WorldWideScience

Sample records for nuclear study university

  1. Memphis State University Center for Nuclear Studies progress report

    International Nuclear Information System (INIS)

    1976-01-01

    This quarterly report outlines the progress made by the Center for Nuclear Studies at Memphis State University in the development of specialized educational programs for the nuclear industry through the month of February, 1976

  2. Nuclear education in Japanese universities

    International Nuclear Information System (INIS)

    Yamamuro, Nobuhiro

    1981-01-01

    In 1957, the graduate courses for nuclear engineering were established in Kyoto University, Osaka University and the Tokyo Institute of Technology. Since then, the expansion of nuclear education has kept pace with the growth of the nuclear industry in Japan. The nuclear education in universities in more than 20 years can be roughly divided into three periods. In the first period from 1955 to 1965, nuclear education began at undergraduate level, and the facilities required for the research and education were set up. The imported reactor began the commercial operation in 1966 for the first time, and during the period of high economic growth, the request by the nuclear industry was met by providing special studies in addition to the regular curriculum studies. The research committee on nuclear engineering education was formed, and in 1973, Japan-U.S. cooperative seminar on education program for nuclear engineering was held. The first ''oil crisis'' occurred in 1973, and the significance of nuclear power as an alternative to oil increased. But as nuclear power plants became bigger and increased, the safety and the effect on environment have been discussed. Also the research and development of nuclear fusion have been promoted. All these factors were reflected to the nuclear education in universities. The carricula in universities and the tasks and prospects in nuclear engineering education are described. (Kako, I.)

  3. Theoretical study of nuclear physics with strangeness at Nankai University

    International Nuclear Information System (INIS)

    Ning Pingzhi

    2007-01-01

    Theoretical study of nuclear physics with strangeness from the nuclear physics group at Nankai university is briefly introduced. Theoretical calculations on hyperon mean free paths in nuclear medium have been done. The other 4 topics in the area of strangeness nuclear physics are the effect of different baryon impurities in nucleus, the heavy flavored baryon hypernuclei, the eta-mesons in nuclear matter and the properties of kaonic nuclei. (authors)

  4. Feasibility study on the establishment of the IAEA international nuclear university

    International Nuclear Information System (INIS)

    Lee, E. J.; Kim, Y. T.; Nam, Y. M. and others

    2002-09-01

    The purpose of this project is to support 2002-2003 the IAEA project D.4.0.2, facilitating education, training and research in nuclear science and related fields, especially for a feasibility study on the establishment of the Agency sponsored International Nuclear University. Through this project, the abstract principle for a feasibility study on the establishment of the Agency sponsored International Nuclear university, which contains the new concepts and its objectives, principles to achieve the objectives, its curriculum outline and operation system, suggested project activities, was developed and submitted to the Agency. The Korean proposal were presented several times at the IAEA meetings and other international meetings related nuclear human resources development for understanding the necessity of a feasibility study on the establishment of the Agency sponsored international nuclear university with Member States. And the Korean proposal included such as the organization of a worldwide network using information and communication technology among Merber States' research institutes and training/education centers, curriculum outline and operation system of the INU will be produced. Also for further cooperation of the IAEA INU project implementation with the Agency, hosting IAEA INIS mirror site, establishment of the RCA region office, establishment of the INTEC at the Korean Atomic Energy Research Institute, and advanced curriculum of nuclear technology linked with NT, BT, ET, IT were made progress as a part of conceptualizing of the IAEA project

  5. Studies of nuclear processes at the Triangle Universities Nuclear Laboratory. Progress report, 1 September 1994--31 August 1995

    International Nuclear Information System (INIS)

    Ludwig, E.J.

    1995-01-01

    The Triangle Universities Nuclear Laboratory (TUNL)--a collaboration of Duke University, North Carolina State University, and the University of North Carolina at Chapel Hill--has had a very productive year. This report covers the second year of a three-year grant between the US Department of Energy and the three collaborating universities. The TUNL research program focuses on the following areas of nuclear physics: parity violation in neutron and charged-particle resonances--the mass and energy dependence of the weak interaction spreading width; chaotic behavior in 30 P from studies of eigenvalue fluctuations in nuclear level schemes; studies of few-body systems; nuclear astrophysics; nuclear data evaluation for A = 3--20, for which TUNL is now the international center; high-spin spectroscopy and superdeformation in nuclei, involving collaborations at Argonne National Laboratory. Developments in technology and instrumentation have been vital to the research and training program. In this progress report the author describes: a proposed polarized γ-beam facility at the Duke Free Electron Laser Laboratory; cryogenic systems and microcalorimeter development; continuing development of the Low Energy Beam Facility. The research summaries presented in this progress report are preliminary

  6. Studies of nuclear processes at the Triangle Universities Nuclear Laboratory. Progress report, 1 September 1994--31 August 1995

    Energy Technology Data Exchange (ETDEWEB)

    Ludwig, E.J.

    1995-09-01

    The Triangle Universities Nuclear Laboratory (TUNL)--a collaboration of Duke University, North Carolina State University, and the University of North Carolina at Chapel Hill--has had a very productive year. This report covers the second year of a three-year grant between the US Department of Energy and the three collaborating universities. The TUNL research program focuses on the following areas of nuclear physics: parity violation in neutron and charged-particle resonances--the mass and energy dependence of the weak interaction spreading width; chaotic behavior in {sup 30}P from studies of eigenvalue fluctuations in nuclear level schemes; studies of few-body systems; nuclear astrophysics; nuclear data evaluation for A = 3--20, for which TUNL is now the international center; high-spin spectroscopy and superdeformation in nuclei, involving collaborations at Argonne National Laboratory. Developments in technology and instrumentation have been vital to the research and training program. In this progress report the author describes: a proposed polarized {gamma}-beam facility at the Duke Free Electron Laser Laboratory; cryogenic systems and microcalorimeter development; continuing development of the Low Energy Beam Facility. The research summaries presented in this progress report are preliminary.

  7. Annual report of Laboratory of Nuclear Studies, Osaka University, for fiscal 1995

    International Nuclear Information System (INIS)

    1996-01-01

    This publication is the progress report of the research activities carried out by the members of the Osaka University Laboratory of Nuclear Studies (OULNS) in fiscal year 1995. Some groups carried out their experimental researches using the major research facilities at the OULNS, that include 4.75 MV Van de Graaff, a mass spectrograph, and an M360 Computer. Other groups intensively carried out all or part of their researches outside Osaka University including the facilities in foreign countries. In short the reader will enjoy a whole spectrum of research fields studied by nuclear and particle techniques. To expand and enrich the studies in the interdisciplinary region between nuclear physics and solid state physics investigated by use of nuclear technologies, especially by use of unstable nuclear beams, OULNS is now planning a small Radioactive-Nuclear-Beam Facility which consists of an AVF cyclotron of K = 30 with high intensity beams of light ions and a post accelerator, a radio-frequency-quadrupole accelerator (RFQ). (J.P.N.)

  8. Southern Universities Nuclear Institute

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    The Southern Universities Nuclear Institute was created in 1961 to provide postgraduate research and teaching facilities for the universities of Cape Town and Stellenbosch. The main research tool is the 6,0 MV Van de Graaff accelerator installed in 1964. Developments and improvements over the years have maintained the Institute's research effectiveness. The work of local research groups has led to a large number of M Sc and doctorate degrees and numerous publications in international journals. Research at the Institute includes front-line studies of basic nuclear and atomic physics, the development and application of nuclear analytical techniques and the application of radioisotope tracers to problems in science, industry and medicine. The Institute receives financial support from the two southern universities, the Department of National Education, the CSIR and the Atomic Energy Board

  9. Nuclear physics at Peking University

    International Nuclear Information System (INIS)

    Wang, Ruo Peng

    2009-01-01

    Full text: The teaching program of nuclear physics at Peking University started in 1955, in answer to the demand of China's nuclear program. In 1958, the Department of Atomic Energy was founded. The name of this department was changed to the Department of Technique Physics in 1961. Graduates in nuclear physics and technical physics had great contribution in China's nuclear program. The nuclear physics specialty from the Department of Technique Physics merged into the School of Physics in 2001. At present, nuclear physics is not any more a major for undergraduate students in the school of physics, but there are Master programs and Ph. D programs in nuclear physics, nuclear techniques and heavy ion physics. About 200 new students are admitted each year in the School of Physics at Peking University. About 20 graduates from the School of Physics work or continue to study in nuclear physics and related fields each year. (author)

  10. Studies of nuclear processes at the Triangle Universities Nuclear Laboratory. Progress report, 1 September 1995--31 August 1996

    International Nuclear Information System (INIS)

    Ludwig, E.J.

    1996-01-01

    The Triangle Universities Nuclear Laboratory (TUNL)--a collaboration of Duke University, North Carolina State University, and the University of North Carolina at Chapel Hill--has had a very productive year. This report covers parts of the second and third year of a three-year grant between the US Department of Energy and the three collaborating universities. The TUNL research program focuses on the following areas: precision test of parity-invariance violation in resonance neutron scattering at LANSCE/LANL; parity violation measurements using charged-particle resonances in A = 20--40 targets and the A = 4 system at TUNL; chaotic behavior in the nuclei 30 P and 34 Cl from studies of eigenvalue fluctuations in nuclear level schemes; search for anomalies in the level density (pairing phase transition) in 1f-2p shell nuclei using GEANIE at LANSCE/LANL; parity-conserving time-reversal noninvariance tests using 166 Ho resonances at Geel, ORELA, or LANSCE/LANL; nuclear astrophysics; few-body nuclear systems; Nuclear Data evaluation for A = 3--20 for which TUNL is now the international center. Developments in technology and instrumentation are vital to the research and training program. Innovative work was continued in: polarized beam development; polarized target development; designing new cryogenic systems; designing new detectors; improving high-resolution beams for the KN and FN accelerators; development of an unpolarized Low-Energy Beam Facility for radiative capture studies of astrophysical interest. Preliminary research summaries are presented

  11. Studies of nuclear processes at the Triangle Universities Nuclear Laboratory. Progress report, 1 September 1995--31 August 1996

    Energy Technology Data Exchange (ETDEWEB)

    Ludwig, E.J.

    1996-09-01

    The Triangle Universities Nuclear Laboratory (TUNL)--a collaboration of Duke University, North Carolina State University, and the University of North Carolina at Chapel Hill--has had a very productive year. This report covers parts of the second and third year of a three-year grant between the US Department of Energy and the three collaborating universities. The TUNL research program focuses on the following areas: precision test of parity-invariance violation in resonance neutron scattering at LANSCE/LANL; parity violation measurements using charged-particle resonances in A = 20--40 targets and the A = 4 system at TUNL; chaotic behavior in the nuclei {sup 30}P and {sup 34}Cl from studies of eigenvalue fluctuations in nuclear level schemes; search for anomalies in the level density (pairing phase transition) in 1f-2p shell nuclei using GEANIE at LANSCE/LANL; parity-conserving time-reversal noninvariance tests using {sup 166}Ho resonances at Geel, ORELA, or LANSCE/LANL; nuclear astrophysics; few-body nuclear systems; Nuclear Data evaluation for A = 3--20 for which TUNL is now the international center. Developments in technology and instrumentation are vital to the research and training program. Innovative work was continued in: polarized beam development; polarized target development; designing new cryogenic systems; designing new detectors; improving high-resolution beams for the KN and FN accelerators; development of an unpolarized Low-Energy Beam Facility for radiative capture studies of astrophysical interest. Preliminary research summaries are presented.

  12. Nuclear and environmental risk perceptions: results from a study with university students

    International Nuclear Information System (INIS)

    Boemer, Veronica Araujo; Aquino, Afonso Rodrigues de

    2010-01-01

    The deployment of advanced technologies depends on public acceptance. Studies on risk perception can assist decision makers in their choices and working methodology, as well as science communicators. In this work, the field study was conducted with a university population with the objective of compare the perceptions of nuclear risk and environmental. Concluding that the perception of environmental risk has excelled in public opinion, overcoming the perceived nuclear risk. (author)

  13. North Carolina State University Nuclear Structure Research at the Triangle Universities Nuclear Laboratory. Progress report

    International Nuclear Information System (INIS)

    Seagondollar, L.W.; Waltner, A.W.; Mitchell, G.E.; Tilley, D.R.; Gould, C.R.

    1975-01-01

    A summary is presented of nuclear structure research completed at the Triangle Universities Nuclear Lab for the period 9/1/74 to 8/31/75. Included are abstracts and titles for studies of electromagnetic transitions in low-medium mass nuclei, high resolution studies, accelerator induced x-ray investigations, and energy related neutron and charged particle cross section measurements. (U.S.)

  14. Educating nuclear engineers at German universities

    International Nuclear Information System (INIS)

    Knorr, J.

    1995-01-01

    Nuclear technology is a relatively young university discipline. Yet, as a consequence of the declining public acceptance of the peaceful use of nuclear power, its very existence is already being threatened at many universities. However, if Germany needs nuclear power, which undoubtedly is the case, highly qualified, committed experts are required above all. Nuclear technology develops internationally. Consequently, also university education must meet international standards. Generally, university education has been found to be the most effective way of increasing the number of scientific and engineering personnel. Nuclear techniques have meanwhile found acceptance in many other scientific disciplines, thus advancing those branches of science. Teaching needs research; like research in nucelar technology at the national research centers, also the universities are suffering massive financial disadvantages. Research is possible only if outside funds are solicited, which increase dependency and decreases basic research. (orig.) [de

  15. The World Nuclear University: New partnership in nuclear education

    International Nuclear Information System (INIS)

    2007-07-01

    The important role which the IAEA plays in assisting Member States in the preservation and enhancement of nuclear knowledge and in facilitating international collaboration in this area has been recognized by the General Conference of the International Atomic Energy Agency in resolutions GC(46)/RES/11B, GC(47)/RES/10B, GC(48)/RES/13 and GC(50)/RES/13. A continued focus of IAEA activities in managing nuclear knowledge is to support Member States to secure and sustain human resources for the nuclear sector, comprising both the replacement of retiring staff and building of new capacity. The IAEA assists Member States, particularly developing ones, in their efforts to sustain nuclear education and training in all areas of nuclear technology for peaceful purposes, which is a necessary prerequisite for succession planning, in particular through the networking of nuclear education and training, including activities of the World Nuclear University (WNU) and the Asian Network for Education in Nuclear Technology (ANENT). The report on the attached CD-ROM, The World Nuclear University: New Partnership in Nuclear Education, gives an overview of the history of the development of the World Nuclear University and related IAEA activities and contains an analysis and recommendations from the first WNU Summer Institute, held in 2005 in the USA

  16. Initiation of a Nuclear Research Program at Fisk University in Cooperation with the Nuclear Physics Group at Vanderbilt University, August 15, 1997 - January 14, 2000

    Energy Technology Data Exchange (ETDEWEB)

    Collins, W.E.; Hamilton, J.H.

    2002-10-01

    Carrying a spirit of a long history of cooperation in physics education and research between Fisk University and Vanderbilt University, the Nuclear Research Program in the Department of Physics at Fisk University was proposed in 1996 in cooperation with the Nuclear Physics Group at Vanderbilt University. An initial NRP program was commissioned in 1997 with the financial support from DOE. The program offers a great opportunity for students and faculty at Fisk University to directly access experimental nuclear data and analyzing facilities within the Nuclear Physics Group at Vanderbilt University for a quick start. During the program Fisk Faculty and students (along with the colleagues at Vanderbilt University) have achieved progress in a few areas. We have (a) established an in-house nuclear data processing and analysis program at Fisk University, (b) conducted hands-on nuclear physics experiments for a Fisk undergraduate student at Vanderbilt University, (c) participated in the UNIRIB research with radioactive ion beam and Recoil Mass Spectrometer at Oak Ridge National Laboratory, and (d) studied {sup 252}Cf spontaneous fission and in-beam nuclear reactions for exotic nuclei. Additionally, this work has produced publication in conference proceedings as well as referred journals. [2-7].

  17. Nuclear education and international nuclear university

    International Nuclear Information System (INIS)

    Kang, C.S.

    2000-01-01

    In this paper author deals with the concept of establishing the International Nuclear University (INU) would be one of the most viable options. The INU would provide young professionals with not only university-level education but also high-skill training in the fields of nuclear technology. The program will emphasize on global and multi- disciplinary perspectives, which should offer our young generation broader opportunities of advanced education and motivate professional staffs in the enhancement of their knowledge and skills. The 'World Council of Nuclear Education' could be formed to steer the INU for close international cooperation under the auspices of the IAEA. The INU would organize a world network of existing nuclear- related educational organizations and training centers which already exist in Member States. Existing facilities and can be utilized at maximum. Use of cyber-lecturing through Internet, cross-approval of credits among educational organizations in degree work, certification of credits by the authorized body like IAEA, human resources placement services, etc. are some of the activities that the INU could provide in addition to its professional training and higher education. (authors)

  18. Studies of Degree and Postgraduate related to nuclear energy in the Polytechnic University of Valencia

    International Nuclear Information System (INIS)

    Escriva, A.; Munoz-Cobo, J. L.

    2008-01-01

    The postgraduate education in Nuclear engineering in Spain has always been of high quality generating specialists that have been incorporated as professionals of the different areas of the nuclear energy sector. these areas go from the technological, developing high quality engineering works, to the management, running departments and even companies, going through the research, the same in the research centers as in the university. This education, that has gone through different phases with an important variation of alumnae number depending on the situation of the nuclear sector, is nowadays in a moment of change derived from the European convergence process (Bologna) whose final situation is not still defined. This article includes the description of the studies given in two of the Spanish universities with more tradition in nuclear education, including the graduate and post-graduate studies. (Author)

  19. The role of universities in the US nuclear enterprise

    International Nuclear Information System (INIS)

    Stephens, R.

    1991-01-01

    This paper provides an overview of the US Department of Energy's (DOE's) support for nuclear engineering and related education programs involving universities. Universities are participating in the following DOE nuclear-related program activities: (1) University Nuclear Engineering Research Program; (2) Nuclear Engineering Education Support; (3) The University Role in the DOE Environmental Remediation and Waste Management Program; and (4) University Nuclear Research Reactors

  20. Annual report of the Institute for Nuclear Study, University of Tokyo, 1995

    International Nuclear Information System (INIS)

    Kubono, Shigeru; Mori, Yoshiharu; Niki, Kazuaki; Ohshiro, Yukimitsu; Outa, Haruhiko; Sekiguchi, Masayuki; Tsutsui, Izumi; Itagaki, Toshiko

    1996-01-01

    This report is an annual report from April, 1995 to March 1996 at Institute for Nuclear Study, University of Tokyo. In this fiscal year 1995, both the SF cyclotron and the 1.3 GeV electron synchrotron operated smoothly for users from universities. A new radioactive nuclear facility was completed. The research programs at the TARN II cooler ring further made progress in the field of atomic physics. The superconducting large solid-angle kaon spectrometer (SKS) installed at the 12 GeV PS of KEK has continued to produce interesting results concerning hypernuclei. In order to preform a long-baseline neutrino-oscillation experiment, a new collaboration has been formed among INS, KEK and ICRR. And, internal collaborations are progressing, and much effort was concentrated on realizing the future project. This report contains the following thema: Nuclear physics division, Intermediate-energy physics division, High-energy physics division, Theoretical physics division, Accelerator research division, Interdisciplinary research laboratory, Research and development for Japanese Hadron Project, Supporting division, Meetings and Appendices. (G.K.)

  1. Annual report of Laboratory of Nuclear Studies, Osaka University, 1980

    International Nuclear Information System (INIS)

    1981-01-01

    This is the progress report of the research activities in the Laboratory of Nuclear Studies during the period from April, 1980, to March, 1981. The activities were carried out by the OULNS staffs and also by outsiders at the OULNS. In this period, the X-ray astrophysics group, the radiation physics group and the high energy physics group joined the OULNS. The main accelerators in the OULNS are a 110 cm variable energy cyclotron and a 4.7 MeV Van de Graaff machine. The detailed experimental studies on inbeam e-gamma spectroscopy and beta-decay were carried out at two accelerator laboratories. The radiochemistry facility and a mass spectrometer were fully used. The research activities extended to high energy physics by utilizing national facilities, such as a 230 cm cyclotron in the Research Center for Nuclear Physics and a proton synchrotron in the National Laboratory for High Energy Physics. The theoretical studies on elementary particles and nuclear physics were carried out also. It is important that the facilities in the OULNS were used by the outsiders in Osaka University, such as solid state physics group and particle-induced X-ray group. The activities of the divisions of cyclotron, Van de Graaff, high energy physics, accelerator development and nuclear instrumentation, mass spectroscopy, radioisotope, solid state and theoretical physics are reported. (Kako, I.)

  2. Annual report of the Institute for Nuclear Study, University of Tokyo, 1979

    International Nuclear Information System (INIS)

    1980-01-01

    This annual report reviews the research activities and technical developments carried out at the Institute for Nuclear Study during the period from January to December, 1979. The Institute was established in 1955 to promote research activities in Japan in the field of nuclear and particle physics. At present, four research divisions are active: Low Energy Physics, High Energy Physics, Theoretical Physics, and the Study Group of High Energy, Heavy Ion Project (NUMATRON Project). The research facilities at INS are open to all researchers throughout Japan, and the research programs are reviewed and controlled by the inter-university committee. At the Low Energy Physics Division, the active studies on nuclear structures and nuclear reactions have been continued, using the INS-SF cyclotron, and radiation physics experiments were carried out with the INS-FM cyclotron. The cyclotrons, the instrumentation for experiments, nuclear physics, radiation physics and other applications, and symposia are reported. At the High Energy Physics Division, the photo-production experiments with the 1.3-GeV electron synchrotron were made. The synchrotron, the instrumentation, the experiments and symposium are reported. The Theoretical Physics Division, besides its own activities on nuclear physics and particle physics, sponsored various workshops. The Study Group made the preparatory works for the NUMATRON Project. (Kako, I.)

  3. Nuclear history of the universe

    Energy Technology Data Exchange (ETDEWEB)

    Marx, Gy [Eoetvoes Lorand Tudomanyegyetem, Budapest (Hungary). Atomfizikai Tanszek

    1982-01-01

    A brief summary of the cosmogony of our universe following the big bang is given, including the production of the elements, the astronomical processes and the evolution of stars, the planets and life. Along with the social development the energy need of society has been growing and to meet this demand, other than chemical forms of stored energy in the universe is to be released. The nuclear power utilized today and in the future is related to the energy stored at the beginning of the universe. The cosmological and physical background of nuclear energy storage since the big bang and of the reasons of its convertibility into power is explained.

  4. The World Nuclear University: Addressing global needs. London, 4 September 2003. Inauguration ceremony, World Nuclear University

    International Nuclear Information System (INIS)

    ElBaradei, M.

    2003-01-01

    For some time, there has been a growing awareness of the need for succession planning in the nuclear industry, to ensure that we cultivate a new generation of young people with the proper education and skills to replace the aging nuclear workforce as its members retire. Today's inauguration of the 'World Nuclear University' (WNU) is the most substantive action taken to date to address this need. This is a challenge, because the widespread perception clearly exists that nuclear energy is a dying field. The IAEA, with its constituency of 135 Member States, is hopeful that this will truly become a World Nuclear University. Almost 2 billion people, nearly one third of the population of the planet, remain without access to modern energy supplies - a shortfall that could be addressed, at least in part, by nuclear energy. But any major expansion in the future use of nuclear power will only be feasible if the nuclear industry is successful in developing innovative reactor and fuel cycle technology - as well as operational and regulatory approaches - that effectively address concerns related to cost competitiveness, safety and security, proliferation resistance and waste disposal. And global development needs go well beyond the electricity sector. The IAEA's recognition of these situations underlies our assistance to Member States, through which we try to address areas of high national priority wherever nuclear technology provides the best option for success. A significant part of that effort lies in the development of human capacity - through training and education in how to apply nuclear technology safely and effectively. 'Atoms for Peace' is a vision nearly five decades old, focused on using nuclear science for the advancement of humankind. It is my hope that this 'World Nuclear University' can be an effective instrument towards the achievement of that vision

  5. Annual report of the Institute for Nuclear Study, University of Tokyo, 1978

    International Nuclear Information System (INIS)

    1979-01-01

    This annual report covers the research activities and the technical developments of the Institute for Nuclear Study in the period from January, 1978, to December, 1978. At present, it has four research divisions: Low Energy Physics, High Energy Physics, Theoretical Physics and Nuclear Matter Study. The research facilities of the INS are open to all researchers throughout Japan, and the research programs are planned and carried out under the inter-university committee system. As to the activities of the Low Energy Physics Division, the INS-FM cyclotron and the INS-SF cyclotron are used, and reports are made on the cyclotrons, the instrumentation for experiments, nuclear physics, radiation physics and other applications, and symposium. In the High Energy Physics Division, the 1.3 GeV electron synchrotron began the operation on January 15 with accelerated beam of up to 100 mA. The instrumentation and the measurement of recoil proton polarization and recoil neutron polarization in γ + p reactions are reported. As for the Theoretical Physics Division, the research activities concerning nuclear physics and particle physics, symposia and workshops are reported. In the Nuclear Matter Study Division, the study group for the NUMATRON Project focused its effort on the construction of the TARN. The activities in the Chemistry Laboratory and the Synchrotron Radiation Laboratory, and other general matters are also reported. (Kako, I.)

  6. Arkansas Tech University TRIGA nuclear reactor

    International Nuclear Information System (INIS)

    Sankoorikal, J.; Culp, R.; Hamm, J.; Elliott, D.; Hodgson, L.; Apple, S.

    1990-01-01

    This paper describes the TRIGA nuclear reactor (ATUTR) proposed for construction on the campus of Arkansas Tech University in Russellville, Arkansas. The reactor will be part of the Center for Energy Studies located at Arkansas Tech University. The reactor has a steady state power level of 250 kW and can be pulsed with a maximum reactivity insertion of $2.0. Experience gained in dismantling and transporting some of the components from Michigan State University, and the storage of these components will be presented. The reactor will be used for education, training, and research. (author)

  7. Annual report of the Institute for Nuclear Study, University of Tokyo, 1990

    International Nuclear Information System (INIS)

    1991-01-01

    The Institute for Nuclear Study (INS) was established in 1955 as an inter-university center for nuclear and particle physics research in the post-war era. During its long history, it has played important roles in promoting research activities in this field. At present, two accelerator facilities (the SF cyclotron and the 1.3 GeV electron synchrotron) are open for use by all researchers throughout the country. These accelerators are actively being used for nuclear and particle physics as well as interdisciplinary research with particle beams and various forms of radiation. In addition, accelerator-development programs are in progress for the TARN II stretcher/cooler ring and heavy-ion linacs. During these years the Institute has been making intense efforts to materialize a proposal to construct the Japanese Hadron Project for exploring a variety of frontier fields in nuclear and particle physics, in condensed-matter physics, and in atomic physics. Various working groups have been organized to finalize the design of this project. (J.P.N.)

  8. Nuclear engineering education initiative at Ibaraki University

    International Nuclear Information System (INIS)

    Matsumura, Kunihito; Kanto, Yasuhiro; Tanaka, Nobuatsu; Saigusa, Mikio; Kurumada, Akira; Kikuchi, Kenji

    2015-01-01

    With the help of a grant from the Ministry of Education, Culture, Sports, Science and Technology, Ibaraki University has been engaging for six years in the development and preparation of educational environment on nuclear engineering for each of graduate and undergraduate. Core faculty conducts general services including the design and implementation of curriculum, operational improvement, and implementation of lectures. 'Beginner-friendly introduction for nuclear power education' is provided at the Faculty of Engineering, and 'nuclear engineering education program' at the Graduate School of Science and Engineering. All the students who have interest or concern in the accidents at nuclear power plants or the future of nuclear power engineering have opportunities to learn actively. This university participates in the alliance or association with other universities, builds industry - government - academia cooperation with neighboring institutions such as the Japan Atomic Energy Agency, and makes efforts to promote the learning and development of applied skills related to nuclear engineering through training and study tours at each facility. For example, it established the Frontier Applied Atomic Science Center to analyze the structure and function of materials using the strong neutron source of J-PARC. As the efforts after the earthquake accident, it carried out a radiation survey work in Fukushima Prefecture. In addition, it proposed and practiced the projects such as 'development of methods for the evaluation of transfer/fixation properties and decontamination of radioactive substances,' and 'structure analysis of radioactive substances remaining in soil, litter, and polluted water and its application to the decontamination.' (A.O.)

  9. Education in the nuclear sciences in Japanese universities

    International Nuclear Information System (INIS)

    Takashima, Y.

    1993-01-01

    Although there are 430 governmental and private universities in Japan, only a limited number of them have departments associated with nuclear science education. Moreover, mainly because of financial pressures, this association is often limited to government universities. Nuclear engineering departments are incorporated with only seven of larger universities, and there are three institutes with nuclear reactors. In these facilities, education in reactor physics, radiation measurements, electromagnetic and material sciences, are conducted. In terms of radiation safety and radiological health physics, ten radioisotope centers and seven radiochemistry laboratories in universities play an important role. (author) 8 figs.; 5 tabs

  10. Education in the nuclear sciences at Japanese universities

    International Nuclear Information System (INIS)

    Takashima, Y.

    1990-01-01

    Though there are 430 government and private universities in Japan, only a limited number of them have the department associated with nuclear science education. And the education is one-sided to government universities because mainly of financial problem. Nuclear engineering departments are installed at only 7 big universities. In addition, there are 3 institutes associated with a nuclear reactor. In these facilities, education on reactor physics, radiation measurement, electromagnetics and material sciences are conducted. For education on safety handling of radioactive materials, 10 radioisotope centers and 7 radiochemistry laboratories attached to big government universities act an important role. Almost all of the financial support for the above nuclear education come from the Ministry of Education, Science and Culture. However, some other funds are introduced by the private connection of professors

  11. University centres of nuclear competence as TSO's in small non-nuclear countries

    International Nuclear Information System (INIS)

    Jovanovic, Slobodan

    2010-01-01

    . The idea of establishing a university Centre for Nuclear Competence and Knowledge Management (UCNC) is raised with intention of: (i) being national center of competence and expertise in nuclear related issues, (ii) acting towards assessing, creating, preserving and transferring NK, according to Montenegro needs, (iii) offering consultancies and technical support services to regulatory authorities and stakeholders, (iv) being advisory body to the government for nuclear related issues and (v) focal point for dissemination and exchange of NK, in particular with the IAEA, (vi) promoting nuclear applications for peaceful purposes, in particular medicine and environmental protection, (vii) being national radiation protection centre, (viii) developing curricula for nuclear related studies at all levels (from elementary education to university degrees), (ix) supporting young students and scientists in nuclear related field and facilitate their exchange with reputed institutions abroad and (x) giving proper and timely information and comments to the public and media on relevant nuclear related subjects. IAEA assist expert mission, including NKM experts from the region, was invited and conducted visit to the UCNC by September 2009. It is expected to be the germ of the extensive and successful cooperation with the Agency. (author)

  12. The nuclear history of the universe

    International Nuclear Information System (INIS)

    Marx, Gy.

    1982-01-01

    A brief summary of the cosmogony of our universe following the big bang is given, including the production of the elements, the astronomical processes and the evolution of stars, the planets and life. Along with the social development the energy need of society has been growing and to meet this demand, other than chemical forms of stored energy in the universe is to be released. The nuclear power utilized today and in the future is related to the energy stored at the beginning of the universe. The cosmological and physical background of nuclear energy storage since the big bang and of the reasons of its convertibility into power is explained. (R.P.)

  13. A World Nuclear University

    International Nuclear Information System (INIS)

    Yanev, Y.

    2004-01-01

    The paper discusses the mission and tasks of the World Nuclear University (WNU) established to build worldwide knowledge and support the effective use of nuclear techniques for solving the global human and environmental problems of 21 century and thereby support the global sustainable development. In this respect the WNU would build Human resources, Technical knowledge and Public Support. A Network of educational and research institutions with strong programmes in nuclear science and engineering will be created. The WNU Head quarters and Regional Centers will: 1) Facilitate agreement on curriculum and WNU certification curriculum 2) Develop and administer scholarships; 3) Foster educational exchanges within WNU family institutions; 4) Build core faculty for summer 1/2 year Masters degrees; 5) Co-ordinate research, grants and knowledge management research; 6) Operate think tank and public information service; 7) Emphasise key areas such as safeguards systems and the nuclear-renewable-hydrogen economy; 8) Oversee world-wide human resources pool; 9) Orchestrate alumni support for nuclear technology. The possible participants and possible location of the Regional Centres are given

  14. Strategy for Nuclear Technology Education at Uppsala University

    International Nuclear Information System (INIS)

    Osterlund, M.; Hakansson, A.; Tengborn, E.

    2010-01-01

    After the TMI accident 1979, and later the Tjernobyl accident, the future of nuclear power was vividly debated in Sweden. The negative public opinion governed a number of political decisions that marked an ambition to out-phase nuclear power prior to 2010. Due to this, the student's interest in nuclear technology ceased and together with the fact that public funding to nuclear technology was withdrawn, academic research and education within the field were effectively dismounted. In the beginning of 1990 it became clear to the society that nuclear power could not easily be closed down and the issue of the future competence supply to the nuclear industry was initiated. In the mid-nineties the situation became acute due to the fact that personnel in the nuclear industry started to retire in an increasing pace necessitating measures to be taken in order to secure the future operation of the nuclear power plants. In the year 2000, the Swedish nuclear power plants, Westinghouse Electric Sweden and the Swedish Radiation Safety Authority embarked a project together with the three major universities in the field, Uppsala University, The Royal Institute of Technology and Chalmers University of Technology. The aim of this project was to define a financial platform for reconstructing the Swedish research and education in nuclear technology. The project, named the Swedish Centre for Nuclear Technology (SKC), has during a decade been the major financier to nuclear technology research and education. Using funding from SKC, Uppsala University formulated a strategy along two tracks: 1) Instead of creating ambitious master programs in nuclear technology, the already existing engineering programs in a wide range of fields were utilized to expose as many students as possible to nuclear technology. 2) A program was initiated together with the nuclear industry aiming at educating newly employed personnel. The result is encouraging; starting from essentially zero, typically 100

  15. The origin of the universe and nuclear synthesis

    Directory of Open Access Journals (Sweden)

    J. P. F. Sellschop

    1988-03-01

    Full Text Available The origin of the universe and nuclear synthesis are discussed in this paper. The concept of the “Big Bang” is introduced in cosmology from observational evidence that the universe is expanding. The language of elementary particle physics is used to describe the evolution of the universe starting at a very small fraction of a second after the "Big Bang”. Various “Eras” are identified during which certain nuclear processes predominate. At a later stage the remarkable nuclear synthesis of carbon takes place, leading to the evolution of other elements. Neutrino measurements are important to validate physical theories in this field and some results of such measurements by the WITS-CSIR Schonland Research Centre are presented.

  16. The World Nuclear University - A pillar of the nuclear renaissance

    International Nuclear Information System (INIS)

    Nigon, Jean-Louis

    2006-01-01

    The World Nuclear University was founded with the support of four leading international nuclear institutions - two of them inter-governmental organisations (IAEA and OECD/NEA), the other two bodies serving the industry and its operators (WNA and WANO). Inaugurated in September 2003 on the 50. anniversary of President Eisenhower's Atoms for Peace speech, the WNU started working a year later upon the arrival of the first staff members. Today there is a tremendous disparity in the nuclear industry between the pace of the unfolding nuclear renaissance, which is gathering momentum by the day, and the slower pace at which we are educating a new generation of nuclear scientists and engineers. The WNU aims to be instrumental in creating a network of leading institutions of nuclear learning in order to help fill this gap. The emerging worldwide partnership aims to: - Enhance nuclear education amongst its members, - Establish globally accepted standards in academic and professional qualification, and - Elevate the prestige of the nuclear profession. Prior to the establishment of WNU, many leading educational institutions of nuclear learning had already launched cooperation on a regional basis, as follows (country or region/network): United States/NEDHO (Nuclear Engineering Department Head Organization); Canada/UNENE (University Network of Excellence in Nuclear Engineering in Canada); Asia/ANENT (Asian Network for Education in Nuclear Technology); Europe/ENEN (European Nuclear Education Network); Russia/WNU Russian Branch. Thus the WNU can be seen to a certain extent as a 'network of networks', although it should be stressed that many of the current WNU members did not belong to already existing networks. By creating a global network, the WNU avoids the duplication of efforts and limits the total number of staff required. The WNU does not lose sight of the fact, however, that local problems should be solved locally. Ten Working Groups share between them the activities of the

  17. Update on DOE's Nuclear Energy University Program

    International Nuclear Information System (INIS)

    Lambregts, Marsha J.

    2009-01-01

    The Nuclear Energy University Program (NEUP) Office assists the U.S. Department of Energy Office of Nuclear Energy (DOE-NE) by administering its University Program. To promote accountable relationships between universities and the Technical Integration Offices (TIOs)/Technology Development Offices (TDOs), a process was designed and administered which includes two competitive Requests for Proposals (RFPs) and two Funding Opportunity Announcements (FOAs) in the following areas: (1) Research and Development (R and D) Grants, (2) Infrastructure improvement, and (3) Scholarships and Fellowships. NEUP will also host periodic reviews of university mission-specific R and D that document progress, reinforce accountability, and assess return on investment; sponsor workshops that inform universities of the Department's research needs to facilitate continued alignment of university R and D with NE missions; and conduct communications activities that foster stakeholder trust, serve as a catalyst for accomplishing NEUP objectives, and provide national visibility of NEUP activities and accomplishments. Year to date efforts to achieve these goals will be discussed.

  18. Universities and national laboratory roles in nuclear engineering

    International Nuclear Information System (INIS)

    Sackett, J.I.

    1991-01-01

    Nuclear Engineering Education is being significantly challenged in the United States. The decline in enrollment generally and the reduction of the number of nuclear engineering departments has been well documented. These declines parallel a lack of new construction for nuclear power plants and a decline in research and development to support new plant design. Precisely at a time when innovation is is needed to deal with many issues facing nuclear power, the number of qualified people to do so is being reduced. It is important that the University and National Laboratory Communities cooperate to address these issues. The Universities must increasingly identify challenges facing nuclear power that demand innovative solutions and pursue them. To be drawn into the technology the best students must see a future, a need and identify challenges that they can meet. The University community can provide that vision with help from the National Laboratories. It has been a major goal within the reactor development program at Argonne National Laboratory to establish the kind of program that can help accomplish this

  19. The World Nuclear University - A pillar of the nuclear renaissance

    Energy Technology Data Exchange (ETDEWEB)

    Nigon, Jean-Louis [World Nuclear University Working Groups, Carlton House, 22a St. James' s Square, London SW1Y 4JH (United Kingdom)

    2006-07-01

    The World Nuclear University was founded with the support of four leading international nuclear institutions - two of them inter-governmental organisations (IAEA and OECD/NEA), the other two bodies serving the industry and its operators (WNA and WANO). Inaugurated in September 2003 on the 50. anniversary of President Eisenhower's Atoms for Peace speech, the WNU started working a year later upon the arrival of the first staff members. Today there is a tremendous disparity in the nuclear industry between the pace of the unfolding nuclear renaissance, which is gathering momentum by the day, and the slower pace at which we are educating a new generation of nuclear scientists and engineers. The WNU aims to be instrumental in creating a network of leading institutions of nuclear learning in order to help fill this gap. The emerging worldwide partnership aims to: - Enhance nuclear education amongst its members, - Establish globally accepted standards in academic and professional qualification, and - Elevate the prestige of the nuclear profession. Prior to the establishment of WNU, many leading educational institutions of nuclear learning had already launched cooperation on a regional basis, as follows (country or region/network): United States/NEDHO (Nuclear Engineering Department Head Organization); Canada/UNENE (University Network of Excellence in Nuclear Engineering in Canada); Asia/ANENT (Asian Network for Education in Nuclear Technology); Europe/ENEN (European Nuclear Education Network); Russia/WNU Russian Branch. Thus the WNU can be seen to a certain extent as a 'network of networks', although it should be stressed that many of the current WNU members did not belong to already existing networks. By creating a global network, the WNU avoids the duplication of efforts and limits the total number of staff required. The WNU does not lose sight of the fact, however, that local problems should be solved locally. Ten Working Groups share between them the

  20. International Nuclear Management Academy Requirements for University Master’s Programmes in Nuclear Technology Management

    International Nuclear Information System (INIS)

    Grosbois, J. de; Hirose, H.; Adachi, F.; Liu, L.; Hanamitsu, K.; Kosilov, A.; Roberts, J.

    2016-01-01

    Full text: The development of any national nuclear energy programme is dependent on the successful development of qualified human resources, through a sustainable nuclear education and training programmes supported by government and industry. Among the broad range of specialists needed for the continued safe and economic utilization of nuclear technology for peaceful purposes, are a most vital component—managers. The International Nuclear Management Academy (INMA) is an IAEA facilitated collaboration framework in which universities provide master’s degree programmes focusing on the management aspect for the nuclear sector. INMA master’s programmes in Nuclear Technology Management (NTM) specify a common set of competency requirements that graduates should acquire to prepare them to become competent managers. This paper presents an overview of the INMA collaboration framework and the requirements for partner universities to implement master’s programmes in Nuclear Technology Management. (author

  1. Reconstruction of nuclear engineering education in universities

    International Nuclear Information System (INIS)

    Kitamura, Masaharu; Tomota, Yo; Tanaka, Shunichi

    2005-01-01

    Nuclear engineering has become the area gradually loosing appeal to the young for these twenty years taking all the circumstances into consideration. However nuclear power is predicted to be primary energy of greatest importance even in the future and this needs highly motivated and excellent personnel in nuclear industry and society so as to develop and maintain nuclear power to a high degree. Under these circumstances discussions on how should be nuclear engineering research and education in the new era were presented from various viewpoints and they led to the direction of reconstruction of nuclear engineering education in universities and relevant organizations to train and ensure personnel. (T. Tanaka)

  2. Research and teaching nuclear sciences at universities in developing countries

    International Nuclear Information System (INIS)

    1981-11-01

    A formulation is given for a set of ground rules to be applied when introducing or improving nuclear science training at the university level in developing countries. Comments are made on the general requirements needed for the teaching of nuclear science at the university and particular suggestions made for the areas of nuclear physics radiochemistry and radiation chemistry and electronics

  3. Nuclear science and engineering education at a university research reactor

    International Nuclear Information System (INIS)

    Loveland, W.

    1993-01-01

    The role of an on-site irradiation facility in nuclear science and engineering education is examined. Using the example of a university research reactor, the use of such devices in laboratory instruction, public outreach programs, special instructional programs, research, etc. is discussed. Examples from the Oregon State University curriculum in nuclear chemistry, nuclear engineering and radiation health are given. (author) 1 tab

  4. Research-based learning for nuclear engineering education in Gadjah Mada University

    International Nuclear Information System (INIS)

    Putero, Susetyo Hario; Kusnanto; Harto, Andang Widi

    2011-01-01

    Nuclear engineering education in Gadjah Mada University has been operated since 1977 in order to prepare Indonesian people facing up nuclear era in Indonesia. Until 1995, most of the alumni work in National Nuclear Energy Board, but recently many of them have been taking advanced study abroad. To improve our quality of education, since the last 3 years Gadjah Mada University has implemented Research-Based Learning (RBL). RBL for nuclear engineering student is conducted by providing challenges to the student related to the critical issues in public acceptance of nuclear power plant (NPP) in Indonesia that is waste management. Students should join in a group to complete the assignment. Within the group, they discuss and produce new idea in order to manage radioactive waste of new generation NPP. So, they are stimulated to think the future based on the state of the art of waste technology. This method could increase student's knowledge and soft skills, simultaneously. Some students also continue to explore and to refine the task as their thesis topic. Therefore, implementation of RBL also succeeds in increasing student's efficiency study. (author)

  5. The first Summer Institute of the World Nuclear University - a personal record

    International Nuclear Information System (INIS)

    Denk, W.; Fischer, C.; Seidl, M.

    2005-01-01

    The first World Nuclear University Summer Institute was held at Idaho Falls, USA, between July 9 and August 20, 2005. The event was hosted by the Institute of Nuclear Science and Engineering of Idaho State University (ISU) and by the Idaho National Laboratory (INL), which has been planned to be the central nuclear technology research institution in the United States. The World Nuclear University (WNU) was founded in 2003 by the International Atomic Energy Agency (IAEA), the OECD Nuclear Energy Agency (OECD-NEA), the World Association of Nuclear Operators (WANO), and the World Nuclear Association (WNA) as a global association fo scientific and educational institutions in the nuclear field. The first WNU Summer Institute was designed at IAEA in Vienna in the course of the following year and planned by the WNU Coordinating Centre in London. The six weeks of lectures and presentations arranged by the World nuclear University in Idaho Falls are described in detail from the participants' perspective. (orig.)

  6. The University of Utah Nuclear Engineering Program

    International Nuclear Information System (INIS)

    Jevremovic, T.; McDonald, L. IV; Schow, R.

    2016-01-01

    As of 2014, the University of Utah Nuclear Engineering Program (UNEP) manages and maintains over 7,000 ft 2 (~650 m 2 ) nuclear engineering facilities that includes 100 kW TRIGA Mark I and numerous laboratories such as radiochemistry, microscopy, nuclear forensics, nuclear medicine, radiation detection and instrumentation laboratories. The UNEP offers prestigious educational and training programs in the field of faculty reserach: reactor physics, reactor design and operation, advanced numerical modeling and visualizations in radiation transport, radiochemistry, nuclear forensics, radiation detection and detector designs, signal processing, nuclear medicine, nuclear space and nuclear robotic’s engineering and radiological sciences. With the state-of-the-art nuclear instrumentation and state-of-the-art numerical modeling tools, reserach reactor and modernized educational and training programs, we positioned ourselves in the last five years as the fastest growing national nuclear engineering program attracting the students from many disciplines such as but not limited to: chemical engineering, civil engineering, environmental engineering, chemistry, physics, astronomy, medical sciences, and others. From 2012, we uniquely developed and implemented the nuclear power plants’ safety culture paradigm that we use for day-to-day operation, management and maintenance of our facilities, as well as train all our students at undergraduate and graduate levels of studies. We developed also a new distance-learning approaches in sharing knowledge about experiential learning based on no-cost internet-tools combined with the use of mobile technologies. (author)

  7. Young generation in Romanian nuclear system - Romanian nuclear organizations implication in nuclear knowledge management at University 'Politehnica' of Bucharest - Results and expectations

    International Nuclear Information System (INIS)

    Ghizdeanu, E.N.; Dumitrescu, M.C.; Budu, A.R.; Pavelescu, A.O.

    2004-01-01

    The knowledge management should be assumed by the major players within the nuclear community: government, industry and university. Starting from these problems this article gives an overview about Romanian nuclear knowledge management and the Young Generation implications. In Romania there are many government and non-government nuclear institutions such: CNCAN (Romanian Regulatory Body), ROMATOM (Romanian Atomic Forum), AREN (Romanian 'Nuclear Energy' Association), and companies: SNN ('Nuclearelectrica' SA National Company), CITON (Centre of Technology and Engineering for Nuclear Projects), SCN (Institute for Nuclear Research), ROMAG - PROD (Romanian Heavy Water Plant). All these institutes and companies are sustaining the national nuclear program and promoting the new technologies in the nuclear industry according with CNCAN and ROMATOM regulations. University 'POLITEHNICA' of Bucharest - Power Engineering Faculty - through Nuclear Power Plant Department is the promoter of nuclear knowledge management. It is implied in assuring and maintaining a high-quality training for young staff. Young Generation is implicated in nuclear knowledge management through University 'Politehnica' of Bucharest - Power Engineering Faculty - Nuclear Power Plant Department and AREN (Romanian 'Nuclear Energy' Association). Young Generation Department has special educational programs for attracting and supporting students. It provides adequate information and interacts with potential students. Moreover the article gives results about Romanian nuclear engineers since 1970 till now. An analysis of these data is done. Also it is discussed how University 'Politehnica' of Bucharest, the Romanian Government and the Industry work together to co-ordinate more effectively their efforts to encourage the young generation. (author)

  8. The World Nuclear University Summer Institute

    International Nuclear Information System (INIS)

    Rivard, D.; McIntyre, M.

    2007-01-01

    The World Nuclear University (WNU) Summer Institute is a six weeks intensive training program aimed to develop a global leadership in the field of nuclear sciences and technologies. The topics covered include global setting, international regimes, technology innovation and nuclear industry operations. This event has been held annually since 2005. Mark McIntyre and Dominic Rivard attended this activity as a personal initiative. In this paper they will present the WNU and its Summer Institute, share their participation experience and discuss as well of some technical content covered during the Institute, highlighting the benefits this brought to their careers. (author)

  9. The Maryland nuclear science baccalaureate degree program: The university perspective

    International Nuclear Information System (INIS)

    Janke, T.A.

    1989-01-01

    Nuclear utilities' efforts in response to industry-wide pressures to provide operations staff with degree opportunities have encountered formidable barriers. This paper describes, from the university's perspective, the development and operation of the University of Maryland University College (UMUC) special baccalaureate program in nuclear science. This program has successfully overcome these problems to provide degree education on-site, on-line, and on time. Program delivery began in 1984 with one utility and a single site. It is currently delivered at eight sites under contract to six utilities with a total active student count of over 500. The first graduates are expected in 1989. The program is an accredited university program and enjoys licensure approval from the six states within which it operates. In addition to meeting US Nuclear Regulatory Commission proposed guidelines for degreed operators, the program increasingly appears as part of utility management development programs for all plant personnel and a factor in employee retention. The owner utilities, the University of Maryland, and the growing user's group are committed to the academic integrity, technical capability, and responsiveness of the program. The full support of this partnership speaks well for the long-term service of the Bachelor of Science in Nuclear Science program to the nuclear power industry

  10. Training of personnel for nuclear power at Nuclear Physics Department of Faculty of Mathematics and Physics, Comenius University

    International Nuclear Information System (INIS)

    Povinec, P.; Florek, M.; Chudy, M.

    1983-01-01

    The Science Faculty of the Comenius University in Bratislava established the nuclear physics specialization in 1962. Students enrolled in the study course acquired basic knowledge in mathematics and physics, foundations of the microstructure of matter and experimental methods of nuclear physics and technics. Since 1976 nuclear physics has been a separate study field which from the fourth year of study has its narrow specializations, namely applied nuclear physics, experimental nuclear physics and physics of the atomic nucleus and elementary particles. A change has recently been made in the system of optional lectures with the aim of providing the students with a wider range of knowledge in the physics of nuclear reactors and the use of computer technology and microelectronics in nuclear physics and technology. In 1980 a postgraduate study course was opened oriented to nuclear power and the environment. (E.S.)

  11. Nuclear energy research in Germany 2008. Research centers and universities

    International Nuclear Information System (INIS)

    Tromm, Walter

    2009-01-01

    This summary report presents nuclear energy research at research centers and universities in Germany in 2008. Activities are explained on the basis of examples of research projects and a description of the situation of research and teaching in general. Participants are the - Karlsruhe Research Center, - Juelich Research Center (FZJ), - Dresden-Rossendorf Research Center (FZD), - Verein fuer Kernverfahrenstechnik und Analytik Rossendorf e.V. (VKTA), - Technical University of Dresden, - University of Applied Sciences, Zittau/Goerlitz, - Institute for Nuclear Energy and Energy Systems (IKE) at the University of Stuttgart, - Reactor Simulation and Reactor Safety Working Group at the Bochum Ruhr University. (orig.)

  12. Nuclear engineering education in italian universities

    International Nuclear Information System (INIS)

    Dulla, S.; Panella, B.; Ravetto, P.

    2011-01-01

    The paper illustrates the evolution and the present situation of the university-level nuclear engineering education in Italy. The problems connected with the need of qualified faculty in view of a dramatic increase of students is pointed out. A short description of the programs at present available at Italian universities is also presented, together with some statistics referred to Politecnico di Torino. The mathematical and computation content of each programs is also analyzed. (author)

  13. Nuclear orientation facility at Charles University in Prague

    International Nuclear Information System (INIS)

    Rotter, M.; Trhlik, M.; Hubalovsky, S.; Srnka, A.; Dupak, J.; Ota, J.; Pari, P.

    2000-01-01

    A low temperature nuclear orientation facility was installed at Charles University in the laboratory of the Department of Low Temperature Physics on the Faculty of Mathematics and Physics in Prague. The solid state as well as nuclear physics research is pursued on this facility. (author)

  14. Institute of Nuclear Chemistry of Mainz University. Annual report 1987

    International Nuclear Information System (INIS)

    Weber, M.

    1988-06-01

    Apart from the traditional topics of the institute's five working groups, i.e. rapid separation and exotic nuclei, nuclear structures, nuclear fission, heavy ion reactions, and ecology of radionuclides, the report includes papers investigating into the chemistry of the heaviest elements, papers on nuclear astrophysics, and brief contributions on applied radioactivity in anticipation of further and more detailed ones. Most of the studies are the result of national and international efforts in the sense of modern co-operative research. The report refers to the institute's collaboration with university teams and research institutes. (orig./RB) [de

  15. The importance of university research in maintaining the nuclear option

    International Nuclear Information System (INIS)

    Bruschi, H.J.; Hochreiter, L.E.

    1991-01-01

    The role of the university in maintaining and revitalizing the nuclear option should have four goals. First, it must attract highly skilled students who have an interest in math and science and help foster their interest in nuclear science and engineering. Next, it must present a state-of-the-art educational program that contains meaningful research to maintain these students. The third goal of nuclear engineering departments is to provide the nontechnical student a fair assessment of benefits and risks associated with commercial nuclear power relative to other sources of electricity. Lastly, it must effectively communicate to all students a compelling vision of nuclear power as a vital energy resource that will grow. The most difficult role for the university is to successfully convey a future for those in the nuclear science and engineering program

  16. University papers in American Nuclear Society (ANS) transactions with enrollment and degrees-III

    International Nuclear Information System (INIS)

    Duffey, D.; Wiggins, P.F.

    1986-01-01

    Statistics on nuclear engineering course offerings, enrollment, degrees, and papers published in the American Nuclear Society (ANS) Transactions were presented in 1966 at a conference at the University of West Virginia and in several subsequent publications. Since the 1970s, enrollment and degree data have been compiled by the US Department of Energy and its predecessors. These are the latest statistics. Universities, with perhaps 300 professors of nuclear engineering, continue to contribute substantially to the Transactions. Identification of nuclear engineering at universities is suffering because of reduced enrollment and much less graduate research support. This and the foreign student situation deserve serious attention by those concerned with nuclear engineering in university, government, and industrial communities

  17. Computer aided training in nuclear power engineering at the Gdansk Technical University

    International Nuclear Information System (INIS)

    Marecki, J.; Duzinkiewicz, K.; Kosmowski, K.T.

    1993-01-01

    The Faculty of Electrical Engineering of the Gdansk Technical University has organized post-graduate studies in nuclear power engineering in cooperation with the Institute of Nuclear Research at Swierk since 1973. Post-graduate courses in nuclear power plant construction and design were organized twice. Between 1986 and 1990, prototype software was developed for aiding lectures, self-teaching and knowledge testing in the following fields: 1) dynamics and control of nuclear reactors; 2) simulators of nuclear power plant basic systems (reactor, steam generator, steam turbine, and synchronous generator). (Z.S.) 2 refs

  18. Industry, university and government partnership to address research, education and human resource challenges for nuclear industry in Canada

    International Nuclear Information System (INIS)

    Mathur, R.M.

    2004-01-01

    Full text: This paper describes the outcome of an important recent initiative of Canadian nuclear industry to reinvigorate interest in education and collaborative research in prominent Canadian universities. This initiative has led to the formation of the University Network of Excellence in Nuclear Engineering (UNENE), incorporated in 2002. During the recent past, the slowdown in nuclear power development in Canada has curtailed the demand for new nuclear professionals down to a trickle. Without exciting job opportunities in sight the interest of prospective students in nuclear education and research has plunged. Consequently, with declining enrolment in nuclear studies and higher demand from competing disciplines, most universities have found it difficult to sustain nuclear programs. As such the available pool of graduating students is small and insufficient to meet emerging industry demand. With nuclear industry employees' average age hovering around mid-forties and practically no younger cohort to back up, nuclear industry faces the risk of knowledge loss and significant difficulty in recruiting new employees to replenish its depleting workforce. It is, therefore, justifiably concerned. Also, since nuclear generation is now the purview of smaller companies, their in-house capability for mid- to longer-term research is becoming inadequate. Recognizing the above challenges, Ontario Power Generation, Bruce Power and Atomic Energy of Canada Limited have formed an alliance with prominent Canadian universities and undertaken to invest money and offer in-kind support to accomplish three main objectives: Reinvigorate university-based nuclear engineering research by augmenting university resources by creating new industry supported research professorships and supporting research of other professors; Promote enrolment in graduate programs by supporting students and making use of a course-based Master of Engineering (M.Eng.) Program that is taught collectively by

  19. Development of Nuclear Engineering Educational Program at Ibaraki University with Regional Collaboration

    Science.gov (United States)

    Matsumura, Kunihito; Kaminaga, Fumito; Kanto, Yasuhiro; Tanaka, Nobuatsu; Saigusa, Mikio; Kikuchi, Kenji; Kurumada, Akira

    The College of Engineering, Ibaraki University is located at the Hitachi city, in the north part of Ibaraki prefecture. Hitachi and Tokai areas are well known as concentration of advanced technology center of nuclear power research organizations. By considering these regional advantages, we developed a new nuclear engineering educational program for students in the Collage of Engineering and The Graduate School of Science and Engineering of Ibaraki University. The program is consisted of the fundamental lectures of nuclear engineering and nuclear engineering experiments. In addition, several observation learning programs by visiting cooperative organizations are also included in the curriculum. In this paper, we report about the progress of the new educational program for nuclear engineering in Ibaraki University.

  20. USP university students social representations and views on nuclear power as energy option

    International Nuclear Information System (INIS)

    Farias, Luciana A.; Favaro, Deborah I.T.

    2011-01-01

    The Nuclear Energy Research Institute (IPEN) is located on the campus of the University of Sao Paulo and has long been publishing nuclear science projects in order to improve public opinion and disseminate nuclear energy issues. However, few studies have investigated the perception of university students concerning nuclear energy. This study questioned whether the location of a nuclear research facility, as well as promotion of scientific projects, can positively influence student opinion when the nuclear research reactor is on campus and used purely for research purposes. This study further investigated the students' understanding of the terms 'nuclear energy' as well as their perception of the social issues involved. Free evocations of words were produced and collected starting from the stimulative inductor 'Nuclear Energy'. In this test, the interviewees are asked to associate five words and answer a questionnaire. A total of 124 students were interviewed for this study: 62 from the Chemistry, Pharmacy, Environmental Chemistry, Chemical Engineering and Nutrition Departments, 29 from the Oceanography Department and 33 from the Economics, Business Administration and Accounting Department. A total of 78% of the interviewed students answered that they had basic or average knowledge of nuclear energy, 46% claimed to have no knowledge of IPEN and the remainder students have answered that IPEN's activities were aimed at research in energy and production of radiopharmaceuticals, which shows little knowledge of the activities of the Institute. However, these students indicated Nuclear Energy as a strong for the diversification of energy sources. It should be noted that this study was undertaken before the nuclear accident caused by the 2011 Japan tsunami and earthquake. (author)

  1. Polarized targets at triangle universities nuclear laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Seely, M.L. [North Carolina State Univ., Raleigh, NC (United States); Gould, C.R. [North Carolina State Univ., Raleigh, NC (United States); Haase, D.G. [North Carolina State Univ., Raleigh, NC (United States); Huffman, P.R. [Triangle Universities Nuclear Laboratory, Durham, NC 27708 (United States); Keith, C.D. [North Carolina State Univ., Raleigh, NC (United States); Roberson, N.R. [Triangle Universities Nuclear Laboratory, Durham, NC 27708 (United States); Tornow, W. [Triangle Universities Nuclear Laboratory, Durham, NC 27708 (United States); Wilburn, W.S. [Triangle Universities Nuclear Laboratory, Durham, NC 27708 (United States)

    1995-03-01

    A summary of the polarized and aligned nuclear targets which have been constructed and used at the Triangle Universities Nuclear Laboratory is given. Statically polarized targets, typically operating at a temperature of 12 mK and a magnetic field of 7 T, have provided significant nuclear polarization in {sup 1}H, {sup 3}He, {sup 27}Al, {sup 93}Nb and {sup 165}Ho. A rotating, aligned {sup 165}Ho target is also in use. A {sup 3}He melting curve thermometer has been developed for use in statically polarized targets. A dynamically polarized proton target is under construction. ((orig.))

  2. Nuclear Security Education Program at the Pennsylvania State University

    International Nuclear Information System (INIS)

    Uenlue, Kenan; Jovanovic, Igor

    2015-01-01

    The availability of trained and qualified nuclear and radiation security experts worldwide has decreased as those with hands-on experience have retired while the demand for these experts and skills have increased. The U.S. Department of Energy's National Nuclear Security Administration's (NNSA) Global Threat Reduction Initiative (GTRI) has responded to the continued loss of technical and policy expertise amongst personnel and students in the security field by initiating the establishment of a Nuclear Security Education Initiative, in partnership with Pennsylvania State University (PSU), Texas A and M (TAMU), and Massachusetts Institute of Technology (MIT). This collaborative, multi-year initiative forms the basis of specific education programs designed to educate the next generation of personnel who plan on careers in the nonproliferation and security fields with both domestic and international focus. The three universities worked collaboratively to develop five core courses consistent with the GTRI mission, policies, and practices. These courses are the following: Global Nuclear Security Policies, Detectors and Source Technologies, Applications of Detectors/Sensors/Sources for Radiation Detection and Measurements Nuclear Security Laboratory, Threat Analysis and Assessment, and Design and Analysis of Security Systems for Nuclear and Radiological Facilities. The Pennsylvania State University (PSU) Nuclear Engineering Program is a leader in undergraduate and graduate-level nuclear engineering education in the USA. The PSU offers undergraduate and graduate programs in nuclear engineering. The PSU undergraduate program in nuclear engineering is the largest nuclear engineering programs in the USA. The PSU Radiation Science and Engineering Center (RSEC) facilities are being used for most of the nuclear security education program activities. Laboratory space and equipment was made available for this purpose. The RSEC facilities include the Penn State Breazeale

  3. Nuclear Security Education Program at the Pennsylvania State University

    Energy Technology Data Exchange (ETDEWEB)

    Uenlue, Kenan [The Pennsylvania State University, Radiation Science and Engineering Center, University Park, PA 16802-2304 (United States); The Pennsylvania State University, Department of Mechanical and Nuclear Engineering, University Park, PA 16802-2304 (United States); Jovanovic, Igor [The Pennsylvania State University, Department of Mechanical and Nuclear Engineering, University Park, PA 16802-2304 (United States)

    2015-07-01

    The availability of trained and qualified nuclear and radiation security experts worldwide has decreased as those with hands-on experience have retired while the demand for these experts and skills have increased. The U.S. Department of Energy's National Nuclear Security Administration's (NNSA) Global Threat Reduction Initiative (GTRI) has responded to the continued loss of technical and policy expertise amongst personnel and students in the security field by initiating the establishment of a Nuclear Security Education Initiative, in partnership with Pennsylvania State University (PSU), Texas A and M (TAMU), and Massachusetts Institute of Technology (MIT). This collaborative, multi-year initiative forms the basis of specific education programs designed to educate the next generation of personnel who plan on careers in the nonproliferation and security fields with both domestic and international focus. The three universities worked collaboratively to develop five core courses consistent with the GTRI mission, policies, and practices. These courses are the following: Global Nuclear Security Policies, Detectors and Source Technologies, Applications of Detectors/Sensors/Sources for Radiation Detection and Measurements Nuclear Security Laboratory, Threat Analysis and Assessment, and Design and Analysis of Security Systems for Nuclear and Radiological Facilities. The Pennsylvania State University (PSU) Nuclear Engineering Program is a leader in undergraduate and graduate-level nuclear engineering education in the USA. The PSU offers undergraduate and graduate programs in nuclear engineering. The PSU undergraduate program in nuclear engineering is the largest nuclear engineering programs in the USA. The PSU Radiation Science and Engineering Center (RSEC) facilities are being used for most of the nuclear security education program activities. Laboratory space and equipment was made available for this purpose. The RSEC facilities include the Penn State Breazeale

  4. University students' understanding level about words related to nuclear power

    International Nuclear Information System (INIS)

    Oiso, Shinichi; Watabe, Motoki

    2012-01-01

    The authors conducted a survey of university students' understanding level about words related to nuclear power before and after Fukushima Daiichi Power Plant accident, and analyzed the difference between before and after the accident. The results show that university students' understanding level improved after the accident, especially in the case of reported words by mass media. Understanding level of some nuclear power security words which were not reported so much by mass media also improved. That may be caused by rising of people's concern about nuclear power generation after the accident, and there is a possibility that the accident motivated people to access such words via internet, journals, etc. (author)

  5. Public risk perception after the nuclear accident Fukushima: a case with university students

    Energy Technology Data Exchange (ETDEWEB)

    Boemer, Veronica Araujo, E-mail: veronica.boemer@usp.b [Centro Tecnologico da Marinha em Sao Paulo (CTMSP), SP (Brazil); Aquino, Afonso Rodrigues de; Pereira, Tatiana de Sousa, E-mail: araquino@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    This paper presents a comparative study of research conducted with university students before (03 to 05/2010) and after (06 and 07/2011) the accident in nuclear plants in Fukushima, Japan, provoked by the tsunami on March 11, 2011, with regards to risk perception associated with the use of nuclear energy. (author)

  6. Public risk perception after the nuclear accident Fukushima: a case with university students

    International Nuclear Information System (INIS)

    Boemer, Veronica Araujo; Aquino, Afonso Rodrigues de; Pereira, Tatiana de Sousa

    2011-01-01

    This paper presents a comparative study of research conducted with university students before (03 to 05/2010) and after (06 and 07/2011) the accident in nuclear plants in Fukushima, Japan, provoked by the tsunami on March 11, 2011, with regards to risk perception associated with the use of nuclear energy. (author)

  7. The establishment of the Dalton Nuclear Institute by the University of Manchester in the UK

    International Nuclear Information System (INIS)

    Clegg, Richard

    2005-01-01

    The University of Manchester (UoM) is taking a pioneering step in the UK by identifying nuclear research and education as one of its strategic priorities and establishing the Dalton Nuclear Institute. The UoM was created in 2004 from the merger of the Victoria University of Manchester and UMIST (University of Manchester Institute of Science and Technology) which both had distinguished histories dating back more than 180 years. The new University has a bold strategic vision to become over the next decade one of the world's top universities. The Institute will work with government and industry to protect and develop the UK's strategic nuclear skills base. Its scope covers the broad entirety of nuclear requirements spanning reactors, fuel cycles, decommissioning, social policy and regulation, and with connections into nuclear medicine and fusion. Existing nuclear research strengths will be integrated and new capabilities grown in areas of weakness. Two initial appointments are underway in radiation sciences and decommissioning engineering with others being planned. The Institute has also established NTEC (Nuclear Technology Education Consortium) in collaboration with other supporting universities which, with government and industry support, is launching a new national programme for postgraduate-level nuclear learning. (author)

  8. Nuclear Safeguards and Security Education at Russian Universities

    International Nuclear Information System (INIS)

    Killinger, Mark H.; Goodey, Kent O.; Butler, Gilbert W.; Duncan, Cristen L.

