WorldWideScience

Sample records for nuclear structure approaching

  1. Relativistic approach to nuclear structure

    International Nuclear Information System (INIS)

    Nguyen Van Giai; Bouyssy, A.

    1987-03-01

    Some recent works related with relativistic models of nuclear structure are briefly reviewed. The Dirac-Hartree-Fock and Dirac-Brueckner-Hartree-Fock are recalled and illustrated by some examples. The problem of isoscalar current and magnetic moments of odd nuclei is discussed. The application of the relativistic model to the nuclear response function is examined

  2. Report of seminar on relativistic approach to nuclear reaction and nuclear structure

    International Nuclear Information System (INIS)

    1986-05-01

    A seminar on 'Relativistic Approach to Nuclear Reaction and Nuclear Structure' was held in 1985 at Osaka University. This booklet includes twenty-four reports given at the seminar, which deal with: Conventional Nonrelativistic Description of Nuclear Matter and Nuclear Spin-Orbit Interactions; Relativistic Approach to Nuclear Structure; Atomic and Molecular Structure Calculations; Electromagnetic Interaction in Nucleus and Relativistic Effect; Nuclear Magnetic Moment in the Relativistic Mean Field Theory, Effective Mass and Particle-Vibration Coupling in the Relativistic σ-ω Model; Gauge Invariance in Relativistic Many-Body Theory; Relativistic Description of Nucleon-Nucleon Interaction in Review; σ-Particle in NN Interaction; Nuclear Optical Potentials Based on the Brueckner-Hartree-Fock Approach; Elastic Backscattering and Optical Potential; Description of Intermediate-Energy Nuclear Reactions; Dirac Phenomenology at E(p) = 65 MeV; Relativistic Impulse Approximation; Reaction Studies with Intermediate Energy Deuterons at SATURNE; Folding Model for Intermediate-Energy Deutron Scattering; Folding Model for Polarized Deutron Scattering at 700 MeV; Dirac Approach Problems and a Different Viewpoint; Relativistic Approach and EMC Effect; Quasielastic Electron Scattering; Response Function of Quasielastic Electron Scattering; Relativistic Hartree Response Function for Quasielastic Electron Scattering on 12 C and 40 Ca; Backflow-, Retardation- and Relativistic Effects on the Longitudinal Response Function of Nuclear Matter; Pion-Photoproduction in the σ-ω Model. (Nogami, K.)

  3. Probabilistic approaches to life prediction of nuclear plant structural components

    International Nuclear Information System (INIS)

    Villain, B.; Pitner, P.; Procaccia, H.

    1996-01-01

    In the last decade there has been an increasing interest at EDF in developing and applying probabilistic methods for a variety of purposes. In the field of structural integrity and reliability they are used to evaluate the effect of deterioration due to aging mechanisms, mainly on major passive structural components such as steam generators, pressure vessels and piping in nuclear plants. Because there can be numerous uncertainties involved in a assessment of the performance of these structural components, probabilistic methods. The benefits of a probabilistic approach are the clear treatment of uncertainly and the possibility to perform sensitivity studies from which it is possible to identify and quantify the effect of key factors and mitigative actions. They thus provide information to support effective decisions to optimize In-Service Inspection planning and maintenance strategies and for realistic lifetime prediction or reassessment. The purpose of the paper is to discuss and illustrate the methods available at EDF for probabilistic component life prediction. This includes a presentation of software tools in classical, Bayesian and structural reliability, and an application on two case studies (steam generator tube bundle, reactor pressure vessel). (authors)

  4. Probabilistic approaches to life prediction of nuclear plant structural components

    International Nuclear Information System (INIS)

    Villain, B.; Pitner, P.; Procaccia, H.

    1996-01-01

    In the last decade there has been an increasing interest at EDF in developing and applying probabilistic methods for a variety of purposes. In the field of structural integrity and reliability they are used to evaluate the effect of deterioration due to aging mechanisms, mainly on major passive structural components such as steam generators, pressure vessels and piping in nuclear plants. Because there can be numerous uncertainties involved in an assessment of the performance of these structural components, probabilistic methods provide an attractive alternative or supplement to more conventional deterministic methods. The benefits of a probabilistic approach are the clear treatment of uncertainty and the possibility to perform sensitivity studies from which it is possible to identify and quantify the effect of key factors and mitigative actions. They thus provide information to support effective decisions to optimize In-Service Inspection planning and maintenance strategies and for realistic lifetime prediction or reassessment. The purpose of the paper is to discuss and illustrate the methods available at EDF for probabilistic component life prediction. This includes a presentation of software tools in classical, Bayesian and structural reliability, and an application on two case studies (steam generator tube bundle, reactor pressure vessel)

  5. Nuclear structure

    International Nuclear Information System (INIS)

    Eastham, D.A.; Joy, T.

    1986-01-01

    The paper on 'nuclear structure' is the Appendix to the Daresbury (United Kingdom) Annual Report 1985/86, and contains the research work carried out at the Nuclear Structure Facility, Daresbury, within that period. During the year a total of 74 experiments were scheduled covering the main areas of activity including: nuclear collective motion, nuclei far from stability, and nuclear collisions. The Appendix contains brief reports on these experiments and associated theory. (U.K.)

  6. Nuclear structure calculations in the dynamic-interaction propagator approach

    International Nuclear Information System (INIS)

    Engelbrecht, C.A.; Hahne, F.J.W.; Heiss, W.D.

    1978-01-01

    The dynamic-interaction propagator approach provides a natural method for the handling of energy-dependent effective two-body interactions induced by collective excitations of a many-body system. In this work this technique is applied to the calculation of energy spectra and two-particle strengths in mass-18 nuclei. The energy dependence is induced by the dynamic exchange of the lowest 3 - octupole phonon in O 16 , which is described within a normal static particle-hole RPA. This leads to poles in the two-body self-energy, which can be calculated if other fermion lines are restricted to particle states. The two-body interaction parameters are chosen to provide the correct phonon energy and reasonable negative-parity mass-17 and positive-parity mass-18 spectra. The fermion lines must be dressed consistently with the same exchange phonon to avoid redundant solutions or ghosts. The negative-parity states are then calculated in a parameter-free way which gives good agreement with the observed spectra [af

  7. Nuclear structure

    International Nuclear Information System (INIS)

    Joy, T.; Price, H.G.

    1984-01-01

    The appendix to the Daresbury Annual report contains detailed summaries of experiments carried out, or in progress, for the period 1983/84, using the Nuclear Structure Facility tandem accelerator. The experimental work is carried out by University groups from the UK and abroad, and Daresbury Staff. Developments in instrumentation, and a report on the first year of scheduled operation of the Facility, are also given. (U.K.)

  8. Mechanical and structural modules in a nuclear power plant advantages of the innovative approach

    International Nuclear Information System (INIS)

    Orlandi, S.; De Angelis, F.; Marconi, M.

    2010-01-01

    The modular layout design of a Nuclear Power Plant like the Westinghouse AP600/AP1000 has been developed basically to gain advantages in erection time schedule as well as in minimizing commissioning and start up test to be performed in the field. It is the first time for a Nuclear Power Plant to have a layout configuration fully designed as structured integrated mechanical Modules; this approach has been studied and implemented also to consider already in design phase decommissioning requirements which are mandatory to be able to perform dismantling at the end of the Plant Operation Life. Nevertheless it is the first time the possibility has been investigated to erect the civil structures as structural prefabricated modules: it means to have developed special composite structures which cannot be considered traditional reinforced concrete structures as well as structural beams frames. An approach like the above promotes impressive advantages in terms of extensive prefabrication in the workshops both for mechanical and structural modules, arranging in the workshops also factory acceptance tests as well as specific pre-acceptance commissioning activities. It means also that specific requirements have to be implemented in order to promote the implementation of this technology. Construction and adjustments flexibility in the field during NPP erection is heavily decreased due to modular prefabricated assemblies as well as it is mandatory to complete all the lay out plant design before entering the prefabrication phase in the workshops. Also structural design codes have to be qualified or properly readjusted to manage structural problems in composite structural frames which are innovative for organization, structural behaviour and which have different working ways starting from prefabrication, transportation, lifting up to the installation in the field and concrete pouring. (authors)

  9. Towards an unified microscopic approach of the description of the nuclear structure and reaction

    International Nuclear Information System (INIS)

    Hoang, Sy Than

    2009-09-01

    This thesis contains 3 main parts. The first one: nuclear matter. The motivation of the study is to establish a link between the bare nucleon-nucleon interaction and nuclear matter properties. The properties of nuclear matter are examined using finite range effective interactions either derived from the Brueckner theory or determined in a purely phenomenological way. Skyrme-type interactions are also used for comparison. We have focused our discussion on several main aspects: the pressure ins symmetric nuclear matter and in neutron matter, the density dependence of the symmetric energy S and the nuclear matter incompressibility. The second part: the structure of finite nuclei and of the inner crust of neutrons stars. We present the non-relativistic HF and HF-BCS approaches in coordinate representation using finite-range density-dependent interactions in both the mean field and pairing channels. An iterative scheme is used for solving the integral-differential HF equations. We have studied the doubly magic nuclei, the Sn isotopes and the possible occurrence of bubble structures in the nuclei O 22 , Si 34 , Ar 46 and Ar 68 . We have also examined the different zones of the inner crust of neutron stars. The third part: nuclear reactions. Using the same effective interactions derived from the Brueckner theory we have performed a coupled channel analysis of (p,n) charge exchange reactions at 35 and 45 MeV incident energies on Ca 48 , Zr 90 , Sn 120 and Pb 208 targets leading to isobaric analog states. (A.C.)

  10. Pairing and seniority in an equations-of-motion approach to nuclear structure theory

    International Nuclear Information System (INIS)

    Covello, A.; Andreozzi, F.; Gargano, A.; Porrino, A.

    1990-01-01

    In this paper, some achievements of an equations-of-motion approach to nuclear structure theory are discussed. As an introduction to the main subject, a brief survey of some early work is given. We then describe a formalism for treating the pairing-force problem and show, by numerical appllications, that at the lowest order of approximation it provides an advantageous alternative to the BCS method. Finally, we discuss how to treat a general shell-model Hamiltonian within the framework of the seniority scheme. This makes it possible to further reduce seniority-truncated shell-model spaces, as is illustrated by examples. (orig.)

  11. A structured approach to introduce knowledge management practice in a national nuclear research institution in Malaysia

    International Nuclear Information System (INIS)

    Daud, A.H.

    2004-01-01

    In 2002, the Government of Malaysia has launched the Knowledge Management Master Plan with the aim to transform Malaysian from a production-based economy to a knowledge-based economy. In June 2003, the 2nd National Science and Technology policy was launched. The policy puts in place programmes, institutions and partnerships to enhance Malaysian economic position. Several initiatives developed emphasize on the important roles of national nuclear research institutions in the knowledge based economy. The Malaysian Institute for Nuclear Technology Research (MINT) as a national nuclear research institution is thus expected to make significant contributions to the knowledge economy. To a certain extent MINT has been successful in knowledge acquisition and exploitation from more advanced countries as well as in knowledge generation and in the knowledge application and diffusion to the socio-economic sectors. This paper describes a structured approach to introduce the knowledge management practices or initiatives in MINT. It also describes some of the challenges foreseen in adopting the practices. (author)

  12. Selected topics in nuclear structure

    International Nuclear Information System (INIS)

    Solov'ev, V.G.; Gromov, K.Ya.; Malov, L.A.; Shilov, V.M.

    1994-01-01

    The Fourth International Conference on selected topics in nuclear structure was held at Dubna in July 1994 on recent experimental and theoretical investigations in nuclear structure. Topics discussed were the following: nuclear structure at low-energy excitations (collective quasiparticle phenomena, proton-neutron interactions, microscopic and phenomenological theories of nuclear structure; nuclear structure studies with charged particles. heavy ions, neutrons and photons; nuclei at high angular momenta and superdeformation, structure and decay properties of giant resonances, charge-exchange resonances and β-decay; semiclassical approach of large amplitude collective motion and structure of hot nuclei

  13. Selected topics in nuclear structure

    Energy Technology Data Exchange (ETDEWEB)

    Solov` ev, V G; Gromov, K Ya; Malov, L A; Shilov, V M

    1994-12-31

    The Fourth International Conference on selected topics in nuclear structure was held at Dubna in July 1994 on recent experimental and theoretical investigations in nuclear structure. Topics discussed were the following: nuclear structure at low-energy excitations (collective quasiparticle phenomena, proton-neutron interactions, microscopic and phenomenological theories of nuclear structure; nuclear structure studies with charged particles). heavy ions, neutrons and photons; nuclei at high angular momenta and superdeformation, structure and decay properties of giant resonances, charge-exchange resonances and {beta}-decay; semiclassical approach of large amplitude collective motion and structure of hot nuclei.

  14. Detecting Structural Damage of Nuclear Power Plant by Interactive Data Mining Approach

    International Nuclear Information System (INIS)

    Yufei Shu

    2006-01-01

    This paper presents a nonlinear structural damage identification technique, based on an interactive data mining approach, which integrates a human cognitive model in a data mining loop. A mining control agent emulating human analysts is developed, which directly interacts with the data miner, analyzing and verifying the output of the data miner and controlling the data mining process. Additionally, an artificial neural network method, which is adopted as a core component of the proposed interactive data mining method, is evolved by adding a novelty detecting and retraining function for handling complicated nuclear power plant quake-proof data. Plant quake-proof testing data has been applied to the system to show the validation of the proposed method. (author)

  15. Towards an unified microscopic approach of the description of the nuclear structure and reaction

    International Nuclear Information System (INIS)

    Hoang, Sy-Than

    2009-01-01

    This thesis contains 3 main parts: 1. Nuclear matter: The properties of nuclear matter are examined using finite range effective interactions, either derived from the Brueckner theory (M3Y-type interactions) or determined in a purely phenomenological way (Gogny-type interactions). Skyrme-type interactions are also used for comparison. The motivation of the study is to establish a link between the bare NN interaction and nuclear matter properties via the effective Brueckner G-matrix parameterized in the M3Y form. We have concentrated our discussion on several main aspects: the pressure in symmetric nuclear matter and in neutron matter, the density dependence of the symmetry energy S, the neutron star cooling, and the nuclear matter incompressibility for the symmetric and asymmetric nuclear matter. 2. Structure of finite nuclei and of the inner crust of neutron stars: We present the non-relativistic HF and HF-BCS approaches in coordinate representation using finite-range density-dependent interactions in both the mean field and pairing channels. The method for solving the HF equations in coordinate space is presented. We limit the study to the spherical symmetry case. An iterative scheme is used for solving the integro-differential HF equations. We adopt the method of Brueckner-Gammel-Weizner which is free of poles in the local equivalent potentials, in contrast to the usually used Vautherin-Veneroni method. Alternatively, we have developed a method using a basis of spherical Bessel functions. The latter method is useful for treating systems containing many nucleons in large boxes like the Wigner-Seitz (WS) cells of the neutron star inner crust. We have thus studied, using the effective interactions mentioned above, the doubly magic nuclei, the Sn isotopes, and the possible occurrence of bubble structures in the nuclei 22 O, 34 Si, 46 Ar and 68 Ar. We also present for the first time a study of Wigner-Seitz cells in the inner crust of neutron stars using finite range

  16. Nuclear orientation and nuclear structure

    International Nuclear Information System (INIS)

    Krane, K.S.

    1988-01-01

    The present generation of on-line nuclear orientation facilities promises to revolutionize the gathering of nuclear structure information, especially for the hitherto poorly known and understood nuclei far from stability. Following a brief review of the technological developments that have facilitated these experiments, the nuclear spectroscopic information that can be obtained is summarized. Applications to understanding nuclear structure are reviewed, and challenges for future studies are discussed. (orig.)

  17. Probabilistic approaches applied to damage and embrittlement of structural materials in nuclear power plants

    International Nuclear Information System (INIS)

    Vincent, L.

    2012-01-01

    The present study deals with the long-term mechanical behaviour and damage of structural materials in nuclear power plants. An experimental way is first followed to study the thermal fatigue of austenitic stainless steels with a focus on the effects of mean stress and bi-axiality. Furthermore, the measurement of displacement fields by Digital Image Correlation techniques has been successfully used to detect early crack initiation during high cycle fatigue tests. A probabilistic model based on the shielding zones surrounding existing cracks is proposed to describe the development of crack networks. A more numeric way is then followed to study the embrittlement consequences of the irradiation hardening of the bainitic steel constitutive of nuclear pressure vessels. A crystalline plasticity law, developed in agreement with lower scale results (Dislocation Dynamics), is introduced in a Finite Element code in order to run simulations on aggregates and obtain the distributions of the maximum principal stress inside a Representative Volume Element. These distributions are then used to improve the classical Local Approach to Fracture which estimates the probability for a microstructural defect to be loaded up to a critical level. (author) [fr

  18. Nuclear structure studies

    International Nuclear Information System (INIS)

    Walters, W.B.

    1992-01-01

    New results are reported for the decay and nuclear orientation of 114,116 I and 114 Sb as well as data for the structure of daughter nuclides 114,116 Te. New results for IBM-2 calculations for the structure of 126 Xe are also reported. A new approach to the problem of the underproduction of A = 120 nuclides in the astrophysical r-process is reported

  19. Structural domains and conformational changes in nuclear chromatin: a quantitative thermodynamic approach by differential scanning calorimetry.

    Science.gov (United States)

    Balbi, C; Abelmoschi, M L; Gogioso, L; Parodi, S; Barboro, P; Cavazza, B; Patrone, E

    1989-04-18

    A good deal of information on the thermodynamic properties of chromatin was derived in the last few years from optical melting experiments. The structural domains of the polynucleosomal chain, the linker, and the core particle denature as independent units. The differential scanning calorimetry profile of isolated chromatin is made up of three endotherms, at approximately 74, 90, and 107 degrees C, having an almost Gaussian shape. Previous work on this matter, however, was mainly concerned with the dependence of the transition enthalpy on external parameters, such as the ionic strength, or with the melting of nuclei from different sources. In this paper we report the structural assignment of the transitions of rat liver nuclei, observed at 58, 66, 75, 92, and 107 degrees C. They are representative of the quiescent state of the cell. The strategy adopted in this work builds on the method developed for the investigation of complex biological macromolecules. The heat absorption profile of the nucleus was related to the denaturation of isolated nuclear components; electron microscopy and electrophoretic techniques were used for their morphological and molecular characterization. The digestion of chromatin by endogenous nuclease mimics perfectly the decondensation of the higher order structure and represented the source of several misinterpretations. This point was carefully examined in order to define unambiguously the thermal profile of native nuclei. The low-temperature transitions, centered around 58 and 66 degrees C, arise from the melting of scaffolding structures and of the proteins associated with heterogeneous nuclear RNA.(ABSTRACT TRUNCATED AT 250 WORDS)

  20. A proposed structural, risk-informed approach to the periodicity of CANDU-6 nuclear containment integrated leak rate testing

    Energy Technology Data Exchange (ETDEWEB)

    Saliba, N. [McGill Univ., Dept. of Civil Engineering and Applied Mechanics, Montreal, Quebec (Canada); Komljenovic, D. [Hydro-Quebec, Gentilly-2 Nuclear Power Plant, Becancour, Quebec (Canada); Chouinard, L. [McGill Univ., Dept. of Civil Engineering and Applied Mechanics, Montreal, Quebec (Canada); Vaillancourt, R.; Chretien, G. [Hydro-Quebec, Gentilly-2 Nuclear Power Plant, Becancour, Quebec (Canada); Gocevski, V. [Hydro-Quebec Equipements, Montreal, Quebec (Canada)

    2010-07-01

    As ultimate lines of defense against leakage of large amounts of radioactive material to the environment in case of major reactor accidents, containments have been monitored through well designed periodic tests to ensure their proper performance. Regulatory organizations have imposed types and frequencies of containment tests based on highly-conservative deterministic approaches, and judgments of knowledgeable experts. Recent developments in the perception and methods of risk evaluation have been applied to rationalize the leakage-rate testing frequencies while maintaining risks within acceptable levels, preserving the integrity of containments, and respecting the defense-in-depth philosophy. The objective of this paper is to introduce a proposed risk-informed decision making framework on the periodicity of nuclear containment ILRTs for CANDU-6 nuclear power plants based on five main decision criteria, namely: 1) the containment structural integrity; 2) inputs from PSA Level-2; 3) the requirements of deterministic safety analyses and defense-in-depth concepts; 4- the obligations under regulatory and standard requirements; and 5) the return of experience from nuclear containments historic performance. The concepts of dormant reliability and structural fragility will guide the assessment of the containment structural integrity, within the general context of a global containment life cycle management program. This study is oriented towards the requirements of CANDU-6 reactors, in general, and Hydro-Quebec's Gentilly-2 nuclear power plant, in particular. The present article is the first part in a series of papers that will comprehensively detail the proposed research. (author)

  1. A proposed structural, risk-informed approach to the periodicity of CANDU-6 nuclear containment integrated leak rate testing

    International Nuclear Information System (INIS)

    Saliba, N.; Komljenovic, D.; Chouinard, L.; Vaillancourt, R.; Chretien, G.; Gocevski, V.

    2010-01-01

    As ultimate lines of defense against leakage of large amounts of radioactive material to the environment in case of major reactor accidents, containments have been monitored through well designed periodic tests to ensure their proper performance. Regulatory organizations have imposed types and frequencies of containment tests based on highly-conservative deterministic approaches, and judgments of knowledgeable experts. Recent developments in the perception and methods of risk evaluation have been applied to rationalize the leakage-rate testing frequencies while maintaining risks within acceptable levels, preserving the integrity of containments, and respecting the defense-in-depth philosophy. The objective of this paper is to introduce a proposed risk-informed decision making framework on the periodicity of nuclear containment ILRTs for CANDU-6 nuclear power plants based on five main decision criteria, namely: 1) the containment structural integrity; 2) inputs from PSA Level-2; 3) the requirements of deterministic safety analyses and defense-in-depth concepts; 4- the obligations under regulatory and standard requirements; and 5) the return of experience from nuclear containments historic performance. The concepts of dormant reliability and structural fragility will guide the assessment of the containment structural integrity, within the general context of a global containment life cycle management program. This study is oriented towards the requirements of CANDU-6 reactors, in general, and Hydro-Quebec's Gentilly-2 nuclear power plant, in particular. The present article is the first part in a series of papers that will comprehensively detail the proposed research. (author)

  2. Microscopic description of nuclear structure

    International Nuclear Information System (INIS)

    Girod, M.; Berger, J.F.; Peru, S.; Dancer, H.

    2002-01-01

    After briefly recalling the formalism of the mean field approach with an effective nucleon-nucleon interaction, the theoretical framework of the nuclear structure studies performed at CEA-DAM, applications of this theory to various nuclear systems: shape and spin isomeric states, neutron and proton rich nuclei, superheavy and hyper-heavy nuclei, and to the fission process are presented. (authors)

  3. Relativistic models of nuclear structure

    International Nuclear Information System (INIS)

    Gillet, V.; Kim, E.J.; Cauvin, M.; Kohmura, T.; Ohnaka, S.

    1991-01-01

    The introduction of the relativistic field formalism for the description of nuclear structure has improved our understanding of fundamental nuclear mechanisms such as saturation or many body forces. We discuss some of these progresses, both in the semi-classical mean field approximation and in a quantized meson field approach. (author)

  4. An approach regarding aging management program for concrete containment structure at the Gentilly-2 Nuclear Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Chenier, J-O.; Komljenovic, D., E-mail: Chenier.jean-olivier@hydro.qc.ca [Nuclear Power Plant Gentilly-2, Becancour, Quebec (Canada); Gocevski, V. [Hydro-Quebec Equipment, Structural Dept., Quebec (Canada); Picard, S.; Chretien, G. [Nuclear Power Plant Gentilly-2, Becancour, Quebec (Canada)

    2012-07-01

    The current paper presents the approach used by the Gentilly-2 Nuclear Power Plant, Hydro-Quebec, in elaborating a specific Aging Management Program (AMP) for its concrete containment structure. It is developed as a part of preparation activities for the plant refurbishment project. The specificity of the AMP consists in addressing Alkali-Aggregate Reaction (AAR) degradation mechanism which is not well known in the nuclear power industry. HQ developed a numerical model based on finite elements for assessing the concrete containment structure behaviour under the impact of AAR and other relevant degradation mechanisms. Such predictions enable a better targeting of corrective and mitigating actions during the second cycle of the G-2 operation while required. (author)

  5. Nuclear structure theory

    CERN Document Server

    Irvine, J M

    1972-01-01

    Nuclear Structure Theory provides a guide to nuclear structure theory. The book is comprised of 23 chapters that are organized into four parts; each part covers an aspect of nuclear structure theory. In the first part, the text discusses the experimentally observed phenomena, which nuclear structure theories need to look into and detail the information that supports those theories. The second part of the book deals with the phenomenological nucleon-nucleon potentials derived from phase shift analysis of nucleon-nucleon scattering. Part III talks about the phenomenological parameters used to de

  6. Component nuclear containment structure

    International Nuclear Information System (INIS)

    Harstead, G.A.

    1979-01-01

    The invention described is intended for use primarily as a nuclear containment structure. Such structures are required to surround the nuclear steam supply system and to contain the effects of breaks in the nuclear steam supply system, or i.e. loss of coolant accidents. Nuclear containment structures are required to withstand internal pressure and temperatures which result from loss of coolant accidents, and to provide for radiation shielding during operation and during the loss of coolant accident, as well as to resist all other applied loads, such as earthquakes. The nuclear containment structure described herein is a composite nuclear containment structure, and is one which structurally combines two previous systems; namely, a steel vessel, and a lined concrete structure. The steel vessel provides strength to resist internal pressure and accommodate temperature increases, the lined concrete structure provides resistance to internal pressure by having a liner which will prevent leakage, and which is in contact with the concrete structure which provides the strength to resist the pressure

  7. An integrated approach to the probabilistic assessments of aircraft strikes and structural mode of damages to nuclear power plants

    International Nuclear Information System (INIS)

    Godbout, P.; Brais, A.

    1975-01-01

    The possibilities of an aircraft striking a Canadian nuclear power plant in the vicinity of an airport and of inducing structural failure modes have been evaluated. This evaluation, together with other studies, may enhance decisions in the development of general criteria for the siting of reactors near airports. The study made use, for assessment, of the probabilistic approach and made judicious applications of the finite Canadian, French, German, American and English resources that were available. The tools, techniques and methods used for achieving the above, form what may be called an integrated approach. This method of approach requires that the study be made in six consecutive steps as follows: the qualitative evaluation of having an aircraft strike on a site situated near an airport with the use of the logic model technique; the statistical data gathering on aircraft movements and accidents; evaluating the probability distribution and calculating the basic event probabilities; evaluating the probability of an aircraft strike and the application of the sensitivity approach; generating the probability density distribution versus strike impact energy, that is, the evaluation of the energy envelope; and the probabilistic evaluation of structural failure mode inducements

  8. The strengthening and repair of underground structures: A new approach to the management of nuclear waste

    International Nuclear Information System (INIS)

    Colgate, S.A.

    1991-01-01

    This paper presents three closely related ideas and technologies: (1) The secure, repairable, long time confinement of nuclear radioactive waste underground by a large surrounding region of compressive overstress; (2) The inherent tectonic weakness and vulnerability of the normal underground environment and its modification by overstress; (3) The process of creating overstress by the sequential periodic high pressure injection of a finite gel strength rapid setting grout. 12 refs., 6 figs

  9. Nuclear reactions as structure probes

    International Nuclear Information System (INIS)

    Fernandez, Bernard; Cugnon, Joseph; Roussel-Chomaz, Patricia; Sparenberg, Jean-Marc; Oliveira Santos, Francois de; Bauge, Eric; Poves, Alfredo; Keeley, Nicholas; Simenel, Cedric; Avez, Benoit; Lacroix, Denis; Baye, Daniel; Cortina-Gil, Dolores; Pons, Alexandre

    2007-09-01

    This publication gathers courses which aim at giving a view on new experiments which are performed by using radioactive beams, notably low intensity beams, in different accelerators, and allow the structure of very exotic nuclei to be characterized. Experimental as well as theoretical aspects are thus addressed. The contributions propose: a brief history of nuclear reactions and of instruments used to study them from the discovery of nucleus to the DWBA (Distorted Wave Born Approximation); an overview of nuclear reactions; experimental techniques; the theory of collisions at low energy; resonant elastic scattering, inelastic scattering and astrophysical reactions; to probe nuclear structure with nucleons; shell model and spectroscopic factors; analysis of transfer reactions and determination of spectroscopic factors; microscopic approaches of nuclear dynamics; theoretical aspects of dissociation reactions; experimental aspects of knockout reactions; research in oenology with the chemical characterisation of defective ageing of dry white wines

  10. Selected topics in nuclear structure

    International Nuclear Information System (INIS)

    Faessler, A.

    1990-01-01

    Today's dream of nuclear structure physics is to calculate the properties of nuclei starting from Quantum-Chromodynamics (QCD). However, we are definitely not able to do that today and may be even in the future one would wish only to show in principle that this is possible. It probably will never be a daily approach to study excitation energies, transitions probabilities and other properties of nuclei. This paper discusses the possibility of coming from the shore of QCD to the other side of the river, to nuclear structure, not in one great arch buy like medieval bridges in several arches grounded each solidly on pillars going down to the river floor and by that connecting theory with the solid ground of experiments. The first arch is meant to connect QCD and the nucleon-nucleon phase shifts with the help to the nucleon-nucleon phase shifts with the experimentally fitted effective interactions for the final model spaces used in nuclear structure calculations. This is at the moment still by far the weakest arch although a large amount of work and ideas have been invested since about the middle of the 60's to derive a theory of effective interactions and to establish the connection of the effective interaction fitted to nuclear structure data with the bare interaction between nucleons in the vacuum. The last arch is connecting the effective nucleon-nucleon interaction with nuclear structure properties

  11. Microscopic optical potential for 208Pb in the nuclear structure approach

    International Nuclear Information System (INIS)

    Bernard, V.; Nguyen Van Gai.

    1979-04-01

    The optical potential for nucleon- 208 Pb scattering below 30 MeV is calculated microscopically as the sum of a real Hartree-Fock term and a complex correction term arising from the coupling to excited states of the target. The Skyrme effective interaction is used to generate the Hartree-Fock field, the RPA excited states and the coupling. A complex local equivalent potential is defined and used to calculate scattering and absorption cross-sections. The real part of the optical potential is reasonably well described in this approach while the imaginary part is too weak. Inclusion of rearrangement processes could improve the agreement with experiment

  12. Hypernuclei and nuclear structure

    International Nuclear Information System (INIS)

    Rayet, M.

    1977-01-01

    The relations between several aspects of nuclear structure and the Λ hyperon properties inside nuclei are discussed, particularly in connexion with the possibilities offered by the development of new experimental techniques. It is emphasized that Hartree-Fock methods provide an interesting tool for predicting hypernuclear phenomena where the Λ hyperon may be used as a probe of the nucleus [fr

  13. Cellular automata approach to investigation of high burn-up structures in nuclear reactor fuel

    International Nuclear Information System (INIS)

    Akishina, E.P.; Ivanov, V.V.; Kostenko, B.F.

    2005-01-01

    Micrographs of uranium dioxide (UO 2 ) corresponding to exposure times in reactor during 323, 953, 971, 1266 and 1642 full power days were investigated. The micrographs were converted into digital files isomorphous to cellular automata (CA) checkerboards. Such a representation of the fuel structure provides efficient tools for its dynamics simulation in terms of primary 'entities' imprinted in the micrographs. Besides, it also ensures a possibility of very effective micrograph processing by CA means. Interconnection between the description of fuel burn-up development and some exactly soluble models is ascertained. Evidences for existence of self-organization in the fuel at high burn-ups were established. The fractal dimension of microstructures is found to be an important characteristic describing the degree of radiation destructions

  14. Technology Foresight and nuclear test verification: a structured and participatory approach

    Science.gov (United States)

    Noack, Patrick; Gaya-Piqué, Luis; Haralabus, Georgios; Auer, Matthias; Jain, Amit; Grenard, Patrick

    2013-04-01

    As part of its mandate, the CTBTO's nuclear explosion monitoring programme aims to maintain its sustainability, effectiveness and its long-term relevance to the verification regime. As such, the PTS is conducting a Technology Foresight programme of activities to identify technologies, processes, concepts and ideas that may serve said purpose and become applicable within the next 20 years. Through the Technology Foresight activities (online conferences, interviews, surveys, workshops and other) we have involved the wider science community in the fields of seismology, infrasound, hydroacoustics, radionuclide technology, remote sensing and geophysical techniques. We have assembled a catalogue of over 200 items, which incorporate technologies, processes, concepts and ideas which will have direct future relevance to the IMS (International Monitoring System), IDC (International Data Centre) and OSI (On-Site Inspection) activities within the PTS. In order to render this catalogue as applicable and useful as possible for strategy and planning, we have devised a "taxonomy" based on seven categories, against which each technology is assessed through a peer-review mechanism. These categories are: 1. Focus area of the technology in question: identify whether the technology relates to (one or more of the following) improving our understanding of source and source physics; propagation modelling; data acquisition; data transport; data processing; broad modelling concepts; quality assurance and data storage. 2. Current Development Stage of the technology in question. Based on a scale from one to six, this measure is specific to PTS needs and broadly reflects Technology Readiness Levels (TRLs). 3. Impact of the technology on each of the following capabilities: detection, location, characterization, sustainment and confidence building. 4. Development cost: the anticipated monetary cost of validating a prototype (i.e. Development Stage 3) of the technology in question. 5. Time to

  15. Nuclear structure theory

    International Nuclear Information System (INIS)

    French, J.B.; Koltun, D.S.

    1989-01-01

    This report summarizes progress during the past year in the following areas of research: Pion charge exchange reactions, including a theory of the contribution of pion absorption and correlated double scattering to double charge exchange, new coupled channel calculations for single and double charge exchange from 14 C. Nuclear inelastic scattering, using quark models to calculate nuclear structure functions, and test for sensitivity to the substructure of nucleons in nuclei. Fluctuation-free statistical spectroscopy including the theory and computer programs for interacting-particle densities, spin cutoff factors, occupancies, strength sums, and other expectation values. Proposed research for the coming year in each area is presented

  16. Nuclear structure theory

    International Nuclear Information System (INIS)

    French, J.B.; Koltun, D.S.

    1990-06-01

    This report summarizes progress during the past ten months in the following areas of research: pion double charge exchange reactions, including a theory of the isotensor term in the pion-nucleus optical potential, and a study of meson exchange contributions to the reactions at low energies. Nuclear inelastic scattering, using quark models to calculate nuclear structure functions, and to test for sensitivity to the substructure of nucleons in nuclei. Fluctuation-free statistical spectroscopy including the theory and computer programs for interacting-particle densities, spin cutoff factors, occupancies, strength sums, and other expectation values

  17. Approaches to nuclear safety

    International Nuclear Information System (INIS)

    Watkins, J.D.

    1990-01-01

    This article examines the factors which affect the safe operation of a nuclear power plant. Some of these are an organizational and individual dedication to safety and excellence in every aspect of plant functions, international cooperation, and advanced reactor design. These are in addition to excellence in management of nuclear plants and the training of key operations personnel. The author feels all of these are necessary to restore public confidence in nuclear power

  18. Selected topics in nuclear structure

    International Nuclear Information System (INIS)

    1994-01-01

    The collection of abstracts on selected topics in nuclear structure are given. Special attention pays to collective excitations and high-spin states of nuclei, giant resonance structure, nuclear reaction mechanisms and so on

  19. Alternative approach to nuclear data representation

    International Nuclear Information System (INIS)

    Pruet, J.; Brown, D.; Beck, B.; McNabb, D.P.

    2006-01-01

    This paper considers an approach for representing nuclear data that is qualitatively different from the approach currently adopted by the nuclear science community. Specifically, we examine a representation in which complicated data is described through collections of distinct and self-contained simple data structures. This structure-based representation is compared with the ENDF and ENDL formats, which can be roughly characterized as dictionary-based representations. A pilot data representation for replacing the format currently used at LLNL is presented. Examples are given as is a discussion of promises and shortcomings associated with moving from traditional dictionary-based formats to a structure-rich or class-like representation

  20. Theoretical nuclear structure and astrophysics at FAIR

    International Nuclear Information System (INIS)

    Rodríguez, Tomás R

    2014-01-01

    Next generation of radioactive ion beam facilities like FAIR will open a bright future for nuclear structure and nuclear astrophysics research. In particular, very exotic nuclei (mainly neutron rich) isotopes will be produced and a lot of new exciting experimental data will help to test and improve the current nuclear models. In addition, these data (masses, reaction cross sections, beta decay half-lives, etc.) combined with the development of better theoretical approaches will be used as the nuclear physics input for astrophysical simulations. In this presentation I will review some of the state-of-the-art nuclear structure methods and their applications.

  1. Nuclear regulation - the Canadian approach

    International Nuclear Information System (INIS)

    Jennekens, J.

    1981-09-01

    Although the Atomic Energy Control Board was established 35 years ago the basic philosophy of nuclear regulation in Canada and the underlying principles of the regulatory process remain essentially unchanged. This paper outlines the Canadian approach to nuclear regulation and explains in practical terms how the principles of regulation are applied. (author)

  2. Steel structures for nuclear facilities

    International Nuclear Information System (INIS)

    1993-01-01

    In the guide the requirements concerning design and fabrication of steel structures for nuclear facilities and documents to be submitted to the Finnish Centre for Radiation and Nuclear Safety (STUK) are presented. Furthermore, regulations concerning inspection of steel structures during construction of nuclear facilities and during their operation are set forth

  3. Theoretical Approaches to Nuclear Proliferation

    Directory of Open Access Journals (Sweden)

    Konstantin S. Tarasov

    2015-01-01

    Full Text Available This article analyses discussions between representatives of three schools in the theory of international relations - realism, liberalism and constructivism - on the driving factors of nuclear proliferation. The paper examines major theoretical approaches, outlined in the studies of Russian and foreign scientists, to the causes of nuclear weapons development, while unveiling their advantages and limitations. Much of the article has been devoted to alternative approaches, particularly, the role of mathematical modeling in assessing proliferation risks. The analysis also reveals a variety of different approaches to nuclear weapons acquisition, as well as the absence of a comprehensive proliferation theory. Based on the research results the study uncovers major factors both favoring and impeding nuclear proliferation. The author shows that the lack of consensus between realists, liberals and constructivists on the nature of proliferation led a number of scientists to an attempt to explain nuclear rationale by drawing from the insights of more than one school in the theory of IR. Detailed study of the proliferation puzzle contributes to a greater understating of contemporary international realities, helps to identify mechanisms that are most likely to deter states from obtaining nuclear weapons and is of the outmost importance in predicting short- and long-term security environment. Furthermore, analysis of the existing scientific literature on nuclear proliferation helps to determine future research agenda of the subject at hand.

  4. Statistical aspects of nuclear structure

    International Nuclear Information System (INIS)

    Parikh, J.C.

    1977-01-01

    The statistical properties of energy levels and a statistical approach to transition strengths are discussed in relation to nuclear structure studies at high excitation energies. It is shown that the calculations can be extended to the ground state domain also. The discussion is based on the study of random matrix theory of level density and level spacings, using the Gaussian Orthogonal Ensemble (GOE) concept. The short range and long range correlations are also studied statistically. The polynomial expansion method is used to obtain excitation strengths. (A.K.)

  5. Proceedings of the Workshop on Justifying the Suitability of Nuclear Licensee Organisational Structure, Resources and Competencies - Methods, Approaches and Good Practices

    International Nuclear Information System (INIS)

    2009-01-01

    The nuclear industry is currently facing a range of organisational challenges. The nuclear renaissance is resulting in renewed interest in new reactor build programmes; existing plants are being modernised; ageing plants and an ageing workforce are being replaced. The industry is developing new models of working in a competitive, and increasingly global market which has seen increased use of contractors and organisational change taking place at an unparalleled rate. It is clear that the way in which nuclear licensees' organisations are structured and resourced has a potential impact on nuclear safety. For example, nuclear safety may be challenged if organisational structures create uncertainty concerning authority and responsibilities or if nuclear safety functions are not adequately resourced. Inasmuch as this is so, then it is reasonable to expect both licensees and regulatory bodies to seek assurance that licensee organisations are suitable to manage nuclear safety and discharge the responsibilities associated with operating as a nuclear licensee. Although licensees should have the authority to organise their plant activities in different ways, they should also be able to demonstrate that they understand the potential impact that these activities may have on plant safety. They should be able to show how their organisations are designed to carry out these activities safely and effectively, and to verify that the nuclear safety functions are being delivered as expected. There is a growing interest from some nuclear regulatory bodies, as well as licensees, in methods and approaches that can be used to ensure that the licensee organisations are well structured and have sufficient resources and competencies to manage safety. To address these and other nuclear plant organisational safety-related issues a NEA/CSNI workshop was held in Uppsala (Sweden) hosted by the Swedish Radiation Safety Authority with support from the European Union's Joint Research Centre (JRC

  6. New approaches to nuclear power

    KAUST Repository

    Dewan, Leslie

    2018-01-21

    The world needs a cheap, carbon-free alternative to fossil fuels to feed its growing electricity demand. Nuclear power can be a good solution to the problem, but is hindered by issues of safety, waste, proliferation, and cost. But what if we could try a new approach to nuclear power, one that solves these problems? In this lecture, the CEO of Transatomic Power will talk about how their company is advancing the design of a compact molten salt reactor to support the future of carbon-free energy production. Can the designs of new reactor push the boundaries of nuclear technology to allow for a safe, clean, and affordable answer to humanityメs energy needs? Nuclear power involves capturing the energy produced in nuclear fission reactions, which emerges as heat. This heat is most frequently used to boil water into steam, which then drives a turbine to produce electricity in a nuclear power plant. Worldwide, there is a renaissance of new nuclear technology development -- a new generation of young engineers are racing to develop more advanced nuclear reactors for a better form of power generation. Transatomic Power, specifically, is advancing the design of an easily contained and controlled, atmospheric pressure, high power density molten salt reactor that can be built at low cost. The road to commercialization is long, and poses many challenges, but the benefits are enormous. These new reactors push the boundaries of technology to allow for better, safer ways to power the world.

  7. Investigations of Nuclear Structure

    Energy Technology Data Exchange (ETDEWEB)

    Sarantites, Demetrios [Washington Univ., St. Louis, MO (United States); Reviol, W. [Washington Univ., St. Louis, MO (United States)

    2015-07-15

    The proposal addresses studies of nuclear structure at low-energies and development of instrumentation for that purpose. The structure studies deal with features of neutron-rich nuclei with unexplored shapes (football- or pear-shaped nuclei). The regions of interest are: neutron rich nuclei like 132-138Sn, or 48-54Ca, and the Zr, Mo, and Ru isotopes. The tools used can be grouped as follows: either Gammasphere or Gretina multi-gamma detector arrays and auxiliary detectors (Microball, Neutron Shell, and the newly completed Phoswich Wall).The neutron-rich nuclei are accessed by radioactive-beam binary reactions or by 252Cf spontaneous fission. The experiments with heavy radioactive beams aim at exciting the beam nuclei by pick-up or transfer a neutron or a proton from a light target like 13C, 9Be, 11B or 14N .For these binary-reaction studies the Phoswich Wall detector system is essential. It is based on four multi-anode photomultiplier tubes on which CsI and thin fast-timing plastic scintillators are attached. Their signals are digitized with a high density microchip system.

  8. Theoretical studies in nuclear reactions and nuclear structure. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    1992-05-01

    Research in the Maryland Nuclear Theory Group focusses on problems in four basic areas of current relevance. Hadrons in nuclear matter; the structure of hadrons; relativistic nuclear physics and heavy ion dynamics and related processes. The section on hadrons in nuclear matter groups together research items which are aimed at exploring ways in which the properties of nucleons and the mesons which play a role in the nuclear force are modified in the nuclear medium. A very interesting result has been the finding that QCD sum rules supply a new insight into the decrease of the nucleon`s mass in the nuclear medium. The quark condensate, which characterizes spontaneous chiral symmetry breaking of the late QCD vacuum, decreases in nuclear matter and this is responsible for the decrease of the nucleon`s mass. The section on the structure of hadrons contains progress reports on our research aimed at understanding the structure of the nucleon. Widely different approaches are being studied, e.g., lattice gauge calculations, QCD sum rules, quark-meson models with confinement and other hedgehog models. A major goal of this type of research is to develop appropriate links between nuclear physics and QCD. The section on relativistic nuclear physics represents our continuing interest in developing an appropriate relativistic framework for nuclear dynamics. A Lorentz-invariant description of the nuclear force suggests a similar decrease of the nucleon`s mass in the nuclear medium as has been found from QCD sum rules. Work in progress extends previous successes in elastic scattering to inelastic scattering of protons by nuclei. The section on heavy ion dynamics and related processes reports on research into the e{sup +}e{sup {minus}} problem and heavy ion dynamics.

  9. Theoretical studies in nuclear reactions and nuclear structure

    Energy Technology Data Exchange (ETDEWEB)

    1992-05-01

    Research in the Maryland Nuclear Theory Group focusses on problems in four basic areas of current relevance. Hadrons in nuclear matter; the structure of hadrons; relativistic nuclear physics and heavy ion dynamics and related processes. The section on hadrons in nuclear matter groups together research items which are aimed at exploring ways in which the properties of nucleons and the mesons which play a role in the nuclear force are modified in the nuclear medium. A very interesting result has been the finding that QCD sum rules supply a new insight into the decrease of the nucleon's mass in the nuclear medium. The quark condensate, which characterizes spontaneous chiral symmetry breaking of the late QCD vacuum, decreases in nuclear matter and this is responsible for the decrease of the nucleon's mass. The section on the structure of hadrons contains progress reports on our research aimed at understanding the structure of the nucleon. Widely different approaches are being studied, e.g., lattice gauge calculations, QCD sum rules, quark-meson models with confinement and other hedgehog models. A major goal of this type of research is to develop appropriate links between nuclear physics and QCD. The section on relativistic nuclear physics represents our continuing interest in developing an appropriate relativistic framework for nuclear dynamics. A Lorentz-invariant description of the nuclear force suggests a similar decrease of the nucleon's mass in the nuclear medium as has been found from QCD sum rules. Work in progress extends previous successes in elastic scattering to inelastic scattering of protons by nuclei. The section on heavy ion dynamics and related processes reports on research into the e{sup +}e{sup {minus}} problem and heavy ion dynamics.

  10. Theoretical studies in nuclear reactions and nuclear structure

    International Nuclear Information System (INIS)

    1992-05-01

    Research in the Maryland Nuclear Theory Group focusses on problems in four basic areas of current relevance. Hadrons in nuclear matter; the structure of hadrons; relativistic nuclear physics and heavy ion dynamics and related processes. The section on hadrons in nuclear matter groups together research items which are aimed at exploring ways in which the properties of nucleons and the mesons which play a role in the nuclear force are modified in the nuclear medium. A very interesting result has been the finding that QCD sum rules supply a new insight into the decrease of the nucleon's mass in the nuclear medium. The quark condensate, which characterizes spontaneous chiral symmetry breaking of the late QCD vacuum, decreases in nuclear matter and this is responsible for the decrease of the nucleon's mass. The section on the structure of hadrons contains progress reports on our research aimed at understanding the structure of the nucleon. Widely different approaches are being studied, e.g., lattice gauge calculations, QCD sum rules, quark-meson models with confinement and other hedgehog models. A major goal of this type of research is to develop appropriate links between nuclear physics and QCD. The section on relativistic nuclear physics represents our continuing interest in developing an appropriate relativistic framework for nuclear dynamics. A Lorentz-invariant description of the nuclear force suggests a similar decrease of the nucleon's mass in the nuclear medium as has been found from QCD sum rules. Work in progress extends previous successes in elastic scattering to inelastic scattering of protons by nuclei. The section on heavy ion dynamics and related processes reports on research into the e + e - problem and heavy ion dynamics

  11. Nuclear Structure References (NSR) file

    International Nuclear Information System (INIS)

    Ewbank, W.B.

    1978-08-01

    The use of the Nuclear Structure References file by the Nuclear Data Project at ORNL is described. Much of the report concerns format information of interest only to those preparing input to the system or otherwise needing detailed knowledge of its internal structure. 17 figures

  12. Microscopic approach to nuclear anharmonicities

    International Nuclear Information System (INIS)

    Matsuo, Masayuki; Shimizu, Yoshifumi; Matsuyanagi, Kenichi

    1985-01-01

    Present status of microscopic study of nuclear anharmonicity phenomena is reviewed from the viewpoint of the time-dependent Hartree-Bogoliubov approach. Both classical- and quantum-mechanical aspects of this approach are discussed. The Bohr-Mottelson-type collective Hamiltonian for anharmonic gamma vibrations is microscopically derived by means of the self-consistent-collective-coordinate method, and applied to the problem of two-phonon states of 168 Er. (orig.)

  13. Nuclear correlations and structure functions

    International Nuclear Information System (INIS)

    Hu Guoju; Irvine, J.M.

    1989-01-01

    It is argued that the search for a mass number dependence of the nuclear structure function per nucleon is profitably directed to the region of Bjorken scaling variable x > 1. We show that in the convolution model of the nuclear structure function the nuclear momentum distribution and energy spectrum generated by cluster expansion techniques, here realised in the correlated basis function method, invoking tensor correlations and short-range density-dependent repulsions adequately describes the structure function for 12 C in the region x > 1. The results of structure functions for a number of light-, medium- and heavy-mass nuclei are presented. (author)

  14. Nuclear structure 1985

    International Nuclear Information System (INIS)

    Broglia, R.; Hagemann, G.; Herskind, B.

    1985-01-01

    These proceedings of the Niels Bohr Centennial Conference contains 40 lectures in nuclear physics ranging over the following subjects: single particle motion; collective motion at low excitation energy; collective motion at high angular momentum; giant resonances and nuclear forces. (G.J.P.)

  15. Belene nuclear power plant contracting approach

    International Nuclear Information System (INIS)

    Tankosic, D.; Mignone, O.

    2004-01-01

    Historically, three main types of project execution and contractual approaches have been applied to energy and industrial projects, including nuclear projects. These approaches are grouped into three broad categories: 1) Turnkey Approach; 2) Split Package (Island) Approach; and 3)Multiple Package Approach. Based on a preliminary screening done by an ongoing feasibility study work for NPP Belene (NEK contract to Parsons E and C), the recommended approach is going to follow that general trend i.e., with some variation between the Split Package and the Turnkey approach. Before deciding on an execution approach or at least before issuing bid specifications for the nuclear power plant, it is prudent, even for a country with existing nuclear power program (like Bulgaria), to re-check/verify capabilities of the interested bidders to handle contracts of this size and nature. During the last decades, nuclear energy went through a substantial restructuring and most of the capabilities (human and financial) that existed before are not any more available. This re-checking should mainly cover the experience of the bidders as regards the design, construction and operation of the stations where they were involved, but also include items such as local experience, capability to bring favorable financing, liability coverage, general background, potential and organizational structures. The advantages and disadvantages for the Owner of the three contracting approaches can be briefly summarized as follows: Turnkey Approach - main advantages: all responsibilities rest in a Contractor or Consortium. Main disadvantages - limited project control by Owner and restricted local participation. For Split Package Contract Approach main advantage are more favorable financing conditions and increased local participation. Main disadvantage is the increased interface problems. For Multiple package Contract Approach main advantages are the opportunity to tailor the plant and maximum increase of local

  16. Nuclear structure in deep-inelastic reactions

    International Nuclear Information System (INIS)

    Rehm, K.E.

    1986-01-01

    The paper concentrates on recent deep inelastic experiments conducted at Argonne National Laboratory and the nuclear structure effects evident in reactions between super heavy nuclei. Experiments indicate that these reactions evolve gradually from simple transfer processes which have been studied extensively for lighter nuclei such as 16 O, suggesting a theoretical approach connecting the one-step DWBA theory to the multistep statistical models of nuclear reactions. This transition between quasi-elastic and deep inelastic reactions is achieved by a simple random walk model. Some typical examples of nuclear structure effects are shown. 24 refs., 9 figs

  17. Quark effects in nuclear structure

    International Nuclear Information System (INIS)

    Watt, A.

    1987-01-01

    Some experimental data in nuclear structure physics cannot be explained on the assumption that nuclei consist of inert protons and neutrons. The quark model attributes a definite internal structure to nucleons and implies that their properties should change when embedded in a nucleus. This article reviews some of the experimental evidence for these effects and discusses some new aspects of nuclear structure predicted by the quark model

  18. A development approach for nuclear thermal propulsion

    International Nuclear Information System (INIS)

    Buden, D.

    1992-01-01

    The cost and time to develop nuclear thermal propulsion systems are very approach dependent. The objectives addressed are the development of an ''acceptable'' nuclear thermal propulsion system that can be used as part of the transportation system for people to explore Mars and the enhancement performance of other missions, within highly constrained budgets and schedules. To accomplish this, it was necessary to identify the cost drivers considering mission parameters, safety of the crew, mission success, facility availability and time and cost to construct new facilities, qualification criteria, status of technologies, management structure, and use of such system engineering techniques as concurrent engineering

  19. Teaching nuclear science: A cosmological approach

    International Nuclear Information System (INIS)

    Viola, V.E.

    1994-01-01

    Theories of the origin of the chemical elements can be used effectively to provide a unifying theme in teaching nuclear phenomena to chemistry students. By tracing the element-producing steps that are thought to characterize the chemical evolution of the universe, one can introduce the basic principles of nuclear nomenclature, structure, reactions, energetics, and decay kinetics in a self-consistent context. This approach has the additional advantage of giving the student a feeling for the origin of the elements and their relative abundances in the solar system. Further, one can logically introduce all of the basic forces and particles of nature, as well as the many analogies between nuclear and atomic systems. The subjects of heavy-element synthesis, dating, and the practical applications of nuclear phenomena fit naturally in this scheme. Within the nucleosynthesis framework it is possible to modify the presentation of nuclear behavior to suit the audience--ranging from an emphasis on description for the beginning student to a quantitative theoretical approach for graduate students. The subject matter is flexible in that the basic principles can be condensed into a few lecture as part of a more general course of expanded into an entire course. The following sections describe this approach, with primary emphasis on teaching at the elementary level

  20. Nuclear security standard: Argentina approach

    International Nuclear Information System (INIS)

    Bonet Duran, Stella M.; Rodriguez, Carlos E.; Menossi, Sergio A.; Serdeiro, Nelida H.

    2007-01-01

    Argentina has a comprehensive regulatory system designed to assure the security and safety of radioactive sources, which has been in place for more than fifty years. In 1989 the Radiation Protection and Nuclear Safety branch of the National Atomic Energy Commission created the 'Council of Physical Protection of Nuclear Materials and Installations' (CAPFMIN). This Council published in 1992 a Physical Protection Standard based on a deep and careful analysis of INFCIRC 225/Rev.2 including topics like 'sabotage scenario'. Since then, the world's scenario has changed, and some concepts like 'design basis threat', 'detection, delay and response', 'performance approach and prescriptive approach', have been applied to the design of physical protection systems in facilities other than nuclear installations. In Argentina, radioactive sources are widely used in medical and industrial applications with more than 1,600 facilities controlled by the Nuclear Regulatory Authority (in spanish ARN). During 2005, measures like 'access control', 'timely detection of intruder', 'background checks', and 'security plan', were required by ARN for implementation in facilities with radioactive sources. To 'close the cycle' the next step is to produce a regulatory standard based on the operational experience acquired during 2005. ARN has developed a set of criteria for including them in a new standard on security of radioactive materials. Besides, a specific Regulatory Guide is being prepared to help licensees of facilities in design a security system and to fulfill the 'Design of Security System Questionnaire'. The present paper describes the proposed Standard on Security of Radioactive Sources and the draft of the Nuclear Security Regulatory Guidance, based on our regulatory experience and the latest international recommendations. (author)

  1. Nuclear Structure at the Limits

    International Nuclear Information System (INIS)

    Nazarewicz, W.

    1998-01-01

    One of the frontiers of todays nuclear science is the journey to the limits of atomic charge and nuclear mass, of neutron-to-proton ratio, and of angular momentum. The tour to the limits is not only a quest for new, exciting phenomena, but the new data are expected, as well, to bring qualitatively new information about the fundamental properties of the nucleonic many-body system, the nature of the nuclear interaction, and nucleonic correlations at various energy-distance scales. In this series of lectures, current developments in nuclear structure at the limits are discussed from a theoretical perspective, mainly concentrating on medium-mass and heavy nuclei

  2. Symmetries in nuclear structure

    CERN Document Server

    Allaart, K; Dieperink, A

    1983-01-01

    The 1982 summer school on nuclear physics, organized by the Nuclear Physics Division of the Netherlands' Physical Society, was the fifth in a series that started in 1963. The number of students attending has always been about one hundred, coming from about thirty countries. The theme of this year's school was symmetry in nuclear physics. This book covers the material presented by the enthusi­ astic speakers, who were invited to lecture on this subject. We think they have succeeded in presenting us with clear and thorough introductory talks at graduate or higher level. The time schedule of the school and the location allowed the participants to make many informal contacts during many social activities, ranging from billiards to surf board sailing. We hope and expect that the combination of a relaxed atmosphere during part of the time and hard work during most of the time, has furthered the interest in, and understanding of, nuclear physics. The organization of the summer school was made possible by substantia...

