relationship with radiation field buildup, fuel reliability, integrity of plant components and materials, performance of the water treatment systems and radioactive waste generation. Chemistry management in BWR plants has become more important in order to maintain and enhance plant reliability. Adequate chemistry control and management are also essential to establish, maintain, and enhance plant availability. For these reasons, we have developed the advanced chemistry management system for nuclear power plants in order to effectively collect and evaluate a large number of plant operating and chemistry data. (author)

  14. Unattended nuclear systems for local energy supply

    International Nuclear Information System (INIS)

    Lynch, G.F.; Bancroft, A.R.; Hilborn, J.W.; McDougall, D.S.; Ohta, M.M.

    1988-02-01

    This paper describes recent developments in a small nuclear heat and electricity production system - the SLOWPOKE Energy System - that make it possible to locate the system close to the load, and that could have a major impact on local energy supply. The most important unique features arising from these developments are walk-away safety and the ability to operate in an unattended mode. Walk-away safety means that radiological protection is provided by intrinsic characteristics and does not depend on either engineered safety systems or operator intervention. This, in our view, is essential to public acceptance. The capability for unattended operation results from self-regulation; however, the performance can be remotely monitored. The SLOWPOKE Energy System consists of a water-filled pool, operating at atmospheric pressure, which cools and moderates a beryllium-reflected thermal reactor that is fuelled with 100 to 400 kg of low-enriched uranium. The pool water also provides shielding from radioactive materials trapped in the fuel. Heat is drawn from the pool and transferred either to a building hot-water distribution system or to an organic liquid which is converted to vapour to drive a turbine-generator unit. Heating loads between 2 qnd 10 MWt, and electrical loads up to 1 MWe can be satisfied. SLOWPOKE is a dramatic departure from conventional nuclear power reactors. Its nuclear heat source is intrinsically simple, having only one moving part: a solid neutron absorber which is slowly withdrawn from the reactor to balance the fuel burnup. Its power is self-regulated and excessive heat production cannot occur, even for the most severe combinations of system failure. Cooling of the fuel is assured by natural physical processes that do not depend on mechanical components such as pumps. These intrinsic characteristics assure public safety and ultra high reliability

  15. Unattended nuclear systems for local energy supply

    International Nuclear Information System (INIS)

    Lynch, G.F.; Bancroft, A.R.; Hilborn, J.W.; McDougall, D.S.; Ohta, M.M.

    1986-10-01

    This paper describes recent developments in a small nuclear heat and electricity production system - the SLOWPOKE energy system - that make it possible to locate the system close to the load, and that could have a major impact on local energy supply. The most important unique features arising from these developments are walk-away safety and the ability to operate in an unattended mode. Walk-away safety means that radiological protection is provided by intrinsic characteristics and does not depend on either engineered safety systems or operator intervention. This, in our view, is essential to public acceptance. The capability for unattended operation results from self-regulation, however the performance can be remotely monitored. The SLOWPOKE energy system consists of a water-filled pool, operating at atmospheric pressure, which cools and moderates a beryllium-reflected thermal reactor that is fuelled with 100 to 400 kg of low enriched uranium. The pool water also provides shielding from radioactive materials trapped in the fuel. Heat is drawn from the pool and transferred either to a building hot-water distribution system or to an organic liquid which is converted to vapour to drive a turbine-generator unit. Heating loads between 2 and 10 MWt, and electrical loads up to 1 MWe can be satisfied. SLOWPOKE is a dramatic departure from conventional nuclear power reactors. Its nuclear heat source is intrinsically simple, having only one moving part: a solid neutron absorber which is slowly withdrawn from the reactor to balance the fuel burnup. Its power is self-regulated and excessive heat production cannot occur, even for the most severe combinations of system failure. Cooling of the fuel is assured by natural physical processes that do not depend on mechanical components such as pumps. These intrinsic characteristics assure public safety and ultra high reliability. (author)

  16. Non Nuclear Testing of Reactor Systems In The Early Flight Fission Test Facilities (EFF-TF)

    International Nuclear Information System (INIS)

    Van Dyke, Melissa; Martin, James

    2004-01-01

    The Early Flight Fission-Test Facility (EFF-TF) can assist in the design and development of systems through highly effective non-nuclear testing of nuclear systems when technical issues associated with near-term space fission systems are 'non-nuclear' in nature (e.g. system's nuclear operations are understood). For many systems, thermal simulators can be used to closely mimic fission heat deposition. Axial power profile, radial power profile, and fuel pin thermal conductivity can be matched. In addition to component and subsystem testing, operational and lifetime issues associated with the steady state and transient performance of the integrated reactor module can be investigated. Instrumentation at the EFF-TF allows accurate measurement of temperature, pressure, strain, and bulk core deformation (useful for accurately simulating nuclear behavior). Ongoing research at the EFF-TF is geared towards facilitating research, development, system integration, and system utilization via cooperative efforts with DOE laboratories, industry, universities, and other Nasa centers. This paper describes the current efforts for the latter portion of 2003 and beginning of 2004. (authors)

  17. German Democratic Republic State system of accounting for and control of nuclear material

    International Nuclear Information System (INIS)

    Roehnsch, W.; Gegusch, M.

    1976-01-01

    The system of accountancy for and control of nuclear material in the German Democratic Republic (GDR) with its legal bases and components is embedded in the overall State system of protection in the peaceful uses of nuclear energy. As the competent State authority, the Nuclear Safety and Radiation Protection Board of the GDR is also responsible for meeting the GDR's national and international tasks in the control of nuclear material. At enterprise level, the observance of all safety regulations for nuclear material, including the regulations for the control, is within the responsibility of managers of establishments, which are in any way concerned with the handling of nuclear material. To support managers and to function as internal control authorities, nuclear material officers have been appointed in these establishments. Design information, operating data, physical inventory of nuclear material and the respective enterprise records and reports are subject to State control by the Nuclear Material Inspectorate of the Nuclear Safety and Radiation Protection Board. This Inspectorate keeps the central records on nuclear material, forwards reports and information to, and maintains the necessary contacts with, the IAEA. For the nuclear material in the GDR four material balance areas have been established for control purposes. To rationalize central recording and reporting, electronic data processing is increasingly made use of. In a year-long national and international control of nuclear material, the State control system has stood the test and successfully co-operates with the IAEA. (author)

  18. A universal measuring and monitoring system for nuclear radiation

    International Nuclear Information System (INIS)

    Genrich, V.

    1988-01-01

    Genitron Instruments, Frankfurt/Main, committed themselves to revise the 'conventional' concept of counting tube metrology. The goal was to develop a modular system that would allow large-area measuring tasks. The contribution in hand explains this development, which consists of a highly integrated measuring head that can be combined with various detector types, and complemented by various system components, to form a universal measuring and monitoring system for nuclear radiation. This modular design concept is capable of fulfilling a multitude of tasks, ranging from single, specific applications to non-stop monitoring tasks within a large-area measuring network. (orig./DG) [de

  19. Nuclear reactor component populations, reliability data bases, and their relationship to failure rate estimation and uncertainty analysis

    International Nuclear Information System (INIS)

    Martz, H.F.; Beckman, R.J.

    1981-12-01

    Probabilistic risk analyses are used to assess the risks inherent in the operation of existing and proposed nuclear power reactors. In performing such risk analyses the failure rates of various components which are used in a variety of reactor systems must be estimated. These failure rate estimates serve as input to fault trees and event trees used in the analyses. Component failure rate estimation is often based on relevant field failure data from different reliability data sources such as LERs, NPRDS, and the In-Plant Data Program. Various statistical data analysis and estimation methods have been proposed over the years to provide the required estimates of the component failure rates. This report discusses the basis and extent to which statistical methods can be used to obtain component failure rate estimates. The report is expository in nature and focuses on the general philosophical basis for such statistical methods. Various terms and concepts are defined and illustrated by means of numerous simple examples

  20. Experience in the application of the IAEA QA code and guides to the manufacture of nuclear reactor components

    International Nuclear Information System (INIS)

    Dutta, N.G.; Mankame, M.A.; Kulkarni, P.G.; Vijayaraghavan, R.; Balaramamoorthy, K.

    1985-01-01

    India has made considerable progress in the indigenous manufacture of 'Quality' nuclear reactor components. All activities associated with the development of atomic energy from mining of strategic minerals to the design, construction, and operation of nuclear power plants including supporting research and development efforts are mainly carried out by the Department of Atomic Energy (DAE). Through the sustained efforts of DAE, the major industries, both in public and private sectors supplying nuclear components have now adopted the practice of systematic quality assurance (QA). The stringent QA steps are mandatory for achieving the desired quality in the manufactured nuclear components. Control blades for BWRs are now indigenously manufactured by the Atomic Fuels Division (AFD) of Bhabha Atomic Research Centre (BARC), a constituent unit of DAE. For the Project Dhruva, a 100 MW(th) nuclear reactor, constructed at BARC, Trombay, Bombay, an independent cell was formed to carry out quality audit on the manufactured components. The components were designed, fabricated, inspected and tested to the desired quality level. The QA activities were enforced from the procurement of raw materials to the audit of the completed component for monitoring the manufacturer's continued compliance with the design. The major components of Dhruva, viz. calandria, end-shield, coolant channels, heat exchangers, etc., were covered under these quality audit activities. The paper highlights the QA programme implemented in the manufacture of control blades for BWRs, illustrated with a typical example, the end-shield for Dhruva. The authors consider that the recommendations and guidelines provided in the documents 50-SG-QA3, 50-SG-QA8, 50-SG-QA10, etc., were useful in providing a formal and systematic framework, under which various quality assurance functions have been carried out

  1. Role of computerized operator support system in nuclear industry

    International Nuclear Information System (INIS)

    Kossilov, A.

    1994-01-01

    Many existing and all new nuclear stations have a high degree of automation leading to substantial safety and operational benefits. Various operator support systems (OSSs) for nuclear power plants are already operational or under development in the Member States. OSSs are based on intelligent data processing and in addition to plant operation, they are becoming more important for safety also. A key feature of OSSs is their availability to structure data to increase its relevance to a given situation. This can improve the user's ability to identify plant function, systems and component state and to identify faults and diagnose them. OSSs can also assist the user to plan and implement corrective actions to improve NPP availability and safety. The paper describes several such systems or functions either in operation or under development phase as well as a way in which new artificial intelligence-based software techniques will enhance the support possible for providing to the operator. (author). 4 refs

  2. Evaluation of the degradation of the service water system in nuclear plants

    International Nuclear Information System (INIS)

    Salaices A, E.

    2003-01-01

    The service water system, the circulation water system, the cooling water system and the protection against fires system so much in nuclear plants as in fossils plants they are being degraded by a wide variety of mechanisms. These mechanisms include microbiologically influenced corrosion, cavitation, erosion-corrosion, erosion by solid particles, corrosion in cracks, stings, general corrosion, galvanic corrosion, sedimentation and obstructions and incrustations in the heat exchangers. In the last years were developed predictive models for the more common degradation forms and were installed in a new application of the CHECWORKS TM code called Cooling Water Application (CWA). This application of the code provides a new technology that so much nuclear facilities as fossil ones can use to modelling specific systems and to carry out corrosion predictions in each one of its components. Presently work the results of the employment of the CHECWORKS CWA code are described to carry out predictions of 12 different corrosion mechanisms that affect to the service water system of a nuclear plant, as well as the recommendations and options that the plant can to consider to reduce indexes of damages. This work can be used for to optimize inspections to the service water system and it gives the bases for similar changes in other nuclear plants. (Author)

  3. Nuclear power plant diagnostic system

    International Nuclear Information System (INIS)

    Prokop, K.; Volavy, J.

    1982-01-01

    Basic information is presented on diagnostic systems used at nuclear power plants with PWR reactors. They include systems used at the Novovoronezh nuclear power plant in the USSR, at the Nord power plant in the GDR, the system developed at the Hungarian VEIKI institute, the system used at the V-1 nuclear power plant at Jaslovske Bohunice in Czechoslovakia and systems of the Rockwell International company used in US nuclear power plants. These diagnostic systems are basically founded on monitoring vibrations and noise, loose parts, pressure pulsations, neutron noise, coolant leaks and acoustic emissions. The Rockwell International system represents a complex unit whose advantage is the on-line evaluation of signals which gives certain instructions for the given situation directly to the operator. The other described systems process signals using similar methods. Digitized signals only serve off-line computer analyses. (Z.M.)

  4. Nuclear reactor trip system

    International Nuclear Information System (INIS)

    Cook, B.M.

    1982-01-01

    Each parameter of the processes of a nuclear reactor and components operatively associated with it is monitored by a set of four like sensors. A trip system normally operates on a ''two out four'' configuration; i.e., to trip the reactor it is necessary that at least two sensors of a set sense an off-normal parameter. This assumes that all sensors are in normal operating condition. However, when a sensor is in test or is subject to maintenance or is defective or disabled, the ''two out of four''configuration would be reduced to a ''one out of three'' configuration because the affected sensor is taken out of service. This would expose the system to the possibility that a single sensor failure, which may be spurious, will cause a trip of the reactor. To prevent this, it is necessary that the affected sensor be bypassed. If only one sensor is bypassed, the system operates on a ''two out of three'' configuration. With two sensors bypassed, the sensing of an off-normal parameter by a third sensor trips the reactor. The by-pass circuit also disables the circuit coupling the by-passed sensor to the trip circuit. (author)

  5. Application of system-level FMEA in the nuclear industry

    Energy Technology Data Exchange (ETDEWEB)

    Crocker, W.; Parmar, R.; Salvador, M. [AMEC NSS Ltd., Toronto, Ontario (Canada); Forystek, A.; Xu, C. [Bruce Power, Tiverton, Ontario (Canada)

    2012-07-01

    Failure Modes and Effects Analysis (FMEA) is an analytical technique used to assess risk that is applied in various industries such as aerospace, automotive and health care. A recent application in the nuclear industry of FMEA methodology to support the design modification process at a major electrical utility in Ontario is examined. This application of FMEA involves assessing proposed design changes by systematically identifying various component failure modes and their effect on the parent system with respect to the related employee, environmental, production and nuclear safety impact. In doing so, any design weaknesses are identified along with potential corrective actions such as adding redundant components. FMEA is being applied early in the design process with the focus on finding the problems before equipment is installed where failures may manifest into serious safety and economic consequences. To illustrate the application of FMEA in the nuclear industry, the results of a recent study will be presented with a walk through of the analysis process along with overall study findings. The study involved application of FMEA to support a design modification to replace the existing Condenser Steam Dump Valve (CSDV) actuator and top works (associated instrumentation, e.g., solenoid valves) on an operating reactor. (author)

  6. Application of system-level FMEA in the nuclear industry

    International Nuclear Information System (INIS)

    Crocker, W.; Parmar, R.; Salvador, M.; Forystek, A.; Xu, C.

