WorldWideScience

Sample records for nuclear spirals feeding

  1. KINEMATIC ANALYSIS OF NUCLEAR SPIRALS: FEEDING THE BLACK HOLE IN NGC 1097

    International Nuclear Information System (INIS)

    Van de Ven, Glenn; Fathi, Kambiz

    2010-01-01

    We present a harmonic expansion of the observed line-of-sight velocity field as a method to recover and investigate spiral structures in the nuclear regions of galaxies. We apply it to the emission-line velocity field within the circumnuclear star-forming ring of NGC 1097, obtained with the GMOS-IFU spectrograph. The radial variation of the third harmonic terms is well described by a logarithmic spiral, from which we interpret that the gravitational potential is weakly perturbed by a two-arm spiral density wave with an inferred pitch angle of 52 0 ± 4 0 . This interpretation predicts a two-arm spiral distortion in the surface brightness, as hinted by the dust structures in central images of NGC 1097, and predicts a combined one-arm and three-arm spiral structure in the velocity field, as revealed in the non-circular motions of the ionized gas. Next, we use a simple spiral perturbation model to constrain the fraction of the measured non-circular motions that is due to radial inflow. We combine the resulting inflow velocity with the gas density in the spiral arms, inferred from emission-line ratios, to estimate the mass inflow rate as a function of radius, which reaches about 0.011 M sun yr -1 at a distance of 70 pc from the center. This value corresponds to a fraction of about 4.2 x 10 -3 of the Eddington mass accretion rate onto the central black hole in this LINER/Seyfert1 galaxy. We conclude that the line-of-sight velocity can not only provide a cleaner view of nuclear spirals than the associated dust, but that the presented method also allows the quantitative study of these possibly important links in fueling the centers of galaxies, including providing a constraint on the mass inflow rate as a function of radius.

  2. Nuclear starburst activity induced by elongated bulges in spiral galaxies

    Science.gov (United States)

    Kim, Eunbin; Kim, Sungsoo S.; Choi, Yun-Young; Lee, Gwang-Ho; de Grijs, Richard; Lee, Myung Gyoon; Hwang, Ho Seong

    2018-06-01

    We study the effects of bulge elongation on the star formation activity in the centres of spiral galaxies using the data from the Sloan Digital Sky Survey Data Release 7. We construct a volume-limited sample of face-on spiral galaxies with Mr nuclear starbursts using the fibre specific star formation rates derived from the SDSS spectra. We find a statistically significant correlation between bulge elongation and nuclear starbursts in the sense that the fraction of nuclear starbursts increases with bulge elongation. This correlation is more prominent for fainter and redder galaxies, which exhibit higher ratios of elongated bulges. We find no significant environmental dependence of the correlation between bulge elongation and nuclear starbursts. These results suggest that non-axisymmetric bulges can efficiently feed the gas into the centre of galaxies to trigger nuclear starburst activity.

  3. Spacer geometry and particle deposition in spiral wound membrane feed channels

    KAUST Repository

    Radu, A.I.; van Steen, M.S.H.; Vrouwenvelder, Johannes S.; van Loosdrecht, Mark C.M.; Picioreanu, C.

    2014-01-01

    Deposition of microspheres mimicking bacterial cells was studied experimentally and with a numerical model in feed spacer membrane channels, as used in spiral wound nanofiltration (NF) and reverse osmosis (RO) membrane systems. In-situ microscopic

  4. A study on the spiral shell in Dianchi, Yunnan, as domestic feed

    International Nuclear Information System (INIS)

    Ma Shouxiang; Yang Ruikun

    1990-01-01

    This article studies the accumulation and the metastasis of natural radioactive nuclei in the corporal of chicken when spiral shell is used as domestic feed. The result shows that the contents of natural radioactivity nuclei U, Th, and 226 Ra vary with the chicken meat, chicken bone, chicken egg and egg capsule. Their accumulation and metastasis are in the order: Th > U > 226 Ra, but the levels of the three radioactive nuclei are all below the limited levels of radioactive substances in the food standard of the People's Republic of China. This study provides a basis for developing and making use of the spiral shell as domestic feed in Dianchi, Yunnan

  5. Subcontinental Nuclear Instability: The Spiralling Nightmare

    Directory of Open Access Journals (Sweden)

    Vijay Shankar

    2015-07-01

    Full Text Available The scheme that carved world order during the Cold War was a pitched battle for 'containment' against burgeoning communism. In turn, rationality gave way to the threat of catastrophic nuclear force as the basis of stability. If at all there is a historical lesson to be learned from that experience then it is that stability begins with serious and sustained dialogue between leadership; the alternative being what Kennedy termed "the peace of the grave." An appraisal of the contemporary global state of nuclear affairs will suggest that the three pillars of nuclear stability, namely, non-proliferation, control of fissile material production, and transparency of nuclear arsenals are wobbly for lack of foundational support. In the truancy of global foundational support the answer may well lie in reconstituting a framework for détente. In the Subcontinental context there looms a very real nuclear nightmare. It takes the form of a hair-trigger, opaque nuclear arsenal that has embraced tactical use under decentralized military control, is steered by an ambiguous doctrine, and guided by a military strategy that carouses with non-state actors. The effect of an weakened civilian leadership in Pakistan that is incapable of action to remove the military finger from the nuclear trigger can do little to dispel the nightmare. A singular feature of the deterrent relationship in the region is its tri-polar character. As is well known today, it is the collusive nature of the Sino-Pak nuclear relationship which created and sustains the Pakistan nuclear weapons program. This in stark contrast to the Indian nuclear doctrine that went public in 2003. The unleashing of Islamic radicals in the wake of US withdrawal from the Af-Pak region and their mounting internalization in the Pakistan military and political establishments brings into question the state and motivation of the nuclear command and control structures there. Stability in this context would suggest the

  6. Development and characterization of 3D-printed feed spacers for spiral wound membrane systems

    KAUST Repository

    Siddiqui, Amber

    2016-01-02

    Feed spacers are important for the impact of biofouling on the performance of spiral-wound reverse osmosis (RO) and nanofiltration (NF) membrane systems. The objective of this study was to propose a strategy for developing, characterizing, and testing of feed spacers by numerical modeling, three-dimensional (3D) printing of feed spacers and experimental membrane fouling simulator (MFS) studies. The results of numerical modeling on the hydraulic behavior of various feed spacer geometries suggested that the impact of spacers on hydraulics and biofouling can be improved. A good agreement was found for the modeled and measured relationship between linear flow velocity and pressure drop for feed spacers with the same geometry, indicating that modeling can serve as first step in spacer characterization. An experimental comparison study of a feed spacer currently applied in practice and a 3D printed feed spacer with the same geometry showed (i) similar hydraulic behavior, (ii) similar pressure drop development with time and (iii) similar biomass accumulation during MFS biofouling studies, indicating that 3D printing technology is an alternative strategy for development of thin feed spacers with a complex geometry. Based on the numerical modeling results, a modified feed spacer with low pressure drop was selected for 3D printing. The comparison study of the feed spacer from practice and the modified geometry 3D printed feed spacer established that the 3D printed spacer had (i) a lower pressure drop during hydraulic testing, (ii) a lower pressure drop increase in time with the same accumulated biomass amount, indicating that modifying feed spacer geometries can reduce the impact of accumulated biomass on membrane performance. The combination of numerical modeling of feed spacers and experimental testing of 3D printed feed spacers is a promising strategy (rapid, low cost and representative) to develop advanced feed spacers aiming to reduce the impact of biofilm formation on

  7. Spacer geometry and particle deposition in spiral wound membrane feed channels

    KAUST Repository

    Radu, A.I.

    2014-11-01

    Deposition of microspheres mimicking bacterial cells was studied experimentally and with a numerical model in feed spacer membrane channels, as used in spiral wound nanofiltration (NF) and reverse osmosis (RO) membrane systems. In-situ microscopic observations in membrane fouling simulators revealed formation of specific particle deposition patterns for different diamond and ladder feed spacer orientations. A three-dimensional numerical model combining fluid flow with a Lagrangian approach for particle trajectory calculations could describe very well the in-situ observations on particle deposition in flow cells. Feed spacer geometry, positioning and cross-flow velocity sensitively influenced the particle transport and deposition patterns. The deposition patterns were not influenced by permeate production. This combined experimental-modeling approach could be used for feed spacer geometry optimization studies for reduced (bio)fouling. © 2014 Elsevier Ltd.

  8. : Nuclear Spirals and Mass Accretion to Supermassive Black Holes in Weakly-Barred Galaxies

    Science.gov (United States)

    Kim, Woong-Tae; Elmegreen, Bruce

    2018-01-01

    Disk galaxies, especially barred-spiral galaxies, abound with rings and spirals in their nuclear regions. Nuclear spirals existing even in weakly barred galaxies are thought to channel gas inflows to supermassive black holes residing at the centers. We use high-resolution hydrodynamic simulations to study the properties of nuclear gas spirals driven by weak bar-like or oval potentials. The amplitude of the spirals increases toward the center by a geometric effect, readily developing into shocks at small radii even for very weak potentials. The shape of the spirals and shocks depends rather sensitively on the background shear. When shear is low, the nuclear spirals are loosely wound and the shocks are almost straight, resulting in large mass inflows toward the center. When shear is high, on the other hand, the spirals are tightly wound and the shocks are oblique, forming a circumnuclear disk through which gas flows inward at a relatively lower rate. The induced mass inflow rates are enough to power black hole accretion in various types of Seyfert galaxies.

  9. Biofouling Control in Spiral-Wound Membrane Systems: Impact of Feed Spacer Modification and Biocides

    KAUST Repository

    Siddiqui, Amber

    2016-12-01

    High-quality drinking water can be produced with membrane-based filtration processes like reverse osmosis and nanofiltration. One of the major problems in these membrane systems is biofouling that reduces the membrane performance, increasing operational costs. Current biofouling control strategies such as pre-treatment, membrane modification, and chemical cleaning are not sufficient in all cases. Feed spacers are thin (0.8 mm), complex geometry meshes that separate membranes in a module. The main objective of this research was to evaluate whether feed spacer modification is a suitable strategy to control biofouling. Membrane fouling simulator studies with six feed spacers showed differences in biofouled spacer performance, concluding that (i) spacer geometry influences biofouling impact and (ii) biofouling studies are essential for evaluation of spacer biofouling impact. Computed tomography (CT) was found as a suitable technique to obtain three-dimensional (3D) measurements of spacers, enabling more representative mathematical modeling of hydraulic behavior of spacers in membrane systems. A strategy for developing, characterizing, and testing of spacers by numerical modeling, 3D printing of spacers and experimental membrane fouling simulator studies was developed. The combination of modeling and experimental testing of 3D printed spacers is a promising strategy to develop advanced spacers aiming to reduce the impact of biofilm formation on membrane performance and to improve the cleanability of spiral-wound membrane systems.

  10. Nuclear Spiral Shocks and Induced Gas Inflows in Weak Oval Potentials

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Woong-Tae [Department of Physics and Astronomy, Seoul National University, Seoul 151-742 (Korea, Republic of); Elmegreen, Bruce G., E-mail: wkim@astro.snu.ac.kr, E-mail: bge@us.ibm.com [IBM T. J. Watson Research Center, 1101 Kitchawan Road, Yorktown Heights, NY 10598 (United States)

    2017-05-20

    Nuclear spirals are ubiquitous in galaxy centers. They exist not only in strong barred galaxies but also in galaxies without noticeable bars. We use high-resolution hydrodynamic simulations to study the properties of nuclear gas spirals driven by weak bar-like and oval potentials. The amplitude of the spirals increases toward the center by a geometric effect, readily developing into shocks at small radii even for very weak potentials. The shape of the spirals and shocks depends rather sensitively on the background shear. When shear is low, the nuclear spirals are loosely wound and the shocks are almost straight, resulting in large mass inflows toward the center. When shear is high, on the other hand, the spirals are tightly wound and the shocks are oblique, forming a circumnuclear disk through which gas flows inward at a relatively lower rate. The induced mass inflow rates are enough to power black hole accretion in various types of Seyfert galaxies as well as to drive supersonic turbulence at small radii.

  11. Biofouling Control in Spiral-Wound Membrane Systems: Impact of Feed Spacer Modification and Biocides

    KAUST Repository

    Siddiqui, Amber

    2016-01-01

    was developed. The combination of modeling and experimental testing of 3D printed spacers is a promising strategy to develop advanced spacers aiming to reduce the impact of biofilm formation on membrane performance and to improve the cleanability of spiral

  12. EFFECT OF CENTRAL MASS CONCENTRATION ON THE FORMATION OF NUCLEAR SPIRALS IN BARRED GALAXIES

    International Nuclear Information System (INIS)

    Thakur, Parijat; Jiang, I.-G.; Ann, H. B.

    2009-01-01

    We have performed smoothed particle hydrodynamics simulations to study the response of the central kiloparsec region of a gaseous disk to the imposition of nonaxisymmetric bar potentials. The model galaxies are composed of three axisymmetric components (halo, disk, and bulge) and a nonaxisymmetric bar. These components are assumed to be invariant in time in the frame corotating with the bar. The potential of spherical γ-models of Dehnen is adopted for the bulge component whose density varies as r -γ near the center and r -4 at larger radii and, hence, possesses a central density core for γ = 0 and cusps for γ>0. Since the central mass concentration of the model galaxies increases with the cusp parameter γ, we have examined here the effect of the central mass concentration by varying the cusp parameter γ on the mechanism responsible for the formation of the symmetric two-armed nuclear spirals in barred galaxies. Our simulations show that the symmetric two-armed nuclear spirals are formed by hydrodynamic spiral shocks driven by the gravitational torque of the bar for the models with γ = 0 and 0.5. On the other hand, the symmetric two-armed nuclear spirals in the models with γ = 1 and 1.5 are explained by gas density waves. Thus, we conclude that the mechanism responsible for the formation of symmetric two-armed nuclear spirals in barred galaxies changes from hydrodynamic shocks to gas density waves as the central mass concentration increases from γ = 0 to 1.5.

  13. Investigating the Nuclear Activity of Barred Spiral Galaxies: The Case of NGC 1672

    Science.gov (United States)

    Jenkins, L. P.; Brandt, W. N.; Colbert, E. J. M.; Koribalski, B.; Kuntz, K. D.; Levan, A. J.; Ojha, R.; Roberts, T. P.; Ward, M. J.; Zezas, A.

    2011-06-01

    We have performed an X-ray study of the nearby barred spiral galaxy NGC 1672, primarily to ascertain the effect of the bar on its nuclear activity. We use both Chandra and XMM-Newton observations to investigate its X-ray properties, together with supporting high-resolution optical imaging data from the Hubble Space Telescope (HST), infrared imaging from the Spitzer Space Telescope, and Australia Telescope Compact Array ground-based radio data. We detect 28 X-ray sources within the D 25 area of the galaxy; many are spatially correlated with star formation in the bar and spiral arms, and two are identified as background galaxies in the HST images. Nine of the X-ray sources are ultraluminous X-ray sources, with the three brightest (LX > 5 × 1039 erg s-1) located at the ends of the bar. With the spatial resolution of Chandra, we are able to show for the first time that NGC 1672 possesses a hard (Γ ~ 1.5) nuclear X-ray source with a 2-10 keV luminosity of 4 × 1038 erg s-1. This is surrounded by an X-ray-bright circumnuclear star-forming ring, comprised of point sources and hot gas, which dominates the 2-10 keV emission in the central region of the galaxy. The spatially resolved multiwavelength photometry indicates that the nuclear source is a low-luminosity active galactic nucleus (LLAGN), but with star formation activity close to the central black hole. A high-resolution multiwavelength survey is required to fully assess the impact of both large-scale bars and smaller-scale phenomena such as nuclear bars, rings, and nuclear spirals on the fueling of LLAGN.

  14. Development and characterization of 3D-printed feed spacers for spiral wound membrane systems

    KAUST Repository

    Siddiqui, Amber; Farhat, Nadia; Bucs, Szilard; Valladares Linares, Rodrigo; Picioreanu, Cristian; Kruithof, Joop C.; van Loosdrecht, Mark C.M.; Kidwell, James; Vrouwenvelder, Johannes S.

    2016-01-01

    suggested that the impact of spacers on hydraulics and biofouling can be improved. A good agreement was found for the modeled and measured relationship between linear flow velocity and pressure drop for feed spacers with the same geometry, indicating

  15. Relaxation near Supermassive Black Holes Driven by Nuclear Spiral Arms: Anisotropic Hypervelocity Stars, S-stars, and Tidal Disruption Events

    Energy Technology Data Exchange (ETDEWEB)

    Hamers, Adrian S. [Institute for Advanced Study, School of Natural Sciences, Einstein Drive, Princeton, NJ 08540 (United States); Perets, Hagai B., E-mail: hamers@ias.edu [Technion—Israel Institute of Technology, Haifa 32000 (Israel)

    2017-09-10

    Nuclear spiral arms are small-scale transient spiral structures found in the centers of galaxies. Similarly to their galactic-scale counterparts, nuclear spiral arms can perturb the orbits of stars. In the case of the Galactic center (GC), these perturbations can affect the orbits of stars and binaries in a region extending to several hundred parsecs around the supermassive black hole (SMBH), causing diffusion in orbital energy and angular momentum. This diffusion process can drive stars and binaries to close approaches with the SMBH, disrupting single stars in tidal disruption events (TDEs), or disrupting binaries, leaving a star tightly bound to the SMBH and an unbound star escaping the galaxy, i.e., a hypervelocity star (HVS). Here, we consider diffusion by nuclear spiral arms in galactic nuclei, specifically the Milky Way GC. We determine nuclear-spiral-arm-driven diffusion rates using test-particle integrations and compute disruption rates. Our TDE rates are up to 20% higher compared to relaxation by single stars. For binaries, the enhancement is up to a factor of ∼100, and our rates are comparable to the observed numbers of HVSs and S-stars. Our scenario is complementary to relaxation driven by massive perturbers. In addition, our rates depend on the inclination of the binary with respect to the Galactic plane. Therefore, our scenario provides a novel potential source for the observed anisotropic distribution of HVSs. Nuclear spiral arms may also be important for accelerating the coalescence of binary SMBHs and for supplying nuclear star clusters with stars and gas.

  16. Investigating The Nuclear Activity Of Barred Spirals: The case of NGC 1672

    Science.gov (United States)

    Jenkins, Leigh; Brandt, N.; Colbert, E.; Levan, A.; Roberts, T.; Ward, M.; Zezas, A.

    2008-03-01

    We present new results from Chandra and XMM-Newton X-ray observations of the nearby barred spiral galaxy NGC1672. It shows dramatic nuclear and extra-nuclear star formation activity, including starburst regions located either end of its prominent bar. Using new X-ray imaging and spectral information, together with supporting multiwavelength data, we show for the first time that NGC1672 possesses a faint, hard, central X-ray source surrounded by a circumnuclear starburst ring that dominates the X-ray emission in the region, presumably triggered and sustained by gas and dust driven inwards along the galactic bar. The faint central source may represent low-level AGN activity, or alternatively emission associated with star-formation in the nucleus. More generally, we present some preliminary results on a Chandra archival search for low-luminosity AGN activity in barred galaxies.

  17. A close nuclear black-hole pair in the spiral galaxy NGC 3393.

    Science.gov (United States)

    Fabbiano, G; Wang, Junfeng; Elvis, M; Risaliti, G

    2011-08-31

    The current picture of galaxy evolution advocates co-evolution of galaxies and their nuclear massive black holes, through accretion and galactic merging. Pairs of quasars, each with a massive black hole at the centre of its galaxy, have separations of 6,000 to 300,000 light years (refs 2 and 3; 1 parsec = 3.26 light years) and exemplify the first stages of this gravitational interaction. The final stages of the black-hole merging process, through binary black holes and final collapse into a single black hole with gravitational wave emission, are consistent with the sub-light-year separation inferred from the optical spectra and light-variability of two such quasars. The double active nuclei of a few nearby galaxies with disrupted morphology and intense star formation (such as NGC 6240 with a separation of about 2,600 light years and Mrk 463 with a separation of about 13,000 light years between the nuclei) demonstrate the importance of major mergers of equal-mass spiral galaxies in this evolution; such mergers lead to an elliptical galaxy, as in the case of the double-radio-nucleus elliptical galaxy 0402+379 (with a separation of about 24 light years between the nuclei). Minor mergers of a spiral galaxy with a smaller companion should be a more common occurrence, evolving into spiral galaxies with active massive black-hole pairs, but have hitherto not been seen. Here we report the presence of two active massive black holes, separated by about 490 light years, in the Seyfert galaxy NGC 3393 (50 Mpc, about 160 million light years). The regular spiral morphology and predominantly old circum-nuclear stellar population of this galaxy, and the closeness of the black holes embedded in the bulge, provide a hitherto missing observational point to the study of galaxy/black hole evolution. Comparison of our observations with current theoretical models of mergers suggests that they are the result of minor merger evolution. © 2011 Macmillan Publishers Limited. All rights

  18. Upgrade of the SPIRAL identification station for high-precision measurements of nuclear β decay

    Science.gov (United States)

    Grinyer, G. F.; Thomas, J. C.; Blank, B.; Bouzomita, H.; Austin, R. A. E.; Ball, G. C.; Bucaille, F.; Delahaye, P.; Finlay, P.; Frémont, G.; Gibelin, J.; Giovinazzo, J.; Grinyer, J.; Kurtukian-Nieto, T.; Laffoley, A. T.; Leach, K. G.; Lefèvre, A.; Legruel, F.; Lescalié, G.; Perez-Loureiro, D.

    2014-03-01

    The low-energy identification station at SPIRAL (Système de Production d'Ions Radioactifs Accélérés en Ligne) has been upgraded for studying the β decays of short-lived radioactive isotopes and to perform high-precision half-life and branching-ratio measurements for superallowed Fermi and isospin T=1/2 mirror β decays. These new capabilities, combined with an existing Paul trap setup for measurements of β-ν angular-correlation coefficients, provide a powerful facility for investigating fundamental properties of the electroweak interaction through nuclear β decays. A detailed description of the design study, construction, and first results obtained from an in-beam commissioning experiment on the β+ decays 14 O and 17F are presented.

  19. Nuclear, disk-focused wind and the bipolar structure of the spiral galaxy NGC 3079

    International Nuclear Information System (INIS)

    Duric, N.; Seaquist, E.R.

    1988-01-01

    A high-resolution, radio continuum study of the spiral galaxy NGC 3079 is presented which reveals the presence of a figure eight morphology along the minor axis, centered on the nucleus. The nucleus itself dominates the emission from the galaxy. It has an inverted spectrum and is a possible VLBI source. The morphology is successfully modeled as the interaction between a nuclear wind and interstellar gas in the disk and halo. In this model, the wind plows up interstellar material as it propagates away from the nucleus. The disk focuses the wind along the minor axis, thereby creating the observed features. The restricted volume of space where the wind originates and the high energies associated with the wind point to a compact object such as a black hole or an unusually compact and massive star cluster as the source of the wind. 24 references

  20. Development of feeding strategy for ruminant livestock by nuclear techniques

    International Nuclear Information System (INIS)

    Ozcan, H.; Cetinkaya, N.

    2002-01-01

    In tropical and subtropical areas crop residues and agro-industrial byproducts are used for feeding ruminant livestock under limited or zero grazing conditions. In order to increase feeding efficiency and livestock productivity supplementation are essential to meet deficient nutrients fbr the diets. For the assessment the impact by supplements or supplementation for feed utilization efficiency nuclear techniques like isotope dilution method are unique for the purpose. For the evaluation the impact by supplementation or supplements by various nitrogen sources together with salts and minerals for energy utilization efficiency carbon-14 labelled acetate was used for tracer to measure outflow rates for volatile fatty acids (VFAs) from rumen by Angora goat bucks.The supplemented diets led to increased VFAs outflow rates from rumen. The conclusion was that ruminant diets composed by crop residues and agro-industrial by-products need supplementation for deficient nutrients to increase feed energy utilization efficiency by ruminant livestock

  1. Hubble Space Telescope Imaging of the Circumnuclear Environments of the CfA Seyfert Galaxies: Nuclear Spirals and Fueling

    Science.gov (United States)

    Pogge, Richard W.; Martini, Paul

    2002-01-01

    We present archival Hubble Space Telescope (HST) images of the nuclear regions of 43 of the 46 Seyfert galaxies found in the volume limited,spectroscopically complete CfA Redshift Survey sample. Using an improved method of image contrast enhancement, we created detailed high-quality " structure maps " that allow us to study the distributions of dust, star clusters, and emission-line gas in the circumnuclear regions (100-1000 pc scales) and in the associated host galaxy. Essentially all of these Seyfert galaxies have circumnuclear dust structures with morphologies ranging from grand-design two-armed spirals to chaotic dusty disks. In most Seyfert galaxies there is a clear physical connection between the nuclear dust spirals on hundreds of parsec scales and large-scale bars and spiral arms in the host galaxies proper. These connections are particularly striking in the interacting and barred galaxies. Such structures are predicted by numerical simulations of gas flows in barred and interacting galaxies and may be related to the fueling of active galactic nuclei by matter inflow from the host galaxy disks. We see no significant differences in the circumnuclear dust morphologies of Seyfert 1s and 2s, and very few Seyfert 2 nuclei are obscured by large-scale dust structures in the host galaxies. If Sevfert 2s are obscured Sevfert Is, then the obscuration must occur on smaller scales than those probed by HST.

  2. Feeding the nuclear pipeline: Enabling a global nuclear future

    International Nuclear Information System (INIS)

    Walter, A.E.

    2004-01-01

    Nuclear energy, which exhibits a unique combination of environmental and sustainable attributes, appears strongly positioned to play a much larger and more pivotal role in the mix of future global energy supplies than it has played in the past. Unfortunately, enrolment patterns in nuclear engineering programmes have seriously eroded over the past decade - causing alarmingly low enrolment levels in many countries by the turn of the century and a sobering concern that the nuclear manpower pipeline cannot keep up with the emerging needs of the nuclear industry. On the positive side, enrolment patterns within the United States are now generally on the rise, at least at the undergraduate level. A few of the particularly successful efforts initiated by various sectors of the U.S. nuclear infrastructure to stimulate this rebound are shared in this paper with the hope that some of them might be beneficially employed in other global settings. (author)

  3. Feeding the nuclear pipeline: Enabling a global nuclear future

    International Nuclear Information System (INIS)

    Waltar, Alan E.

    2002-01-01

    Full text: There is nothing more vital to the advancement of human civilization than the abundance of usable and affordable energy. It underpins national security, economic prosperity, and global stability. Nuclear energy, which exhibits a unique combination of environmental and sustainable attributes, appears strongly positioned to play a much larger and more pivotal role in the mix of future global energy supplies than it has played in the past. Unfortunately, after a fairly rapid growth period within the industrialized nations in the 1960 to 1980 time frame, a variety of factors led to a substantial reduction in commercial nuclear power plant construction (with the possible exception of several Pacific Rim countries). This, in turn, led to a serious erosion in the enrollment patterns of nuclear engineering programs - causing alarmingly low enrollment levels in many counties by the turn of the century. Numerous studies conducted over the past five years have soberly come to the consistent conclusion that the nuclear pipeline cannot keep up with the needs of the nuclear industry. In fact, when combining the aging work force with low matriculation rates in most nuclear engineering academic programs, a huge (and unacceptable) mismatch between needs and supply is strikingly evident. This is further exasperated by the lack of meaningful efforts to capture the knowledge of the 'first nuclear era' professionals in a form that can be effectively transferred to the upcoming generation. Methods must be found to better capture the enormous body of experience already accumulated and both document it and then mentor the new nuclear engineers that do enter the work force to enable them to build upon this experience, rather than having to re-create it. On the positive side, enrollment patterns in the majority of nuclear engineering programs still in existence within the United States are now generally on the rise, at least at the undergraduate level. Some programs have

  4. Hydrogel-coated feed spacers in two-phase flow cleaning in spiral wound membrane elements: a novel platform for eco-friendly biofouling mitigation.

    Science.gov (United States)

    Wibisono, Yusuf; Yandi, Wetra; Golabi, Mohsen; Nugraha, Roni; Cornelissen, Emile R; Kemperman, Antoine J B; Ederth, Thomas; Nijmeijer, Kitty

    2015-03-15

    Biofouling is still a major challenge in the application of nanofiltration and reverse osmosis membranes. Here we present a platform approach for environmentally friendly biofouling control using a combination of a hydrogel-coated feed spacer and two-phase flow cleaning. Neutral (polyHEMA-co-PEG10MA), cationic (polyDMAEMA) and anionic (polySPMA) hydrogels have been successfully grafted onto polypropylene (PP) feed spacers via plasma-mediated UV-polymerization. These coatings maintained their chemical stability after 7 days incubation in neutral (pH 7), acidic (pH 5) and basic (pH 9) environments. Anti-biofouling properties of these coatings were evaluated by Escherichia coli attachment assay and nanofiltration experiments at a TMP of 600 kPag using tap water with additional nutrients as feed and by using optical coherence tomography. Especially the anionic polySPMA-coated PP feed spacer shows reduced attachment of E. coli and biofouling in the spacer-filled narrow channels resulting in delayed biofilm growth. Employing this highly hydrophilic coating during removal of biofouling by two-phase flow cleaning also showed enhanced cleaning efficiency, feed channel pressure drop and flux recoveries. The strong hydrophilic nature and the presence of negative charge on polySPMA are most probably responsible for the improved antifouling behavior. A combination of polySPMA-coated PP feed spacers and two-phase flow cleaning therefore is promising and an environmentally friendly approach to control biofouling in NF/RO systems employing spiral-wound membrane modules. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Deep repository for spent nuclear fuel. Facility description - Layout E. Spiral ramp with one operational area

    Energy Technology Data Exchange (ETDEWEB)

    Pettersson, Stig [Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden); Forsgren, Ebbe [SwedPower AB, Stockholm (Sweden); Lange, Fritz [Lange Art AB, Stockholm (Sweden)

    2002-04-01

    This report documents a proposal for the design of the deep repository for spent nuclear fuel. The proposal is based on the principles that were formulated in the original KBS-3 study, but has been supplemented by investigations and experience to reflect current knowledge. The purpose of the report is to provide an integrated picture of the deep repository, as a basis for SKB's other work, e.g. environmental impact assessments, transport systems, safety issues and alternative locations, and to provide a co-ordinated account of the conditions and requirements concerning all of the necessary functions in the deep repository in order to have a well functioning facility. In addition, it should be possible to use the report as: a tool in the task of achieving a co-ordinated, safe and accepted design for the facility, a basis for further planning and costing, a basis for adaptation to geographic and other conditions for the particular location, a basis for information material, both within SKB and for interested parties outside, such as public authorities, municipalities and the general public. The capacity of the deep repository has been chosen on the basis of 40 years of operation of the Swedish nuclear power reactors, which will produce approximately 9,000 tons of uranium, equivalent to approximately 4,500 canisters. The design outlined is based on theoretical analyses of functions, safety requirements, procedures etc. that can be identified during the various phases of the construction and operation of the repository. In addition, preliminary organisation and staffing plans have been drawn up, for use as the basis for planning the necessary buildings. The report gives a vision of the overall layout and function of the facility, and a proposal for the design of all individual parts of the repository. The relationships between the various parts of the repository are described, both above and below ground, as is the interplay between the part above ground and part

  6. Deep repository for spent nuclear fuel. Facility description - Layout E. Spiral ramp with one operational area

    International Nuclear Information System (INIS)

    Pettersson, Stig; Forsgren, Ebbe; Lange, Fritz

    2002-04-01

    This report documents a proposal for the design of the deep repository for spent nuclear fuel. The proposal is based on the principles that were formulated in the original KBS-3 study, but has been supplemented by investigations and experience to reflect current knowledge. The purpose of the report is to provide an integrated picture of the deep repository, as a basis for SKB's other work, e.g. environmental impact assessments, transport systems, safety issues and alternative locations, and to provide a co-ordinated account of the conditions and requirements concerning all of the necessary functions in the deep repository in order to have a well functioning facility. In addition, it should be possible to use the report as: a tool in the task of achieving a co-ordinated, safe and accepted design for the facility, a basis for further planning and costing, a basis for adaptation to geographic and other conditions for the particular location, a basis for information material, both within SKB and for interested parties outside, such as public authorities, municipalities and the general public. The capacity of the deep repository has been chosen on the basis of 40 years of operation of the Swedish nuclear power reactors, which will produce approximately 9,000 tons of uranium, equivalent to approximately 4,500 canisters. The design outlined is based on theoretical analyses of functions, safety requirements, procedures etc. that can be identified during the various phases of the construction and operation of the repository. In addition, preliminary organisation and staffing plans have been drawn up, for use as the basis for planning the necessary buildings. The report gives a vision of the overall layout and function of the facility, and a proposal for the design of all individual parts of the repository. The relationships between the various parts of the repository are described, both above and below ground, as is the interplay between the part above ground and part below

  7. Logarithmic Spiral

    Indian Academy of Sciences (India)

    Switzerland) even today can see the. Archimedian spiral and the inscription under it on the tombstone of Jacob Bernoulli 1. Logarithmic Spiral in Nature. Apart from logarithmic spiral no other curve seems to have attracted the attention of scientists, ...

  8. Apparatus for feeding nuclear fuel pellets to a loading tray

    International Nuclear Information System (INIS)

    Huggins, T.B.

    1979-01-01

    Apparatus for feeding nuclear fuel pellets at a uniform predetermined rate between pellet centering and grinding apparatus and a tray for loading pellets into nuclear fuel rod. Pellets discharged from the grinding apparatus are conveyed by a belt to a drive wheel forcing the pellets in engagement with the belt. The pellets under the drive wheel are capable of pushing a line of about 36 pellets onto a pellet dumping mechanism. As the dumping mechanism is actuated to dump the pellets on to a loading tray, the pellets moving toward the mechanism are stopped and the drive wheel is simultaneously lifted off the pellets until the pellet dumping process is completed. (U.K.)

  9. Spiral symmetry

    CERN Document Server

    Hargittai, Istvan

    1992-01-01

    From the tiny twisted biological molecules to the gargantuan curling arms of many galaxies, the physical world contains a startling repetition of spiral patterns. Today, researchers have a keen interest in identifying, measuring, and defining these patterns in scientific terms. Spirals play an important role in the growth processes of many biological forms and organisms. Also, through time, humans have imitated spiral motifs in their art forms, and invented new and unusual spirals which have no counterparts in the natural world. Therefore, one goal of this multiauthored book is to stress the c

  10. Process and device for feeding a cutter of nuclear fuel

    International Nuclear Information System (INIS)

    Chaze, Gilbert; Cherel, Guy; Guilloteau, Rene; Tucoulat, Daniel.

    1975-01-01

    A process is described for feeding the cutter of a nuclear fuel tube bundle by means of a mobile magazine. The first operation consists in grabbing the bundle in the storage pool by means of handling gear incorporated in the cutter magazine and introducing the bundle right into the magazine. The second operation is to locate the position of the bundle and to do so a mobile reference plate, of which the relative positions in relation to the magazine and to the cutting section in the cutter are known, is placed near the end of the magazine that will enter into contact with the cutter, the bundle is then moved until its end enters into contact with the reference plate. The next operation consists in adjusting the position of the bundle by moving it out of the magazine by a given length as from the position of the bundle when it was in contact with the reference plate so as to separate the foot end of the bundle by a cut made right next to this foot end. In several successive operations to adjust the cutting positions, the bundle is fed forward in the cutter by a length equal to a tube section. All these operations are carried out without the bundle being separated from the single handling gear built into the magazine [fr

  11. Frequency spirals

    International Nuclear Information System (INIS)

    Ottino-Löffler, Bertrand; Strogatz, Steven H.