  3. Nuclear Weapons in Russia's approach to conflict

    International Nuclear Information System (INIS)

    Johnson, Dave

    2016-11-01

    President Putin has moved nuclear weapons to the foreground of the European security landscape. New risks and dangers arise from the apparent coupling of nuclear weapons capabilities with Moscow's revanchist and irredentist foreign and defence policies toward its neighbours. Nuclear weapons are the central feature and capstone capability in Russia's evolving concept of strategic deterrence and are important tools for achieving Russia's geopolitical aims. Russian thinking on the role and place of nuclear weapons in upholding national security and in achieving strategic aims is reflected in military policy, force structure and posture, and exercises and operations. Russia's political and military leaders are not only re-conceptualising the role of nuclear weapons. They are also building the military capabilities that can credibly threaten the calibrated employment of nuclear weapons for deterrence, de-escalation and war-fighting from the regional to large-scale and global levels of conflict. New and still developing concepts for the employment of conventional long-range precision weapons in tandem with nuclear weapons for regional deterrence and containment of local and regional conflicts add volatility to the regional tensions and uncertainties created by recent Russian aggression. Russia's reliance upon integrated conventional and nuclear capabilities in reasserting its influence in its perceived sphere of special interest, intended to contain conflicts at a manageable level, could actually increase the risk of the potential employment of nuclear weapons. NATO nations collectively, and the three NATO nuclear powers (Great Britain, France, and the United States) individually, have recognized this new reality and have begun to adapt to it. In that context, the aim of this paper is to elaborate a clearer understanding of the place and role of nuclear weapons in Russia's approach to conflict, based on nuclear-related policy statements and military-theoretical writing

  4. Concrete structures for nuclear facilities

    International Nuclear Information System (INIS)

    1996-01-01

    The detailed requirements for the design and fabrication of the concrete structures for nuclear facilities and for the documents to be submitted to the Finnish Centre for Radiation and Nuclear Safety (STUK) are given in the guide. It also sets the requirements for the inspection of concrete structures during the construction and operation of facilities. The requirements of the guide primarily apply to new construction. As regards the repair and modification of nuclear facilities built before its publication, the guide is followed to the extent appropriate. The regulatory activities of the Finnish Centre for Radiation and Nuclear Safety during a nuclear facility's licence application review and during the construction and operation of the facility are summarised in the guide YVL 1.1

  5. Nuclear structure at high excitation energies

    Indian Academy of Sciences (India)

    Average nuclear shape; giant dipole resonance; static path approximation; linear re- ... On the other hand if the nucleus is already spherical in the ground state ... this approach to study the structural properties as well as level densities of some ... (1) is modeled by a harmonic vibration along the three principal axes and then.

  6. Semiclassical approaches to nuclear dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Magner, A. G., E-mail: magner@kinr.kiev.ua; Gorpinchenko, D. V. [Institute for Nuclear Research NASU (Ukraine); Bartel, J. [Université de Strasbourg, Institut Pluridisciplinaire Hubert Curien, CNRS/IN2P3 (France)

    2017-01-15

    The extended Gutzwiller trajectory approach is presented for the semiclassical description of nuclear collective dynamics, in line with the main topics of the fruitful activity of V.G. Solovjov. Within the Fermi-liquid droplet model, the leptodermous effective surface approximation was applied to calculations of energies, sum rules, and transition densities for the neutron–proton asymmetry of the isovector giant-dipole resonance and found to be in good agreement with the experimental data. By using the Strutinsky shell correction method, the semiclassical collective transport coefficients, such as nuclear inertia, friction, stiffness, and moments of inertia, can be derived beyond the quantum perturbation approximation of the response function theory and the cranking model. The averaged particle-number dependences of the low-lying collective vibrational states are described in good agreement with the basic experimental data, mainly due to the enhancement of the collective inertia as compared to its irrotational flow value. Shell components of the moment of inertia are derived in terms of the periodic-orbit free-energy shell corrections. A good agreement between the semiclassical extended Thomas–Fermi moments of inertia with shell corrections and the quantum results is obtained for different nuclear deformations and particle numbers. Shell effects are shown to be exponentially dampted out with increasing temperature in all the transport coefficients.

  7. Semiclassical approaches to nuclear dynamics

    International Nuclear Information System (INIS)

    Magner, A. G.; Gorpinchenko, D. V.; Bartel, J.

    2017-01-01

    The extended Gutzwiller trajectory approach is presented for the semiclassical description of nuclear collective dynamics, in line with the main topics of the fruitful activity of V.G. Solovjov. Within the Fermi-liquid droplet model, the leptodermous effective surface approximation was applied to calculations of energies, sum rules, and transition densities for the neutron–proton asymmetry of the isovector giant-dipole resonance and found to be in good agreement with the experimental data. By using the Strutinsky shell correction method, the semiclassical collective transport coefficients, such as nuclear inertia, friction, stiffness, and moments of inertia, can be derived beyond the quantum perturbation approximation of the response function theory and the cranking model. The averaged particle-number dependences of the low-lying collective vibrational states are described in good agreement with the basic experimental data, mainly due to the enhancement of the collective inertia as compared to its irrotational flow value. Shell components of the moment of inertia are derived in terms of the periodic-orbit free-energy shell corrections. A good agreement between the semiclassical extended Thomas–Fermi moments of inertia with shell corrections and the quantum results is obtained for different nuclear deformations and particle numbers. Shell effects are shown to be exponentially dampted out with increasing temperature in all the transport coefficients.

  8. Nuclear structure from radioactive decay

    International Nuclear Information System (INIS)

    Wood, J.L.

    1991-01-01

    This report discusses nuclear structure from radioactive decay of the following: Neutron-Deficient Iridium Isotopes; Neutron-Deficient Platinum Isotopes; Neutron-Deficient Gold Isotopes; Neutron-Deficient Mercury Isotopes; Neutron-Deficient Thallium Isotopes; Neutron-Deficient Lead Isotopes; Neutron-Deficient Samarium Isotopes; Neutron-Deficient Promethium Isotopes; Neutron-Deficient Neodymium Isotopes; and Neutron-Deficient Praseodymium Isotopes. Also discussed are Nuclear Systematics and Models

  9. Global nuclear-structure calculations

    International Nuclear Information System (INIS)

    Moeller, P.; Nix, J.R.

    1990-01-01

    The revival of interest in nuclear ground-state octupole deformations that occurred in the 1980's was stimulated by observations in 1980 of particularly large deviations between calculated and experimental masses in the Ra region, in a global calculation of nuclear ground-state masses. By minimizing the total potential energy with respect to octupole shape degrees of freedom in addition to ε 2 and ε 4 used originally, a vastly improved agreement between calculated and experimental masses was obtained. To study the global behavior and interrelationships between other nuclear properties, we calculate nuclear ground-state masses, spins, pairing gaps and Β-decay and half-lives and compare the results to experimental qualities. The calculations are based on the macroscopic-microscopic approach, with the microscopic contributions calculated in a folded-Yukawa single-particle potential

  10. Theoretical studies in nuclear reactions and nuclear structure

    International Nuclear Information System (INIS)

    Wallace, S.J.

    1991-05-01

    This report discusses topics in the following areas: Hadronic structure; hadrons in nuclei; hot hadronic matter; relativistic nuclear physics and NN interaction; leptonic emissions from high-Z heavy ion collisions; theoretical studies of heavy ion dynamics; nuclear pre-equilibrium reactions; classical chaotic dynamics and nuclear structure; and, theory of nuclear fission

  11. Nuclear Structure in China 2010

    Science.gov (United States)

    Bai, Hong-Bo; Meng, Jie; Zhao, En-Guang; Zhou, Shan-Gui

    2011-08-01

    fragmentation at the intermediate energy / C. W. Ma ... [et al.].Systematic study of spin assignment and dynamic moment of inertia of high-j intruder band in [symbol]In / K. Y. Ma ... [et al.] -- Signals of diproton emission from the three-body breakup channel of [symbol]Al and [symbol]Mg / Ma Yu-Gang ... [et al.] -- Uncertainties of Th/Eu and Th/Hf chronometers from nucleus masses / Z. M. Niu ... [et al.] -- The chiral doublet bands with [symbol] configuration in A[symbol]100 mass region / B. Qi ... [et al.] -- [symbol] formation probabilities in nuclei and pairing collectivity / Chong Qi -- A theoretical prospective on triggered gamma emission from [symbol]Hf[symbol] isomer / ShuiFa Shen ... [et al.] -- Study of nuclear giant resonances using a Fermi-liquid method / Bao-Xi Sun -- Rotational bands in doubly odd [symbol]Sb / D. P. Sun ... [et al.] -- The study of the neutron N=90 nuclei / W. X. Teng ... [et al.] -- Dynamical modes and mechanisms in ternary reaction of [symbol]Au+[symbol]Au / Jun-Long Tian ... [et al.] -- Dynamical study of X(3872) as a D[symbol] molecular state / B. Wang ... [et al.] -- Super-heavy stability island with a semi-empirical nuclear mass formula / N. Wang ... [et al.] -- Pseudospin partner bands in [symbol]Sb / S. Y. Wang ... [et al.] -- Study of elastic resonance scattering at CIAE / Y. B. Wang ... [et al.] -- Systematic study of survival probability of excited superheavy nuclei / C. J. Xia ... [et al.] -- Angular momentum projection of the Nilsson mean-field plus nearest-orbit pairing interaction model / Ming-Xia Xie ... [et al.] -- Possible shape coexistence for [symbol]Sm in a reflection-asymmetric relativistic mean-field approach / W. Zhang ... [et al.] -- Nuclear pairing reduction due to rotation and blocking / Zhen-Hua Zhang -- Nucleon pair approximation of the shell model: a review and perspective / Y. M. Zhao ... [et al.] -- Band structures in doubly odd [symbol]I / Y. Zheng ... [et al.] -- Lifetimes of high spin states in [symbol]Ag / Y

  12. Exploring the structure of fucosylated chondroitin sulfate through bottom-up nuclear magnetic resonance and electrospray ionization-high-resolution mass spectrometry approaches.

    Science.gov (United States)

    Santos, Gustavo Rc; Porto, Ana Co; Soares, Paulo Ag; Vilanova, Eduardo; Mourão, Paulo As

    2017-07-01

    Fucosylated chondroitin sulfate (FCS) from sea cucumbers is composed of a chondroitin sulfate (CS) central core and branches of sulfated fucose. The structure of this complex glycosaminoglycan is usually investigated via nuclear magnetic resonance (NMR) analyses of the intact molecule, ergo through a top-down approach, which often yield spectra with intricate sets of signals. Here we employed a bottom-up approach to analyze the FCSs from the sea cucumbers Isostichopus badionotus and Ludwigothurea grisea from their basic constituents, viz. CS cores and sulfated fucose branches, obtained via systematic fragmentation through mild acid hydrolysis. Oligosaccharides derived from the central CS core were analyzed via NMR spectroscopy and the disaccharides produced using chondroitin sulfate lyase via SAX-HPLC. The CS cores from the two species were similar, showing only slight differences in the proportions of 4- or 6-monosulfated and 4,6-disulfated β-d-GalNAc. Sulfated fucose units released from the FCSs were analyzed via NMR and ESI-HRMS spectroscopies. The fucose units from each species presented extensive qualitative differences, but quantitative assessments of these units were hindered, mostly because of their extensive desulfation during the hydrolysis. The bottom-up analysis performed here has proved useful to explore the structure of FCS through a sum-of-the-parts approach in a qualitative manner. We further demonstrate that under specific acidification conditions particular fucose branches can be removed preferentially from FCS. Preparation of derivatives enriched with particular fucose branches could be useful for studies on "structure vs. biological function" of FCS. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  13. Electron scattering and nuclear structure

    International Nuclear Information System (INIS)

    Frois, B.

    1987-01-01

    The search for the appropriate degrees of freedom to describe nuclei is the central focus of nuclear physics today. Therefore the authors explore in this review their current understanding of nuclear structure as defined by electromagnetic data. The precision of the electromagnetic probe allows us to define accurately the limits of present theoretical descriptions. The authors review here a broad range of subjects that have been addressed by recent experiments, from the study of meson exchange currents and single-particle distributions to collective excitations in heavy nuclei. However, they do not discuss elastic magnetic scattering, inelastic excitation of discrete states, or single-nucleon knockout reactions since these reactions were recently reviewed. The principal aim of this review is to offer a fresh perspective on nuclear structure, based on the new generation of electron scattering data presented here and in the above-mentioned articles

  14. Nuclear Structure Research at TRIUMF

    Science.gov (United States)

    Garrett, P. E.; Andreyev, A.; Austin, R. A. E.; Ball, G. C.; Bandyopadhyay, D.; Becker, J. A.; Boston, A. J.; Chakrawarthy, R. S.; Cline, D.; Cooper, R. J.; Churchman, R.; Cross, D.; Dashdorj, D.; Demand, G. A.; Dimmock, M. R.; Drake, T. E.; Finlay, P.; Gagon-Miosan, F.; Gallant, A. T.; Green, K. L.; Grint, A. N.; Grinyer, G. F.; Hackman, G.; Harkness, L. J.; Hayes, A. B.; Kanungo, R.; Kulp, W. D.; Leach, K. G.; Lee, G.; Leslie, J. R.; Martin, J.-P.; Mattoon, C.; Mills, W. J.; Morton, A. C.; Mythili, S.; Nelson, L.; Newman, O.; Nolan, P. J.; Padilla-Rodal, E.; Pearson, C. J.; Phillips, A. A.; Porter-Peden, M.; Ressler, J. J.; Roy, R.; Ruiz, C.; Savajols, H.; Sarazin, F.; Schumaker, M. A.; Scraggs, D. P.; Scraggs, H. C.; Strange, M. D.; Svensson, C. E.; Waddington, J. C.; Wan, J. M.; Whitbeck, A.; Williams, S. J.; Wong, J.; Wood, J. L.; Wu, C. Y.; Zganjar, E. F.

    2007-04-01

    The radioactive beam laboratory at TRIUMF is currently the highest power ISOL facility in the world. Taking advantage of the high-intensity beams, major programs in nuclear astrophysics, nuclear structure, and weak interaction studies have begun. The low-energy area, ISAC-I, is capable of delivering beams up to mass 30 at approx 1.7 MeV/u or 60 keV up to the mass of the primary target, whereas ISAC-II will ultimately provide beams up to mass 150 and approx 6.5 MeV/u. Major gamma -ray spectrometers for nuclear structure research consist of the 8pi spectrometer at ISAC-I, and the TIGRESS spectrometer now being constructed for ISAC-II. Results from recent experiments investigating the beta -decay of nuclei near N=90 and Coulomb excitation of 20,21Na are presented that highlight the capabilities of the spectrometers.

  15. Structural analysis of nuclear components

    International Nuclear Information System (INIS)

    Ikonen, K.; Hyppoenen, P.; Mikkola, T.; Noro, H.; Raiko, H.; Salminen, P.; Talja, H.

    1983-05-01

    THe report describes the activities accomplished in the project 'Structural Analysis Project of Nuclear Power Plant Components' during the years 1974-1982 in the Nuclear Engineering Laboratory at the Technical Research Centre of Finland. The objective of the project has been to develop Finnish expertise in structural mechanics related to nuclear engineering. The report describes the starting point of the research work, the organization of the project and the research activities on various subareas. Further the work done with computer codes is described and also the problems which the developed expertise has been applied to. Finally, the diploma works, publications and work reports, which are mainly in Finnish, are listed to give a view of the content of the project. (author)

  16. Laser measurements and nuclear structure

    International Nuclear Information System (INIS)

    Leander, G.A.

    1982-01-01

    The nuclear states amenable to laser studies are reviewed with respect to their structure. Systematic predictions are made, e.g., for magnetic moments of parity-mixed intrinsic orbitals in the Ac isotopes and for the shape of the known high-spin isomers in the Pb region

  17. Selected topics in nuclear structure

    International Nuclear Information System (INIS)

    Stachura, Z.

    1984-09-01

    19. winter school in Zakopane was devoted to selected topics in nuclear structure such as: production of spin resonances, heavy ions reactions and their applications to the investigation of high spin states, octupole deformations, excited states and production of new elements etc. The experimental data are ofen compared with theoretical predictions. Report contains 28 papers. (M.F.W.)

  18. Underwater nuclear power plant structure

    International Nuclear Information System (INIS)

    Severs, S.; Toll, H.V.

    1982-01-01

    A structure for an underwater nuclear power generating plant comprising a triangular platform formed of tubular leg and truss members upon which are attached one or more large spherical pressure vessels and one or more small cylindrical auxiliary pressure vessels. (author)

  19. Probing nuclear structure with nucleons

    International Nuclear Information System (INIS)

    Bauge, E.

    2007-01-01

    The goal of this lecture is to show how nucleon scattering can be used to probe the structure of target nuclei, and how nucleon scattering observables can be interpreted in terms of nuclear structure using microscopic optical potentials. After a brief overview of the specificities of nucleon-nucleus scattering, and a quick reminder on scattering theory, the main part of this lecture is devoted to the construction of optical potentials in which the target nuclei structure information is folded with an effective interaction. Several examples of such microscopic optical model potentials are given. (author)

  20. Structural priority approach to fluid-structure interaction problems

    International Nuclear Information System (INIS)

    Au-Yang, M.K.; Galford, J.E.

    1981-01-01

    In a large class of dynamic problems occurring in nuclear reactor safety analysis, the forcing function is derived from the fluid enclosed within the structure itself. Since the structural displacement depends on the fluid pressure, which in turn depends on the structural boundaries, a rigorous approach to this class of problems involves simultaneous solution of the coupled fluid mechanics and structural dynamics equations with the structural response and the fluid pressure as unknowns. This paper offers an alternate approach to the foregoing problems. 8 refs

  1. Problems of structural mechanics in nuclear design

    International Nuclear Information System (INIS)

    Patwardhan, V.M.; Kakodkar, Anil

    1975-01-01

    A very careful and detailed stress analysis of nuclear presure vessels and components is essential for ensuring the safety and integrity of nuclear power plants. The nuclear designer, therefore, relies heavily on structural mechanics for application of the most advanced stress analysis techniques to practical design problems. The paper reviews the inter-relation between structural mechanics and nuclear design and discusses a few of the specific structural mechanics problems faced by the nuclear designers in the Department of Atomic Energy, India. (author)

  2. Nuclear structure with coherent states

    CERN Document Server

    Raduta, Apolodor Aristotel

    2015-01-01

    This book covers the essential features of a large variety of nuclear structure properties, both collective and microscopic in nature. Most of results are given in an analytical form thus giving deep insight into the relevant phenomena. Using coherent states as variational states, which allows a description in the classical phase space, or provides the generating function for a boson basis, is an efficient tool to account, in a realistic fashion, for many complex properties. A detailed comparison with all existing nuclear structure models provides readers with a proper framework and, at the same time, demonstrates the prospects for new developments. The topics addressed are very much of current concern in the field. The book will appeal to practicing researchers and, due to its self-contained account, can also be successfully read and used by new graduate students.

  3. Multi-scale approach of the mechanical behaviour of reinforced concrete structures - Application to nuclear plant containment buildings

    International Nuclear Information System (INIS)

    David, M.

    2012-01-01

    This thesis develops a multi-scale strategy to describe the mechanical behaviour of steel reinforcements and prestressing tendons in a reinforced concrete structure. This strategy is declined in several steps, which allow gradual integration of new physical phenomena. The first asymptotic model represents the effective elastic behaviour of heterogeneities periodically distributed on a surface. It combines an elastic interface behaviour and a membrane behaviour. A second asymptotic model then focuses on the behaviour of rigid fibers distributed on a surface, which may slide with respect to the surrounding volume. These models induce less stress concentrations than the usual truss models. They are implemented in the finite element code Code-Aster, and validated with respect to reference three-dimensional simulations. Their interaction with a macroscopic crack is studied. Finally, this strategy allows the modeling of experimental tests carried out on a portion of a containment building in real scale. (author)

  4. Nuclear structure references coding manual

    International Nuclear Information System (INIS)

    Ramavataram, S.; Dunford, C.L.

    1984-02-01

    This manual is intended as a guide to Nuclear Structure References (NSR) compilers. The basic conventions followed at the National Nuclear Data Center (NNDC), which are compatible with the maintenance and updating of and retrieval from the Nuclear Structure References (NSR) file, are outlined. The structure of the NSR file such as the valid record identifiers, record contents, text fields as well as the major topics for which [KEYWORDS] are prepared are ennumerated. Relevant comments regarding a new entry into the NSR file, assignment of [KEYNO ], generation of [SELECTRS] and linkage characteristics are also given. A brief definition of the Keyword abstract is given followed by specific examples; for each TOPIC, the criteria for inclusion of an article as an entry into the NSR file as well as coding procedures are described. Authors submitting articles to Journals which require Keyword abstracts should follow the illustrations. The scope of the literature covered at NNDC, the categorization into Primary and Secondary sources, etc. is discussed. Useful information regarding permitted character sets, recommended abbreviations, etc. is given

  5. Nuclear Power Plant Concrete Structures

    Energy Technology Data Exchange (ETDEWEB)

    Basu, Prabir [International Atomic Energy Agency (IAEA); Labbe, Pierre [Electricity of France (EDF); Naus, Dan [Oak Ridge National Laboratory (ORNL)

    2013-01-01

    A nuclear power plant (NPP) involves complex engineering structures that are significant items of the structures, systems and components (SSC) important to the safe and reliable operation of the NPP. Concrete is the commonly used civil engineering construction material in the nuclear industry because of a number of advantageous properties. The NPP concrete structures underwent a great degree of evolution, since the commissioning of first NPP in early 1960. The increasing concern with time related to safety of the public and environment, and degradation of concrete structures due to ageing related phenomena are the driving forces for such evolution. The concrete technology underwent rapid development with the advent of chemical admixtures of plasticizer/super plasticizer category as well as viscosity modifiers and mineral admixtures like fly ash and silica fume. Application of high performance concrete (HPC) developed with chemical and mineral admixtures has been witnessed in the construction of NPP structures. Along with the beneficial effect, the use of admixtures in concrete has posed a number of challenges as well in design and construction. This along with the prospect of continuing operation beyond design life, especially after 60 years, the impact of extreme natural events ( as in the case of Fukushima NPP accident) and human induced events (e.g. commercial aircraft crash like the event of September 11th 2001) has led to further development in the area of NPP concrete structures. The present paper aims at providing an account of evolution of NPP concrete structures in last two decades by summarizing the development in the areas of concrete technology, design methodology and construction techniques, maintenance and ageing management of concrete structures.

  6. Macrosystems management approach to nuclear technology transfer

    International Nuclear Information System (INIS)

    Angelo, J.A. Jr.; Maultsby, T.E.

    1978-01-01

    The world of the 1980s will be a world of diminishing resources, shifting economic bases, rapidly changing cultural and societal structures, and an ever increasing demand for energy. A major driving function in this massive redistribution of global power is man's ability to transfer technology, including nuclear technology, to the developing nations. The major task facing policy makers in planning and managing technology transfer is to avoid the difficulties inherent in such technology exploitation, while maximizing the technical, economic, social, and cultural benefits brought about by the technology itself. But today's policy makers, using industrial-style planning, cannot adequately deal with all the complex, closely-coupled issues involved in technology transfer. Yet, policy makers within the developing nations must be capable of tackling the full spectrum of issues associated with technology transfer before committing to a particular course of action. The transfer and acceptance of complex technology would be significantly enhanced if policy makers followed a macrosystems management approach. Macrosystems management is a decision making methodology based on the techniques of macrosystems analysis. Macrosystems analysis combines the best quantitative methods in systems analysis with the best qualitative evaluations provided by multidisciplined task teams. These are focused in a project management structure to produce solution-oriented advice to the policy makers. The general relationships and management approach offered by macrosystems analysis are examined. Nowhere are the nuclear power option problems and issues more complex than in the transfer of this technology to developing nations. Although many critical variables of interest in the analysis are generic to a particular importer/exporter relationship, two specific issues that have universally impacted the nuclear power option, namely the fuel cycle, and manpower and training, are examined in the light of

  7. Structural Sustainability - Heuristic Approach

    Science.gov (United States)

    Rostański, Krzysztof

    2017-10-01

    Nowadays, we are faced with a challenge of having to join building structures with elements of nature, which seems to be the paradigm of modern planning and design. The questions arise, however, with reference to the following categories: the leading idea, the relation between elements of nature and buildings, the features of a structure combining such elements and, finally, our perception of this structure. If we consider both the overwhelming globalization and our attempts to preserve local values, the only reasonable solution is to develop naturalistic greenery. It can add its uniqueness to any building and to any developed area. Our holistic model, presented in this paper, contains the above mentioned categories within the scope of naturalism. The model is divided into principles, actions related, and possible effects to be obtained. It provides a useful tool for determining the ways and priorities of our design. Although it is not possible to consider all possible actions and solutions in order to support sustainability in any particular design, we can choose, however, a proper mode for our design according to the local conditions by turning to the heuristic method, which helps to choose priorities and targets. Our approach is an attempt to follow the ways of nature as in the natural environment it is optimal solutions that appear and survive, idealism being the domain of mankind only. We try to describe various natural processes in a manner comprehensible to us, which is always a generalization. Such definitions, however, called artificial by naturalists, are presented as art or the current state of knowledge by artists and engineers. Reality, in fact, is always more complicated than its definitions. The heuristic method demonstrates the way how to optimize our design. It requires that all possible information about the local environment should be gathered, as the more is known, the fewer mistakes are made. Following the unquestionable principles, we can

  8. Approaches for Securing the Nuclear Fuel Cycle

    International Nuclear Information System (INIS)

    Kim, Jae San; Kim, Min Su; Jo, Seong Youn

    2007-01-01

    The greatest challenge to international nuclear nonproliferation regime is posed by nuclear energy's dual nature for both peaceful and military purposes. Uranium enrichment and spent nuclear fuel (SNF) reprocessing (sensitive nuclear technologies) are critical from the non-proliferation viewpoint because they may be used to produce weapons-grade nuclear materials. Therefore, since 1970s the world community started to develop further measures to curb the spread of sensitive nuclear technologies. The establishment of a Nuclear Suppliers Group (NSG) in 1975 was one such measure. The NSG united countries which voluntarily agreed to coordinate their legislation regarding export of nuclear materials, equipment and technologies to countries not possessing nuclear weapons. Alongside measures to limit the spread of sensitive nuclear technologies, multilateral approaches to the nuclear fuel cycle (NFC) started to be discussed. It's becoming increasingly important to link the objective need for an expanded use of nuclear energy with strengthening nuclear non-proliferation by preventing the spread of sensitive nuclear technologies and securing access for interested countries to NFC products and services

  9. Parquet theory in nuclear structure calculations

    International Nuclear Information System (INIS)

    Bergli, Elise

    2010-01-01

    The thesis concerns a numerical implementation of the Parquet summation of diagrams within Green's functions theory applied to calculations of nuclear systems. The main motivation has been to investigate whether it is possible to develop this approach to a level comparable in accuracy and reliability to other ab initio nuclear structure methods. The Green's functions approach is theoretically well-established in many-body theory, but to our knowledge, no actual application to nuclear systems has been previously published. It has a number of desirable properties, foremost the gently scaling with system size compared to direct diagonalization and the closeness to experimentally accessible quantities. The main drawback is the numerical instabilities due to the pole structure of the one-particle propagator, leading to convergence difficulties. This issue is one of the main focal points of the work presented in this thesis, and strategies to improve the convergence properties are described and investigated. We have applied the method both to a simple model which can be solved by exact diagonalization and to the more realistic 4 He system. The results shows that our implementation is close to the exact solution in the simple model as long as the interaction strengths are small. As the number of particles increases, convergence is increasingly hard to obtain. In the 4 He case, we obtain results in the vicinity of the results from comparable approaches. The numerical in-stabilities in the current implementation still prevents the desired accuracy and stability necessary to achieve the current benchmark standards. (Author)

  10. Towards an International Approach to Nuclear Safety

    International Nuclear Information System (INIS)

    Tomihiro Taniguchi

    2006-01-01

    This document presents in a series of transparencies the different activities of the IAEA: Introduction of International Atomic Energy Agency, Changing world, Changing Technology, Changing Global Security, Developing Innovative Nuclear Energy Systems, Global Nuclear Safety Regime, IAEA Safety Standards: Hierarchy - Global Reference for Striving for Excellence, IAEA Safety Reviews and Services: Integrated Safety Approach, Global Knowledge Network - Asian Nuclear Safety Network, Safety Issues and Challenges, Synergy between Safety and Security, Recent Developments: Safety and Security of Radioactive Sources, Convention on Physical Protection of Nuclear Material (CPPNM), Incident and Emergency Preparedness and Response, Holistic Approach for Safety and Security, Sustainable Development. (J.S.)

  11. Nuclear structure calculations for astrophysical applications

    International Nuclear Information System (INIS)

    Moeller, P.; Kratz, K.L.

    1992-01-01

    Here we present calculated results on such diverse properties as nuclear energy levels, ground-state masses and shapes, β-decay properties and fission-barrier heights. Our approach to these calculations is to use a unified theoretical framework within which the above properties can all be studied. The results are obtained in the macroscopic-microscopic approach in which a microscopic nuclear-structure single-particle model with extensions is combined with a macroscopic model, such as the liquid drop model. In this model the total potential energy of the nucleus may be calculated as a function of shape. The maxima and minima in this function correspond to such features as the ground state, fission saddle points and shape-isomeric states. Various transition rate matrix elements are determined from wave-functions calculated in the single-particle model with pairing and other relevant residual interactions taken into account

  12. Phonons as building blocks in nuclear structure

    International Nuclear Information System (INIS)

    Silvestre-Brac, B.

    1980-01-01

    The structure of a nuclear system in terms of eigenmodes (phonons) of subsystems is investigated in three different approaches. In the frame of nuclear field theory the three identical particle system is analysed and the elimination of spurious states due to the violation of the Pauli principle is emphasized. In terms of weak coupling, a new approach of the shell model is proposed which is shown to be rapidly convergent with the number of basis vectors. Applications of three particle systems in the lead region are made. Lastly, a microscopic multiphonon theorie of collective K=0 states in deformed nuclei based on a Tamm Dancoff phonon is developed. The role of the Pauli principle as well as comparisons with boson expansion methods are deeply analysed [fr

  13. Used Nuclear Fuel Loading and Structural Performance Under Normal Conditions of Transport- Demonstration of Approach and Results on Used Fuel Performance Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Adkins, Harold [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Geelhood, Ken [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Koeppel, Brian [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Coleman, Justin [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bignell, John [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Flores, Gregg [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Wang, Jy-An [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Sanborn, Scott [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Spears, Robert [Idaho National Lab. (INL), Idaho Falls, ID (United States); Klymyshyn, Nick [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2013-09-30

    This document addresses Oak Ridge National Laboratory milestone M2FT-13OR0822015 Demonstration of Approach and Results on Used Nuclear Fuel Performance Characterization. This report provides results of the initial demonstration of the modeling capability developed to perform preliminary deterministic evaluations of moderate-to-high burnup used nuclear fuel (UNF) mechanical performance under normal conditions of storage (NCS) and normal conditions of transport (NCT) conditions. This report also provides results from the sensitivity studies that have been performed. Finally, discussion on the long-term goals and objectives of this initiative are provided.

  14. Nuclear Malaysia Strategic Approach Towards Public Acceptance on Nuclear Technology

    International Nuclear Information System (INIS)

    Hasfazilah Hassan; Redzuan Mohamad; Abdul Halim Jumat; Sabariah Kader Ibrahim

    2016-01-01

    Full text: This paper describes the strategic approach taken by Malaysian Nuclear Agency in carrying out public information and public acceptance on nuclear technology activities. The main objective of this study is to ensure that public and stake holders are continuously getting correct information from credible sources. Through the feedback received, comprehensive and holistic approach provides the desired impact. Obtaining the correct information from credible sources culture should always be inculcate to ensure that the benefits of nuclear technologies can be practiced and accepted by civil society without prejudice. Through strategic approach and activities implemented, monitoring and review, and measurement of the effectiveness of ongoing programs are expected to increase public awareness of the importance and contribution of nuclear technology in Malaysia. (author)

  15. ENSDF: a nuclear structure data bank for nuclear physicists

    International Nuclear Information System (INIS)

    Blachot, J.

    1987-02-01

    Data Banks have tremendously grown these last years. All the nuclear Structure information are now in the ENSDF. This file is used for the Nuclear Data Sheets publication. The part which contains only Adopted Data could be used as a Data Bank for Nuclear Physicists. Examples of retrevial are given [fr

  16. Annual report of the Nuclear Structure Committee

    International Nuclear Information System (INIS)

    1977-01-01

    The Annual Report for the period 1 August 1975 to 31 July 1976 of the Nuclear Structure Committee of the Nuclear Physics Board, under the (United Kingdom) Science Research Council, is presented. Details are given of nuclear structure grants and laboratory agreements. (U.K.)

  17. Nuclear fusion - a strategic approach

    International Nuclear Information System (INIS)

    Colombo, U.

    1989-01-01

    Aspects of nuclear fusion research with particular reference to Europe are reviewed. The energy scenario with regard to nuclear fusion is considered including economic, political and scientific problems of energy policy in view of the long-term research effort required. Mention is also made of the need to phase out the use of fossil fuels for environmental reasons. Research into magnetic and inertial confinement fusion is considered. It is concluded that the development of thermonuclear reactors will eventually be brought to practical fruition. (UK)

  18. Nuclear fragmentation by nucleation approach

    International Nuclear Information System (INIS)

    Chung, K.C.

    1992-01-01

    The nucleation model is used to simulate nuclear fragmentation processes. The critical value of the effective interaction radius is shown to vary linearly with the expansion factor α. The calculated mass and charge distributions are compared with some experimental data. (author)

  19. Nuclear power programme planning: An integrated approach

    International Nuclear Information System (INIS)

    2001-12-01

    The International Atomic Energy Agency (IAEA) has published material on different policy considerations in the introduction of nuclear power, primarily addressed to top level decision makers in government and industry in Member States. Several Member States and experts recommended to the IAEA to address the aspects of an integrated approach to nuclear power programme planning and to serve as guidance to those countries wishing to embark on a nuclear power programme. As a follow-up, the present publication is primarily intended to serve as guidance for executives and managers in Member States in planning for possible introduction of nuclear power plants in their electricity generating systems. Nuclear power programme planning, as dealt with in this publication, includes all activities that need to be carried out up to a well-founded decision to proceed with a project feasibility study. Project implementation beyond this decision is not in the scope of this publication. Although it is possible to use nuclear energy as a heat source for industrial processes, desalination and other heat applications, it is assumed in this publication that the planning is aimed towards nuclear power for electricity generation. Much of the information given would, however, also be relevant for planning of nuclear reactors for heat production. The publication was prepared within the framework of the IAEA programme on nuclear power planning, implementation and performance as a joint activity of the Nuclear Power Engineering Section and the Planning and Economic Studies Section (Division of Nuclear Power)

  20. Selected topic in nuclear structure. V. 1

    International Nuclear Information System (INIS)

    Broda, R.; Stachura, Z.; Styczen, J.

    1985-01-01

    A report of recent experiments performed in different laboratories and a review of fundamental problems of nuclear physics connected with study of nuclear structure, that had just been solved are presented. The proceedings contain 33 articles. (M.F.-W.)

  1. Dipole rescattering and the nuclear structure function

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, F. [Depto de Ciencias Exatas e da Terra, Universidade Federal de Sao Paulo, SP (Brazil); Goncalves, V. P. [Instituto de Fisica e Matematica, Universidade Federal de Pelotas, Caixa Postal 354, CEP 96010-900, Pelotas, RS (Brazil); Navarra, F. S.; Oliveira, E. G. [Instituto de Fisica, Universidade de Sao Paulo Rua do Matao, Travessa R, 187, 05508-090 Sao Paulo, SP (Brazil)

    2013-03-25

    In the framework of the dipole model, we study the effects of the dipole multiple scatterings in a nuclear target and compute the nuclear structure function. We compare different unitarization schemes and confront our results with the E665 data.

  2. Broyden's method in nuclear structure calculations

    International Nuclear Information System (INIS)

    Baran, Andrzej; Bulgac, Aurel; Forbes, Michael McNeil; Hagen, Gaute; Nazarewicz, Witold; Schunck, Nicolas; Stoitsov, Mario V.

    2008-01-01

    Broyden's method, widely used in quantum chemistry electronic-structure calculations for the numerical solution of nonlinear equations in many variables, is applied in the context of the nuclear many-body problem. Examples include the unitary gas problem, the nuclear density functional theory with Skyrme functionals, and the nuclear coupled-cluster theory. The stability of the method, its ease of use, and its rapid convergence rates make Broyden's method a tool of choice for large-scale nuclear structure calculations

  3. Nuclear structure of 54Cr

    International Nuclear Information System (INIS)

    Saini, S.; Gunye, M.R.

    1980-01-01

    The large amount of the experimental data accumulated in recent years on the levels of fp-shell nuclei, especially on the properties of the high spin states studied through heavy-ion reactions, needs to be explained systematically on theoretical basis. The exact shell model calculations are not feasible for most of these nuclei. The restricted shell-model calculations, however, do not give a proper account of the experimental data. The nuclear structure of 54 Cr has been investigated in the framework of Hartree-Fock Projection formation employing effective interaction in the configuration space of the full fp-shell. The band-mixed wave functions obtained from the lowest four intrinsic states have been used to compute energy levels and electromagnetic properties. The present calculations give a fairly good account of the available data. (author)

  4. Nuclear structure of 194Pt

    International Nuclear Information System (INIS)

    Cleveland, W.E.; Zganjar, E.F.

    1976-01-01

    The decay of 194 Ir has been thoroughly studied resulting in the construction of a decay scheme consisting of 26 excited states and 69 transitions. Nine new levels and 29 new transitions were added to the previously known scheme. Of these, levels at 1,893.6 and 2,053.0 keV as well as 9 γ-ray transitions are new to the 194 Pt level scheme. Precise γ-ray energy and intensity measurements as well as quantitative coincidence measurements were performed, and the internal conversion spectrum was investigated with a Si(Li) detector. Directional correlation measurements were performed for selected cascades with the major result being the unique assignment of 0 + to the new level at 1,893.6 keV. The structure was interpreted within the framework of the PPQ model as well as the effective-core picture including nuclear triaxiality. (orig.) [de

  5. Large scale nuclear structure studies

    International Nuclear Information System (INIS)

    Faessler, A.

    1985-01-01

    Results of large scale nuclear structure studies are reported. The starting point is the Hartree-Fock-Bogoliubov solution with angular momentum and proton and neutron number projection after variation. This model for number and spin projected two-quasiparticle excitations with realistic forces yields in sd-shell nuclei similar good results as the 'exact' shell-model calculations. Here the authors present results for a pf-shell nucleus 46 Ti and results for the A=130 mass region where they studied 58 different nuclei with the same single-particle energies and the same effective force derived from a meson exchange potential. They carried out a Hartree-Fock-Bogoliubov variation after mean field projection in realistic model spaces. In this way, they determine for each yrast state the optimal mean Hartree-Fock-Bogoliubov field. They apply this method to 130 Ce and 128 Ba using the same effective nucleon-nucleon interaction. (Auth.)

  6. Alternate approaches to nuclear safety

    International Nuclear Information System (INIS)

    Crane, A.T.

    1985-01-01

    For the US nuclear power industry to expand, a greatly increased portion of the public must come to share the industry's confidence in reactor safety. Major obstacles to establishing this confidence are frequent incidents with potential safety implications and a lack of incontrovertible proof that the risk of a major accident is very low. The most important step toward overcoming these obstacles would be for each utility to operate, maintain, and evaluate its reactors according to far higher standards. With improvements in reliability and safety margins, existing plants would be a stimulus for building new ones rather than an impediment. If changes to the operation of existing plants and improvements to the design of future ones were inadequate, the only hope for a revival of the nuclear industry would be an alternative reactor so obviously safe that risk would no longer be an issue. Three possible concepts are the modular high-temperature gas reactor, the process inherent ultimate safety reactor, and the liquid-metal fast reactor. All three have inherent safety features that should make a meltdown essentially impossible. They cannot know just how great the advantage of these alternate reactors would be, but the benefits of developing one or more of the concepts appear great

  7. Nuclear structure at intermediate energies

    International Nuclear Information System (INIS)

    Bonner, B.E.; Mutchler, G.S.

    1991-01-01

    The theme that unites the sometimes seemingly disparate experiments undertaken by the Bonner Lab Medium Energy Group is a determination to understand in detail the many facets and manifestations of the strong interaction, that which is now referred to as nonperturbative QCD. Whether we are investigating the question of just what does carry the spin of baryons, or the extent of the validity of the SU(6) wavefunctions for the excited hyperons (as will be measured in their radiative decays in our CEBAF experiment), or questions associated with the formation of a new state of matter predicted by QCD (the subject of our BNL experiments E810, E854, as well as our approved experiment at RHIC), -- all these projects share this common goal. Our other experiments represent different approaches to the same broad undertaking. LAMPF E1097 will provide definitive answers to the question of the spin dependence of the inelastic channel of pion production in the n-p interaction. FNAL E683 may well open a new field of investigation in nuclear physics: that of just how quarks and gluons interact with nuclear matter as they transverse nuclei of different sizes. In most all of the experiments mentioned above, the Bonner Lab Group is playing major leadership roles as well as doing a big fraction of the hard work that such experiments require. We use many of the facilities that are unavailable to the intermediate energy physics community and we use our expertise to design and fabricate the detectors and instrumentation that are required to perform the measurements which we decide to do

  8. Nuclear Structure Data for the Present Age

    International Nuclear Information System (INIS)

    Baglin, Coral M.

    2005-01-01

    The US Nuclear Data Program maintains and provides easy and free access to several comprehensive databases that assist scientists to sift through and assess the vast quantity of published nuclear structure and decay data. These databases are an invaluable asset for nuclear-science experimentalists and theorists alike, and the recommended values provided for nuclear properties such as decay modes, level energies and lifetimes, and radiation properties can also be of great importance to specialists in other fields such as medicine, geophysics, and reactor design. The Evaluated Nuclear Structure Data File (ENSDF) contains experimental nuclear structure data for all known nuclides, evaluated by the US nuclear data program evaluators in collaboration with a number of international data groups; the Nuclear Science Reference (NSR) database provides complementary bibliographic information; the Experimental Unevaluated Nuclear Data Listing (XUNDL) exists to enable rapid access to experimental nuclear-structure data compiled from the most recent publications (primarily in high-spin physics). This paper presents an overview of the nuclear structure and decay data available through these databases, with emphasis on recent and forthcoming additions to and presentations of the available material

  9. Many-body approaches to nuclear physics

    International Nuclear Information System (INIS)

    Hjorth-Jensen, M.

    1993-10-01

    This thesis deals with applications of perturbative many-body theories to selected nuclear systems at low and intermediate energies. Examples are the properties of neutron stars, the calculation of shell-model effective interactions and the microscopic derivation of the optical-model potential for finite nuclei. The line of research leans on the microscopic approach, i.e. an approach which aims at describing nuclear properties from the underlying free interaction between the various hadrons where parameters like meson coupling constants define the Lagrangians. The emphasis is on the behavior of the various components of the free interaction in different nuclear media in order to understand how these components are affected by the studied nuclear correlations. 159 refs

  10. Antiprotonic Radioactive Atom for Nuclear Structure Studies

    International Nuclear Information System (INIS)

    Wada, M.; Yamazaki, Y.

    2005-01-01

    A future experiment to synthesize antiprotonic radioactive nuclear ions is proposed for nuclear structure studies. Antiprotonic radioactive nuclear atom can be synthesized in a nested Penning trap where a cloud of antiprotons is prestored and slow radioactive nuclear ions are bunch-injected into the trap. By observing of the ratio of π+ and π- produced in the annihilation process, we can deduce the different abundance of protons and neutrons at the surface of the nuclei. The proposed method would provide a unique probe for investigating the nuclear structure of unstable nuclei

  11. The disposition of nuclear waste: an integrated international approach

    International Nuclear Information System (INIS)

    Waltar, A.E.

    2001-01-01

    This paper proposes the establishment of a new, globally integrated approach for dealing with spent nuclear fuel (SNF), high-level waste, and plutonium supplies. The end product is envisioned to be a new global agency (tentatively called the International Nuclear Waste Authority, or INWA), which would have the authority to establish and enforce all nuclear waste disposal standards and subsequently execute all financial arrangements appropriate for obtaining full-scale global implementation. We suggest the IAEA as the logical existing organization to facilitate generating the structure for the INWA. (author)

  12. Nuclear Knowledge Management: the IAEA Approach

    International Nuclear Information System (INIS)

    Sbaffoni, M.; De Grosbois, J.

    2015-01-01

    Knowledge in an organization is residing in people, processes and technology. Adequate awareness of their knowledge assets and of the risk of losing them is vital for safe and secure operations of nuclear installations. Senior managers understand this important linkage, and in the last years there is an increasing tendency in nuclear organizations to implement knowledge management strategies to ensure that the adequate and necessary knowledge is available at the right time, in the right place. Specific and advanced levels of knowledge are clearly required to achieve and maintain technical expertise, and experience must be developed and be available throughout the nuclear technology lifecycle. If a nuclear organization does not possess or have access to the required technical knowledge, a full understanding of the potential consequences of decisions and actions may not be possible, and safety, security and safeguards might be compromised. Effective decision making during design, licencing, procurement, construction, commissioning, operation, maintenance, refurbishment, and decommissioning of nuclear facilities needs to be risk-informed and knowledge-driven. Nuclear technology is complex and brings with it inherent and unique risks that must be managed to acceptably low levels. Nuclear managers have a responsibility not only to establish adequate technical knowledge and experience in their nuclear organizations but also to maintain it. The consequences of failing to manage the organizations key knowledge assets can result in serious degradations or accidents. The IAEA Nuclear Knowledge Management (NKM) sub-programme was established more than 10 years ago to support Nuclear Organizations, at Member States request, in the implementation and dissemination of the NKM methodology, through the development of guidance and tools, and by providing knowledge management services and assistance. The paper will briefly present IAEA understanding of and approach to knowledge

  13. Nuclear Structure and Decay Data (NSDD) network

    International Nuclear Information System (INIS)

    Pronyaev, V.G.

    2001-02-01

    This report provides a brief description of the Nuclear Structure and Decay Data (NSDD) Network in response to a request from the Advisory Group Meeting on ''Co-ordination of the International Network of Nuclear Structure and Decay Data Evaluators'' (IAEA, Vienna, 14-17 December 1998, report IAEA(NDS)-399 (1999)). This report supersedes the special issue of the Nuclear Data Newsletter No. 20 published in November 1994. (author)

  14. Structure of the subsaturated nuclear matter

    Energy Technology Data Exchange (ETDEWEB)

    Maruyama, Toshiki; Maruyama, Tomoyuki; Chiba, Satoshi; Iwamoto, Akira [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Niita, Koji; Oyamatsu, Kazuhiro

    1998-07-01

    Quantum molecular dynamics is applied to study the ground state and excited state properties of nuclear matter at subsaturation densities. The structure of nuclear matter at subsaturation density shows some exotic shapes with variation of the density. However, the structure in our result is rather irregular compared to those of previous works due to the existence of local minimum configurations. (author)

  15. Sociodrama approach for enhancing nuclear safety

    International Nuclear Information System (INIS)

    Choi, K. S.; Kim, C. B.; Ha, Y. H.

    2004-01-01

    A role playing or sociodrama has been experimentally conducted among residents from 4 NPP sites in Korea and KINS employees as a psychological approach for enhancing nuclear safety and improving public communication and public confidence in regulator in Dec. 2004. In this paper, the results were analyzed and presented and future plan and area of further study were suggested. This socio-psychological approach can be used as a new communication method for improving mutual understanding between residents and NPP operators at sites. It can be also used to solve conflicts among stakeholders and interest groups in nuclear industry

  16. Nuclear Weapons Enterprise Transformation - A Sustainable Approach

    International Nuclear Information System (INIS)

    O'Brien, K H

    2005-01-01

    Nuclear weapons play an essential role in United States (U.S.) National Security Policy and a succession of official reviews has concluded that nuclear weapons will continue to have a role for the foreseeable future. Under the evolving U.S. government policy, it is clear that role will be quite different from what it was during the Cold War. The nuclear-weapons stockpile as well as the nuclear-weapons enterprise needs to continue to change to reflect this evolving role. Stockpile reductions in the early 1990s and the Stockpile Stewardship Program (SSP), established after the cessation of nuclear testing in 1992, began this process of change. Further evolution is needed to address changing security environments, to enable further reductions in the number of stockpiled weapons, and to create a nuclear enterprise that is cost effective and sustainable for the long term. The SSP has successfully maintained the U.S. nuclear stockpile for more than a decade, since the end of nuclear testing. Current plans foresee maintaining warheads produced in the 1980s until about 2040. These warheads continue to age and they are expensive to refurbish. The current Life Extension Program plans for these legacy warheads are straining both the nuclear-weapons production and certification infrastructure making it difficult to respond rapidly to problems or changes in requirements. Furthermore, refurbishing and preserving Cold-War-era nuclear weapons requires refurbishing and preserving an infrastructure geared to support old technology. Stockpile Stewardship could continue this refurbishment approach, but an alternative approach could be considered that is more focused on sustainable technologies, and developing a more responsive nuclear weapons infrastructure. Guided by what we have learned from SSP during the last decade, the stewardship program can be evolved to address this increasing challenge using its computational and experimental tools and capabilities. This approach must start

  17. Nuclear accident evacuee bullying and structural violence

    International Nuclear Information System (INIS)

    Tsujiuchi, Takuya

    2018-01-01

    Nuclear accident sufferers should be now referred to as nuclear accident victims. The authors discuss why nuclear accident victims receive not only psychological bullying where no peculiar causes exist, but also corporal and physical bullying and mental suffering, based on the results of questionnaire survey conducted by the authors from January to February 2017, the 'survey on bullying problems related to evacuation from the nuclear accident.' The reasons why the nuclear power evacuation bullying has become a problem at present can be largely classified to the following three categories: (1) opinion that 'bullying' that originally existed just after the nuclear accident became surfaced recently, (2) opinion that latent problems exist as background, and (3) opinion that socially underlying issues are involved in the generation of bullying. Thus, various factors existing under nuclear power evacuation bullying were structurally clarified. In the background of children's nuclear evacuation bullying, adult nuclear power evacuation bullying exists, and there are 'lack of understanding, prejudice, and discrimination against nuclear power and Fukushima' under that. The author thought that 'structural violence' to create the disparity, discrimination, inequality, and injustice of society exists as the basis of such lack of understanding, prejudice, and discrimination, and discussed the 'structural violence' as the basis of bullying. As the upper structure of structural violence associated with nuclear accidents, there are two big phenomena: (1) setting of evacuation/return area not based on reasonable radiation dose standards and (2) fabricated safety and carefreeness myth. The Ministry of Education, Culture, Sports, Science and Technology's report on nuclear bullying could give an impression that 'nuclear power evacuation bullying' is 'not so big problem'. (A.O.)

  18. A comparative approach to nuclear safety and nuclear security

    International Nuclear Information System (INIS)

    2009-01-01

    The operators in charge of nuclear facilities or activities have to deal with nuclear and radiological risks, which implies implementing two complementary approaches - safety and security - each of which entails specific methods. Targeting the same ultimate purpose, these two approaches must interact to mutually reinforce each other, without compromising one another. In this report, IRSN presents its reflections on the subject, drawing on its expertise in assessing risks on behalf of the French safety and security authorities, together with the lessons learned from sharing experience at international level. Contents: 1 - Purpose and context: Definitions, Similar risks but different causes, Transparency and confidentiality, Synergy in dealing with sabotage, A common purpose: protecting Man and the environment; 2 - Organizational principles: A legislative and regulatory framework relative to safety as well as security, The competent nuclear safety and security authorities, A difference in the distribution of responsibilities between the operators and the State (Prime responsibility of operators, A different involvement of the State), Safety culture and security culture; 3 - Principles for the application of safety and security approaches: Similar design principles (The graded approach, Defence-in-depth, Synergy between safety and security), Similar operating principles (The same requirement regarding constant monitoring, The same need to take account of feedback, The same need to update the baseline, Sharing good practices is more restricted in the area of security, The need to deal with the respective requirements of safety and security), Similar emergency management (Developing emergency and contingency plans, Carrying out exercises), Activities subject to quality requirements; 4 - Conclusion

  19. ENSDF: The evaluated nuclear structure data file

    International Nuclear Information System (INIS)

    Martin, M.J.

    1986-01-01

    The structure, organization, and contents of the Evaluated Nuclear Structure Data File, ENSDF, will be discussed. This file summarizes the state of experimental nuclear structure data for all nuclei as determined from consideration of measurements reported world wide. Special emphasis will be given to the data evaluation procedures and consistency checks utilized at the input stage and to the retrieval capabilities of the system at the output stage

  20. Sum rule approach to nuclear vibrations

    International Nuclear Information System (INIS)

    Suzuki, T.

    1983-01-01

    Velocity field of various collective states is explored by using sum rules for the nuclear current. It is shown that an irrotational and incompressible flow model is applicable to giant resonance states. Structure of the hydrodynamical states is discussed according to Tomonaga's microscopic theory for collective motions. (author)

  1. Nuclear Structure Committee annual report 1976-1977, nuclear structure grants and laboratory agreements

    International Nuclear Information System (INIS)

    1977-01-01

    The Annual Report for the period 1 August 1976 to 31 July 1977 of the Nuclear Structure Committee of the Nuclear Physics Board, under the (United Kingdom) Science Research Council, is presented. Details are given of nuclear structure grants and laboratory agreements. (U.K.)

  2. Structure-soil-structure interaction of nuclear structures

    International Nuclear Information System (INIS)

    Snyder, M.D.; Shaw, D.E.; Hall, J.R. Jr.

    1975-01-01

    Structure-to-structure interaction resulting from coupling of the foundations through the soil has traditionally been neglected in the seismic analysis of nuclear power plants. This paper examines the phenomenon and available methods of analytical treatment, including finite element and lumped parameter methods. Finite element techniques have lead to the treatment of through soil coupling of structural foundations using two dimensional plane strain models owing to the difficulty of considering three dimensional finite element models. The coupling problem is treated by means of a lumped parameter model derived from elastic half-space considerations. Consequently, the method is applicable to the interaction of any number of foundations and allows the simultaneous application of tri-directional excitation. The method entails the idealization of interacting structures as lumped mass/shear beams with lumped soil springs and dampers beneath each foundation plus a coupling matrix between the interacting foundations. Utilizing classical elastic half-space methods, the individual foundation soil springs and dampers may be derived, accounting for the effects of embedment and soil layering, analogous to the methods used for single soil-structure, interaction problems. The coupling matrix is derived by generating influence coefficients based on the geometric relationship of the structures using classical half-space solutions. The influence coefficients form the coupling flexibility matrix which is inverted to yield the coupling matrix for the lumped parameter model

  3. Overview of nuclear structure with electrons

    International Nuclear Information System (INIS)

    Geesaman, D. F.

    1999-01-01

    Following a broad summary of the author's view of nuclear structure in 1974, he will discuss the key elements they have learned in the past 25 years from the research at the M.I.T. Bates Linear Accelerator center and its sister electron accelerator laboratories. Electron scattering has provided the essential measurements for most of the progress. The future is bright for nuclear structure research as their ability to realistically calculate nuclear structure observables has dramatically advanced and they are increasingly able to incorporate an understanding of quantum chromodynamics into their picture of the nucleus

  4. A porous medium approach for the fluid structure interaction modelling of a water pressurized nuclear reactor core fuel assemblies: simulation and experimentation

    International Nuclear Information System (INIS)

    Ricciardi, G.

    2008-10-01

    The designing of a pressurized water reactor core subjected to seismic loading, is a major concern of the nuclear industry. We propose, in this PhD report, to establish the global behaviour equations of the core, in term of a porous medium. Local equations of fluid and structure are space averaged on a control volume, thus we define an equivalent fluid and an equivalent structure, of which unknowns are defined on the whole space. The non-linear fuel assemblies behaviour is modelled by a visco-elastic constitutive law. The fluid-structure coupling is accounted for by a body force, the expression of that force is based on empirical formula of fluid forces acting on a tube subject to an axial flow. The resulting equations are solved using a finite element method. A validation of the model, on three experimental device, is proposed. The first one presents two fuel assemblies subjected to axial flow. One of the two fuel assemblies is deviated from its position of equilibrium and released, while the other is at rest. The second one presents a six assemblies row, immersed in water, placed on a shaking table that can simulate seismic loading. Finally, the last one presents nine fuel assemblies network, arranged in a three by three, subject to an axial flow. The displacement of the central fuel assembly is imposed. The simulations are in agreement with the experiments, the model reproduces the influence of the flow of fluid on the dynamics and coupling of the fuel assemblies. (author)

  5. Study of helium behaviour in body-centered cubic structures for new nuclear reactor generations: experimental approach in well characterized materials

    International Nuclear Information System (INIS)

    Gorondy-Novak, Sofia Maria

    2017-01-01

    The presence of helium produced during the operation of future fast reactors and fusion reactors in core structural materials induces a deterioration of their mechanical properties (hardening, swelling, embrittlement). In order to pursue the development of the metallic structural alloys, it is necessary to comprehend the He interaction with the metal lattice thus the point in common is the study of the metallic components with body-centered cubic structure (bcc) of future alloys, such as iron and/or vanadium. Ion implantation of ions "4He was employed with the aim of simulating the damaging effects associated with the helium accumulation, the point defects' creation (vacancies, self-interstitials) and the He cluster formation in future reactors. Helium evolution in pure iron and pure vanadium has been revealed from the point of view of the trapping sites' nature and well as the helium migration mechanisms and the nucleation/growth of bubbles. These phenomena were studied by coupling different complementary techniques. Despite of the fact that some mechanisms involved seem to be similar for both bcc metals, the comparison between the helium behavior in iron and vanadium shows certain differences. Microstructural defects, including grain boundaries and implanted helium concentration (dose) in both bcc metals will play significant roles on the helium behavior at high temperature. The acquired experimental data coupled with simulation methods contribute to the future development in terms of kinetic and thermodynamic data management of helium behavior in the metal components of the alloys of nuclear interest. (author) [fr

  6. Examining work structure in nuclear power plants

    International Nuclear Information System (INIS)

    Bauman, M.B.; Boulette, M.D.; Van Cott, H.P.