    2012-01-01

    Failure Modes and Effects Analysis (FMEA) is an analytical technique used to assess risk that is applied in various industries such as aerospace, automotive and health care. A recent application in the nuclear industry of FMEA methodology to support the design modification process at a major electrical utility in Ontario is examined. This application of FMEA involves assessing proposed design changes by systematically identifying various component failure modes and their effect on the parent system with respect to the related employee, environmental, production and nuclear safety impact. In doing so, any design weaknesses are identified along with potential corrective actions such as adding redundant components. FMEA is being applied early in the design process with the focus on finding the problems before equipment is installed where failures may manifest into serious safety and economic consequences. To illustrate the application of FMEA in the nuclear industry, the results of a recent study will be presented with a walk through of the analysis process along with overall study findings. The study involved application of FMEA to support a design modification to replace the existing Condenser Steam Dump Valve (CSDV) actuator and top works (associated instrumentation, e.g., solenoid valves) on an operating reactor. (author)

  7. Incorporating ''fuzzy'' data and logical relations in the design of expert systems for nuclear reactors

    International Nuclear Information System (INIS)

    Guth, M.A.S.

    1987-01-01

    This paper applies the method of assigning probability in Dempster-Shafer Theory (DST) to the components of rule-based expert systems used in the control of nuclear reactors. Probabilities are assigned to premises, consequences, and rules themselves. This paper considers how uncertainty can propagate through a system of Boolean equations, such as fault trees or expert systems. The probability masses assigned to primary initiating events in the expert system can be derived from observing a nuclear reactor in operation or based on engineering knowledge of the reactor parts. Use of DST mass assignments offers greater flexibility to the construction of expert systems

  8. Assessment and Management of Ageing of Major Nuclear Power Plant Components Important to Safety: Steam Generators. 2011 Update

    International Nuclear Information System (INIS)

    2011-11-01

    At present there are over four hundred forty operational nuclear power plants (NPPs) in IAEA Member States. Ageing degradation of the systems, structures of components during their operational life must be effectively managed to ensure the availability of design functions throughout the plant service life. From the safety perspective, this means controlling, within acceptable limits, the ageing degradation and wear-out of plant components important to safety so that adequate safety margins remain, i.e. integrity and functional capability in excess of normal operating requirements. This IAEA-TECDOC is one in a series of reports on the assessment and management of ageing of the major NPP components important to safety. The reports are based on experience and practices of NPP operators, regulators, designers, manufacturers, and technical support organizations. The current practices for the assessment of safety margins (fitness for service) and the inspection, monitoring and mitigation of ageing degradation of selected components of Canada deuteriumuranium (CANDU) reactor, boiling water reactor (BWR), pressurized water reactor (PWR), and water moderated, water cooled energy reactor (WWER) plants are documented in the reports. These practices are intended to help all involved directly and indirectly in ensuring the safe operation of NPPs, and also to provide a common technical basis for dialogue between plant operators and regulators when dealing with age related licensing issues. Since the reports are written from a safety perspective, they do not address life or life cycle management of the plant components, which involves the integration of ageing management and economic planning. The target audience of the reports consists of technical experts from NPPs and from regulatory, plant design, manufacturing and technical support organizations dealing with specific plant components addressed in the reports. The component addressed in the present publication is the steam

  9. Detection and mitigation of aging and service wear effects of nuclear power plant components in Canada

    International Nuclear Information System (INIS)

    Pachner, J.

    1987-07-01

    In Canada, the operational safety management of nuclear power plants employs methods which are intended to prevent, detect, correct and mitigate system and component failures from any cause, including the effects of aging and service wear degradation. The paper gives an overview of the application of these methods in the detection and mitigation of aging effects before they impact on plant safety and production reliability. Regulatory audits of these methods, to ensure that an acceptable level of plant safety is maintained by the nuclear power plant licensees, are also described. The methods are: a preventive maintenance program, Significant Event Reporting system, and a reliability based assessment of performance of safety related systems. The above methods are discussed and illustrated by examples. The soundness of the approach has been proven by the results achieved in 163 reactor-years of operation. Present and future developments include reviews of current monitoring, testing and inspection methods to ensure that appropriate time variant parameters (capable of revealing aging degradation before loss of functional capability) are monitored, and reviews of the effectiveness of existing maintenance programs and methods in mitigating aging and service wear effects

  10. Interim storage of dismantled nuclear weapon components at the U.S. Department of Energy Pantex Plant

    International Nuclear Information System (INIS)

    Guidice, S.J.; Inlow, R.O.

    1995-01-01

    Following the events of 1989 and the subsequent cessation of production of new nuclear weapons by the US, the mission of the Department of Energy (DOE) Nuclear Weapons Complex has shifted from production to dismantlement of retired weapons. The sole site in the US for accomplishing the dismantlement mission is the DOE Pantex Plant near Amarillo, Texas. Pending a national decision on the ultimate storage and disposition of nuclear components form the dismantled weapons, the storage magazines within the Pantex Plant are serving as the interim storage site for pits--the weapon plutonium-bearing component. The DOE has stipulated that Pantex will provide storage for up to 12,000 pits pending a Record of Decision on a comprehensive site-wide Environmental Impact Statement in November 1996

  11. Operator support systems in nuclear power plants national report from Romania

    International Nuclear Information System (INIS)

    Bengulescu, D.; Jianu, A.

    1996-01-01

    The report gives a short overview of the status of the activities in Romania relevant for the present Co-ordination Research Programme: the development of small size simulators and computerised support systems for the CANDU systems; the development of an expert system for risk monitoring, as a component of the Cernavoda PSA activities for PSA team training and design changes evaluation; the implementation in Romania of a segment of an integrated and comprehensive real-time on-line decision support system for nuclear emergency in Europe. 11 refs

  12. Development of measuring and control systems for underwater cutting of radioactive components

    International Nuclear Information System (INIS)

    Drews, P.; Fuchs, K.

    1990-01-01

    Shutdown and dismantling of nuclear power plants requires special techniques to decommission the radioactive components involved. For reasons of safety, decommissioning of components under water can be advantageous because of the radioactive shielding effect of water. In this project, research activities and developmental works focused on the realization of different sensor systems and their adaptation to cutting tasks. A new image-processing system has been developed in addition to the use of a modified underwater TV camera for optical cutting process control (plasma and abrasive wheel cutting). For control of process parameters, different inductive, ultrasonic and optical sensors have been modified and tested. The investigations performed are aimed at assuring high-quality underwater cutting with the help of sensor systems specially adapted to cutting tasks, with special signal procession and evaluation through microcomputer control. It is important that special attention be paid to the reduction of interferences in image pick-up and procession. The measuring system has been designed and realized according to the consideration of the demands for underwater cutting processes. The reliability of the system was tested in conjunction with a four-axes handling system

  13. Development of TIG Welding System for a Nuclear Fuel Test Rig

    Energy Technology Data Exchange (ETDEWEB)

    Joung, Changyoung; Ahn, Sungho; Hong, Jintae; Kim, Kahye [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-05-15

    The welding process is one of the most important among the instrumentation processes of the nuclear fuel test rig and rods. To manufacture the nuclear fuel test rig, a precision welding system needs to be fabricated to develop various welding technologies of the fuel test rig and rods jointing the various sensors and end caps on a fuel cladding tube, which is charged with fuel pellets and component parts. Thus, we designed and fabricated the precision welding system consisting of an orbital TIG welder, a low-pressure chamber, and a high-pressure chamber. Using this system, the performance tests were performed with the round and seal spot welds for each welding condition. This paper describes not only the contents for the fabrication of precision TIG welding system but also some results from weld tests using the low-pressure and high-pressure chambers to verify the performance of this system. The TIG welding system was developed to manufacture the nuclear fuel test rig and rods. It has been configured to be able to weld the nuclear fuel test rigs and rods by applying the TIG welder using a low-pressure chamber and a high-pressure chamber. The performance tests using this system were performed with the round and seal spot welds for the welding conditions. The soundness of the orbital TIG welding system was confirmed through performance tests in the low-pressure and high-pressure chambers.

  14. Development of TIG Welding System for a Nuclear Fuel Test Rig

    International Nuclear Information System (INIS)

    Joung, Changyoung; Ahn, Sungho; Hong, Jintae; Kim, Kahye

    2013-01-01

    The welding process is one of the most important among the instrumentation processes of the nuclear fuel test rig and rods. To manufacture the nuclear fuel test rig, a precision welding system needs to be fabricated to develop various welding technologies of the fuel test rig and rods jointing the various sensors and end caps on a fuel cladding tube, which is charged with fuel pellets and component parts. Thus, we designed and fabricated the precision welding system consisting of an orbital TIG welder, a low-pressure chamber, and a high-pressure chamber. Using this system, the performance tests were performed with the round and seal spot welds for each welding condition. This paper describes not only the contents for the fabrication of precision TIG welding system but also some results from weld tests using the low-pressure and high-pressure chambers to verify the performance of this system. The TIG welding system was developed to manufacture the nuclear fuel test rig and rods. It has been configured to be able to weld the nuclear fuel test rigs and rods by applying the TIG welder using a low-pressure chamber and a high-pressure chamber. The performance tests using this system were performed with the round and seal spot welds for the welding conditions. The soundness of the orbital TIG welding system was confirmed through performance tests in the low-pressure and high-pressure chambers

  15. Assessment of ALWR passive safety system reliability. Phase 1: Methodology development and component failure quantification

    International Nuclear Information System (INIS)

    Hake, T.M.; Heger, A.S.

    1995-04-01

    Many advanced light water reactor (ALWR) concepts proposed for the next generation of nuclear power plants rely on passive systems to perform safety functions, rather than active systems as in current reactor designs. These passive systems depend to a great extent on physical processes such as natural circulation for their driving force, and not on active components, such as pumps. An NRC-sponsored study was begun at Sandia National Laboratories to develop and implement a methodology for evaluating ALWR passive system reliability in the context of probabilistic risk assessment (PRA). This report documents the first of three phases of this study, including methodology development, system-level qualitative analysis, and sequence-level component failure quantification. The methodology developed addresses both the component (e.g. valve) failure aspect of passive system failure, and uncertainties in system success criteria arising from uncertainties in the system's underlying physical processes. Traditional PRA methods, such as fault and event tree modeling, are applied to the component failure aspect. Thermal-hydraulic calculations are incorporated into a formal expert judgment process to address uncertainties in selected natural processes and success criteria. The first phase of the program has emphasized the component failure element of passive system reliability, rather than the natural process uncertainties. Although cursory evaluation of the natural processes has been performed as part of Phase 1, detailed assessment of these processes will take place during Phases 2 and 3 of the program

  16. Aging effects in PWR power plants components

    Energy Technology Data Exchange (ETDEWEB)

    Borges, Diogo da S.; Guimaraes, Antonio C.F.; Moreira, Maria de Lourdes, E-mail: diogosb@outlook.com, E-mail: tony@ien.gov.br, E-mail: malu@ien.gov.br [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2013-07-01

    This paper presents a contribution to the study of aging process of components in commercial plants of Pressurized Water Reactors (PWRs). The analysis is made through application of the Fault Trees Method, Monte Carlo Method and Fussell-Vesely Importance Measure. The approach of the study of aging in nuclear power plants, besides giving attention to the economic factors involved directly with the extent of their operational life, also provide significant data on security issues. The latest case involving process of life extension of a PWR could be seen in Angra 1 Nuclear Power Plant through investing of $27 million for the installation of a new reactor lid. The corrective action has generated an estimated operating life extension of Angra I in twenty years, offering great economy compared with building cost of a new plant and anterior decommissioning, if it had reached the time operating limit of forty years. The Extension of the operating life of a nuclear power plant must be accompanied by a special attention to the components of the systems and their aging process. After the application of the methodology (aging analysis of the injection system of the containment spray) proposed in this work, it can be seen that 'the increase in the rate of component failure, due the aging process, generates the increase in the general unavailability of the system that containing these basic components'. The final results obtained were as expected and may contribute to the maintenance policy, preventing premature aging process in Nuclear Plant Systems. (author)

  17. Probabilistic calibration of safety coefficients for flawed components in nuclear engineering

    International Nuclear Information System (INIS)

    Ardillon, E.; Pitner, P.; Barthelet, B.; Remond, A.

    1996-01-01

    The rules that are currently under application to verify the acceptance of flaws in nuclear components rely on deterministic criteria supposed to ensure the safe operating of plants. The interest of having a precise and reliable method to evaluate the safety margins and the integrity of components led Electricite de France to launch an approach to link directly safety coefficients with safety levels. This paper presents a probabilistic methodology to calibrate safety coefficients in relation to reliability target values. The proposed calibration procedure applies to the case of a ferritic flawed pipe using the R6 procedure for assessing the integrity of the structure. (authors). 5 refs., 5 figs

  18. Probabilistic calibration of safety coefficients for flawed components in nuclear engineering

    International Nuclear Information System (INIS)

    Ardillon, E.; Pitner, P.; Barthelet, B.; Remond, A.

    1995-01-01

    The current rules applied to verify the flaws acceptance in nuclear components rely on deterministic criteria supposed to ensure the plant safe operation. The interest in have a precise and reliable method to evaluate the safety margins and the integrity of components led Electricite de France to launch an approach to link directly safety coefficients with safety levels. This paper presents a probabilistic methodology to calibrate safety coefficients in relation do reliability target values. The proposed calibration procedure applies to the case of a ferritic flawed pipe using the R 6 procedure for assessing the structure integrity. (author). 5 refs., 5 figs., 1 tab

  19. quality assurance systems in nuclear fuel procurement and manufacturing

    International Nuclear Information System (INIS)

    Can, S.