    2016-01-01

    We study the dynamics of coupled phase oscillators on a two-dimensional Kuramoto lattice with periodic boundary conditions. For coupling strengths just below the transition to global phase-locking, we find localized spatiotemporal patterns that we call “frequency spirals.” These patterns cannot be seen under time averaging; they become visible only when we examine the spatial variation of the oscillators' instantaneous frequencies, where they manifest themselves as two-armed rotating spirals. In the more familiar phase representation, they appear as wobbly periodic patterns surrounding a phase vortex. Unlike the stationary phase vortices seen in magnetic spin systems, or the rotating spiral waves seen in reaction-diffusion systems, frequency spirals librate: the phases of the oscillators surrounding the central vortex move forward and then backward, executing a periodic motion with zero winding number. We construct the simplest frequency spiral and characterize its properties using analytical and numerical methods. Simulations show that frequency spirals in large lattices behave much like this simple prototype.

  12. Frequency spirals

    Energy Technology Data Exchange (ETDEWEB)

    Ottino-Löffler, Bertrand; Strogatz, Steven H., E-mail: strogatz@cornell.edu [Center for Applied Mathematics, Cornell University, Ithaca, New York 14853 (United States)

    2016-09-15

    We study the dynamics of coupled phase oscillators on a two-dimensional Kuramoto lattice with periodic boundary conditions. For coupling strengths just below the transition to global phase-locking, we find localized spatiotemporal patterns that we call “frequency spirals.” These patterns cannot be seen under time averaging; they become visible only when we examine the spatial variation of the oscillators' instantaneous frequencies, where they manifest themselves as two-armed rotating spirals. In the more familiar phase representation, they appear as wobbly periodic patterns surrounding a phase vortex. Unlike the stationary phase vortices seen in magnetic spin systems, or the rotating spiral waves seen in reaction-diffusion systems, frequency spirals librate: the phases of the oscillators surrounding the central vortex move forward and then backward, executing a periodic motion with zero winding number. We construct the simplest frequency spiral and characterize its properties using analytical and numerical methods. Simulations show that frequency spirals in large lattices behave much like this simple prototype.

  13. Improvements to feed water system of vapor generators of nuclear power stations

    International Nuclear Information System (INIS)

    Byerlex, W.M.

    1976-01-01

    The description is given of a feed water system related to the steam generators for nuclear power stations and which have a water feed ring around their upper part. This water intake system enables water hammer to be avoided even during operation under low load [fr

  14. The spiral

    DEFF Research Database (Denmark)

    Bibace, Roger; Kharlamov, Nikita

    2013-01-01

    ’s work with Bernard Kaplan on symbol formation is a primer on this idea. This paper examines the idea of spirality and develops the notion of dynamic coexistence that can clarify the issue of directionality of development; that is, what is the general trajectory or ground plan that development assumes...... and the environment. The idea of dynamic coexistence is developed on this foundation. In the context of Werner and Kaplan’s work, dynamic coexistence represents the syncretic nature of processes and levels of organization: they are neither innately fused nor organized. Instead, the antithesis between fusion...

  15. The Feed Materials Program of the Manhattan Project: A Foundational Component of the Nuclear Weapons Complex

    Science.gov (United States)

    Reed, B. Cameron

    2014-12-01

    The feed materials program of the Manhattan Project was responsible for procuring uranium-bearing ores and materials and processing them into forms suitable for use as source materials for the Project's uranium-enrichment factories and plutonium-producing reactors. This aspect of the Manhattan Project has tended to be overlooked in comparison with the Project's more dramatic accomplishments, but was absolutely vital to the success of those endeavors: without appropriate raw materials and the means to process them, nuclear weapons and much of the subsequent cold war would never have come to pass. Drawing from information available in Manhattan Engineer District Documents, this paper examines the sources and processing of uranium-bearing materials used in making the first nuclear weapons and how the feed materials program became a central foundational component of the postwar nuclear weapons complex.

  16. Spiral tectonics

    Science.gov (United States)

    Hassan Asadiyan, Mohammad

    2014-05-01

    Spiral Tectonics (ST) is a new window to global tectonics introduced as alternative model for Plate Tectonics (PT). ST based upon Dahw(rolling) and Tahw(spreading) dynamics. Analogues to electric and magnetic components in the electromagnetic theory we could consider Dahw and Tahw as components of geodynamics, when one component increases the other decreases and vice versa. They are changed to each other during geological history. D-component represents continental crust and T-component represents oceanic crust. D and T are two arm of spiral-cell. T-arm 180 degree lags behind D-arm so named Retard-arm with respect to D or Forward-arm. It seems primary cell injected several billions years ago from Earth's center therefore the Earth's core was built up first then mantel and finally the crust was build up. Crust building initiate from Arabia (Mecca). As the universe extended gravitation wave swirled the earth fractaly along cycloid path from big to small scale. In global scale (order-0) ST collect continents in one side and abandoned Pacific Ocean in the other side. Recent researches also show two mantels upwelling in opposite side of the Earth: one under Africa (tectonic pose) and the other under Pacific Ocean (tectonic tail). In higher order (order-1) ST build up Africa in one side and S.America in the other side therefore left Atlantic Ocean meandered in between. In order-n e.g. Khoor Musa and Bandar-Deylam bay are seen meandered easterly in the Iranian part but Khoor Abdullah and Kuwait bay meandered westerly in the Arabian part, they are distributed symmetrically with respect to axis of Persian Gulf(PG), these two are fractal components of easterly Caspian-wing and westerly Black Sea-wing which split up from Anatoly. Caspian Sea and Black Sea make two legs of Y-like structure, this shape completely fitted with GPS-velocity map which start from PG and split up in the Catastrophic Point(Anatoly). We could consider PG as remnants of Ancient Ocean which spent up

  17. Plant parasitic nematode effectors target host defence and nuclear functions to establish feeding cells

    Directory of Open Access Journals (Sweden)

    Michaël eQuentin

    2013-03-01

    Full Text Available Plant parasitic nematodes are microscopic worms, the most damaging species of which have adopted a sedentary lifestyle within their hosts. These obligate endoparasites have a biotrophic relationship with plants, in which they induce the differentiation of root cells into hypertrophied, multinucleate feeding cells. Effectors synthesised in the oesophageal glands of the nematode are injected into the plant cells via the syringe-like stylet and play a key role in manipulating the host machinery. The establishment of specialized feeding cells requires these effectors to modulate many aspects of plant cell morphogenesis and physiology, including defence responses. This cell reprogramming requires changes to host nuclear processes. Some proteins encoded by parasitism genes target host nuclei. Several of these proteins were immunolocalised within feeding cell nuclei or shown to interact with host nuclear proteins. Comparative genomics and functional analyses are gradually revealing the roles of nematode effectors. We describe here these effectors and their hypothesised roles in the unique feeding behaviour of these pests.

  18. Water feeding/condensating device and operation method in nuclear power plant

    International Nuclear Information System (INIS)

    Shibayama, Takashi.

    1989-01-01

    The present invention overcomes a problem in reactor water level control occurring upon operation of a water feeding/condensating system in a nuclear power plant. That is, the water feed system to a nuclear reactor is constituted with parallel circuit comprising a reactor feedwater pump driven by a steam turbine and a serial circuit composed of a reactor feedwater pump driven by an electrical motor and a pump adjusting valve for controlling the amount of feedwater at the exit of the motor driven feedwater pump. Further, a reactor feedwater control valve having a function of controlling the feedwater to the reactor is disposed to the bypass pipeway for bypassing the parallel circuit of feedwater pumps. In this constitution, water can be fed to the nuclear reactor by way of the reactor feedwater pump bypass control valve upon starting and stopping of a nuclear feedwater pump driven by electric motor upon starting and shutdown of the nuclear reactor. Accordingly, stable water level control can be conducted for the reactor core with no effect of rapid pressure fluctuation due to the starting and the stopping of the reactor feedwater pump driven by electric motor. (I.S.)

  19. Hydrogel-coated feed spacers in two-phase flow cleaning in spiral wound membrane elements: A novel platform for eco-friendly biofouling mitigation

    NARCIS (Netherlands)

    Wibisono, Y.; Yandi, Wetra; Golabi, Mohsen; Nugraha, Roni; Cornelissen, Emile R.; Kemperman, Antonius J.B.; Ederth, Thomas; Nijmeijer, Dorothea C.

    2015-01-01

    Biofouling is still a major challenge in the application of nanofiltration and reverse osmosis membranes. Here we present a platform approach for environmentally friendly biofouling control using a combination of a hydrogel-coated feed spacer and two-phase flow cleaning. Neutral

  20. Hydrogel-coated feed spacers in two-phase flow cleaning in spiral wound membrane elements: A novel platform for eco-friendly biofouling mitigation

    NARCIS (Netherlands)

    Wibisono, Yusuf; Yandi, Wetra; Golabi, Mohsen; Nugraha, Roni; Cornelissen, Emile; Kemperman, A.J.B.; Ederth, Thomas; Nijmeijer, Kitty

    2015-01-01

    ng is still a major challenge in the application of nanofiltration and reverse osmosis membranes. Here we present a platform approach for environmentally friendly biofouling control using a combination of a Hydrogel-coated feed spacer and two-phase flow cleaning. Neutral (polyHEMA-co-PEG10MA),

  1. Observations of barred spirals

    International Nuclear Information System (INIS)

    Elmegreen, D.M.

    1990-01-01

    Observations of barred spiral galaxies are discussed which show that the presence of a bar increases the likelihood for grand design spiral structure only in early Hubble types. This result is contrary to the more common notion that grand design spiral structure generally accompanies bars in galaxies. Enhanced deprojected color images are shown which reveal that a secondary set of spiral arms commonly occurs in barred galaxies and also occasionally in ovally distorted galaxies. 6 refs

  2. The Flooding Water Source Analysis following the Feed Line Break at the Compartment outside Containment for Nuclear Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Song, Dong Soo [Korea Electric Power Research Institute, Daejeon (Korea, Republic of); Park, Young Chan [ACT, Daejeon (Korea, Republic of)

    2007-07-01

    The Periodic Safety Review(PSR) has been performing for the operating nuclear power plant in Korea. One of the PSR evaluation items is environmental qualification. Flooding issue for nuclear power plants designed and built in 1970 is extremely severe for main steam header compartment and main feed water line region of intermediate building and lower floor. This study presents to analyze flood level of feed water line breaks for the Westinghouse nuclear power plant. This analyses provides the mass and energy releases using the developed methodology for a break outside containment. For the analyses RETRAN-3D computer program is used.

  3. Conversion of nuclear waste to molten glass: Formation of porous amorphous alumina in a high-Al melter feed

    Science.gov (United States)

    Xu, Kai; Hrma, Pavel; Washton, Nancy; Schweiger, Michael J.; Kruger, Albert A.

    2017-01-01

    The transition of Al phases in a simulated high-Al high-level nuclear waste melter feed heated at 5 K min-1 to 700 °C was investigated with transmission electron microscopy, 27Al nuclear magnetic resonance spectroscopy, the Brunauer-Emmett-Teller method, and X-ray diffraction. At temperatures between 300 and 500 °C, porous amorphous alumina formed from the dehydration of gibbsite, resulting in increased specific surface area of the feed (∼8 m2 g-1). The high-surface-area amorphous alumina formed in this manner could potentially stop salt migration in the cold cap during nuclear waste vitrification.

  4. Sensitivity Study for Feed and Bleed Operation for Domestic CANDU Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Kim, K. S; Kim, B. S.; Yoo, H. K.; Kim, H. J. [Atomic Creative Technology Co., Daejeon (Korea, Republic of); Whang, S. W. [Korea Hydro and Nuclear Power Co., Daejeon (Korea, Republic of)

    2016-05-15

    The purpose of this paper is to evaluate the effects of the feed and bleed operation using DCT(Degassing Condenser Tank) over-pressure protection valves when LOCL4 with LOCL3 occurs during LPSD mid-loop operation. The CDF(Core Damage Frequency) of Level-1 Internal Event for Wolsong NPP Unit 1 during LPSD POS5A/5B accounts for about 89.08%(POS5A: 30.04%, POS5B: 59.04%) of the total CDF. For Wolsong NPP Unit 1 LPSD External Event, seismic analysis is excluded from this study because it is PSA-based SMA(Seismic Margin Assessment based Probabilistic Safety Assessment). For the domestic CANDU NPP, the feed and bleed operation using DCT over-pressure protection valves has been incorporated as an additional measure to mitigate the consequences during LPSD mid-loop operation. Since LOCL4 with LOCL3 is considered to be the event with highest frequency among all initial events, the effect of the feed and bleed operation on the safety of Nuclear Power Plant has been evaluated using PSA methodology.

  5. Lopsided spiral galaxies

    International Nuclear Information System (INIS)

    Jog, Chanda J.; Combes, Francoise

    2009-01-01

    The light distribution in the disks of many galaxies is 'lopsided' with a spatial extent much larger along one half of a galaxy than the other, as seen in M101. Recent observations show that the stellar disk in a typical spiral galaxy is significantly lopsided, indicating asymmetry in the disk mass distribution. The mean amplitude of lopsidedness is 0.1, measured as the Fourier amplitude of the m=1 component normalized to the average value. Thus, lopsidedness is common, and hence it is important to understand its origin and dynamics. This is a new and exciting area in galactic structure and dynamics, in contrast to the topic of bars and two-armed spirals (m=2) which has been extensively studied in the literature. Lopsidedness is ubiquitous and occurs in a variety of settings and tracers. It is seen in both stars and gas, in the outer disk and the central region, in the field and the group galaxies. The lopsided amplitude is higher by a factor of two for galaxies in a group. The lopsidedness has a strong impact on the dynamics of the galaxy, its evolution, the star formation in it, and on the growth of the central black hole and on the nuclear fuelling. We present here an overview of the observations that measure the lopsided distribution, as well as the theoretical progress made so far to understand its origin and properties. The physical mechanisms studied for its origin include tidal encounters, gas accretion and a global gravitational instability. The related open, challenging problems in this emerging area are discussed

  6. Electromechanics of graphene spirals

    Energy Technology Data Exchange (ETDEWEB)

    Korhonen, Topi; Koskinen, Pekka, E-mail: pekka.koskinen@iki.fi [NanoScience Center, Department of Physics, University of Jyväskylä, 40014 Jyväskylä (Finland)

    2014-12-15

    Among the most fascinating nanostructure morphologies are spirals, hybrids of somewhat obscure topology and dimensionality with technologically attractive properties. Here, we investigate mechanical and electromechanical properties of graphene spirals upon elongation by using density-functional tight-binding, continuum elasticity theory, and classical force field molecular dynamics. It turns out that electronic properties are governed by interlayer interactions as opposed to strain effects. The structural behavior is governed by van der Waals interaction: in its absence spirals unfold with equidistant layer spacings, ripple formation at spiral perimeter, and steadily increasing axial force; in its presence, on the contrary, spirals unfold via smooth local peeling, complex geometries, and nearly constant axial force. These electromechanical trends ought to provide useful guidelines not only for additional theoretical investigations but also for forthcoming experiments on graphene spirals.

  7. Study on the selection method of feed water heater safety valves in nuclear power plants

    International Nuclear Information System (INIS)

    Shi Jianzhong; Huang Chao; Hu Youqing

    2014-01-01

    The selection of the high pressure feedwater heater's safety valve usually follows the principle recommended by HEI standards in thermal power plant. However, the nuclear power plant's heaters generally need to accept a lots of drain from a moisture separator reheater (MSR). When the drain regulating valve was failure in fully open position, a large number of high pressure steam will directly goes into the heater. It make high-pressure heater have a risk of overpressure. Therefore, the safety valve selection of the heaters for nuclear power plants not only need to follow the HEI standards, but also need to check his capacity in certain special conditions. The paper established a calculation method to determine the static running point of the heaters based on characteristic equations of the feed water heater, drain regulating valve and steam extraction pipings, and energy balance principle. The method can be used to calculate the equilibrium pressure of various special running conditions, so further determine whether the capacity of the safety valve meets the requirements of safety and emissions. The method proposed in this paper not only can be used for nuclear power plants, can also be used for thermal power plants. (authors)

  8. Studying the elimination of pathogenic agents in laboratory animals feed by use of nuclear technique

    International Nuclear Information System (INIS)

    Shahhosseini, G.; Raisali, G.

    2002-01-01

    Laboratory animals are being used all around the world for different kinds of experiments in biological and medical sciences and related fields for the purposes such as prevention, control, diagnosis and treatment of various diseases in livestock, poultry, human, reproduction, breeding, etc. This is very important to keep in the breeding and reproduction environment of laboratory animals, pathogenic microorganisms as low as possible or completely remove them. The most prevailing and important way of such contamination is through feeding laboratory animals. In this research work, it is tried to use gamma radiation as a useful nuclear technique for decrease or resolve the problem. Two kinds of standard forms of diets consumed by rabbit and guinea pig in the form of small pellets and by mouse, rat and hamster in the form of big pellets (with different feed formula) and also two kinds of additive food i.e. dry milk and vitamin C have been examined. Un-irradiated samples have been used for control. Total of 226 samples were irradiated, among which optimum doses were found 25 kilo Gray for both small and big pellets, 18 kilo Gray for dry milk. Since there was not any contamination in vitamin C un-irradiated sample, irradiation was done only to observe the effect of gamma radiation on vitamin C compounds. (Author)

  9. Triangular spiral tilings

    International Nuclear Information System (INIS)

    Sushida, Takamichi; Hizume, Akio; Yamagishi, Yoshikazu

    2012-01-01

    The topology of spiral tilings is intimately related to phyllotaxis theory and continued fractions. A quadrilateral spiral tiling is determined by a suitable chosen triple (ζ, m, n), where ζ element of D/R, and m and n are relatively prime integers. We give a simple characterization when (ζ, m, n) produce a triangular spiral tiling. When m and n are fixed, the admissible generators ζ form a curve in the unit disk. The family of triangular spiral tilings with opposed parastichy pairs (m, n) is parameterized by the divergence angle arg (ζ), while triangular spiral tilings with non-opposed parastichy pairs are parameterized by the plastochrone ratio 1/|ζ|. The generators for triangular spiral tilings with opposed parastichy pairs are not dense in the complex parameter space, while those with non-opposed parastichy pairs are dense. The proofs will be given in a general setting of spiral multiple tilings. We present paper-folding (origami) sheets that build spiral towers whose top-down views are triangular tilings. (paper)

  10. Principles of spiral CT: III. Quality assurance

    International Nuclear Information System (INIS)

    Suess, C.; Kalender, W.A.

    1998-01-01

    Since its introduction in 1989 spiral CT has gained wide clinical acceptance and meanwhile it covers a large range of CT applications. This new technology, however, has not yet been recognized and acknowledged in the national or international regulations on scanner quality assurance (QA) programs. The conventional QA procedures should be extended to check the distribution of resolution and noise within the image plane. Imaging performance in the axial direction constitutes one of the major advantages of spiral scanning. Therefore, the slice sensitivity profiles and the spatial and low-contrast resolution along the z-axis have to be assessed. The high demands on table feed accuracy require additional tests. We suggest phantoms and procedures to check and quantify these parameters. Thereby, we hope to support the ongoing discussion about spiral CT quality assurance. (orig.) [de

  11. Scintigraphic examinations during pregnancy and in breast-feeding women: a survey of Belgian nuclear medicine physician's attitudes

    International Nuclear Information System (INIS)

    Tondeur, M.; Ham, H.; Sand, A.

    2003-01-01

    Radiation protection is of major importance in pregnant and breast feeding women. This work was undertaken to assess the practices of Belgian nuclear medicine physicians towards performing diagnostic tests during pregnancy and in breast feeding women. A questionnaire was sent to 201 Belgian nuclear medicine physicians; 82 answers (41 %) were received. 51 % of the responding physicians agree to perform lung perfusion scan during pregnancy provided a reduced dose is administered, 33% refuse to perform it during first three months and 24% refuse to perform it for pregnancies older than three months. For the Tc-99m ventilation scan 79% and 66% refuse to perform it before and after first three months. Better agreement was observed for other Tc-99m scintigraphies or tests using other radionuclides. In breast feeding women 89% agree to perform Tc-99m tests provided a breast feeding break; however, the duration of this break appears variable. The need for obtaining a written informed consent appears controversial. Given the variability of the attitudes of nuclear medicine physicians, official guidelines for nuclear medicine diagnostic tests during pregnancy is needed. (authors)

  12. Spiral Countercurrent Chromatography

    Science.gov (United States)

    Ito, Yoichiro; Knight, Martha; Finn, Thomas M.

    2013-01-01

    For many years, high-speed countercurrent chromatography conducted in open tubing coils has been widely used for the separation of natural and synthetic compounds. In this method, the retention of the stationary phase is solely provided by the Archimedean screw effect by rotating the coiled column in the centrifugal force field. However, the system fails to retain enough of the stationary phase for polar solvent systems such as the aqueous–aqueous polymer phase systems. To address this problem, the geometry of the coiled channel was modified to a spiral configuration so that the system could utilize the radially acting centrifugal force. This successfully improved the retention of the stationary phase. Two different types of spiral columns were fabricated: the spiral disk assembly, made by stacking multiple plastic disks with single or four interwoven spiral channels connected in series, and the spiral tube assembly, made by inserting the tetrafluoroethylene tubing into a spiral frame (spiral tube support). The capabilities of these column assemblies were successfully demonstrated by separations of peptides and proteins with polar two-phase solvent systems whose stationary phases had not been well retained in the earlier multilayer coil separation column for high-speed countercurrent chromatography. PMID:23833207

  13. Conversion of nuclear waste to molten glass: Formation of porous amorphous alumina in a high-Al melter feed

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Kai, E-mail: kaixu@whut.edu.cn [Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Hrma, Pavel, E-mail: pavel.hrma@pnnl.gov [Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Washton, Nancy; Schweiger, Michael J. [Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Kruger, Albert A. [U.S. Department of Energy, Office of River Protection, Richland, WA 99352 (United States)

    2017-01-15

    The transition of Al phases in a simulated high-Al high-level nuclear waste melter feed heated at 5 K min{sup −1} to 700 °C was investigated with transmission electron microscopy, {sup 27}Al nuclear magnetic resonance spectroscopy, the Brunauer-Emmett-Teller method, and X-ray diffraction. At temperatures between 300 and 500 °C, porous amorphous alumina formed from the dehydration of gibbsite, resulting in increased specific surface area of the feed (∼8 m{sup 2} g{sup −1}). The high-surface-area amorphous alumina formed in this manner could potentially stop salt migration in the cold cap during nuclear waste vitrification. - Highlights: • Porous amorphous alumina formed in a simulated high-Al HLW melter feed during heating. • The feed had a high specific surface area at 300 °C ≤ T ≤ 500 °C. • Porous amorphous alumina induced increased specific surface area.

  14. Spirals on the sea

    Directory of Open Access Journals (Sweden)

    Walter Munk

    2001-12-01

    Full Text Available Spiral eddies were first seen in the sun glitter on the Apollo Mission 30 years ago; they have since been recorded on SAR missions and in the infrared. The spirals are globally distributed, 10-25 km in size and overwhelmingly cyclonic. They have not been explained. Under light winds favorable to visualization, linear surface features with high surfactant density and low surface roughness are of common occurrence. We have proposed that frontal formations concentrate the ambient shear and prevailing surfactants. Horizontal shear instabilities ensue when the shear becomes comparable to the coriolis frequency. The resulting vortices wind the liner features into spirals. The hypothesis needs to be tested by prolonged measurements and surface truth. Spiral eddies are a manifestation of a sub-mesoscale oceanography associated with upper ocean stirring; dimensional considerations suggest a horizontal diffusivity of order 103 m2 s-1.

  15. Spiral 2 Week

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    The main goal of this meeting is to present and discuss the current status of the Spiral-2 project at GANIL in front of a large community of scientists and engineers. Different issues have been tackled particularly the equipment around Spiral-2 like injectors, cryo-modules or beam diagnostics, a workshop was devoted to other facilities dedicated to radioactive ion beam production. This document gathers only the slides of the presentations.

  16. Stacking the Equiangular Spiral

    OpenAIRE

    Agrawal, A.; Azabi, Y. O.; Rahman, B. M.

    2013-01-01

    We present an algorithm that adapts the mature Stack and Draw (SaD) methodology for fabricating the exotic Equiangular Spiral Photonic Crystal Fiber. (ES-PCF) The principle of Steiner chains and circle packing is exploited to obtain a non-hexagonal design using a stacking procedure based on Hexagonal Close Packing. The optical properties of the proposed structure are promising for SuperContinuum Generation. This approach could make accessible not only the equiangular spiral but also other qua...

  17. Spiral 2 Week

    International Nuclear Information System (INIS)

    2007-01-01

    The main goal of this meeting is to present and discuss the current status of the Spiral-2 project at GANIL in front of a large community of scientists and engineers. Different issues have been tackled particularly the equipment around Spiral-2 like injectors, cryo-modules or beam diagnostics, a workshop was devoted to other facilities dedicated to radioactive ion beam production. This document gathers only the slides of the presentations

  18. High-Assurance Spiral

    Science.gov (United States)

    2017-11-01

    HIGH-ASSURANCE SPIRAL CARNEGIE MELLON UNIVERSITY NOVEMBER 2017 FINAL TECHNICAL REPORT APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED STINFO...MU 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Carnegie Mellon University 5000 Forbes Ave Pittsburgh, PA 15217 8. PERFORMING ORGANIZATION...Approved for Public Release; Distribution Unlimited. Carnegie Mellon Carnegie Mellon HA SPIRAL Code Synthesis KeYmaera X Hybrid Theorem Prover

  19. Spiral: a new equipment for exotic nuclei; Spiral: un nouvel equipement pour les noyaux exotiques

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-02-01

    This document presents the GANIL activities and more specially the SPIRAL project. The missions of the GANIL are to allow scientists fundamental researches in Nuclear Physics and to develop applications for heavy ions in other domains. Spiral is an european project, decided by NuPECC (NUclear Physics European Collaboration Committee). It is a first generation equipment allowing the production and the acceleration of light and moderately heavy nuclei at energy range of 2 to 25 MeV/nucleus. (A.L.B.)

  20. Melter Feed Reactions at T ≤ 700°C for Nuclear Waste Vitrification

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Kai [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hrma, Pavel R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Rice, Jarrett A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Riley, Brian J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Schweiger, Michael J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Crum, Jarrod V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-07-23

    Batch reactions and phase transitions in a nuclear waste feed heated at 5 K min-1 up to 600°C were investigated by optical microscopy, scanning electron microscopy with energy dispersive X-ray spectrometer, and X-ray diffraction. Quenched samples were leached in deionized water at room temperature and 80°C to extract soluble salts and early glass-forming melt, respectively. To determine the content and composition of leachable phases, the leachates were analyzed by the inductively-coupled plasma spectroscopy. By ~400°C, gibbsite and borax lost water and converted to amorphous and intermediate crystalline phases. Between 400°C and 600°C, the sodium borate early glass-forming melt reacted with amorphous aluminum oxide and calcium oxide to form intermediate products containing Al and Ca. At ~600°C, half Na and B converted to the early glass-forming melt, and quartz began to dissolve in the melt.

  1. High assurance SPIRAL

    Science.gov (United States)

    Franchetti, Franz; Sandryhaila, Aliaksei; Johnson, Jeremy R.

    2014-06-01

    In this paper we introduce High Assurance SPIRAL to solve the last mile problem for the synthesis of high assurance implementations of controllers for vehicular systems that are executed in today's and future embedded and high performance embedded system processors. High Assurance SPIRAL is a scalable methodology to translate a high level specification of a high assurance controller into a highly resource-efficient, platform-adapted, verified control software implementation for a given platform in a language like C or C++. High Assurance SPIRAL proves that the implementation is equivalent to the specification written in the control engineer's domain language. Our approach scales to problems involving floating-point calculations and provides highly optimized synthesized code. It is possible to estimate the available headroom to enable assurance/performance trade-offs under real-time constraints, and enables the synthesis of multiple implementation variants to make attacks harder. At the core of High Assurance SPIRAL is the Hybrid Control Operator Language (HCOL) that leverages advanced mathematical constructs expressing the controller specification to provide high quality translation capabilities. Combined with a verified/certified compiler, High Assurance SPIRAL provides a comprehensive complete solution to the efficient synthesis of verifiable high assurance controllers. We demonstrate High Assurance SPIRALs capability by co-synthesizing proofs and implementations for attack detection and sensor spoofing algorithms and deploy the code as ROS nodes on the Landshark unmanned ground vehicle and on a Synthetic Car in a real-time simulator.

  2. Spiral silicon drift detectors

    International Nuclear Information System (INIS)

    Rehak, P.; Gatti, E.; Longoni, A.; Sampietro, M.; Holl, P.; Lutz, G.; Kemmer, J.; Prechtel, U.; Ziemann, T.

    1988-01-01

    An advanced large area silicon photodiode (and x-ray detector), called Spiral Drift Detector, was designed, produced and tested. The Spiral Detector belongs to the family of silicon drift detectors and is an improvement of the well known Cylindrical Drift Detector. In both detectors, signal electrons created in silicon by fast charged particles or photons are drifting toward a practically point-like collection anode. The capacitance of the anode is therefore kept at the minimum (0.1pF). The concentric rings of the cylindrical detector are replaced by a continuous spiral in the new detector. The spiral geometry detector design leads to a decrease of the detector leakage current. In the spiral detector all electrons generated at the silicon-silicon oxide interface are collected on a guard sink rather than contributing to the detector leakage current. The decrease of the leakage current reduces the parallel noise of the detector. This decrease of the leakage current and the very small capacities of the detector anode with a capacitively matched preamplifier may improve the energy resolution of Spiral Drift Detectors operating at room temperature down to about 50 electrons rms. This resolution is in the range attainable at present only by cooled semiconductor detectors. 5 refs., 10 figs

  3. Porosity of spacer-filled channels in spiral-wound membrane systems: Quantification methods and impact on hydraulic characterization

    KAUST Repository

    Siddiqui, Amber; Lehmann, S.; Haaksman, V.; Ogier, J.; Schellenberg, C.; van Loosdrecht, M.C.M.; Kruithof, J.C.; Vrouwenvelder, Johannes S.

    2017-01-01

    The porosity of spacer-filled feed channels influences the hydrodynamics of spiral-wound membrane systems and impacts the overall performance of the system. Therefore, an exact measurement and a detailed understanding of the impact of the feed

  4. Spiral 2 the scientific objectives

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-06-15

    The French ministry of research took the decision to build Spiral-2 in May 2005. Its construction costs are estimated to 130 million euros while its operating costs will near 8.5 million euros per year. The construction works will last 5 years. The Spiral-2 facility is based on a high power, superconducting driver Linac, which will deliver a high intensity, 40 MeV deuteron beam as well as a variety of heavy-ion beams with mass over charge ratio equal to 3 and energy up to 14.5 MeV/nucleon. Using a carbon converter, fast neutrons from the breakup of the 5 mA of deuterons impinging on a uranium carbide target will induce a rate of up to 10{sup 14} fissions/s. The radioactive ion beam intensities in the mass range from A = 60 to 140 will be of the order of 10{sup 6} to 10{sup 11} particles/s surpassing by one or two orders-of-magnitude any existing facility in the world. A direct irradiation of the UC{sub 2} target with {sup 3,4}He, {sup 6,7}Li or {sup 12}C may also be used. Different production targets will be used to produce high-intensity beams of light radioactive species with the Isol technique. The extracted radioactive ion beam will be accelerated to energies up to 20 MeV/nucleons by the existing Cime cyclotron. One of the most important features of the future Ganil accelerator complex will be the capability of delivering up to 5 stable or radioactive beams simultaneously in the energy range from the keV to several tens of MeV/nucleons. The document details also the future contribution of Spiral-2 concerning the structure of exotic nuclei, the thermodynamical aspects of nuclear matter, nucleosynthesis, the fundamental basic interactions, and the use of neutrons. (A.C.)

  5. Spiral 2 the scientific objectives

    International Nuclear Information System (INIS)

    2006-06-01

    The French ministry of research took the decision to build Spiral-2 in May 2005. Its construction costs are estimated to 130 million euros while its operating costs will near 8.5 million euros per year. The construction works will last 5 years. The Spiral-2 facility is based on a high power, superconducting driver Linac, which will deliver a high intensity, 40 MeV deuteron beam as well as a variety of heavy-ion beams with mass over charge ratio equal to 3 and energy up to 14.5 MeV/nucleon. Using a carbon converter, fast neutrons from the breakup of the 5 mA of deuterons impinging on a uranium carbide target will induce a rate of up to 10 14 fissions/s. The radioactive ion beam intensities in the mass range from A = 60 to 140 will be of the order of 10 6 to 10 11 particles/s surpassing by one or two orders-of-magnitude any existing facility in the world. A direct irradiation of the UC 2 target with 3,4 He, 6,7 Li or 12 C may also be used. Different production targets will be used to produce high-intensity beams of light radioactive species with the Isol technique. The extracted radioactive ion beam will be accelerated to energies up to 20 MeV/nucleons by the existing Cime cyclotron. One of the most important features of the future Ganil accelerator complex will be the capability of delivering up to 5 stable or radioactive beams simultaneously in the energy range from the keV to several tens of MeV/nucleons. The document details also the future contribution of Spiral-2 concerning the structure of exotic nuclei, the thermodynamical aspects of nuclear matter, nucleosynthesis, the fundamental basic interactions, and the use of neutrons. (A.C.)

  6. Plasma Generator Using Spiral Conductors

    Science.gov (United States)

    Szatkowski, George N. (Inventor); Dudley, Kenneth L. (Inventor); Ticatch, Larry A. (Inventor); Smith, Laura J. (Inventor); Koppen, Sandra V. (Inventor); Nguyen, Truong X. (Inventor); Ely, Jay J. (Inventor)

    2016-01-01

    A plasma generator includes a pair of identical spiraled electrical conductors separated by dielectric material. Both spiraled conductors have inductance and capacitance wherein, in the presence of a time-varying electromagnetic field, the spiraled conductors resonate to generate a harmonic electromagnetic field response. The spiraled conductors lie in parallel planes and partially overlap one another in a direction perpendicular to the parallel planes. The geometric centers of the spiraled conductors define endpoints of a line that is non-perpendicular with respect to the parallel planes. A voltage source coupled across the spiraled conductors applies a voltage sufficient to generate a plasma in at least a portion of the dielectric material.

  7. Barred spiral structure of galaxies

    International Nuclear Information System (INIS)

    Chen, Z.; Weng, s.; Xu, M.

    1982-01-01

    Observational data indicate the grand design of spiral or barred spiral structure in disk galaxies. The problem of spiral structure has been thoroughly investigated by C. C. Lin and his collaborators, but yet the problem of barred spiral structure has not been investigated systematically, although much work has been done, such as in Ref. 3--7. Using the gasdynamic model for galaxies and a method of integral transform presented in Ref. 1, we investigated the barred spiral structure and obtained an analytical solution. It gives the large-scale pattern of barred-spirals, which is in fairly good agreement with observational data

  8. Feeding the Monster

    Science.gov (United States)

    2005-10-01

    central network of filamentary structures spiralling down to the centre. "Our analysis of the VLT/NACO images of NGC 1097 shows that these filaments end up at the very centre of the galaxy", says co-author Juha Reunanen from ESO. "This network closely resembles those seen in computer models", adds co-worker Witold Maciejewski from the University of Oxford, UK. "The nuclear filaments revealed in the NACO images are the tracers of cold dust and gas being channelled towards the centre to eventually ignite the AGN." The astronomers also note that the curling of the spiral pattern in the innermost 300 light-years seem indeed to confirm the presence of a super-massive black hole in the centre of NGC 1097. Such a black hole in the centre of a galaxy causes the nuclear spiral to wind up as it approaches the centre, while in its absence the spiral would be unwinding as it moves closer to the centre. An image of NGC 1097 and its small companion, NGC 1097A, was taken in December 2004, in the presence of Chilean President Lagos with the VIMOS instrument on ESO's Very Large Telescope (VLT). It is available as ESO PR Photo 35d/04. More information This ESO Press Photo is based on research published in the October issue of Astronomical Journal, vol. 130, p. 1472 ("Feeding the Monster: The Nucleus of NGC 1097 at Subarcsecond Scales in the Infrared with the Very Large Telescope", by M. Almudena Prieto, Witold Maciejewski, and Juha Reunanen).