    1985-01-01

    This paper describes the assessment of the work structure of ten nuclear power plants. Work structure factors are those factors that relate to the way in which work at all levels in a plant is organized, staffed, managed, rewarded, and perceived by plant personnel. Questionnaires given to a cross-section of personnel at the plants were the primary source of data collection. Structured ''critical incident'' interviews were conducted to verify the questionnaire results. The study revealed that a variety of work structure factor problem areas do exist in nuclear power plants. The paper highlights a prioritized set of candidate research themes to be considered in EPRI's Work Structure and Performance Research Program

  7. NRSAS: Nuclear Receptor Structure Analysis Servers.

    NARCIS (Netherlands)

    Bettler, E.J.M.; Krause, R.; Horn, F.; Vriend, G.

    2003-01-01

    We present a coherent series of servers that can perform a large number of structure analyses on nuclear hormone receptors. These servers are part of the NucleaRDB project, which provides a powerful information system for nuclear hormone receptors. The computations performed by the servers include

  8. Microscopic calculations of nuclear structure and nuclear correlations

    International Nuclear Information System (INIS)

    Wiringa, R.B.

    1992-01-01

    A major goal in nuclear physics is to understand how nuclear structure comes about from the underlying interactions between nucleons. This requires modelling nuclei as collections of strongly interacting particles. Using realistic nucleon-nucleon potentials, supplemented with consistent three-nucleon potentials and two-body electroweak current operators, variational Monte Carlo methods are used to calculate nuclear ground-state properties, such as the binding energy, electromagnetic form factors, and momentum distributions. Other properties such as excited states and low-energy reactions are also calculable with these methods

  9. Electromagnetic studies of nuclear structure and reactions

    Energy Technology Data Exchange (ETDEWEB)

    Hersman, F.W.; Dawson, J.F.; Heisenberg, J.H.; Calarco, J.R.

    1990-06-01

    This report contains papers on the following topics: giant resonance studies; deep inelastic scattering studies; high resolution nuclear structure work; and relativistic RPA; and field theory in the Schroedinger Representation.

  10. Neutron spectroscopy, nuclear structure, related topics. Abstracts

    International Nuclear Information System (INIS)

    Sukhovoj, A.M.

    1996-01-01

    Neutron spectroscopy, nuclear structure and related topics are considered. P, T-breaking, neutron beta decay, neutron radiative capture and neutron polarizability are discussed. Reaction with fast neutrons, methodical aspect low-energy fission are considered too

  11. Nuclear structure and fusion at the barrier

    International Nuclear Information System (INIS)

    Reisdorf, W.

    1985-01-01

    A comparative study of measured fusion excitation functions in the vicinity of the barrier reveals nuclear structure effects, due in particular to the coupling of the fusion process to direct-reaction channels. (orig.)

  12. Electromagnetic studies of nuclear structure and reactions

    International Nuclear Information System (INIS)

    Hersman, F.W.; Dawson, J.F.; Heisenberg, J.H.; Calarco, J.R.

    1990-06-01

    This report contains papers on the following topics: giant resonance studies; deep inelastic scattering studies; high resolution nuclear structure work; and relativistic RPA; and field theory in the Schroedinger Representation

  13. Reactor Structure Materials: Nuclear Fuel

    International Nuclear Information System (INIS)

    Sannen, L.; Verwerft, M.

    2000-01-01

    Progress and achievements in 1999 in SCK-CEN's programme on applied and fundamental nuclear fuel research in 1999 are reported. Particular emphasis is on thermochemical fuel research, the modelling of fission gas release in LWR fuel as well as on integral experiments

  14. Discussion on organization structure system of nuclear power projects in China

    International Nuclear Information System (INIS)

    Wang Zhi

    2011-01-01

    With the development of the nuclear power industry in China, several AE companies were born and now play a major role in building nuclear power projects in China and overseas. After studying current organization structure systems of all nuclear power AE companies in China and comparing with successful foreign ones, this paper proposes some approaches to optimize the structure. (author)

  15. Structural materials for innovative nuclear systems (SMINS)

    International Nuclear Information System (INIS)

    2008-01-01

    Structural materials research is a field of growing relevance in the nuclear sector, especially for the different innovative reactor systems being developed within the Generation IV International Forum (GIF), for critical and subcritical transmutation systems, and of interest to the Global Nuclear Energy Partnership (GNEP). Under the auspices of the NEA Nuclear Science Committee (NSC) the Workshop on Structural Materials for Innovative Nuclear Systems (SMINS) was organised in collaboration with the Forschungszentrum Karlsruhe in Germany. The objectives of the workshop were to exchange information on structural materials research issues and to discuss ongoing programmes, both experimental and in the field of advanced modelling. These proceedings include the papers and the poster session materials presented at the workshop, representing the international state of the art in this domain. (author)

  16. Evaluated Nuclear Structure Data File (ENSDF)

    International Nuclear Information System (INIS)

    Bhat, M.R.

    1991-01-01

    The Evaluated Nuclear Structure Data File (ENSDF), is maintained by the National Nuclear Data Center (NNDC) on behalf of the international Nuclear Structure and Decay Data (NSDD) network organized under the auspices of the International Atomic Energy Agency. ENSDF provides evaluated experimental nuclear structure and decay data for basic and applied research. The activities of the NSDD network, the publication of the evaluations, and their use in different applications are described. Since 1986, the ENSDF and related numeric and bibliographic data bases have been made available for on-line access. The current status of these data bases, and future plans to improve the on-line access to their contents are discussed. 8 refs., 4 tabs

  17. Nuclear Structure of 186Re

    Science.gov (United States)

    2016-12-24

    equipotential surfaces defining the shapes of quadrupole-deformed nuclei are shown in Figure 3, in which the e↵ects of varying and are... equipotential surfaces in deformed nuclei, with the axis of nuclear symmetry identified as the z axis. The spherical shape has = 0, while the oblate...Equation (11) are seen to represent the mass-energy contained in the volume of the nucleus, adjusted for the surface tension and the Coulomb

  18. Clustering aspects in nuclear structure functions

    International Nuclear Information System (INIS)

    Hirai, M.; Saito, K.; Watanabe, T.; Kumano, S.

    2011-01-01

    For understanding an anomalous nuclear effect experimentally observed for the beryllium-9 nucleus at the Thomas Jefferson National Accelerator Facility, clustering aspects are studied in structure functions of deep inelastic lepton-nucleus scattering by using momentum distributions calculated in antisymmetrized (or fermionic) molecular dynamics (AMD) and also in a simple shell model for comparison. According to AMD, the 9 Be nucleus consists of two α-like clusters with a surrounding neutron. The clustering produces high-momentum components in nuclear wave functions, which affects nuclear modifications of the structure functions. We investigated whether clustering features could appear in the structure function F 2 of 9 Be along with studies for other light nuclei. We found that nuclear modifications of F 2 are similar in both AMD and shell models within our simple convolution description although there are slight differences in 9 Be. It indicates that the anomalous 9 Be result should be explained by a different mechanism from the nuclear binding and Fermi motion. If nuclear-modification slopes d(F 2 A /F 2 D )/dx are shown by the maximum local densities, the 9 Be anomaly can be explained by the AMD picture, namely by the clustering structure, whereas it certainly cannot be described in the simple shell model. This fact suggests that the large nuclear modification in 9 Be should be explained by large densities in the clusters. For example, internal nucleon structure could be modified in the high-density clusters. The clustering aspect of nuclear structure functions is an unexplored topic which is interesting for future investigations.

  19. Nuclear structure and heavy-ion fusion

    International Nuclear Information System (INIS)

    Stokstad, R.G.

    1980-10-01

    A series of lectures is presented on experimental studies of heavy-ion fusion reactions with emphasis on the role of nuclear structure in the fusion mechanism. The experiments considered are of three types: the fusion of lighter heavy ions at subcoulomb energies is studied with in-beam γ-ray techniques; the subbarrier fusion of 16 O and 40 Ar with the isotopes of samarium is detected out of beam by x-radiation from delayed activity; and measurements at very high energies, again for the lighter ions, employ direct particle identification of evaporation residues. The experimental data are compared with predictions based on the fusion of two spheres with the only degree of freedom being the separation of the centers, and which interact via potentials that vary smoothly with changes in the mass and charge of the projectile and target. The data exhibit with the isotopes of samarium, a portion of these deviations can be understood in terms of the changing deformation of the target nucleus, but an additional degree of freedom such as neck formation appears necessary. The results on 10 B + 16 O and 12 C + 14 N → 26 Al at high bombarding energies indicate a maximum limiting angular momentum characteristic of the compound nucleus. At lower energies the nuclear structure of the colliding ion seems to affect strongly the cross section for fusion. Measurements made at subbarrier energies for a variety of projectile-target combinations in the 1p and 2s - 1d shell also indicate that the valence nucleons can affect the energy dependence for fusion. About half the systems studied so far have structureless excitation functions which follow a standard prediction. The other half exhibit large variations from this prediction. The possible importance of neutron transfer is discussed. The two-center shell model appears as a promising approach for gaining a qualitative understanding of these phenomena. 95 references, 52 figures, 1 table

  20. [Electromagnetic studies of nuclear structure and reactions

    International Nuclear Information System (INIS)

    1992-01-01

    The experimental goals are focused on developing an understanding of strong interactions and the structure of hadronic systems by determination of the electromagnetic response; these goals will be accomplished through coincidence detection of final states. Nuclear modeling objectives are to organize and interpret the data through a consistent description of a broad spectrum of reaction observables; calculations are performed in a nonrelativistic diagrammatic framework as well as a relativistic QHD approach. Work is described according to the following arrangement: direct knockout reactions (completion of 16 O(e,e'p), 12 C(e,e'pp) progress, large acceptance detector physics simulations), giant resonance studies (intermediate-energy experiments with solid-state detectors, the third response function in 12 C(e,e'p 0 ) and 16 O(e,e'p 0 ), comparison of the 12 C(e, e'p 0 ) and 16 O(e,e'p 3 ) reactions, quadrupole strength in the 16 O(e,e'α 0 ) reaction, quadrupole strength in the 12 C(e,e'α) reaction, analysis of the 12 C(e,e'p 1 ) and 16 O(e,e'p 3 ) angular distributions, analysis of the 40 Ca(e,e'x) reaction at low q, analysis of the higher-q 12 C(e,e'x) data from Bates), models of nuclear structure (experimental work, Hartree-Fock calculations, phonon excitations in spherical nuclei, shell model calculations, variational methods for relativistic fields), and instrumentation development efforts (developments at CEBAF, CLAS contracts, BLAST developments)

  1. The electric monopole transition: Nuclear structure, and nuclear spectroscopy

    International Nuclear Information System (INIS)

    Zganiar, E.F.

    1992-01-01

    The electric monopole (E0) transition process provides unique information on the structure of nuclei. For example, δI=0 transitions between nuclear configurations of different shape have enhanced EO components. The authors have observed I π→Iπ (I=0) transitions in 185 Pt and 184 Pt which are pure E0. This is unprecedented. Further, they have initiated searches for the location of the superdeformed band in 192 Hg utilizing internal conversion spectroscopy and, for the first time, internal pair spectroscopy. Additionally, the lifetime of the 0 + 2 level in 188 Hg was measured with a newly developed picosecond lifetime system which utilized the 0 + 2 →0 + 1 E0 internal conversion transition as an energy gate and its associated atomic X-ray as a fast trigger. The role of the E0 internal conversion process in the study of nuclear structure and as a tool in nuclear spectroscopy are discussed

  2. Techniques of nuclear structure calculations

    International Nuclear Information System (INIS)

    Dyson, R.D.

    1967-04-01

    The quasiparticle method for identical particles interacting through pairing forces has been extended by others for use with systems of neutrons and protons. The method is to project isospin from separately considered neutron and proton quasiparticle wavefunctions. This is discussed in detail, and it seems that the projection may not be important. Therefore unprojected quasiparticle wavefunctions are tried with some success as a basis of states in which to diagonalize a realistic nuclear Hamiltonian. Brief unrelated calculations on nuclei of mass 19 and the SU(3) classification of states in the p-f shell are also presented. (author)

  3. Systems approach to nuclear waste glass development

    International Nuclear Information System (INIS)

    Jantzen, C.M.

    1986-01-01

    Development of a host solid for the immobilization of nuclear waste has focused on various vitreous wasteforms. The systems approach requires that parameters affecting product performance and processing be considered simultaneously. Application of the systems approach indicates that borosilicate glasses are, overall, the most suitable glasses for the immobilization of nuclear waste. Phosphate glasses are highly durable; but the glass melts are highly corrosive and the glasses have poor thermal stability and low solubility for many waste components. High-silica glasses have good chemical durability, thermal stability, and mechanical stability, but the associated high melting temperatures increase volatilization of hazardous species in the waste. Borosilicate glasses are chemically durable and are stable both thermally and mechanically. The borosilicate melts are generally less corrosive than commercial glasses, and the melt temperature miimizes excessive volatility of hazardous species. Optimization of borosilicate waste glass formulations has led to their acceptance as the reference nuclear wasteform in the United States, United Kingdom, Belgium, Germany, France, Sweden, Switzerland, and Japan

  4. Structural mechanics in nuclear power plant

    International Nuclear Information System (INIS)

    Han Liangbi

    1998-01-01

    The main research works in structural mechanics in reactor technology are emphatically introduced. It is completed by structural mechanics engineers at Shanghai Nuclear Research and Design Institute associated with the design and construction problems for Qinshan NPP Unit 1 and Pakistani CHASNUPP. About structural mechanics problem for the containment, the rock and soft soil two different bases are considered. For the later the interaction between soil and structure is carefully studied. About the structural mechanics problem for the equipment and pipings, the three dimensional stress and fracture analyses are studied. For the structural dynamics problem, including flow induced vibration, the response analyses under earthquake and loss coolant accident loadings are studied. For pipings, the leak before break technique has been emphatically introduced. A lot of mathematical models, the used computer codes, analytical calculations and experimental results are also introduced. This is a comprehensive description about structural mechanics problem in pressurized water reactor nuclear power plant

  5. Nuclear structure studies at Saha Institute of Nuclear Physics using ...

    Indian Academy of Sciences (India)

    In-beam gamma-ray spectroscopy, carried out at the Saha Institute of Nuclear Physics in the recent past, using heavy-ion projectiles from the pelletron accelerator centres in the country and multi-detector arrays have yielded significant data on the structure of a large number of nuclei spanning different mass regions.

  6. On elastic structural elements for nuclear reactors

    International Nuclear Information System (INIS)

    Povolo, F.

    1978-03-01

    The in-pile stress-relaxation behaviour of materials usually employed for the elastic structural elements, in nuclear reactors, is critically reviewed and the results are compared with those obtained in commercial zirconium alloys irradiated under similar conditions. Finally, it is shown that, under certain conditions, some zirconium alloys may be used as an alternative material for these structural elements. (orig.) [de

  7. Progress report on nuclear structure studies

    International Nuclear Information System (INIS)

    Walters, W.B.

    1991-01-01

    In this report, new results are reported for the decay and nuclear orientation of 114,116 I and 114 Sb as well as data for the structure of daughter nuclides 114,116 Te. New results for IBM-2 calculations for the structure of 126 Xe are also reported. 6 figs., 5 tabs

  8. Structural mechanics of nuclear plant components

    International Nuclear Information System (INIS)

    Roche, R.

    1986-10-01

    Sound structural analysis are needed for designing safe and reliable components, hence his play is very important in nuclear industry. This report is a provisional writing on the good practice in structural mechanics. Emphasis is put on non elastic analysis, damage appraisal, fatigue, fracture mechanics and also on elevated temperature behaviour [fr

  9. Considerations about soil-structures interaction in nuclear power plants

    International Nuclear Information System (INIS)

    Muzzi, F.

    1977-01-01

    The main features of the soil-structure interaction for nuclear power plant are presented as they resulted from conservations that the author carried out at the Berkeley (California) University, at the California Institute of Technology and at the U.S. Nuclear Regulatory Commission in Washington (Dec 1975). The complete and inertial interaction approaches of analysis are discussed. The complete approach by the use of finite element technique as suggested by the U.S.N.R.C. Standard Review Plan 3.7.1. (June 1975) is finally described. (author)

  10. Nuclear Structure Research at Richmond

    International Nuclear Information System (INIS)

    Beausang, Cornelius W.

    2015-01-01

    The goals for the final year were; (1) to continue ongoing efforts to develop and enhance GRETINA and work towards GRETA; (2) to investigate the structure of non-yrast states in shape transitional Sm and Gd nuclei; (3) to investigate the structure of selected light Cd nuclei; (4) to exploit the surrogate reaction technique to extract (n,f) cross sections for actinide nuclei, particularly the first measurement of the 236 Pu and 237 Pu(n,f) cross sections.

  11. Structure of high excited nuclear states and elastic scattering

    International Nuclear Information System (INIS)

    Zhivopistsev, F.A.; Rzhevskij, E.S.

    1979-01-01

    An approach to a unified description of nuclear reactions and nuclear structure based on the formalism of the quantum Green functions and on the ideas of the theory of finite Fermi systems has been formulated. New structural vertices are introduced, which are responsible for nucleon collectivization in an atomic nucleus and for the excitation of many-phonon, quasideuteron, quasitriton and other configurations. The vertices define both the processes of particle scattering by atomic nuclei (T matrix and optical potentials) and the nuclear structure (secular equations and wave functions). The vertices are determined from the equations with effective many-particle forces Fsub(nm)sup(c). In their turn the Fsub(nm)sup(c) forces are either determined from a comparison of theory and experiment, or calculated from the equations with more fundamental nucleon-nucleon forces in a nucleus. The effective forces Fsub(nm)sup(c) are more universal than the constants of the theory of finite Fermi-systems, which extends the boundaries of applicability of the particle-hole formalism in the description of nuclear processes. In this approach the traditional methods of description of the nuclear structure, based on particular models of hamiltonian and wave functions, acquire a natural interpretation

  12. Theoretical nuclear structure. Progress report for 1997

    International Nuclear Information System (INIS)

    Nazarewicz, W.; Strayer, M.R.

    1997-01-01

    This research effort is directed toward theoretical support and guidance for the fields of radioactive ion beam physics, gamma-ray spectroscopy, and the interface between nuclear structure and nuclear astrophysics. The authors report substantial progress in all these areas. One measure of progress is publications and invited material. The research described here has led to more than 25 papers that are published, accepted, or submitted to refereed journals, and to 25 invited presentations at conferences and workshops

  13. A new approach in nuclear risk theory

    International Nuclear Information System (INIS)

    Serbanescu, D.

    1994-01-01

    The basic problem of the probabilistic safety assessment (PSA) is the errors evaluation. The main contributor to the final PSA results is the systematical error induced by the method itself. There may be some alternatives to the PSA classical approaches. All the new more successful approaches in the PSA results validation are related to the modelling problem. A comparison between two possible approaches for a pressurized heavy water reactor (PHWR) leakage event tree is included: The new approach proposed in (Serbanescu, 1991); the approach used in (Serbanescu, 1992), based on some unexplored yet features of the existing PSA analyses. The results are presented in relative units and an algorithm which was already implemented on an IBM.PC computer (Serbanescu, 1991) is used as a tool to decisions making tool. The decision making process should be based on a nuclear power plant (NPP) between modelling from the risk analysis point of view. This is the main feature of the proposed approach. (author). 4 refs, 2 figs, 2 tabs

  14. Radiation damage studies of nuclear structural materials

    International Nuclear Information System (INIS)

    Barat, P.

    2012-01-01

    Maximum utilization of fuel in nuclear reactors is one of the important aspects for operating them economically. The main hindrance to achieve this higher burnups of nuclear fuel for the nuclear reactors is the possibility of the failure of the metallic core components during their operation. Thus, the study of the cause of the possibility of failure of these metallic structural materials of nuclear reactors during full power operation due to radiation damage, suffered inside the reactor core, is an important field of studies bearing the basic to industrial scientific views.The variation of the microstructure of the metallic core components of the nuclear reactors due to radiation damage causes enormous variation in the structure and mechanical properties. A firm understanding of this variation of the mechanical properties with the variation of microstructure will serve as a guide for creating new, more radiation-tolerant materials. In our centre we have irradiated structural materials of Indian nuclear reactors by charged particles from accelerator to generate radiation damage and studied the some aspects of the variation of microstructure by X-ray diffraction studies. Results achieved in this regards, will be presented. (author)

  15. Microscopic nuclear structure with sub-nucleonic degrees of freedom

    International Nuclear Information System (INIS)

    Sauer, P.U.

    1986-01-01

    The paper reviews microscopic theories of nuclear structure. The subject is discussed under the topic headings: microscopic nuclear structure with nucleons only; microscopic nuclear structure with nucleons, isobars and mesons; and microscopic nuclear structure with nucleons, mesons and dibaryons. (U.K.)

  16. Nuclear physics for applications. A model approach

    International Nuclear Information System (INIS)

    Prussin, S.G.

    2007-01-01

    Written by a researcher and teacher with experience at top institutes in the US and Europe, this textbook provides advanced undergraduates minoring in physics with working knowledge of the principles of nuclear physics. Simplifying models and approaches reveal the essence of the principles involved, with the mathematical and quantum mechanical background integrated in the text where it is needed and not relegated to the appendices. The practicality of the book is enhanced by numerous end-of-chapter problems and solutions available on the Wiley homepage. (orig.)

  17. Nuclear structure from radioactive decay

    International Nuclear Information System (INIS)

    Wood, J.L.

    1992-01-01

    The most important aspect of the wind-up of UNISOR-based research is completion of student theses. Analysis is proceeding on extensive studies in the neutron-deficient rare earth isotopes with N 50 open shell region and shape coexistence in the N ∼ 104, Z ≤ 82 region, respectively. The main ongoing topics are shape coexistence in nuclei and the microscopic structure of collective motion in nuclei from a phenomenological point of view. New topics this year focus on the structure of nuclei near the N = Z line. Two topics have been chosen for detailed study: shape coexistence and electric monopole transition strengths

  18. Nuclear Structure Research at Richmond

    Energy Technology Data Exchange (ETDEWEB)

    Beausang, Cornelius W. [Univ. of Richmond, VA (United States)

    2015-04-30

    The goals for the final year were; (1) to continue ongoing efforts to develop and enhance GRETINA and work towards GRETA; (2) to investigate the structure of non-yrast states in shape transitional Sm and Gd nuclei; (3) to investigate the structure of selected light Cd nuclei; (4) to exploit the surrogate reaction technique to extract (n,f) cross sections for actinide nuclei, particularly the first measurement of the 236Pu and 237Pu(n,f) cross sections.

  19. Reliability assessment of nuclear structural systems

    International Nuclear Information System (INIS)

    Reich, M.; Hwang, H.

    1983-01-01

    Reliability assessment of nuclear structural systems has been receiving more emphasis over the last few years. This paper deals with the recent progress made by the Structural Analysis Division of Brookhaven National Laboratory (BNL), in the development of a probability-based reliability analysis methodology for safety evaluation of reactor containments and other seismic category I structures. An important feature of this methodology is the incorporation of finite element analysis and random vibration theory. By utilizing this method, it is possible to evaluate the safety of nuclear structures under various static and dynamic loads in terms of limit state probability. Progress in other related areas, such as the establishment of probabilistic characteristics for various loads and structural resistance, are also described. Results of an application of the methodology to a realistic reinforced concrete containment subjected to dead and live loads, accidental internal pressures and earthquake ground accelerations are presented

  20. Quantum algebras in nuclear structure

    International Nuclear Information System (INIS)

    Bonatsos, D.; Daskaloyannis, C.

    1995-01-01

    Quantum algebras is a mathematical tool which provides us with a class of symmetries wider than that of Lie algebras, which are contained in the former as a special case. After a self-contained introduction through the necessary mathematical tools (q-numbers, q-analysis, q-oscillators, q-algebras), the su q (2) rotator model and its extensions, the construction of deformed exactly soluble models (Interacting Boson Model, Moszkowski model), the use of deformed bosons in the description of pairing correlations, and the symmetries of the anisotropic quantum harmonic oscillator with rational ratios of frequencies, which underline the structure of superdeformed and hyperdeformed nuclei are discussed in some details. A brief description of similar applications to molecular structure and an outlook are also given. (author) 2 Tabs., 324 Refs

  1. Comparative approach between nuclear safety and security

    International Nuclear Information System (INIS)

    2009-04-01

    Adopting the definition of nuclear safety and nuclear security as they are specified by IAEA glossaries, this report first outlines that these both notions refer to similar risks but with causes of different nature. They discuss the notions of transparency and confidentiality and outline that security and safety both aims at the protection of population and of the environment. They discuss their organisational principles, notice that both have their own legal and regulatory framework, that authorities have expertise on both, that the responsibility is distributed among operators and the State, and that safety and security cultures are complementary. They analyse the design, exploitation and management principles of security and safety approaches: graded approach, defence-in-depth, synergy between security and safety, same daily monitoring requirement, same necessity to address the return on experience, same need to update a referential, a more constrained exchange of good practices in safety, a necessity to deal with their respective requirements, elaboration of emergency plans, performance of exercises

  2. Structural design and dynamic analysis of underground nuclear reactor containments

    International Nuclear Information System (INIS)

    Kierans, T.W.; Reddy, D.V.; Heale, D.G.

    1975-01-01

    Present actual experience in the structural design of undeground containments is limited to only four rather small reactors all located in Europe. Thus proposals for future underground reactors depend on the transposition of applicable design specifications, constraints and criteria from existing surface nuclear power plants to underground, and the use of many years of experience in the structural design of large underground cavities and cavity complexes for other purposes such as mining, hydropower stations etc. An application of such considerations in a recent input for the Underground Containment sub-section of the Seismic Task Group Report to the ASCE Committee for Nuclear Structures and Materials is presented as follows: underground concept considerations, siting criteria and structural selection, structural types, analytical and semi-analytical approaches, design and other miscellaneous considerations

  3. Nuclear structure of 231Ac

    International Nuclear Information System (INIS)

    Boutami, R.; Borge, M.J.G.; Mach, H.; Kurcewicz, W.; Fraile, L.M.; Gulda, K.; Aas, A.J.; Garcia-Raffi, L.M.; Lovhoiden, G.; Martinez, T.; Rubio, B.; Tain, J.L.; Tengblad, O.

    2008-01-01

    The low-energy structure of 231 Ac has been investigated by means of γ ray spectroscopy following the β - decay of 231 Ra. Multipolarities of 28 transitions have been established by measuring conversion electrons with a MINI-ORANGE electron spectrometer. The decay scheme of 231 Ra → 231 Ac has been constructed for the first time. The Advanced Time Delayed βγγ(t) method has been used to measure the half-lives of five levels. The moderately fast B(E1) transition rates derived suggest that the octupole effects, albeit weak, are still present in this exotic nucleus

  4. PREFACE: Open Problems in Nuclear Structure Theory: Introduction Open Problems in Nuclear Structure Theory: Introduction

    Science.gov (United States)

    Dobaczewski, Jacek

    2010-06-01

    . The focus of these collected articles is therefore on the discussion of topics that are not yet understood, or that are poorly understood. We very much welcomed presentations on: (i) contradictory approaches, models, or theories that are, at present, difficult to reconcile, (ii) unsolved theoretical problems that hamper applications of existing methods, (iii) limitations of current approaches, (iv) difficulties in deriving and justifying models and theories, (v) generic problems in understanding or describing specific experimental data, and even (vi) all possible, wildest speculations and/or conjectures. The main idea behind the focus issue was to stimulate creative, unbounded thinking and provide young, but not only young, researchers with ideas that would promote further progress in this domain of science. The community of nuclear structure theorists enthusiastically responded to the idea of publishing the volume on OPeNST. It seemed that the idea struck the right chord and many colleagues were willing to share their observations on what research directions to follow and which problems to attack. The volume turned out to be a snapshot of the domain, revealing the burning questions that the community wants to address. All the articles also have a very interesting personal touch. They sometimes even present opposing or conflicting points of view, which is exactly what one would expect within a vibrant scientific discussion. All in all, the Editors of Journal of Physics G are very happy to offer you this unique collection, which will constitute very interesting reading for all those working in nuclear structure theory.

  5. QCD Structure of Nuclear Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Granados, Carlos [Florida Intl Univ., Miami, FL (United States)

    2011-05-25

    This dissertation investigated selected processes involving baryons and nuclei in hard scattering reactions. Through these processes, this work explored the constituent structure of baryons and the mechanisms through which the interactions between these constituents ultimately control the selected reactions. First, hard nucleon-nucleon elastic scattering was studied considering the quark exchange (QE) between the nucleons to be the dominant mechanism of interaction in the constituent picture. It was found that an angular asymmetry exhibited by proton-neutron (pn) elastic scattering data is explained within this framework if a quark-diquark picture dominates the nucleon's structure instead of a more traditional SU(6) model. The latter yields an asymmetry around 90 deg center of mass scattering with a sign opposite to what is experimentally observed. The second process is the hard breakup by a photon of a nucleon-nucleon system in light nuclei. Proton-proton (pp) and pn breakup in 3He, and double Δ-isobars production in deuteron breakup were analyzed in the hard rescattering model (HRM), which in conjunction with the QE mechanism provides a QCD description of the reaction. Cross sections for both channels in 3He photodisintegration were computed without the need of a fitting parameter. The results presented here for pp breakup show excellent agreement with recent experimental data. In double Δ-isobars production in deuteron breakup, HRM angular distributions for the two double Δ channels were compared to the pn channel and to each other. An important prediction from this study is that the Δ++ Δ- channel consistently dominates Δ+Δ0, which is in contrast with models that unlike the HRM consider a double Δ system in the initial state of the interaction. For such models both channels should have the same strength.

  6. Statistical spectroscopic studies in nuclear structure physics

    International Nuclear Information System (INIS)

    Halemane, T.R.

    1979-01-01

    The spectral distribution theory establishes the centroid and width of the energy spectrum as quantities of fundamental importance and gives credence to a geometry associated with averages of the product of pairs of operators acting within a model space. Utilizing this fact and partitioning the model space according to different group symmetries, simple and physically meaningful expansions are obtained for the model interactions. In the process, a global measure for the goodness of group symmetries is also developed. This procedure could eventually lead to a new way of constructing model interactions for nuclear structure studies. Numerical results for six (ds)-shell interactions and for scalar-isospin, configuration-isospin, space symmetry, supermultiplet and SU(e) x SU(4) group structures are presented. The notion of simultaneous propagation of operator averages in the irreps of two or more groups (not necessarily commuting) is also introduced. The non-energy-weighted sum rule (NEWSR) for electric and magnetic multipole excitations in the (ds)-shell nuclei 20 Ne, 24 Mg, 28 Si, 32 S, and 36 Ar are evaluated. A generally applicable procedure for evaluating the eigenvalue bound to the NEWSR is presented and numerical results obtained for the said excitations and nuclei. Comparisons are made with experimental data and shell-model results. Further, a general theory is given for the linear-energy-weighted sum rule (LEWSR). When the Hamiltonian is one-body, this has a very simple form (expressible in terms of occupancies) and amounts to an extension of the Kurath sum rule to other types of excitations and to arbitrary one-body Hamiltonians. Finally, we develop a statistical approach to perturbation theory and inverse-energy-weighted sum rules, and indicate some applications

  7. Theoretical studies in nuclear structure

    International Nuclear Information System (INIS)

    Marshalek, E.R.

    1991-11-01

    In this period, the work has centered on two topics. The first is the study of a novel type of collective rotation in which an atomic nucleus with an inversion-symmetric shape rotates uniformly about an axis that is not a principal axis of the quadrupole tensor of the density distribution. This mode is referred to as tilted rotation. By using the cranking model together with higher-order corrections, it was shown that tilted rotation is indeed possible, not only within a microscopic framework, but also within the framework of collective models such as the IBM. The maximum tilt angle of π/4 is realized for a certain class of states in the U(5) limit. The second topic, which actually was suggested during the course of the first investigation, is concerned with a new way of representing collective harmonic-oscillator algebras using boson-mapping techniques. In this approach, the many-phonon eigenvectors of a 2λ+1-dimensional oscillator having good angular momentum are represented by simple products of boson operators acting on a vacuum. This representation may simplify the calculation of reduced matrix elements of arbitrary operators in collective models, but more work needs to be done

  8. Shield structure for a nuclear reactor

    International Nuclear Information System (INIS)

    Rouse, C.A.; Simnad, M.T.

    1979-01-01

    An improved nuclear reactor shield structure is described for use where there are significant amounts of fast neutron flux above an energy level of approximately 70 keV. The shield includes structural supports and neutron moderator and absorber systems. A portion at least of the neutron moderator material is magnesium oxide either alone or in combination with other moderator materials such as graphite and iron. (U.K.)

  9. ENSL and CDRL: evaluated nuclear structure libraries

    International Nuclear Information System (INIS)

    Howerton, R.J.

    1981-01-01

    Two files of nuclear structure data derived largely from the seventh edition of the Table of Isotopes are described. The files are computer oriented, and have been constructed so that every decay can be traced either to an eventual ground state or to a positive flag that indicates nothing is known about further decay. 1 table

  10. Nuclear structure and the single charge exchange

    International Nuclear Information System (INIS)

    Oset, E.; Strottman, D.

    1979-01-01

    The influence of nuclear structure on meson-induced single-charge-exchange reactions on light nuclei is discussed within the context of the Glauber approximation. Selection rules which are expected to be approximately obeyed in elastic and inelastic pion and kaon scattering are proposed. Theoretical predictions are presented for (π + ,π 0 ) and (K + ,K 0 ) reactions on 13 C. 14 figures

  11. Pion double charge exchange and nuclear structure

    International Nuclear Information System (INIS)

    Ginocchio, J.N.

    1987-01-01

    Pion double charge exchange to both the double-analog state and the ground state is studied for medium weight nuclei. The relative cross section of these two transitions and the importance of nuclear structure as a function of pion kinetic energy is examined. 16 figs., 5 tabs

  12. Progress on nuclear modifications of structure functions

    Directory of Open Access Journals (Sweden)

    Kumano S.

    2016-01-01

    Full Text Available We report progress on nuclear structure functions, especially on their nuclear modifications and a new tensor structure function for the deuteron. To understand nuclear structure functions is an important step toward describing nuclei and QCD matters from low to high densities and from low to high energies in terms of fundamental quark and gluon degrees of freedom beyond conventional hadron and nuclear physics. It is also practically important for understanding new phenomena in high-energy heavy-ion collisions at RHIC and LHC. Furthermore, since systematic errors of current neutrinooscillation experiments are dominated by uncertainties of neutrino-nucleus interactions, such studies are valuable for finding new physics beyond current framework. Next, a new tensor-polarized structure function b1 is discussed for the deuteron. There was a measurement by HERMES; however, its data are inconsistent with the conventional convolution estimate based on the standard deuteron model with D-state admixture. This fact suggests that a new hadronic phenomenon should exist in the tensor-polarized deuteron at high energies, and it will be experimentally investigated at JLab from the end of 2010’s.

  13. High performance structural ceramics for nuclear industry

    International Nuclear Information System (INIS)

    Pujari, Vimal K.; Faker, Paul

    2006-01-01

    A family of Saint-Gobain structural ceramic materials and products produced by its High performance Refractory Division is described. Over the last fifty years or so, Saint-Gobain has been a leader in developing non oxide ceramic based novel materials, processes and products for application in Nuclear, Chemical, Automotive, Defense and Mining industries

  14. Nuclear data for fusion technology – the European approach

    Directory of Open Access Journals (Sweden)

    Fischer Ulrich

    2017-01-01

    Full Text Available The European approach for the development of nuclear data for fusion technology applications is presented. Related R&D activities are conducted by the Consortium on Nuclear Data Development and Analysis for Fusion to satisfy the nuclear data needs of the major projects including ITER, the Early Neutron Source (ENS and DEMO. Recent achievements are presented in the area of nuclear data evaluations, benchmarking and validation, nuclear model improvements, and uncertainty assessments.

  15. Nuclear outages: an approach to project controls

    International Nuclear Information System (INIS)

    Bryson, R.

    1985-01-01

    The annual budget for maintaining and operating a nuclear power plant has risen dramatically over the past 5 years. NRC-mandated plant improvements and outage related expenses are often cited to be the main contributors to these escalating budgets. Nuclear utilities have responded by developing programs to improve plant availability and outage costs through improved outage performance. Utilities recognize that for capital improvements the program to control costs does no begin with outage planning, but rather more appropriately up front during the engineering phase. To support their management objectives, utilities have been developing comprehensive project control systems for concurrently reducing capital expenditures, outage-related costs, and time. This paper provides an approach to project controls that, rather than using one all inclusive comprehensive system, requires five separate monitoring systems - one for each phase of an activity's life cycle. Through the integration of these discrete but interrelated systems, utility management acquires the necessary tools for comprehensive planning and control of their modification program and effective detailed monitoring for all outage-related activities

  16. Microscopic boson approach to nuclear collective motion

    International Nuclear Information System (INIS)

    Kuchta, R.

    1989-01-01

    A quantum mechanical approach to the maximally decoupled nuclear collective motion is proposed. The essential idea is to transcribe the original shell-model Hamiltonian in terms of boson operators, then to isolate the collective one-boson eigenstates of the mapped Hamiltonian and to perform a canonical transformation which eliminates (up to the two-body terms) the coupling between the collective and noncollective bosons. Unphysical states arising due to the violtion of the Pauli principle in the boson space are identified and removed within a suitable approximation. The method is applied to study the low-lying collective states of nuclei which are successfully described by the exactly solvable multilevel pairing Hamiltonian (Sn, Ni, Pb). 75 refs.; 8 figs

  17. Pediatric nuclear medicine: A practical approach

    International Nuclear Information System (INIS)

    Pintelon, H.; Piepsz, A.; Dejonckheere, M.

    1997-01-01

    This paper is devoted to the practical aspects of pediatric nuclear medicine, particularly the controversy about drug sedation. The authors conclude that drug sedation should be exceptionally used. There is an alternative way, consisting in an adequate approach of the patient: good information to the parents and the child; taking care of the child's environment, starting from the first contacts in the waiting room; specific education of technologists: this includes injections and blood sampling, but also proper handling of the child during the procedure and adequate psychological attitudes toward child and parents. Taking these factors into account, it is exceptional that a test has to be postponed because of the lack of collaboration of the patient; good quality images, using the recommended paediatric amounts of radioactivity can be achieved even for procedures of prolonged duration

  18. Computational nuclear structure: Challenges, rewards, and prospects

    International Nuclear Information System (INIS)

    Dean, D.J.

    1997-12-01

    The shell model Monte Carlo technique (SMMC) transforms the traditional nuclear shell model problem into a path-integral over auxiliary fields. Applications of the method to studies of various properties of fp-shell nuclei, including Gamow-Teller strengths and distributions, are reviewed. Part of the future of nuclear structure physics lies in the study of nuclei far from beta-stability. The author discusses preliminary work on proton deficient Xe isotopes, and on neutron rich nuclei in the sd-Jp shells

  19. Superheavy Element Synthesis and Nuclear Structure

    International Nuclear Information System (INIS)

    Ackermann, D.

    2009-01-01

    The search for the next closed proton and neutron shells beyond 2 08P b has yielded a number of exciting results in terms of the synthesis of new elements [1,2,3]. The superheavy elements (SHE), however, are a nuclear structure phenomenon. They owe their existence to the quantum mechanical origin of shell correction energies without which they would not be bound. In recent years the development of efficient experimental set-ups including separators and advanced particle and photon detection arrangements allowed for more and more detailed nuclear structure studies for nuclei at and beyond Z=100. A review of those recent achievements is given in ref. [4]. Among the most interesting features is the observation of K-isomeric states. Experimentally about 14 cases have been identified in the region of Z>96 as shown in Fig. 1. K-isomers or indications of their existence have been found for almost all even-Z elements in the region Z=100 to 110. We could recently establish and/or confirm such states in the even-even isotopes 2 52,254N o [5]. The heaviest nucleus where such a state was found is 2 70D s with Z=110 as we reported in 2001 [6]. Those nuclear structure studies lay out the grounds for a detailed understanding of these heavy and high-Z nuclear systems, and contribute at the same time valuable information to preparation of strategies to successfully continue the hunt for the localisation of the next spherical proton and neutron shells after 2 08P b. The recent activities for both SHE synthesis and nuclear structure investigations at GSI will be reported.(author)

  20. Hirschegg '03: Nuclear structure and dynamics at the limits. Proceedings

    International Nuclear Information System (INIS)

    Feldmeier, H.; Knoll, J.; Noerenberg, W.; Wambach, J.

    2003-01-01

    The following topics were dealt with: Nuclear structure ans symmetries, nuclei near the drip line, halo nuclei and nuclear resonances, superheavy elements and fission, fragmentation and multifragmentation, nuclear astrophysics. (HSI)

  1. The cellular approach to band structure calculations

    International Nuclear Information System (INIS)

    Verwoerd, W.S.

    1982-01-01

    A short introduction to the cellular approach in band structure calculations is given. The linear cellular approach and its potantial applicability in surface structure calculations is given some consideration in particular

  2. Building nuclear structures : challenges and achievements

    International Nuclear Information System (INIS)

    Gad, V.M.

    1981-01-01

    Reliability and safety are factors of prime importance in construction of civil engineering structures of nuclear facilities. There cannot be any compromise in the strength and life of the structure. This involves rigorous control of: (1) quality of materials and end products, (2) time taken for construction, (3) cost, and also continuing innovation. India has now accumulated more than three decades of experience in nuclear civil engineering and the civil engineering fraternity of India and particularly of the Department of Atomic Energy is now fully capable of designing and construction of all types of structures involved in the nuclear field. Illustrative examples are given. Dome of the CIRUS reactor was constructed in steel plates, but then there was a switch over to reinforced concrete for containment structures and subsequently to prestressed concrete. The aspects taken into consideration of the design to ensure absolute leak tightness are: (1) earthquake safeguards, (2) concrete surface protection, and (3) minimization of cracking in concrete due to pressure loading and shrinkage. Coordination charts are prepared for monitoring time required for various operations and time and motion studies are employed to cut down on construction time. Close control over the cost is kept through internal and external audit, executing the work departmentally or employing an outside agency as the occasion demands and proper selection of materials. Some of the innovations in materials use and construction techniques are mentioned. (K.M.)

  3. Nuclear moments as a probe of electronic structure in material, exotic nuclear structure and fundamental symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Matsuta, K., E-mail: matsuta@vg.phys.sci.osaka-u.ac.jp; Minamisono, T.; Mihara, M.; Fukuda, M. [Osaka Univ., Dept. of Physics (Japan); Zhu, Shengyun [CIAE (China); Masuda, Y. [High Energy Accelerator Research Organization (KEK) (Japan); Hatanaka, K. [Osaka Univ., RCNP (Japan); Yuan Daqing; Zheng Yongnan; Zuo Yi; Fang Ping; Zhou Dongmei [CIAE (China); Ohtsubo, T. [Niigata Univ., Dept. of Physics (Japan); Izumikawa, T. [Niigata Univ., RI Center (Japan); Momota, S. [Kochi Univ. of Technology (Japan); Nishimura, D. [Tokyo Univ. of Science (Japan); Matsumiya, R. [Osaka Univ., RCNP (Japan); Kitagawa, A.; Sato, S.; Kanazawa, M. [Nat. Inst. Radiological Sciences (Japan); Collaboration: Osaka-CIAE-NIRS-Niigata-Kochi-LBL Collaboration; and others

    2013-05-15

    We report our studies in various fields of Physics through nuclear moments utilizing the {beta}-NMR technique, including material sciences, nuclear structures and fundamental symmetries. Especially, we focus on the recent progress in the studies on the electronic structure in Pt through Knight shifts of various impurities, lattice locations of impurities, electric field gradients, the analysis of nuclear spin in terms of its components, anomaly in the spin expectation value for {sup 9}C-{sup 9}Li mirror pair, the G-parity conservation law, and the Ramsey resonance on UCN for future neutron EDM measurements.

  4. Proceedings of the conference on nuclear structure at the limits

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    This report contains the papers from the Proceedings of the Conference on Nuclear Structure at the Limits. Some of the areas covered by these papers are: nuclear deformation; nuclear decay; nuclear spectroscopy; radioactive ion beams; nuclear models; high spin states; and heavy ion reactions. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  5. Compilations and evaluations of nuclear structure and decay date

    International Nuclear Information System (INIS)

    Lorenz, A.

    The material contained in this compilation is sorted according to eight subject categories: 1. General Compilations; 2. Basic Isotopic Properties; 3. Nuclear Structure Properties; 4. Nuclear Decay Processes: Half-lives, Energies and Spectra; 5. Nuclear Decay Processes: Gamma-rays; 6. Nuclear Decay Processes: Fission Products; 7. Nuclear Decay Processes: (Others); 8. Atomic Processes

  6. Proceedings of the conference on nuclear structure at the limits

    International Nuclear Information System (INIS)

    1996-01-01

    This report contains the papers from the Proceedings of the Conference on Nuclear Structure at the Limits. Some of the areas covered by these papers are: nuclear deformation; nuclear decay; nuclear spectroscopy; radioactive ion beams; nuclear models; high spin states; and heavy ion reactions. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database

  7. Categorization and selection of regulatory approaches for nuclear power plants

    International Nuclear Information System (INIS)

    Sugaya, Junko; Harayama, Yuko

    2009-01-01

    Several new regulatory approaches have been introduced to Japanese nuclear safety regulations, in which a prescriptive and deterministic approach had traditionally predominated. However, the options of regulatory approaches that can possibly be applied to nuclear safety regulations as well as the methodology for selecting the options are not systematically defined. In this study, various regulatory approaches for nuclear power plants are categorized as prescriptive or nonprescriptive, outcome-based or process-based, and deterministic or risk-informed. 18 options of regulatory approaches are conceptually developed and the conditions for selecting the appropriate regulatory approaches are identified. Current issues on nuclear regulations regarding responsibilities, transparency, consensus standards and regulatory inspections are examined from the viewpoints of regulatory approaches to verify usefulness of the categorization and selection concept of regulatory approaches. Finally, some of the challenges at the transitional phase of regulatory approaches are discussed. (author)

  8. NEW WEB-BASED ACCESS TO NUCLEAR STRUCTURE DATASETS.

    Energy Technology Data Exchange (ETDEWEB)

    WINCHELL,D.F.

    2004-09-26

    As part of an effort to migrate the National Nuclear Data Center (NNDC) databases to a relational platform, a new web interface has been developed for the dissemination of the nuclear structure datasets stored in the Evaluated Nuclear Structure Data File and Experimental Unevaluated Nuclear Data List.

  9. Theoretical studies in nuclear reaction and nuclear structure. Final report, January 1, 1975--June 30, 1976

    International Nuclear Information System (INIS)

    Banerjee, M.K.; Griffin, J.J.

    1977-07-01

    Progress in theoretical research is reported under the following readings: (1) few nuclear reactions, Eikonal approximations, and optical models; (2) pion reactions; (3) nuclear structure by reaction studies; (4) nuclear dynamics

  10. Nuclear Fermi Dynamics: physical content versus theoretical approach

    International Nuclear Information System (INIS)

    Griffin, J.J.

    1977-01-01

    Those qualitative properties of nuclei, and of their energetic collisions, which seem of most importance for the flow of nuclear matter are listed and briefly discussed. It is suggested that nuclear matter flow is novel among fluid dynamical problems. The name, Nuclear Fermi Dynamics, is proposed as an appropriate unambiguous label. The Principle of Commensurability, which suggests the measurement of the theoretical content of an approach against its expected predictive range is set forth and discussed. Several of the current approaches to the nuclear matter flow problem are listed and subjected to such a test. It is found that the Time-Dependent Hartree-Fock (TDHF) description, alone of all the major theoretical approaches currently in vogue, incorporates each of the major qualitative features within its very concise single mathematical assumption. Some limitations of the conventional TDHF method are noted, and one particular defect is discussed in detail: the Spurious Cross Channel Correlations which arise whenever several asymptotic reaction channels must be simultaneously described by a single determinant. A reformulated Time-Dependent-S-Matrix Hartree-Fock Theory is proposed, which obviates this difficulty. It is noted that the structure of TD-S-HF can be applied to a more general class of non-linear wave mechanical problems than simple TDHF. Physical requirements minimal to assure that TD-S-HF represents a sensible reaction theory are utilized to prescribe the definition of acceptable asymptotic channels. That definition, in turn, defines the physical range of the TD-S-HF theory as the description of collisions of certain mathematically well-defined objects of mixed quantal and classical character, the ''TDHF droplets.''

  11. Grass-roots approach: developing qualified nuclear personnel

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    Nuclear power plants experiencing personnel recruitment problems are trying a grass-roots approach to increase the manpower pool. The Philadelphia Electric Co. and the Toledo Edison Co. are working with local educational institutions to offer nuclear-technology training specific to the needs of nuclear plants. The utilities' investment covers much of the cost of instruction as well as continued training for employees

  12. Core support structure for nuclear power plants

    International Nuclear Information System (INIS)

    Steinkamp, E.; Tautz, J.; Ries, H.

    1979-01-01

    A core support structure for nuclear power plants includes a grid of mutually crossing bridges and a support ring surrounding the grid and connected to ends of the outer bridges of the grid, the grid being formed of profile rod crosses having legs of given length, respective legs of pairs of adjacent crosses abutting one another endwise to form together a side of the smallest mesh opening of the grid, and weld means for securing the profile rod crosses to one another at the mutually abutting ends of the legs thereof; and method of producing the foregoing core support structure

  13. Proton-neutron interaction and nuclear structure

    International Nuclear Information System (INIS)

    Casten, R.F.

    1986-01-01

    The pervasive role of the proton-neutron interaction in nuclear structure is discussed. Particular emphasis is given to its influence on the onset of collectivity and deformation, on intruder states, and on the evolution of subshell structure. The N/sub p/N/sub n/ scheme is outlined and some applications of it to collective model calculations and to nuclei far off stability are described. The concept of N/sub p/N/sub n/ multiplets is introduced. 32 refs., 20 figs

  14. Zone approaches to international safeguards of a nuclear fuel cycle

    International Nuclear Information System (INIS)

    Fishbone, L.G.; Higinbotham, W.A.

    1986-01-01

    At present the IAEA designs its safeguards approach with regard to each type of nuclear facility so that the safeguards activities and effort are essentially the same for a given type and size of nuclear facility wherever it may be located. Conclusions regarding a State are derived by combining the results of safeguards verifications for the individual facilities within it. The authors have examined safeguards approaches for a State nuclear fuel cycle that take into account the existence of all of the nuclear facilities in the State. They have focused on the fresh-fuel zone of an advanced nuclear fuel cycle, the several facilities of which use or process low-enriched uranium. The intention is to develop an approach which will make it possible to compare the technical effectiveness and the inspection effort for the facility-oriented approach, for the zone approach and for some reasonable intermediate safeguards approaches

  15. Theoretical studies in nuclear reactions and nuclear structure: Progress report

    International Nuclear Information System (INIS)

    Griffin, J.J.

    1988-09-01

    This report discusses topics in nuclear theory. These general topics are: Quark physics, Quantum field theory, Relativistic nuclear physics, Nuclear dynamics, and Few-body problems and nonrelativistic methods

  16. Exotic nuclear structures and decays: new nuclear collective phenomena

    International Nuclear Information System (INIS)

    Hamilton, J.H.

    1986-01-01

    Studies of the properties of exotic nuclei have revealed a surprising richness and diversity in their shapes, structures, and decay modes far exceeding our understandings and expectations of even a decay ago. From studies of far-off-stability exotic nuclei have come evidence for the coexistence of different nuclear shapes in the same nucleus, new regions of unusually large deformation, new ground-state phase transitions from one shape to another, new magic numbers but now for deformed shapes, and for the importance of reinforcing shell gaps. New exotic decay modes include a wide variety of beta delayed particle emission and heavy cluster emissions such as 14 C and 24 Ne. The new deformed magic numbers of 38 and 60 seen far off stability clearly support that there are likely other ''magic'' numbers for protons and neutrons which give stability to different deformed shapes. Perhaps these other new magic shell gap numbers at large deformation could influence the sticking of two very heavy nuclei in collisions such as U on Cm. Finally, another area which could have a bearing on the formation, motions, and structures of giant nuclear systems involves the recent observation of very energetic, light particle (proton, alpha) emission with up to 50% and more of the total incoming energy in a collision, for example in 300 MeV 32 S on Ta. 43 refs., 11 figs., 2 tabs

  17. 15th National Conference on Nuclear Structure in China

    CERN Document Server

    Wang, Ning; Zhou, Shan-Gui; Nuclear Structure in China 2014; NSC2014

    2016-01-01

    This volume is a collection of the contributions to the 15th National Conference on Nuclear Structure in China (NSC2014), held on October 25-28, 2014 in Guilin, China and hosted by Guangxi Normal University. It provides an important updated resource in the nuclear physics literature for researchers and graduate students studying nuclear structure and related topics. Recent progress made in the study of nuclear spectroscopy of high-spin states, nuclear mass and half-life, nuclear astrophysics, super-heavy nuclei, unstable nuclei, density functional theory, neutron star and symmetry energy, nuclear matter, and nuclear shell model are covered.

  18. Pile foundation of nuclear power plant structures

    International Nuclear Information System (INIS)

    Jurkiewicz, W.J.; Thomaz, E.; Rideg, P.; Girao, M.

    1978-01-01

    The subject of pile foundation used for nuclear power plant structures, considering the experience gained by the designers of the Angra Nuclear Power Plant, Units 2 and 3 in Brazil is dealt with. The general concept of the pile foundations, including types and execution of the piles, is described briefly. Then the two basic models, i.e. the static model and the dynamic one, used in the design are shown, and the pertinent design assumptions as related to the Angra project are mentioned. The criteria which established the loading capacity of the piles are discussed and the geological conditions of the Angra site are also explained briefly, justifying the reasons why pile foundations are necessary in this project. After that, the design procedures and particularly the tools - i.e. the computer programs - are described. It is noted that the relatively simple but always time consuming job of loading determination calculations can be computerized too, as it was done on this project through the computer program SEASA. The interesting aspects of soil/structure interaction, applicable to static models, are covered in detail, showing the theoretical base wich was used in the program PILMAT. Then the advantage resulting from computerizing of the job of pile reinforcement design are mentioned, describing briefly the jobs done by the two special programs PILDES and PILTAB. The point is stressed that the effort computerizing the structural design of this project was not so much due to the required accuracy of the calculations, but mainly due to the need to save on the design time, as to allow to perform the design task within the relatively tight time schedule. A conclusion can be drawn that design of pile foundations for nuclear power plant structures is a more complex task than the design of bearing type of foundation for the same structures, but that the task can be always made easier when the design process can be computerized. (Author)

  19. Nuclear safety based on nuclear knowledge - A Romanian approach

    International Nuclear Information System (INIS)

    Valeca, S.C.; Popescu, D.

    2007-01-01

    Full text: The recognized 'father' of the nuclear field, the scientist A. Einstein inherited us with a CONTRADICTION. On one hand he was the supporter of researches in the nuclear field, but on the other hand, when he saw the first devastating results of the atomic explosions he suddenly became a fervent opponent. In such conditions, the nuclear field made its first step in the conscience of humanity. Unfortunately it was a left first step. For this reason and also because of the nuclear incidents passed over the history of the field and due to yet unclear strategies regarding the final disposal of radioactive waste, a part of public opinion 'embraced' the concept 'NIMBY - Not In My Back Yard'. At present and for the future we have to fight against this concept in order to transform it in 'PIMY - Please In My Yard'. As a consequence, alongside numerous activities well-known by the specialists in the field, regulated and authorized by the regulatory body in the nuclear field, associated programmes for the CONTINUOUS qualification and education of human resources are needed. The Concept of Nuclear Security covers all the activities resulted from the nuclear fuel cycle. Taking into consideration the international experience in this field in our country's case, these activities were estimated for periods of approximately 70 years, as following: 10 years: the characterization and selection of the site, the design, construction and the commission of a nuclear power plant; 40 years: the operation, maintenance and modernization of a nuclear power plant; 20 years: the preservation for the decommissioning and the decommissioning of the nuclear power plant. In all these stages until present Romania based a lot on the indigene component regarding the activities of research and development, design, construction - assembling, exploitation and maintenance (both for NPP Unit 1 and Unit 2, where this component was approximately of 50%). In such conditions, it was needed the

  20. A system approach to nuclear facility monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Argo, P.E.; Doak, J.E.; Howse, J.W.

    1996-09-01

    Sensor technology for use in nuclear facility monitoring has reached and advanced stage of development. Research on where to place these sensors in a facility and how to combine their outputs in a meaningful fashion does not appear to be keeping pace. In this paper, we take a global view of the problem where sensor technology is viewed as only one piece of a large puzzle. Other pieces of this puzzle include the optimal location and type of sensors used in a specific facility, the rate at which sensors record information, and the risk associated with the materials/processes at a facility. If the data are analyzed off-site, how will they be transmitted? Is real-time analysis necessary? Are we monitoring only the facility itself, or might we also monitor the processing that occurs there? How are we going to combine the output from the various sensors to give us an accurate picture of the state of the facility? This paper will not try to answer all these questions, but rather it will attempt to stimulate thought in this area by formulating a systems approach to the problem demonstrated by a prototype system and a systems proposed for an actual facility. Our focus will be on the data analysis aspect of the problem.

  1. A systems approach to nuclear facility monitoring

    International Nuclear Information System (INIS)

    Argo, P.E.; Doak, J.E.; Howse, J.W.