    2008-01-01

    The U.S. Department of Energy is assisting key Russian universities in developing safeguards and security degree programs to prepare the next generation of specialists who will be responsible for protecting nuclear material from illicit use. These programs include course and laboratory work in nuclear material measurements, vulnerability analysis, exterior and interior sensors, and legal aspects of nuclear nonproliferation. Moscow Engineering Physics Institute (MEPhI) has graduated nine classes of masters students, most of who are working in government agencies, research organizations, or pursuing their PhD. With DOE support, MEPhI has also established a 5 1/2-year engineering degree program in safeguards and security. This is a hands-on degree that more closely meets the needs of nuclear facilities. The first class graduated in February 2007, marking a major milestone in Russian nonproliferation education. A second engineering degree program has been established at Tomsk Polytechnic University and is designed to reach those students east of the Ural Mountains, where many nuclear facilities are located. The first class will graduate in February 2009. This paper describes current development of these education programs, new initiatives, and sustainability efforts to ensure their continued viability after DOE support ends. The paper also describes general nonproliferation education activities supported by DOE that complement the more technical safeguards and security education programs.

  9. Nuclear chemistry on the Czech Technical University in Prague after introduction of structured study and foundation of the Centre for Radiochemistry and Radiation Chemistry

    International Nuclear Information System (INIS)

    John, J.

    2007-01-01

    In this presentation the author (head of the Centre for Radiochemistry and Radiation Chemistry) give a short review of history of the Department of Nuclear Chemistry and of the Centre for Radiochemistry and Radiation Chemistry of the Czech Technical University in Prague. Education in structured study in specialisation of nuclear chemistry in bachelor level, master level, as well as post-graduate study in nuclear chemistry with academic degree PhD. are realised. Some scientific results are presented

  10. Centre for nuclear engineering University of Toronto annual report 1984

    International Nuclear Information System (INIS)

    1984-12-01

    The annual report of the Centre for Nuclear Engineering, University of Toronto covers the following subjects: message from the Dean; Chairman's message; origins of the centre; formation of the centre; new nuclear appointments; and activities of the centre, 1984

  11. Focusing on real-world nuclear issues at the University of New Mexico

    International Nuclear Information System (INIS)

    Busch, R.D.

    1996-01-01

    Traditional nuclear engineering education in the universities has focused on nuclear power and reactor physics. Since 1980, the United States has had little need for reactor designers and few job opportunities available in the nuclear power industry. Although slow to get the message, most university nuclear engineering programs have shifted focus in the 1990s from neutron physics and power generation to environmental and regulatory issues. In the University of New Mexico (UNM) chemical and nuclear engineering department, we have done this in two ways: through a shift of emphasis in our basic theory classes and by introducing new courses. One example of the shift of emphasis is illustrated by the way we now teach our senior computational methods class. Rather than focusing on ways to analyze the neutronics of reactor cores, we now look at using computational tools - particularly, diffusion, transport, and Monte Carlo codes - to evaluate the criticality safety aspects of processes involving fissile material

  12. Five Years of Women in Nuclear at Texas A&M University

    International Nuclear Information System (INIS)

    Dromgoole, L.

    2015-01-01

    Texas A&M University Women in Nuclear (WiN–TAMU) seeks to provide professional development opportunities for its members while also reaching out to the public both on the university campus and the surrounding local community. The purpose of this poster is to share best practices and learning experiences promoting the career development and education of women in nuclear-related fields acquired over five years of existence as a chapter. Since its reestablishment in 2010, WiN–TAMU has hosted events for women in disciplines related to nuclear technology, including presentations from experts in the nuclear field, Q&A sessions with nuclear engineering faculty, workshops on communicating technical issues about nuclear to the public, public screenings of nuclear films, technical tours of nuclear power plants, medical facilities and regulatory bodies, and socials to build camaraderie among members. WiN–TAMU collaborates with the Nuclear Power Institute (NPI) by interacting with high school students in NPI’s POWER SET programmes. POWER SET (Powerful Opportunities forWomen Eager and Ready for Science, Engineering, and Technology) provides young women with the educational tools and support to pursue education and careers in science, technology, engineering, and math (STEM). The POWER SET students also interact with members of WiN at Texas’s two nuclear power plants, Comanche Peak and South Texas Project. This tiered approach provides the students with the perspectives of WiN members at various stages in their education and careers. As of the end of the 2014 school year, 81% of the students self-identified that they will pursue STEM course of study (as opposed to the U.S. average of 15–17%). The POWER SET model has recently been implemented internationally in the Philippines with a new programme of 50 young women and is being considered for implementation at the Vienna International School as well. (author)

  13. Current Status and Issues of Nuclear Engineering Research and Educational Facilities in Universities

    International Nuclear Information System (INIS)

    2004-01-01

    It is important to discuss about nuclear engineering research and educational facilities in universities after new educational foundation. 12 universities investigated issues and a countermeasure of them. The results of a questionnaire survey, issues and countermeasure are shown in this paper. The questionnaire on the future nuclear researches, development of education, project, maintenance of nuclear and radioactive facilities and accelerator, control of uranium in subcritical test facilities, use of new corporation facilities, the fixed number of student, number of graduate, student experiments, themes of experiments and researches, the state of educational facilities are carried out. The results of questionnaire were summarized as followings: the fixed number of student (B/M/D) on nuclear engineering, exercise of reactor, education, themes, educational and research facilities, significance of nuclear engineering education in university and proposal. (S.Y.)

  14. The universal legal framework against nuclear terrorism

    International Nuclear Information System (INIS)

    Gehr, W.

    2007-01-01

    After the events of September 11, the United Nations Security Council adopted Resolution 1373 (2001) which has been called the 'Counter-Terrorism Code' of the world, because it creates legal obligations for all 192 Member States of the United Nations. UN Security Council Resolutions 1373 (2001), 1540 (2004) and 1735 (2006) as well as a defined set of 13 global treaties constitute the universal legal framework against terrorism which must be implemented in a manner consistent with international human rights obligations. Basically, these 13 treaties as well as Resolution 1373 are international criminal law instruments. Within this universal legal framework, the framework against nuclear terrorism is constituted by Resolution 1540, the Convention on the Physical Protection of Nuclear Material (CPPNM) which entered into force in 1987, and the International Convention for the Suppression of Terrorist Bombings which is in force since 2001. These three legal instruments will be supplemented by the International Convention for the Suppression of Acts of Nuclear Terrorism, an amendment to the CPPNM and two Protocols amending the Convention for the Suppression of Unlawful Acts Against the Safety of Maritime Navigation and the Protocol for the Suppression of Unlawful Acts Against the Safety of Fixed Platforms Located on the Continental Shelf, once these instruments, all of which were adopted in 2005, enter into force. The Terrorism Prevention Branch (TPB) of the United Nations Office on Drugs and Crime (UNODC) assists countries which are in need of legislative assistance for the drafting of appropriate counter-terrorism laws that duly take into account the obligations contained in Resolution 1373, the United Nations sanctions against Al-Qaida and the Taliban as well as in the 13 universal conventions for the prevention and the suppression of terrorism, including the CPPNM and the new International Convention for the Suppression of Acts of Nuclear Terrorism. UNODC/TPB has also

  15. The role of universities in the US nuclear research enterprise

    International Nuclear Information System (INIS)

    Taylor, J.J.

    1991-01-01

    The vitally important role of the universities in nuclear research is embodied in the three functions of education, research, and policymaking. These three functions are discussed from the perspective of nuclear power's unique demands for quality and its pioneering interface with societal and environmental aspirations

  16. Nuclear chemistry research of high-energy nuclear reactions at Carnegie-Mellon University, 1961--1977. Summary report. [Summaries of research activities at Carnegie-Mellon University

    Energy Technology Data Exchange (ETDEWEB)

    Caretto, A.A. Jr.

    1977-11-01

    The activities and the results of research in the study of high energy nuclear reactions carried out at Carnegie Institute of Technology from 1957 to 1967 and at Carnegie-Mellon University from 1967 to 1977 are summarized. A complete list of all publications, doctoral dissertations, and reports resulting from the research of this project is also included. A major part of the report is a review of the research activities and results. The objective of the research of this project was the study of reactions initiated by projectiles of energy above about 100 MeV. The main effort was the investigation of simple nuclear reactions with the objective to deduce reaction mechanisms. These reactions were also used as probes to determine the nuclear structure of the target. In addition, a number of studies of spallation reactions were undertaken which included the determination of excitation functions and recoil properties. Recent research activities which have involved the study of pion induced reactions as well as reactions initiated by heavy ions is also discussed.

  17. Early period of particle accelerator development and nuclear physics experiments at Taihoku Imperial University and Kyoto University (1/2)

    International Nuclear Information System (INIS)

    Takekoshi, Hidekuni

    2007-01-01

    In 1926 Dr. Arakatsu was appointed Professor to Taipei Imperial University in Taiwan which was under the government by Japan in that time, and stared the construction of an electrostatic accelerator in 1930 for nuclear transmutations. He measured the detailed branching ratio of deuteron-lithium reaction following the investigation by Lawrence and Rutherford. In 1936 he was transferred to the physics laboratory of Kyoto University, and constructed a 600kV accelerator of Cockcroft-Walton type. His team studied photo-nuclear reactions using gamma rays produced by the proton-lithium reaction. In 1942 he started on the construction of a cyclotron, which was taken away by US army after the war. He participated in the investigation of the atomic bomb to Hiroshima. (K.Y.)

  18. Nuclear Data Online Services at Peking University

    International Nuclear Information System (INIS)

    Fan, T.S.; Guo, Z.Y.; Ye, W.G.; Liu, W.L.; Chen, J.X.; Tang, G.Y.; Shi, Z.M.; Chen, J.E.; Liu, T.J.; Liu, C.X.; Huang, X.L.

    2005-01-01

    The Institute of Heavy Ion Physics at Peking University has developed a new nuclear data online services software package. Through the web site (http://ndos.nst.pku.edu.cn), it offers online access to main relational nuclear databases: five evaluated neutron libraries (BROND, CENDL, ENDF, JEF, JENDL), the ENSDF library, the EXFOR library, the IAEA photonuclear library and the charged particle data of the FENDL library. This software allows the comparison and graphic representations of the different data sets. The computer programs of this package are based on the Linux implementation of PHP and the MySQL software

  19. Russian University Education in Nuclear Safeguards and Security

    International Nuclear Information System (INIS)

    Duncan, Cristen L.; Kryuchkov, Eduard F.; Geraskin, Nikolay I.; Boiko, Vladimir I.; Silaev, Maxim E.; Demyanyuk, Dmitry G.; Killinger, Mark H.; Heinberg, Cynthia L.

    2009-01-01

    As safeguards and security (S and S) systems are installed and upgraded in nuclear facilities throughout Russia, it becomes increasingly important to develop mechanisms for educating future Russian nuclear scientists and engineers in the technologies and methodologies of physical protection (PP) and nuclear material control and accounting (MC and A). As part of the U.S. Department of Energy's (DOE) program to secure nuclear materials in Russia, the Education Project supports technical S and S degree programs at key Russian universities and nonproliferation education initiatives throughout the Russian Federation that are necessary to achieve the overall objective of fostering qualified and vigilant Russian S and S personnel. The Education Project supports major educational degree programs at the Moscow Engineering Physics Institute (MEPhI) and Tomsk Polytechnic University (TPU). The S and S Graduate Program is available only at MEPhI and is the world's first S and S degree program. Ten classes of students have graduated with a total of 79 Masters Degrees as of early 2009. At least 84% of the graduates over the ten years are still working in the S and S field. Most work at government agencies or research organizations, and some are pursuing their PhD. A 5 and 1/2 year Engineering Degree Program (EDP) in S and S is currently under development at MEPhI and TPU. The EDP is more tailored to the needs of nuclear facilities. The program's first students (14) graduated from MEPhI in February 2007. Similar-sized classes are graduating from MEPhI each February. All of the EDP graduates are working in the S and S field, many at nuclear facilities. TPU also established an EDP and graduated its first class of approximately 18 students in February 2009. For each of these degree programs, the American project team works with MEPhI and TPU to develop appropriate curriculum, identify and acquire various training aids, develop and publish textbooks, and strengthen instructor skills

  20. World Nuclear University School of Uranium Production: Eight years' experience

    International Nuclear Information System (INIS)

    Trojacek, J.

    2014-01-01

    The World Nuclear University School of Uranium Production was established by DIAMO, state enterprise in 2006 year under the auspices of the World Nuclear University in London in partnership with international nuclear organizations – OECD/NEA and IAEA. Using the expertise and infrastructure of DIAMO State Enterprise, in conjuction with national and international universities, scientific institutions, regulatory authorities and other individual experts, the “school” covers its mission with the aim to provide world-class training on all aspects of uranium production cycle to equip operators, regulators and executives with the knowledge and expertise needed to provide expanded, environmentally-sound uranium mining throughout the world: • to educate students on all aspects of uranium production cycle including exploration, planning, development, operation, remediation and closure of uranium production facilities; • to improve the state of the art of uranium exploration, mining and mine remediation through research and development; • to provide a forum for the exchange of information on the latest uranium mining technologies and experiences – best practices.

  1. Research Reactor Utilization at the University of Utah for Nuclear Education, Training and Services

    International Nuclear Information System (INIS)

    Jevremovic, T.; Choe, D.O.

    2013-01-01

    In the years of nuclear renaissance we all recognize a need for modernizing the approaches in fostering nuclear engineering and science knowledge, in strengthening disciplinary depth in students’ education for their preparation for workforce, and in helping them learn how to extend range of skills, develop habits of mind and subject matter knowledge. The education infrastructure at the University of Utah has been recently revised to incorporate the experiential learning using our research reactor as integral part of curriculum, helping therefore that all of our students build sufficient level of nuclear engineering literacy in order to be able to contribute productively to nuclear engineering work force or continue their education toward doctoral degrees. The University of Utah TRIGA Reactor built 35 years ago represents a university wide facility to promote research, education and training, as well as is used for various applications of nuclear engineering, radiation science and health physics. Our curriculum includes two consecutive classes for preparation of our students for research reactor operating license. Every year the US Nuclear Regulatory Commission’s representatives hold the final exam for our students. Our activities serve the academic community of the University of Utah, commercial and government entities, other universities and national laboratories as well. (author)

  2. Memphis State University Center for Nuclear Studies progress report

    International Nuclear Information System (INIS)

    1975-11-01

    Progress made on the development of specialized education programs for the nuclear industry through the month of October, 1975, is outlined. The survey of the nuclear industry includes manpower resources and requirements of nuclear industry, annual training requirements of nuclear plants, and the educational curriculum for nuclear plant operational staff. Also discussed are the general organization of the project, student enrollment and progress and industrial participation

  3. Training and education in nuclear medicine at the Medical Faculty of the University of Zagreb

    International Nuclear Information System (INIS)

    Ivancevic, D.; Popovic, S.; Simonovic, I.; Vlatkovic, M.

    1986-01-01

    Training for specialization in nuclear medicine in Yugoslavia includes 12 months of training in departments of clinical medicine and 24 months of training in departments of nuclear medicine. Since 1974 many physicians have passed the specialist examination in Zagreb. A postgraduate study in nuclear medicine began at the Medical Faculty of the University of Zagreb in 1979. It includes four semesters of courses and research on a selected subject leading to the degree of Magister (Master of Science). Most of the training is conducted by the Institute of Nuclear Medicine at the University Hospital, Rebro, in Zagreb, which has the necessary teaching staff, equipment and space. Forty-four students have completed this postgraduate study. Nuclear medicine in a developing country faces several problems. Scarcity of expensive equipment and radiopharmaceuticals calls for modifications of methods, home made products and instrument maintenance. These, mostly economic, factors are given special emphasis during training. Nuclear power generation may solve some of the country's energy problems; therefore, specialists in nuclear medicine must obtain additional knowledge about the medical care and treatment of persons who might be subject to irradiation and contamination in nuclear power plants. Lower economic resources in developing countries require better trained personnel, stressing the need for organized training and education in nuclear medicine. With some support the Institute of Nuclear Medicine will be able to offer various forms of training and education in nuclear medicine for physicians, chemists, physicists, technologists and other personnel from developing countries. (author)

  4. Annual report of Nuclear Engineering Research Laboratory, Faculty of Engineering, University of Tokyo, fiscal year 1996

    International Nuclear Information System (INIS)

    1997-08-01

    This report summarizes research and educational activities, operation status of the research facilities of the Nuclear Engineering Research Laboratory, Faculty of Engineering, University of Tokyo on fiscal year 1996. This facility has four major research facilities such as fast neutron source reactor 'Yayoi', electron Linac, fundamental experiment facility for nuclear fusion reactor blanket design and high fluence irradiation facility(HIT). Education and research activities are conducted in a wide fields of nuclear engineering using these facilities. The former two facilities are available for various studies by universities all over Japan, facility for nuclear fusion reactor blanket design is utilized for research within the Faculty of Engineering and HIT is used for the research within the University of Tokyo. The facility established a plan to reorganized into a nation wide research collaboration center in fiscal year 1995 and after further discussion of a future program it is decided to hold 'Nuclear energy symposium' periodically after fiscal year 1997 as a part of the activity for appealing the research results to the public. (G.K.)

  5. Nuclear chemistry research of high-energy nuclear reactions at Carnegie-Mellon University, 1961--1977. Summary report

    International Nuclear Information System (INIS)

    Caretto, A.A. Jr.

    1977-11-01

    The activities and the results of research in the study of high energy nuclear reactions carried out at Carnegie Institute of Technology from 1957 to 1967 and at Carnegie-Mellon University from 1967 to 1977 are summarized. A complete list of all publications, doctoral dissertations, and reports resulting from the research of this project is also included. A major part of the report is a review of the research activities and results. The objective of the research of this project was the study of reactions initiated by projectiles of energy above about 100 MeV. The main effort was the investigation of simple nuclear reactions with the objective to deduce reaction mechanisms. These reactions were also used as probes to determine the nuclear structure of the target. In addition, a number of studies of spallation reactions were undertaken which included the determination of excitation functions and recoil properties. Recent research activities which have involved the study of pion induced reactions as well as reactions initiated by heavy ions is also discussed

  6. Studies of nuclear processes. Progress report, June 1, 1974--May 31, 1975

    International Nuclear Information System (INIS)

    Clegg, T.B.; Ludwig, E.J.; Merzbacher, E.; Shafroth, S.M.; Thompson, W.J.

    1975-01-01

    The studies of nuclear processes conducted by the Chapel Hill group affiliated with the Triangle Universities Nuclear Laboratory (TUNL) have continued to emphasize the following topics: I. Proton Beam Experiments; II. Polarized Deuteron Beam Experiments; III. Development of Ion Sources, Experimental Equipment, and Techniques; IV. Nuclear Theory and Nuclear Reaction Analyses; V. Atomic Effects in Nuclear Bombardment. The Cyclo-Graaff at TUNL and the 4-MeV Van de Graaff accelerator were the primary sources of particle beams. Computations were carried out on the computers at TUNL and at the Triangle Universities Computation Center (TUCC). Many charged particle and neutron experiments were undertaken jointly with groups from Duke University and North Carolina State University. The research program has aimed at a better understanding of the spin dependence of nuclear interactions revealed in experiments with polarized beams. Collisions between charged particles and complex atoms, leading to inner shell ionization, were studied in high resolution over a broad energy range. (U.S.)

  7. Nuclear Physics Laboratory, University of Washington annual report

    International Nuclear Information System (INIS)

    1998-04-01

    The Nuclear Physics Laboratory at the University of Washington in Seattle pursues a broad program of nuclear physics. These activities are conducted locally and at remote sites. The current programs include in-house research using the local tandem Van de Graaff and superconducting linac accelerators and non-accelerator research in solar neutrino physics at the Sudbury Neutrino Observatory in Canada and at SAGE in Russia, and gravitation as well as user-mode research at large accelerators and reactor facilities around the world. Summaries of the individual research projects are included. Areas of research covered are: fundamental symmetries, weak interactions and nuclear astrophysics; neutrino physics; nucleus-nucleus reactions; ultra-relativistic heavy ions; and atomic and molecular clusters

  8. AKR-1 nuclear training reactor of Dresden Technical University turns twenty-five

    International Nuclear Information System (INIS)

    Hansen, W.

    2003-01-01

    Twenty-five years ago, in the night of July 27 to 28, 1978, the AKR-1 nuclear training reactor of the Dresden Technical University went critical for the first time and was commissioned. On the occasion of this anniversary, a colloquy was arranged with representatives from science, politics and industry, at which the reactor's history, the excellent achievements in research and training with the reactor, and the status and perspectives of this research facility were described. The AKR-1 had been built within the framework of the Nuclear Development Program of the then German Democratic Republic (GDR). The Nuclear Power Scientific Division of the Dresden Technical University had been entrusted with the responsibility, among other things, to train university personnel for the GDR Nuclear Power Program. The review by an expert group in 1996 of this plant had resulted in a recommendation in favor of long-term plant operation. A nuclear licensing procedure to this effect was initiated, and the necessary technical backfitting measures were implemented. The AKR-1 plant now equally serves for the specialized training of students and for research. (orig.) [de

  9. Experience in implementation of «Nuclear Knowledge Management» course at the National Research Nuclear University MEPhI

    International Nuclear Information System (INIS)

    Geraskin, N I; Kosilov, A N

    2017-01-01

    This paper describes the experience of teaching «Nuclear Knowledge Management» course at the National Research Nuclear University MEPhI (NRNU MEPhI). Currently, the course is implemented both in engineer and master degree programs and is attended by over 50 students. Goal, objectives and syllabus of the course are discussed in detail. A special attention is paid to practical exercises and final examination options in the case of small and large student groups. The course is supported by the Cyber Learning Platform for Nuclear Education and Training (CLP4NET), developed by the IAEA. The experience of NRNU MEPhI lecturers assisting in conducting the International School of Nuclear Knowledge Management, held annually in Trieste (Italy), is described with a special attention to the fact, that the course has passed the certification process at Academic Council of NRNU MEPhI. In 2014 and 2015 the course has been recognized as one of the best ones in NRNU MEPhI. Finally, perspectives of «Nuclear Knowledge Management» course are considered. They include increase of the course duration, introduction of the course into the learning process of other departments and institutions of the university, and transferring the course to other members of the Association «Consortium of ROSATOM supporting universities». (paper)

  10. Experience in implementation of «Nuclear Knowledge Management» course at the National Research Nuclear University MEPhI

    Science.gov (United States)

    Geraskin, N. I.; Kosilov, A. N.

    2017-01-01

    This paper describes the experience of teaching «Nuclear Knowledge Management» course at the National Research Nuclear University MEPhI (NRNU MEPhI). Currently, the course is implemented both in engineer and master degree programs and is attended by over 50 students. Goal, objectives and syllabus of the course are discussed in detail. A special attention is paid to practical exercises and final examination options in the case of small and large student groups. The course is supported by the Cyber Learning Platform for Nuclear Education and Training (CLP4NET), developed by the IAEA. The experience of NRNU MEPhI lecturers assisting in conducting the International School of Nuclear Knowledge Management, held annually in Trieste (Italy), is described with a special attention to the fact, that the course has passed the certification process at Academic Council of NRNU MEPhI. In 2014 and 2015 the course has been recognized as one of the best ones in NRNU MEPhI. Finally, perspectives of «Nuclear Knowledge Management» course are considered. They include increase of the course duration, introduction of the course into the learning process of other departments and institutions of the university, and transferring the course to other members of the Association «Consortium of ROSATOM supporting universities».

  11. Nuclear science and engineering education at a university research reactor

    International Nuclear Information System (INIS)

    Loveland, W.

    1990-01-01

    The research and teaching operations of the Nuclear Chemistry Division of the Dept. of Chemistry and the Dept. of Nuclear Engineering are housed at the Oregon State University Radiation Center. This facility which includes a 1.1 MW TRIGA reactor was used for 53 classes from a number of different academic departments last year. About one-half of these classes used the reactor and ∼25% of the reactor's 45 hour week was devoted to teaching. Descriptions will be given of reactor-oriented instructional programs in nuclear engineering, radiation health and nuclear chemistry. In nuclear chemistry, classes in (a) nuclear chemistry for nuclear engineers, (b) radiotracer methods, (c) elementary and advanced activation analysis, and (d) advanced nuclear instrumentation will be described in detail. The use of the facility to promote general nuclear literacy among college students, high school and grade school students and the general population will also be covered

  12. [Studies in intermediate energy nuclear physics

    International Nuclear Information System (INIS)

    Peterson, R.J.

    1993-01-01

    This report summarizes work carried out between October 1, 1992 and September 30, 1993 at the Nuclear Physics Laboratory of the University of Colorado, Boulder. The experimental program in intermediate-energy nuclear physics is very broadly based; it includes pion-nucleon and pion-nucleus studies at LAMPF and TRIUMF, kaon-nucleus scattering at the AGS, and equipment development for experiments at the next generation of accelerator facilities

  13. Addressing the nuclear controversy on university campuses

    International Nuclear Information System (INIS)

    Keyes, G.B.; Poncelet, C.G.

    1977-01-01

    A strong anti-nuclear sentiment exists on many university campuses. Young minds are eager to adopt causes which purport to reflect new intellectual approaches to social, political, and economic issues. Hence, the opposition to nuclear power can be made to seem to be based on: 1) technical study of nuclear plants; 2) concern for the environment; 3) concern for public health and safety; 4) requirements for an improved economic order; and 5) demand for public decision on technical issues. All of these elements have the potential of attracting student and faculty interest and support. To contend with this problem, our company decided to attempt to achieve a dialogue with the student and faculty audiences. A small group of young nuclear engineers was chosen to undergo comprehensive training on the controversy and contemporary campus issues in the states to be visited. The selection and training emphasized the ability of the engineers to relate to the students as their peers. They were encouraged to speak candidly and for themselves. Thus, they were not burdened with the image of being viewed merely as typical corporate spokesmen. The rapport made possible by this approach is a very important element in the success of such an effort. Invitations to debate before student audiences were issued to leading opposition groups; also, to the news media to report the events. Response by the media has been outstandingly favorable: not only has the coverage been extensive, but it has carried the pro-nuclear arguments to large audiences on a scale and with a credibility not otherwise achievable. The results to date have been extremely encouraging. Other countries are invited to learn more about the ''Campus America'' program in order to evaluate whether or not such an approach, with appropriate modification, could prove effective in their own situations

  14. Addressing the nuclear controversy on university campuses

    International Nuclear Information System (INIS)

    Keyes, G.B.; Poncelet, C.G.

    1977-01-01

    A strong anti-nuclear sentiment exists on many university campuses. Young minds are eager to adopt causes which purport to reflect new intellectual approaches to social, political and economic issues. Hence, the opposition to nuclear power can be made to seem to be based on: (1) technical study of nuclear plants; (2) concern for the environment; (3) concern for public health and safety; (4) requirements for an improved economic order; and (5) demand for public decision on technical issues. All these elements could attract student and faculty interest and support. To contend with this problem in the USA, Westinghouse Electric Corporation attempted to achieve a dialogue with the student and faculty audiences. The development and results of the programme up to mid-1977 are reported in this paper. A small group of young nuclear engineers was chosen to undergo comprehensive training on the controversy and contemporary campus issues in the States to be visited. Selection and training emphasized the ability of the engineers to relate to the students as their peers. They were encouraged to speak candidly and for themselves. Thus, they did not give the impression of being merely typical corporate spokesmen. The rapport made possible by this approach is very important to the success of such an effort. Invitations to debate before student audiences were issued to leading opposition groups and to the news media. Response by the media has been outstandingly favourable: not only has the coverage been extensive, but it has carried the pro-nuclear arguments to large audiences on a scale and with a credibility not otherwise achievable. The results up to May 1977, in eight States, have been extremely encouraging. Other countries are invited to learn more about the ''Campus America'' programme in order to evaluate whether or not such an approach, with appropriate modification, could prove effective in their own situations. (author)

  15. Nuclear Science and Engineering education at the Delft University of Technology

    International Nuclear Information System (INIS)

    Bode, P.

    2009-01-01

    There is a national awareness in the Netherlands for strengthening education in the nuclear sciences, because of the ageing workforce, and to ensure competence as acceptability increases of nuclear power as an option for diversification of the energy supply. This may be reflected by the rapidly increasing number of students at the Delft University of Technology with interest in nuclear science oriented courses, and related bachelor and MSc graduation projects. These considerations formed the basis of the Nuclear Science and Engineering concentration, effectively starting in 2009. The programme can be taken as focus of the Research and Development Specialisation within the Master Programme in Applied Physics or as a Specialisation within the Master's Programme in Chemical Engineering. Both programmes require successful completion of a total of 120 ECTS study points, consisting of two academic years of 60 ECTS (1680 hours of study). Of that total, 100 ECTS are in the field of Nuclear Science and Engineering, depending on students choices within the programme, including a (industrial) internship, to be taken in companies all over the world. In Chemical Engineering, there is a compulsory design project during which a product or process should be developed. Both programmes also require a final graduation project. In both curricula, Nuclear Science and Engineering comprises compulsory and elective courses, which allow students to focus on either health or energy. Examples of courses include Nuclear Science, Nuclear Chemistry, Nuclear Engineering, Reactor Physics, Chemistry of the Nuclear Fuel Cycle, Medical Physics and Radiation Technology and Radiological Health Physics. (Author)

  16. Education of 'nuclear' students (BSc and MSc curricula) at the Faculty of Nuclear Science and Physical Engineering, Czech Technical University in Prague

    International Nuclear Information System (INIS)

    Matejka, K.; Zeman, J.

    2003-01-01

    The Faculty of Nuclear Science and Physical Engineering, Czech Technical University in Prague has been educating nuclear power engineering experts for nearly half a century. The article describes the current status and prospects of education of new specialists at the faculty for all nuclear power-related areas within the MSc and BSc level curricula. The current transition to 'European type' structured education, enabling students who have graduated from the BSc programme to continue smoothly their MSc programme, is outlined. The major courses of the 'Nuclear Engineering' educational specialisation, focused on nuclear power, environment, and dosimetry, are highlighted, including the number of lessons taught in each study year. (author)

  17. Nuclear security education and training at Naif Arab University for Security Sciences

    International Nuclear Information System (INIS)

    Amjad Fataftah

    2009-01-01

    Naif Arab University for Security Sciences (NAUSS) was established in 1978 as an Arab institution specialized in security sciences to fulfill the needs of the Arab law enforcement agencies for an academic institution that promotes research in security sciences, offers graduate education programs and conduct short-term training courses, which should contribute to the prevention and control of crimes in the Arab world. NAUSS and the IAEA organized the first workshop on nuclear security on November, 2006, which aimed to explore and improve the nuclear security culture awareness through the definitions of the nuclear security main pillars, Prevention, Detection and Response. In addition, NAUSS and IAEA organized a very important training course on April, 2008 on combating nuclear terrorism titled P rotection against nuclear terrorism: Protection of radioactive sources . In the past two years, IAEA has put tremendous efforts to develop an education program in nuclear security, which may lead into Master's degree in nuclear security, where NAUSS helped in this project through the participation in the IAEA organized consultancy and technical meetings for the development of this program along with many other academic, security and law enfacement experts and lawyers from many different institution in the world. NAUSS and IAEA drafted a work plan for the next coming two years which should lead into the gradual implementation of these educational programs at NAUSS. NAUSS also continues to participate in several local conferences and symposiums related to the peaceful application of nuclear power in the gulf region, and the need for a human resources development programs to fulfill the scientific and security needs which will arise from building nuclear power plants. NAUSS participated in the International Symposium on the Peaceful Application of Nuclear Technology in the GCC countries, organized by King Abdulaziz University in the city of Jeddah, Saudi Arabia. Also NAUSS

  18. Annual report of the Institute for Nuclear Study, University of Tokyo, 1981

    International Nuclear Information System (INIS)

    1982-01-01

    In this annual report, the research activities and technical developments carried out in the Institute for Nuclear Study during the period from January to December, 1981, are reviewed. Four research divisions are active at present, namely Low Energy Physics, High Energy Physics, Theoretical Physics and the Study Group of High Energy, Heavy Ion Project. The research facilities in the INS are open to all researchers in Japan. In the Low Energy Physics Division, the studies on nuclear structures and nuclear reactions were continued with the SF cyclotron. In the High Energy Physics Division, the studies on photo-reaction were continued with the 1.3 GeV electron synchrotron. The Theoretical Physics Division sponsored various workshops, developed computer programs and promoted collaboration among physicists as a research center of theoretical nuclear and particle physics besides its own activities. The Study Group of High Energy, Heavy Ion Project redesigned the whole accelerator complex, and the studies on heavy ion beam accumulation were advanced, using the accumulator ring ''TARN''. The studies on high energy, heavy ion collision were continued at the Bevalac facility. (Kako, I.)

  19. Future plant of basic research for nuclear energy by university researchers

    International Nuclear Information System (INIS)

    Shibata, Toshikazu

    1984-01-01

    National Committee for Nuclear Energy Research, Japan Science Council has completed a future plan for basic nuclear energy research by university researchers. The JSC has recommended the promotion of basic research for nuclear energy based on the plan in 1983. The future plan consists of four main research fields, namely, (1) improvements of reactor safety, (2) down stream, (3) thorium fuel reactors, and (4) applications of research reactor and radioisotopes. (author)

  20. Current status and future program for nuclear power education in the State University of Skopje

    International Nuclear Information System (INIS)

    Causevski, A.

    2004-01-01

    Nuclear Education in the State University 'Ss. Cyril and Methodius' in Skopje, Macedonia is takes place in few Departments and Faculties. The Nuclear Power and Nuclear Reactors for electricity generation are the fields studied in the Department of Electric Power Systems and Power Plants in the Faculty of Electrical Engineering, Skopje. The paper gives the overview of the current status of nuclear education on the Faculty of Electrical Engineering, as well as the future perspectives and programs for improving. In the current module of Power Engineering, the Nuclear Power is studied in two subjects: Basics of Nuclear Energy, and the second one is Nuclear Power Reactors and Nuclear Power Plants. The new concept of studying will include the new module of 'Power Engineering and Energy Management' with 4 subjects, and some of them are modified, transformed or innovated from the old ones, and the others are totally new courses. In the paper also will include some steps that should be done in order to achieve the targets for new improved nuclear education in the field of nuclear power. (author)

  1. Radiochemistry course in the undergraduate nuclear science program at Universiti Kebangsaan Malaysia

    International Nuclear Information System (INIS)

    Sarmani, S.B.; Yahaya, R.B.; Yasir, M.S.; Majid, A.Ab.; Khoo, K.S.; Rahman, I.A.; Mohamed, F.

    2015-01-01

    Universiti Kebangsaan Malaysia offered an undergraduate degree program in Nuclear Science since 1980 and the programme has undergone several modifications due to changes in national policy and priority. The programme covers nuclear sub-disciplines such as nuclear physics, radiobiology, radiochemistry, radiation chemistry and radiation safety. The radiochemistry component consists of radiochemistry, chemistry in nuclear industry, radiochemical analysis laboratory, radiopharmaceutical chemistry subjects and mini research project in radiochemistry. (author)

  2. Management of the nuclear knowledge and educational strategies in universities

    International Nuclear Information System (INIS)

    Martin del Campo M, C.

    2012-10-01

    An introduction is made to the topic of management of the nuclear knowledge and recommendations are presented for its implementation as a curricular subject in the universities and institutions that have post-graduate programs in the engineering and/or nuclear sciences area. The necessity of incorporating a wide variety of tools and innovative techniques of teaching (for example, simulators, didactic games in computer, e-learning) that assure that the learning will be given in an efficient and lasting way is projected. Some strategies are listed to attract the best students toward the academic programs in nuclear engineering or related. Given the great multidisciplinary of the personnel of a nuclear power station, and the other facilities of the fuel cycle, the importance is pointed out of providing the nuclear foundations to all the workers and directive with different formation to the nuclear area, in an attractive way so that they obtain and assimilate the nuclear foundations that will allow him to work efficiently and with all security. Finally, also an analysis is presented about the advantages that represent the education nets that integrate people or institutions in the national, regional or international ambit, which have been created to initiative of the IAEA, having as objective to share ideas, information, study programs, courses, software and resources in general that support the formation of human resources of very high quality, required by the nuclear facilities and the research centers on advanced technologies, as well as to implement programs of nuclear development to short, medium and long period in our country. (Author)

  3. Nuclear criticality safety program at the University of Tennessee-Knoxville

    International Nuclear Information System (INIS)

    Basoglu, B.; Bentley, C.; Brewer, R.; Dunn, M.; Haught, C.; Plaster, M.; Wilkinson, A.; Dodds, H.; Elliott, E.; Waddell, W.

    1993-01-01

    This paper presents an overview of the nuclear criticality safety (NCS) educational program at the University of Tennessee-Knoxville. The program is an academic specialization for nuclear engineering graduate students pursuing either the MS or PhD degree and includes special NCS courses and NCS research projects. Both the courses and the research projects serve as partial fulfillment of the requirements for the degree being pursued

  4. New curriculum at Nuclear Science Department, National University of Malaysia

    International Nuclear Information System (INIS)

    Shahidan bin Radiman; Ismail bin Bahari

    1995-01-01

    A new undergraduate curriculum at the Department of Nuclear Science, Universiti Kebangsaan Malaysia is discussed. It includes the rational and objective of the new curriculum, course content and expectations due to a rapidly changing job market. The major change was a move to implement only on one Nuclear Science module rather than the present three modules of Radiobiology, Radiochemistry and Nuclear Physics. This will optimise not only laboratory use of facilities but also effectiveness of co-supervision. Other related aspects like industrial training and research exposures for the undergraduates are also discussed

  5. Development of undergraduate nuclear security curriculum at College of Engineering, Universiti Tenaga Nasional

    Science.gov (United States)

    Hamid, Nasri A.; Mujaini, Madihah; Mohamed, Abdul Aziz

    2017-01-01

    The Center for Nuclear Energy (CNE), College of Engineering, Universiti Tenaga Nasional (UNITEN) has a great responsibility to undertake educational activities that promote developing human capital in the area of nuclear engineering and technology. Developing human capital in nuclear through education programs is necessary to support the implementation of nuclear power projects in Malaysia in the near future. In addition, the educational program must also meet the nuclear power industry needs and requirements. In developing a certain curriculum, the contents must comply with the university's Outcomes Based Education (OBE) philosophy. One of the important courses in the nuclear curriculum is in the area of nuclear security. Basically the nuclear security course covers the current issues of law, politics, military strategy, and technology with regard to weapons of mass destruction and related topics in international security, and review legal regulations and political relationship that determine the state of nuclear security at the moment. In addition, the course looks into all aspects of the nuclear safeguards, builds basic knowledge and understanding of nuclear non-proliferation, nuclear forensics and nuclear safeguards in general. The course also discusses tools used to combat nuclear proliferation such as treaties, institutions, multilateral arrangements and technology controls. In this paper, we elaborate the development of undergraduate nuclear security course at the College of Engineering, Universiti Tenaga Nasional. Since the course is categorized as mechanical engineering subject, it must be developed in tandem with the program educational objectives (PEO) of the Bachelor of Mechanical Engineering program. The course outcomes (CO) and transferrable skills are also identified. Furthermore, in aligning the CO with program outcomes (PO), the PO elements need to be emphasized through the CO-PO mapping. As such, all assessments and distribution of Bloom Taxonomy

  6. Experience in nuclear engineering distance education at the University of Tennessee

    International Nuclear Information System (INIS)

    Dodds, H.L.

    2011-01-01

    This paper describes the distance education programs in nuclear engineering at The University of Tennessee (UT), which includes several courses that are of interest to the mathematics and computation community such as reactor theory and design, shielding, statistics, health physics, and criticality safety. All of the courses needed for the MS degree in nuclear engineering and several of the courses needed for the PhD degree in nuclear engineering are delivered synchronously (i.e., interactive in real time) via the Internet to students located anywhere by instructors located anywhere. The paper will also describe the historical development of distance education programs at UT as well as the benefits of the programs to students and to the university. The oral presentation associated with this paper will include a short movie that demonstrates the technology used for distance delivery. (author)

  7. Preservation of nuclear talented experts in Japan by co-operation of industries, research institutes and universities

    International Nuclear Information System (INIS)

    Mori, H.

    2004-01-01

    Full text: Nuclear power accounts for about 35% electric power generation in Japan, playing an important role of energy supply. In addition, a commercial scale reprocessing plant is under construction. A real nuclear fuel cycle is imminently close at hand in Japan. COP3 in Kyoto in 1997 called for every country's fight against global warming. Nuclear power in Japan is expected to take another important role from this viewpoint, too. In order to play these expected roles, it is absolutely needed to preserve nuclear talented experts, by maintaining, succeeding and newly developing nuclear technologies. The Atomic Energy Commission of Japan also points out in its report on 'Long-Term Program for Research, Development and Utilization of Nuclear Energy' that research-and development activities are very important to motivate young researchers and engineers who might choose to take nuclear careers. However, young generation capable students seem to avoid majoring nuclear engineering in view of nuclear industry uncertainties in future caused by stagnated Japanese economy since 1990, liberalization of electricity markets, future electricity demand modest forecasts, matured light water reactor technologies, and repeated nuclear accidents inside and outside the country, etc. Aging research facilities at universities are another de-motivating element of causing the reduction of qualifiable students. Consequently, preservation of knowledge and expertise is becoming a big concern for future. According to the survey conducted by the Japan Atomic Industrial Forum (JAIF) over two years since 2002, participated by the members from nuclear industries, universities, research organizations, electricity industries, nuclear plant suppliers and construction contractors, as well as the questionnaire sent to students, there are various issues for preservation of nuclear talented experts in Japan. Although the number of graduates on nuclear engineering is actually about 350 every year, and

  8. University Research Collaborations on Nuclear Technology: A Legal Framework

    International Nuclear Information System (INIS)

    Nagakoshi, Y.

    2016-01-01

    Full text: International nuclear research collaborations are becoming increasingly important as the need for environmentally sound and safe energy technology grows. Despite having its risk, the benefits of using nuclear energy cannot be overlooked considering the energy crisis the world is facing. In order to maximize the safety of existing technology and promoting safe ways of taking advantage of nuclear energy, collaborative efforts of all who are involved in nuclear technology is necessary, regardless of national borders or affiliation. Non-conventional use of nuclear energy shall also be sought after in order to reduce greenhouse gas emission and to overcome the energy crisis the world is facing. It is therefore important that international collaborations among research institutes are promoted. Collaboration amongst universities poses a series of legal questions on how to form the framework, how to protect individual and communal inventions and how to share the fruits of the invention. This paper proposes a possible framework of collaboration and elaborates on possible legal issues and solutions. (author

  9. The World Nuclear University and its Summer Institute

    Energy Technology Data Exchange (ETDEWEB)

    Borysova, Irina [World Nuclear Association - WNA, Summer Institute of the World Nuclear University - WNU, 22a Saint James' s Sq., SW1Y 4JH London (United Kingdom)

    2008-07-01

    The World Nuclear University is a global partnership committed to enhancing international education and leadership in the peaceful applications of nuclear science and technology. The central elements of the WNU partnership are: - The global organizations of the nuclear industry: WNA and WANO; - The inter-governmental nuclear agencies: IAEA and OECD-NEA; - Leading institutions of nuclear learning in some thirty countries. The WNU was inaugurated in 2003 as a non-profit corporation. Operationally, the WNU is a public-private partnership. On the public side, the WNUCC's multinational secretariat is composed mainly of nuclear professionals supplied by governments; the IAEA further assists with financial support for certain WNU activities. On the private side, the nuclear industry provides administrative, logistical and financial support via the WNA. WNU activities fall into six programmatic categories: 1. Facilitate Multinational Academic Cooperation. 2. Build Nuclear Leadership. 3. Foster Policy Consensus on Institutional and Technological Innovation. 4. Enhance Public Understanding. 5. Shape Scientific and Regulatory Consensus on Issues Affecting Nuclear Operations. 6. Strengthen International Workforce Professionalism. This presentation will describe the WNU programmes addressed to young professionals. Among such programmes, the flagship of the WNU is the WNU Summer Institute. This unique six-week course occurs in a different country each year, offering an inspiring career opportunity for some 100 outstanding young nuclear professionals and academics from around the world. The WNU-SI programme combines an extensive series of 'big picture' presentations from world-class experts with daily team-building exercises. In the process, WNU Fellows become part of a global network of future nuclear leaders. Other WNU programmes for younger generation in the nuclear industry will also be briefly covered in this presentation. (author)

  10. Lecture notes of the technical training curriculum of the Institute of Nuclear Study, University of Tokyo, 1990

    International Nuclear Information System (INIS)

    1993-06-01

    This report is a transcript of lectures for the technical staff, held in the Institute of Nuclear Study, University of Tokyo, from November 1990 to April 1992. Following themes are included in this report. (1) Cyclotron technology, (2) measuring technology of the peripheral devices for cyclotron, (3) heavy ion cyclotron technology, (4) beam cooling technology, (5) proton linac technology, (6) heavy ion linac technology, (7) measuring technology of electron and its equipments, (8) the latest high energy large experimental device and its measurement (HERA, ZENS experiment), (9) superconducting kaon spectrometer (SKS) and large superconducting magnet, (10) present status of the precision technology for accelerators, (11) the computer as basic technology of elementary particle and nuclear experiments, (12) present status of radiation management and measurement technology, (13) handling and processing method of the hazardous materials, (14) analog technology of the equipments for accelerators, and the summary of NIRS-Heavy Ion Medical Accelerator in Chiba (HIMAC). (T.F.)

  11. Undergraduate courses in nuclear engineering in Italian universities: Cultural and practical aspects

    International Nuclear Information System (INIS)

    Guerrini, B.; Lombardi, C.; Naviglio, A.; Oliveri, E.; Panella, B.; Sobrero, E.

    1992-01-01

    The contents of the undergraduate courses given in Italian nuclear engineering faculties are analyzed, showing the validity of this professional profile also with reference to non-nuclear applications including relevant safety issues and the management of complex projects. The role of Italian universities is stressed, in the defense of knowledge and capability in the nuclear sector, also with reference to the years of the nuclear 'moratoria' decided at the political level after public consultation. The prospects of Italian nuclear engineers are examined, with reference to the European labour market

  12. Annual report of Research Center for Nuclear Physics, Osaka University. 1994 (April 1, 1994 - March, 31, 1995)

    International Nuclear Information System (INIS)

    Itahashi, Takahisa; Futakuchi, Atsuko

    1995-01-01

    This report is a compilation of the research activities and operations of the Research Center For Nuclear Physics (RCNP), Osaka University, during the period of the academic year 1994, April 1994 to March 1995. RCNP is the national laboratory for nuclear physics in Japan. The AVF cyclotron with K = 0.14GeV and the ring cyclotron with K = 0.4GeV and E P = 0.4GeV are the major user facilities at RCNP. They have been extensively used for studying nuclear nucleon-meson systems. All facilities are open for users from universities and research institutes in Japan as well as those in foreign countries. The research activities at the RCNP cyclotron laboratory include studies of nuclear interactions and nuclear potentials, spin isospin excitations and decays nuclear reaction dynamics and others. Studies of solid state and atomic physics and medical applications were carried out also at the cyclotron laboratory. New external ion sources have been instaled for the injector cyclotron. New extensions of the RCNP research activities are under progress. One is the possible use of the 8 GeV electron storage ring built at the synchrotron radiation laboratory SPring-8. It is located 100 Km west of Osaka. It is expected to start its operation in 1997. The Compton back-scattering of laser photons from the 8 GeV electron beam provides 1-3.5 GeV γ-rays, which are very promising for studying nuclear quark and meson systems. Other is the non-accelerator physics for ultra-rare nuclear processes at the new under ground laboratory 'Ohto Cosmo Observatory'. It is located 100 km south of Osaka. Neutrino studies by investigating double beta decays, dark matter studies by investigating nuclear responses to them, and studies of other weak processes are planned to be studied there. (J.P.N.)

  13. Risk perception of nuclear power plants among university students in Northeast Asia after the Fukushima nuclear disaster.

    Science.gov (United States)

    Ieong, Marco Chi Fong; Ho, Jung-Chun; Lee, Patricia Chiao-Tze; Hokama, Tomiko; Gima, Tsugiko; Luo, Lingling; Sohn, Myongsei; Kim, So Yoon; Kao, Shu-Fen; Hsieh, Wanhwa Annie; Chang, Hung-Lun; Chang, Peter Wu-Shou

    2014-11-01

    To examine the perception of nuclear energy risks among Asian university students following the Fukushima nuclear disaster, a standardized questionnaire survey was conducted since July 2011 after the Fukushima disaster. A total of 1814 respondents from 18 universities in China, Japan, Korea, and Taiwan participated in this survey. It showed that students with the following characteristics had a higher preference for "a clear schedule to phase out nuclear power plant (NPP)": females (adjusted odds ratio [aOR] = 1.84, 95% confidence interval [CI] = 1.44-2.34), in Japan (aOR = 2.81, 95% CI = 2.02-3.90), in China (aOR = 1.48, 95% CI = 1.04-2.09), and with perceived relative risks of cancer incidence greaterthan 1 (aOR = 1.42, 95% CI = 1.07-1.88). "If nuclear energy were phased out," the opinions on potential electricity shortage were as follows: Japan, aOR = 0.53, 95% CI = 0.40-0.69; China, aOR = 2.46, 95% CI = 1.75-3.45; and associated with academic majors (science/technology, aOR = 0.43, 95% CI = 0.31-0.59; medicine/health science, aOR = 0.64, 95% CI = 0.49-0.84). The results carried essential messages for nuclear energy policy in East Asia. © 2014 APJPH.

  14. A Unique Master's Program in Combined Nuclear Technology and Nuclear Chemistry at Chalmers University of Technology, Sweden

    International Nuclear Information System (INIS)

    Skarnemark, Gunnar; Allard, Stefan; Ekberg, Christian; Nordlund, Anders

    2009-01-01

    The need for engineers and scientists who can ensure safe and secure use of nuclear energy is large in Sweden and internationally. Chalmers University of Technology is therefore launching a new 2-year master's program in Nuclear Engineering, with start from the autumn of 2009. The program is open to Swedish and foreign students. The program starts with compulsory courses dealing with the basics of nuclear chemistry and physics, radiation protection, nuclear power and reactors, nuclear fuel supply, nuclear waste management and nuclear safety and security. There are also compulsory courses in nuclear industry applications and sustainable energy futures. The subsequent elective courses can be chosen freely but there is also a possibility to choose informal tracks that concentrate on nuclear chemistry or reactor technology and physics. The nuclear chemistry track comprises courses in e.g. chemistry of lanthanides, actinides and transactinides, solvent extraction, radioecology and radioanalytical chemistry and radiopharmaceuticals. The program is finished with a one semester thesis project. This is probably a unique master program in the sense of its combination of deep courses in both nuclear technology and nuclear chemistry.

  15. Nuclear engineering training and advanced training at universities and in manufacturing industries

    International Nuclear Information System (INIS)

    Sauer, A.

    1984-01-01

    The lecture describes: the qualification of the staff of one nuclear power plant building company, the structure of university studies in the Federal Republic of Germany, in the USA and in the GDR, technical colleges, continuation studies, in-service training in the manufacturing industry, training programmes for short-term benefits, training of German and foreign operating personnel by the manufacturers, training within the framework of technology transfer. (HSCH) [de

  16. University of Washington, Nuclear Physics Laboratory annual report, 1995

    International Nuclear Information System (INIS)

    1995-04-01

    The Nuclear Physics Laboratory of the University of Washington supports a broad program of experimental physics research. The current program includes in-house research using the local tandem Van de Graff and superconducting linac accelerators and non-accelerator research in double beta decay and gravitation as well as user-mode research at large accelerator and reactor facilities around the world. This book is divided into the following areas: nuclear astrophysics; neutrino physics; nucleus-nucleus reactions; fundamental symmetries and weak interactions; accelerator mass spectrometry; atomic and molecular clusters; ultra-relativistic heavy ion collisions; external users; electronics, computing, and detector infrastructure; Van de Graff, superconducting booster and ion sources; nuclear physics laboratory personnel; degrees granted for 1994--1995; and list of publications from 1994--1995

  17. University of Colorado at Boulder Nuclear Physics Laboratory technical progress report

    International Nuclear Information System (INIS)

    Peterson, R.J.

    1991-01-01

    This report summarizes experimental work carried out between October 1, 1990, the closing of our Progress Report, and August 14, 1991 at the Nuclear Physics Laboratory of the University of Colorado, Boulder, under contract DE-FG02-ER40269 with the United States Department of Energy. This contract supports broadly based experimental work in intermediate energy nuclear physics. The program includes pion-nucleon studies at TRIUMF and LAMPF, inelastic pion scattering and charge exchange reactions at LAMPF, and nucleon charge exchange at LAMPF/NTOF. The first results of spin-transfer observables in the isovector (rvec p,rvec n) reaction are included in this report. Our data confirm the tentative result from (rvec p,rvec p') reactions that the nuclear isovector spin response shows neither longitudinal enhancement nor transverse queching. Our program in quasifree scattering of high energy pions shows solid evidence of isoscalar enhancement of the nuclear nonspin response. We include several comparisons of the quasifree scattering of different probes. Results from our efforts in the design of accelerator RF cavities are also included in this report

  18. Expert training on physical protection of nuclear materials at universities of Russia

    International Nuclear Information System (INIS)

    Pogozhin, N.S.; Bondarev, P.V.; Geraskin, N.I.; Kryuchkov, E.F.; Tolstoy, A.I.

    2002-01-01

    specialty, but also in teaching separate disciplines concerning various components of PPS. Thus the approach of consecutive study of base and special themes is implemented. Besides the long practice on one of the enterprises of nuclear branch, preparation and protection of a degree project of a practical orientation are stipulated. The Ministry of Education of Russia coordinates the expert training on MPCA. It approves the state educational standards determining requirement to a level of the expert training on each specialty or direction and licenses educational activity of separate universities on a certain specialty or direction. At present the most complete practical experience of the expert training on MPCA is accumulated at the Moscow Engineering Physics Institute (State University) (MEPhl). Thus in development of the curricula and the educational programs and in creation of educational, laboratory and methodical base the US National Laboratories at financial support of US Department of Energy have-accepted the most active participation. The curricula and the educational programs for the expert training on MPCA and results of practical work on the expert training accumulated at MEPhl for the last live years are submitted in the report. (author)

  19. Compilation status and research topics in Hokkaido University Nuclear Reaction Data Centre

    International Nuclear Information System (INIS)

    Aikawa, M.; Furutachi, N.; Katō, K.; Ebata, S.; Ichinkhorloo, D.; Imai, S.; Sarsembayeva, A.; Zhou, B.; Otuka, N.

    2015-01-01

    Nuclear reaction data are necessary and applicable for many application fields. The nuclear reaction data must be compiled into a database for convenient availability. One such database is the EXFOR database maintained by the International Network of Nuclear Reaction Data Centres (NRDC). As a member of the NRDC, the Hokkaido University Nuclear Reaction Data Centre (JCPRG) compiles charged-particle induced reaction data and contributes about 10 percent of the EXFOR database. In this paper, we show the recent compilation status and related research topics of JCPRG. (author)

  20. Advanced Nuclear Applications in Medicinr at Chiang Mai University

    International Nuclear Information System (INIS)

    Vilasdechanon, Nonglak

    2015-01-01

    The atomic energy applications in Faculty of Medicine, Chiang Mai University (CMU) are mainly performed by department of Radiology that is divided into three dicisions: 1) Diagnostic Radiology Division for the applications of X-rays, ultrasound, and magnetic resonance, 2) Therapeutic Radiology and Oncology Division for cancer treatments by photon accelrator and external radionuclides therapy or brachytherapy, 3) Nuclear Meddicine Division for clinical dignosis by using radionuclide scintigraphy, targeted molecular imaging and internal radionuclide therapy. In the last decade, many advanced medical images for clinical diagnosis included of digital & computed radiology (DR & CR), digital subtraction angiography (DSA) and images (DSI), computed tomography (CT) with dual X-rays energies, manetic resonance imaging (MRI), and hybrid images of SPECT/CT were established in Radiology Department and PET/CT Cyclitron Center Chiang Mai University (PCCMU), respectively. For cancer treatments, the frontier technologies in radiation oncligy therapy such as tomotherapy, IMRT, 3D conformal radiation treatment, stereotactic radiationtherapy (SRT), stereotactic radiation surgery (SRS), and radiation biology laboratory were implemented in the department as well. As far as fast development of nuclear technology in medicine, future implementation of advanced nuclear applications in medicine strongly need an intergrated knoowledge from many specialties e.g. computer softeare in image reconstruction, accuracy and and precision technology, production of specific radiotracers for molecular imaging and therapy, techniques in radionuclide productions, innovation of new wquipment or materials for radiationprotection and safety, etc. However the most important factors of nuclear applications in medicine are the vision, mission and the value statements of the organization on the high cost in radiology investment and human resources development. We have to emphasize that people who are involved

  1. Status of University of Cincinnati reactor-site nuclear engineering graduate programs

    International Nuclear Information System (INIS)

    Anno, J.N.; Christenson, J.M.; Eckart, L.E.

    1993-01-01

    The University of Cincinnati (UC) nuclear engineering program faculty has now had 12 yr of experience in delivering reactor-site educational programs to nuclear power plant technical personnel. Currently, with the sponsorship of the Toledo-Edison Company (TED), we are conducting a multiyear on-site graduate program with more than 30 participants at the Davis-Besse nuclear power plant. The program enables TED employees with the proper academic background to earn a master of science (MS) degree in nuclear engineering (mechanical engineering option). This paper presents a brief history of tile evolution of UC reactor-site educational programs together with a description of the progress of the current program

  2. Experience in Implementation of “Nuclear Knowledge Management” Course at the National Research Nuclear University MEPhI

    International Nuclear Information System (INIS)

    Geraskin, N.; Kossilov, A.; Kulikov, E.

    2016-01-01

    Full text: The present paper describes the experience of teaching “Nuclear Knowledge Management” course at National Research Nuclear University MEPhI (NRNU MEPhI). Currently, the course is implemented both in engineer’s and master’s of science degree programmes and is attended by over 50 students. Goal, objectives and syllabus of the course are discussed in detail. A special attention is paid to practical exercises and final examination options in the case of small and large student groups. The course is supported by the Cyber Learning Platform for Nuclear Education and Training (CLP4NET), developed by the IAEA. The experience of NRNU MEPhI lecturers assisting in conducting the International School of Nuclear Knowledge Management, held annually in Trieste (Italy), is described with a special attention to the fact, that the course has passed the certification process at Academical Council of NRNU MEPhI. In 2014 and 2015 the course has been recognized as one of the best ones in NRNU MEPhI. Finally, perspectives of “Nuclear Knowledge Management” course are considered. They include increase of the course duration, introduction of the course into the learning process of other departments and institutions of the university, and transferring the course to other members of the Association “Consortium of ROSATOM supporting universities”. (author

  3. Nuclear technology education at the new AKR-2 of the technical university Dresden

    International Nuclear Information System (INIS)

    Hansen, W.; Wolf, T.; Hurtado, A.

    2009-01-01

    The former research and training reactor AKR-1 was completely renewed, including the peripheral technical systems and the modernization of the reactor instrumentation with digital control technology. After licensing by the local authorities the technical University Dresden has Germany's latest training reactor. Basic experiments are performed for the following disciplines: nuclear energy technology, physics, teacher training, industrial engineering, nuclear medicine. Training courses cover nuclear medicine, nuclear physics, radiation protection and reactor physics. Further tasks include research program on neutron detectors, neutron physics, radiation spectroscopy, nuclear data bases.

  4. Nuclear renaissance and role of university research and education in the US

    International Nuclear Information System (INIS)

    Vujic, Jasmina; Ahn, Joonhong

    2008-01-01

    Utilization of nuclear power has been recognized as an effective measure for slowing down global warming and relaxing tight demand-supply situation for energy, as China, India, Brazil and Russia are emerging as new economies. After more than three decades of no new orders, more than two dozens of new nuclear power plants are currently being planned for construction in the US. As nuclear energy utilization expands, challenges have also been recognized: proliferation of nuclear materials, spent fuel and waste management, higher levels of nuclear safety, and uranium resources availability. The Global Nuclear Energy Partnership (GNEP) strongly supports the development of advanced nuclear technology. The impacts, economics, and risks of the nuclear fuel cycle are the most challenging policy issues facing the country. There are various technological options for reactors, separation processes, repository concepts, etc. Deployment will take as long as a century or longer. We need to make right decisions for selecting those technologies. The downward trend in 1980's and early 1990's and emerging complicated issues of waste management, proliferation resistance and strong public skepticism negatively impacted university education. The enrollments and degrees awarded declined sharply in the 1990's. While this trend is being reversed currently, we need a good plan to restore educational programs to develop innovative solutions for complicated, coupled problems of energy resources, environmental impact reduction, nuclear security and safety, and economics. University needs to develop educational programs with innovative approaches. Cross-disciplinary training is critical in the energy field. The nuclear energy power sector should be more fully integrated into energy planning and evaluation across a wide range of energy technologies and systems. (author)

  5. Nuclear Safeguards and Non-Proliferation Education at Texas A&M University

    International Nuclear Information System (INIS)

    Gariazzo, C.; Charlton, W.