    1997-01-01

    Quality is the totality of features and characteristics of a product or service that bear on its ability to satisfy stated or implied needs. Quality control is activities and techniques used to fulfill the requirements of quality. Quality assurance is a system and its main components are requirements. QA program, organization and responsibilities, design and verification, material and its control, manufacturing and process control, inspections, audits and documents: manuals, specifications, instructions. Quality assurance systems are largely based on ISO 9000 series of the International Standards Organization. ISO 9000 series has been adopted and published by Turkish Standards Institute as TS-ISO 9000. International Atomic Energy Agency also published a guide (50-SG-QA11) ''Quality Assurance in the Procurement, Design and Manufacture of Nuclear Fuel Assemblies'' in the safety guide series. In this study the role of quality control in quality assurance systems, inspection and test plans and acceptance and nonconformance quality levels will be explained in relation to nuclear fuel production. Examples of applications in quality assurance systems based on ISO 9000 will be given

  20. Component Repair Times Obtained from MSPI Data

    International Nuclear Information System (INIS)

    Eide, Steven A.; Cadwallader, Lee

    2015-01-01

    Information concerning times to repair or restore equipment to service given a failure is valuable to probabilistic risk assessments (PRAs). Examples of such uses in modern PRAs include estimation of the probability of failing to restore a failed component within a specified time period (typically tied to recovering a mitigating system before core damage occurs at nuclear power plants) and the determination of mission times for support system initiating event (SSIE) fault tree models. Information on equipment repair or restoration times applicable to PRA modeling is limited and dated for U.S. commercial nuclear power plants. However, the Mitigating Systems Performance Index (MSPI) program covering all U.S. commercial nuclear power plants provides up-to-date information on restoration times for a limited set of component types. This paper describes the MSPI program data available and analyzes the data to obtain median and mean component restoration times as well as non-restoration cumulative probability curves. The MSPI program provides guidance for monitoring both planned and unplanned outages of trains of selected mitigating systems deemed important to safety. For systems included within the MSPI program, plants monitor both train UA and component unreliability (UR) against baseline values. If the combined system UA and UR increases sufficiently above established baseline results (converted to an estimated change in core damage frequency or CDF), a ''white'' (or worse) indicator is generated for that system. That in turn results in increased oversight by the US Nuclear Regulatory Commission (NRC) and can impact a plant's insurance rating. Therefore, there is pressure to return MSPI program components to service as soon as possible after a failure occurs. Three sets of unplanned outages might be used to determine the component repair durations desired in this article: all unplanned outages for the train type that includes the component of

  1. Innovative nuclear energy systems roadmap

    International Nuclear Information System (INIS)

    2007-12-01

    Developing nuclear energy that is sustainable, safe, has little waste by-product, and cannot be proliferated is an extremely vital and pressing issue. To resolve the four issues through free thinking and overall vision, research activities of 'innovative nuclear energy systems' and 'innovative separation and transmutation' started as a unique 21st Century COE Program for nuclear energy called the Innovative Nuclear Energy Systems for Sustainable Development of the World, COE-INES. 'Innovative nuclear energy systems' include research on CANDLE burn-up reactors, lead-cooled fast reactors and using nuclear energy in heat energy. 'Innovative separation and transmutation' include research on using chemical microchips to efficiently separate TRU waste to MA, burning or destroying waste products, or transmuting plutonium and other nuclear materials. Research on 'nuclear technology and society' and 'education' was also added in order for nuclear energy to be accepted into society. COE-INES was a five-year program ending in 2007. But some activities should be continued and this roadmap detailed them as a rough guide focusing inventions and discoveries. This technology roadmap was created for social acceptance and should be flexible to respond to changing times and conditions. (T. Tanaka)

  2. Passive safety systems reliability and integration of these systems in nuclear power plant PSA

    International Nuclear Information System (INIS)

    La Lumia, V.; Mercier, S.; Marques, M.; Pignatel, J.F.

    2004-01-01

    Innovative nuclear reactor concepts could lead to use passive safety features in combination with active safety systems. A passive system does not need active component, external energy, signal or human interaction to operate. These are attractive advantages for safety nuclear plant improvements and economic competitiveness. But specific reliability problems, linked to physical phenomena, can conduct to stop the physical process. In this context, the European Commission (EC) starts the RMPS (Reliability Methods for Passive Safety functions) program. In this RMPS program, a quantitative reliability evaluation of the RP2 system (Residual Passive heat Removal system on the Primary circuit) has been realised, and the results introduced in a simplified PSA (Probabilistic Safety Assessment). The scope is to get out experience of definition of characteristic parameters for reliability evaluation and PSA including passive systems. The simplified PSA, using event tree method, is carried out for the total loss of power supplies initiating event leading to a severe core damage. Are taken into account: failures of components but also failures of the physical process involved (e.g. natural convection) by a specific method. The physical process failure probabilities are assessed through uncertainty analyses based on supposed probability density functions for the characteristic parameters of the RP2 system. The probabilities are calculated by MONTE CARLO simulation coupled to the CATHARE thermalhydraulic code. The yearly frequency of the severe core damage is evaluated for each accident sequence. This analysis has identified the influence of the passive system RP2 and propose a re-dimensioning of the RP2 system in order to satisfy the safety probabilistic objectives for reactor core severe damage. (authors)

  3. IAEA Mission to Onagawa Nuclear Power Station to Examine the Performance of Systems, Structures and Components Following the Great East Japanese Earthquake and Tsunami, Onagawa and Tokyo, Japan, 30 July - 11 August 2012. IAEA Mission Report

    International Nuclear Information System (INIS)

    2012-01-01

    To strengthen global nuclear safety, the IAEA Action Plan on Nuclear Safety (1) recommends the use of IAEA technical peer review services for plant safety, in the light of the accident at TEPCO's Fukushima Dai-ichi Nuclear Power Plant, and (2) encourages that Member States promptly use IAEA review services to gather and disseminate information on the performance of their nuclear power plants (NPPs) and the performance of the designed protective measures against site specific extreme natural hazards and to utilize the lessons learned in the enhancement of NPP safety worldwide. The Government of Japan and the IAEA have concurred to deploy a mission to Onagawa Nuclear Power Station (NPS), owned and operated by Tohoku Electric Power Co., Inc. (Tohoku EPCo), with the objective of gathering information, during the course of a two-week period on site. This included collecting data on the performance of the structures, systems and components of the Onagawa NPS, in the 11 March 2011 Great East Japan Earthquake (GEJE) and its major aftershocks, as well as compiling the information gathered in a seismic experience database for future use by the Member States to gauge the performance of their facilities against external hazards. The Onagawa NPS has three boiling water reactors (units); with the first unit operating for the last twenty-eight years. Unit 1 began commercial operation in June 1984. Unit 2 began commercial operation in July 1995 and Unit 3 began commercial operation in January 2002. The three units have a combined electric generation capacity of 2,174 Megawatts. Situated on the eastern coast of Japan facing the Pacific Ocean, the Onagawa NPS was the closest nuclear power station to the epicentre of the enormous M9.0 GEJE. Due to its proximity to the earthquake source, the plant experienced very high levels of ground motion -the strongest shaking that any nuclear power plant has ever experienced from an earthquake. The plant shut down safely. The mission objective

  4. Fatigue analysis for analytically overloaded piping components and valves in nuclear power plants

    International Nuclear Information System (INIS)

    Charalambus, B.

    1992-01-01

    Lately, in connection with life extension aspects of power plants, an increasingly accurate determination of the lifetime of components in nuclear stations is being required. In order to assess reliably current fatigue levels in piping systems, variables such as pressure, temperature, and resultant force and moment transients as well as analytical methods which take into account the real operational history must be considered. This paper presents a method for analyzing the transient heat transfer between fluid and pipe wall in order to investigate effects which until now have been assumed conservatively to be caused by a sudden jump in temperature. Further, an example is given showing that the K e factor approach in current design codes for performing simplified elastic-plastic fatigue analyses is conservative. (orig.)

  5. Nuclear steam supply system and method of installation

    International Nuclear Information System (INIS)

    Tower, S.N.; Christenson, J.A.; Braun, H.E.

    1989-01-01

    This patent describes a method of providing a nuclear reactor power plant at a predetermined use site accessible by predetermined navigable waterways. The method is practiced with apparatus including a nuclear reactor system. The system has a nuclear steam-supply section. The method consists of: constructing a nuclear reactor system at a manufacturing site remote from the predetermined use site but accessible to the predetermined waterways for transportation from the manufacturing site to the predetermined use site, the nuclear reactor system including a barge with the nuclear steam supply section constructed integrally with the barge. Simultaneously with the construction of the nuclear reactor system, constructing facilities at the use site to be integrated with the nuclear reactor system to form the nuclear-reactor power plant; transporting the nuclear reactor system along the waterways to the predetermined use site; at the use site joining the removal parts of the altered nuclear reactor system to the remainder of the altered nuclear reactor system to complete the nuclear reactor system; and installing the nuclear reactor system at the predetermined use site and integrating the nuclear reactor system to interact with the facilities constructed at the predetermined use site to form the nuclear-reactor power plant

  6. EPRI research on component aging and nuclear plant life extension

    International Nuclear Information System (INIS)

    Sliter, G.E.; Carey, J.J.

    1985-01-01

    This paper first describes several research efforts sponsored by the Electric Power Research Institute (EPRI) that examine the aging degradation of organic materials and the nuclear plant equipment in which they appear. This research includes a compendium of material properties characterizing the effects of thermal and radiation aging, shake table testing to evaluate the effects of aging on the seismic performance of electrical components, and a review of condition monitoring techniques applicable to electrical equipment. Also described is a long-term investigation of natural versus artificial aging using reactor buildings as test beds. The paper then describes how the equipment aging research fits into a broad-scoped EPRI program on nuclear plant life extension. The objective of this program is to provide required information, technology, and guidelines to enable utilities to significantly extend operating life beyond the current 40-year licensed term

  7. Diagnosing component faults in a generic nuclear power plant using counterfactual and temporal reasoning

    International Nuclear Information System (INIS)

    Oehrstroem, P.; Nielsen, F.R.; Pedersen, S.A.

    1992-01-01

    The subject of main interest is the logical and epistemological aspects of diagnostic reasoning. The aim was to understand the role of conditionals and causality in this respect. A model of causal and temporal reasoning was developed and evaluated in a controlled but complex setting. The generic nuclear power plant was used as a test ground. The coherence and scope of a logical theory of diagnostic reasoning was studied in order to discover whether the theory constitutes an adequate tool for making correct diagnoses of component faults in a generic nuclear power plant. A diagnosing system based on the CIMP system was run on a computer model of a nuclear power plant, various errors were then introduced. The aim of the diagnosis is mainly explanation and only partly repair. The causal field defines a conceptual framework within which the diagnostic purpose is given and within which various diagnostic possibilities and causal relationships are given, here with regard to error detection in a control room. The causal field is tacitly given and related to the operator's training and experience. The logical aspects of the problem of the diagnosis is described. The computer model is described and the symptom language is introduced. The process of reasoning about the possible diagnosis is presented. The utilization of ideas similiar to the heuristic classification is discussed. A data base command language for manipulating lists of symptoms is described and the design of a CIMP user interface for symptom language visualization is outlined. (AB)

  8. The electron-nuclear spin system in (In,Ga)As quantum dots

    International Nuclear Information System (INIS)

    Auer, Thomas

    2008-01-01

    polarised by optically oriented electrons also in the studied sample, so that it is even a task to keep the nuclear spins randomly oriented. An important finding was to confirm that the nuclear spins can be significantly polarised also at zero external field. I showed that the polarised nuclear spin system can have a supporting effect on the electron spin polarisation or - when the direction of the nuclear field gains a large transverse component - may depolarise the resident electron spin further than the unpolarized nuclear fluctuation field. I demonstrated that the direction of the Overhauser field may indeed be directed by very small external fields. By determining the internal fields acting on the nuclear spins, the Knight field and the nuclear dipole-dipole field, it could be estimated that the nuclear spin system can in principle be polarised to a degree close to unity. The accumulation dynamics of the electron spins polarised via the effect of negative circular polarisation was found to occur on a timescale of hundred nanoseconds. The nuclear spin system becomes polarised by optical orientation within tens of milliseconds. Finally, I observed spin memory times in the system persisting over up to 0.5 s after the excitation had been switched off. This extremely long spin lifetimes were explained in terms of a coupled electron-nuclear spin state, the nuclear spin polaron. (orig.)

  9. Crankshaft and component adequacy: Update of analysis and testing developed for nuclear standby engines

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    This book contains eight selections. Some of the topics are: reliability improvement of diesels in nuclear standby applications, diesel engine crankshaft torsional vibrations, pendulum dampers, transportation fatalities,and diesel component life predictions

  10. HASCAL -- A system for estimating contamination and doses from incidents at worldwide nuclear facilities

    International Nuclear Information System (INIS)

    Sjoreen, A.L.

    1995-01-01

    The Hazard Assessment System for Consequence Analysis (HASCAL) is being developed to support the analysis of radiological incidents anywhere in the world for the Defense Nuclear Agency (DNA). HASCAL is a component of the Hazard Prediction and Assessment Capability (HPAC), which is a comprehensive nuclear, biological, and chemical hazard effects planning and forecasting modeling system that is being developed by DNA. HASCAL computes best-guess estimates of the consequences of radiological incidents. HASCAL estimates the amount of radioactivity released, its atmospheric transport and deposition, and the resulting radiological doses

  11. The 'Pole Nucleaire Bourgogne' for developing the nuclear components industry

    International Nuclear Information System (INIS)

    Kottmann, G.

    2012-01-01

    The 'Pole Nucleaire Bourgogne' (PNB) is a high-technology and heavy industries cluster in Burgundy with an international calling. It aims at innovating, educating and federating in order to place the French nuclear industry in a leading position. PNB gathers 76 small-, and medium-sized enterprises, most of them operating in the metal sector, in design and in the control/measuring sector. The aim of PNB is to make enterprises work and cooperate on specific topics according to their sectors of activities and their skills. PNB has identified 3 domains of strategical innovations: -) ecological manufacturing and durability of heavy components, -) controls for high performance components, and -) maintenance and dismantling techniques in hostile environments. The various industry sectors represented in PNB allows a cross-fertilization between high-tech industries (aeronautics, energy, transportation)

  12. Simplified seismic analysis applied to structures systems and components with limited radioactive inventories

    International Nuclear Information System (INIS)

    Stevenson, J.D.