    1996-01-01

    Sensor technology for use in nuclear facility monitoring has reached an advanced stage of development. Research on where to place these sensors in a facility and how to combine their outputs in a meaningful fashion does not appear to be keeping pace. In this paper, the authors take a global view of the problem where sensor technology is viewed as only one piece of a large puzzle. Other pieces of this puzzle include the optimal location and type of sensors used in a specific facility, the rate at which sensors record information, and the risk associated with the materials/processes at a facility. If the data are analyzed off-site, how will they be transmitted? Is real-time analysis necessary? Is one monitoring only the facility itself, or might one also monitor the processing that occurs there (e.g., tank levels and concentrations)? How is one going to combine the outputs from the various sensors to give us an accurate picture of the state of the facility? This paper will not try to answer all these questions, but rather it will attempt to stimulate thought in this area by formulating a systems approach to the problem demonstrated by a prototype system and a system proposed for an actual facility. The focus will be on the data analysis aspect of the problem. Future work in this area should focus on recommendations and guidelines for a monitoring system based upon the type of facility and processing that occurs there

  2. The cloud computational environment – a blueprint for applications in nuclear structure physics

    International Nuclear Information System (INIS)

    Mishev, S.

    2013-01-01

    The utility of the cloud computational model for studies in the field of the nuclear structure theory is addressed. In particular, a class of theoretical many-body approaches which could benefit from this technology is delineated. An architecture suitable for dealing with high performance computations for nuclear structure theories in a cloud is outlined. Alongside that, a nuclear theory aggregation software platform for presenting reports on calculations from various models is discussed. (author)

  3. Nuclear Structure: Dubna Symposium 1968. Invited Papers from the International Symposium on Nuclear Structure

    International Nuclear Information System (INIS)

    1968-01-01

    Invited papers of a Symposium organized by the Joint Institute for Nuclear Research, Dubna, supported by IUPAP and IAEA, and held in Dubna from 4 to 11 July 1968. The meeting was attended by about 450 scientists from 30 countries. The volume contains the invited papers, all by distinguished scientists, and the discussions and short contributions that followed the presentation of these papers. Contents: I. Nuclear structure at low excitations (15 papers) ; II. Nuclear structure at high excitations (6 papers): III. Open problems in nuclear physics (3 papers); IV. Equilibrium deformations (6 papers); V. General properties of nuclei (6 papers); VI. Closing remarks; List of contributions; List of seminar papers; List of participants; Author index. All papers, discussions and short contributions are in English; the abstracts are in English and Russian, which were the working languages of the Symposium. (author)

  4. Light ion reaction mechanisms and nuclear structure

    International Nuclear Information System (INIS)

    Robson, B.A.

    1986-01-01

    Of the many contributions to the subject 'Light ion reaction mechanism and nuclear structure', a few are selected and reviewed which highlight the present state of the field. Some contributions to the conference dealing with nuclear interactions are briefly outlined in the second section following an introductory section. Lane model calculations are compared with data for 9 Be and results are given showing angular distributions of the cross sections, the analyzing powers and the spin-rotation parameters for p - 40 Ca. Real central potential for d + 32 s resulting from the FB-analysis are compared with frozen density folding and delta-function folding. The third section deals with reaction mechanism. Data are cited which show near-side and far-side contributions to the calculated analyzing powers in the 116 Sn(d,p) 117 Sn (11.2 - ) transition. Calculations are compared with experimental A y and -(A yy + 2)/3. Also given are measurements of the cross sections and analyzing powers of the continuum energy spectra for the 58 Ni(p,p'x), along with relations between the analyzing powers and momentum transfer. The fourth section addresses nuclear structure. Cross sections and analyzing powers measured at 22 MeV for the reaction 208 Pb(p,t) 206 Pb(3 2 + ) are cited and considered. (Nogami, K.)

  5. Approach of the safety of nuclear sites

    International Nuclear Information System (INIS)

    Faure, J.

    1991-08-01

    The implantation on a site of nuclear power plant, nuclear facility, laboratory or nuclear waste storage, or more generally a risk facility, require to take into account the aggression of the environment on the facility (earth quakes, explosions, inundations, aircraft crash...) and dangers presented by the facility on the environment (radioactive release, noise...). The consequences of releases on the environment aim to study and also the characteristics of the environment to evaluate the consequences in normal and accidental conditions [fr

  6. Project approach study for nuclear power plants in the Netherlands

    International Nuclear Information System (INIS)

    1985-11-01

    The new nuclear program in the Netherlands comprises the construction of two to four nuclear power plants up to the year 2000. The main objective pursued with the implementation of the nuclear program is the supply of low-cost electricity in the future. In order to prepare the program and to provide a basis for further decisions, the Ministry of Economic Affairs has entrusted Motor-Columbus Consulting Engineers Inc., Baden, Switzerland, with a study to determine the most suitable project approach option(s) for the implementation of the future nuclear program in the Netherlands. In carrying out this study, Motor-Columbus investigated the following main project approach options: 1. turnkey contract approach; 2. split-package contract approach; 3. multi-contract approach. It is concluded that if applied in the appropriate way, the normal turnkey contract approach represents the most suitable approach under the prevailing situation in the Netherlands. (orig.)

  7. Current approaches to nuclear power plant life management in Japan

    International Nuclear Information System (INIS)

    Noda, T.; Tajima, K.; Ishikawa, M.; Koyama, M.

    2002-01-01

    Full text: Some of Japan's commercial light water reactors (LWRs) have been operating for more than 30 years. The more progress in ageing, the more increasing concerns of the public will grow about such nuclear power plants. In order to develop basic policies regarding countermeasures against ageing on nuclear power plants, in 1996, the Ministry of International Trade and Industry (MITI) summarized a report entitled 'Basic Policy on Aged Nuclear Power Plants'. The MITI also indicated that following 30 years' commercial operation of these plants, the electric utility companies should conduct technical evaluations for the ageing of all the components in the plants and to prepare detailed maintenance plans for the future. The Nuclear Safety Commission (NSC) accepted the MITI's report as appropriate in November 1998. The Commission also recommended the addition of effective countermeasures against ageing to the Periodical Safety Review and the evaluation of activities in response to ageing in order to implement such activities regularly and systematically in the future. The MITI reviewed the ageing countermeasures conducted by the electric utility companies and issued the second report entitled 'Evaluation of Countermeasures for ageing Conducted by Electric Utility Companies and Future Plans to cope with ageing'. The evaluation was made for Tsuruga Power Station Unit 1, Mihama Power Station Unit 1, and Fukushima Daiichi Nuclear Power Station Unit 1. At the same time, the MITI determined to incorporate the technical evaluations of ageing and the preparation of long-term maintenance plans into the periodical safety review in the future. The Kansai Electric Power Co., Inc., and Tokyo Electric Power Co. conducted the technical evaluations in their periodical safety reviews concerning the ageing phenomena of all their safety-related components/structures of Mihama Power Station Unit 2 and Fukushima Daiichi Nuclear Power Station Unit 2. Also, concerning ageing, they

  8. Inspection of Nuclear Power Plant Containment Structures

    Energy Technology Data Exchange (ETDEWEB)

    Graves, H.L.; Naus, D.J.; Norris, W.E.

    1998-12-01

    Safety-related nuclear power plant (NPP) structures are designed to withstand loadings from a number of low-probability external and interval events, such as earthquakes, tornadoes, and loss-of-coolant accidents. Loadings incurred during normal plant operation therefore generally are not significant enough to cause appreciable degradation. However, these structures are susceptible to aging by various processes depending on the operating environment and service conditions. The effects of these processes may accumulate within these structures over time to cause failure under design conditions, or lead to costly repair. In the late 1980s and early 1990s several occurrences of degradation of NPP structures were discovered at various facilities (e.g., corrosion of pressure boundary components, freeze- thaw damage of concrete, and larger than anticipated loss of prestressing force). Despite these degradation occurrences and a trend for an increasing rate of occurrence, in-service inspection of the safety-related structures continued to be performed in a somewhat cursory manner. Starting in 1991, the U.S. Nuclear Regulatory Commission (USNRC) published the first of several new requirements to help ensure that adequate in-service inspection of these structures is performed. Current regulatory in-service inspection requirements are reviewed and a summary of degradation experience presented. Nondestructive examination techniques commonly used to inspect the NPP steel and concrete structures to identify and quantify the amount of damage present are reviewed. Finally, areas where nondestructive evaluation techniques require development (i.e., inaccessible portions of the containment pressure boundary, and thick heavily reinforced concrete sections are discussed.

  9. U-matrix approach in the investigation of the low-x behaviour of the nuclear structure function F2A(x,Q2)

    International Nuclear Information System (INIS)

    Davidovs'kij, V.V.

    2000-01-01

    The U-matrix method is applied to build the amplitude for virtual photon absorption by nuclei which satisfies unitarity. This amplitude is utilized to obtain the expression for the structure function F 24 , which is convenient to perform analytic calculations. Profile functions of nuclei with the Gauss, Woods-Saxon, and constant density distributions are considered. It is shown that effects of quark-antiquark pair rescattering in a nucleus cause the change of a power-like behavior of F 24 to a logarithmic one at small x. Numerical estimations are given

  10. The nuclear accident risk: a territorial approach

    International Nuclear Information System (INIS)

    Ambroise, Pascal

    2011-01-01

    How many people live in the vicinity of French nuclear power stations? Recent events - notably in Japan, but also in France - highlight the urgent need to be able to predict the possible effects of a nuclear accident on surrounding territories. Here, Ambroise Pascal identifies two key criteria for such an estimation: residential density and land use. (author)

  11. Approaches to Education and Training for Kenya's Nuclear Power Program

    International Nuclear Information System (INIS)

    Kalambuka, H.A.

    2014-01-01

    1. Review of status and development of E and T for the nuclear power program in Kenya; 2. Review of challenges in nuclear E and T, and the initiatives being undertaken to mitigate them: • Recommendations for strategic action; 3. State of nuclear skills in the context of key drivers of the global revival in nuclear energy; 4. Point of view: Education in Applied Nuclear and Radiation physics at Nairobi: • Its growth has helped identify the gaps, and relevant practical approaches for realizing the broad spectrum of technical capacity to conduct a national NPP; 5. Proposed approach to support the E and T infrastructure necessary to allow the country to plan, construct, operate, regulate, and safely and securely handle nuclear facilities sustainably; 6. Specified E and T initiatives in the context of the national industrial development strategy and nuclear energy policy and funding for the complete life cycle and technology localization. (author)

  12. Nonlinear seismic soil-structure interaction analysis of nuclear power plant structures

    International Nuclear Information System (INIS)

    Khanna, J.K.; Setlur, A.V.; Pathak, D.V.

    1977-01-01

    The heterogeneous and nonlinear soil medium and the detailed three-dimensional structure are synthesized to determine the seismic response to soil-structure systems. The approach is particularly attractive in a design office environment since it: a) leads to interactive motion at the soil-structure interface; b) uses existing public domain programs such as SAPIV, LUSH and FLUSH with marginal modifications; and c) meets current regulatory requirements for soil-structure interaction analysis. Past methods differ from each other depending on the approach adopted for soil and structure representations and procedures for solving the governing differential equations. Advantages and limitations of these methods are reviewed. In the current approach, the three-dimensional structure is represented by the dynamic characteristics of its fixed base condition. This representation is ideal when structures are designed to be within elastic range. An important criterion is the design of the nuclear power plant structures. Model damping coefficients are varied to reflect the damping properties of different structural component materials. The detailed structural model is systematically reduced to reflect important dynamic behavior with simultaneous storing of intermediate information for retrieval of detailed structural response. Validity of the approach has been established with simple numerical experiments. (Auth.)

  13. Status of transactinium nuclear data in the evaluated nuclear structure data file

    International Nuclear Information System (INIS)

    Ewbank, W.B.

    1980-01-01

    The structure and organization of the Evaluated Nuclear Structure Data File (ENSDF) which serves as the source data base for the production of drawings and tables for the ''Nuclear Data Sheets'' journal is described. The updating and output features of ENSDF are described with emphasis on nuclear structure and decay data of the transactinium isotopes. (author)

  14. Nuclear structure/nuclei far from stability

    International Nuclear Information System (INIS)

    Casten, R.F.; Garrett, J.D.; Moller, P.; Bauer, W.W.; Brenner, D.S.; Butler, G.W.; Crawford, J.E.; Davids, C.N.; Dyer, P.L.; Gregorich, K.; Hagbert, E.G.; Hamilton, W.D.; Harar, S.; Haustein, P.E.; Hayes, A.C.; Hoffman, D.C.; Hsu, H.H.; Madland, D.G.; Myers, W.D.; Penttila, H.T.; Ragnarsson, I.; Reeder, P.L.; Robertson, G.H.; Rowley, N.; Schreiber, F.; Seifert, H.L.; Sherrill, B.M.; Siciliano, E.R.; Sprouse, G.D.; Stephens, F.S.; Subotic, K.; Talbert, W.; Toth, K.S.; Tu, X.L.; Vieira, D.J.; Villari, A.C.C.; Walters, W.B.; Wildenthal, B.H.; Wilhelmy, J.B.; Winger, J.A.; Wohn, F.K.; Wouters, J.M.; Zhou, X.G.; Zhou, Z.Y.

    1990-01-01

    This report outlines some of the nuclear structure topics discussed at the Los Alamos Workshop on the Science of Intense Radioactive Ion Beams (RIB). In it we also tried to convey some of the excitement of the participants for utilizing RIBs in their future research. The introduction of radioactive beams promises to be a major milestone for nuclear structure perhaps even more important than the last such advance in beams based on the advent of heavy-ion accelerators in the 1960's. RIBs not only will allow a vast number of new nuclei to be studies at the extremes of isospin, but the variety of combinations of exotic proton and neutron configurations should lead to entirely new phenomena. A number of these intriguing new studies and the profound consequences that they promise for understanding the structure of the atomic nucleus, nature's only many-body, strongly-inteacting quantum system, are discussed in the preceeding sections. However, as with any scientific frontier, the most interesting phenomena probably will be those that are not anticipated--they will be truly new

  15. Nuclear structure at the proton dripline

    International Nuclear Information System (INIS)

    Maglione, Enrico; Ferreira, Lidia S.; Costa Lopes, Miguel

    2007-01-01

    Recent studies with exotic nuclei far from the stability region, lead to the discovery of one and two proton radioactivity, from ground state of spherical, as well as deformed nuclei. Isomeric decay and fine structure were also measured, and in some cases, a prompt proton and alpha particle emission was observed. It was established that, the majority of prompt particle decays proceeds from superdeformed initial states, into spherical daughter states, revealing a change of deformation during the decay. Proton radioactivity has been the unique way to probe nuclear structure mechanisms in this region of stability. Since proton emitters lie beyond the proton drip-line, they also give the possibility of observing Nilsson resonances. In fact, the experimental data on proton radioactivity in regionswhere theoretical models predict a certain deformation for the nucleus is consistent with the idea that the proton was in a single particle resonance state, in the field of the daughter nucleus. An important aspect of such calculations is the inclusion of the nuclear structure properties of the core,like the rotational spectrum of the daughter nucleus, and the pairing residual interaction. We will address various questions concerning what we have learned from the data and how far our theoretical models have taken us in the region of neutron deficient nuclei at the borders of stability. (Author)

  16. Nuclear matrix - structure, function and pathogenesis.

    Science.gov (United States)

    Wasąg, Piotr; Lenartowski, Robert

    2016-12-20

    The nuclear matrix (NM), or nuclear skeleton, is the non-chromatin, ribonucleoproteinaceous framework that is resistant to high ionic strength buffers, nonionic detergents, and nucleolytic enzymes. The NM fulfills a structural role in eukaryotic cells and is responsible for maintaining the shape of the nucleus and the spatial organization of chromatin. Moreover, the NM participates in several cellular processes, such as DNA replication/repair, gene expression, RNA transport, cell signaling and differentiation, cell cycle regulation, apoptosis and carcinogenesis. Short nucleotide sequences called scaffold/matrix attachment regions (S/MAR) anchor the chromatin loops to the NM proteins (NMP). The NMP composition is dynamic and depends on the cell type and differentiation stage or metabolic activity. Alterations in the NMP composition affect anchoring of the S/MARs and thus alter gene expression. This review aims to systematize information about the skeletal structure of the nucleus, with particular emphasis on the organization of the NM and its role in selected cellular processes. We also discuss several diseases that are caused by aberrant NM structure or dysfunction of individual NM elements.

  17. Compilations and evaluations of nuclear structure and decay data

    International Nuclear Information System (INIS)

    Lorenz, A.

    1978-10-01

    This is the fourth issue of a report series on published and to-be-published compilations and evaluations of nuclear structure and decay (NSD) data. This compilation is published and distributed by the IAEA Nuclear Data Section every year. The material contained in this compilation is sorted according to eight subject categories: General compilations; basic isotopic properties; nuclear structure properties; nuclear decay processes, half-lives, energies and spectra; nuclear decay processes, gamma-rays; nuclear decay processes, fission products; nuclear decay processes (others); atomic processes

  18. Towards a regional siting approach for canadian nuclear fuel waste

    International Nuclear Information System (INIS)

    Kuhn, R.G.

    1999-01-01

    The proposal to construct a nuclear fuel waste (NFW) disposal facility in Canada is fraught with difficulties, particularly with respect to gaining public acceptance and consent. Public perceptions of risk associated with a disposal facility are generally negative. Indeed, it was found that over 60% of residents in northern Ontario communities are opposed to the possibility of a disposal facility being constructed within 120 km of their community. Even after being offered the possibility of compensation and incentives, the majority of residents are strongly opposed. Canadian decision makers have generally endorsed a siting framework known as the open siting approach. The major characteristic of this approach is that it allows for substantial public participation in any siting process. It is premised on the notion that only communities where a majority of citizens favour the siting of a facility will be considered as potential hosts. However, given that the majority of residents on the Ontario portion of the Canadian Shield are strongly opposed to a NFW facility, the open approach will not be a panacea for a successful siting process. The major limitation of this approach is the fact that a single community cannot be isolated from its surrounding region and communities. The purpose of this paper is to work towards the development of a regional siting strategy for Canadian nuclear fuel waste management. There are no clear precedents of a regional siting approach to facility location in Canada. However, some analogous planning regimes and initiatives have been attempted. Common to these initiatives is the consideration of a large geographical region and attempts to integrate, at least formally, social, cultural, political and environmental concerns in a coherent and comprehensive manner. Under this type of 'siting strategy' NFW management would be considered within a broad array of resource management initiatives, social and cultural priorities, and institutional

  19. [Electromagnetic studies of nuclear structure and reactions

    International Nuclear Information System (INIS)

    1991-01-01

    The past year has seen continued progress in our efforts. On the experimental side, we completed data acquisition on our major remaining involvement at NIKHEF, the 12 C(e,e'pp) experiment. We advanced the analysis of most of projects in low lying nuclear structure and giant resonances, of which several were completed and published. We received approval for several new experiments, and have made major contributions to design and development of detectors to be used at Bates and CEBAF. Our data interpretation efforts have been extended and enhanced with the availability of our new computer cluster. In this paper we briefly report on most of these efforts

  20. Structure for nuclear fuel storage pools

    International Nuclear Information System (INIS)

    Ebata, Sakae; Nichiei, Shinji.

    1979-01-01

    Purpose: To enable leak detection in nuclear fuel storage pools, as well as prevent external leakages while keeping the strength of the constructional structures. Constitution: Protection plates are provided around pool linear plates and a leak reception is provided to the bottom. Leakages are detected by leak detecting pipeways and the external leakages are prevented by collecting them in a detection area provided in the intermediate layer. Since ferro-reinforcements at the bottom wall of the pool are disconnected by the protection plate making it impossible to form the constructional body, body hunches are provided to the bottom wall of the pool for processing the ferro-reinforcements. (Yoshino, Y.)

  1. ENSL and CDRL: Evaluated nuclear structure libraries

    International Nuclear Information System (INIS)

    Howerton, R.J.

    1981-01-01

    Two files of nuclear structure data derived largely from the seventh edition of the Table of Isotopes are described. The files are computer oriented, and have been constructed to so that every decay can be traced either to an eventual ground state of to a positive flag that indicates nothing is known about further decay. The ENSL file contains level schemes derived from decay data, and the CDRL file contains the level schemes derived from particle-induced reaction data that have been merged into the ENSL file. (author)

  2. Superheavy Element Synthesis And Nuclear Structure

    International Nuclear Information System (INIS)

    Ackermann, D.; Block, M.; Burkhard, H.-G.; Heinz, S.; Hessberger, F. P.; Khuyagbaatar, J.; Kojouharov, I.; Mann, R.; Maurer, J.; Antalic, S.; Saro, S.; Venhart, M.; Hofmann, S.; Leino, M.; Uusitalo, J.; Nishio, K.; Popeko, A. G.; Yeremin, A. V.

    2009-01-01

    After the successful progress in experiments to synthesize superheavy elements (SHE) throughout the last decades, advanced nuclear structure studies in that region have become feasible in recent years thanks to improved accelerator, separation and detection technology. The means are evaporation residue(ER)-α-α and ER-α-γ coincidence techniques complemented by conversion electron (CE) studies, applied after a separator. Recent examples of interesting physics to be discovered in this region of the chart of nuclides are the studies of K-isomers observed in 252,254 No and in 270 Ds.

  3. Chiral nucleon-nucleon forces in nuclear structure calculations

    Directory of Open Access Journals (Sweden)

    Coraggio L.

    2016-01-01

    Full Text Available Realistic nuclear potentials, derived within chiral perturbation theory, are a major breakthrough in modern nuclear structure theory, since they provide a direct link between nuclear physics and its underlying theory, namely the QCD. As a matter of fact, chiral potentials are tailored on the low-energy regime of nuclear structure physics, and chiral perturbation theory provides on the same footing two-nucleon forces as well as many-body ones. This feature fits well with modern advances in ab-initio methods and realistic shell-model. Here, we will review recent nuclear structure calculations, based on realistic chiral potentials, for both finite nuclei and infinite nuclear matter.

  4. Nuclear matter descriptions including quark structure of the hadrons

    International Nuclear Information System (INIS)

    Huguet, R.

    2008-07-01

    It is nowadays well established that nucleons are composite objects made of quarks and gluons, whose interactions are described by Quantum chromodynamics (QCD). However, because of the non-perturbative character of QCD at the energies of nuclear physics, a description of atomic nuclei starting from quarks and gluons is still not available. A possible alternative is to construct effective field theories based on hadronic degrees of freedom, in which the interaction is constrained by QCD. In this framework, we have constructed descriptions of infinite nuclear matter in relativistic mean field theories taking into account the quark structure of hadrons. In a first approach, the in medium modifications of mesons properties is dynamically obtained in a Nambu-Jona-Lasinio (NJL) quark model. This modification is taken into account in a relativistic mean field theory based on a meson exchange interaction between nucleons. The in-medium modification of mesons masses and the properties of infinite nuclear matter have been studied. In a second approach, the long and short range contributions to the in-medium modification of the nucleon are determined. The short range part is obtained in a NJL quark model of the nucleon. The long range part, related to pions exchanges between nucleons, has been determined in the framework of Chiral Perturbation theory. These modifications have been used to constrain the couplings of a point coupling relativistic mean field model. A realistic description of the saturation properties of nuclear matter is obtained. (author)

  5. Time-space structure of nuclear safety

    International Nuclear Information System (INIS)

    Miya, Kenzo

    2003-01-01

    New idea to analyze the structure of nuclear safety and to investigate functioning property of hierarchical principle is applied to nuclear safety in this paper. The nuclear safety is expressed by three principles such as 1) the action and subject are partitioned and classified by time and space, 2) introduction of hierarchy with three strata to the closed object and hierarchy with many strata to the open object and 3) application of 'element, relation and abstraction' to the engineering system as a framework of intellectual activity. For example, prevention of core melt is the closed object and it is obtained by acting hierarchies with three strata (operation stop, cooling and closing radiation) as the safety functions. Prevention of increase of accident is open object, so that, space hierarchy with many strata of prevention is used for the safety security of reactor. The safety security method of reactor consists of three processes, that is 1) the basic process to make clear the continuous operating time on the basis of regular inspection, 2) the action process of operating ECCS to prevent core damage accident, when a large leakage happens and 3) many strata prevention process of stopping a leak in the environment. (S.Y.)

  6. Tungsten - Yttrium Based Nuclear Structural Materials

    Science.gov (United States)

    Ramana, Chintalapalle; Chessa, Jack; Martinenz, Gustavo

    2013-04-01

    The challenging problem currently facing the nuclear science community in this 21st century is design and development of novel structural materials, which will have an impact on the next-generation nuclear reactors. The materials available at present include reduced activation ferritic/martensitic steels, dispersion strengthened reduced activation ferritic steels, and vanadium- or tungsten-based alloys. These materials exhibit one or more specific problems, which are either intrinsic or caused by reactors. This work is focussed towards tungsten-yttrium (W-Y) based alloys and oxide ceramics, which can be utilized in nuclear applications. The goal is to derive a fundamental scientific understanding of W-Y-based materials. In collaboration with University of Califonia -- Davis, the project is designated to demonstrate the W-Y based alloys, ceramics and composites with enhanced physical, mechanical, thermo-chemical properties and higher radiation resistance. Efforts are focussed on understanding the microstructure, manipulating materials behavior under charged-particle and neutron irradiation, and create a knowledge database of defects, elemental diffusion/segregation, and defect trapping along grain boundaries and interfaces. Preliminary results will be discussed.

  7. Reliability of structural materials in nuclear industry

    International Nuclear Information System (INIS)

    Pinard Legry, G.

    1996-01-01

    The reliability of nuclear installations is a fundamental point for the exploitation of nuclear energy. It requires an extensive knowledge of the behaviour of materials in the operating conditions and during the expected service life of the installations. In nuclear power plants multiple risks of failure can exist and are expressed by corrosion and deformation phenomena or by modification in the mechanical characteristics of materials. The knowledge of the evolution with time of a given material requires to take into account the data relative to the material itself, to its environment and to the physical conditions of this environment. The study of materials aging needs a more precise knowledge of the kinetics of phenomena at any scale and of their interactions, and a micro- or macro-modeling of their behaviour during long periods of time. This paper gives an overview of the aging phenomena that occur in the structural materials involved in PWR and fast neutron reactors: thermal aging, generalized corrosion, corrosion under constraint, intergranular corrosion, crack growth under loading, wear, irradiation etc.. (J.S.)

  8. Semiclassical shell structure and nuclear double-humped fission barriers

    Directory of Open Access Journals (Sweden)

    A. G. Magner

    2010-09-01

    Full Text Available We derived the semiclassical trace formulas for the level density as sums over periodic-orbit families and isolated orbits within the improved stationary phase method. Averaged level-density shell corrections and shell-structure energies are continuous through all symmetry-breaking (bifurcation points with the correct asymptotics of the standard stationary phase approach accounting for continuous symmetries. We found enhancement of the nuclear shell structure near bifurcations in the superdeformed region. Our semiclassical results for the averaged level densities with the gross-shell and more thin-shell structures and the energy shell corrections for critical deformations are in good agreement with the quantum calculations for several single-particle Hamiltonians, in particular for the potentials with a sharp spheroidal shape. Enhancement of the shell structure owing to bifurcations of the shortest 3-dimensional orbits from equatorial orbits is responsible for the second well of fission barrier in a superdeformation region.

  9. Structural considerations in nuclear life extension

    International Nuclear Information System (INIS)

    Dodson, W.B.; McHale, P.F.

    1986-01-01

    The ability to extend the licensed life of a nuclear power plant requires that technical, economic, and regulatory criteria be satisfied. Two ongoing Electric Power Research Institute/US Department of Energy funded pilot studies are looking at the technical and economic aspects from a plant wide viewpoint to life extension. In each, structures have been identified to have a potentially strong effect on the viability for extended life because of the possible major cost, schedule, and person-rem factors should major refurbishment, modifications, or replacement be required. This paper reviews the degradation mechanisms and counterbalancing design features for one of these pilot plants in the studies. It further reviews the recommended ongoing practices to be followed to better ensure that life extension for the structures remains a future option

  10. Development of analysis methods for seismically isolated nuclear structures

    International Nuclear Information System (INIS)

    Yoo, Bong; Lee, Jae-Han; Koo, Gyeng-Hoi

    2002-01-01

    KAERI's contributions to the project entitled Development of Analysis Methods for Seismically Isolated Nuclear Structures under IAEA CRP of the intercomparison of analysis methods for predicting the behaviour of seismically isolated nuclear structures during 1996-1999 in effort to develop the numerical analysis methods and to compare the analysis results with the benchmark test results of seismic isolation bearings and isolated nuclear structures provided by participating countries are briefly described. Certain progress in the analysis procedures for isolation bearings and isolated nuclear structures has been made throughout the IAEA CRPs and the analysis methods developed can be improved for future nuclear facility applications. (author)

  11. Development of structural steels for nuclear application

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Jun Hwa; Chi, S. H.; Ryu, W. S.; Lee, B. S.; Kim, D. H.; Kim, J. H.; Oh, Y. J.; Byun, T. S.; Yoon, J. H.; Park, D. K.; Oh, J. M.; Cho, H. D.; Kim, H.; Kim, H. D.; Kang, S. S.; Kim, J. W.; Ahn, S. B.

    1997-08-01

    To established the bases of nuclear structural material technologies, this study was focused on the localization and improvement of nuclear structural steels, the production of material property data, and technology developments for integrity evaluation. The important test and analysis technologies for material integrity assessment were developed, and the materials properties of the pressure vessel steels were evaluated systematically on the basis of those technologies, they are microstructural characteristics, tensile and indentation deformation properties, impact properties, and static and dynamic fracture toughness, fatigue and corrosion fatigue etc. Irradiation tests in the research reactors were prepared or completed to obtain the mechanical properties of irradiated materials. The improvement of low alloy steel was also attempted through the comparative study on the manufacturing processes, computer assisted alloy and process design, and application of the inter critical heat treatment. On the other hand, type 304 stainless steels for reactor internals were developed and tested successfully. High strength type 316LN stainless steels for reactor internals were developed and the microstructural characteristics, corrosion resistance, mechanical properties at high temperatures, low cycle fatigue property etc. were tested and analyzed in the view point of the effect of nitrogen. Type 347 stainless steels with high corrosion resistance and toughness for pipings and tubes and low-activated Cr-Mn steels were also developed and their basic properties were evaluated. Finally, the martensitic stainless steels for turbine blade were developed and tests. (author). 242 refs., 100 tabs., 304 figs.

  12. Nuclear structure research. Annual progress report

    International Nuclear Information System (INIS)

    Wood, J.L.

    1994-01-01

    The most significant development this year has been the outcome of a survey of EO transition strength, ρ 2 (EO), in heavy nuclei. The systematics of ρ 2 (EO) reveals that the strongest EO's are between pairs of excited states with the same spin and parity. This is observed in the regions Z,N = 38,60; 48,66; 64,88; and 80,106. Unlike other multipoles it is rare that nuclear ground states are strongly connected to excited states by monopole transitions. Another significant finding is in the results of the experimental study of levels in 187 Au. Two bands of states are observed with identical spin sequences, very similar excitation energies, and EO transitions between the favored band members but not between the unfavored band members. This is interpreted in terms of nearly identical diabatic structures. Experimental data sets for the radioactive decays of 183 Pt and 186 Au to 183 Ir and 186 Pt, respectively, have been under analysis. The studies are aimed at elucidating shape coexistence and triaxiality in the A = 185 region. An extensive program of systematics for nuclei at and near N = Z has been continued in preparation for the planned nuclear structure research program using the Holifield Radioactive Ion Beam Facility (HRIBF) at Oak Ridge. A considerable effort has been devoted to HRIBF target development

  13. Development of structural steels for nuclear application

    International Nuclear Information System (INIS)

    Hong, Jun Hwa; Chi, S. H.; Ryu, W. S.; Lee, B. S.; Kim, D. H.; Kim, J. H.; Oh, Y. J.; Byun, T. S.; Yoon, J. H.; Park, D. K.; Oh, J. M.; Cho, H. D.; Kim, H.; Kim, H. D.; Kang, S. S.; Kim, J. W.; Ahn, S. B.

    1997-08-01

    To established the bases of nuclear structural material technologies, this study was focused on the localization and improvement of nuclear structural steels, the production of material property data, and technology developments for integrity evaluation. The important test and analysis technologies for material integrity assessment were developed, and the materials properties of the pressure vessel steels were evaluated systematically on the basis of those technologies, they are microstructural characteristics, tensile and indentation deformation properties, impact properties, and static and dynamic fracture toughness, fatigue and corrosion fatigue etc. Irradiation tests in the research reactors were prepared or completed to obtain the mechanical properties of irradiated materials. The improvement of low alloy steel was also attempted through the comparative study on the manufacturing processes, computer assisted alloy and process design, and application of the inter critical heat treatment. On the other hand, type 304 stainless steels for reactor internals were developed and tested successfully. High strength type 316LN stainless steels for reactor internals were developed and the microstructural characteristics, corrosion resistance, mechanical properties at high temperatures, low cycle fatigue property etc. were tested and analyzed in the view point of the effect of nitrogen. Type 347 stainless steels with high corrosion resistance and toughness for pipings and tubes and low-activated Cr-Mn steels were also developed and their basic properties were evaluated. Finally, the martensitic stainless steels for turbine blade were developed and tests. (author). 242 refs., 100 tabs., 304 figs

  14. Nuclear data for structural materials of fission and fusion reactors

    International Nuclear Information System (INIS)

    Goulo, V.

    1989-06-01

    The document presents the status of nuclear reaction theory concerning optical model development, level density models and pre-equilibrium and direct processes used in calculation of neutron nuclear data for structural materials of fission and fusion reactors. 6 refs

  15. Update on nuclear structure effects in light muonic atoms

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez, Oscar Javier, E-mail: javierh@triumf.ca; Dinur, Nir Nevo; Ji, Chen; Bacca, Sonia [TRIUMF (Canada); Barnea, Nir [The Hebrew University, Racah Institute of Physics (Israel)

    2016-12-15

    We present calculations of the nuclear structure corrections to the Lamb shift in light muonic atoms, using state-of-the-art nuclear potentials. We outline updated results on finite nucleon size contributions.

  16. Understanding Nuclear Safety Culture: A Systemic Approach

    International Nuclear Information System (INIS)

    Afghan, A.N.

    2016-01-01

    The Fukushima accident was a systemic failure (Report by Director General IAEA on the Fukushima Daiichi Accident). Systemic failure is a failure at system level unlike the currently understood notion which regards it as the failure of component and equipment. Systemic failures are due to the interdependence, complexity and unpredictability within systems and that is why these systems are called complex adaptive systems (CAS), in which “attractors” play an important role. If we want to understand the systemic failures we need to understand CAS and the role of these attractors. The intent of this paper is to identify some typical attractors (including stakeholders) and their role within complex adaptive system. Attractors can be stakeholders, individuals, processes, rules and regulations, SOPs etc., towards which other agents and individuals are attracted. This paper will try to identify attractors in nuclear safety culture and influence of their assumptions on safety culture behavior by taking examples from nuclear industry in Pakistan. For example, if the nuclear regulator is an attractor within nuclear safety culture CAS then how basic assumptions of nuclear plant operators and shift in-charges about “regulator” affect their own safety behavior?

  17. Nuclear engineering education: A competence based approach to curricula development

    International Nuclear Information System (INIS)

    2014-01-01

    Maintaining nuclear competencies in the nuclear industry is a one of the most critical challenges in the near future. With the development of a number of nuclear engineering educational programmes in several States, this publication provides guidance to decision makers in Member States on a competence based approach to curricula development, presenting the established practices and associated requirements for educational programmes in this field. It is a consolidation of best practices that will ensure sustainable, effective nuclear engineering programmes, contributing to the safe, efficient and economic operation of nuclear power plants. The information presented is drawn from a variety of recognized nuclear engineering programmes around the world and contributes to the main areas that are needed to ensure a viable and robust nuclear industry

  18. Group theoretic approaches to nuclear and hadronic collective motion

    International Nuclear Information System (INIS)

    Biedenharn, L.C.

    1982-01-01

    Three approaches to nuclear and hadronic collective motion are reviewed, compared and contrasted: the standard symmetry approach as typified by the Interacting Boson Model, the kinematic symmetry group approach of Gell-Mann and Tomonaga, and the recent direct construction by Buck. 50 references

  19. Group theoretic approaches to nuclear and hadronic collective motion

    Energy Technology Data Exchange (ETDEWEB)

    Biedenharn, L.C.

    1982-01-01

    Three approaches to nuclear and hadronic collective motion are reviewed, compared and contrasted: the standard symmetry approach as typified by the Interacting Boson Model, the kinematic symmetry group approach of Gell-Mann and Tomonaga, and the recent direct construction by Buck. 50 references.

  20. Research-based approaches to nuclear education

    Energy Technology Data Exchange (ETDEWEB)

    Donev, J.M.K.C., E-mail: jason.donev@ucalgary.ca [Univ. of Calgary, Calgary, AB (Canada); Carpenter, Y., E-mail: ycarpenter@gmail.com [Univ.ty of Colorado at Boulder, Boulder, CO (United States)

    2014-07-01

    Teaching nuclear power requires an expert to communicate a significant number of abstract concepts from diverse disciplines, and assemble these into a larger intellectual framework for the students. Scholarly education research, particularly in individual science disciplines, has provided significant advances in teaching core subject material by breaking away from traditional lecturing. Thus far, however,little work has applied these results to introductory nuclear power classes. This paper explores a method of engaging introductory nuclear students deeply by using a combination of Socratic and mastery methods of teaching. Students develop conceptual understanding of the material through the group work and the use of diverse resources, including textbooks, online references, and computer models that encourage free exploration of these concepts. Marks have improved considerably, and students engage with the material at a significantly deeper level than in previous lecture-based iterations of this course. (author)

  1. Research-based approaches to nuclear education

    International Nuclear Information System (INIS)

    Donev, J.M.K.C.; Carpenter, Y.

    2014-01-01

    Teaching nuclear power requires an expert to communicate a significant number of abstract concepts from diverse disciplines, and assemble these into a larger intellectual framework for the students. Scholarly education research, particularly in individual science disciplines, has provided significant advances in teaching core subject material by breaking away from traditional lecturing. Thus far, however,little work has applied these results to introductory nuclear power classes. This paper explores a method of engaging introductory nuclear students deeply by using a combination of Socratic and mastery methods of teaching. Students develop conceptual understanding of the material through the group work and the use of diverse resources, including textbooks, online references, and computer models that encourage free exploration of these concepts. Marks have improved considerably, and students engage with the material at a significantly deeper level than in previous lecture-based iterations of this course. (author)

  2. Mean field approach to nuclear structure

    International Nuclear Information System (INIS)

    Nazarewicz, W.; Tennessee Univ., Knoxville, TN

    1993-01-01

    Several examples of mean-field calculations, relevant to the recent and planned low-spin experimental works, are presented. The perspectives for future studies (mainly related to spectroscopy of exotic nuclei) are reviewd

  3. Economic evaluation of multilateral nuclear fuel cycle approach

    International Nuclear Information System (INIS)

    Takashima, Ryuta; Kuno, Yusuke; Omoto, Akira; Tanaka, Satoru

    2011-01-01

    Recently previous works have shown that multilateral nuclear fuel cycle approach has benefits not only of non-proliferation but also of cost effectiveness. This is because for most facilities in nuclear fuel cycle, there exist economies of scale, which has a significant impact on the costs of nuclear fuel cycle. Therefore, the evaluation of economic rationality is required as one of the evaluation factors for the multilateral nuclear fuel cycle approach. In this study, we consider some options with respect to multilateral approaches to nuclear fuel cycle in Asian-Pacific region countries that are proposed by the University of Tokyo. In particular, the following factors are embedded into each type: A) no involvement of assurance of services, B) provision of assurance of services including construction of new facility, without transfer of ownership, and C) provision of assurance of service including construction of new joint facilities with ownership transfer of facilities to multilateral nuclear fuel cycle approach. We show the overnight costs taking into account install and operation of nuclear fuel cycle facilities for each option. The economic parameter values such as uranium price, scale factor, and market output expansion influences the total cost for each option. Thus, we show how these parameter values and economic risks affect the total overnight costs for each option. Additionally, the international facilities could increase the risk of transportation for nuclear material compared to national facilities. We discuss the potential effects of this transportation risk on the costs for each option. (author)

  4. Nuclear effects in the F3 structure function for finite and asymptotic Q2

    International Nuclear Information System (INIS)

    Kulagin, S.A.

    1998-01-01

    We study nuclear effects in the structure function F 3 which describes the parity violating part of the charged-current neutrino nucleon deep inelastic scattering. Starting from a covariant approach we derive a factorized expression for the nuclear structure function in terms of the nuclear spectral function and off-shell nucleon structure functions valid for arbitrary momentum transfer Q and in the limit of weak nuclear binding, i.e. when a nucleus can be treated as a non-relativistic system. We develop a systematic expansion of nuclear structure functions in terms of a Q -2 series caused by nuclear effects (''nuclear twist'' series). Basing ourselves on this expansion we calculate nuclear corrections to the Gross-Llewellyn-Smith sum rule as well as to higher moments of F 3 . We show that corrections to the GLS sum rule due to nuclear effects cancel out in the Bjorken limit and calculate the corresponding Q -2 correction. Special attention is paid to the discussion of the off-shell effects in the structure functions. A sizable impact of these effects both on the Q 2 and x dependence of nuclear structure functions is found. (orig.)

  5. Canadian approach to nuclear power safety

    International Nuclear Information System (INIS)

    Atchison, R.J.; Boyd, F.C.; Domaratzki, Z.

    1983-01-01

    The development of the Canadian nuclear power safety philosophy and practice is traced from its early roots at the Chalk River Nuclear Laboratories to the licensing of the current generation of power reactors. Basic to the philosophy is a recognition that the licensee is primarily responsible for achieving a high standard safety. As a consequence, regulatory requirements have emphasized numerical safety goals and objectives and minimized specific design or operating rules. In this article the Canadian licensing process is described with a discussion of some of the difficulties encountered. Examples of specific licensing considerations for each phase of a project are included

  6. The Canadian approach to nuclear power safety

    International Nuclear Information System (INIS)

    Atchison, R.J.; Boyd, F.C.; Domaratski, Z.

    1983-07-01

    The development of the Canadian nuclear power safety philosophy and practice is traced from its early roots at the Chalk River Nuclear Laboratory to the licensing of the current generation of power reactors. Basic to the philosophy is a recognition that the primary responsibility for achieving a high standard of safety resides with the licensee. As a consequence, regulatory requirements have emphasized numerical safety goals and objectives and minimized specific design or operating rules. The Canadian licensing process is described along with a discussion of some of the difficulties encountered. Examples of specific licensing considerations for each phase of a project are included

  7. Nuclear Structure Near the Drip Lines

    International Nuclear Information System (INIS)

    Nazarewicz, W.

    1998-01-01

    Experiments with beams of unstable nuclei will make it possible to look closely into many aspects of the nuclear many-body problem. Theoretically, exotic nuclei represent a formidable challenge for the nuclear many-body theories and their power to predict nuclear properties in nuclear terra incognita

  8. Nuclear structure and neutrino-nucleus interaction

    International Nuclear Information System (INIS)

    Krmpotic, Francisco

    2011-01-01

    Recent years have witnessed an intense experimental and theoretical activity oriented towards a better comprehension of neutrino nucleus interaction. While the main motivation for this task is the demand coming from oscillation experiments in their search for a precise determination of neutrino properties, the relevance of neutrino interaction with matter is more wide-ranging. It is imperative for astrophysics, hadronic and nuclear physics, and physics beyond the standard model. The experimental information on neutrino induced reactions is rapidly growing, and the corresponding theoretical description is a challenging proposition, since the energy scales of interest span a vast region, going from few MeV for solar neutrinos, to tens of MeV for the interpretation of experiments with the muon and pion decay at rest and the detection of neutrinos coming from the core collapse of supernova, and to hundreds of MeV or few GeV for the detection of atmospheric neutrinos, and for the neutrino oscillation program of the MiniBooNE experiment. The presence of neutrinos, being chargeless particles, can only be inferred by detecting the secondary particles created in colliding and interacting with the matter. Nuclei are often used as neutrino detectors, and in particular 12 C which is a component of many scintillator detectors. Thus, the interpretation of neutrino data heavily relies on detailed and quantitative knowledge of the features of the neutrino-nucleus interaction. The nuclear structure methods used in the evaluation of the neutrino-nucleus cross section are reviewed. Detailed comparison between the experimental and theoretical results establishes benchmarks needed for verification and/or parameter adjustment of the nuclear models. Having a reliable tool for such calculation is of great importance in a variety of applications, such as the description of the r-process nucleosynthesis. (author)

  9. Tactical nuclear studies: a more comprehensive approach

    International Nuclear Information System (INIS)

    Blumenthal, D.; Kooshian, C.; Reinhardt, G.; Staehle, G.

    1975-01-01

    A matrix scheme for evaluating complex tactical nuclear systems is proposed. Advantages resulting from consideration of system characteristics in peace and crisis as well as war include avoidance of scenario-dependent conclusions, ease of maintaining awareness of relationships between immediate concerns and the complex whole, and highlighting of areas or concerns that have been overlooked or neglected

  10. Nuclear Waste Management under Approaching Disaster

    NARCIS (Netherlands)

    Ilg, Patrick; Gabbert, Silke; Weikard, Hans Peter

    2017-01-01

    This article compares different strategies for handling low- and medium-level nuclear waste buried in a retired potassium mine in Germany (Asse II) that faces significant risk of uncontrollable brine intrusion and, hence, long-term groundwater contamination. We survey the policy process that has

  11. Nuclear safety: an international approach: the convention on nuclear safety

    International Nuclear Information System (INIS)

    Rosen, M.

    1994-01-01

    This paper is a general presentation of the IAEA Convention on Nuclear Safety which has already be signed by 50 countries and which is the first legal instrument that directly addresses the safety of nuclear power plants worldwide. The paper gives a review of its development and some key provisions for a better understanding of how this agreement will operate in practice. The Convention consists of an introductory preamble and four chapters consisting of 35 articles dealing with: the principal objectives, definitions and scope of application; the various obligations (general provisions, legislation, responsibility and regulation, general safety considerations taking into account: the financial and human resources, the human factors, the quality assurance, the assessment and verification of safety, the radiation protection and the emergency preparedness; the safety of installations: sitting, design and construction, operation); the periodic meetings of the contracting parties to review national reports on the measures taken to implement each of the obligations, and the final clauses and other judicial provisions common to international agreements. (J.S.). 1 append

  12. RPA correlations and nuclear densities in relativistic mean field approach

    International Nuclear Information System (INIS)

    Van Giai, N.; Liang, H.Z.; Meng, J.

    2007-02-01

    The relativistic mean field approach (RMF) is well known for describing accurately binding energies and nucleon distributions in atomic nuclei throughout the nuclear chart. The random phase approximation (RPA) built on top of the RMF is also a good framework for the study of nuclear excitations. Here, we examine the consequences of long range correlations brought about by the RPA on the neutron and proton densities as given by the RMF approach. (authors)

  13. Nuclear structure research. Annual progress report

    International Nuclear Information System (INIS)

    Wood, J.L.

    1996-01-01

    The most significant development this year has been the realization that EO transition strength is a fundamental manifestation of nuclear mean-square charge radius differences. Thus, EO transitions provide a fundamental signature for shape coexistence in nuclei. In this sense, EO transitions are second only to E2 transitions for signaling (quadrupole) shapes in nuclei and do so when shape differences occur. A major effort has been devoted to the review of EO transitions in nuclei. Experiments have been carried out or are scheduled at: ATLAS/FMA (α decay of very neutron-deficient Bi isotopes); MSU/NSCL (β decay of 56 Cu); and HRIBF/RMS (commissioning of tape collector, internal conversion/internal-pair spectrometer; β decay of 58 Cu). A considerable effort has been devoted to planning the nuclear structure physics that will be pursued using HRIBF. Theoretical investigations have continued in collaboration with Prof. K. Heyde, Prof. D.J. Rowe, Prof. J.O. Rasmussen, and Prof. P.B. Semmes. These studies focus on shape coexistence and particle-core coupling

  14. Understanding the proton radius puzzle: Nuclear structure effects in light muonic atoms

    Directory of Open Access Journals (Sweden)

    Ji Chen

    2016-01-01

    Full Text Available We present calculations of nuclear structure effects to the Lamb shift in light muonic atoms. We adopt a modern ab-initio approach by combining state-of-the-art nuclear potentials with the hyperspherical harmonics method. Our calculations are instrumental to the determination of nuclear charge radii in the Lamb shift measurements, which will shed light on the proton radius puzzle.

  15. Role of pn-pairs interaction in nuclear structure

    International Nuclear Information System (INIS)

    Nie, G.K.

    2004-01-01

    Full text: The nuclear structure approach is based on theory of interaction of pn-pairs with suggestion that proton and neutron of one pair have the same nuclear potential. In frame of this model nuclei with N=Z were analyzed in [1,2]. In [1] radii of position of last proton were estimated on difference of proton and neutron separation energies. In [2] a phenomenological formula for calculation of binding energy of alpha- cluster nuclei was found. Present work is devoted to developing the nuclear structure model. Coulomb energy of nuclei with N=Z has been found from sum of differences of separation energies of protons and neutrons belonging to one pairs. From analysis of nuclei 12 C and 16 O the value of energy of Coulomb repulsion between 2 α -clusters has been estimated equal to ε C α =1.925 MeV [3], which means that value of nuclear (meson) interaction between 2 α -clusters is expected to be ε m αα = ε cov αα + ε C α =4.350 MeV. From suggestion that energy of long range Coulomb repulsion is compensated by surface tension energy an equation has been found to calculate radius of position of last proton on value of Z. Charge radii of nuclei from 58 Ni to 208 Bi and further have been calculated with difference from experimental ones in several hundredths of fm. In the approach binding energy of excess neutrons stays beyond the consideration. Therefore, in calculation of binding energies of nuclei the experimental values of separation energies of excess neutrons are used. There is a good agreement between calculated values of binding energies of some isotopes of all known elements as well as separation energies of alpha particle and deuteron and experimental data. The difference from experimental binding energy in most of the cases is about 0.5% and less

  16. Zone approaches to international safeguards of a nuclear fuel cycle

    International Nuclear Information System (INIS)

    Fishbone, L.G.; Higinbotham, W.A.

    1986-01-01

    At present the IAEA designs its safeguards approach with regard to each type of nuclear facility so that the safeguards activities and effort are essentially the same for a given type and size of nuclear facility wherever it may be located. Conclusions regarding a state are derived by combining the results of safeguards verifications for the individual facilities within it. We have examined safeguards approaches for a state nuclear fuel cycle that take into account the existence of all of the nuclear facilities in the state. We have focussed on the fresh-fuel zone of an advanced nuclear fuel cycle, the several facilities of which use or process low-enriched uranium. At one extreme, flows and inventories would be verified at each material balance area. At the other extreme, the flows into and out of the zone and the inventory of the whole zone would be verified. The intention is to develop an approach which will make it possible to compare the technical effectiveness and the inspection effort for the facility-oriented approach, for the zone approach and for some reasonable intermediate safeguards approaches. Technical effectiveness, in these cases, means an estimate of the assurance that all nuclear material has been accounted for

  17. Compilations and evaluations of nuclear structure and decay data

    International Nuclear Information System (INIS)

    Lorenz, A.

    1977-03-01

    This is the second issue of a report series on published and to-be-published compilations and evaluations of nuclear structure and decay (NSD) data. This compilation of compilations and evaluations is designed to keep the nuclear scientific community informed of the availability of compiled or evaluated NSD data, and contains references to laboratory reports, journal articles and books containing selected compilations and evaluations. It excludes references to ''mass-chain'' evaluations normally published in the ''Nuclear Data Sheets'' and ''Nuclear Physics''. The material contained in this compilation is sorted according to eight subject categories: general compilations; basic isotopic properties; nuclear structure properties; nuclear decay processes; half-lives, energies and spectra; nuclear decay processes: gamma-rays; nuclear decay processes: fission products; nuclear decay processes: (others); atomic processes

  18. Nuclear structure physics at RI beam factory

    International Nuclear Information System (INIS)

    Otsuka, Takaharu

    1998-01-01

    The nuclear structure physics is becoming extremely interesting owing to recent development of RI beam factories. Among various interesting developments in this field, I will focus upon two subjects. One is the breaking of the usual magic numbers in unstable nuclei, and the other is the invention of a new method for quantum many-body problems: Quantum Monte Carlo diagonalization method (QMCD). For the first subject, I will discuss the vanishing of N=8 and 20 magic numbers in 11 Li and 32 Mg, respectively. For the latter, I will present brief description of the theory and results of some applications including the one to 64 Ge, a proton-rich unstable nucleus. (author)

  19. The TRIUMF nuclear structure program and TIGRESS

    Science.gov (United States)

    Garrett, P. E.; Andreyev, A.; Austin, R. A. E.; Ball, G. C.; Bandyopadhyay, D.; Becker, J. A.; Boston, A. J.; Boston, H. C.; Chakrawarthy, R. S.; Churchman, R.; Cline, D.; Cooper, R. J.; Cross, D.; Dashdorj, D.; Demand, G. A.; Dimmock, M. R.; Drake, T.; Finlay, P.; Gagnon, K.; Gallant, A. T.; Green, K. L.; Grint, A. N.; Grinyer, G. F.; Hackman, G.; Harkness, L. J.; Hayes, A. B.; Kanungo, R.; Kulp, W. D.; Leach, K. G.; Lee, G.; Leslie, J. R.; Maharaj, R.; Martin, J.-P.; Mattoon, C.; Mills, W. J.; Morton, A. C.; Nelson, L.; Newman, O.; Nolan, P. J.; Padilla-Rodal, E.; Pearson, C. J.; Phillips, A. A.; Porter-Peden, M.; Ressler, J. J.; Ruiz, C.; Sarazin, F.; Schumaker, M. A.; Scraggs, D. P.; Strange, M. D.; Subramanian, M.; Svensson, C. E.; Waddington, J. C.; Wan, J.; Whitbeck, A.; Williams, S. J.; Wood, J. L.; Wong, J. C.; Wu, C. Y.; Zganjar, E. F.

    2007-08-01

    The isotope separator and accelerator (ISAC) facility located at the TRIUMF laboratory in Vancouver, Canada, is one of the world's most advanced isotope separator on-line-type radioactive ion beam facilities. An extensive γ-ray spectroscopy programme at ISAC is centred around two major research facilities: (i) the 8π γ-ray spectrometer for β-delayed γ-ray spectroscopy experiments with the low-energy beams from ISAC-I, and (ii) the next generation TRIUMF-ISAC gamma-ray escape suppressed spectrometer (TIGRESS) for in-beam experiments with the accelerated radioactive-ion beams. An overview of these facilities and recent results from the diverse programme of nuclear structure and fundamental interaction studies they support is presented.

  20. Aging of nuclear safety related concrete structures

    International Nuclear Information System (INIS)

    Cerny, R.; Vydra, V.; Toman, J.; Vodak, F.

    1994-01-01

    An analysis of aging processes in nuclear-safety-related concrete structures (NSRCS) is presented. The major environmental stressor and aging factors affecting the performance of NSRCS are summarized, as are drying and plastic shrinkage, expansion of water during the freeze-thaw cycle, water passing through cracks dissolving or leaching the soluble calcium hydroxide, attack of acid rain and ground water, chemical reactions between particular aggregates and the alkaline solution within cement paste, reaction of calcium hydroxide in cement paste hydration products with atmospheric carbon dioxide, and physical radiation effects of neutrons and gamma radiation. The current methods for aging management in NSRCS are analyzed and evaluated. A new treatment is presented for the monitoring, evaluation and prediction of aging processes, consisting in a combination of theoretical methods, laboratory experiments, in-situ measurements and numerical simulations. 24 refs

  1. Alternative Contracting and Ownership Approaches for New Nuclear Power Plants

    International Nuclear Information System (INIS)

    2014-09-01

    This publication examines alternative contracting and ownership approaches for the development, construction, commissioning, operation, and decommissioning of new nuclear power plants. It identifies issues faced by IAEA Member States considering the applicability of such approaches to their respective national programmes. Two new approaches to nuclear project development are analysed. These are, firstly, the Build-Own-Operate (BOO)/Build-Own-Operate-Transfer (BOO(T)) and, secondly, Regional approaches. The information includes practical examples, current practices, and case studies, and reflects the presentations and discussions that took place in a series of IAEA meetings on this topic

  2. International conference: Features of nuclear excitation states and mechanisms of nuclear reactions. 51. Meeting on nuclear spectroscopy and nuclear structure. The book of abstracts

    International Nuclear Information System (INIS)

    2001-01-01

    Results of the LI Meeting on Nuclear Spectroscopy and Nuclear Structure are presented. Properties of excited states of atomic nuclei and mechanisms of nuclear reactions are considered. Studies on the theory of nucleus and fundamental interactions pertinent to experimental study of nuclei properties and mechanisms of nuclear reactions, technique and methods of experiment, application of nuclear-physical method, are provided [ru

  3. Nuclear Reaction and Structure Databases of the National Nuclear Data Center

    International Nuclear Information System (INIS)

    Pritychenko, B.; Arcilla, R.; Herman, M. W.; Oblozinsky, P.; Rochman, D.; Sonzogni, A. A.; Tuli, J. K.; Winchell, D. F.