    2015-01-01

    The MS degree in Nuclear Engineering - Non-proliferation at Texas A&M University is administered by the Nuclear Security Science and Policy Institute (NSSPI). The oldest and largest of its kind in the US, 45 M.S. and 15 Ph.D. students conducted technical research in relevant areas: safeguards, nuclear security, non-proliferation, and arms control. In addition to focusing on graduate education with a wide combination of internationally-recognized talent, NSSPI faculty lead research and service activities in safeguarding of nuclear materials and reducing nuclear threats. Texas A&M Nuclear Engineering students take relevant nonproliferation and safeguards courses (within the College of Engineering and the Texas A&M Bush School of Government) as well as conduct their research under competent experts. The complete educational experience here is unique because of the strong research and educational support NSSPI provides. This paper will detail these endeavors and convey contributions from NSSPI for developing next-generation safeguards experts via practical experiences and strong affiliations with real-world practitioners. The safeguards and non-proliferation education programme blends historical, legal, technical and policy aspects that is unique for a technical university such as Texas A&M. Beyond classroom lectures, NSSPI provides opportunities for students ranging from asynchronous learning modules to practical experiences. Publicly-available self-paced, online course modules in basic and advanced safeguards education have been developed by NSSPI as supplemental nuclear education for students and professionals. By leveraging NSSPI's contacts, students participate in exchange programmes with international institutions as well as partake in experiences like engaging safeguards practitioners at nuclear fuel cycle facilities around the world, conducting experiments at internationally-renowned laboratories, and representing their communities at workshops worldwide

  6. Nuclear Physics Division, Institute of Experimental Physics, Warsaw University Annual Report 1996

    Energy Technology Data Exchange (ETDEWEB)

    Szeflinski, Z.; Popkiewicz, M. [eds.

    1997-12-31

    In the presented report the research activities of Nuclear Physics Division (NPD) of the Institute of Experimental Physics (Warsaw University) in year 1996 are described. The report is divided into three parts: Reaction mechanisms and nuclear structure; Experimental methods and instrumentation and the third part contains the list of personnel, seminars held at the Nuclear Physics Division and published papers. A summary of the (NPD) activities are briefly presented in ``Preface`` by NPD director prof. Ch. Droste.

  7. Nuclear Physics Division, Institute of Experimental Physics, Warsaw University annual report 1997

    Energy Technology Data Exchange (ETDEWEB)

    Szeflinski, Z.; Kirejczyk, M.; Popkiewicz, M. [eds.

    1998-08-01

    In the presented report the research activities of Nuclear Physics Division (NPD) of the Institute of Experimental Physics (Warsaw University) in year 1997 are described. The report is divided into three parts: Reaction Mechanisms and Nuclear Structure, Experimental Methods and Instrumentation and the third one contain the lists of personnel, seminars held at the Nuclear Physics Division and published papers. A summary of the (NPD) activities are briefly presented in ``Preface`` written by NDP director prof. K. Siwek-Wilczynska

  8. Nuclear Physics Division, Institute of Experimental Physics, Warsaw University annual report 1997

    International Nuclear Information System (INIS)

    Szeflinski, Z.; Kirejczyk, M.; Popkiewicz, M.

    1998-01-01

    In the presented report the research activities of Nuclear Physics Division (NPD) of the Institute of Experimental Physics (Warsaw University) in year 1997 are described. The report is divided into three parts: Reaction Mechanisms and Nuclear Structure, Experimental Methods and Instrumentation and the third one contain the lists of personnel, seminars held at the Nuclear Physics Division and published papers. A summary of the (NPD) activities are briefly presented in ''Preface'' written by NDP director prof. K. Siwek-Wilczynska

  9. Nuclear Physics Division, Institute of Experimental Physics, Warsaw University Annual Report 1996

    International Nuclear Information System (INIS)

    Szeflinski, Z.; Popkiewicz, M.

    1997-01-01

    In the presented report the research activities of Nuclear Physics Division (NPD) of the Institute of Experimental Physics (Warsaw University) in year 1996 are described. The report is divided into three parts: Reaction mechanisms and nuclear structure; Experimental methods and instrumentation and the third part contains the list of personnel, seminars held at the Nuclear Physics Division and published papers. A summary of the (NPD) activities are briefly presented in ''Preface'' by NPD director prof. Ch. Droste

  10. Reorganization and the present situation of the department of nuclear engineering of the national universities in Japan

    International Nuclear Information System (INIS)

    Kiyanagi, Yoshiaki; Tanaka, Satoru; Imanishi, Nobutsugu; Takeda, Toshikazu; Kudo, Kazuhiko

    2000-01-01

    On July 1999, the 36th Conference on Isotopes in Physics and Engineering was held, where a panel discussion titled on 'new development on nuclear energy and radiation education at universities' was carried out. In the discussion, reports from every universities were stated and some opinion exchanges were carried out. Every representatives of faculty mentioned not only on how nuclear energy and radiation education became, but also on general problems on recent engineering education (for example, what education is aimed under maintenance of what cooperation with the other faculties and specialties). Here were introduced on five cases of typical universities in Japan (Hokkaido, Tokyo, Kyoto, Osaka, and Kyushu Universities), where present states and future scopes in the Nuclear Engineering Faculty and its graduate school were described at a standpoint of their educational researches on nuclear energy. (G.K.)

  11. Nuclear criticality research at the University of New Mexico

    International Nuclear Information System (INIS)

    Busch, R.D.

    1997-01-01

    Two projects at the University of New Mexico are briefly described. The university's Chemical and Nuclear Engineering Department has completed the final draft of a primer for MCNP4A, which it plans to publish soon. The primer was written to help an analyst who has little experience with the MCNP code to perform criticality safety analyses. In addition, the department has carried out a series of approach-to-critical experiments on the SHEBA-II, a UO 2 F 2 solution critical assembly at Los Alamos National Laboratory. The results obtained differed slightly from what was predicted by the TWODANT code

  12. Research activities of the nuclear graphite research group at the University of Manchester, UK

    International Nuclear Information System (INIS)

    Marsden, B.J.; Fok, A.S.L.; Marrow, J.; Mummery, P.

    2004-01-01

    In 2001 the Nuclear Safety Division (NSD) of the UK Health and Safety Executive (HSE) decided to underwrite the Nuclear Graphite Research Group (NGRG) at the University of Manchester, UK with the aim of providing a source of independent research and advice to the HSE (NSD). Since then the group has rapidly expanded to 16 members and attracted considerable funding from the nuclear power industry and the regulator for a wide range of research and consultancy work. It is now also part of the Material Performance Centre within the BNFL Universities Research Alliance. Extensive collaboration exists between the group and other nuclear research institutes, both in the UK and overseas. This paper briefly describes some of the research programmes being carried out by the NGRG at Manchester. (author)

  13. Lessons Learned on University Education Programs of Chemical Engineering Principles for Nuclear Plant Operations - 13588

    International Nuclear Information System (INIS)

    Ryu, Jun-hyung

    2013-01-01

    University education aims to supply qualified human resources for industries. In complex large scale engineering systems such as nuclear power plants, the importance of qualified human resources cannot be underestimated. The corresponding education program should involve many topics systematically. Recently a nuclear engineering program has been initiated in Dongguk University, South Korea. The current education program focuses on undergraduate level nuclear engineering students. Our main objective is to provide industries fresh engineers with the understanding on the interconnection of local parts and the entire systems of nuclear power plants and the associated systems. From the experience there is a huge opportunity for chemical engineering disciple in the context of giving macroscopic overview on nuclear power plant and waste treatment management by strengthening the analyzing capability of fundamental situations. (authors)

  14. Nuclear Physics Division - Inst. of Experimental Physics - Warsaw University - Annual Report 2003

    International Nuclear Information System (INIS)

    Kirejczyk, M.; Skwira, I.; Grodner, E.

    2004-01-01

    In the presented report the research activities of Nuclear Physics Division (NPD) of the Warsaw University Institute of Experimental Physics in year of 2003 are described. The report is divided into three parts: Reaction Mechanisms and Nuclear Structure, Experimental Methods and Instrumentation and the third one contain the lists of personnel, seminars held at the Nuclear Physics Division and list of published papers. A summary of the (NPD) activities are briefly presented in ''Preface'' written by NPD director prof. K. Siwek-Wilczynska

  15. Nuclear Physics Division - Inst. of Experimental Physics - Warsaw University - Annual Report 1998

    International Nuclear Information System (INIS)

    Kirejczyk, M.; Szeflinski, Z.

    1999-01-01

    In the presented report the research activities of Nuclear Physics Division (NPD) of the Warsaw University Institute of Experimental Physics in year of 1998 are described. The report is divided into three parts: Reaction Mechanisms and Nuclear Structure, Experimental Methods and Instrumentation and the third one contains the lists of personnel, seminars held at the Nuclear Physics Division and list of published papers. A summary of the (NPD) activities are briefly presented in ''Preface'' written by NDP director prof. K. Siwek-Wilczynska

  16. Nuclear Physics Division - Inst. of Experimental Physics - Warsaw University - Annual Report 2004

    International Nuclear Information System (INIS)

    Kirejczyk, M.K.

    2005-01-01

    In the presented report the research activities of Nuclear Physics Division (NPD) of the Warsaw University Institute of Experimental Physics in year of 2004 are described. The report is divided into three parts: Reaction Mechanisms and Nuclear Structure, Experimental Methods and Instrumentation and the third one contains the lists of personnel, seminars held at the Nuclear Physics Division and list of published papers. A summary of the (NPD) activities are briefly presented in ''Preface'' written by NDP director prof. K. Siwek-Wilczynska

  17. Nuclear Physics Division - Inst. of Experimental Physics - Warsaw University - Annual Report 1998

    Energy Technology Data Exchange (ETDEWEB)

    Kirejczyk, M.; Szeflinski, Z. [eds.

    1999-08-01

    In the presented report the research activities of Nuclear Physics Division (NPD) of the Warsaw University Institute of Experimental Physics in year of 1998 are described. The report is divided into three parts: Reaction Mechanisms and Nuclear Structure, Experimental Methods and Instrumentation and the third one contains the lists of personnel, seminars held at the Nuclear Physics Division and list of published papers. A summary of the (NPD) activities are briefly presented in ``Preface`` written by NDP director prof. K. Siwek-Wilczynska

  18. Nuclear Physics Division - Inst. of Experimental Physics - Warsaw University - Annual Report 2000

    International Nuclear Information System (INIS)

    Kirejczyk, M.

    2001-01-01

    In the presented report the research activities of Nuclear Physics Division (NPD) of the Warsaw University Institute of Experimental Physics in year of 2000 are described. The report is divided into three parts: Reaction Mechanisms and Nuclear Structure, Experimental Methods and Instrumentation and the third one contain the lists of personnel, seminars held at the Nuclear Physics Division and list of published papers. A summary of the (NPD) activities are briefly presented in 'Preface' written by NDP director prof. K. Siwek-Wilczynska

  19. Nuclear Physics Division - Inst. of Experimental Physics - Warsaw University - Annual Report 2001

    International Nuclear Information System (INIS)

    Kirejczyk, M.

    2001-01-01

    In the presented report the research activities of Nuclear Physics Division (NPD) of the Warsaw University Institute of Experimental Physics in year of 2001 are described. The report is divided into three parts: Reaction Mechanisms and Nuclear Structure, Experimental Methods and Instrumentation and the third one which contain the lists of personnel, seminars held at the Nuclear Physics Division and list of published papers. A summary of the (NPD) activities are briefly presented in ''Preface'' written by NPD director prof. K. Siwek-Wilczynska

  20. Nuclear Physics Division - Inst. of Experimental Physics - Warsaw University - Annual Report 1999

    International Nuclear Information System (INIS)

    Kirejczyk, M.

    2000-01-01

    In the presented report the research activities of Nuclear Physics Division (NPD) of the Warsaw University Institute of Experimental Physics in year of 1999 are described. The report is divided into three parts: Reaction Mechanisms and Nuclear Structure, Experimental Methods and Instrumentation and the third one contain the lists of personnel, seminars held at the Nuclear Physics Division and list of published papers. A summary of the (NPD) activities are briefly presented in ''Preface'' written by NDP director prof. K. Siwek-Wilczynska

  1. Perspectives of cooperation of the L.N. Gumilev Eurasian State University and Institute of Nuclear Physics of the National Nuclear Center of the Republic of Kazakhstan

    International Nuclear Information System (INIS)

    Zholdasbekov, M.Zh.; Donbaev, K.M.; Kadyrzhanov, K.K.

    2001-01-01

    It is noted, that one of a modern tendency in development both science and education in CIS and Kazakhstan is its step-by-step integration. For purpose of further development of scientific trends in physics field the agreement on cooperative activity between the L.N. Gumilev Eurasian State University and Institute of Nuclear Physics of the National Nuclear Center of the Republic of Kazakhstan was concluded (2000, November 18). The principle aim of the cooperative activity of the sides is conducting of fundamental and applied studies on solid state physics, nuclear physics, radioecological problems of the Astana town and development of science-intensive technologies. For realization of this task the Astana Filial of Institute of Nuclear Physics is established at the University. In particularly, on the ground of this cooperation the implementation of Inter-disciplinary Research Complex with heavy ion accelerator was initiated. Such accelerator could be used for the scientific researches, training of students and postgraduates, and different technological purposes

  2. Nuclear Power Engineering Education Program, University of Illinois

    International Nuclear Information System (INIS)

    Jones, B.G.

    1993-01-01

    The DOE/CECo Nuclear Power Engineering Education Program at the University of Illinois in its first year has significantly impacted the quality of the power education which our students receive. It has contributed to: the recently completed upgrade of the console of our Advanced TRIGA reactor which increases the reactor's utility for training, the procurement of new equipment to upgrade and refurbish several of the undergraduate laboratory set-ups, and the procurement of computational workstations in support of the instructional computing laboratory. In addition, smaller amounts of funds were used for the recruitment and retention of top quality graduate students, the support of faculty to visit other institutions to attract top students into the discipline, and to provide funds for faculty to participate in short courses to improve their skills and background in the power area. These items and activities have helped elevate in the student's perspective the role of nuclear power in the discipline. We feel this is having a favorable impact on student career selection and on ensuring the continued supply of well educated nuclear engineering graduates

  3. Nuclear materials teaching and research at the University of California, Berkeley

    International Nuclear Information System (INIS)

    Olander, D.R.; Roberts, J.T.A.

    1985-01-01

    In academic nuclear engineering departments, research and teaching in the specialized subdiscipline of nuclear materials is usually a one-person or at best a two-person operation. These subcritical sizes invariably result in inadequate overall representation of the many topics in nuclear materials in the research program of the department, although broader coverage of the field is possible in course offerings. Even in course-work, the full range of materials problems important in nuclear technology cannot be dealt with in detail because the small number of faculty involved restricts staffing to as little as a single summary course and generally no more than three courses in this specialty. The contents of the two nuclear materials courses taught at the University of California at Berkeley are listed. Materials research in most US nuclear engineering departments focuses on irradiation effects on metals, but at UC Berkeley, the principal interest is in the high-temperature materials chemistry of UO 2 fuel and Zircaloy cladding

  4. Nuclear spectroscopic studies. Progress report, June 1, 1980-May 31, 1981

    International Nuclear Information System (INIS)

    Bingham, C.R.; Riedinger, L.L.; Guidry, M.W.

    1981-01-01

    Research in nuclear spectroscopy at University of Tennessee from June 1980 through May 1981 is summarized. Topics covered include: radioactive decay studies; high spin states; inelastic scattering and reactions of heavy ions from deformed nuclei; and nuclear structure theory

  5. Nuclear spectroscopic studies

    Energy Technology Data Exchange (ETDEWEB)

    Bingham, C.R.; Guidry, M.W.; Riedinger, L.L.; Sorensen, S.P.

    1993-02-08

    The Nuclear Physics group at the University of Tennessee, Knoxville is involved in several aspects of heavy-ion physics including both nuclear structure and reaction mechanisms. While our main emphasis is on experimental problems involving heavy-ion accelerators, we have maintained a strong collaboration with several theorists in order to best pursue the physics of our measurements. During the last year we have led several experiments at the Holifield Heavy Ion Research Facility and participated in others at Argonne National Laboratory. Also, we continue to be very active in the collaboration to study ultra-relativistic heavy ion physics utilizing the SPS accelerator at CERN in Geneva, Switzerland and in a RHIC detector R D project. Our experimental work is in four broad areas: (1) the structure of nuclei at high angular momentum, (2) heavy-ion induced transfer reactions, (3) the structure of nuclei far from stability, and (4) ultra-relativistic heavy-ion physics. The results of studies in these particular areas will be described in this document in sections IIA, IIB, IIC, and IID, respectively. Areas (1), (3), and (4) concentrate on the structure of nuclear matter in extreme conditions of rotational motion, imbalance of neutrons and protons, or very high temperature and density. Area (2) pursues the transfer of nucleons to states with high angular momentum, both to learn about their structure and to understand the transfer of particles, energy, and angular momentum in collisions between heavy ions. An important component of our program is the strong emphasis on the theoretical aspects of nuclear structure and reactions.

  6. Nuclear spectroscopic studies

    International Nuclear Information System (INIS)

    Bingham, C.R.; Guidry, M.W.; Riedinger, L.L.; Sorensen, S.P.

    1993-01-01

    The Nuclear Physics group at the University of Tennessee, Knoxville is involved in several aspects of heavy-ion physics including both nuclear structure and reaction mechanisms. While our main emphasis is on experimental problems involving heavy-ion accelerators, we have maintained a strong collaboration with several theorists in order to best pursue the physics of our measurements. During the last year we have led several experiments at the Holifield Heavy Ion Research Facility and participated in others at Argonne National Laboratory. Also, we continue to be very active in the collaboration to study ultra-relativistic heavy ion physics utilizing the SPS accelerator at CERN in Geneva, Switzerland and in a RHIC detector R ampersand D project. Our experimental work is in four broad areas: (1) the structure of nuclei at high angular momentum, (2) heavy-ion induced transfer reactions, (3) the structure of nuclei far from stability, and (4) ultra-relativistic heavy-ion physics. The results of studies in these particular areas will be described in this document in sections IIA, IIB, IIC, and IID, respectively. Areas (1), (3), and (4) concentrate on the structure of nuclear matter in extreme conditions of rotational motion, imbalance of neutrons and protons, or very high temperature and density. Area (2) pursues the transfer of nucleons to states with high angular momentum, both to learn about their structure and to understand the transfer of particles, energy, and angular momentum in collisions between heavy ions. An important component of our program is the strong emphasis on the theoretical aspects of nuclear structure and reactions

  7. Studies of nuclear processes. Progress report, June 1, 1975--May 31, 1976

    International Nuclear Information System (INIS)

    Cleqq, T.B.; Ludwig, E.J.; Merzbacher, E.; Shafroth, S.M.; Thompson, W.J.

    1976-01-01

    The UNC Chapel Hill group, affiliated with the Triangle Universities Nuclear Laboratory (TUNL), has emphasized in its recent research the following topics: nuclear interactions induced by polarized beams of protons and deuterons; developments in equipment and techniques for the measurement and interpretation of these interactions; the design and analysis of nuclear and atomic scattering experiments for protons, deuterons and heavier projectiles; the theory of ion-atom collisions; atomic effects in nuclear bombardment. The particle beams used were obtained primarily from the TUNL Cyclo-Graaff, the FN-tandem Van de Graaff and Lamb-shift polarized-ion source, and the 4-MeV Van de Graaff accelerators. Computations were performed using the computers at TUNL, at the Triangle Universities Computation Center, and at UNC, Chapel Hill. Collaborative experiments were undertaken primarily with the research groups from Duke University and North Carolina State University. Extensive participation of our graduate students in all aspects of the research has assured them a broad training in the fundamental and technical aspects of physics. Our research efforts have produced a deeper understanding of the spin dependence of nuclear interactions through measurements with polarized beams. Inner-shell ionization phenomena have been revealed in our detailed experimental and theoretical studies of atomic effects in nuclear bombardment

  8. Studies of works management and automation of nuclear power installations

    International Nuclear Information System (INIS)

    Besch, P.; Grossmann, J.; Hollasky, R.

    1989-01-01

    Erection and operation of nuclear power installations require investigations on their safety and availability. The works performed on the management of nuclear power plants and nuclear heating stations in the Working Group on Automation Engineering of the Dresden University of Technology are presented. Emphasis of the works is on simulation of dynamical performance of the plants and studies on the utilization of novel techniques concerning plant automation and process management. (author)

  9. Contributions of university nuclear engineering departments to the national research agenda

    International Nuclear Information System (INIS)

    Peddicord, K.L.

    1991-01-01

    The history and character of university nuclear engineering departments have enabled them to play unique roles in higher education and to make valuable contributions in numerous important research fields. Nuclear engineering programs have several distinguishing and noteworthy characteristics. These characteristics include quality, diversity, and effectiveness. However, the continued viability of these programs is in question, and the importance of these programs may only be recognized after the capability has been lost. To recover this capability may well prove to be an impossibility

  10. An experience in World Nuclear University-Summer Institute 2012

    International Nuclear Information System (INIS)

    Suzilawati Mohd Sarowi

    2013-01-01

    Full-text: World Nuclear University-Summer Institute (WNU-SI) has been held annually since 2005 in Cristchurh College, Oxford, London. This six weeks course is attended by 80-90 young professionals, or fellow from 20-25 countries across the world. The WNU-SI is designed not only to discuss the full spectrum of issues surrounding nuclear energy, but also emphasis on team building, cultural awareness and the development of leadership potential in multinational environment. Interestingly, the mentors play their role base on their experience in leading the nuclear industry throughout the globe. At the end of the course, the participant could understand the most important issues address in the industry with global perspective, experience and learn from practical teamwork internationally. Finally, this course is believed to be a step in developing a worldwide network among the fellows to support each other in their careers. This paper will discuss the experience gained in WNU-SI 2012. (author)

  11. Management of the nuclear knowledge and educational strategies in universities; Gestion del conocimiento nuclear y estrategias educativas en universidades

    Energy Technology Data Exchange (ETDEWEB)

    Martin del Campo M, C., E-mail: cecilia.martin.del.campo@gmail.com [UNAM, Facultad de Ingenieria, Departamento de Sistemas Energeticos, Paseo Cuauhnahuac No. 8532, Col. Progreso, 62550 Jiutepec, Morelos (Mexico)

    2012-10-15

    An introduction is made to the topic of management of the nuclear knowledge and recommendations are presented for its implementation as a curricular subject in the universities and institutions that have post-graduate programs in the engineering and/or nuclear sciences area. The necessity of incorporating a wide variety of tools and innovative techniques of teaching (for example, simulators, didactic games in computer, e-learning) that assure that the learning will be given in an efficient and lasting way is projected. Some strategies are listed to attract the best students toward the academic programs in nuclear engineering or related. Given the great multidisciplinary of the personnel of a nuclear power station, and the other facilities of the fuel cycle, the importance is pointed out of providing the nuclear foundations to all the workers and directive with different formation to the nuclear area, in an attractive way so that they obtain and assimilate the nuclear foundations that will allow him to work efficiently and with all security. Finally, also an analysis is presented about the advantages that represent the education nets that integrate people or institutions in the national, regional or international ambit, which have been created to initiative of the IAEA, having as objective to share ideas, information, study programs, courses, software and resources in general that support the formation of human resources of very high quality, required by the nuclear facilities and the research centers on advanced technologies, as well as to implement programs of nuclear development to short, medium and long period in our country. (Author)

  12. Study on the survey and analysis of education in the nuclear field

    International Nuclear Information System (INIS)

    Minguez, E.

    1998-01-01

    It has been identified on many occasions that human resources is one of the most important elements for nuclear energy deployment. Major activities include attracting sufficient number of bright and interested students to the field, and maintaining research activities for both current and future nuclear power utilisation, associated with the successful transfer of knowledge and know-how to the next generation. Even if some countries are not now developing additional nuclear power, there is a need for expertise in operating and then decommissioning existing plants and in radioactive waste management. Universities and in-house training which is provided by nuclear research institutes and companies, have both played significant roles in the history of nuclear development by educating and training young qualified people. It has been observed, however, that universities, nuclear programmes and courses are being merged with other subjects, or in the worst cases, simply closed down. The main reasons for this trend are that universities cannot maintain nuclear-related courses because of lack of students and budget cuts. Research institutes as well as private companies are facing similar budgetary constraints and they are also considerably diversifying into non-nuclear research fields. This loss of educational possibilities needs to be quantified so that governments can take a considered view as to need to remedy the situation. It would also be helpful to review actions already undertaken by governments, universities and research institutes to improve this situation. It should be noted that qualified manpower is a resource available for use on the global scale, even if supply tends to be matter for national decisions. An Expert Group has been created under the auspices of the Committee for Technical and Economic Studies on Nuclear Energy Development and Fuel Cycle (NDC) of the Nuclear Energy Agency (NEA) of the OECD. The Group consists of 24 experts from 17 Member countries

  13. Progress report on nuclear spectroscopic studies, June 1, 1977--May 31, 1978

    International Nuclear Information System (INIS)

    Bingham, C.R.; Riedinger, L.L.; Guidry, M.W.

    1978-01-01

    Research progress is summarized for activities of the University of Tennessee department of physics and astronomy in the following areas: (1) in-beam spectroscopy of high-spin state, (2) Coulomb-nuclear interference and inelastic heavy ion scattering (3) Coulomb excitation, nuclear theory, (4) nuclear structure studies with alpha-induced direct reactions, and (5) developmental activities

  14. The new nuclear orientation facility at Charles University Prague

    International Nuclear Information System (INIS)

    Rotter, M.; Hubalovsky, S.; Trhlik, M.; Janotova, J.; Dupak, J.; Srnka, A.; Forget, P.; Pari, P.

    1996-01-01

    The Nuclear Orientation facility for solid state physics investigations was installed at the Department of Low Temperature Physics of the Faculty of Mathematics and Physics, Charles University. The small 'top loaded' dilution refrigerator is used for cooling radioactive metallic samples to 10 mK in 4 T magnetic field. The construction and thermodynamic parameters of the 'French type' refrigerator working without 1 K precooling stage are described. (author)

  15. Annual report of Research Center for Nuclear Physics, Osaka University. April 1, 1993 - March 31, 1994

    International Nuclear Information System (INIS)

    Matsuoka, Nobuyuki; Miura, Iwao; Takahisa, Keiji

    1994-01-01

    This volume of the RCNP annual report gives briefly research activities of the RCNP (Research Center for Nuclear Physics), Osaka University, in the academic year of 1993 (April 1993 - March 1994). RCNP is a national nuclear physics laboratory with the AVF cyclotron and the ring cyclotron. This annual report includes major research activities at RCNP as follows. 1) Low-energy nuclear physics by means of the K=140 MeV AVF cyclotron. Nuclear reactions and nuclear structures were studied. 2) Medium-energy nuclear physics by means of the 0.4 GeV ring cyclotron. The new ring cyclotron is in full operation, and several new progresses in the medium energy nuclear physics have been made. In particular, spin-isospin responses for discrete states, giant resonances and for quasi-free scattering processes have been studied by means of charge exchange reactions. 3) Heavy-ion physics with the secondary radio-active nuclear beams. It includes production of radioactive nuclei with large spin-polarization and studies of snow-balls. 4) Non-accelerator physics programs have started in collaboration with the Dept. Phys. group. Neutrino studies by means of double beta decays and dark matter searches by means of scintillators are under progress at the Kamioka underground laboratory. 5) Theoretical works on nuclear structures and nuclear reactions. The RCNP computers are widely used for theoretical studies all over Japan. 6) Developments of accelerators and detector systems. The new external ion-source and the new axial injection line are build in order to increase beam currents. (J.P.N.)

  16. Experience of computer technology usage within university training for future specialists of nuclear power plants under «the university-enterprise» program

    International Nuclear Information System (INIS)

    Semenov, V.K.; Vol'man, M.A.; Zhuravleva, V.S.

    2015-01-01

    The article deals with the aspects of training program for future specialists of nuclear power plants. This program is realized at NPP Department of Ivanovo State University and Kalinin NPP. The usage of computer and simulation modeling at the university are the main components of this concept [ru

  17. Minority and female training programs at the Ford Nuclear Reactor, University of Michigan

    International Nuclear Information System (INIS)

    Burn, R.R.

    1992-01-01

    Nuclear power industry operations staffs are composed predominantly of white males because most of the personnel come from the nuclear submarine and surface branches of the U.S. Navy. The purpose of the minority and female training programs sponsored by the Ford Nuclear Reactor at the University of Michigan is to provide a path for minorities and women to enter the nuclear industry as operators, technicians, and, in the long term, as graduate engineers. The training programs are aimed at high school students, preferably juniors. While the training is directed toward operation of a nuclear reactor, it is equally applicable to careers in most other technical fields. It is hoped that some of the participants will remain at the Ford Nuclear Reactor as reactor operators, enter college, and obtain college degrees, after which they will enter the nuclear industry as graduate engineers

  18. Industry, university and government partnership to address research, education and human resource challenges for nuclear industry in Canada

    International Nuclear Information System (INIS)

    Mathur, R.M.

    2004-01-01

    This paper describes the outcome of an important recent initiative of the Canadian nuclear industry to reinvigorate interest in education and collaborative research in prominent Canadian universities. This initiative has led to the formation of the University Network of Excellence in Nuclear Engineering (UNENE), incorporated in 2002. (author)

  19. Situation of the education in the nuclear field: networks of training and paper of the universities

    International Nuclear Information System (INIS)

    Minguez, E.

    2008-01-01

    In this work the education networks in nuclear engineering around Europe American and Asia are presented, focusing in the main role of universities in collaboration with the nuclear industry. (Author) 5 refs

  20. Annual report of Laboratory of Nuclear Studies, Osaka University, for fiscal 1979

    International Nuclear Information System (INIS)

    1980-01-01

    This annual report presents the research activities carried out by the members of the Laboratory and the users of the facilities. The major facilities of the Laboratory are a 110 cm variable energy cyclotron and a 4.7 MeV Van de Graaff. The cyclotron division has made extensive studies on nuclear physics, such as the pre-equilibrium process of neutron emission, inelastic proton scattering, He-3 induced reactions, and polarization experiments. The Van de Graaff division reports about the works on hyperfine interaction, mirror beta-decay, heavy element ion source, and nuclear spin alignment. Model magnet study on the future project has also been developed at the Laboratory. Other divisions of the Laboratory are the mass spectroscopy division, the radioisotope division, and the theoretical physics division. The works of the mass spectroscopy division concern the on-line mass separation of radioisotopes, the field desorption of mass spectra, and instrumentation. The works of the radioisotope division spread widely on the field of nuclear chemistry. At the end of this report, various works, which have been made by the theoretical physics division, are introduced. (Kato, T.)

  1. Nuclear spectroscopic studies

    International Nuclear Information System (INIS)

    Bingham, C.R.; Guidry, M.W.; Riedinger, L.L.; Sorensen, S.P.

    1991-01-01

    The Nuclear Physics group at the University of Tennessee, Knoxville is involved in several aspects of heavy-ion physics including both nuclear structure and reaction mechanisms. While our main emphasis is on experimental problems involving heavy-ion accelerators, we have maintained a strong collaboration with several theorists in order to best pursue the physics of our measurements. During the last year we have led experiments at the Holifield Heavy Ion Research Facility, the SuperHILAC at Berkeley, and Chalk River Tandem Accelerator. Also, we have joined a collaboration to study ultra-relativistic heavy ion physics and one of our group has spent all of 1987 at CERN to work on the WA80 experiment. Our experimental work is in four broad areas: (1) the structure of nuclei at high angular momentum, (2) heavy-ion induced transfer reactions, (3) the structure of nuclei far from stability, and (4) ultra-relativistic heavy-ion physics. These results will be described in this document in sections IIA, IIB, and IID, respectively. Areas (1), (3), and (4) concentrate on the structure of nuclear matter in extreme conditions of rotational motion, imbalance of neutrons and protons, or very high temperature and density. Area (2) pursues the transfer of nucleons to states with high angular momentum, both to learn about their structure and to understand the transfer of particles, energy and angular momentum in collisions between heavy ions. An important component of our program is the strong emphasis on the theoretical aspects of nuclear structure and reactions

  2. Nuclear spectroscopic studies

    International Nuclear Information System (INIS)

    Bingham, C.R.; Guidry, M.W.; Riedinger, L.L.; Sorensen, S.P.

    1988-01-01

    The Nuclear Physics group at the University of Tennessee, Knoxville is involved in several aspects of heavy-ion physics including both nuclear structure and reaction mechanisms. While our main emphasis is on experimental problems involving heavy-ion accelerators, we have maintained a strong collaboration with several theorists in order to best pursue the physics of our measurements. During the last year we have led experiments at the Holifield Heavy Ion Research Facility, the SuperHILAC at Berkeley, and Chalk River Tandem Accelerator. Also, we have joined a collaboration to study ultra-relativistic heavy ion physics and one of our group has spent all of 1987 at CERN to work on the WA80 experiment. Our experimental work is in four broad areas: (1) the structure of nuclei at high angular momentum, (2) heavy-ion induced transfer reactions, (3) the structure of nuclei far from stability, and (4) ultra-relativistic heavy-ion physics. These results will be described in this document in sections 2A, 2B, 2C, and 2D, respectively. Areas (1), (3), and (4) concentrate on the structure of nuclear matter in extreme conditions of rotational motion, imbalance of neutrons and protons or very high temperature and density. Area (2) pursues the transfer of nucleons to states with high angular momentum, both to learn about their structure and to understand the transfer of particles, energy and angular momentum in collisions between heavy ions. An important component of our program is the strong emphasis on the theoretical aspects of nuclear structure and reactions

  3. Nuclear constraints on the age of the universe

    International Nuclear Information System (INIS)

    Schramm, D.N.

    1982-12-01

    In this paper a review is made of how one can use nuclear physics to put rather stringent limits on the age of the universe and thus the cosmic distance scale. As the other papers in this session have demonstrated there is some disagreement on the distance scale and thus the limits on the age of the universe (if the cosmological constant ν = 0). However, the disagreement is only over the last factor of 2, the basic timescale seems to really be remarkably well agreed upon. The universe is billions of years old - not thousands, not quintillions but bilions of years. That our universe has a finite age is philosophically intriguing. That we can estimate that age to a fair degree of accuracy is truly impressive. No single measurement of the time since the Big Bang gives a specific, unambiguous age. Fortunately, we have at our disposal several methods that together fix the age with surprising precision. In particular, as the other papers show, there are three totally independent techniques for estimating an age and a fourth technique which involves finding consistency of the other three in the framework of the standard Big Bang cosmological model. The three independent methods are: cosmological dynamics, the age of the oldest stars, and radioactive dating. This paper concentrates on the third of the three methods, as well as go into the consistency technique

  4. Nuclear spectroscopic studies. Progress report

    International Nuclear Information System (INIS)

    Bingham, C.R.; Riedinger, L.L.; Sorensen, S.P.

    1996-01-01

    This report describes progress in the experimental nuclear physics program of the University of Tennessee, Knoxville. It presents findings related to properties of high-spin states, low-energy levels of nuclei far from stability, and high-energy heavy-ion physics, as well as a brief description of the Joint Institute of Heavy Ion Research (a collaboration between the University of Tennessee, Vanderbilt University, and Oak Ridge National Laboratory) and its activities (particularly those of the last few years), and a list of publications. 89 refs., 18 figs., 5 tabs

  5. Service to the Electric Utility Industry by the Ford Nuclear Reactor, University of Michigan

    International Nuclear Information System (INIS)

    Burn, R.R.; Simpson, P.A.; Cook, G.M.

    1993-01-01

    Since 1977, the staff of the University of Michigan's Ford Nuclear Reactor has been providing irradiation, testing, analytical, and training services to electric utilities and to suppliers of the nuclear electric utility industry. This paper discusses the reactor's irradiation facilities; reactor programs and utilization; materials testing programs; neutron activation analysis activities; and training programs conducted

  6. Masters in Nuclear Security

    International Nuclear Information System (INIS)

    Rickwood, Peter

    2013-01-01

    Continuing global efforts to improve the security of nuclear and other radioactive material against the threat of malicious acts are being assisted by a new initiative, the development of a corps of professional experts to strengthen nuclear security. The IAEA, the European Commission, universities, research institutions and other bodies working in collaboration have established an International Nuclear Security Education Network (INSEN). In 2011, six European academic institutions, the Vienna University of Technology, the Brandenburg University of Applied Sciences, the Demokritos National Centre for Scientific Research in Greece, the Reactor Institute Delft of the Delft University of Technology in the Netherlands, the University of Oslo, and the University of Manchester Dalton Nuclear Institute, started developing a European Master of Science Programme in Nuclear Security Management. In March 2013, the masters project was inaugurated when ten students commenced studies at the Brandenburg University of Applied Sciences in Germany for two weeks. In April, they moved to the Delft University of Technology in the Netherlands for a further two weeks of studies. The pilot programme consists of six teaching sessions in different academic institutions. At the inauguration in Delft, IAEA Director General Yukiya Amano commended this effort to train a new generation of experts who can help to improve global nuclear security. ''It is clear that we will need a new generation of policy-makers and nuclear professionals - people like you - who will have a proper understanding of the importance of nuclear security,'' Mr. Amano told students and faculty members. ''The IAEA's goal is to support the development of such programmes on a global basis,'' said David Lambert, Senior Training Officer in the IAEA's Office of Nuclear Security. ''An existing postgraduate degree programme focused on nuclear security at Naif Arab University for Security Sciences (NAUSS) is currently supported by

  7. Preservation of nuclear talented experts in Japan by cooperation of industries, research institutes and universities

    International Nuclear Information System (INIS)

    Mori, H.; Miura, K.

    2004-01-01

    Japan has enjoyed decades-long successful development of nuclear power generation and has a nuclear generating capacity of about 46,000,000 kilowatts at present. Construction of a commercial reprocessing plant in Rokkasho is nearing completion. The continuation of Japan's nuclear technology and experience, however, and the challenge of securing technically trained human resources for the future, present serious problems. Recognizing this, the nuclear industry, universities and research institutes have joined in new cooperative efforts to find network-oriented solutions. (author)

  8. Workshop on nuclear technology: A joint effort between ANS and the University of Massachusetts-Lowell

    International Nuclear Information System (INIS)

    Brown, G.J.; McDevitt, M.A.; Schmidt, D.

    1992-01-01

    The University of Massachusetts Lowell (UML) (formerly University of Lowell) sponsored, along with the American Nuclear Society (ANS), a 5-day workshop entitled 'Understanding and Teaching about Nuclear Technology and Its Place in Our Society.' More than 30 middle and high school teachers from the New England area (Connecticut, New Hampshire, and Massachusetts) attended the workshop, which was held June 24 through 28, 1991. Based on this experience, and with the expectation of replicating if not improving upon initial success, plans are now under way to offer a similar workshop at UML from June 29 through July 3, 1992

  9. Weak interaction studies from nuclear beta decay

    International Nuclear Information System (INIS)

    Morita, M.

    1981-01-01

    The studies performed at the theoretical nuclear physics division of the Laboratory of Nuclear Studies, Osaka University, are reported. Electron spin density and internal conversion process, nuclear excitation by electron transition, beta decay, weak charged current, and beta-ray angular distributions in oriented nuclei have been studied. The relative intensity of internal conversion electrons for the case in which the radial wave functions of orbital electrons are different for electron spin up and down was calculated. The calculated value was in good agreement with the experimental one. The nuclear excitation following the transition of orbital electrons was studied. The calculated probability of the nuclear excitation of Os 189 was 1.4 x 10 - 7 in conformity with the experimental value 1.7 x 10 - 7 . The second class current and other problems on beta-decay have been extensively studied, and described elsewhere. Concerning weak charged current, the effects of all induced terms, the time component of main axial vector, all partial waves of leptons, Coulomb correction for the electrons in finite size nuclei, and radiative correction were studied. The beta-ray angular distribution for the 1 + -- 0 + transition in oriented B 12 and N 12 was investigated. In this connection, investigation on the weak magnetism to include all higher order corrections for the evaluation of the spectral shape factors was performed. Other works carried out by the author and his collaborators are also explained. (Kato, T.)

  10. Experimental studies of nuclear astrophysics

    International Nuclear Information System (INIS)

    He Jianjun; Zhou Xiaohong; Zhang Yuhu

    2013-01-01

    Nuclear astrophysics is an interdisciplinary subject combining micro-scale nuclear physics and macro-scale astrophysics. Its main aims are to understand the origin and evolution of the elements in the universe, the time scale of stellar evolution, the stellar environment and sites, the energy generation of stars from thermonuclear processes and its impact on stellar evolution and the mechanisms driving astrophysical phenomena, and the structure and property of compact stars. This paper presents the significance and current research status of nuclear astrophysics; we introduce some fundamental concepts, the nuclear physics input parameters required by certain astrophysics models, and some widely-used experimental approaches in nuclear astrophysics research. The potential and feasibility of research in this field using China’s current and planned large-scale scientific facilities are analyzed briefly. Finally, the prospects of the establishing a deep underground science and engineering laboratory in China are envisaged. (authors)

  11. Participation of Faculty of Mathematics and Physics, Charles University in Prague, in training of personnel for nuclear power

    International Nuclear Information System (INIS)

    Sterba, F.

    1983-01-01

    Graduates of application oriented fields of all mathematics and physics specializations of Solid state physics and Nuclear physics work successfully in nuclear power. In the mathematics fields great attention is devoted to optimization, control, process modeling, etc. The subject Solid state physics is subdivided into the following specializations: physics of metals, magnetic properties of the solid state and structural analysis. These specializations educate specialists with a good knowledge of the structure and properties of metal materials. Great attention is devoted to the causes and development of defects, materials creep and the radiation damage of crystal lattices. The nuclear physics specialization Applied nuclear physics deals with the use of nuclear methods in diverse fields and provides basic knowledge in nuclear power generation and the operation of nuclear reactors. The Faculty of Mathematics and Physics of the Charles University in Prague also runs postgraduate study courses in nuclear physics measurement methods, solid state physics, etc. (E.S.)

  12. Nuclear Physics Division, Institute of Experimental Physics, Warsaw University annual report 1995

    Energy Technology Data Exchange (ETDEWEB)

    Osuch, S [ed.

    1997-12-31

    In the presented Annual Report the activities of Nuclear Physics Division (NPD) of Warsaw University in 1995 are described. The report consists of three sections: (i) Reaction Mechanism and Nuclear Structure (11 articles); (ii) Instrumentation and Experimental Methods (9 articles); (iii) Other Research (1 article). Additionally the list of seminars held at the NPD, personnel list and list of published papers are also given. The first, leading article in the report written by head of NPD prof. Ch. Droste the general description of the Department activity is presented.

  13. Nuclear Physics Division, Institute of Experimental Physics, Warsaw University annual report 1995

    Energy Technology Data Exchange (ETDEWEB)

    Osuch, S. [ed.

    1996-12-31

    In the presented Annual Report the activities of Nuclear Physics Division (NPD) of Warsaw University in 1995 are described. The report consists of three sections: (i) Reaction Mechanism and Nuclear Structure (11 articles); (ii) Instrumentation and Experimental Methods (9 articles); (iii) Other Research (1 article). Additionally the list of seminars held at the NPD, personnel list and list of published papers are also given. The first, leading article in the report written by head of NPD prof. Ch. Droste the general description of the Department activity is presented.

  14. University of Wisconsin, Nuclear Reactor Laboratory. Annual report, 1985-1986

    International Nuclear Information System (INIS)

    Cashwell, R.J.

    1986-01-01

    Operational activities for the reactor are described concerning nuclear engineering classes from the University of Wisconsin; reactor sharing program; utility personnel training; sample irradiations and neutron activation analysis; and changes in personnel, facility, and procedures. Results of surveillance tests are presented for operating statistics and fuel exposure; emergency shutdowns and inadvertent scrams; maintenance; radioactive waste disposal; radiation exposures; environmental surveys; and publications and presentations on work based on reactor use

  15. [Studies of nuclear structure using neutrons and charged particles

    International Nuclear Information System (INIS)

    1989-01-01

    This report contains brief discussions on nuclear research done at Triangle Universities Nuclear Laboratory. The major categories covered are: Fundamental symmetries in the nucleus; Dynamics in very light nuclei; D states in light nuclei; Nucleon-nucleus interactions; Nuclear structure and reactions; and Instrumentation and development

  16. Education and research at the Ohio State University nuclear reactor laboratory

    International Nuclear Information System (INIS)

    Miller, D.W.; Myser, R.D.; Talnagi, J.W.

    1989-01-01

    The educational and research activities at the Ohio State University Nuclear Reactor Laboratory (OSUNRL) are discussed in this paper. A brief description of an OSUNRL facility improvement program and its expected impact on research is presented. The overall long-term goal of the OSUNRL is to support the comprehensive education, research, and service mission of OSU

  17. Inverted nuclear architecture and its development during differentiation of mouse rod photoreceptor cells: a new model to study nuclear architecture.

    Science.gov (United States)

    Solovei, I; Joffe, B

    2010-09-01

    Interphase nuclei have a conserved architecture: heterochromatin occupies the nuclear periphery, whereas euchromatin resides in the nuclear interior. It has recently been found that rod photoreceptor cells of nocturnal mammals have an inverted architecture, which transforms these nuclei in microlenses and supposedly facilitates a reduction in photon loss in the retina. This unique deviation from the nearly universal pattern throws a new light on the nuclear organization. In the article we discuss the implications of the studies of the inverted nuclei for understanding the role of the spatial organization of the nucleus in nuclear functions.

  18. Triangle Universities Nuclear Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    1991-01-01

    This report contains brief papers that discusses the following topics: Fundamental Symmetries in the Nucleus; Internucleon Interactions; Dynamics of Very Light Nuclei; Facets of the Nuclear Many-Body Problem; and Nuclear Instruments and Methods.

  19. Triangle Universities Nuclear Laboratory

    International Nuclear Information System (INIS)

    1991-01-01

    This report contains brief papers that discusses the following topics: Fundamental Symmetries in the Nucleus; Internucleon Interactions; Dynamics of Very Light Nuclei; Facets of the Nuclear Many-Body Problem; and Nuclear Instruments and Methods

  20. Nuclear energy and related research in universities; achieving the intellectual and funding framework

    International Nuclear Information System (INIS)

    Goddard, A.J.H.; OLiveira, C.R.E. de

    2000-01-01

    My purpose in this paper is to discuss the research role of universities in the UK, and how this can contribute to nuclear safety competence in industry, to motivating young researchers towards the nuclear industry (and its employment prospects) and to contributing to a wider informed awareness of safety and other issues. I shall not be dealing with undergraduate (first degree) training or with Masters programmes - which will clearly be the main route for industry staff recruitment. (authors)

  1. Nuclear security and law

    International Nuclear Information System (INIS)

    Gozal, Y.

    1999-01-01

    The aim of this study is to show that the classical distinction between the military nuclear law and the civil nuclear law is outdated. The technologies are dual and might be misused from a pacific to a military goal. The central element of the nuclear law is thus the integration of the safety rules: the nuclear risk being universal, it has created an universal law (first part) that reflects our scientific knowledge and might thus evaluate. This universal law has been a factor of nuclear security (part 2), as in 50 years, there had been only one major nuclear accident and no nuclear conflict. The horizontal proliferation has been limited and the international community has understood that time had come to reduce our arsenals. (author)

  2. Report of the research results with University of Tokyo, Nuclear Engineering Research Laboratory's Facilities in fiscal 1986

    International Nuclear Information System (INIS)

    1987-01-01

    This book contains a large number of reports of studies made in 1986 through joint utilization of the nuclear reactor 'Yayoi' and electron beam type accelerator which are installed in the Nuclear engineering Research Laboratory, Faculty of Engineering, University of Tokyo. The reports presented deal with 'Behaviors of Neutrons in Fast Reactor Blanket Shield', 'Effect of Fast Neutron Radiation on Organic Materials', 'Production and Recovery of Tritium in Nuclear Fusion Reactor Blanket System', 'Bench Mark Experiment of Effect of Atmospheric Scattering of Neutron', 'Experimental Evaluation of Nuclear Heat Rate', 'Fast Neutron Shielding Experiment', 'Effect of Fast Neutron Radiation on Hot Water', 'Neutron Shielding Experiment', 'Biological and Medical Application of 'Yayoi' Neutron', 'Effect of Fission-Fusion Correlation Radiation on Semiconductors (Si, GaAs)', 'Application of Fast Neutron to Radiography Technology', 'Streaming in Offset Slit', 'Design and Evaluation of New Reactor', 'LET Effect on Organic Material', 'Handling, Separation and Recovery of Transuranium Elements', 'Reactor Operation Support System Using Knowledge Engineering Technique', 'Application of Shape Memory Alloys to Nuclear Reactor Devices', 'Numerical Simulation of Turbulent Hear Transfer', and many other studies. (Nogami, K.)

  3. University role in nuclear power program in developing countries

    International Nuclear Information System (INIS)

    Notea, A.

    1977-01-01

    The academic education in nuclear engineering should be considered as a subsystem within the general nuclear program of the country as well as within the educational structure of the university. The academic trained personnel are of major importance as future participants in decisional and planning steps of the program. Hence, the ''production'' of academic manpower in this field should be started at the earliest steps. The nuclear engineering curriculum should be planned in accordance with the objectives stated by the power program and the challenges foreseen. Obviously, the objectives in a developing country are considerably different from those of developed countries highly advanced in the nuclear power field. The paper analyzes possible objectives in a developing country which intends to implement nuclear power program. In view of these objectives curricula planning for the undergraduate and graduate levels are presented and explained. The courses for undergraduates intend to provide basic information to relatively large numbers of students from various faculties, as they are expected to join the program at various constructional stages. Major emphasise is given to graduates as they will act in the cadre of senior engineers and officials of the country. The research works for theses in developed countries may be highly technical, dealing with crumbs of huge development project carried out on national or international level. Such research works are hardly justified in countries not involved in the project. In developing countries the problems to be confronted with are mainly licensing and siting and to much less extent nuclear power technology. Hence the choice of subjects for theses should be coherent with these directions. Obviously, the subjects are bound to the department manpower and budgetary limitations. As a demonstration two fields were analysed under our local constraints and objectives. Subjects suitable for theses are pointed out. The fields dealt

  4. Status, problems and perspectives of the education on nuclear energetics and nuclear safety within the Technical University of Sofia

    International Nuclear Information System (INIS)

    Lakov, M.; Bonev, B.; Stoyanov, S.; Velev, V.

    2004-01-01

    Education on nuclear energetic within the Technical University of Sofia is conducted since 1966 within the framework of the specialty 'Thermal energetic' at that time, and since 1973, within the specialty 'Thermal and nuclear energetic'. In 1986 is opened a college on nuclear energetic teaching on specialty 'Nuclear Energetic' and 'Automation in Energetic'. Since 1998 the department 'Thermal and nuclear energetic' is the only one within the Republic of Bulgaria having the legal rights to train 'engineers-bachelors' and 'engineers-master of science' on 'Thermal and nuclear energetic', as well as doctors - engineers of the same specialty. The bachelor course is graduated from between 40 and 60 students annually. The training within the bachelor level is 4 years and finishes by defending diploma thesis. Part of the graduated bachelors (between 20 and 30 students) are closely specialized in the area of Nuclear Energetic. The specialization is trained through preparation of diploma thesis within the nuclear area. The master course has 3 semesters including preparation of diploma thesis. Within the master level are prepared 25 students annually. Within the sub-division 'Nuclear Energetic' are promulgated between 2 and 4 competitions for preparation of doctoral thesis annually. At the moment 7 students are preparing doctoral thesis. Graduated engineers on 'Nuclear Energetic' are engaged as operative personnel mainly in Kozloduy NPP. The rest of them are engaged within the engineering and scientific organizations, connected to nuclear energetic

  5. Nuclear analytical methods in teaching and research at the university of Illinois

    International Nuclear Information System (INIS)

    Landsberger, S.

    1994-01-01

    An overview of the nuclear analytical methods opportunities at the University of Illinois at Urbana-Champaign are given. Undergraduate and graduate level teaching and research are highlighted. The TRIGA reactor and neutron activation analysis facilities are described in the context of this role within an inter-disciplinary environment. (author)

  6. Annual Report of the Tandem Accelerator Center, Nuclear and Solid State Research Project, University of Tsukuba

    International Nuclear Information System (INIS)

    1978-01-01

    In 1977, 12 UD Pelletron tandem accelerator has been operated by the University's researchers and engineers. Except for the tank opening for regular inspection we met twice the troubles which forced to change the accelerating tube. The experiences teach us that it needs about 20 days to finish the conditioning after changing the accelerating tube. A sputter ion source of new version is now being installed on the top floor. Two devices for the detection of X-rays were tested. An apparatus for bombardment of samples in air for biological and medical sciences has been successfully used. The subjects of researches on nuclear physics cover the light-ion reactions, heavy-ion reactions and nuclear spectroscopy. A special emphasis has been put on the measurements on vector- and tensor-analyzing powers in the light-ion reactions, because of a higher efficiency of the polarized ion source. Elaborate works on the heavy-ion reactions including the angular correlation patterns and excitation functions have been made in parallel. Papers of these works are now being prepared, a few having been published already. Moreover, in the University of Tsukuba, a new research system, called Special Research Project on Nuclear and Solid State Sciences Using Accelerated Beams (Nuclear and Solid State Research Project) started in 1978 and will continue for five years. In this research project, researchers from various Institutes in the University of Tsukuba, as well as visiting researchers from other institutions in Japan and from abroad, participate. Using a variety of accelerated beams, i.e. of heavy, light and polarized beams, this research project aims mainly at the high excitation, short life, transient and inhomogeneous states both in nuclear and extra-nuclear world. It covers both fundamental research in nuclear, atomic and solid state sciences as well as their application in various fields. (J.P.N.)

  7. Organization of nuclear education at the Faculty of Chemistry of the Byelorussian state university: progress and problems

    International Nuclear Information System (INIS)

    Savitskaya, T.A.; Kimlenko, I.M.; Sviridov, D.V.; Tolstik, A.L.; Shadyro, O.I.

    2013-01-01

    The strategy of the nuclear education in the Republic of Belarus is discussed. Nuclear knowledge management course is introduced into the curricular according to the IAEA recommendations. Podcasting lectures, advanced handbooks, interdisciplinary courses, cooperative learning is the main components of the nuclear education processes. The aspects of the interaction between the university and employers are considered [ru

  8. Challenges and Opportunities in Nuclear Science and Radiochemistry Education at the University of Missouri

    International Nuclear Information System (INIS)

    Robertson, J. David; Etter, Randy L.; Neumeyer, Gayla M.; Miller, William H.

    2009-01-01

    Over the last thirty years, numerous reports and workshops have documented the decline in nuclear and radiochemistry education programs in the United States. Practitioners and stakeholders are keenly aware of the impact this decline will have on emerging technologies and critical research and are fully committed to rebuilding programs in nuclear and radiochemistry. The challenge is, however, to persuade our academic peers and administrations to invest in nuclear and radiochemistry education and training programs in view of multiple competing priorities. This paper provides an overview of the expansion of the radiochemistry program and the creation of the Nuclear Energy Technology Workforce (NETWork) Center at the University of Missouri, Columbia and the lessons learned along the way.

  9. The integral formation of the university technologists in nuclear medicine

    International Nuclear Information System (INIS)

    Tossi, Mirta H.; Chwojnik, Abraham; Otero, Dino

    2003-01-01

    Full text: Nuclear medicine has contributed to notable benefits to the human health from the very beginning. The Radioisotopes techniques, as well as the ionizing radiation used, have evolved providing functional and anatomical information of the patient, through non-invasive methods. With reference to Radiological Protection, the justification of each one of these practices and its perfect execution is intimately related to the benefit provided to the patients. The National Atomic Energy Commission apart from favouring the scientific and technological development, considers indispensable to work thoroughly on the professional training of the prospective technologists. Our over twenty-year experience in organizing and delivering courses of Technologists in Nuclear Medicine, although based on a much simpler program, have allowed the Institute of Nuclear Studies of the Ezeiza Atomic Center to acquire the capacity of developing a program to train highly qualified Technologists in that field. This project represents a step forward of great importance to the graduates qualification, since they will have the endorsement of CNEA and of the Faculty of Medicine of the Maimonides University. These are the three outstanding characteristics agreed on: 1.- General Education, carried out by subjects closely related to the optimisation of the relation Technologist - Patient - Environment and represented by: Radiological Protection and Hospital Security, Psychology, Ethics and Professional Medical Ethics, Nursing, English, Hygiene and Hospital Security and Management of the Quality in Services of Health. 2.- Diagnostic Procedures: planned according to organs, apparatuses or systems which are horizontally crossed by the anatomy, physiology and physiopathology Preparation of the patient, indications, main counter indications, radiopharmaceuticals, mechanisms of incorporation, pathologies, clinical protocols, instrumentation, post radiopharmaceuticals administration imaging

  10. Nuclear Physics Division Institute of Experimental Physics Warsaw University annual report 1994

    Energy Technology Data Exchange (ETDEWEB)

    Osuch, S. [ed.

    1995-12-31

    In the presented Annual Report the activities of the Nuclear Physics Division of the Institute of Experimental Physics of the Warsaw University in 1994 are described. The report consist of three sections: (i) Reaction Mechanism and Nuclear Structure (12 articles); (ii) Experimental Methods and Instrumentation (2 articles); (iii) Other Research (1 article). Additionally the list of seminars held at the NPD, personnel list and list of published papers is also given. In the first, leading article of the report written by head of NPD prof. Ch. Droste the general description of the Department activity is presented.

  11. Nuclear Physics Division Institute of Experimental Physics Warsaw University annual report 1994

    International Nuclear Information System (INIS)

    Osuch, S.

    1995-01-01

    In the presented Annual Report the activities of the Nuclear Physics Division of the Institute of Experimental Physics of the Warsaw University in 1994 are described. The report consist of three sections: i) Reaction Mechanism and Nuclear Structure (12 articles); ii) Experimental Methods and Instrumentation (2 articles); iii) Other Research (1 article). Additionally the list of seminars held at the NPD, personnel list and list of published papers is also given. In the first, leading article of the report written by head of NPD prof. Ch. Droste the general description of the Department activity is presented

  12. The Nuclear Security Science and Policy Institute at Texas A&M University

    Directory of Open Access Journals (Sweden)

    Claudio A. Gariazzo

    2015-07-01

    Full Text Available The Nuclear Security Science and Policy Institute (NSSPI is a multidisciplinary organization at Texas A&M University and was the first U.S. academic institution focused on technical graduate education, research, and service related to the safeguarding of nuclear materials and the reduction of nuclear threats. NSSPI employs science, engineering, and policy expertise to: (1 conduct research and development to help detect, prevent, and reverse nuclear and radiological proliferation and guard against nuclear terrorism; (2 educate the next generation of nuclear security and nuclear nonproliferation leaders; (3 analyze the interrelationships between policy and technology in the field of nuclear security; and (4 serve as a public resource for knowledge and skills to reduce nuclear threats. Since 2006, over 31 Doctoral and 73 Master degrees were awarded through NSSPI-sponsored research. Forty-one of those degrees are Master of Science in Nuclear Engineering with a specialization in Nuclear Nonproliferation and 16 were Doctorate of Philosophy degrees with a specific focus on nuclear nonproliferation. Over 200 students from both technical and policy backgrounds have taken classes provided by NSSPI at Texas A&M. The model for creating safeguards and security experts, which has in large part been replicated worldwide, was established at Texas A&M by NSSPI faculty and staff. In addition to conventional classroom lectures, NSSPI faculty have provided practical experiences; advised students on valuable research projects that have contributed substantially to the overall nuclear nonproliferation, safeguards and security arenas; and engaged several similar academic and research institutes around the world in activities and research for the benefit of Texas A&M students. NSSPI has had an enormous impact on the nuclear nonproliferation workforce (across the international community in the past 8 years, and this paper is an attempt to summarize the activities

  13. Teaching WWERs at Hacettepe University Nuclear Engineering Department in Turkey

    International Nuclear Information System (INIS)

    Ergun, S.

    2011-01-01

    In this study, the challenges faced in the teaching WWER design for the reactor engineering course, which is taught in the Hcettepe University Nuclear Engineering Department are discussed. Since the course is designated taking a western reactor design into account, the computer programs and class projects prepared for the course include models and correlations suitable for these designs. The attempts for modifying the course and developing codes or programs for the course become a challenge especially in finding proper information sources on design in English. From finding proper material properties to exploring the design ideas, teaching WWER designs and using analysis tools for better teaching are very important to modify the reactor engineering course. With the study presented here, the reactor engineering course taught is described, the teaching tools are listed and attempts of modifying the course to teach and analyze WWER designs are explained

  14. Nuclear spectroscopic studies. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    Bingham, C.R.; Guidry, M.W.; Riedinger, L.L.; Sorensen, S.P.

    1993-02-08

    The Nuclear Physics group at the University of Tennessee, Knoxville is involved in several aspects of heavy-ion physics including both nuclear structure and reaction mechanisms. While our main emphasis is on experimental problems involving heavy-ion accelerators, we have maintained a strong collaboration with several theorists in order to best pursue the physics of our measurements. During the last year we have led several experiments at the Holifield Heavy Ion Research Facility and participated in others at Argonne National Laboratory. Also, we continue to be very active in the collaboration to study ultra-relativistic heavy ion physics utilizing the SPS accelerator at CERN in Geneva, Switzerland and in a RHIC detector R&D project. Our experimental work is in four broad areas: (1) the structure of nuclei at high angular momentum, (2) heavy-ion induced transfer reactions, (3) the structure of nuclei far from stability, and (4) ultra-relativistic heavy-ion physics. The results of studies in these particular areas will be described in this document in sections IIA, IIB, IIC, and IID, respectively. Areas (1), (3), and (4) concentrate on the structure of nuclear matter in extreme conditions of rotational motion, imbalance of neutrons and protons, or very high temperature and density. Area (2) pursues the transfer of nucleons to states with high angular momentum, both to learn about their structure and to understand the transfer of particles, energy, and angular momentum in collisions between heavy ions. An important component of our program is the strong emphasis on the theoretical aspects of nuclear structure and reactions.

  15. Performance management of nuclear medical apparatuses in Osaka University Hospital

    International Nuclear Information System (INIS)

    Ikehara, Katsuhiro; Kusumi, Yoshimi; Hayashi, Makoto; Miharu, Tomoyoshi; Masuda, Kazutaka

    1975-01-01

    Nuclear medical out side-body measuring equipments in Osaka University Hospital consist of scinticamera, scintiscanner and movement-measuring equipment as measuring equipments, and central processing equipment, CRT attached with Polaroid camera, data typewriter, X-Y recorder, and high speed tape reader as data processing equipments. Daily and monthly management items are set up to maintain the best function of these equipments. The data processing room is air-conditioned to keep temperature at 25 0 C and humidity at 60% constantly, and they are confirmed with a temperature and humidity self-recorder. Computer system is used for the homogeneity control and the correction to counting failure of the scinticamera. As the repair of nuclear medical apparatuses needs long period and because of the special circumstances of radioactive drugs, very close cooperation among technicians, doctors and equipment makers is required. (Kobatake, H.)

  16. Quality aspects in nuclear engineering courses at the University of Arkansas

    International Nuclear Information System (INIS)

    West, L.

    1993-01-01

    Although quality assurance and total quality management are well-established programs in industry, almost all university academic programs lack formally organized programs for development, demonstration, and maintenance of high quality. Many academic programs do have many facets of a quality assurance program, it is simply handled as a part of the usual management of the academic program. These quality assurance programs inevitably are aimed at management of the instructor, with little or no emphasis on the ongoing quality of student work. This paper describes how the concept of quality is directed toward the entire aspect of nuclear engineering classes at the University of Arkansas, from overall university management of the instructor to details concerning instructor contact with students to improve the quality of the student's own work. One particular new concept is introduced: the use of quality points by the author in grading all students work

  17. Universal Nuclear Energy Density Functional

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, Joseph; Furnstahl, Richard; Horoi, Mihai; Lusk, Rusty; Nazarewicz, Witold; Ng, Esmond; Thompson, Ian; Vary, James

    2012-12-01

    An understanding of the properties of atomic nuclei is crucial for a complete nuclear theory, for element formation, for properties of stars, and for present and future energy and defense applications. During the period of Dec. 1 2006 – Jun. 30, 2012, the UNEDF collaboration carried out a comprehensive study of all nuclei, based on the most accurate knowledge of the strong nuclear interaction, the most reliable theoretical approaches, the most advanced algorithms, and extensive computational resources, with a view towards scaling to the petaflop platforms and beyond. Until recently such an undertaking was hard to imagine, and even at the present time such an ambitious endeavor would be far beyond what a single researcher or a traditional research group could carry out.