    1989-01-01

    This paper presents a review of the current status of simplified methods of seismic design and analysis applicable to nuclear facility structures, systems and components important to public health and safety. In particular, the International Atomic Energy Agency, IAEA TEC DOC 348 procedure for structures and the Bounding Spectra Concept for equipment as being developed by Seismic Qualification Utility Group and the Electric Power Research Institute will be discussed in some detail

  13. Proceedings: 2003 Workshop on Life Cycle Management Planning for Systems, Structures, and Components

    International Nuclear Information System (INIS)

    2003-01-01

    These proceedings of the 2003 EPRI Life Cycle Management Workshop provide nuclear plant owners with an overview of the state of development of methods and tools for performing long-term planning for maintenance, aging management, and obsolescence management of systems, structures, and components important to a plant's long-term safety, power production, and value in a market-driven industry. The proceedings summarize the results of applying life cycle management at several plants

  14. An intelligent design methodology for nuclear power systems

    International Nuclear Information System (INIS)

    Nassersharif, B.; Martin, R.P.; Portal, M.G.; Gaeta, M.J.

    1989-01-01

    The goal of this investigation is to research possible methodologies into automating the design of, specifically, nuclear power facilities; however, it is relevant to all thermal power systems. The strategy of this research has been to concentrate on individual areas of the thermal design process, investigate procedures performed, develop methodology to emulate that behavior, and prototype it in the form of a computer program. The design process has been generalized as follows: problem definition, design definition, component selection procedure, optimization and engineering analysis, testing and final design with the problem definition defining constraints that will be applied to the selection procedure as well as design definition. The result of this research is a prototype computer program applying an original procedure for the selection of the best set of real components that would be used in constructing a system with desired performance characteristics. The mathematical model used for the selection procedure is possibility theory

  15. Operating experiences with Neutron Overpower Trip Systems in Ontario Hydro's CANDU nuclear plants

    International Nuclear Information System (INIS)

    Hnik, J.; Kozak, J.

    1991-01-01

    Operating experiences with Neutron Over Power Trip (NOP) Systems in different Ontario Hydro CANDU nuclear power plants are discussed. Lessons learned from the system operation and their impact on design improvements are presented. Retrofitting of additional tools, such as Shutdown System Monitoring computers, to improve operator interaction with the system is described. Experiences with the reliability of some of the NOP system components is also discussed. Options for future enhancements of system performance and operability are identified. (author)

  16. Nuclear maintenance strategy and first steps for preliminary maintenance plan of the EU HCLL & HCPB Test Blanket Systems

    Energy Technology Data Exchange (ETDEWEB)

    Galabert, Jose, E-mail: jose.galabert@f4e.europa.eu [F4E Fusion for Energy, EU Domestic Agency, c/Josep Pla, 2. B3, 08019, Barcelona (Spain); Hopper, Dave [AMEC Foster Wheeler, Faraday Street, Birchwood Park, WA3 6GN (United Kingdom); Neviere, Jean-Cristophe [ITER Organization, Route de Vinon-sur-Verdon, CS 90046, 13067, St. Paul Lez Durance Cedex (France); Nodwell, David [CCFE, Culham Science Centre, Abingdon, OX14 3DB, Oxfordshire (United Kingdom); Pascal, Romain [ITER Organization, Route de Vinon-sur-Verdon, CS 90046, 13067, St. Paul Lez Durance Cedex (France); Poitevin, Yves; Ricapito, Italo [F4E Fusion for Energy, EU Domestic Agency, c/Josep Pla, 2. B3, 08019, Barcelona (Spain); White, Gareth [AMEC Foster Wheeler, Faraday Street, Birchwood Park, WA3 6GN (United Kingdom)

    2017-03-15

    Highlights: • Nuclear maintenance strategy for the two European (EU) Test Blanket Systems (TBS): i/. Helium Cooled Lead Lithium (HCLL) and ii/. Helium Cooled Pebble Bed (HCPB). • Preliminary identification of maintenance tasks for most relevant components of the EU HCLL & HCPB TBS. • Preliminary feasibility analysis for hands-on maintenance tasks of some relevant components of the European Test Blanket Systems. • Design recommendations for enhancement of the European Test Blanket Systems maintainability. - Abstract: This paper gives an overview of nuclear maintenance strategy to be followed for the European HCLL & HCPB Test Blanket Systems (TBS) to be installed in ITER. One of the several core documents to prepare in view of their licensing is their respective ‘Maintenance Plan’. This document is fundamental for ensuring sound performance and safety of the TBS during ITER’s operational phase and shall include, amongst others, relevant information on: maintenance organization, preventive and corrective maintenance task procedures, condition monitoring for key components, maintenance work planning, and a spare parts plan, just to mention some of the key topics. In compliance with the ITER Plant Maintenance policy, first steps have been taken aimed at defining nuclear maintenance strategy for some of the most relevant HCLL & HCPB TBS components, conducted by F4E in collaboration with industry. After a brief recall of maintenance strategy of the TBM Program (PBS-56), this paper analyses main features of EU HCLL & HCPB TBS maintainability and identifies, at their conceptual design phase, a preliminary list of maintenance tasks to be developed for their most representative components. In addition, the paper also presents the first nuclear maintenance studies conducted for replacement of the Q{sub 2} Getter Beds, identifying some design recommendations for their sound maintainability.

  17. Nuclear maintenance strategy and first steps for preliminary maintenance plan of the EU HCLL & HCPB Test Blanket Systems

    International Nuclear Information System (INIS)

    Galabert, Jose; Hopper, Dave; Neviere, Jean-Cristophe; Nodwell, David; Pascal, Romain; Poitevin, Yves; Ricapito, Italo; White, Gareth

    2017-01-01

    Highlights: • Nuclear maintenance strategy for the two European (EU) Test Blanket Systems (TBS): i/. Helium Cooled Lead Lithium (HCLL) and ii/. Helium Cooled Pebble Bed (HCPB). • Preliminary identification of maintenance tasks for most relevant components of the EU HCLL & HCPB TBS. • Preliminary feasibility analysis for hands-on maintenance tasks of some relevant components of the European Test Blanket Systems. • Design recommendations for enhancement of the European Test Blanket Systems maintainability. - Abstract: This paper gives an overview of nuclear maintenance strategy to be followed for the European HCLL & HCPB Test Blanket Systems (TBS) to be installed in ITER. One of the several core documents to prepare in view of their licensing is their respective ‘Maintenance Plan’. This document is fundamental for ensuring sound performance and safety of the TBS during ITER’s operational phase and shall include, amongst others, relevant information on: maintenance organization, preventive and corrective maintenance task procedures, condition monitoring for key components, maintenance work planning, and a spare parts plan, just to mention some of the key topics. In compliance with the ITER Plant Maintenance policy, first steps have been taken aimed at defining nuclear maintenance strategy for some of the most relevant HCLL & HCPB TBS components, conducted by F4E in collaboration with industry. After a brief recall of maintenance strategy of the TBM Program (PBS-56), this paper analyses main features of EU HCLL & HCPB TBS maintainability and identifies, at their conceptual design phase, a preliminary list of maintenance tasks to be developed for their most representative components. In addition, the paper also presents the first nuclear maintenance studies conducted for replacement of the Q_2 Getter Beds, identifying some design recommendations for their sound maintainability.

  18. Component Reification in Systems Modelling

    DEFF Research Database (Denmark)

    Bendisposto, Jens; Hallerstede, Stefan

    When modelling concurrent or distributed systems in Event-B, we often obtain models where the structure of the connected components is specified by constants. Their behaviour is specified by the non-deterministic choice of event parameters for events that operate on shared variables. From a certain......? These components may still refer to shared variables. Events of these components should not refer to the constants specifying the structure. The non-deterministic choice between these components should not be via parameters. We say the components are reified. We need to address how the reified components get...... reflected into the original model. This reflection should indicate the constraints on how to connect the components....

  19. Fault diagnosis of generation IV nuclear HTGR components – Part II: The area error enthalpy–entropy graph approach

    International Nuclear Information System (INIS)

    Rand, C.P. du; Schoor, G. van

    2012-01-01

    Highlights: ► Different uncorrelated fault signatures are derived for HTGR component faults. ► A multiple classifier ensemble increases confidence in classification accuracy. ► Detailed simulation model of system is not required for fault diagnosis. - Abstract: The second paper in a two part series presents the area error method for generation of representative enthalpy–entropy (h–s) fault signatures to classify malfunctions in generation IV nuclear high temperature gas-cooled reactor (HTGR) components. The second classifier is devised to ultimately address the fault diagnosis (FD) problem via the proposed methods in a multiple classifier (MC) ensemble. FD is realized by way of different input feature sets to the classification algorithm based on the area and trajectory of the residual shift between the fault-free and the actual operating h–s graph models. The application of the proposed technique is specifically demonstrated for 24 single fault transients considered in the main power system (MPS) of the Pebble Bed Modular Reactor (PBMR). The results show that the area error technique produces different fault signatures with low correlation for all the examined component faults. A brief evaluation of the two fault signature generation techniques is presented and the performance of the area error method is documented using the fault classification index (FCI) presented in Part I of the series. The final part of this work reports the application of the proposed approach for classification of an emulated fault transient in data from the prototype Pebble Bed Micro Model (PBMM) plant. Reference data values are calculated for the plant via a thermo-hydraulic simulation model of the MPS. The results show that the correspondence between the fault signatures, generated via experimental plant data and simulated reference values, are generally good. The work presented in the two part series, related to the classification of component faults in the MPS of different

  20. Nuclear power 1981: Slow going

    International Nuclear Information System (INIS)

    Beims, D.; Schlich, M.; Schmitter, K.H.

    1981-01-01

    After some introductory remarks, the results of the sections and poster sessions of the Technical Meetings are summarized. The subjects discussed are characterized as follows: 1. Reactor physics, 2. thermodynamics and fluid dynamics, 3. safety of nuclear facilities, 4. fuel cycle and nuclear safeguards, 5. fuel elements and fuel element materials, 6. components and component materials, quality assurance, 7. layout and operation of nuclear facilities, 8. nuclear fusion, 9. reactor and energy system, economics. (UA) [de

  1. Development of safety factors to be used for evaluation of cracked nuclear components

    International Nuclear Information System (INIS)

    Brickstad, B.; Bergman, M.

    1996-10-01

    A modified concept for safety evaluation is introduced which separately accounts for the failure mechanisms fracture and plastic collapse. For application on nuclear components a set of safety factors are also proposed that retain the safety margins expressed in ASME, section III and XI. By performing comparative studies of the acceptance levels for surface cracks in pipes and a pressure vessel, it is shown that some of the anomalies connected with the old safety procedures are removed. It is the authors belief that the outlined safety evaluation procedure has the capability of treating cracks in a consistent way and that the procedure together with the proposed safety factors fulfill the basic safety requirements for nuclear components. Hopefully, it is possible in the near future to develop a probabilistic safety assessment procedure in Sweden, which enables a systematic treatment of uncertainties in the involved data. 14 refs

  2. The fabrication of nozzles for nuclear components by welding

    International Nuclear Information System (INIS)

    Moraes, M.M.; Krausser, P.; Echeverria, J.A.V.

    1986-01-01

    A nozzle with medium outside diameter of 1000 mm and medium thickness of 150 mm composed integrally by deposited metal by submerged-arc (wire S3NiMo1, 0.5mm) was fabricated in NUCLEP. The nondestructive, mechanical, metallographic and chemical testing carried out in a test sample made by the same procedure and welding parameters, showed results according to specifications established for primary components for nuclear power plants, and the tests presented mechanical properties and tenacity better than similar nozzle samples. This nozzle is cheapest concerning to importations, in respecting to its forged similar. (M.C.K.) [pt

  3. Design and implementation of component reliability database management system for NPP

    International Nuclear Information System (INIS)

    Kim, S. H.; Jung, J. K.; Choi, S. Y.; Lee, Y. H.; Han, S. H.

    1999-01-01

    KAERI is constructing the component reliability database for Korean nuclear power plant. This paper describes the development of data management tool, which runs for component reliability database. This is running under intranet environment and is used to analyze the failure mode and failure severity to compute the component failure rate. Now we are developing the additional modules to manage operation history, test history and algorithms for calculation of component failure history and reliability

  4. Systems for Nuclear Auxiliary Power annual report, government fiscal year 1976/TQ

    International Nuclear Information System (INIS)

    1976-01-01

    The overall objective of the Systems for Nuclear Auxiliary Power (SNAP) Program is to continue system and component engineering activities relating to the zirconium hydride (ZrH) reactor. The specific objectives for FY 1976/TQ were to: (1) study standardized ZrH reactor space power systems and components, (2) perform preconceptual analysis and design of ZrH reactor--organic Rankine power systems for subsea applications, (3) conduct fuel and hydrogen barrier investigations, (4) perform system studies in support of the Department of Defense and their contractors as directed by ERDA, (5) test components, and (6) provide for material disposal and facility surveillance. In the study, representative systems which utilize Brayton, Rankine, and Stirling cycle power conversion units as well as thermoelectric modules, are analyzed at power levels of 10, 25, 50, and 75 kWe. Waste heat rejection is accomplished by concentric, cylindrical space radiators which can be nested during launch for space shuttle integration. Subsequent studies, which supported this effort, were completed and provided useful information on system reliability and survivability

  5. Safety classification of systems, structures, and components for pool-type research reactors

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Tae Ryong [KEPCO International Nuclear Graduate School, Ulsan (Korea, Republic of)

    2016-08-15

    Structures, systems, and components (SSCs) important to safety of nuclear facilities shall be designed, fabricated, erected, and tested to quality standards commensurate with the importance of the safety functions. Although SSC classification guidelines for nuclear power plants have been well established and applied, those for research reactors have been only recently established by the International Atomic Energy Agency (IAEA). Korea has operated a pool-type research reactor (the High Flux Advanced Neutron Application Reactor) and has recently exported another pool-type reactor (Jordan Research and Training Reactor), which is being built in Jordan. Korea also has a plan to build one more pool-type reactor, the Kijang Research Reactor, in Kijang, Busan. The safety classification of SSCs for pool-type research reactors is proposed in this paper based on the IAEA methodology. The proposal recommends that the SSCs of pool-type research reactors be categorized and classified on basis of their safety functions and safety significance. Because the SSCs in pool-type research reactors are not the pressure-retaining components, codes and standards for design of the SSCs following the safety classification can be selected in a graded approach.