    2006-01-01

    The National Nuclear Data Center (NNDC) collects, evaluates, and disseminates nuclear physics data for basic research and applied nuclear technologies. In 2004, the NNDC migrated all databases into modern relational database software, installed new generation of Linux servers and developed new Java-based Web service. This nuclear database development means much faster, more flexible and more convenient service to all users in the United States. These nuclear reaction and structure database developments as well as related Web services are briefly described

  4. Nuclear enhanced power corrections to DIS structure functions

    OpenAIRE

    Guo, Xiaofeng; Qiu, Jianwei; Zhu, Wei

    2001-01-01

    We calculate nuclear enhanced power corrections to structure functions measured in deeply inelastic lepton-nucleus scattering in Quantum Chromodynamics (QCD). We find that the nuclear medium enhanced power corrections at order of $O(\\alpha_s/Q^2)$ enhance the longitudinal structure function $F_L$, and suppress the transverse structure function $F_1$. We demonstrate that strong nuclear effects in $\\sigma_A/\\sigma_D$ and $R_A/R_D$, recently observed by HERMES Collaboration, can be explained in ...

  5. Nuclear Safety and Radiation Protection in Europe - a common approach

    International Nuclear Information System (INIS)

    McGarry, Ann

    2010-01-01

    In Europe, the European Union has adopted directives and implemented other measures which form the basis of a common approach to nuclear safety and radiation protection across all Member States. In particular, there are EU directives setting out radiation protection standards and establishing a Community framework for the nuclear safety of nuclear installations. There are also arrangements in place to provide for an effective response to nuclear emergencies and to facilitate high quality research into nuclear and radiation protection related topics. Inevitably the stage of development in each area is somewhat different, but generally progress is ongoing in each area. From the point of view of a small country like Ireland, the development of common standards and arrangements across Europe is beneficial as they are based on the best available knowledge and expertise; they provide for greater transparency; they facilitate public confidence and make best use of the available resources. However, there are some areas in which common approaches could be further advanced. For example, the medical exposure of patients is increasingly of concern across Europe and the further development of common approaches in this area would be helpful. It would also be useful to develop a more integrated approach to nuclear safety and radiation protection regulation and to better integrate nuclear and radiation issues with other public health and environment concerns. (author)

  6. Nuclear security assessment with Markov model approach

    International Nuclear Information System (INIS)

    Suzuki, Mitsutoshi; Terao, Norichika

    2013-01-01

    Nuclear security risk assessment with the Markov model based on random event is performed to explore evaluation methodology for physical protection in nuclear facilities. Because the security incidences are initiated by malicious and intentional acts, expert judgment and Bayes updating are used to estimate scenario and initiation likelihood, and it is assumed that the Markov model derived from stochastic process can be applied to incidence sequence. Both an unauthorized intrusion as Design Based Threat (DBT) and a stand-off attack as beyond-DBT are assumed to hypothetical facilities, and performance of physical protection and mitigation and minimization of consequence are investigated to develop the assessment methodology in a semi-quantitative manner. It is shown that cooperation between facility operator and security authority is important to respond to the beyond-DBT incidence. (author)

  7. Strategic planning approach to nuclear training

    International Nuclear Information System (INIS)

    Mills, R.J.

    1985-01-01

    Detroit Edison Company's Nuclear Training group used an organizational planning process that yielded significant results in 1984. At the heart of the process was a concept called the Driving Force which served as the basis for the development of goals, objectives, and action plants. A key ingredient of the success of the planning process was the total, voluntary participation by all members of the organization

  8. Mathematical analysis of compressive/tensile molecular and nuclear structures

    Science.gov (United States)

    Wang, Dayu

    Mathematical analysis in chemistry is a fascinating and critical tool to explain experimental observations. In this dissertation, mathematical methods to present chemical bonding and other structures for many-particle systems are discussed at different levels (molecular, atomic, and nuclear). First, the tetrahedral geometry of single, double, or triple carbon-carbon bonds gives an unsatisfying demonstration of bond lengths, compared to experimental trends. To correct this, Platonic solids and Archimedean solids were evaluated as atoms in covalent carbon or nitrogen bond systems in order to find the best solids for geometric fitting. Pentagonal solids, e.g. the dodecahedron and icosidodecahedron, give the best fit with experimental bond lengths; an ideal pyramidal solid which models covalent bonds was also generated. Second, the macroscopic compression/tension architectural approach was applied to forces at the molecular level, considering atomic interactions as compressive (repulsive) and tensile (attractive) forces. Two particle interactions were considered, followed by a model of the dihydrogen molecule (H2; two protons and two electrons). Dihydrogen was evaluated as two different types of compression/tension structures: a coaxial spring model and a ring model. Using similar methods, covalent diatomic molecules (made up of C, N, O, or F) were evaluated. Finally, the compression/tension model was extended to the nuclear level, based on the observation that nuclei with certain numbers of protons/neutrons (magic numbers) have extra stability compared to other nucleon ratios. A hollow spherical model was developed that combines elements of the classic nuclear shell model and liquid drop model. Nuclear structure and the trend of the "island of stability" for the current and extended periodic table were studied.

  9. Nuclear quality assurance operating philosophy: A quality-oriented approach

    International Nuclear Information System (INIS)

    Corcoran, W.R.; Geiger, J.E.; Heibel, R.E.; Cotton, J.B.; Sabol, A.R.

    1992-01-01

    Quality assurance programs have been part of the nuclear utility management process since the publication of the draft of 10CFR50 Appendix B in the late 1960s. The unwritten operational philosophy of nuclear quality assurance organizations focused on compliance with federal regulations. Adverse experiences, including operational events and extended shutdowns, prompted the gradual adoption of isolated practices extending beyond compliance orientation. These practices have an orientation that accommodates a definition of quality, a perspective of the role of nuclear quality assurance organizations in the overall concept of defense-in-depth, a definition of the segments of the nuclear quality assurance mission, and recent advances in the understanding of self-assessment. Observation of these practices at various nuclear utilities resulted in a syntheses of practices and approaches into a coherent quality-oriented nuclear quality assurance operating philosophy that is not totally adopted at any one utility

  10. Creation of Nuclear Data Base up to 150 MeV and corresponding scaling approach for ADS

    International Nuclear Information System (INIS)

    Shubin, Y. N.; Gai, E. V.; Ignatyuk, A. V.; Lunev, V. P.

    1997-01-01

    The status of nuclear data in the energy region up to 150 MeV is outlined. The specific physical reasons for the detailed investigations of nuclear structure effects is noted out. The necessity of the development of Nuclear Data System for ADS is stressed. The program for the creation of nuclear data base up to 150 MeV and corresponding scaling approach for ADS is proposed. (Author) 14 refs

  11. NPAR [Nuclear Plant Aging Research] approach to managing aging in nuclear power plants

    International Nuclear Information System (INIS)

    Christensen, J.A.

    1989-01-01

    Over the past 5 years, the Nuclear Plant Aging Research program (NPAR) has been devoted to developing technical understanding of the time dependent processes that, through deterioration of components, systems, or structures (C/S/S), can reduce safety margins in nuclear power plants. A major and necessary element of the program involves the application of this basic knowledge in defining functional approaches to managing aging by anticipating and mitigating important deterioration processes. Fundamental understanding and characterization of aging processes are being accomplished through NPAR-sponsored research projects, review and analysis of aging related information, integration of NPAR results with those from industry and other aging studies, and interfacing of all of these with the existing body of codes, standards and regulatory instruments that convey aging-related guidance to NPP licensees. Products of these efforts are applied to structuring and providing aging-related technical recommendations in forms that are useful in: (1) developing and implementing good aging management practices, (2) developing regulatory guidance and requirements for understanding and managing aging during normal plant operations and in support of license renewal, and (3) planning and implementing other regulatory actions and initiatives in which aging-related concerns have a bearing on scope or priority

  12. Aging of concrete structures in nuclear power plants

    International Nuclear Information System (INIS)

    Naus, D.J.; Pland, C.B.; Arndt, E.G.

    1991-01-01

    The Structural Aging (SAG) Program, sponsored by the US Nuclear Regulatory Commission (USNRC) and conducted by the Oak Ridge National Laboratory (ORNL), had the overall objective of providing the USNRC with an improved basis for evaluating nuclear power plant structures for continued service. The program consists of three technical tasks: materials property data base, structural component assessment/repair technology, and quantitative methodology for continued service determinations. Major accomplishments under the SAG Program during the first two years of its planned five-year duration have included: development of a Structural Materials Information Center and formulation of a Structural Aging Assessment Methodology for Concrete Structures in Nuclear Power Plants. 9 refs

  13. [Studies of nuclear structure using neutrons and charged particles

    International Nuclear Information System (INIS)

    1989-01-01

    This report contains brief discussions on nuclear research done at Triangle Universities Nuclear Laboratory. The major categories covered are: Fundamental symmetries in the nucleus; Dynamics in very light nuclei; D states in light nuclei; Nucleon-nucleus interactions; Nuclear structure and reactions; and Instrumentation and development

  14. Nuclear Cartography: Patterns in Binding Energies and Subatomic Structure

    Science.gov (United States)

    Simpson, E. C.; Shelley, M.

    2017-01-01

    Nuclear masses and binding energies are some of the first nuclear properties met in high school physics, and can be used to introduce radioactive decays, fusion, and fission. With relatively little extension, they can also illustrate fundamental concepts in nuclear physics, such as shell structure and pairing, and to discuss how the elements…

  15. Two-level convolution formula for nuclear structure function

    Science.gov (United States)

    Ma, Boqiang

    1990-05-01

    A two-level convolution formula for the nuclear structure function is derived in considering the nucleus as a composite system of baryon-mesons which are also composite systems of quark-gluons again. The results show that the European Muon Colaboration effect can not be explained by the nuclear effects as nucleon Fermi motion and nuclear binding contributions.

  16. Two-level convolution formula for nuclear structure function

    International Nuclear Information System (INIS)

    Ma Boqiang

    1990-01-01

    A two-level convolution formula for the nuclear structure function is derived in considering the nucleus as a composite system of baryon-mesons which are also composite systems of quark-gluons again. The results show that the European Muon Colaboration effect can not be explained by the nuclear effects as nucleon Fermi motion and nuclear binding contributions

  17. Approaches to characterization of nuclear material for establishment of nuclear forensics

    International Nuclear Information System (INIS)

    Okazaki, Hiro; Sumi, Mika; Sato, Mitsuhiro; Kayano, Masashi; Kageyama, Tomio; Shinohara, Nobuo; Martinez, Patrick; Xu, Ning; Thomas, Mariam; Porterfield, Donivan; Colletti, Lisa; Schwartz, Dan; Tandon, Lav

    2014-01-01

    The Plutonium Fuel Development Center (PFDC) of Japan Atomic Energy Agency has been analyzing isotopic compositions and contents of plutonium and uranium as well as trace impurities and physics in the nuclear fuel from MOX fuel fabrication process for accountancy and process control purpose. These analytical techniques are also effective for nuclear forensics to identify such as source, history, and route of the material by determining a composition and characterization of nuclear material. Therefore, PFDC cooperates with Los Alamos National Laboratory which has broad experience and established measurement skill for nuclear forensics, and evaluates the each method, procedure and analytical data toward R and D of characterizing a nuclear material for forensic purposes. This paper describes the approaches to develop characterization techniques of nuclear material for nuclear forensics purposes at PFDC. (author)

  18. Nuclear utility structure. Use of nuclear service companies

    International Nuclear Information System (INIS)

    Ring, L.E.

    1980-01-01

    The feasibility of utilities incorporating service companies to construct and maintain nuclear power plants is analyzed. Responsibilities of the service companies and the public opinion of the concept are discussed

  19. Exotic nuclei: another aspect of nuclear structure

    International Nuclear Information System (INIS)

    Dobaczewski, J.; Blumenfeld, Y.; Flocard, H.; Garcia Borge, M.J.; Nowacki, F.; Rombouts, S.; Theisen, Ch.; Marques, F.M.; Lacroix, D.; Dessagne, P.; Gaeggeler, H.

    2002-01-01

    This document gathers the lectures made at the Joliot Curie international summer school in 2002 whose theme that year was exotic nuclei. There were 11 contributions whose titles are: 1) interactions, symmetry breaking and effective fields from quarks to nuclei; 2) status and perspectives for the study of exotic nuclei: experimental aspects; 3) the pairing interaction and the N = Z nuclei; 4) borders of stability region and exotic decays; 5) shell structure of nuclei: from stability to decay; 6) variational approach of system with a few nucleons; 7) from heavy to super-heavy nuclei; 8) halos, molecules and multi-neutrons; 9) macroscopic approaches for fusion reactions; 10) beta decay: a tool for spectroscopy; 11) the gas phase chemistry of super-heavy elements

  20. Tornado-resistance design for the nuclear safety structure of Qinshan Nuclear Power Plant

    International Nuclear Information System (INIS)

    Xia Zufeng.

    1987-01-01

    The primary design consideration of anti-tornado of the nuclear safety structure of Qinshan Nuclear Power Plant is briefly presented. It mainly includes estimating the probability of tornado arising in the site, ascertaining the design requirments of the anti-tornado structures and deciding the tornado load acted on the structures

  1. Nuclear structure and radioactive decay resources at the US National Nuclear Data Center

    International Nuclear Information System (INIS)

    Sonzogni, A.A.; Burrows, T.W.; Pritychenko, B.; Tuli, J.K.; Winchell, D.F.

    2008-01-01

    The National Nuclear Data Center has a long tradition of evaluating nuclear structure and decay data as well as offering tools to assist in nuclear science research and applications. With these tools, users can obtain recommended values for nuclear structure and radioactive decay observables as well as links to the relevant articles. The main databases or tools are ENSDF, NSR, NuDat and the new Endf decay data library. The Evaluated Nuclear Structure Data File (ENSDF) stores recommended nuclear structure and decay data for all nuclei. ENSDF deals with properties such as: -) nuclear level energies, spin and parity, half-life and decay modes, -) nuclear radiation energy and intensity for different types, -) nuclear decay modes and their probabilities. The Nuclear Science References (NSR) is a bibliographic database containing nearly 200.000 nuclear sciences articles indexed according to content. About 4000 are added each year covering 80 journals as well as conference proceedings and laboratory reports. NuDat is a software product with 2 main goals, to present nuclear structure and decay information from ENSDF in a user-friendly way and to allow users to execute complex search operations in the wealth of data contained in ENSDF. The recently released Endf-B7.0 contains a decay data sub-library which has been derived from ENSDF. The way all these databases and tools have been offered to the public has undergone a drastic improvement due to advancements in information technology

  2. EDF's nuclear safety approach for pressurized water reactors

    International Nuclear Information System (INIS)

    Tanguy, P.; Kus, J.P.

    1987-01-01

    The realization of the important French program fifty-four units equipped with pressurized water reactors in service, or under construction-had led to the progressive implementation of an original approach in the field of nuclear safety. From an initial core consisting of the deterministic approach to safety devised on the other side of the Atlantic, which has been entirely preserved and often specified, further extras have been added which overall increase the level of safety of the installations, without any particular complications. This paper aims at presenting succinctly the outcome of the deliberation, which constitutes now the approach adopted by Electricite de France for the safety of nuclear units equipped with pressurized water reactors. This approach is explained in more detail in EDF's 'with book' on nuclear safety. (author)

  3. Integrated approach to economical, reliable, safe nuclear power production

    International Nuclear Information System (INIS)

    1982-06-01

    An Integrated Approach to Economical, Reliable, Safe Nuclear Power Production is the latest evolution of a concept which originated with the Defense-in-Depth philosophy of the nuclear industry. As Defense-in-Depth provided a framework for viewing physical barriers and equipment redundancy, the Integrated Approach gives a framework for viewing nuclear power production in terms of functions and institutions. In the Integrated Approach, four plant Goals are defined (Normal Operation, Core and Plant Protection, Containment Integrity and Emergency Preparedness) with the attendant Functional and Institutional Classifications that support them. The Integrated Approach provides a systematic perspective that combines the economic objective of reliable power production with the safety objective of consistent, controlled plant operation

  4. EDF'S nuclear safety approach for pressurized water reactors

    International Nuclear Information System (INIS)

    Tanguy, P.; Kus, J.P.

    1988-01-01

    The realization of the important French program fifty-four units equipped with pressurized water reactors in service, or under construction - had led to the progressive implementation of an original approach in the field of nuclear safety. From an initial core consisting of the deterministic approach to safety devised on the other side of the Atlantic, which has been entirely preserved and often specified, further extras have been added which overall increase the level of safety of the installations, without any particular complications. This paper aims at presenting succinctly the outcome of the deliberation, which constitutes now the approach adopted by Electricite de France for the safety of nuclear units equipped with pressurized water reactors. This approach is explained in more detail in EDF's white book on nuclear safety

  5. Nuclear structure and nuclear reaction aspects of Faessler and Greiner's rotation-vibration coupling theory

    International Nuclear Information System (INIS)

    Aspelund, O.

    In the nuclear structure part, the foundations of Faessler and Greiner's rotation-vibration coupling theory are reviewed, whereafter an alternative derivation of Faessler and Greiner's Hamiltonian is presented. A non-spherical quadrupole phonon number N is defined and used in the matrix elements reported for odd-even/even-odd nuclei. These matrix elements are shown to evince oblate-prolate effects that can be exploited for assessing the signs of quadrupole deformations. In the nuclear reaction part, the wave functions emerging from the structure part are applied in a complete and consistent description of elastic and inelastic particle scattering, one-nucleon transfer, and particle/γ-ray angular correlations. The intentions are to demonstrate that anomolous angular distributions and 1=2 j-effects observed in one-nucleon transfer are interrelated phenomena, that can be satisfactorily explained in terms of the elementary vibrational excitation modes inherent in Faessler and Greiner's theory. The latter is regarded as a non-spherical approach to the theory of the quadrupole component of the nuclear potential energy surface. (Auth.)

  6. Linking Nuclear Reactions and Nuclear Structure on the Way to the Drip Line

    Science.gov (United States)

    Dickhoff, Willem

    2012-10-01

    The present understanding of the role of short- and long-range physics in determining proton properties near the Fermi energy for stable closed-shell nuclei has relied on data from the (e,e'p) reaction. Hadronic tools to extract such spectroscopic information have been hampered by the lack of a consistent reaction description that provides unambiguous and undisputed results. The dispersive optical model (DOM), originally conceived by Claude Mahaux, provides a unified description of both elastic nucleon scattering and structure information related to single-particle properties below the Fermi energy. The DOM provides the starting point to provide a framework in which nuclear reactions and structure data can be analyzed consistently to provide unambiguous spectroscopic information including its asymmetry dependence. Recent extensions of this approach include the treatment of non-locality to describe experimental data like the nuclear charge density based on information of the spectral density below the Fermi energy, the application of the DOM ingredients to the description of transfer reactions, a comparison of the microscopic content of the nucleon self-energy based on Faddeev-RPA calculations emphasizing long-range correlations with DOM potentials, and a study of the relation between a self-energy which includes the effect of short-range correlations with DOM potentials. The most recent Dom implementation currently in progress abandons the constraint of local potentials completely to allow an accurate description of various properties of the nuclear ground state.

  7. Investigations of nuclear structure and nuclear reactions induced by complex projectiles

    International Nuclear Information System (INIS)

    Sarantites, D.G.

    1990-01-01

    This report discusses research in the following areas: nuclear structure; fusion reactions near and below the barrier; incomplete fusion and fragmentation reactions; and instrumentation and analysis. (LSP)

  8. Seismic margin analysis technique for nuclear power plant structures

    International Nuclear Information System (INIS)

    Seo, Jeong Moon; Choi, In Kil

    2001-04-01

    In general, the Seismic Probabilistic Risk Assessment (SPRA) and the Seismic Margin Assessment(SAM) are used for the evaluation of realistic seismic capacity of nuclear power plant structures. Seismic PRA is a systematic process to evaluate the seismic safety of nuclear power plant. In our country, SPRA has been used to perform the probabilistic safety assessment for the earthquake event. SMA is a simple and cost effective manner to quantify the seismic margin of individual structural elements. This study was performed to improve the reliability of SMA results and to confirm the assessment procedure. To achieve this goal, review for the current status of the techniques and procedures was performed. Two methodologies, CDFM (Conservative Deterministic Failure Margin) sponsored by NRC and FA (Fragility Analysis) sponsored by EPRI, were developed for the seismic margin review of NPP structures. FA method was originally developed for Seismic PRA. CDFM approach is more amenable to use by experienced design engineers including utility staff design engineers. In this study, detailed review on the procedures of CDFM and FA methodology was performed

  9. Effects of structural nonlinearity and foundation sliding on probabilistic response of a nuclear structure

    International Nuclear Information System (INIS)

    Hashemi, Alidad; Elkhoraibi, Tarek; Ostadan, Farhang

    2015-01-01

    Highlights: • Probabilistic SSI analysis including structural nonlinearity and sliding are shown. • Analysis is done for a soil and a rock site and probabilistic demands are obtained. • Structural drift ratios and In-structure response spectra are evaluated. • Structural nonlinearity significantly impacts local demands in the structure. • Sliding generally reduces seismic demands and can be accommodated in design. - Abstract: This paper examines the effects of structural nonlinearity and foundation sliding on the results of probabilistic structural analysis of a typical nuclear structure where structural nonlinearity, foundation sliding and soil-structure interaction (SSI) are explicitly included. The evaluation is carried out for a soil and a rock site at 10"4, 10"5, and 10"6 year return periods (1E − 4, 1E − 5, and 1E − 6 hazard levels, respectively). The input motions at each considered hazard level are deaggregated into low frequency (LF) and high frequency (HF) motions and a sample size of 30 is used for uncertainty propagation. The statistical distribution of structural responses including story drifts, and in-structure response spectra (ISRS) as well as foundation sliding displacements are examined. The probabilistic implementation of explicit structural nonlinearity and foundation sliding in combination with the SSI effects are demonstrated using nonlinear response history analysis (RHA) of the structure with the foundation motions obtained from elastic SSI analyses, which are applied as input to fixed-base inelastic analyses. This approach quantifies the expected structural nonlinearity and sliding for the particular structural configuration and provides a robust analytical basis for the estimation of the probabilistic distribution of selected demands parameters both at the design level and beyond design level seismic input. For the subject structure, the inclusion of foundation sliding in the analysis is found to have reduced both

  10. New nuclear structure data beyond 136Sn

    Directory of Open Access Journals (Sweden)

    Lozeva Radomira

    2018-01-01

    Full Text Available Exotic nuclei beyond the 132Sn double shell-closure are influenced by both the Sn superfluity and the evolving collectivity only few nucleons away. Toward even more neutron-rich nuclei, especially at intermediate mass number, the interplay between single-particle and collective particle-hole excitations competes. In some cases with the extreme addition of neutrons also other effects as the formation of neutron skin, stabilization as sub-shell gaps or orbital crossings may be expected. The knowledge of nuclear ingredients is especially interesting beyond 132Sn and little is known on how the excitation modes develop with the addition of both protons and neutrons and for example systematic prompt and decay studies can be such very sensitive probe. Recently, we have approached this region of nuclei in several experimental measurements following 238U projectile fission on 9Be and n-induced fission on 241Pu and 235U. Consistent data analysis allows to access various spins and excitation energies and provide new input to theory. Examples from these studies on several nuclei in the A~140 region were presented during the conference together with the possible interpretation of the new data. Here, we will illustrate one example on 136I using two complementary data sets.

  11. New nuclear structure data beyond 136Sn

    Science.gov (United States)

    Lozeva, Radomira

    2018-05-01

    Exotic nuclei beyond the 132Sn double shell-closure are influenced by both the Sn superfluity and the evolving collectivity only few nucleons away. Toward even more neutron-rich nuclei, especially at intermediate mass number, the interplay between single-particle and collective particle-hole excitations competes. In some cases with the extreme addition of neutrons also other effects as the formation of neutron skin, stabilization as sub-shell gaps or orbital crossings may be expected. The knowledge of nuclear ingredients is especially interesting beyond 132Sn and little is known on how the excitation modes develop with the addition of both protons and neutrons and for example systematic prompt and decay studies can be such very sensitive probe. Recently, we have approached this region of nuclei in several experimental measurements following 238U projectile fission on 9Be and n-induced fission on 241Pu and 235U. Consistent data analysis allows to access various spins and excitation energies and provide new input to theory. Examples from these studies on several nuclei in the A 140 region were presented during the conference together with the possible interpretation of the new data. Here, we will illustrate one example on 136I using two complementary data sets.

  12. Nuclear fuel waste disposal. Canada's consultative approach

    Energy Technology Data Exchange (ETDEWEB)

    Hillier, J A.R.; Dixon, R S [AECL (Canada)

    1993-07-01

    Over the past two decades, society has increasingly demanded more public participation and public input into decision-making by governments. Development of the Canadian concept for deep geological disposal of used nuclear fuel has proceeded in a manner that has taken account of the requirements for social acceptability as well as technical excellence. As the agency responsible for development of the disposal concept, Atomic Energy of Canada Limited (AECL) has devoted considerable effort to consultation with the various publics that have an interest in the concept. This evolutionary interactive and consultative process, which has been underway for some 14 years, has attempted to keep the public informed of the technical development of the concept and to invite feedback. This paper describes the major elements of this evolutionary process, which will continue throughout the concept assessment and review process currently in progress. (author)

  13. Nuclear fuel waste disposal. Canada's consultative approach

    International Nuclear Information System (INIS)

    Hillier, J.A.R.; Dixon, R.S.

    1993-01-01

    Over the past two decades, society has increasingly demanded more public participation and public input into decision-making by governments. Development of the Canadian concept for deep geological disposal of used nuclear fuel has proceeded in a manner that has taken account of the requirements for social acceptability as well as technical excellence. As the agency responsible for development of the disposal concept, Atomic Energy of Canada Limited (AECL) has devoted considerable effort to consultation with the various publics that have an interest in the concept. This evolutionary interactive and consultative process, which has been underway for some 14 years, has attempted to keep the public informed of the technical development of the concept and to invite feedback. This paper describes the major elements of this evolutionary process, which will continue throughout the concept assessment and review process currently in progress. (author)

  14. Some highlights of the Daresbury nuclear structure programme

    International Nuclear Information System (INIS)

    Gelletly, W.

    1984-01-01

    The paper concerns the nuclear structure programme at the Daresbury laboratory, United Kingdom. A description is given of the Nuclear Structure Facility (NSF), along with its principal properties and design features. Some of the latest equipment used at the NSF is discussed, including the isotope separator, recoil separator, magnetic spectrometer and gamma-ray detectors. Uses of this equipment at the NSF to study the nuclear properties at high angular momentum and nuclei far from stability, are also described. (U.K.)

  15. Strategic disruption of nuclear pores structure, integrity and barrier for nuclear apoptosis.

    Science.gov (United States)

    Shahin, Victor

    2017-08-01

    Apoptosis is a programmed cell death playing key roles in physiology and pathophysiology of multi cellular organisms. Its nuclear manifestation requires transmission of the death signals across the nuclear pore complexes (NPCs). In strategic sequential steps apoptotic factors disrupt NPCs structure, integrity and barrier ultimately leading to nuclear breakdown. The present review reflects on these steps. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Modeling fabrication of nuclear components: An integrative approach

    Energy Technology Data Exchange (ETDEWEB)

    Hench, K.W.

    1996-08-01

    Reduction of the nuclear weapons stockpile and the general downsizing of the nuclear weapons complex has presented challenges for Los Alamos. One is to design an optimized fabrication facility to manufacture nuclear weapon primary components in an environment of intense regulation and shrinking budgets. This dissertation presents an integrative two-stage approach to modeling the casting operation for fabrication of nuclear weapon primary components. The first stage optimizes personnel radiation exposure for the casting operation layout by modeling the operation as a facility layout problem formulated as a quadratic assignment problem. The solution procedure uses an evolutionary heuristic technique. The best solutions to the layout problem are used as input to the second stage - a simulation model that assesses the impact of competing layouts on operational performance. The focus of the simulation model is to determine the layout that minimizes personnel radiation exposures and nuclear material movement, and maximizes the utilization of capacity for finished units.

  17. Proceedings of second national workshop on nuclear structure physics

    International Nuclear Information System (INIS)

    Chintalapudi, S.N.; Jain, A.K.

    1995-01-01

    The Second National Workshop on Nuclear Structure Physics was held at Calcutta during February 7-10 1995. The topics discussed have been quite broad based and covered many areas of nuclear structure physics and radiochemistry. Papers relevant to INIS are indexed separately

  18. Threedimensional imaging of organ structures by nuclear magnetic resonance

    International Nuclear Information System (INIS)

    Waters, W.; Smolorz, J.; Wellner, U.

    1985-01-01

    A simple method for threedimensional imaging of organ structures is presented. The method is based on a special acquisition mode in a nuclear resonance tomograph, exciting layers of 20 cm thickness at different angulations. The display is done by cinematography (which is usually used in nuclear cardiology) projecting the structures in a rotating movement. (orig.) [de

  19. Changes in Nuclear Structure During Wheat Endosperm Development

    NARCIS (Netherlands)

    Wegel, E.

    2005-01-01

    This thesis is an investigation into the structure of wheat endosperm nuclei starting with nuclear divisions and migration during syncytium formation followed by the development of nuclear shape and positioning of chromosome territories and ending with changes in subchromosomal structure during the

  20. Effective field theory approach to nuclear matter

    International Nuclear Information System (INIS)

    Saviankou, P.; Gruemmer, F.; Epelbaum, E.; Krewald, S.; Meissner, Ulf-G.

    2006-01-01

    Effective field theory provides a systematic approach to hardon physics and few-nucleon systems. It allows one to determine the effective two-, three-, and more-nucleon interactions which are consistent with each other. We present a project to derive bulk properties of nuclei from the effective nucleonic interactions

  1. Random matrices and chaos in nuclear physics: Nuclear structure

    International Nuclear Information System (INIS)

    Weidenmueller, H. A.; Mitchell, G. E.

    2009-01-01

    Evidence for the applicability of random-matrix theory to nuclear spectra is reviewed. In analogy to systems with few degrees of freedom, one speaks of chaos (more accurately, quantum chaos) in nuclei whenever random-matrix predictions are fulfilled. An introduction into the basic concepts of random-matrix theory is followed by a survey over the extant experimental information on spectral fluctuations, including a discussion of the violation of a symmetry or invariance property. Chaos in nuclear models is discussed for the spherical shell model, for the deformed shell model, and for the interacting boson model. Evidence for chaos also comes from random-matrix ensembles patterned after the shell model such as the embedded two-body ensemble, the two-body random ensemble, and the constrained ensembles. All this evidence points to the fact that chaos is a generic property of nuclear spectra, except for the ground-state regions of strongly deformed nuclei.

  2. Nuclear structure research. Annual progress report

    International Nuclear Information System (INIS)

    Wood, J.L.

    1995-01-01

    The most significant development this year has been the realization of a method for estimating EO transition strength in nuclei and the prediction that the de-excitation (draining) of superdeformed bands must take place, at least in some cases, by strong EO transitions. A considerable effort has been devoted to planning the nuclear structure physics that will be pursued using the Holifield Radioactive Ion Beam Facility (HRIBF) at Oak Ridge. A significant effort has been devoted to HRIBF target development. This is a critical component of the HRIBF project. Exhaustive literature searches have been made for a variety of target materials with emphasis on thermodynamic properties. Vapor pressure measurements have been carried out. Experimental data sets for radioactive decays in the very neutron-deficient Pr-Eu and Ir-Tl regions have been under analysis. These decay schemes constitute parts of student Ph.D. theses. These studies are aimed at elucidating the onset of deformation in the Pr-Sm region and the characteristics of shape coexistence in the Ir-Bi region. Further experiments on shape coexistence in the neutron-deficient Ir-Bi region are planned using α decay studies at the FMA at ATLAS. The first experiment is scheduled for later this year

  3. QED approach to the nuclear spin-spin coupling tensor

    International Nuclear Information System (INIS)

    Romero, Rodolfo H.; Aucar, Gustavo A.

    2002-01-01

    A quantum electrodynamical approach for the calculation of the nuclear spin-spin coupling tensor of nuclear-magnetic-resonance spectroscopy is given. Quantization of radiation fields within the molecule is considered and expressions for the magnetic field in the neighborhood of a nucleus are calculated. Using a generalization of time-dependent response theory, an effective spin-spin interaction is obtained from the coupling of nuclear magnetic moments to a virtual quantized magnetic field. The energy-dependent operators obtained reduce to usual classical-field expressions at suitable limits

  4. Nuclear power costs in the build, operate, transfer approach

    International Nuclear Information System (INIS)

    Aybers, M.N.; Sahin, B.

    1990-01-01

    The costs of nuclear power are discussed with special reference to the economic problems faced by developing countries, and the relative merit of a new accounting approach, viz., the build, operate, transfer contract model, which was proposed in Turkey for the Akkuyu nuclear power project, is illustrated. In this context, the general methodology of calculating nuclear power costs is summarized and a capital cost analysis for a 986 MW pressurized water reactor plant is given in terms of constant monetary units for the above contract model and the turnkey contract model. Adjustment of the costs taking into account regional conditions such as inflation and higher interest rates is also indicated. (orig.) [de

  5. Safety classification of nuclear power plant systems, structures and components

    International Nuclear Information System (INIS)

    1992-01-01

    The Safety Classification principles used for the systems, structures and components of a nuclear power plant are detailed in the guide. For classification, the nuclear power plant is divided into structural and operational units called systems. Every structure and component under control is included into some system. The Safety Classes are 1, 2 and 3 and the Class EYT (non-nuclear). Instructions how to assign each system, structure and component to an appropriate safety class are given in the guide. The guide applies to new nuclear power plants and to the safety classification of systems, structures and components designed for the refitting of old nuclear power plants. The classification principles and procedures applying to the classification document are also given

  6. European standards and approaches to EMC in nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Bardsley, D.J.; Dillingham, S.R.; McMinn, K. [AEA Technology, Dorset (United Kingdom)

    1995-04-01

    Electromagnetic Interference (EMI) arising from a wide range of sources can threaten nuclear power plant operation. The need for measures to mitigate its effects have long been recognised although there are difference in approaches worldwide. The US industry approaches the problem by comprehensive site surveys defining an envelope of emissions for the environmental whilst the UK nuclear industry defined many years ago generic levels which cover power station environments. Moves to standardisation within the European community have led to slight changes in UK approach, in particular how large systems can be tested. The tests undertaken on UK nuclear plant include tests for immunity to conducted as well as radiated interference. Similar tests are also performed elsewhere in Europe but are not, to the authors` knowledge, commonly undertaken in the USA. Currently work is proceeding on draft international standards under the auspices of the IEC.

  7. Nuclear data newsletter. No. 20. Nuclear structure and decay data network

    International Nuclear Information System (INIS)

    1994-11-01

    This special issue of the Nuclear Data Newsletter dated November 1994 gives information on the Nuclear Structure and Decay Data (NSDD) Network established in 1974 under the auspices of the IAEA and comprising 17 laboratories and universities in 10 countries. The procedures for online access to US National Nuclear Data Center, NEA Data Bank in Paris and IAEA Nuclear Data Section in Vienna are presented

  8. Nuclear data newsletter. No. 20. Nuclear structure and decay data network

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-11-01

    This special issue of the Nuclear Data Newsletter dated November 1994 gives information on the Nuclear Structure and Decay Data (NSDD) Network established in 1974 under the auspices of the IAEA and comprising 17 laboratories and universities in 10 countries. The procedures for online access to US National Nuclear Data Center, NEA Data Bank in Paris and IAEA Nuclear Data Section in Vienna are presented.

  9. Nuclear phenomena and the short distance structure of hadrons

    International Nuclear Information System (INIS)

    Brodsky, S.J.

    1979-09-01

    In certain cases, nuclear corrections to hadronic phenomena depend in detail on the nature of quark and gluon interactions, as well as the effects of jet development within the nuclear medium. Applications of quantum chromodynamics to fast particle production in nuclear collisions, nuclear form factors, and shadowing in deep inelastic lepton processes are reviewed. Also discussed is a new approach to particle production in hadron-nucleus, nucleus-nucleus and deep-inelastic nuclear reactions from the standpoint of a color-neutralization model. 74 references

  10. Supernovae and nuclear structure: Electron capture and the nuclear incompressibility

    International Nuclear Information System (INIS)

    Cooperstein, J.

    1985-01-01

    The author considers the effects of electron capture and the high density equation of state on supernovae. Electron captures on nuclei with 60 s it is helpful for supernovae to have a soft equation of state. Present knowledge of the nuclear matter parameters is considered and implications for supernovae are drawn. (orig.)

  11. Scenarios for exercising technical approaches to verified nuclear reductions

    International Nuclear Information System (INIS)

    Doyle, James

    2010-01-01

    for establishing a conceptual approach to a five-year technical program plan for research and development of nuclear arms reductions verification and transparency technologies and procedures.

  12. Conflicts about nuclear power safety: a decision theoretic approach

    International Nuclear Information System (INIS)

    Winterfeldt, D.V.; Rios, M.

    1980-01-01

    A series of psychological studies indicate that people's judgements of risks from energy production in general and nuclear power plants in particular deviate from technical and statistical estimates because social and psychological variables influence people's risk perception. After reviewing these studies a decision analytic methodology is outlined which incorporates such social and psychological variables in a formal analysis of the risks and benefits of nuclear energy production. The methodology is intended to identify groups with differing risk-benefit perceptions and to elicit and quantify their values and concerns. Such group and value structures are presented for the problem of choosing between a nuclear plant, a coal plant, and a conservation strategy

  13. Design of concrete structures important to safety of nuclear facilities

    International Nuclear Information System (INIS)

    2001-10-01

    Civil engineering structures in nuclear installations form an important feature having implications to safety performance of these installations. The objective and minimum requirements for the design of civil engineering buildings/structures to be fulfilled to provide adequate assurance for safety of nuclear installations in India (such as pressurised heavy water reactor and related systems) are specified in the Safety standard for civil engineering structures important to safety of nuclear facilities. This standard is written by AERB to specify guidelines for implementation of the above civil engineering safety standard in the design of concrete structures important to safety

  14. New frontiers in nuclear structure studies

    International Nuclear Information System (INIS)

    Zwarts, D.; Walet, N.R.; Wolters, A.A.; Glaudemans, P.W.M.; VandeGraff, R.J.

    1985-01-01

    The need to go to larger model spaces for more detailed studies of the atomic nucleus has led to the introduction of the supercomputer to nuclear physics. In this report a brief survey of the nuclear shell model is presented and the performance of some of the relevant programs on different computer systems is compared

  15. Many-body perturbation theory for ab initio nuclear structure

    International Nuclear Information System (INIS)

    Tichai, Alexander

    2017-01-01

    The solution of the quantum many-body problem for medium-mass nuclei using realistic nuclear interactions poses a superbe challenge for nuclear structure research. Because an exact solution can only be provided for the lightest nuclei, one has to rely on approximate solutions when proceeding to heavier systems. Over the past years, tremendous progress has been made in the development and application of systematically improvable expansion methods and an accurate description of nuclear observables has become viable up to mass number A ∼ 100. While closed-shell systems are consistently described via a plethora of different many-body methods, the extension to genuine open-shell systems still remains a major challenge and up to now there is no ab initio many-body method which applies equally well to systems with even and odd mass numbers. The goal of this thesis is the development and implementation of innovative perturbative approaches with genuine open-shell capabilities. This requires the extension of well-known single-reference approaches to more general vacua. In this work we choose two complementary routes for the usage of generalized reference states. First, we derive a new ab initio approach based on multi-configurational reference states that are conveniently derived from a prior no-core shell model calculation. Perturbative corrections are derived via second-order many-body perturbation theory, thus, merging configuration interaction and many-body perturbation theory. The generality of this ansatz enables for a treatment of medium-mass systems with arbitrary mass number, as well as the extension to low-lying excited states such that ground and excited states are treated on an equal footing. In a complementary approach, we use reference states that break a symmetry of the underlying Hamiltonian. In the simplest case this corresponds to the expansion around a particle-number-broken Hartree-Fock-Bogolyubov vacuum which is obtained from a mean-field calculation

  16. Training programs for the systems approach to nuclear security

    International Nuclear Information System (INIS)

    Ellis, D.

    2005-01-01

    Full text: In support of United States Government (USG) and International Atomic Energy Agency (IAEA) nuclear security programs, Sandia National Laboratories (SNL) has advocated and practiced a risk-based, systematic approach to nuclear security. The risk equation has been developed and implemented as the basis for a performance-based methodology for the design and evaluation of physical protection systems against a design basis threat (DBT) for theft and sabotage of nuclear and/or radiological materials. Integrated systems must include technology, people, and the man-machine interface. A critical aspect of the human element is training on the systems-approach for all the stakeholders in nuclear security. Current training courses and workshops have been very beneficial but are still rather limited in scope. SNL has developed two primary international classes - the international training course on the physical protection of nuclear facilities and materials, and the design basis threat methodology workshop. SNL is also completing the development of three new courses that will be offered and presented in the near term. They are vital area identification methodology focused on nuclear power plants to aid in their protection against radiological sabotage, insider threat analysis methodology and protection schemes, and security foundations for competent authority and facility operator stakeholders who are not security professionals. In the long term, we envision a comprehensive nuclear security curriculum that spans policy and technology, regulators and operators, introductory and expert levels, classroom and laboratory/field, and local and offsite training options. This training curriculum will be developed in concert with a nuclear security series of guidance documents that is expected to be forthcoming from the IAEA. It is important to note that while appropriate implementation of systems based on such training and documentation can improve the risk reduction, such a

  17. Approaches to nuclear disarmament and non-proliferation

    International Nuclear Information System (INIS)

    Subrahmanyam, K.

    1981-01-01

    The logic behind the approach of the nuclear weapon states (NWS) to the issue of nuclear disarmament and non-proliferation is based on: (1) The assumption that the less the number of decision makers who could initiate a nuclear war less the probability of war, (2) the claim of the NWS that their nuclear weapons are under strict control, and (3) the claim of the NWS who have signed the Non-Proliferation Treaty (NPT) that the Treaty is being scrupulously observed by them. This logic is critically examined in the light of disclosures that indicate that: (1) both vertical and horizontal proliferation is going on without respite among the NWS, and (2) the fissile material is clandestinely being allowed to be diverted to the favoured clients by one or more of the NWS. These NWS are not subject to any safeguards under the NPT. They are using the NPT and the concept of nuclear free zone as a sort of tactic to divert the attention from the correct approach to the disarmament and to impose their hegemony over the Third World Countries. Moreover, the NPT has conferred a sort of legitimacy to the possession of nuclear weapons by the NWS. In these circumstances their preaching to the Third World countries about nuclear disarmament and non-proliferation sounds hypocritical. The correct approach to these issues would be to put the nuclear weapons under the category of weapons of mass destruction and to ban their use under a non-discriminatory international convention as has been done in the case of biological and chemical weapons. (M.G.B.)

  18. Modular construction approach for advanced nuclear plants

    International Nuclear Information System (INIS)

    Johnson, F.T.; Orr, R.S.; Boudreaux, C.P.

    1988-01-01

    Modular construction has been designated as one of the major features of the AP600 program, a small innovative 600-MW (electric) advanced light water reactor (ALWR) that is currently being developed by Westinghouse and its subcontractors. This program is sponsored by the US Department of Energy (DOE) in conjunction with several other DOE and Electric Power Research Institute ALWR programs. Two major objectives of the AP600 program are as follows: (1) to provide a cost of power competitive with other power generation alternatives; and (2) to provide a short construction schedule that can be met with a high degree of certainty. The AP600 plant addresses these objectives by providing a simplified plant design and an optimized plant arrangement that result in a significant reduction in the number and size of systems and components, minimizes the overall building volumes, and consequently reduces the required bulk quantities. However, only by adopting a modular construction approach for the AP600 can the full cost and schedule benefits be realized from the advances made in the plant systems design and plant arrangement. Modularization is instrumental in achieving both of the above objectives, but most of all, a total modularization approach is considered absolutely essential to ensure that an aggressive construction schedule can be met with a high degree of certainty

  19. Applications of a global nuclear-structure model to studies of the heaviest elements

    International Nuclear Information System (INIS)

    Moeller, P.; Nix, J.R.

    1993-01-01

    We present some new results on heavy-element nuclear-structure properties calculated on the basis of the finite-range droplet model and folded-Yukawa single-particle potential. Specifically, we discuss calculations of nuclear ground-state masses and microscopic corrections, α-decay properties, β-decay properties, fission potential-energy surfaces, and spontaneous-fission half-lives. These results, obtained in a global nuclear-structure approach, are particularly reliable for describing the stability properties of the heaviest elements

  20. Three-dimensional structure of low-density nuclear matter

    International Nuclear Information System (INIS)

    Okamoto, Minoru; Maruyama, Toshiki; Yabana, Kazuhiro; Tatsumi, Toshitaka

    2012-01-01

    We numerically explore the pasta structures and properties of low-density nuclear matter without any assumption on the geometry. We observe conventional pasta structures, while a mixture of the pasta structures appears as a metastable state at some transient densities. We also discuss the lattice structure of droplets.

  1. Three-dimensional structure of low-density nuclear matter

    Energy Technology Data Exchange (ETDEWEB)

    Okamoto, Minoru, E-mail: okamoto@nucl.ph.tsukuba.ac.jp [Graduate School of Pure and Applied Science, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8571 (Japan); Advanced Science Research Center, Japan Atomic Energy Agency, Shirakata Shirane 2-4, Tokai, Ibaraki 319-1195 (Japan); Maruyama, Toshiki, E-mail: maruyama.toshiki@jaea.go.jp [Advanced Science Research Center, Japan Atomic Energy Agency, Shirakata Shirane 2-4, Tokai, Ibaraki 319-1195 (Japan); Graduate School of Pure and Applied Science, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8571 (Japan); Yabana, Kazuhiro, E-mail: yabana@nucl.ph.tsukuba.ac.jp [Graduate School of Pure and Applied Science, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8571 (Japan); Center of Computational Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8571 (Japan); Tatsumi, Toshitaka, E-mail: tatsumi@ruby.scphys.kyoto-u.ac.jp [Department of Physics, Kyoto University, Kyoto 606-8502 (Japan)

    2012-07-09

    We numerically explore the pasta structures and properties of low-density nuclear matter without any assumption on the geometry. We observe conventional pasta structures, while a mixture of the pasta structures appears as a metastable state at some transient densities. We also discuss the lattice structure of droplets.

  2. Integrative structure and functional anatomy of a nuclear pore complex

    Science.gov (United States)

    Kim, Seung Joong; Fernandez-Martinez, Javier; Nudelman, Ilona; Shi, Yi; Zhang, Wenzhu; Raveh, Barak; Herricks, Thurston; Slaughter, Brian D.; Hogan, Joanna A.; Upla, Paula; Chemmama, Ilan E.; Pellarin, Riccardo; Echeverria, Ignacia; Shivaraju, Manjunatha; Chaudhury, Azraa S.; Wang, Junjie; Williams, Rosemary; Unruh, Jay R.; Greenberg, Charles H.; Jacobs, Erica Y.; Yu, Zhiheng; de La Cruz, M. Jason; Mironska, Roxana; Stokes, David L.; Aitchison, John D.; Jarrold, Martin F.; Gerton, Jennifer L.; Ludtke, Steven J.; Akey, Christopher W.; Chait, Brian T.; Sali, Andrej; Rout, Michael P.

    2018-03-01

    Nuclear pore complexes play central roles as gatekeepers of RNA and protein transport between the cytoplasm and nucleoplasm. However, their large size and dynamic nature have impeded a full structural and functional elucidation. Here we determined the structure of the entire 552-protein nuclear pore complex of the yeast Saccharomyces cerevisiae at sub-nanometre precision by satisfying a wide range of data relating to the molecular arrangement of its constituents. The nuclear pore complex incorporates sturdy diagonal columns and connector cables attached to these columns, imbuing the structure with strength and flexibility. These cables also tie together all other elements of the nuclear pore complex, including membrane-interacting regions, outer rings and RNA-processing platforms. Inwardly directed anchors create a high density of transport factor-docking Phe-Gly repeats in the central channel, organized into distinct functional units. This integrative structure enables us to rationalize the architecture, transport mechanism and evolutionary origins of the nuclear pore complex.

  3. Integrative structure and functional anatomy of a nuclear pore complex.

    Science.gov (United States)

    Kim, Seung Joong; Fernandez-Martinez, Javier; Nudelman, Ilona; Shi, Yi; Zhang, Wenzhu; Raveh, Barak; Herricks, Thurston; Slaughter, Brian D; Hogan, Joanna A; Upla, Paula; Chemmama, Ilan E; Pellarin, Riccardo; Echeverria, Ignacia; Shivaraju, Manjunatha; Chaudhury, Azraa S; Wang, Junjie; Williams, Rosemary; Unruh, Jay R; Greenberg, Charles H; Jacobs, Erica Y; Yu, Zhiheng; de la Cruz, M Jason; Mironska, Roxana; Stokes, David L; Aitchison, John D; Jarrold, Martin F; Gerton, Jennifer L; Ludtke, Steven J; Akey, Christopher W; Chait, Brian T; Sali, Andrej; Rout, Michael P

    2018-03-22

    Nuclear pore complexes play central roles as gatekeepers of RNA and protein transport between the cytoplasm and nucleoplasm. However, their large size and dynamic nature have impeded a full structural and functional elucidation. Here we determined the structure of the entire 552-protein nuclear pore complex of the yeast Saccharomyces cerevisiae at sub-nanometre precision by satisfying a wide range of data relating to the molecular arrangement of its constituents. The nuclear pore complex incorporates sturdy diagonal columns and connector cables attached to these columns, imbuing the structure with strength and flexibility. These cables also tie together all other elements of the nuclear pore complex, including membrane-interacting regions, outer rings and RNA-processing platforms. Inwardly directed anchors create a high density of transport factor-docking Phe-Gly repeats in the central channel, organized into distinct functional units. This integrative structure enables us to rationalize the architecture, transport mechanism and evolutionary origins of the nuclear pore complex.

  4. Investigation of nuclear structures using transition probabilities

    International Nuclear Information System (INIS)

    Dewald, A.; Moeller, O.; Peusquens, R.

    2002-01-01

    Magnetic rotation which appears as regular M1 bands in the spectra, is a well established phenomenon in several Pb isotopes. In the A = 130 region where similar M1 bands are known, e.g. in 124 Xe and 128 Ba, it is still not clear whether it does exists. Crucial experimental observables are the B (M1) values which -are expected to decrease with in creasing spin. At Strasbourg a recoil distance measurement (RDM) with the EUROBALL spectrometer at Strasbourg and the Koeln plunger using the reaction 110 Pd( 18 O, 4n) 124 Xe at a beam energy of 86 MeV yielded preliminary lifetimes of ground band states and states of the M1 band. The deduced B(M1) values show the expected behaviour for magnetic rotation. It is also shown that the experimental B(M1) values can be described as well on the basis of a rotational band. The measured B(E2) values are used to investigate the nuclear deformation of 124 Xe as well as the interaction of the ground state band with two s-bands. Spherical deformed shape coexistence is investigated by means of electromagnetic transition probabilities in the case of 188 Pb. Lifetimes were measured in 188 Pb using a novel combination of the Koeln plunger device with the GSFMA set-up at ATLAS. The reaction 40 Ca ( 152 Sm, 4n) 188 Pb at a beam energy of 725 MeV in inverse kinematics is used. It is found that the lowest 2 + state is predominantly of prolate structure

  5. Proton capture reactions and nuclear structure

    International Nuclear Information System (INIS)

    Kikstra, S.W.

    1989-01-01

    Experimental studies are described of the structure of 40 Ca and 42 Sc with measurements at proton-capture of (p, gamma) reactions. Where possible, an attempt has been made to interpret the results of the measurements in termsof existing models. The 40 Ca and 42 Sc nuclides were excited by bombarding 39 K and 41 Ca targets, respectively with low energy protons (E p = 0.3-3.0 MeV), that were produced by the Utrecht 3MV van de Graaff accelerator. From the measured energy and intensity of the gamma-rays created in the subsequent decay of the cuclei, information was obtained on the existence and properties of their excited states. In addition properties of two T = 3/2 levels at high excitation energy of the 9 Be nucleus were investigated. These levels were excited by the resonant absorption of gamma-rays from the 11 B(p, gamma) 12 C reaction. The results of the measurements are interpreted by a comparison to the analoque β-decay of 9 Li and to shell model calculations. The total decay energy of the superallowed O + → O + transition between the ground states of 42 Sc and 42 Ca was determined by measurements in Utrecht of the proton separation energy S p of 42 Sc and in Oak Ridge of S n of 42 Sc and 42 Ca. The results were used for verification of the conserved vector current hypothesis, which implies that the ft values of all superallowed O + → O + β-decays are the same. An attempt was made to describe properties of odd-parity states of A = 37-41 nuclei with a variant of the Warburton, Becker, Millener and Brown (WBMB) interaction.Finally a new method for the assignment of nuclear spins by a simple statistical analysis of spectroscopic information is proposed. (author). 169 refs.; 22 figs.; 24 schemes; 29 tabs

  6. Variational approach to nuclear fluid dynamics

    International Nuclear Information System (INIS)

    Da Providencia, J.P.; Holzwarth, G.

    1983-01-01

    A variational derivation of a fluid-dynamical formalism for finite Fermi systems is presented which is based on a single determinant as variational function and does not exclude the possibility of transverse flow. Therefore the explicit specification of the time-odd part has to go beyond the local chi-approximation, while the time-even part is taken in the generalized scaling form. The necessary boundary conditions are derived from the variation of the lagrangian. The results confirm previous simplified approaches to a remarkable degree for quadrupole modes; for other multipolarities the deviations are much less than might be expected according to a sizeable change in the transverse sound speed. (orig.)

  7. Nuclear microanalysis of oxide films on structural steel

    International Nuclear Information System (INIS)

    Istomin, I.V.; Karabash, V.A.; Maisyukov, V.D.; Sosnin, A.N.; Shorin, V.S.

    1989-01-01

    Studies of the behavior of structural materials in nuclear power plants have indicated the important role of oxide films on metals, especially metals of the iron group. The films may be formed as a result of the corrosion of the metal in an aggressive coolant. At the same time, some oxide films have anticorrosive properties and can be produced specially by the introduction of inhibitor-passivators, e.g., molecular oxygen, into the aggressive medium. Experimental data on the film growth rate make it possible to determine the kinetics of the oxidation process, the nature of the diffusion of the main components through the film, and the role of the phase transitions (crystal-chemical transformations) and point defects during the migration of oxygen and metal ions through the oxide. In this study nuclear microanalysis is used to measure the parameters of oxide films formed on 10Cr2Mo and 1Cr18Ni10Ti steels in steam in the temperature range 320-620C. In this method the film parameters in the general analysis of the energy spectra of deuterons back-scattered from iron nuclei and protons in the case of the 16 O(d,p 1 ) 17 O nuclear reaction. With this approach and an initial deuteron energy E o = 0.9 MeV the range of the measurable thickness t of the films is 0.001-1.5 mg/cm 2 . The data obtained not only confirm the high sensitivity of the nuclear microanalysis method but also demonstrate that it can be used for nondestructive quality control of the surface

  8. Training programs for the systems approach to nuclear security

    International Nuclear Information System (INIS)

    Ellis, Doris E.

    2005-01-01

    In support of the US Government and the International Atomic Energy Agency (IAEA) Nuclear Security Programmes, Sandia National Laboratories (SNL) has advocated and practiced a risk-based, systematic approach to nuclear security. The risk equation has been implemented as the basis for a performance methodology for the design and evaluation of Physical Protection Systems against a Design Basis Threat (DBT) for theft or sabotage of nuclear and/or radiological materials. Since integrated systems must include people as well as technology and the man-machine interface, a critical aspect of the human element is to train all stakeholders in nuclear security on the systems approach. Current training courses have been beneficial but are still limited in scope. SNL has developed two primary international courses and is completing development of three new courses that will be offered and presented in the near term. In the long-term, SNL envisions establishing a comprehensive nuclear security training curriculum that will be developed along with a series of forthcoming IAEA Nuclear Security Series guidance documents.

  9. Science based integrated approach to advanced nuclear fuel development - vision, approach, and overview

    Energy Technology Data Exchange (ETDEWEB)

    Unal, Cetin [Los Alamos National Laboratory; Pasamehmetoglu, Kemal [IDAHO NATIONAL LAB; Carmack, Jon [IDAHO NATIONAL LAB

    2010-01-01

    Advancing the performance of Light Water Reactors, Advanced Nuclear Fuel Cycles, and Advanced Rcactors, such as the Next Generation Nuclear Power Plants, requires enhancing our fundamental understanding of fuel and materials behavior under irradiation. The capability to accurately model the nuclear fuel systems is critical. In order to understand specific aspects of the nuclear fuel, fully coupled fuel simulation codes are required to achieve licensing of specific nuclear fuel designs for operation. The backbone of these codes, models, and simulations is a fundamental understanding and predictive capability for simulating the phase and microstructural behavior of the nuclear fuel system materials and matrices. The purpose of this paper is to identify the modeling and simulation approach in order to deliver predictive tools for advanced fuels development. The coordination between experimental nuclear fuel design, development technical experts, and computational fuel modeling and simulation technical experts is a critical aspect of the approach and naturally leads to an integrated, goal-oriented science-based R & D approach and strengthens both the experimental and computational efforts. The Advanced Fuels Campaign (AFC) and Nuclear Energy Advanced Modeling and Simulation (NEAMS) Fuels Integrated Performance and Safety Code (IPSC) are working together to determine experimental data and modeling needs. The primary objective of the NEAMS fuels IPSC project is to deliver a coupled, three-dimensional, predictive computational platform for modeling the fabrication and both normal and abnormal operation of nuclear fuel pins and assemblies, applicable to both existing and future reactor fuel designs. The science based program is pursuing the development of an integrated multi-scale and multi-physics modeling and simulation platform for nuclear fuels. This overview paper discusses the vision, goals and approaches how to develop and implement the new approach.