  18. List of publications of the Karlsruhe University and the Karlsruhe Nuclear Research Centre

    International Nuclear Information System (INIS)

    1987-01-01

    This 19th annual bibliography of publications from the Karlsruhe University, the Karlsruhe Nuclear Research Centre, and some closely cooperating institutions covers all publications prepared in the year 1986, and a few supplementary data on 1985 publications. The bibliography refers to books and journals, contributions to journals or serial publications, research reports, doctoral theses and theses qualifying for lecturing at a university, and to patents. Diploma theses, contributions to newspapers, book reviews, internal reports or communications generally do not form part of the bibliography. (orig./GG) [de

  19. Annual report of Nuclear Engineering Research Laboratory, University of Tokyo in fiscal 1989

    International Nuclear Information System (INIS)

    1990-01-01

    This report summerizes the research and educational activities at the Nuclear Engineering Research Laboratory, Faculty of Engineering, University of Tokyo. The Laboratory holds four main facilities, which are Yayoi reactor, an electron accelerator, fusion blanket research facility, and heavy ion irradiation research facility. And they are open to the researchers both inside and outside the University. The application of the facilities are described. The activities and achievements of the Laboratory staffs, and theses for graduate, master, and doctor degrees are also summerized. (J.P.N.)

  20. A universal measuring and monitoring system for nuclear radiation

    International Nuclear Information System (INIS)

    Genrich, V.

    1988-01-01

    Genitron Instruments, Frankfurt/Main, committed themselves to revise the 'conventional' concept of counting tube metrology. The goal was to develop a modular system that would allow large-area measuring tasks. The contribution in hand explains this development, which consists of a highly integrated measuring head that can be combined with various detector types, and complemented by various system components, to form a universal measuring and monitoring system for nuclear radiation. This modular design concept is capable of fulfilling a multitude of tasks, ranging from single, specific applications to non-stop monitoring tasks within a large-area measuring network. (orig./DG) [de

  1. Nuclear characteristics evaluation for Kyoto University Research Reactor with low-enriched uranium core

    Energy Technology Data Exchange (ETDEWEB)

    Nakajima, Ken; Unesaki, Hironobu [Kyoto University Research Reactor Institute, Kumatori-cho Sennan-gun Osaka (Japan)

    2008-07-01

    A project to convert the fuel of Kyoto University Research Reactor (KUR) from highly enriched uranium (HEU) to low-enriched uranium (LEU) is in progress as a part of RERTR program. Prior to the operation of LEU core, the nuclear characteristics of the core have been evaluated to confirm the safety operation. In the evaluation, nuclear parameters, such as the excess reactivity, shut down margin control rod worth, reactivity coefficients, were calculated, and they were compared with the safety limits. The results of evaluation show that the LEU core is able to satisfy the safety requirements for operation, i.e. all the parameters satisfy the safety limits. Consequently, it was confirmed that the LEU fuel core has the proper nuclear characteristics for the safety operation. (authors)

  2. Nuclear security culture: a generic model for universal application

    International Nuclear Information System (INIS)

    Khripunov, I.

    2005-01-01

    Full text: Nuclear security culture found its way into professional parlance several years ago, but still lacks an agreed-upon definition and description. The February 2005 U.S.-Russian Joint Statement, issued at the presidential summit meeting in Bratislava, referred specifically to security culture, focusing renewed attention on the concept. Numerous speakers at the March 2005 International Atomic Energy Agency's (IAEA) international conference on nuclear security referred to security culture, but their visions and interpretations were often at odds with one another. Clearly, there is a need for a generic model of nuclear security culture with universal applicability. Internationally acceptable standards in this area would be invaluable for evaluation, comparison, cooperation, and assistance. They would also help international bodies better manage their relations with the nuclear sectors in various countries. This paper will develop such a model. It will use the IAEA definition of nuclear security, and then apply Edgar Schein's model of organizational culture to security culture at a generic nuclear facility. A cultural approach to physical protection involves determining what attitudes and beliefs need to be established in an organization, how these attitudes and beliefs manifest themselves in the behavior of assigned personnel, and how desirable attitudes and beliefs can be transcribed into formal working methods to produce good outcomes, i.e., effective protection. The security-culture mechanism I will propose is broken into four major units: facility leadership, proactive policies and procedures, personnel performance, and learning and professional improvement. The paper will amplify on the specific traits characteristic of each of these units. Security culture is not a panacea. In a time of mounting terrorist threats, it should nonetheless be looked upon as a necessary organizational tool that enhances the skills of nuclear personnel and ensures that

  3. Pre and post-operational radioecological studies around Kaiga Nuclear Power Station

    International Nuclear Information System (INIS)

    Karunakara, N.

    2018-01-01

    Four PHWR rectors of 220 MWe each are operating at Kaiga. The Centre for Advanced Research in Environmental Radioactivity (CARER), Mangalore University is engaged in frontline research studies on different aspects of environmental radioactivity and radioecology studies around Kaiga and West Coast of India for the last 30 years. Extensive studies were carried out on radiation levels, radionuclides distribution, and transfer of radionuclides through terrestrial, aquatic and atmospheric pathways in the environment of West Coast of India including the Kaiga nuclear power plant. The baseline studies on radioactivity levels around Kaiga region was carried out well before the nuclear power plant became operational and the data generated under these studies are considered to be highly valuable for impact assessments. The nuclear power plant became operational in the year 1999 and since then extensive studies were carried out on radiological impact assessments, through collaboration with Bhabha Atomic Research Centre (BARC) and Nuclear Power Corporation of India (NPCIL)

  4. Asia nuclear-test-ban network for nuclear non-proliferation

    International Nuclear Information System (INIS)

    Shinohara, Nobuo; Kokaji, Lisa; Ichimasa, Sukeyuki

    2010-01-01

    In Global Center of Excellence Program of The University of Tokyo, Non- Proliferation Study Committee by the members of nuclear industries, electricity utilities, nuclear energy institutes and universities has initiated on October 2008 from the viewpoints of investigating a package of measures for nuclear non-proliferation and bringing up young people who will support the near-future nuclear energy system. One of the non-proliferation issues in the Committee is the Comprehensive Nuclear-Test-Ban Treaty (CTBT). Objective of this treaty is to cease all nuclear weapon test explosions and all other nuclear explosion. This purpose should be contributed effectively to the political stability of the Asian region by continuous efforts to eliminate the nuclear weapons. In the Committee, by extracting several issues related to the CTBT, conception of 'Asia nuclear-test-ban network for nuclear non-proliferation' has been discussed with the aim of the nuclear-weapon security in Asian region, where environmental nuclear-test monitoring data is mainly treated and utilized. In this paper, the conception of the 'network' is presented in detail. (author)

  5. Pre-Service Science Teachers' Views about Nuclear Energy with Respect to Gender and University Providing Instruction

    Science.gov (United States)

    Ates, H.; Saracoglu, M.

    2016-01-01

    The purpose of this research was to investigate pre-service science teachers' (PST) views about nuclear energy and to examine what effects, if any, of gender and the university of instruction had on their views. Data were collected through the Risks and Benefits about Nuclear Energy Scale (Iseri, 2012). The sample consisted of 214 PSTs who…

  6. NSCL and FRIB at Michigan State University: Nuclear science at the limits of stability

    Science.gov (United States)

    Gade, A.; Sherrill, B. M.

    2016-05-01

    The National Superconducting Cyclotron Laboratory (NSCL) at Michigan State University (MSU) is a scientific user facility that offers beams of rare isotopes at a wide range of energies. This article describes the facility, its capabilities, and some of the experimental devices used to conduct research with rare isotopes. The versatile nuclear science program carried out by researchers at NSCL continues to address the broad challenges of the field, employing sensitive experimental techniques that have been developed and optimized for measurements with rare isotopes produced by in-flight separation. Selected examples showcase the broad program, capabilities, and the relevance for forefront science questions in nuclear physics, addressing, for example, the limits of nuclear existence; the nature of the nuclear force; the origin of the elements in the cosmos; the processes that fuel explosive scenarios in the Universe; and tests for physics beyond the standard model of particle physics. NSCL will cease operations in approximately 2021. The future program will be carried out at the Facility for Rare Isotope Beams, FRIB, presently under construction on the MSU campus adjacent to NSCL. FRIB will provide fast, stopped, and reaccelerated beams of rare isotopes at intensities exceeding NSCL’s capabilities by three orders of magnitude. An outlook will be provided on the enormous opportunities that will arise upon completion of FRIB in the early 2020s.

  7. Introducing Knowledge Management in Study Program of Nuclear Engineering

    International Nuclear Information System (INIS)

    Pleslic, S.

    2012-01-01

    Nuclear engineering is the branch of engineering concerning application of the fission as well as the fusion of atomic nuclei, and the application of other sub-atomic physics, based on the principles of nuclear physics. In the sub-field of nuclear fission there are many investigations of interactions and maintaining of systems and components like nuclear reactors and nuclear power plants. The field also includes the study of different applications of ionizing radiation (medicine, agriculture...), nuclear safety, the problems of thermodynamics transport, nuclear materials and nuclear fuels, and other related technologies like radioactive waste management. In the area of nuclear science and engineering a big amount of knowledge has been accumulated over the last decades. Different levels of nuclear knowledge were considered in different ways and they were taught to different parts of population as a general human culture and as a general scientific-technical-technological culture (high schools, nuclear information centres, training centres, universities...). An advanced level of nuclear knowledge has been accumulated by many experienced workers, specialists and experts in all nuclear and nuclear-related fields and applications. In the last 20 years knowledge management has established itself as a discipline of enabling individuals, teams and whole organizations to create, share and apply knowledge collectively and systematically, with goal to better achieve their objectives. Also, knowledge management became key strategic approach for management of intellectual assets and knowledge that can improve safety, efficiency and innovation, and lead to preserve and enhance current knowledge. Knowledge management could be applied in education, training, networking, human resource development and capacity building, sharing, pooling and transferring knowledge form centres of knowledge to centres of growth. Considering the critical importance of nuclear knowledge it is important

  8. Investigation of an online, problem-based introduction to nuclear sciences: A case study

    International Nuclear Information System (INIS)

    Schmidt, M.; Easter, M.; Jiazhen, W.; Jonassen, D.

    2006-01-01

    An online, grant-funded course on nuclear engineering in society was developed at a large Midwestern university with the goal of providing non-majors a meaningful introduction to the many applications of nuclear science in a modern society and to stimulate learner interest in academic studies and/or professional involvement in nuclear science. Using a within-site case study approach, the current study focused on the efficacy of the online learning environment's support of learners' acquisition of knowledge and the impact of the environment on learners' interest in and beliefs about nuclear sciences in society. Findings suggest the environment successfully promoted learning and had a positive impact on learners' interests and beliefs. (authors)

  9. Investigation of an online, problem-based introduction to nuclear sciences: A case study

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, M.; Easter, M.; Jiazhen, W.; Jonassen, D. [Univ. of Missouri - Columbia, 111 London Hall, Columbia, MO 65211 (United States)

    2006-07-01

    An online, grant-funded course on nuclear engineering in society was developed at a large Midwestern university with the goal of providing non-majors a meaningful introduction to the many applications of nuclear science in a modern society and to stimulate learner interest in academic studies and/or professional involvement in nuclear science. Using a within-site case study approach, the current study focused on the efficacy of the online learning environment's support of learners' acquisition of knowledge and the impact of the environment on learners' interest in and beliefs about nuclear sciences in society. Findings suggest the environment successfully promoted learning and had a positive impact on learners' interests and beliefs. (authors)

  10. Universal compliance: The Carnegie Endowment's new strategy for nuclear security

    International Nuclear Information System (INIS)

    Gottemoeller, R.

    2005-01-01

    I would like to give a short briefing on Universal Compliance, the Carnegie Endowment's new strategy for nuclear security. It contains our recommendations for a new, effective nuclear non-proliferation strategy, set out against a description of the rapidly evolving security environment. I will begin with a description of that environment, but first I would like to remind you of the process that we followed in producing this report: - We launched a draft of the report at the Carnegie International Nonproliferation Conference in June 2004. In the months afterwards we sought comments and expert opinion from experts in the United States of America and around the world - we visited 15 countries. We truly tried to get comments from the broadest possible community. - I would also like to emphasize that this was a team effort, involving our President, Jessica Mathews, and four other senior experts at the Endowment

  11. Nuclear spectroscopic studies: Progress report

    International Nuclear Information System (INIS)

    Bingham, C.R.; Guidry, M.W.; Riedinger, L.L.; Sorensen, S.P.

    1989-01-01

    The Nuclear Physics Group at the University of Tennessee, Knoxville (UTK) is involved in several aspects of heavy-ion physics including both nuclear structure and reaction mechanisms. While our main emphasis is on experimental problems involving heavy-ion accelerators, we have maintained a strong collaboration with several theorists in order to best pursue the physics of our measurements. During the last year we have led experiments at the Holifield Heavy Ion Research Facility (HHIRF) and the Niels Bohr Institute Tandem Accelerator. Also, we are active in a collaboration (WA80) to study ultra-relativistic heavy ion physics utilizing the SPS accelerator at CERN in Geneva, Switzerland. Our experimental work is four broad areas: (1) the structure of nuclei at high angular momentum, (2) heavy-ion induced transfer reactions, (3) the structure of nuclei far from stability, and (4) ultra-relativistic heavy-ion physics. These results will be described in this document. Areas (1), (3), and (4) concentrate on the structure of nuclear matter in extreme conditions of rotational motion, imbalance of neutrons and protons, or very high temperature and density. Area (2) pursues the transfer of nucleons to states with high angular momentum, both to learn about their structure and to understand the transfer of particles, energy, and angular momentum in collisions between heavy ions. An important component of our program is the strong emphasis on the theoretical aspects of nuclear structure and reactions

  12. Annual report of Nuclear Engineering Research Laboratory, Faculty of Engineering, University of Tokyo, fiscal year 1995

    International Nuclear Information System (INIS)

    1996-08-01

    This is an annual report prepared on research education action, operation state of research instruments and others in FY 1995 at Nuclear Engineering Research Laboratory, Faculty of Engineering, University of Tokyo. The laboratory has four large instruments such as high speed neutron source reactor, 'Yayoi', electron linac, fundamentally experimental equipment for blanket design of nuclear fusion reactor, and heavy radiation research equipment (HIT), of which former two are used for cooperative research with universities in Japan, and the next blanket and the last HIT are also presented for cooperative researches in Faculty of Engineering and in University of Tokyo, respectively. FY 1995 was the beginning year of earnest discussion on future planning of this facility with concentrated effort. These four large research instruments are all in their active use. And, their further improvement is under preparation. In this report, the progress in FY 1995 on operation and management of the four large instruments are described at first, and on next, research actions, contents of theses for degree and graduation of students as well as research results of laboratory stuffs are summarized. These researches are constituted mainly using these large instruments in the facility, aiming at development of advanced and new field of atomic energy engineering and relates to nuclear reactor first wall engineering, nuclear reactor fuel cycle engineering, electromagnetic structure engineering, thermal-liquid engineering, mathematical information engineering, quantum beam engineering, new type reactor design and so on. (G.K.)

  13. Annual report of Nuclear Engineering Research Laboratory, Faculty of Engineering, University of Tokyo, fiscal year 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-08-01

    This is an annual report prepared on research education action, operation state of research instruments and others in FY 1995 at Nuclear Engineering Research Laboratory, Faculty of Engineering, University of Tokyo. The laboratory has four large instruments such as high speed neutron source reactor, `Yayoi`, electron linac, fundamentally experimental equipment for blanket design of nuclear fusion reactor, and heavy radiation research equipment (HIT), of which former two are used for cooperative research with universities in Japan, and the next blanket and the last HIT are also presented for cooperative researches in Faculty of Engineering and in University of Tokyo, respectively. FY 1995 was the beginning year of earnest discussion on future planning of this facility with concentrated effort. These four large research instruments are all in their active use. And, their further improvement is under preparation. In this report, the progress in FY 1995 on operation and management of the four large instruments are described at first, and on next, research actions, contents of theses for degree and graduation of students as well as research results of laboratory stuffs are summarized. These researches are constituted mainly using these large instruments in the facility, aiming at development of advanced and new field of atomic energy engineering and relates to nuclear reactor first wall engineering, nuclear reactor fuel cycle engineering, electromagnetic structure engineering, thermal-liquid engineering, mathematical information engineering, quantum beam engineering, new type reactor design and so on. (G.K.)

  14. Nuclear Education and Training at Tsinghua University to Meet the Need of the Rapidly Developing Industry

    International Nuclear Information System (INIS)

    Sun, Y.; Han, Y.; Liu, F.

    2016-01-01

    Full text: The Chinese nuclear industry has been expanding rapidly since recent years. Education of highly qualified people with various educational background is an important factor for the efficient and healthy operation of the industry. Tsinghua University is offering various degree programmes for a variety of disciplines including nuclear science, nuclear engineering, nuclear safety, nuclear fuel cycle, nuclear waste treatment, energy policy and management. Degree programmes have been designed and implemented for regular school students who do not have working experience and for people who are already in their career development to better meet the requirement of the rapidly developing nuclear industry. Emphasis has also been given to the internationalization of the education programs. In addition, training programmes on a more practical basis are offered to meet specific purposes. These efforts are briefly described in this paper. (author

  15. Collaboration in nuclear engineering education between France and the United States: Participation of French students at Texas A ampersand M University

    International Nuclear Information System (INIS)

    Peddicord, K.L.; Durand, J.L.; Gousty, Y.; Jeneveau, A.; Erdman, C.A.

    1988-01-01

    Universities in the United States have had a long tradition of accepting students from other countries to pursue graduate degrees. This has particularly been the case in the fields of engineering and science. This trend has grown to the point that in several graduate engineering fields, the percentage of foreign nationals outnumbers US enrollees. Historically, most foreign students studying in the US universities have been from developing countries. Usually these students apply and are accepted on a case-by-case basis. For a number of reasons, less emphasis has been placed on programs with western Europe. In this paper, a program of collaboration is described in which the Department of Nuclear Engineering at Texas A ampersand M University has entered into memoranda of agreement with two institutions in France. The two universities are the Institut National Polytechnique de Grenoble (INPG) in Grenoble and the Ecole Polytechnique Feminine (EPF) in Sceaux. The purpose of the program is to enable students in nuclear engineering to simultaneously complete requirements for the diploma and the MS degree

  16. Annual report of Radiation Laboratory Department of Nuclear Engineering Kyoto University for fiscal 1993

    International Nuclear Information System (INIS)

    1994-07-01

    This publication is the collection of the papers presented research activities of Radiation Laboratory, Department of Nuclear Engineering, Kyoto University during the 1993 academic/fiscal year (April, 1993 - March, 1994). The 47 of the presented papers are indexed individually. (J.P.N.)

  17. Annual report of Radiation Laboratory Department of Nuclear Engineering Faculty of Engineering, Kyoto University

    International Nuclear Information System (INIS)

    1993-07-01

    This publication is the collection of the papers presented research activities of Radiation laboratory, Department of Nuclear Engineering, Kyoto University during the 1992 academic/fiscal year (April, 1992 - March, 1993). The 48 of the presented papers are indexed individually. (J.P.N.)

  18. The Department of Energy/American Chemical Society Summer School in Nuclear and Radiochemistry at San Jose State University

    International Nuclear Information System (INIS)

    Kinard, W.F.; Silber, H.B.

    2005-01-01

    A Summer School in Nuclear Chemistry sponsored by the U. S. Department of Energy and the American Chemical Society has been held at San Jose State University for the past 20 years. The intent of the program is to introduce outstanding college students to the field of nuclear and radiochemistry with the goal that some of these students will consider careers on nuclear science. The program features radiochemistry experiments along with radiation safety training, guest lectures by well known nuclear scientists and field trips to nuclear chemistry facilities in the San Francisco area. (author)

  19. The immediate need for US universities to promote research related to a nuclear-weapon-free world

    International Nuclear Information System (INIS)

    Ionno, S.

    1999-01-01

    If disarmament is a goal, then the requisite skills must be fostered in academic research. Too many students today view nuclear weapons as a non-issue. It is crucial that those people in positions of influence encourage more young people to explore in-depth the political, scientific, and social changes that a nuclear-weapon-free world will require. The data presented are based on a search of nuclear-weapons-related keywords in the UMI Dissertation Abstracts Database which includes work from over 1000 North American graduate schools and European Universities. The search was focused on US Phd dissertations between 1987 and 1996. There was no PhDs focused on issues such as: zero-level nuclear-weapons-free world; nuclear-weapons-free zones; decreasing nuclear alert status; a nuclear weapons convention; no-first-use or-no use against non-nuclear-weapons-states; START; French nuclear weapons; a possible 'Eurobomb'; peace groups outside the USA, UK, and Germany; nuclear-weapons secrecy; funding disarmament; the role od UN in a nuclear-weapons-free world; an so on

  20. International Nuclear Security Education Network (INSEN): Promoting nuclear security education

    International Nuclear Information System (INIS)

    Muhamad Samudi Yasir

    2013-01-01

    Full-text: The need for human resource development programmes in nuclear security was underlined at several International Atomic Energy Agency (IAEA) General Conferences and Board of Governors Meetings. Successive IAEA Nuclear Security Plans, the most recent of which was agreed by the Board of Governors in September 2009, give high priority to assisting States in establishing educational programmes in nuclear security in order to ensure the sustainability of nuclear security improvements. The current Nuclear Security Plan 1 covering 2010-2013 emphasizes on the importance of considering existing capacities at international, regional and national levels while designing nuclear security academic programmes. In the course of implementing the Plan, the IAEA developed a guide entitled Educational Programme in Nuclear Security (IAEA Nuclear Security Series No. 12) that consists of a model of a MAster of Science (M.Sc.) and a Certificate Programme in Nuclear Security. This guide was aims at assisting universities or other educational institutes to developed academic programmes in nuclear security. Independently, some universities already offered academic programmes covering some areas of nuclear security, while other universities have asked the IAEA to support the implementation of these programmes. In order to better address current and future request for assistance in this area, the IAEA establish a collaboration network-International Nuclear Security Education Network (INSEN), among universities who are providing nuclear security education or who are interested in starting an academic programme/ course(s) in nuclear security. Universiti Kebangsaan Malaysia (UKM) is a first local university became a member of INSEN since the beginning of the establishment. (author)

  1. Theoretical studies of multistep processes, isospin effects in nuclear scattering, and meson and baryon interactions in nuclear physics: Annual progess report, 1 May 1988--30 April 1989

    International Nuclear Information System (INIS)

    Landau, R.H.; Madsen, V.A.

    1988-01-01

    A progress report is presented for DOE grant FG06-86ER40283 supporting theoretical studies in nuclear and particle physics at Oregon State University. The research was led by Professors Landau and Madsen, and carried out in collaboration with graduate students in Corvallis, and scientists at LLNL-Livermore, TRIUMF, KFA-Juelich, Purdue University, and Florida State University. The studies include meson-exchange-current effects, quark effects, and relativistic (Dirac) effects deduced from spin observables in p- 3 He scattering, atomic and nuclear Gamow states in momentum space of kaons and antiprotons, and charge-symmetry violation in pion scattering. Additional studies include microscopic optical potential calculations, multiple step processes, and differences in neutron and proton multipole matrix elements and transition densities in low lying collective states and in giant resonances. 13 refs

  2. Nuclear astrophysics

    International Nuclear Information System (INIS)

    Penionzhkevich, Yu. E.

    2010-01-01

    The International Year of Astronomy 2009 (IYA2009) was declared by the 62nd General Assembly of the United Nations and was also endorsed by UNESCO. Investigations in the realms of particle and nuclear physicsmake a large contribution in the development of our ideas of the properties of the Universe. The present article discusses some problems of the evolution of the Universe, nucleosyntheses, and cosmochronology from the point of view of nuclear and particle physics. Processes occurring in the Universe are compared with the mechanisms of the production and decay of nuclei, as well as with the mechanisms of their interaction at high energies. Examples that demonstrate the potential of nuclearphysics methods for studying cosmic objects and the properties of the Universe are given. The results that come from investigations into nuclear reactions induced by beams of radioactive nuclei and which make it possible to take a fresh look at the nucleosynthesis scenario in the range at light nuclei are presented.

  3. Theoretical studies in nuclear physics. Three year progress report and final report

    International Nuclear Information System (INIS)

    Landau, R.H.; Madsen, V.A.

    1996-01-01

    In 1995 the DOE grant in Nuclear theory with Professors Rubin H. Landau and Victor A. Madsen as co-principal investigators ended. Their research was carried out in collaboration with graduate students in Corvallis, and with scientists at LLNL-Livermore, Los Alamos, TRIUMF, KFA-Julich, Hamburg University, Melbourne University, The Thinking Machine Corporation and IBM Research. Activities in nuclear and particle physics at Oregon State University (OSU) were diverse and active. Madsen's work concentrated on the relation of reactions to the nuclear structure, and Landau's work concentrated on intermediate energy physics, few-body problems, and computational physics. The Landau group had a weekly meeting of students and visitors. There was a weekly nuclear seminar with experimental and theoretical colleagues, and a weekly departmental colloquium. The DOE support had permitted the group to run Unix workstations networked to other computers in the Physics Department and the University. Since 1990 OSU has been using IBM RISC System 6000/model 530 with console and four X-stations. The equipment was purchased and is maintained with yearly DOE funding of the group

  4. Studies in Low-Energy Nuclear Science

    International Nuclear Information System (INIS)

    Brune, Carl R.; Grimes, Steven M.

    2010-01-01

    This report presents a summary of research projects in the area of low energy nuclear reactions and structure, carried out between March 1, 2006 and October 31, 2009 which were supported by U.S. DOE grant number DE-FG52-06NA26187. We describe here research into low-energy nuclear reactions and structure. The statistical properties of nuclei have been studied by measuring level densities and also calculating them theoretically. Our approach of measuring level densities via evaporation spectra is able to reach a very wide range of nuclei by using heavy ion beams (we expect to develop experiments using radioactive beams in the near future). Another focus of the program has been on γ-ray strength functions. These clearly impact nuclear reactions, but they are much less understood than corresponding transmission coefficients for nucleons. We have begun investigations of a new approach, using γ-γ coincidences following radiative capture. Finally, we have undertaken several measurements of cross sections involving light nuclei which are important in various applications. The 9 Be(α,n) and B(d,n) reactions have been measured at Ohio University, while neutron-induced reactions have been measured at Los Alamos (LANSCE).

  5. University of Colorado, Nuclear Physics Laboratory technical progress report, November 1, 1978-October 31, 1979. Report NPL-845

    International Nuclear Information System (INIS)

    1979-01-01

    This report summarizes work carried out at the Nuclear Physics Laboratory of the University of Colorado from November 1, 1978 to October 31, 1979, under contract EY-76-C-02-0535.A003 between the University of Colorado and the United States Department of Energy. Experimental studies of light ion-induced reactions were performed with the AVF cyclotron, which continues each year to produce beams of yet higher quality. Charged-particle studies continued to emphasize use of the high-resolution spectrometer system, but some return to broad-range spectroscopic studies using solid state detectors also occurred. Neutron time-of-flight experiments used 9-meter and 30-meter flight paths. Neutron-gamma ray coincidence studies developed into a new and promising field. The new PDP 11/34 data acquisition system was of great value in allowing such multiparameter experiments. Smaller programs in nuclear astrophysics, plasma diagnostic development, and medical physics were also undertaken. Research activities based at other accelerators grew. Studies of future directions for light-ion accelerators, including work on intense pulsed ion sources, orbit dynamics, and storage rings, were greatly enlarged. 19 of the articles in this report were abstracted and indexed individually. Lists of publications and personnel conclude this report

  6. List of publications of Karlsruhe University (T.H.) and Karlsruhe Nuclear Research Centre

    International Nuclear Information System (INIS)

    1977-01-01

    This 19th volume of the list of publications compiled by Karlsruhe University (T.H.) in cooperation with Karlsruhe Nuclear Research Centre and some other institutions closely connected with the university gives the publications of the year 1976 as well as some supplements from 1975. The publications listed are books and journals, articles from journals and symposia, research reports, dissertations and theses for habilitation published by these institutions, their organs and institutes, their staff and scientific personnel, as well as patents. As a rule, theses for diplomas, newspaper articles, book reviews, internal reports and information have been left out. (orig.) [de

  7. Heavy particle decay studies using different versions of nuclear potentials

    Science.gov (United States)

    Santhosh, K. P.; Sukumaran, Indu

    2017-10-01

    The heavy particle decay from 212-240Pa , 219-245Np , 228-246Pu , 230-249Am , and 232-252Cm leading to doubly magic 208Pb and its neighboring nuclei have been studied using fourteen versions of nuclear potentials. The study has shown that the barrier penetrability as well as the decay half-lives are found to vary with the nuclear potential used. The investigated decay events of the emission of the clusters 22Ne , 24Ne , 26Mg , 28Mg , 32Si and 33Si are not experimentally detected yet but may be detectable in the future. As most of the half-lives predicted are found to lie within the experimental upper limit, T 1/2 parents with varying slopes and intercepts. Also, it is to be noted that the linearity of the GN plots is unaltered using different nuclear potentials. The universal curve studied ( log10 T 1/2 vs. -ln P for various clusters emitted from various parents shows a linear behavior with the same slope and intercept irrespective of the nuclear potential used.

  8. Annual report of Nuclear Engineering Research Laboratory, University of Tokyo in fiscal 1992

    International Nuclear Information System (INIS)

    1993-07-01

    In this annual report, the activities of education and research, the state of operation of research facilities and others in Nuclear Engineering Research Laboratory, University of Tokyo in fiscal year 1992 are summarized. In this Laboratory, there are four large research facilities, that are, the fast neutron source reactor 'Yayoi', the electron beam linac, the nuclear fusion reactor blanket experiment facility and the heavy irradiation research facility. Those are used for carrying out education and research in the wide fields of nuclear engineering, and are offered also for joint utilization. The results of research by using respective research facilities have been summarized in separate reports. The course of the management and operation of each research facility is described, and the research activities, the theses for doctorate and graduation these of teachers, personnel and graduate students in the Laboratory are summarized. (J.P.N.)

  9. Academic training for nuclear power plant operators

    International Nuclear Information System (INIS)

    Jones, D.W.

    1982-01-01

    In view of the increasing emphasis being placed upon academic training of nuclear power plant operators, it is important that institutions of higher education develop and implement programs which will meet the educational needs of operational personnel in the nuclear industry. Two primary objectives must be satisfied by these programs if they are to be effective in meeting the needs of the industry. One objective is for academic quality. The other primary objective is for programs to address the specialized needs of the nuclear plant operator and to be relevant to the operator's job. The Center for Nuclear Studies at Memphis State University, therefore, has developed a total program for these objectives, which delivers the programs, and/or appropriate parts thereto, at ten nuclear plant sites and with other plants in the planning stage. The Center for Nuclear Studies program leads to a Bachelor of Professional Studies degree in nuclear industrial operations, which is offered through the university college of Memphis State University

  10. Historical review, present status and perspectives of nuclear sciences education at the Sofia University

    International Nuclear Information System (INIS)

    Djingova, R.; Kuleff, I.; Todorovsky, D.; Kovacheva, P.; Tsankov, L.; Staevski, K.; Tsenov, R.

    2004-01-01

    A brief review of the history of the education in nuclear sciences at the Faculty of Physics and Faculty of Chemistry of the Sofia University is made in the report. The present status of Bachelor, Master and PhD programmes in both Faculties is presented. (authors)

  11. Imagine a universe with 85% down quarks: Mentoring for inclusive excellence in nuclear science

    Science.gov (United States)

    Yennello, Sherry J.

    2017-09-01

    If nature created six down quarks for every up quark the world might be a bit more strange. The US population is made up of over 50% women. Hispanic Americans and African Americans make up over 30% of the US population. The processes by which we foster curiosity, educate our youth, encourage people into science, recruit and retain people into physics and welcome them as members of our nuclear physics community results in a much different demographic in the membership of the DNP. Enabling the development of an identity as a scientist or nuclear scientist is a crucial part of mentoring young people to successful careers in nuclear science. Research experiences for students can play a critical role in that identity development. Since 2004, over 170 students have explored nuclear science through the Research Experiences for Undergraduates program Texas A&M University Cyclotron Institute.

  12. Nuclear physics

    International Nuclear Information System (INIS)

    Spicer, B.M.

    1981-01-01

    Major centres of experimental nuclear physics are at Melbourne University, A.N.U., the A.A.E.C., James Cook University and the University of Western Australia. Groups working in theoretical nuclear physics exist at Melbourne, A.N.U., the A.A.E.C., Flinders and Adelaide Universities and the University of Western Australia. The activities of these groups are summarised

  13. Report of the research results with University of Tokyo, Nuclear Engineering Research Laboratory's Facilities in fiscal 1991

    International Nuclear Information System (INIS)

    1992-01-01

    This publication summarizes the results of the joint utilization of the nuclear reactor 'Yayoi' and the electron beam accelerator in the Nuclear Engineering Research Laboratory, University of Tokyo, in fiscal year 1991. The Yayoi was operated smoothly throughout the year, and the number of research themes, for which the reactor Yayoi was jointly utilized, and the related themes reached 21 cases. After the linear accelerator was reconstructed as the twin linac, the joint utilization was resumed in October, 1989, and the number of research themes, was 15 cases. In this publication, in addition to the utilization reports, also the reports of 15 cases of Yayoi Study Meetings held in fiscal year 1991 are collected. (K.I.)

  14. Western Nuclear Science Alliance

    International Nuclear Information System (INIS)

    Reese, Steve; Miller, George; Frantz, Stephen; Beller, Denis; Morse, Ed; Krahenbuhl, Melinda; Flocchini, Bob; Elliston, Jim

    2010-01-01

    The Western Nuclear Science Alliance (WNSA) was formed at Oregon State University (OSU) under the DOE Innovations in Nuclear Infrastructure and Education (INIE) program in 2002. The primary objective of the INIE program is to strengthen nuclear science and engineering programs at the member institutions and to address the long term goal of the University Reactor Infrastructure and Education Assistance Program. WNSA has been very effective in meeting these goals. The infrastructure at several of the WNSA university nuclear reactors has been upgraded significantly, as have classroom and laboratory facilities for Nuclear Engineering, Health Physics, and Radiochemistry students and faculty. Major nuclear-related education programs have been inaugurated, including considerable assistance by WNSA universities to other university nuclear programs. Research has also been enhanced under WNSA, as has outreach to pre-college and college students and faculty. The INIE program under WNSA has been an exceptional boost to the nuclear programs at the eight funded WNSA universities. In subsequent years under INIE these programs have expanded even further in terms of new research facilities, research reactor renovations, expanded educational opportunities, and extended cooperation and collaboration between universities, national laboratories, and nuclear utilities.

  15. College and university programs for meeting the needs of educating nuclear power plant personnel

    International Nuclear Information System (INIS)

    Hajek, B.K.; Miller, D.W.; De Vuono, A.C.

    1981-01-01

    ANS, INPO, and NRC are considering various recommendations for university courses to be required for all nuclear power plant licensed personnel. This paper discusses these recommendations and compares them with the content and constraints of traditional university academic programs. One solution being pursued by utilities in Ohio is discussed. In this program, courses are being obtained from several different educational institutions for presentation at the power plant site. The program provides sufficient flexibility so that decisions on specific degree options do not have to be made at this time

  16. Matching grant program for university nuclear engineering education

    International Nuclear Information System (INIS)

    Bajorek, Stephen M.

    2002-01-01

    The grant augmented funds from Westinghouse Electric Co. to enhance the Nuclear Engineering program at KSU. The program was designed to provide educational opportunities and to train engineers for careers in the nuclear industry. It provided funding and access to Westinghouse proprietary design codes for graduate and undergraduate studies on topics of current industrial importance. Students had the opportunity to use some of the most advanced nuclear design tools in the industry and to work on actual design problems. The WCOBRA/TRAC code was used to simulate loss of coolant accidents (LOCAs)

  17. Studies of nuclear processes at the Triangle Universities Nuclear Laboratory. Final report

    International Nuclear Information System (INIS)

    2000-01-01

    The authors concluded their program to establish the trends of isospin mixing in nuclei ranging from 12 C to 40 Ca. This program revealed a systematic variation in the proton reduced widths from one A = 4N nucleus to the next as T = 0 nuclei were bombarded by protons and T = 3/2 states were populated in the compound system. In few-body physics, their program of studies of D-state properties of light nuclei ( 3 H, 3 He, and 4 He) resulted in precise determinations of the η parameters for 3 He and 3 H which agreed well with theoretical predictions and served as an important constraint on theoretical calculations. The D 2 parameter determination for 4 He, carried out in collaboration with researchers at Munich and Lisbon, was not as precise but did indicate that 4 He has significant deformation. A program was initiated during this period to measure the ratio of asymptotic D- to S-state normalization constant (η) for 6 Li at Florida State University using the ( 6 Li,d) reaction. They determined that the η parameter for 6 Li is extremely small, contrary to expectations

  18. Interactive Virtual Reactor and Control Room for Education and Training at Universities and Nuclear Power Plants

    International Nuclear Information System (INIS)

    Satoh, Yoshinori; Li, Ye; Zhu, Xuefeng; Rizwan, Uddin

    2014-01-01

    Efficient and effective education and training of nuclear engineering students and nuclear workers are critical for the safe operation and maintenance of nuclear power plants. With an eye toward this need, we have focused on the development of 3D models of virtual labs for education, training as well as to conduct virtual experiments. These virtual labs, that are expected to supplement currently available resources, and have the potential to reduce the cost of education and training, are most easily developed on game-engine platforms. We report some recent extensions to the virtual model of the University of Illinois TRIGA reactor

  19. Interactive Virtual Reactor and Control Room for Education and Training at Universities and Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Satoh, Yoshinori; Li, Ye; Zhu, Xuefeng; Rizwan, Uddin [University of Illinois, Urbana (United States)

    2014-08-15

    Efficient and effective education and training of nuclear engineering students and nuclear workers are critical for the safe operation and maintenance of nuclear power plants. With an eye toward this need, we have focused on the development of 3D models of virtual labs for education, training as well as to conduct virtual experiments. These virtual labs, that are expected to supplement currently available resources, and have the potential to reduce the cost of education and training, are most easily developed on game-engine platforms. We report some recent extensions to the virtual model of the University of Illinois TRIGA reactor.

  20. Education and training of experts for the nuclear power sector at the Faculty of Electrical Engineering and Information Technologies, Slovak University of Technology in Bratislava

    International Nuclear Information System (INIS)

    Lipka, J.; Slugen, V.; Miglierini, M.; Necas, V.; Hascik, J.; Pavlovic, M.

    2003-01-01

    The Faculty of Electrical Engineering and Information Technologies, Slovak University of Technology in Bratislava has been training experts for the nuclear sector for over 40 years now. Current status and trends in nuclear education within the faculty's educational system, encompassing BSc, MSc and PhD studies, are highlighted. Dedicated training courses in the safety aspects of operation of the nuclear power installations are also organized for NPP staff. Periodical training is also provided to supervising physicists at the Jaslovske Bohunice and Mochovce nuclear power plants. Major international projects aimed at nuclear knowledge management and preservation are highlighted and the ENEN - European Nuclear Education Network project is described. (P.A.)

  1. Analysis of nuclear and radiological events. Textbook for lecture in graduate school of engineering in the University of Tokyo

    International Nuclear Information System (INIS)

    Watanabe, Norio

    2007-02-01

    The Japan Atomic Energy Agency is carrying out the cooperative activity by providing specialized educational and training staff and making our facilities available for the graduate school of engineering in The University of Tokyo as part of developing human resources in nuclear technology. This report is prepared as a textbook for the lecture in the graduate school of engineering in The University of Tokyo and provides the outlines of activities on the analysis of nuclear and radiological events and analysis methods as well as the summaries of major incidents and accidents that occurred. (author)

  2. Web server of the Centre for Photonuclear Experiments Data of the Scientific Research Institute for Nuclear Physics, Moscow State University: Hypertext version of the nuclear physics database

    Energy Technology Data Exchange (ETDEWEB)

    Boboshin, I N; Varlamov, A V; Varlamov, V V; Rudenko, D S; Stepanov, M E [D.V. Skobel' tsyn Scientific Research Institute for Nuclear Physics, M.V. Lomonosov Moscow State University, Centre for Photonuclear Experiments Data (Russian Federation)

    2001-02-01

    The nuclear databases which have been developed at the Centre for Photonuclear Experiments Data of the D.V. Skobel'tsyn Scientific Research Institute for Nuclear Physics, M.V. Lomonosov Moscow State University, and put on the Centre's web server, are presented. The possibilities for working with these databases on the Internet are described. (author)

  3. Web server of the Centre for Photonuclear Experiments Data of the Scientific Research Institute for Nuclear Physics, Moscow State University: Hypertext version of the nuclear physics database

    International Nuclear Information System (INIS)

    Boboshin, I.N.; Varlamov, A.V.; Varlamov, V.V.; Rudenko, D.S.; Stepanov, M.E.

    2001-01-01

    The nuclear databases which have been developed at the Centre for Photonuclear Experiments Data of the D.V. Skobel'tsyn Scientific Research Institute for Nuclear Physics, M.V. Lomonosov Moscow State University, and put on the Centre's web server, are presented. The possibilities for working with these databases on the Internet are described. (author)

  4. Final report to DOE: Matching Grant Program for the Penn State University Nuclear Engineering Program

    International Nuclear Information System (INIS)

    Jack S. Brenizer, Jr.

    2003-01-01

    The DOE/Industry Matching Grant Program is designed to encourage collaborative support for nuclear engineering education as well as research between the nation's nuclear industry and the U.S. Department of Energy (DOE). Despite a serious decline in student enrollments in the 1980s and 1990s, the discipline of nuclear engineering remained important to the advancement of the mission goals of DOE. The program is designed to ensure that academic programs in nuclear engineering are maintained and enhanced in universities throughout the U.S. At Penn State, the Matching Grant Program played a critical role in the survival of the Nuclear Engineering degree programs. Funds were used in a variety of ways to support both undergraduate and graduate students directly. Some of these included providing seed funding for new graduate research initiatives, funding the development of new course materials, supporting new teaching facilities, maintenance and purchase of teaching laboratory equipment, and providing undergraduate scholarships, graduate fellowships, and wage payroll positions for students

  5. An archival study on the nuclear fusion research in Japan later half of 1980's. An interview with SEKIGUCHI Tadashi, Professor Emeritus at the University of Tokyo

    International Nuclear Information System (INIS)

    Nisio, Sigeko; Uematsu, Eisui; Obayashi, Haruo

    2003-05-01

    An interview record with SEKIGUCHI Tadashi, Professor Emeritus at The University of Tokyo, on the nuclear fusion researches in Japan later half of 1980's is given. The major topics concerned are: activities of Science Council of Japan, the establishment of the Japan Society of Plasma Science and Nuclear Fusion Research, the history of establishing National Institute for Fusion Science, and effects of Grant-in-Aid for Scientific Research, and others. (author)

  6. Progress of teaching and learning of nuclear engineering courses at College of Engineering, Universiti Tenaga Nasional (UNITEN)

    Science.gov (United States)

    Hamid, Nasri A.; Mohamed, Abdul Aziz; Yusoff, Mohd. Zamri

    2015-04-01

    Developing human capital in nuclear with required nuclear background and professional qualifications is necessary to support the implementation of nuclear power projects in the near future. Sufficient educational and training skills are required to ensure that the human resources needed by the nuclear power industry meets its high standard. The Government of Malaysia has made the decision to include nuclear as one of the electricity generation option for the country, post 2020 in order to cater for the increasing energy demands of the country as well as to reduce CO2 emission. The commitment by the government has been made clearer with the inclusion of the development of first NPP by 2021 in the Economic Transformation Program (ETP) which was launched by the government in October 2010. The In tandem with the government initiative to promote nuclear energy, Center for Nuclear Energy, College of Engineering, Universiti Tenaga Nasional (UNITEN) is taking the responsibility in developing human capital in the area of nuclear power and technology. In the beginning, the College of Engineering has offered the Introduction to Nuclear Technology course as a technical elective course for all undergraduate engineering students. Gradually, other nuclear technical elective courses are offered such as Nuclear Policy, Security and Safeguards, Introduction to Nuclear Engineering, Radiation Detection and Nuclear Instrumentation, Introduction to Reactor Physics, Radiation Safety and Waste Management, and Nuclear Thermal-hydraulics. In addition, another course Advancement in Nuclear Energy is offered as one of the postgraduate elective courses. To enhance the capability of teaching staffs in nuclear areas at UNITEN, several junior lecturers are sent to pursue their postgraduate studies in the Republic of Korea, United States and the United Kingdom, while the others are participating in short courses and workshops in nuclear that are conducted locally and abroad. This paper describes

  7. Progress of teaching and learning of nuclear engineering courses at College of Engineering, Universiti Tenaga Nasional (UNITEN)

    International Nuclear Information System (INIS)

    Hamid, Nasri A.; Mohamed, Abdul Aziz; Yusoff, Mohd. Zamri

    2015-01-01

    Developing human capital in nuclear with required nuclear background and professional qualifications is necessary to support the implementation of nuclear power projects in the near future. Sufficient educational and training skills are required to ensure that the human resources needed by the nuclear power industry meets its high standard. The Government of Malaysia has made the decision to include nuclear as one of the electricity generation option for the country, post 2020 in order to cater for the increasing energy demands of the country as well as to reduce CO 2 emission. The commitment by the government has been made clearer with the inclusion of the development of first NPP by 2021 in the Economic Transformation Program (ETP) which was launched by the government in October 2010. The In tandem with the government initiative to promote nuclear energy, Center for Nuclear Energy, College of Engineering, Universiti Tenaga Nasional (UNITEN) is taking the responsibility in developing human capital in the area of nuclear power and technology. In the beginning, the College of Engineering has offered the Introduction to Nuclear Technology course as a technical elective course for all undergraduate engineering students. Gradually, other nuclear technical elective courses are offered such as Nuclear Policy, Security and Safeguards, Introduction to Nuclear Engineering, Radiation Detection and Nuclear Instrumentation, Introduction to Reactor Physics, Radiation Safety and Waste Management, and Nuclear Thermal-hydraulics. In addition, another course Advancement in Nuclear Energy is offered as one of the postgraduate elective courses. To enhance the capability of teaching staffs in nuclear areas at UNITEN, several junior lecturers are sent to pursue their postgraduate studies in the Republic of Korea, United States and the United Kingdom, while the others are participating in short courses and workshops in nuclear that are conducted locally and abroad. This paper describes

  8. Progress of teaching and learning of nuclear engineering courses at College of Engineering, Universiti Tenaga Nasional (UNITEN)

    Energy Technology Data Exchange (ETDEWEB)

    Hamid, Nasri A., E-mail: Nasri@uniten.edu.my; Mohamed, Abdul Aziz; Yusoff, Mohd. Zamri [Nuclear Energy Center, College of Engineering, Universiti Tenaga Nasional, Jalan IKRAM-UNITEN, 43000 Kajang, Selangor (Malaysia)

    2015-04-29

    Developing human capital in nuclear with required nuclear background and professional qualifications is necessary to support the implementation of nuclear power projects in the near future. Sufficient educational and training skills are required to ensure that the human resources needed by the nuclear power industry meets its high standard. The Government of Malaysia has made the decision to include nuclear as one of the electricity generation option for the country, post 2020 in order to cater for the increasing energy demands of the country as well as to reduce CO{sub 2} emission. The commitment by the government has been made clearer with the inclusion of the development of first NPP by 2021 in the Economic Transformation Program (ETP) which was launched by the government in October 2010. The In tandem with the government initiative to promote nuclear energy, Center for Nuclear Energy, College of Engineering, Universiti Tenaga Nasional (UNITEN) is taking the responsibility in developing human capital in the area of nuclear power and technology. In the beginning, the College of Engineering has offered the Introduction to Nuclear Technology course as a technical elective course for all undergraduate engineering students. Gradually, other nuclear technical elective courses are offered such as Nuclear Policy, Security and Safeguards, Introduction to Nuclear Engineering, Radiation Detection and Nuclear Instrumentation, Introduction to Reactor Physics, Radiation Safety and Waste Management, and Nuclear Thermal-hydraulics. In addition, another course Advancement in Nuclear Energy is offered as one of the postgraduate elective courses. To enhance the capability of teaching staffs in nuclear areas at UNITEN, several junior lecturers are sent to pursue their postgraduate studies in the Republic of Korea, United States and the United Kingdom, while the others are participating in short courses and workshops in nuclear that are conducted locally and abroad. This paper

  9. Why should we study nuclear physics?

    International Nuclear Information System (INIS)

    Darriulat, Pierre

    2015-01-01

    After a brief look at the history of nuclear science and technology in the past hundred years, arguments are given for the study of Nuclear Physics, very different of course from what they were in the middle of the past century. Nuclear physics no longer appears as a good bet to study the strong force. Problems left open by QCD are better addressed by relativistic ion accelerators, RHIC and LHC/Alice. Radioactive Ion Beams have caused a renaissance of experimental nuclear physics. They explore the nuclear equation of state far from the stability valley, discovering new isotopes and new forms of dynamics, such as halo nuclei. They contribute essential data to nuclear astrophysics. They have new applications in medicine and industry. They enjoy strong support all around the world; in Asia, Japan is a leader and Korea and China are joining the club. Nuclear processes are ubiquitous in astrophysics: Big bang nucleosynthesis, Main Sequence stars, evolved stars (Asymptotic Giant Branch and Supernovae). Understanding what is going on requires knowledge from laboratory measurements; at the same time astrophysics gives nuclear physics a laboratory having no equivalent on Earth. Applications of nuclear physics pervade modern societies. Medicine and material sciences, make ample use of radioactive sources and ion beams, as do all branches of agriculture and industry. Accelerators are now commercially available and part of the industrial landscape. Implications on training competent scientists, technicians and engineers are enormous. Particularly crucial are matters of safety. Nuclear Power Plants are a major element of the Vietnamese energy policy in the decades to come. Their safe and efficient operation requires high level skills and competence that cover a broad spectrum of scientific and technical, but also socio-economic and geo-political issues. Nuclear physics must be taught to the young generation in a form that takes proper account of the current scientific

  10. Building a Universal Nuclear Energy Density Functional

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, Joe A. [Michigan State Univ., East Lansing, MI (United States); Furnstahl, Dick; Horoi, Mihai; Lust, Rusty; Nazaewicc, Witek; Ng, Esmond; Thompson, Ian; Vary, James

    2012-12-30

    During the period of Dec. 1 2006 – Jun. 30, 2012, the UNEDF collaboration carried out a comprehensive study of all nuclei, based on the most accurate knowledge of the strong nuclear interaction, the most reliable theoretical approaches, the most advanced algorithms, and extensive computational resources, with a view towards scaling to the petaflop platforms and beyond. The long-term vision initiated with UNEDF is to arrive at a comprehensive, quantitative, and unified description of nuclei and their reactions, grounded in the fundamental interactions between the constituent nucleons. We seek to replace current phenomenological models of nuclear structure and reactions with a well-founded microscopic theory that delivers maximum predictive power with well-quantified uncertainties. Specifically, the mission of this project has been three-fold: First, to find an optimal energy density functional (EDF) using all our knowledge of the nucleonic Hamiltonian and basic nuclear properties; Second, to apply the EDF theory and its extensions to validate the functional using all the available relevant nuclear structure and reaction data; Third, to apply the validated theory to properties of interest that cannot be measured, in particular the properties needed for reaction theory.

  11. Education and research when dismantling nuclear plants at the Technical University Dresden

    International Nuclear Information System (INIS)

    Hurtado, A.; Anthofer, A.; Cloppenborg, T.; Schreier, M.

    2013-01-01

    With the decision by the German government in 2011 to revoke the operating permission from 8 of the existing 17 German nuclear power plants, the responsibility of decommissioning and dismantling these plants has moved back into the focus of public awareness. Under the current legal conditions, the last nuclear plant will be disconnected from the grid on 31.12.2022 and this will create an enormous challenge for all the involved approving authorities, expert organisations, as well as companies involved in dismantling the plants. The development of new and efficient dismantling technologies and strategies is required to perform these highly responsible tasks. On the other hand, the nuclear competence and knowhow, as well as the promotion of young talents in the relevant scientific fields must be preserved. Technological and economic solutions are in demand for the various plants due to the different specifics of nuclear power plants. This will still require e.g. in the field of radiation protection highly qualified and well trained staff in future. The training of these skilled employees will require expanding the subject matter taught at universities, colleges and polytechnics to suit the changed parameters. The chair for hydrogen and nuclear energy technology at the TU Dresden will in future offer lectures as part of a new teaching discipline with the focus on dismantling and disposal. The course 'Dismantling nuclear power plants' took place for the first time in the summer semester 2013. It is organised as a three-day block seminar with an excursion to the company NIS Ingenieurgesellschaft mbH in Alzenau. The company NIS is a subsidiary of the Siempelkamp Nukleartechnik GmbH. This article intends to provide an overview of the contents of the courses and the impressions of the participants. In this way the TU Dresden is making a further contribution to preserving nuclear competence and inter-disciplinary dialogue. (orig.)

  12. The Development of Three Long Universal Nuclear Protein-Coding Locus Markers and Their Application to Osteichthyan Phylogenetics with Nested PCR

    Science.gov (United States)

    Zhang, Peng

    2012-01-01

    Background Universal nuclear protein-coding locus (NPCL) markers that are applicable across diverse taxa and show good phylogenetic discrimination have broad applications in molecular phylogenetic studies. For example, RAG1, a representative NPCL marker, has been successfully used to make phylogenetic inferences within all major osteichthyan groups. However, such markers with broad working range and high phylogenetic performance are still scarce. It is necessary to develop more universal NPCL markers comparable to RAG1 for osteichthyan phylogenetics. Methodology/Principal Findings We developed three long universal NPCL markers (>1.6 kb each) based on single-copy nuclear genes (KIAA1239, SACS and TTN) that possess large exons and exhibit the appropriate evolutionary rates. We then compared their phylogenetic utilities with that of the reference marker RAG1 in 47 jawed vertebrate species. In comparison with RAG1, each of the three long universal markers yielded similar topologies and branch supports, all in congruence with the currently accepted osteichthyan phylogeny. To compare their phylogenetic performance visually, we also estimated the phylogenetic informativeness (PI) profile for each of the four long universal NPCL markers. The PI curves indicated that SACS performed best over the whole timescale, while RAG1, KIAA1239 and TTN exhibited similar phylogenetic performances. In addition, we compared the success of nested PCR and standard PCR when amplifying NPCL marker fragments. The amplification success rate and efficiency of the nested PCR were overwhelmingly higher than those of standard PCR. Conclusions/Significance Our work clearly demonstrates the superiority of nested PCR over the conventional PCR in phylogenetic studies and develops three long universal NPCL markers (KIAA1239, SACS and TTN) with the nested PCR strategy. The three markers exhibit high phylogenetic utilities in osteichthyan phylogenetics and can be widely used as pilot genes for

  13. Situation of the education in the nuclear field: networks of training and paper of the universities; Situacion de la educacion en el campo nuclear: redes de formacion y papel de las universidades

    Energy Technology Data Exchange (ETDEWEB)

    Minguez, E.

    2008-07-01

    In this work the education networks in nuclear engineering around Europe American and Asia are presented, focusing in the main role of universities in collaboration with the nuclear industry. (Author) 5 refs.

  14. New 'Master of Science in Nuclear Engineering' study course launched. Interview with Professor Horst-Michael Prasser

    International Nuclear Information System (INIS)

    Anon.

    2008-01-01

    In the fall of 2008, the Zurich Technical University (ETH) and the Lausanne EPF will launch their joint master course of studies in Nuclear Engineering. Horst-Michael Prasser, Professor for Nuclear Energy Systems at Zurich ETH, is responsible for designing the course. In this interview he comments, among other things, on fundamental questions which may determine a future student's choice of a course of studies, and on the special opportunities offered by the new Nuclear Engineering course. Other subjects addressed include the renaissance of nuclear power and the future prospects of safety research and new reactor developments. (orig.)

  15. Progress report on nuclear spectroscopic studies

    International Nuclear Information System (INIS)

    Bingham, C.R.; Guidry, M.W.; Riedinger, L.L.; Sorensen, S.P.

    1994-01-01

    The Nuclear Physics group at the University of Tennessee, Knoxville (UTK) is involved in several aspects of heavy-ion physics including both nuclear structure and reaction mechanisms. While the main emphasis is on experimental problems, the authors have maintained a strong collaboration with several theorists in order to best pursue the physics of their measurements. During the last year they have had several experiments at the ATLAS at Argonne National Laboratory, the GAMMASPHERE at the LBL 88 Cyclotron, and with the NORDBALL at the Niels Bohr Institute Tandem. Also, they continue to be very active in the WA93/98 collaboration studying ultra-relativistic heavy ion physics utilizing the SPS accelerator at CERN in Geneva, Switzerland and in the PHENIX Collaboration at the RHIC accelerator under construction at Brookhaven National Laboratory. During the last year their experimental work has been in three broad areas: (1) the structure of nuclei at high angular momentum, (2) the structure of nuclei far from stability, and (3) ultra-relativistic heavy-ion physics. The results of studies in these particular areas are described in this document. These studies concentrate on the structure of nuclear matter in extreme conditions of rotational motion, imbalance of neutrons and protons, or very high temperature and density. Another area of research is heavy-ion-induced transfer reactions, which utilize the transfer of nucleons to states with high angular momentum to learn about their structure and to understand the transfer of particles, energy, and angular momentum in collisions between heavy ions

  16. A comparative study of the perceptions of nuclear and environmental risk

    International Nuclear Information System (INIS)

    Boemer, Veronica Araujo

    2011-01-01

    With the necessity for new forms of energy production to contain the environmental crisis and the global warming, new technologies have been studied and the nuclear energy has been placed as one of the ways out for clean energy production. The study of the risk is directly related to the study of its perception, that determines the human being's actions, therefore it influences in new technologies applications, since the awareness of something as dangerous is determined by socio-historical factors. The purpose of this study was compare the perceptions of nuclear and environmental risks, considering a group of university students, with the application of research in the period from March 31 to May 31, 2010, containing: images of historical facts to be nominated; structuring of a risk scale for certain activities, and a questionnaire about risks and benefits related to the subject research. The analysis of results evidenced a reduction in the perception of nuclear risk over the perception of environmental risk in this population. (author)

  17. Waste management in the nuclear engineering curriculum

    International Nuclear Information System (INIS)

    Tulenko, J.S.

    1989-01-01

    One of the most significant challenges facing the nuclear industry is to successfully close the nuclear fuel cycle and effectively demonstrate to the public that nuclear wastes do not present a health risk. This issue is currently viewed by many as the most important issue affecting public acceptance of nuclear power, and it is imperative that nuclear engineers be able to effectively address the question of nuclear waste from both a generation and disposal standpoint. To address the issue, the area of nuclear waste management has been made one of the fields of specialized study in the Department of Nuclear Engineering Sciences at the University of Florida. The study of radioactive waste management at the University of Florida is designed both for background for the general nuclear engineering student and for those wishing to specialize in it as a multidiscipline study area involving the Departments of Nuclear Engineering Sciences, Environmental Sciences, Material Science and Engineering, Geology, Civil Engineering, and Industrial Engineering

  18. Annual report from the realization of the Central Program of the Fundamental Studies no 01.09. ''Studies of elementary particles and nuclear processes'' in 1987

    International Nuclear Information System (INIS)

    1988-01-01

    Report on the realization of research program in the domain of high and medium energy physics, structural studies by means of nuclear physics methods, nuclear chemistry and high-energy instrumentation in 1987 is presented. Program is coordinated by Institute of Nuclear Physics in Cracow, Institute of Physics of Jagiellonian University in Cracow and Institute of Nuclear Studies in Swierk. The information on international cooperation and costs of the realization of the program are given. Lists of the 487 most important publications are presented. (M.F.W.)

  19. An archival study on the nuclear fusion research in Japan later half of 1980's. An interview with SEKIGUCHI Tadashi, Professor Emeritus at the University of Tokyo

    Energy Technology Data Exchange (ETDEWEB)

    Nisio, Sigeko; Uematsu, Eisui [Nihon Univ., College of Science and Technology, Funabashi, Chiba (Japan); Obayashi, Haruo [National Inst. for Fusion Science, Toki, Gifu (Japan)] [and others

    2003-05-01

    An interview record with SEKIGUCHI Tadashi, Professor Emeritus at The University of Tokyo, on the nuclear fusion researches in Japan later half of 1980's is given. The major topics concerned are: activities of Science Council of Japan, the establishment of the Japan Society of Plasma Science and Nuclear Fusion Research, the history of establishing National Institute for Fusion Science, and effects of Grant-in-Aid for Scientific Research, and others. (author)

  20. Reactor laboratory course for students majoring in nuclear engineering with the Kyoto University Critical Assembly (KUCA)

    International Nuclear Information System (INIS)

    Nishihara, H.; Shiroya, S.; Kanda, K.

    1996-01-01

    With the use of the Kyoto University Critical Assembly (KUCA), a joint reactor laboratory course of graduate level is offered every summer since 1975 by nine associated Japanese universities (Hokkaido University, Tohoku University, Tokyo Institute of Technology, Musashi Institute of Technology, Tokai University, Nagoya University, Osaka University, Kobe University of Mercantile Marine and Kyushu University) in addition to a reactor laboratory course of undergraduate level for Kyoto University. These courses are opened for three weeks (two weeks for the joint course and one week for the undergraduate course) to students majoring in nuclear engineering and a total of 1,360 students have taken the course in the last 21 years. The joint course has been institutionalized with the background that it is extremely difficult for a single university in Japan to have her own research or training reactor. By their effort, the united faculty team of the joint course have succeeded in giving an effective, unique one-week course, taking advantage of their collaboration. Last year, an enquete (questionnaire survey) was conducted to survey the needs for the educational experiments of graduate level and precious data have been obtained for promoting reactor laboratory courses. (author)

  1. Nuclear physics laboratory

    International Nuclear Information System (INIS)

    Deruytter, A.J.

    1978-01-01

    The report summarizes the main activities of the Linear Electron Accelerator Section of the Physics Laboratory of the State University of Ghent. The research fields are relative to: 1. Nuclear fission. 2. Photonuclear reactions. 3. Nuclear spectroscopy and positron annihilation. 4. Dosimetry. 5. Theoretical studies. (MDC)

  2. Nuclear physics laboratory

    International Nuclear Information System (INIS)

    Deruytter, A.J.

    1979-01-01

    The report summarizes the main activities of the Linear Electron Accelerator Section of the Physics Laboratory of the State University of Ghent. The research fields are relative to: 1. Nuclear fission. 2. Photonuclear reactions. 3. Nuclear spectroscopy and positron annihilation. 4. Dosimetry. 5. Theoretical studies. (MDC)

  3. Nuclear physics laboratory

    International Nuclear Information System (INIS)

    Deruytter, A.J.

    1980-01-01

    The report summarizes the main activities of the linear Electron Accelerator Section of the Physics Laboratory of the State University of Ghent. The research fields are relative to: 1. Nuclear fission 2. Photonuclear reactions 3. Nuclear spectroscopy and positron annihilation 4. Dosimetry 5. Theoretical studies. (MDC)

  4. Manufacturing process of ion source cone for SF cyclotron of Institute of Nuclear Study, University of Tokyo

    International Nuclear Information System (INIS)

    1982-01-01

    The manufacturing process of the complicated structural cone elements for the low energy ion source of the SF cyclotron of Institute of Nuclear Study, University of Tokyo, is reported. The drawing for manufacture is shown. This cone has a cylindrical part with 16 mm diameter and 60 mm length, a conical part with 50 mm large diameter and 62 deg conical angle, and many holes and notches, and is made of copper. The manufacturing process of the cone elements is as follows: providing the material by sawing a bar, cutting both end surfaces and drilling centering holes on a lathe, machining multiple outer surface utilizing an index on a milling machine, marking work on end and side surfaces, drilling centering holes for gas passage, water passage and bolt holes utilizing a circular table on a milling machine, spot facing and drilling centering holes for oblique gas and water passages on the outer surface utilizing an angle gauge on a milling machine, drilling gas and water passages on a drilling machine, brazing of plugs, machining of inner and outer surfaces on a lathe, machining of outer surface on a milling machine, finishing by hand work and so on. These process steps are shown in photographs. (Nakai, Y.)

  5. Theoretical studies in nuclear reactions and nuclear structure

    International Nuclear Information System (INIS)

    Wallace, S.J.

    1991-05-01

    This report discusses topics in the following areas: Hadronic structure; hadrons in nuclei; hot hadronic matter; relativistic nuclear physics and NN interaction; leptonic emissions from high-Z heavy ion collisions; theoretical studies of heavy ion dynamics; nuclear pre-equilibrium reactions; classical chaotic dynamics and nuclear structure; and, theory of nuclear fission

  6. Pennsylvania State University Breazeale Nuclear Reactor. Thirtieth annual progress report, July 1, 1984-June 30, 1985

    International Nuclear Information System (INIS)

    Levine, S.H.; Totenbier, R.E.