  6. NMC and A and nuclear criticality safety systems integration: A prospective way for enhancement of the nuclear industry facilities safety

    International Nuclear Information System (INIS)

    Ryazanov, Boris G.; Sviridov, Victor I.; Frolov, Vladimir V.; Shvedov, Maxim O.; Mclaughlin, Thomas P.; Pruvost, Norman L.

    2003-01-01

    the necessity and usefulness of integrating measures and components of MC and A and nuclear safety systems to meet the goals faced by both systems. (author)

  7. Mobile nuclear power systems

    International Nuclear Information System (INIS)

    Andersson, B.

    1988-11-01

    This report is meant to present a general survey of the mobile nuclear power systems and not a detailed review of their technical accomplishments. It is based in published material mainly up to 1987. Mobile nuclear power systems are of two fundamentally different kinds: nuclear reactors and isotopic generators. In the reactors the energy comes from nuclear fission and in the isotopic generators from the radioactive decay of suitable isotopes. The reactors are primarily used as power sourves on board nuclear submarines and other warships but have also been used in the space and in remote places. Their thermal power has ranged from 30 kWth (in a satellite) to 175 MWth (on board an aircraft carrier). Isotopic generators are suitable only for small power demands and have been used on board satellites and spaceprobes, automatic weatherstations, lighthouses and marine installations for navigation and observation. (author)

  8. A reliability centered maintenance model applied to the auxiliary feedwater system of a nuclear power plant

    International Nuclear Information System (INIS)

    Araujo, Jefferson Borges

    1998-01-01

    The main objective of maintenance in a nuclear power plant is to assure that structures, systems and components will perform their design functions with reliability and availability in order to obtain a safety and economic electric power generation. Reliability Centered Maintenance (RCM) is a method of systematic review to develop or optimize Preventive Maintenance Programs. This study presents the objectives, concepts, organization and methods used in the development of RCM application to nuclear power plants. Some examples of this application are included, considering the Auxiliary Feedwater System of a generic two loops PWR nuclear power plant of Westinghouse design. (author)

  9. Status of the Tidal Regenerator Engine for nuclear circulatory support systems

    International Nuclear Information System (INIS)

    Watelet, R.P.; Ruggles, A.E.; Torti, V.

    1976-01-01

    Based on the annular version of the Tidal Regenerator Engine, a packaged energy system for nuclear powered circulatory support systems was developed. Net power output of approximately 3 watts is delivered using a 33-watt heat source for an engine module volume of 0.7 liter and a weight of 1.6 kg. A higher efficiency dual cycle version of the annular engine using a Dowtherm A topping cycle on the basic steam cycle is also under development. Projected system output using this advanced engine is 5 watts for the same sized heat source. Life testing of critical components has demonstrated substantial reliability improvement over earlier designs. Of particular significance is the continuing operation of a complete implantable engine system after 1200 hours. Component life testing is continuing with over five thousand hours accumulated on two pump actuators employing welded metal bellows

  10. Nuclear imaging system

    International Nuclear Information System (INIS)

    Barrett, H.H.; Horrigan, F.A.

    1975-01-01

    This invention relates to a nuclear imaging system for mapping the source of high energy nuclear particles from a living organ which has selectively absorbed a radioactive compound by spatially coding the energy from the source in a Fresnel pattern on a detector and decoding the detector output to prouce an image of the source. The coding is produced by a Fresnel zone plate interposed between the nuclear energy source and the detector whose position is adjustable with respect to the detector to focus the slices of the nuclear source on the detector. By adjusting the zone plate to a plurality of positions, data from a plurality of cross-sectional slices are produced from which a three-dimensional image of the nuclear source may be obtained. (Patent Office Record)

  11. Automatic ultrasonic pre-service, and in-service inspection of pressurized components of the primary circuit of nuclear power stations

    International Nuclear Information System (INIS)

    Muller, G.P.; Hallermeier, L.; Heinrich, D.; Grabendorfer, W.; Rebrmann, M.

    1985-01-01

    Ultrasonic pre-service and especially in-service inspection activities on the primary circuit of nuclear power stations form an essential part of the maintenance work that must be performed throughout the lifetime to ensure plant integrity. Consequently, the equipment required to carry out these inspections must be continuously improved in respect of reliability, safety, accuracy and ease of handling in order to minimize disturbances and repairs and reduce radiation exposure of the personnel. The authors' discussion of technique, equipment and performance of automated ultrasonic inspection is based on 15 years of experience in the testing of components of the primary circuit in nuclear power stations. To cover all inspection areas of the RPV of a PWR, four different manipulators are required, two for the closure head, one for the studs and one for the cylindrical shell and bottom closure. The use of the newly developed equipment, which naturally meets all the recommendations of the licensing authorities, allows for the automatic inspection of the components of primary circuit of nuclear power stations and the thus helps to substantially decrease the radiation exposure of the personnel. All the manipulators and their control consoles were designed and manufactured by M.A.N., Nuremberg while the ultrasonic electronic system was developed by Krautkramer, Cologne

  12. Nuclear proliferation and civilian nuclear power: report of the Nonproliferation Alternative Systems Assessment Program. Volume VII. International perspectives

    International Nuclear Information System (INIS)

    1979-12-01

    The purpose of this volume is to assess the proliferation vulnerabilities of the present deployment of civilian nuclear-power systems within the current nonproliferation regime and, in light of their prospective deployment, to consider technical and institutional measures and alternatives which may contribute to an improved regime in which nuclear power could play a significant part. An assessment of these measures must include consideration of their nonproliferation effectiveness as well as their bearing upon energy security, and their operational, economic, and political implications. The nature of these considerations can provide some measure of their likely acceptability to various nations. While any final assessment of such measures and alternatives would have to examine the circumstances particular to each nation, it is hoped that the more generic assessments conducted here will be useful in suggesting guidelines for developing an improved nonproliferation regime which also helps to meet nuclear-energy needs. One chapter outlines the existing nonproliferation regime, including the Treaty for the Non-Proliferation of Nuclear Weapons (NPT), International Atomic Energy Agency (IAEA) safeguards, bilateral and multilateral requirements for agreements of cooperation and transfers of technology, and existing provisons for sanctions for violation of nonproliferation commitments. The chapter then proceeds to an assessment of various alternatives for providing assurance of fuel supply in light of this current regime. Another chapter examines a set of technical and institutional measures and alternatives for various components of once-through and closed fuel cycles. The components of the once-through fuel cycle assessed are enrichment services and spent-fuel management; the components of closed fuel cycles assessed are reprocessing and plutonium management and fast-breeder reactor (FBR) deployment

  13. Future nuclear systems technology

    International Nuclear Information System (INIS)

    Brooks, H.

    1979-01-01

    Five directions can be identified for evolution of nuclear systems, possibly a sixth. These are, first, and perhaps most important, toward a means of extending fissile resources through improvement of the efficiency of their use; second, improvements in nuclear safety; third, reduction in the environmental impacts of nuclear electric power generation, particularly water requirements; fourth, improvements in proliferation resistance of the nuclear fuel cycle; and fifth, improvements in economics. And added in a sixth, and somewhat more speculative direction, the use of nuclear power for purposes other than the direct generation of electricity

  14. Development of expert system for structural design of FBR components

    International Nuclear Information System (INIS)

    Ueda, Hiroyoshi; Uno, Masayoshi; Ogawa, Hiroshi; Shimakawa, Takashi; Yoshimura, Shinobu; Yagawa, Genki.

    1995-01-01

    The characteristics of structural design processes for nuclear components can be summarized as follows : (1) Many engineers belonging to different fields are working in parallel, exchanging a huge amount of data and information. (2) A final solution is determined after a number of iterative design processes. (3) Solutions have to be examined many times based on sophisticated design codes. (4) Sophisticated calculation methods such as the finite element method are frequently utilized, and experts' knowledge on such analyses plays important roles in the design process. Taking these issues into consideration, a new expert system for structural design is developed in the present study. Here, the object-oriented data flow mechanism and the blackboard model are utilized to systematize structural design processes in a computer. An automated finite element calculation module is implemented, and experts' knowledge is stored in knowledge base. In addition, a new algorithm is employed to automatically draw the design window, which is defined as an area of permissible solutions in a design parameter space. The developed system is successfully applied to obtain the design windows of four components selected from the demonstration FBR structures. (author)

  15. Development of a computerized system for performance monitoring and diagnostics in nuclear power plants

    International Nuclear Information System (INIS)

    Chou, G.H.; Chao, H.J.

    1995-01-01

    An on-line computerized system for thermal performance monitoring and diagnostics has been developed at the Institute of Nuclear Energy Research (INER). It was the product of the ChinShan plant performance Monitoring, Analysis and Diagnostics Expert System (CS-MADES) project sponsored by Taiwan Power Company (TPC). The system can carry out turbine performance monitoring and analysis during normal operation, and yield diagnostic results of component degradation after finding out the missing generation problems. Three subsystems were generated to support the whole system framework. They are Test Data Processing Subsystem (TDPS), On-line Monitoring and Analysis Subsystem (OMAS), and Thermal Performance Diagnostics Expert System (TPDES). Some visible benefits have been gained so far through the prototype system installed at the Chinshan nuclear power station

  16. Nuclear containment systems and in-service inspection status of Korea nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Jihong, Park; Jaekeun, Hong; Banuk, Park [Korea Institute of Machinery and Materials, Dept. of Authorized Test and Evaluation, Kyungnam (Korea, Republic of)

    2007-07-01

    20 unit nuclear power plants in Korea have been operated and maintained since the first unit started in commercial service in 1978. Most recently 4 units were under construction and several units were planned to be constructed. by industries. 4 types of nuclear containment systems have been constructed until now: first, metal containments, then pre-stressed concrete containments with grouted tendon systems, followed by pre-stressed concrete containments with un-grouted tendon systems, and Korea standard nuclear containments. All the nuclear containments should be inspected periodically. Therefore for periodic in-service inspection, several appropriate technical requirements should be applied differently depending on the specific nuclear containment types. With the changes of times, nuclear containment systems have undergone a remarkable change, and finally nuclear containment system of Korea standard nuclear power plant was settled down, and as a matter of course it dominates the trend of present and future nuclear containment systems. Overall in-service inspection results of most Korea nuclear containments have not showed any serious evidence of degradation.

  17. Online Food Safety Information System for Nuclear or Radiological Emergencies

    International Nuclear Information System (INIS)

    Albinet, Franck; Adjigogov, Lazar; Dercon, Gerd

    2016-01-01

    Over the last year, the protocol with regards to data management and visualization requirements for food safety decision-making, developed under CRP D1.50.15 on R esponse to Nuclear Emergency Affecting Food and Agriculture , was further implemented. The development team moved away from early series of disconnected prototypes to a more advanced Information System integrating both data management and visualization components outlined in the agreed protocol

  18. Steam generators: critical components in nuclear steam supply systems

    Energy Technology Data Exchange (ETDEWEB)

    Stevens-Guille, P D

    1974-02-28

    Steam generators are critical components in power reactors. Even small internal leaks result in costly shutdowns for repair. Surveys show that leaks have affected one half of all water-cooled reactors in the world with steam generators. CANDU reactors have demonstrated the highest reliability. However, AECL is actively evolving new technology in design, manufacture, inspection and operation to maintain reliability. (auth)

  19. Loviisa nuclear power plant analyzer

    International Nuclear Information System (INIS)

    Porkholm, K.; Nurmilaukas, P.; Tiihonen, O.; Haenninen, M.; Puska, E.

    1992-12-01

    The APROS Simulation Environment has been developed since 1986 by Imatran Voima Oy (IVO) and the Technical Research Centre of Finland (VTT). It provides tools, solution algorithms and process components for use in different simulation systems for design, analysis and training purposes. One of its main nuclear applications is the Loviisa Nuclear Power Plant Analyzer (LPA). The Loviisa Plant Analyzer includes all the important plant components both in the primary and in the secondary circuits. In addition, all the main control systems, the protection system and the high voltage electrical systems are included. (orig.)

  20. Measurements of the ballistic-phonon component resulting from nuclear and electron recoils in crystalline silicon

    International Nuclear Information System (INIS)

    Lee, A.T.; Cabrera, B.; Dougherty, B.L.; Penn, M.J.; Pronko, J.G.; Tamura, S.

    1996-01-01

    We present measurements of the ballistic-phonon component resulting from nuclear and electron recoils in silicon at ∼380 mK. The detectors used for these experiments consist of a 300-μm-thick monocrystal of silicon instrumented with superconducting titanium transition-edge sensors. These sensors detect the initial wavefront of athermal phonons and give a pulse height that is sensitive to changes in surface-energy density resulting from the focusing of ballistic phonons. Nuclear recoils were generated by neutron bombardment of the detector. A Van de Graaff proton accelerator and a thick 7 Li target were used. Pulse-height spectra were compared for neutron, x-ray, and γ-ray events. A previous analysis of this data set found evidence for an increase in the ballistic-phonon component for nuclear recoils compared to electron recoils at a 95% confidence level. An improved understanding of the detector response has led to a change in the result. In the present analysis, the data are consistent with no increase at the 68% confidence level. This change stems from an increase in the uncertainty of the result rather than a significant change in the central value. The increase in ballistic phonon energy for nuclear recoils compared to electron recoils as a fraction of the total phonon energy (for equal total phonon energy events) was found to be 0.024 +0.041 -0.055 (68% confidence level). This result sets a limit of 11.6% (95% confidence level) on the ballistic phonon enhancement for nuclear recoils predicted by open-quote open-quote hot spot close-quote close-quote and electron-hole droplet models, which is the most stringent to date. To measure the ballistic-phonon component resulting from electron recoils, the pulse height as a function of event depth was compared to that of phonon simulations. (Abstract Truncated)

  1. Design and structural calculation of nuclear power plant mechanical components

    International Nuclear Information System (INIS)

    Amaral, J.A.R. do

    1986-01-01

    The mechanical components of a nuclear power plant must show high quality and safety due to the presence of radioactivity. Besides the perfect functioning during the rigid operating conditions, some postulated loadings are foreseen, like earthquake and loss of coolant accidents, which must be also considered in the design. In this paper, it is intended to describe the design and structural calculations concept and development, the interactions with the piping and civil designs, as well as their influences in the licensing process with the authorities. (Author) [pt

  2. Component- and system-level degradation modeling of digital Instrumentation and Control systems based on a Multi-State Physics Modeling Approach

    International Nuclear Information System (INIS)

    Wang, Wei; Di Maio, Francesco; Zio, Enrico

    2016-01-01

    Highlights: • A Multi-State Physics Modeling (MSPM) framework for reliability assessment is proposed. • Monte Carlo (MC) simulation is utilized to estimate the degradation state probability. • Due account is given to stochastic uncertainty and deterministic degradation progression. • The MSPM framework is applied to the reliability assessment of a digital I&C system. • Results are compared with the results obtained with a Markov Chain Model (MCM). - Abstract: A system-level degradation modeling is proposed for the reliability assessment of digital Instrumentation and Control (I&C) systems in Nuclear Power Plants (NPPs). At the component level, we focus on the reliability assessment of a Resistance Temperature Detector (RTD), which is an important digital I&C component used to guarantee the safe operation of NPPs. A Multi-State Physics Model (MSPM) is built to describe this component degradation progression towards failure and Monte Carlo (MC) simulation is used to estimate the probability of sojourn in any of the previously defined degradation states, by accounting for both stochastic and deterministic processes that affect the degradation progression. The MC simulation relies on an integrated modeling of stochastic processes with deterministic aging of components that results to be fundamental for estimating the joint cumulative probability distribution of finding the component in any of the possible degradation states. The results of the application of the proposed degradation model to a digital I&C system of literature are compared with the results obtained by a Markov Chain Model (MCM). The integrated stochastic-deterministic process here proposed to drive the MC simulation is viable to integrate component-level models into a system-level model that would consider inter-system or/and inter-component dependencies and uncertainties.