  10. Science based integrated approach to advanced nuclear fuel development - vision, approach, and overview

    International Nuclear Information System (INIS)

    Unal, Cetin; Pasamehmetoglu, Kemal; Carmack, Jon

    2010-01-01

    Advancing the performance of Light Water Reactors, Advanced Nuclear Fuel Cycles, and Advanced Rcactors, such as the Next Generation Nuclear Power Plants, requires enhancing our fundamental understanding of fuel and materials behavior under irradiation. The capability to accurately model the nuclear fuel systems is critical. In order to understand specific aspects of the nuclear fuel, fully coupled fuel simulation codes are required to achieve licensing of specific nuclear fuel designs for operation. The backbone of these codes, models, and simulations is a fundamental understanding and predictive capability for simulating the phase and microstructural behavior of the nuclear fuel system materials and matrices. The purpose of this paper is to identify the modeling and simulation approach in order to deliver predictive tools for advanced fuels development. The coordination between experimental nuclear fuel design, development technical experts, and computational fuel modeling and simulation technical experts is a critical aspect of the approach and naturally leads to an integrated, goal-oriented science-based R and D approach and strengthens both the experimental and computational efforts. The Advanced Fuels Campaign (AFC) and Nuclear Energy Advanced Modeling and Simulation (NEAMS) Fuels Integrated Performance and Safety Code (IPSC) are working together to determine experimental data and modeling needs. The primary objective of the NEAMS fuels IPSC project is to deliver a coupled, three-dimensional, predictive computational platform for modeling the fabrication and both normal and abnormal operation of nuclear fuel pins and assemblies, applicable to both existing and future reactor fuel designs. The science based program is pursuing the development of an integrated multi-scale and multi-physics modeling and simulation platform for nuclear fuels. This overview paper discusses the vision, goals and approaches how to develop and implement the new approach.

  11. Modelling zirconium hydrides using the special quasirandom structure approach

    KAUST Repository

    Wang, Hao; Chroneos, Alexander I.; Jiang, Chao; Schwingenschlö gl, Udo

    2013-01-01

    The study of the structure and properties of zirconium hydrides is important for understanding the embrittlement of zirconium alloys used as cladding in light water nuclear reactors. Simulation of the defect processes is complicated due to the random distribution of the hydrogen atoms. We propose the use of the special quasirandom structure approach as a computationally efficient way to describe this random distribution. We have generated six special quasirandom structure cells based on face centered cubic and face centered tetragonal unit cells to describe ZrH2-x (x = 0.25-0.5). Using density functional theory calculations we investigate the mechanical properties, stability, and electronic structure of the alloys. © the Owner Societies 2013.

  12. New multilateral approaches solving the nuclear energy dispute with Iran

    International Nuclear Information System (INIS)

    Heireng, Hege Schultz; Moezzi, Maryam; Kippe, Halvor

    2011-01-01

    The focus of this report is on possible multilateral approaches for cooperation with Iran on the nuclear fuel cycle. The aim is to contribute in finding diplomatic solutions to the Iranian nuclear dispute. The proposals challenge the traditional views of Iran's role in the nuclear negotiations in particular, and in the international community in general. The report investigates the possibility of accepting Iran's enrichment of uranium, under an enhanced safeguards regime, and through a multilateral cooperation on the production of nuclear fuel. In relation to this, the report also explores the benefits of including new actors in the proposed solutions.Two different models for multilateral nuclear fuel cycle cooperation with Iran will be presented. The aim of these models is to ensure greater transparency in Iran's nuclear activities, in order to minimize the risk of proliferation of nuclear weapons, while simultaneously presenting a solution that will be acceptable to Iran. The first model is a tripartite consortium model that consists of a cooperation between Kazakhstan, Iran and South Africa, in which these countries additionally cooperate with an IAEA-supervised international nuclear fuel bank. The second model is a nuclear fuel cycle cooperation between Iran and six of the countries bordering the Persian Gulf. In both models, the countries in question will be responsible for different parts of the nuclear fuel cycle. Iran will be responsible for the uranium enrichment activities, but will have to give up all other fuel cycle activities. Another prerequisite is that Iran accepts not to store enriched uranium on Iranian soil.The report shows that the international community should consider accepting enrichment of uranium on Iranian soil in the long-term. In addition, it is concluded that cooperation with Iran on the nuclear fuel cycle, where Iran is a reliable nuclear supplier state of enriched uranium and other states are responsible for the remaining parts of

  13. New multilateral approaches solving the nuclear energy dispute with Iran

    Energy Technology Data Exchange (ETDEWEB)

    Heireng, Hege Schultz; Moezzi, Maryam; Kippe, Halvor

    2011-07-01

    The focus of this report is on possible multilateral approaches for cooperation with Iran on the nuclear fuel cycle. The aim is to contribute in finding diplomatic solutions to the Iranian nuclear dispute. The proposals challenge the traditional views of Iran's role in the nuclear negotiations in particular, and in the international community in general. The report investigates the possibility of accepting Iran's enrichment of uranium, under an enhanced safeguards regime, and through a multilateral cooperation on the production of nuclear fuel. In relation to this, the report also explores the benefits of including new actors in the proposed solutions.Two different models for multilateral nuclear fuel cycle cooperation with Iran will be presented. The aim of these models is to ensure greater transparency in Iran's nuclear activities, in order to minimize the risk of proliferation of nuclear weapons, while simultaneously presenting a solution that will be acceptable to Iran. The first model is a tripartite consortium model that consists of a cooperation between Kazakhstan, Iran and South Africa, in which these countries additionally cooperate with an IAEA-supervised international nuclear fuel bank. The second model is a nuclear fuel cycle cooperation between Iran and six of the countries bordering the Persian Gulf. In both models, the countries in question will be responsible for different parts of the nuclear fuel cycle. Iran will be responsible for the uranium enrichment activities, but will have to give up all other fuel cycle activities. Another prerequisite is that Iran accepts not to store enriched uranium on Iranian soil.The report shows that the international community should consider accepting enrichment of uranium on Iranian soil in the long-term. In addition, it is concluded that cooperation with Iran on the nuclear fuel cycle, where Iran is a reliable nuclear supplier state of enriched uranium and other states are responsible for the

  14. Central eastern Europe approach to the security over nuclear materials

    International Nuclear Information System (INIS)

    Smagala, G.

    2002-01-01

    Full text: This paper presents an overview of the national approaches to physical protection of nuclear materials in Central Eastern Europe (CEE), with an emphasis on Poland. Soviet influence in the past led to inadequate safety culture in nuclear activities and insufficient security of nuclear materials and facilities in the region. In the centralized economies all aspects of nuclear activities, including ownership of the nuclear facilities, were the responsibility of the state with no clear separation between regulating and promoting functions. During the last decade a significant progress has been made in the region to clean up the legacy of the past and to improve practices in physical protection of nuclear materials. The countries of Central Eastern Europe have had many similar deficiencies in nuclear field and problems to overcome, but cannot be viewed as a uniform block. There are local variations within the region in a size of nuclear activities, formulated respective regulations and adopted measures to secure nuclear materials and facilities. Nevertheless, all twelve nations, with nuclear reactors and without nuclear facilities, have joined the convention on the physical protection of nuclear material and most of them declare that they have followed the IAEA recommendations INFCIRC/225/Rev.4 to elaborate and implement their physical protection systems of nuclear materials and facilities. The largest request for an international advisory mission (IPPAS) to review states' physical protection systems and to address needs for improvement was received from the countries of Central Eastern Europe. Poland belongs to the beneficiaries where the IPPAS mission and later follow-up consultations resulted in physical protection upgrade of the research reactor under the IAEA/US/UK technical assistance project. A powerful incentive to the progress made in a number of CEE countries was the goal of accession to the European Union. The physical protection of nuclear

  15. Human Resource and Nuclear Awareness Development: A Common Synergetic Approach

    International Nuclear Information System (INIS)

    Dreimanis, A.

    2016-01-01

    Full text: The nuclear education problem is treated as societal optimization task of nuclear energy management, with the key parameter of optimization—stakeholder awareness level. As the key principles of optimisation are chosen: a self-organization concept, the principle of the requisite variety, where as a primary source of growth of internal variety is information and knowledge. We have shown: public education, social learning and the use of mass media are efficient self-organization mechanisms, thereby forming a knowledge-creating community. Such a created knowledge could facilitate solution of key issues: a) public acceptance of novel nuclear objects, b) promotion of adequate risk perception, and c) fostering of interest to nuclear energy. Comprehensive knowledge management and informational support firstly is needed in: a) for increasing general nuclear awareness and confidence level to nuclear activities, b) personnel education and training, c) reliable staff renascence, d) public education and involvement of all stakeholder categories in decision making, e) risk management. A common approach to nuclear education should include also comprehensive research activities, thereby joining knowledge acquisition with the generation of novel advanced knowledge. (author

  16. Relativistic density functional for nuclear structure

    CERN Document Server

    2016-01-01

    This book aims to provide a detailed introduction to the state-of-the-art covariant density functional theory, which follows the Lorentz invariance from the very beginning and is able to describe nuclear many-body quantum systems microscopically and self-consistently. Covariant density functional theory was introduced in nuclear physics in the 1970s and has since been developed and used to describe the diversity of nuclear properties and phenomena with great success. In order to provide an advanced and updated textbook of covariant density functional theory for graduate students and nuclear physics researchers, this book summarizes the enormous amount of material that has accumulated in the field of covariant density functional theory over the last few decades as well as the latest developments in this area. Moreover, the book contains enough details for readers to follow the formalism and theoretical results, and provides exhaustive references to explore the research literature.

  17. Nuclear emergency response planning based on participatory decision analytic approaches

    International Nuclear Information System (INIS)

    Sinkko, K.

    2004-10-01

    This work was undertaken in order to develop methods and techniques for evaluating systematically and comprehensively protective action strategies in the case of a nuclear or radiation emergency. This was done in a way that the concerns and issues of all key players related to decisions on protective actions could be aggregated into decision- making transparently and in an equal manner. An approach called facilitated workshop, based on the theory of Decision Analysis, was tailored and tested in the planning of actions to be taken. The work builds on case studies in which it was assumed that a hypothetical accident in a nuclear power plant had led to a release of considerable amounts of radionuclides and therefore different types of protective actions should be considered. Altogether six workshops were organised in which all key players were represented, i.e., the authorities, expert organisations, industry and agricultural producers. The participants were those responsible for preparing advice or presenting matters for those responsible for the formal decision-making. Many preparatory meetings were held with various experts to prepare information for the workshops. It was considered essential that the set-up strictly follow the decision- making process to which the key players are accustomed. Key players or stakeholders comprise responsible administrators and organisations, politicians as well as representatives of the citizens affected and other persons who will and are likely to take part in decision-making in nuclear emergencies. The realistic nature and the disciplined process of a facilitated workshop and commitment to decision-making yielded up insight in many radiation protection issues. The objectives and attributes which are considered in a decision on protective actions were discussed in many occasions and were defined for different accident scenario to come. In the workshops intervention levels were derived according justification and optimisation

  18. A constraint-based approach to intelligent support of nuclear reactor design

    International Nuclear Information System (INIS)

    Furuta, Kazuo

    1993-01-01

    Constraint is a powerful representation to formulate and solve problems in design; a constraint-based approach to intelligent support of nuclear reactor design is proposed. We first discuss the features of the approach, and then present the architecture of a nuclear reactor design support system under development. In this design support system, the knowledge base contains constraints useful to structure the design space as object class definitions, and several types of constraint resolvers are provided as design support subsystems. The adopted method of constraint resolution are explained in detail. The usefulness of the approach is demonstrated using two design problems: Design window search and multiobjective optimization in nuclear reactor design. (orig./HP)

  19. The evaluated nuclear structure data file: Philosophy, content, and uses

    International Nuclear Information System (INIS)

    Burrows, T.W.

    1990-01-01

    The Evaulated Nuclear Structure Data File (ENSDF) is maintained by the National Nuclear Data Center (NNDC) on behalf of the international Nuclear Structure and Decay Data Network sponsored by the International Atomic Energy Agency, Vienna. Data for A=5 to 44 are extracted from the evaluations published in Nuclear Physics; for A≥45 the file is used to produce the Nuclear Data Sheets. The philosophy and methodology of ENSDF evaluations are outlined, along with the file contents of relevance to radionuclide metrologists; the service available at various nuclear data centers and the NNDC on-line capabilities are also discussed. Application codes have been developed for use with ENSDF, and the program RADLST is used as an example. The interaction of ENSDF evaluation with other evaluations is also discussed. (orig.)

  20. Aging management of containment structures in nuclear power plants

    International Nuclear Information System (INIS)

    Naus, D.J.; Oland, C.B.; Ellingwood, B.R.; Graves, H.L. III; Norris, W.E.

    1994-01-01

    Research is being conducted by ORNL under US Nuclear Regulatory Commission (USNRC) sponsorship to address aging management of nuclear power plant containment and other safety-related structures. Documentation is being prepared to provide the USNRC with potential structural safety issues and acceptance criteria for use in continued service evaluations of nuclear power plants. Accomplishments include development of a Structural Materials Information Center containing data and information on the time variation of 144 material properties under the influence of pertinent environmental stressors or aging factors, evaluation of models for potential concrete containment degradation factors, development of a procedure to identify critical structures and degradation factors important to aging management, evaluations of nondestructive evaluation techniques. assessments of European and North American repair practices for concrete, review of parameters affecting corrosion of metals embedded in concrete, and development of methodologies for making current condition assessments and service life predictions of new or existing reinforced concrete structures in nuclear power plants

  1. RMF+BCS approach for bubble structures

    International Nuclear Information System (INIS)

    Saxena, G.; Singh, D.; Kaushik, M.

    2013-01-01

    'Bubble structure' i.e. depletion in central density has been discussed recently in superheavy and hyper heavy nuclei. In the nucleus, s-orbitals (l=0) have radial distributions peaked in the interior of the nucleus due to zero centrifugal barrier. Their wave function extend further into the surface depending on the number of nodes. Whereas orbitals with non-zero angular momenta are suppressed in the nuclear interior and do not contribute to the central density. Therefore, any vacancy of s-orbitals is expected to produce a depletion of the central density

  2. A New Light Weight Structural Material for Nuclear Structures

    International Nuclear Information System (INIS)

    Rabiei, Afsaneh

    2016-01-01

    Radiation shielding materials are commonly used in nuclear facilities to attenuate the background ionization radiations to a minimum level for creating a safer workplace, meeting regulatory requirements and maintaining high quality performance. The conventional radiation shielding materials have a number of drawbacks: heavy concrete contains a high amount of elements that are not desirable for an effective shielding such as oxygen, silicon, and calcium; a well known limitation of lead is its low machinability and toxicity, which is causing a major environmental concern. Therefore, an effective and environmentally friendly shielding material with increased attenuation and low mass density is desirable. Close-cell composite metal foams (CMFs) and open-cell Al foam with fillers are light-weight candidate materials that we have studied in this project. Close-cell CMFs possess several suitable properties that are unattainable by conventional radiation shielding materials such as low density and high strength for structural applications, high surface area to volume ratio for excellent thermal isolation with an extraordinary energy absorption capability. Open-cell foam is made up of a network of interconnected solid struts, which allows gas or fluid media to pass through it. This unique structure provided a further motive to investigate its application as radiation shields by infiltrating original empty pores with high hydrogen or boron compounds, which are well known for their excellent neutron shielding capability. The resulting open-cell foam with fillers will not only exhibit light weight and high specific surface area, but also possess excellent radiation shielding capability and good processability. In this study, all the foams were investigated for their radiation shielding efficiency in terms of X-ray, gamma ray and neutron. X-ray transmission measurements were carried out on a high-resolution microcomputed tomography (microCT) system. Gamma-emitting sources: 3.0m

  3. A New Light Weight Structural Material for Nuclear Structures

    Energy Technology Data Exchange (ETDEWEB)

    Rabiei, Afsaneh [North Carolina State Univ., Raleigh, NC (United States)

    2016-01-14

    Radiation shielding materials are commonly used in nuclear facilities to attenuate the background ionization radiations to a minimum level for creating a safer workplace, meeting regulatory requirements and maintaining high quality performance. The conventional radiation shielding materials have a number of drawbacks: heavy concrete contains a high amount of elements that are not desirable for an effective shielding such as oxygen, silicon, and calcium; a well known limitation of lead is its low machinability and toxicity, which is causing a major environmental concern. Therefore, an effective and environmentally friendly shielding material with increased attenuation and low mass density is desirable. Close-cell composite metal foams (CMFs) and open-cell Al foam with fillers are light-weight candidate materials that we have studied in this project. Close-cell CMFs possess several suitable properties that are unattainable by conventional radiation shielding materials such as low density and high strength for structural applications, high surface area to volume ratio for excellent thermal isolation with an extraordinary energy absorption capability. Open-cell foam is made up of a network of interconnected solid struts, which allows gas or fluid media to pass through it. This unique structure provided a further motive to investigate its application as radiation shields by infiltrating original empty pores with high hydrogen or boron compounds, which are well known for their excellent neutron shielding capability. The resulting open-cell foam with fillers will not only exhibit light weight and high specific surface area, but also possess excellent radiation shielding capability and good processability. In this study, all the foams were investigated for their radiation shielding efficiency in terms of X-ray, gamma ray and neutron. X-ray transmission measurements were carried out on a high-resolution microcomputed tomography (microCT) system. Gamma-emitting sources: 3.0m

  4. Procedures manual for the Evaluated Nuclear Structure Data File

    International Nuclear Information System (INIS)

    Bhat, M.R.

    1987-10-01

    This manual is a collection of various notes, memoranda and instructions on procedures for the evaluation of data in the Evaluated Nuclear Structure Data File (ENSDF). They were distributed at different times over the past few years to the evaluators of nuclear structure data and some of them were not readily avaialble. Hence, they have been collected in this manual for ease of reference by the evaluators of the international Nuclear Structure and Decay Data (NSDD) network contribute mass-chains to the ENSDF. Some new articles were written specifically for this manual and others are reivsions of earlier versions

  5. Quality approach in hygiene in a nuclear medicine service

    International Nuclear Information System (INIS)

    Plogin, J.

    1998-01-01

    The activities of nuclear medicine, by their constraints of radiation protection, present difficulties for rules of hygiene protocols. Considering the particular risks of certain techniques, the approach brings to the fore the compromise between radiation protection and hygiene and to adapt the recommendations to local specificities. (N.C.)

  6. Nuclear-structure aspects of theoretical neutron physics

    International Nuclear Information System (INIS)

    Soloviev, V.G.

    1976-01-01

    The structure of neutron resonances is studied on the basis of the semimicroscopic nuclear theory. Few-quasiparticle components of the wave functions of neutron resonances are calculated which determine the neutron and radiational strength functions. It is stated that it is necessary to clarify the role of their many-quasiparticle components. The structure of neutron resonances is studied within the framework of the general approach based on the operator form of the wave functions. The role of three-quasiparticle components in the wave functions of neutron resonances is studied and the cases of validity of the valence neutron model are pointed out. It is shown that the experimental information about the structure of neutron resonances is limited to few-quasiparticle components which are of 10 -3 -10 -6 part of the normalization of their wave functions. To study the structure of neutron resonances it is necessary to find the values of many-quasiparticle components of the wave functions. The ways of experimental finding of these components based on the study of γ-transitions between highly excited states are discussed. The fragmentation of single-particle states in deformed nuclei is studied within the framework of the model based on the quasiparticle--phonon interactions. The S-, p-, and α-wave neutron strength functions are determined

  7. A relativistic point coupling model for nuclear structure calculations

    International Nuclear Information System (INIS)

    Buervenich, T.; Maruhn, J.A.; Madland, D.G.; Reinhard, P.G.

    2002-01-01

    A relativistic point coupling model is discussed focusing on a variety of aspects. In addition to the coupling using various bilinear Dirac invariants, derivative terms are also included to simulate finite-range effects. The formalism is presented for nuclear structure calculations of ground state properties of nuclei in the Hartree and Hartree-Fock approximations. Different fitting strategies for the determination of the parameters have been applied and the quality of the fit obtainable in this model is discussed. The model is then compared more generally to other mean-field approaches both formally and in the context of applications to ground-state properties of known and superheavy nuclei. Perspectives for further extensions such as an exact treatment of the exchange terms using a higher-order Fierz transformation are discussed briefly. (author)

  8. Compilations and evaluations of nuclear structure and decay data

    International Nuclear Information System (INIS)

    Lorenz, A.

    1977-10-01

    This is the third issue of a report series on published and to-be-published compilations and evaluations of nuclear structure and decay (NSD) data. This compilation is published and distributed by the IAEA Nuclear Data Section approximately every six months. This compilation of compilations and evaluations is designed to keep the nuclear scientific community informed of the availability of compiled or evaluated NSD data, and contains references to laboratory reports, journal articles and books containing selected compilations and evaluations

  9. Changes in attitude structure toward nuclear power in the nuclear power plant locations of Tohoku district

    International Nuclear Information System (INIS)

    Tsujikawa, Norifumi; Tsuchida, Shoji; Shiotani, Takamasa; Nakagawa, Yuri

    2012-01-01

    This survey was examined the changes in structure of attitude toward nuclear power and the influence of environmental value on the attitude structure before and after the accident at the Fukushima No. 1 nuclear power plant. With residents of Aomori, Miyagi, and Fukushima prefectures as participants, we conducted online surveys in November 2009 and October 2011. Comparing the results before and after the accident, we found that trust in the management of nuclear power plants had a stronger influence on the perceived risk and benefit regarding nuclear power after the accident than before the accident. The value of concern about environmental destruction resulted in reduced trust in the management. (author)

  10. Forging the link between nuclear reactions and nuclear structure.

    Science.gov (United States)

    Mahzoon, M H; Charity, R J; Dickhoff, W H; Dussan, H; Waldecker, S J

    2014-04-25

    A comprehensive description of all single-particle properties associated with the nucleus Ca40 is generated by employing a nonlocal dispersive optical potential capable of simultaneously reproducing all relevant data above and below the Fermi energy. The introduction of nonlocality in the absorptive potentials yields equivalent elastic differential cross sections as compared to local versions but changes the absorption profile as a function of angular momentum suggesting important consequences for the analysis of nuclear reactions. Below the Fermi energy, nonlocality is essential to allow for an accurate representation of particle number and the nuclear charge density. Spectral properties implied by (e, e'p) and (p, 2p) reactions are correctly incorporated, including the energy distribution of about 10% high-momentum nucleons, as experimentally determined by data from Jefferson Lab. These high-momentum nucleons provide a substantial contribution to the energy of the ground state, indicating a residual attractive contribution from higher-body interactions for Ca40 of about 0.64  MeV/A.

  11. Book of abstracts of International Conference on Nuclear Structure and Dynamics 2009

    International Nuclear Information System (INIS)

    Prepolec, L.; Niksic, T.

    2009-01-01

    Following the long tradition of nuclear physics conferences organized by our two institutes, e.g. the Adriatic International Conference and Europhysics Study Conferences, this meeting will provide a broad discussion forum on recent experimental and theoretical advances in the physics of nuclear structure and reactions. The main focus will be on the following topics: Nuclear structure and reactions far from stability; Exotic modes of excitation and decays; Collective phenomena and symmetries; Ab initio, cluster model, and shell-model approaches; Nuclear energy density functionals; Heavy-ion reactions at near-barrier energies; Dynamics of light-ion reactions; Nuclear reactions of astrophysical interest; Weak-interaction processes. This booklet contains the abstracts of contributions which will be presented at the Conference, either as invited and contributed talks, or oral poster presentations

  12. A Nuclear Third Party Liability Regime of a Multilateral Nuclear Approaches Framework in the Asian Region

    Directory of Open Access Journals (Sweden)

    Makiko Tazaki

    2014-01-01

    Full Text Available There are two primary challenges for establishing nuclear third party liability (TPL regimes within multilateral nuclear approaches (MNA to nuclear fuel cycle facilities in the Asian region. The first challenge is to ensure secure and prompt compensation, especially for transboundary damages, which is also a challenge for a nation-based facility. One possible solution is that in order to share common nuclear TPL principles, all states in the region participate in the same international nuclear TPL convention, such as the Convention on Supplementary Compensation for Nuclear Damage (CSC, with a view to its entry into force in the future. One problem with this approach is that many states in the Asian region need to raise their amount of financial security in order to be able to participate in the CSC. The second challenge lies with the multiple MNA member states and encompasses the question of how decisions are to be made and responsabilities of an installation state are to be shared in case of a nuclear incident. Principally, a host state of the MNA facility takes on this responsibility. However, in certain situations and in agreement with all MNA member states, such responsibilities can be indirectly shared among all MNA member states. This can be done through internal arrangements within the MNA framework, such as reimbursement to a host state based on pre-agreed shares in accordance with investment and/or making deposits on such reimbursements in case of an incident.

  13. Structured synthesis of MEMS using evolutionary approaches

    DEFF Research Database (Denmark)

    Fan, Zhun; Wang, Jiachuan; Achiche, Sofiane

    2008-01-01

    In this paper, we discuss the hierarchy that is involved in a typical MEMS design and how evolutionary approaches can be used to automate the hierarchical synthesis process for MEMS. The paper first introduces the flow of a structured MEMS design process and emphasizes that system-level lumped...

  14. Soft matter approaches to food structuring

    NARCIS (Netherlands)

    Sman, van der R.G.M.

    2012-01-01

    We give an overview of the many opportunities that arise from approaching food structuring from the perspective of soft matter physics. This branch of physics employs concepts that build upon the seminal work of van der Waals, such as free volume, the mean field, and effective temperatures. All

  15. Particle production from nuclear targets and the structure of hadrons

    International Nuclear Information System (INIS)

    Bialas, A.

    Production processes from nuclear targets allow studying interactions of elementary hadronic constituents in nuclear matter. The information thus obtained on the structure of hadrons and on the properties of hadronic constituents is presented. Both soft (low momentum transfer) and hard (high momentum transfer) processes are discussed. (author)

  16. A workshop report on nuclear reaction and cluster structure

    International Nuclear Information System (INIS)

    1985-01-01

    A work shop was held in June 1984 at RCNP (Research Center for Nuclear Physics), Osaka University, to discuss theory of nuclear reactions based on studies from microscopic or cluster structure viewpoints. About forty researchers participated in this work shop and 27 paperes were presented. All these papers with English abstracts are gathered in this collective report. (Aoki, K.)

  17. Isotopically enriched structural materials in nuclear devices

    Energy Technology Data Exchange (ETDEWEB)

    Morgan, L.W.G., E-mail: Lee.Morgan@ccfe.ac.uk [CCFE, Culham Science Centre, Abingdon, Oxfordshire OX14 3DB (United Kingdom); Shimwell, J. [CCFE, Culham Science Centre, Abingdon, Oxfordshire OX14 3DB (United Kingdom); Department of Physics and Astronomy, University of Sheffield, Hicks Building, Hounsfield Road, Sheffield S3 7RH (United Kingdom); Gilbert, M.R. [CCFE, Culham Science Centre, Abingdon, Oxfordshire OX14 3DB (United Kingdom)

    2015-01-15

    Highlights: • C-B analysis of isotopic enrichment of structural materials is presented. • Some, previously, prohibited elements could be used as alloying elements in LAM's. • Adding enriched molybdenum and nickel, to EUROFER, could increase availability. • Isotope enrichment for EUROFER could be cost-effective. • Isotopically enriching copper, in CuCrZr, can reduce helium production by 50%. - Abstract: A large number of materials exist which have been labeled as low activation structural materials (LAM). Most often, these materials have been designed in order to substitute-out or completely remove elements that become activated and contribute significantly to shut-down activity after being irradiated by neutrons in a reactor environment. To date, one of the fundamental principles from which LAMs have been developed is that natural elemental compositions are the building blocks of LAMs. Thus, elements such as Co, Al, Ni, Mo, Nb, N and Cu that produce long-lived decay products are significantly reduced or removed from the LAM composition. These elements have an important part to play in the composition of steels and the removal/substitution can have a negative impact on materials properties such as yield stress and fracture toughness. This paper looks in more detail at whether using isotopic selection of the more mechanically desirable, but prohibited due to activation, elements can improve matters. In particular, this paper focuses on the activation of Eurofer. Carefully chosen isotopically enriched elements, which are normally considered to be on the prohibited element list, are added to EUROFER steel as potential alloying elements. The EUROFER activation results show that some prohibited elements can be used as alloying elements in LAM steels, providing the selected isotopes do not have a significant impact on waste disposal rating or shut-down dose. The economic implications of isotopically enriching elements and the potential implications for

  18. Electronic structure of fractionally nuclear charged atoms

    International Nuclear Information System (INIS)

    Pavao, Antonio C.; Bastos, Cristiano C.; Ferreira, Joacy V.

    2008-01-01

    Different properties of quark chemistry are studied by performing accurate ab initio Hartree- Fock calculations on fractionally nuclear charged atoms. Ground and first excited states of sodium atoms with quarks attached to the nucleus are obtained using CI calculations. It is suggested that the sodium 2 P -> 2 S electronic transition can be used as a guide in searching for unconfined quarks. Also, the variation of the binding electronic energy with nuclear charge in the isoelectronic series of fractionally nuclear charged atoms A ±2/3 and A ±1/3 (A = H, Li, Na, P and Ca) is analyzed. The present calculations suggest that unconfined colored particles have large appetite for heavy nuclei and that quark-antiquark pairs could be stabilized in presence of the atomic matter. (author)

  19. Experimental test of nuclear magnetization distribution and nuclear structure models

    International Nuclear Information System (INIS)

    Beirsdorfer, P; Crespo-Lopez-Urrutia, J R; Utter, S B.

    1999-01-01

    Models exist that ascribe the nuclear magnetic fields to the presence of a single nucleon whose spin is not neutralized by pairing it up with that of another nucleon; other models assume that the generation of the magnetic field is shared among some or all nucleons throughout the nucleus. All models predict the same magnetic field external to the nucleus since this is an anchor provided by experiments. The models differ, however, in their predictions of the magnetic field arrangement within the nucleus for which no data exist. The only way to distinguish which model gives the correct description of the nucleus would be to use a probe inserted into the nucleus. The goal of our project was to develop exactly such a probe and to use it to measure fundamental nuclear quantities that have eluded experimental scrutiny. The need for accurately knowing such quantities extends far beyond nuclear physics and has ramifications in parity violation experiments on atomic traps and the testing of the standard model in elementary particle physics. Unlike scattering experiments that employ streams of free particles, our technique to probe the internal magnetic field distribution of the nucleus rests on using a single bound electron. Quantum mechanics shows that an electron in the innermost orbital surrounding the nucleus constantly dives into the nucleus and thus samples the fields that exist inside. This sampling of the nucleus usually results in only minute shifts in the electron s average orbital, which would be difficult to detect. By studying two particular energy states of the electron, we can, however, dramatically enhance the effects of the distribution of the magnetic fields in the nucleus. In fact about 2% of the energy difference between the two states, dubbed the hyperfine splitting, is determined by the effects related to the distribution of magnetic fields in the nucleus, A precise measurement of this energy difference (better than 0.01%) would then allow us to place

  20. Nuclear structure research at the Triangle Universities Nuclear Laboratory

    International Nuclear Information System (INIS)

    Mitchell, G.E.

    1992-01-01

    Studies of fundamental symmetries by the TRIPLE collaboration using the unique capabilities at LAMTF have found unexpected systematics in the parity-violating amplitudes for epithermal-neutron scattering. Tests to lower the present limits on time-reversal-invariance violation in the strong interaction are being made at in experiments on the scattering of polarized fast neutrons from aligned holmium targets. Studies of few-nucleon systems have received increasing emphasis over the past year, involving a broad program for testing the low- to medium-energy internucleon interactions, from the tensor component in n-p scattering and the n-n scattering lengths, through three-nucleon systems and the alpha particle, on up to 8 Be. Of particular interest are three-nucleon systems, both in elastic scattering and in three-body breakup. Beam requirements range from production of intense and highly-polarized neutron beams to tensor-polarized beams for measurements at both very low energies (25--80 keV) and at tandem energies for definitive measurements of D-state components of the triton, 3 He, and 4 He obtained from transfer reactions. The program in nuclear astrophysics expanded during 1991--1992. Several facets of the nuclear many-body problem and of excitation mechanisms of the nucleus are being elucidated, including measurements and analyses to elucidate the neutron--nucleus elastic-scattering interaction over a wide range of nuclei and energies. Several projects involved developments in electronuclear physics, instrumentation, rf-transition units, and low-temperature bolometric particle detectors

  1. Structured interview approach to the development of plant maintenance unavailabilities

    International Nuclear Information System (INIS)

    Fragola, J.R.; Jacobs, M.

    1986-01-01

    In a nuclear generating facility, the overall plant economics and safety suffer when a component is not available when needed. Maintenance unavailabilities provide a mechanism to predict the probability that a specific component is not available to function on demand due to maintenance. The development of these maintenance unavailabilities required a visit to an operational pressurized water reactor (PWR) nuclear facility to conduct an interview process with the plant operators who provided their insights into availability histories of the components of interest. A structured approach was developed for the extraction of downtime information from the plant operators, which was essential to ensure that the data gathered were relevant to the study and, most important, consistent within a specific component type. This process provided traceability so that it could be understood where the data originated from some years hence. In addition, it had to be reproducible providing the same steps were followed by another interviewer where the results would be consistent

  2. The nuclear technology education consortium: an innovative approach to nuclear education and training

    International Nuclear Information System (INIS)

    Roberts, Dzh.; Klark, Eh.

    2010-01-01

    The authors report on the Nuclear Technology Education Consortium (NTEC) that includes 12 UK universities and Higher Education Institutes. It was established in 2005 to provide nuclear education and training at the Masters, Diploma, Certificate and Continuing Professional Development (CPD) levels. Module and providers of the NTEC are described (all modules are available in industry-friendly short formats). Students are allowed to select from 22 different modules, taught by experts, covering all aspects of nuclear education and training. It is the acknowledgement by each partner that they cannot deliver the range of modules individually but by cooperating. The NTEC program structure is given [ru

  3. An impedance function approach for soil-structure interaction analyses including structure-to-structure interaction effects

    International Nuclear Information System (INIS)

    Gantayat, A.; Kamil, H.

    1981-01-01

    The dynamic soil-structure and structure-to-structure interaction effects may be determined in one of the two ways: by modeling the entire soil-structure system by a finite-element model, or by using a frequency-dependent (or frequency-independent) impedance function approach. In seismic design of nuclear power plant structures, the normal practice is to use the first approach because of its simplicity and easy availability of computer codes to perform such analyses. However, in the finite-element approach, because of the size and cost restrictions, the three-dimensional behavior of the entire soil-structure system and the radiation damping in soil are only approximately included by using a two-dimensional finite-element mesh. In using the impedance function approach, the soil-structure analyses can be performed in four steps: (a) determination of the dynamic properties of the fixed base superstructure, (b) determination of foundation and structure impedance matrices and input motions, (c) evaluation of foundation motion, (d) analysis of the fixed base superstructure using computed foundation motion. (orig./RW)

  4. Nuclear reactor fuel assemblies and end fitting grid structures therefor

    International Nuclear Information System (INIS)

    Jabsen, F.S.

    1978-01-01

    An improved end fitting grid structure is described for nuclear fuel assemblies which overcomes the need for load-bearing control rod guide tubes and the expensive special fittings that these tubes required. (UK)

  5. Nuclear structure notes on element 115 decay chains

    International Nuclear Information System (INIS)

    Rudolph, D.; Sarmiento, L. G.; Forsberg, U.

    2015-01-01

    Hitherto collected data on more than hundred α-decay chains stemming from element 115 are combined to probe some aspects of the underlying nuclear structure of the heaviest atomic nuclei yet created in the laboratory

  6. Nuclear structure notes on element 115 decay chains

    Energy Technology Data Exchange (ETDEWEB)

    Rudolph, D., E-mail: Dirk.Rudolph@nuclear.lu.se; Sarmiento, L. G.; Forsberg, U. [Department of Physics, Lund University, 22100 Lund (Sweden)

    2015-10-15

    Hitherto collected data on more than hundred α-decay chains stemming from element 115 are combined to probe some aspects of the underlying nuclear structure of the heaviest atomic nuclei yet created in the laboratory.

  7. Phase relations, crystal structures and physical properties of nuclear fuels

    International Nuclear Information System (INIS)

    Tagawa, Hiroaki; Fujino, Takeo; Tateno, Jun

    1975-07-01

    Phase relations, crystal structures and physical properties of the compounds for nuclear fuels are presented, including melting point, thermal expansion, diffusion and magnetic and electric properties. Emphasis is on oxides, carbides and nitrides of thorium, uranium and plutonium. (auth.)

  8. Impact of the structural changes on the nuclear safety

    International Nuclear Information System (INIS)

    Ziakova, M.

    2005-01-01

    In this presentation author deals with impact of the structural changes (privatization of the Slovenske Elektrarne, a.s.) and new Atomic law (541/2004 Coll. Laws) on the nuclear safety in the Slovak Republic.

  9. Common modelling approaches for training simulators for nuclear power plants

    International Nuclear Information System (INIS)

    1990-02-01

    Training simulators for nuclear power plant operating staff have gained increasing importance over the last twenty years. One of the recommendations of the 1983 IAEA Specialists' Meeting on Nuclear Power Plant Training Simulators in Helsinki was to organize a Co-ordinated Research Programme (CRP) on some aspects of training simulators. The goal statement was: ''To establish and maintain a common approach to modelling for nuclear training simulators based on defined training requirements''. Before adapting this goal statement, the participants considered many alternatives for defining the common aspects of training simulator models, such as the programming language used, the nature of the simulator computer system, the size of the simulation computers, the scope of simulation. The participants agreed that it was the training requirements that defined the need for a simulator, the scope of models and hence the type of computer complex that was required, the criteria for fidelity and verification, and was therefore the most appropriate basis for the commonality of modelling approaches. It should be noted that the Co-ordinated Research Programme was restricted, for a variety of reasons, to consider only a few aspects of training simulators. This report reflects these limitations, and covers only the topics considered within the scope of the programme. The information in this document is intended as an aid for operating organizations to identify possible modelling approaches for training simulators for nuclear power plants. 33 refs

  10. Some thoughts on the future of probabilistic structural design of nuclear components

    International Nuclear Information System (INIS)

    Stancampiano, P.A.

    1978-01-01

    This paper presents some views on the future role of probabilistic methods in the structural design of nuclear components. The existing deterministic design approach is discussed and compared to the probabilistic approach. Some of the objections to both deterministic and probabilistic design are listed. Extensive research and development activities are required to mature the probabilistic approach suficiently to make it cost-effective and competitive with current deterministic design practices. The required research activities deal with probabilistic methods development, more realistic casual failure mode models development, and statistical data models development. A quasi-probabilistic structural design approach is recommended which accounts for the random error in the design models. (Auth.)

  11. Ab initio nuclear structure - the large sparse matrix eigenvalue problem

    Energy Technology Data Exchange (ETDEWEB)

    Vary, James P; Maris, Pieter [Department of Physics, Iowa State University, Ames, IA, 50011 (United States); Ng, Esmond; Yang, Chao [Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Sosonkina, Masha, E-mail: jvary@iastate.ed [Scalable Computing Laboratory, Ames Laboratory, Iowa State University, Ames, IA, 50011 (United States)

    2009-07-01

    The structure and reactions of light nuclei represent fundamental and formidable challenges for microscopic theory based on realistic strong interaction potentials. Several ab initio methods have now emerged that provide nearly exact solutions for some nuclear properties. The ab initio no core shell model (NCSM) and the no core full configuration (NCFC) method, frame this quantum many-particle problem as a large sparse matrix eigenvalue problem where one evaluates the Hamiltonian matrix in a basis space consisting of many-fermion Slater determinants and then solves for a set of the lowest eigenvalues and their associated eigenvectors. The resulting eigenvectors are employed to evaluate a set of experimental quantities to test the underlying potential. For fundamental problems of interest, the matrix dimension often exceeds 10{sup 10} and the number of nonzero matrix elements may saturate available storage on present-day leadership class facilities. We survey recent results and advances in solving this large sparse matrix eigenvalue problem. We also outline the challenges that lie ahead for achieving further breakthroughs in fundamental nuclear theory using these ab initio approaches.

  12. Ab initio nuclear structure - the large sparse matrix eigenvalue problem

    International Nuclear Information System (INIS)

    Vary, James P; Maris, Pieter; Ng, Esmond; Yang, Chao; Sosonkina, Masha

    2009-01-01

    The structure and reactions of light nuclei represent fundamental and formidable challenges for microscopic theory based on realistic strong interaction potentials. Several ab initio methods have now emerged that provide nearly exact solutions for some nuclear properties. The ab initio no core shell model (NCSM) and the no core full configuration (NCFC) method, frame this quantum many-particle problem as a large sparse matrix eigenvalue problem where one evaluates the Hamiltonian matrix in a basis space consisting of many-fermion Slater determinants and then solves for a set of the lowest eigenvalues and their associated eigenvectors. The resulting eigenvectors are employed to evaluate a set of experimental quantities to test the underlying potential. For fundamental problems of interest, the matrix dimension often exceeds 10 10 and the number of nonzero matrix elements may saturate available storage on present-day leadership class facilities. We survey recent results and advances in solving this large sparse matrix eigenvalue problem. We also outline the challenges that lie ahead for achieving further breakthroughs in fundamental nuclear theory using these ab initio approaches.

  13. Overview of seismic probabilistic risk assessment for structural analysis in nuclear facilities

    International Nuclear Information System (INIS)

    Reed, J.W.

    1989-01-01

    Probabilistic Risk Assessment (PRA) for seismic events is currently being performed for nuclear and DOE facilities. The background on seismic PRA is presented along with a basic description of the method. The seismic PRA technique is applicable to other critical facilities besides nuclear plants. The different approaches for obtained structure fragility curves are discussed and their applications to structures and equipment, in general, are addressed. It is concluded that seismic PRA is a useful technique for conducting probability analysis for a wide range of classes of structures and equipment

  14. Validation of seismic soil structure interaction (SSI) methodology for a UK PWR nuclear power station

    International Nuclear Information System (INIS)

    Llambias, J.M.

    1993-01-01

    The seismic loading information for use in the seismic design of equipment and minor structures within a nuclear power plant is determined from a dynamic response analysis of the building in which they are located. This dynamic response analysis needs to capture the global response of both the building structure and adjacent soil and is commonly referred to as a soil structure interaction (SSI) analysis. NNC have developed a simple and cost effective methodology for the seismic SSI analysis of buildings in a PWR nuclear power station at a UK soft site. This paper outlines the NNC methodology and describes the approach adopted for its validation

  15. Construction of special structures for nuclear power projects

    International Nuclear Information System (INIS)

    Raghavan, N.

    2003-01-01

    Construction is a very important stage in the course of realization of Nuclear Power Projects and as much care has be devoted to this stage as to the planning and engineering stages. While the setting up of nuclear power projects used to take over seven years in the past, the time period has now been considerably reduced to about five years with advancements in construction engineering, project management and design techniques, on the basis of new initiatives from the owner agency, Nuclear Power Corporation of India. In this article, the constructional aspects of the specialized structures for nuclear power generation are looked into. (author)

  16. Hierarchical structure for risk criteria applicable to nuclear power plants

    International Nuclear Information System (INIS)

    Hall, R.E.; Mitra, S.P.

    1985-01-01

    This paper discusses the development of a hierarchical structure for risk criteria applicable to nuclear power plants. The structure provides a unified framework to systematically analyze the implications of different types of criteria, each focusing on a particular aspect of nuclear power plant risks. The framework allows investigation of the specific coverage of a particular criterion and comparison of different criteria with regard to areas to which they apply. 5 refs., 2 figs

  17. Aircraft impact on nuclear power plants concrete structures

    International Nuclear Information System (INIS)

    Coombs, R.F.; Barbosa, L.C.B.; Santos, S.H.C.

    1980-01-01

    A summary about the procedures for the analysis of aircraft on concrete structures, aiming to emphasize the aspects related to the nuclear power plants safety, is presented. The impact force is determined by the Riera model. The effect of this impact force on the concrete structures is presented, showing the advantages to use nonlinear behaviour in the concrete submitted to short loads. The simplifications used are shown through a verification example of the nuclear reactor concrete shielding. (E.G.) [pt

  18. The structure of the nuclear industry

    International Nuclear Information System (INIS)

    Leaist, G.T.; Morisette, E.F.

    1981-01-01

    Since 1952, when Canadians began to study the application of reactors to power generation, the CANDU reactor design and the manufacturing and and engineering capability supporting it have evolved into a world-class technology. At present, Atomic Energy of Canada Ltd. works directly with provincial electrical utilities in developing their power reactor requirements. It assumes responsibility for the detailed design of the nuclear steam supply system of stations, undertakes some procurement activities, and may represent the utilities in licensing applications. The detailed design and supply of components for the remainder of the nuclear steam plant, as well as for the secondary plant, are provided in Ontario by Ontario Hydro together with manufacturers, and in Quebec and New Brunswick by private firms. Canadian utilities have always assumed the project managment function themselves, but with export sales AECL has taken turnkey responsiblity for either the nuclear steam plant or the complete power station. AECL owns design specifications and other documentation, the use of which it can license, but manufacturing technology resides with Canadian industry. Canadian manufacturers have supported AECL design licensing initiatives overseas. The Canadian nuclear industry's major problem is the current lack of a vigorous domestic market combined with an uncertain international one

  19. Nuclear structure and double beta decay

    International Nuclear Information System (INIS)

    Vogel, P.

    1988-01-01

    Double beta decay is a rare transition between two nuclei of the same mass number A involving a change of the nuclear charge Z by two units. It has long been recognized that the Oν mode of double beta decay, where two electrons and no neutrinos are emitted, is a powerful tool for the study of neutrino properties. Its observation would constitute a convincing proof that there exists a massive Majorana neutrino which couples to electrons. Double beta decay is a process involving an intricate mixture of particle physics and physics of the nucleus. The principal nuclear physics issues have to do with the evaluation of the nuclear matrix elements responsible for the decay. If the authors wish to arrive at quantitative answers for the neutrino properties the authors have no choice but to learn first how to understand the nuclear mechanisms. The authors describe first the calculation of the decay rate of the 2ν mode of double beta decay, in which two electrons and two antineutrinos are emitted

  20. Nuclear Structures Surrounding Internal Lamin Invaginations

    Czech Academy of Sciences Publication Activity Database

    Legartová, Soňa; Stixová, Lenka; Laur, O.; Kozubek, Stanislav; Sehnalová, Petra; Bártová, Eva

    2014-01-01

    Roč. 115, č. 3 (2014), s. 476-487 ISSN 0730-2312 R&D Projects: GA MŠk(CZ) LD11020 Institutional support: RVO:68081707 Keywords : LAMINS * NUCLEAR PORES * CHROMATIN Subject RIV: BO - Biophysics Impact factor: 3.263, year: 2014

  1. Report on aging of nuclear power plant reinforced concrete structures

    International Nuclear Information System (INIS)

    Naus, D.J.; Oland, C.B.; Ellingwood, B.R.

    1996-03-01

    The Structural Aging Program provides the US Nuclear Regulatory Commission with potential structural safety issues and acceptance criteria for use in continued service assessments of nuclear power plant safety-related concrete structures. The program was organized under four task areas: Program Management, Materials Property Data Base, Structural Component Assessment/Repair Technology, and Quantitative Methodology for Continued Service Determinations. Under these tasks, over 90 papers and reports were prepared addressing pertinent aspects associated with aging management of nuclear power plant reinforced concrete structures. Contained in this report is a summary of program results in the form of information related to longevity of nuclear power plant reinforced concrete structures, a Structural Materials Information Center presenting data and information on the time variation of concrete materials under the influence of environmental stressors and aging factors, in-service inspection and condition assessments techniques, repair materials and methods, evaluation of nuclear power plant reinforced concrete structures, and a reliability-based methodology for current and future condition assessments. Recommendations for future activities are also provided. 308 refs., 61 figs., 50 tabs

  2. Report on aging of nuclear power plant reinforced concrete structures

    Energy Technology Data Exchange (ETDEWEB)

    Naus, D.J.; Oland, C.B. [Oak Ridge National Lab., TN (United States); Ellingwood, B.R. [Johns Hopkins Univ., Baltimore, MD (United States). Dept. of Civil Engineering

    1996-03-01

    The Structural Aging Program provides the US Nuclear Regulatory Commission with potential structural safety issues and acceptance criteria for use in continued service assessments of nuclear power plant safety-related concrete structures. The program was organized under four task areas: Program Management, Materials Property Data Base, Structural Component Assessment/Repair Technology, and Quantitative Methodology for Continued Service Determinations. Under these tasks, over 90 papers and reports were prepared addressing pertinent aspects associated with aging management of nuclear power plant reinforced concrete structures. Contained in this report is a summary of program results in the form of information related to longevity of nuclear power plant reinforced concrete structures, a Structural Materials Information Center presenting data and information on the time variation of concrete materials under the influence of environmental stressors and aging factors, in-service inspection and condition assessments techniques, repair materials and methods, evaluation of nuclear power plant reinforced concrete structures, and a reliability-based methodology for current and future condition assessments. Recommendations for future activities are also provided. 308 refs., 61 figs., 50 tabs.

  3. Ageing evaluation model of nuclear reactors structural elements

    International Nuclear Information System (INIS)

    Ziliukas, A.; Jutas, A.; Leisis, V.

    2002-01-01

    In this article the estimation of non-failure probability by random faults on the structural elements of nuclear reactors is presented. Ageing is certainly a significant factor in determining the limits of nuclear plant lifetime or life extensions. Usually the non failure probability rates failure intensity, which is characteristic for structural elements ageing in nuclear reactors. In practice the reliability is increased incorrectly because not all failures are fixed and cumulated. Therefore, the methodology with using the fine parameter of the failures flow is described. The comparison of non failure probability and failures flow is carried out. The calculation of these parameters in the practical example is shown too. (author)

  4. Overturning behaviour of nuclear power plant structures during earthquakes

    International Nuclear Information System (INIS)

    Dalal, J.S.; Perumalswami, P.R.

    1977-01-01

    Nuclear power plant structures are designed to withstand severe postulated seismic forces. Structures subjected to such forces may be found to ''overturn'', if the factor of safety is computed in the traditional way, treating these forces as static. This study considers the transient nature of the problem and draws distinction between rocking, tipping and overturning. Responses of typical nuclear power plant structures to earthquake motions are used to assess their overturning potential more realistically. Structures founded on both rock and soil are considered. It is demonstrated that the traditional factor of safety, when smaller than unity, indicates only minimal base rotations and not necessarily overturning. (auth.)

  5. performance-based approach to design and evaluation of nuclear security systems for Brazilian nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    Tavares, Renato L. A.; Filho, Josélio S. M., E-mail: renato.tavares@cnen.gov.br, E-mail: joselio@cnen.gov.br [Comissão Nacional de Energia Nuclear (CNEN), Rio de Janeiro, RJ (Brazil). Diretoria de Radioproteção e Segurança Nuclear. Divisão de Normas e Segurança Física; Fontes, Gladson S.; Fiel, J.C.B., E-mail: gsfontes@hotmail.com, E-mail: fiel@ime.eb.br [Instituto Militar de Engenharia (SE-7/IME), Rio de Janeiro, RJ (Brazil). Seção de Engenharia Nuclear

    2017-07-01

    This study presents an application of a performance-based approach to definition of requirements, design and evaluation of physical protection systems for nuclear facilities. Such approach considers a probabilistic analysis of the threat, equipment, systems and response forces used to prevent, dissuade and detain malicious acts against the integrity of facilities and the nuclear materials inside them. Nowadays, in the context of Brazilian nuclear facilities licensing, a mostly prescriptive approach is adopted, which despite having advantages such as simplified inspections and homogeneous regulatory requisites amid different fuel cycle facility types, does not consider evolution, dynamism and capacities of external or internal threats to facilities and to Brazilian Nuclear Program itself, neither provides metrics to evaluate system performance facing such threats. In order to preserve actual plans and systems confidentiality, a facility hypothetical model is created, including a research reactor and a waste storage facility. It is expected that the methodology and results obtained in this study serve in the future as a basis to Brazilian nuclear operators, in elaboration process of their Physical Protection Plans, which must comply with future regulation CNEN-NN 2.01, a revision of CNEN-NE 2.01, once that regulation will include performance requisites. (author)

  6. performance-based approach to design and evaluation of nuclear security systems for Brazilian nuclear facilities

    International Nuclear Information System (INIS)

    Tavares, Renato L. A.; Filho, Josélio S. M.; Fontes, Gladson S.; Fiel, J.C.B.

    2017-01-01

    This study presents an application of a performance-based approach to definition of requirements, design and evaluation of physical protection systems for nuclear facilities. Such approach considers a probabilistic analysis of the threat, equipment, systems and response forces used to prevent, dissuade and detain malicious acts against the integrity of facilities and the nuclear materials inside them. Nowadays, in the context of Brazilian nuclear facilities licensing, a mostly prescriptive approach is adopted, which despite having advantages such as simplified inspections and homogeneous regulatory requisites amid different fuel cycle facility types, does not consider evolution, dynamism and capacities of external or internal threats to facilities and to Brazilian Nuclear Program itself, neither provides metrics to evaluate system performance facing such threats. In order to preserve actual plans and systems confidentiality, a facility hypothetical model is created, including a research reactor and a waste storage facility. It is expected that the methodology and results obtained in this study serve in the future as a basis to Brazilian nuclear operators, in elaboration process of their Physical Protection Plans, which must comply with future regulation CNEN-NN 2.01, a revision of CNEN-NE 2.01, once that regulation will include performance requisites. (author)

  7. Approach on origin management of nuclear materials at KAERI

    International Nuclear Information System (INIS)

    Kim, Hyun-Jo; Lee, Sung-Ho; Lee, Byung-Doo; Kim, In-Chul; Kim, Hyun-Sook; Jung, Juang

    2017-01-01

    This paper describes the current origin management approach and reviews the requirement to be reflected to meet the bilateral agreements. KAERI developed the origin management system to efficiently and effectively manage the origin information. The system is connected with KASIS to share the information on the inventory changes of nuclear material. After development of the system, however, the new concept of obligated nuclear material is introduced according to the amended ROK-US agreement. Also, the origin management system based on IAEA accounting reports needs to revise to include the nuclear material exempted from safeguards. Therefore KAERI will improve the origin management system to meet the requirement of bilateral agreements and NSSC notice to be revised.

  8. The terrorist threat nuclear, radiological, biological, chemical - a medical approach

    International Nuclear Information System (INIS)

    Revel, M.C. de; Gourmelon, M.C.S.; Vidal, P.C.; Renaudeau, P.C.S.

    2005-01-01

    Since September 11, 2001, the fear of a large scale nuclear, biological and/or chemical terrorism is taken again into consideration at the highest level of national policies of risk prevention. The advent of international terrorism implies a cooperation between the military defense and the civil defense. The nuclear, radiological, biological and chemical (NRBC) experts of the health service of army and of civil defense will have to work together in case of major terror attack. This book presents this cooperation between civil and military experts in the NRBC domain: risk analysis, national defense plans, crisis management, syndromes and treatments. The different aspects linked with the use of nuclear, biological and chemical weapons are analyzed by the best experts from French medical and research institutes. All topics of each NRBC domain are approached: historical, basic, diagnostic, therapeutic and preventive. (J.S.)

  9. Sustainable multilateral nuclear fuel cycle framework. (2) Models for multilateral nuclear fuel cycle approach

    International Nuclear Information System (INIS)

    Adachi, T; Tanaka, S; Tazaki, M; Akiba, M; Takashima, R; Kuno, Y

    2011-01-01

    To construct suitable models for a reliable and sustainable international/regional framework in the fields of nuclear fuel cycle, it is essential to reflect recent political situations including such that 1) a certain number of emerging countries especially in south-east Asia want to introduce and develop nuclear power in the long-terms despite the accident of the Fukushima Daiichi NPP, and 2) exposition of nuclear proliferation threats provided by North Korea and Iran. It is also to be considered that Japan is an unique country having enrichment and reprocessing facilities on commercial base among non-nuclear weapon countries. Although many models presented for the internationalization have not been realized yet, studies at the University of Tokyo aim at multilateral nuclear approach (MNA) in Asian-Pacific countries balancing between nuclear non-proliferation and nuclear fuel supply/service and presenting specific examples such as prerequisites for participating countries, scope of cooperative activities, ownership of facilities and type of agreements/frameworks. We will present a model basic agreement and several bilateral and multi-lateral agreements for the combinations of industry or government led consortia including Japan and its neighboring countries and made a preliminary evaluation for the combination of processes/facilities based on the INFCIRC/640 report for MNA. (author)

  10. Optimization approaches for treating nuclear power plant problems

    International Nuclear Information System (INIS)

    Abdelgoad, A.S.A.

    2012-01-01

    Electricity generation is the process of generating electric energy from other forms of energy. There are many technologies that can be and are used to generate electricity. One of these technologies is the nuclear power. A nuclear power plant (NPP) is a thermal power station in which the heat source is one or more nuclear reactors. As in a conventional thermal power station the heat is used to generate steam which drives a steam turbine connected to a generator which produces electricity. As of February 2nd, 2012, there were 439 nuclear power plants in operation through the world. NPP are usually considered to be base load stations, which are best suited to constant power output. The thesis consists of five chapters: Chapter I presents a survey on some important concepts of the NPP problems. Chapter II introduces the economic future of nuclear power. It presents nuclear energy scenarios beyond 2015, market potential for electricity generation to 2030 and economics of new plant construction. Chapter III presents a reliability centered problem of power plant preventive maintenance scheduling. NPP preventive maintenance scheduling problem with fuzzy parameters in the constraints is solved. A case study is provided to demonstrate the efficiency of proposed model. A comparison study between the deterministic case and fuzzy case for the problem of concern is carried out. Chapter IV introduces a fuzzy approach to the generation expansion planning problem (GEP) in a multiobjective environment. The GEP problem as an integer programming model with fuzzy parameters in the constraints is formulated. A parametric study is carried out for the GEP problem. A case study is provided to demonstrate the efficiency of our proposed model. A comparison study between our approach and the deterministic one is made. Chapter V is concerned with the conclusions arrived in carrying out this thesis and gives some suggestions for further research.