  9. Early non-destructive biofouling detection in spiral wound RO Membranes using a mobile earth's field NMR

    KAUST Repository

    Fridjonsson, E.O.; Vogt, S.J.; Vrouwenvelder, Johannes S.; Johns, M.L.

    2015-01-01

    We demonstrate the use of Earth's field (EF) Nuclear Magnetic Resonance (NMR) to provide early non-destructive detection of active biofouling of a commercial spiral wound reverse osmosis (RO) membrane module. The RO membrane module was actively biofouled to different extents, by the addition of biodegradable nutrients to the feed stream, as revealed by a subtle feed-channel pressure drop increase. Easily accessible EF NMR parameters (signal relaxation parameters T1, T2 and the total NMR signal modified to be sensitive to stagnant fluid only) were measured and analysed in terms of their ability to detect the onset of biofouling. The EF NMR showed that fouling near the membrane module entrance significantly distorted the flow field through the whole membrane module. The total NMR signal is shown to be suitable for non-destructive early biofouling detection of spiral wound membrane modules, it was readily deployed at high (operational) flow rates, was particularly sensitive to flow field changes due to biofouling and could be deployed at any position along the membrane module axis. In addition to providing early fouling detection, the mobile EF NMR apparatus could also be used to (i) evaluate the production process of spiral wound membrane modules, and (ii) provide an in-situ determination of module cleaning process efficiency.

  10. Early non-destructive biofouling detection in spiral wound RO Membranes using a mobile earth's field NMR

    KAUST Repository

    Fridjonsson, E.O.

    2015-04-20

    We demonstrate the use of Earth\\'s field (EF) Nuclear Magnetic Resonance (NMR) to provide early non-destructive detection of active biofouling of a commercial spiral wound reverse osmosis (RO) membrane module. The RO membrane module was actively biofouled to different extents, by the addition of biodegradable nutrients to the feed stream, as revealed by a subtle feed-channel pressure drop increase. Easily accessible EF NMR parameters (signal relaxation parameters T1, T2 and the total NMR signal modified to be sensitive to stagnant fluid only) were measured and analysed in terms of their ability to detect the onset of biofouling. The EF NMR showed that fouling near the membrane module entrance significantly distorted the flow field through the whole membrane module. The total NMR signal is shown to be suitable for non-destructive early biofouling detection of spiral wound membrane modules, it was readily deployed at high (operational) flow rates, was particularly sensitive to flow field changes due to biofouling and could be deployed at any position along the membrane module axis. In addition to providing early fouling detection, the mobile EF NMR apparatus could also be used to (i) evaluate the production process of spiral wound membrane modules, and (ii) provide an in-situ determination of module cleaning process efficiency.

  11. Chiral Magnetic Spirals

    International Nuclear Information System (INIS)

    Basar, Goekce; Dunne, Gerald V.; Kharzeev, Dmitri E.

    2010-01-01

    We argue that the presence of a very strong magnetic field in the chirally broken phase induces inhomogeneous expectation values, of a spiral nature along the magnetic field axis, for the currents of charge and chirality, when there is finite baryon density or an imbalance between left and right chiralities. This 'chiral magnetic spiral' is a gapless excitation transporting the currents of (i) charge (at finite chirality), and (ii) chirality (at finite baryon density) along the direction of the magnetic field. In both cases it also induces in the transverse directions oscillating currents of charge and chirality. In heavy ion collisions, the chiral magnetic spiral possibly provides contributions both to the out-of-plane and the in-plane dynamical charge fluctuations recently observed at BNL RHIC.

  12. The Spiral of Euroscepticism

    DEFF Research Database (Denmark)

    Galpin, Charlotte; Trenz, Hans-Jörg

    2017-01-01

    of Euroscepticism’, taking media autonomy seriously to understand how media logics and selective devices contribute to the shaping of public discourse about the EU. We review the literature on the media and EU legitimacy to show how media frames and their amplification on social media can account for the salience......Media scholars have increasingly examined the effects of a negativity bias that applies to political news. In the ‘spiral of cynicism’, journalist preferences for negative news correspond to public demands for sensational news. We argue that this spiral of cynicism in EU news results in a ‘spiral...... of Eurosceptic opinions in the public sphere that then push parties to contest the EU in predominantly negative terms....

  13. Embracing the Spiral

    Directory of Open Access Journals (Sweden)

    Li Mao

    2016-12-01

    Full Text Available Critical research demands that we interrogate our own positionality and social location. Critical reflexivity is a form of researcher critical consciousness that is constant and dynamic in a complex spiral-like process starting within our own experiences as racialized, gendered, and classed beings embedded in particular sociopolitical contexts. Across diverse critical methodologies, a group of graduate students and their supervisor explored their own conceptualization of the reflexivity spiral by reflecting on how their research motivations and methodologies emerged from their racializing, colonizing, language-learning, parenting, and identity negotiating experiences. In this article, they present a spiral model of the critical reflexivity process, review the literature on reflexivity, and conclude with a description of critical reflexivity as a social practice within a supportive and collaborative graduate school experience.

  14. The spinning ball spiral

    International Nuclear Information System (INIS)

    Dupeux, Guillaume; Le Goff, Anne; Quere, David; Clanet, Christophe

    2010-01-01

    We discuss the trajectory of a fast revolving solid ball moving in a fluid of comparable density. As the ball slows down owing to drag, its trajectory follows an exponential spiral as long as the rotation speed remains constant: at the characteristic distance L where the ball speed is significantly affected by the drag, the bending of the trajectory increases, surprisingly. Later, the rotation speed decreases, which makes the ball follow a second kind of spiral, also described in the paper. Finally, the use of these highly curved trajectories is shown to be relevant to sports.

  15. Neutrons for science (NFS) at spiral-2

    International Nuclear Information System (INIS)

    Ridikas, D.

    2005-01-01

    Both cross section measurements and various applications could be realised successfully using the high energy neutrons that will be produced at SPIRAL-2. Two particular cases were examined in more detail, namely: (a) neutron time-of-flight (nToF) measurements with pulsed neutron beams, and (b) material activation-irradiation with high-energy high-intensity neutron fluxes. Thanks to the high energy and high intensity neutron flux available, SPIRAL-2 offers a unique opportunity for material irradiations both for fission and fusion related research, tests of various detection systems and of resistance of electronics components to irradiations, etc. SPIRAL-2 also could be considered as an intermediate step towards new generation dedicated irradiation facilities as IFMIF previewed only beyond 2015. Equally, the interval from 0.1 MeV to 40 MeV for neutron cross section measurements is an energy range that is of particular importance for energy applications, notably accelerator driven systems (ADS) and Gen-IV fast reactors, as well as for fusion related devices. It is also the region where pre-equilibrium approaches are often used to link the low (evaporation) and high energy (intra-nuclear cascade) reaction models. With very intense neutron beams of SPIRAL-2 measurements of very low mass (often radioactive) targets and small cross sections become feasible in short experimental campaigns. Production of radioactive targets for dedicated physics experiments is also an attractive feature of SPIRAL-2. In brief, it was shown that SPIRAL-2 has got a remarkable potential for neutron based research both for fundamental physics and various applications. In addition, in the neutron energy range from a few MeV to, say, 35 MeV this research would have a leading position for the next 10-15 years if compared to other neutron facilities in operation or under construction worldwide. (author)

  16. Are spiral galaxies heavy smokers?

    International Nuclear Information System (INIS)

    Davies, J.; Disney, M.; Phillipps, S

    1990-01-01

    The dustiness of spiral galaxies is discussed. Starburst galaxies and the shortage of truly bright spiral galaxies is cited as evidence that spiral galaxies are far dustier than has been thought. The possibility is considered that the dust may be hiding missing mass

  17. Properties of spiral resonators

    International Nuclear Information System (INIS)

    Haeuser, J.

    1989-10-01

    The present thesis deals with the calculation and the study of the application possibilities of single and double spiral resonators. The main aim was the development and the construction of reliable and effective high-power spiral resonators for the UNILAC of the GSI in Darmstadt and the H - -injector for the storage ring HERA of DESY in Hamburg. After the presentation of the construction and the properties of spiral resonators and their description by oscillating-circuit models the theoretical foundations of the bunching are presented and some examples of a rebuncher and debuncher and their influence on the longitudinal particle dynamics are shown. After the description of the characteristic accelerator quantities by means of an oscillating-circuit model and the theory of an inhomogeneous λ/4 line it is shown, how the resonance frequency and the efficiency of single and double spiral resonators can be calculated from the geometrical quantities of the structure. In the following the dependence of the maximal reachable resonator voltage in dependence on the gap width and the surface of the drift tubes is studied. Furthermore the high-power resonators are presented, which were built for the different applications for the GSI in Darmstadt, DESY in Hamburg, and for the FOM Institute in Amsterdam. (orig./HSI) [de

  18. Utilization of the ion traps by SPIRAL

    International Nuclear Information System (INIS)

    Le Brun, C.; Lienard, E.; Mauger, F.; Tamain, B.

    1997-01-01

    An ion trap is a device capable of confine particles, ions or atoms in a well-controlled environment isolated from any exterior perturbations. There are different traps. They are utilized to collect or stock ions, to cool them after in order to subject them to high precision measurement of masses, magnetic moments, hyperfine properties, beta decay properties, etc. Some dozen of traps are currently used all over the world to study stable or radioactive ions.. SPIRAL has been designed and built to produce radioactive ions starting from various heavy ion beams. SPIRAL has the advantage that the projectile parameters, the target and the energy can be chosen to optimize the production in various regions of the nuclear chart. Also, in SPIRAL it is possible to extract more rapidly the radioactive ions formed in the targets. In addition, in SPIRAL the multicharged ion production in a ECR source is possible. The utilization of multicharged ions is indeed very useful for fast mass measurements or for the study of the interaction between the nucleus and the electronic cloud. Finally, utilization of a ion trap on SPIRAL can be designed first at the level of production target by installing a low energy output line. Than, the trap system could be up-graded and brought to its full utilization behind of the recoil spectrometer. It must be capable of selecting and slowing down the ions produced in the reactions (fusion transfer, very inelastic collisions, etc.) induced by the radioactive ions accelerated in CIME. At present, the collaboration is debating on the most favored subject to study and the most suited experimental setups. The following subjects were selected: ion capture, purification and manipulation; isomers (separation and utilization); mass measurements; hyperfine interactions; lifetimes, nuclear electric cloud; β decays; study of the N = Z nuclei close to the proton drip line; physical and chemical properties of transuranium systems

  19. Tracking Target and Spiral Waves

    DEFF Research Database (Denmark)

    Jensen, Flemming G.; Sporring, Jon; Nielsen, Mads

    2002-01-01

    A new algorithm for analyzing the evolution of patterns of spiral and target waves in large aspect ratio chemical systems is introduced. The algorithm does not depend on finding the spiral tip but locates the center of the pattern by a new concept, called the spiral focus, which is defined...... by the evolutes of the actual spiral or target wave. With the use of Gaussian smoothing, a robust method is developed that permits the identification of targets and spirals foci independently of the wave profile. Examples of an analysis of long image sequences from experiments with the Belousov......–Zhabotinsky reaction catalyzed by ruthenium-tris-bipyridyl are presented. Moving target and spiral foci are found, and the speed and direction of movement of single as well as double spiral foci are investigated. For the experiments analyzed in this paper it is found that the movement of a focus correlates with foci...

  20. Flux flow and cleaning enhancement in a spiral membrane element ...

    African Journals Online (AJOL)

    The effect of backpulsing, into the permeate space of a 2.5 inch spiral wrap membrane, on the prevention of fouling (flux enhancement) was investigated experimentally. These experiments were performed using a 500 mg∙ℓ-1 dextrin solution and a 100 000 MCWO polypropylene membrane, with a feed pressure of 100 kPa ...

  1. Forming Spirals From Shadows

    Science.gov (United States)

    Kohler, Susanna

    2016-07-01

    What causes the large-scale spiral structures found in some protoplanetary disks? Most models assume theyre created by newly-forming planets, but a new study suggests that planets might have nothing to do with it.Perturbations from Planets?In some transition disks protoplanetary disks with gaps in their inner regions weve directly imaged large-scale spiral arms. Many theories currently attribute the formation of these structures to young planets: either the direct perturbations of a planet embedded in the disk cause the spirals, or theyre indirectly caused by the orbit of a planetary body outside of the arms.Another example of spiral arms detected in a protoplanetary disk, MWC 758. [NASA/ESA/ESO/M. Benisty et al.]But what if you could get spirals without any planets? A team of scientists led by Matas Montesinos (University of Chile) have recently published a study in which they examine what happens to a shadowed protoplanetary disk.Casting Shadows with WarpsIn the teams setup, they envision a protoplanetary disk that is warped: the inner region is slightly tilted relative to the outer region. As the central star casts light out over its protoplanetary disk, this disk warping would cause some regions of the disk to be shaded in a way that isnt axially symmetric with potentially interesting implications.Montesinos and collaborators ran 2D hydrodynamics simulations to determine what happens to the motion of particles within the disk when they pass in and out of the shadowed regions. Since the shadowed regions are significantly colder than the illuminated disk, the pressure in these regions is much lower. Particles are therefore accelerated and decelerated as they pass through these regions, and the lack of axial symmetry causes spiral density waves to form in the disk as a result.Initial profile for the stellar heating rate per unit area for one of the authors simulations. The regions shadowed as a result of the disk warp subtend 0.5 radians each (shown on the left

  2. 平面和空间螺线的恒速插补算法%2D and 3D Spiral Curves Advanced Interpolation Algorithms with Constant Feed Rate

    Institute of Scientific and Technical Information of China (English)

    胡自化; 李应明; 陈超; 李玉声; 邓久生

    2001-01-01

    Based on analysis of interpolation mechanism for parametric curve, in this paper, 2D and 3D spiral curves interpolation algorithms with constant feedrate are developed on the one hand and the contour errors and corresponding approximate calculation formulations are discussed on the other. With simulation examples of proposed spiral interpolation algorithms which programmed in graphics developing language AutoLISP, as a result, it shows that there are no contour errors and there are some very useful features such as constant feedrate and interpolation precisions easily being controlled, etc. Moreover, it will be very convenient to be developed and applied as an advanced interpolation function for modern gerneral PC microcomputeried numerical controlling system.%基于参数曲线恒速插补机理分析,建立了平面和空间螺线的恒速插补算法,讨论了插补误差及其有效近似计算,通过AutoLISP编程进行实例插补模拟。结果表明该插补算法无累计误差,具有恒速进给、插补精度易于控制等特点,便于现代通用PC微机数控系统进行开发和应用。

  3. Theory of spiral structure

    International Nuclear Information System (INIS)

    Lin, C.C.

    1977-01-01

    The density wave theory of galactic spirals has now developed into a form suitable for consideration by experts in Applied Mechanics. On the one hand, comparison of theoretical deductions with observational data has convinced astrophysicists of the validity of the basic physical picture and the calculated results. On the other hand, the dynamical problems of a stellar system, such as those concerning the origin of spiral structure in galaxies, have not been completely solved. This paper reviews the current status of such developments, including a brief summary of comparison with observations. A particularly important mechanism, currently called the mechanism of energy exchange, is described in some detail. The mathematical problems and the physical processes involved are similar to those occurring in certain instability mechanisms in the 'magnetic bottle' designed for plasma containment. Speculations are given on the future developments of the theory and on observational programs. (Auth.)

  4. Spiral 2 workshop

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    The accelerator and experimental facilities at GANIL will be transformed over the next 5-10 years. The centerpiece of the additions to the accelerator complex will be Spiral-2. This is the first phase of a new radioactive beam facility based on the ISOL principle. The main aim of Spiral-2 will be to produce intense, high quality beams of neutron-rich nuclei created in neutron-induced fission of heavy elements and accelerated by the existing CIME cyclotron. The principal aims of this workshop will be a) to publicize the new facilities, b) to discuss and define the science which might be carried out with them, c) to discuss the instrumentation and infrastructure required to exploit the new facilities and d) to help form collaborations of scientists wishing to design and construct the equipment needed to undertake the science programme. This document gathers most of the slides presented in the workshop.

  5. Spiral nonimaging optical designs

    Science.gov (United States)

    Zamora, Pablo; Benítez, Pablo; Miñano, Juan C.; Vilaplana, Juan

    2011-10-01

    Manufacturing technologies as injection molding or embossing specify their production limits for minimum radii of the vertices or draft angle for demolding, for instance. In some demanding nonimaging applications, these restrictions may limit the system optical efficiency or affect the generation of undesired artifacts on the illumination pattern. A novel manufacturing concept is presented here, in which the optical surfaces are not obtained from the usual revolution symmetry with respect to a central axis (z axis), but they are calculated as free-form surfaces describing a spiral trajectory around z axis. The main advantage of this new concept lies in the manufacturing process: a molded piece can be easily separated from its mold just by applying a combination of rotational movement around axis z and linear movement along axis z, even for negative draft angles. Some of these spiral symmetry examples will be shown here, as well as their simulated results.

  6. Spiral 2 workshop

    International Nuclear Information System (INIS)

    2004-01-01

    The accelerator and experimental facilities at GANIL will be transformed over the next 5-10 years. The centerpiece of the additions to the accelerator complex will be Spiral-2. This is the first phase of a new radioactive beam facility based on the ISOL principle. The main aim of Spiral-2 will be to produce intense, high quality beams of neutron-rich nuclei created in neutron-induced fission of heavy elements and accelerated by the existing CIME cyclotron. The principal aims of this workshop will be a) to publicize the new facilities, b) to discuss and define the science which might be carried out with them, c) to discuss the instrumentation and infrastructure required to exploit the new facilities and d) to help form collaborations of scientists wishing to design and construct the equipment needed to undertake the science programme. This document gathers most of the slides presented in the workshop

  7. Holographic Chiral Magnetic Spiral

    International Nuclear Information System (INIS)

    Kim, Keun-Young; Sahoo, Bindusar; Yee, Ho-Ung

    2010-06-01

    We study the ground state of baryonic/axial matter at zero temperature chiral-symmetry broken phase under a large magnetic field, in the framework of holographic QCD by Sakai-Sugimoto. Our study is motivated by a recent proposal of chiral magnetic spiral phase that has been argued to be favored against previously studied phase of homogeneous distribution of axial/baryonic currents in terms of meson super-currents dictated by triangle anomalies in QCD. Our results provide an existence proof of chiral magnetic spiral in strong coupling regime via holography, at least for large axial chemical potentials, whereas we don't find the phenomenon in the case of purely baryonic chemical potential. (author)

  8. Improved methods of online monitoring and prediction in condensate and feed water system of nuclear power plant

    International Nuclear Information System (INIS)

    Wang, Hang; Peng, Min-jun; Wu, Peng; Cheng, Shou-yu

    2016-01-01

    Highlights: • Different methods for online monitoring and diagnosis are summarized. • Numerical simulation modeling of condensate and feed water system in nuclear power plant are done by FORTRAN programming. • Integrated online monitoring and prediction methods have been developed and tested. • Online monitoring module, fault diagnosis module and trends prediction module can be verified with each other. - Abstract: Faults or accidents may occur in a nuclear power plant (NPP), but it is hard for operators to recognize the situation and take effective measures quickly. So, online monitoring, diagnosis and prediction (OMDP) is used to provide enough information to operators and improve the safety of NPPs. In this paper, distributed conservation equation (DCE) and artificial immunity system (AIS) are proposed for online monitoring and diagnosis. On this basis, quantitative simulation models and interactive database are combined to predict the trends and severity of faults. The effectiveness of OMDP in improving the monitoring and prediction of condensate and feed water system (CFWS) was verified through simulation tests.

  9. Band-notched spiral antenna

    Science.gov (United States)

    Jeon, Jae; Chang, John

    2018-03-13

    A band-notched spiral antenna having one or more spiral arms extending from a radially inner end to a radially outer end for transmitting or receiving electromagnetic radiation over a frequency range, and one or more resonance structures positioned adjacent one or more segments of the spiral arm associated with a notch frequency band or bands of the frequency range so as to resonate and suppress the transmission or reception of electromagnetic radiation over said notch frequency band or bands.

  10. A study on discrete event dynamic model for nuclear operations of main feed water pump

    International Nuclear Information System (INIS)

    Bae, J. C.; Choi, J. I.

    2000-01-01

    A major objective of the study is to propose a supervisory control algorithm based on the discrete event dynamic system (DEDS) model and apply it to the automation of nuclear operations. The study is motivated by the suitability of the DEDS model for simulation of man-made control action and the potential of the DEDS based supervisory control algorithm for enhanced licensibility, when implemented in nuclear plants, through design transparency due to strong analytic backgrounds. The DEDS model can analytically show the robust stability of the proposed supervisory controller providing design transparency for enhanced licensibility when implemented in nuclear operations

  11. Noble metal behavior during melting of simulated high-level nuclear waste glass feeds

    International Nuclear Information System (INIS)

    Anderson, L.D.; Dennis, T.; Elliott, M.L.; Hrma, P.

    1993-04-01

    Noble metals and their oxides can settle in waste glass melters and cause electrical shorting. Simulated waste feeds from Hanford, Savannah River, and Germany were heat treated for 1 hour in a gradient furnace at temperatures ranging from approximately 600 degrees C--1000 degrees C and examined by electron microscopy to determine shapes, sizes, and distribution of noble metal particles as a function of temperature. Individual noble metal particles and agglomerates of rhodium (Rh), ruthenium (RuO 2 ), and palladium (Pd), as well as their alloys, were seen. the majority of particles and agglomerates were generally less than 10 microns; however, large agglomerations (up to 1 mm) were found in the German feed. Detailed particle distribution and characterization was performed for a Hanford waste to provide input to computer modeling of particle settling in the melter

  12. Noble metal behavior during melting of simulated high-level nuclear waste glass feeds

    International Nuclear Information System (INIS)

    Anderson, L.D.; Dennis, T.; Elliott, M.L.; Hrma, P.

    1994-01-01

    Noble metals and their oxides can settle in waste glass melters and cause electrical shorting. Simulate waste feeds from Hanford, Savannah River, and Kernforschungszentrum Karlsruhe were heat treated for 1 hour in a gradient furnace at temperatures ranging from approximately 600 degrees C to 1000 degrees C and examined by electron microscopy to determine shapes, sizes, and distribution of noble metal particles as a function of temperature. Individual noble metal particles and agglomerates of rhodium (Rh), ruthenium (RuO 2 ), and palladium (Pd), as well as their alloys, were seen. The majority of particles and agglomerates were generally less than 10 μm; however, large agglomerations (up to 1 mm) were found in the German feed. 5 refs., 6 figs., 2 tabs

  13. Nature of galaxy spiral arms

    International Nuclear Information System (INIS)

    Efremov, Yu.N.

    1984-01-01

    The nature of galaxy spiral arms is discussed in a popular form. Two approaches in the theory of spiral arms are considered; they are related to the problem of differential galaxy rotation and the spiral structure wave theory. The example of Galaxy M31 is considered to compare the structural peculiarity of its spiral arms with the wave theory predictions. The situation in the central and south-eastern part of arm S4 in Galaxy M31 noted to be completely explained by the wave theory and modern concepts on the origin of massive stars

  14. Measuring nutrient spiralling in streams

    Energy Technology Data Exchange (ETDEWEB)

    Newbold, J D; Elwood, J W; O' Neill, R V; Van Winkle, W

    1981-01-01

    Nutrient cycling in streams involves some downstream transport before the cycle is completed. Thus, the path traveled by a nutrient atom in passing through the cycle can be visualized as a spiral. As an index of the spiralling process, we introduce spiralling length, defined as the average distance associated with one complete cycle of a nutrient atom. This index provides a measure of the utilization of nutrients relative to the available supply from upstream. Using /sup 32/p as a tracer, we estimated a spiralling length of 193 m for phosphorus in a small woodland stream.

  15. Three phase spiral liver Scanning

    International Nuclear Information System (INIS)

    Kanyanja, T.A.

    2006-01-01

    The ability to perform rapid back-to-back spiral acquisitions is an important recent technical advantage of spiral CT. this allows imaging of the upper abdomen (liver) during peak arterial enhancement (arterial phase) and during peak hepatic parenchymal enhancement (portal venous phase). Breatheld spiral CT has completely replaced dynamic incremental CT for evaluation of the liver. in selected patients with hyper vascular metastasis (hepatoma, neuroendocrine tumors, renal cell carcinoma, etc.) a biphasic examination is performed with one spiral acquisition obtained during the hepatic arterial phase and a second acquisition during the portal venous phase

  16. NURSING INTERVENTION THROUGH FAMILY PATHNERSHIP INCREASES BEHAVIOR IN PRACTICE OF FEEDING PATTERN ON INFANT OF AGE 6–24 MONTHS FOR NUCLEAR AND EXTENDED FAMILY

    Directory of Open Access Journals (Sweden)

    A. Aziz Alimul Hidayat

    2017-04-01

    Full Text Available Introduction: Nursing intervention is nursing action with a supportive and educative approach done by nurses cooperating with families in overcoming the problems of nursing family. The aim of the research was to explain the effect of nursing intervention through family pathnership toward behavior in practice of feeding pattern on infant of age 6–24 months for nuclear and extended family, including the breastfeeding (ASI, PASI, soft food, family food, snacks, and way of feeding. Method: The design of the research was experimental. The sample of the research was ninety six (96 samples, which was chosen with simple random sampling.The sample was then divided into two parts of family in Kenjeran District and Bulak Surabaya, namely nuclear family and extended family. The variables measured were breastfeeding, PASI, soft food, family food, and a way of feeding through interviewing and observation. The data analysis used was Mann Whitney U. Result: Result showed that effect of nursing interventions on the style of feeding containing of giving PASI (p = 0.003, soft food (p = 0.005, family food (p = 0.00, snacks (p = 0.034, and way of feeding (p = 0.00. Those effects can be shown with the increasing of frequency and way of feeding before and after intervention. Discussion: The conclusion is nursing intervention through the supportive and educative approach as the form of actions on families with problems on the pattern of feeding has the influence on the practice of feeding pattern. The increasing of feeding frequency shows the cognitive and behavioral change on the practice of feeding pattern which can possibly improve the status of infants nutrient.

  17. The subtropical nutrient spiral

    Science.gov (United States)

    Jenkins, William J.; Doney, Scott C.

    2003-12-01

    We present an extended series of observations and more comprehensive analysis of a tracer-based measure of new production in the Sargasso Sea near Bermuda using the 3He flux gauge technique. The estimated annually averaged nitrate flux of 0.84 ± 0.26 mol m-2 yr-1 constitutes only that nitrate physically transported to the euphotic zone, not nitrogen from biological sources (e.g., nitrogen fixation or zooplankton migration). We show that the flux estimate is quantitatively consistent with other observations, including decade timescale evolution of the 3H + 3He inventory in the main thermocline and export production estimates. However, we argue that the flux cannot be supplied in the long term by local diapycnal or isopycnal processes. These considerations lead us to propose a three-dimensional pathway whereby nutrients remineralized within the main thermocline are returned to the seasonally accessible layers within the subtropical gyre. We describe this mechanism, which we call "the nutrient spiral," as a sequence of steps where (1) nutrient-rich thermocline waters are entrained into the Gulf Stream, (2) enhanced diapycnal mixing moves nutrients upward onto lighter densities, (3) detrainment and enhanced isopycnal mixing injects these waters into the seasonally accessible layer of the gyre recirculation region, and (4) the nutrients become available to biota via eddy heaving and wintertime convection. The spiral is closed when nutrients are utilized, exported, and then remineralized within the thermocline. We present evidence regarding the characteristics of the spiral and discuss some implications of its operation within the biogeochemical cycle of the subtropical ocean.

  18. Rebuilding Spiral Galaxies

    Science.gov (United States)

    2005-01-01

    Major Observing Programme Leads to New Theory of Galaxy Formation Summary Most present-day large galaxies are spirals, presenting a disc surrounding a central bulge. Famous examples are our own Milky Way or the Andromeda Galaxy. When and how did these spiral galaxies form? Why do a great majority of them present a massive central bulge? An international team of astronomers [1] presents new convincing answers to these fundamental questions. For this, they rely on an extensive dataset of observations of galaxies taken with several space- and ground-based telescopes. In particular, they used over a two-year period, several instruments on ESO's Very Large Telescope. Among others, their observations reveal that roughly half of the present-day stars were formed in the period between 8,000 million and 4,000 million years ago, mostly in episodic burst of intense star formation occurring in Luminous Infrared Galaxies. From this and other evidence, the astronomers devised an innovative scenario, dubbed the "spiral rebuilding". They claim that most present-day spiral galaxies are the results of one or several merger events. If confirmed, this new scenario could revolutionise the way astronomers think galaxies formed. PR Photo 02a/05: Luminosity - Oxygen Abundance Relation for Galaxies (VLT) PR Photo 02b/05: The Spiral Rebuilding Scenario A fleet of instruments How and when did galaxies form? How and when did stars form in these island universes? These questions are still posing a considerable challenge to present-day astronomers. Front-line observational results obtained with a fleet of ground- and space-based telescopes by an international team of astronomers [1] provide new insights into these fundamental issues. For this, they embarked on an ambitious long-term study at various wavelengths of 195 galaxies with a redshift [2] greater than 0.4, i.e. located more than 4000 million light-years away. These galaxies were studied using ESO's Very Large Telescope, as well as the

  19. distributed parameter model of spiral-wound sepralator for treatment of uranyl nitrate effluents

    International Nuclear Information System (INIS)

    El-Bialy, S.H; Elsherbiny, A.E.

    2004-01-01

    in this paper, mathematical formulation of spiral-wound sepralator was derived and applied for the treatment of effluent stream which is produced during nuclear fuel processing stage. the concentration of the stream has a value up to 200 ppm . cross-flow characteristic of both feed and permeate streams was taken into account and their mutual effects on the values of system variables were investigated. of course, such a flow pattern leads to a heterogeneous system which leads-in turn-to six partial differential equations, beside a set of algebraic equations. those were solved numerically and the results were used to estimate the average values of both permeate flux and percent solute rejection. then, these were compared with both experimental data in addition to the results of lumped parameter model. the study showed that distributed parameter model gives better results than lumped parameter one compared with experimental data

  20. Development of Induction Brazing System for Sealing Instrumentation Feed through Part of Nuclear Fuel Test Rig

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Jintae; Kim, Kahye; Heo, Sungho; Ahn, Sungho; Joung, Changyoung; Son, Kwangjae; Jung, Yangil [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-12-15

    To test the performance of nuclear fuels, coolant needs to be circulated through the test rig installed in the test loop. Because the pressure and temperature of the coolant is 15.5 MPa and 300 .deg. C respectively, coolant sealing is one of the most important processes in fabricating a nuclear fuel test rig. In particular, 15 instrumentation cables installed in a test rig pass through the pressure boundary, and brazing is generally applied as a sealing method. In this study, an induction brazing system has been developed using a high frequency induction heater including a vacuum chamber. For application in the nuclear field, BNi2 should be used as a paste, and optimal process variables for Ni brazing have been found by several case studies. The performance and soundness of the brazed components has been verified by a tensile test, cross section test, and sealing performance test.

  1. Spiral branches and star formation

    International Nuclear Information System (INIS)

    Zasov, A.V.

    1974-01-01

    Origin of spiral branches of galaxies and formation of stars in them are considered from the point of view of the theory of the gravitational gas condensation, one of comparatively young theories. Arguments are presented in favour of the stellar condensation theory. The concept of the star formation of gas is no longer a speculative hypothesis. This is a theory which assumes quantitative verification and explains qualitatively many facts observed. And still our knowledge on the nature of spiral branches is very poor. It still remains vague what processes give origin to spiral branches, why some galaxies have spirals and others have none. And shapes of spiral branches are diverse. Some cases are known when spiral branches spread outside boundaries of galaxies themselves. Such spirals arise exclusively in the region where there are two or some interacting galaxies. Only first steps have been made in the explanation of the galaxy spiral branches, and it is necessary to carry out new observations and new theoretical calculations

  2. Global extinction in spiral galaxies

    NARCIS (Netherlands)

    Tully, RB; Pierce, MJ; Saunders, W; Verheijen, MAW; Witchalls, PL

    Magnitude-limited samples of spiral galaxies drawn from the Ursa Major and Pisces Clusters are used to determine their extinction properties as a function of inclination. Imaging photometry is available for 87 spirals in the B, R, I, and K' bands. Extinction causes systematic scatter in

  3. Control systems for the dissolved oxygen concentration in condensate- and feed-water systems in nuclear power plants

    International Nuclear Information System (INIS)

    Mikajiri, Motohiko; Hosaka, Seiichi.

    1981-01-01

    Purpose: To surely prevent the generation of corrosion products and contaminations in the systems thereby decreasing the exposure dose to operators in BWR type nuclear power plants. Constitution: Dissolved oxygen concentration in condensates is measured by a dissolved oxygen concentration meter disposed to the pipeway down stream of the condensator and the measured value is sent to an injection amount control mechanism for heater drain water. The control mechanism controls the injection amount from the injection mechanism that injection heater drain water from a feed-water heater to the liquid phase in the hot wall of the condensator. Thus, heater drawin water at high dissolved oxygen is injected to the condensates in the condensator which is de-airated and reduced with dissolved oxygen concentration, to maintain the dissolved oxygen concentration at a predetermined level, whereby stable oxide films are formed to the inner surface of the pipeways to prevent the generation of corrosion products such as rusts. (Furukawa, Y.)

  4. A Twin Spiral Planar Antenna for UWB Medical Radars

    Directory of Open Access Journals (Sweden)

    Giuseppe A. Zito

    2013-01-01

    Full Text Available A planar-spiral antenna to be used in an ultrawideband (UWB radar system for heart activity monitoring is presented. The antenna, named “twin,” is constituted by two spiral dipoles in a compact structure. The reflection coefficient at the feed point of the dipoles is lower than −8 dB over the 3–12 GHz band, while the two-dipoles coupling is about −20 dB. The radiated beam is perpendicular to the plane of the spiral, so the antenna is wearable and it may be an optimal radiator for a medical UWB radar for heart rate detection. The designed antenna has been also used to check some hypotheses about the UWB radar heart activity detection mechanism. The radiation impedance variation, caused by the thorax vibrations associated with heart activity, seems to be the most likely explanation of the UWB radar operation.

  5. The perfect shape spiral stories

    CERN Document Server

    Hammer, Øyvind

    2016-01-01

    This book uses the spiral shape as a key to a multitude of strange and seemingly disparate stories about art, nature, science, mathematics, and the human endeavour. In a way, the book is itself organized as a spiral, with almost disconnected chapters circling around and closing in on the common theme. A particular strength of the book is its extremely cross-disciplinary nature - everything is fun, and everything is connected! At the same time, the author puts great emphasis on mathematical and scientific correctness, in contrast, perhaps, with some earlier books on spirals. Subjects include the mathematical properties of spirals, sea shells, sun flowers, Greek architecture, air ships, the history of mathematics, spiral galaxies, the anatomy of the human hand, the art of prehistoric Europe, Alfred Hitchcock, and spider webs, to name a few.

  6. Arguments and experience feed back for the distribution of iodine tablets in the vicinity of nuclear plants

    International Nuclear Information System (INIS)

    Le Guen, B.; Gonin, M.; Hemidy, P.Y.; Bailloeuil, C.; Van Boxsom, D.; Renier, S.; Garcier, Y.