  3. Component design considerations for gas turbine HTGR waste-heat power plant

    International Nuclear Information System (INIS)

    McDonald, C.F.; Vrable, D.L.

    1976-01-01

    Component design considerations are described for the ammonia waste-heat power conversion system of a large helium gas-turbine nuclear power plant under development by General Atomic Company. Initial component design work was done for a reference plant with a 3000-MW(t) High-Temperature Gas-Cooled Reactor (HTGR), and this is discussed. Advanced designs now being evaluated include higher core outlet temperature, higher peak system pressures, improved loop configurations, and twin 4000-MW(t) reactor units. Presented are the design considerations of the major components (turbine, condenser, heat input exchanger, and pump) for a supercritical ammonia Rankine waste heat power plant. The combined cycle (nuclear gas turbine and waste-heated plant) has a projected net plant efficiency of over 50 percent. While specifically directed towards a nuclear closed-cycle helium gas-turbine power plant (GT-HTGR), it is postulated that the bottoming waste-heat cycle component design considerations presented could apply to other low-grade-temperature power conversion systems such as geothermal plants

  4. Nuclear Systems Kilopower Overview

    Science.gov (United States)

    Palac, Don; Gibson, Marc; Mason, Lee; Houts, Michael; McClure, Patrick; Robinson, Ross

    2016-01-01

    The Nuclear Systems Kilopower Project was initiated by NASAs Space Technology Mission Directorate Game Changing Development Program in fiscal year 2015 to demonstrate subsystem-level technology readiness of small space fission power in a relevant environment (Technology Readiness Level 5) for space science and human exploration power needs. The Nuclear Systems Kilopower Project consists of two elements. The primary element is the Kilopower Prototype Test, also called the Kilopower Reactor Using Stirling Technology(KRUSTY) Test. This element consists of the development and testing of a fission ground technology demonstrator of a 1 kWe fission power system. A 1 kWe system matches requirements for some robotic precursor exploration systems and future potential deep space science missions, and also allows a nuclear ground technology demonstration in existing nuclear test facilities at low cost. The second element, the Mars Kilopower Scalability Study, consists of the analysis and design of a scaled-up version of the 1 kWe reference concept to 10 kWe for Mars surface power projected requirements, and validation of the applicability of the KRUSTY experiment to key technology challenges for a 10 kWe system. If successful, these two elements will lead to initiation of planning for a technology demonstration of a 10 kWe fission power capability for Mars surface outpost power.

  5. 21 CFR 892.1310 - Nuclear tomography system.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Nuclear tomography system. 892.1310 Section 892...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1310 Nuclear tomography system. (a) Identification. A nuclear tomography system is a device intended to detect nuclear radiation in the body and...

  6. Electron beam welding: study of process capabilities and limitations towards development of nuclear components

    International Nuclear Information System (INIS)

    Vadolia, Gautam; Singh, Kongkham Premjit

    2015-01-01

    Electron beam (EB) welding technology is an established and widely adopted technique in nuclear research and development area. Electron Beam welding is thought of as a candidate process for ITER Vacuum Vessel Fabrication. Dhruva Reactor @ BARC, Mumbai and Niobium Superconducting accelerator Cavitity @ BARC has adopted the EB welding technique as a fabrication route. The highly concentrated energy input of the electron beam has added the advantages over the conventional welding as being less HAZ and provided smooth and clean surface. EB Welding has also been used for the joining of various reactive and refractory materials. EB system as heat source has also been used for vacuum brazing application. The Welding Institute (TWI) has demonstrated that EBW is potentially suitable to produce high integrity joints in 50 mm pure copper. TWI has also examined 150 kV Reduced Pressure Electron Beam (RPEB) gun in welding 140 mm and 147 mm thickness Nuclear Reactor Pressure Vessel Steel (SA 508 grade). EBW in 10 mm thick SS316 plates were studied at IPR and results were encouraging. In this paper, the pros and cons and role of electron beam process will be studied to analyze the importance of electron beam welding in nuclear components fabrication. Importance of establishing the high precision Wire Electro Discharge Machining (WEDM) facility will also be discussed. (author)

  7. System and Software Design for the Plant Protection System for Shin-Hanul Nuclear Power Plant Units 1 and 2

    International Nuclear Information System (INIS)

    Hwang, In Seok; Kim, Young Geul; Choi, Woong Seock; Sohn, Se Do

    2015-01-01

    The Reactor Protection System(RPS) protects the core fuel design limits and reactor coolant system pressure boundary for Anticipated Operational Occurrences (AOOs), and provides assistance in mitigating the consequences of Postulated Accidents (PAs). The ESFAS sends the initiation signals to Engineered Safety Feature - Component Control System (ESF-CCS) to mitigate consequences of design basis events. The Common Q platform Programmable Logic Controller (PLC) was used for Shin-Wolsung Nuclear Power Plant Units 1 and 2 and Shin-Kori Nuclear Power Plant Units 1, 2, 3 and 4 since Digital Plant Protection System (DPPS) based on Common Q PLC was applied for Ulchin Nuclear Power Plant Units 5 and 6. The PPS for Shin-Hanul Nuclear Power Plant Units 1 and 2 (SHN 1 and 2) was developed using POSAFE-Q PLC for the first time for the PPS. The SHN1 and 2 PPS was delivered to the sites after completion of Man Machine Interface System Integrated System Test (MMIS-IST). The SHN1 and 2 PPS was developed to have the redundancy in each channel and to use the benefits of POSAFE-Q PLC, such as diagnostic and data communication. The PPS application software was developed using ISODE to minimize development time and human errors, and to improve software quality, productivity, and reusability

  8. System and Software Design for the Plant Protection System for Shin-Hanul Nuclear Power Plant Units 1 and 2

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, In Seok; Kim, Young Geul; Choi, Woong Seock; Sohn, Se Do [KEPCO EnC, Daejeon (Korea, Republic of)

    2015-10-15

    The Reactor Protection System(RPS) protects the core fuel design limits and reactor coolant system pressure boundary for Anticipated Operational Occurrences (AOOs), and provides assistance in mitigating the consequences of Postulated Accidents (PAs). The ESFAS sends the initiation signals to Engineered Safety Feature - Component Control System (ESF-CCS) to mitigate consequences of design basis events. The Common Q platform Programmable Logic Controller (PLC) was used for Shin-Wolsung Nuclear Power Plant Units 1 and 2 and Shin-Kori Nuclear Power Plant Units 1, 2, 3 and 4 since Digital Plant Protection System (DPPS) based on Common Q PLC was applied for Ulchin Nuclear Power Plant Units 5 and 6. The PPS for Shin-Hanul Nuclear Power Plant Units 1 and 2 (SHN 1 and 2) was developed using POSAFE-Q PLC for the first time for the PPS. The SHN1 and 2 PPS was delivered to the sites after completion of Man Machine Interface System Integrated System Test (MMIS-IST). The SHN1 and 2 PPS was developed to have the redundancy in each channel and to use the benefits of POSAFE-Q PLC, such as diagnostic and data communication. The PPS application software was developed using ISODE to minimize development time and human errors, and to improve software quality, productivity, and reusability.

  9. Functions of an engineered barrier system for a nuclear waste repository in basalt

    International Nuclear Information System (INIS)

    Coons, W.E.; Moore, E.L.; Smith, M.J.; Kaser, J.D.

    1980-01-01

    Defined in this document are the functions of components selected for an engineered barrier system for a nuclear waste repository in basalt. The definitions provide a focal point for barrier material research and development by delineating the purpose and operative lifetime of each component of the engineered system. A five-component system (comprised of waste form, canister, buffer, overpack, and tailored backfill) is discussed in terms of effective operation throughout the course of repository history, recognizing that the emplacement environment changes with time. While components of the system are mutually supporting, redundancy is provided by subsystems of physical and chemical barriers which act in concert with the geology to provide a formidable barrier to transport of hazardous materials to the biosphere. The operating philosophy of the conceptual engineered barrier system is clarified by examples pertinent to storage in basalt, and a technical approach to barrier design and material selection is proposed. A method for system validation and qualification is also included which considers performance criteria proposed by external agencies in conjunction with site-specific models and risk assessment to define acceptable levels of system performance

  10. A holistic framework of degradation modeling for reliability analysis and maintenance optimization of nuclear safety systems

    International Nuclear Information System (INIS)

    Lin, Yanhui

    2016-01-01

    Components of nuclear safety systems are in general highly reliable, which leads to a difficulty in modeling their degradation and failure behaviors due to the limited amount of data available. Besides, the complexity of such modeling task is increased by the fact that these systems are often subject to multiple competing degradation processes and that these can be dependent under certain circumstances, and influenced by a number of external factors (e.g. temperature, stress, mechanical shocks, etc.). In this complicated problem setting, this PhD work aims to develop a holistic framework of models and computational methods for the reliability-based analysis and maintenance optimization of nuclear safety systems taking into account the available knowledge on the systems, degradation and failure behaviors, their dependencies, the external influencing factors and the associated uncertainties.The original scientific contributions of the work are: (1) For single components, we integrate random shocks into multi-state physics models for component reliability analysis, considering general dependencies between the degradation and two types of random shocks. (2) For multi-component systems (with a limited number of components):(a) a piecewise-deterministic Markov process modeling framework is developed to treat degradation dependency in a system whose degradation processes are modeled by physics-based models and multi-state models; (b) epistemic uncertainty due to incomplete or imprecise knowledge is considered and a finite-volume scheme is extended to assess the (fuzzy) system reliability; (c) the mean absolute deviation importance measures are extended for components with multiple dependent competing degradation processes and subject to maintenance; (d) the optimal maintenance policy considering epistemic uncertainty and degradation dependency is derived by combining finite-volume scheme, differential evolution and non-dominated sorting differential evolution; (e) the

  11. Requirements to be met by recurrent ultrasonic inspection of reactor components using collimator-free testing systems

    International Nuclear Information System (INIS)

    Csapo, G.; Just, T.

    1997-01-01

    The paper is intended as an initial contribution to establishing concrete definitions and requirements for digital, collimator-free US testing systems. The objective is to warrant the quality of information derived and reproducibility of test results of recurrent inspections of nuclear components, as well as to achieve a reduction of testing and evaluation time. (orig./CB) [de

  12. System for automatic checking of nuclear radiation detectors of sparkle type

    International Nuclear Information System (INIS)

    Gutierrez O, E.; Vilchis P, A.; Romero G, M.; Torres B, M.A.; Garcia H, J.M.

    2001-01-01

    In this work an automatic system of checking of nuclear detectors of sparkle type is described. This system is used in laboratory for the checking of the parameters which define the reliable operation of each detector, also it compares the obtained results with those proportionated by the manufacturer for the operator can emit the acceptance or rejection criteria. The checking system consists of an acquisition data card with a digital signal processor (DSP) as central device, a programmable high voltage source and an insertion and conversion module. These components interact with a personal computer to provide to the operator the energy spectra, the nuclear pulse form and the merit figure. The obtained results are showed in graphic form and/or numerical values and it is possible store them in a data file and/or in printed form. For facilitating the interaction of the computer with the user, the system software was realized with a commercial language of graphic programming (virtual instrumentation). (Author)

  13. Regulatory requirements on the design and construction of nuclear power plant control and instrumentation systems in Finland

    International Nuclear Information System (INIS)

    Heikkila, M.A.

    1978-01-01

    The Department of Reactor Safety of the Institute of Radiation Protection, being the nuclear regulatory authority in Finland, has set up regulations which govern the design and construction of NPP systems and components. The regulations are partly compiled from existing codes and standards, published primarily in the United States and Federal Republic of Germany, and partly worked out at the Institute. The regulations are collected to a special set of YVL guides (guides for nuclear power plants), and one of these gives requirements on the design and construction of NPPCI systems and components. The scope of the requirements is based on the safety classification of the CI systems and components. Three safety classes have been singled out: the first for CI systems which take part in reactor protection, the second for other directly safety related, and the third for remaining CI systems important enough to deserve supervision. The safety class for CI components is inherited from the system they belong to. The safety classification of IC systems has direct bearing on the initial assumptions of plant accident analysis. The design principles of IC systems are inspected as part of the preliminary and final safety reports. Focus is directed on the principles of redundancy, separation, diversity, testability, etc. The requirements on IC components are directed to different stages of manufacture, installation and operation. The type tests shall be adequate and acceptably documented. The manufacture of components is followed, the test reports reviewed and the efficiency of manufacturers quality assurance program evaluated. Further requirements concern the installation phase and tests at the end of it, and finally guides include directions for maintenance and testing during the operations phase. (author)

  14. The Development of a Snubber Management System for Welds in Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Hyun Ju; Cho, Yong-Bae; Kim, Yoo Sung [KHNP CRI, Daejeon (Korea, Republic of)

    2016-10-15

    There are snubbers, spring hanger, anchors, rigid supports for the structures which support the static and/or dynamic loads such as thermal load, pressure, impact and vibration from components and pipings of nuclear power plants. Snubbers constrain the displacements generated by loads transmitted to components and systems abruptly. When the loss of function of snubber during normal operation, the thermal load and pressure transmit directly to structures such as pipings and components, and additional loads, which were not considered during the design stage, act on the structures. Therefore, according to regulatory requirement to confirm the stability of supporting system, the inspection for the snubber is reflected to in-service inspection (ISI) and in-service test (IST) plans. In order to comply with the regulatory requirement, KHNP has performed the ISI and IST and inspected the snubbers. As the increment of operating year of nuclear power plants in Korea, the possibility of deterioration of equipment is higher. Therefore, the security related to the integrity of equipment becomes more important. The snubber takes an important role related to the structural integrity equipped on principal pipings. 100% snubbers are inspected during pre-service inspection and 10% snubbers are inspected during in-service inspection as a sample in nuclear power plants in Korea. KHNP has been developed a snubber management system because there was no management tool for snubbers to show the inspection and maintenance results systematically. The inspection and maintenance results of snubbers can be easily reached by plants, head office and CRI. Moreover, the information related to inspection history and condition of snubber can be effectively inquired.