    1985-08-01

    This report is the thirtieth annual progress report of the Pennsylvania State University Breazeale Nuclear Reactor and covers such topics as: personnel; reactor facility; cobalt-60 facility; education and training; Radionuclear Application Laboratory; Low Level Radiation Monitoring Laboratory; and facility research utilization

  7. Training of engineers for Czechoslovak nuclear programme at Czech Technical University in Prague

    International Nuclear Information System (INIS)

    Klik, F.; Stoll, I.

    1983-01-01

    Between the year 1959 and the 1970's specialists for the Czechoslovak nuclear programme were only educated at the Faculty of Nuclar and Physics Engineering. In the early 1970's instruction and research related to nuclear power generation was introduced at the mechanical engineering and electrical engineering faculties. The specialization ''Nuclear power facilities'' was introduced within the study field ''Thermal and nuclear machines and equipment'' at the mechanical engineering faculty, and the electrical engineering faculty opened the study course ''Nuclear power plants'' in the study year 1975/1976. Most specialists for the nuclear programme are educated at the Faculty of Nuclear and Physics Engineering in the field ''Nuclear chemical engineering'' and in specializations ''Theory and technology of nuclear reactors'', ''Dosimetry and application of ionizing radiation'' in the study field ''Nuclear engineering''. The Faculty of Nuclear and Physics Engineering also trains specialists in the field ''Structure and materials properties'', the study courses ''Measuring technology'' and ''Control technology'' are run at the electrical engineering faculty and at the mechanical engineering faculty were introduced study courses of ''Applied mechanics'' and ''Mechanical engineering technology''. Graduates of all said study courses may be employed in the nuclear programme. (E.S.)

  8. Brief of the joint research with universities, etc. for 2002. Except the research by the JNC cooperative research scheme on the nuclear fuel cycle

    International Nuclear Information System (INIS)

    2003-09-01

    The Japan Nuclear Cycle Development Institute (JNC) promote the basic and fundamental research in relation to the research and development projects of JNC through collaboration with universities and other research institutes (referred to as 'universities, etc.' below). This report includes a summary of the results of the research carried out in fiscal year 2002 on 15 joint researches with universities, etc. In addition, this report removes the research by the JNC Cooperative Research Scheme on the Nuclear Fuel Cycle. (author)

  9. Utilisation of research and training reactors in the study programme of students at the Slovak University of Technology

    International Nuclear Information System (INIS)

    Slugen, V.; Lipka, J.; Hascik, J.; Miglierini, M.

    2004-01-01

    Preparing operating staff for the nuclear industry is and also will be one of the most serious education processes, mainly in the Central-European countries where about 40-50% of the electricity is produced in nuclear power plants. In the Central-European region there exists a very extensive and also effective international collaboration in nuclear industry and education. Similarly, the level of education in universities and technical high schools of this area is also good. Slovak University of Technology Bratislava has established contacts with many universities abroad for utilisation of research and training reactors. (author)

  10. Nuclear Physics Laboratory, University of Colorado technical progress report, 1976 and proposal for continuation of contract

    International Nuclear Information System (INIS)

    1976-01-01

    This report summarizes the work carried out at the Nuclear Physics Laboratory of the University of Colorado during the period November 1, 1975 to November 1, 1976. The low energy nuclear physics section is dominated by light-ion reaction studies which span a wide range. These include both two-neutron and two-proton transfer reactions, charge exchange and inelastic scattering, as well as single nucleon transfer reactions. The nuclei studied vary widely in their mass and characteristics. These reaction studies have been aided by the multi-use scattering chamber which now allows the energy-loss-spectrometer beam preparation system (beam swinger) to shift from charged particle studies to neutron time-of-flight studies with a minimum loss of time. The intermediate energy section reflects the increase in activity accompanying the arrival of LAMPF data and the initiation of (p,d) studies at the Indiana separated-sector cyclotron. The nucleon removal results provided by the π beam at EPICS previous to completion of the spectrometer have shown that nuclear effects dominate this process, so that the widely used free interaction picture is inadequate. The section entitled ''Other Activities'' reveals continuing activities in new applications of nuclear techniques to problems in medicine and biology. Reactions important to astrophysics continue to be investigated and our trace-element program remains at a high level of activity. The theoretical section reports new progress in understanding magnitudes of two-step reactions by inclusion of finite-range effects. A new finite-range program which is fast and economical has been completed. Intermediate energy results include calculations of π-γ angular correlations, low energy π-nucleus interactions, as well as (p,d) and nucleon scattering calculations for intermediate energies

  11. Progress report on nuclear spectroscopic studies

    International Nuclear Information System (INIS)

    Bingham, C.R.; Riedinger, L.L.; Sorensen, S.P.

    1996-01-01

    The experimental program in nuclear physics at the University of Tennessee, Knoxville, is led by Professors Carrol Bingham, Lee Riedinger, and Soren Sorenseni who respectively lead the studies of the exotic decay modes of nuclei far from stability, the program of high-spin research, and our effort in relativistic heavy-ion physics. Over the years, this broad program of research has been successful partially because of the shared University resources applied to this group effort. The proximity of the Oak Ridge National Laboratory has allowed us to build extremely strong programs of joint research, and in addition to play an important leadership role in the Joint Institute for Heavy Ion Research (JIHIR). Our experimental program is also very closely linked with those at other national laboratories: Argonne (collaborations involving the Fragment Mass Analyzer (FMA) and γ-ray arrays), Brookhaven (the RHIC and Phenix projects), and Berkeley (GAMMASPHERE). We have worked closely with a variety of university groups in the last three years, especially those in the UNISOR and now UNIRIB collaborations. And, in all aspects of our program, we have maintained close collaborations with theorists, both to inspire the most exciting experiments to perform and to extract the pertinent physics from the results. The specific areas discussed in this report are: properties of high-spin states; study of low-energy levels of nuclei far from stability; and high energy heavy-ion physics

  12. NATO Advanced Study Institute on Topics in Atomic and Nuclear Collisions

    CERN Document Server

    Rémaud, B; Zoran, V

    1994-01-01

    The ASI 'Topics in Atomic and Nuclear Collisions' was organized in Predeal from August 31 to September 11. It brought together people with a broad interest in Atomic and Nuclear Physics from several research institutes and universities in Ro­ mania and 16 other countries. The school continues a tradition that started on a small scale back in 1968, fo­ cussing mainly on current problems in nuclear physics. Though the organizing of this edition started very late and in very uncertain economic and financial conditions, it turned out to be the largest meeting of this type ever organized in Romania, both in topics and participation. There were many applicants for participation and grants, considerably more than could be handled. The selection made by the local organizing committee was based on the following criteria: a proper balance of atomic and nuclear physicists, a broad representation of people from Research Institutes and Universities, a balanced par­ ticipat!on with respect to age, sex, nationali...

  13. Center for Nuclear Studies, Memphis State University. Final report

    International Nuclear Information System (INIS)

    1979-07-01

    Programs developed under technical assistance grants address primarily fundamental training of paraprofessional personnel in the operation of power plants and the radiological safety of employees. As such, the programs will represent an important milestone in the training of power plant personnel. However, programs related to maintenance functions have not been developed. Approximately three times as many technicians perform maintenance functions as those who perform operational functions. These technicians are also drawn from the local area residents and must receive training before assuming jobs in nuclear facilities. Development and implementation of training programs for these maintenance technicians represent the next challenge which must be addressed in the development of an energy manpower pool

  14. Annual report of Nuclear Engineering Research Laboratory, University of Tokyo in fiscal 1991

    International Nuclear Information System (INIS)

    1992-07-01

    In this annual report, the activities of education and research, the state of operation of research facilities and others in Nuclear Engineering Research Laboratory, University of Tokyo in fiscal year 1991 are summarized. In this Laboratory, there are four large research facilities, that is, the fast neutron source reactor 'Yayoi', the electron beam linac, the nuclear fusion reactor blanket experiment facility and the heavy irradiation research facility. Those are used for carrying out education and research in the wide fields of nuclear engineering, and are offered also for joint utilization. The results of the research by using respective research facilities were summarized in separate reports. In this annual report, the course of the management and operation of respective research facilities is described, and the research activities, the theses for doctorate and graduation theses of the teachers, personnel and graduate students in the Laboratory are summarized. In the research, those on first wall engineering for fusion reactors, fuel cycle engineering, electromagnetic structure engineering, AI and robotics, quantum beam engineering, new type reactor design and so on are included. (K.I.)

  15. Transfer of nuclear engineering knowledge at Hanoi University of Technology: Lessons learned and challenges

    International Nuclear Information System (INIS)

    Duan, P. van; Anh, P.V.

    2007-01-01

    Full text: Hanoi University of Technology (HUT) has been being the most important polytechnic education centre of the country for half a century. Nuclear Engineering Education Programme (NEEP) was started at HUT since the year 1970, right after establishment of Department of Nuclear Engineering at the University according to the initiative of the first Minister of Ministry of Higher Education of the country. Since the year 2000 the Department changed its education programme to adapt it to the actual circumstances in the country and renamed as Department of Nuclear Engineering and Environmental Physics (DONEEP). The objectives of the HUT's NEEP are as follows: 1. To train up nuclear technical manpower for development of peaceful uses of atomic energy in Vietnam. 2. To prepare initial nuclear technical human resources for introduction of Nuclear Power into the country. Aiming at these objectives, the Programme achieved remarkable results such as inestimable contributions to introducing and then developing the NDT radiography method in Vietnam, to improving and developing the atomic energy applications in the country, to providing important parts of technical human resources for strengthening the nuclear community of the country. The duration of 37 years of implementation of the Programme may be divided by 3 periods: from 1970 to 1989, 1990-2000 and from the year 2001 up to now. During the first period, the Programme was fully supported by the leadership of the University and the Ministry of Higher Education. The second period was full of difficulties. This was the period of searching the ways for preserving and adapting the Programme to the new circumstances in the country. The present period is the one of searching the ways for developing the NEEP at HUT. The lessons learned from 37-year implementation of the HUT's NEEP are as follows: 1. To establish proper objectives aiming to satisfy the urgent short term and/or long term demands of the country is the most

  16. Proposals for the Future Development of the Russian Automated Federal Information System for Nuclear Material Control and Accounting: The Universal Reporting Concept

    International Nuclear Information System (INIS)

    Martyanov, Alexander; Pitel, Victor; Kasumova, Leila; Babcock, Rose A.; Heinberg, Cynthia L.

    2004-01-01

    Development of the automated Russian Federation Federal Information System for Nuclear Material Control and Accounting (FIS) started in 1996. From the beginning, the creation of the FIS was based on the concept of obtaining data from the material balance areas of the organizations, which would enable the system to collect detailed information on nuclear material. In December 2000, the organization-level summarized reporting method was mandated by the Russian Federation and subsequently implemented for all organizations. Analysis of long-term FIS objectives, reporting by all the MBAs in Russia, showed that the present summarized reporting approach decreed by regulations posed a fair number of problems. We need alternative methods that allow the FIS to obtain more detailed information on nuclear material but which accurately reflect the technical and economic resources available to Russian organizations. One possible solution is the universal reporting method. In August 2003, the proposals of the FIS working group to transition to the universal reporting method were approved at the fourth meeting of the Joint Coordinating Committee for Implementation of the Russian Federation and U.S. Government-to-Government Agreement on Cooperation in the Area of Nuclear Material Physical Protection, Control and Accounting (JCC). One of the important elements of universal reporting is that organizations handling nuclear material will establish 'reporting areas' in cooperation with MinAtom of Russia. A reporting area may consist of one MBA, several MBAs, or even an entire organization. This paper will discuss the universal reporting concept and its major objectives and methods for the FIS.

  17. University-Community Engagement: Case Study of University Social Responsibility

    Science.gov (United States)

    Chile, Love M.; Black, Xavier M.

    2015-01-01

    Corporatisation of universities has drawn parallels between contemporary universities and business corporations, and extended analysis of corporate social responsibility to universities. This article reports on a case study of university-community engagement with schools and school communities through youth engagement programmes to enhance…

  18. 4. Mexican School of Nuclear Physics. Papers; 4. Escuela Mexicana de Fisica Nuclear. Notas

    Energy Technology Data Exchange (ETDEWEB)

    Aguilera, E F; Hernandez, E; Hirsch, J [eds.

    2005-07-01

    The IV Mexican School of Nuclear Physics, organized by the Nuclear Physics Division of the Mexican Physics Society, takes place from June 27 to July 8, 2005 in the Nuclear Sciences and of Physics Institutes of the UNAM and in the National Institute of Nuclear Research (ININ). This school, as the previous ones, it was guided the students of the last semesters of the career of Physics, of the Post grade of the same specialty, and of other adjacent careers. To give the students a current vision of some of the topics more important of the nuclear physics and their relationship with other near areas of the physics it was the objective of this School. The School covered a wide range of theoretical and experimental courses, imparted in its majority by Mexican expert professor-investigators in the matter to who we thank them the one effort and the quality of their presentations, reflected in the content of this document. The answer of the students to the convocation was excellent, 31 students presented application for admission coming from the following institutions: Meritorious Autonomous University de Puebla, National Institute of Nuclear Research, Technological Institute of Orizaba, National Polytechnic Institute, The University of Texas at Brownsville, Autonomous University of the State de Mexico, Autonomous University of the State of Morelos, Autonomous University of Baja California, Autonomous University of San Luis Potosi, University of Guadalajara, University of Guanajuato, National Autonomous University of Mexico, University of Texas, at El Paso and University Veracruzana. They were admitted to the 22 students with the higher averages qualifications of the list of applicants. The organizers of this school thank the financial support granted by the following sponsor institutions: Nuclear Sciences Institute, UNAM, Physics Institute of UNAM, Coordination of the Scientific Research UNAM, National Institute of Nuclear Research, Nuclear Physics Division of the Mexican

  19. Developments of new generation nuclear microprobe systems at the University of Melbourne

    International Nuclear Information System (INIS)

    Rout, B.; Jamieson, D.N.; Hopt, R.; Hearne, S.; Szymaski, R.

    2002-01-01

    Full text: A review of the recent developments in fabricating a new generation nuclear microprobe systems at University of Melbourne, Melbourne, will be presented. These new generation systems present high spatial resolution (less than 1 micrometer) with increasing current density (in excess of 100 pA/micrometer 2 ) of the probing ion beam. Detectors with large solid angles and high brightness of the ion source of the accelerator increase the capabilities of these microprobes many fold. Some of the key ingredients of these microprobes are (i) novel magnetic quadrupole lens quintuplet probe forming system (ii) integrated fast data acquisition system to handle high count rates (excess of 100 KHz) due to increasing current density as well as large detector solid angles up to 4 detector stations. Full dead time corrected and charge normalised maps are also implemented to counter the problems normally associated with such high count rate systems. First version of these systems is presently under operation at CSIRO, Sydney. Another similar system is currently being installed at Dutch Institute for Nuclear and High Energy Physics, Amsterdam, Netherlands. A further optimised version of the CSIRO/MARC quintuplet probe forming systems is currently being fabricated at University of Melbourne. Some of the applications involve microelectronic materials, superconductors and geological samples. We will be presenting exciting results arising out of investigations into these materials. We will be demonstrating ultimate spatial resolution of the new microprobe being fabricated at Melbourne

  20. University-level education in nuclear and radiochemistry in Slovenia

    International Nuclear Information System (INIS)

    Smodis, B.

    2006-01-01

    The status of education in nuclear and radiochemistry in Slovenia is reviewed and elucidated at both undergraduate and graduate levels. It is observed that both the quantity and the quality of studies have deteriorated during recent years/decades, thus following similar trends in the developed countries. Presently, no dedicated study of radioactivity is offered within the country. The main reason for this deterioration is a general decline of interest for studying nuclear sciences and the limited need for such specialization in a small country such as Slovenia. (author)

  1. Report on application results of the nuclear reactor in Atomic Energy Research Laboratory, Rikkyo University. April 1994 - March 1995

    International Nuclear Information System (INIS)

    1995-01-01

    This report is on researching action state, application state, management state, and others of 1994 fiscal year at the Atomic Energy Research Laboratory, Rikkyo University. The experimental reactor has been used for the studies such as application of neutron radioactivity analysis to multi fields, application of fission and alpha track method to age determination and metallurgy, hot atom chemistry, neutron radiation effect on semiconductors and others, nuclear data measurement, organism, materials and products using neutron radiography, and development and application to inspection of radiation detectors such as neutron detector. This report was a report shown as a shape of research results of actions of the researchers. And, another report of colaborate research results using the Rikkyo University reactor was also published from the Atomic Energy Center, the University of Tokyo begun since April, 1974. (G.K.)

  2. White Paper on Nuclear Astrophysics and Low Energy Nuclear Physics - Part 1. Nuclear Astrophysics

    Energy Technology Data Exchange (ETDEWEB)

    Arcones, Almudena [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Escher, Jutta E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Others, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-04-04

    This white paper informs the nuclear astrophysics community and funding agencies about the scientific directions and priorities of the field and provides input from this community for the 2015 Nuclear Science Long Range Plan. It summarizes the outcome of the nuclear astrophysics town meeting that was held on August 21 - 23, 2014 in College Station at the campus of Texas A&M University in preparation of the NSAC Nuclear Science Long Range Plan. It also reflects the outcome of an earlier town meeting of the nuclear astrophysics community organized by the Joint Institute for Nuclear Astrophysics (JINA) on October 9 - 10, 2012 Detroit, Michigan, with the purpose of developing a vision for nuclear astrophysics in light of the recent NRC decadal surveys in nuclear physics (NP2010) and astronomy (ASTRO2010). The white paper is furthermore informed by the town meeting of the Association of Research at University Nuclear Accelerators (ARUNA) that took place at the University of Notre Dame on June 12 - 13, 2014. In summary we find that nuclear astrophysics is a modern and vibrant field addressing fundamental science questions at the intersection of nuclear physics and astrophysics. These questions relate to the origin of the elements, the nuclear engines that drive life and death of stars, and the properties of dense matter. A broad range of nuclear accelerator facilities, astronomical observatories, theory efforts, and computational capabilities are needed. With the developments outlined in this white paper, answers to long-standing key questions are well within reach in the coming decade.

  3. White paper on nuclear astrophysics and low energy nuclear physics Part 1: Nuclear astrophysics

    International Nuclear Information System (INIS)

    Arcones, Almudena; Bardayan, Dan W.

    2016-01-01

    This white paper informs the nuclear astrophysics community and funding agencies about the scientific directions and priorities of the field and provides input from this community for the 2015 Nuclear Science Long Range Plan. It also summarizes the outcome of the nuclear astrophysics town meeting that was held on August 21–23, 2014 in College Station at the campus of Texas A&M University in preparation of the NSAC Nuclear Science Long Range Plan. It also reflects the outcome of an earlier town meeting of the nuclear astrophysics community organized by the Joint Institute for Nuclear Astrophysics (JINA) on October 9–10, 2012 Detroit, Michigan, with the purpose of developing a vision for nuclear astrophysics in light of the recent NRC decadal surveys in nuclear physics (NP2010) and astronomy (ASTRO2010). Our white paper is informed informed by the town meeting of the Association of Research at University Nuclear Accelerators (ARUNA) that took place at the University of Notre Dame on June 12–13, 2014. In summary we find that nuclear astrophysics is a modern and vibrant field addressing fundamental science questions at the intersection of nuclear physics and astrophysics. These questions relate to the origin of the elements, the nuclear engines that drive life and death of stars, and the properties of dense matter. A broad range of nuclear accelerator facilities, astronomical observatories, theory efforts, and computational capabilities are needed. Answers to long standing key questions are well within reach in the coming decade because of the developments outlined in this white paper.

  4. Surface study of fusion research in universities linkage organization

    International Nuclear Information System (INIS)

    Miyahara, Akira.

    1980-04-01

    The surface studies for nuclear fusion research consist of the studies on the surface process and the surface damage. The problems with the surface study are different at different research stages. The plasma-wall interaction in the ignition stage is mainly concerned with heating. The impurity control becomes important in the breakeven stage. In the longer burn experiment, the problems of plasma contamination and ash accumulation are serious, and the blistering is also a problem. From the reactor aspect, the reduction of life of wall due to the irradiation of high fluence must be considered. The surface damage due to plasma disruption is a very big problem. The activities concerning the surface studies in university-linked organizations are the surface characterization for fusion reactor materials by low energy ion scattering spectroscopy, the high power ion irradiation test for CTR first wall, data compilation on plasma-wall interaction, the studies of sputtering process and surface coating, and the study on hydrogen isotope permeation through metals for fusion reactors. Other activities such as the sample characterization at many universities using the SUS 304 samples from the same lot, and the collaboration works on JIPP-T-2 plasma wall experiments are introduced. Concerning the surface study, US-Japan or international collaboration are strongly expected. (Kato, T.)

  5. Graduate studies in instrumentation at the University of Provence

    International Nuclear Information System (INIS)

    Carette, M.; Reynard, C.; Claire, N.; Deschaintres, J. L.; Felts, B.; Lyoussi, A.; Andre, J.; Bertin, D.

    2009-01-01

    The University of Provence instrumentation department offers a high level of graduate and post graduate engineering programs. Its mission is to form technician experts and engineers with a deep knowledge in their discipline: metrology, instrumentation, tests, Research and Development, automatism and industrial process control. The specialty of master on test facilities instrumentation has been developed in collaboration with the French Atomic Energy Commission (CEA) since 2004. This curriculum offers now a specialization in nuclear detection and nuclear instrumentation. More than 80% of the graduates formed by block-release training of master find a job within 6 months

  6. Nuclear structure research at the Triangle Universities Nuclear Laboratory

    International Nuclear Information System (INIS)

    Mitchell, G.E.

    1992-01-01

    Studies of fundamental symmetries by the TRIPLE collaboration using the unique capabilities at LAMTF have found unexpected systematics in the parity-violating amplitudes for epithermal-neutron scattering. Tests to lower the present limits on time-reversal-invariance violation in the strong interaction are being made at in experiments on the scattering of polarized fast neutrons from aligned holmium targets. Studies of few-nucleon systems have received increasing emphasis over the past year, involving a broad program for testing the low- to medium-energy internucleon interactions, from the tensor component in n-p scattering and the n-n scattering lengths, through three-nucleon systems and the alpha particle, on up to 8 Be. Of particular interest are three-nucleon systems, both in elastic scattering and in three-body breakup. Beam requirements range from production of intense and highly-polarized neutron beams to tensor-polarized beams for measurements at both very low energies (25--80 keV) and at tandem energies for definitive measurements of D-state components of the triton, 3 He, and 4 He obtained from transfer reactions. The program in nuclear astrophysics expanded during 1991--1992. Several facets of the nuclear many-body problem and of excitation mechanisms of the nucleus are being elucidated, including measurements and analyses to elucidate the neutron--nucleus elastic-scattering interaction over a wide range of nuclei and energies. Several projects involved developments in electronuclear physics, instrumentation, rf-transition units, and low-temperature bolometric particle detectors

  7. Practical radiation protection in hospitals. A view at the nuclear medicine departement of the University Hospital of Cologne

    International Nuclear Information System (INIS)

    Sudbrock, Ferdinand

    2011-01-01

    Radiation protection plays a predominant role in nuclear medicine departments as they are installations dealing with open radioactive substances. Many experts in radiation protection who are not directly involved in nuclear medicine may only have a vague insight into the daily routine of such installations. This contribution would like to give an impression by making a virtual tour through the nuclear medicine department of the University Hospital of Cologne - a department that covers a large part of the ability spectrum of this discipline. This tour will show some specialities concerning radiation protection in diagnostic and therapeutic procedures. (orig.)

  8. Nuclear astrophysics

    International Nuclear Information System (INIS)

    Lehoucq, Roland; Klotz, Gregory

    2015-11-01

    Astronomy deals with the position and observation of the objects in our Universe, from planets to galaxies. It is the oldest of the sciences. Astrophysics is the study of the physical properties of these objects. It dates from the start of the 20. century. Nuclear astrophysics is the marriage of nuclear physics, a laboratory science concerned with the infinitely small, and astrophysics, the science of what is far away and infinitely large. Its aim is to explain the origin, evolution and abundance of the elements in the Universe. It was born in 1938 with the work of Hans Bethe, an American physicist who won the Nobel Prize for physics in 1967, on the nuclear reactions that can occur at the center of stars. It explains where the incredible energy of the stars and the Sun comes from and enables us to understand how they are born, live and die. The matter all around us and from which we are made, is made up of ninety-two chemical elements that can be found in every corner of the Universe. Nuclear astrophysics explains the origin of these chemical elements by nucleosynthesis, which is the synthesis of atomic nuclei in different astrophysical environments such as stars. Nuclear astrophysics provides answers to fundamental questions: - Our Sun and the stars in general shine because nuclear reactions are taking place within them. - The stars follow a sequence of nuclear reaction cycles. Nucleosynthesis in the stars enables us to explain the origin and abundance of elements essential to life, such as carbon, oxygen, nitrogen and iron. - Star explosions, in the form of supernovae, disperse the nuclei formed by nucleosynthesis into space and explain the formation of the heaviest chemical elements such as gold, platinum and lead. Nuclear astrophysics is still a growing area of science. (authors)

  9. Publications of the University of Karlsruhe (T.H.) and the Nuclear Research Center Karlsruhe 1981

    International Nuclear Information System (INIS)

    1982-01-01

    This is the 14th volume of the joint list of publications of the University of Karlsruhe (T.H.), the Nuclear Research Center Karlsruhe and some institutions which are closely linked to the University. It contains the publications of the year 1981 as well as some addenda from 1980. Included were books and journals, journal articles and contributions from compilations, research reports, dissertations and habilitation theses which were written or published by these institutions, their bodies and institutes as well as their teachers and scientific staff, and also patents. Not included were, as a rule, diploma theses, newspaper articles, reviews, internal reports and bulletins. The list of publications from University is mainly based on entries made by the institutes and chairs; its completeness can not be granted here. (orig./RW) [de

  10. University related studies

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    Over the years, opportunities for terrestrial ecology studies have attracted student researchers associated with Pacific Northwest colleges and universities. During the past year, four students have been involved with undergraduate or graduate thesis projects. Brief descriptions of these studies are included in this section. It is expected that university participation will be enhanced by designating parts of the Hanford Reservation as a National Environmental Research Park (NERP)

  11. Preparation of mandatory documentation before the start up of the RA-0 'zero power' nuclear reactor at Cordoba National University

    International Nuclear Information System (INIS)

    Martin, H.R.; Keil, W.M.; Pezzi, N.

    1991-01-01

    Before the start up of the RA-0 'zero power' nuclear reactor installed at Cordoba National University, it was necessary to send to the Regulatory Authority the mandatory documentation which is required in the licensing process. With the previous papers existing for the operation in the first years of the '70, a work program for the future operational training personnel was elaborated. Based on the Authority's applicable rules and the recommendations and with particular criteria originated in the working university conditions, the SAFETY report of RA-0 nuclear reactor was prepared. This paper describes the principal contents, items and documents involved in the safety report. (Author) [es

  12. Nuclear physics group annual report

    International Nuclear Information System (INIS)

    1984-01-01

    The experimental activities of the nuclear physics group at the University of Oslo have in 1983 as in the previous years mainly been centered around the SCANDITRONIX MC-35 cyclotron. The cyclotron has been in extensive use during the year for low-energy nuclear physics experiments. In addition it has been used for production of radionuclides for nuclear medicine, for experiments in nuclear chemistry and for corrosion and wear studies. After four years of operation, the cyclotron is still the newest nuclear accelerator in Scandinavia. The available beam energies (protons and alpha-particles up to 35 MeV and *sp3*He-particles up to 48 MeV, makes it a good tool for studies of highly excited low-spin states. The well developed on-line computer system has added to its usefulness. Most of the nuclear experiments during the year have been connected with the study of nuclear structure at high temperature. Experimens with the *sp3*He beam have given very interesting results. Theoretical studies have continued in the same field, and there has been a fruitful cooperation between experimental and theoretical physicists. Most of the experiments are performd as joint projects where physicists from two or three Nordic universities take part. (RF)

  13. Education in nuclear engineering in Slovakia

    International Nuclear Information System (INIS)

    Slugen, V.

    2005-01-01

    Slovak University of Technology is the largest and also the oldest university of technology in Slovakia. Surely more than 50% of high-educated technicians who work nowadays in nuclear industry have graduated from this university. The Department of Nuclear Physics and Technology of the Faculty of Electrical Engineering and Information Technology as a one of seven faculties of this University feels responsibility for proper engineering education and training for Slovak NPP operating staff. The education process is realised via undergraduate (Bc.), graduate (MSc.) and postgraduate (PhD..) study as well as via specialised training courses in a frame of continuous education system. (author)

  14. Independent Confirmatory Survey Report for the University of Arizona Nuclear Reactor Laboratory, Tucson, Arizona DCN:2051-SR-01-0

    International Nuclear Information System (INIS)

    Altic, Nick A.

    2011-01-01

    The University of Arizona (University) research reactor is a TRIGA swimming pool type reactor designed by General Atomics and constructed at the University in 1958. The reactor first went into operation in December of 1958 under U.S. Nuclear Regulatory Commission (NRC) license R-52 until final shut down on May 18, 2010. Initial site characterization activities were conducted in February 2009 during ongoing reactor operations to assess the radiological status of the Nuclear Reactor Laboratory (NRL) excluding the reactor tank, associated components, and operating systems. Additional post-shutdown characterization activities were performed to complete characterization activities as well as verify assumptions made in the Decommissioning Plan (DP) that were based on a separate activation analysis (ESI 2009 and WMG 2009). Final status survey (FSS) activities began shortly after the issuance of the FSS plan in May 2011. The contractor completed measurement and sampling activities during the week of August 29, 2011.

  15. Final Technical Report - Nuclear Studies with Intermediate Energy Probes

    Energy Technology Data Exchange (ETDEWEB)

    Norum, Blaine [Univ. of Virginia, Charlottesville, VA (United States)

    2017-12-14

    During the almost 20 year period of this grant research was carried out on atomic nuclei and their constituents using both photons and electrons. Research was carried out at the electron accelerator facility of the Netherlands Institute for Nuclear and High Energy Physics (NIKHEFK, Amsterdam) until the electron accelerator facility was closed in 1998. Subsequently, research was carried out at the Laser-Electron Gamma Source (LEGS) of the National Synchrotron Light Source (NSLS) located at the Brookhaven National Laboratory (BNL) until the LEGS was closed at the end of 2006. During the next several years research was carried out at both the Thomas Jefferson National Accelerator Facility (JLAB) and the High Intensity Gamma Source (HIGS) of the Tri-Universities Nuclear Laboratory (TUNL) located on the campus of Duke University. Since approximately 2010 the principal focus was on research at TUNL, although analysis of data from previous research at other facilities continued. The principal early focus of the research was on the role of pions in nuclei. This was studied by studying the production of pions using both photons (at LEGS) and electrons (at NIKHEF-K and JLAB). Measurements of charged pion photoproduction from deuterium at LEGS resulted in the most interesting result of these two decades of work. By measuring the production of a charged pion (p + ) in coincidence with an emitted photon we observed structures in the residual two-nucleon system. These indicated the existence of long-lived states not explicable by standard nuclear theory; they suggest a set of configurations not explicable in terms of a nucleon-nucleon pair. The existence of such “exotic” structures has formed the foundation for most of the work that has ensued.

  16. Japan Nuclear Reaction Data Center (JCPRG), Faculty of Science, Hokkaido University, Steering Committee progress report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-11-15

    The Japan Nuclear Reaction Data Center (JCPRG) was approved as an organisation of Faculty of Science, Hokkaido University and established on April 1, 2007. In addition to nuclear data activities carried out by JCPRG (Japan-Charged Particle Nuclear Reaction Data Group), the centre is concerned with the evaluation of nuclear reaction data in nucleosynthesis in the universe. In order efficiently to compile reaction data obtained by using radioactive ion beam, the centre signed a research contract with RIKEN Nishina Center. We are scanning 16 journals for Japanese charged-particle and photo-nuclear nuclear reaction data compilation. From April 2006 to March 2007, CPND and PhND in 45 references (453 records, 1.83 MB) have been newly compiled for NRDF. Usually new data are released at the JCPRG web site several months prior to EXFOR. Since the 2006 NRDC meeting, we have made 104 new entries and have revised or deleted 142 old entries. Intensive numerical data compilations have been done. These data were shown in tabular form in dissertations which are (partially) published in Journals. About 30 new entries were compiled from these data. We have prepared CINDA batches for CPND published in Japan every half year. Each batch covers 6 issues of each of 4 Japanese journals JPJ, PTP, NST and JNRS. Bibliographies for neutron induced reaction data have been compiled by JAEA Nuclear Data Center as before. A new web-based NRDF search and plot system on MySQL was released in July, 2007. New compilation, which has been finalized for NRDF, but not for EXFOR, can be obtained from this site. DARPE (another NRDF search and plot system written in Perl) is also available at http://www.jcprg.org/darpe/. EXFOR/ENDF (http://www.jcprg.org/exfor/) search and plot system is available. We have also developed following utilities: PENDL (http://www.jcprg.org/endf/) and RENORM (http://www.jcprg.org/renorm). We are developing a new search system of CINDA. This is an extension of EXFOR/ENDF search

  17. Ukrainian Nuclear Data Centre Progress Report, 2010/11. Summary of Nuclear Data Studies by Staff of the Ukrainian Nuclear Data Centre

    International Nuclear Information System (INIS)

    Gritzay, O.

    2011-01-01

    Full text: Ukrainian Nuclear Data Centre (UkrNDC) is subdivision within the Neutron Physics Department at the Institute for Nuclear Research of the National Academy of Sciences of Ukraine. UkrNDC has 5 permanent researchers. During year under review three members of the staff were involved in experimental neutron data measurements at the Kyiv research reactor. Compilation: We continue collection and compilation of experimental neutron, charged particle and photonuclear data. Number of the EXFOR's entries sent to the NDS IAEA by UkrNDC are the following. New: for neutron data - 1 entries (32231); for charged particle data - 4 entries (D5074, D5075, D5077, D5078); for photonuclear data - 4 entries (G4030 - G4033). Improved: for neutron data - 5 entries (32217, 32219, 32222 - 32224); for charged particle data - 15 entries (D5001, D5002, D5023, D5030, D5039- D5042, D5051, D5066 - D5068, D5070, D5071, D5073); for photonuclear data - 2 entries (G4011, G4018). We realize review of compilation scope in home journals: ''Nuclear Physics and Atomic Energy''; ''Ukrainian Journal of Physics''; ''Problems of Atomic Science and Technology'', Series ''Nuclear Physics Investigations''. Collaboration: We continue our collaboration with the Nuclear Physics Department of the Taras Shevchenko National University of Kyiv. The teaching course 'Nuclear Data for Science and Technology and modern computer codes for nuclear data processing' (36 hours) has been lectured in 2010-2011 for the fifth-course students of NPD KNU. This course includes the following items: ENDF/B libraries, EXROR system, ENSDF library, the use of the PREPRO code in work with the ENDF libraries, the introduction to NJOY code system, the Network of Nuclear Reaction Data Centers and the use of the on-line services; The teaching courses 'Neutron Physics' (72 hours) and 'Neutron Physics at the Kyiv Research Reactor' (experimental work, 36 hours) are lectured in 2010-2011 for fourth-year students of NPD KNU; The teaching

  18. National research council report and its impact on nuclear engineering education at the University of Michigan

    International Nuclear Information System (INIS)

    Martin, W.R.

    1991-01-01

    A recent report by the National Research Council raised a number of important issues that will have an impact on nuclear engineering departments across the country. The report has been reviewed in the context of its relevance to the Department of Nuclear Engineering at the University of Michigan (UM), and some observations and conclusions have been drawn. This paper focuses on those portions of Ref. 1 concerning undergraduate and graduate curricula, research facilities and laboratories, faculty research interests, and funding for research and graduate student support because these topics have a direct impact on current and future directions for the department

  19. Study of university students' attitudes toward office space at universities

    Directory of Open Access Journals (Sweden)

    S.M. Eteadifard

    2017-06-01

    Full Text Available Office space is the space where students first experience the university. In this paper, the attitude of students toward office space in the public sphere of university is discussed. This article is the result of the research conducted for the “Institute for Social and Cultural Studies” by the author. The main issues in this paper are: university students' attitudes towards quality office space at the universities and mental basis of common issues among students at the universities. Data were collected through individual and group interviews. More than eighty interviews with activists and students of University of Tehran, Shahid Beheshti University, Allameh Tabataba’i University, Sharif University of Technology and Kharazmi University were done. The main indicators of office space in this study include: students’ satisfaction of office space, students’ welfare affairs and students’ feedback about this space. Problems and obstacles relating to the office space and their solutions were also studied in this paper.

  20. Annual report of Nuclear Engineering Research Laboratory, University of Tokyo in fiscal 1990

    International Nuclear Information System (INIS)

    1991-01-01

    In this annual report, the activities of research and education and the state of operation of the research facilities in this Laboratory in fiscal year 1990 are summarized. There are four large research facilities in this Laboratory, that is, the fast neutron source reactor 'Yayoi', the electron beam linear accelerator, the nuclear fusion reactor blanket experiment device and the heavy ion irradiation research facility. Those are used to execute research and education in the wide fields of atomic energy engineering, and put to the common utilization by universities in whole Japan. The results of the research with these facilities have been reported in the separate reports. The research aims at developing the most advanced and new fields in nuclear reactor engineering, and includes the engineering of the first wall and the fuel cycle for nuclear fusion reactors, electromagnetic structure engineering, AI and robotics, quantum beam engineering, the design of new type reactors, the basic process of radiochemistry and so on. The report on the course of the large scale facilities, research activities, the publication of research, education and the events in the Laboratory in the year are described. (K.I.)

  1. INTEC High-Level Waste Studies Universal Solvent Extraction Feasibility Study

    International Nuclear Information System (INIS)

    Banaee, J.; Barnes, C.M.; Battisti, T.; Herrmann, S.; Losinski, S.J.; McBride, S.

    2000-01-01

    This report summarizes a feasibility study that has been conducted on the Universal Solvent Extraction (UNEX) Process for treatment and disposal of 4.3 million liters of INEEL sodium-bearing waste located at the Idaho Nuclear Technology and Engineering Center. This feasibility study covers two scenarios of treatment. The first, the UNEX Process, partitions the Cs/Sr from the SBW and creates remote-handled LLW and contact-handled TRU waste forms. Phase one of this study, covered in the 30% review documents, dealt with defining the processes and defining the major unit operations. The second phase of the project, contained in the 60% review, expanded on the application of the UNEX processes and included facility requirements and definitions. Two facility options were investigated for the UNEX process, resulting in a 2 x 2 matrix of process/facility scenarios as follows: Option A, UNEX at Greenfield Facility, Option B, Modified UNEX at Greenfield Facility, Option C, UNEX at NWCF, th is document, covers life-cycle costs for all options presented along with results and conclusions determined from the study

  2. University of New Mexico short course in nuclear criticality safety: Training for new NCS [nuclear criticality safety] specialists

    International Nuclear Information System (INIS)

    Busch, R.D.

    1990-01-01

    Since 1973, the University of New Mexico (UNM) has given ten short courses in nuclear criticality safety (NCS). Generally, thee have been given every other year, although in 1989 it was decided to offer the course on an annual basis. This decision was primarily based on the large demand for NCS specialists and a large turnover rate in the industry. The purpose of the course is to provide a 1-week overview of NCS. The typical student has been involved in NCS for <1 yr, although it many cases they have been associated with the nuclear industry in other capacities for many years. The short course is conducted at several levels. Carefully prepared lectures provide the information framework for selected topics. The following topics are covered in the course: basic reactor theory, criticality accidents and consequences, hand calculations, administration of a criticality safety program, regulators and their processes, computer methods and applications, experimental methods and correlations, overview of some process operations, and transportation and storage issues in NCS

  3. Government, utilities, industry and universities: partners for nuclear development in Canada and abroad

    International Nuclear Information System (INIS)

    Hurst, D.G.; Woolston, J.E.

    1971-09-01

    In Canada, eleven power reactors installed or committed at four sites will provide 5 520 MW(e) for an investment of $1 800 million. Uranium production during the decade 1958-1967 totalled 79 700 tonnes U 3 O 8 worth $1 621 million. For nuclear research, development and control, the federal government employs about 6 000 people and spends about $80 million/year which includes the cost of operating three major research reactors (> 30 MW each). Aggregate commercial isotope production has reached 14 megacuries, and Canada has about 3 000 licensed users. Three power and two research reactors of Canadian design are or will be installed in developing countries overseas. Legislation in 1946 made atomic energy a federal responsibility and established an Atomic Energy Control Board. The Board's regulations, which deal primarily with health, safety and security, are administered with the co-operation of appropriate departments of the federal and provincial governments. Large-scale nuclear research began in 1941 and continued under the National Research Council until 1952 when the federal government created a public corporation, Atomic Energy of Canada Limited, to take over both research and the exploitation of atomic energy. Another public corporation, Eldorado Nuclear Limited, conducts research and development on the processing of uranium and operates Canada's only uranium refinery, but prospecting and mining is undertaken largely by private companies. The publicly owned electrical utilities of Ontario and Quebec operate nuclear power stations and participate, with governments, in their financing. Private industry undertakes extensive development and manufacturing, mainly under contract to Atomic Energy of Canada Limited and the utilities, and industry has formed its own Canadian Nuclear Association. Canadian universities undertake nuclear research, and receive significant government support; one has operated a research reactor since 1959. Canada's nuclear program is

  4. Proceedings of the 18th technical meeting on nuclear reactor and radiation for KURRI engineers and the 9th technical official group section 5 meeting in Kyoto University

    International Nuclear Information System (INIS)

    2010-03-01

    This report is a summary of 18th Technical Meeting on Nuclear Reactor and Radiation for KURRI Engineers in Kyoto University. This was also the 9th meeting for technical official group section 5 (nuclear and radiation) in Kyoto University. In the workshop, three special lectures held were: (1) 'On Border Between Subcritical and Supercritical', (2) 'Memories of Nuclear Power Plant Management for 40 Years', and (3) 'Introduction of Technical Office in Faculty of Engineering, Kyoto University'. The technical presentations held were: (1) 'Radiation Background Study of Specialty Products in Senshu Region', (2) 'Introduction of Radioactivation Analysis at KUR', (3) 'Consideration of Critical Approach Method for KUR Low-Enrichment Fuel Reactor Core Using SRAC', (4) 'Evaluation of Temperature Coefficient of KUR Low-Enrichment Fuel Reactor Core Using SRAC'. As training for technical staffs in Technical Office, we visited the facility in Ashiu Research Forest. An introduction of this facility and the comments from the participants were included in this report. (S.K.)

  5. Clinical nuclear medicine applications in Turkey and specific renal studies

    International Nuclear Information System (INIS)

    Erbas, B.

    2004-01-01

    Full text: Nuclear cardiology, nuclear oncology, pediatric nuclear medicine and nuclear endocrinology are the main application areas of clinical nuclear medicine in Turkey. Not only imaging studies, but also therapeutic application of radiopharmaceuticals is also performed at many institutes, such as hyperthyroidism treatment with radioiodine, thyroid cancer ablation and metastases treatment with radioiodine, radio synovectomy, metastatic pain therapy, and recently radioimmunotherapy of lymphomas. Almost all radionuclides and radiopharmaceuticals are obtained commercially from European countries, except 18-FDG which is obtained from two cyclotrons in Turkey. More than 30.000 renal procedures are performed at the University hospitals in a year. Pediatric age groups is approximately % 55 of patients. 99mTc-DTPA (%44), 99mTc-DMSA (%37), 99mTc-MAG3 (%17) and 99mTc-EC (%2) are the most commonly used radiopharmaceuticals for renal imaging. More than 6.000 vials of several pharmaceuticals are used for renal cortical scintigraphy (%35), dynamic renal imaging (%34), renal scintigraphy with diuretic (%27) and captopril scintigraphy (%4). Most common indication for renal cortical scintigraphy is detection of cortical scarring (%53). In addition, using single plasma sample method or gamma-camera method renal clearance measurements with 99mTc-MAG3 99mTc-DTPA have been used at some institutions

  6. Clinical nuclear medicine applications in Turkey and specific renal studies

    International Nuclear Information System (INIS)

    Erbas, B.

    2004-01-01

    Nuclear cardiology, nuclear oncology, pediatric nuclear medicine and nuclear endocrinology are the main application areas of clinical nuclear medicine in Turkey. Not only imaging studies, but also therapeutic application of radiopharmaceuticals is also performed at many institutes, such as hyperthyroidism treatment with radioiodine, thyroid cancer ablation and metastases treatment with radioiodine, radio synovectomy, metastatic pain therapy, and recently radioimmunotherapy of lymphomas. Almost all radionuclides and radiopharmaceuticals are obtained commercially from European countries, except 18-FDG which is obtained from two cyclotrons in Turkey. More than 30.000 renal procedures are performed at the University hospitals in a year. Pediatric age groups is approximately % 55 of patients. 99m Tc-DTPA (%44), 99m Tc-DMSA (%37), 99m Tc-MAG3 (%17) and 99m Tc-EC (%2) are the most commonly used radiopharmaceuticals for renal imaging. More than 6.000 vials of several pharmaceuticals are used for renal cortical scintigraphy (%35), dynamic renal imaging (%34), renal scintigraphy with diuretic (%27) and captopril scintigraphy (%4). Most common indication for renal cortical scintigraphy is detection of cortical scarring (%53). In addition, using single plasma sample method or gamma-camera method renal clearance measurements with 99m Tc-MAG3 99m Tc-DTPA have been used at some institutions. (author)

  7. Nuclear Security Education in Morocco

    International Nuclear Information System (INIS)

    Hakam, O.K.

    2015-01-01

    Morocco has made significant progress in the field of nuclear security by supporting the efforts and activities of the International Atomic Energy Agency (IAEA), promoting nuclear security under international initiatives and continues to undertake actions aiming at strengthening capacity building in nuclear security. As well, Morocco has developed a new law on radiological and nuclear safety and security which was promulgated in 2014. Some Moroccan universities in cooperation with the IAEA-International Nuclear Security Education Network (INSEN) and the US-DoS Partnership for Nuclear Security (PNS) are working to develop their nuclear security educational programmes. In this regard, faculties who have been involved in INSEN Professional Development Courses (PDCs) have acquired a high-quality of knowledge and teaching tools in nuclear security topics that led them to be able to develop and teach their nuclear security curriculum as is the case at the University of Ibn Tofail. Furthermore, University of Ibn Tofail has developed in 2014 with collaboration with CRDFGlobal the first Institute of Nuclear Material Management (INMM) Student Chapter in Africa. This Chapter has organized many events to promote best practices among the young generation. Moreover, University of Ibn Tofail and Brandenburg University in Germany are working to develop a PDC on Nuclear IT/Cyber Security to be held in Kenitra, Morocco. This PDC aims at building capacity among the academic communities from Africa and MENA Region in order to further raise awareness, develop and disseminate best practices, increase professional standards and therefore enhance nuclear security culture. So, this paper will present some nuclear security education activities in Morocco and more specifically at the University of Ibn Tofail. These activities involve women as leaders but also contribute in education and training of young generation of women in nuclear field. (author)

  8. Annual report of Nuclear Engineering Research Laboratory, University of Tokyo in fiscal 1993

    International Nuclear Information System (INIS)

    1994-08-01

    In this annual report, the activities of research and education, the state of operation of research facilities and others in fiscal year 1993 are summarized. Four main research facilities are the fast neutron source reactor 'Yayoi', the electron linear accelerator, the basic experiment facility for nuclear fusion reactor blanket design and the heavy irradiation research facility. The reactor and the accelerator are for the joint utilization by all universities in Japan, the blanket is used by the Faculty of Engineering, and the HIT is for the joint utilization in University of Tokyo. In fiscal year 1993, the installation of the fast neutron science research facility was approved. In this annual report, the management and operation of the above research facilities are described, and the research activities, the theses for doctorate and graduation theses of teachers, are summarized. (K.I.)

  9. Nuclear winter or nuclear fall?

    Science.gov (United States)

    Berger, André

    Climate is universal. If a major modern nuclear war (i.e., with a large number of small-yield weapons) were to happen, it is not even necessary to have a specific part of the world directly involved for there to be cause to worry about the consequences for its inhabitants and their future. Indeed, smoke from fires ignited by the nuclear explosions would be transported by winds all over the world, causing dark and cold. According to the first study, by Turco et al. [1983], air surface temperature over continental areas of the northern mid-latitudes (assumed to be the nuclear war theatre) would fall to winter levels even in summer (hence the term “nuclear winter”) and induce drastic climatic conditions for several months at least. The devastating effects of a nuclear war would thus last much longer than was assumed initially. Discussing to what extent these estimations of long-term impacts on climate are reliable is the purpose of this article.

  10. Education of nuclear energy specialists

    International Nuclear Information System (INIS)

    Paulikas, V.

    1999-01-01

    Preparation system of nuclear energy specialists in Lithuania is presented. Nuclear engineers are being prepared at Kaunas University of Technology. Post-graduates students usually continue studies at Obninsk Nuclear Energy Institute in Russia. Many western countries like Sweden, Finland and US is providing assistance in education of Lithuanian specialists. Many of them were trained in these countries

  11. The Role of Gadjah Mada University on Forming Public’s Perception About Nuclear in Indonesia Through Community Services Programs

    International Nuclear Information System (INIS)

    Rosita, W.; Muharini, A.; Wijayanti, E.

    2015-01-01

    The plan for building Nuclear Power Plant in Indonesia have been announced since 1956, but it is always postponed until now. One of these reasons is public’s perception about nuclear technology. In Indonesia, information about nuclear technology is still limited although we have used this technology in health and agriculture area. There were some reasons why this is happened. The first is insufficient introduction about nuclear chapter for our primary, secondary and high school students. Second is there are many rural community that is spread in thousand islands which has different education level compared to urban community. We thought that these two main reasons which affect people opinions about nuclear in Indonesia. So innovative ways to educate people about nuclear programme in Indonesia are needed. Gadjah Mada University, having the only Nuclear Engineering Department in Indonesia, has community services programmes that could be used for dissemination nuclear technologies and nuclear application in schools, rural and urban communities. Through these activities, we did several ways to promote nuclear which depends on the participant’s education level and observe people’s opinions about it. We hope these programmes could make better perception about nuclear. (author)

  12. Advances in instrumentation for nuclear astrophysics

    Directory of Open Access Journals (Sweden)

    S. D. Pain

    2014-04-01

    Full Text Available The study of the nuclear physics properties which govern energy generation and nucleosynthesis in the astrophysical phenomena we observe in the universe is crucial to understanding how these objects behave and how the chemical history of the universe evolved to its present state. The low cross sections and short nuclear lifetimes involved in many of these reactions make their experimental determination challenging, requiring developments in beams and instrumentation. A selection of developments in nuclear astrophysics instrumentation is discussed, using as examples projects involving the nuclear astrophysics group at Oak Ridge National Laboratory. These developments will be key to the instrumentation necessary to fully exploit nuclear astrophysics opportunities at the Facility for Rare Isotope Beams which is currently under construction.

  13. Annual report of the Nuclear Physics Laboratory, University of Washington

    International Nuclear Information System (INIS)

    Snover, K.; Fulton, B.

    1996-04-01

    The Nuclear Physics Laboratory of the University of Washington has for over 40 years supported a broad program of experimental physics research. Some highlights of the research activities during the past year are given. Work continues at a rapid pace toward completion of the Sudbury Neutrino Observatory in January 1997. Following four years of planning and development, installation of the acrylic vessel began last July and is now 50% complete, with final completion scheduled for September. The Russian-American Gallium Experiment (SAGE) has completed a successful 51 Cr neutrino source experiment. The first data from 8 B decay have been taken in the Mass-8 CVC/Second Class Current study. The analysis of the measured barrier distributions for Ca-induced fission of prolate 192 Os and oblate 194 Pt has been completed. In a collaboration with a group from the Bhabha Atomic Research Centre they have shown that fission anisotropies at energies well above the barrier are not influenced by the mass asymmetry of the entrance channel relative to the Businaro-Gallone critical asymmetry. They also have preliminary evidence at higher bombarding energy that noncompound nucleus fission scales with the mean square angular momentum, in contrast to previous suggestions. The authors have measured proton and alpha particle emission spectra from the decay of A ∼ 200 compound nuclei at excitation energies of 50--100 MeV, and used these measurements to infer the nuclear temperature. The investigations of multiparticle Bose-Einstein interferometry have led to a new algorithm for putting Bose-Einstein and Coulomb correlations of up to 6th order into Monte Carlo simulations of ultra-relativistic collision events, and to a new fast algorithm for extracting event temperatures

  14. Multi-University Southeast INIE Consortium

    International Nuclear Information System (INIS)

    Hawari, Ayman; Hertel, Nolan; Al-Sheikhly, Mohamed; Miller, Laurence; Bayoumi, Abdel-Moeze; Haghighat, Ali; Lewis, Kenneth

    2010-01-01

    The Multi-University Southeast INIE Consortium (MUSIC) was established in response to the US Department of Energy's (DOE) Innovations in Nuclear Infrastructure and Education (INIE) program. MUSIC was established as a consortium composed of academic members and national laboratory partners. The members of MUSIC are the nuclear engineering programs and research reactors of Georgia Institute of Technology (GIT), North Carolina State University (NCSU), University of Maryland (UMD), University of South Carolina (USC), and University of Tennessee (UTK). The University of Florida (UF), and South Carolina State University (SCSU) were added to the MUSIC membership in the second year. In addition, to ensure proper coordination between the academic community and the nation's premier research and development centers in the fields of nuclear science and engineering, MUSIC created strategic partnerships with Oak Ridge National Laboratory (ORNL) including the Spallation Neutron Source (SNS) project and the Joint Institute for Neutron Scattering (JINS), and the National Institute of Standards and Technology (NIST). A partnership was also created with the Armed Forces Radiobiology Research Institute (AFRRI) with the aim of utilizing their reactor in research if funding becomes available. Consequently, there are three university research reactors (URRs) within MUSIC, which are located at NCSU (1-MW PULSTAR), UMD (0.25-MW TRIGA) and UF (0.10-MW Argonaut), and the AFRRI reactor (1-MW TRIGA MARK F). The overall objectives of MUSIC are: (a) Demonstrate that University Research Reactors (URR) can be used as modern and innovative instruments of research in the basic and applied sciences, which include applications in fundamental physics, materials science and engineering, nondestructive examination, elemental analysis, and contributions to research in the health and medical sciences, (b) Establish a strong technical collaboration between the nuclear engineering faculty and the MUSIC URRs

  15. Building A Universal Nuclear Energy Density Functional (UNEDF)

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, Joe [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Furnstahl, Dick [The Ohio State Univ., Columbus, OH (United States); Horoi, Mihai [Central Michigan Univ., Mount Pleasant, MI (United States); Lusk, Rusty [Argonne National Lab. (ANL), Argonne, IL (United States); Nazarewicz, Witek [Univ. of Tennessee, Knoxville, TN (United States); Ng, Esmond [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Thompson, Ian [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Vary, James [Iowa State Univ., Ames, IA (United States)

    2012-09-30

    During the period of Dec. 1 2006 - Jun. 30, 2012, the UNEDF collaboration carried out a comprehensive study of all nuclei, based on the most accurate knowledge of the strong nuclear interaction, the most reliable theoretical approaches, the most advanced algorithms, and extensive computational resources, with a view towards scaling to the petaflop platforms and beyond. The long-term vision initiated with UNEDF is to arrive at a comprehensive, quantitative, and unified description of nuclei and their reactions, grounded in the fundamental interactions between the constituent nucleons. We seek to replace current phenomenological models of nuclear structure and reactions with a well-founded microscopic theory that delivers maximum predictive power with well-quantified uncertainties. Specifically, the mission of this project has been three-fold: first, to find an optimal energy density functional (EDF) using all our knowledge of the nucleonic Hamiltonian and basic nuclear properties; second, to apply the EDF theory and its extensions to validate the functional using all the available relevant nuclear structure and reaction data; third, to apply the validated theory to properties of interest that cannot be measured, in particular the properties needed for reaction theory. The main physics areas of UNEDF, defined at the beginning of the project, were: ab initio structure; ab initio functionals; DFT applications; DFT extensions; reactions.

  16. BATAN Activities in Developing Nuclear Knowledge Management

    International Nuclear Information System (INIS)

    Darmawati, S.

    2016-01-01

    Full text: BATAN (National Atomic Energy Agency of Indonesia) was established in 1964, and after the issuance of Law 10 of 1997 it become National Nuclear Energy Agency. During the last seven years, BATAN has suffered the loss of many of its valuable human resources due to the zero-growth policy of the government in recruiting new staffs. The uncertain future of nuclear power programme in Indonesia has also reduced the interest of young generation to study nuclear related subjects, resulting in the closing of several departments in universities that once offered nuclear sciences as subject of studies. These situations triggered management of BATAN to develop various efforts to keep nuclear knowledge exist and disseminate among BATAN itself, university students, and public as a whole. BATAN has in recent years established higher school of nuclear technology and organized various nuclear related training programmes, and also in cooperation with other governmental organizations establish nuclear zones, nuclear information centres and nuclear corners in public as well as in high school areas throughout Indonesia. All these efforts are aimed to transfer and preserve nuclear knowledge for the better future of the applications of nuclear science and technology in Indonesia. (author

  17. Planning and implementation of Istanbul Technical University TRIGA research reactor program

    International Nuclear Information System (INIS)

    Aybers, N.; Yavuz, H.; Bayulken, A.

    1982-01-01

    The Istanbul Technical University TRIGA Research Reactor at the Institute for Nuclear Energy, which went critical on March 11, 1979 is basically a pulsing type TRIGA Mark - II reactor. Completion of the ITU-TRR contributed to broaden the role of the Institute for Nuclear Energy of the Technical University in Istanbul in the nuclear field by providing for the first time adequate on-campus experimental facilities for nuclear engineering studies to ITU students. The research program which is currently under planning at ITU-NEE encompasses: a) Neutron activation analysis studies by techniques and applications to chemistry, mining, materials research, archaeological and biomedical studies; b) applications of Radioisotopes; c) Radiography with reactor neutron beams; d) Radiation Pulsing

  18. Nuclear Medicine at Charles Sturt University

    International Nuclear Information System (INIS)

    Swan, H.; Sinclair, P.; Scollard, D.

    1998-01-01

    Full text: A distance educational programme for upgrading of Certificate, Associate Diploma and Diploma to a Bachelor of Applied Science degree commenced in second semester of 1997 with approximately 15 Australian students and 15 Canadian students. The first graduation will occur in 1998. Formal links with the Michener Institute in Toronto have allowed Canadian students access to study resources during the course. All students entering the course are accredited or registered with their respective professional societies. The short conversion programme for those with three year diplomas includes Nuclear Medicine Physics and Instrumentation, Imaging Pathology, Clinical Neuroscience and Research Method subjects. An inaugural undergraduate degree programme in Nuclear Medicine Technology commences in first semester of 1998 on the Riverina Campus at Wagga Wagga. An intake of 15 students is anticipated. This small group of rural based students will have the benefits of international expertise. The programme has a strong clinical practice component including time on campus to supplement the practicum in departments. Physiology studies continue through to third year to complement the professional subjects. Active participation is solicited from those departments involved with aspects of the practicum well before students are placed. A fully functional teaching laboratory has been constructed containing a well equipped radiopharmacy, gamma camera room and computer laboratory using modern applications software to provide the students with a solid background in their chosen field

  19. A study on the nuclear foreign policy

    International Nuclear Information System (INIS)

    Lee, Byungwook; Lee, H. M.; Ko, H. S.; Ryu, J. S.; Noh, B. C.

    2008-12-01

    This study addresses four arenas to effectively assist national nuclear foreign policies under international nuclear nonproliferation regimes and organizations. Firstly, this study analyzes the trends of the international nuclear non-proliferation regime, which includes the Treaty on the Non-proliferation of Nuclear Weapons (NPT), the international nuclear export control regime, and proposals for assurance of nuclear fuel supply. Secondly, this study analyzes the trends of international nuclear organizations, which include the IAEA as a central body of international nuclear diplomacy and technical cooperation and the OECD/NEA as a intergovernmental organization to consist of nuclear advanced countries. Thirdly, this study predicts the nuclear foreign policy of Obama Administration and reviews U. S.-India nuclear cooperation. Lastly, this study analyzes the nuclear issues of North Korea and current issues for regulation of nuclear materials.

  20. Theoretical studies of multistep processes, isospin effects in nuclear scattering, and meson and baryon interactions in nuclear physics. Final technical report, 1 September 1979-30 April 1986

    International Nuclear Information System (INIS)

    Madsen, V.A.; Landau, R.H.

    1986-01-01

    Final technical report on a contract supporting theoretical studies in nuclear physics at Oregon State University is presented. The research was led by Professors Landau and Madsen and carried out in collaboration with graduate students in Corvallis and scientists at LLNL-Livermore, KFA-Julich, Purdue University-West Lafayette, University of Oregon-Eugene, Florida State University-Talahasie, and TRIUMF-Vancouver. The studies included meson exchange current effects, quark effects,and relativistic/Dirac effects deduced from spin observables in p- 3 He scattering, coupled bound and continuum eigenstates in momentum space for kaons and antiprotons, and charge symmetry violation in π scattering from trinucleons. Additional studies included microscopic optical potential calculations, multiple step processes, and differences in neutron and proton multipole matrix elements in low lying collective states and in giant resonances. 45 refs

  1. 4. Mexican School of Nuclear Physics

    International Nuclear Information System (INIS)

    Aguilera, E.F.; Hernandez, E.; Hirsch, J.G. -mail: svp@nuclear.inin.mx

    2005-01-01

    The IV Mexican School of Nuclear Physics, organized by the Nuclear Physics Division of the Mexican Physics Society, taken place from June 27 to July 8, 2005 in the Institute of Nuclear Sciences and the Institute of Physics of the UNAM and in the National Institute of Nuclear Research (ININ). This school, as the previous ones, it was guided to the students of the last semesters of the career of Physics, of the Post grade of the same specialty, and of other adjacent careers. To give the students a current vision of some of the topics more important of the nuclear physics and their relationship with other near areas of the physics it was the objective of this School. The School covered a wide range of theoretical and experimental courses, imparted in its majority by Mexican expert professor-investigators in the subject to whom we thank them the one effort and the quality of their presentations, reflected in the content of this document. The answer of the students to the convocation was excellent, 31 students presented application for admission coming from the following institutions: Meritorious Autonomous University of Puebla, National Institute of Nuclear Research, Technological Institute of Orizaba, National Polytechnic Institute, The University of Texas at Brownsville, Autonomous University of the State de Mexico, Autonomous University of the State of Morelos, Autonomous University of Baja California, Autonomous University of San Luis Potosi, University of Guadalajara, University of Guanajuato, National Autonomous University of Mexico, University of Texas, at El Paso and University Veracruzana. They were admitted to those 22 students with the higher averages qualifications of the list of applicants. The organizers of this school thank the financial support granted by the following sponsor institutions: Institute of Nuclear Sciences, UNAM, Institute of Physics, UNAM, Coordination of the Scientific Research, UNAM, National Institute of Nuclear Research, Nuclear

  2. Nuclear matter studies with density-dependent meson-nucleon coupling constants

    International Nuclear Information System (INIS)

    Banerjee, M.K.; Tjon, J.A.; Banerjee, M.K.; Tjon, J.A.

    1997-01-01

    Due to the internal structure of the nucleon, we should expect, in general, that the effective meson nucleon parameters may change in nuclear medium. We study such changes by using a chiral confining model of the nucleon. We use density-dependent masses for all mesons except the pion. Within a Dirac-Brueckner analysis, based on the relativistic covariant structure of the NN amplitude, we show that the effect of such a density dependence in the NN interaction on the saturation properties of nuclear matter, while not large, is quite significant. Due to the density dependence of the g σNN , as predicted by the chiral confining model, we find, in particular, a looping behavior of the binding energy at saturation as a function of the saturation density. A simple model is described, which exhibits looping and which is shown to be mainly caused by the presence of a peak in the density dependence of the medium modified σN coupling constant at low density. The effect of density dependence of the coupling constants and the meson masses tends to improve the results for E/A and density of nuclear matter at saturation. From the present study we see that the relationship between binding energy and saturation density may not be as universal as found in nonrelativistic studies and that more model dependence is exhibited once medium modifications of the basic nuclear interactions are considered. copyright 1997 The American Physical Society

  3. Personnel and working area monitoring at the Department of Nuclear Science, Universiti Kebangsaan Malaysia

    International Nuclear Information System (INIS)

    Amran Abd Majid; Muhamad Samudi Yasir; Che Rosli Che Mat

    1995-01-01

    Personnel (staff and student) and working area absorbed dose monitoring at the Department of Nuclear Science from 1984 until September 1993 is reported. Generally average absorbed dose received by the staff and working area were less than 0.5 and 2.0 mSv/yr respectively. The application of low activity of radioactive materials and complying the UKM (Universiti Kebangsaan Malaysia) and LPTA (AELB) - Atomic Energy Licensing Board regulations contributing to the low rate recorded. (author)

  4. Nuclear biomedical and hospital waste management at the University of Brussels (VUB): optimization in the Belgian context

    International Nuclear Information System (INIS)

    Eggermont, G.; Covens, P.