  11. A New Approach for Nuclear Data Covariance and Sensitivity Generation

    International Nuclear Information System (INIS)

    Leal, L.C.; Larson, N.M.; Derrien, H.; Kawano, T.; Chadwick, M.B.

    2005-01-01

    Covariance data are required to correctly assess uncertainties in design parameters in nuclear applications. The error estimation of calculated quantities relies on the nuclear data uncertainty information available in the basic nuclear data libraries, such as the U.S. Evaluated Nuclear Data File, ENDF/B. The uncertainty files in the ENDF/B library are obtained from the analysis of experimental data and are stored as variance and covariance data. The computer code SAMMY is used in the analysis of the experimental data in the resolved and unresolved resonance energy regions. The data fitting of cross sections is based on generalized least-squares formalism (Bayes' theory) together with the resonance formalism described by R-matrix theory. Two approaches are used in SAMMY for the generation of resonance-parameter covariance data. In the evaluation process SAMMY generates a set of resonance parameters that fit the data, and, in addition, it also provides the resonance-parameter covariances. For existing resonance-parameter evaluations where no resonance-parameter covariance data are available, the alternative is to use an approach called the 'retroactive' resonance-parameter covariance generation. In the high-energy region the methodology for generating covariance data consists of least-squares fitting and model parameter adjustment. The least-squares fitting method calculates covariances directly from experimental data. The parameter adjustment method employs a nuclear model calculation such as the optical model and the Hauser-Feshbach model, and estimates a covariance for the nuclear model parameters. In this paper we describe the application of the retroactive method and the parameter adjustment method to generate covariance data for the gadolinium isotopes

  12. Nuclear structure investigations on spherical nuclei

    International Nuclear Information System (INIS)

    Heisenberg, J.; Calarco, J.; Dawson, J.; Hersman, F.W.

    1989-09-01

    This report discusses the following topics: electron scattering studies on spherical nuclei; electron scattering from collective states in deformed nuclei; proton and pion scattering studies; 12 C(e,e'p) and 16 O(e,e'p); 12 C(e,e'α) and 16 O(e,e'α); studies at high q at Bates; measurements with rvec e at Bates; 12 C(γ,p); future directions in giant resonance studies; proton knockout from 16 O; quasielastic studies at Bates; triple coincidence studies of nuclear correlations; contributions to (e,e'2p) at KIKHEF; contributions to instrumentation at CEBAF; instrumentation development at UNH; the Bates large acceptance spectrometer toroid; shell model and core polarization calculations; and the relativistic nuclear model

  13. The nuclear structure and low-energy reactions (NSLER) collaboration

    International Nuclear Information System (INIS)

    Dean, D J

    2006-01-01

    The long-term vision of the Nuclear Structure and Low-Energy Reactions (NSLER) collaboration is to arrive at a comprehensive and unified description of nuclei and their reactions that is grounded in the interactions between the constituent nucleons. For this purpose, we will develop a universal energy density functional for nuclei and replace current phenomenological models of nuclear structure and reactions with a well-founded microscopic theory that will deliver maximum predictive power with minimal uncertainties that are well quantified. Nuclear structure and reactions play an essential role in the science to be investigated at rare isotope facilities, and in nuclear physics applications to the Science-Based Stockpile Stewardship Program, next-generation reactors, and threat reduction. We anticipate an expansion of the computational techniques and methods we currently employ, and developments of new treatments, to take advantage of petascale architectures and demonstrate the capability of the leadership class machines to deliver new science heretofore impossible

  14. Quantum field theory and nuclear structure

    International Nuclear Information System (INIS)

    Celenza, L.S.; Goulard, B.; Shakin, C.M.

    1981-01-01

    We discuss recent successful calculations of the properties of nuclear matter within the context of theories exhibiting mass generation through spontaneous symmetry breaking. We start with the sigma model of Gell-Mann and Levy and introduce the nucleon mass (in a vacuum) in the usual manner. We relate the expectation value of the sigma field in a vacuum to a finite value of the scalar density. If the vacuum is now filled with nucleons (nuclear matter) the scalar density is increased and the new value for the nucleon mass must be determined. We exhibit the equation whose solution determines the new mass, and we also define a perturbative scheme for the determination of this mass. This scheme involves an expansion of the various quantities of the theory in terms of matrix elements calculated with positive- and negative-energy spinors parametrized with the vacuum mass. Although the decrease in the mass upon going from vacuum to nuclear matter at the equilibrium density is quite large (approx.400 MeV), we are still able to exhibit a small parameter which allows for a perturbative expansion of the binding energy and other observables. The leading term in such an expansion reproduces the approximation widely used in other calculations of the properties of nuclear matter. The truncation of the expansion at the leading term is inadequate and this fact accounts for the lack of success in previous calculations using the standard formalism. We proceed to make a transformation to the Weinberg Lagrangian retaining the fluctuating parts of the sigma field. We further make a small-oscillation approximation, dropping the nonlinear terms in this Lagrangian

  15. Structural integrity evaluation of nuclear piping cracket

    International Nuclear Information System (INIS)

    Cadiz Deleito, J.C.

    1985-01-01

    The methodology to evaluation of cracks in nuclear piping is exposed. Linear elastic fracture mechanic is used to prediction of growing crack and the net section collapse theory compared with acceptation criteria of both ASME III and ASME XI code. A case allowable under ASME XI criteria is analysed under ASME III requirements. Consideration must be given to local phenomenon in crack area and local stress evaluated and compared with ASME III acceptation criteria. (author)

  16. Medium energy probes and nuclear structure

    International Nuclear Information System (INIS)

    Ginocchio, J.N.

    1984-01-01

    In this paper we explore two topics. The first topic is the marriage of medium energy reaction theory with the interacting boson model of nuclei in such a way that the multiple scattering is summed to all orders. The second topic is an exactly solvable potential model which gives realistic shell model eigenfunctions which can be used to calculate static and transition nuclear densities. (orig./HSI)

  17. Statistical significance of theoretical predictions: A new dimension in nuclear structure theories (I)

    International Nuclear Information System (INIS)

    DUDEK, J; SZPAK, B; FORNAL, B; PORQUET, M-G

    2011-01-01

    In this and the follow-up article we briefly discuss what we believe represents one of the most serious problems in contemporary nuclear structure: the question of statistical significance of parametrizations of nuclear microscopic Hamiltonians and the implied predictive power of the underlying theories. In the present Part I, we introduce the main lines of reasoning of the so-called Inverse Problem Theory, an important sub-field in the contemporary Applied Mathematics, here illustrated on the example of the Nuclear Mean-Field Approach.

  18. Atomic parity nonconservation: Electroweak parameters and nuclear structure

    International Nuclear Information System (INIS)

    Pollock, S.J.; Fortson, E.N.; Wilets, L.

    1992-01-01

    There have been suggestions to measure atomic parity nonconservation (PNC) along an isotopic chain, by taking ratios of observables in order to cancel complicated atomic-structure effects. Precise atomic PNC measurements could make a significant contribution to tests of the standard model at the level of one-loop radiative corrections. However, the results also depend upon certain features of nuclear structure, such as the spatial distribution of neutrons in the nucleus. To examine the sensitivity to nuclear structure, we consider the case of Pb isotopes using various recent relativistic and nonrelativistic nuclear model calculations. Contributions from nucleon internal weak structure are included, but found to be fairly negligible. The spread among present models in predicted sizes of nuclear-structure effects may preclude using Pb isotope ratios to test the standard model at better than a 1% level, unless there are adequate independent tests of the nuclear models by various alternative strong and electroweak nuclear probes. On the other hand, sufficiently accurate atomic PNC experiments would provide a unique method to measure neutron distributions in heavy nuclei

  19. Structural integrity monitoring of critical components in nuclear facilities

    International Nuclear Information System (INIS)

    Roth, Maria; Constantinescu, Dan Mihai; Brad, Sebastian; Ducu, Catalin; Malinovschi, Viorel

    2007-01-01

    Full text: The paper presents the results obtained as part of the Project 'Integrated Network for Structural Integrity Monitoring of Critical Components in Nuclear Facilities', RIMIS, a research work underway within the framework of the Ministry of Education and Research Programme 'Research of Excellence'. The main objective of the Project is to constitute a network integrating the national R and D institutes with preoccupations in the structural integrity assessment of critical components in the nuclear facilities operating in Romania, in order to elaborate a specific procedure for this field. The degradation mechanisms of the structural materials used in the CANDU type reactors, operated by Unit 1 and Unit 2 at Cernavoda (pressure tubes, fuel elements sheaths, steam generator tubing) and in the nuclear facilities relating to reactors of this type as, for instance, the Hydrogen Isotopes Separation facility, will be investigated. The development of a flexible procedure will offer the opportunity to extend the applications to other structural materials used in the nuclear field and in the non-nuclear fields as well, in cooperation with other institutes involved in the developed network. The expected results of the project will allow the integration of the network developed at national level in the structures of similar networks operating within the EU, the enhancement of the scientific importance of Romanian R and D organizations as well as the increase of our country's contribution in solving the major issues of the nuclear field. (authors)

  20. Nuclear reactor structural material forming less radioactive corrosion product

    International Nuclear Information System (INIS)

    Nakazawa, Hiroshi.

    1988-01-01

    Purpose: To provide nuclear reactor structural materials forming less radioactive corrosion products. Constitution: Ni-based alloys such as inconel alloy 718, 600 or inconel alloy 750 and 690 having excellent corrosion resistance and mechanical property even in coolants at high temperature and high pressure have generally been used as nuclear reactor structural materials. However, even such materials yield corrosion products being attacked by coolants circulating in the nuclear reactor, which produce by neutron irradiation radioactive corrosion products, that are deposited in primary circuit pipeways to constitute exposure sources. The present invention dissolves dissolves this problems by providing less activating nuclear reactor structural materials. That is, taking notice on the fact that Ni-58 contained generally by 68 % in Ni changes into Co-58 under irradiation of neutron thereby causing activation, the surface of nuclear reactor structural materials is applied with Ni plating by using Ni with a reduced content of Ni-58 isotopes. Accordingly, increase in the radiation level of the nuclear reactor structural materials can be inhibited. (K.M.)

  1. Nuclear shapes and nuclear structure at low excitation energies. Abstracts of contributed papers

    International Nuclear Information System (INIS)

    Dykstra, F.; Goutte, D.; Sauvage, J.; Vergnes, M.

    1994-01-01

    103 papers are presented on recent theoretical and experimental results on nuclear structure investigation. Short communications were published in this volume, all of which were indexed separately for the INIS database. (R.P.)

  2. Soft systems methodology as a systemic approach to nuclear safety management

    Energy Technology Data Exchange (ETDEWEB)

    Vieira Neto, Antonio S.; Guilhen, Sabine N.; Rubin, Gerson A.; Caldeira Filho, Jose S.; Camargo, Iara M.C., E-mail: asvneto@ipen.br, E-mail: snguilhen@ipen.br, E-mail: garubin@ipen.br, E-mail: jscaldeira@ipen.br, E-mail: icamargo@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNE-SP), Sao Paulo, SP (Brazil)

    2017-07-01

    Safety approach currently adopted by nuclear installations is built almost exclusively upon analytical methodologies based, mainly, on the belief that the properties of a system, such as its safety, are given by its constituent parts. This approach, however, does not properly address the complex dynamic interactions between technical, human and organizational factors occurring within and outside the organization. After the accident at Fukushima Daiichi nuclear power plant in March 2011, experts of the International Atomic Energy Agency (IAEA) recommended a systemic approach as a complementary perspective to nuclear safety. The aim of this paper is to present an overview of the systems thinking approach and its potential use for structuring socio technical problems involved in the safety of nuclear installations, highlighting the methodologies related to the soft systems thinking, in particular the Soft Systems Methodology (SSM). The implementation of a systemic approach may thus result in a more holistic picture of the system by the complex dynamic interactions between technical, human and organizational factors. (author)

  3. Soft systems methodology as a systemic approach to nuclear safety management

    International Nuclear Information System (INIS)

    Vieira Neto, Antonio S.; Guilhen, Sabine N.; Rubin, Gerson A.; Caldeira Filho, Jose S.; Camargo, Iara M.C.

    2017-01-01

    Safety approach currently adopted by nuclear installations is built almost exclusively upon analytical methodologies based, mainly, on the belief that the properties of a system, such as its safety, are given by its constituent parts. This approach, however, does not properly address the complex dynamic interactions between technical, human and organizational factors occurring within and outside the organization. After the accident at Fukushima Daiichi nuclear power plant in March 2011, experts of the International Atomic Energy Agency (IAEA) recommended a systemic approach as a complementary perspective to nuclear safety. The aim of this paper is to present an overview of the systems thinking approach and its potential use for structuring socio technical problems involved in the safety of nuclear installations, highlighting the methodologies related to the soft systems thinking, in particular the Soft Systems Methodology (SSM). The implementation of a systemic approach may thus result in a more holistic picture of the system by the complex dynamic interactions between technical, human and organizational factors. (author)

  4. Nuclear structure studies towards superheavy elements and perspectives with AGATA

    International Nuclear Information System (INIS)

    Korichi, A.

    2005-01-01

    A variety of theoretical approaches have been used to calculate the shell closure of spherical Super Heavy Elements (SHE) but the predictions of the location of the 'island of stability' vary from Z=114 to 120 and 126, with neutron numbers around N=172 or N=184 depending on the model employed. A deformed minimum around Z=108 and N=162 is predicted and an increase of the half-life of Hassium (Z=108) is experimentally observed when approaching the neutron number N=162. Super heavy nuclei are produced with very low cross-section (a few picobarns) and this makes their spectroscopic study impossible with today's beam intensities and detectors. However, important information can be obtained from the structure of mid-shell deformed nuclei (Z∼104) where selected single particle orbitals, which lie close to the spherical shell gap in SHE, are close to the Fermi level. The information will come from decay and in-beam spectroscopy. A promising area of progress, using the state-of-the art instruments, is represented by the observation of rotational gamma-ray transitions in No and Fm isotopes showing the deformed character of these nuclei. One of the objectives and focus of the nuclear structure community is related to the investigation of Single particle excitations beyond the N=152 neutron gap and collective properties of heavier systems towards Z∼104. The IN2P3-JINR collaboration has launched a project of electron and gamma-ray spectroscopy studies of heavy nuclei at the FLNR. This project benefits from the radioactive actinide targets uniquely available at Dubna and from the very intense stable beams provided by the U400 cyclotron. This offers a unique opportunity for the study of nuclei above Z=100 along an isotopic chain approaching N=162. In this contribution, the emphasis will be on the GABRIELA project and its issues. I will finally point out the perspectives with the new generation of gamma detectors such as AGATA

  5. Alternative Measuring Approaches in Gamma Scanning on Spent Nuclear Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Sihm Kvenangen, Karen

    2007-06-15

    In the future, the demand for energy is predicted to grow and more countries plan to utilize nuclear energy as their source of electric energy. This gives rise to many important issues connected to nuclear energy, such as finding methods that can verify that the spent nuclear fuel has been handled safely and used in ordinary power producing cycles as stated by the operators. Gamma ray spectroscopy is one method used for identification and verification of spent nuclear fuel. In the specific gamma ray spectroscopy method called gamma scanning the gamma radiation from the fission products Cs-137, Cs-134 and Eu-154 are measured in a spent fuel assembly. From the results, conclusions can be drawn about the fuels characteristics. This degree project examines the possibilities of using alternative measuring approaches when using the gamma scanning method. The focus is on examining how to increase the quality of the measured data. How to decrease the measuring time as compared with the present measuring strategy, has also been investigated. The main part of the study comprises computer simulations of gamma scanning measurements. The simulations have been validated with actual measurements on spent nuclear fuel at the central interim storage, Clab. The results show that concerning the quality of the measuring data the conventional strategy is preferable, but with other starting positions and with a more optimized equipment. When focusing on the time aspect, the helical measuring strategy can be an option, but this needs further investigation.

  6. Alternative Measuring Approaches in Gamma Scanning on Spent Nuclear Fuel

    International Nuclear Information System (INIS)

    Sihm Kvenangen, Karen

    2007-06-01

    In the future, the demand for energy is predicted to grow and more countries plan to utilize nuclear energy as their source of electric energy. This gives rise to many important issues connected to nuclear energy, such as finding methods that can verify that the spent nuclear fuel has been handled safely and used in ordinary power producing cycles as stated by the operators. Gamma ray spectroscopy is one method used for identification and verification of spent nuclear fuel. In the specific gamma ray spectroscopy method called gamma scanning the gamma radiation from the fission products Cs-137, Cs-134 and Eu-154 are measured in a spent fuel assembly. From the results, conclusions can be drawn about the fuels characteristics. This degree project examines the possibilities of using alternative measuring approaches when using the gamma scanning method. The focus is on examining how to increase the quality of the measured data. How to decrease the measuring time as compared with the present measuring strategy, has also been investigated. The main part of the study comprises computer simulations of gamma scanning measurements. The simulations have been validated with actual measurements on spent nuclear fuel at the central interim storage, Clab. The results show that concerning the quality of the measuring data the conventional strategy is preferable, but with other starting positions and with a more optimized equipment. When focusing on the time aspect, the helical measuring strategy can be an option, but this needs further investigation

  7. Rules for design of nuclear graphite core components - some considerations and approaches

    International Nuclear Information System (INIS)

    Svalbonas, V.; Stilwell, T.C.; Zudans, Z.

    1978-01-01

    The use of graphite as a structural element presents unusual problems both for the designer and stress analysist. When the structure happens to be a nuclear reactor core, these problems are significantly magnified both by the environment and the attendant safety requirements. In the high temperature gas reactor (HTGR) core a large number of elements are constructed of nuclear graphite. This paper discusses the attendant difficulties, and presents some approaches, for ASME code safety-consistent design and analysis. The statistical scatter of material properties, which complicates even the definitions of allowable stress, as well as the brittle, anisotropic, inhomogeneous nature of the graphite was considered. The study of this subject was undertaken under contract to the U.S. Nuclear Regulatory Commission. (Auth.)

  8. International symposium on exotic nuclear structures. Book of abstracst

    International Nuclear Information System (INIS)

    2000-01-01

    The following topics were discussed at the meeting: Physics of weakly bound nuclei, neutron skin and halo; Evolution of shell structures for neutron-rich nuclei; Collective excitations in nuclei with exotic nuclear shapes; Cluster structures; Super- and hyperdeformed nuclei, exotic structures in the actinides; Superheavy elements; Towards understanding the structure of nucleons; New experimental techniques, facilities for radioactive beams. All abstracts (75 items) were submitted as full text to the INIS database. (R.P.)

  9. Investigations of nuclear structure and nuclear reactions induced by complex projectiles

    International Nuclear Information System (INIS)

    Sarantites, D.G.

    1991-01-01

    The research program of our group touches five areas of nuclear physics: (1) Nuclear structure studies at high spin; (2) Studies at the interface between structure and reactions; (3) Production and study of hot nuclei; (4) Incomplete fusion and fragmentation reactions; and (5) Development and use of novel techniques and instrumentation in the above areas of research. The papers from these areas are discussed in this report

  10. A utilization of fuzzy control for design automation of nuclear structures

    International Nuclear Information System (INIS)

    Yoshimura, Shinobu; Yagawa, Genki; Mochizuki, Yoshihiko

    1991-01-01

    This paper describes an automated design of nuclear structures by means of some artificial intelligence techniques. The 'generate and test' strategy is adopted as a basic strategy of design. An empirical approach with the fuzzy control is introduced for efficient design modification. This system is applied to the design of some 2D models of the fusion first wall. (author)

  11. Nuclear structure at high-spin and large-deformation

    International Nuclear Information System (INIS)

    Shimizu, Yoshifumi R.

    2000-01-01

    Atomic nucleus is a finite quantal system and shows various marvelous features. One of the purposes of the nuclear structure study is to understand such features from a microscopic viewpoint of nuclear many-body problem. Recently, it is becoming possible to explore nuclear states under 'extreme conditions', which are far different from the usual ground states of stable nuclei, and new aspects of such unstable nuclei attract our interests. In this lecture, I would like to discuss the nuclear structure in the limit of rapid rotation, or the extreme states with very large angular momenta, which became accessible by recent advent of large arrays of gamma-ray detecting system; these devices are extremely useful to measure coincident multiple γ-rays following heavy-ion fusion reactions. Including such experimental aspects as how to detect the nuclear rotational states, I review physics of high-spin states starting from the elementary subjects of nuclear structure study. In would like also to discuss the extreme states with very large nuclear deformation, which are easily realized in rapidly rotating nuclei. (author)

  12. Fire protection for nuclear power plants. Part 1. Fundamental approaches. Version 6/99

    International Nuclear Information System (INIS)

    1999-06-01

    The KTA nuclear safety code sets out the fundamental approaches and principles for the prevention of fires in nuclear power plants, addressing aspects such as initiation, spreading, and effects of a fire: (a) Fire load and ignition sources, (b) structural and plant engineering conditions, (c) ways and means relating to fire call and fire fighting. Relevant technical and organisational measures are defined. Scope and quality of fire prevention measures to be taken, as well the relevant in-service inspection activities are determined according to the protective goals pursued in each case. (orig./CB) [de

  13. Safe management of nuclear energy. An interdisciplinary systemic approach

    International Nuclear Information System (INIS)

    Dreimanis, Andrejs

    2008-01-01

    The worldwide use of nuclear energy and emergence of a threat to the global security demand to develop innovative approaches to ensure global safety. There is proposed a possible approach to solve education, social communication and decision making issues, with the aim to gain public confidence in the safety of novel nuclear projects. The approach is based on societal optimization of nuclear activities to be realized in an extended environment - a multitude of physical, ecological, economic, socio-cultural, psychological. A basic criterion for societal optimization - the principle of requisite variety whereby the inherent variety of a society/community should exceed the environmental variety. The basic parameter of societal optimization - stakeholder awareness level. As a primary source of growth of human/communities inherent variety is considered information and its organized form - knowledge. The basic ways to increase the internal variety are proposed to be stakeholder involvement, their education and mutual interactions. This increase results in activation of mutual interactions between stakeholders, increasing their knowledge mutual understanding level. Public education, social learning, risk communication, the use of mass media internet is treated informational self-organization processes. Forming a knowledge-creating community capable to use novel communication and knowledge management forms. Multi-level confidence building at: 1) the global level, via United Nations activities, 2) regional level - the Euratom actions, 3) national level - is considered. (author)

  14. Grid structure for nuclear reactor fuel assembly

    International Nuclear Information System (INIS)

    Wachter, W.J.; Akey, J.G.

    1975-01-01

    Described is a nuclear fuel element support system comprising an egg-crate-type grid made up of slotted vertical portions interconnected at right angles to each other, the vertical portions being interconnected by means of cross straps which are dimpled midway between their ends to engage fuel elements disposed within openings formed in the egg-crate assembly. The cross straps are disposed at an angle, other than a right angle, to the vertical portions of the assembly whereby their lengths are increased for a given span, and the total elastic deflection capability of the cell is increased. The assembly is particularly adapted for computer design and automated machine tool fabrication

  15. Romanian network for structural integrity assessment of nuclear components

    International Nuclear Information System (INIS)

    Roth, Maria; Constantinescu, Dan Mihai; Brad, Sebastian; Ducu, Catalin

    2008-01-01

    Full text: Based of the Romanian option to develop and operate nuclear facilities, using as model the networks created at European level and taking into account the international importance of the structural integrity assessments for lifetime extension of the nuclear components, a national Project started since 2005 in the framework of the National Program 'Research of Excellence', Modulus I 2006-2008, managed by the Ministry of Education and Research. Entitled 'Integrated Network for Structural Integrity Monitoring of Critical Components in Nuclear Facilities', with the acronym RIMIS, the Project had two main objectives: - to elaborate a procedure applicable to the structural integrity assessment of the critical components used in Romanian nuclear facilities; - to integrate the national networking in a similar one, at European level, to enhance the scientific significance of Romanian R and D organizations as well as to increase the contribution to solving one of the major issue of the nuclear field. The paper aimed to present the activities performed in the Romanian institutes, involved in the Project, the final results obtained as part of the R and D activities, including experimental, theoretical and modeling ones regarding structural integrity assessment of nuclear components employed in CANDU type reactors. Also the activity carried out in the framework of the NULIFE network, created at European level of the FP6 Program and sustained by the RIMIS network will be described. (authors)

  16. Investigations of nuclear structure and nuclear reactions induced by complex projectiles. Technical progress report, November 1, 1978-October 31, 1979

    International Nuclear Information System (INIS)

    Sarantites, D.G.

    1979-01-01

    Experimental research on nuclear structure and reactions both published and in progress is summarized. Included are fusion reactions, strongly damped heavy ion collisions, and nuclear structure at high angular momentum. A list of publications is included

  17. New multilateral approaches solving the nuclear energy dispute with Iran

    Energy Technology Data Exchange (ETDEWEB)

    Heireng, Hege Schultz; Moezzi, Maryam; Kippe, Halvor

    2010-12-15

    The focus of this report is on possible multilateral approaches for cooperation with Iran on the nuclear fuel cycle. The aim is to contribute in finding diplomatic solutions to the Iranian nuclear dispute. The proposals challenge the traditional views of Iran#Right Single Quotation Mark#s role in the nuclear negotiations in particular, and in the international community in general. The report investigates the possibility of accepting Iran#Right Single Quotation Mark#s enrichment of uranium, under an enhanced safeguards regime, and through a multilateral cooperation on the production of nuclear fuel. In relation to this, the report also explores the benefits of including new actors in the proposed solutions. Two different models for multilateral nuclear fuel cycle cooperation with Iran will be presented. The aim of these models is to ensure greater transparency in Iran#Right Single Quotation Mark#s nuclear activities, in order to minimize the risk of proliferation of nuclear weapons, while simultaneously presenting a solution that will be acceptable to Iran. The first model is a tripartite consortium model that consists of a cooperation between Kazakhstan, Iran and South Africa, in which these countries additionally cooperate with an IAEA-supervised international nuclear fuel bank. The second model is a nuclear fuel cycle cooperation between Iran and six of the countries bordering the Persian Gulf. In both models, the countries in question will be responsible for different parts of the nuclear fuel cycle. Iran will be responsible for the uranium enrichment activities, but will have to give up all other fuel cycle activities. Another prerequisite is that Iran accepts not to store enriched uranium on Iranian soil. The report shows that the international community should consider accepting enrichment of uranium on Iranian soil in the long-term. In addition, it is concluded that cooperation with Iran on the nuclear fuel cycle, where Iran is a reliable nuclear supplier

  18. Status of the evaluated nuclear structure data file

    International Nuclear Information System (INIS)

    Martin, M.J.

    1991-01-01

    The structure, organization, and contents of the Evaluated Nuclear Structure Data File (ENSDF) are discussed in this paper. This file contains a summary of the state of experimental nuclear structure data for all nuclides as determined from consideration of measurements reported worldwide in the literature. Special emphasis is given to the data evaluation procedures, the consistency checks, and the quality control utilized at the input stage and to the retrieval capabilities of the system at the output stage. Recent enhancements of the on-line interaction with the file contents is addressed as well as procedural changes that will improve the currency of the file

  19. Dynamic testing of nuclear power plant structures: an evaluation

    International Nuclear Information System (INIS)

    Weaver, H.J.

    1980-02-01

    Lawrence Livermore Laboratory (LLL) evaluated the applications of system identification techniques to the dynamic testing of nuclear power plant structures and subsystems. These experimental techniques involve exciting a structure and measuring, digitizing, and processing the time-history motions that result. The data can be compared to parameters calculated using finite element or other models of the test systems to validate the model and to verify the seismic analysis. This report summarizes work in three main areas: (1) analytical qualification of a set of computer programs developed at LLL to extract model parameters from the time histories; (2) examination of the feasibility of safely exciting nuclear power plant structures and accurately recording the resulting time-history motions; (3) study of how the model parameters that are extracted from the data be used best to evaluate structural integrity and analyze nuclear power plants

  20. CSNI Technical Opinion Papers No. 14 - Nuclear Licensee Organisational Structures, Resources and Competencies: Determining their Suitability

    International Nuclear Information System (INIS)

    2012-01-01

    The way in which nuclear licensees' organisations are structured and resourced clearly has a potential impact on nuclear safety. As experience has continually demonstrated, operating organisations with a strong training programme for personnel, adequate resourcing and overall effective leadership and management perform more effectively in times of crisis than those lacking in one or more of these areas. In parallel, the nuclear industry is developing new resource deployment strategies which are making increased use of contractors and leading to changes in organisational structure, which in turn create challenges for the continued safe operation of nuclear facilities. This technical opinion paper represents the consensus among human and organisational factor specialists in NEA member and associated countries on the methods, approaches and good practices to be followed in designing an organisation with a strong safety focus while meeting business needs. It also considers some of the attributes that an organisation which is effectively managing its resources and capabilities might demonstrate

  1. GSN - The Goal Structuring Notation A Structured Approach to Presenting Arguments

    CERN Document Server

    Spriggs, John

    2012-01-01

    Goal Structuring Notation (GSN)  is becoming increasing popular; practitioners use it in the railway, air traffic management and nuclear industries, amongst others.  Originally developed to present safety assurance arguments, GSN need not be restricted to safety assurances only; in principle, you can use it to present (and test) any argument.  Anyone wishing to support, or refute, a claim can use GSN. Written by an experienced practitioner, The Goal Structuring Notation is both for those who wish to prepare and present compelling arguments using the notation, and for those who wish to review such arguments critically and effectively. To emphasise the versatility of this approach The Goal Structuring Notation presents examples and questions based on diverse subject areas including Business Management, Drama, Engineering, Politics and Astrobiology. Simple examples introduce each symbol of the notation before introducing more complex structures which illustrate how the symbols work together in practical scena...

  2. The structure of nuclear safeguards systems

    International Nuclear Information System (INIS)

    Coulter, C.A.

    1989-01-01

    Safeguards systems for facilities that handle special nuclear material combine procedural, protective, and materials accounting elements to prevent and/or detect sabotage and diversion or theft of material. Because most of the discussion in this course is devoted to materials accounting topics only, this chapter provides a brief introduction to some of the procedural and protective elements of safeguards systems, placing the materials accounting system in its proper context. The chapter begins by reviewing certain pertinent DOE definitions and then surveys some protection requirements and technology - protective personnel, personnel identification systems, barriers, detectors, and communication systems. Considered next are the procedures of personnel selection and monitoring, definition and division of job functions, and operation. The chapter then describes the way the procedural, protective, and materials accounting elements can be combined, becoming a total safeguards system. Although such a system necessarily requires elements of procedure, protection, and materials accounting, only the materials accounting gives positive assurance that nuclear material is not diverted or stolen

  3. Simulation approaches to probabilistic structural design at the component level

    International Nuclear Information System (INIS)

    Stancampiano, P.A.

    1978-01-01

    In this paper, structural failure of large nuclear components is viewed as a random process with a low probability of occurrence. Therefore, a statistical interpretation of probability does not apply and statistical inferences cannot be made due to the sparcity of actual structural failure data. In such cases, analytical estimates of the failure probabilities may be obtained from stress-strength interference theory. Since the majority of real design applications are complex, numerical methods are required to obtain solutions. Monte Carlo simulation appears to be the best general numerical approach. However, meaningful applications of simulation methods suggest research activities in three categories: methods development, failure mode models development, and statistical data models development. (Auth.)

  4. Structuring Cooperative Nuclear RIsk Reduction Initiatives with China.

    Energy Technology Data Exchange (ETDEWEB)

    Brandt, Larry [Stanford Univ., CA (United States); Reinhardt, Jason Christian [Stanford Univ., CA (United States); Hecker, Siegfried [Stanford Univ., CA (United States)

    2017-03-01

    The Stanford Center for International Security and Cooperation engaged several Chinese nuclear organizations in cooperative research that focused on responses to radiological and nuclear terrorism. The objective was to identify joint research initiatives to reduce the global dangers of such threats and to pursue initial technical collaborations in several high priority areas. Initiatives were identified in three primary research areas: 1) detection and interdiction of smuggled nuclear materials; 2) nuclear forensics; and 3) radiological (“dirty bomb”) threats and countermeasures. Initial work emphasized the application of systems and risk analysis tools, which proved effective in structuring the collaborations. The extensive engagements between national security nuclear experts in China and the U.S. during the research strengthened professional relationships between these important communities.

  5. Generalized Nuclear Data: A New Structure (with Supporting Infrastructure) for Handling Nuclear Data

    International Nuclear Information System (INIS)

    Mattoon, C.M.; Beck, B.R.; Patel, N.R.; Summers, N.C.; Hedstrom, G.W.; Brown, D.A.

    2012-01-01

    The Evaluated Nuclear Data File (ENDF) format was designed in the 1960s to accommodate neutron reaction data to support nuclear engineering applications in power, national security and criticality safety. Over the years, the scope of the format has been extended to handle many other kinds of data including charged particle, decay, atomic, photo-nuclear and thermal neutron scattering. Although ENDF has wide acceptance and support for many data types, its limited support for correlated particle emission, limited numeric precision, and general lack of extensibility mean that the nuclear data community cannot take advantage of many emerging opportunities. More generally, the ENDF format provides an unfriendly environment that makes it difficult for new data evaluators and users to create and access nuclear data. The Cross Section Evaluation Working Group (CSEWG) has begun the design of a new Generalized Nuclear Data (or 'GND') structure, meant to replace older formats with a hierarchy that mirrors the underlying physics, and is aligned with modern coding and database practices. In support of this new structure, Lawrence Livermore National Laboratory (LLNL) has updated its nuclear data/reactions management package Fudge to handle GND structured nuclear data. Fudge provides tools for converting both the latest ENDF format (ENDF-6) and the LLNL Evaluated Nuclear Data Library (ENDL) format to and from GND, as well as for visualizing, modifying and processing (i.e., converting evaluated nuclear data into a form more suitable to transport codes) GND structured nuclear data. GND defines the structure needed for storing nuclear data evaluations and the type of data that needs to be stored. But unlike ENDF and ENDL, GND does not define how the data are to be stored in a file. Currently, Fudge writes the structured GND data to a file using the eXtensible Markup Language (XML), as it is ASCII based and can be viewed with any text editor. XML is a meta-language, meaning that it

  6. Generalized Nuclear Data: A New Structure (with Supporting Infrastructure) for Handling Nuclear Data

    Energy Technology Data Exchange (ETDEWEB)

    Mattoon, C.M. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore CA (United States); Beck, B.R.; Patel, N.R.; Summers, N.C.; Hedstrom, G.W. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore CA (United States); Brown, D.A. [National Nuclear Data Center, Upton NY (United States)

    2012-12-15

    The Evaluated Nuclear Data File (ENDF) format was designed in the 1960s to accommodate neutron reaction data to support nuclear engineering applications in power, national security and criticality safety. Over the years, the scope of the format has been extended to handle many other kinds of data including charged particle, decay, atomic, photo-nuclear and thermal neutron scattering. Although ENDF has wide acceptance and support for many data types, its limited support for correlated particle emission, limited numeric precision, and general lack of extensibility mean that the nuclear data community cannot take advantage of many emerging opportunities. More generally, the ENDF format provides an unfriendly environment that makes it difficult for new data evaluators and users to create and access nuclear data. The Cross Section Evaluation Working Group (CSEWG) has begun the design of a new Generalized Nuclear Data (or 'GND') structure, meant to replace older formats with a hierarchy that mirrors the underlying physics, and is aligned with modern coding and database practices. In support of this new structure, Lawrence Livermore National Laboratory (LLNL) has updated its nuclear data/reactions management package Fudge to handle GND structured nuclear data. Fudge provides tools for converting both the latest ENDF format (ENDF-6) and the LLNL Evaluated Nuclear Data Library (ENDL) format to and from GND, as well as for visualizing, modifying and processing (i.e., converting evaluated nuclear data into a form more suitable to transport codes) GND structured nuclear data. GND defines the structure needed for storing nuclear data evaluations and the type of data that needs to be stored. But unlike ENDF and ENDL, GND does not define how the data are to be stored in a file. Currently, Fudge writes the structured GND data to a file using the eXtensible Markup Language (XML), as it is ASCII based and can be viewed with any text editor. XML is a meta-language, meaning that it

  7. Apparatus for securing structural tubes in nuclear reactor fuel assemblies

    International Nuclear Information System (INIS)

    Kerry, J.S.

    1987-01-01

    This patent describes a nuclear reactor fuel assembly having a structural tube with a predetermined inside diameter, a generally cylindrical insert of an axial length substantially smaller than the axial length of the structural tube and having a generally cylindrical passageway of a predetermined diameter smaller than the predetermined inside diameter for providing an effectively reduced inside diameter for the structural tube. The insert comprises: means, having an outside diameter approximately equal to the predetermined inside diameter, for coaxially centering the insert within the structural tube; forming lobes, operable when expanded to locally deform against the structural tube thereby locking the insert within the structural tube

  8. Charge-exchange giant resonances as probes of nuclear structure

    International Nuclear Information System (INIS)

    Blomgren, J.

    2001-09-01

    Giant resonances populated in charge-exchange reactions can reveal detailed information about nuclear structure properties, in spite of their apparent featurelessness. The (p,n) and (n,p) reactions - as well as their analog reactions - proceed via the same nuclear matrix element as beta decay. Thereby, they are useful for probing electroweak properties in nuclei, especially for those not accessible to beta decay. The nuclear physics aspects of double beta decay might be investigated in double charge-exchange reactions. detailed nuclear structure information, such as the presence of ground-state correlations, can be revealed via identification of 'first-forbidden' transitions. In addition, astrophysics aspects and halo properties of nuclei have been investigated in charge exchange. Finally, these experiments have questioned our knowledge of the absolute strength of the strong interaction

  9. ISINN-2. Neutron spectroscopy, nuclear structure and related topics

    International Nuclear Information System (INIS)

    1994-01-01

    The proceedings contain the materials presented at the Second International Seminar on Neutron-Nucleus Interactions (ISINN-2) dealing with the problems of neutron spectroscopy, nuclear structure and related topics. The Seminar took place in Dubna on April 26-28, 1994. Over 120 scientists from Belgium, Bulgaria, Czech Republic, Germany, Holland, Italy, Japan, Latvia, Mexico, Poland, Slovakia, Slovenia, Ukraine, US and about 10 Russian research institutes took part in the Seminar. The main problems discussed are the following: P-odd and P-even angular correlation and T-reversal invariance in neutron reactions, nuclear structure investigations by neutron capture, the mechanism of neutron reactions, nuclear fission processes, as well as neutron data for nuclear astrophysics

  10. Structure of nuclear fuel data bank

    International Nuclear Information System (INIS)

    Silva Matos Pombo, J.B. da; Andrade, M.C. de

    1990-01-01

    A data Base structure for power reactor fuel elements operational performance and fabrication data storage, is described. The current structure with the listing of all 44 tables that contain a total of 338 data fields is presented. The general purpose of each table is shortly described. The structure was tested in microcomputer with the aid of short hypothetical data sets and the results were regarded as satisfactory. Some examples of typical inquiries made during the tests are also presented. The presented work is directed on implementing this structure in microcomputer under the 'PARADOX' data base management system. Subroutines to represent fuel element and core lattice were implemented in order to display, in the lattice cells, the data of fields selected by the user. (author) [pt

  11. Complementarity between neutron capture and heavy-ion reactions in nuclear structure studies

    International Nuclear Information System (INIS)

    Schult, O.W.B.

    1978-01-01

    The study of the complementarity of certain nuclear reactions in nuclear structure studies includes spectroscopic methods, nuclear rotation and coupling of nucleons to the core, and the de-excitation and structure of high lying states. 23 references

  12. Survey on application of probabilistic fracture mechanics approach to nuclear piping

    International Nuclear Information System (INIS)

    Kashima, Koichi

    1987-01-01

    Probabilistic fracture mechanics (PFM) approach is newly developed as one of the tools to evaluate the structural integrity of nuclear components. This report describes the current status of PFM studies for pressure vessel and piping system in light water reactors and focuses on the investigations of the piping failure probability which have been undertaken by USNRC. USNRC reevaluates the double-ended guillotine break (DEGB) of rector coolant piping as a design basis event for nuclear power plant by using the PFM approach. For PWR piping systems designed by Westinghouse, two causes of pipe break are considered: pipe failure due to the crack growth and pipe failure indirectly caused by failure of component supports due to an earthquake. PFM approach shows that the probability of DEGB from either cause is very low and that the effect of earthquake on pipe failure can be neglected. (author)

  13. Nuclear and sustainable development - A trans-disciplinary approach

    International Nuclear Information System (INIS)

    Meskens, Gaston

    2001-01-01

    Never before in history has society been so thoroughly permeated by Science and Technology in all aspects of human life, ranging from economic progress to warfare, often resulting in huge environmental problems. Nuclear science can easily be seen as an exponent of this evolution. Numerous beneficial technologies for medicine and energy were developed, but mostly against the background of the Cold War culture of military secrecy - thus contaminating the public perception of nuclear technology as a whole from the early beginning. Moreover, these developments were accompanied by the threat of cancer risks. Gradually, the contours of a new societal paradigm seem to materialise, driven by the often cited dynamics of social change: globalisation, the pace of technological change (notably biotechnology and information technology), changing social identities, mistrust in 'big science' and expert systems and often, an alienation from politics. In 'the age of risk', people feel insecure about the future. In this social context of uncertainty, a new concept for policy making at the global and local level has emerged : Sustainable Development. At present, the nuclear expert is struggling with society, and he paradoxically lacks a scientific approach and insight in complex human behaviour and societal interaction. The restoration of trust will require the integration of humanities and social sciences in a transdisciplinary problem solving approach, far beyond the technical dimension. The Belgian Nuclear Research Centre SCK-CEN already built up experience with multidisciplinary projects (e.g. extending the research on nuclear complexity to economics and liability), but in 1998 the board of directors decided to integrate social sciences in a more co-ordinated way. The four existing projects are: Legal Aspects and Liability, Sustainability and Nuclear Development, Transgenerational Ethics related to the Disposal of long-lived Rad waste, and Emergency Communication and Risk

  14. Nuclear Pore-Like Structures in a Compartmentalized Bacterium.

    Directory of Open Access Journals (Sweden)

    Evgeny Sagulenko

    Full Text Available Planctomycetes are distinguished from other Bacteria by compartmentalization of cells via internal membranes, interpretation of which has been subject to recent debate regarding potential relations to Gram-negative cell structure. In our interpretation of the available data, the planctomycete Gemmata obscuriglobus contains a nuclear body compartment, and thus possesses a type of cell organization with parallels to the eukaryote nucleus. Here we show that pore-like structures occur in internal membranes of G.obscuriglobus and that they have elements structurally similar to eukaryote nuclear pores, including a basket, ring-spoke structure, and eight-fold rotational symmetry. Bioinformatic analysis of proteomic data reveals that some of the G. obscuriglobus proteins associated with pore-containing membranes possess structural domains found in eukaryote nuclear pore complexes. Moreover, immunogold labelling demonstrates localization of one such protein, containing a β-propeller domain, specifically to the G. obscuriglobus pore-like structures. Finding bacterial pores within internal cell membranes and with structural similarities to eukaryote nuclear pore complexes raises the dual possibilities of either hitherto undetected homology or stunning evolutionary convergence.

  15. Structural dynamic and resistance to nuclear air blast

    International Nuclear Information System (INIS)

    Qureshi, S.M.

    2003-01-01

    A need exists to design protective shelters attached to specialized facilities against nuclear airbursts, explosive shocks and impacting projectiles. Designing such structures against nuclear and missile impact is a challenging task that needs to be looked into for design methodology formulation and practicability. Structures can be designed for overpressure pulsed generated by a nuclear explosion as well as the scabbing and perforation/punching of an impacting projectile. This paper discuses and formulates the methods of dynamic analysis and design required to undertake such a task. Structural resistance to peak overpressure pulse for a 20 KT weapons and smaller tactical nuclear weapons of 1 KT (16 psi, overpressure) size as a direct air blast overpressure has been considered in design of walls, beams and slabs of a special structure under review. The design of shear reinforcement as lacing is also carried out. Adopting the philosophy of strengthening and hardening can minimize the effect of air blast overpressure and projectile impact. The objective is to avoid a major structural failure. The structure then needs to be checked against ballistic penetration by a range of weapons or be required to resist explosive penetration from the charge detonated in contact with the structure. There is also a dire need to formulate protective guidelines for all existing and future critical facilities. (author)

  16. Workshop on nuclear structure and decay data evaluation. Summary report

    International Nuclear Information System (INIS)

    Pronyaev, V.G.; Nichols, A.L.

    2003-01-01

    A summary is given of the aims and contents of the Workshop on Nuclear Structure and Decay Data (NSDD) Evaluation, including the agenda, lists of participants and their presentations, general comments and recommendations. The 1-week workshop was organized by the IAEA Nuclear Data Section, and held in Vienna, Austria, from 18 to 22 November 2002. Workshop material, including participants' presentations, computer codes, manuals and other materials for NSDD evaluators, are freely available on CD-ROM on request. (author)

  17. Structural integrity of materials in nuclear service: a bibliography

    International Nuclear Information System (INIS)

    Heddleson, F.A.

    1977-01-01

    This report contains 679 abstracts from the Nuclear Safety Information Center (NSIC) computer file dated 1973 through 1976 covering material properties with respect to structural integrity. All materials important to the nuclear industry (except concrete) are covered for mechanical properties, chemical properties, corrosion, fracture or failure, radiation damage, creep, cracking, and swelling. Keyword, author, and permuted-title indexes are included for the convenience of the user

  18. Structural integrity of materials in nuclear service: a bibliography

    Energy Technology Data Exchange (ETDEWEB)

    Heddleson, F.A.

    1977-06-07

    This report contains 679 abstracts from the Nuclear Safety Information Center (NSIC) computer file dated 1973 through 1976 covering material properties with respect to structural integrity. All materials important to the nuclear industry (except concrete) are covered for mechanical properties, chemical properties, corrosion, fracture or failure, radiation damage, creep, cracking, and swelling. Keyword, author, and permuted-title indexes are included for the convenience of the user.

  19. RATU - Nuclear power plant structural safety

    International Nuclear Information System (INIS)

    Hedner, G.; Schultz, H.; Unneberg, L.

    1992-12-01

    The evaluation group is of the opinion that the work performed under the RATU programme is generally of high quality, in some areas, especially those related to water chemistry of excellent quality. The personnel gives the impression of being dedicated and enthusiastic, and the administration seems to be very effective. It is obvious that the RATU programme has taken advantage of related contracts and projects funded by different sources. It is the opinion of the valuation group that the investment and human capital have been brought to work very efficiently in all projects. The objectives of the programme and the different projects are formulated in a broad sense. The areas selected for work are however of high relevance to nuclear safety. In some projects not all aspects are addressed by the ongoing work, and further activities may be necessary to meet with the requirements of the authorities. (orig.)

  20. Nuclear molecular structure in heavy mass systems

    International Nuclear Information System (INIS)

    Arctaedius, T.; Bargholtz, C.

    1989-04-01

    A study is made of nuclear molecular configurations involving one heavy mass partner. The stability of these configurations to mass flow and to fission is investigated as well as their population in fusion reactions. It is concluded that shell effects in combination with the effects of angular momentum may be important in stabilizing certain configurations. A possible relation of these configurations to the so called superdeformed states is pointed out. The spectrum of rotational and vibrational trasitions within molecular configurations is investigated. For sufficiently mass-asymmetric systems the engergies of vibrational transitions are comparable to the neutron separation energy. Gamma radiation from such transitions may then be observable above the background of statistical transitions. The gamma spectrum and the directional distribution of the radioation following fusion reactions with 12 C and 16 O are calculated. (authors)

  1. Effective operators in nuclear-structure calculations

    International Nuclear Information System (INIS)

    Barrett, Bruce R

    2005-01-01

    A brief review of the history of the use of many-body perturbation theory to determine effective operators for shell-model calculations, i.e., for calculations in truncated model spaces, is given, starting with the ground-breaking work of Arima and Horie for electromagnetic moments. The problems encountered in utilizing this approach are discussed. New methods based on unitary-transformation approaches are introduced and analyzed. The old problems persist, but the new methods allow us to obtain a better insight into the nature of the physics involved in these processes

  2. Approaches to nontraditional delivery of nuclear engineering education

    International Nuclear Information System (INIS)

    Malaviya, B.K.

    1991-01-01

    At Rensselaer Polytechnic Institute, the faculty of the nuclear engineering and engineering physics department have, over the years, been involved in a variety of such approaches in response to the changing needs of nuclear industry personnel. A number of different types of short course and workshop programs have been developed and implemented both on and off campus in such areas as basic nuclear technology, reactor design computer codes and applications, nuclear power plant design and maintenance, reactor operations, health physics, modern developments in boiling heat transfer and two-phase flow, and probabilistic risk assessment. Customized coursed tailored to meet the particular needs of personnel in specialized areas can also be offered on specific industrial site locations, generally resulting in substantial savings of time as well as costs associated with tuition, travel, lodging. The Rensselaer Satellite Video Program (RSVP) brings the latest technological aids to the nontraditional delivery of courses and provides the facilities and opportunities for off-campus students and professional personnel to participate in regular academic programs and courses without leaving their industrial sites

  3. The Approach to Cleanup at West Cumbria's Nuclear Sites

    International Nuclear Information System (INIS)

    Price, T.

    2006-01-01

    The cleanup of West Cumbria's nuclear sites is one of the most important and demanding managerial, technical and environmental challenges facing the UK over the next century. Considerable progress has already been made in cleaning up the Sellafield, Calder Hall, and Low-level Waste Repository (LLWR) sites but there remains significant challenge ahead. There are more than 200 nuclear facilities at the sites including redundant fuel storage ponds, redundant chemical plants and silos of solid waste and sludge. These legacy buildings exist alongside commercially operating reprocessing and fuel fabrication facilities. They are all linked together by a complex network of services including gas supplies, water supplies, waste disposal routes, and chemical supply routes. Many of the buildings requiring cleanup are very old and date back to the early years of the British nuclear industry. They were not designed with decommissioning in mind, and some require substantial improvement to provide a safe foundation from which to retrieve waste and decommission. The cleanup of these legacy facilities must be carefully balanced with the ongoing operations that provide services to commercial customers. Cleanup must be carried out safely and efficiently, without impacting upon commercial operations whose revenue is vital to funding the Cleanup organizations scope of work. This paper will introduce the cleanup approach at West Cumbria's Sellafield nuclear site. It will provide an overview of what is being done in preparation to meet the formidable but rewarding challenge ahead. (authors)

  4. The view at nuclear renaissance via actual European and Slovak approach to nuclear education

    International Nuclear Information System (INIS)

    Slugen, Vladimir

    2010-01-01

    level nuclear education is very important also due to permanent increasing of nuclear experts age. To replace some of them are not easy. Beside this, the nuclear community needs some internal dynamic, which is connected to the young people activities. The problem is that the amount of students taking these lectures is low. Proper education at the university is a source of knowledge and attitudes for the whole life. Theoretical and practical experiences, professional approach and consistency are very important also from the safety culture point of view. University lectures and seminars are basically opened for public and this academic field can be made better use of in public relations. It is an investment mainly to young generation. During discussions with students, teachers can form their professional orientation according to their abilities and needs. Good teacher encourages also the growth of student and shapes his personality. Graduated students have to learn to take responsibility for their decisions and their academic level of education. Unfortunately, there was not real interest for educated nuclear engineers from industry till know. Although oral declaration how these graduates are necessary for NPP operators, in reality the nuclear industry does not attract young specialist. About 50 percent of graduates of specialized nuclear power engineering study at STU Bratislava went completely out from this area. Hopefully next years connected to the commissioning of Mochovce 3, 4 will change this approach. The actual status of education and training in nuclear power engineering is the real cause for concern. This education has to be based on the serious long term basis organised and guaranteed by high quality academic institution. It is a duty of educated and responsible people to highlight the necessity for a renaissance in nuclear education and training and recommend the following points: We must act now; Strategic Role of Governments; The Challenges of revitalising

  5. The view at nuclear renaissance via actual European and Slovak approach to nuclear education

    Energy Technology Data Exchange (ETDEWEB)

    Slugen, Vladimir [Slovak University of Technology, FEI STU, Ilkovicova 3, 812 19 Bratislava (Slovakia)

    2010-07-01

    tools. The high level nuclear education is very important also due to permanent increasing of nuclear experts age. To replace some of them are not easy. Beside this, the nuclear community needs some internal dynamic, which is connected to the young people activities. The problem is that the amount of students taking these lectures is low. Proper education at the university is a source of knowledge and attitudes for the whole life. Theoretical and practical experiences, professional approach and consistency are very important also from the safety culture point of view. University lectures and seminars are basically opened for public and this academic field can be made better use of in public relations. It is an investment mainly to young generation. During discussions with students, teachers can form their professional orientation according to their abilities and needs. Good teacher encourages also the growth of student and shapes his personality. Graduated students have to learn to take responsibility for their decisions and their academic level of education. Unfortunately, there was not real interest for educated nuclear engineers from industry till know. Although oral declaration how these graduates are necessary for NPP operators, in reality the nuclear industry does not attract young specialist. About 50 percent of graduates of specialized nuclear power engineering study at STU Bratislava went completely out from this area. Hopefully next years connected to the commissioning of Mochovce 3, 4 will change this approach. The actual status of education and training in nuclear power engineering is the real cause for concern. This education has to be based on the serious long term basis organised and guaranteed by high quality academic institution. It is a duty of educated and responsible people to highlight the necessity for a renaissance in nuclear education and training and recommend the following points: We must act now; Strategic Role of Governments; The Challenges

  6. Micro-structured nuclear fuel and novel nuclear reactor concepts for advanced power production

    International Nuclear Information System (INIS)

    Popa-Simil, Liviu

    2008-01-01

    Many applications (e.g. terrestrial and space electric power production, naval, underwater and railroad propulsion and auxiliary power for isolated regions) require a compact-high-power electricity source. The development of such a reactor structure necessitates a deeper understanding of fission energy transport and materials behavior in radiation dominated structures. One solution to reduce the greenhouse-gas emissions and delay the catastrophic events' occurrences may be the development of massive nuclear power. The actual basic conceptions in nuclear reactors are at the base of the bottleneck in enhancements. The current nuclear reactors look like high security prisons applied to fission products. The micro-bead heterogeneous fuel mesh gives the fission products the possibility to acquire stable conditions outside the hot zones without spilling, in exchange for advantages - possibility of enhancing the nuclear technology for power production. There is a possibility to accommodate the materials and structures with the phenomenon of interest, the high temperature fission products free fuel with near perfect burning. This feature is important to the future of nuclear power development in order to avoid the nuclear fuel peak, and high price increase due to the immobilization of the fuel in the waste fuel nuclear reactor pools. (author)

  7. A Nordic approach to impact assessment of accidents with nuclear-propelled vessels

    International Nuclear Information System (INIS)

    Reistad, O.; Hustveit, S.; Palsson, S.E.; Hoe, S.; Lahtinen, J.

    2012-11-01

    The MareNuc project has identified the parameters in a graded approach to impact assessment for marine nuclear reactors. The graded approach is founded on the following elements: 1) More detailed understanding of previous accidents in nuclear-propelled vessels (initiating events, accident developments, release fractions), including release mechanisms (radionuclide retention in vessel construction); 2) Bench-marking of release scenarios using modelling tools applied in the Nordic countries, in addition to demonstration of generally accessible and free software developed by the IAEA; 3) Other systematic approaches to safety assessments of vessel port calls, and to the design and maintenance of emergency preparedness systems; More specifically, increased emphasis compared to earlier analysis after the Kursk accident is given to the engineered vessel barriers. Relevant standards from impact assessments for commercial nuclear power plants have been identified, such as from the NUREG series. The Nordic approaches to safety evaluation, impact assessments and emergency preparedness organisation was also reported as part of the project. The Canadian approach for international port calls was carefully reported and assessed as part of the project, and commended for its broad and comprehensive approach to reactor and vessel design for the nationalities involved, to the design and maintenance of emergency preparedness systems, and the well-structured and broad cooperation between civilian and military institutions. This approach goes beyond the current approach in the Nordic countries, also in the case of Norway, which experience regular port calls from allied nuclear navies. The overall result is a broader understanding in the Nordic countries for the importance of the various parameters for impact assessment of releases from marine reactors, and to the design and maintenance of an emergency preparedness organisation without detailed knowledge of the installation in question

  8. A Nordic approach to impact assessment of accidents with nuclear-propelled vessels

    Energy Technology Data Exchange (ETDEWEB)

    Reistad, O. [Institute for Energy Technology, Kjeller (Norway); Hustveit, S. [Norwegian Radiation Protection Authority, Oesteraes (Norway); Palsson, S.E. [Icelandic Radiation Safety Authority, Reykjavik (Iceland); Hoe, S. [Danish Emergency Management Agency, Birkeroed (Denmark); Lahtinen, J. [STUK, Helsinki (Finland)

    2012-11-15

    The MareNuc project has identified the parameters in a graded approach to impact assessment for marine nuclear reactors. The graded approach is founded on the following elements: 1) More detailed understanding of previous accidents in nuclear-propelled vessels (initiating events, accident developments, release fractions), including release mechanisms (radionuclide retention in vessel construction); 2) Bench-marking of release scenarios using modelling tools applied in the Nordic countries, in addition to demonstration of generally accessible and free software developed by the IAEA; 3) Other systematic approaches to safety assessments of vessel port calls, and to the design and maintenance of emergency preparedness systems; More specifically, increased emphasis compared to earlier analysis after the Kursk accident is given to the engineered vessel barriers. Relevant standards from impact assessments for commercial nuclear power plants have been identified, such as from the NUREG series. The Nordic approaches to safety evaluation, impact assessments and emergency preparedness organisation was also reported as part of the project. The Canadian approach for international port calls was carefully reported and assessed as part of the project, and commended for its broad and comprehensive approach to reactor and vessel design for the nationalities involved, to the design and maintenance of emergency preparedness systems, and the well-structured and broad cooperation between civilian and military institutions. This approach goes beyond the current approach in the Nordic countries, also in the case of Norway, which experience regular port calls from allied nuclear navies. The overall result is a broader understanding in the Nordic countries for the importance of the various parameters for impact assessment of releases from marine reactors, and to the design and maintenance of an emergency preparedness organisation without detailed knowledge of the installation in question

  9. The policy structure of the Dutch nuclear energy sector

    International Nuclear Information System (INIS)

    Zijlstra, G.J.