  15. Nuclear Space Power Systems Materials Requirements

    International Nuclear Information System (INIS)

    Buckman, R.W. Jr.

    2004-01-01

    High specific energy is required for space nuclear power systems. This generally means high operating temperatures and the only alloy class of materials available for construction of such systems are the refractory metals niobium, tantalum, molybdenum and tungsten. The refractory metals in the past have been the construction materials selected for nuclear space power systems. The objective of this paper will be to review the past history and requirements for space nuclear power systems from the early 1960's through the SP-100 program. Also presented will be the past and present status of refractory metal alloy technology and what will be needed to support the next advanced nuclear space power system. The next generation of advanced nuclear space power systems can benefit from the review of this past experience. Because of a decline in the refractory metal industry in the United States, ready availability of specific refractory metal alloys is limited

  16. Nuclear data information system for nuclear materials

    International Nuclear Information System (INIS)

    Fujita, Mitsutane; Noda, Tetsuji; Utsumi, Misako

    1996-01-01

    The conceptual system for nuclear material design is considered and some trials on WWW server with functions of the easily accessible simulation of nuclear reactions are introduced. Moreover, as an example of the simulation on the system using nuclear data, transmutation calculation was made for candidate first wall materials such as 9Cr-2W steel, V-5Cr-5Ti and SiC in SUS316/Li 2 O/H 2 O(SUS), 9Cr-2W/Li 2 O/H 2 O(RAF), V alloy/Li/Be(V), and SiC/Li 2 ZrO 3 /He(SiC) blanket/shield systems based on ITER design model. Neutron spectrum varies with different blanket/shield compositions. The flux of low energy neutrons decreases in order of V< SiC< RAF< SUS blanket/shield systems. Fair amounts of W depletion in 9Cr-2W steel and the increase of Cr content in V-5Cr-5Ti were predicted in SUS or RAF systems. Concentration change in W and Cr is estimated to be suppressed if Li coolant is used in place of water. Helium and hydrogen production are not strongly affected by the different blanket/shield compositions. (author)

  17. Optimization of phased array probes for the inspection of nuclear components

    International Nuclear Information System (INIS)

    Wuestenberg, H.

    1990-07-01

    Experience gained so far in local measurements on nuclear components shows that the development of ultrasonic test heads to the state where with group test heads in practical use, faults present in pressurized components with complex geometry can be successfully detected. The optimisation work carried out for this development, particularly on the shape of the radiator group (size and size distribution of the individual elements) and for the acoustic adaptation of the converter to the test object (multi-layer adaptation) are described in this report. In particular, a theoretical model of the sound field structure of group test heads and a theoretical model of the transmission behaviour of ultrasonic test heads have been developed to determine the shape of pulses for wide-band excitation. (orig.) [de

  18. Seismic instrumentation for nuclear power plants

    International Nuclear Information System (INIS)

    Senne Junior, M.

    1983-01-01

    A seismic instrumentation system used in Nuclear Power Plants to monitor the design parameters of systems, structures and components, needed to provide safety to those Plants, against the action of earthquakes is described. The instrumentation described is based on the nuclear standards in force. The minimum amount of sensors and other components used, as well as their general localization, is indicated. The operation of the instrumentation system as a whole and the handling of the recovered data are dealt with accordingly. The various devices used are not covered in detail, except for the accelerometer, which is the seismic instrumentation basic component. (Author) [pt

  19. Experience with Nuclear Medicine Information System

    Directory of Open Access Journals (Sweden)

    Bilge Volkan-Salanci

    2012-12-01

    Full Text Available Objective: Radiology information system (RIS is basically evolved for the need of radiologists and ignores the vital steps needed for a proper work flow of Nuclear Medicine Department. Moreover, CT/MRI oriented classical PACS systems are far from satisfying Nuclear Physicians like storing dynamic data for reprocessing and quantitative analysis of colored images. Our purpose was to develop a workflow based Nuclear Medicine Information System (NMIS that fulfills the needs of Nuclear Medicine Department and its integration to hospital PACS system. Material and Methods: Workflow in NMIS uses HL7 (health level seven and steps include, patient scheduling and retrieving information from HIS (hospital information system, radiopharmacy, acquisition, digital reporting and approval of the reports using Nuclear Medicine specific diagnostic codes. Images and dynamic data from cameras of are sent to and retrieved from PACS system (Corttex© for reprocessing and quantitative analysis. Results: NMIS has additional functions to the RIS such as radiopharmaceutical management program which includes stock recording of both radioactive and non-radioactive substances, calculation of the radiopharmaceutical dose for individual patient according to body weight and maximum permissible activity, and calculation of radioactivity left per unit volume for each radionuclide according their half lives. Patient scheduling and gamma camera patient work list settings were arranged according to specific Nuclear Medicine procedures. Nuclear Medicine images and reports can be retrieved and viewed from HIS. Conclusion: NMIS provides functionality to standard RIS and PACS system according to the needs of Nuclear Medicine. (MIRT 2012;21:97-102

  20. Turbomolecular pumping systems for nuclear fusion devices in JAERI

    International Nuclear Information System (INIS)

    Ohga, Tokumichi; Arai, Takashi

    1978-01-01

    The turbomolecular pumping systems for the nuclear fusion devices JFT-2, JFT-2a and the injector test stands ITS-1, 2 and 3 in the Japan Atomic Energy Research Institute are mainly reported. For these vacuum systems, many requirements exist, such as oil free, large exhausting speed up to high pressure region (10 -3 Torr), compactness and easy operation and maintenance, etc., for the special usage. The outline of the systems and components, and the functions and the operational characteristics of the turbomolecular pumps are introduced. Concerning to the vacuum systems for JFT-2 and JFT-2a, the main system flow charts, the key specifications, the exhausting characteristic curves in case of starting from the atmospheric pressure for both JFT-2 and JFT-2a, and the conductance for hydrogen gas in the high vacuum side of JFT-2a are explained. As for the vacuum system for ITS-2, the main specification, the system flow chart, the main components, the functions, the conductance for hydrogen gas, the pumping characteristic curve, the starting characteristic of the turbomolecular pump, the exhausting speed for hydrogen gas and an example of mass spectrum are shown. The vacuum pressure obtained is almost 10 -5 -- 10 -6 torr for the three pumping systems. (Nakai, Y.)

  1. Security challenges in designing I and C systems for nuclear power plant

    International Nuclear Information System (INIS)

    Behera, Rajendra Prasad; Jayanthi, T.; Madhusoodanan, K.; Satya Murty, S.A.V.

    2016-01-01

    Geographically distributed instrumentation and control (I and C) systems in any nuclear power plant (NPP) facilitate the operator with remote access to real-time data and issue supervisory command to remote control devices deployed in the field. The increased connectivity to plant communication network has exposed I and C systems to security vulnerabilities both in terms of physical and logical access. For example, denial-of service and fault induction attack can disrupt the operation of I and C systems by delaying or blocking the flow of data through plant communication network. The design process of I and C system is quite challenging since an engineer has to consider both safety and security features implemented in hardware and software components of the system. This paper analyzes attack taxonomy based on available data and presents Security Tree Analysis (STA) technique towards building safe and secures I and C systems for Nuclear Power Plant. (author)

  2. Nuclear propulsion systems engineering

    International Nuclear Information System (INIS)

    Madsen, W.W.; Neuman, J.E.: Van Haaften, D.H.

    1992-01-01

    The Nuclear Energy for Rocket Vehicle Application (NERVA) program of the 1960's and early 1970's was dramatically successful, with no major failures during the entire testing program. This success was due in large part to the successful development of a systems engineering process. Systems engineering, properly implemented, involves all aspects of the system design and operation, and leads to optimization of theentire system: cost, schedule, performance, safety, reliability, function, requirements, etc. The process must be incorporated from the very first and continued to project completion. This paper will discuss major aspects of the NERVA systems engineering effort, and consider the implications for current nuclear propulsion efforts

  3. Artificial heart system thermal converter and blood pump component research and development

    International Nuclear Information System (INIS)

    Pouchot, W.D.; Bifano, N.J.; Hanson, J.P.

    1975-01-01

    A bench model version of a nuclear-powered artificial heart system to be used as a replacement for the natural heart was constructed and tested as a part of a broader U. S. ERDA program. The objective of the broader program has been to develop a prototype of a fully implantable nuclear-powered total artificial heart system powered by the thermal energy of plutonium-238 and having minimum weight and volume and a minimum life of ten years. As a forward step in this broader program, component research and development has been carried out directed towards a fully implantable and advanced version of the bench model (IVBM). Some of the results of the component research and development effort on a Stirling engine, blood pump drive mechanisms, and coupling mechanisms are presented. The Stirling-mechanical system under development is shown. There are three major subassemblies: the thermal converter, the coupling mechanism, and the blood pump drive mechanism. The thermal converter uses a Stirling cycle to convert the heat of the plutonium-238 fueled heat source to a rotary shaft power output. The coupling mechanism changes the orientation of the output shaft by 90 degrees and transmits the pumping power by wire-wound core flexible shafting to the pumping mechanism. The coupling mechanism also provides routing of the coolant lines which carry the cycle waste heat from the thermal converter to the blood pump. The change in orientation of the thermal converter output shaft is for convenience in implanting in a calf. This orientation of thermal converter to blood pump seemed to give the best overall system fit in a calf based on fit trials with wooden models in a calf cadaver

  4. High fidelity nuclear energy system optimization towards an environmentally benign, sustainable, and secure energy source

    International Nuclear Information System (INIS)

    Tsvetkov, Pavel Valeryevich; Rodriguez, Salvador B.; Ames, David E. II; Rochau, Gary Eugene

    2009-01-01

    The impact associated with energy generation and utilization is immeasurable due to the immense, widespread, and myriad effects it has on the world and its inhabitants. The polar extremes are demonstrated on the one hand, by the high quality of life enjoyed by individuals with access to abundant reliable energy sources, and on the other hand by the global-scale environmental degradation attributed to the affects of energy production and use. Thus, nations strive to increase their energy generation, but are faced with the challenge of doing so with a minimal impact on the environment and in a manner that is self-reliant. Consequently, a revival of interest in nuclear energy has followed, with much focus placed on technologies for transmuting nuclear spent fuel. The performed research investigates nuclear energy systems that optimize the destruction of nuclear waste. In the context of this effort, nuclear energy system is defined as a configuration of nuclear reactors and corresponding fuel cycle components. The proposed system has unique characteristics that set it apart from other systems. Most notably the dedicated High-Energy External Source Transmuter (HEST), which is envisioned as an advanced incinerator used in combination with thermal reactors. The system is configured for examining environmentally benign fuel cycle options by focusing on minimization or elimination of high level waste inventories. Detailed high-fidelity exact-geometry models were developed for representative reactor configurations. They were used in preliminary calculations with Monte Carlo N-Particle eXtented (MCNPX) and Standardized Computer Analysis for Licensing Evaluation (SCALE) code systems. The reactor models have been benchmarked against existing experimental data and design data. Simulink(reg s ign), an extension of MATLAB(reg s ign), is envisioned as the interface environment for constructing the nuclear energy system model by linking the individual reactor and fuel component sub

  5. Nuclear information access system

    International Nuclear Information System (INIS)

    Ham, C. H.; Yang, M. H.; Yoon, S. W.

    1998-01-01

    The energy supply in the countries, which have abundant energy resources, may not be affected by accepting the assertion of anti-nuclear and environment groups. Anti-nuclear movements in the countries which have little energy resources may cause serious problem in securing energy supply. Especially, it is distinct in Korea because she heavily depends on nuclear energy in electricity supply(nuclear share in total electricity supply is about 40%).The cause of social trouble surrounding nuclear energy is being involved with various circumstances. However, it is very important that we are not aware of the importance of information access and prepared for such a situation from the early stage of nuclear energy's development. In those matter, this paper analyzes the contents of nuclear information access system in France and Japan which have dynamic nuclear development program and presents the direction of the nuclear access regime through comparing Korean status and referring to progresses of the regime

  6. Application of autonomous mobile patrol system for nuclear power plants

    International Nuclear Information System (INIS)

    Kanemoto, S.; Hattori, Y.; Ochiai, M.; Tai, I.; Ozaki, O.; Shimada, H.; Okano, H.