    2001-01-01

    Arguments and experience feed back for the distribution of iodine tablets in the vicinity of nuclear power plants. In the event of a nuclear accident, radioactive isotopes of iodine including 131 I can be released into the atmosphere. In 1997, as a safety measure, the French government decided to begin the distribution of stable iodine tablets (KI) to those living in the vicinity of nuclear power plants, to avoid having to do so in an emergency. The tablets were previously stored by Electricite de France (EDF) which held them at the disposal of the government authorities. Since the tablets distributed in 1997 are approaching their use-by date, EDF has started a new distribution campaign within a ten-kilometer radius of its twenty sites with a total of 58 nuclear reactors. During the public information meetings, the discussion focused on the effectiveness of this protective measure and the nature and frequency of the possible side effects while measuring the duration of its action under the conditions in which it was administered. A bibliographic study of the kinetics of iodine in the human body has enabled the indications and the means of use to be determined. The degree of effectiveness with which incorporation of radioactive iodine into the thyroid is prevented and the onset of thyroid dysfunction depend on both external and individual factors: uptake of iodine from food, functional condition of the thyroid, age, etc. In cases of prolonged exposure to radioactive iodine over several days, consideration needs to be given to taking stable iodine a second time, to maintain maximum protection. This presentation covers the impact of the 1997 and 2000 information campaigns, the effect of making stable iodine available to the public, the extent to which the public feels involved, and the reactions of health professionals. (author)

  7. Arsia Mons Spiral Cloud

    Science.gov (United States)

    2002-01-01

    One of the benefits of the Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) Extended Mission is the opportunity to observe how the planet's weather changes during a second full martian year. This picture of Arsia Mons was taken June 19, 2001; southern spring equinox occurred the same day. Arsia Mons is a volcano nearly large enough to cover the state of New Mexico. On this particular day (the first day of Spring), the MOC wide angle cameras documented an unusual spiral-shaped cloud within the 110 km (68 mi) diameter caldera--the summit crater--of the giant volcano. Because the cloud is bright both in the red and blue images acquired by the wide angle cameras, it probably consisted mostly of fine dust grains. The cloud's spin may have been induced by winds off the inner slopes of the volcano's caldera walls resulting from the temperature differences between the walls and the caldera floor, or by a vortex as winds blew up and over the caldera. Similar spiral clouds were seen inside the caldera for several days; we don't know if this was a single cloud that persisted throughout that time or one that regenerated each afternoon. Sunlight illuminates this scene from the left/upper left.Malin Space Science Systems and the California Institute of Technology built the MOC using spare hardware from the Mars Observer mission. MSSS operates the camera from its facilities in San Diego, CA. The Jet Propulsion Laboratory's Mars Surveyor Operations Project operates the Mars Global Surveyor spacecraft with its industrial partner, Lockheed Martin Astronautics, from facilities in Pasadena, CA and Denver, CO.

  8. The Neutrons for Science Facility at SPIRAL-2

    Czech Academy of Sciences Publication Activity Database

    Ledoux, X.; Avrigeanu, M.; Avrigeanu, V.; Bém, Pavel; Fischer, U.; Majerle, Mitja; Mrázek, Jaromír; Negoita, F.; Novák, Jan; Simakov, S. P.; Šimečková, Eva

    2014-01-01

    Roč. 119, MAY (2014), s. 353-356 ISSN 0090-3752 Institutional support: RVO:61389005 Keywords : SPIRAL-2 * Neutron For Science * time-of-flight Subject RIV: BG - Nuclear , Atomic and Molecular Physics, Colliders Impact factor: 4.571, year: 2014

  9. Polarization study of spiral galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Ward-Thompson, D

    1987-01-01

    Optical polarimetry results are presented for four spiral galaxies: NGC 5194 (M51), NGC 1068, NGC 4565 and NGC 4594 (M104). M51 and NGC 1068 show spiral polarization patterns interpreted as indicating a spiral magnetic field in each case. NGC 4565 and M104 show polarizations in their dust lanes which are parallel to their galactic planes, and which are interpreted in terms of a magnetic field in the plane of each. It is hypothesized that the observed magnetic fields may be linked to galactic shocks. A discussion of the origin of galactic magnetic fields concludes that there is not evidence that necessitates a primordial magnetic field.

  10. Spiral phases of doped antiferromagnets

    International Nuclear Information System (INIS)

    Shraiman, B.I.; Siggia, E.D.

    1990-01-01

    The dipole density field describing the holls in a doped antiferromagnet is considered for law hole density in the semiclassical limit. This yields a phase in which the order parameter is planar and spirals round a fixed direction. The single spiral state breaks the continuous spin rotational symmetry and exhibits long-range order at zero temperature. In it there is a global spin direction as rotation axis. The double spiral state, in which there are two perpendicular directions, is isotropic in both spin and real space. Several results of microscopic calculations, carried out to understand the electronic states, quantum fluctuations, lattice effects and normal mode dynamics, are recapitulated. 8 refs

  11. Spiral-shaped disinfection reactors

    KAUST Repository

    Ghaffour, NorEddine; Ait-Djoudi, Fariza; Naceur, Wahib Mohamed; Soukane, Sofiane

    2015-01-01

    This disclosure includes disinfection reactors and processes for the disinfection of water. Some disinfection reactors include a body that defines an inlet, an outlet, and a spiral flow path between the inlet and the outlet, in which the body

  12. Optimising imaging parameters in experimental spiral CT

    International Nuclear Information System (INIS)

    Tiitola, M.; Vehmas, T.; Kivisaari, R.P.; Kivisaari, L.

    1997-01-01

    Purpose: This in vitro study was conducted to analyse lesion detection and relative radiation exposure in different CT techniques. Material and Methods: We used a plastic phantom (12 x 8 x 2 cm) containing holes filled with air or fluid of varying densities to simulate lesions. This was imaged with Siemens Somatom Plus S and GE High Speed Advantage units. We varied table feeds (3 and 6 mm/s in Siemens and 3 and 4.5 mm/s in GE) and increments (2 mm and 4 mm) while keeping collimation at 3 mm. The SmartScan program of GE and the reformating algorithm of Siemens were also analysed. To evaluate the different methods, the phatnom lesions were counted by 3 observers. Radiation exposures associated with each technique were also measured. Results: The images reformatted to a coronal direction were significantly inferior (p<0.01) to those in other techniques. The use of SmartScan did not influence lesion detection, nor did changes in pitch or increment. Spiral and non-spiral techniques proved to be equal. Radiation exposure was lowest when a greater pitch or the SmartScan program was used. Conclusion: Radiation exposure in CT can be limited without significantly impairing the image quality by using low-dose techniques. Reformatting to a coronal direction should be used with care as it debases the image quality. (orig.)

  13. Spiral-shaped disinfection reactors

    KAUST Repository

    Ghaffour, Noreddine

    2015-08-20

    This disclosure includes disinfection reactors and processes for the disinfection of water. Some disinfection reactors include a body that defines an inlet, an outlet, and a spiral flow path between the inlet and the outlet, in which the body is configured to receive water and a disinfectant at the inlet such that the water is exposed to the disinfectant as the water flows through the spiral flow path. Also disclosed are processes for disinfecting water in such disinfection reactors.

  14. Design of a mixing system for simulated high-level nuclear waste melter feed slurries

    International Nuclear Information System (INIS)

    Peterson, M.E.; McCarthy, D.; Muhlstein, K.D.

    1986-03-01

    The Nuclear Waste Treatment Program development program consists of coordinated nonradioactive and radioactive testing combined with numerical modeling of the process to provide a complete basis for design and operation of a vitrification facility. The radioactive demonstration tests of equipment and processes are conducted before incorporation in radioactive pilot-scale melter systems for final demonstration. The mixing system evaluation described in this report was conducted as part of the nonradioactive testing. The format of this report follows the sequence in which the design of a large-scale mixing system is determined. The initial program activity was concerned with gaining an understanding of the theoretical foundation of non-Newtonian mixing systems. Section 3 of this report describes the classical rheological models that are used to describe non-Newtonian mixing systems. Since the results obtained here are only valid for the slurries utilized, Section 4, Preparation of Simulated Hanford and West Valley Slurries, describes how the slurries were prepared. The laboratory-scale viscometric and physical property information is summarized in Section 5, Laboratory Rheological Evaluations. The bench-scale mixing evaluations conducted to define the effects of the independent variables described above on the degree of mixing achieved with each slurry are described in Section 6. Bench-scale results are scaled-up to establish engineering design requirements for the full-scale mixing system in Section 7. 24 refs., 37 figs., 44 tabs

  15. The scientific objectives of the SPIRAL 2 Project

    Energy Technology Data Exchange (ETDEWEB)

    Ackermann, D.; Adoui, L.; Angelis, G. de [GANIL, Grand Accelerateur National d' Ions Lourds, BP 55027, 14076 Caen cedex 5 (France)] (and others)

    2006-06-15

    The construction of SPIRAL 2 at GANIL will open completely new possibilities for parallel beam operation of the whole facility. The whole GANIL/SPIRAL/SPIRAL2 accelerator complex will allow for the simultaneous use of up to 5 different radioactive and stable beams. Several combinations of different beams delivered in parallel for experiments at low (keV/u), medium (few MeV/u) and high (up to 100 MeV/u) energies will be possible. Presently the GANIL/SPIRAL facility delivers about 60 weeks per year of stable and radioactive beams (up to 3 simultaneous beams). Thanks to SPIRAL 2 and the construction of a new beam line connecting the CIME cyclotron and the G1 and G2 experimental rooms the available beam time for experiments may be extended up to about 120 (up to 5 simultaneous beams) weeks per year. The chapters which follow a general introduction deal with the detailed questions to be addressed by experiments with the beams from SPIRAL2. In chapter 2 the many unanswered questions related to the structure of exotic nuclei are posed and the role of SPIRAL2 in answering them outlined. Chapter 3 deals with the dynamics and thermodynamics of asymmetric nuclear systems. Chapter 4 is concerned with questions of nuclear astrophysics which are intimately related to the properties of exotic nuclei. Chapter 5 indicates how the atomic nucleus can act as a laboratory for tests of the Standard model of Particle Physics and Chapter 6 shows how the production of intense fluxes of neutrons at SPIRAL2 make it an excellent tool to address both questions related to damage in materials of importance in nuclear installations and to the s- and r-processes of nucleosynthesis. In chapter 7 we turn to the application, of the radioactive beams from SPIRAL2 and the radionuclides produced by it, to study condensed matter and radiobiology. Finally in the eight and last chapter the reader can find an account of the historical development of the SPIRAL2 facility and this is followed by an outline of

  16. The scientific objectives of the SPIRAL 2 Project

    International Nuclear Information System (INIS)

    Ackermann, D.; Adoui, L.; Angelis, G. de

    2006-06-01

    The construction of SPIRAL 2 at GANIL will open completely new possibilities for parallel beam operation of the whole facility. The whole GANIL/SPIRAL/SPIRAL2 accelerator complex will allow for the simultaneous use of up to 5 different radioactive and stable beams. Several combinations of different beams delivered in parallel for experiments at low (keV/u), medium (few MeV/u) and high (up to 100 MeV/u) energies will be possible. Presently the GANIL/SPIRAL facility delivers about 60 weeks per year of stable and radioactive beams (up to 3 simultaneous beams). Thanks to SPIRAL 2 and the construction of a new beam line connecting the CIME cyclotron and the G1 and G2 experimental rooms the available beam time for experiments may be extended up to about 120 (up to 5 simultaneous beams) weeks per year. The chapters which follow a general introduction deal with the detailed questions to be addressed by experiments with the beams from SPIRAL2. In chapter 2 the many unanswered questions related to the structure of exotic nuclei are posed and the role of SPIRAL2 in answering them outlined. Chapter 3 deals with the dynamics and thermodynamics of asymmetric nuclear systems. Chapter 4 is concerned with questions of nuclear astrophysics which are intimately related to the properties of exotic nuclei. Chapter 5 indicates how the atomic nucleus can act as a laboratory for tests of the Standard model of Particle Physics and Chapter 6 shows how the production of intense fluxes of neutrons at SPIRAL2 make it an excellent tool to address both questions related to damage in materials of importance in nuclear installations and to the s- and r-processes of nucleosynthesis. In chapter 7 we turn to the application, of the radioactive beams from SPIRAL2 and the radionuclides produced by it, to study condensed matter and radiobiology. Finally in the eight and last chapter the reader can find an account of the historical development of the SPIRAL2 facility and this is followed by an outline of

  17. Orientation decoding: Sense in spirals?

    Science.gov (United States)

    Clifford, Colin W G; Mannion, Damien J

    2015-04-15

    The orientation of a visual stimulus can be successfully decoded from the multivariate pattern of fMRI activity in human visual cortex. Whether this capacity requires coarse-scale orientation biases is controversial. We and others have advocated the use of spiral stimuli to eliminate a potential coarse-scale bias-the radial bias toward local orientations that are collinear with the centre of gaze-and hence narrow down the potential coarse-scale biases that could contribute to orientation decoding. The usefulness of this strategy is challenged by the computational simulations of Carlson (2014), who reported the ability to successfully decode spirals of opposite sense (opening clockwise or counter-clockwise) from the pooled output of purportedly unbiased orientation filters. Here, we elaborate the mathematical relationship between spirals of opposite sense to confirm that they cannot be discriminated on the basis of the pooled output of unbiased or radially biased orientation filters. We then demonstrate that Carlson's (2014) reported decoding ability is consistent with the presence of inadvertent biases in the set of orientation filters; biases introduced by their digital implementation and unrelated to the brain's processing of orientation. These analyses demonstrate that spirals must be processed with an orientation bias other than the radial bias for successful decoding of spiral sense. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Origins of galactic spiral structures

    International Nuclear Information System (INIS)

    Piddington, J.H.

    1978-01-01

    Theories of galactic structure are reviewed briefly before comparing them with recent observations. Also reviewed is the evidence for an intergalactic magnetic field and its possible effects on gas concentrations and patterns of star creation, including spiral arms. It is then shown that normal spiral galaxies may be divided into the M51-type and others. The rare M51-type have H I gas arms coincident with unusually filamentary and luminous optical arms; they also have a companion galaxy. The remaining great majority of spirals have no well-defined gas arms and their optical arms are irregular, broader and less luminous; they have no companion galaxy. It appears that without exception the half-dozen or so galaxies whose structures appear to support the density-wave theory show one or more of the characteristics of the rare type of spiral, and that 'the three principal confirmations of the spiral-wave idea' (M51, M81, M101) have companions which may account for their arms. Toomre has rejected this idea on the grounds that his models do not agree with the observed structures. It is shown that these models are inadequate in two major respects, and when replaced by magneto-tidal models using non-uniform gas disks one might expect agreement. The original hydromagnetic model of spiral arms is now reserved for non-interacting galaxies, of which M33 might be taken as a prototype. The model predicts broad or 'massive' optical arms and no corresponding arms of neutral hydrogen, as observed. (Auth.)

  19. Three-dimensional spiral CT for neurosurgical planning.

    Science.gov (United States)

    Klein, H M; Bertalanffy, H; Mayfrank, L; Thron, A; Günther, R W; Gilsbach, J M

    1994-08-01

    We carried out 22 examinations to determine the value of three-dimensional (3D) volumetric CT (spiral CT) for planning neurosurgical procedures. All examinations were carried out on a of the first generation spiral CT. A tube model was used to investigate the influence of different parameter settings. Bolus injection of nonionic contrast medium was used when vessels or strongly enhancing tumours were to be delineated. 3D reconstructions were carried out using the integrated 3D software of the scanner. We found a table feed of 3 mm/s with a slice thickness of 2 mm and an increment of 1 mm to be suitable for most purposes. For larger regions of interest a table feed of 5 mm was the maximum which could be used without blurring of the 3D images. Particular advantages of 3D reconstructed spiral scanning were seen in the planning of approaches to the lower clivus, acquired or congenital bony abnormalities and when the relationship between vessels, tumour and bone was important.

  20. Three-dimensional spiral CT for neurosurgical planning

    International Nuclear Information System (INIS)

    Klein, H.M.; Bertalanffy, H.; Mayfrank, L.; Thron, A.; Guenther, R.W.; Gilsbach, J.M.

    1994-01-01

    We carried out 22 examinations to determine the value of three-dimensional (3D) volumetric CT (spiral CT) for planning neurosurgical procedures. All examinations were carried out on a of the first generation spiral CT. A tube model was used to investigate the influence of different parameter settings. Bolus injection of nonionic contrast medium was used when vessels or strongly enhancing tumours were to be delineated. 3D reconstructions were carried out using the integrated 3D software of the scanner. We found a table feed of 3 mm/s with a slice thickness of 2 mm and an increment of 1 mm to be suitable for most purposes. For larger regions of interest a table feed of 5 mm was the maximum which could be used without blurring of the 3D images. Particular advantages of 3D reconstructed spiral scanning were seen in the planning of approaches to the lower clivus, acquired or congenital bony abnormalities and when the relationship between vessels, tumour and bone was important. (orig.)

  1. Dark matter in spiral galaxies

    International Nuclear Information System (INIS)

    Persic, M.; Salucci, P.

    1990-01-01

    The Tully-Fisher relation is used to probe dark matter (DM) in the optical regions of spiral galaxies. By establishing it at several different isophotal radii in an appropriate sample of 58 galaxies with good B-band photometry and rotation curves, it is shown that some of its attributes (such as scatter, residuals, nonlinearity, and bias) dramatically decrease moving from the disk edge inward. This behavior challenges any mass model which assumes no DM or a luminosity-independent DM mass fraction interior to the optical radius of spiral galaxies. 58 refs

  2. Predicting the impact of feed spacer modification on biofouling by hydraulic characterization and biofouling studies in membrane fouling simulators

    KAUST Repository

    Siddiqui, Amber; Lehmann, S.; Bucs, Szilard; Fresquet, M.; Fel, L.; Prest, E.I.E.C.; Ogier, J.; Schellenberg, C.; van Loosdrecht, M.C.M.; Kruithof, J.C.; Vrouwenvelder, Johannes S.

    2016-01-01

    Feed spacers are an essential part of spiral-wound reverse osmosis (RO) and nanofiltration (NF) membrane modules. Geometric modification of feed spacers is a potential option to reduce the impact of biofouling on the performance of membrane systems

  3. Quasicrystallography on the spiral of Archimedes

    International Nuclear Information System (INIS)

    Bursill, L.A.

    1990-01-01

    The concept of a spiral lattice is discussed. Some examples of known mineral structures, namely clino asbestos, halloysite and cylindrite, are then interpreted in terms of this structural principle. An example of a synthetic sulphide catalyst spiral structure having atomic dimensions is also described. All of these inorganic spiral structures are based on the sprial of Archimedes. The principles for a new type of crystallography, based on the Archimedian spiral, are then presented. 45 refs., 8 figs

  4. Laser milling of martensitic stainless steels using spiral trajectories

    Science.gov (United States)

    Romoli, L.; Tantussi, F.; Fuso, F.

    2017-04-01

    A laser beam with sub-picosecond pulse duration was driven in spiral trajectories to perform micro-milling of martensitic stainless steel. The geometry of the machined micro-grooves channels was investigated by a specifically conceived Scanning Probe Microscopy instrument and linked to laser parameters by using an experimental approach combining the beam energy distribution profile and the absorption phenomena in the material. Preliminary analysis shows that, despite the numerous parameters involved in the process, layer removal obtained by spiral trajectories, varying the radial overlap, allows for a controllable depth of cut combined to a flattening effect of surface roughness. Combining the developed machining strategy to a feed motion of the work stage, could represent a method to obtain three-dimensional structures with a resolution of few microns, with an areal roughness Sa below 100 nm.

  5. A study of spiral galaxies

    International Nuclear Information System (INIS)

    Wevers, B.M.H.R.

    1984-01-01

    Attempts have been made to look for possible correlations between integral properties of spiral galaxies as a function of morphological type. To investigate this problem, one needs the detailed distribution of both the gaseous and the stellar components for a well-defined sample of spiral galaxies. A sample of about 20 spiral galaxies was therefore defined; these galaxies were observed in the 21 cm neutral hydrogen line with the Westerbork Synthesis Radio Telescope and in three broad-band optical colours with the 48-inch Palomar Smidt Telescope. First, an atlas of the combined radio and optical observations of 16 nearby northern-hemisphere spiral galaxies is presented. Luminosity profiles are discussed and the scale lengths of the exponential disks and extrapolated central surface brightnesses are derived, as well as radial color distributions; azimuthal surface brightness distributions and rotation curves. Possible correlations with optical features are investigated. It is found that 20 to 50 per cent of the total mass is in the disk. (Auth.)

  6. The Spiral Pattern During Development*

    African Journals Online (AJOL)

    1971-08-07

    Aug 7, 1971 ... which are destined to become the limb areas bud out laterally. Fig. 8. The early cells, which are destined to develop into the upper and the lower limbs, after lateral budding has occurred. Fig. 11 demonstrates the human embryo of about 5 mm. CR length and age of about 32 days. The spiral pattern is.

  7. TESTING THEORIES IN BARRED-SPIRAL GALAXIES

    International Nuclear Information System (INIS)

    Martínez-García, Eric E.

    2012-01-01

    According to one version of the recently proposed 'manifold' theory that explains the origin of spirals and rings in relation to chaotic orbits, galaxies with stronger bars should have a higher spiral arms pitch angle when compared to galaxies with weaker bars. A subsample of barred-spiral galaxies in the Ohio State University Bright Galaxy Survey was used to analyze the spiral arms pitch angle. These were compared with bar strengths taken from the literature. It was found that the galaxies in which the spiral arms maintain a logarithmic shape for more than 70° seem to corroborate the predicted trend.

  8. Recommendation concerning maximum permissible radioactivity in animal feeds in case of a nuclear accident or other type of radiological emergency

    International Nuclear Information System (INIS)

    1988-01-01

    The SSK in its advice to the Federal Ministry of the Environment, Nature Conservation and Reactor Safety recommends to abstain from determining maximum permissible values to be applied in such cases of emergency. If, however, official limits are to be given, the following should be considered: (1) Distinction has to be made between animal feeds not subject to restrictive application with regard to time, animal species, or food chain (meat, milk, eggs), and those animal feeds whose application is subject to restrictions defined. (2) Maximum permissible activity data for animal feeds for restricted use should be ten times the value determined for non-restricted feeds. As to consultations within the EC on supplemtary tables to EC Directive No. 3954/87, the SSK presented its proposals in tables, using transfer factors from the literature concerning assessment of maximum permissible chronic intake of Cs-137, I-131, Sr-90, Pu-239, Am-241 by productive livestock (bovine, goats, sheep, swine, poultry). (HP) [de

  9. Interaction of multiarmed spirals in bistable media.

    Science.gov (United States)

    He, Ya-feng; Ai, Bao-quan; Liu, Fu-cheng

    2013-05-01

    We study the interaction of both dense and sparse multiarmed spirals in bistable media modeled by equations of the FitzHugh-Nagumo type. A dense one-armed spiral is characterized by its fixed tip. For dense multiarmed spirals, when the initial distance between tips is less than a critical value, the arms collide, connect, and disconnect continuously as the spirals rotate. The continuous reconstruction between the front and the back drives the tips to corotate along a rough circle and to meander zigzaggedly. The rotation frequency of tip, the frequency of zigzagged displacement, the frequency of spiral, the oscillation frequency of media, and the number of arms satisfy certain relations as long as the control parameters of the model are fixed. When the initial distance between tips is larger than the critical value, the behaviors of individual arms within either dense or sparse multiarmed spirals are identical to that of corresponding one-armed spirals.

  10. Low surface brightness spiral galaxies

    International Nuclear Information System (INIS)

    Romanishin, W.

    1980-01-01

    This dissertation presents an observational overview of a sample of low surface brightness (LSB) spiral galaxies. The sample galaxies were chosen to have low surface brightness disks and indications of spiral structure visible on the Palomar Sky Survey. They are of sufficient angular size (diameter > 2.5 arcmin), to allow detailed surface photometry using Mayall 4-m prime focus plates. The major findings of this dissertation are: (1) The average disk central surface brightness of the LSB galaxies is 22.88 magnitude/arcsec 2 in the B passband. (2) From broadband color measurements of the old stellar population, we infer a low average stellar metallicity, on the order of 1/5 solar. (3) The spectra and optical colors of the HII regions in the LSB galaxies indicate a lack of hot ionizing stars compared to HII regions in other late-type galaxies. (4) The average surface mass density, measured within the radius containing half the total mass, is less than half that of a sample of normal late-type spirals. (5) The average LSB galaxy neutral hydrogen mass to blue luminosity ratio is about 0.6, significantly higher than in a sample of normal late-type galaxies. (6) We find no conclusive evidence of an abnormal mass-to-light ratio in the LSB galaxies. (7) Some of the LSB galaxies exhibit well-developed density wave patterns. (8) A very crude calculation shows the lower metallicity of the LSB galaxies compared with normal late-type spirals might be explained simply by the deficiency of massive stars in the LSB galaxies

  11. Dynamical models of spiral galaxies

    International Nuclear Information System (INIS)

    Grosbol, P.

    1990-01-01

    The effects of changing the basic parameters of rotation curve steepness, amount of bulge, and pitch angle of the imposed spiral pattern in the galactic model of Contoupolos and Grosbel (1986) are investigated. The general conclusions of the model are confirmed and shown to be insensitive to the specific choice of parameters for the galactic potential. The exact amplitude at which the nonlinear effects at the 4:1 resonance become important do, however, depend on the model

  12. Multiple mechanisms quench passive spiral galaxies

    Science.gov (United States)

    Fraser-McKelvie, Amelia; Brown, Michael J. I.; Pimbblet, Kevin; Dolley, Tim; Bonne, Nicolas J.

    2018-02-01

    We examine the properties of a sample of 35 nearby passive spiral galaxies in order to determine their dominant quenching mechanism(s). All five low-mass (M⋆ environments. We postulate that cluster-scale gas stripping and heating mechanisms operating only in rich clusters are required to quench low-mass passive spirals, and ram-pressure stripping and strangulation are obvious candidates. For higher mass passive spirals, while trends are present, the story is less clear. The passive spiral bar fraction is high: 74 ± 15 per cent, compared with 36 ± 5 per cent for a mass, redshift and T-type matched comparison sample of star-forming spiral galaxies. The high mass passive spirals occur mostly, but not exclusively, in groups, and can be central or satellite galaxies. The passive spiral group fraction of 74 ± 15 per cent is similar to that of the comparison sample of star-forming galaxies at 61 ± 7 per cent. We find evidence for both quenching via internal structure and environment in our passive spiral sample, though some galaxies have evidence of neither. From this, we conclude no one mechanism is responsible for quenching star formation in passive spiral galaxies - rather, a mixture of mechanisms is required to produce the passive spiral distribution we see today.

  13. Chronic Ethanol Feeding Modulates Inflammatory Mediators, Activation of Nuclear Factor-κB, and Responsiveness to Endotoxin in Murine Kupffer Cells and Circulating Leukocytes

    Directory of Open Access Journals (Sweden)

    Miriam Maraslioglu

    2014-01-01

    Full Text Available Chronic ethanol abuse is known to increase susceptibility to infections after injury, in part, by modification of macrophage function. Several intracellular signalling mechanisms are involved in the initiation of inflammatory responses, including the nuclear factor-κB (NF-κB pathway. In this study, we investigated the systemic and hepatic effect of chronic ethanol feeding on in vivo activation of NF-κB in NF-κBEGFP reporter gene mice. Specifically, the study focused on Kupffer cell proinflammatory cytokines IL-6 and TNF-α and activation of NF-κB after chronic ethanol feeding followed by in vitro stimulation with lipopolysaccharide (LPS. We found that chronic ethanol upregulated NF-κB activation and increased hepatic and systemic proinflammatory cytokine levels. Similarly, LPS-stimulated IL-1β release from whole blood was significantly enhanced in ethanol-fed mice. However, LPS significantly increased IL-6 and TNF-α levels. These results demonstrate that chronic ethanol feeding can improve the responsiveness of macrophage LPS-stimulated IL-6 and TNF-α production and indicate that this effect may result from ethanol-induced alterations in intracellular signalling through NF-κB. Furthermore, LPS and TNF-α stimulated the gene expression of different inflammatory mediators, in part, in a NF-κB-dependent manner.

  14. Collective excitations in itinerant spiral magnets

    International Nuclear Information System (INIS)

    Kampf, A.P.

    1996-01-01

    We investigate the coupled charge and spin collective excitations in the spiral phases of the two-dimensional Hubbard model using a generalized random-phase approximation. Already for small doping the spin-wave excitations are strongly renormalized due to low-energy particle-hole excitations. Besides the three Goldstone modes of the spiral state the dynamical susceptibility reveals an extra zero mode for low doping and strong coupling values signaling an intrinsic instability of the homogeneous spiral state. In addition, near-zero modes are found in the vicinity of the spiral pitch wave number for out-of-plane spin fluctuations. Their origin is found to be the near degeneracy with staggered noncoplanar spiral states which, however, are not the lowest energy Hartree-Fock solutions among the homogeneous spiral states. copyright 1996 The American Physical Society

  15. Feeding times of high spin states in sup(152,154)Dy: Probes of nuclear structure above the yrast line

    International Nuclear Information System (INIS)

    Azgui, F.; Emling, H.; Grosse, E.; Michel, C.; Simon, R.S.; Spreng, W.; Wollersheim, H.J.; Khoo, T.L.; Chowdhury, P.; Frekers, D.; Janssens, R.V.F.; Pakkanen, A.; Daly, P.J.; Kortelahti, M.; Schwalm, D.; Seiler-Clark, G.

    1985-01-01

    Measurements of feeding times of high spin yrast states up to spin 30 (h/2π) in 154 Dy and 36 (h/2π) in 152 Dy were utilized to obtain information about possible spin dependent shape changes. The reactions 25 Mg ( 134 Xe, 5n), 124 Sn ( 34 S, 4n) and 25 Mg ( 132 Xe, 5n), 122 Sn ( 34 S, 4n) were used to populate the high spin states in 154 Dy and 152 Dy, respectively. Feeding times as well as lifetimes were determined with the recoil distance technique. In 152 Dy only long feeding times (>=10 ps) could be identified, indicating that the aligned-particle yrast states are fed through configurations of similar character, with little direct population from collective cascades in the continuum region. In 154 Dy discrete states with I<=30 (h/2π) have lifetimes which are characteristically collective, whereas the preyrast cascades exhibit both fast (< or approx.1 ps) and slow (proportional10 ps) feeding components. The latter imply a change with increasing spin from collective to aligned-particle character, probably associated with a prolate to oblate shape transition. (orig.)

  16. Management options for food production systems affected by a nuclear accident. Task 3: diversion of crops grown for human consumption to animal feed

    International Nuclear Information System (INIS)

    Brown, J.; Wilkins, B.T.; Nisbet, A.F.

    2002-01-01

    This report forms part of a series describing a study to evaluate selected options for the management of food production systems affected by a nuclear accident. This report considers the scope for the redirection of contaminated foods grown for human consumption to animal feeds and addresses whether crops grown for human consumption can be used as animal feeds for animal production systems; what the likely impact on contamination levels in animal products is; whether amounts of waste food could be reduced in the event of a nuclear accident; and whether the option is acceptable to the farming industry, retail trade and consumers. The study identified that foods intended for human consumption can be used as animal feeds for beef cattle and sheep and, to a limited extent, for breeding sows but it is essential that a suitable nutritional balance is maintained. The scope to provide suitable alternative diets is, however, limited and is dependent upon the time of year at which the deposition occurs. If crops were contaminated at the relevant CFIL, not all of the alternative diets considered would result in animal products that were below the corresponding CFIL value, thus limiting any benefit in implementing the option. Except possibly in the most extreme of circumstances, this management option would not be considered acceptable by consumers or by the retail trade and farmers would only implement such a measure if there was a suitable market for the resultant produce. This work was undertaken under the Environmental Assessments Department and Emergency Response Group's Quality Management System, which has been approved by Lloyd's Register Quality Assurance to the Quality Management Standards ISO 9001:2000 and TickIT Guide Issue 5, certificate number 956546. (author)

  17. Analisa Kekuatan Spiral Bevel Gear Dengan Variasi Sudut Spiral Menggunakan Metode Elemen Hingga

    OpenAIRE

    Deta Rachmat Andika; Agus Sigit Pramono

    2017-01-01

    Seiring perkembangan zaman,  teknologi roda gigi dituntut untuk mampu mentransmisikan daya yang besar dengan efisiensi yang besar pula. Pada jenis intersecting shaft gear, tipe roda gigi payung spiral (spiral bevel gear)  merupakan perkembangan dari roda gigi payung bergigi lurus (straight bevel gear). Kelebihan dari spiral bevel gear antara  lain adalah kemampuan transmisi daya dan efisiensi yang lebih besar pada geometri yang sama serta tidak terlalu berisik. Akan tetapi spiral bevel gear j...

  18. A comparison of ROChem reverse osmosis and spiral wound reverse osmosis membrane modules

    International Nuclear Information System (INIS)

    Siler, J.L.

    1992-01-01

    Testing of the ROChem Disc Tube reg-sign reverse osmosis (RO) module's performance on biologically active feed waters has been completed. Both the ROChem module (using Filmtec standard-rejection seawater membranes) and the Filmtec spiral-wound membrane module (using Filmtec high-rejection seawater membranes) were tested with stimulant solutions containing typical bacteria and metal hydroxide levels found in the F/H Effluent Treatment Facility (ETF) influent. Results indicate that the ROChem module gave superior performance over the spiral-wound module. Water flux losses were reduced by over 30% for water recoveries above 40%

  19. Solvable model of spiral wave chimeras.

    Science.gov (United States)

    Martens, Erik A; Laing, Carlo R; Strogatz, Steven H

    2010-01-29

    Spiral waves are ubiquitous in two-dimensional systems of chemical or biological oscillators coupled locally by diffusion. At the center of such spirals is a phase singularity, a topological defect where the oscillator amplitude drops to zero. But if the coupling is nonlocal, a new kind of spiral can occur, with a circular core consisting of desynchronized oscillators running at full amplitude. Here, we provide the first analytical description of such a spiral wave chimera and use perturbation theory to calculate its rotation speed and the size of its incoherent core.

  20. Evolutionary Acquisition and Spiral Development Tutorial

    National Research Council Canada - National Science Library

    Hantos, P

    2005-01-01

    .... NSS Acquisition Policy 03-01 provided some space-oriented customization and, similarly to the original DOD directives, also positioned Evolutionary Acquisition and Spiral Development as preferred...

  1. Solvable Model of Spiral Wave Chimeras

    DEFF Research Database (Denmark)

    Martens, Erik Andreas; Laing, Carlo R.; Strogatz, Steven H.

    2010-01-01

    Spiral waves are ubiquitous in two-dimensional systems of chemical or biological oscillators coupled locally by diffusion. At the center of such spirals is a phase singularity, a topological defect where the oscillator amplitude drops to zero. But if the coupling is nonlocal, a new kind of spiral...... can occur, with a circular core consisting of desynchronized oscillators running at full amplitude. Here, we provide the first analytical description of such a spiral wave chimera and use perturbation theory to calculate its rotation speed and the size of its incoherent core....

  2. An experiment with spiral wound reverse osmosis membranes for the Desalination of seawater

    Directory of Open Access Journals (Sweden)

    M.N.A. Hawlader Hawlader,

    2017-11-01

    Full Text Available In the research, the performance characteristics of Reverse Osmosis (RO Spiral Wound (SW membrane are evaluated. The effects of feed water concentration, temperature, pressure and flow rate on the performance of this membrane are investigated. The product recovery ( of SW membrane is found to increase with feed water temperature and pressure, but decrease with increasing feed water concentration and flow rate. Salt passage (SP increases with feed water temperature and concentration, but decreases with increasing feed pressure and flow rate. Under the tested feed water conditions, of SW varies from 6% - 18% and permeate salinity is approximately 130ppm. In addition, validity of the Complete Mixing Model is verified and successfully extended to the derivation of water and salt transport parameters of SW membrane. Plots of I/SR' versus l/Jw display linear relationships, as predicted in the model.

  3. Economic and safety aspects of using moderator heat for feed water heating in a nuclear power plant

    International Nuclear Information System (INIS)

    Patwegar, I.A.; Dutta, Anu; Chaki, S.K.; Venkat Raj, V.