    2002-01-01

    Low level nuclear waste (LLW) from biomedical research laboratories and from hospitals has specific characteristics, requiring a different management than the LLW from nuclear energy. Biomedical waste generally does not contain emitters and essentially consists of short-lived β/γ-emitters and a range of pure β-emitters, which are difficult to measure. Except for 3 H and 1 4C , the radionuclides found in biomedical waste have half-lives less then 100 days and hence do not require nuclear disposal. Limited quantities of accelerator activation products (mainly 6 5Z n and 6 0C o) and compact sealed sources of 6 0C o, 1 37C s, 2 26R a and 1 92I r form the only exceptions. National nuclear waste agencies typically do not have a specific policy for treatment and disposal of this type of LLW. In 2001 new price increases were announced for specific categories of this waste. They were implemented by NIRAS/ONDRAF early 2002. The major universities and academic hospitals expressed concern. The Health Council has considered the problem and has recently recommended to the authorities a set of measures to prevent non authorised liberation of this waste. Moreover non-nuclear waste companies have noticed a considerable growing inventory of radioactivity in incoming waste transports before treatment. A variety of radionuclides and activities were found in a diversity of origins from municipal waste over medical waste to industrial waste. Dismantling of accelerators and their shielding could add considerable amounts of waste. Due to the escalating costs and the lack of acceptance of near-surface disposal facilities, the university of Brussels (VUB) and its hospital, have developed a successful on-site waste decay storage program in collaboration with Canberra Europe, which is discussed hereafter

  5. Studies on cluster decay from trans-lead nuclei using different versions of nuclear potentials

    Energy Technology Data Exchange (ETDEWEB)

    Santhosh, K.P.; Sukumaran, Indu [Kannur University, School of Pure and Applied Physics, Payyanur, Kerala (India)

    2017-06-15

    The cluster decays from various isotopes of trans-lead nuclei have been studied using 12 different nuclear potentials by evaluating decay half-lives and are then compared with the available experimental data. The study has shown that the barrier penetrability as well as the decay half-lives varies with the nuclear potential used. The standard deviation of the estimated half-lives is also calculated for these twelve nuclear potentials in comparison with the experimental data. The potential Bass 1980 is found to be the most appropriate potential for studying cluster radioactivity as the standard deviation obtained is least. Among the different proximity potential versions; proximity 1977, proximity 1988, proximity 2000, and modified proximity 2000, the minimum standard deviation is for proximity 1988. The Geiger-Nuttall (G-N) plots studied for different cluster emissions from various parents are observed to show linear behavior but with different slopes and intercepts. Again, the G-N plots obtained are linear with different slopes and intercepts when plotted for different nuclear potentials. So it is observed that with the inclusion of different nuclear potentials, the linearity of the G-N plot remains unaltered. Irrespective of the nuclear potential used, the universal curve (log{sub 10}T{sub 1/2} vs. -ln P) studied for various clusters emitted from various parents are obtained as linear with same slope and intercept. (orig.)

  6. Nuclear Structure Studies of Exotic Nuclei with Radioactive Ion Beams A Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Winger, Jeff Allen [Mississippi State Univ., Mississippi State, MS (United States)

    2016-04-21

    Beta-decay spectroscopy provides important information on nuclear structure and properties needed to understand topics as widely varied as fundamental nuclear astrophysics to applied nuclear reactor design. However, there are significant limitations of our knowledge due to an inability to experimentally measure everything. Therefore, it is often necessary to rely on theoretical calculations which need to be vetted with experimental results. The focus of this report will be results from experimental research performed by the Principal Investigator (PI) and his research group at Mississippi State University in which the group played the lead role in proposing, implementing, performing and analyzing the experiment. This research was carried out at both the National Superconduction Cyclotron Laboratory (NSCL) at Michigan State University and the Holifield Radioactive Ion Beam Facility (HRIBF) at Oak Ridge National Laboratory. The primary emphasis of the research was the use of \\bdec spectroscopy as a tool to understand the evolution of nuclear structure in neutron-rich nuclei which could then be applied to improve theory and to increase the overall knowledge of nuclear structure.

  7. Nuclear space power safety and facility guidelines study

    International Nuclear Information System (INIS)

    Mehlman, W.F.

    1995-01-01

    This report addresses safety guidelines for space nuclear reactor power missions and was prepared by The Johns Hopkins University Applied Physics Laboratory (JHU/APL) under a Department of Energy grant, DE-FG01-94NE32180 dated 27 September 1994. This grant was based on a proposal submitted by the JHU/APL in response to an open-quotes Invitation for Proposals Designed to Support Federal Agencies and Commercial Interests in Meeting Special Power and Propulsion Needs for Future Space Missionsclose quotes. The United States has not launched a nuclear reactor since SNAP 10A in April 1965 although many Radioisotope Thermoelectric Generators (RTGs) have been launched. An RTG powered system is planned for launch as part of the Cassini mission to Saturn in 1997. Recently the Ballistic Missile Defense Office (BMDO) sponsored the Nuclear Electric Propulsion Space Test Program (NEPSTP) which was to demonstrate and evaluate the Russian-built TOPAZ II nuclear reactor as a power source in space. As of late 1993 the flight portion of this program was canceled but work to investigate the attributes of the reactor were continued but at a reduced level. While the future of space nuclear power systems is uncertain there are potential space missions which would require space nuclear power systems. The differences between space nuclear power systems and RTG devices are sufficient that safety and facility requirements warrant a review in the context of the unique features of a space nuclear reactor power system

  8. A Study on the Nuclear Foreign Policy

    International Nuclear Information System (INIS)

    Lee, Byung Wook; Lee, H. M.; Ko, H. S.; Ryu, J. S.; Oh, K. B.; Yang, M. H.; Lee, K. S.

    2007-12-01

    This study approaches the international trends related to nuclear non-proliferation in four aspects. First, this study analyzes the trend of the international nuclear non-proliferation regime, which includes the Treaty on the Non-proliferation of Nuclear Weapons (NPT), the international nuclear export control regime and proposals for assurance of nuclear fuel supply. Second, this study analyzes the trend of international nuclear organizations, which includes the International Atomic Energy Agency (IAEA), a central body of development of nuclear technology and international nuclear diplomacy, and the Organization for Economic Co-operation and Development/Nuclear Energy Agency (OECD/NEA), a intergovernmental organization to consist of a group of nuclear advanced countries. Third, this study analyzes the trends of the U.S.'s nuclear foreign policies, particularly nuclear non-proliferation. Fourth, this study analyzes the nuclear issues of North Korea and Iran as they cause serious concerns to a international society

  9. A Study on the Nuclear Foreign Policy

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Byung Wook; Lee, H. M.; Ko, H. S.; Ryu, J. S.; Oh, K. B.; Yang, M. H.; Lee, K. S

    2007-12-15

    This study approaches the international trends related to nuclear non-proliferation in four aspects. First, this study analyzes the trend of the international nuclear non-proliferation regime, which includes the Treaty on the Non-proliferation of Nuclear Weapons (NPT), the international nuclear export control regime and proposals for assurance of nuclear fuel supply. Second, this study analyzes the trend of international nuclear organizations, which includes the International Atomic Energy Agency (IAEA), a central body of development of nuclear technology and international nuclear diplomacy, and the Organization for Economic Co-operation and Development/Nuclear Energy Agency (OECD/NEA), a intergovernmental organization to consist of a group of nuclear advanced countries. Third, this study analyzes the trends of the U.S.'s nuclear foreign policies, particularly nuclear non-proliferation. Fourth, this study analyzes the nuclear issues of North Korea and Iran as they cause serious concerns to a international society.

  10. Theoretical studies in nuclear reactions and nuclear structure

    International Nuclear Information System (INIS)

    1992-05-01

    Research in the Maryland Nuclear Theory Group focusses on problems in four basic areas of current relevance. Hadrons in nuclear matter; the structure of hadrons; relativistic nuclear physics and heavy ion dynamics and related processes. The section on hadrons in nuclear matter groups together research items which are aimed at exploring ways in which the properties of nucleons and the mesons which play a role in the nuclear force are modified in the nuclear medium. A very interesting result has been the finding that QCD sum rules supply a new insight into the decrease of the nucleon's mass in the nuclear medium. The quark condensate, which characterizes spontaneous chiral symmetry breaking of the late QCD vacuum, decreases in nuclear matter and this is responsible for the decrease of the nucleon's mass. The section on the structure of hadrons contains progress reports on our research aimed at understanding the structure of the nucleon. Widely different approaches are being studied, e.g., lattice gauge calculations, QCD sum rules, quark-meson models with confinement and other hedgehog models. A major goal of this type of research is to develop appropriate links between nuclear physics and QCD. The section on relativistic nuclear physics represents our continuing interest in developing an appropriate relativistic framework for nuclear dynamics. A Lorentz-invariant description of the nuclear force suggests a similar decrease of the nucleon's mass in the nuclear medium as has been found from QCD sum rules. Work in progress extends previous successes in elastic scattering to inelastic scattering of protons by nuclei. The section on heavy ion dynamics and related processes reports on research into the e + e - problem and heavy ion dynamics

  11. Nuclear structure studies with INGA at IUAC and future possibilities

    International Nuclear Information System (INIS)

    Singh, R.P.

    2016-01-01

    Study of nuclear structure exhibits a wide variety of modes of nuclear excitations. The various modes of excitations reflect different underlying structures nuclei adopt to for a given situation of spin, iso-spin and excitation energy. Trying to understand and reconcile these large variety of underlying structures (and symmetries) in a finite quantal system, like nuclei, is of great interest to physicists. The gamma ray spectrometer called Indian National Gamma detector Array (INGA) (a national collaboration) has given further impetus to these studies due to enhanced photo-peak detection efficiency for gamma rays. In recent years our group in collaboration with universities and institutes have probed the various dynamical symmetries like chirality, shears and gamma bands built over excited configurations. I would discuss some of the recent results from these studies. Further, at IUAC we are working on combining the INGA spectrometer with our hybrid gas-filled mass analyser HYRA for study of heavy nuclei in the forthcoming INGA-HYRA campaign. Some of these developments would also be discussed

  12. Nuclear Structure Studies On Exotic Nuclei With Radioactive Beams - Present Status And Future Perspectives At FAIR

    International Nuclear Information System (INIS)

    Peter Egelhof

    2011-01-01

    The investigation of nuclear reactions using radioactive beams in inverse kinematics gives access to a wide field of nuclear structure studies in the region far off stability. The basic concept and the methods involved are briefly discussed, and an overview including some selected examples of recent results obtained with radioactive beams from the present fragment separator at GSI Darmstadt is presented. The experimental conditions expected at the future international facility FAIR will, among others, allow for a substantial improvement in intensity and quality of radioactive beams as compared to present facilities. Therefore, it is expected that FAIR will provide unique opportunities for nuclear structure studies on nuclei far off stability, and will allow to explore new regions in the chart of nuclides of high interest for nuclear structure and nuclear astrophysics. A brief overview on the new facility, and on the experimental setups planned for nuclear structure research with radioactive beams is given. For nuclear reaction studies several complex, highly efficient, high resolution, and universal detection systems such as R 3 B, EXL, ELISe, etc. are presently under design and construction. A brief overview on the research objectives and the technical realization will be presented. (author)

  13. Experimental study on accelerator driven subcritical reactor. JAERI's nuclear research promotion program, H12-031 (Contract research)

    International Nuclear Information System (INIS)

    Shiroya, Seiji; Misawa, Tsuyoshi; Unesaki, Hironobu

    2004-03-01

    In view of the future plan of Research Reactor Institute, Kyoto University (KURRI), the present study consisted of 1) the transmission experiments of high energy neutrons through materials, 2) experimental simulation of ADSR using the Kyoto University Critical Assembly (KUCA), and 3) conceptual neutronics design study on Kyoto University Reactor (KUR) type ADSR using the MCNPX code. The purpose of the present study was not only to obtain the knowledge usable for the realization of ADSR as a new neutron source for research but also to select technical issues in the field of reactor physics for the development of ADSR in general. Through the present study, valuable knowledge on the basic nuclear characteristics of ADSR was obtained both theoretically and experimentally. This kind of knowledge is indispensable to promote the study on ADSR further. If one dare say the main part of knowledge in short words, the basic nuclear characteristics of ADSR is overwhelmed by the characteristics of the subcritical reactor as expected. For the realization of ADSR in the future, it is considered to be necessary to accumulate results of research steadily. For this purpose, it is inevitable 1) to compile the more precise nuclear data for the wide energy range, 2) to establish experimental techniques for reactor physics study on ADSR including subcriticality measurement and absolute neutron flux measurement from the low energy region to the high energy region, and 3) to develop neutronics calculation tools which facilitate to take into account the neutron generation process by the spallation reaction and the delayed neutron behavior. (author)

  14. Study of the adequacy of personnel for the US nuclear program

    International Nuclear Information System (INIS)

    1981-11-01

    The report will emphasize fission topics relative to fusion because of the relative number of personnel involved. However, the commonality of types of personnel and their required educational background are such that the health of the fission educational infrastructure will affect the future supply of fusion technologists. Alternatively, the attractive aspects of some closely related fusion research in universities can help attract the high quality personnel needed in the fission field. The report's recommendations are therefore based on the needs of both programs. A separate study of the detailed requirements for fusion scientific and engineering personnel has been prepared by the Office of Fusion Energy. In this report, the present status of nuclear power, historic personnel requirements, future requirements, and constraints on future supply are analyzed. The intent of this report is to provide a context for conclusions and recommendation of Government actions leading to an adequate supply of nuclear manpower both for the industrial and Government components of the nuclear enterprise

  15. Multi-University Southeast INIE Consortium

    Energy Technology Data Exchange (ETDEWEB)

    Ayman Hawari; Nolan Hertel; Mohamed Al-Sheikhly; Laurence Miller; Abdel-Moeze Bayoumi; Ali Haghighat; Kenneth Lewis

    2010-12-29

    2 Project Summary: The Multi-University Southeast INIE Consortium (MUSIC) was established in response to the US Department of Energy’s (DOE) Innovations in Nuclear Infrastructure and Education (INIE) program. MUSIC was established as a consortium composed of academic members and national laboratory partners. The members of MUSIC are the nuclear engineering programs and research reactors of Georgia Institute of Technology (GIT), North Carolina State University (NCSU), University of Maryland (UMD), University of South Carolina (USC), and University of Tennessee (UTK). The University of Florida (UF), and South Carolina State University (SCSU) were added to the MUSIC membership in the second year. In addition, to ensure proper coordination between the academic community and the nation’s premier research and development centers in the fields of nuclear science and engineering, MUSIC created strategic partnerships with Oak Ridge National Laboratory (ORNL) including the Spallation Neutron Source (SNS) project and the Joint Institute for Neutron Scattering (JINS), and the National Institute of Standards and Technology (NIST). A partnership was also created with the Armed Forces Radiobiology Research Institute (AFRRI) with the aim of utilizing their reactor in research if funding becomes available. Consequently, there are three university research reactors (URRs) within MUSIC, which are located at NCSU (1-MW PULSTAR), UMD (0.25-MW TRIGA) and UF (0.10-MW Argonaut), and the AFRRI reactor (1-MW TRIGA MARK F). The overall objectives of MUSIC are: a) Demonstrate that University Research Reactors (URR) can be used as modern and innovative instruments of research in the basic and applied sciences, which include applications in fundamental physics, materials science and engineering, nondestructive examination, elemental analysis, and contributions to research in the health and medical sciences, b) Establish a strong technical collaboration between the nuclear engineering

  16. Theoretical studies in nuclear reactions and nuclear structure

    Energy Technology Data Exchange (ETDEWEB)

    1992-05-01

    Research in the Maryland Nuclear Theory Group focusses on problems in four basic areas of current relevance. Hadrons in nuclear matter; the structure of hadrons; relativistic nuclear physics and heavy ion dynamics and related processes. The section on hadrons in nuclear matter groups together research items which are aimed at exploring ways in which the properties of nucleons and the mesons which play a role in the nuclear force are modified in the nuclear medium. A very interesting result has been the finding that QCD sum rules supply a new insight into the decrease of the nucleon's mass in the nuclear medium. The quark condensate, which characterizes spontaneous chiral symmetry breaking of the late QCD vacuum, decreases in nuclear matter and this is responsible for the decrease of the nucleon's mass. The section on the structure of hadrons contains progress reports on our research aimed at understanding the structure of the nucleon. Widely different approaches are being studied, e.g., lattice gauge calculations, QCD sum rules, quark-meson models with confinement and other hedgehog models. A major goal of this type of research is to develop appropriate links between nuclear physics and QCD. The section on relativistic nuclear physics represents our continuing interest in developing an appropriate relativistic framework for nuclear dynamics. A Lorentz-invariant description of the nuclear force suggests a similar decrease of the nucleon's mass in the nuclear medium as has been found from QCD sum rules. Work in progress extends previous successes in elastic scattering to inelastic scattering of protons by nuclei. The section on heavy ion dynamics and related processes reports on research into the e{sup +}e{sup {minus}} problem and heavy ion dynamics.

  17. Overview of space nuclear technologies and the American Nuclear Society

    International Nuclear Information System (INIS)

    Singleterry, R.C. Jr.

    2000-01-01

    The American Nuclear Society (ANS) has seen an aspect of the universe where nuclear technology is the best energy source available for power, transportation, etc. The National Aeronautics and Space Administration (NASA) has been exploiting this aspect of the universe by sending machines and humans into it and exploring, colonizing, industrializing, developing, inhabiting, etc. Space is the final frontier, and nuclear technology is the best suited for today's or the next century's space exploration and development. Many aspects of nuclear technology and its uses in space will be needed. ANS encompasses these and many more aspects of nuclear technology, and all have some role to play in the exploration and development of space. It should be ANS's intent to be an advisory body to NASA on the nuclear aspects of space exploration

  18. Activities of the study group of peaceful uses of nuclear energy and non-proliferation policy. FY Heisei 11

    International Nuclear Information System (INIS)

    Kurosawa, Mitsuru; Oi, Noboru

    2000-01-01

    The Study Group on the Peaceful Uses of Nuclear Energy and Non-Proliferation Policy (Chairman: Prof. Kurosawa) was established in FY1999 with the funding from the Science and Technology Agency. The aim of the Study Group is to clearly understand nuclear proliferation issues and to lead international opinion. Nuclear non-proliferation is a matter of rather scanty interest compared to nuclear safety while both of them are important in promoting peaceful uses of nuclear energy in Japan. In FY2000, the Study Group held International Symposium 'Peaceful Uses of Nuclear Energy and Non-Proliferation: A Challenge of 21st Century' and in conjunction with this Symposium, dispatched 'The Statement on the Peaceful Uses of Nuclear Energy and Non-Proliferation, Action Plan towards 21st Century'. The Statement consists of five propositions: 1) Strengthening the global nuclear non-proliferation regime and making it universally applicable, 2) Negative legacy of cold war: rapid solution of problems, 3) Civil (non-military) plutonium, 4) Development of technology to strengthen the nuclear non-proliferation regime internationally, and 5) Strengthening Japanese initiative on nuclear non-proliferation policy. In this report, these activities will be explained in detail. (author)

  19. The view at nuclear renaissance via actual European and Slovak approach to nuclear education

    International Nuclear Information System (INIS)

    Slugen, Vladimir

    2010-01-01

    level nuclear education is very important also due to permanent increasing of nuclear experts age. To replace some of them are not easy. Beside this, the nuclear community needs some internal dynamic, which is connected to the young people activities. The problem is that the amount of students taking these lectures is low. Proper education at the university is a source of knowledge and attitudes for the whole life. Theoretical and practical experiences, professional approach and consistency are very important also from the safety culture point of view. University lectures and seminars are basically opened for public and this academic field can be made better use of in public relations. It is an investment mainly to young generation. During discussions with students, teachers can form their professional orientation according to their abilities and needs. Good teacher encourages also the growth of student and shapes his personality. Graduated students have to learn to take responsibility for their decisions and their academic level of education. Unfortunately, there was not real interest for educated nuclear engineers from industry till know. Although oral declaration how these graduates are necessary for NPP operators, in reality the nuclear industry does not attract young specialist. About 50 percent of graduates of specialized nuclear power engineering study at STU Bratislava went completely out from this area. Hopefully next years connected to the commissioning of Mochovce 3, 4 will change this approach. The actual status of education and training in nuclear power engineering is the real cause for concern. This education has to be based on the serious long term basis organised and guaranteed by high quality academic institution. It is a duty of educated and responsible people to highlight the necessity for a renaissance in nuclear education and training and recommend the following points: We must act now; Strategic Role of Governments; The Challenges of revitalising

  20. The view at nuclear renaissance via actual European and Slovak approach to nuclear education

    Energy Technology Data Exchange (ETDEWEB)

    Slugen, Vladimir [Slovak University of Technology, FEI STU, Ilkovicova 3, 812 19 Bratislava (Slovakia)

    2010-07-01

    tools. The high level nuclear education is very important also due to permanent increasing of nuclear experts age. To replace some of them are not easy. Beside this, the nuclear community needs some internal dynamic, which is connected to the young people activities. The problem is that the amount of students taking these lectures is low. Proper education at the university is a source of knowledge and attitudes for the whole life. Theoretical and practical experiences, professional approach and consistency are very important also from the safety culture point of view. University lectures and seminars are basically opened for public and this academic field can be made better use of in public relations. It is an investment mainly to young generation. During discussions with students, teachers can form their professional orientation according to their abilities and needs. Good teacher encourages also the growth of student and shapes his personality. Graduated students have to learn to take responsibility for their decisions and their academic level of education. Unfortunately, there was not real interest for educated nuclear engineers from industry till know. Although oral declaration how these graduates are necessary for NPP operators, in reality the nuclear industry does not attract young specialist. About 50 percent of graduates of specialized nuclear power engineering study at STU Bratislava went completely out from this area. Hopefully next years connected to the commissioning of Mochovce 3, 4 will change this approach. The actual status of education and training in nuclear power engineering is the real cause for concern. This education has to be based on the serious long term basis organised and guaranteed by high quality academic institution. It is a duty of educated and responsible people to highlight the necessity for a renaissance in nuclear education and training and recommend the following points: We must act now; Strategic Role of Governments; The Challenges

  1. Assessment of knowledge of general practitioners about nuclear medicine

    International Nuclear Information System (INIS)

    Zakavi, R.; Derakhshan, A.; Pourzadeh, Z.

    2002-01-01

    Nuclear medicine is an important department in most of scientific hospitals in the world. Rapid improvement in the filed of nuclear medicine needs continuing education of medical students. We tried to evaluate the knowledge of general practitioners in the flied of nuclear medicine, hoping that this study help mangers in accurate planning of teaching programs. Methods and materials: We prepared a questionnaire with 14 questions regarding applications of nuclear medicine techniques in different specialities of medicine. We selected questions as simple as possible with considering the most common techniques and best imaging modality in some disease. One question in nuclear cardiology, one in lung disease, two questions in thyroid therapy, another two in gastrointestinal system, two in genitourinary system and the last two in nuclear oncology. Also 4 questions were about general aspects of nuclear medicine. We have another 4 questions regarding the necessity of having a nuclear medicine subject during medical study, the best method of teaching of nuclear medicine and the preferred method of continuing education. Also age, sex, graduation date and university of education of all subjects were recorded. Results: One hundred (General practitioners) were studied. including, 58 male and 42 female with age range of 27-45 years did . About 60% of cases were 27-30 years old and 40 cases were older than 40. Seventy two cases were graduated in the last 5 years. Mashad University was the main university of education 52 cases with Tehran University (16 cases) and Tabriz University (6 cases) in the next ranks. Also 26 cases were graduated from other universities. From four questions in the field of general nuclear nedione 27% were correctly answered to all questions, 37% correctly answered two questions and 10% had correct answered only one question. No correct answer was noted in 26% . correct answer was noted in 80% the held of nuclear cardiology and in 72% in the field of lung

  2. The Holographic Electron Density Theorem, de-quantization, re-quantization, and nuclear charge space extrapolations of the Universal Molecule Model

    Science.gov (United States)

    Mezey, Paul G.

    2017-11-01

    Two strongly related theorems on non-degenerate ground state electron densities serve as the basis of "Molecular Informatics". The Hohenberg-Kohn theorem is a statement on global molecular information, ensuring that the complete electron density contains the complete molecular information. However, the Holographic Electron Density Theorem states more: the local information present in each and every positive volume density fragment is already complete: the information in the fragment is equivalent to the complete molecular information. In other words, the complete molecular information provided by the Hohenberg-Kohn Theorem is already provided, in full, by any positive volume, otherwise arbitrarily small electron density fragment. In this contribution some of the consequences of the Holographic Electron Density Theorem are discussed within the framework of the "Nuclear Charge Space" and the Universal Molecule Model. In the Nuclear Charge Space" the nuclear charges are regarded as continuous variables, and in the more general Universal Molecule Model some other quantized parameteres are also allowed to become "de-quantized and then re-quantized, leading to interrelations among real molecules through abstract molecules. Here the specific role of the Holographic Electron Density Theorem is discussed within the above context.

  3. Increasing reliability of nuclear energy equipment and at nuclear power plants

    International Nuclear Information System (INIS)

    Ochrana, L.

    1997-01-01

    The Institute of Nuclear Energy at the Technical University in Brno cooperates with nuclear power plants in increasing their reliability. The teaching programme is briefly described. The scientific research programme of the Department of Heat and Nuclear Power Energy Equipment in the field of reliability is based on a complex systematic concept securing a high level of reliability. In 1996 the Department prepared a study dealing with the evaluation of the maintenance system in a nuclear power plant. The proposed techniques make it possible to evaluate the reliability and maintenance characteristics of any individual component in a nuclear power plant, and to monitor, record and evaluate data at any given time intervals. (M.D.)

  4. The Texas-Edinburgh-Catania Silicon Array (TECSA): A detector for nuclear astrophysics and nuclear structure studies with rare isotope beams

    Energy Technology Data Exchange (ETDEWEB)

    Roeder, B.T., E-mail: broeder@comp.tamu.ed [Cyclotron Institute, Texas A and M University, College Station, TX 77843-3366 (United States); McCleskey, M.; Trache, L.; Alharbi, A.A.; Banu, A. [Cyclotron Institute, Texas A and M University, College Station, TX 77843-3366 (United States); Cherubini, S. [INFN-Laboratori Nazionali del Sud, Via S. Sofia 62, I95123 Catania (Italy); Dipartimento di Fisica e Astronomia, Universita di Catania, I95123 Catania (Italy); Davinson, T. [University of Edinburgh, Edinburgh EH9 3JZ (United Kingdom); Goldberg, V.Z. [Cyclotron Institute, Texas A and M University, College Station, TX 77843-3366 (United States); Gulino, M. [INFN-Laboratori Nazionali del Sud, Via S. Sofia 62, I95123 Catania (Italy); Dipartimento di Fisica e Astronomia, Universita di Catania, I95123 Catania (Italy); Pizzone, R.G. [INFN-Laboratori Nazionali del Sud, Via S. Sofia 62, I95123 Catania (Italy); Simmons, E. [Cyclotron Institute, Texas A and M University, College Station, TX 77843-3366 (United States); Sparta, R. [INFN-Laboratori Nazionali del Sud, Via S. Sofia 62, I95123 Catania (Italy); Spiridon, A. [Cyclotron Institute, Texas A and M University, College Station, TX 77843-3366 (United States); Spitaleri, C. [INFN-Laboratori Nazionali del Sud, Via S. Sofia 62, I95123 Catania (Italy); Dipartimento di Fisica e Astronomia, Universita di Catania, I95123 Catania (Italy); Wallace, J.P. [University of Edinburgh, Edinburgh EH9 3JZ (United Kingdom); Tribble, R.E. [Cyclotron Institute, Texas A and M University, College Station, TX 77843-3366 (United States); Woods, P.J. [University of Edinburgh, Edinburgh EH9 3JZ (United Kingdom)

    2011-04-01

    We present the details of the construction and commissioning of the Texas-Edinburgh-Catania Silicon Array (TECSA). TECSA is composed of up to 16 Micron Semiconductor Ltd. type-YY1 silicon strip detectors and associated electronics, which is designed for use in studies of nuclear astrophysics and nuclear structure with rare isotope beams. TECSA was assembled at the Texas A and M University Cyclotron Institute and will be housed there for the next few years. The array was commissioned in a recent experiment where the d({sup 14}C,p){sup 15}C reaction at 11.7 MeV/u was measured in inverse kinematics. The results of the measurement and a discussion of the future use of this array are presented.

  5. The Texas-Edinburgh-Catania Silicon Array (TECSA): A detector for nuclear astrophysics and nuclear structure studies with rare isotope beams

    International Nuclear Information System (INIS)

    Roeder, B.T.; McCleskey, M.; Trache, L.; Alharbi, A.A.; Banu, A.; Cherubini, S.; Davinson, T.; Goldberg, V.Z.; Gulino, M.; Pizzone, R.G.; Simmons, E.; Sparta, R.; Spiridon, A.; Spitaleri, C.; Wallace, J.P.; Tribble, R.E.; Woods, P.J.

    2011-01-01

    We present the details of the construction and commissioning of the Texas-Edinburgh-Catania Silicon Array (TECSA). TECSA is composed of up to 16 Micron Semiconductor Ltd. type-YY1 silicon strip detectors and associated electronics, which is designed for use in studies of nuclear astrophysics and nuclear structure with rare isotope beams. TECSA was assembled at the Texas A and M University Cyclotron Institute and will be housed there for the next few years. The array was commissioned in a recent experiment where the d( 14 C,p) 15 C reaction at 11.7 MeV/u was measured in inverse kinematics. The results of the measurement and a discussion of the future use of this array are presented.

  6. Nuclear chemistry progress report, Oregon State University. August 1, 1995--August 1, 1996

    International Nuclear Information System (INIS)

    Loveland, W.

    1996-01-01

    In this report, the authors summarize the highlights of the work done between August 1, 1995, and August 1, 1996. The work reported herein is the result of a collaborative effort between the nuclear chemists at Oregon State University and many other individuals and research groups. Each project discussed was the result of a joint effort of the groups, interchanging roles in data acquisition and analysis. The work described is part of a project involving the study of low energy ( 197 Au utilizing the MSU A1200 separator; synthesis of several new neutron-deficient nuclides in reactions of 20 MeV/nucleon 197 Au with heavy targets (Ti, Zr and Au); their participation in exclusive studies of heavy residue formation in the reaction of 35 MeV/nucleon 86 Kr with 197 Au in which it was found that the residues had large associated particle multiplicities indicating their formation in highly dissipative collisions, and that particle emission leading to residue formation relative to fission was favored as the dissipated energy increased

  7. Study of the Effect of Brand Equity Drivers on University Brand Resonance (Case Study:Amir Kabir university, Sharif university, Tarbiat Modares university, Tehran university)

    OpenAIRE

    mojtaba karimian; Hamid khodadad hosseini; Asqar moshabaki

    2015-01-01

    Branding in business of institutions of higher education is one of the issues that recently have been attracted by many researchers and therefore administrators must conduct in depth studies and take effective steps in order to devise a brand strategy so that they can make a strong brand for universities. Thus, this article investigated the quality of branding and presented suggestions to improve the brand resonance of university. The main objective of the study is to show that how brand reso...

  8. Historic images in nuclear medicine

    DEFF Research Database (Denmark)

    Hess, Søren; Høilund-Carlsen, Poul Flemming; Alavi, Abass

    2014-01-01

    In 1976, 2 major molecular imaging events coincidentally took place: Clinical Nuclear Medicine was first published in June, and in August researchers at the Hospital of the University of Pennsylvania created the first images in humans with F-FDG. FDG was initially developed as part of an evolution...... set in motion by fundamental research studies with positron-emitting tracers in the 1950s by Michel Ter-Pegossian and coworkers at the Washington University. Today, Clinical Nuclear Medicine is a valued scientific contributor to the molecular imaging community, and FDG PET is considered the backbone...

  9. University student's education after Fukushima nuclear leakage crisis

    International Nuclear Information System (INIS)

    Dou Daying; Gu Jianzhong; Zheng Jianying

    2012-01-01

    Fukushima nuclear leakage crisis after 3.11 earthquake and tsunami, the horrible INES-7 accident warns the colleagues all over the world. Own much to the experts' reports on public media, INES classification, basic knowledge of nuclear reactor, nuclear safety and protection had been discussed and brain-stormed in detail. (authors)

  10. Experience and advantages in implementation of educational program in network form at Department «Closed nuclear fuel cycle Technologies» of National Research Nuclear University «MEPhI»

    Science.gov (United States)

    Beygel‧, A. G.; Kutsenko, K. V.; Lavrukhin, A. A.; Magomedbekov, E. P.; Pershukov, V. A.; Sofronov, V. L.; Tyupina, E. A.; Zhiganov, A. N.

    2017-01-01

    The experience of implementation of the basic educational program of magistracy on direction «Nuclear Physics and Technologies» in a network form is presented. Examples of joint implementation of the educational process with employers organizations, other universities and intranet mobility of students are given.

  11. Evaluation of the Retrieval of Nuclear Science Document References Using the Universal Decimal Classification as the Indexing Language for a Computer-Based System

    Science.gov (United States)

    Atherton, Pauline; And Others

    A single issue of Nuclear Science Abstracts, containing about 2,300 abstracts, was indexed by Universal Decimal Classification (UDC) using the Special Subject Edition of UDC for Nuclear Science and Technology. The descriptive cataloging and UDC-indexing records formed a computer-stored data base. A systematic random sample of 500 additional…

  12. Preservation of competence and cooperation with universities. Initiatives of German nuclear power plant operators to further know-how and competence preservation

    International Nuclear Information System (INIS)

    Seidel, Andre; Mohrbach, Ludger

    2009-01-01

    Nuclear power plants and nuclear technology offer graduates of technical and scientific university disciplines ambitious challenges in an attractive working environment. Irrespective of the politically motivated opt-out of the peaceful use of nuclear power in Germany, nuclear industry will continue to need motivated and committed young scientists and engineers for the next few decades. They contribute to the success of nuclear power plant operators, manufacturers, and consulting institutions. German nuclear power plant operators promote institutions of learning and research focusing on nuclear topics by means of a coordinated initiative. In this way, they contribute to preserving competence, attracting young scientists and engineers, and expanding research and development in Germany beyond the confines of specific topics. VGB PowerTech e.V. (VGB) supports operators in organizing these activities also by establishing subject-related working parties as a platform for exchanging information and harmonizing specific measures. (orig.)

  13. Nuclear science teaching

    International Nuclear Information System (INIS)

    1968-01-01

    A Panel of Experts on Nuclear Science Teaching met in Bangkok from 15 to 23 July 1968 to review the present status of an need for teaching of topics related to nuclear science at the secondary and early university level including teacher training, and to suggest appropriate ways of introducing these topics into the science curricula. This report contains the contributions of the members of the Panel, together with the general conclusions and recommendations for the development of school and early university curricula and training programs, for the improvement of teaching materials and for the safest possible handing of radioactive materials in school and university laboratories. It is hoped that the report will be of use to all nuclear scientists and science educators concerned with modernizing their science courses by introducing suitable topics and experiments in nuclear science

  14. Nuclear Chemistry Institute, Mainz University. Annual Report 1995

    International Nuclear Information System (INIS)

    Denschlag, H.O.

    1996-03-01

    The annual report of the Institut fuer Kernchemie addresses inter alia three main research activities. The first belongs to the area of basic research, covering studies in the fields of nuclear fission, chemistry of the super-heavy elements and of heavy-ion reactions extending from the Coulomb barrier to relativistic energies, and nuclear astrophysics in connection with the ''r process''. By means of laser technology, high-precision data could be measured of the ionization energies of berkelium and californium. Studies of atomic clusters in the vacuum of an ionization trap revealed interesting aspects. The second major activity was devoted to the analysis of environmental media, applying inter alia neutron activation analysis and resonance ionization mass spectroscopy (RIMS). The third activity resulted in the development of novel processes, or the enhancement of existing processes or methods, for applications in basic research work and in environmental analytics. Another item of interest is the summarizing report on the operation of the TRIGA research reactor. (orig./SR) [de

  15. North Carolina State University Nuclear Structure Research at the Triangle Universities Nuclear Laboratory. Progress report, April 1, 1978--March 31, 1979

    International Nuclear Information System (INIS)

    1978-01-01

    Research on neutron fission physics, high resolution studies, gamma ray spectroscopy, radiative capture reactions, atomic physics, heavy ion physics, accelerator development and instrumentation, computer related development and instrumentation, computer-related development, and nuclear theory and phenomenology is summarized. A list of publications is included

  16. Progress of Nuclear Data Measurement in China during 2013

    International Nuclear Information System (INIS)

    Zhigang, Ge; Xichao, Ruan

    2014-01-01

    The China nuclear data activities consists of nuclear data measurement and related measurement methods development, data evaluation and model study, data library establishment and library management, nuclear data benchmark and validation. The main activities are being carried out at China Nuclear Data Center (CNDC), China Institute of Atomic Energy (CIAE) and China Nuclear Data Coordination Network (CNDCN). More than 10 institutions and universities are involved in CNDCN. The facilities used for the nuclear data measurements and studies include the HI-13 tandem accelerator, 600 kV-Cockcroft-Walton accelerator, 5SDH-2 2x1.7 MV tandem accelerator and the China Advanced Research Reactor (CARR) at CIAE, The 4.5-MV Van de Graaff accelerator at Peking University and 300 kV -Cockcroft-Walton accelerator at Lanzhou university. This document presents the recent Progress of Nuclear Data Measurement in China: - the fission yields of 235 U at 3 MeV neutrons measured at CIAE; - the nuclear data benchmark system improvement at CIAE. With the new nuclear data benchmark system, the integral measurements were carried out for Be, Ga, natural iron and liquid Pb-Bi alloy. - The measurements of the 57 Fe(n,α) 54 Cr and 63 Cu(n,α) 60 Co reactions at neutron energies of 5.0, 5.5, 6.0 and 6.5 MeV at Peking University. Finally, the document describes the new facilities for Nuclear Data Measurement: the Back-n white neutron source of the China Spallation Neutron Source (CSNS), the neutron facility of Shanghai Institute of Applied Physics (SINAP-NF), and the multipurpose Cooling Storage Ring system, a new accelerator project planned at the Heavy Ion Research Facility in Lanzhou (HIRFL-CRS)

  17. New 'Master of Science in Nuclear Engineering' study course launched. Interview with Professor Horst-Michael Prasser; Neuer Studiengang 'Master of Science in Nuclear Engineering' lanciert. Interview mit Professor Horst-Michael Prasser

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2008-02-15

    In the fall of 2008, the Zurich Technical University (ETH) and the Lausanne EPF will launch their joint master course of studies in Nuclear Engineering. Horst-Michael Prasser, Professor for Nuclear Energy Systems at Zurich ETH, is responsible for designing the course. In this interview he comments, among other things, on fundamental questions which may determine a future student's choice of a course of studies, and on the special opportunities offered by the new Nuclear Engineering course. Other subjects addressed include the renaissance of nuclear power and the future prospects of safety research and new reactor developments. (orig.)

  18. 4. Mexican School of Nuclear Physics. Papers

    International Nuclear Information System (INIS)

    Aguilera, E.F.; Hernandez, E.; Hirsch, J.

    2005-01-01

    The IV Mexican School of Nuclear Physics, organized by the Nuclear Physics Division of the Mexican Physics Society, takes place from June 27 to July 8, 2005 in the Nuclear Sciences and of Physics Institutes of the UNAM and in the National Institute of Nuclear Research (ININ). This school, as the previous ones, it was guided the students of the last semesters of the career of Physics, of the Post grade of the same specialty, and of other adjacent careers. To give the students a current vision of some of the topics more important of the nuclear physics and their relationship with other near areas of the physics it was the objective of this School. The School covered a wide range of theoretical and experimental courses, imparted in its majority by Mexican expert professor-investigators in the matter to who we thank them the one effort and the quality of their presentations, reflected in the content of this document. The answer of the students to the convocation was excellent, 31 students presented application for admission coming from the following institutions: Meritorious Autonomous University de Puebla, National Institute of Nuclear Research, Technological Institute of Orizaba, National Polytechnic Institute, The University of Texas at Brownsville, Autonomous University of the State de Mexico, Autonomous University of the State of Morelos, Autonomous University of Baja California, Autonomous University of San Luis Potosi, University of Guadalajara, University of Guanajuato, National Autonomous University of Mexico, University of Texas, at El Paso and University Veracruzana. They were admitted to the 22 students with the higher averages qualifications of the list of applicants. The organizers of this school thank the financial support granted by the following sponsor institutions: Nuclear Sciences Institute, UNAM, Physics Institute of UNAM, Coordination of the Scientific Research UNAM, National Institute of Nuclear Research, Nuclear Physics Division of the Mexican

  19. On modern needs in nuclear physics and nuclear safety education

    International Nuclear Information System (INIS)

    Tom Loennroth

    2005-01-01

    The teaching of nuclear physics has a long history, particularly after the second world war, and the present author has 20 years of experience of teaching in that field. The research in nuclear physics has made major advances over the years, and the experiments become increasingly sophisticated. However, very often the university literature lags the development, as is, indeed, the case in all physics education. As a remedy of to-day, the didactic aspects are emphasized, especially at a basic level, while the curriculum content is. still left without upgrade. A standard textbook in basic nuclear physics is, while represent more modern theoretical treatises. The latter two, as their headings indicate, do not treat experimental methods, whereas has a presentation that illustrates methods and results with figures and references. However, they are from the 60 s and 70 s, they are old, and therefore cannot attract modern students of today. Consequently, one has the inevitable feeling that modern university teaching in nuclear physics, and the related area of nuclear safety, must be upgraded. A recent report in Finland, concluded that there is not sufficient nuclear safety education, but that on the other hand, it does not necessarily have to be connected with nuclear physics education, although this is recommendable. Further, the present Finnish university law states that 'The mission of the university shall be to promote free research and scientific and artistic education, to provide higher education based on research, and. to educate students to serve their country and humanity. In carrying out their mission, the universities shall interact with the surrounding society and promote the societal impact o research finding and artistic activities'. This mismatch between the curricula and the required 'societal impact' will be discussed, and examples of implications, usually not implemented, will be given. For nuclear physics specifically, the (lack of) connection between

  20. Business challenges in the universities. Panel Discussion

    International Nuclear Information System (INIS)

    Klein, Andrew; Lee, John C.; Peterson, Per; Simard, Ron; Gates, W. Gary

    2001-01-01

    Full text of publication follows: University nuclear science and engineering programs in the United States currently operate in a business climate that involves serious and dramatic change. The number of degree-granting nuclear engineering programs within the nation's universities has declined over the past two decades to approximately 25. More than two-thirds of the faculty in these programs are 45 yr or older. Recruiting and retaining the best faculty and students continue to be vital to the continued success and existence of these programs. Many universities are also experiencing difficulty in finding support for their research and training reactors. There are currently only 28 university research reactors remaining across the United States. Many of these reactors were initially established with 30- to 40-yr operating licenses and will require re-licensing in the next several years. Combined, the university nuclear engineering educational programs and the university research reactors form a fundamental and vital component in a broad spectrum of our national research and education infrastructure and are critical to many national priorities such as energy, health care, education, environment, and technology transfer. Speakers have been selected from various universities, the Nuclear Energy Institute, and industry to address problems related to workforce forecasting, student recruiting and retention, research reactor operation and financing, academic accreditation, and other current issues relevant to nuclear engineering education and research. (authors)

  1. Report of the research results with University of Tokyo, Nuclear Engineering Research laboratory's Facilities in fiscal 1992

    International Nuclear Information System (INIS)

    1993-01-01

    This publication summarizes the results of the joint utilization of the research 'Yayoi' and the electron beam accelerator in the Nuclear Engineering Research Laboratory, University of Tokyo, in the fiscal year 1992. The Yayoi was operated smoothly through the year, and the number of research themes, for which the reactor Yayoi was jointly utilized and the related themes reached 23 cases. The research themes of the linac count up to 17, after its reconstruction to be twin-linac. In this publication, in addition to the utilization reports, also the 16 reports of Yayoi Study Meetings held in fiscal year 1992 are collected. (J.P.N.)

  2. A study on the nuclear foreign policy

    International Nuclear Information System (INIS)

    Oh, Keun Bae; Choi, Y. M.; Lee, D. J.; Lee, K. S.; Lee, B. W.; Ko, H. S.

    1997-12-01

    The objective of this study is to analyze and foresee the international trends related to nuclear activities, especially nuclear non-proliferation activities among others, and to suggest desirable policy direction so as to mitigate hurdles that may hinder the expansion of utilization and development of nuclear energy in Korea. This study approaches the trends of international nuclear arena in five aspects as follows. First, this study analyzes the trends of the global multilateral nuclear non-proliferation regime in Chapter II, which includes the NPT, the IAEA safeguards system, the international export control regime, the CTBT, and the treaties on nuclear weapon-free zone. Second, this study analyzes the trends of various international nuclear organizations in Chapter III, which include IAEA, OECD/NEA, and CTBTO. Third, this study reviews and analyzes regional situations in the northeast Asia surrounding Korea in Chapter IV, inter alia, pending concerns over the North Korean nuclear activities and proposed Northeast Asian nuclear cooperatively bodies such as ASIATOM, etc. Fourth, in Chapter V, this study analyzes issues concerning bilateral nuclear relationship. Especially this study analyzes nuclear cooperating agreements in general, and suggests a model agreement for the government to use when negotiating nuclear cooperation agreements with other countries. Furthermore, this study analyzes the trends of bilateral cooperation with the U.S., Canada, and Australia focusing on the standing bilateral nuclear committees. Fifth, Chapter VI especially deals with the framework of the U. S.'s nuclear non-proliferation policy, focusing on the issues such as the disposition of weapons-usable excess plutonium and the nuclear cooperation with China. (author). 44 refs., 15 tabs., 2 figs

  3. Experiences of the Nuclear Medicine Service at the University Hospital Surgical Clinic Dr. Salvador Allende 2013-2015

    International Nuclear Information System (INIS)

    Suárez Iznaga, Rodolfo; Pozo Almaguer, Armando del; Gil Valdés, Doris; Fleitas Anaya, Ricardo

    2016-01-01

    The Nuclear Medicine Service of the University Hospital Surgical Clinic D r. Salvador Allende , located in the municipality of Cerro, began the provision of scintigraphic services in May 2013. A retrospective descriptive and analytical study was carried out from May 2013 to December 2015 from the archived scintigraphic reports. The objective of the study was to present the results of the Nuclear Medicine Service during this period. The data were reflected in percentages, using tables and graphs. To determine the existence of a statistically significant relationship between the variables were used: Chi square test with a level of significance α = 0.05 being positive if p <0.05. Until December 2015, 798 cases had been reported, which included Bone scans (88.34%), renal (10.65%) and thyroid scans for follow-up of cancer patients (1%); (76.82%) and the female sex was the most attended with 446 (55.89%) patients, there were no statistically significant differences between the scintigraphic studies and the sex of the patients. There were statistically significant differences between the scintigraphic studies and the age of the patients. The most frequent diagnoses were: bone scintigraphy, metastasis in 86.52% of patients, renal cyst scintigraphy (48.78%) and dynamic scintigraphy of the kidneys with obstructive functional involvement (63.64%) It was recommended to create the necessary technical and human resources conditions to be able to introduce other scintigraphy studies in the Nuclear Medicine Service such as: breast scintigraphy and lymph node scans, high demand in the medical center. In addition, to use scientifically the criteria of approval of patients in the consultation of classification of the service, with the aim of achieving a better selection of the applicants for scintigraphic studies, which would favor a more rational and efficient use of these studies.

  4. Nuclear structure data from in beam and decay studies around 254No

    International Nuclear Information System (INIS)

    Jones, P.

    2005-01-01

    The study of trans-fermium nuclei, the heaviest nuclei for which in-beam spectroscopy studies are possible has provided over recent years a rich tapestry of data. These have enhanced the mean field theories important for the prediction of nuclear properties at the limits of the nuclear chart. Developments in spectrometer and data-acquisition techniques at the Department of Physics, University of Jyvaskyla have further enhanced the studies. Utilising the RITU gas-filled spectrometer, the GREAT focal plane spectrometer, the identification recoils and their subsequent decay modes (alpha-, fission-, and gamma-ray decay) have been studied. The JUROGAM gamma-ray array of 43 Compton-suppressed HPGe detectors has been employed in the in-beam spectroscopy of the trans-fermium region. In-beam gamma-ray spectroscopy studies of trans-fermium nuclei 253 No, 254 No, 250 Fm, 251 Md, 253 No and 255 Lr have been performed, as well as detailed focal plane spectroscopy. Selected highlights of the work will be presented

  5. Nuclear forensics case studies

    International Nuclear Information System (INIS)

    Fedchenko, Vitaly

    2016-01-01

    The objective of this presentation is to share three case studies from the Institute of Transuranium Elements (ITU) which describe the application of nuclear forensics to events where nuclear and other radioactive material was found to be out of regulatory control

  6. Strategic field No.5 'the origin of matter and the universe'. Toward interdisciplinary researches in particle, nuclear and astrophysics

    International Nuclear Information System (INIS)

    Aoki, Shinya

    2011-01-01

    Four main research subjects in the strategic field No. 5 'The origin of matter and the universe', planned to be investigated on 'Kei' super computer, are explained in detail, by focusing on interdisciplinary aspect of researches among particle, nuclear and astrophysics. (author)

  7. A nuclear engineering curriculum for Asia-Pacific

    International Nuclear Information System (INIS)

    Bereznai, G.; Sumitra, T.; Chankow, N.; Chanyotha, S.

    1996-01-01

    This paper describes the nuclear engineering education and professional development curricula that are being developed at Chulalongkorn University in Bangkok, Thailand. The program was initiated in response to the Thai Government's policy to keep the option of nuclear electric generation available as the country responds to the rapid growth of industrialization and increased standard of living, and the accompanying increase in electricity consumption. The program has three main thrusts: university education, professional development, and public education. Although this paper concentrates on the university curriculum, it is shown how the university program is integrated with the development of industry professionals. The Nuclear Engineering Curricula being developed and implemented at Chulalongkorn University will offer programs at the Bachelor, Master and Doctorate levels. The curricula are designed to provide comprehensive education and training for engineers and scientists planning careers in the peaceful use of nuclear energy, with emphasis on the applications to industry and for nuclear electric generation. The Project of Human Resource Development in the Nuclear Engineering field is the result of a cooperative effort between agencies of the Thai and Canadian Governments, including the Electricity Generating Authority of Thailand, the Office of Atomic Energy for Peace, Chulalongkorn University and several other Thai Universities; Atomic Energy of Canada Limited, the Canadian International Development Agency, several Canadian Universities as well as members of the Canadian Nuclear Industry. (author)

  8. Theoretical nuclear reaction and structure studies using hyperons and photons

    International Nuclear Information System (INIS)

    Cotanch, S.R.

    1991-01-01

    This report details research progress and results obtained during the 12 month period from January 1991 through 31 December 1991. The research project, entitled ''Theoretical Nuclear Reaction and Structure Studies Using Hyperons and Photons,'' is supported by grant DE-FG05-88ER40461 between North Carolina State University and the United States Department of Energy. In compliance with grant requirements the Principal Investigator, Professor Stephen R. Cotanch, has conducted a research program addressing theoretical investigations of reactions involving hyperons and photons. The new, significant research results are briefly summarized in the following sections

  9. Nuclear energy research in Germany 2009

    International Nuclear Information System (INIS)

    2010-01-01

    Research and development (R and D) in the fields of nuclear reactor safety and safety of nuclear waste and spent fuel management in Germany are carried out at research centers and, in addition, some 32 universities. In addition, industrial research is conducted by plant vendors, and research in plant and operational safety of power plants in operation is organized by operators and by organizations of technical and scientific research and expert consultant organizations. This summary report presents nuclear energy research conducted at research centers and universities in Germany in 2009, including examples of research projects and descriptions of the situation of research and teaching. These are the organizations covered: - Hermann von Helmholtz Association of German Research Centers, - Karlsruhe Institute of Technology (KIT, responsibility of the former Karlsruhe Research Center), - Juelich Research Center (FZJ), - Nuclear Technology Competence Center East, - Dresden-Rossendorf Research Center (FZD), - Rossendorf Nuclear Process Technology and Analysis Association (VKTA), - Dresden Technical University, - Zittau/Goerlitz University of Applied Science, - Institute of Nuclear Energy and Energy Systems (IKE) of the University of Stuttgart. (orig.)

  10. Experience and advantages in implementation of educational program in network form at Department «Closed nuclear fuel cycle Technologies» of National Research Nuclear University «MEPhI»

    International Nuclear Information System (INIS)

    Beygel', A G; Kutsenko, K V; Lavrukhin, A A; Pershukov, V A; Sofronov, V L; Tyupina, E A; Zhiganov, A N; Magomedbekov, E P

    2017-01-01

    The experience of implementation of the basic educational program of magistracy on direction «Nuclear Physics and Technologies» in a network form is presented. Examples of joint implementation of the educational process with employers organizations, other universities and intranet mobility of students are given. (paper)

  11. Human Resources Development for Jordan’s Nuclear Energy Programme

    International Nuclear Information System (INIS)

    Malkawi, Salaheddin; Amawi, Dala’

    2014-01-01

    Jordan's HRD strategy: • Utilize Jordan’s academic infrastructure: – 25 Universities (10 public & 15 private); – 35 Community Colleges (15 public & 20 private). • Build on existing programmes and establish new ones to support Nuclear Energy Programme. • Nuclear Education in Jordan: – B. Sc. Nuclear Engineering at Jordan University of Science & Technology (JUST); – M. Sc. Nuclear Physics at University of Jordan, Yarmouk University and Al-Balqa Applied University. • Scholarships for M. Sc. and Ph. D in Nuclear Engineering and Nuclear Science from Universities outside Jordan: – United States, Russia, France, Japan, China, Korea. Utilization of JSA and JRTR; • Vendor supplied training; • Support through Nuclear Cooperation Agreements; • IAEA Technical Cooperation; • Development of a Jordan-Specific Qualification and Certification Programmes; • Specialized Training in International Codes & Standards: – Transition to JNRC Developed/Adopted Standards, Codes, Regulations

  12. Losing nuclear expertise - A safety concern

    International Nuclear Information System (INIS)

    Ziakova, M.

    2002-01-01

    Full text: Since the mid of eighties several important changes in human beings behaviour, which influence nuclear field, can be observed - the loss of interest in studying technical disciplines (namely nuclear), strong pressure of environmental movements, stagnation of electricity consumption and deregulation of electric markets. All these factors create conditions which are leading to the decrease of job positions related to the nuclear field connected particularly with research, design and engineering. Loss of interest in studying nuclear disciplines together with the decrease of number of job positions has led to the declining of university enrolments, closing of university departments and research reactors. In this manner just a very small number of appropriately educated new experts are brought In the same moment the additional internal factor - the relative ageing of the human workforce on both sites operators of nuclear facilities and research and engineering organisations can be observed. All these factors, if not addressed properly, could lead to the loss of nuclear expertise and the loss of nuclear expertise represents the direct thread to the nuclear safety. The latest studies have shown that at present NPPs cannot be replaced by other kinds of electric sources and in no case by renewable ones in an efficient manner. Therefore it is necessary to carefully manage knowledge gathered in the nuclear field during the years and to keep on the nuclear safety research, education and training to ensure and upgrade safe and reliable operation of existing and future nuclear facilities. This is responsibility of both the governments of the states using nuclear applications and owners of nuclear facilities. (author)

  13. Theoretical studies of multistep processes, isospin effects in nuclear scattering, and meson and baryon interactions in nuclear physics: [Annual] progress report, May 1, 1986 to April 30, 1987

    International Nuclear Information System (INIS)

    Madsen, V.A.; Landau, R.H.

    1987-01-01

    A progress report on a grant from the DOE supporting theoretical studies in nuclear physics at Oregon State University in 1986, 1987 is presented. The research was led by Professors Landau and Madsen and carried out in collaboration with graduate students in Corvallis and scientists at LLNL-Livermore, KFA-Juelich, Purdue University, Florida State University and TRIUMF. The studies included meson exchange current effects deduced from spin observables in p- 3 He scattering, coupled bound and continuum eigenstates in momentum space for kaons and antiprotons, and charge symmetry violation in π scattering from trinucleons. Additional studies included microscopic optical potential calculations, multiple step processes, and differences in neutron and proton multipole matrix elements and transition densities in low lying collective states and in giant resonances

  14. Nuclear Threats and Security

    Directory of Open Access Journals (Sweden)

    Garry Jacobs

    2012-10-01

    Full Text Available This article presents highlights and insights from the International Conference on “Nuclear Threats and Security” organized by the World Academy of Art and Science in association with the European Leadership Network and the Dag Hammarskjöld University College of International Relations and Diplomacy and sponsored by NATO at the Inter-University Centre, Dubrovnik on September 14-16, 2012. The conference examined important issues related to nuclear non-proliferation and disarmament, the legality of nuclear weapons and their use, illicit trade in nuclear materials, the dangers of nuclear terrorism, nuclear- and cyber-security. Papers and video recordings of the major presentations and session summaries can be found here.

  15. Report of the research results with University of Tokyo, Nuclear Engineering Research Laboratory's Facilities in fiscal 1983

    International Nuclear Information System (INIS)

    1984-01-01

    Much achievement was obtained also in fiscal 1983 by the common utilization of the nuclear reactor ''Yayoi'' and the linear accelerator in the Nuclear Engineering Research Laboratory, University of Tokyo. These results were summarized, and this report is published. In the utilization of the reactor ''Yayoi'', the period of operation and the maximum output were limited very much, because long cooling period is necessary to prepare for the repair of fuel cladding in the next year. Also foreign research students commonly utilized the reactor ''Yayoi''. The common utilization of the linear accelerator was begun six years ago, and now it is carried out widely and smoothly. The total number of those who commonly utilized the facilities reached 3,179. The summaries of the results of 5 on-pile researches, 17 off-pile researches, and 16 researches using the linear accelerator are collected. The committee meetings and study meetings held in fiscal 1983 are listed. The names of the members of various committees and the names of those in charge of various experiments are given. (Kako, I.)

  16. A study on nuclear technology policy

    International Nuclear Information System (INIS)

    Kim, H. J.; Oh, K. B.; Lee, K. S.; Chung, W. S.; Lee, T. J.; Yun, S. W.; Jeong, I.

    2004-01-01

    This study was conducted as a part of institutional activities of KAERI, and the objective of the study is to survey and analyze the change of international environment in nuclear use and research and development environment, and to propose systematic alternatives on technology policy for efficiency and effectiveness of research and development through national R and D program while timely responding to the environmental change in local and global sense. Acknowledging the importance of the relationship between the external environment and the national nuclear R and D strategic planning, this study focused on the two major subjects: (1) the international environmental and technological change attached to the development of nuclear power; (2) the direction and strategy of nuclear R and D to improve effectiveness through national R and D programs as role of electricity in the future society, strategic environment of nuclear use and R and D in the future society, energy environment and nuclear technology development scenario in the future, strategic study on future vision of KAERI and technological road-mapping of national nuclear R and D for enhancing competitiveness

  17. A study on nuclear technology policy

    International Nuclear Information System (INIS)

    Yang, M. H.; Kim, H. J.; Chung, W. S.; Yun, S. W.; Kim, H. S.

    2001-01-01

    This study was carried out as a part of institutional activities of KAERI. Major research area are as follows; Future directions and effects for national nuclear R and D to be resulted from restructuring of electricity industry are studied. Comparative study was carried out between nuclear energy and other energy sources from the point of views of environmental effects by introducing life cycle assessment(LCA) method. Japanese trends of reestablishment of nuclear policy such as restructuring of nuclear administration system and long-term plan of development and use of nuclear energy are also investigated, and Russian nuclear development program and Germany trends for phase-out of nuclear electricity generation are also investigated. And trends of the demand and supply of energy in eastern asian countries in from the point of view of energy security and tension in the south china sea are analyzed and investigation of policy trends of Vietnam and Egypt for the development and use of nuclear energy for the promotion of nuclear cooperation with these countries are also carried out. Due to the lack of energy resources and high dependence of imported energy, higher priority should be placed on the use of localized energy supply technology such as nuclear power. In this connection, technological development should be strengthened positively in order to improve economy and safety of nuclear energy and proliferation resistance of nuclear fuel cycle and wide ranged use of radiation and radioisotopes and should be reflected in re-establishment of national comprehensive promotion plan of nuclear energy in progress

  18. A study on nuclear technology policy

    Energy Technology Data Exchange (ETDEWEB)

    Yang, M H; Kim, H J; Chung, W S; Yun, S W; Kim, H S

    2001-01-01

    This study was carried out as a part of institutional activities of KAERI. Major research area are as follows; Future directions and effects for national nuclear R and D to be resulted from restructuring of electricity industry are studied. Comparative study was carried out between nuclear energy and other energy sources from the point of views of environmental effects by introducing life cycle assessment(LCA) method. Japanese trends of reestablishment of nuclear policy such as restructuring of nuclear administration system and long-term plan of development and use of nuclear energy are also investigated, and Russian nuclear development program and Germany trends for phase-out of nuclear electricity generation are also investigated. And trends of the demand and supply of energy in eastern asian countries in from the point of view of energy security and tension in the south china sea are analyzed and investigation of policy trends of Vietnam and Egypt for the development and use of nuclear energy for the promotion of nuclear cooperation with these countries are also carried out. Due to the lack of energy resources and high dependence of imported energy, higher priority should be placed on the use of localized energy supply technology such as nuclear power. In this connection, technological development should be strengthened positively in order to improve economy and safety of nuclear energy and proliferation resistance of nuclear fuel cycle and wide ranged use of radiation and radioisotopes and should be reflected in re-establishment of national comprehensive promotion plan of nuclear energy in progress.

  19. Professional practices: a short introduction of national nuclear activities to university students

    International Nuclear Information System (INIS)

    Martin, Hugo R.

    2005-01-01

    This paper is a continuation of precedents annual works presented in AATN Meetings, informing about activities of Institutional Affairs Sector of Central Region delegation of National Atomic Energy Commission (CNEA-RC). Regular activities in Cordoba city, have been carried out during half a century in urban zone of Cordoba City. Activities show a long misunderstanding and confrontations with the provincial and municipal authorities, and with the neighbors and environmentalist antinuclear organizations. The experience indicates that the people demands for the protection of health or environment, and sometimes the claiming for closing some facilities, have been directly related with what people really know about the activities in the site. The common denominator that one observes in the conflicts of the past, is the high degree of ignorance on the part of the citizenship on the activities that are carried out in the place. This is valid for the neighbors, the competent authorities and even for Cordoba's university, scientific and technical qualified community. Starting from the recognition of the responsibility that has the institution of informing the population appropriately on what is carried out in their facilities, the CNEA-RC had developed an institutional process of Professional Practices of university students which is described in this paper. The experience of two years, has shown that results are positive because the university community (teachers, students and researchers) knows now the real status of national nuclear activities. (author) [es

  20. Measurement of nuclear cross sections using radioactive beams; Medicion de secciones eficaces nucleares usando haces radiactivos

    Energy Technology Data Exchange (ETDEWEB)

    Lizcano, D.; Aguilera, E.F.; Martinez Q, E. [Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    2000-07-01

    One of the main applications of the production and use of nuclear radioactive beams is the measurement of nuclear cross sections. In this work is used a {sup 6} He nuclear radioactive beam ({beta} emitting with half life 806.7 ms) for the study of the reaction {sup 6} + {sup 209} Bi which could have several products. This investigation was realized in collaboration with the personnel of the Nuclear Structure laboratory at the University of Notre Dame (U.S.A.) and the National institute of Nuclear Research and CONACyT by Mexico. (Author)

  1. Nuclear safety based on nuclear knowledge - A Romanian approach

    International Nuclear Information System (INIS)

    Valeca, S.C.; Popescu, D.