    1982-01-01

    The main objective of this study has been to indicate the principle structures through which much of governmental nuclear policy is formed and to develop a model for the analysis of policy communication networks. The first chapter begins with a general outline of the international development of nuclear energy and gives an impression of the Dutch nuclear energy sector with special emphasis on the institutional aspects. In chapter II the author elaborates on the place of structural analysis in public policy analysis and argues that it is one of the indispensable elements of public policy analysis. Relations are treated in chapter III. Personal interlocks are given special attention because these are interrelated with financial, informational and other dependency relations and have a special communicative function in public policy-making. The different functions of the interlocks are 'translated' in graph theoretical concepts. Chapter IV introduces a method derived from graph analysis to analyse public policy networks. Several structural configurations are distinguished. In the same chapter an outline of the empirical research on the nuclear energy network will be given. In chapters V and VI the nuclear energy network is analysed, and in chapter VII the decision-making concerning some nuclear items is described in a general way. (Auth.)

  10. Development of deterioration models and tests of structural materials for nuclear containment structures(III)

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Byung Hwan [Seoul National University, Seoul (Korea)

    2002-03-01

    The nuclear containment structures are very important infrastructures which require much cost for construction and maintenance. If these structures lose their functions and do not ensure their safety, great losses of human lives and properties will result. Therefore, the nuclear containment structures should secure appropriate safety and functions during these service lives. The nuclear concrete structures start to experience deterioration due to severe environmental condition, even though the concrete structures exhibit generally superior durability. It is, therefore, necessary to take appropriate actions at each stage of planning, design and construction to secure safety and functionability. Thorough examination of deterioration mechanism and comprehensive tests have been conducted to explore the durability characteristics of nuclear concrete structures. 88 refs., 70 figs., 12 tabs. (Author)

  11. Nuclear safety approach for PWRs design and operation

    International Nuclear Information System (INIS)

    Vignon, D.

    1988-01-01

    The implementation of France's major nuclear programme - 56 PWR units in service or under construction - has gone hand in hand with the development of an original philosophy in the field of nuclear safety. From an initial core of deterministic safety philosophy current in the seventies, which has been wholly retained and in some instances refined, a range of additions has been made to include consideration of a number of additional situations based on a probabilistic approach. This has resulted in a better coherence for safety and a mitigation of the severe accident probability. Furthermore, the establishment of emergency plans has enabled the Safety Authorities and the operator to adopt a coherent and logical approach to severe accidents with the aim of achieving greater defence in depth, this has resulted in the provision of certain additional measures designed to further reduce the consequences of severe accidents. This paper describes the culmination of this work, as exemplified in the new 1 400MWe - N4 advanced plant series currently under construction, of which the essential elements are also incorporated into all previous units, thereby giving them an equivalent level of safety. This now constitutes the French safety policy with respect to PWR nuclear units

  12. Different design approaches to structural fire safety

    DEFF Research Database (Denmark)

    Giuliani, Luisa; Budny, I.

    2013-01-01

    -priori evaluate which design is the safest or the most economical one: a punctual analysis of the different aspects and a comparison of the resulting designs is therefore of interest and is presented in this paper with reference to the case study considered.The third approach refers instead to a performance......-based fire design of the structure(PBFD), where safety goals are explicitly defined and a deeper knowledge of the structural response to fire effects can be achieved, for example with the avail of finite element analyses (FEA). On the other hand, designers can’t follow established procedures when undertaking...... such advanced investigations, which are generally quite complex ones, due to the presence of material degradation and large displacements induced by fire, as well as the possible triggering of local mechanism in the system. An example of advanced investigations for fire design is given in the paper...

  13. Future of structural reliability methodology in nuclear power plant technology

    Energy Technology Data Exchange (ETDEWEB)

    Schueeller, G I [Technische Univ. Muenchen (Germany, F.R.); Kafka, P [Gesellschaft fuer Reaktorsicherheit m.b.H. (GRS), Garching (Germany, F.R.)

    1978-10-01

    This paper presents the authors' personal view as to which areas of structural reliability in nuclear power plant design need most urgently to be advanced. Aspects of simulation modeling, design rules, codification and specification of reliability, system analysis, probabilistic structural dynamics, rare events and particularly the interaction of systems and structural reliability are discussed. As an example, some considerations of the interaction effects between the protective systems and the pressure vessel are stated. The paper concludes with recommendation for further research.

  14. Contaminated Land Remediation on decommissioned nuclear facilities: an optimized approach

    International Nuclear Information System (INIS)

    Sauer, Emilie

    2016-01-01

    The site of the Monts d'Arree located in Brennilis in the area of Brittany in France is a former 70 MWe heavy water reactor. EDF is now in charge of its decommissioning. The effluent treatment facility (STE) is currently being dismantled. As the future use of the site will exclude any nuclear activity, EDF is taking site release into consideration. Therefore a land management strategy for the land and soil is needed. An optimized approach is being proposed for the STE, to the French Regulator. In France, there is no specific regulation related to contaminated land (either radiologically contaminated or chemically contaminated). The French Nuclear Safety Authority's doctrine for radioactively contaminated land is a reference approach which involves complete clean-up, removing any trace of artificial radioactivity in the ground. If technical difficulties are encountered or the quantity of radioactive waste produced is too voluminous, an optimised clean-up can be implemented. EDF has been engaged since 2008 in drawing up a common guideline with other French nuclear operators (CEA and AREVA). The operators' guideline proposed the first steps to define how to optimise nuclear waste and to carry out a cost-benefits analysis. This is in accordance with the IAEA's prescriptions. Historically, various incidents involving effluent drum spills caused radiological contamination in the building platform and the underlying soil. While conducting the decontamination works in 2004/2005, it was impossible to remove all contamination (that went deeper than expected). A large characterization campaign was carried out in order to map the contamination. For the site investigation, 34 boreholes were drilled from 2 to 5 m under the building platform and 98 samples were analyzed to search for gamma, beta and alpha emitters. With the results, the contamination was mapped using a geostatistical approach developed by Geovariances TM . Main results were: - Soils are

  15. Fermi liquid, clustering, and structure factor in dilute warm nuclear matter

    Science.gov (United States)

    Röpke, G.; Voskresensky, D. N.; Kryukov, I. A.; Blaschke, D.

    2018-02-01

    Properties of nuclear systems at subsaturation densities can be obtained from different approaches. We demonstrate the use of the density autocorrelation function which is related to the isothermal compressibility and, after integration, to the equation of state. This way we connect the Landau Fermi liquid theory well elaborated in nuclear physics with the approaches to dilute nuclear matter describing cluster formation. A quantum statistical approach is presented, based on the cluster decomposition of the polarization function. The fundamental quantity to be calculated is the dynamic structure factor. Comparing with the Landau Fermi liquid theory which is reproduced in lowest approximation, the account of bound state formation and continuum correlations gives the correct low-density result as described by the second virial coefficient and by the mass action law (nuclear statistical equilibrium). Going to higher densities, the inclusion of medium effects is more involved compared with other quantum statistical approaches, but the relation to the Landau Fermi liquid theory gives a promising approach to describe not only thermodynamic but also collective excitations and non-equilibrium properties of nuclear systems in a wide region of the phase diagram.

  16. Application of the graded management approach to Battelle's nuclear project

    International Nuclear Information System (INIS)

    Voth, C.B.

    1996-01-01

    Battelle's graded management approach provides an effective and efficient method to perform the Battelle Columbus Laboratories Decommissioning Project (BCLDP). The project is managed by Battelle under their US Nuclear Regulatory Commission (NRC) license but is partially funded by the US Department of Energy (DOE) on a cost-shared basis. Battelle's graded management approach adheres to the regulations and orders governing the BCLDP by the interaction of various plans, procedures, permits, and work instructions. By independent assessment, quality control, and worker training, Battelle has been able to establish a cost-effective approach to performing work and, at the same time, have a controlled checks and balance system to assure the proper safety considerations and project particulars are taken into account

  17. Nuclear structure at intermediate energies. Progress report

    International Nuclear Information System (INIS)

    Bonner, B.E.; Mutchler, G.S.

    1992-01-01

    We report here oil the progress that we made for the nine months beginning October 1, 1991 for DOE Grant No. DE-FG05-87ER40309. The report covers the third year of a three year grant. Since we are submitting an accompanying Grant Renewal Proposal, we provide in this report more background information than usual for the different projects. The theme that unites the experiments undertaken by the Bonner Lab Medium Energy Group is a determination to understand in detail the many facets and manifestations of the strong interaction, that which is now referred to as nonperturbative QCD. Whether we are investigating the question of just what does carry the spin of baryons, or the extent of the validity of the SU(6) wavefunctions for the excited hyperons (as will be measured in our CEBAF experiment), or questions associated with the formation of a new state of matter predicted by QCD (the subject of AGS bar p experiment E854, AGS heavy ion experiment E810, as-well as the approved STAR experiment at RHIC), - all these projects share this common goal. FNAL E683 may well open a new field of investigation in nuclear physics: That of just how colored quarks and gluons interact with nuclear matter as they traverse nuclei of different-sizes. In most all of the experiments mentioned, above, the Bonner Lab Group is playing major leadership roles as well as doing a big fraction of the hard work that such experiments require. We use many of the facilities that are available to the intermediate energy physics community and we use our expertise to design and fabricate the detectors and instrumentation that are required to perform the measurements which we decide to do. The format we follow in the Progress Report is,to provide a concise, but fairly complete write-up on each project. The publications listed in Section In give much greater detail on many of the projects. The aim in this report is to focus on the physics goals, the results, and their significance

  18. A nuclear data approach for the Hubble constant measurements

    Directory of Open Access Journals (Sweden)

    Pritychenko Boris

    2017-01-01

    Full Text Available An extraordinary number of Hubble constant measurements challenges physicists with selection of the best numerical value. The standard U.S. Nuclear Data Program (USNDP codes and procedures have been applied to resolve this issue. The nuclear data approach has produced the most probable or recommended Hubble constant value of 67.2(69 (km/sec/Mpc. This recommended value is based on the last 20 years of experimental research and includes contributions from different types of measurements. The present result implies (14.55 ± 1.51 × 109 years as a rough estimate for the age of the Universe. The complete list of recommended results is given and possible implications are discussed.

  19. Thomas-Fermi approach to nuclear mass formula. Pt. 1

    International Nuclear Information System (INIS)

    Dutta, A.K.; Arcoragi, J.P.; Pearson, J.M.; Tondeur, F.

    1986-01-01

    With a view to having a more secure basis for the nuclear mass formula than is provided by the drop(let) model, we make a preliminary study of the possibilities offered by the Skyrme-ETF method. Two ways of incorporating shell effects are considered: the ''Strutinsky-integral'' method of Chu et al., and the ''expectation-value'' method of Brack et al. Each of these methods is compared with the HF method in an attempt to see how reliably they extrapolate from the known region of the nuclear chart out to the neutron-drip line. The Strutinsky-integral method is shown to perform particularly well, and to offer a promising approach to a more reliable mass formula. (orig.)

  20. Enhancing leadership at a nuclear power plant - a systematic approach

    International Nuclear Information System (INIS)

    Jupiter, P.

    1989-01-01

    The increasing use of advanced technology, greater regulatory oversight, and critical public scrutiny create numerous pressures for leaders within nuclear power plant systems (NPPSs). These large, complex industrial installations have unusually high expectations imposed for safety and efficiency of operation - without the luxury of trial-and-error learning. Industry leaders assert that enhanced leadership and management can substantially improve the operating performance of a nuclear power plant. The need has been voiced within the nuclear industry for systematic and effective methods to address leadership and management issues. This paper presents a step-by-step model for enhancing leadership achievement within NPPS, which is defined as the combined structural, equipment, and human elements involved in a plant's operation. Within the model, key areas for which the leader is responsible build upon each other in sequential order to form a solid strategic structure; teachable actions and skills form an ongoing cycle for leadership achievement. Through the model's continued and appropriate functioning, a NPPS is likely to maintain its viability, productivity, and effectiveness for the full licensed term of a plant

  1. Demonstration of risk-based approaches to nuclear plant regulation

    International Nuclear Information System (INIS)

    Rahn, F.J.; Sursock, J.P.; Darling, S.S.; Oddo, J.M.

    1993-01-01

    This paper describes generic technical support EPRI is providing to the nuclear power industry relative to its recent initiatives in the area of risk-based regulations (RBR). A risk-based regulatory approach uses probabilistic risk assessment (PRA), or similar techniques, to allocate safety resources commensurate with the risk posed by nuclear plant operations. This approach will reduce O ampersand M costs, and also improve nuclear plant safety. In order to enhance industry, Nuclear Regulatory Commission (NRC) and public confidence in RBR, three things need to be shown: (1) manpower/resource savings are significant for both NRC and industry; (2) the process is doable in a reasonable amount of time; and (3) the process, if uniformly applied, results in demonstrably cheaper power and safer plants. In 1992, EPRI performed a qualitative study of the key RBR issues contributing to high O ampersand M costs. The results are given on Table 1. This study is being followed up by an in-depth quantitative cost/benefit study to focus technical work on producing guidelines/procedures for licensing submittals to NRC. The guidelines/procedures necessarily will be developed from successful demonstration projects such as the Fitzpatrick pilot plant study proposed by the New York Power Authority and other generic applications. This paper presents three examples: two motor operated valve projects performed by QUADREX Energy Services Corporation working with utilities in responding to NRC Generic Letter 89-10, and a third project working with Yankee Atomic Electric Company on service water systems at a plant in its service system. These demonstration projects aim to show the following: (1) the relative ease of putting together a technical case based on RBR concepts; (2) clarity in differentiating the various risk trade-offs, and in communicating overall reductions in risk with NRC; and (3) improved prioritization of NRC directives

  2. Investigation of nuclear structures using transition probabilities

    CERN Document Server

    Dewald, A; Peusquens, R

    2002-01-01

    Magnetic rotation which appears as regular M1 bands in the spectra, is a well established phenomenon in several Pb isotopes. In the A = 130 region where similar M1 bands are known, e.g. in sup 1 sup 2 sup 4 Xe and sup 1 sup 2 sup 8 Ba, it is still not clear whether it does exists. Crucial experimental observables are the B (M1) values which -are expected to decrease with in creasing spin. At Strasbourg a recoil distance measurement (RDM) with the EUROBALL spectrometer at Strasbourg and the Koeln plunger using the reaction sup 1 sup 1 sup 0 Pd( sup 1 sup 8 O, 4n) sup 1 sup 2 sup 4 Xe at a beam energy of 86 MeV yielded preliminary lifetimes of ground band states and states of the M1 band. The deduced B(M1) values show the expected behaviour for magnetic rotation. It is also shown that the experimental B(M1) values can be described as well on the basis of a rotational band. The measured B(E2) values are used to investigate the nuclear deformation of sup 1 sup 2 sup 4 Xe as well as the interaction of the ground s...

  3. Phenomenological correlations in nuclear structure: An opportunity for nuclear astrophysics and a challenge to theory

    International Nuclear Information System (INIS)

    Casten, R.F.; Zamfir, N.V.

    1992-01-01

    Though it often appears daunting in its complexity, nuclear data frequently exhibits remarkable simplicities when viewed from the appropriate perspectives. This realization, which is becoming more and more apparent, is one of the fruits of the vast amount of nuclear data that has been accumulated over many years but, surprisingly, has never been completely digested. This emerging, unified, and simple macroscopic phenomenology, aided by microscopic underpinnings and physical arguments, appears in many guises and often simplifies semi-empirical estimates of structure far from stability in the critical realms where nuclear astrophysics takes place and where it is in need for improved nuclear input. The generality of simple phenomenological relationships begs both for a sound theoretical basis and for the advent of Radioactive Nuclear Beams so that the reliability of their extrapolations can be assessed and tested. These issues will be discussed, and illustrated with a number of specific examples

  4. The principal approaches to the problem of nuclear power plant safety in the USSR

    International Nuclear Information System (INIS)

    Sidorenko, V.A.; Kovalevich, O.M.; Kramerov, A.Ya.; Bagdasarov, Yu.E.

    1977-01-01

    The paper sets forth methods of ensuring the safety of nuclear power plants in the USSR on the basis of the scientific and engineering experience gained during the design, construction and operation of such plants, and describes the complex of technical and organizational problems whose solution determines the actual safety of nuclear power plants in the USSR. High-quality nuclear power plant equipment and components and their constant checking during the whole life of the plant are the prerequisites for preventing failures and accidents. The pattern of protective measures is discussed on the basis of possible failures and 'safe limits' for failures. The potentialities of the quantitative probabilistic method are analysed together with the need for a deterministic approach. The relationship of the maximum design accident with the protection and localization systems is considered in the case of nuclear power plants of different generations. The authors deal with the questions of State regulation of power plant safety on the basis of the adopted organizational structure and the system of standards. In conclusion, they briefly consider the application of the safety approach here described to power plants using water-water reactors, high-power boiling-water reactors and fast reactors in accordance with their place and role in the nuclear power development programme of the USSR. (author)

  5. New nuclear projects: structure, supply chain and financing

    International Nuclear Information System (INIS)

    Keppler, J.H.; Cometto, M.

    2015-01-01

    In 2015 there were 68 reactors being constructed throughout the world and 159 projects were planned. The projects for the construction of nuclear reactors face challenging issues like financing and management. The NEA (Nuclear Energy Agency) has analysed the feedback experience on a sample of reactor projects and of reactors recently commissioned in order to draw lessons on 3 issues: financing, long-term electricity price, and project management including the supply chain. It is already known that technologies requiring high initial capital like nuclear power or renewable energies, are very sensitive to the long-term price of electricity. The study shows that for a debt ratio below 60%, the risk for the investor is low even if the long-term electricity price drops by 30 %. Because of the complexity of the construction of a nuclear power plant there are mainly 3 types of project management: the turnkey project, the split package approach (a relatively low number of suppliers) and the multi-contract approach. The turnkey approach is favoured by the new entrants in the nuclear world. The harmonization of regulations and the convergence of the safety requirements are necessary to build an efficient and competitive supply chain. (A.C.)

  6. Organization, structure, and performance in the US nuclear power industry

    International Nuclear Information System (INIS)

    Lester, R.K.

    1986-01-01

    Several propositions are advanced concerning the effects of industry organization and structure on the economic performance of the American commercial nuclear power industry. Both the electric utility industry and the nuclear power plant supply industry are relatively high degree of horizontal disaggregation. The latter is also characterized by an absence of vertical integration. The impact of each of these factors on construction and operating performance is discussed. Evidence is presented suggesting that the combination of horizontal and vertical disaggregation in the industry has had a significant adverse effect on economic performance. The relationship between industrial structure and regulatory behavior is also discussed. 43 references, 4 figures, 9 tables

  7. Status of transactinium nuclear data in the Evaluated Nuclear Structure Data File

    International Nuclear Information System (INIS)

    Ewbank, W.B.

    1979-01-01

    The organization and program of the Nuclear Data Project are described. An Evaluated Nuclear Structure Data File (ENSDF) was designed to contain most of the data of nuclear structure physics. ENSDF includes adopted level information for all 1950 known nuclei, and detailed data for approximately 1500 decay schemes. File organization, management, and retrieval are reviewed. An international network of data evaluation centers has been organized to provide for a four-year cycle of ENSDF revisions. Standard retrieval and display programs can prepare various tables of specific data, which can serve as a good first approximation to a complete up-to-date compilation. Appendixes list, for A > 206, nuclear levels with lifetimes > or = 1 s, strong γ rays from radioisotopes (ordered by nuclide and energy), and strong α particle emissions (similarly ordered). 8 figures

  8. Impact loads on nuclear power plant structures

    International Nuclear Information System (INIS)

    Riera, J.D.

    1993-01-01

    The first step in evaluation of a NPP design for protection against impact loading, is to identify those events that may be credible for a particular site. In connection with external, man-made events IAEA Safety Series No.50-SG-S5 provides a methodology for selecting the events that need to be considered. This presentation deals with modelling of interface forces in projectile impact against unyielding structures, vibrations induced by impact, penetration, scabbing and perforation effects

  9. Experimental investigations of the nuclear structure

    International Nuclear Information System (INIS)

    Gromov, K.Ya.

    1989-01-01

    The problem of experimental investigation into atomic nucleus structure is discussed. Examples of studying the properties of low-lying nucleus states using cyclotron-type accelerators for their production are presented. The consideration is conducted on the base of the Idisol experimental complex created at the Finland. Results of measuring masses of neutron-redundant rubidium nuclei are presented. Schemes of 160 Er and 108 In decay are presented. 12 refs.; 6 figs

  10. Accelerating Full Configuration Interaction Calculations for Nuclear Structure

    International Nuclear Information System (INIS)

    Yang, Chao; Sternberg, Philip; Maris, Pieter; Ng, Esmond; Sosonkina, Masha; Le, Hung Viet; Vary, James; Yang, Chao

    2008-01-01

    One of the emerging computational approaches in nuclear physics is the full configuration interaction (FCI) method for solving the many-body nuclear Hamiltonian in a sufficiently large single-particle basis space to obtain exact answers - either directly or by extrapolation. The lowest eigenvalues and corresponding eigenvectors for very large, sparse and unstructured nuclear Hamiltonian matrices are obtained and used to evaluate additional experimental quantities. These matrices pose a significant challenge to the design and implementation of efficient and scalable algorithms for obtaining solutions on massively parallel computer systems. In this paper, we describe the computational strategies employed in a state-of-the-art FCI code MFDn (Many Fermion Dynamics - nuclear) as well as techniques we recently developed to enhance the computational efficiency of MFDn. We will demonstrate the current capability of MFDn and report the latest performance improvement we have achieved. We will also outline our future research directions

  11. Gaining public acceptance for nuclear power: the Philippine approach

    International Nuclear Information System (INIS)

    Ibe, L.D.; Remedios, A.; Savelano, M.P.A.

    1977-01-01

    This article describes the strategy adopted by the Philippine Atomic Energy Commisssion (PAEC) to gain acceptance for the country's nuclear power program. It explores the various dimensions of Philippine society that affects the attainment of this objective, including cultural obstacles typical of a developing nation. Points of controversy regarding the introduction of nuclear power are identified as are likely change agents in the process of transformation of public reactions of hostility and indifference to general acceptance. The PAEC outreach information program for the nuclear power project has been directed at - the policy makers to persuade them to give maximum support to the project through its integration into the country's development strategy; - the facilitating administrative agencies to provide adequate resources for the project; - the implementing agencies including those in supportive technology, research and training to recognize the top priority ranking of nuclear power for their work plans and programs; and; - the end-users and beneficiaries of an adequate power supply. The time frame for the PAEC information campaign spans three stages of the project: Phase I. Planning (including site selection); Phase II. Construction; and Phase III. Operation. The strategy reaches out to all sectors and involves linkages with educational institutions, scientific societies, technological and civic organizations, and such publics as the studentry, professionals and the community as a whole. It utilizes thought leaders and the mass media, both print and broadcast, in addition to PAEC resources, in the generation of favorable public opinion under a planned and systematic effort at mass appeal. Finally, the article describes in detail the PAEC public information delivery system, its organizational structure, components, linkages and activities within the framework of another PAEC mandated function to regulate nuclear facilities

  12. Algebraic fermion models and nuclear structure physics

    International Nuclear Information System (INIS)

    Troltenier, Dirk; Blokhin, Andrey; Draayer, Jerry P.; Rompf, Dirk; Hirsch, Jorge G.

    1996-01-01

    Recent experimental and theoretical developments are generating renewed interest in the nuclear SU(3) shell model, and this extends to the symplectic model, with its Sp(6,R) symmetry, which is a natural multi-(ℎ/2π)ω extension of the SU(3) theory. First and foremost, an understanding of how the dynamics of a quantum rotor is embedded in the shell model has established it as the model of choice for describing strongly deformed systems. Second, the symplectic model extension of the 0-(ℎ/2π)ω theory can be used to probe additional degrees of freedom, like core polarization and vorticity modes that play a key role in providing a full description of quadrupole collectivity. Third, the discovery and understanding of pseudo-spin has allowed for an extension of the theory from light (A≤40) to heavy (A≥100) nuclei. Fourth, a user-friendly computer code for calculating reduced matrix elements of operators that couple SU(3) representations is now available. And finally, since the theory is designed to cope with deformation in a natural way, microscopic features of deformed systems can be probed; for example, the theory is now being employed to study double beta decay and thereby serves to probe the validity of the standard model of particles and their interactions. A subset of these topics will be considered in this course--examples cited include: a consideration of the origin of pseudo-spin symmetry; a SU(3)-based interpretation of the coupled-rotor model, early results of double beta decay studies; and some recent developments on the pseudo-SU(3) theory. Nothing will be said about other fermion-based theories; students are referred to reviews in the literature for reports on developments in these related areas

  13. North Carolina State University Nuclear Structure Research at the Triangle Universities Nuclear Laboratory. Progress report

    International Nuclear Information System (INIS)

    Seagondollar, L.W.; Waltner, A.W.; Mitchell, G.E.; Tilley, D.R.; Gould, C.R.

    1975-01-01

    A summary is presented of nuclear structure research completed at the Triangle Universities Nuclear Lab for the period 9/1/74 to 8/31/75. Included are abstracts and titles for studies of electromagnetic transitions in low-medium mass nuclei, high resolution studies, accelerator induced x-ray investigations, and energy related neutron and charged particle cross section measurements. (U.S.)

  14. Differences in Approach between Nuclear and Conventional Seismic Standards with regard to Hazard Definition - CSNI Integrity And Ageing Working Group

    International Nuclear Information System (INIS)

    Djaoudi, Ali; Labbe, Pierre; Murphy, Andrew; Kitada, Yoshio

    2008-01-01

    The Committee on the safety of Nuclear Installations (CSNI) of the OECD-NEA co-ordinates the NEA activities related to maintaining and advancing the scientific and technological knowledge base of the safety of nuclear installations. The Integrity and Ageing of Components and Structures Working Group of the CSNI is responsible for work related to the development and use of methods, data and information to assess the behaviour of materials and structures. It has three sub-groups, dealing with the integrity of metal components and structures, ageing of concrete structures, and the seismic behaviour of structures. The CSNI, at its meeting in June 2003, agreed to initiate an activity aimed to identify any difference between nuclear and non-nuclear conventional standards and their potential significance with regard to seismic hazards and design methods. There was a perception, mainly in some of the European countries that nuclear seismic hazard and design standards may be lagging behind developments in similar standards for conventional facilities. Adequate answer to such perception, need the examination of the following aspects and their significance on the seismic assessment of structures and components: - The safety philosophy behind the seismic nuclear and conventional standards. - The differences in approach regarding the seismic hazard definition. - The difference in approach regarding the design and the methods of analysis. These topics are examined in this report. Appendices A to H of this report contain a brief description of the conventional and the nuclear approaches in the NEA member countries: Belgium, Canada, Czech Republic, Germany, Japan, South Korea, Spain,and USA. The following general conclusions can be drawn: - The approach adopted by the nuclear seismic standards is more conservative and more reliable (in particular for meeting the continued operation criteria) than the recommended by the currently applicable force based conventional seismic codes

  15. Aging management of containment structures in nuclear power plants

    International Nuclear Information System (INIS)

    Naus, D.J.; Oland, C.B.; Ellingwood, B.R.; Graves, H.L. III; Norris, W.E.

    1996-01-01

    Research is being conducted by Oak Ridge National Laboratory under US nuclear regulatory commission (USNRC) sponsorship to address aging management of nuclear power plant containment and other safety-related structures. Documentation is being prepared to provide the USNRC with potential structural safety issues and acceptance criteria for use in continued service evaluations of nuclear power plants. Accomplishments include development of a structural materials information center containing data and information on the time variation of 144 material properties under the influence of pertinent environmental stressors or aging factors, evaluation of models for potential concrete containment degradation factors, development of a procedure to identify critical structures and degradation factors important to aging management, evaluations of non-destructive evaluation techniques, assessments of European and North American repair practices for concrete, review of parameters affecting corrosion of metals embedded in concrete, and development of methodologies for making current condition assessments and service life predictions of new or existing reinforced concrete structures in nuclear power plants. (orig.)

  16. Aging management of containment structures in nuclear power plants

    International Nuclear Information System (INIS)

    Naus, D.J.; Oland, C.B.; Ellingwood, B.R.

    1994-01-01

    Research is being conducted by Oak Ridge National Laboratory under U.S. Nuclear Regulatory Commission sponsorship to address aging management of nuclear power plant containment and other safety-related structures. Documentation is being prepared to provide the US-NRC with potential structural safety issues and acceptance criteria for use in continued service evaluations of nuclear power plants. Accomplishments include development of a Structural Materials Information Center containing data and information on the time variation of 144 material properties under the influence of pertinent environmental stressors or aging factors, evaluation of models for potential concrete containment degradation factors, development of a procedure to identify critical structures and degradation factors important to aging management, evaluations of nondestructive evaluation techniques, assessments of European and North American repair practices for concrete, review of parameters affecting corrosion of metals embedded in concrete, and development of methodologies for making current condition assessments and service life predictions of new or existing reinforced concrete structures in nuclear power plants. (author). 29 refs., 2 figs

  17. A Real Options Approach to Nuclear Waste Disposal in Sweden

    International Nuclear Information System (INIS)

    Soederkvist, Jonas; Joensson, Kristian

    2004-04-01

    This report is concerned with an investigation of how the real options approach can be useful for managerial decisions regarding the phase-out of nuclear power generation in Sweden. The problem of interest is the optimal time-schedule for phase-out activities, where the optimal time-schedule is defined in purely economical terms. The approach taken is actual construction and application of three real options models, which capture different aspects of managerial decisions. The first model concerns when investments in deep disposal facilities should optimally be made. Although the model is a rough simplification of reality, the result is clear. It is economically advantageous to postpone deep disposal forever. The second model focuses on how the uncertainty of future costs relates to managerial investment decisions. Construction of this model required some creativity, as the nuclear phase-out turns out to be quite a special project. The result from the second model is that there can be a value associated with deferral of investments due to the uncertainty of future costs, but the result is less clear-cut compared to the first model. In the third model, we extend an approach suggested by Louberge, Villeneuve and Chesney. The risk of a nuclear accident is introduced through this model and we develop its application to investigate the Swedish phase-out in particular, which implies that waste continuously disposed. In the third model, focus is shifted from investment timing to implementation timing. The results from the third model are merely qualitative, as it is considered beyond the scope of this work to quantitatively determine all relevant inputs. It is concluded that the phase-out of nuclear power generation in Sweden is not just another area of application for standard real options techniques. A main reason is that although there are a lot of uncertain issues regarding the phase-out, those uncertainties do not leave a lot of room for managerial flexibility if

  18. Simplified design of flexible expansion anchored plates for nuclear structures

    International Nuclear Information System (INIS)

    Mehta, N.K.; Hingorani, N.V.; Longlais, T.G.; Sargent and Lundy, Chicago, IL)

    1984-01-01

    In nuclear power plant construction, expansion anchored plates are used to support pipe, cable tray and HVAC duct hangers, and various structural elements. The expansion anchored plates provide flexibility in the installation of field-routed lines where cast-in-place embedments are not available. General design requirements for expansion anchored plate assemblies are given in ACI 349, Appendix B (1). The manufacturers recommend installation procedures for their products. Recent field testing in response to NRC Bulletin 79-02 (2) indicates that anchors, installed in accordance with manufacturer's recommended procedures, perform satisfactorily under static and dynamic loading conditions. Finite element analysis is a useful tool to correctly analyze the expansion anchored plates subject to axial tension and biaxial moments, but it becomes expensive and time-consuming to apply this tool for a large number of plates. It is, therefore, advantageous to use a simplified method, even though it may be more conservative as compared to the exact method of analysis. This paper presents a design method referred to as the modified rigid plate analysis approach to simplify both the initial design and the review of as-built conditions

  19. Nuclear structure of {sup 231}Ac

    Energy Technology Data Exchange (ETDEWEB)

    Boutami, R. [Instituto de Estructura de la Materia, CSIC, Serrano 113 bis, E-28006 Madrid (Spain); Borge, M.J.G. [Instituto de Estructura de la Materia, CSIC, Serrano 113 bis, E-28006 Madrid (Spain)], E-mail: borge@iem.cfmac.csic.es; Mach, H. [Department of Radiation Sciences, ISV, Uppsala University, SE-751 21 Uppsala (Sweden); Kurcewicz, W. [Department of Physics, University of Warsaw, Pl-00 681 Warsaw (Poland); Fraile, L.M. [Departamento Fisica Atomica, Molecular y Nuclear, Facultad CC. Fisicas, Universidad Complutense, E-28040 Madrid (Spain); ISOLDE, PH Department, CERN, CH-1211 Geneva 23 (Switzerland); Gulda, K. [Department of Physics, University of Warsaw, Pl-00 681 Warsaw (Poland); Aas, A.J. [Department of Chemistry, University of Oslo, PO Box 1033, Blindern, N-0315 Oslo (Norway); Garcia-Raffi, L.M. [Instituto de Fisica Corpuscular, CSIC - Universidad de Valencia, Apdo. 22805, E-46071 Valencia (Spain); Lovhoiden, G. [Department of Physics, University of Oslo, PO Box 1048, Blindern, N-0316 Oslo (Norway); Martinez, T.; Rubio, B.; Tain, J.L. [Instituto de Fisica Corpuscular, CSIC - Universidad de Valencia, Apdo. 22805, E-46071 Valencia (Spain); Tengblad, O. [Instituto de Estructura de la Materia, CSIC, Serrano 113 bis, E-28006 Madrid (Spain); ISOLDE, PH Department, CERN, CH-1211 Geneva 23 (Switzerland)

    2008-10-15

    The low-energy structure of {sup 231}Ac has been investigated by means of {gamma} ray spectroscopy following the {beta}{sup -} decay of {sup 231}Ra. Multipolarities of 28 transitions have been established by measuring conversion electrons with a MINI-ORANGE electron spectrometer. The decay scheme of {sup 231}Ra {yields}{sup 231}Ac has been constructed for the first time. The Advanced Time Delayed {beta}{gamma}{gamma}(t) method has been used to measure the half-lives of five levels. The moderately fast B(E1) transition rates derived suggest that the octupole effects, albeit weak, are still present in this exotic nucleus.

  20. Fatigue in engineering structures. A three fold analysis approach

    International Nuclear Information System (INIS)

    Malik, Afzaal M.; Qureshi, Ejaz M.; Dar, Naeem Ullah; Khan, Iqbal

    2007-01-01

    The integrity in most of the engineering structures in influenced by the presence of cracks or crack like defects. These structures fail, even catastrophically if a crack greater than a critically safe size exist. Although most of the optimal designed structures are initially free from critical cracks, sub-critical cracks can lead to failures under cyclic loadings, called fatigue crack growth. It is nearly impractical to prevent sub-critical crack growth in engineering structures particularly in crack sensitive structures like most of the structures in nuclear, aerospace and aeronautical domains. However, it is essential to predict the fatigue crack growth for these structures to preclude the in service failures causing loss of assets. The present research presents an automatic procedure for the prediction of fatigue crack growth in three dimensional engineering structures and the key data for the fracture mechanics based design: the stress intensity factors. Three fold analysis procedures are adopted to investigate the effects of repetitive (cyclic) loadings on the fatigue life of different geometries of aluminum alloy 2219-O. A general purpose Finite Element (FE) Code ANSYS-8.0 is used to predict/estimate the fatigue life of the geometries. Computer codes utilizing the Green's Function are developed to calculate the stress intensity factors. Another code based on superposition technique presented by Shivakumara and Foreman is developed to calculate the fatigue crack growth rate, fatigue life (No. of loading cycles are developed to validate the results and finally full scale laboratory tests are conducted for the comparison of the results. The results showing a close co-relation between the different techniques employed gives the promising feature of the analysis approach for the future work. (author)

  1. Analysis on the public acceptance of nuclear energy using structural equation model with latent variables

    International Nuclear Information System (INIS)

    Lee, Young Eal

    1996-02-01

    Comparison of the effect of education and public information on the public acceptance of nuclear energy is carried out. For the increase of public acceptance, the correct understanding on the nuclear energy via proper regular school education would be the first basis and the appropriate public information services by utility and unbiased mass media would be the second basis. Subjects that which is more effect in education or information and how much effective quantitatively to improve the public acceptance are derived. Structural Equation Model (SEM) with Latent Variables (LVs) in social science to public attitudes towards nuclear energy is developed. Questionnaire is conducted to respondents who took part in the program of visiting the nuclear power plant opened by OKAEA in 1995. As a result of the analysis, effect of education for correct awareness of nuclear energy is more sensitive to public acceptance than that of information. It is shown that the susceptibility in education factor in influence of radiation on human body and that in information factor persons consider nuclear power plant as an environmental polluter. It is concluded that radiation treatment should be a 'Hand on Experience' and general principle of nuclear power generation should be contained in the educational text book. Education and information should not been independently performed but been carried out simultaneously and mutually aided. It is shown that this modeling approach is useful to make the decision for the long-term nuclear energy policy transparent and successful

  2. Panel presentation: innovations in nuclear industry structuring

    International Nuclear Information System (INIS)

    Irvine, H.S.

    1986-01-01

    The CANDU Owners Group (COG) has been in operation for about a year and a half. During that time the share funding of programs among COG members has increased to a level approaching $45 M annually. Communication among the members at both the management and technical levels is occurring on virtually a day to day basis. Through their participation in and support of COG, the members have benefited by having: knowledge of operating events at all members' stations; access to staff who can answer enquiries; access to opportunities for jointly-funded programs; access to documentation of 'solved' problems; and knowledge of licensing positions on outstanding issues. All of these benefits lead ultimately to a continuing excellent performance record. In addition, COG provides a means by which Canada can assure potential offshore CANDU owners that they will not be isolated by pursuing the CANDU option

  3. Nuclear structure at high and very high spin theoretical description

    International Nuclear Information System (INIS)

    Szymanski, Z.

    1983-11-01

    When the existence of nuclear shell structure is ignored and nuclear motion is assumed to be classical we may expect that the nuclear rotation resembles that of a liquid drop. Energy of the nucleus can be thus considered as a sum of three terms: surface energy, Coulomb energy and rotational energy. Nuclear moment of inertia is assumed to be that of a rigid-body. The results of a calculation of the energy surfaces in rotating nuclei by Cohen, Plasil and Swiatecki are discussed. Cranking procedure is analysed as a tool to investigate nucleonic orbits in a rotating nuclear potential. Some predictions concerning the possible onset of a superdeformed phase are given. The structure of nuclear rotation is examined in the presence of the short-range pairing forces that generate the superfluid correlations in the nucleus. Examples of the Bengtsson-Frauendorf plots (quasiparticle energies versus angular velocity of rotation) are given and discussed. The backbending phenomenon is analysed in terms of band crossing. The dependence of the crossing frequency on the pairing-force strength is discussed. Possibilities of the role of new components in the two-body force (quadrupole-pairing) are considered. Possibilities of the phase transition from superfluid to normal states in the nucleus are analysed. The role of the second (dynamic) moment of inertia I(2) in this analysis is discussed. In spherical weekly deformed nuclei (mostly oblate) angular momentum is aligned parallel to the nuclear symmetry axis. Rotation is of non collective origin in this case. Examples of the analysis of nuclear spectra in this case (exhibiting also the isomeric states called yrast (traps)) are given. Possible forms of the collective excitations superimposed on top of the high-spin states are discussed. In particular, the giant resonance excitations formed on top of the high-spin states are considered and their properties discussed

  4. Nuclear fuel assembly incorporating primary and secondary structural support members

    International Nuclear Information System (INIS)

    Carlson, W.R.; Gjertsen, R.K.; Miller, J.V.

    1987-01-01

    A nuclear fuel assembly, comprising: (a) an upper end structure; (b) a lower end structure; (c) elongated primary structural members extending longitudinally between and rigidly interconnecting the upper and lower end structures, the upper and lower end structures and primary structural members together forming a rigid structural skeleton of the fuel assembly; (d) transverse grids supported on the primary structural members at axially spaced locations therealong between the upper and lower end structures; (e) fuel rods extending through and supported by the grids between the upper and lower end structures so as to extend in generally side-by-side spaced relation to one another and to the primary structural members; and (f) elongated secondary structural members extending longitudinally between but unconnected with the upper and lower end structures, the secondary structural members extending through and rigidly interconnected with the grids to extend in generally side-by-side spaced relation to one another, to the fuel rods and to the primary structural members so as to bolster the stiffness of the structural skeleton of the fuel assembly

  5. A radical approach to decommissioning and nuclear liabilities management

    International Nuclear Information System (INIS)

    Pooley, D.

    1996-01-01

    UKAEA Government Division has been set up primarily to manage and eventually eliminate the nuclear liabilities left from the many national nuclear programmes in which UKAEA has been involved. It is no longer primarily a nuclear plant or decommissioning operator but has developed a radical approach to decommissioning. It targets best value for money, alongside meeting safety and environmental requirements, by major use of contractors for its work, including using them as managing agents for big projects. In its first year of operation it made considerable progress in setting out the mission, goals, performance measures and operational principles for such an organization, as well as in reducing costs on a wide front from those expected, in increasing competition for future projects, and in keeping individual projects under good control. It also made major physical progress with specific decommissioning projects. For the future it has established a programme of continuous performance improvement which will bring further benefits and provide a benchmark for all organizations in the business of liabilities management. (author)

  6. A radical approach to decommissioning and nuclear liabilities management

    International Nuclear Information System (INIS)

    Pooley, D.

    1995-01-01

    UKAEA Government Division has been set up primarily to manage and eventually eliminate the nuclear liabilities left from the many national nuclear programmes in which UKAEA has been involved. It is no longer primarily a nuclear plant or decommissioning operator but has developed a radical approach to decommissioning. It targets best value for money, alongside meeting safety and environmental requirements, by major use of contractors for its work, including as managing agents for big projects. In its first year of operation it made considerable progress in setting out the mission, goals, performance measures and operational principles for such an organisation, as well as reducing costs on a wide front from those expected in increasing competition for future projects, and in keeping individual projects under good control. It also made major physical progress with specific decommissioning projects. For the future it has established a programme of continuous performance improvement which will bring further benefits and provide a benchmark for all organisations in the business of liabilities management. (author)

  7. Impact of Multilateral Approaches for Assurances of Nuclear Fuel Supply

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Han Myung; Lee, B. W.; Ko, H. S.; Ryu, J. S.; Yang, M. H.; Oh, K. B.; Lee, K. S

    2007-12-15

    This study consists of 3 parts : analysis of the characteristics of the recent proposals for a nuclear fuel supply and the progress of them, responses from various sectors in the world, and measures for them. In response to recent proposals, majority of countries possessing sensitive nuclear fuel facilities are supportive in general. In contrast, many countries not possessing such facilities are reluctant about the proposals. To satisfy both parties, an ideal proposal could suggest measures to assure a non-proliferation as well as measures to acquire confidence from the so-called user nations. To get strong support from all countries concerned, the proposal should contain some critical elements such as clear attractiveness for a participation, equal opportunities for the participating countries, voluntarily in decision on a participation, and a gradual approach to remove any future obstacles encountered. The criteria to judge a legitimate need of a country for the introduction of nuclear fuel facilities should be prepared by a consensus. Compliance of a nonproliferation obligation, scale of an economy, and an energy security can be proposed as such criteria.

  8. A practical approach to the transfer of nuclear technology

    International Nuclear Information System (INIS)

    Segerberg, F.

    1978-01-01

    The paper deals specifically with the transfer of light-water reactor technology to a developing country. The technology transfer scheme presented assumes that Sweden is the supplier of this technology. The basis of the proposed approach is that hardware deliveries for nuclear power plants in the recipient country should constitute an activity in parallel with the general technology transfer. It is pointed out that the developing countries form a very heterogeneous group with respect to industrial capability. On the other hand the supplier nations are not a homogeneous group. Sweden's most relevant characteristics as supplier nation can be summarized under the following headings: (i) fairly small and highly industrialized country; (ii) concentration on nuclear power to cover increasing electricity demands; (iii) independent reactor technology; (iv) well-established infrastructure with regard to component manufacturing; (v) political neutrality. It follows that each combination of two countries constitutes a unique example. The nuclear technology transfer schemes must consequently be extremely flexible. The paper outlines a 'modular' system. This concept means that the supplier offers a great variety of independent courses, training opportunities, facilities etc. which can then be combined into a package meeting the wishes of the recipient nation. The components in a Swedish package of this kind are elaborated. The paper ends with the general conclusion that Sweden has so far been successful in combining high national ambitions with limited manpower and limited financial resources. The underlying efficiency and flexibility will hopefully make Sweden an attractive partner for developing countries. (author)

  9. Automated approach to nuclear facility safeguards effectiveness evaluation

    International Nuclear Information System (INIS)

    1977-01-01

    Concern over the security of nuclear facilities has generated a need for a reliable, time efficient, and easily applied method of evaluating the effectiveness of safeguards systems. Such an evaluation technique could be used (1) by the Nuclear Regulatory Commission to evaluate a licensee's proposal, (2) to assess the security status of a system, or (3) to design and/or upgrade nuclear facilities. The technique should be capable of starting with basic information, such as the facility layout and performance parameters for physical protection components, and analyzing that information so that a reliable overall facility evaluation is obtained. Responding to this expressed need, an automated approach to facility safeguards effectiveness evaluation has been developed. This procedure consists of a collection of functional modules for facility characterization, critical path generation, and path evaluation combined into a continuous stream of operations. The technique has been implemented on an interactive computer-timesharing system and makes use of computer graphics for the handling and presentation of information. Using this technique a thorough facility evaluation can be made by systematically varying parameters that characterize the physical protection components of a facility according to changes in perceived adversary attributes and strategy, environmental conditions, and site status

  10. Impact of Multilateral Approaches for Assurances of Nuclear Fuel Supply

    International Nuclear Information System (INIS)

    Lee, Han Myung; Lee, B. W.; Ko, H. S.; Ryu, J. S.; Yang, M. H.; Oh, K. B.; Lee, K. S.

    2007-12-01

    This study consists of 3 parts : analysis of the characteristics of the recent proposals for a nuclear fuel supply and the progress of them, responses from various sectors in the world, and measures for them. In response to recent proposals, majority of countries possessing sensitive nuclear fuel facilities are supportive in general. In contrast, many countries not possessing such facilities are reluctant about the proposals. To satisfy both parties, an ideal proposal could suggest measures to assure a non-proliferation as well as measures to acquire confidence from the so-called user nations. To get strong support from all countries concerned, the proposal should contain some critical elements such as clear attractiveness for a participation, equal opportunities for the participating countries, voluntarily in decision on a participation, and a gradual approach to remove any future obstacles encountered. The criteria to judge a legitimate need of a country for the introduction of nuclear fuel facilities should be prepared by a consensus. Compliance of a nonproliferation obligation, scale of an economy, and an energy security can be proposed as such criteria

  11. Nuclear structure from radioactive decay: Annual progress report

    International Nuclear Information System (INIS)

    Wood, J.L.

    1988-01-01

    The primary focus this year has been the continuing studies of intruder states and shape coexistence in the neutron-deficient Z /approximately/ 82 region. Most notably, an extensive region of odd-mass nuclei is emerging within which low-lying low-energy electric monopole (EO) transitions occur. This is a completely new nuclear structure phenomenon. The empirical results are based on on-line decay scheme spectroscopy of mass-separated isotopes at UNISOR. In particular, many transition multipolarities are determined from conversion electron subshell ratios observed in γ-gated electron coincidence spectra. This is a completely new nuclear spectroscopic technique. To cite a specific example: our studies of the 185 Au → 185 Pt decay scheme reveal at least 11 transitions with EO components. This is unprecedented in nuclear structure. The role of EO transitions is being pursued in the larger framework of a signature of shape coexistence in nuclei

  12. Structural design of nuclear power plant using stiffened steel plate concrete structure

    International Nuclear Information System (INIS)

    Moon, Ilhwan; Kim, Sungmin; Mun, Taeyoup; Kim, Keunkyeong; Sun, Wonsang

    2009-01-01

    Nuclear power is an alternative energy source that is conducive to mitigate the environmental strains. The countries having nuclear power plants are encouraging research and development sector to find ways to construct safer and more economically feasible nuclear power plants. Modularization using Steel Plate Concrete(SC) structure has been proposed as a solution to these efforts. A study of structural modules using SC structure has been performed for shortening of construction period and enhancement of structural safety of NPP structures in Korea. As a result of the research, the design code and design techniques based on limit state design method has been developed. The design code has been developed through various structural tests and theoretical studies, and it has been modified by application design of SC structure for NPP buildings. The code consists of unstiffened SC wall design, stiffened SC wall design, Half-SC slab design, stud design, connection design and so on. The stiffened steel plate concrete(SSC) wall is SC structure whose steel plates with ribs are composed on both sides of the concrete wall, and this structure was developed for improved constructability and safety of SC structure. This paper explains a design application of SC structure for a sample building specially devised to reflect all of major structural properties of main buildings of APR1400. In addition, Stiffening effect of SSC structure is evaluated and structural efficiency of SSC structure is verified in comparison with that of unstiffened SC structure. (author)

  13. Condition monitoring and maintenance of nuclear power plant concrete structures

    International Nuclear Information System (INIS)

    Orr, R.; Prasad, N.

    1988-01-01

    Nuclear power plant concrete structures are potentially subject to deterioration due to several environmental conditions, including weather exposure, ground water exposure, and sustained high temperature and radiation levels. The nuclear power plant are generally licensed for a term of 40 years. In order to maximize the return from the existing plants, feasibility studies are in progress for continued operation of many of these plants beyond the original licensed life span. This paper describes a study that was performed with an objective to define appropriate condition monitoring and maintenance procedures. A timely implementation of a condition monitoring and maintenance program would provide a valuable database and would provide justification for extension of the plant's design life. The study included concrete structures such as the containment buildings, interior structures, basemats, intake structures and cooling towers. Age-related deterioration at several operating power plants was surveyed and the potential degradation mechanisms have been identified

  14. Quality assurance in the structural installations of nuclear power stations

    International Nuclear Information System (INIS)

    Schnellenbach, G.; Wrage, S.

    1985-01-01

    The concept of quality assurance distinguishes between self-monitoring of the design, manufacturing and executing firms and external monitoring by state institutions or by experts commissioned by them. The long-term control of structures is within the area of responsibility of the owner. This quality assurance concept is controlled in detail by statutes, which clearly define responsibilities. This structural engineering quality assurance system also forms the basis for the design, construction and utilization of structural installations of nuclear power stations; requirements emanating from the Atomic Energy Acts for the structural installations demand, however, to some extent a sharpening of self- and external monitoring. Therefore, today a quality concept has been developed for the important engineering safety-related buildings of nuclear power stations. This concept takes account of the strict requirements imposed and fulfils the requirement of KTA 1401. (orig.) [de

  15. Nuclear power plant maintenance scheduling dilemma: a genetic algorithm approach

    International Nuclear Information System (INIS)

    Mahdavi, M.H.; Modarres, M.

    2004-01-01

    There are huge numbers of components scheduled for maintenance when a nuclear power plant is shut down. Among these components, a number of them are safety related which their operability as well as reliability when plant becomes up is main concerns. Not performing proper maintenance on this class of components/system would impose substantial risk on operating the NPP. In this paper a new approach based on genetic algorithms is presented to optimize the NPP maintenance schedule during shutdown. following this approach the cost incurred by maintenance activities for each schedule is balanced with the risk imposed by the maintenance scheduling plan to the plant operation status when it is up. The risk model implemented in the GA scheduler as its evaluation function is developed on the basis of the probabilistic risk assessment methodology. the Ga optimizers itself is shown to be superior compared to other optimization methods such as the monte carlo technique

  16. The role of nuclear shapes in nuclear structure (from the perspective of the Daresbury Tandem)

    International Nuclear Information System (INIS)

    Nazarewicz, W.

    1993-01-01

    In specific regions of the nuclear periodic chart, large multipole moments are observed and the low-lying excitations have a rotational character. These features are understood if the nuclei in question are assumed to have a stable deformation, i.e., a non-spherical distribution of the nuclear matter. In other (transitional) regions the quasi-rotational bands are present; they are strongly coupled to low-lying vibrational modes. Those nuclei are best understood in terms of small static deformations but large dynamic fluctuations around local equilibria. As a matter of fact, the vast majority of nuclei are deformed; even in those which are spherical or almost spherical, the dynamical couplings to shape vibrations are crucial. The issue of nuclear deformation is many-faceted. If the nuclear shape (nuclear mean field) is deformed, characteristic excitation modes are present, such as rotations and vibrations built upon the non-spherical equilibrium. Through the particle-core coupling, nuclear deformations can dramatically influence the single-particle properties of nucleons moving in the average nuclear potential. Many experimental investigations using the Daresbury Tandem were related in one way or another to the physics of nuclear shapes. Fundamental discoveries from Daresbury include the observation of superdeformed structures in rapidly rotating nuclei, the observation of identical (open-quotes twinnedclose quotes) rotational bands, various studies of structural changes induced by very fast rotation (band-crossings, band-terminations), the observation of the oblate-deformed open-quotes dipoleclose quotes bands, studies of reflection-asymmetric shapes, studies of (quasimolecular) cluster configurations in light nuclei, and many, many others. The author reviews the forefront research at Daresbury from the global perspective; the common denominator being the nuclear shape deformation

  17. Superconformal Algebraic Approach to Hadron Structure

    Energy Technology Data Exchange (ETDEWEB)

    de Teramond, Guy F. [Univ. of Costa Rica, San Pedro (Costa Rica); Brodsky, Stanley J. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Deur, Alexandre [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Dosch, Hans Gunter [Heidelberg Univ. (Germany). Inst. for Theoretische Physik; Sufian, Raza Sabbir [Univ. of Kentucky, Lexington, KY (United States)

    2017-03-01

    Fundamental aspects of nonperturbative QCD dynamics which are not obvious from its classical Lagrangian, such as the emergence of a mass scale and confinement, the existence of a zero mass bound state, the appearance of universal Regge trajectories and the breaking of chiral symmetry are incorporated from the onset in an effective theory based on superconformal quantum mechanics and its embedding in a higher dimensional gravitational theory. In addition, superconformal quantum mechanics gives remarkable connections between the light meson and nucleon spectra. This new approach to hadron physics is also suitable to describe nonperturbative QCD observables based on structure functions, such as GPDs, which are not amenable to a first-principle computation. The formalism is also successful in the description of form factors, the nonperturbative behavior of the strong coupling and diffractive processes. We also discuss in this article how the framework can be extended rather successfully to the heavy-light hadron sector.

  18. Quantum field theory approaches to meson structure

    International Nuclear Information System (INIS)

    Branz, Tanja

    2011-01-01

    Meson spectroscopy became one of the most interesting topics in particle physics in the last ten years. In particular, the discovery of new unexpected states in the charmonium spectrum which cannot be simply explained by the constituent quark model attracted the interest of many theoretical efforts. In the present thesis we discuss different meson structures ranging from light and heavy quark-antiquark states to bound states of hadrons-hadronic molecules. Here we consider the light scalar mesons f 0 (980) and a 0 (980) and the charmonium-like Y(3940), Y(4140) and Z ± (4430) states. In the discussion of the meson properties like mass spectrum, total and partial decay widths and production rates we introduce three different theoretical methods for the treatment and description of hadronic structure. For the study of bound states of mesons we apply a coupled channel approach which allows for the dynamical generation of meson-meson resonances. The decay properties of meson molecules are further on studied within a second model based on effective Lagrangians describing the interaction of the bound state and its constituents. Besides hadronic molecules the effective Lagrangian approach is also used to study the radiative and strong decay properties of ordinary quark-antiquark (q anti q) states. The AdS/QCD model forms the completion of the three theoretical methods introduced in the present thesis. This holographic model provides a completely different ansatz and is based on extra dimensions and string theory. Within this framework we calculate the mass spectrum of light and heavy mesons and their decay constants.

  19. Natural circulating passive cooling system for nuclear reactor containment structure

    Science.gov (United States)

    Gou, Perng-Fei; Wade, Gentry E.

    1990-01-01

    A passive cooling system for the contaminant structure of a nuclear reactor plant providing protection against overpressure within the containment attributable to inadvertent leakage or rupture of the system components. The cooling system utilizes natural convection for transferring heat imbalances and enables the discharge of irradiation free thermal energy to the atmosphere for heat disposal from the system.

  20. Passive cooling system for nuclear reactor containment structure

    Science.gov (United States)

    Gou, Perng-Fei; Wade, Gentry E.

    1989-01-01

    A passive cooling system for the contaminant structure of a nuclear reactor plant providing protection against overpressure within the containment attributable to inadvertent leakage or rupture of the system components. The cooling system utilizes natural convection for transferring heat imbalances and enables the discharge of irradiation free thermal energy to the atmosphere for heat disposal from the system.