    2002-01-01

    Full text: In the proposed advanced heavy water reactor (AHWR), coolant and moderator are separated by the coolant channel. The coolant absorbs most of the fission heat produced in the reactor core. However, the moderator absorbs about 5 to 6 % of the fission heat. In a reactor producing 750 MW(th) power, this moderator heat is about 40 MW. In the present Indian PHWR (pressurized heavy water reactor) systems, this moderator heat is lost to a sink through the moderator heat exchangers, which are cooled by process water. This paper presents the results of the steam cycle analysis carried out for AHWR using moderator heat exchangers as part of the feed heating system. The present study is an attempt to determine the gain in electrical output (MW) if moderator heat is utilized for feed water heating. The operational and safety aspects of using moderator heat are also discussed in the paper

  4. The rotation of spiral galaxies.

    Science.gov (United States)

    Rubin, V C

    1983-06-24

    There is accumulating evidence that as much as 90 percent of the mass of the universe is nonluminous and is clumped, halo-like, around individual galaxies. The gravitational force of this dark matter is presumed to be responsible for the high rotational velocities of stars and gas in the disks of spiral galaxie. At present, the form of the dark matter is unknown. Possible candidates span a range in mass of 10(70), from non-zero-mass neutrinos to massive black holes.

  5. Spiral density waves in M81. I. Stellar spiral density waves

    International Nuclear Information System (INIS)

    Feng, Chien-Chang; Lin, Lien-Hsuan; Wang, Hsiang-Hsu; Taam, Ronald E.

    2014-01-01

    Aside from the grand-design stellar spirals appearing in the disk of M81, a pair of stellar spiral arms situated well inside the bright bulge of M81 has been recently discovered by Kendall et al. The seemingly unrelated pairs of spirals pose a challenge to the theory of spiral density waves. To address this problem, we have constructed a three-component model for M81, including the contributions from a stellar disk, a bulge, and a dark matter halo subject to observational constraints. Given this basic state for M81, a modal approach is applied to search for the discrete unstable spiral modes that may provide an understanding for the existence of both spiral arms. It is found that the apparently separated inner and outer spirals can be interpreted as a single trailing spiral mode. In particular, these spirals share the same pattern speed 25.5 km s –1 kpc –1 with a corotation radius of 9.03 kpc. In addition to the good agreement between the calculated and the observed spiral pattern, the variation of the spiral amplitude can also be naturally reproduced.

  6. QS Spiral: Visualizing Periodic Quantified Self Data

    DEFF Research Database (Denmark)

    Larsen, Jakob Eg; Cuttone, Andrea; Jørgensen, Sune Lehmann

    2013-01-01

    In this paper we propose an interactive visualization technique QS Spiral that aims to capture the periodic properties of quantified self data and let the user explore those recurring patterns. The approach is based on time-series data visualized as a spiral structure. The interactivity includes ...

  7. Spiral modes in cold cylindrical systems

    International Nuclear Information System (INIS)

    Robe, H.

    1975-01-01

    The linearized hydrodynamical equations governing the non-axisymmetric free modes of oscillation of cold cylindrical stellar systems are separated in cylindrical coordinates and solved numerically for two models. Short-wavelength unstable modes corresponding to tight spirals do not exist; but there exists an unstable growing mode which has the form of trailing spirals which are quite open. (orig.) [de

  8. Spiral groove seal. [for rotating shaft

    Science.gov (United States)

    Ludwig, L. P.; Strom, T. N. (Inventor)

    1974-01-01

    Mating flat surfaces inhibit leakage of a fluid around a stationary shaft. A spiral groove produces a pumping action toward the fluid when the shaft rotates. This prevents leakage while a generated hydraulic lifting force separates the mating surfaces to minimize wear. Provision is made for placing these spiral grooves in communication with the fluid to accelerate the generation of the hydraulic lifting force.

  9. ANGULAR-MOMENTUM IN BINARY SPIRAL GALAXIES

    NARCIS (Netherlands)

    OOSTERLOO, T

    In order to investigate the relative orientations of spiral galaxies in pairs, the distribution of the angle between the spin-vectors for a new sample of 40 binary spiral galaxies is determined. From this distribution it is found, contrary to an earlier result obtained by Helou (1984), that there is

  10. Colours and morphology of spiral galaxies

    International Nuclear Information System (INIS)

    Wyse, R.F.G.

    1981-01-01

    Tinsley has proposed that late-type spirals have relatively more non-luminous material than early-type spirals. A re-examination of the data indicates that this proposal is equally consistent with dark matter being more dominant in barred galaxies than in unbarred galaxies. Neither conclusion can be firm, since the dataset is far from ideal. (author)

  11. Scaling effects in spiral capsule robots.

    Science.gov (United States)

    Liang, Liang; Hu, Rong; Chen, Bai; Tang, Yong; Xu, Yan

    2017-04-01

    Spiral capsule robots can be applied to human gastrointestinal tracts and blood vessels. Because of significant variations in the sizes of the inner diameters of the intestines as well as blood vessels, this research has been unable to meet the requirements for medical applications. By applying the fluid dynamic equations, using the computational fluid dynamics method, to a robot axial length ranging from 10 -5 to 10 -2  m, the operational performance indicators (axial driving force, load torque, and maximum fluid pressure on the pipe wall) of the spiral capsule robot and the fluid turbulent intensity around the robot spiral surfaces was numerically calculated in a straight rigid pipe filled with fluid. The reasonableness and validity of the calculation method adopted in this study were verified by the consistency of the calculated values by the computational fluid dynamics method and the experimental values from a relevant literature. The results show that the greater the fluid turbulent intensity, the greater the impact of the fluid turbulence on the driving performance of the spiral capsule robot and the higher the energy consumption of the robot. For the same level of size of the robot, the axial driving force, the load torque, and the maximum fluid pressure on the pipe wall of the outer spiral robot were larger than those of the inner spiral robot. For different requirements of the operating environment, we can choose a certain kind of spiral capsule robot. This study provides a theoretical foundation for spiral capsule robots.

  12. Improved reconstruction for IDEAL spiral CSI

    DEFF Research Database (Denmark)

    Hansen, Rie Beck; Mariager, Christian; Laustsen, Christoffer

    2017-01-01

    In this study we demonstrate how reconstruction for IDEAL spiral CSI (spectroscopic imaging scheme developed for hyperpolarized dynamic metabolic MR imaging) can be improved by using regularization with a sparsity constraint. By exploiting sparsity of the spectral domain, IDEAL spiral CSI can...

  13. STAR FORMATION IN PARTIALLY GAS-DEPLETED SPIRAL GALAXIES

    International Nuclear Information System (INIS)

    Rose, James A.; Miner, Jesse; Levy, Lorenza; Robertson, Paul

    2010-01-01

    Broadband B and R and Hα images have been obtained with the 4.1 m SOAR telescope atop Cerro Pachon, Chile, for 29 spiral galaxies in the Pegasus I galaxy cluster and for 18 spirals in non-cluster environments. Pegasus I is a spiral-rich cluster with a low-density intracluster medium and a low galaxy velocity dispersion. When combined with neutral hydrogen (H I) data obtained with the Arecibo 305 m radio telescope, acquired by Levy et al. (2007) and by Springob et al. (2005b), we study the star formation rates in disk galaxies as a function of their H I deficiency. To quantify H I deficiency, we use the usual logarithmic deficiency parameter, DEF. The specific star formation rate (SSFR) is quantified by the logarithmic flux ratio of Hα flux to R-band flux, and thus roughly characterizes the logarithmic SFR per unit stellar mass. We find a clear correlation between the global SFR per unit stellar mass and DEF, such that the SFR is lower in more H I-deficient galaxies. This correlation appears to extend from the most gas-rich to the most gas-poor galaxies. We also find a correlation between the central SFR per unit mass relative to the global values, in the sense that the more H I-deficient galaxies have a higher central SFR per unit mass relative to their global SFR values than do gas-rich galaxies. In fact, approximately half of the H I-depleted galaxies have highly elevated SSFRs in their central regions, indicative of a transient evolutionary state. In addition, we find a correlation between gas depletion and the size of the Hα disk (relative to the R-band disk); H I-poor galaxies have truncated disks. Moreover, aside from the elevated central SSFR in many gas-poor spirals, the SSFR is otherwise lower in the Hα disks of gas-poor galaxies than in gas-rich spirals. Thus, both disk truncation and lowered SSFR levels within the star-forming part of the disks (aside from the enhanced nuclear SSFR) correlate with H I deficiency, and both phenomena are found to

  14. Mechanically Reconfigurable Single-Arm Spiral Antenna Array for Generation of Broadband Circularly Polarized Orbital Angular Momentum Vortex Waves.

    Science.gov (United States)

    Li, Long; Zhou, Xiaoxiao

    2018-03-23

    In this paper, a mechanically reconfigurable circular array with single-arm spiral antennas (SASAs) is designed, fabricated, and experimentally demonstrated to generate broadband circularly polarized orbital angular momentum (OAM) vortex waves in radio frequency domain. With the symmetrical and broadband properties of single-arm spiral antennas, the vortex waves with different OAM modes can be mechanically reconfigurable generated in a wide band from 3.4 GHz to 4.7 GHz. The prototype of the circular array is proposed, conducted, and fabricated to validate the theoretical analysis. The simulated and experimental results verify that different OAM modes can be effectively generated by rotating the spiral arms of single-arm spiral antennas with corresponding degrees, which greatly simplify the feeding network. The proposed method paves a reconfigurable way to generate multiple OAM vortex waves with spin angular momentum (SAM) in radio and microwave satellite communication applications.

  15. Nuclear safety of extended sludge processing on tank 42 and 51 sludge (DWPF sludge feed batch one)

    International Nuclear Information System (INIS)

    Clemons, J.S.

    1993-01-01

    The sludge in tanks 42 and 51 is to be washed with inhibited water to remove soluble salts and combined in tank 51 in preparation for feed to DWPF. Since these tanks contain uranium and plutonium, the process of washing must be evaluated to ensure subcriticality is maintained. When the sludge is washed, inhibited water is added, the tank contents are slurried and allowed to settle. The sludge wash water is then decanted to the evaporator feed tank where it is fed to the evaporator to reduce the volume. The resulting evaporator concentrate is sent to a salt tank where it cools and forms crystallized salt cake. This salt cake will later be dissolved, processed in ITP and sent to Z-Area. This report evaluates the supernate and sludge during washing, the impact on the evaporator during concentration of decanted wash water, and the salt tank where the concentrated supernate is deposited. The conclusions generated in this report are specific to the sludge currently contained in tanks 42 and 51

  16. Radioactivity leakage accidents in the feed water heater and the general drainage of the Tsuruga Nuclear Power Station of Japan Atomic Power Company

    International Nuclear Information System (INIS)

    1981-01-01

    In the Tsuruga Nuclear Power Station, JAPC on the shell on extracted-steam side in B system of No. 4 feed water heater, drain water leakage occurred twice in January, 1981. Then, 61 pCi/g cobalt-60 and 10 pCi/g manganese-54 were detected in soil at the outlet of general drainage on April 17, 1981. The cause was found to be the overflow of radioactive liquid waste in the filter sludge storage tank on March 8, the same year. On-the-spot inspection was subsequently made by the Agency of Natural Resources and Energy on both leakage accidents. The results of inspections are described as follows: the course of leakage accident, and also the measures taken to JAPC in connection with the two leakage accidents. (J.P.N.)

  17. A neutron beam facility at Spiral-2

    Energy Technology Data Exchange (ETDEWEB)

    Ledoux, X.; Bauge, E.; Belier, G.; Ethvignot, T.; Taieb, J.; Varignon, C. [CEA Bruyeres-le-Chatel, DIF, 91 (France); Andriamonje, S.; Dore, D.; Dupont, E.; Gunsing, F.; Ridikas, D.; Takibayev, A. [CEA Saclay, DSM/IRFU/SPhN, 91 - Gif-sur-Yvette (France); Blideanu, V. [CEA Saclay, DSM/IRFU/Senac, 91 - Gif-sur-Yvette (France); Aiche, M.; Barreau, G.; Czajkowski, S.; Jurado, B. [Centre d' Etudes Nucleaires de Bordeaux Gradignan, 33 (France); Ban, G.; Lecolley, F.R.; Lecolley, J.F.; Lecouey, J.L.; Marie, N.; Steckmeyer, J.C. [LPC, 14 - Caen (France); Dessagne, P.; Kerveno, M.; Rudolf, G. [IPHC, 57 - Strasbourg (France); Bem, P.; Mrazek, J.; Novak, J. [NPI, Rez (Czech Republic); Blomgren, J.; Pomp, S. [Uppsala Univ., Dept. of Physics and Astronomy (Sweden); Fischer, U.; Herber, S.; Simakov, S.P. [FZK, Karlsruhe (Germany); Jacquot, B.; Rejmund, F. [GANIL, 14 - Caen (France); Avrigeanu, M.; Avrigeanu, V.; Borcea, C.; Negoita, F.; Petrascu, M. [NIPNE, Bucharest (Romania); Oberstedt, S.; Plompen, A.J.M. [JRC/IRMM, Geel (Belgium); Shcherbakov, O. [PNPI, Gatchina (Russian Federation); Fallot, M. [Subatech, 44 - Nantes (France); Smith, A.G.; Tsekhanovich, I. [Manchester Univ., Dept. of Physics and Astronomy (United Kingdom); Serot, O.; Sublet, J.C. [CEA Cadarache, DEN, 13 - Saint-Paul-lez-Durance (France); Perrot, L.; Tassan-Got, L. [IPNO, 91 - Orsay (France); Caillaud, T.; Giot, L.; Landoas, O.; Ramillon, J.M.; Rosse, B.; Thfoin, I. [CIMAP, 14 - Caen (France); Balanzat, E.; Bouffard, S.; Guillous, S.; Oberstedt, A. [Orebro Univ. (Sweden)

    2009-07-01

    The future Spiral-2 facility, dedicated to the production of intense radioactive ion beams, is based on a high-power superconducting driver Linac, delivering high-intensity deuteron, proton and heavy ion beams. These beams are particularly well suited to the production of neutrons in the 100 keV- 40 MeV energy range, a facility called 'Neutrons for Science' (NFS) will be built in the LINAG Experimental Area (LEA). NFS, operational in 2012, will be composed of a pulsed neutron beam for in-flight measurements and irradiation stations for activation measurements and material studies. Thick C and Be converters and a deuteron beam will produce an intense continuous neutron spectrum, while a thin {sup 7}Li target and a proton beam allow to generate quasi-mono-energetic neutrons. In the present work we show how the primary ion beam characteristics (energy, time resolution and intensity) are adequate to create a neutron time-of-flight facility delivering intense neutron fluxes in the 100 keV-40 MeV energy range. Irradiation stations for neutron, proton and deuteron reactions will also allow to perform cross-section measurements by means of the activation technique. Light-ion beams will be used to study radiation damage effects on materials for the nuclear industry. (authors)

  18. A Mock UF6 Feed and Withdrawal System for Testing Safeguards Monitoring Systems and Strategies Intended for Nuclear Fuel Enrichment and Processing Plants

    International Nuclear Information System (INIS)

    Krichinsky, Alan M.; Bates, Bruce E.; Chesser, Joel B.; Koo, Sinsze; Whitaker, J. Michael

    2009-01-01

    This report describes an engineering-scale, mock UF6 feed and withdrawal (F and W) system, its operation, and its intended uses. This system has been assembled to provide a test bed for evaluating and demonstrating new methodologies that can be used in remote, unattended, continuous monitoring of nuclear material process operations. These measures are being investigated to provide independent inspectors improved assurance that operations are being conducted within declared parameters, and to increase the overall effectiveness of safeguarding nuclear material. Testing applicable technologies on a mock F and W system, which uses water as a surrogate for UF6, enables thorough and cost-effective investigation of hardware, software, and operational strategies before their direct installation in an industrial nuclear material processing environment. Electronic scales used for continuous load-cell monitoring also are described as part of the basic mock F and W system description. Continuous monitoring components on the mock F and W system are linked to a data aggregation computer by a local network, which also is depicted. Data collection and storage systems are described only briefly in this report. The mock UF 6 F and W system is economical to operate. It uses a simple process involving only a surge tank between feed tanks and product and withdrawal (or waste) tanks. The system uses water as the transfer fluid, thereby avoiding the use of hazardous UF 6 . The system is not tethered to an operating industrial process involving nuclear materials, thereby allowing scenarios (e.g., material diversion) that cannot be conducted otherwise. These features facilitate conducting experiments that yield meaningful results with a minimum of expenditure and quick turnaround time. Technologies demonstrated on the engineering-scale system lead to field trials (described briefly in this report) for determining implementation issues and performance of the monitoring technologies under

  19. Mass of the spirals galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Maupome, L; Pismis, P; Aguilar, L [Universidad Nacional Autonoma de Mexico, Mexico City. Inst. de Astronomia

    1981-01-01

    In an earlier paper we have found that the total mass of galaxies-especially of the spirals-based on values published until 1975, decreased as the Hubble type varied from Sa through Sc and Irregulars. It was also pointed out that masses determined from the hydrogen 21-cm line were higher than the optically determined masses. To investigate the cause of these tendencies we have estimated the masses using an analytic rotation curve of Brandt adjusted to the optical observations in order to include all the mass of a galaxy up to the last observed point. Although the masses computed in this manner were found to be larger, as expected, the decrease of mass with Hubble type found earlier is confirmed. However, there is a discrepancy in the earlier types (Sa, Sab) in that their radio-masses are smaller than the optically determined ones. At present, the cause of this is not clear.

  20. Feeding Tubes

    Science.gov (United States)

    ... feeding therapies have been exhausted. Please review product brand and method of placement carefully with your physician ... Total Parenteral Nutrition. Resources: Oley Foundation Feeding Tube Awareness Foundation Children’s Medical Nutrition Alliance APFED’s Educational Webinar ...

  1. IMRT delivery verification using a spiral phantom

    International Nuclear Information System (INIS)

    Richardson, Susan L.; Tome, Wolfgang A.; Orton, Nigel P.; McNutt, Todd R.; Paliwal, Bhudatt R.

    2003-01-01

    In this paper we report on the testing and verification of a system for IMRT delivery quality assurance that uses a cylindrical solid water phantom with a spiral trajectory for radiographic film placement. This spiral film technique provides more complete dosimetric verification of the entire IMRT treatment than perpendicular film methods, since it samples a three-dimensional dose subspace rather than using measurements at only one or two depths. As an example, the complete analysis of the predicted and measured spiral films is described for an intracranial IMRT treatment case. The results of this analysis are compared to those of a single field perpendicular film technique that is typically used for IMRT QA. The comparison demonstrates that both methods result in a dosimetric error within a clinical tolerance of 5%, however the spiral phantom QA technique provides a more complete dosimetric verification while being less time consuming. To independently verify the dosimetry obtained with the spiral film, the same IMRT treatment was delivered to a similar phantom in which LiF thermoluminescent dosimeters were arranged along the spiral trajectory. The maximum difference between the predicted and measured TLD data for the 1.8 Gy fraction was 0.06 Gy for a TLD located in a high dose gradient region. This further validates the ability of the spiral phantom QA process to accurately verify delivery of an IMRT plan

  2. An interface redesign for the feed-water system of the advanced boiling water reactor in a nuclear power plant in Taiwan

    International Nuclear Information System (INIS)

    Hsieh Minchih; Chiu Mingchuan; Hwang Sheueling

    2014-01-01

    A well-designed human-computer interface for the visual display unit in the control room of a complex environment can enhance operator efficiency and, thus, environmental safety. In fact, a cognitive gap often exists between an interface designer and an interface user. Therefore, the issue of the cognitive gap of interface design needs more improvement and investigation. This is an empirical study that presents the application of an ecological interface design (EID) using three cases and demonstrates that an EID framework can support operators in various complex situations. Specifically, it analyzes different levels of automation and emergency condition response at the Lungmen Nuclear Power Plant in Taiwan. A simulated feed-water system was developed involving two interface styles. This study uses the NASA Task Load Index to objectively evaluate the mental workload of the human operators and the Situation Awareness Rating Technique to subjectively assess operator understanding and response, and is a pilot study investigating EID display format use at nuclear power plants in Taiwan. Results suggest the EID-based interface has a remarkable advantage over the original interface in supporting operator performance in the areas of response time and accuracy rate under both normal and emergency situations and provide supporting evidence that an EID-based interface can effectively enhance monitoring tasks in a complex environment. (author)

  3. Echo-Interleaved-Spiral MR Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Rosenthal, Shirrie; Azhari, Haim [Department of Biomedical Engineering, Technion, Israel Institute of Technology, Haifa 32000 (Israel); Montag, Avram [Elscint Ltd., MRI division, Haifa (Israel)

    1999-12-31

    Interleaved-Spiral imaging is an efficient method for MRI fast scans. However, images suffer from blurring and artifacts due to field inhomogeneities and the long readout times. In this paper, we combine interleaved-spirals with spin-echo for 3D scans. The refocusing RF-pulses (echoes) refocus off-resonance spins, thus allowing longer acquisition times per excitation, by limiting inhomogeneity effects. The total number of excitations for a 3D scan is reduced by half. The 3D Fourier transform of an object is divided into pairs of slices, one slice is scanned in an outgoing interleaved-spiral, initiated after a 90 degree pulse has been applied. The second slice is scanned in an ingoing interleaved-spiral, after a 180 degree pulse has been applied, thus reaching the slice origin at the echo time. (authors) 4 refs., 3 figs.

  4. Echo-Interleaved-Spiral MR Imaging

    International Nuclear Information System (INIS)

    Rosenthal, Shirrie; Azhari, Haim; Montag, Avram

    1998-01-01

    Interleaved-Spiral imaging is an efficient method for MRI fast scans. However, images suffer from blurring and artifacts due to field inhomogeneities and the long readout times. In this paper, we combine interleaved-spirals with spin-echo for 3D scans. The refocusing RF-pulses (echoes) refocus off-resonance spins, thus allowing longer acquisition times per excitation, by limiting inhomogeneity effects. The total number of excitations for a 3D scan is reduced by half. The 3D Fourier transform of an object is divided into pairs of slices, one slice is scanned in an outgoing interleaved-spiral, initiated after a 90 degree pulse has been applied. The second slice is scanned in an ingoing interleaved-spiral, after a 180 degree pulse has been applied, thus reaching the slice origin at the echo time. (authors)

  5. Corrosion of Spiral Rib Aluminized Pipe : [Summary

    Science.gov (United States)

    2012-01-01

    Large diameter, corrugated steel pipes are a common sight in the culverts that run alongside many Florida roads. Spiral-ribbed aluminized pipe (SRAP) has been widely specified by the Florida Department of Transportation (FDOT) for runoff drainage. Th...

  6. Corrosion of Spiral Rib Aluminized Pipe

    Science.gov (United States)

    2012-08-01

    Large diameter, corrugated steel pipes are a common sight in the culverts that run alongside many Florida roads. Spiral-ribbed aluminized pipe (SRAP) has been widely specified by the Florida Department of Transportation (FDOT) for runoff drainage. Th...

  7. Pulsatile spiral blood flow through arterial stenosis.

    Science.gov (United States)

    Linge, Fabian; Hye, Md Abdul; Paul, Manosh C

    2014-11-01

    Pulsatile spiral blood flow in a modelled three-dimensional arterial stenosis, with a 75% cross-sectional area reduction, is investigated by using numerical fluid dynamics. Two-equation k-ω model is used for the simulation of the transitional flow with Reynolds numbers 500 and 1000. It is found that the spiral component increases the static pressure in the vessel during the deceleration phase of the flow pulse. In addition, the spiral component reduces the turbulence intensity and wall shear stress found in the post-stenosis region of the vessel in the early stages of the flow pulse. Hence, the findings agree with the results of Stonebridge et al. (2004). In addition, the results of the effects of a spiral component on time-varying flow are presented and discussed along with the relevant pathological issues.

  8. Magnetic spiral arms in galaxy haloes

    Science.gov (United States)

    Henriksen, R. N.

    2017-08-01

    We seek the conditions for a steady mean field galactic dynamo. The parameter set is reduced to those appearing in the α2 and α/ω dynamo, namely velocity amplitudes, and the ratio of sub-scale helicity to diffusivity. The parameters can be allowed to vary on conical spirals. We analyse the mean field dynamo equations in terms of scale invariant logarithmic spiral modes and special exact solutions. Compatible scale invariant gravitational spiral arms are introduced and illustrated in an appendix, but the detailed dynamical interaction with the magnetic field is left for another work. As a result of planar magnetic spirals `lifting' into the halo, multiple sign changes in average rotation measures forming a regular pattern on each side of the galactic minor axis, are predicted. Such changes have recently been detected in the Continuum Halos in Nearby Galaxies-an EVLA Survey (CHANG-ES) survey.

  9. Statistical analysis of metallicity in spiral galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Galeotti, P [Consiglio Nazionale delle Ricerche, Turin (Italy). Lab. di Cosmo-Geofisica; Turin Univ. (Italy). Ist. di Fisica Generale)

    1981-04-01

    A principal component analysis of metallicity and other integral properties of 33 spiral galaxies is presented; the involved parameters are: morphological type, diameter, luminosity and metallicity. From the statistical analysis it is concluded that the sample has only two significant dimensions and additonal tests, involving different parameters, show similar results. Thus it seems that only type and luminosity are independent variables, being the other integral properties of spiral galaxies correlated with them.

  10. Galactic models with variable spiral structure

    International Nuclear Information System (INIS)

    James, R.A.; Sellwood, J.A.

    1978-01-01

    A series of three-dimensional computer simulations of disc galaxies has been run in which the self-consistent potential of the disc stars is supplemented by that arising from a small uniform Population II sphere. The models show variable spiral structure, which is more pronounced for thin discs. In addition, the thin discs form weak bars. In one case variable spiral structure associated with this bar has been seen. The relaxed discs are cool outside resonance regions. (author)

  11. SIGNATURES OF LONG-LIVED SPIRAL PATTERNS

    International Nuclear Information System (INIS)

    Martínez-García, Eric E.; González-Lópezlira, Rosa A.

    2013-01-01

    Azimuthal age/color gradients across spiral arms are a signature of long-lived spirals. From a sample of 19 normal (or weakly barred) spirals where we have previously found azimuthal age/color gradient candidates, 13 objects were further selected if a two-armed grand-design pattern survived in a surface density stellar mass map. Mass maps were obtained from optical and near-infrared imaging, by comparison with a Monte Carlo library of stellar population synthesis models that allowed us to obtain the mass-to-light ratio in the J band, (M/L) J , as a function of (g – i) versus (i – J) color. The selected spirals were analyzed with Fourier methods in search of other signatures of long-lived modes related to the gradients, such as the gradient divergence toward corotation, and the behavior of the phase angle of the two-armed spiral in different wavebands, as expected from theory. The results show additional signatures of long-lived spirals in at least 50% of the objects.

  12. Chiralities of spiral waves and their transitions.

    Science.gov (United States)

    Pan, Jun-ting; Cai, Mei-chun; Li, Bing-wei; Zhang, Hong

    2013-06-01

    The chiralities of spiral waves usually refer to their rotation directions (the turning orientations of the spiral temporal movements as time elapses) and their curl directions (the winding orientations of the spiral spatial geometrical structures themselves). Traditionally, they are the same as each other. Namely, they are both clockwise or both counterclockwise. Moreover, the chiralities are determined by the topological charges of spiral waves, and thus they are conserved quantities. After the inwardly propagating spirals were experimentally observed, the relationship between the chiralities and the one between the chiralities and the topological charges are no longer preserved. The chiralities thus become more complex than ever before. As a result, there is now a desire to further study them. In this paper, the chiralities and their transition properties for all kinds of spiral waves are systemically studied in the framework of the complex Ginzburg-Landau equation, and the general relationships both between the chiralities and between the chiralities and the topological charges are obtained. The investigation of some other models, such as the FitzHugh-Nagumo model, the nonuniform Oregonator model, the modified standard model, etc., is also discussed for comparison.

  13. Spiral 2: preliminary design study

    International Nuclear Information System (INIS)

    2001-11-01

    The scientific council of GANIL asked to perform a comparative study on the production methods based on gamma induced fission and rapid-neutron induced fission concerning the nature and the intensity of the neutron-rich products. The production rate expected should be around 10 13 fissions per second. The study should include the implantation and the costs of the concerned accelerators. The scientific committee recommended also to study the possibility to re-inject the radioactive beams of SPIRAL-II in the cyclotrons available at GANIL in order to give access to an energy range from 1.7 to 100 MeV/nucleon. For that purpose, some study groups have been formed to evaluate the possibility of such a project in the different components: physics case, target-ion sources, drivers, post-acceleration and general infrastructure. The organization of the project study is given at the end of this report. The following report presents an overview of the study. Particularly the total costs have been assessed according to 3 options for the driver: 38.0*10 6 euros for a 40 MeV deuteron linac, 18.7*10 6 euros for a 45 MeV electron linac, and 29.1*10 6 euros for a 80 MeV deuteron cyclotron

  14. Spiral 2: preliminary design study

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-11-15

    The scientific council of GANIL asked to perform a comparative study on the production methods based on gamma induced fission and rapid-neutron induced fission concerning the nature and the intensity of the neutron-rich products. The production rate expected should be around 10{sup 13} fissions per second. The study should include the implantation and the costs of the concerned accelerators. The scientific committee recommended also to study the possibility to re-inject the radioactive beams of SPIRAL-II in the cyclotrons available at GANIL in order to give access to an energy range from 1.7 to 100 MeV/nucleon. For that purpose, some study groups have been formed to evaluate the possibility of such a project in the different components: physics case, target-ion sources, drivers, post-acceleration and general infrastructure. The organization of the project study is given at the end of this report. The following report presents an overview of the study. Particularly the total costs have been assessed according to 3 options for the driver: 38.0*10{sup 6} euros for a 40 MeV deuteron linac, 18.7*10{sup 6} euros for a 45 MeV electron linac, and 29.1*10{sup 6} euros for a 80 MeV deuteron cyclotron.

  15. Dark matter in spiral galaxies

    International Nuclear Information System (INIS)

    Albada, T.S. van; Sancisi, R.

    1986-01-01

    Mass models of spiral galaxies based on the observed light distribution, assuming constant M/L for bulge and disc, are able to reproduce the observed rotation curves in the inner regions, but fail to do so increasingly towards and beyond the edge of the visible material. The discrepancy in the outer region can be accounted for by invoking dark matter; some galaxies require at least four times as much dark matter as luminous matter. There is no evidence for a dependence on galaxy luminosity or morphological type. Various arguments support the idea that a distribution of visible matter with constant M/L is responsible for the circular velocity in the inner region, i.e. inside approximately 2.5 disc scalelengths. Luminous matter and dark matter seem to 'conspire' to produce the flat observed rotation curves in the outer region. It seems unlikely that this coupling between disc and halo results from the large-scale gravitational interaction between the two components. Attempts to determine the shape of dark halos have not yet produced convincing results. (author)

  16. Six Decades of Spiral Density Wave Theory

    Science.gov (United States)

    Shu, Frank H.

    2016-09-01

    The theory of spiral density waves had its origin approximately six decades ago in an attempt to reconcile the winding dilemma of material spiral arms in flattened disk galaxies. We begin with the earliest calculations of linear and nonlinear spiral density waves in disk galaxies, in which the hypothesis of quasi-stationary spiral structure (QSSS) plays a central role. The earliest success was the prediction of the nonlinear compression of the interstellar medium and its embedded magnetic field; the earliest failure, seemingly, was not detecting color gradients associated with the migration of OB stars whose formation is triggered downstream from the spiral shock front. We give the reasons for this apparent failure with an update on the current status of the problem of OB star formation, including its relationship to the feathering substructure of galactic spiral arms. Infrared images can show two-armed, grand design spirals, even when the optical and UV images show flocculent structures. We suggest how the nonlinear response of the interstellar gas, coupled with overlapping subharmonic resonances, might introduce chaotic behavior in the dynamics of the interstellar medium and Population I objects, even though the underlying forces to which they are subject are regular. We then move to a discussion of resonantly forced spiral density waves in a planetary ring and their relationship to the ideas of disk truncation, and the shepherding of narrow rings by satellites orbiting nearby. The back reaction of the rings on the satellites led to the prediction of planet migration in protoplanetary disks, which has had widespread application in the exploding data sets concerning hot Jupiters and extrasolar planetary systems. We then return to the issue of global normal modes in the stellar disk of spiral galaxies and its relationship to the QSSS hypothesis, where the central theoretical concepts involve waves with negative and positive surface densities of energy and angular

  17. Investigation of logarithmic spiral nanoantennas at optical frequencies

    Science.gov (United States)

    Verma, Anamika; Pandey, Awanish; Mishra, Vigyanshu; Singh, Ten; Alam, Aftab; Dinesh Kumar, V.

    2013-12-01

    The first study is reported of a logarithmic spiral antenna in the optical frequency range. Using the finite integration technique, we investigated the spectral and radiation properties of a logarithmic spiral nanoantenna and a complementary structure made of thin gold film. A comparison is made with results for an Archimedean spiral nanoantenna. Such nanoantennas can exhibit broadband behavior that is independent of polarization. Two prominent features of logarithmic spiral nanoantennas are highly directional far field emission and perfectly circularly polarized radiation when excited by a linearly polarized source. The logarithmic spiral nanoantenna promises potential advantages over Archimedean spirals and could be harnessed for several applications in nanophotonics and allied areas.

  18. Galaxy Zoo: dust in spiral galaxies

    Science.gov (United States)

    Masters, Karen L.; Nichol, Robert; Bamford, Steven; Mosleh, Moein; Lintott, Chris J.; Andreescu, Dan; Edmondson, Edward M.; Keel, William C.; Murray, Phil; Raddick, M. Jordan; Schawinski, Kevin; Slosar, Anže; Szalay, Alexander S.; Thomas, Daniel; Vandenberg, Jan

    2010-05-01

    We investigate the effect of dust on spiral galaxies by measuring the inclination dependence of optical colours for 24276 well-resolved Sloan Digital Sky Survey (SDSS) galaxies visually classified via the Galaxy Zoo project. We find clear trends of reddening with inclination which imply a total extinction from face-on to edge-on of 0.7, 0.6, 0.5 and 0.4mag for the ugri passbands (estimating 0.3mag of extinction in z band). We split the sample into `bulgy' (early-type) and `discy' (late-type) spirals using the SDSS fracdeV (or fDeV) parameter and show that the average face-on colour of `bulgy' spirals is redder than the average edge-on colour of `discy' spirals. This shows that the observed optical colour of a spiral galaxy is determined almost equally by the spiral type (via the bulge-disc ratio and stellar populations), and reddening due to dust. We find that both luminosity and spiral type affect the total amount of extinction, with discy spirals at Mr ~ -21.5mag having the most reddening - more than twice as much as both the lowest luminosity and most massive, bulge-dominated spirals. An increase in dust content is well known for more luminous galaxies, but the decrease of the trend for the most luminous has not been observed before and may be related to their lower levels of recent star formation. We compare our results with the latest dust attenuation models of Tuffs et al. We find that the model reproduces the observed trends reasonably well but overpredicts the amount of u-band attenuation in edge-on galaxies. This could be an inadequacy in the Milky Way extinction law (when applied to external galaxies), but more likely indicates the need for a wider range of dust-star geometries. We end by discussing the effects of dust on large galaxy surveys and emphasize that these effects will become important as we push to higher precision measurements of galaxy properties and their clustering. This publication has been made possible by the participation of more than

  19. Analysis of spiral components in 16 galaxies

    International Nuclear Information System (INIS)

    Considere, S.; Athanassoula, E.