    2007-01-01

    elaboration of a National Nuclear Programme (PNN), strategically document approved by the Governmental Decision no. 1259/2002 which contains the fundamental objectives and the derivates objectives and also the associated strategies for accomplishing these objectives. The strategic document was published in the Romanian Official Journal in order to be near at hand for the public and increase the debate and acceptance of the nuclear field. The National Nuclear Programme contains an associated plan of actions with responsibilities and terms of achievement for the activities which fall into the responsibility of public central administration institutions representing 'the owner', into the responsibility of the national companies representing 'the utility' and into the responsibility of nuclear units themselves representing 'the operator'. All these above mentioned activities need a source of labour, human resources, qualified and specialised both on the research and development, design and exploitation component and the execution equipment, construction - assembling, exploitation and maintenance component. The qualification and the specialization of these types of human resources enforced the identification and the definition of associated programmes for the qualification of the staff starting from high schools and universities. Related to this education programme, the same strategic document nominates in an explicit manner 4 Romanian universities which have to take into consideration educational programmes in the nuclear field: Polytechnic University - Bucharest; Pitesti University; Faculty of Physics within University of Bucharest; Ovidiu University - Constanta. Within the education framework of these universities are taking place lectures, seminars, workshops and also master and doctorate courses. These types of qualifications were selected based on 3 primordial criteria: The competence of the teaching staff; The geographical location nearside nuclear units/important Romanian

  2. A californium-252 source for radiobiological studies at Hiroshima University

    International Nuclear Information System (INIS)

    Kato, Kazuo; Takeoka, Seiji; Kuroda, Tokue; Tsujimura, Tomotaka; Kawami, Masaharu; Hoshi, Masaharu; Sawada, Shozo

    1987-01-01

    A 1.93 Ci (3.6 mg) californium-252 source was installed in the radiation facility of the Research Institute for Nuclear Medicine and Biology, Hiroshima University. This source produces fission neutrons (8.7 x 10 9 n/s at the time of its installation), which are similar to neutron spectrum of the atomic bombs. It is useful for studying biological effects of fission neutrons and neutron dosimetry. An apparatus was dosigned to accomodate this source and to apply it to such studies. It has resulted in profitable fission neutron exposures, while suppressing scattered neutrons and secondary gamma rays. This apparatus incorporates many safety systems, including one which interlocks with all of doors and an elevator serving the exposure room, so as to prevent accidents involving users. (author)

  3. Nuclear physics accelerator facilities

    International Nuclear Information System (INIS)

    1988-12-01

    This paper describes many of the nuclear physics heavy-ion accelerator facilities in the US and the research programs being conducted. The accelerators described are: Argonne National Laboratory--ATLAS; Brookhaven National Laboratory--Tandem/AGS Heavy Ion Facility; Brookhaven National Laboratory--Relativistic Heavy Ion Collider (RHIC) (Proposed); Continuous Electron Beam Accelerator Facility; Lawrence Berkeley Laboratory--Bevalac; Lawrence Berkeley Laboratory--88-Inch Cyclotron; Los Alamos National Laboratory--Clinton P. Anderson Meson Physics Facility (LAMPF); Massachusetts Institute of Technology--Bates Linear Accelerator Center; Oak Ridge National Laboratory--Holifield Heavy Ion Research Facility; Oak Ridge National Laboratory--Oak Ridge Electron Linear Accelerator; Stanford Linear Accelerator Center--Nuclear Physics Injector; Texas AandM University--Texas AandM Cyclotron; Triangle Universities Nuclear Laboratory (TUNL); University of Washington--Tandem/Superconducting Booster; and Yale University--Tandem Van de Graaff

  4. A Study on Nuclear Technology Policy

    International Nuclear Information System (INIS)

    Oh, K. B.; Chung, W. S.; Lee, T. J.; Yun, S. W.; Jeong, Ik; Lee, J. H.

    2006-02-01

    This study was conducted as a part of institutional activities of KAERI, and the objective of the study is to survey and analyze the change of international environment in nuclear use and research and development environment, and to propose systematic alternatives on technology policy for efficiency and effectiveness of research and development through national R and D program while timely responding to the environmental change in local and global sense. In the investigation and analysis of international environmental and technological change 1. Viability of Nuclear Renaissance 2. Recent of Nuclear Technology Policy in Japan 3. Collaboration for Advanced Nuclear Technologies in GIF, INPRO and INERI 4. Nuclear Energy Utilization and Development in Europe. In the evaluation of nuclear technology and sustainable development from the point of views of environmental change 5. External Cost of Environmental Impact in Electric Power Sector 6. Nuclear Technology Development Direction Considering Changes of the Science and Technology Policy Environment 7. Nuclear Energy Development Strategy for a Sustainable National Energy Supply

  5. A Study on Nuclear Technology Policy

    Energy Technology Data Exchange (ETDEWEB)

    Oh, K B; Chung, W S; Lee, T J; Yun, S W; Jeong, Ik; Lee, J H

    2006-02-15

    This study was conducted as a part of institutional activities of KAERI, and the objective of the study is to survey and analyze the change of international environment in nuclear use and research and development environment, and to propose systematic alternatives on technology policy for efficiency and effectiveness of research and development through national R and D program while timely responding to the environmental change in local and global sense. In the investigation and analysis of international environmental and technological change 1. Viability of Nuclear Renaissance 2. Recent of Nuclear Technology Policy in Japan 3. Collaboration for Advanced Nuclear Technologies in GIF, INPRO and INERI 4. Nuclear Energy Utilization and Development in Europe. In the evaluation of nuclear technology and sustainable development from the point of views of environmental change 5. External Cost of Environmental Impact in Electric Power Sector 6. Nuclear Technology Development Direction Considering Changes of the Science and Technology Policy Environment 7. Nuclear Energy Development Strategy for a Sustainable National Energy Supply.

  6. A human reliability analysis of the University of New Mexico's AGN- 201M nuclear research reactor

    International Nuclear Information System (INIS)

    Brumburgh, G.P.; Heger, A.S.

    1992-01-01

    During 1990--1991, a probabilistic risk assessment was conducted on the University of New Mexico's AGN-201M nuclear research reactor to address the risk and consequence of a maximum hypothetical release accident. The assessment indicated a potential for consequential human error to precipitate Chis scenario. Subsequently, a human reliability analysis was performed to evaluate the significance of human interaction on the reactor's safety systems. This paper presents the results of that investigation

  7. Studies of nuclear processes

    International Nuclear Information System (INIS)

    Ludwig, E.J.

    1993-01-01

    Results for the period 1 Sep 92 through 31 Aug 93 are presented in nearly a hundred brief papers, some of which present new but preliminary data. Activities reported may be grouped as follows: Fundamental symmetries in the nucleus (parity-mixing measurements, time reversal invariance measurements, signatures of quantum chaos in nuclei), Internucleon reactions (neutron -- proton interactions, the neutron -- neutron scattering length, reactions between deuterons and very light nuclei), Dynamics of very light nuclei (measurements of D states of very light nuclei by transfer reactions, nuclear reactions between very light nuclei, radiative capture reactions with polarized sources), The many-nucleon problem (nuclear astrophysics, high-spin spectroscopy and superdeformation, the nuclear mean field: Dispersive relations and nucleon scattering, configuration mixing in 56 Co and 46 Sc using (d,α) reactions, radiative capture studies, high energy resolution resonance studies at 100--400 keV, nuclear data evaluation for A=3--20), Nuclear instruments and methods (FN tandem accelerator operation, KN accelerator operation and maintenance, atomic beam polarized ion source, development of techniques for determining the concentration of SF 6 in the accelerator insulating gas mixture, production of beams and targets, detector systems, updating of TeX, Psprint, and associated programs on the VAX cluster), and Educational Activities

  8. Nuclear Manpower Development

    International Nuclear Information System (INIS)

    Hwang, I. A.; Lee, K. B.; Shin, B. C.

    2010-12-01

    The industry-university-research collaborative education is aiming at developing national nuclear human resources to satisfy with the increasing needs from the industry. For this efforts are being made to develop curricula customized to respective industry needs by improving existing ones. As the demand for training programs for the university students and domestic nuclear personnel was increasing owing to revitalization of nuclear industry, Nuclear Training Center (NTC) improved previous education programs to meet the needs. NTC has operated 2 education programs on research reactor experiments for the university students, and 18 programs on nuclear technology related experiment courses in 2010. Furthermore, the NTC developed new education programs related to 'standardized research reactor system design'. Also the request from universities for internship programs was increased by about three times in 2010 compared to those of the previous year, and this required to develop relevant curricula. In 2005, NTC developed KAERI-ACE, as a unique competency-based staff education system of Korea Atomic Energy Research Institute (KAERI). Based on the system, the NTC has performed 'systematic education'. In 2008, NTC was awarded Best HRD(Human Resource Development) in Public sector for the first time as a government-supported research institute. In 2009, the system was improved to become KAERI-ACE 2.0, based on which, in 2010, NTC improved and diversified education programs including various cyber training programs

  9. Nuclear medicine technology study guide

    CERN Document Server

    Patel, Dee

    2011-01-01

    Nuclear Medicine Technology Study Guide presents a comprehensive review of nuclear medicine principles and concepts necessary for technologists to pass board examinations. The practice questions and content follow the guidelines of the Nuclear Medicine Technology Certification Board (NMTCB) and American Registry of Radiological Technologists (ARRT), allowing test takers to maximize their success in passing the examinations. The book is organized by sections of increasing difficulty, with over 600 multiple-choice questions covering all areas of nuclear medicine, including radiation safety; radi

  10. A Study on the Nuclear Technology Policy

    International Nuclear Information System (INIS)

    Oh, K. B.; Lee, K. S.; Chung, W. S.; Lee, T. J.; Yun, S. W.; Jeong, I.; Lee, J. H.

    2007-02-01

    The objective of the study was to make policy-proposals for enhancing the effectiveness and efficiency of national nuclear technology R and D programs. To do this, environmental changes of international nuclear energy policy and trends of nuclear technology development were surveyed and analyzed. This Study analyzed trends of nuclear technology policies and developed the nuclear energy R and D innovation strategy in a viewpoint of analyzing the changes in the global policy environment associated with nuclear technology development and development of national nuclear R and D strategy

  11. Public information and acceptance of nuclear engineering studies at the faculty of nuclear sciences and physical engineering of CTU Prague

    Energy Technology Data Exchange (ETDEWEB)

    Musilek, Ladislav; Matejka, Karel [Czech Technical University in Prague, Faculty of Nuclear Sciences and Physical Engineering, Brehova 7, 115 19 Prague 1 (Czech Republic)

    1993-07-01

    The Faculty of Nuclear Sciences and Physical Engineering was founded in 1955, when the nuclear program in Czechoslovakia has been launched. In approximately the same time also some nuclear research institutes were founded, as, e.g., the Institute of Nuclear Research and the Research Institute of Nuclear Instruments, etc., extensive plans of development of nuclear power production were drafted, and everybody was very enthusiastic for this new branch of science and technology. The present status of nuclear technology and the new trends in applied hard sciences have resulted in widening the profile of the Faculty, because the staff has intended to preserve it as a modern and advanced part of the University. It means that now nuclear sciences represent about one third of the programme and the structure of its responsibilities. What is the public acceptance of the Faculty nowadays? Two unfavourable trends act against the interest to enrol at the Faculty. The first one is general - a decreasing interest of the young in engineering, given probably by both higher work-load in comparison with, e.g., social sciences, and a not very high social status of engineering graduates in the former socialist society. The second trend is given by a strong antinuclear opposition and campaigns in the past few years, relatively latent between the Chernobyl accident and 1989, because the former regime had not allow any discussions about this subject, and clearly apparent after the 1989 November revolution. These antinuclear tendencies were also fuelled by the effective Greenpeace campaign in 1990, imported mostly from Austria, and, unfortunately, unfounded from the scientific point of view. How can the Faculty resist this ebb of interest? First of all this can be achieved by suitable modification of curricula towards 'computerisation' and {sup e}cologisation{sup .} Among other activities priority is given to cooperation with mass media as the press, TV etc. Direct contacts with high and

  12. Public information and acceptance of nuclear engineering studies at the faculty of nuclear sciences and physical engineering of CTU Prague

    International Nuclear Information System (INIS)

    Musilek, Ladislav; Matejka, Karel

    1993-01-01

    The Faculty of Nuclear Sciences and Physical Engineering was founded in 1955, when the nuclear program in Czechoslovakia has been launched. In approximately the same time also some nuclear research institutes were founded, as, e.g., the Institute of Nuclear Research and the Research Institute of Nuclear Instruments, etc., extensive plans of development of nuclear power production were drafted, and everybody was very enthusiastic for this new branch of science and technology. The present status of nuclear technology and the new trends in applied hard sciences have resulted in widening the profile of the Faculty, because the staff has intended to preserve it as a modern and advanced part of the University. It means that now nuclear sciences represent about one third of the programme and the structure of its responsibilities. What is the public acceptance of the Faculty nowadays? Two unfavourable trends act against the interest to enrol at the Faculty. The first one is general - a decreasing interest of the young in engineering, given probably by both higher work-load in comparison with, e.g., social sciences, and a not very high social status of engineering graduates in the former socialist society. The second trend is given by a strong antinuclear opposition and campaigns in the past few years, relatively latent between the Chernobyl accident and 1989, because the former regime had not allow any discussions about this subject, and clearly apparent after the 1989 November revolution. These antinuclear tendencies were also fuelled by the effective Greenpeace campaign in 1990, imported mostly from Austria, and, unfortunately, unfounded from the scientific point of view. How can the Faculty resist this ebb of interest? First of all this can be achieved by suitable modification of curricula towards 'computerisation' and e cologisation . Among other activities priority is given to cooperation with mass media as the press, TV etc. Direct contacts with high and grammar

  13. A study on the nuclear foreign policy analysis

    International Nuclear Information System (INIS)

    Oh, Keun Bae; Choi, Y. M.; Lee, D. J.; Lee, K. S.; Lee, B. W.; Cho, I. H.; Ko, H. S.

    1996-12-01

    This study aims to analyses recent trends of international situation relating to nuclear non-proliferation and the adverse conditions in Korea's pursuing self-support of such technology, so that it may map out effective strategies for the promotion of nuclear energy. This study analyses developments of international nuclear non-proliferation regime, which plays a main role in preventing the international proliferation of nuclear weapons. This study includes NPT, IAEA safeguards system, international export control regimes, CTBT, and NWFZs as the subjects of analysis. Second theme is international organizations concerning nuclear activities. This study mainly analyses IAEA activities which pursues the promotion of peaceful use of nuclear energy and nuclear non-proliferation simultaneously as a pivotal body of international nuclear cooperation. Third focus of this study is Northeast Asian circumstances pertaining to nuclear non-proliferation. The study looks into the DPRK nuclear issues, and reviews the developments of the proposed regional body for nuclear cooperation and the discussion on the Northeast Asian NWFZ. Fourth, but the most influential to Korean nuclear activities, is the U. S. nuclear policy, since U. S. takes the overwhelming initiative in the field of international nuclear non-proliferation. Therefore, this study gives much weight in analyzing the structure, procedures, recent trend, and pending issues of U. S. nuclear policy. (author). 78 refs., 5 tabs., 4 figs

  14. Nuclear communication management. Case study: the Nuclear Agency of Cuba

    International Nuclear Information System (INIS)

    Contreras Izquierdo, Marta Alicia

    2011-01-01

    The development of the science is a hallmark of our time. Thousands of products, processes and services incorporated into daily newspaper innovations that are result of basic and applied research. A primary mechanism of existence and development of the science is the communication of its results, in both disclose, transmit and validate the science allows. For an institution in the sector nuclear is doubly important due to the ignorance of the technology and the public perception that it generates. The study responds to the need of the Nuclear Energy Agency and Advanced technologies to manage the communication of their activities and increase the visibility of their results in science and innovation. In response to the approach of the problem assessed the management of the communication of the agency taking into account four nuclear activity basic elements: the existence of policies, training, assessment or diagnosis and planning. The diagnosis of internal and external communication It was through a study of image. For the diagnosis was developed a method, from those used internationally for imaging studies. The results of the diagnostic allowed to conclude that insufficient visibility of the nuclear activity of the AENTA is due to internal and external factors related to communication. The study allowed to design a communication strategy for the Agency's Nuclear energy and advanced technologies for nuclear activities and develop a methodological proposal for the design of strategies of communication with the Agency. (author)

  15. Education and training in nuclear science/engineering in Taiwan

    International Nuclear Information System (INIS)

    Chung, C.

    1994-01-01

    The present status of nuclear education and training in Taiwan is reviewed. The nuclear science/engineering program has been established in Taiwan under the College of Nuclear Science at the National Tsing Hua University since 1956; it remains the only program among 123 universities and colleges in Taiwan where education and training in nuclear fields are offered. The program, with 52 faculty members, offers advanced studies leading to BSc, MSc, and PhD degrees. Lectures and lab classes are given to 600 students currently registered in the program. Career placement program geared for the 200 graduate and 400 undergraduate students is to orientate them into the local nuclear power utilities as well as agricultural, medical, industrial, academic and governmental sectors where nuclear scientists and engineers at all levels are needed. 8 refs., 1 fig

  16. Building an integrated nuclear engineering and nuclear science human resources pipeline at the Idaho National Engineering and Environmental Laboratory

    International Nuclear Information System (INIS)

    Sneed, A.; Sikorski, B.; Lineberry, M.; Jolly, J.

    2004-01-01

    world-class engineers and scientists. The INEEL Education Initiatives Department, housed in the Human Resources (HR) Directorate believes a highly integrated systematic approach from university to laboratory is necessary to the effectiveness of the pipeline. Currently, a refocusing of INEEL educational programs including scholarships, fellowships, internships, faculty exchange, and educational outreach programs is being conducted under the direction of the Education Director and a executive level Education Advisory Council. Additionally a mentoring program is under development to facilitate the integration and transfer of knowledge from senior researchers to incoming graduates. While internal alignment efforts are underway, external alignment efforts must now be planned and developed. Anxious to learn from the experiences of others, INEEL's HR Directorate, the INSE, ANL-W, UI, and ISU will conduct a review of national and international best practices and case studies found in academic and industry literature to identify programs and approaches that might be applied to the INL and the subsequent opportunities and issues that they might represent. It is proposed that the results of this collaborative study be shared with the IAEA in paper and presentation format at the International conference on nuclear knowledge management: Strategies, information management and human resource development. A brief outline of the proposed paper and presentation follows: I. Introduction: a. Brief discussion of the historical role of the US DOE and national laboratory role in nuclear energy research and education. b. Brief discussion of the current state of US nuclear energy education. c. Explanation of the expected role of the INL in revitalizing nuclear engineering and nuclear science education in the US. II. Current collaborative efforts to build components of an HR pipeline from education through full integration into the research environment and transfer on knowledge from senior

  17. 15th National Conference on Nuclear Structure in China

    CERN Document Server

    Wang, Ning; Zhou, Shan-Gui; Nuclear Structure in China 2014; NSC2014

    2016-01-01

    This volume is a collection of the contributions to the 15th National Conference on Nuclear Structure in China (NSC2014), held on October 25-28, 2014 in Guilin, China and hosted by Guangxi Normal University. It provides an important updated resource in the nuclear physics literature for researchers and graduate students studying nuclear structure and related topics. Recent progress made in the study of nuclear spectroscopy of high-spin states, nuclear mass and half-life, nuclear astrophysics, super-heavy nuclei, unstable nuclei, density functional theory, neutron star and symmetry energy, nuclear matter, and nuclear shell model are covered.

  18. Efforts by Atomic Energy Society of Japan to improve the public understanding on nuclear power. With an additional review on the present status of nuclear engineering education at universities

    International Nuclear Information System (INIS)

    Nishina, K.; Kudo, K.; Ishigure, K.; Miyazaki, K.; Kimura, I.; Madarame, H.

    1996-01-01

    On variety of recent public occasions crucial for the progress of Japanese nuclear fuel cycle, the public has expressed their incredulous and reserved attitudes toward further expansion of nuclear power utilization. The typical examples are (1) local town political votes with an issue to decide on the acceptance of a proposed nuclear power plant, ending up with a conclusion against the proposal, and (2) the local dissatisfaction expressed against a proposed, deep-underground research facility, which is intended to produce cold-simulation data on the behavior of high level waste nuclides. Realizing that the dissemination of systematic and correct informations is indispensable for gaining public understanding on the importance of energy resources and nuclear power, the Educational Committee, Atomic Energy Society of Japan (AESJ), has initiated various public relations activities since 1994. In the following we sketch such activities, namely: (1) Reviews conducted on high school textbooks. (2) A request submitted to the Government for revisions of high-school textbooks and governmental guidelines defining these textbooks. (3) Preparations of a source book on nuclear energy and radiations. In addition, (4) the review conducted on the present status of nuclear engineering education in universities over the country with and without nuclear engineering program will be given. (author)

  19. A Study on the Nuclear Technology Policy

    Energy Technology Data Exchange (ETDEWEB)

    Kim, H. J.; Lim, C. Y.; Yang, M. H. (and others)

    2008-03-15

    The objective of the study was to make policy-proposes for enhancing the effectiveness and efficiency of national nuclear technology development programs. To do this, changes of international nuclear energy policy environment and trends of nuclear technology development was surveyed and analyzed. In the viewpoint of analysis of the changes in the global policy environment surrounding nuclear technology development and development of national nuclear R and D strategy, this study (1) analyzed trends of nuclear technology policies and (2) developed the nuclear energy R and D innovation strategies. To put it in more detail, each subject was further explored as follows; (1) themes to analyze trends of nuclear policies: nuclear Renaissance and forecast for nuclear power plant, International collaboration for advanced nuclear technologies in GIF, INPRO and I-NERI, The present situation and outlook for world uranium market (2) themes to develop of nuclear energy R and D innovation strategies: The mid-term strategy plan of the KAERI, The technological innovation case of the KAERI.

  20. A Study on the Nuclear Technology Policy

    International Nuclear Information System (INIS)

    Kim, H. J.; Lim, C. Y.; Yang, M. H.

    2008-03-01

    The objective of the study was to make policy-proposes for enhancing the effectiveness and efficiency of national nuclear technology development programs. To do this, changes of international nuclear energy policy environment and trends of nuclear technology development was surveyed and analyzed. In the viewpoint of analysis of the changes in the global policy environment surrounding nuclear technology development and development of national nuclear R and D strategy, this study (1) analyzed trends of nuclear technology policies and (2) developed the nuclear energy R and D innovation strategies. To put it in more detail, each subject was further explored as follows; (1) themes to analyze trends of nuclear policies: nuclear Renaissance and forecast for nuclear power plant, International collaboration for advanced nuclear technologies in GIF, INPRO and I-NERI, The present situation and outlook for world uranium market (2) themes to develop of nuclear energy R and D innovation strategies: The mid-term strategy plan of the KAERI, The technological innovation case of the KAERI

  1. Theoretical studies in hadronic and nuclear physics. Progress report, July 1, 1994--June 1, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, M.K.; Griffin, J.J.

    1995-06-01

    This progress report contains 36 items of research work done by ten members of the University of Maryland Nuclear Theory Group with 21 outside collaborators from various institutions in the US, Canada, Korea and Europe. The report is in four sections, each representing major and basic areas of interest in nuclear theory. The sections are as follows: (1) hadrons in nuclei and nuclear matter; (2) hadron physics; (3) relativistic dynamics in quark, hadron and nuclear physics; (4) heavy ion dynamics and related processes.

  2. Theoretical studies in hadronic and nuclear physics. Progress report, July 1, 1994--June 1, 1995

    International Nuclear Information System (INIS)

    Banerjee, M.K.; Griffin, J.J.

    1995-06-01

    This progress report contains 36 items of research work done by ten members of the University of Maryland Nuclear Theory Group with 21 outside collaborators from various institutions in the US, Canada, Korea and Europe. The report is in four sections, each representing major and basic areas of interest in nuclear theory. The sections are as follows: (1) hadrons in nuclei and nuclear matter; (2) hadron physics; (3) relativistic dynamics in quark, hadron and nuclear physics; (4) heavy ion dynamics and related processes

  3. Nuclear materials management storage study

    International Nuclear Information System (INIS)

    Becker, G.W. Jr.

    1994-02-01

    The Office of Weapons and Materials Planning (DP-27) requested the Planning Support Group (PSG) at the Savannah River Site to help coordinate a Departmental complex-wide nuclear materials storage study. This study will support the development of management strategies and plans until Defense Programs' Complex 21 is operational by DOE organizations that have direct interest/concerns about or responsibilities for nuclear material storage. They include the Materials Planning Division (DP-273) of DP-27, the Office of the Deputy Assistant Secretary for Facilities (DP-60), the Office of Weapons Complex Reconfiguration (DP-40), and other program areas, including Environmental Restoration and Waste Management (EM). To facilitate data collection, a questionnaire was developed and issued to nuclear materials custodian sites soliciting information on nuclear materials characteristics, storage plans, issues, etc. Sites were asked to functionally group materials identified in DOE Order 5660.1A (Management of Nuclear Materials) based on common physical and chemical characteristics and common material management strategies and to relate these groupings to Nuclear Materials Management Safeguards and Security (NMMSS) records. A database was constructed using 843 storage records from 70 responding sites. The database and an initial report summarizing storage issues were issued to participating Field Offices and DP-27 for comment. This report presents the background for the Storage Study and an initial, unclassified summary of storage issues and concerns identified by the sites

  4. Our nuclear history

    International Nuclear Information System (INIS)

    Marx, G.

    1986-01-01

    The article on nuclear history is contained in a booklet on the Revised Nuffield Advanced Physics Course. The author shows how the difficult decisions about energy supplies at the end of the twentieth century can be seen as a consequence of the history and evolution of the Universe and of life, and mankind's activities on earth. The topics discussed include:-the origin of the Universe, formation of light elements, formation of carbon and oxygen, supernovae and nuclear equilibrium, formation of planets, development of life on earth, mankind and the use of fuels, and the nuclear valley. (UK)

  5. Advanced nuclear systems. Review study

    International Nuclear Information System (INIS)

    Liebert, Wolfgang; Glaser, Alexander; Pistner, Christoph; Baehr, Roland; Hahn, Lothar

    1999-04-01

    The task of this review study is to from provide an overview of the developments in the field of the various advanced nuclear systems, and to create the basis for more comprehensive studies of technology assessment. In an overview the concepts for advanced nuclear systems pursued worldwide are subdivided into eight subgroups. A coarse examination raster (set pattern) is developed to enable a detailed examination of the selected systems. In addition to a focus on enhanced safety features, further aspects are also taken into consideration, like the lowering of the proliferation risk, the enhancement of the economic competitiveness of the facilities and new usage possibilities (for instance concerning the relaxation of the waste disposal problem or the usage of alternative fuels to uranium). The question about the expected time span for realization and the discussion about the obstacles on the way to a commercially usable reactor also play a substantial role as well as disposal requirements as far as they can be presently recognized. In the central chapter of this study, the documentation of the representatively selected concepts is evaluated as well as existing technology assessment studies and expert opinions. In a few cases where this appears to be necessary, according technical literature, further policy advisory reports, expert statements as well as other relevant sources are taken into account. Contradictions, different assessments and dissents in the literature as well as a few unsettled questions are thus indicated. The potential of advanced nuclear systems with respect to economical and societal as well as environmental objectives cannot exclusively be measured by the corresponding intrinsic or in comparison remarkable technical improvements. The acceptability of novel or improved systems in nuclear technology will have to be judged by their convincing solutions for the crucial questions of safety, nuclear waste and risk of proliferation of nuclear weapons

  6. Nuclear legislation analytical study. Regulatory and institutional framework for nuclear activities

    International Nuclear Information System (INIS)

    1997-01-01

    This study is the second update of the 1995 edition of a series of analytical studies on nuclear legislation in OECD member countries, prepared by the OECD Nuclear Energy Agency (NEA) with the co-operation of the countries concerned. It is organised on the basis of a standardised format for all countries, thus facilitating the comparison of information. This study deals with national legislations concerning nuclear third party liability and other aspects of nuclear laws (transport, radiation protection, trade, radioactive waste management, public and semi-public agencies...). The 1997 update consists of replacement chapters for Australia, France, Germany, Korea, Norway, Sweden, and the United Kingdom. In addition, there are completely new chapters for the Czech Republic, Hungary and Poland. (A.L.B.)

  7. Summary of discussions on the next project at RCNP, Osaka University

    International Nuclear Information System (INIS)

    1985-01-01

    A meeting was held in May 1985 to discuss what should be the next project of RCNP (Research Center for Nuclear Physics), Osaka University, in relation with other similar projects in Japanese Universities or institutes. About 70 researchers from various universities and institutes in Japan gathered and discussed new nuclear physics projects including a 300 MeV cyclotron. Before entering discussions some short reports conserning selection of machine, requirement from physical studies or political problems were presented. And some selected commentators gave short comments for active discussions. All these reports and comments are included in this collective report. (Aoki, K.)

  8. Study on interface between nuclear material accounting system and national nuclear forensic library

    International Nuclear Information System (INIS)

    Jeong, Yonhong; Han, Jae-Jun; Chang, Sunyoung; Shim, Hye-Won; Ahn, Seungho

    2016-01-01

    The implementation of nuclear forensics requires physical, chemical and radiological characteristics with transport history to unravel properties of seized nuclear materials. For timely assessment provided in the ITWG guideline, development of national response system (e.g., national nuclear forensic library) is strongly recommended. Nuclear material accounting is essential to obtain basic data in the nuclear forensic implementation phase from the perspective of nuclear non-proliferation related to the IAEA Safeguards and nuclear security. In this study, the nuclear material accounting reports were chosen due to its well-established procedure, and reviewed how to efficiently utilize the existing material accounting system to the nuclear forensic implementation phase In conclusion, limits and improvements in implementing the nuclear forensics were discussed. This study reviewed how to utilize the existing material accounting system for implementing nuclear forensics. Concerning item counting facility, nuclear material properties can be obtained based on nuclear material accounting information. Nuclear fuel assembly data being reported for the IAEA Safeguards can be utilized as unique identifier within the back-end fuel cycle. Depending upon the compulsory accountability report period, there exist time gaps. If national capabilities ensure that history information within the front-end nuclear fuel cycle is traceable particularly for the bulk handling facility, the entire cycle of national nuclear fuel would be managed in the framework of developing a national nuclear forensic library

  9. Study on interface between nuclear material accounting system and national nuclear forensic library

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Yonhong; Han, Jae-Jun; Chang, Sunyoung; Shim, Hye-Won; Ahn, Seungho [Korea Institute of Nuclear Non-proliferation and Control, Daejeon (Korea, Republic of)

    2016-10-15

    The implementation of nuclear forensics requires physical, chemical and radiological characteristics with transport history to unravel properties of seized nuclear materials. For timely assessment provided in the ITWG guideline, development of national response system (e.g., national nuclear forensic library) is strongly recommended. Nuclear material accounting is essential to obtain basic data in the nuclear forensic implementation phase from the perspective of nuclear non-proliferation related to the IAEA Safeguards and nuclear security. In this study, the nuclear material accounting reports were chosen due to its well-established procedure, and reviewed how to efficiently utilize the existing material accounting system to the nuclear forensic implementation phase In conclusion, limits and improvements in implementing the nuclear forensics were discussed. This study reviewed how to utilize the existing material accounting system for implementing nuclear forensics. Concerning item counting facility, nuclear material properties can be obtained based on nuclear material accounting information. Nuclear fuel assembly data being reported for the IAEA Safeguards can be utilized as unique identifier within the back-end fuel cycle. Depending upon the compulsory accountability report period, there exist time gaps. If national capabilities ensure that history information within the front-end nuclear fuel cycle is traceable particularly for the bulk handling facility, the entire cycle of national nuclear fuel would be managed in the framework of developing a national nuclear forensic library.

  10. Second School of Nuclear Energetics

    International Nuclear Information System (INIS)

    2009-01-01

    At 3-5 Nov 2009 Institute of Nuclear Energy POLATOM, Association of Polish Electrical Engineers (SEP) and Polish Nuclear Society have organized Second School of Nuclear Energetics. 165 participants have arrived from all Poland and represented both different central institutions (e.g. ministries) and local institutions (e.g. Office of Technical Inspection, The Voivodship Presidential Offices, several societies, consulting firms or energetic enterprises). Students from the Warsaw Technical University and Gdansk Technical University, as well as the PhD students from the Institute of Nuclear Chemistry and Technology (Warsaw) attended the School. 20 invited lectures presented by eminent Polish specialists concerned basic problems of nuclear energetics, nuclear fuel cycle and different problems of the NPP construction in Poland. [pl

  11. United Campuses to Prevent Nuclear War: Nuclear War Course Summaries.

    Science.gov (United States)

    Journal of College Science Teaching, 1983

    1983-01-01

    Briefly describes 46 courses on nuclear war available from United Campuses to Prevent Nuclear War (UCAM). These courses are currently being or have been taught at colleges/universities, addressing effects of nuclear war, arms race history, new weapons, and past arms control efforts. Syllabi (with assignments/reading lists) are available from UCAM.…

  12. Sloan foundation nuclear education program

    International Nuclear Information System (INIS)

    Kursunoglu, B.N.

    1992-01-01

    The Alfred P. Sloan Foundation realized the time had come for a real and significant contribution to the enlightenment of university students concerning nuclear matters. The Sloan Foundation chose to educate the youth of four-year colleges and universities with a curriculum established with the resource information sieved from three workshops for professors in these institutions. The three workshops were organized by groups at Harvard-MIT (two-week Summer Program on Nuclear Weapons and Arms Control), the University of California, San Diego (two-week Summer Seminar on Global Security and Arms Control), and the University of Miami (one-week Winter Workshop on Enlightenment: The Best Security in a Nuclear-Armed World). In this report the author focuses on a unified presentation of the basic facts, aims, and results of the Sloan Foundation Nuclear Education Program based on three workshops directed by Jack Ruina (MIT), Herbert York (USCD), and Behram Kursunoglu (UM) and offered from 1983-1990

  13. Nuclear materials facility safety initiative

    International Nuclear Information System (INIS)

    Peddicord, K.L.; Nelson, P.; Roundhill, M.; Jardine, L.J.; Lazarev, L.; Moshkov, M.; Khromov, V.V.; Kruchkov, E.; Bolyatko, V.; Kazanskij, Yu.; Vorobeva, I.; Lash, T.R.; Newton, D.; Harris, B.

    2000-01-01

    Safety in any facility in the nuclear fuel cycle is a fundamental goal. However, it is recognized that, for example, should an accident occur in either the U.S. or Russia, the results could seriously delay joint activities to store and disposition weapons fissile materials in both countries. To address this, plans are underway jointly to develop a nuclear materials facility safety initiative. The focus of the initiative would be to share expertise which would lead in improvements in safety and safe practices in the nuclear fuel cycle.The program has two components. The first is a lab-to-lab initiative. The second involves university-to-university collaboration.The lab-to-lab and university-to-university programs will contribute to increased safety in facilities dealing with nuclear materials and related processes. These programs will support important bilateral initiatives, develop the next generation of scientists and engineers which will deal with these challenges, and foster the development of a safety culture

  14. A Study on the Nuclear Technology Policy

    International Nuclear Information System (INIS)

    Lim, C. Y.; Lee, K. S.; Jeong, I.; Lee, J. H.

    2009-04-01

    The objective of the study was to make policy-proposes for enhancing the effectiveness and efficiency of national nuclear technology development programs. To do this, recent changes of international nuclear energy policy and trends of nuclear technology R and D was surveyed and analyzed. In the viewpoint of analysis of the changes in the global policy surrounding nuclear technology development and development of national nuclear R and D strategy, this study (1) analyzed the trends of nuclear technology policies and (2) discussed the mid and long term strategy of nuclear energy R and D. To put it in more detail, each subject was further explored as follows; (1) analyzed the trends of nuclear technology policies - Trend and prospects of the international and domestic nuclear policies - Investigation of development of small and medium sized policies - International collaboration for advanced nuclear technologies (2) discussed the mid and long term strategy of nuclear energy R and D - The long term development plan for future nuclear energy system - The facilitation of technology commercialization

  15. European master degree in nuclear engineering

    International Nuclear Information System (INIS)

    Ghitescu, Petre; Prisecaru, Ilie

    2003-01-01

    In order to preserve and to improve the quality of nuclear engineering education and training in Europe, as well to ensure the safe and economic operation of nuclear power plants, the European Nuclear Engineering Network Program (ENEN) started in 2002. It is a program aiming to establish and maintain a set of criteria for specific curricula of nuclear engineering education, in particular, for an European Master Degree in Nuclear Engineering (EMNE). The ENEN program is financed by the FP5 and has the wide support of IAEA, OECD and EU Commission departments dealing with the nuclear engineering knowledge management. The promising results up to now determined the creation of the Asian Nuclear Engineering Network (ANEN) in July 2003 and of the World Nuclear University (WNU) starting in September 2003. The paper presents the future structure of EMNE which will allow the harmonization of the curricula of the universities of Europe until the Bologna Convention will be fully accepted and operational in all European countries. The ENEN program has taken into consideration the curricula of 22 universities and research centres from 15 different European countries and proposed a feasible scheme which allows the undergraduates with a weak to strong nuclear background to continue their graduate education in the nuclear engineering field towards EMNE. As one of the contractors of this program, University 'Politehnica' of Bucharest brings its contribution and actively takes part in all activities establishing the EMNE. (author)

  16. Towards the European Nuclear Engineering Education Network

    International Nuclear Information System (INIS)

    Mavko, B.; Giot, M.; Sehgal, B.R.; Goethem, G. Van

    2003-01-01

    Current priorities of the scientific community regarding basic research lie elsewhere than in nuclear sciences. The situation today is significantly different than it was three to four decades ago when much of the present competence base in nuclear sciences was in fact generated. In addition, many of the highly competent engineers and scientists, who helped create the present nuclear industry, and its regulatory structure, are approaching retirement. To preserve nuclear knowledge and expertise through the higher nuclear engineering education in the 5 th framework program of the European Commission the project ENEN (European Nuclear Engineering Education Network) was launched, since the need to keep the university curricula in nuclear sciences and technology alive has been clearly recognized at European level. As the follow up of this project an international nuclear engineering education consortium of universities with partners from the nuclear sector is presently in process of being established This association called ENEN has as founding members: 14 universities and 8 research institutes from 17 European countries. (author)

  17. Industry-university collaboration for research and education

    International Nuclear Information System (INIS)

    Shalaby, B.A.; Snell, V.G.; Rouben, B.

    2015-01-01

    University Network for Excellence in Nuclear Engineering also known as UNENE is a joint partnership between the nuclear industry and thirteen universities. UNENE has been legally registered as of 2002 as a not for profit organization. The establishment of this network was prompted by industry to address anticipated retirement of a large number of professionals from industry starting in early 2000 onwards and thus the loss of nuclear knowledge and experience within industry. UNENE was created to provide a sustainable supply of highly qualified personnel to industry, support nuclear research within various universities and provide a course based Master's Degree in nuclear engineering to enhance the knowledge of young professionals within the industry in the science and technology of the CANDU nuclear power system. The paper describes the current UNENE, its research objectives, key outcomes of research programs to date and its contribution to industry needs in maintaining an economic and safe power plant performance of its nuclear fleet. The paper addresses achievements within the education program and the new 4-course diploma program recently introduced to enhance core expertise of young industry professionals. Also publications and national and international collaborations in various aspects of research have significantly contributed to Canada's position in nuclear science and research worldwide. Such collaborations are also addressed. (author)

  18. Studies in High Energy Heavy Ion Nuclear Physics

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmann, Gerald W. [Univ. of Texas, Austin, TX (United States); Markert, Christina [Univ. of Texas, Austin, TX (United States)

    2016-09-01

    This close-out report covers the period 1994 - 2015 for DOE grant DE-FG02-94ER40845 with the University of Texas at Austin. The research was concerned with studies of the strong nuclear force and properties of nuclear matter under extreme conditions of temperature and density which far exceed that in atomic nuclei. Such extreme conditions are briefly created (for about 10 trillionths of a trillionth of a second) during head-on collisions of large atomic nuclei (e.g. gold) colliding at speeds very close to the speed-of-light. The collisions produce thousands of subatomic particles, many of which are detected in our experiment called STAR at the Relativistic Heavy-Ion Collider at the Brookhaven National Lab in New York. The goal of our research is to learn how the strong nuclear force and its fundamental particles (quarks and gluons) behave in extreme conditions similar to that of the early Universe when it was about 1 micro-second old, and in the cores of very dense neutron stars. To learn anything new about the matter which exists for such a very short amount of time requires carefully designed probes. In our research we focused on two such probes, one being short-lived resonance particles and the other using correlations between pairs of the detected particles. Resonances are short-lived particles created in the collision, which interact with the surrounding matter, and which break apart, or "decay" into more stable particles which survive long enough to be seen in our detectors. The dependence of resonance properties on the conditions in the collision system permit tests of theoretical models and improve our understanding. Dynamical interactions in the matter also leave imprints on the final, outgoing particle distributions measured in the experiment. In particular, angular correlations between pairs of particles can be related to the fundamental strong force as it behaves in the hot, dense matter. Studying correlations as a function of experimentally controlled

  19. Studies in High Energy Heavy Ion Nuclear Physics

    International Nuclear Information System (INIS)

    Hoffmann, Gerald W.; Markert, Christina

    2016-01-01

    This close-out report covers the period 1994 - 2015 for DOE grant DE-FG02-94ER40845 with the University of Texas at Austin. The research was concerned with studies of the strong nuclear force and properties of nuclear matter under extreme conditions of temperature and density which far exceed that in atomic nuclei. Such extreme conditions are briefly created (for about 10 trillionths of a trillionth of a second) during head-on collisions of large atomic nuclei (e.g. gold) colliding at speeds very close to the speed-of-light. The collisions produce thousands of subatomic particles, many of which are detected in our experiment called STAR at the Relativistic Heavy-Ion Collider at the Brookhaven National Lab in New York. The goal of our research is to learn how the strong nuclear force and its fundamental particles (quarks and gluons) behave in extreme conditions similar to that of the early Universe when it was about 1 micro-second old, and in the cores of very dense neutron stars. To learn anything new about the matter which exists for such a very short amount of time requires carefully designed probes. In our research we focused on two such probes, one being short-lived resonance particles and the other using correlations between pairs of the detected particles. Resonances are short-lived particles created in the collision, which interact with the surrounding matter, and which break apart, or 'decay' into more stable particles which survive long enough to be seen in our detectors. The dependence of resonance properties on the conditions in the collision system permit tests of theoretical models and improve our understanding. Dynamical interactions in the matter also leave imprints on the final, outgoing particle distributions measured in the experiment. In particular, angular correlations between pairs of particles can be related to the fundamental strong force as it behaves in the hot, dense matter. Studying correlations as a function of experimentally controlled

  20. A study on international nuclear organizations and conventions for the globalization of Korean nuclear community

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kwang Seok; Oh, Keun Bae; Lee, Byung Wook; Cho, Il Hoon; Lee, Jae Sung; Choi, Young Rok; Ko, Han Seok; Ham, Chul Hoon; Lee, Byung Woon [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-12-01

    The objective of this study is to analyze the current status of international nuclear organizations and conventions in systems perspective and suggest national strategies for utilizing them for the globalization of Korean nuclear community. This study analyzes the current status of international nuclear organizations such as IAEA(International Atomic Energy Agency) and international nuclear conventions related to nuclear accidents, nuclear liability, physical protection or nuclear safety. Based on the analysis, this study suggests national strategies, in general and specific terms, to utilize international nuclear organizations and conventions for the globalization of Korean nuclear community. Separately from this report this study publishes `IAEA Handbook`, which contains all about IAEA such as statute, membership, organizational structure, main activities, finance and budget, etc.. 9 tabs., 2 figs., 35 refs. (Author).

  1. A study on international nuclear organizations and conventions for the globalization of Korean nuclear community

    International Nuclear Information System (INIS)

    Lee, Kwang Seok; Oh, Keun Bae; Lee, Byung Wook; Cho, Il Hoon; Lee, Jae Sung; Choi, Young Rok; Ko, Han Seok; Ham, Chul Hoon; Lee, Byung Woon

    1995-12-01

    The objective of this study is to analyze the current status of international nuclear organizations and conventions in systems perspective and suggest national strategies for utilizing them for the globalization of Korean nuclear community. This study analyzes the current status of international nuclear organizations such as IAEA(International Atomic Energy Agency) and international nuclear conventions related to nuclear accidents, nuclear liability, physical protection or nuclear safety. Based on the analysis, this study suggests national strategies, in general and specific terms, to utilize international nuclear organizations and conventions for the globalization of Korean nuclear community. Separately from this report this study publishes 'IAEA Handbook', which contains all about IAEA such as statute, membership, organizational structure, main activities, finance and budget, etc.. 9 tabs., 2 figs., 35 refs. (Author)

  2. A study on the nuclear technology policy

    International Nuclear Information System (INIS)

    Yang, M. H.; Kim, H. J.; Chung, W. S.; Lee, T. J.; Yun, S. W.; Jeong, Ik

    2002-01-01

    This study was carried out as a part of institutional activities of KAERI. This study suggested the effective and systematic alternatives for the development of domestic industry through nuclear long-term R and D program while timely responding to the environmental change in local and global sense. First of all, this study investigated the current status and prospect of nuclear power supply, the global technological change of nuclear fuel cycle, the nuclear policy changes of major countries and the role of nuclear energy in East Asian countries. Second, some policy alternatives are suggested in association with the role of national R and D in enhancing industrial competitiveness, the effective management of nuclear long-term R and D program to facilitate technological innovation and the way to enlarge the utilization of nuclear R and D results and radiation technology

  3. Current status of nuclear engineering education

    International Nuclear Information System (INIS)

    Palladino, N.J.

    1975-01-01

    The 65 colleges and universities offering undergraduate degrees in nuclear engineering and the 15 schools offering strong nuclear engineering options are, in general, doing a good job to meet the current spectrum of job opportunities. But, nuclear engineering programs are not producing enough graduates to meet growing demands. They currently receive little aid and support from their customers --industry and government--in the form of scholarships, grants, faculty research support, student thesis and project support, or student summer jobs. There is not enough interaction between industry and universities. Most nuclear engineering programs are geared too closely to the technology of the present family of reactors and too little to the future breeder reactors and controlled thermonuclear reactors. In addition, nuclear engineering programs attract too few women and members of minority ethnic groups. Further study of the reasons for this fact is needed so that effective corrective action can be taken. Faculty in nuclear engineering programs should assume greater initiative to provide attractive and objective nuclear energy electives for technical and nontechnical students in other disciplines to improve their technical understanding of the safety and environmental issues involved. More aggressive and persistent efforts must be made by nuclear engineering schools to obtain industry support and involvement in their programs

  4. The Australian Institute of Nuclear Science and Engineering - a model for university-national laboratory collaboration

    International Nuclear Information System (INIS)

    Gammon, R.B.

    1994-01-01

    This paper describes the aims and activities of the Australian Institute of Nuclear Science and Engineering (AINSE), from its foundation in 1958 through to 1993. The philosophy, structure and funding of the Institute are briefly reviewed, followed by an account of the development of national research facilities at the Lucas Heights Research Laboratories, with particular emphasis on nuclear techniques of analyses using neutron scattering instruments and particle accelerators. AINSE's program of Grants, fellowships and studentships are explained with many examples given of projects having significance in the context of Australia's national goals. Conference and training programs are also included. The achievements during these years demonstrate that AINSE has been an efficient and cost-effective model for collaboration between universities and a major national laboratory. In recent years, industry, government organisations and the tertiary education system have undergone major re-structuring and rationalization. A new operational structure for AINSE has evolved in response to these changes and is described

  5. Overview of the DOE nuclear data program

    International Nuclear Information System (INIS)

    Whetstone, S.L.

    1991-01-01

    Numerous researchers receive support from the US Department of Energy's (DOE's) nuclear data program; others work closely with it, attending coordination meetings and contributing to data activities. Since fiscal year (FY) 1988, the nuclear data program has been included in the budget of the Division of Nuclear Physics in the DOE's Office of High Energy and Nuclear Physics. The budget for nuclear data consists of two budget categories: nuclear data compilation and evaluation and nuclear data measurements, both of which are contained within the low-energy nuclear physics program. The program has become essentially the sole supporter of the National Nuclear Data Center at Brookhaven National Laboratory. The Center coordinates the production of the ENSDF data base and Nuclear Data Sheets as well as, through the Cross Section Evaluation Working Group (CSEWG138), the production of the ENDF. Two rather large accelerator facilities, completely supported by the program, the Oak Ridge Electron Linear Accelerator and the fast neutron generator at Argonne National Laboratory, form the core of the nuclear data measurement activity together with measurement programs at Los Alamos National Laboratory's LAMPF/WNR facility, and at accelerator laboratories at Ohio University, Duke University, the University of Lowell, the University of Michigan, and the Colorado School of Mines. Some history is discussed and future modernizing plans are identified

  6. Nuclear Reaction Data File for Astrophysics (NRDF/A) in Hokkaido University Nuclear Reaction Data Center

    International Nuclear Information System (INIS)

    Kato, Kiyoshi; Kimura, Masaaki; Furutachi, Naoya; Makinaga, Ayano; Togashi, Tomoaki; Otuka, Naohiko

    2010-01-01

    The activities of the Japan Nuclear Reaction Data Centre is explained. The main task of the centre is data compilation of Japanese nuclear reaction data in collaboration of the International Network of Nuclear Reaction Data Centres. As one of recent activities, preparation of a new database (NRDF/A) and evaluation of astronuclear reaction data are reported. Collaboration in the nuclear data activities among Asian countries is proposed.

  7. Research Projects at Chulalongkorn University for the Master Degree Programme in Nuclear Security and Safeguard

    International Nuclear Information System (INIS)

    Nilsuwankosit, S.

    2015-01-01

    The Department of Nuclear Engineering, Faculty of Engineering, Chulalongkorn University, Thailand, began its master degree programme in nuclear security and safeguard in November 2013 with the support from the CBRN-Center of Excellence, European Union. This programme was planned as a way to raise the awareness of various local agencies in ASEAN countries regarding the threat of CBRN events. In the long run, the programme will also serve as the platform to develop the human resource and to provide the professional assistance required to counter such threat in the region. The programme closely follows the guideline as given by the IAEA and employs its materials as the main source of references. The first batch of 20 students came from countries in the ASEAN community. Due to the nature of the program, each student is required to conduct the research and a thesis based on such research is to be submitted as part of the requirement for the graduation. Currently, the research subjects that are readily available to the students can be classified into 5 categories: 1. subjects with neutron generator, 2. subjects with nuclear electronics and instruments, 3. subjects with industrial applications, 4. subjects with computer simulations, and 5. subjects with policy research. (author)

  8. A Study on Research Trend in Nuclear Forensics

    International Nuclear Information System (INIS)

    Kim, Kyungmin; Yim, Hobin; Lee, Seungmin; Hong, Yunjeong; Kim, Jae Kwang

    2014-01-01

    The international community has recognized the serious threat posed by nuclear and other radioactive material out of regulatory control. To address these concerns, the Office of Nuclear Security of the international Atomic Energy Agency (IAEA) is developing, inter alia, guidance for nuclear forensics to assist Member States. According to the IAEA Incident and Trafficking Database (ITDB) of the IAEA to record the illegal trade and trafficking incidents of nuclear material or other radioactive material, incidents of 2331 have been reported in 1993 to 2012. These incidents mean that we are not safe for nuclear material. In order to solve the case generated by the illicit trafficking of nuclear material and the efficient management of nuclear material, the study of nuclear forensics is very important. In this study, we investigated the analytical techniques and the current status of nuclear forensics research. In this study, we investigated the current status of research of nuclear forensics, procedures for analysis and nuclear forensics analysis technique. A result of the study, we have been found that the major institutes and laboratory actively research on analysis technique and nuclear forensics. However, research on nuclear forensics is still in early stage, ROK is necessary preliminary survey of analysis technique and foundation of physical, chemical, and morphology characteristics of nuclear materials

  9. Role of higher education in training of university and college graduates for Czechoslovak nuclear programme

    International Nuclear Information System (INIS)

    Urbanek, J.; Nemec, J.

    1983-01-01

    The mechanical engineering faculty of the College of Mechanical and Electrical Engineering in Plzen trains students in the field ''Thermal and nuclear power machines and equipment''. The study field is subdivided into two specializations: ''Nuclear power facilities'' and ''Thermal power facilities''. The former specialization provides students with knowledge in the foundations of calculations and design of nuclear reactors and accessories, of heat transfer with application to nuclear reactors, the foundations of nuclear physics, reactor physics, calculations of shielding and reactor control. The specialization ''Thermal power facilities'' acquaints the students with the foundations of computations and the design of steam and gas turbines and turbocompressors, production technology, assembly and operation, defects and their removal, the foundations of nuclear power facilities and the design of thermal power plants. At the electrical engineering faculty of the College the study field ''Electrical power engineering'' includes the specialization ''Nuclear power plants''. New study fields have been suggested following consultations with the SKODA production enterprise. It has been found that the immediate increased demand for nuclear power specialists, namely for the assembly, commissioning and operation of nuclear power plants, will have to be met by the redeployment of engineers inside the respective enterprises. (E.S.)

  10. Nuclear utility education and training becoming too plant specific?

    International Nuclear Information System (INIS)

    Wicks, F.

    1986-01-01

    As the Supervisor of a university nuclear reactor and operations curriculum, the author has also been offering education and training programs for nuclear utility technical support and operations personnel. Similar results have been reported by other universities offering similar programs. These programs also provide very important benefits to university nuclear engineering departments in terms of much needed revenues during this time of declining student enrollment and also by the information flow from the nuclear utility participants to the university personnel, which can yield both improved courses and identify research opportunities. University programs serve an important complementary function to plant-specific programs and should be continued and supported

  11. Some progress towards ''universal'' effective interactions

    International Nuclear Information System (INIS)

    Gomez, J.M.G.

    1983-01-01

    The approximation methods introduced to treat the nuclear many-body problem usually imply that the appropriate nuclear force is an effective interaction, different from the free nucleon-nucleon interaction. An effective interaction is thus intimately related to a given nuclear model and its scope is generally confined to the description of a limited number of nuclei or nuclear states. However, in recent years there has been some progress towards ''universal'' effective nucleon-nucleon interactions, in the sense that they may be reasonably suitable to describe bulk properties of nuclear ground states throughout the periodic table and also properties of excited states. The authors conclude that a finite-range density-dependent effective interaction of the Gogny's type is capable of describing a large number of static and dynamical nuclear properties throughout the periodic table, including open-shell nuclei. Hopefully it may provide clues for the definition of some ''universal'' effective force

  12. Nuclear spectroscopic studies

    International Nuclear Information System (INIS)

    Bingham, C.R.; Guidry, M.W.; Riedinger, L.L.; Sorensen, S.P.

    1994-01-01

    The Nuclear Physics group at UTK is involved in heavy-ion physics including both nuclear structure and reaction mechanisms. During the last year experimental work has been in 3 broad areas: structure of nuclei at high angular momentum, structure of nuclei far from stability, and ultra-relativistic heavy-ion physics. Results in these areas are described in this document under: properties of high-spin states, study of low-energy levels of nuclei far from stability, and high-energy heavy-ion physics (PHENIX, etc.). Another important component of the work is theoretical interpretation of experimental results (Joint Institute for Heavy Ion Research)

  13. Atomic nuclei and nuclear reactions. Theory and application

    International Nuclear Information System (INIS)

    Sitenko, A.G.; Tartakovsky, V.K.; Kenjebaev, K.K.; Shunkeyev, K.Sh.; Ismatov, E.I.; Mukhammedov, S.; Comsan, M.N.H.; Djuraev, Sh.Kh.

    2004-01-01

    Full text: The short description of the book preparation by the collective authors from Ukraine, Kazakhstan, Uzbekistan and Egypt is given. The present book is the expanded course of lectures on the theory of nuclei, nuclear reactions and their applications delivered by the authors for a number of years in the Ukrainian National University, Aktubinsk State University of the Kazakhstan Republic, Tashkent National University, Samarkand and Termez State Universities of Uzbekistan Republic, Egyptian National Universities (Al-Az'har, Menoufeya, Suez-Canal and Tanta) and the Institute of Nuclear Physics of the Academy of Sciences of the Republic of Uzbekistan. The lectures present foundations of the modern concepts of the structure of nuclei, on the nature of nuclear processes and nuclear transformations. Main attention in the book was paid to the presentation of the basics and some modern achievements in the field of the theory of nuclei and nuclear reactions. A number of problems was investigated in original works and were not presented in the physics textbooks. The book presents the non-relativistic theory of nuclear reactions, questions of relativistic nuclear physics were not considered here. Non-relativistic theory of nuclear reactions is based on the notions of collision matrix or S-matrix. In absence of consequent microscopic theory, the scattering matrix can be found phenomenological based on definite assumptions on the character of nuclear interactions. Modern applications of nuclear reactions for the development of nuclear methods of analysis are presented. The delayed and nuclear techniques with nuclear reactor, accelerators and radioisotopic sources are considered. The book is designed as a textbook for bachelor and postgraduate students of physical faculties of universities and engineering-physical institutions, lecturers and researchers, working in the field of nuclear physics. The book gives an up-to-date list of references on nuclear reaction theory and

  14. Theoretical studies in nuclear reactions and nuclear structure. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    1992-05-01

    Research in the Maryland Nuclear Theory Group focusses on problems in four basic areas of current relevance. Hadrons in nuclear matter; the structure of hadrons; relativistic nuclear physics and heavy ion dynamics and related processes. The section on hadrons in nuclear matter groups together research items which are aimed at exploring ways in which the properties of nucleons and the mesons which play a role in the nuclear force are modified in the nuclear medium. A very interesting result has been the finding that QCD sum rules supply a new insight into the decrease of the nucleon`s mass in the nuclear medium. The quark condensate, which characterizes spontaneous chiral symmetry breaking of the late QCD vacuum, decreases in nuclear matter and this is responsible for the decrease of the nucleon`s mass. The section on the structure of hadrons contains progress reports on our research aimed at understanding the structure of the nucleon. Widely different approaches are being studied, e.g., lattice gauge calculations, QCD sum rules, quark-meson models with confinement and other hedgehog models. A major goal of this type of research is to develop appropriate links between nuclear physics and QCD. The section on relativistic nuclear physics represents our continuing interest in developing an appropriate relativistic framework for nuclear dynamics. A Lorentz-invariant description of the nuclear force suggests a similar decrease of the nucleon`s mass in the nuclear medium as has been found from QCD sum rules. Work in progress extends previous successes in elastic scattering to inelastic scattering of protons by nuclei. The section on heavy ion dynamics and related processes reports on research into the e{sup +}e{sup {minus}} problem and heavy ion dynamics.

  15. An overview of activities of nuclear data physics centre of India (NDPCI)

    International Nuclear Information System (INIS)

    Saxena, Alok

    2015-01-01

    India has a three stage nuclear power programme which requires accurate inputs of nuclear data for design and safe operation of existing as well as for the design of new and innovative reactors. Apart from that nuclear data is required for accelerator shield design, personal dosimetry, radiation safety, production of radioisotopes, radiation damage studies, waste transmutation etc. To cater to various needs of department, the Nuclear Data Physics Centre of India (NDPCI) was formed in 2010-11 to provide a platform for coordinated efforts in all aspects of nuclear data, viz., measurements, analysis, compilation and evaluation involving national laboratories and universities in India. The NDPCI has projects / collaborations with universities and various units of department of atomic energy (DAE) across India involving physicist, radio-chemists, reactor physicists and computer engineers. A number of projects have been awarded under NDPCI to various universities to involve faculties and students in nuclear reactions, nuclear structure and EXFOR compilations. The NDPCI is presently a virtual centre under Board of Research in Nuclear Sciences of DAE and functions through two committees namely Program Implementation Committee and Program Review Committee involving scientists and faculties from various divisions of DAE units and universities. A brief account of NDPCI activities carried out by our researchers is described in this report

  16. Theoretical nuclear physics at Yale University

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-31

    Brief summaries of past and planned activities in the following areas are given: models of nuclear structure; models of hadronic structure; hot nuclei; chaos in nuclei; reactions and structure; dissipation, diffusion, and collective motion; and modeling equilibrium and nonequilibrium systems.

  17. The accident at TEPCO's Fukushima-Daiichi Nuclear Power Station: What went wrong and what lessons are universal?

    Science.gov (United States)

    Omoto, Akira

    2013-12-01

    After a short summary of the nuclear accident at the Fukushima Daiichi Nuclear Power Station, this paper discusses “what went wrong” by illustrating the problems of the specific layers of defense-in-depth (basic strategy for assuring nuclear safety) and “what lessons are universal.” Breaches in the multiple layers of defense were particularly significant in respective protection (a) against natural disasters (first layer of defense) as well as (b) against severe conditions, specifically in this case, a complete loss of AC/DC power and isolation from the primary heat sink (fourth layer of defense). Confusion in crisis management by the government and insufficient implementation of offsite emergency plans revealed problems in the fifth layer of defense. By taking into consideration managerial and safety culture that might have relevance to this accident, in the author's view, universal lessons are as follows: Resilience: the need to enhance organizational capabilities to respond, monitor, anticipate, and learn in changing conditions, especially to prepare for the unexpected. This includes increasing distance to cliff edge by knowing where it exists and how to increase safety margin. Responsibility: the operator is primarily responsible for safety, and the government is responsible for protecting public health and environment. For both, their right decisions are supported by competence, knowledge, and an understanding of the technology, as well as humble attitudes toward the limitations of what we know and what we can learn from others. Social license to operate: the need to avoid, as much as possible regardless of its probability of occurrence, the reasonably anticipated environmental impact (such as land contamination), as well as to build public confidence/trust and a renewed liability scheme.

  18. Reorganization of the radiologic protection of the nuclear reactor RA-0 for the next starting up at Cordoba National University

    International Nuclear Information System (INIS)

    Martin, H.R.; Chautemps, N.A.; Rumis, D.A.

    1991-01-01

    Due to the fulfillment to the tasks for the new starting up of the RA-0 Nuclear Reactor situated at the National University of Cordoba, it was necessary to plan and organize the service of Radiologic Protection to meet the future requirements in normal operation. The special characteristics that an installation of this type has in the university field, required special attention for making the university staff become aware in the working proceedings to follow up in normal conditions, such as the case of emergency that would originate in the installation. The training of the teaching and non teaching staff of the National University of Cordoba, the adjusting of the installations, the obtention of dosimetry and measurement equipment and the implementation of a monitor system of the staff were the main tasks confronted for the reorganization of the sector. (Author) [es

  19. Nuclear Analytical Techniques and Nonproliferation Studies at the University of Texas at Austin

    International Nuclear Information System (INIS)

    Landsberger, S.; Biegalski, S.; Schneider, E.; Foltz-Biegalski, K.

    2014-01-01

    The faculty members in the Nuclear and Radiation Engineering Program have made significant contributions to the placing of PhD and MS students in various programs at the national laboratories and US government. The success and foundation of the program is based on a strong collaboration with staff members at these various laboratories, per-reviewed publications, and continued financial support

  20. Developments in the Nuclear Safeguards and Security Engineering Degree Program at Tomsk Polytechnic University

    International Nuclear Information System (INIS)

    Boiko, Vladimir I.; Demyanyuk, Dmitry G.; Silaev, Maxim E.; Duncan, Cristen L.; Heinberg, Cynthia L.; Killinger, Mark H.; Goodey, Kent O.; Butler, Gilbert W.

    2009-01-01

    Over the last six years, Tomsk Polytechnic University (TPU) has developed a 5 1/2 year engineering degree program in the field of Material Protection Control and Accounting (MPC and A). In 2009 the first students graduated with this new degree. There were 25 job offers from nuclear fuel cycle enterprises of Russia and Kazakhstan for 17 graduates of the program. Due to the rather wide selection of workplaces, all graduates have obtained positions at nuclear enterprises. The program was developed within the Applied Physics and Engineering Department (APED). The laboratory and methodological base has been created taking into consideration the experience of the similar program at the Moscow Engineering Physics Institute (MEPhI). However, the TPU program has some distinguishing features such as the inclusion of special courses pertaining to fuel enrichment and reprocessing. During the last two years, three MPC and A laboratories have been established at APED. This was made possible due to several factors such as establishment of the State innovative educational program at TPU, assistance of the U.S. Department of Energy through Pacific Northwest National Laboratory and Los Alamos National Laboratory, and the financial support of the Swedish Radiation Safety Authority and some Russian private companies. All three of the MPC and A laboratories are part of the Innovative Educational Center 'Nuclear Technologies and Non-Proliferation,' which deals with many topics including research activities, development of new curricula for experts training and retraining, and training of master's students. In 2008, TPU developed a relationship with the International Atomic Energy Agency (IAEA), which was familiarized with APED's current resources and activities. The IAEA has shown interest in creation of a master's degree educational program in the field of nuclear security at TPU. A future objective is to acquaint nuclear fuel cycle enterprises with new APED capabilities and involve

  1. Universal correlations of nuclear observables and the structure of exotic nuclei

    International Nuclear Information System (INIS)

    Casten, R.F.; Zamfir, N.V.