    1995-01-01

    The integrity of the components of an operating nuclear power plant (NPP) is usually monitored daily by an operator patrol. Currently, there is a great need to replace such human patrol activities by automated remote monitoring in order to reduce radiation exposure and severe workload. From this perspective, we started an R and D project with the objective of developing an autonomous mobile patrol system for NPPs. The project started in 1991 and is scheduled to be completed in 1996. The main targets of this project are as follows. (1) Development of an autonomous and independent mobile robot, (2) Development of a transportable compact remote sensing system for plant component inspection, (3) Development of a patrol guidance and sensing data evaluation system. The remote sensing system has the capability of detecting video image, sound, temperature and vibration distribution of component surfaces. A laser Doppler vibrometer is newly developed to measure a wide range of vibration distribution remotely. Also, in order to integrate and recognize various kinds of remote sensing data, a 3-dimensional (3D) computer aided design database and 3D graphics technology is extensively used. Operators can interpret the measured image data by mapping their textures onto the 3-dimensional model surface. In this paper, we describe the concept of the entire patrol system and its three main component technologies, that is, mobile robot, remote sensing and inspected data evaluations. (author)

  7. Advanced nuclear systems. Review study

    International Nuclear Information System (INIS)

    Liebert, Wolfgang; Glaser, Alexander; Pistner, Christoph; Baehr, Roland; Hahn, Lothar

    1999-04-01

    The task of this review study is to from provide an overview of the developments in the field of the various advanced nuclear systems, and to create the basis for more comprehensive studies of technology assessment. In an overview the concepts for advanced nuclear systems pursued worldwide are subdivided into eight subgroups. A coarse examination raster (set pattern) is developed to enable a detailed examination of the selected systems. In addition to a focus on enhanced safety features, further aspects are also taken into consideration, like the lowering of the proliferation risk, the enhancement of the economic competitiveness of the facilities and new usage possibilities (for instance concerning the relaxation of the waste disposal problem or the usage of alternative fuels to uranium). The question about the expected time span for realization and the discussion about the obstacles on the way to a commercially usable reactor also play a substantial role as well as disposal requirements as far as they can be presently recognized. In the central chapter of this study, the documentation of the representatively selected concepts is evaluated as well as existing technology assessment studies and expert opinions. In a few cases where this appears to be necessary, according technical literature, further policy advisory reports, expert statements as well as other relevant sources are taken into account. Contradictions, different assessments and dissents in the literature as well as a few unsettled questions are thus indicated. The potential of advanced nuclear systems with respect to economical and societal as well as environmental objectives cannot exclusively be measured by the corresponding intrinsic or in comparison remarkable technical improvements. The acceptability of novel or improved systems in nuclear technology will have to be judged by their convincing solutions for the crucial questions of safety, nuclear waste and risk of proliferation of nuclear weapons

  8. Implementation of microelectronic components in nuclear application

    International Nuclear Information System (INIS)

    Ashour, M.A

    1997-01-01

    As the next logical step in the evolution of programmable devices, Field programmable interconnect components (FPIC) bring the benefits of programmability to the system-level by enabling totally p rogrammable hardware . Continuing what was started by programmable memories twenty years ago and then enhanced by programmable logic ten years later, programmable interconnect holds the key to complete system programmability. History has shown that flexibility is the key benefit realized by programmable technologies (see figure 1). Initially used in a lab environment for design verification purposes, programmable technologies enhance development and ease of experimentation. As experience by more users is accumulated, performances improves and component prices are reduced, applications rapidly expand to address highly flexible and quickly implemented final manufactured products. With similar attributes of it's programmable predecessors, FPIC technology provides an attractive solution to the design verification problems of today and the manufacturing challenges of tomorrow

  9. Radiation shield ring assembly and method of disassembling components of a nuclear steam generator using such assembly

    International Nuclear Information System (INIS)

    Meuschke, R.E.; Wolfe, D.L.

    1982-01-01

    This invention relates to an apparatus and a method for cutting, within a shielding confinement, the irradiated components of a nuclear steam generator to reduce such components to a size to permit their subsequent removal from the containment structure of the generator

  10. 23. MPA-Seminar: Safety and reliability of plant technology with special emphasis on behaviour of pressurized components and systems at increased loading. Vol. 1. Papers 1-26

    International Nuclear Information System (INIS)

    1998-01-01

    This book is dedicated to the components of nuclear and conventional power plants with special emphasis on the behaviour of pressurized components and systems. The following topics are discussed: 1. integrity of pipes, vessels, and components and 2. fracture mechanics

  11. Supplier responsibility for nuclear material quality

    International Nuclear Information System (INIS)

    Stuart, P.S.; Dohna, A.E.

    1976-01-01

    Nuclear materials must be delivered by either the manufacturer or the distributor with objective, documented evidence that the material was manufactured, inspected, and tested by proven techniques performed by qualified personnel working to documented procedures. Measurement devices used for acceptance must be of proven accuracy. The material and all records must be identified for positive traceability as part of the quality history of the nuclear components, system, or structure in which the material was used. In conclusion, the nuclear material supplier must join the fabricator, the installer, and the user in effective implementation of the total systems approach to the application of quality assurance principles to all phases of procurement, fabrication, installation, and use of the safety-related components, systems, and structures in a nuclear power plant

  12. Nuclear power

    International Nuclear Information System (INIS)

    Abd Khalik Wood

    2005-01-01

    This chapter discussed the following topics related to the nuclear power: nuclear reactions, nuclear reactors and its components - reactor fuel, fuel assembly, moderator, control system, coolants. The topics titled nuclear fuel cycle following subtopics are covered: , mining and milling, tailings, enrichment, fuel fabrication, reactor operations, radioactive waste and fuel reprocessing. Special topic on types of nuclear reactor highlighted the reactors for research, training, production, material testing and quite detail on reactors for electricity generation. Other related topics are also discussed: sustainability of nuclear power, renewable nuclear fuel, human capital, environmental friendly, emission free, impacts on global warming and air pollution, conservation and preservation, and future prospect of nuclear power

  13. On the structural integrity evaluation about aged components

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-15

    About one third of the nuclear power plants in Japan have been operated more than 30 years and flaws due to age-related degradation mechanisms have been detected in some components such as piping systems or core shrouds these years. Moreover, several severe earthquakes such as the Tohoku District - off the Pacific Ocean Earthquake or the Niigata-ken Chuetsu-oki Earthquake have struck some nuclear power plants in Japan recent years. Therefore, the structural integrity evaluation about nuclear installations and components considering seismic loads and aging mechanisms has become more and more important. In this study, several evaluation methods were proposed to assess the crack growth rate under the seismic loading conditions, to assess the failure conditions or the realistic failure capacities of the aged piping systems considering seismic or general loading conditions. Furthermore, analysis codes were developed considering aging mechanisms to carry out the integrity evaluation, or the failure probability evaluation which is useful in the seismic PSA evaluation. All of these assessment methods and analysis codes are being used and will be used more and more in the cross-check analyses or the safety reviews about nuclear installations and components. (author)

  14. Decree No. 208 On National Accounting and Control System of the Nuclear Materials

    International Nuclear Information System (INIS)

    1996-01-01

    The present Decree establishes the arrangements to formalize the National Accounting and Control System of the Nuclear Materials, the which one has the objectives of contributing to an efficient and economic management of the nuclear materials in the national territory; to establish the arrangements directed to detect any employment, lost or unauthorized movement of the nuclear material; and to establish the measures of necessary control to give fulfillment to the international commitments assumed by the Cuban State in relationship to the nuclear materials, important components, or both. It also establishes the following responsibilities: The Ministry of Science Technology and Environment is the Organism of the Central Administration of the State responsible for the supervision and control of the dispositions and it delegates in the National Center of Nuclear Security the execution of the functions assigned to this Ministry

  15. Scenario-based roadmapping assessing nuclear technology development paths for future nuclear energy system scenarios

    International Nuclear Information System (INIS)

    Van Den Durpel, Luc; Roelofs, Ferry; Yacout, Abdellatif

    2009-01-01

    Nuclear energy may play a significant role in a future sustainable energy mix. The transition from today's nuclear energy system towards a future more sustainable nuclear energy system will be dictated by technology availability, energy market competitiveness and capability to achieve sustainability through the nuclear fuel cycle. Various scenarios have been investigated worldwide each with a diverse set of assumptions on the timing and characteristics of new nuclear energy systems. Scenario-based roadmapping combines the dynamic scenario-analysis of nuclear energy systems' futures with the technology roadmap information published and analysed in various technology assessment reports though integrated within the nuclear technology roadmap Nuclear-Roadmap.net. The advantages of this combination is to allow mutual improvement of scenario analysis and nuclear technology roadmapping providing a higher degree of confidence in the assessment of nuclear energy system futures. This paper provides a description of scenario-based roadmapping based on DANESS and Nuclear-Roadmap.net. (author)

  16. Aging/Systems Interaction Study, Component Residual Lifetime Evaluation and Feasibility of Relicensing. Progress report, FY 1985

    International Nuclear Information System (INIS)

    Close, J.A.; Jacobs, P.T.; Korth, G.E.; Mudlin, J.M.; Server, W.L.; Spaletta, H.W.

    1985-10-01

    This report documents the work performed on four research tasks in Fiscal Year 1985 (FY-1985) which were part of the Aging/Systems Interaction Study, Component Residual Lifetime Evaluation and Feasibility of Relicensing Project. The technical and management/institutional objectives for the project are described, followed by a description of the results of each task. The work on Task 1 involved identifying and prioritizing new research activities for the Nuclear Regulatory Commission (NRC) Nuclear Plant Aging Research (NPAR) Program. A proposed methodology and plan for aging-system interaction studies was developed in Task 2. The description of Task 3 work comprises a summary of nuclear plant life extension activities in the US, the technical basis associated with the residual life of metallic materials and a proposed plan for research on residual life assessment. Task 4 describes the initial evaluation of selected Standard Review Plan (NUREG-0800) sections to investigate the feasibility of relicensing. 14 refs., 13 figs., 20 tabs

  17. For establishment on nuclear disaster prevention system

    International Nuclear Information System (INIS)

    Anon.

    2000-01-01

    For increasing requirement of peoples for review of nuclear disaster countermeasure at a chance of the JCO critical accident, the Japanese Government newly established the 'Special Measure Act on Nuclear Disaster Countermeasure', which was enacted on July 16, 2000. The nuclear business relatives such as electric power company and so forth established the Business program on nuclear disaster prevention in nuclear business relatives' after their consultation with local communities at their construction, under their co-operation. Simultaneously, the electric power industry field decided to intend to provide some sufficient countermeasures to incidental formation of nuclear accident such as start of the Co-operative agreement on nuclear disaster prevention among the nuclear business relatives' and so forth. Here were described on nuclear safety and disaster prevention, nuclear disaster prevention systems at the electric power industry field, abstract on 'Business program on nuclear disaster prevention in nuclear business relatives', preparation of technical assistance system for nuclear disaster prevention, executive methods and subjects on nuclear disaster prevention at construction areas, recent business on nuclear disaster prevention at the Nuclear Technical Center, and subjects on establishment of nuclear disaster prevention system. (G.K.)

  18. Methods and means of the radioisotope flaw detection of the nuclear power reactors components

    International Nuclear Information System (INIS)

    Dekopov, A.S.; Majorov, A.N.; Firsov, V.G.

    1979-01-01

    Methods and means are considered for the radioisotopic flaw detection of the nuclear reactors pressure vessels and structural components of the reactor circuit. Methods of control are described as in the technological process of fabrication of the power reactors assemblies as during the systematic-preventive repair of the nuclear power station equipment during exploitation. Methodological base is given of the technology of radiation control of welded joints of the pressure vessel branch piper of the WWER-440 and WWER-1000 reactors in the process of assembling and exploitation and joining pipes with the pipe-plate of the steamgenerator in the process of fabrication. Methods of the radioisotope flaw detection in the process of exploitation take into consideration the influence of the radioisotope background, and ensure obtaining of the demanded by the rules of control, sensitivity. Methods of control of welded joints of the steamgenerator of nuclear power plants are based on the simultaneous examination of all joints with application of the shaped radiographic plate-holders. Special gamma-flaw-detection equipment is developed for control of the welded joints of the main branch-pipes. Design peculiarities are given of the installation for flaw detection. These installations are equipped with the system for emergency return of the radiation source into the storage position from the position for exposure. They have automatic exposure-meters for determination of the exposure time. Successfull exploitation of such installations in the Finland during assembling equipment for the nuclear reactor of the nuclear power plant ''Loviisa-1'' and in the USSR on the Novovoronezh nuclear power plant has shown possibility for detection of flaws having dimensions about 1% of the equipment used. For control of welded joints of pipes with pipe-plates at the steam generators, portable flaw-detectors are used. Sensitivity of these flaw-detectors towards detection of the wire standards has

  19. Two component systems: physiological effect of a third component.

    Directory of Open Access Journals (Sweden)

    Baldiri Salvado

    Full Text Available Signal transduction systems mediate the response and adaptation of organisms to environmental changes. In prokaryotes, this signal transduction is often done through Two Component Systems (TCS. These TCS are phosphotransfer protein cascades, and in their prototypical form they are composed by a kinase that senses the environmental signals (SK and by a response regulator (RR that regulates the cellular response. This basic motif can be modified by the addition of a third protein that interacts either with the SK or the RR in a way that could change the dynamic response of the TCS module. In this work we aim at understanding the effect of such an additional protein (which we call "third component" on the functional properties of a prototypical TCS. To do so we build mathematical models of TCS with alternative designs for their interaction with that third component. These mathematical models are analyzed in order to identify the differences in dynamic behavior inherent to each design, with respect to functionally relevant properties such as sensitivity to changes in either the parameter values or the molecular concentrations, temporal responsiveness, possibility of multiple steady states, or stochastic fluctuations in the system. The differences are then correlated to the physiological requirements that impinge on the functioning of the TCS. This analysis sheds light on both, the dynamic behavior of synthetically designed TCS, and the conditions under which natural selection might favor each of the designs. We find that a third component that modulates SK activity increases the parameter space where a bistable response of the TCS module to signals is possible, if SK is monofunctional, but decreases it when the SK is bifunctional. The presence of a third component that modulates RR activity decreases the parameter space where a bistable response of the TCS module to signals is possible.

  20. The reliability of nuclear power plant safety systems

    International Nuclear Information System (INIS)

    Susnik, J.

    1978-01-01

    A criterion was established concerning the protection that nuclear power plant (NPP) safety systems should afford. An estimate of the necessary or adequate reliability of the total complex of safety systems was derived. The acceptable unreliability of auxiliary safety systems is given, provided the reliability built into the specific NPP safety systems (ECCS, Containment) is to be fully utilized. A criterion for the acceptable unreliability of safety (sub)systems which occur in minimum cut sets having three or more components of the analysed fault tree was proposed. A set of input MTBF or MTTF values which fulfil all the set criteria and attain the appropriate overall reliability was derived. The sensitivity of results to input reliability data values was estimated. Numerical reliability evaluations were evaluated by the programs POTI, KOMBI and particularly URSULA, the last being based on Vesely's kinetic fault tree theory. (author)