    1988-01-01

    A Fourier analysis of the intensity distributions in the plane of 16 spiral galaxies of morphological types from 1 to 7 is performed. The galaxies processed are NGC 300,598,628,2403,2841,3031,3198,3344,5033,5055,5194,5247,6946,7096,7217, and 7331. The method, mathematically based upon a decomposition of a distribution into a superposition of individual logarithmic spiral components, is first used to determine for each galaxy the position angle PA and the inclination ω of the galaxy plane onto the sky plane. Our results, in good agreement with those issued from different usual methods in the literature, are discussed. The decomposition of the deprojected galaxies into individual spiral components reveals that the two-armed component is everywhere dominant. Our pitch angles are then compared to the previously published ones and their quality is checked by drawing each individual logarithmic spiral on the actual deprojected galaxy images. Finally, the surface intensities for angular periodicities of interest are calculated. A choice of a few of the most important ones is used to elaborate a composite image well representing the main spiral features observed in the deprojected galaxies

  20. Sharp corners as sources of spiral pairs

    International Nuclear Information System (INIS)

    Biton, Y.; Rabinovitch, A.; Braunstein, D.; Friedman, M.; Aviram, I.

    2010-01-01

    It is demonstrated that using the FitzHugh-Nagumo model, stimulation of excitable media inside a region possessing sharp corners, can lead to the appearance of sources of spiral-pairs of sustained activity. The two conditions for such source creation are: The corners should be less than 120 deg. and the range of stimulating amplitudes should be small, occurring just above the threshold value and decreasing with the corner angle. The basic mechanisms driving the phenomenon are discussed. These include: A. If the corner angle is below 120 deg., the wave generated inside cannot emerge at the corner tip, resulting in the creation of two free edges which start spiraling towards each other. B. Spiraling must be strong enough; otherwise annihilation of the rotating arms would occur too soon to create a viable source. C. The intricacies of the different radii involved are elucidated. Possible applications in heart stimulation and in chemical reactions are considered.

  1. Spiral loaded cavities for heavy ion acceleration

    International Nuclear Information System (INIS)

    Schempp, A.; Klein, H.

    1976-01-01

    A transmission line theory of the spiral resonator has been performed and the calculated and measured properties will be compared. Shunt impedances up to 50 MΩ/m have been measured. In a number of high power tests the structure has been tested and its electrical and mechanical stability has been investigated. The static frequency shift due to ponderomotoric forces was between 0.2 and 50 kHz/kW dependent on the geometrical parameters of the spirals. The maximum field strength obtained on the axis was 16 MV/m in pulsed operation and 9.2 MV/m in cw, corresponding to a voltage gain per cavity of up to 0.96 MV. The results show that spiral resonators are well suited as heavy ion accelerator cavities. (author)

  2. Organic carbon spiralling in stream ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Newbold, J D; Mulholland, P J; Elwood, J W; O' Neill, R V

    1982-01-01

    The term spiralling has been used to describe the combined processes of cycling and longitudinal transport in streams. As a measure or organic carbon spiralling, we introduced organic carbon turnover length, S, defined as the average or expected downstream distance travelled by a carbon atom between its entry or fixation in the stream and its oxidation. Using a simple model for organic carbon dynamics in a stream, we show that S is closely related to fisher and Likens' ecosystem efficiency. Unlike efficiency, however, S is independent of the length of the study reach, and values of S determined in streams of differing lengths can be compared. Using data from three different streams, we found the relationship between S and efficiency to agree closely with the model prediction. Hypotheses of stream functioning are discussed in the context of organic carbeon spiralling theory.

  3. Spiral arms, comets and terrestrial catastrophism

    International Nuclear Information System (INIS)

    Clube, S.V.M.; Napier, W.M.

    1982-01-01

    A review is presented of an hypothesis of terrestrial catastrophism in which comets grow in molecular clouds and are captured by the Sun as it passes through the spiral arms of the Galaxy. Assuming that comets are a major supplier of the Earth-crossing (Appollo) asteroid population, the latter fluctuates correspondingly and leads to episodes of terrestrial bombardment. Changes in the rotational momentum of core and mantle, generated by impacts, lead to episodes of magnetic field reversal and tectonic activity, while surface phenomena lead to ice-ages and mass extinctions. An episodic geophysical history with an interstellar connection is thus implied. If comets in spiral arms are necessary intermediaries in the process of star formation, the theory also has implications relating to early solar system history and galactic chemistry. These aspects are briefly discussed with special reference to the nature of spiral arms. (author)

  4. Considerations of an oscillating spiral universe cosmology

    International Nuclear Information System (INIS)

    Sachs, M.

    1989-01-01

    It is proposed that if the spiral configuration of galaxies is explicable in terms of the equations of motion of its constituent stars, as an expression of global laws of nature, then the universe as a whole may be similarly described in terms of the motions of its constituent galaxies with a similar spiral dynamics. With the functional form of the spiral paths in terms of Fresnel integrals, taken from solutions of equations in general relativity (from previous analyses of galactic configurations) the density of the universe at the big bang stage is determined. It is found to depend, numerically, on the neutron lifetime and the period of oscillation of the universe as a whole. There is some concluding discussion of the implications of this analysis of the matter of the universe at the big bang stage vis a vis the black hole state of matter

  5. Molecular clouds and galactic spiral structure

    International Nuclear Information System (INIS)

    Dame, T.M.

    1984-02-01

    Galactic CO line emission at 115 GHz was surveyed in order to study the distribution of molecular clouds in the inner galaxy. Comparison of this survey with similar H1 data reveals a detailed correlation with the most intense 21 cm features. To each of the classical 21 cm H1 spiral arms of the inner galaxy there corresponds a CO molecular arm which is generally more clearly defined and of higher contrast. A simple model is devised for the galactic distribution of molecular clouds. The modeling results suggest that molecular clouds are essentially transient objects, existing for 15 to 40 million years after their formation in a spiral arm, and are largely confined to spiral features about 300 pc wide

  6. Spiral CT manifestations of spherical pneumonia

    International Nuclear Information System (INIS)

    Li Xiaohong; Yang Hongwei; Xu Chunmin; Qin Xiu

    2008-01-01

    Objective: To explore the Spiral CT manifestations and differential diagnosis of spherical pneumonia. Methods: 18 cases of spherical pneumonia and 20 cases of peripheral pulmonary carcinoma were selected, both of them were confirmed by clinic and/or pathology. The SCT findings of both groups were compared retrospectively. Results: Main spiral CT findings of spherical pneumonia were showed as followings: square or triangular lesions adjacent to pleura; with irregular shape, blurry, slightly lobulated margin, sometimes with halo sign. Small inflammatory patches and intensified vascular markings around the lesions were seen. Lesions became smaller or vanished after short-term anti-inflammatory treatment. Conclusion: Spherical pneumonia showed some characteristics on Spiral CT scan, which are helpful in diagnosis and differential diagnosis of this disease. (authors)

  7. Spiral CT for evaluation of chest trauma

    International Nuclear Information System (INIS)

    Roehnert, W.; Weise, R.

    1997-01-01

    After implementation of spiral CT in our department, we carried out an analysis for determining anew the value of CT as a modality of chest trauma diagnosis in the emergency department. The retrospective study covers a period of 10 months and all emergency patients with chest trauma exmined by spiral CT. The major lesions of varying seriousness covered by this study are: pneumothorax, hematothorax, pulmonary contusion or laceration, mediastinal hematoma, rupture of a vessel, injury of the heart and pericardium. The various fractures are not included in this study. In many cases, spiral CT within relatively short time yields significant diagnostic findings, frequently saving additional angiography. A rigid diagnostic procedure cannot be formulated. Plain-film chest radiography still remains a diagnostic modality of high value. (Orig.) [de

  8. Simulations of the flocculent spiral M33: what drives the spiral structure?

    Science.gov (United States)

    Dobbs, C. L.; Pettitt, A. R.; Corbelli, E.; Pringle, J. E.

    2018-05-01

    We perform simulations of isolated galaxies in order to investigate the likely origin of the spiral structure in M33. In our models, we find that gravitational instabilities in the stars and gas are able to reproduce the observed spiral pattern and velocity field of M33, as seen in HI, and no interaction is required. We also find that the optimum models have high levels of stellar feedback which create large holes similar to those observed in M33, whilst lower levels of feedback tend to produce a large amount of small scale structure, and undisturbed long filaments of high surface density gas, hardly detected in the M33 disc. The gas component appears to have a significant role in producing the structure, so if there is little feedback, both the gas and stars organise into clear spiral arms, likely due to a lower combined Q (using gas and stars), and the ready ability of cold gas to undergo spiral shocks. By contrast models with higher feedback have weaker spiral structure, especially in the stellar component, compared to grand design galaxies. We did not see a large difference in the behaviour of Qstars with most of these models, however, because Qstars stayed relatively constant unless the disc was more strongly unstable. Our models suggest that although the stars produce some underlying spiral structure, this is relatively weak, and the gas physics has a considerable role in producing the large scale structure of the ISM in flocculent spirals.

  9. Spiral 2 cryogenic system overview: Design, construction and performance test

    Energy Technology Data Exchange (ETDEWEB)

    Deschildre, C.; Bernhardt, J.; Flavien, G.; Crispel, S. [Air Liquide Advanced Technologies, Sassenage (France); Souli, M. [GANIL, Caen (France); Commeaux, C. [IPN, Orsay (France)

    2014-01-29

    The new particle accelerator project Spiral 2 at GANIL (“Grand Accélérateur d’Ions Lourds, i.e. National Large Heavy Ion Accelerator) in Caen (France) is a very large installation, intended to serve fundamental research in nuclear physics. The heart of the future machine features a superconductor linear accelerator, delivering a beam until 20Mev/A, which are then used to bombard a matter target. The resulting reactions, such as fission, transfer, fusion, etc. will generate billions of exotic nuclei. To achieve acceleration of the beam, 26 cavities which are placed inside cryomodules at helium cryogenic temperature will be used. AL-AT (Air Liquide Advanced Technologies) takes part to the project by supplying cryogenic plant. The plant includes the liquefier associated to its compressor station, a large dewar, a storage tank for helium gas and transfer lines. In addition, a helium recovery system composed of recovery compressor, high pressure storage and external purifier has been supplied. Customized HELIAL LF has been designed, manufactured and tested by AL-AT to match the refrigeration power need for the Spiral 2 project which is around 1300 W equivalent at 4.5 K.

  10. Kidney spiral CT, indications, realization, results

    International Nuclear Information System (INIS)

    Braunschweig, R.; Beilicke, M.; Hundt, W.; Breiteneder, T.; Reiser, M.

    1999-01-01

    The introduction of spiral computed tomography (spiral CT) has vastly enriched the methodologically diversity of computer-tomographic scans. It allows for the recording of different perfusion or excretion stages of the kidney parenchyma of the urine draining paths by carrying out long-distance, phase-identical multiple examinations of the retroperitoneum. The description of the findings which are characterized by their local and contrasts behavior is possible. The following report describes the indications and technological process of kidney spiral CT using kidney-typical intravenous contrast media. Special emphasis is put on the advantages and limits of multiple phase spiral CT. Decisive preconditions are: 1. Specific clinical query, 2. selection of the corresponding phase contrasts of the kidneys and uretra or bladder, 3. exact technical and temporal adjustment of the acquisition parameters. Scanning times are in the range of seconds. The overall examination can be carried out quick and without any major strain on the part of the patient. A sound proof and a general differentiation of focal kideny lesions can be derived from the acquired data. This is also true for kidneys and ureters findings. Bladder findings can be localized and differentiated according to stage. More than two 'spiral acquisitions' should be carried out with restraint taking exposure to radiation into account. Due to the sound registration of focal lesions, its capability of reproduction and its short-time examination, the spiral CT of the kidneys can be said to be the most effective current scanning method of the retroperitoneum following clinical examinations and sonography. (orig.) [de

  11. Graphite target for the spiral project

    International Nuclear Information System (INIS)

    Putaux, J.C.; Ducourtieux, M.; Ferro, A.; Foury, P.; Kotfila, L.; Mueller, A.C.; Obert, J.; Pauwels, N.; Potier, J.C.; Proust, J.; Loiselet, M.

    1996-01-01

    A study of the thermal and physical properties of graphite targets for the SPIRAL project is presented. The main objective is to develop an optimized set-up both mechanically and thermally resistant, presenting good release properties (hot targets with thin slices). The results of irradiation tests concerning the mechanical and thermal resistance of the first prototype of SPIRAL target with conical geometry are presented. The micro-structural properties of the graphite target is also studied, in order to check that the release properties are not deteriorated by the irradiation. Finally, the results concerning the latest pilot target internally heated by an electrical current are shown. (author)

  12. Packing of equal discs on a parabolic spiral lattice

    International Nuclear Information System (INIS)

    Xudong, F.; Bursill, L.A.; Julin, P.

    1989-01-01

    A contact disc model is investigated to determine the most closely-packed parabolic spiral lattice. The most space-efficient packings have divergence angles in agreement with the priority ranking of natural spiral structures

  13. The dynamics of the spiral galaxy M81

    International Nuclear Information System (INIS)

    Visser, H.C.D.

    1978-01-01

    A detailed comparison of the observations of the spiral galaxy M81 with the density-wave theory for tightly-wound spirals is presented. In particular, hydrogen-line observations are compared with the nonlinear density-wave theory for the gas with the aim of constructing a density-wave model for the spiral galaxy M81

  14. Adaptation of the control system in view of SPIRAL integration

    International Nuclear Information System (INIS)

    Lecorche, E.

    1998-01-01

    As soon as the collaboration between the SPIRAL project and the Control Group has been defined, the first implementation of the SPIRAL control system started following various directions. Both the global hardware and software architectures has been specified and some practical works have been undertaken such as the Ethernet network installation or the first SPIRAL oriented software design and coding. (authors)

  15. Spiral kicker for the beam abort system

    Energy Technology Data Exchange (ETDEWEB)

    Martin, R.L.

    1983-01-01

    A brief study was carried out to determine the feasibility of a special kicker to produce a damped spiral beam at the beam dump for the beam abort system. There appears to be no problem with realizing this concept at a reasonably low cost.

  16. Spiral kicker for the beam abort system

    International Nuclear Information System (INIS)

    Martin, R.L.

    1983-01-01

    A brief study was carried out to determine the feasibility of a special kicker to produce a damped spiral beam at the beam dump for the beam abort system. There appears to be no problem with realizing this concept at a reasonably low cost

  17. Irrational Numbers Can "In-Spiral" You

    Science.gov (United States)

    Lewis, Leslie D.

    2007-01-01

    This article describes the instructional process of helping students visualize irrational numbers. Students learn to create a spiral, called "the wheel of Theodorus," which demonstrates irrational and rational lengths. Examples of student work help the reader appreciate the delightful possibilities of this project. (Contains 4 figures.)

  18. Importance of packing in spiral defect chaos

    Indian Academy of Sciences (India)

    We develop two measures to characterize the geometry of patterns exhibited by the state of spiral defect chaos, a weakly turbulent regime of Rayleigh-Bénard convection. These describe the packing of contiguous stripes within the pattern by quantifying their length and nearest-neighbor distributions. The distributions ...

  19. Spiral CT-angiography of the aorta

    NARCIS (Netherlands)

    Balm, R.; Eikelboom, B. C.; van Leeuwen, M. S.; Noordzij, J.

    1994-01-01

    AIMS: To determine whether the new technique of CT-angiography was accurate in displaying the complex anatomy of the aorta and its major branches. METHODS: Seventeen patients with a variety of aortic pathology were examined. Using a spiral CT-scanner a volumetric scan was made during injection of

  20. STRUCTURED MOLECULAR GAS REVEALS GALACTIC SPIRAL ARMS

    Energy Technology Data Exchange (ETDEWEB)

    Sawada, Tsuyoshi [Joint ALMA Office, Alonso de Cordova 3107, Vitacura, Santiago 763-0355 (Chile); Hasegawa, Tetsuo [NAOJ Chile Observatory, Joaquin Montero 3000 Oficina 702, Vitacura, Santiago 763-0409 (Chile); Koda, Jin, E-mail: sawada.tsuyoshi@nao.ac.jp [Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794-3800 (United States)

    2012-11-01

    We explore the development of structures in molecular gas in the Milky Way by applying the analysis of the brightness distribution function and the brightness distribution index (BDI) in the archival data from the Boston University-Five College Radio Astronomy Observatory {sup 13}CO J = 1-0 Galactic Ring Survey. The BDI measures the fractional contribution of spatially confined bright molecular emission over faint emission extended over large areas. This relative quantity is largely independent of the amount of molecular gas and of any conventional, pre-conceived structures, such as cores, clumps, or giant molecular clouds. The structured molecular gas traced by higher BDI is located continuously along the spiral arms in the Milky Way in the longitude-velocity diagram. This clearly indicates that molecular gas changes its structure as it flows through the spiral arms. Although the high-BDI gas generally coincides with H II regions, there is also some high-BDI gas with no/little signature of ongoing star formation. These results support a possible evolutionary sequence in which unstructured, diffuse gas transforms itself into a structured state on encountering the spiral arms, followed by star formation and an eventual return to the unstructured state after the spiral arm passage.

  1. Investigation of Spiral and Sweeping Holes

    Science.gov (United States)

    Thurman, Douglas; Poinsatte, Philip; Ameri, Ali; Culley, Dennis; Raghu, Surya; Shyam, Vikram

    2015-01-01

    Surface infrared thermography, hotwire anemometry, and thermocouple surveys were performed on two new film cooling hole geometries: spiral/rifled holes and fluidic sweeping holes. The spiral holes attempt to induce large-scale vorticity to the film cooling jet as it exits the hole to prevent the formation of the kidney shaped vortices commonly associated with film cooling jets. The fluidic sweeping hole uses a passive in-hole geometry to induce jet sweeping at frequencies that scale with blowing ratios. The spiral hole performance is compared to that of round holes with and without compound angles. The fluidic hole is of the diffusion class of holes and is therefore compared to a 777 hole and Square holes. A patent-pending spiral hole design showed the highest potential of the non-diffusion type hole configurations. Velocity contours and flow temperature were acquired at discreet cross-sections of the downstream flow field. The passive fluidic sweeping hole shows the most uniform cooling distribution but suffers from low span-averaged effectiveness levels due to enhanced mixing. The data was taken at a Reynolds number of 11,000 based on hole diameter and freestream velocity. Infrared thermography was taken for blowing rations of 1.0, 1.5, 2.0, and 2.5 at a density ration of 1.05. The flow inside the fluidic sweeping hole was studied using 3D unsteady RANS.

  2. High-displacement spiral piezoelectric actuators

    Science.gov (United States)

    Mohammadi, F.; Kholkin, A. L.; Jadidian, B.; Safari, A.

    1999-10-01

    A high-displacement piezoelectric actuator, employing spiral geometry of a curved piezoelectric strip is described. The monolithic actuators are fabricated using a layered manufacturing technique, fused deposition of ceramics, which is capable of prototyping electroceramic components with complex shapes. The spiral actuators (2-3 cm in diameter) consisted of 4-5 turns of a lead zirconate titanate ceramic strip with an effective length up to 28 cm. The width was varied from 0.9 to 1.75 mm with a height of 3 mm. When driven by the electric field applied across the width of the spiral wall, the tip of the actuator was found to displace in both radial and tangential directions. The tangential displacement of the tip was about 210 μm under the field of 5 kV/cm. Both the displacement and resonant frequency of the spirals could be tailored by changing the effective length and wall width. The blocking force of the actuator in tangential direction was about 1 N under the field of 5 kV/cm. These properties are advantageous for high-displacement low-force applications where bimorph or monomorph actuators are currently employed.

  3. Biofouling of spiral wound membrane systems

    NARCIS (Netherlands)

    Vrouwenvelder, J.S.

    2009-01-01

    Biofouling of spiral wound membrane systems High quality drinking water can be produced with membrane filtration processes like reverse osmosis (RO) and nanofiltration (NF). Because the global demand for fresh clean water is increasing, these membrane technologies will increase in importance in the

  4. Space charge effect in the spiral inflector

    International Nuclear Information System (INIS)

    Toprek, Dragan

    2000-01-01

    This paper presents the analytical and numerical theory of the space charge effects in the beam in the spiral inflector. It considers a simplified model of a 'straight' cylindrical beam by using a uniform particle distribution. Numerical results represented in this paper are obtained by using a modified version of the program CASINO

  5. Some optical properties of the spiral inflector

    International Nuclear Information System (INIS)

    Toprek, Dragan; Subotic, Krunoslav

    1999-01-01

    This paper compares some optical properties of different spiral inflectors using the program CASINO. The electric field distribution in the inflectors has been numerically calculated from an electric potential map produced by the program RELAX3D. The magnetic field is assumed to be constant. We have also made an effort to minimize the inflector fringe field using the RELAX3D program. (author)

  6. A nutrient’s downstream spiral

    Science.gov (United States)

    Indicators of a stream’s ability to remove nutrients provide insights on watershed integrity and stream habitat characteristics that are needed to help managers to restore stream ecosystem services. We used the Tracer Additon Spiraling Characterization Curve (TASCC) to mea...

  7. Spiral groove seal. [for hydraulic rotating shaft

    Science.gov (United States)

    Ludwig, L. P. (Inventor)

    1973-01-01

    Mating flat surfaces inhibit leakage of a fluid around a stationary shaft. A spiral groove pattern produces a pumping action toward the fluid when the shaft rotates which prevents leakage while a generated hydraulic lifting force separates the mating surfaces to minimize wear.

  8. Logarithmic spiral trajectories generated by Solar sails

    Science.gov (United States)

    Bassetto, Marco; Niccolai, Lorenzo; Quarta, Alessandro A.; Mengali, Giovanni

    2018-02-01

    Analytic solutions to continuous thrust-propelled trajectories are available in a few cases only. An interesting case is offered by the logarithmic spiral, that is, a trajectory characterized by a constant flight path angle and a fixed thrust vector direction in an orbital reference frame. The logarithmic spiral is important from a practical point of view, because it may be passively maintained by a Solar sail-based spacecraft. The aim of this paper is to provide a systematic study concerning the possibility of inserting a Solar sail-based spacecraft into a heliocentric logarithmic spiral trajectory without using any impulsive maneuver. The required conditions to be met by the sail in terms of attitude angle, propulsive performance, parking orbit characteristics, and initial position are thoroughly investigated. The closed-form variations of the osculating orbital parameters are analyzed, and the obtained analytical results are used for investigating the phasing maneuver of a Solar sail along an elliptic heliocentric orbit. In this mission scenario, the phasing orbit is composed of two symmetric logarithmic spiral trajectories connected with a coasting arc.

  9. The Spiral Curriculum. Research into Practice

    Science.gov (United States)

    Johnston, Howard

    2012-01-01

    The Spiral Curriculum is predicated on cognitive theory advanced by Jerome Bruner (1960), who wrote, "We begin with the hypothesis that any subject can be taught in some intellectually honest form to any child at any stage of development." In other words, even the most complex material, if properly structured and presented, can be understood by…

  10. Spiral Growth in Plants: Models and Simulations

    Science.gov (United States)

    Allen, Bradford D.

    2004-01-01

    The analysis and simulation of spiral growth in plants integrates algebra and trigonometry in a botanical setting. When the ideas presented here are used in a mathematics classroom/computer lab, students can better understand how basic assumptions about plant growth lead to the golden ratio and how the use of circular functions leads to accurate…

  11. The Spiral-Interactive Program Evaluation Model.

    Science.gov (United States)

    Khaleel, Ibrahim Adamu

    1988-01-01

    Describes the spiral interactive program evaluation model, which is designed to evaluate vocational-technical education programs in secondary schools in Nigeria. Program evaluation is defined; utility oriented and process oriented models for evaluation are described; and internal and external evaluative factors and variables that define each…

  12. The handedness of historiated spiral columns.

    Science.gov (United States)

    Couzin, Robert

    2017-09-01

    Trajan's Column in Rome (AD 113) was the model for a modest number of other spiral columns decorated with figural, narrative imagery from antiquity to the present day. Most of these wind upwards to the right, often with a congruent spiral staircase within. A brief introductory consideration of antique screw direction in mechanical devices and fluted columns suggests that the former may have been affected by the handedness of designers and the latter by a preference for symmetry. However, for the historiated columns that are the main focus of this article, the determining factor was likely script direction. The manner in which this operated is considered, as well as competing mechanisms that might explain exceptions. A related phenomenon is the reversal of the spiral in a non-trivial number of reproductions of the antique columns, from Roman coinage to Renaissance and baroque drawings and engravings. Finally, the consistent inattention in academic literature to the spiral direction of historiated columns and the repeated publication of erroneous earlier reproductions warrants further consideration.

  13. Nobeyama CO Atlas of Nearby Spiral Galaxies

    Science.gov (United States)

    Kuno, N.; Nakai, N.; Sorai, K.; Sato, N..; Yamauchi, A.; Tosaki, T.; Shioya, Y.; Vila-Vilaró, B.; Nishiyama, K.; Ishihara, Y.; Cepa, J.

    BEARS is a 25-beam focal plane array receiver mounted on the Nobeyama 45-m telescope. The combination of the large dish size of the telescope with the excellent performance of this receiver makes it an ideal tool for mapping observations of extended regions of the sky. We present here one of its current applications in a CO mapping survey of nearby spiral galaxies.

  14. Borrmann type IV adenocarcinoma versus gastric lymphoma : spiral CT evaluation

    International Nuclear Information System (INIS)

    Seo, Bo Kyoung; Kim, Yun Hwan; Shin, Kue Hee; Hong, Suk Joo; Kim, Hong Weon; Park, Cheol Min; Chung, Kyoo Byung; Cho, Hyun Deuk

    1999-01-01

    To distinguish the spiral CT findings of Borrmann type IV adenocarcinoma from those of gastric lymphoma with diffuse gastric wall thickening. We retrospectively reviewed the spiral CT scans of 30 patients with Borrmann type IV adenocarcinoma and nine with gastric lymphoma with diffuse gastric wall thickening. In all patients the respective condition was pathologically confirmed by gastrectomy. CT scanning was performed after peroral administration of 500-700ml of water. A total of 120-140 ml bolus of nonionic contrast material was administered intravenously at a flow rate of 3 ml/sec and two-phase images were obtained at 35-45 sec(early phase) and 180 sec(delayed phase) after the start of bolus injection. Spiral CT was performed with 10mm collimation, 10mm/sec table feed and 10mm reconstruction. We evaluated the degree and homogeneity of enhancement of thickened entire gastric wall, and the enhancement pattern of gastric inner layer, as seen on early-phase CT scans. On early and delayed views, the thickness of gastric wall and the presence of perigastric fat infiltration were determined. The enhancement patterns of gastric inner layer were classified as either continuous or discontinuous thick enhancement, thin enhancement, or nonenhancement. The thickness of gastric wall was 1.2-3.5cm(mean 2.2cm) in cases of adenocarcinoma and 1.2-7.6cm(mean 4cm) in lymphoma. Perigastric fat infiltration was seen in 24 patients with adenocarcinoma(80%) and four with lymphoma(44%). In those with adenocarcinoma, the degree of enhancement of entire gastric wall was hyperdense in fifteen patients(50%) and isointense in eleven (37%). Seven patients with lymphoma(78%)showed hypodensity. In those with adenocarcinoma, continuous thick enhancement of gastric inner layer was seen in 18 patients(60%) and discontinuous thick enhancement in nine(30%). In lymphoma cases, no thick enhancement was observed. Thin enhancement of gastric inner layer was demonstrated in three patients with

  15. Dynamic analysis of the condensate and of the feed water in the Laguna Verde nuclear power station; Analisis dinamico del sistema de condensado y agua de alimentacion de la nucleoelectrica de Laguna Verde

    Energy Technology Data Exchange (ETDEWEB)

    Macedo Muth, Javier; Sandoval Pena, Ramon [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1988-12-31

    This article shows a non-lineal mathematical model for the condensate, and feed water systems and for feed water heater drains at the Laguna Verde Nuclear Power Station for its simulation in real time. The model allows the calculation of flows and pressures in all the piping system and equipment that integrate the systems. It was obtained by using the force unbalance in the fluid concept and is capable of reproducing its dynamic behavior through variations induced by the different operation modes and more common failures. The final model objective is to form part of the Laguna Verde simulator that will be used for operator training of this Nuclear Power Plant. [Espanol] En este articulo se muestra un modelo matematico no lineal de los sistemas de condensado, agua de alimentacion y drenes de calentadores de la central nuclear de Laguna Verde para su simulacion en tiempo real. El modelo permite calcular los flujos y las presiones en toda la red de tuberias y equipos que integran los sistemas. Se obtuvo utilizando el concepto de desbalance de fuerzas en el fluido, y es capaz de reproducir su comportamiento dinamico ante variaciones inducidas por los diversos modos de operacion y fallas mas comunes. El objetivo final del modelo es formar parte del simulador de Laguna Verde que se empleara para el adiestramiento de los operadores de dicha central nuclear.

  16. Spiral CT for evaluation of chest trauma; Spiral-CT beim Thoraxtrauma

    Energy Technology Data Exchange (ETDEWEB)

    Roehnert, W. [Universitaetsklinikum Dresden (Germany). Inst. und Poliklinik fuer Radiologische Diagnostik; Weise, R. [Universitaetsklinikum Dresden (Germany). Inst. und Poliklinik fuer Radiologische Diagnostik

    1997-07-01

    After implementation of spiral CT in our department, we carried out an analysis for determining anew the value of CT as a modality of chest trauma diagnosis in the emergency department. The retrospective study covers a period of 10 months and all emergency patients with chest trauma exmined by spiral CT. The major lesions of varying seriousness covered by this study are: pneumothorax, hematothorax, pulmonary contusion or laceration, mediastinal hematoma, rupture of a vessel, injury of the heart and pericardium. The various fractures are not included in this study. In many cases, spiral CT within relatively short time yields significant diagnostic findings, frequently saving additional angiography. A rigid diagnostic procedure cannot be formulated. Plain-film chest radiography still remains a diagnostic modality of high value. (Orig.) [Deutsch] Nach Einfuehrung der Spiral-CT in unserer Einrichtung versuchten wir, den Stellenwert der Computertomographie in der Notfalldiagnostik des Thoraxtraumas neu zu bestimmen. Dazu wurden retrospektiv ueber einen Zeitraum von 10 Monaten alle mittels Spiral-CT untersuchten Notfallpatienten mit Thoraxverletzungen ausgewertet. Im Vordergrund standen folgende Befunde unterschiedlichen Schweregrades: Pneumothorax, Haematothorax, Lungenkontusion/-lazeration, Mediastinalhaematom, Gefaessruptur, Herz- und Herzbeutelverletzung. Auf die unterschiedlichen Frakturen wird bewusst nicht naeher eingegangen. In vielen Faellen liefert die Spiral-CT mit relativ geringem Zeitaufwand wesentliche diagnostische Aussagen. Haeufig kann auf eine Angiographie verzichtet werden. Ein starres diagnostisches Stufenschema laesst sich nicht definieren. Die Thoraxuebersichtsaufnahme besitzt einen unveraendert hohen Stellenwert. (orig.)

  17. Nutrient spiraling in streams and river networks

    Science.gov (United States)

    Ensign, Scott H.; Doyle, Martin W.

    2006-12-01

    Over the past 3 decades, nutrient spiraling has become a unifying paradigm for stream biogeochemical research. This paper presents (1) a quantitative synthesis of the nutrient spiraling literature and (2) application of these data to elucidate trends in nutrient spiraling within stream networks. Results are based on 404 individual experiments on ammonium (NH4), nitrate (NO3), and phosphate (PO4) from 52 published studies. Sixty-nine percent of the experiments were performed in first- and second-order streams, and 31% were performed in third- to fifth-order streams. Uptake lengths, Sw, of NH4 (median = 86 m) and PO4 (median = 96 m) were significantly different (α = 0.05) than NO3 (median = 236 m). Areal uptake rates of NH4 (median = 28 μg m-2 min-1) were significantly different than NO3 and PO4 (median = 15 and 14 μg m-2 min-1, respectively). There were significant differences among NH4, NO3, and PO4 uptake velocity (median = 5, 1, and 2 mm min-1, respectively). Correlation analysis results were equivocal on the effect of transient storage on nutrient spiraling. Application of these data to a stream network model showed that recycling (defined here as stream length ÷ Sw) of NH4 and NO3 generally increased with stream order, while PO4 recycling remained constant along a first- to fifth-order stream gradient. Within this hypothetical stream network, cumulative NH4 uptake decreased slightly with stream order, while cumulative NO3 and PO4 uptake increased with stream order. These data suggest the importance of larger rivers to nutrient spiraling and the need to consider how stream networks affect nutrient flux between terrestrial and marine ecosystems.

  18. Molecular clouds and galactic spiral structure

    International Nuclear Information System (INIS)

    Dame, T.M.

    1983-01-01

    Galactic CO line emission at 115 GHz has been surveyed in the region 12 0 less than or equal to l less than or equal to 60 0 and -1 0 less than or equal to b less than or equal to 1 0 in order to study the distribution of molecular clouds in the inner galaxy; an inner strip 0 0 .5 wide has been sampled every beamwidth (0 0 .125), the rest every two beamwidths. Comparison of the survey with similar HI data reveals a detailed correlation with the most intense 21-cm features, implying that the CO and HI trace the same galactic features and have the same large-scale kinematics. To each of the classical 21-cm (HI) spiral arms of the inner galaxy there corresponds a CO molecular arm which is generally more clearly defined and of higher contrast. A simple model is developed in which all of the CO emission from the inner galaxy arises from spiral arms. The modeling results suggest that molecular clouds are essentially transient objects, existing for 15 to 40 million years after their formation in a spiral arm, and are largely confined to spiral features about 300 pc wide. A variety of methods are employed to estimate distances and masses for the largest clouds detected by the inner-galaxy survey and a catalogue is compiled. The catalogued clouds, the largest of which have masses of several 10 6 M/sub sunmass/ and linear dimensions in excess of 100 pc, are found to be excellent spiral-arm tracers. One of the nearest of the clouds, that associated with the supernova remnant W44, is fully mapped in both CO and 13 CO and is discussed in detail

  19. Safe Control for Spiral Recovery of Unmanned Aerial Vehicle

    Directory of Open Access Journals (Sweden)

    Chang-Jian Ru

    2014-01-01

    Full Text Available With unmanned aerial vehicles (UAVs widely used in both military and civilian fields, many events affecting their safe flying have emerged. That UAV’s entering into the spiral is such a typical safety issue. To solve this safety problem, a novel recovery control approach is proposed. First, the factors of spiral are analyzed. Then, based on control scheduling of state variables and nonlinear dynamic inversion control laws, the spiral recovery controller is designed to accomplish guidance and control of spiral recovery. Finally, the simulation results have illustrated that the proposed control method can ensure the UAV autonomous recovery from spiral effectively.

  20. SPIRAL2 at GANIL: At the Dawn of a New Era

    International Nuclear Information System (INIS)

    Gales, S.

    2010-01-01

    The exploration of unknown region of the nuclear mass chart, in particular, the neutron rich side, raised new and challenging physics issues in the understanding of nuclei far from stability. The physics of weakly bound systems, the appearance of shell quenching, the interface with astrophysical problems prompted the study of new generation of ''Rad ioactive Beam Facilities'' with high luminosity and the development of associated new experimental tools.GANIL presently offers unique opportunities in nuclear physics and many other fields. With the construction of SPIRAL2 over the next few years, GANIL is in a good position to retain its world-leading capability even though it faces strong competition from new and upgraded ISOL and fragmentation facilities. As selected by the ESFRI committee, the next generation of ISOL facility in Europe is represented by the SPIRAL2 project to be built at GANIL (Caen, France). SPIRAL2 is based on a high power, CW, superconducting LINAC, delivering 5 mA of deuteron beams at 40 MeV (200 KW) directed on a C converter+ Uranium target and producing therefore more 10 13 fissions/s. The expected radioactive beams intensities in the mass range from A = 60 to A = 140, will surpass by two order of magnitude any existing facilities in the world. These unstable atoms will be available at energies between few KeV/n to 15 MeV/n. The same driver will accelerate high intensity (100* A to 1 mA), heavier ions (Ar up to Xe) at maximum energy of 14 MeV/n.In applied areas SPIRAL2 is considered as a powerful variable energy neutron source. The Neutrons For Science collaboration (NFS) is proposing a physics program on fission induced by fast neutrons as well as fusion studies on materials.Under the 7FP program of European Union called 'Preparatory phase', the SPIRAL2 project has been granted a budget of about 4 MEuro to build up an international consortium around this new venture. Regarding the future physics program a call for Letter of intents has been

  1. SPIRAL2 at GANIL: At the Dawn of a New Era

    Science.gov (United States)

    Gales, S.