    1996-01-01

    Despite the apparent complexity of nuclear structural evolution, recent work has shown a remarkable underlying simplicity that is unexpected, global, and which leads to new signatures for structure based on the easiest-to-obtain data. As such they will be extremely valuable for use in the experiments with low intensity radioactive beams. Beautiful correlations based either on extrinsic variables such as N p N n or the P-factor or correlations between collective observables themselves have been discovered. Examples to be discussed include a tri-partite classification of structural evolution, leading to a new paradigm that discloses certain specific classes of nuclei, universal trajectories for B(E2: w 1 + → 0 1 + ) values and their use in extracting hexadecapole deformations from this observable alone, the use of these B(E2) values to identify shell gaps and magic numbers in exotic nuclei, the relationship of β and γ deformations, and single nucleon separation energies. Predictions for nuclei far off stability by interpolation will also be discussed

  2. DOE/university reactor sharing

    International Nuclear Information System (INIS)

    Young, H.H.

    1985-01-01

    The objective of the US Department of Energy's program of reactor sharing is to strengthen nuclear science and engineering instruction and nuclear research opportunities in non-reactor-owning colleges and universities. The benefits of the program and need for the continuation of the program in the future are discussed

  3. Researches at the University of Tokyo fast neutron sources reactor, YAYOI

    International Nuclear Information System (INIS)

    Koshizuka, S.; Oka, Y.; Saito, I.

    1992-01-01

    The Fast neutron source reactor YAYOI was critical in 1971 at the Nuclear Engineering Research Laboratory, the Faculty of Engineering, the University of Tokyo (UTNL). The core is fueled with the enriched uranium surrounded by the depleted uranium. YAYOI is the first fast reactor in Japan. Many types of studies have been carried out by the researchers of the University of Tokyo in these 20 years. It also contributed to the Japan's national project of developing fast breeder reactors. The reactor is opened to the visiting researchers from universities and research institutes. YAYOI has also been utilized for education of undergraduate and graduate students of the Department of Nuclear Engineering of the University of Tokyo. The present paper briefly summerizes past and present researchers. (author)

  4. Nuclear Medicine in Turkey

    International Nuclear Information System (INIS)

    Durak, H.

    2001-01-01

    Nuclear Medicine is a medical specialty that uses radionuclides for the diagnosis and treatment of diseases and it is one of the most important peaceful applications of nuclear sciences. Nuclear Medicine has a short history both in Turkey and in the world. The first use of I-131 for the treatment of thyrotoxicosis in Turkey was in 1958 at the Istanbul University Cerrahpasa Medical School. In 1962, Radiobiological Institute in Ankara University Medical School was established equipped with well-type counters, radiometers, scalers, external counters and a rectilinear scanner. In 1965, multi-probe external detection systems, color dot scanners and in 1967, anger scintillation camera had arrived. In 1962, wet lab procedures and organ scanning, in 1965 color dot scanning, dynamic studies (blood flow - renograms) and in 1967 analogue scintillation camera and dynamic camera studies have started. In 1974, nuclear medicine was established as independent medical specialty. Nuclear medicine departments have started to get established in 1978. In 1974, The Turkish Society of Nuclear Medicine (TSNM) was established with 10 members. The first president of TSNM was Prof. Dr. Yavuz Renda. Now, in the year 2000, TSNM has 349 members. Turkish Society of Nuclear Medicine is a member of European Association of Nuclear Medicine (EANM), World Federation of Nuclear Medicine and Biology (WFNMB) and WFNMB Asia-Oceania. Since 1974, TSNM has organized 13 national Nuclear Medicine congresses, 4 international Nuclear Oncology congresses and 13 nuclear medicine symposiums. In 1-5 October 2000, 'The VII th Asia and Oceania Congress of Nuclear Medicine and Biology' was held in Istanbul, Turkey. Since 1992, Turkish Journal of Nuclear Medicine is published quarterly and it is the official publication of TSNM. There are a total of 112 Nuclear Medicine centers in Turkey. There are 146 gamma cameras. (52 Siemens, 35 GE, 16 Elscint, 14 Toshiba, 10 Sopha, 12 MIE, 8 Philips, 9 Others) Two cyclotrons are

  5. Application of electrostatic accelerators for nuclear physics studies

    International Nuclear Information System (INIS)

    Kuz'minov, B.D.; Romanov, V.A.; Usachev, L.N.

    1983-01-01

    The data are reviewed on dynamics of the development of single- and two-stage electrostatic accelerators (ESA) used as a tool or nuclear physics studies in the range of low and medium energies. The ESA wide possibilities are shown on examples of the most specific studies in the field of nuclear physics, work on measurement of nuclear constants to safisfy the nuclear power needs and applied studies on nuclear microanalysis. It is concluded that the contribution of studies performed using ESA to the development of nowadays concepts on nuclear structure and nuclear reaction kinetics is immeasurably higher than of any other nuclear-physics tool. ESA turned out to be also exceptionally useful for solving applied problems and investigations in different fields of knowledge. Carrying over the technique of investigations using ESA and nuclear physics concepts to atomic and molecular problems has found its application in optical spectroscopy in Lamb shift investigations in strongly ionized heavy ions, in various experiments on atom-atom and atom-molecular scattering, in stUdies of collisions and charge exchange. ESA contributed to the progress in such scientific fields as astraphysics, nuclear physics, solid-state physics, material science and biophysics

  6. Nuclear data newsletter. No. 20. Nuclear structure and decay data network

    International Nuclear Information System (INIS)

    1994-11-01

    This special issue of the Nuclear Data Newsletter dated November 1994 gives information on the Nuclear Structure and Decay Data (NSDD) Network established in 1974 under the auspices of the IAEA and comprising 17 laboratories and universities in 10 countries. The procedures for online access to US National Nuclear Data Center, NEA Data Bank in Paris and IAEA Nuclear Data Section in Vienna are presented

  7. Nuclear data newsletter. No. 20. Nuclear structure and decay data network

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-11-01

    This special issue of the Nuclear Data Newsletter dated November 1994 gives information on the Nuclear Structure and Decay Data (NSDD) Network established in 1974 under the auspices of the IAEA and comprising 17 laboratories and universities in 10 countries. The procedures for online access to US National Nuclear Data Center, NEA Data Bank in Paris and IAEA Nuclear Data Section in Vienna are presented.

  8. Nuclear Human Resources Development Program using Educational Core Simulator

    International Nuclear Information System (INIS)

    Choi, Yu Sun; Hong, Soon Kwan

    2015-01-01

    KHNP-CRI(Korea Hydro and Nuclear Power Co.-Central Research Institute) has redesigned the existing Core Simulator(CoSi) used as a sort of training tools for reactor engineers in operating nuclear power plant to support Nuclear Human Resources Development (NHRD) Program focusing on the nuclear department of Dalat university in Vietnam. This program has been supported by MOTIE in Korea and cooperated with KNA(Korea Nuclear Association for International Cooperation) and HYU(Hanyang University) for enhancing the nuclear human resources of potential country in consideration with Korean Nuclear Power Plant as a next candidate energy sources. KHNP-CRI has provided Edu-CoSi to Dalat University in Vietnam in order to support Nuclear Human Resources Development Program in Vietnam. Job Qualification Certificates Program in KHNP is utilized to design a training course for Vietnamese faculty and student of Dalat University. Successfully, knowhow on lecturing the ZPPT performance, training and maintaining Edu-CoSi hardware are transferred by several training courses which KHNP-CRI provides

  9. Nuclear Human Resources Development Program using Educational Core Simulator

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Yu Sun; Hong, Soon Kwan [KHNP-CRI, Daejeon (Korea, Republic of)

    2015-10-15

    KHNP-CRI(Korea Hydro and Nuclear Power Co.-Central Research Institute) has redesigned the existing Core Simulator(CoSi) used as a sort of training tools for reactor engineers in operating nuclear power plant to support Nuclear Human Resources Development (NHRD) Program focusing on the nuclear department of Dalat university in Vietnam. This program has been supported by MOTIE in Korea and cooperated with KNA(Korea Nuclear Association for International Cooperation) and HYU(Hanyang University) for enhancing the nuclear human resources of potential country in consideration with Korean Nuclear Power Plant as a next candidate energy sources. KHNP-CRI has provided Edu-CoSi to Dalat University in Vietnam in order to support Nuclear Human Resources Development Program in Vietnam. Job Qualification Certificates Program in KHNP is utilized to design a training course for Vietnamese faculty and student of Dalat University. Successfully, knowhow on lecturing the ZPPT performance, training and maintaining Edu-CoSi hardware are transferred by several training courses which KHNP-CRI provides.

  10. Investigations of nuclear structure and nuclear reactions induced by complex projectiles

    International Nuclear Information System (INIS)

    Sarantites, D.G.

    1993-01-01

    This is a progress report on activities of the Washington University group in nuclear reaction studies for the period Sept 1, 1992 to Aug 31, 1993. This group has a research program which touches five areas of nuclear physics: nuclear structure studies at high spin; studies at the interface between structure and reactions; production and study of hot nuclei; reaction mechanism studies; development and use of novel techniques and instrumentation in the above areas of research. Specific activities of the group include in part: superdeformation in 82 Sr; structure of and identical bands in 182 Hg and 178 Pt; a highly deformed band in 136 Pm; particle decay of the 164 Yb compound nucleus; fusion reactions; proton evaporation; two-proton decay of 12 O; modeling and theoretical studies; excited 16 O disassembly into four alpha particles; 209 Bi + 136 Xe collisions at 28.2 MeV/amu; and development work on 4π solid angle gamma detectors, and x-ray detectors

  11. Study of nuclear level densities for exotic nuclei

    International Nuclear Information System (INIS)

    Nasrabadi, M. N.; Sepiani, M.

    2012-01-01

    Nuclear level density is one of the properties of nuclei with widespread applications in astrophysics and nuclear medicine. Since there has been little experimental and theoretical research on the study of nuclei which are far from stability line, studying nuclear level density for these nuclei is of crucial importance. Also, as nuclear level density is an important input for nuclear research codes, hence studying the methods for calculation of this parameter is essential. Besides introducing various methods and models for calculating nuclear level density for practical applications, we used exact spectra distribution (SPDM) for determining nuclear level density of two neutron and proton enriched exotic nuclei with the same mass number.

  12. Gordon Conference on Nuclear Research

    International Nuclear Information System (INIS)

    Austin, S.M.

    1983-09-01

    Session topics were: quarks and nuclear physics; anomalons and anti-protons; the independent particle structure of nuclei; relativistic descriptions of nuclear structure and scattering; nuclear structure at high excitation; advances in nuclear astrophysics; properties of nuclear material; the earliest moments of the universe; and pions and spin excitations in nuclei

  13. Nuclear theory progress report

    International Nuclear Information System (INIS)

    1991-01-01

    This report discusses research performed at University of Washington in nuclear theory. Some of the topics discussed are: nuclear astrophysics; symmetry; time reversal invariance; quark matter; superallowed beta decay; exclusive reactions; nuclear probes; soliton model; relativistic heavy ion collisions; supernova explosions; neutrino processes in dense matter; field theories; weak interaction physics; and nuclear structure

  14. National Nuclear Physics Summer School

    CERN Document Server

    2016-01-01

    The 2016 National Nuclear Physics Summer School (NNPSS) will be held from Monday July 18 through Friday July 29, 2016, at the Massachusetts Institute of Technology (MIT). The summer school is open to graduate students and postdocs within a few years of their PhD (on either side) with a strong interest in experimental and theoretical nuclear physics. The program will include the following speakers: Accelerators and Detectors - Elke-Caroline Aschenauer, Brookhaven National Laboratory Data Analysis - Michael Williams, MIT Double Beta Decay - Lindley Winslow, MIT Electron-Ion Collider - Abhay Deshpande, Stony Brook University Fundamental Symmetries - Vincenzo Cirigliano, Los Alamos National Laboratory Hadronic Spectroscopy - Matthew Shepherd, Indiana University Hadronic Structure - Jianwei Qiu, Brookhaven National Laboratory Hot Dense Nuclear Matter 1 - Jamie Nagle, Colorado University Hot Dense Nuclear Matter 2 - Wilke van der Schee, MIT Lattice QCD - Sinead Ryan, Trinity College Dublin Neutrino Theory - Cecil...

  15. Industry-university collaboration for research and education

    Energy Technology Data Exchange (ETDEWEB)

    Shalaby, B.A.; Snell, V.G.; Rouben, B. [Univ. Network of Excellence in Nuclear Energy (UNENE), Ontario (Canada)

    2015-09-15

    University Network for Excellence in Nuclear Engineering also known as UNENE is a joint partnership between the nuclear industry and thirteen universities. UNENE has been legally registered as of 2002 as a not for profit organization. The establishment of this network was prompted by industry to address anticipated retirement of a large number of professionals from industry starting in early 2000 onwards and thus the loss of nuclear knowledge and experience within industry. UNENE was created to provide a sustainable supply of highly qualified personnel to industry, support nuclear research within various universities and provide a course based Master's Degree in nuclear engineering to enhance the knowledge of young professionals within the industry in the science and technology of the CANDU nuclear power system. The paper describes the current UNENE, its research objectives, key outcomes of research programs to date and its contribution to industry needs in maintaining an economic and safe power plant performance of its nuclear fleet. The paper addresses achievements within the education program and the new 4-course diploma program recently introduced to enhance core expertise of young industry professionals. Also publications and national and international collaborations in various aspects of research have significantly contributed to Canada's position in nuclear science and research worldwide. Such collaborations are also addressed. (author)

  16. Industry-university collaboration for research and education

    Energy Technology Data Exchange (ETDEWEB)

    Shalaby, B.A.; Snell, V.G.; Rouben, B., E-mail: basma.shalaby@rogers.com [University Network of Excellence in Nuclear Energy, Hamilton, ON (Canada)

    2015-07-01

    University Network for Excellence in Nuclear Engineering also known as UNENE is a joint partnership between the nuclear industry and thirteen universities. UNENE has been legally registered as of 2002 as a not for profit organization. The establishment of this network was prompted by industry to address anticipated retirement of a large number of professionals from industry starting in early 2000 onwards and thus the loss of nuclear knowledge and experience within industry. UNENE was created to provide a sustainable supply of highly qualified personnel to industry, support nuclear research within various universities and provide a course based Master's Degree in nuclear engineering to enhance the knowledge of young professionals within the industry in the science and technology of the CANDU nuclear power system. The paper describes the current UNENE, its research objectives, key outcomes of research programs to date and its contribution to industry needs in maintaining an economic and safe power plant performance of its nuclear fleet. The paper addresses achievements within the education program and the new 4-course diploma program recently introduced to enhance core expertise of young industry professionals. Also publications and national and international collaborations in various aspects of research have significantly contributed to Canada's position in nuclear science and research worldwide. Such collaborations are also addressed. (author)

  17. Annual report of Research Center for Nuclear Physics, Osaka University. 1997 (April 1, 1997-March 31, 1998)

    International Nuclear Information System (INIS)

    Toki, Hiroshi; Sakai, Tsutomu; Hirata, Maiko

    1998-01-01

    Research Center for Nuclear Physics (RCNP) is the national center of nuclear physics in Japan, which is a laboratory complex of the cyclotron laboratory, the laser electron photon laboratory, and the Oto underground laboratory and aims at studies of nucleon meson nuclear physics and quark lepton nuclear physics. In the cyclotron laboratory, AVF/Ring cyclotron complex provides high quality beams of polarized protons and light ions in the medium energy region. Experimental studies have extensively been carried out on nucleon meson nuclear physics. The subjects studied include the nucleon mass and the nuclear interaction in nuclear medium, nuclear spin isospin motions and nuclear responses for neutrinos, pions and isobars interactions, medium energy nuclear reactions of light heavy ions, medical applications, and so on. The Oto Cosmo Observatory is the low background underground laboratory for lepton nuclear physics, and is used for applied science. The laser photon laboratory is used to study quark nuclear physics by means of the multi-GeV laser electron photon beam, and will be ready in the academic year of 1998 to be used for studying quark gluon structures and low-energy QCD. The accelerator researches and developments are being carried out for the new future plan of the multi-GeV electron proton collider. Theoretical works on nuclear particle physics have extensively been made by the RCNP theory groups and laser groups. Computer, network and DAQ systems, including the supercomputer system and the new generation network, have been developed. In this report, 25 reports of nuclear physics, 8 reports of lepton nuclear physics, 1 report of quark nuclear physics, and 2 reports of interdisciplinary physics are described in the experimental nuclear physics. And, 16 reports of quark nuclear physics, 9 reports of intermediate nuclear physics, 19 reports of nuclear physics, and 1 report of miscellaneous are described in the theoretical physics. (G.K.)

  18. Nuclear spectroscopic studies. Progress report, June 1, 1984-May 31, 1985

    International Nuclear Information System (INIS)

    Bingham, C.R.; Guidry, M.W.; Riedinger, L.L.

    1985-01-01

    During this report period we have led several experiments at HHIRF, two at McMaster University Tandem Laboratory, and plan follow-up experiments to those reported in last years report at the Nuclear Structure Facility at Daresbury, England. Significant advances have been made in the (1) study of the low-energy properties of nuclei far from stability, (2) use of the Spin Spectrometer and internal avalanche detectors to sort out greater details of direct reactions between heavy ions, and (3) understanding the structure of deformed and transitional nuclei at high angular momentum and feeding patterns of the high-spin yrast levels. Theoretical work included application of the cranked shell model to understanding structure at high angular momentum, description of the general features of spectra observed for single-nucleon transfer between heavy ions, and application of Dynamical Symmetries in a fermion space to deduce a general description of nuclear structure over a broad range of states and behavior. Details are given

  19. Preparing to understand and use science in the real world: interdisciplinary study concentrations at the Technical University of Darmstadt.

    Science.gov (United States)

    Liebert, Wolfgang J

    2013-12-01

    In order to raise awareness of the ambiguous nature of scientific-technological progress, and of the challenging problems it raises, problems which are not easily addressed by courses in a single discipline and cannot be projected onto disciplinary curricula, Technical University of Darmstadt has established three interdisciplinary study concentrations: "Technology and International Development", "Environmental Sciences", and "Sustainable Shaping of Technology and Science". These three programmes seek to overcome the limitations of strictly disciplinary research and teaching by developing an integrated, problem-oriented approach. For example, one course considers fundamental nuclear dilemmas and uses role-playing techniques to address a controversy in the area of nuclear security. At the same time, incorporating interdisciplinary teaching into a university that is organized around mono- or multi-disciplinary faculties also poses a number of challenges. Recognition in disciplinary curricula, and appropriate organizational support and funding are examples of those challenges. It is expected that science and engineering students, empowered by such interdisciplinary study programmes, will be better prepared to act responsibly with regard to scientific and technological challenges.

  20. Comprehensive study on nuclear weapons. Summary of a United Nations study

    International Nuclear Information System (INIS)

    1991-01-01

    In December 1988, by resolution 43/75N, the United Nations General Assembly requested the Secretary-General to carry out a comprehensive update of a 1980 study on nuclear weapons. The study was to take into account recent relevant studies, and consider the political, legal and security aspects of: (a) nuclear arsenals and pertinent technological developments; (b) doctrines concerning nuclear weapons; (c) efforts to reduce nuclear weapons; (d) physical, environmental, medical and other effects of the use of nuclear weapons and of nuclear testing; (e) efforts to achieve a comprehensive nuclear-test ban; (f) efforts to prevent the use of nuclear weapons and their horizontal and vertical proliferation; and (g) the question of verification of compliance with nuclear-arms limitation agreements. The Group's report is presented in nine chapters, eight of which are summarized here; chapter 9, entitled ''Conclusions'', is included in its entirety. In his foreword to the report, the Secretary-General observes that the study represents the most comprehensive review of the relevant developments in the field over the last decade and was carried out during a period of ''far-reaching changes in international relations'' and an ''unprecedented evolution in the relationship between East and West''. This period experienced for the first time the initiation of an effective process of reduction of nuclear weapon stockpiles

  1. Nuclear Computational Low Energy Initiative (NUCLEI)

    Energy Technology Data Exchange (ETDEWEB)

    Reddy, Sanjay K. [University of Washington

    2017-08-14

    This is the final report for University of Washington for the NUCLEI SciDAC-3. The NUCLEI -project, as defined by the scope of work, will develop, implement and run codes for large-scale computations of many topics in low-energy nuclear physics. Physics to be studied include the properties of nuclei and nuclear decays, nuclear structure and reactions, and the properties of nuclear matter. The computational techniques to be used include Quantum Monte Carlo, Configuration Interaction, Coupled Cluster, and Density Functional methods. The research program will emphasize areas of high interest to current and possible future DOE nuclear physics facilities, including ATLAS and FRIB (nuclear structure and reactions, and nuclear astrophysics), TJNAF (neutron distributions in nuclei, few body systems, and electroweak processes), NIF (thermonuclear reactions), MAJORANA and FNPB (neutrino-less double-beta decay and physics beyond the Standard Model), and LANSCE (fission studies).

  2. Runaway universe

    Energy Technology Data Exchange (ETDEWEB)

    Davies, P

    1978-01-01

    The subject is covered in chapters entitled: the emerging universe (general introduction, history of astronomical and cosmological research, origins, the expanding universe, stars, galaxies, electromagnetic radiation); primeval fire (the big bang model, origin of the elements, properties of the elements and of sub-atomic particles); order out of chaos (galactic evolution, star formation, nuclear fusion, the solar system, origin of life on Earth); a star called Sol (properties of the sun and of other stars); life in the universe; the catastrophe principle (the rise and fall of cosmic order); stardoom (star evolution, neutron stars); black holes and superholes (gravitational collapse); technology and survival; the dying universe (second law of thermodynamics); worlds without end (cosmological models).

  3. The European Nuclear Education Network Association - ENEN

    International Nuclear Information System (INIS)

    De Regge, P.P.

    2005-01-01

    The temporary network, established through the European 5 th Framework Programme project ENEN, was given a more permanent character by the foundation of the European Nuclear Education Network Association, a non-profit-making association according to the French law of 1901, pursuing a pedagogic and scientific aim. Its main objective is the preservation and the further development of higher nuclear education and expertise. This objective is realized through the co-operation between the European universities, involved in education and research in the nuclear engineering field, the nuclear research centres and the nuclear industry. The membership of the ENEN Association now consists of 35 universities members and 6 research centres. The paper briefly describes the history and structure of the ENEN Association and elaborates on the objectives and activities of its five committees during its first two years of operation. Supported by the 5 th and 6 th Framework Programme of the European Community, the ENEN Association established the delivery of the European Master of Science in Nuclear Engineering certificate. In particular, education and training courses have been developed and offered to materialise the core curricula and optional fields of study in a European exchange structure. Pilot editions of those courses and try-outs of training programmes have been successfully organised with a satisfying interest, attendance and performance by the students and the support of nuclear industries and international organisations. The involvement of ENEN in the 6 th EC Framework project EUROTRANS will further enlarge its field of activities into a realm of nuclear disciplines. The ENEN Association further contributes to the management of nuclear knowledge within the European Union as well as on a world-wide level, through contacts with its sister Network ANENT in Asia, and by its participation to activities of the World Nuclear University. (author)

  4. The European Nuclear Education Network Association - ENEN

    International Nuclear Information System (INIS)

    Gentile, D.

    2006-01-01

    The temporary network, established through the European 5. Framework Programme project ENEN, was given a more permanent character by the foundation of the European Nuclear Education Network Association, a non-profit-making association according to the French law of 1901, pursuing a pedagogic and scientific aim. Its main objective is the preservation and the further development of higher nuclear education and expertise. This objective is realized through the co-operation between the European universities, involved in education and research in the nuclear engineering field, the nuclear research centres and the nuclear industry. The membership of the ENEN Association now consists of 35 universities members and 6 research centres. The paper briefly describes the history and structure of the ENEN Association and elaborates on the objectives and activities of its five committees during its first two years of operation. Supported by the 5. and 6. Framework Programme of the European Community, the ENEN Association established the delivery of the European Master of Science in Nuclear Engineering certificate. In particular, education and training courses have been developed and offered to materialize the core curricula and optional fields of study in a European exchange structure. Pilot editions of those courses and try-outs of training programmes have been successfully organised with a satisfying interest, attendance and performance by the students and the support of nuclear industries and international organisations. The involvement of ENEN in the 6. EC Framework project EUROTRANS will further enlarge its field of activities into a realm of nuclear disciplines. The ENEN Association further contributes to the management of nuclear knowledge within the European Union as well as on a world-wide level, through contacts with its sister Network ANENT in Asia, and by its participation to activities of the World Nuclear University. (author)

  5. The European Nuclear Education Network Association - ENEN

    Energy Technology Data Exchange (ETDEWEB)

    Gentile, D. [Institut des Sciences et Techniques Nucleaires, CEA - Centre de Saclay, Bat. 395, F-91191 Gif-sur-Yvette (France)

    2006-07-01

    The temporary network, established through the European 5. Framework Programme project ENEN, was given a more permanent character by the foundation of the European Nuclear Education Network Association, a non-profit-making association according to the French law of 1901, pursuing a pedagogic and scientific aim. Its main objective is the preservation and the further development of higher nuclear education and expertise. This objective is realized through the co-operation between the European universities, involved in education and research in the nuclear engineering field, the nuclear research centres and the nuclear industry. The membership of the ENEN Association now consists of 35 universities members and 6 research centres. The paper briefly describes the history and structure of the ENEN Association and elaborates on the objectives and activities of its five committees during its first two years of operation. Supported by the 5. and 6. Framework Programme of the European Community, the ENEN Association established the delivery of the European Master of Science in Nuclear Engineering certificate. In particular, education and training courses have been developed and offered to materialize the core curricula and optional fields of study in a European exchange structure. Pilot editions of those courses and try-outs of training programmes have been successfully organised with a satisfying interest, attendance and performance by the students and the support of nuclear industries and international organisations. The involvement of ENEN in the 6. EC Framework project EUROTRANS will further enlarge its field of activities into a realm of nuclear disciplines. The ENEN Association further contributes to the management of nuclear knowledge within the European Union as well as on a world-wide level, through contacts with its sister Network ANENT in Asia, and by its participation to activities of the World Nuclear University. (author)

  6. Final Technical Report; NUCLEAR ENGINEERING RECRUITMENT EFFORT

    Energy Technology Data Exchange (ETDEWEB)

    Kerrick, Sharon S.; Vincent, Charles D.

    2007-07-02

    This report provides the summary of a project whose purpose was to support the costs of developing a nuclear engineering awareness program, an instruction program for teachers to integrate lessons on nuclear science and technology into their existing curricula, and web sites for the exchange of nuclear engineering career information and classroom materials. The specific objectives of the program were as follows: OBJECTIVE 1: INCREASE AWARENESS AND INTEREST OF NUCLEAR ENGINEERING; OBJECTIVE 2: INSTRUCT TEACHERS ON NUCLEAR TOPICS; OBJECTIVE 3: NUCLEAR EDUCATION PROGRAMS WEB-SITE; OBJECTIVE 4: SUPPORT TO UNIVERSITY/INDUSTRY MATCHING GRANTS AND REACTOR SHARING; OBJECTIVE 5: PILOT PROJECT; OBJECTIVE 6: NUCLEAR ENGINEERING ENROLLMENT SURVEY AT UNIVERSITIES

  7. Saudi Arabia: the French nuclear sector mobilized

    International Nuclear Information System (INIS)

    Cheikh-Ali, A.

    2016-01-01

    Saudi Arabia is preparing itself to replace half fossil energies by a mix of nuclear and renewable energies. Although the nuclear program is not yet well implemented, Saudi Arabia and France have signed an agreement to develop cooperation in the nuclear sector. A joint committee was created to give a frame to assess the best practices in terms of nuclear regulations, waste management, scientific cooperation and training. Concerning nuclear regulations, waste management and scientific cooperation the French contacts of KACARE (King Abdullah City for Atomic and Renewable Energy) are respectively IRSN, ANDRA and CEA. Concerning scholar and professional training, a cooperation involving I2EN (International Institute for Nuclear Energy), EDF and AREVA on one side and the King Saud University, the Prince Mohammad University, the EFFAT University and the Dar Al Hekma College on the other side, has been set to develop training in nuclear engineering in Saudi Arabia. In parallel, AREVA and EDF have developed a program to find and qualify local subcontractors. (A.C.)

  8. Study of advanced professional educational requirements relative to nuclear fuel cycle engineering in industry and government. Final report

    International Nuclear Information System (INIS)

    Jur, T.A.; Huhns, M.N.; Keating, D.A.; Orloff, D.I.; Rhodes, C.A.; Stanford, T.G.; Stephens, L.M.; Tatterson, G.B.; Van Brunt, V.

    1978-12-01

    Under contract with the U.S. Department of Energy, the College of Engineering at the University of South Carolina has conducted an assessment of educational needs among engineers working in nuclear fuel cycle related areas. The study was initiated as a regional effort focusing on the concentration of nuclear industry in the Southeast. Educational needs addressed were those at the post-baccalaureate professional level. The project was envisioned as providing base line information for the eventual implementation of a program in line with the needs of the Southeast's nuclear community. Specific objectives were to establish the content of such a program and to determine those specialized features which would make the program most attractive and useful

  9. Study of advanced professional educational requirements relative to nuclear fuel cycle engineering in industry and government. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Jur, T.A.; Huhns, M.N.; Keating, D.A.; Orloff, D.I.; Rhodes, C.A.; Stanford, T.G.; Stephens, L.M.; Tatterson, G.B.; Van Brunt, V.

    1978-12-01

    Under contract with the U.S. Department of Energy, the College of Engineering at the University of South Carolina has conducted an assessment of educational needs among engineers working in nuclear fuel cycle related areas. The study was initiated as a regional effort focusing on the concentration of nuclear industry in the Southeast. Educational needs addressed were those at the post-baccalaureate professional level. The project was envisioned as providing base line information for the eventual implementation of a program in line with the needs of the Southeast's nuclear community. Specific objectives were to establish the content of such a program and to determine those specialized features which would make the program most attractive and useful.

  10. Feasibility study for the Nuclear Research Centre of the Nuclear Energy Commission

    International Nuclear Information System (INIS)

    1985-01-01

    The feasibility study was carried out in order to evaluate the possibility of building a Nuclear Research Centre in Uruguay, which would support a wide range of nuclear related technological activities. A market research was carried out, of the products to be manufactured at the Nuclear Centre, regarding the size of production. A detailed list of the main products considered is enclosed. The siting study was performed through the analysis of the incidental factors, such as environment, technical scope and socio-ecomonic factors. An engineering study for the main installations was done. The investment and financial sources were also studied

  11. Report of the research results with University of Tokyo, Nuclear Engineering Research Laboratory's facilities in fiscal 1993

    International Nuclear Information System (INIS)

    1994-01-01

    This publication summarizes the results of the joint utilization of the research 'Yayoi' and the electron beam accelerator in the Nuclear Engineering Research Laboratory, University of Tokyo, in the fiscal year 1993. In this report, the gists of 15 researches which were carried out on pile of the Yayoi, 9 researches off pile of the Yayoi and 14 researches by using the linear accelerator are collected. In addition, the 13 reports of Yayoi Study Meeting held in fiscal year 1993 are collected. Moreover, the list of the events carried out in the facility in fiscal year 1993, the registers of names of various committees, and the register of the names of persons who were in charge of joint utilization experiments in fiscal year 1993 are attached. (K.I.)

  12. The coming crisis in nuclear skills and education

    International Nuclear Information System (INIS)

    Magwood, William D. IV; )

    2017-01-01

    In the early 1990's, nuclear engineering programs in universities across the United States began to collapse. Whereas at the beginning of the decade, there were nearly 2000 nuclear engineering students studying in US colleges and universities, the perception that there was no future career in nuclear technology led to a drop in enrolments to less than 800 by 1998. At the same time, entire programs were closing and university research reactors were being shut down at a rate of almost one each year. A governmental decision was made to reverse this trend. Impactful investments in university research, scholarships and fellowships, and infrastructure - along with vocal support for this field of study from senior government officials and members of Congress - had an immediate impact. Enrolments grew quickly and later accelerated as industry began hiring aggressively. Today, there are around 5000 nuclear engineering students in US schools, many focused on medical applications, non-proliferation, fusion and other areas - including, of course, advanced nuclear energy technologies. The nuclear specialists emerging from these education programs arrived at just the right time, as governmental agencies, industry and scientific organisations rushed to prepare for retirements in the ranks of experienced nuclear engineers. The foresight to support nuclear education in the late 1990's averted what might have been a crisis in human resources by 2010. However today, as we review the situation globally, the potential for a crisis over the next decade in the availability of trained nuclear specialists seems extraordinarily high. In many NEA countries, training of nuclear engineers and scientists is on a steadily declining path. Once highly lauded programs have been significantly diminished or already eliminated. In some fields, such as nuclear chemistry - which is essential in the application of radioactive materials to support advanced medical applications and explore advanced

  13. Building a universal nuclear energy density functional

    International Nuclear Information System (INIS)

    Bertsch, G F

    2007-01-01

    This talk describes a new project in SciDAC II in the area of low-energy nuclear physics. The motivation and goals of the SciDAC are presented as well as an outline of the theoretical and computational methodology that will be employed. An important motivation is to have more accurate and reliable predictions of nuclear properties including their binding energies and low-energy reaction rates. The theoretical basis is provided by density functional theory, which the only available theory that can be systematically applied to all nuclei. However, other methodologies based on wave function methods are needed to refine the functionals and to make applications to dynamic processes

  14. Nuclear physics research at the University of Richmond. Progress report, November 1, 1994 - October 31, 1995

    International Nuclear Information System (INIS)

    Vineyard, M.F.; Gilfoyle, G.P.; Major, R.W.

    1995-01-01

    Summarized in this report is the progress achieved during the period from November 1, 1994 to October 31, 1995. The experimental work described in this report is in electromagnetic and heavy-ion nuclear physics. The effort in electromagnetic nuclear physics is in preparation for the research program at the Continuous Electron Beam Accelerator Facility (CEBAF) and is focused on the construction and use of the CEBAF Large Acceptance Spectrometer (CLAS). The heavy-ion experiments were performed at the Argonne National Laboratory ATLAS facility and SUNY, Stony Brook. The physics interests driving these efforts at CEBAF are in the study of the structure, interactions, and nuclear-medium modifications of mesons and baryons. This year, an extension of the experiment to measure the magnetic form factor of the neutron was approved by the CEBAF Program Advisory Committee Nine (PAC9) for beam at 6 GeV. The authors also submitted updates to PAC9 on the experiments to measure inclusive η photoproduction in nuclei and electroproduction of the Λ, Λ*(1520), and f 0 (975). In addition to these experiments, the authors collaborated on a proposal to measure rare radiative decays of the φ meson which was also approved by PAC9. Their contributions to the construction of the CLAS include the development of the drift-chamber gas system, drift-chamber software, and controls software. Major has been leading the effort in the construction of the gas system. In the last year, the Hall B gas shed was constructed and the installation of the gas system components built at the University of Richmond has begun. Over the last six years, the efforts in low-energy heavy-ion physics have decreased due to the change in focus to electromagnetic nuclear physics at CEBAF. Most of the heavy-ion work is completed and there are now new experiments planned. Included in this report are two papers resulting from collaborations on heavy-ion experiments

  15. Nuclear physics in the cosmos

    International Nuclear Information System (INIS)

    Bertulani, Carlos

    2011-01-01

    Nuclear astrophysics studies the physics of atomic nuclei, gravity, and thermodynamics in the early universe, stars and stellar explosions. Seventy years of nuclear science has allowed us to infer the origin of the chemical elements out of which our bodies and the Earth are made. We now believe that the lightest elements were created in nuclear reactions in the first three minutes after the big bang, and all the rest were made in nuclear reactions inside the stars and distributed throughout interstellar space via stellar winds and giant stellar explosions. I will show how a new generation of theoretical developments and experiments can shed light on the complex nuclear processes that control the evolution of stars and stellar explosions. (author)

  16. A study on the nuclear technology policy

    International Nuclear Information System (INIS)

    Kim, H. J.; Oh, K. B.; Chung, W. S.; Lee, T. J.; Yun, S. W.; Jeong, Ik

    2005-01-01

    This study was conducted as a part of institutional activities of KAERI, and the objective of the study is to survey and analyze the change of international environment in nuclear use and research and development environment, and to propose systematic alternatives on technology policy for efficiency and effectiveness of research and development through national R and D program while timely responding to the environmental change in local and global sense. Acknowledging the importance of the relationship between the external environment and the national nuclear R and D strategic planning for changing of environment of surrounding nuclear technology and development in the world, this study focused on the three major subjects: (1) investigation and analysis of international nuclear environmental and technological change; (2) developing nuclear R and D strategy based on the analysis of national and global environment surrounding nuclear technology development and diffusion; (3) the evaluation of role of nuclear technology and environment from the point of views of environmental effects. In order to enhance the role of national nuclear R and D program and to cope with the environmental and technological change surrounding nuclear energy, it is recommended that active participation should be done in ongoing international collaboration on future innovative nuclear technology for absorption of advanced technologies and strategic R and D planning should be centered on core technology field based on long-term vision and suggested NuTRM considering future energy-environmental surroundings for maximized use of domestic technology capabilities and resources

  17. Building a universal nuclear energy density functional (UNEDF)

    Energy Technology Data Exchange (ETDEWEB)

    Nazarewicz, Witold [Univ. of Tennessee, Knoxville, TN (United States)

    2012-07-01

    The long-term vision initiated with UNEDF is to arrive at a comprehensive, quantitative, and unified description of nuclei and their reactions, grounded in the fundamental interactions between the constituent nucleons. We seek to replace current phenomenological models of nuclear structure and reactions with a well-founded microscopic theory that delivers maximum predictive power with well-quantified uncertainties. Specifically, the mission of this project has been three-fold: First, to find an optimal energy density functional (EDF) using all our knowledge of the nucleonic Hamiltonian and basic nuclear properties. Second, to apply the EDF theory and its extensions to validate the functional using all the available relevant nuclear structure and reaction data. Third, to apply the validated theory to properties of interest that cannot be measured, in particular the properties needed for reaction theory.

  18. Measurement of nuclear cross sections using radioactive beams

    International Nuclear Information System (INIS)

    Lizcano, D.; Aguilera, E.F.; Martinez Q, E.

    1999-01-01

    One of the main applications of the production and use of nuclear radioactive beams is the measurement of nuclear cross sections. In this work is used a 6 He nuclear radioactive beam (β emitting with half life 806.7 ms) for the study of the reaction 6 + 209 Bi which could have several products. This investigation was realized in collaboration with the personnel of the Nuclear Structure laboratory at the University of Notre Dame (U.S.A.) and the National institute of Nuclear Research and CONACyT by Mexico. (Author)

  19. PREFACE: EPS Euroconference XIX Nuclear Physics Divisional Conference: New Trends in Nuclear Physics Applications and Technology

    Science.gov (United States)

    2006-06-01

    It was with great pleasure that the Department of Nuclear and Theoretical Physics of the University of Pavia and the INFN (Istituto Nazionale di Fisica Nucleare) Structure of Pavia organised the XIX Nuclear Physics Divisional Conference of the European Physical Society, which was held in the historical buildings of the University of Pavia from 5-9 September 2005. The Conference was devoted to the discussion of the most recent experimental and theoretical achievements in the field of Nuclear Physics applications, as well as of the latest developments in technological tools related to Nuclear Physics research. The University of Pavia has a long tradition in Physics and in Applied Physics, being the site where Alessandro Volta developed his "pila", the precursor of the modern battery. This is the place where the first experiments with electricity were conducted and where the term "capacitance" used for capacitors was invented. Today the University hosts a Triga Mark II nuclear reactor, which is used by the Departments of the University of Pavia and by other Universities and private companies as well. Moreover, Pavia is the site selected for the construction of the CNAO complex "Centro Nazionale di Adroterapia Oncologica" (National Centre for Oncological Hadrontherapy), planned for 2005-2008 which represents a unique facility in Italy and will be among the first complexes of this type in Europe. The Conference has gathered together experts in various fields from different countries and has been the occasion to review the present status and to discuss the new emerging trends in Nuclear Physics and its applications to multidisciplinary researches and the development of new technologies. The following topics were treated: Nuclear Techniques in Medicine and Life Sciences (Cancer Therapy, new Imaging and Diagnostics Tools, Radioisotope production, Radiation Protection and Dosimetry). Applications of Nuclear Techniques in Art, Archaeometry and other Interdisciplinary fields

  20. Nuclear standardization development study

    International Nuclear Information System (INIS)

    Pan Jianjun

    2010-01-01

    Nuclear industry is the important part of national security and national economic development is key area of national new energy supported by government. nuclear standardization is the important force for nuclear industry development, is the fundamental guarantee of nuclear safe production, is the valuable means of China's nuclear industry technology to the world market. Now nuclear standardization faces to the new development opportunity, nuclear standardization should implement strategy in standard system building, foreign standard research, company standard building, and talented people building to meet the requirement of nuclear industry development. (author)

  1. Dubna - A University Town Exhibition Science Bringing Nations Together

    CERN Multimedia

    2000-01-01

    1994 marked the opening of the Dubna International University of Nature, Society and Man. It was established on the initiative of the JINR Directorate and supported by the Academy of Natural Sciences of Russia. An integral part of the University is the JINR University Centre which offers educational programmes in high energy physics, nuclear physics, nuclear methods in condensed matter physics, applied physics, and radio-biology.

  2. The accident at TEPCO's Fukushima-Daiichi Nuclear Power Station: What went wrong and what lessons are universal?

    International Nuclear Information System (INIS)

    Omoto, Akira

    2013-01-01

    After a short summary of the nuclear accident at the Fukushima Daiichi Nuclear Power Station, this paper discusses “what went wrong” by illustrating the problems of the specific layers of defense-in-depth (basic strategy for assuring nuclear safety) and “what lessons are universal.” Breaches in the multiple layers of defense were particularly significant in respective protection (a) against natural disasters (first layer of defense) as well as (b) against severe conditions, specifically in this case, a complete loss of AC/DC power and isolation from the primary heat sink (fourth layer of defense). Confusion in crisis management by the government and insufficient implementation of offsite emergency plans revealed problems in the fifth layer of defense. By taking into consideration managerial and safety culture that might have relevance to this accident, in the author's view, universal lessons are as follows: a)Resilience: the need to enhance organizational capabilities to respond, monitor, anticipate, and learn in changing conditions, especially to prepare for the unexpected. This includes increasing distance to cliff edge by knowing where it exists and how to increase safety margin. b)Responsibility: the operator is primarily responsible for safety, and the government is responsible for protecting public health and environment. For both, their right decisions are supported by competence, knowledge, and an understanding of the technology, as well as humble attitudes toward the limitations of what we know and what we can learn from others. c)Social license to operate: the need to avoid, as much as possible regardless of its probability of occurrence, the reasonably anticipated environmental impact (such as land contamination), as well as to build public confidence/trust and a renewed liability scheme

  3. Nuclear physics--at the frontiers of knowledge

    International Nuclear Information System (INIS)

    Feshbach, H.

    1995-01-01

    Nuclear physics has been and will be a major factor in science and technology. The researches in nuclear physics leads to results which can be characterized as universal in that will suitable modifications they apply to small systems generally. It is introduced on the study of nucleon heavy ions and the quark-gluon plasma radioactive nuclei weak interactions and nuclear theory in this paper. The contributions to medicine, industry and other sciences is reviewed. The activity of nuclear physics as frontier research is emphasized. The importance of its applications is pointed out. (Su)

  4. To promote public acceptance of nuclear energy by WiN-JAPAN

    International Nuclear Information System (INIS)

    Kuroiwa, Haruko; Kobayashi, Yoko; Ogawa, Junko

    2011-01-01

    Women in Nuclear Japan (WiN-J) has been striving to promote activities that increase public acceptance of nuclear energy especially by women. According to a public opinion poll in 2009 by the Cabient Office, Government of Japan, the ratio of men who have confidence in nuclear power plant safety was 52.1%, while the ratio of females was only 32.5%. And the ratio of negative feeling about nuclear power among males was 45.8%, while the ratio of females was 61.2%. This indicates the necessity of communication to females to encourage them to accept nuclear power. WiN-J developed two methods of communication with the public and young people about the benefits of nuclear energy and the applications of radiation in many aspects of the life. The first is town hall meetings, and the other is education for university students in the style of a Science Cafe. Surprisingly, present university student never studied about nuclear energy when they were elementary or junior high school students. However, those students will have to educate their own children to use energy wisely in consideration of the limited energy resources in the coming years. WiN-J, therefore, gives them some relevant lectures on nuclear energy and radiation. Also WiN-J can be the models for female university students who have issues such as marriage, pregnancy, promotions, and transfers which can be discussed. We have to increase the numbers of female nuclear engineers to promote public trust in the safety of nuclear power plants. For this purpose, WiN-J encourages female university students to enter the nuclear industry. We recognize that to gain people's understanding of and trust in nuclear energy may take a long time. WiN-J will continue to fulfill our challenging mission for the peaceful use of nuclear energy. (author)

  5. Interventional studies in nuclear medicine

    International Nuclear Information System (INIS)

    Saha, G.B.; Swanson, D.P.; Hladik, W.B. III

    1987-01-01

    Pharmacological interventions in nuclear medicine studies have been in practice for a long time. The triiodothyronine (T/sub 3/) suppression, Thyroid-stimulating hormone (TSH) stimulation, and perchlorate discharge tests are common examples of well-established diagnostic interventional studies. In recent years, pharmacologic and physiologic interventions in other nuclear medicine procedures have drawn considerable attention. The primary purpose of these interventions is to augment, complement or, more often, differentiate the information obtained from conventional nuclear medicine diagnostic studies. Pharmacologic interventions involve the administration of a specific drug before, during, or after the administration of radiopharmaceutical for a given study. The change in information due to intervention of the drug offers clues to differentiating various disease conditions. These changes can be brought about by physiologic interventions also, e.g., exercise in radionuclide ventriculography. In the latter interventions, the physiologic function of an organ is enhanced or decreased by physical maneuvers, and the changes observed can be used to differentiate various disease conditions

  6. US Department of Energy Nuclear Energy University program in robotics for advanced reactors: Program plan, FY 1987-1991

    International Nuclear Information System (INIS)

    Mann, R.C.; Gonzalez, R.C.; Tulenko, J.S.; Tesar, D.; Wehe, D.K.

    1987-07-01

    The US Department of Energy has provided support to four universities and the Oak Ridge National Laboratory in order to pursue research leading to the development and deployment of an advanced robotic system capable of performing tasks that are hazardous to humans, that generate significant occupational radiation exposure, and/or whose execution times can be reduced if performed by an automated system. The goal is to develop a generation of advanced robotic systems capable of performing surveillance, maintenance, and repair tasks in nuclear facilities and other hazardous environments. This goal will be achieved through a team effort among the Universities of Florida, Michigan, Tennessee, Texas, and the Oak Ridge National Laboratory, and their industrial partners, Combustion Engineering, Martin Marietta Baltimore Aerospace, Odetics, Remotec, and Telerobotics International. Each of the universities and ORNL have ongoing activities and corresponding facilities in areas of R and D related to robotics. This program is designed to take full advantage of these existing resources at the participating institutions

  7. Supporting project on international education and training in cooperated program for Radiation Technology with World Nuclear University

    International Nuclear Information System (INIS)

    Yoo, Byung Duk; Nam, Y. M.; Noh, S. P.; Shin, J. Y.

    2010-08-01

    The objective is promote national status and potential of Nuclear radiation industry, and take a world-wide leading role in radiation industry, by developing and hosting the first WNU Radiation Technology School. RI School (World Nuclear University Radioisotope School) is the three-week program designed to develop and inspire future international leaders in the field of radioisotope for the first time. The project would enable promote abilities of radioactive isotopes professions, and to build the human network with future leaders in the world-wide nuclear and radiation field. Especially by offering opportunity to construct human networks between worldwide radiation field leaders of next generation, intangible assets and pro-Korean human networks are secured among international radiation industry personnel. This might enhance the power and the status of Korean radiation industries, and establish the fundamental base for exporting of radiation technology and its products. We developed the performance measurement method for the school. This shows that 2010 WNU RI School was the first training program focusing on the radioisotope and very useful program for the participants in view of knowledge management and strengthening personal abilities. Especially, the experiences and a human network with world-wide future-leaders in radiation field are most valuable asset. It is expected that the participants could this experience and network developed in the program as a stepping stone toward the development of Korea's nuclear and radiation industry

  8. Application of nuclear chemistry in the study of the universe

    International Nuclear Information System (INIS)

    Kuroda, P.K.

    2000-01-01

    Isotopic compositions of the strange Xenon components-HL and the s-type xenon can be explained in a straightforward manner as due to the alteration of the isotopic composition of xenon caused by a combined effect of (a) mass-fractionation, (b) spallation and (c) stellar-temperature neutron-capture reactions. As much as 42.49% of total 136 Xe (Σ 136 Xe) found in the Allende diamond inclusions is 244 Pu fission xenon ( 136f Xe) and the trapped xenon is severely mass-fractionated in such a manner that the lighter xenon isotopes are systematically depleted relative to the heavier isotopes. The relative abundances of 130 Xe and 132 Xe in the trapped xenon component are both markedly enhanced indicating that it was irradiated with a total flux of 1.2 x 10 23 n x cm -2 of stellar-temperature (10 keV) neutrons. The xenon found in the s-type xenon, on the other hand, resemble that of the atmospheric xenon irradiated with a total flux of about 6.0 x 10 23 n x cm -2 of 10 keV neutrons. These results indicate that we are seeing here the effects of nuclear processes occurring inside of a star, such as the exploding supernova. (author)

  9. The midwest workshop on preparing nuclear engineering professionals

    International Nuclear Information System (INIS)

    Danofsky, R.A.; Rohach, A.F.; Spinrad, B.I.; Nodean, W.C.

    1988-01-01

    Personnel training and education are activities of major importance for nuclear utilities and represent fruitful areas for possible cooperation between utilities and educational institutions. Utility personnel have a need for continuing education through advanced and undergraduate degree programs and special courses. Nuclear engineering departments are in a position to meet at least some of these needs. The purpose of the workshop described in this paper was to explore ways to increase the dialogue between utilities and universities and to bring faculty and utility personnel together to discuss the educational needs of nuclear utilities. The workshop was held May 25-27, 1988, at Iowa State University. Planning for the workshop was coordinated by a steering committee with representation from the Department of Nuclear Engineering at Iowa State University, Iowa Electric Light and Power Company (IEL ampersand P), and Kirkwood Community College at Cedar Rapids, Iowa. Participants represented nuclear utilities, nuclear engineering departments, 2- and 4-yr colleges, a nuclear training organization, and the Institute of Nuclear Power Operations

  10. Advanced nuclear systems. Review study; Fortgeschrittene Nuklearsysteme. Review Study

    Energy Technology Data Exchange (ETDEWEB)

    Liebert, Wolfgang; Glaser, Alexander; Pistner, Christoph [Interdisziplinaere Arbeitsgruppe Naturwissenschaft, Technik und Sicherheit (IANUS), Darmstadt University of Technology, Hochschulstrasse 10, D-64289 Darmstadt (Germany); Baehr, Roland; Hahn, Lothar [Institute for applied ecology (Oeko-Institut), Elisabethenstrasse 55-57, D-64283 Darmstadt (Germany)

    1999-04-01

    The task of this review study is to from provide an overview of the developments in the field of the various advanced nuclear systems, and to create the basis for more comprehensive studies of technology assessment. In an overview the concepts for advanced nuclear systems pursued worldwide are subdivided into eight subgroups. A coarse examination raster (set pattern) is developed to enable a detailed examination of the selected systems. In addition to a focus on enhanced safety features, further aspects are also taken into consideration, like the lowering of the proliferation risk, the enhancement of the economic competitiveness of the facilities and new usage possibilities (for instance concerning the relaxation of the waste disposal problem or the usage of alternative fuels to uranium). The question about the expected time span for realization and the discussion about the obstacles on the way to a commercially usable reactor also play a substantial role as well as disposal requirements as far as they can be presently recognized. In the central chapter of this study, the documentation of the representatively selected concepts is evaluated as well as existing technology assessment studies and expert opinions. In a few cases where this appears to be necessary, according technical literature, further policy advisory reports, expert statements as well as other relevant sources are taken into account. Contradictions, different assessments and dissents in the literature as well as a few unsettled questions are thus indicated. The potential of advanced nuclear systems with respect to economical and societal as well as environmental objectives cannot exclusively be measured by the corresponding intrinsic or in comparison remarkable technical improvements. The acceptability of novel or improved systems in nuclear technology will have to be judged by their convincing solutions for the crucial questions of safety, nuclear waste and risk of proliferation of nuclear weapons

  11. Education for the nuclear power industry: Swedish perspective

    International Nuclear Information System (INIS)

    Blomgren, J.

    2005-01-01

    In the Swedish nuclear power industry staff, very few newly employed have a deep education in reactor technology. To remedy this, a joint education company, Nuclear Training and Safety Center (KSU), has been formed. To ensure that nuclear competence will be available also in a long-term perspective, the Swedish nuclear power industry and the Swedish Nuclear Power Inspectorate (SKI) have formed a joint center for support of universities, the Swedish Nuclear Technology Center (SKC). The activities of these organisations, their links to universities, and their impact on the competence development for the nuclear power industry will be outlined. (author)

  12. IAEA Activities in Nuclear Security, 18 April 2013, Delft, The Netherlands

    International Nuclear Information System (INIS)

    Amano, Y.

    2013-01-01

    I am pleased to take part in this event marking the launch of the new Masters Programme in Nuclear Security at the Reactor Institute Delft. The Institute has been an IAEA Collaborating Centre for nearly four years. Our two organisations have worked closely together in training and research, as well as in areas such as establishing quality management systems at nuclear analytical laboratories in IAEA Member States. The launch of the new Masters Programme in Nuclear Security by the Delft University of Technology marks a new stage in our cooperation. Four other European universities are also taking part in the programme: the University of Oslo, the Technical University of Vienna, the Brandenburg University of Applied Sciences, and the University of Manchester Dalton Nuclear Institute. I am pleased that the syllabus for the course has been developed from the IAEA's Educational Programme in Nuclear Security. I commend this effort to train a new generation of experts who can help to improve global nuclear security. Strengthening nuclear security throughout the world remains a challenge for all of us. National governments have primary responsibility for nuclear security, but international cooperation is vital.

  13. JSPS-CAS Core University Program seminar on summary of 10-year collaborations in plasma and nuclear fusion research area

    International Nuclear Information System (INIS)

    Toi, Kazuo; Wang Kongjia

    2011-07-01

    The JSPS-CAS Core University Program (CUP) seminar on “Summary of 10-year Collaborations in Plasma and Nuclear Fusion Research Area” was held from March 9 to March 11, 2011 in the Okinawa Prefectural Art Museum, Naha city, Okinawa, Japan. The collaboration program on plasma and nuclear fusion started from 2001 under the auspices of Japanese Society of Promotion of Science (JSPS) and Chinese Academy of Sciences (CAS). This year is the last year of the CUP. This seminar was organized in the framework of the CUP. In the seminar, 29 oral talks were presented, having 14 Chinese and 30 Japanese participants. These presentations covered key topics related to the collaboration categories: (1) improvement of core plasma properties, (2) basic research on fusion reactor technologies, and (3) theory and numerical simulation. This seminar aims at summarizing the results obtained through the collaborations for 10 years, and discussing future prospects of China-Japan collaboration in plasma and nuclear fusion research areas. (author)

  14. Nuclear physics with use of KUR. Reviews of 30 years studies on short-lived nuclei and perspectives for the future

    International Nuclear Information System (INIS)

    Kawase, Yoichi

    1995-01-01

    The research works which were carried out over the past 30 years on nuclear structure study have been reviewed with emphasis on the technical developments of experimental apparatus for the studies of very short-lived isotopes produced by the Kyoto University reactor(KUR). In the first chapter, nuclear structure studies of neutron-rich nuclei with use of the on-line irradiation apparatus and the on-line isotope separator(ISOL) for fission products have been described. In the second chapter, applications of nuclear methods to solid state physics by the perturbed angular correlation(PAC) technique have been examined to investigate the local electromagnetic fields in metals and compounds through the hyperfine interactions. Perspectives for the future of related research fields are given aiming at the advanced uses of short-lived radioisotopes. (author)

  15. Nuclear Manpower Training

    International Nuclear Information System (INIS)

    Han, K. W.; Lee, H. Y.; Lee, E. J. and others

    2004-12-01

    Through the project on nuclear human resources development in 2004, the Nuclear Training Center of KAERI has provided various nuclear education and training courses for 1,962 persons from the domestic nuclear related organizations such as Government Agencies, nuclear industries, R and D institutes, universities, and public as well as from IAEA Member States. The NTC has developed education programs for master/doctorial course on advanced nuclear engineering in cooperation with the University of Science and Technology which was established in 2003. Additionally, nuclear education programs such as nuclear technical training courses for the promotion of cooperation with member countries, have developed during the project period. The center has also developed and conducted 7 training courses on nuclear related technology. In parallel, the center has produced 20 training materials including textbooks, 3 multi-media education materials, and 56 Video On Demand (VOD) cyber training materials. In order to promote international cooperation for human resources development, the NTC has implemented a sub-project on the establishment of a web-portal including database for the exchange of information and materials within the framework of ANENT. Also, the center has cooperated with FNCA member countries to establish a model of human resources development, as well as with member countries on bilateral cooperation bases to develop training programs. The International Nuclear Training and Education Center (INTEC), which was opened in 2002, has hosted 318 international and domestic events (training courses, conferences, workshops, etc.) during the project period

  16. Nuclear DNA as Predictor of Acute Kidney Injury in Patients Undergoing Coronary Artery Bypass Graft: A Pilot Study.

    Science.gov (United States)

    Likhvantsev, Valery V; Landoni, Giovanni; Grebenchikov, Oleg A; Skripkin, Yuri V; Zabelina, Tatiana S; Zinovkina, Liudmila A; Prikhodko, Anastasia S; Lomivorotov, Vladimir V; Zinovkin, Roman A

    2017-12-01

    To measure the release of plasma nuclear deoxyribonucleic acid (DNA) and to assess the relationship between nuclear DNA level and acute kidney injury occurrence in patients undergoing cardiac surgery. Cardiovascular anesthesiology and intensive care unit of a large tertiary-care university hospital. Prospective observational study. Fifty adult patients undergoing cardiac surgery. Nuclear DNA concentration was measured in the plasma. The relationship between the level of nuclear DNA and the incidence of acute kidney injury after coronary artery bypass grafting was investigated. Cardiac surgery leads to significant increase in plasma nuclear DNA with peak levels 12 hours after surgery (median [interquartile range] 7.0 [9.6-22.5] µg/mL). No difference was observed between off-pump and on-pump surgical techniques. Nuclear DNA was the only predictor of acute kidney injury between baseline and early postoperative risk factors. The authors found an increase of nuclear DNA in the plasma of patients who had undergone coronary artery bypass grafting, with a peak after 12 hours and an association of nuclear DNA with postoperative acute kidney injury. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Integrating security issues in nuclear engineering curriculum in Indonesia. Classical vs policy approaches

    International Nuclear Information System (INIS)

    Putero, Susetyo Hario; Rosita, Widya; Sihana, Fnu; Ferdiansjah; Santosa, Haryono Budi; Muharini, Anung

    2015-01-01

    Recently, risk management for nuclear facilities becomes more complex due to security issue addressed by IAEA. The harmonization between safety, safeguards and security is still questionable. It also challenges to nuclear engineering curriculum in the world how to appropriately lecture the new issue. This paper would like to describe how to integrate this issue in developing nuclear engineering curriculum in Indonesia. Indonesia has still no nuclear power plant, but there are 3 research reactors laid in Indonesia. As addition, there are several hospitals and industries utilizing radioisotopes in their activities. The knowledge about nuclear security of their staffs is also not enough for handling radioactive material furthermore the security officers. Universitas Gadjah Mada (UGM) is the only university in Indonesia offering nuclear engineering program, as consequently the university should actively play the role in overcoming this issue not only in Indonesia, but also in Southeast Asia. In the other hand, students has to have proper knowledge in order to complete in the global nuclear industry. After visited several universities in USA and participated in INSEN meeting, we found that most of universities in the world anticipate this issue by giving the student courses related to policy (non-technical) study based on IAEA NSS 12. In the other hand, the rest just make nuclear security as a case study on their class. Furthermore, almost all of programs are graduate level. UGM decided to enhance several present related undergraduate courses with security topics as first step to develop the awareness of student to nuclear security. The next (curriculum 2016) is to integrate security topics into the entire of curriculum including designing a nuclear security elective course for undergraduate level. The first trial has successfully improved the student knowledge and awareness on nuclear security. (author)

  18. Department of Nuclear Reactions - Overview

    International Nuclear Information System (INIS)

    Rusek, K.

    2007-01-01

    The scientific activity of our department is traditionally focused on nuclear physics, atomic physics and material research. Our interest in nuclear physics is broad, ranging from the structure of a nucleon to the structure of the nucleus. The spin structure of a nucleon has been investigated within the HERMES Collaboration which comprises 32 institutions from 11 countries. The collaboration performs experiments at Deutches Elektronen-Synchrotron in Hamburg. Another large-scale international collaboration we are participating in is PANDA. The PANDA (antiProton ANnihilation at DArmstadt) experiment will be installed at the High Energy Storage Ring for antiprotons of the future Facility for Antiproton and Ion Research (FAIR) in Darmstadt. Our colleagues, led by Dr. B. Zwieglinski, have been working on the concept of a calorimeter, testing different scintillators. Many experiments in low energy nuclear physics were performed in collaboration with University of Jyvaeskylae, the Institute of Nuclear Research of the Ukrainian Academy of Science and Heavy Ion Laboratory of the Warsaw University. They were devoted to studying nucleus-nucleus interactions near the Coulomb barrier. This year, atomic studies focused on the L-shell ionisation of some heavy elements by silicon ions accelerated to the energy of 8.5-36 MeV. The results are presented in this report and are compared to different model calculations. Finally, I take great pleasure in congratulating Dr. L. Nowicki, whose study of uranium oxide structure, performed in collaboration with Centre de Spectrometrie Nucleaire et de Spectrometrie de Masse in Orsay, was chosen as an important scientific achievement of our Institute in 2006. Apart from purely scientific activities, a few of our colleagues have been involved in education, giving lectures to students from high schools in Warsaw and Warsaw University. R. Ratajczak contributed to the 10 th Science Festival, an event organized for the general public every year

  19. Management of nuclear knowledge

    International Nuclear Information System (INIS)

    Khan, R.; Boeck, H.; Villa, M.

    2008-04-01

    The IAEA Technical Meeting (TM) on the 'Role of universities in preserving and managing nuclear knowledge' was held in Vienna, Austria, 10-14 December 2007. This TM is the continuation of IAEA efforts to address future workforce demand developments, quality and quantity of nuclear higher education in member states. IAEA activities always focussed in particular on curricula, on networking universities and on internet platforms. The objective of this meeting was to provide a forum to present and discuss the status of and good practices of nuclear higher education in member states. Around twenty experts from different member states presented the status and on-going practices of nuclear education. This meeting was divided into two main sections: part A gave the status of nuclear education in the member states while part B included the best practices and recommendations. A summary of both sessions are provided in this report. (Nevyjel)

  20. Triangle Universities Nuclear Laboratory. Annual report, 1 September 1981-1 October 1982

    International Nuclear Information System (INIS)

    Seagondollar, L.W.

    1982-01-01

    The varied research programs described reflect a decision by TUNL to devote its major resources to the study of the multiple facets of nuclear structure which can be probed through light ion induced nuclear reactions. Particular emphasis is placed on reactions induced by polarized protons, deuterons, and neutrons. We also continue a major commitment to the study of the statistical properties of nuclear structure revealed by elastic and inelastic scattering experiments using ultra high resolution beams. A third major laboratory commitment involves measurements of fast neutron cross sections required by the Department of Energy's program to produce controlled thermonuclear fusion. The major accelerator facilities of the laboratory include a model FN tandem Van de Graaff accelerator and a 15 MeV fixed energy negative ion cyclotron injector. The laboratory has two additional single ended Van de Graaff accelerators with terminal energies of 4 MV and 3 MV, respectively