    2010-04-01

    The exploration of unknown region of the nuclear mass chart, in particular, the neutron rich side, raised new and challenging physics issues in the understanding of nuclei far from stability. The physics of weakly bound systems, the appearance of shell quenching, the interface with astrophysical problems prompted the study of new generation of "Rad ioactive Beam Facilities" with high luminosity and the development of associated new experimental tools. GANIL presently offers unique opportunities in nuclear physics and many other fields. With the construction of SPIRAL2 over the next few years, GANIL is in a good position to retain its world-leading capability even though it faces strong competition from new and upgraded ISOL and fragmentation facilities. As selected by the ESFRI committee, the next generation of ISOL facility in Europe is represented by the SPIRAL2 project to be built at GANIL (Caen, France). SPIRAL2 is based on a high power, CW, superconducting LINAC, delivering 5 mA of deuteron beams at 40 MeV (200 KW) directed on a C converter+ Uranium target and producing therefore more 1013 fissions/s. The expected radioactive beams intensities in the mass range from A = 60 to A = 140, will surpass by two order of magnitude any existing facilities in the world. These unstable atoms will be available at energies between few KeV/n to 15 MeV/n. The same driver will accelerate high intensity (100* A to 1 mA), heavier ions (Ar up to Xe) at maximum energy of 14 MeV/n. In applied areas SPIRAL2 is considered as a powerful variable energy neutron source. The Neutrons For Science collaboration (NFS) is proposing a physics program on fission induced by fast neutrons as well as fusion studies on materials. Under the 7FP program of European Union called*Preparatory phase*, the SPIRAL2 project has been granted a budget of about 4 M€ to build up an international consortium around this new venture. Regarding the future physics program a call for Letter of intents has been

  2. How does a planet excite multiple spiral arms?

    Science.gov (United States)

    Bae, Jaehan; Zhu, Zhaohuan

    2018-01-01

    Protoplanetary disk simulations show that a single planet excites multiple spiral arms in the background disk, potentially supported by the multi-armed spirals revealed with recent high-resolution observations in some disks. The existence of multiple spiral arms is of importance in many aspects. It is empirically found that the arm-to-arm separation increases as a function of the planetary mass, so one can use the morphology of observed spiral arms to infer the mass of unseen planets. In addition, a spiral arm opens a radial gap as it steepens into a shock, so when a planet excites multiple spiral arms it can open multiple gaps in the disk. Despite the important implications, however, the formation mechanism of multiple spiral arms has not been fully understood by far.In this talk, we explain how a planet excites multiple spiral arms. The gravitational potential of a planet can be decomposed into a Fourier series, a sum of individual azimuthal modes having different azimuthal wavenumbers. Using a linear wave theory, we first demonstrate that appropriate sets of Fourier decomposed waves can be in phase, raising a possibility that constructive interference among the waves can produce coherent structures - spiral arms. More than one spiral arm can form since such constructive interference can occur at different positions in the disk for different sets of waves. We then verify this hypothesis using a suite of two-dimensional hydrodynamic simulations. Finally, we present non-linear behavior in the formation of multiple spiral arms.

  3. Model for the local spiral structure of the galaxy

    International Nuclear Information System (INIS)

    Humphreys, R.M.

    1976-01-01

    The spatial distribution of the most luminous stars, associations, clusters, and H II regions in the region l = 270 0 to 30 0 reveal a major spiral arm, Sagittarius-Carina, which can be observed to 9 or 10 kpc from the sun in the direction l = 290 0 to 305 0 . Evidence is also presented for a spur at l = 305 0 to 310 0 on the inner side of the Saggitarius-Carina arm. The noncircular motions observed in the Carina and Sagittarius spiral features agree in both magnitude and direction and support the suggestion that Sagittarius-Carina is a major spiral arm. A model is presented for the local spiral structure with wide, massive, spiral arms which show fragmentation in our region of the Galaxy. On the basis of the optical spiral structure, the Milky Way is an Sc type spiral galaxy, perhaps of the M 101 type

  4. Mechanism of spiral formation in heterogeneous discretized excitable media.

    Science.gov (United States)

    Kinoshita, Shu-ichi; Iwamoto, Mayuko; Tateishi, Keita; Suematsu, Nobuhiko J; Ueyama, Daishin

    2013-06-01

    Spiral waves on excitable media strongly influence the functions of living systems in both a positive and negative way. The spiral formation mechanism has thus been one of the major themes in the field of reaction-diffusion systems. Although the widely believed origin of spiral waves is the interaction of traveling waves, the heterogeneity of an excitable medium has recently been suggested as a probable cause. We suggest one possible origin of spiral waves using a Belousov-Zhabotinsky reaction and a discretized FitzHugh-Nagumo model. The heterogeneity of the reaction field is shown to stochastically generate unidirectional sites, which can induce spiral waves. Furthermore, we found that the spiral wave vanished with only a small reduction in the excitability of the reaction field. These results reveal a gentle approach for controlling the appearance of a spiral wave on an excitable medium.

  5. The neutrons for science facility at SPIRAL-2

    Science.gov (United States)

    Ledoux, X.; Aïche, M.; Avrigeanu, M.; Avrigeanu, V.; Balanzat, E.; Ban-d'Etat, B.; Ban, G.; Bauge, E.; Bélier, G.; Bém, P.; Borcea, C.; Caillaud, T.; Chatillon, A.; Czajkowski, S.; Dessagne, P.; Doré, D.; Fischer, U.; Frégeau, M. O.; Grinyer, J.; Guillous, S.; Gunsing, F.; Gustavsson, C.; Henning, G.; Jacquot, B.; Jansson, K.; Jurado, B.; Kerveno, M.; Klix, A.; Landoas, O.; Lecolley, F. R.; Lecouey, J. L.; Majerle, M.; Marie, N.; Materna, T.; Mrázek, J.; Negoita, F.; Novák, J.; Oberstedt, S.; Oberstedt, A.; Panebianco, S.; Perrot, L.; Plompen, A. J. M.; Pomp, S.; Prokofiev, A. V.; Ramillon, J. M.; Farget, F.; Ridikas, D.; Rossé, B.; Sérot, O.; Simakov, S. P.; Šimečková, E.; Štefánik, M.; Sublet, J. C.; Taïeb, J.; Tarrío, D.; Tassan-Got, L.; Thfoin, I.; Varignon, C.

    2017-09-01

    Numerous domains, in fundamental research as well as in applications, require the study of reactions induced by neutrons with energies from few MeV up to few tens of MeV. Reliable measurements also are necessary to improve the evaluated databases used by nuclear transport codes. This energy range covers a large number of topics like transmutation of nuclear waste, design of future fission and fusion reactors, nuclear medicine or test and development of new detectors. A new facility called Neutrons For Science (NFS) is being built for this purpose on the GANIL site at Caen (France). NFS is composed of a pulsed neutron beam for time-of-flight facility as well as irradiation stations for cross-section measurements. Neutrons will be produced by the interaction of deuteron and proton beams, delivered by the SPIRAL-2 linear accelerator, with thick or thin converters made of beryllium or lithium. Continuous and quasi-mono-energetic spectra will be available at NFS up to 40 MeV. In this fast energy region, the neutron flux is expected to be up to 2 orders of magnitude higher than at other existing time-of-flight facilities. In addition, irradiation stations for neutron-, proton- and deuteron-induced reactions will allow performing cross-section measurements by the activation technique. After a description of the facility and its characteristics, the experiments to be performed in the short and medium term will be presented.

  6. Acute myocardial ischemia after aortic valve replacement: A comprehensive diagnostic evaluation using dynamic multislice spiral computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Lembcke, Alexander [Department of Radiology, Charite-Universitaetsmedizin Berlin, Freie Universitaet Berlin and Humboldt-Universitaet zu Berlin, Berlin (Germany)]. E-mail: alexander.lembcke@gmx.de; Hein, Patrick A. [Department of Radiology, Charite-Universitaetsmedizin Berlin, Freie Universitaet Berlin and Humboldt-Universitaet zu Berlin, Berlin (Germany); Enzweiler, Christian N.H. [Department of Radiology, Charite-Universitaetsmedizin Berlin, Freie Universitaet Berlin and Humboldt-Universitaet zu Berlin, Berlin (Germany); Hoffmann, Udo [Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA (United States); Klessen, Christian [Department of Radiology, Charite-Universitaetsmedizin Berlin, Freie Universitaet Berlin and Humboldt-Universitaet zu Berlin, Berlin (Germany); Dohmen, Pascal M. [Department of Cardiovascular Surgery, Charite-Universitaetsmedizin Berlin, Freie Universitaet Berlin and Humboldt-Universitaet zu Berlin, Berlin (Germany)

    2006-03-15

    We describe the case of a 72-year-old man presenting with endocarditis and clinical signs of acute myocardial ischemia after biological aortic valve replacement. A comprehensive cardiac dynamic multislice spiral computed tomography demonstrated: (1) an endocarditic vegetation of the aortic valve; (2) a subvalvular leakage feeding a paravalvular pseudoaneurysm based on an aortic root abscess with subsequent compromise of the systolic blood flow in the left main coronary artery and the resulting myocardial perfusion deficit.

  7. Acute myocardial ischemia after aortic valve replacement: A comprehensive diagnostic evaluation using dynamic multislice spiral computed tomography

    International Nuclear Information System (INIS)

    Lembcke, Alexander; Hein, Patrick A.; Enzweiler, Christian N.H.; Hoffmann, Udo; Klessen, Christian; Dohmen, Pascal M.

    2006-01-01

    We describe the case of a 72-year-old man presenting with endocarditis and clinical signs of acute myocardial ischemia after biological aortic valve replacement. A comprehensive cardiac dynamic multislice spiral computed tomography demonstrated: (1) an endocarditic vegetation of the aortic valve; (2) a subvalvular leakage feeding a paravalvular pseudoaneurysm based on an aortic root abscess with subsequent compromise of the systolic blood flow in the left main coronary artery and the resulting myocardial perfusion deficit

  8. Radial distributions of arm-gas offsets as an observational test of spiral theories

    OpenAIRE

    Baba, Junichi; Morokuma-Matsui, Kana; Egusa, Fumi

    2015-01-01

    Theories of stellar spiral arms in disk galaxies can be grouped into two classes based on the longevity of a spiral arm. Although the quasi-stationary density wave theory supposes that spirals are rigidly-rotating, long-lived patterns, the dynamic spiral theory predicts that spirals are differentially-rotating, transient, recurrent patterns. In order to distinguish between the two spiral models from observations, we performed hydrodynamic simulations with steady and dynamic spiral models. Hyd...

  9. Spiral optical designs for nonimaging applications

    Science.gov (United States)

    Zamora, Pablo; Benítez, Pablo; Miñano, Juan C.; Vilaplana, Juan; Buljan, Marina

    2011-10-01

    Manufacturing technologies as injection molding or embossing specify their production limits for minimum radii of the vertices or draft angle for demolding, for instance. In some demanding nonimaging applications, these restrictions may limit the system optical efficiency or affect the generation of undesired artifacts on the illumination pattern. A novel manufacturing concept is presented here, in which the optical surfaces are not obtained from the usual revolution symmetry with respect to a central axis (z axis), but they are calculated as free-form surfaces describing a spiral trajectory around z axis. The main advantage of this new concept lies in the manufacturing process: a molded piece can be easily separated from its mold just by applying a combination of rotational movement around axis z and linear movement along axis z, even for negative draft angles. Some of these spiral symmetry examples will be shown here, as well as their simulated results.

  10. Diagnosing extracranial atherosclerotic diseases with spiral CT

    International Nuclear Information System (INIS)

    Moran, C.J.; Vannier, M.W.; Erickson, K.K.; Broderick, D.F.; Kido, D.K.; Yoffie, R.L.

    1991-01-01

    This paper reports that this discovery study was performed to determine whether extracranial carotid artery plaques could be diagnosed with a new CT technique (spiral CT) that allows nondistorted three-dimensional (3D) reconstructions in the z axis. Twenty carotid arteries were examined with spiral CT in normal volunteers and in patients suspected of having atherosclerotic plaques in the extracranial carotid arteries. The Somatom Plus CT table was advanced at a constant rate, the x-ray tube was continuously rotated, and 3D data were continuously acquired. Sixty milliliters of nonionic contrast medium was injected intravenously previous to and during the acquisition of data. The carotid bifurcations were identified in all patients. Planar images, similar to conventional intraarterial angiograms, were routinely produced from the volumetric CT data

  11. Status of the SPIRAL2 injector commissioning

    Energy Technology Data Exchange (ETDEWEB)

    Thuillier, T., E-mail: thuillier@lpsc.in2p3.fr; Angot, J.; Jacob, J.; Lamy, T.; Sole, P. [LPSC, Université Grenoble Alpes, CNRS/IN2P3, 53 rue des Martyrs, 38026 Grenoble Cedex (France); Barué, C.; Bertrand, P.; Canet, C.; Ferdinand, R.; Flambard, J.-L.; Jardin, P.; Lemagnen, F.; Maunoury, L.; Osmond, B. [GANIL, CNRS/IN2P3, Bvd Henri Becquerel, BP 55027, 14076 Caen Cedex 5 (France); Biarrotte, J. L. [IPN Orsay, Université Paris Sud, CNRS/IN2P3, 15 rue Georges Clémenceau, 91406 Orsay Cedex (France); Denis, J.-F.; Roger, A.; Touzery, R.; Tuske, O.; Uriot, D. [Irfu, CEA Saclay, DSM/Irfu/SACM, 91191 Gif Sur Yvette (France); and others

    2016-02-15

    The SPIRAL2 injector, installed in its tunnel, is currently under commissioning at GANIL, Caen, France. The injector is composed of two low energy beam transport lines: one is dedicated to the light ion beam production, the other to the heavy ions. The first light ion beam, created by a 2.45 GHz electron cyclotron resonance ion source, has been successfully produced in December 2014. The first beam of the PHOENIX V2 18 GHz heavy ion source was analyzed on 10 July 2015. A status of the SPIRAL2 injector commissioning is given. An upgrade of the heavy ion source, named PHOENIX V3 aimed to replace the V2, is presented. The new version features a doubled plasma chamber volume and the high charge state beam intensity is expected to increase by a factor of 1.5 to 2 up to the mass ∼50. A status of its assembly is proposed.

  12. Rolling motions in an inner spiral arm

    International Nuclear Information System (INIS)

    Strauss, F.M.; Poeppel, W.

    1976-01-01

    Hydrogen line observations made at low galactic latitudes for l=318degree, 326degree, 334degree, and 337degree show the presence of velocity gradients in latitude in the nearest inner spiral arm, similar to those found by other observations in different regions. Maximum velocity change is about 10 km s -1 for l=337degree. By generating synthetic line profiles constructed from a model spiral arm, several possible causes of these ''rolling motions'' were studied, such as a vertical displacement or a tilt of the arm (which failed to account for the observations) and rotation or shearing in the arm. It was futher shown that a typical arm can maintain such a motion (approx. =75 km s -1 kpc -1 ) with its own gravitational potential. The results are used to study the origin and tilt of Gould's Belt

  13. Stationary spiral flow in polytropic stellar models

    Science.gov (United States)

    Pekeris, C. L.

    1980-01-01

    It is shown that, in addition to the static Emden solution, a self-gravitating polytropic gas has a dynamic option in which there is stationary flow along spiral trajectories wound around the surfaces of concentric tori. The motion is obtained as a solution of a partial differential equation which is satisfied by the meridional stream function, coupled with Poisson's equation and a Bernoulli-type equation for the pressure (density). The pressure is affected by the whole of the Bernoulli term rather than by the centrifugal part only, which acts for a rotating model, and it may be reduced down to zero at the center. The spiral type of flow is illustrated for an incompressible fluid (n = 0), for which an exact solution is obtained. The features of the dynamic constant-density model are discussed as a basis for future comparison with the solution for compressible models. PMID:16592825

  14. Nuclear

    International Nuclear Information System (INIS)

    2014-01-01

    This document proposes a presentation and discussion of the main notions, issues, principles, or characteristics related to nuclear energy: radioactivity (presence in the environment, explanation, measurement, periods and activities, low doses, applications), fuel cycle (front end, mining and ore concentration, refining and conversion, fuel fabrication, in the reactor, back end with reprocessing and recycling, transport), the future of the thorium-based fuel cycle (motivations, benefits and drawbacks), nuclear reactors (principles of fission reactors, reactor types, PWR reactors, BWR, heavy-water reactor, high temperature reactor of HTR, future reactors), nuclear wastes (classification, packaging and storage, legal aspects, vitrification, choice of a deep storage option, quantities and costs, foreign practices), radioactive releases of nuclear installations (main released radio-elements, radioactive releases by nuclear reactors and by La Hague plant, gaseous and liquid effluents, impact of releases, regulation), the OSPAR Convention, management and safety of nuclear activities (from control to quality insurance, to quality management and to sustainable development), national safety bodies (mission, means, organisation and activities of ASN, IRSN, HCTISN), international bodies, nuclear and medicine (applications of radioactivity, medical imagery, radiotherapy, doses in nuclear medicine, implementation, the accident in Epinal), nuclear and R and D (past R and D programmes and expenses, main actors in France and present funding, main R and D axis, international cooperation)

  15. Gastric spiral bacteria in small felids.

    Science.gov (United States)

    Kinsel, M J; Kovarik, P; Murnane, R D

    1998-06-01

    Nine small cats, including one bobcat (Felis rufus), one Pallas cat (F. manul), one Canada lynx (F. lynx canadensis), two fishing cats (F. viverrina), two margays (F. wiedii), and two sand cats (F. margarita), necropsied between June 1995 and March 1997 had large numbers of gastric spiral bacteria, whereas five large cats, including one African lion (Panthera leo), two snow leopards (P. uncia), one Siberian tiger (P. tigris altaica), and one jaguar (P. onca), necropsied during the same period had none. All of the spiral organisms from the nine small cats were histologically and ultrastructurally similar. Histologically, the spiral bacteria were 5-14 microm long with five to nine coils per organism and were located both extracellularly within gastric glands and surface mucus, and intracellularly in parietal cells. Spiral bacteria in gastric mucosal scrapings from the Canada lynx, one fishing cat, and the two sand cats were gram negative and had corkscrewlike to tumbling motility when viewed with phase contrast microscopy. The bacteria were 0.5-0.7 microm wide, with a periodicity of 0.65-1.1 microm in all cats. Bipolar sheathed flagella were occasionally observed, and no periplasmic fibrils were seen. The bacteria were extracellular in parietal cell canaliculi and intracellular within parietal cells. Culture of mucosal scrapings from the Canada lynx and sand cats was unsuccessful. Based on morphology, motility, and cellular tropism, the bacteria were probably Helicobacter-like organisms. Although the two margays had moderate lymphoplasmacytic gastritis, the other cats lacked or had only mild gastric lymphoid infiltrates, suggesting that these organisms are either commensals or opportunistic pathogens.

  16. Star distribution in the Orion spiral arm

    International Nuclear Information System (INIS)

    Basharina, T.S.; Pavlovskaya, E.D.; Filippova, A.A.

    1985-01-01

    The structure of the Orion spiral arm is studied by numerical experiments, assuming that in each direction considered the star distribution along the line of sight is a combination of two Gaussian laws. The corresponding parameters are evaluated for four Milky Way fields; the bimodal laws now fit the observations by the chi 2 criterion. In the Orion arm the line-of-sight star densities follow asymmetric curves, steeper at the outer edge of the arm

  17. The surface brightness of spiral galaxies

    International Nuclear Information System (INIS)

    Phillipps, S.; Disney, M.

    1983-01-01

    It is proposed that Freeman's discovery that the extrapolated central surface brightness of spiral galaxies is approximately constant can be simply explained if the galaxies contain a spheroidal component which dominates the light in their outer isophotes. Calculations of an effective central surface brightness indicate a wide spread of values. This requires either a wide spread in disc properties or significant spheroidal components or, most probably, both. (author)

  18. A Fermat's spiral multifilament-core fiber

    Science.gov (United States)

    Tartara, L.; Codemard, C.

    2013-02-01

    A multifilament-core optical fiber where the microstructure is arranged in a Fermat's spiral is presented. The properties of such a fiber to be exploited for laser light amplification are numerically investigated by means of a full-vectorial finite-element method. Thanks to this peculiar microstructure, the fiber is shown to have an increased Brillouin threshold power and very low bending losses, while preserving a very good beam spatial quality.

  19. Spiral-arm instability: giant clump formation via fragmentation of a galactic spiral arm

    Science.gov (United States)

    Inoue, Shigeki; Yoshida, Naoki

    2018-03-01

    Fragmentation of a spiral arm is thought to drive the formation of giant clumps in galaxies. Using linear perturbation analysis for self-gravitating spiral arms, we derive an instability parameter and define the conditions for clump formation. We extend our analysis to multicomponent systems that consist of gas and stars in an external potential. We then perform numerical simulations of isolated disc galaxies with isothermal gas, and compare the results with the prediction of our analytic model. Our model describes accurately the evolution of the spiral arms in our simulations, even when spiral arms dynamically interact with one another. We show that most of the giant clumps formed in the simulated disc galaxies satisfy the instability condition. The clump masses predicted by our model are in agreement with the simulation results, but the growth time-scale of unstable perturbations is overestimated by a factor of a few. We also apply our instability analysis to derive scaling relations of clump properties. The expected scaling relation between the clump size, velocity dispersion, and circular velocity is slightly different from that given by the Toomre instability analyses, but neither is inconsistent with currently available observations. We argue that the spiral-arm instability is a viable formation mechanism of giant clumps in gas-rich disc galaxies.

  20. Incorporating hydrologic variability into nutrient spiraling

    Science.gov (United States)

    Doyle, Martin W.

    2005-09-01

    Nutrient spiraling describes the path of a nutrient molecule within a stream ecosystem, combining the biochemical cycling processes with the downstream driving force of stream discharge. To date, nutrient spiraling approaches have been hampered by their inability to deal with fluctuating flows, as most studies have characterized nutrient retention within only a small range of discharges near base flow. Here hydrologic variability is incorporated into nutrient spiraling theory by drawing on the fluvial geomorphic concept of effective discharge. The effective discharge for nutrient retention is proposed to be that discharge which, over long periods of time, is responsible for the greatest portion of nutrient retention. A developed analytical model predicts that the effective discharge for nutrient retention will equal the modal discharge for small streams or those with little discharge variability. As modal discharge increases or discharge variability increases, the effective discharge becomes increasingly less than the modal discharge. In addition to the effective discharge, a new metric is proposed, the functionally equivalent discharge, which is the single discharge that will reproduce the magnitude of nutrient retention generated by the full hydrologic frequency distribution when all discharge takes place at that rate. The functionally equivalent discharge was found to be the same as the modal discharge at low hydrologic variability, but increasingly different from the modal discharge at large hydrologic variability. The functionally equivalent discharge provides a simple quantitative means of incorporating hydrologic variability into long-term nutrient budgets.

  1. Rarefied, rotational gas flows in spiral galaxies

    International Nuclear Information System (INIS)

    Roberts, W.W. Jr.; Hausman, M.A.

    1983-01-01

    We develop a computational model of a rotating, rarefied gas in which the individual molecules collide inelastically and are subject to circularly asymmetric external forces and internal heating sources. This model is applied to the interstellar medium (ISM) of spiral galaxies, in which most of the matter is confined to discrete gas clouds separated by a tenuous intercloud medium. We identify inelastically-colliding gas molecules with interstellar clouds which orbit ballistically in the galactic gravitational field and are perturbed by expanding shells surrounding supernovae. When a small, spiral perturbation is added to the gravitational force to mimic a spiral galaxy, the cloud distribution responds with a strong, global shock. In the model, stars are formed from the gas when clouds collide or are perturbed by supernovae; these stars are the internal heating sources for the gas cloud system. We determine the morphologies (evolution, distribution) of the two components, gas and stars, in the model as functions of varying input physics. Variation of the cloud system's collisional mean free path (over physically-realistic ranges) has remarkably little influence on the computed shock structure

  2. The 1+/n+ solution for SPIRAL ?

    International Nuclear Information System (INIS)

    Villari, A.C.C.; Bruandet, J.S.; Chauvin, N.; Curdy, J.C.; Gaubert, G.; Lamy, T.; Maunoury, L.; Sole, J.P.; Sortais, P.; Vieux-Rochaz, J.L.

    1997-01-01

    The use of a primary ion source for the production of 1+ ions in the production cave of SPIRAL with subsequent injection in an ECRIS (Electron Cyclotron Resonance Ion Source) for charge multiplication is discussed. The first results obtained at ISN Grenoble for the production of Rb (9+) and Ar (8+) stable beams are presented. The overall efficiency of this system for the production of the Ar beams is compared with the present situation where the ECRIS is placed inside the cave of SPIRAL. An important gain in the reliability and reduction of functioning costs would be obtained in the case of the implementation of the 1+/n+ mode in the SPIRAL project at GANIL. A reduction of overall efficiency of a factor 1.5 to 3 with respect to the present NANOGAN-II ensemble is expected for light noble gas radioactive ion beams. This factor can be reduced depending on the choice of the ECRIS for a particular multicharged ion production. Finally, important R and D is needed for extending the range of elements to be produced in the 1+/n+ mode and to define 'good' ion sources with small energy dispersion for 1+ production. (authors)

  3. The spiral-compact galaxy pair AM 2208-251: Computer simulations versus observations

    International Nuclear Information System (INIS)

    Klaric, M.; Byrd, G.G.

    1990-01-01

    The system AM2208-251 is a roughly edge-on spiral extending east-west with a smaller round compact E system about 60 arcsec east of the spiral nucleus along the major axis of the spiral. Spectroscopic observations may indicate a tidal interaction in the system. In order to learn more about such pairs, the authors simulated the interaction using the computer model developed by Miller (1976 a,b, 1978) and modified by the authors (Byrd 1986, 1987, 1988). To do the simulation they need an idea of the mutual orbits of the two galaxies. Their computer model is a two-dimensional polar N-body program. It consists of a self-gravitating disk of particles, within an inert axially symmetric stabilizing halo potential. The particles are distributed in a 24(radial) by 36(azimuthal) polar grid. Self consistent calculations can be done only within the grid area. The disk is modeled with a finite Mestel disk, where all the particles initially move in circular orbits with constant tangential velocities (Mestel 1963), resulting in a flat rotation curve. The gas particles in the spiral's disk, which make up 30 percent of its mass, collide in the following manner. The number of particles in each bin of the polar grid is counted every time step. If it is greater than a given critical density, all the particles in the bin collide, obtaining in the result the same velocities, equal to the average for the bin. This process produces clumps of gas particles-the star formation sites. The authors suppress the collision in the inner part of the disk (within the circle r = 6) to represent the hole seen in the gas in the nuclear bulge of spirals. They thus avoid spurious effects due to collisions in that region

  4. Studies on a burner used biomass pellets as fuel. Performance of a spiral vortex pellet burner

    Energy Technology Data Exchange (ETDEWEB)

    Iwao, Toshio

    1987-12-21

    In order to develop a small size burner with high performance using biomass pellets fuel substitute for fuel oil, the burning performance of a spiral vortex pallet burner has been studied. An experimental equipment for the pellet burning is made up of a fuel supply unit, combustion chamber and a furnace. The used woody pellet is made of mixed sawdust and bark; with water content of 10.29%, particle diameter of 5.5-9mm, length of 5-50mm, and, apparent and real specific gravities are 0.59 and 1.334 respectively. The pellets are sent to bottom of the combustion chamber, spiral vortex combustion are carried out with blown air, the ashes and unburnt residues are discharged to out of combustion chamber with spiral vortex hot gases. As the result, it was clarified that the formation of the burning layers in a burner is required to be in order of the layers of ash, oxidation, reduction and carbonization up to the upper layer for high burning performance, and the formation of the layer is influenced by the condition of sedimentation of pellets in the combustion chamber. In the meanwhile the burning performance of the burner is influenced by the quantity of blast, the rate of feeding, and by the time of pre-heating in the combustion chamber. (23 figs, 5 refs)

  5. Melter feed viscosity during conversion to glass: Comparison between low-activity waste and high-level waste feeds

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Tongan [Pacific Northwest National Laboratory, Richland Washington; Chun, Jaehun [Pacific Northwest National Laboratory, Richland Washington; Dixon, Derek R. [Pacific Northwest National Laboratory, Richland Washington; Kim, Dongsang [Pacific Northwest National Laboratory, Richland Washington; Crum, Jarrod V. [Pacific Northwest National Laboratory, Richland Washington; Bonham, Charles C. [Pacific Northwest National Laboratory, Richland Washington; VanderVeer, Bradley J. [Pacific Northwest National Laboratory, Richland Washington; Rodriguez, Carmen P. [Pacific Northwest National Laboratory, Richland Washington; Weese, Brigitte L. [Pacific Northwest National Laboratory, Richland Washington; Schweiger, Michael J. [Pacific Northwest National Laboratory, Richland Washington; Kruger, Albert A. [U.S. Department of Energy, Office of River Protection, Richland Washington; Hrma, Pavel [Pacific Northwest National Laboratory, Richland Washington

    2017-12-07

    During nuclear waste vitrification, a melter feed (generally a slurry-like mixture of a nuclear waste and various glass forming and modifying additives) is charged into the melter where undissolved refractory constituents are suspended together with evolved gas bubbles from complex reactions. Knowledge of flow properties of various reacting melter feeds is necessary to understand their unique feed-to-glass conversion processes occurring within a floating layer of melter feed called a cold cap. The viscosity of two low-activity waste (LAW) melter feeds were studied during heating and correlated with volume fractions of undissolved solid phase and gas phase. In contrast to the high-level waste (HLW) melter feed, the effects of undissolved solid and gas phases play comparable roles and are required to represent the viscosity of LAW melter feeds. This study can help bring physical insights to feed viscosity of reacting melter feeds with different compositions and foaming behavior in nuclear waste vitrification.

  6. Transitions between Taylor vortices and spirals via wavy Taylor vortices and wavy spirals

    International Nuclear Information System (INIS)

    Hoffmann, Ch; Altmeyer, S; Pinter, A; Luecke, M

    2009-01-01

    We present numerical simulations of closed wavy Taylor vortices and of helicoidal wavy spirals in the Taylor-Couette system. These wavy structures appearing via a secondary bifurcation out of Taylor vortex flow and out of spiral vortex flow, respectively, mediate transitions between Taylor and spiral vortices and vice versa. Structure, dynamics, stability and bifurcation behaviour are investigated in quantitative detail as a function of Reynolds numbers and wave numbers for counter-rotating as well as corotating cylinders. These results are obtained by solving the Navier-Stokes equations subject to axial periodicity for a radius ratio η=0.5 with a combination of a finite differences method and a Galerkin method.

  7. Ablation acceleration of macroparticle in spiral magnetic fields

    International Nuclear Information System (INIS)

    Ikuta, Kazunari.

    1981-05-01

    The rocket motion of macroparticles heated by energetic pulses in a spiral magnetic field was studied. The purpose of the present work is to study the ablation acceleration of a macroparticle in a spiral magnetic field with the help of the law of conservation of angular momentum. The basic equation of motion of ablatively accelerated projectile in a spiral magnetic field was derived. Any rocket which is ejecting fully ionized plasma in an intense magnetic field with rotational transform is able to have spin by the law of conservation of momentum. The effect of spiral magnetic field on macroparticle acceleration is discussed. The necessary mass ratio increase exponentially with respect to the field parameter. The spiral field should be employed with care to have only to stabilize the position of macroparticles. As conclusion, it can be said that the ablation acceleration of the projectile in a spiral field can give the accelerated body spin quite easily. (Kato, T.)

  8. Mechanical response of spiral interconnect arrays for highly stretchable electronics

    KAUST Repository

    Qaiser, Nadeem

    2017-11-21

    A spiral interconnect array is a commonly used architecture for stretchable electronics, which accommodates large deformations during stretching. Here, we show the effect of different geometrical morphologies on the deformation behavior of the spiral island network. We use numerical modeling to calculate the stresses and strains in the spiral interconnects under the prescribed displacement of 1000 μm. Our result shows that spiral arm elongation depends on the angular position of that particular spiral in the array. We also introduce the concept of a unit-cell, which fairly replicates the deformation mechanism for full complex hexagon, diamond, and square shaped arrays. The spiral interconnects which are axially connected between displaced and fixed islands attain higher stretchability and thus experience the maximum deformations. We perform tensile testing of 3D printed replica and find that experimental observations corroborate with theoretical study.

  9. Optical and theoretical studies of giant clouds in spiral galaxies

    International Nuclear Information System (INIS)

    Elmegreen, B.G.; Elmegreen, D.M.

    1980-01-01

    An optical study of four spiral galaxies, combined with radiative transfer models for transmitted and scattered light, has led to a determination of the opacities and masses of numerous dark patches and dust lanes that outline spiral structure. The observed compression factors for the spiral-like dust lanes are in accord with expectations from the theory of gas flow in spiral density waves. Several low density (10 2 cm -3 ) clouds containing 10 6 to 10 7 solar masses were also studied. These results are discussed in terms of recent theoretical models of cloud and star formation in spiral galaxies. The long-term evolution of giant molecular clouds is shown to have important consequences for the positions and ages of star formation sites in spiral arms. (Auth.)

  10. Wave-particle dualism of spiral waves dynamics.

    Science.gov (United States)

    Biktasheva, I V; Biktashev, V N

    2003-02-01

    We demonstrate and explain a wave-particle dualism of such classical macroscopic phenomena as spiral waves in active media. That means although spiral waves appear as nonlocal processes involving the whole medium, they respond to small perturbations as effectively localized entities. The dualism appears as an emergent property of a nonlinear field and is mathematically expressed in terms of the spiral waves response functions, which are essentially nonzero only in the vicinity of the spiral wave core. Knowledge of the response functions allows quantitatively accurate prediction of the spiral wave drift due to small perturbations of any nature, which makes them as fundamental characteristics for spiral waves as mass is for the condensed matter.

  11. Mechanical response of spiral interconnect arrays for highly stretchable electronics

    KAUST Repository

    Qaiser, Nadeem; Khan, S. M.; Nour, Maha A.; Rehman, M. U.; Rojas, J. P.; Hussain, Muhammad Mustafa

    2017-01-01

    A spiral interconnect array is a commonly used architecture for stretchable electronics, which accommodates large deformations during stretching. Here, we show the effect of different geometrical morphologies on the deformation behavior of the spiral island network. We use numerical modeling to calculate the stresses and strains in the spiral interconnects under the prescribed displacement of 1000 μm. Our result shows that spiral arm elongation depends on the angular position of that particular spiral in the array. We also introduce the concept of a unit-cell, which fairly replicates the deformation mechanism for full complex hexagon, diamond, and square shaped arrays. The spiral interconnects which are axially connected between displaced and fixed islands attain higher stretchability and thus experience the maximum deformations. We perform tensile testing of 3D printed replica and find that experimental observations corroborate with theoretical study.

  12. Staging of gastric adenocarcinoma using two-phase spiral CT: correlation with pathologic staging

    International Nuclear Information System (INIS)

    Seo, Tae Seok; Lee, Dong Ho; Ko, Young Tae; Lim, Joo Won

    1998-01-01

    To correlate the preoperative staging of gastric adenocarcinoma using two-phase spiral CT with pathologic staging. One hundred and eighty patients with gastric cancers confirmed during surgery underwent two-phase spiral CT, and were evaluated retrospectively. CT scans were obtained in the prone position after ingestion of water. Scans were performed 35 and 80 seconds after the start of infusion of 120mL of non-ionic contrast material with the speed of 3mL/sec. Five mm collimation, 7mm/sec table feed and 5mm reconstruction interval were used. T-and N-stage were determined using spiral CT images, without knowledge of the pathologic results. Pathologic staging was later compared with CT staging. Pathologic T-stage was T1 in 70 cases(38.9%), T2 in 33(18.3%), T3 in 73(40.6%), and T4 in 4(2.2%). Type-I or IIa elevated lesions accouted for 10 of 70 T1 cases(14.3%) and flat or depressed lesions(type IIb, IIc, or III) for 60(85.7%). Pathologic N-stage was NO in 85 cases(47.2%), N1 in 42(23.3%), N2 in 31(17.2%), and N3 in 22(12,2%). The detection rate of early gastric cancer using two-phase spiral CT was 100.0%(10 of 10 cases) among elevated lesions and 78.3%(47 of 60 cases) among flat or depressed lesions. With regard to T-stage, there was good correlation between CT image and pathology in 86 of 180 cases(47.8%). Overstaging occurred in 23.3%(42 of 180 cases) and understaging in 28.9%(52 of 180 cases). With regard to N-stage, good correlation between CT image and pathology was noted in 94 of 180 cases(52.2%). The rate of understaging(31.7%, 57 of 180 cases) was higher than that of overstaging(16.1%, 29 of 180 cases)(p<0.001). The detection rate of early gastric cancer using two-phase spiral CT was 81.4%, and there was no significant difference in detectability between elevated and depressed lesions. Two-phase spiral CT for determing the T-and N-stage of gastric cancer was not effective;it was accurate in abont 50% of cases understaging tended to occur.=20

  13. The Neutrons for Science Facility at SPIRAL-2

    Energy Technology Data Exchange (ETDEWEB)

    Ledoux, X.; Bauge, E.; Belier, G.; Caillaud, T.; Chatillon, A.; Granier, T.; Landoas, O.; Rosse, B.; Taieeb, J.; Thfoin, I.; Varignon, C. [CEA/DAM/DIF, F-91297, Arpajon (France); Aieche, M.; Barreau, G.; Czajkowski, S.; Jurado, B.; Tsekhanovich, I. [CENBG, Gradignan (France); Avrigeanu, M.; Avrigeanu, V.; Borcea, C.; Negoita, F. [NIPNE, Bucharest (Romania); and others

    2011-12-13

    The ''Neutrons for Science''(NFS) facility will be a component of SPIRAL-2, the future accelerator dedicated to the production of very intense radioactive ion beams, under construction at GANIL in Caen (France). NFS will be composed of a pulsed neutron beam for in-flight measurements and irradiation stations for cross-section measurements and material studies. Continuous and quasi-monokinetic energy spectra will be available at NFS respectively produced by the interaction of deuteron beam on thick a Be converter and by the {sup 7}Li(p,n) reaction on a thin converter. The flux at NFS will be up to 2 orders of magnitude higher than those of other existing time-of-flight facilities in the 1 MeV to 40 MeV range. NFS will be a very powerful tool for physics and fundamental research as well as applications like the transmutation of nuclear waste, design of future fission and fusion reactors, nuclear medicine or test and development of new detectors.

  14. The Neutrons for Science Facility at SPIRAL-2

    International Nuclear Information System (INIS)

    Ledoux, X.; Bauge, E.; Belier, G.; Caillaud, T.; Chatillon, A.; Granier, T.; Landoas, O.; Rosse, B.; Taieeb, J.; Thfoin, I.; Varignon, C.; Aieche, M.; Barreau, G.; Czajkowski, S.; Jurado, B.; Tsekhanovich, I.; Avrigeanu, M.; Avrigeanu, V.; Borcea, C.; Negoita, F.

    2011-01-01

    The ''Neutrons for Science''(NFS) facility will be a component of SPIRAL-2, the future accelerator dedicated to the production of very intense radioactive ion beams, under construction at GANIL in Caen (France). NFS will be composed of a pulsed neutron beam for in-flight measurements and irradiation stations for cross-section measurements and material studies. Continuous and quasi-monokinetic energy spectra will be available at NFS respectively produced by the interaction of deuteron beam on thick a Be converter and by the 7 Li(p,n) reaction on a thin converter. The flux at NFS will be up to 2 orders of magnitude higher than those of other existing time-of-flight facilities in the 1 MeV to 40 MeV range. NFS will be a very powerful tool for physics and fundamental research as well as applications like the transmutation of nuclear waste, design of future fission and fusion reactors, nuclear medicine or test and development of new detectors.

  15. Nonlinear dynamics of breathers in the spiral structures of magnets

    Energy Technology Data Exchange (ETDEWEB)

    Kiselev, V. V., E-mail: kiselev@imp.uran.ru; Raskovalov, A. A. [Russian Academy of Sciences, Mikheev Institute of Metal Physics, Ural Branch (Russian Federation)

    2016-06-15

    The structure and properties of pulsating solitons (breathers) in the spiral structures of magnets are analyzed within the sine-Gordon model. The breather core pulsations are shown to be accompanied by local shifts and oscillations of the spiral structure with the formation of “precursors” and “tails” in the moving soliton. The possibilities for the observation and excitation of breathers in the spiral structures of magnets and multiferroics are discussed.

  16. Compression of interstellar clouds in spiral density-wave shocks

    International Nuclear Information System (INIS)

    Woodward, P.R.

    1979-01-01

    A mechanism of triggering star formation by galactic shocks is discussed. The possibilty that shocks may form along spiral arms in the gaseous component of a galactic disk is by now a familiar feature of spiral wave theory. It was suggested by Roberts (1969) that these shocks could trigger star formation in narrow bands forming a coherent spiral pattern over most of the disk of a galaxy. Some results of computer simulations of such a triggering process for star formation are reported. (Auth.)

  17. Cochlea and other spiral forms in nature and art.

    Science.gov (United States)

    Marinković, Slobodan; Stanković, Predrag; Štrbac, Mile; Tomić, Irina; Ćetković, Mila

    2012-01-01

    The original appearance of the cochlea and the specific shape of a spiral are interesting for both the scientists and artists. Yet, a correlation between the cochlea and the spiral forms in nature and art has been very rarely mentioned. The aim of this study was to investigate the possible correlation between the cochlea and the other spiral objects in nature, as well as the artistic presentation of the spiral forms. We explored data related to many natural objects and examined 13,625 artworks created by 2049 artists. We also dissected 2 human cochleas and prepared histologic slices of a rat cochlea. The cochlea is a spiral, cone-shaped osseous structure that resembles certain other spiral forms in nature. It was noticed that parts of some plants are arranged in a spiral manner, often according to Fibonacci numbers. Certain animals, their parts, or their products also represent various types of spirals. Many of them, including the cochlea, belong to the logarithmic type. Nature created spiral forms in the living world to pack a larger number of structures in a limited space and also to improve their function. Because the cochlea and other spiral forms have a certain aesthetic value, many artists presented them in their works of art. There is a mathematical and geometric correlation between the cochlea and natural spiral objects, and the same functional reason for their formation. The artists' imagery added a new aspect to those domains. Obviously, the creativity of nature and Homo sapiens has no limits--like the infinite distal part of the spiral. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. Diagnosis of pancreatic tumors by spiral angio CT

    International Nuclear Information System (INIS)

    Miura, Kohi; Nakao, Norio; Takayasu, Yukio; Okawa, Tomohisa

    1995-01-01

    Spiral angio were performed with injection of 30 ml of contrast material at a rate of 1 ml/sec with a scan delay of 6 sec through catheter into the celiac artery while the blood flow of the superior mesenteric artery (SMA) was occluded by the inflated balloon catheter. Spiral CT scans were obtained using Somatom Plus (Siemens). Parameter for spiral CT were 24-sec acquisition time, 5 mm collimation, 5 mm/sec table incrementation. Reconstructions were performed every 5 mm. Pancreatic cancers were characteristically depicted with spiral angio CT as hypodensity relative to normal enhanced pancreatic parenchyma. On dynamic angio CT studies performed in pancreatic cancers, the area of cancer and normal parenchyma had maximum level of enhancement at 10-15 sec after injection of contrast material via catheter into the celiac, and there was no difference in enhancement between tumor and normal parenchyma. On the other hand, the lesions of cancer were revealed as hypodensity with spiral angio CT. In case of chronic pancreatitis, the enhancement of the entire pancreas obtained with spiral angio CT was homogeneous. Insulinoma in the tail of pancreas was detected by spiral angio CT but was not detected by both selective angiography and conventional CT. Three-dimensional (3-D) rendering spiral angio CT data shows the extent of vascular involvement by pancreatic cancer and provides useful information for surgical planning. Spiral angio CT is the most useful procedure for diagnosis of pancreatic tumor. (author)

  19. SPIRAL2 Week 2012 - Slides of the presentations

    International Nuclear Information System (INIS)

    Staley, F.; Jacquemet, M.; Lewitowicz, M.; Bertrand, P.; Tuske, O.; Caruso, A.; Leyge, J.F.; Perrot, L.; Di Giacomo, M.; Ausset, P.; Moscatello, M.H.; Savalle, A.; Rannou, B.; Lambert, M.; Petit, E.; Hulin, X.; Barre-Boscher, N.; Tusseau-Nenez, S.; Tecchio, L.B.

    2013-01-01

    The main goal of the 5. edition of the SPIRAL2 Week is to present and discuss the current status of the SPIRAL2 project in front of a large community of scientists and engineers. The program of the meeting will include presentations on scientific and technical developments related to the baseline project, experiments and theory. The main topics to be discussed at the conference are: -) physics and detectors at SPIRAL2, -) driver accelerators, -) production of radioactive ion beams (RIB), -) safety, -) buildings and infrastructure, -) RIB facilities worldwide, and -) SPIRAL2 preparatory phase. This document is made up of the slides of the presentations

  20. Algorithms for computing efficient, electric-propulsion, spiralling trajectories

    Data.gov (United States)

    National Aeronautics and Space Administration — Develop techniques for rapidly designing many-revolution, electric-propulsion, spiralling trajectories, including the effects of shadowing, gravity harmonics, and...

  1. On the nature of the ramified spiral structure of galaxies

    International Nuclear Information System (INIS)

    Mishurov, Yu.N.; Suchkov, A.A.

    1976-01-01

    The nature of large-scale branching of spiral arms observed in a number of galaxies has been explained in the framework of the density wave theory. The solutions of the dispersion equation of spiral waves of density relative to the wave number k(r) in the models of galaxies in the form of two discs rotating with different angular velocities have been shown to be branching functions of the parameter r (r is the galacto-centric distance) under definite conditions; it corresponds to the branching of spiral arms. Hydrodynamic and kinetic considerations are also presented. The last one makes possible the understanding several other structural properties of spiral galaxies

  2. Influence of excitability on unpinning and termination of spiral waves.

    Science.gov (United States)

    Luengviriya, Jiraporn; Sutthiopad, Malee; Phantu, Metinee; Porjai, Porramain; Kanchanawarin, Jarin; Müller, Stefan C; Luengviriya, Chaiya

    2014-11-01

    Application of electrical forcing to release pinned spiral waves from unexcitable obstacles and to terminate the rotation of free spiral waves at the boundary of excitable media has been investigated in thin layers of the Belousov-Zhabotinsky (BZ) reaction, prepared with different initial concentrations of H_{2}SO_{4}. Increasing [H_{2}SO_{4}] raises the excitability of the reaction and reduces the core diameter of free spiral waves as well as the wave period. An electric current with density stronger than a critical value Junpin causes a pinned spiral wave to drift away from the obstacle. For a given obstacle size, Junpin increases with [H_{2}SO_{4}]. Under an applied electrical current, the rotation center of a free spiral wave drifts along a straight path to the boundary. When the current density is stronger than a critical value Jterm, the spiral tip is forced to hit the boundary, where the spiral wave is terminated. Similar to Junpin for releasing a pinned spiral wave, Jterm also increases with [H_{2}SO_{4}]. These experimental findings were confirmed by numerical simulations using the Oregonator model, in which the excitability was adjusted via the ratio of the excitation rate to the recovery rate of the BZ reaction. Therefore, our investigation shows that decreasing the excitability can facilitate elimination of spiral waves by electrical forcing, either in the presence of obstacles or not.

  3. Thin and thick targets for radioactive ion beam production at SPIRAL1 facility

    Science.gov (United States)

    Jardin, P.; Bajeat, O.; Delahaye, P.; Dubois, M.; Kuchi, V.; Maunoury, L.

    2018-05-01

    The upgrade of the Système de Production d'Ions Radioactifs Accélérés en Ligne (SPIRAL1) facility will deliver its new Radioactive Ion Beams (RIB) by summer 2017. The goal of the upgrade is an improvement of the performances of the installation in terms of isotopes species and ion charge states [1]. Ion beams are produced using the Isotope Separator On Line Method, consisting in an association of a primary beam of stable ions, a hot target and an ion source. The primary beam impinges on the material of the target. Radioactive isotopes are produced by nuclear reactions and propagate up to the source, where they are ionized and accelerated to create a RIB. One advantage of SPIRAL1 driver is the variety of its available primary beams, from carbon to uranium with energies up to 95 MeV/A. Within the SPIRAL1 upgrade, they will be combined with targets made of a large choice of materials, extending in this way the number of possible nuclear reactions (fusion-evaporation, transfer, fragmentation) for producing a wider range of isotopes, up to regions of the nuclide chart still scarcely explored. Depending on the reaction process, on the collision energy and on the primary beam power, thin and thick targets are used. As their functions can be different, their design must cope with specific constraints which will be described. After a presentation of the goals of present and future SPIRAL1 Target Ion Source System, the main target features, studies and designs under progress are presented.

  4. ECOSYS-87: Model calculations of the activity in cattle meat related to deposition time and feeding regimes after a nuclear fallout

    International Nuclear Information System (INIS)

    Riesen, T.K.; Gottofrey, J.; Heiz, H.J.; Schenker-Wicki, A.

    1996-01-01

    The radioecological model ECOSYS087 was used to evaluate the effect of countermeasures for reducing the ingestion dose by eating cattle meat after an accidental release of radioactive material. Calculations were performed using a database adapted to Swiss conditions for the case that (1) contaminated grass or hay is replaced by clean fodder; (2) the last 100 days before slaughter, taking place one year after an accident, only uncontaminated fodder is given; and (3) alternative feeding regimes are chosen. Seasonal effects were considered by doing all calculations for a deposition at each month of the year. Feeding uncontaminated forage 100 d before slaughter (case 2) proved to be the most effective countermeasure and reduced the integrated activity in meat by 90% to 99%. The effect of replacing contaminated grass (case 1) was less uniform and depended strongly on the time a deposition occurred. In this case the reduction was between 50% and 100% one year after deposition. The substitution of contaminated hay (case 1) was less effective compared to the substitution of grass. The choice of alternative feeding regimes (case 1) was less effective compared to the substitution of grass. The choice of alternative feeding regimes (case 3) led to a reduction of the integrated activity of up to 40% one year after deposition. The present model calculations clearly reveal the importance of the seasonality and demonstrate the usefulness of such calculations as a basis for generating countermeasures in decision support systems. 8 refs., 1 fig., 5 tabs

  5. Design, simulations and test of a Time-of-Flight spectrometer for mass measurement of exotic beams from SPIRAL1/SPIRAL2 and γ-ray spectroscopy of N=Z nuclei close to 100Sn

    International Nuclear Information System (INIS)

    Chauveau, Pierre

    2016-01-01

    The new generation of nuclear facilities calls for new technological developments to produce, accelerate, manipulate and analyse exotic nuclei. The main topic of this thesis work was the simulation, design and test of a Multi-Reflection Time-of-Flight Mass spectrometer (MR-ToFMS) for fast mass separation and fast mass measurement of radioactive ions in the installations S3 and DESIR at SPIRAL2. Such a device could separate isobaric nuclei and provide SPIRAL2 with high purity beams. Also, its mass measurement capabilities would help to determine binding energies of exotic and superheavy nuclei with a high precision. This apparatus has been simulated with the SIMION 8.1 software and designed accordingly. First offline tests have been performed with a stable ion source at LPC Caen. In addition a low-aberration electrostatic deflector has been simulated and designed to operate with this MR-ToF-MS without spoiling its performances. This work also describes the analysis and results of the first online tests of a FEBIAD-type ion source intended to provide SPIRAL1 and SPIRAL2 radioactive beams of competitive intensities. Finally, we describe the analysis of a nuclear physics experiment, including the calibration of the different detectors and the gamma-spectroscopy of nuclei in the vicinity of the doubly magic 100 Sn. (author) [fr

  6. A Unified Scaling Law in Spiral Galaxies.

    Science.gov (United States)

    Koda; Sofue; Wada

    2000-03-01

    We investigate the origin of a unified scaling relation in spiral galaxies. Observed spiral galaxies are spread on a plane in the three-dimensional logarithmic space of luminosity L, radius R, and rotation velocity V. The plane is expressed as L~&parl0;VR&parr0;alpha in the I passband, where alpha is a constant. On the plane, observed galaxies are distributed in an elongated region which looks like the shape of a surfboard. The well-known scaling relations L-V (Tully-Fisher [TF] relation), V-R (also the TF relation), and R-L (Freeman's law) can be understood as oblique projections of the surfboard-like plane into two-dimensional spaces. This unified interpretation of the known scaling relations should be a clue to understand the physical origin of all the relations consistently. Furthermore, this interpretation can also explain why previous studies could not find any correlation between TF residuals and radius. In order to clarify the origin of this plane, we simulate formation and evolution of spiral galaxies with the N-body/smoothed particle hydrodynamics method, including cooling, star formation, and stellar feedback. Initial conditions are set to 14 isolated spheres with two free parameters, such as mass and angular momentum. The cold dark matter (h=0.5, Omega0=1) cosmology is considered as a test case. The simulations provide the following two conclusions: (1) The slope of the plane is well reproduced but the zero point is not. This zero-point discrepancy could be solved in a low-density (Omega00.5) cosmology. (2) The surfboard-shaped plane can be explained by the control of galactic mass and angular momentum.

  7. Influence of nanomechanical crystal properties on the comminution process of particulate solids in spiral jet mills.

    Science.gov (United States)

    Zügner, Sascha; Marquardt, Karin; Zimmermann, Ingfried

    2006-02-01

    Elastic-plastic properties of single crystals are supposed to influence the size reduction process of bulk materials during jet milling. According to Pahl [M.H. Pahl, Zerkleinerungstechnik 2. Auflage. Fachbuchverlag, Leipzig (1993)] and H. Rumpf: [Prinzipien der Prallzerkleinerung und ihre Anwendung bei der Strahlmahlung. Chem. Ing. Tech., 3(1960) 129-135.] fracture toughness, maximum strain or work of fracture for example are strongly dependent on mechanical parameters like hardness (H) and young's modulus of elasticity (E). In addition the dwell time of particles in a spiral jet mill proved to correlate with the hardness of the feed material [F. Rief: Ph. D. Thesis, University of Würzburg (2001)]. Therefore 'near-surface' properties have a direct influence on the effectiveness of the comminution process. The mean particle diameter as well as the size distribution of the ground product may vary significantly with the nanomechanical response of the material. Thus accurate measurement of crystals' hardness and modulus is essential to determine the ideal operational micronisation conditions of the spiral jet mill. The recently developed nanoindentation technique is applied to examine subsurface properties of pharmaceutical bulk materials, namely calcite, sodium ascorbate, lactose and sodium chloride. Pressing a small sized tip into the material while continuously recording load and displacement, characteristic diagrams are derived. The mathematical evaluation of the force-displacement-data allows for calculation of the hardness and the elastic modulus of the investigated material at penetration depths between 50-300 nm. Grinding experiments performed with a modified spiral jet mill (Type Fryma JMRS 80) indicate the strong impact of the elastic-plastic properties of a given substance on its breaking behaviour. The fineness of milled products produced at constant grinding conditions but with different crystalline powders varies significantly as it is dependent on the

  8. New compact cyclotron design for SPIRAL

    International Nuclear Information System (INIS)

    Duval, M.; Bourgarel, M.P.; Ripouteau, F.

    1995-01-01

    The SPIRAL project whose purpose is the production and the acceleration of radioactive nuclei is under realization at GANIL. The new facility uses a cyclotron as post accelerator taking place behind the present machine. The magnet structure is made of 4 independent return yokes and a common circular pole piece (3.5 m in diameter) with 4 sectors. The average induction needed is 1.56 Tesla with hill and valley gaps of respectively 0.12 and 0.3 m. The required field patterns are adjusted by means of circular trim coils located between the sectors and the pole piece. (author)

  9. Spiral Light Beams and Contour Image Processing

    Science.gov (United States)

    Kishkin, Sergey A.; Kotova, Svetlana P.; Volostnikov, Vladimir G.

    Spiral beams of light are characterized by their ability to remain structurally unchanged at propagation. They may have the shape of any closed curve. In the present paper a new approach is proposed within the framework of the contour analysis based on a close cooperation of modern coherent optics, theory of functions and numerical methods. An algorithm for comparing contours is presented and theoretically justified, which allows convincing of whether two contours are similar or not to within the scale factor and/or rotation. The advantages and disadvantages of the proposed approach are considered; the results of numerical modeling are presented.

  10. Controls and automation in the SPIRAL project

    International Nuclear Information System (INIS)

    Bothner, U.; Boulot, A.; Maherault, J.; Martial, L.

    1999-01-01

    The control and automation team of the R and D of Accelerator-Exotic Beam Department has had in the framework of SPIRAL collaboration the following tasks: 1. automation of the resonator high frequency equipment of the CIME cyclotron; 2. automation of the vacuum equipment, i.e. the low energy line (TBE), the CIME cyclotron, the low energy line (BE); 3. automation of load safety for power supply; 4. for each of these tasks a circuitry file based on the SCHEMA software has been worked out. The programs required in the automation of load safety for power supply (STEP5, PROTOOL, DESIGNER 4.1) were developed and implemented for PC

  11. Production and post acceleration scheme for spiral

    International Nuclear Information System (INIS)

    Bibet, D.

    2001-01-01

    SPIRAL, the R.I.B. facility of GANIL uses heavy ion beams to produce radioactive atoms inside a thick target. Atoms are ionised in a compact permanent magnet ECR ion source. The compact cyclotron CIME accelerates the radioactive ions in an energy range from 1.7 to 25 MeV/u. The cyclotron acts as a mass separator with resolving power of 2500. Plastic scintillator and silicon detectors are used to tune the machine at a very low intensity. An overview of the facility, stable beam tests results and the R and D program will be presented. (authors)

  12. SPIRAL2/DESIR high resolution mass separator

    Energy Technology Data Exchange (ETDEWEB)

    Kurtukian-Nieto, T., E-mail: kurtukia@cenbg.in2p3.fr [Centre d’Études Nucléaires de Bordeaux Gradignan, Université Bordeaux 1-CNRS/IN2P3, BP 120, F-33175 Gradignan Cedex (France); Baartman, R. [TRIUMF, 4004 Wesbrook Mall, Vancouver B.C., V6T 2A3 (Canada); Blank, B.; Chiron, T. [Centre d’Études Nucléaires de Bordeaux Gradignan, Université Bordeaux 1-CNRS/IN2P3, BP 120, F-33175 Gradignan Cedex (France); Davids, C. [Physics Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Delalee, F. [Centre d’Études Nucléaires de Bordeaux Gradignan, Université Bordeaux 1-CNRS/IN2P3, BP 120, F-33175 Gradignan Cedex (France); Duval, M. [GANIL, CEA/DSM-CNRS/IN2P3, Bd Henri Becquerel, BP 55027, F-14076 Caen Cedex 5 (France); El Abbeir, S.; Fournier, A. [Centre d’Études Nucléaires de Bordeaux Gradignan, Université Bordeaux 1-CNRS/IN2P3, BP 120, F-33175 Gradignan Cedex (France); Lunney, D. [CSNSM-IN2P3-CNRS, Université de Paris Sud, F-91405 Orsay (France); Méot, F. [BNL, Upton, Long Island, New York (United States); Serani, L. [Centre d’Études Nucléaires de Bordeaux Gradignan, Université Bordeaux 1-CNRS/IN2P3, BP 120, F-33175 Gradignan Cedex (France); Stodel, M.-H.; Varenne, F. [GANIL, CEA/DSM-CNRS/IN2P3, Bd Henri Becquerel, BP 55027, F-14076 Caen Cedex 5 (France); and others

    2013-12-15

    DESIR is the low-energy part of the SPIRAL2 ISOL facility under construction at GANIL. DESIR includes a high-resolution mass separator (HRS) with a designed resolving power m/Δm of 31,000 for a 1 π-mm-mrad beam emittance, obtained using a high-intensity beam cooling device. The proposed design consists of two 90-degree magnetic dipoles, complemented by electrostatic quadrupoles, sextupoles, and a multipole, arranged in a symmetric configuration to minimize aberrations. A detailed description of the design and results of extensive simulations are given.

  13. Temperature simulations for the SPIRAL ISOL target

    International Nuclear Information System (INIS)

    Maunoury, L.; Bajeat, O.; Lichtenthaler, R.; Villari, A.C.C.

    2001-01-01

    Simulations of the power deposition and target temperature distributions in the SPIRAL ISOL target are presented. These simulations consider different heavy-ion beams with intensities corresponding to 2 and 6 kW on a carbon target. A new solutions, which corresponds to the splitting of the production target into two parts, where the first is cooled and the second is heated, allows keeping the overall size of the target ensemble relatively small. An extrapolation of the considered target geometry to primary beam intensities up to 1 MW is also presented. (authors)

  14. Galaxy Zoo: dust in spiral galaxies star

    OpenAIRE

    Masters, Karen L.; Nichol, Robert; Bamford, Steven; Mosleh, Moein; Lintott, Chris J.; Andreescu, Dan; Edmondson, Edward M.; Keel, William C.; Murray, Phil; Raddick, M. Jordan; Schawinski, Kevin; Slosar, Anze; Szalay, Alexander S.; Thomas, Daniel; Vandenberg, Jan

    2010-01-01

    We investigate the effect of dust on spiral galaxies by measuring the inclination dependence of optical colours for 24 276 well-resolved Sloan Digital Sky Survey (SDSS) galaxies visually classified via the Galaxy Zoo project. We find clear trends of reddening with inclination which imply a total extinction from face-on to edge-on of 0.7, 0.6, 0.5 and 0.4 mag for the ugri passbands (estimating 0.3 mag of extinction in z band). We split the sample into ‘bulgy’ (early-type) and ‘discy’ (late-typ...

  15. Review on strategies for biofouling mitigation in spiral wound membrane systems

    KAUST Repository

    Bucs, Szilard

    2018-02-01

    Because of the uneven distribution of fresh water in time and space, a large number of regions are experiencing water scarcity and stress. Membrane based desalination technologies have the potential to solve the fresh water crisis in coastal areas. However, in many cases membrane performance is restricted by biofouling. The objective of this review is to provide an overview on the state of the art strategies to control biofouling in spiral wound reverse osmosis membrane systems and point to possible future research directions. A critical review on biofouling control strategies such as feed water pre-treatment, membrane surface modification, feed spacer geometry optimization and hydrodynamics in spiral wound membrane systems is presented. In conclusion, biofouling cannot be avoided in the long run, and thus biofouling control strategies should focus on delaying the biofilm formation, reducing its impact on membrane performance and enhancing biofilm removal by advanced cleaning strategies. Therefore, future studies should aim on: (i) biofilm structural characterization; (ii) understanding to what extent biofilm properties affect membrane filtration performance, and (iii) developing methods to engineer biofilm properties such that biofouling would have only a low or delayed impact on the filtration process and accumulated biomass can be easily removed.

  16. Planet-driven Spiral Arms in Protoplanetary Disks. II. Implications

    Science.gov (United States)

    Bae, Jaehan; Zhu, Zhaohuan

    2018-06-01

    We examine whether various characteristics of planet-driven spiral arms can be used to constrain the masses of unseen planets and their positions within their disks. By carrying out two-dimensional hydrodynamic simulations varying planet mass and disk gas temperature, we find that a larger number of spiral arms form with a smaller planet mass and a lower disk temperature. A planet excites two or more spiral arms interior to its orbit for a range of disk temperatures characterized by the disk aspect ratio 0.04≤slant {(h/r)}p≤slant 0.15, whereas exterior to a planet’s orbit multiple spiral arms can form only in cold disks with {(h/r)}p≲ 0.06. Constraining the planet mass with the pitch angle of spiral arms requires accurate disk temperature measurements that might be challenging even with ALMA. However, the property that the pitch angle of planet-driven spiral arms decreases away from the planet can be a powerful diagnostic to determine whether the planet is located interior or exterior to the observed spirals. The arm-to-arm separations increase as a function of planet mass, consistent with previous studies; however, the exact slope depends on disk temperature as well as the radial location where the arm-to-arm separations are measured. We apply these diagnostics to the spiral arms seen in MWC 758 and Elias 2–27. As shown in Bae et al., planet-driven spiral arms can create concentric rings and gaps, which can produce a more dominant observable signature than spiral arms under certain circumstances. We discuss the observability of planet-driven spiral arms versus rings and gaps.

  17. SELF-DESTRUCTING SPIRAL WAVES: GLOBAL SIMULATIONS OF A SPIRAL-WAVE INSTABILITY IN ACCRETION DISKS

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Jaehan; Hartmann, Lee [Department of Astronomy, University of Michigan, 1085 S. University Ave., Ann Arbor, MI 48109 (United States); Nelson, Richard P.; Richard, Samuel, E-mail: jaehbae@umich.edu, E-mail: lhartm@umich.edu, E-mail: r.p.nelson@qmul.ac.uk, E-mail: samuel.richard@qmul.ac.uk [Astronomy Unit, Queen Mary University of London, Mile End Road, London E1 4NS (United Kingdom)

    2016-09-20

    We present results from a suite of three-dimensional global hydrodynamic simulations that shows that spiral density waves propagating in circumstellar disks are unstable to the growth of a parametric instability that leads to break down of the flow into turbulence. This spiral wave instability (SWI) arises from a resonant interaction between pairs of inertial waves, or inertial-gravity waves, and the background spiral wave. The development of the instability in the linear regime involves the growth of a broad spectrum of inertial modes, with growth rates on the order of the orbital time, and results in a nonlinear saturated state in which turbulent velocity perturbations are of a similar magnitude to those induced by the spiral wave. The turbulence induces angular momentum transport and vertical mixing at a rate that depends locally on the amplitude of the spiral wave (we obtain a stress parameter α ∼ 5 × 10{sup −4} in our reference model). The instability is found to operate in a wide range of disk models, including those with isothermal or adiabatic equations of state, and in viscous disks where the dimensionless kinematic viscosity ν ≤ 10{sup −5}. This robustness suggests that the instability will have applications to a broad range of astrophysical disk-related phenomena, including those in close binary systems, planets embedded in protoplanetary disks (including Jupiter in our own solar system) and FU Orionis outburst models. Further work is required to determine the nature of the instability and to evaluate its observational consequences in physically more complete disk models than we have considered in this paper.

  18. SELF-DESTRUCTING SPIRAL WAVES: GLOBAL SIMULATIONS OF A SPIRAL-WAVE INSTABILITY IN ACCRETION DISKS

    International Nuclear Information System (INIS)

    Bae, Jaehan; Hartmann, Lee; Nelson, Richard P.; Richard, Samuel

    2016-01-01

    We present results from a suite of three-dimensional global hydrodynamic simulations that shows that spiral density waves propagating in circumstellar disks are unstable to the growth of a parametric instability that leads to break down of the flow into turbulence. This spiral wave instability (SWI) arises from a resonant interaction between pairs of inertial waves, or inertial-gravity waves, and the background spiral wave. The development of the instability in the linear regime involves the growth of a broad spectrum of inertial modes, with growth rates on the order of the orbital time, and results in a nonlinear saturated state in which turbulent velocity perturbations are of a similar magnitude to those induced by the spiral wave. The turbulence induces angular momentum transport and vertical mixing at a rate that depends locally on the amplitude of the spiral wave (we obtain a stress parameter α ∼ 5 × 10 −4 in our reference model). The instability is found to operate in a wide range of disk models, including those with isothermal or adiabatic equations of state, and in viscous disks where the dimensionless kinematic viscosity ν ≤ 10 −5 . This robustness suggests that the instability will have applications to a broad range of astrophysical disk-related phenomena, including those in close binary systems, planets embedded in protoplanetary disks (including Jupiter in our own solar system) and FU Orionis outburst models. Further work is required to determine the nature of the instability and to evaluate its observational consequences in physically more complete disk models than we have considered in this paper.

  19. Propulsion using the electron spiral toroid

    International Nuclear Information System (INIS)

    Seward, Clint

    1998-01-01

    A new propulsion method is proposed which could potentially reduce propellant needed for space travel by three orders of magnitude. It uses the newly patented electron spiral toroid (EST), which stores energy as magnetic field energy. The EST is a hollow toroid of electrons, all spiraling in parallel paths in a thin outer shell. The electrons satisfy the coupling condition, forming an electron matrix. Stability is assured as long as the coupling condition is satisfied. The EST is held in place with a small external electric field; without an external magnetic field. The EST system is contained in a vacuum chamber. The EST can be thought of as an energetic entity, with electrons at 10,000 electron volts. Propulsion would not use combustion, but would heat propellant through elastic collisions with the EST surface and eject them for thrust. Chemical rocket combustion heats propellant to 4000 deg. C; an EST will potentially heat the propellant 29,000 times as much, reducing propellant needs accordingly. The thrust can be turned ON and OFF. The EST can be recharged as needed

  20. Spiral-shaped reactor for water disinfection

    KAUST Repository

    Soukane, Sofiane

    2016-04-20

    Chlorine-based processes are still widely used for water disinfection. The disinfection process for municipal water consumption is usually carried out in large tanks, specifically designed to verify several hydraulic and disinfection criteria. The hydrodynamic behavior of contact tanks of different shapes, each with an approximate total volume of 50,000 m3, was analyzed by solving turbulent momentum transport equations with a computational fluid dynamics code, namely ANSYS fluent. Numerical experiments of a tracer pulse were performed for each design to generate flow through curves and investigate species residence time distribution for different inlet flow rates, ranging from 3 to 12 m3 s−1. A new nature-inspired Conch tank design whose shape follows an Archimedean spiral was then developed. The spiral design is shown to strongly outperform the other tanks’ designs for all the selected plug flow criteria with an enhancement in efficiency, less short circuiting, and an order of magnitude improvement in mixing and dispersion. Moreover, following the intensification philosophy, after 50% reduction in its size, the new design retains its properties and still gives far better results than the classical shapes.

  1. Model for Spiral Galaxys Rotation Curves

    Science.gov (United States)

    Hodge, John

    2003-11-01

    A model of spiral galaxy dynamics is proposed. An expression describing the rotation velocity of particles v in a galaxy as a function of the distance from the center r (RC) is developed. The resulting, intrinsic RC of a galaxy is Keplerian in the inner bulge and rising in the disk region without modifying the Newtonian gravitational potential (MOND) and without unknown dark matter. The v^2 is linearly related to r of the galaxy in part of the rapidly rising region of the HI RC (RRRC) and to r^2 in another part of the RRRC. The r to discontinuities in the surface brightness versus r curve is related to the 21 cm line width, the measured mass of the central supermassive black hole (SBH), and the maximum v^2 in the RRRC. The distance to spiral galaxies can be calculated from these relationships that tightly correlates with the distance calculated using Cepheid variables. Differing results in measuring the mass of the SBH from differing measurement procedures are explained. This model is consistent with previously unexplained data, has predicted new relationships, and suggests a new model of the universe. Full text: http://web.infoave.net/ ˜scjh.

  2. Stellar complexes in spiral arms of galaxies

    Science.gov (United States)

    Efremov, Yu. N.

    The history of the introduction and development of the star complexes conception is briefly described. These large groups of stars were picked out and named as such ones in our Galaxy with argumentation and evidence for their physical unity (using the Cepheid variables the distances and ages of which are easy determined from their periods); anyway earlier the complexes were noted along the spiral arms of the Andromeda galaxy, but were not recognized as a new kind of star group. The chains of complexes along the spiral arms are observed quite rarely; their origin is explained by magneto- gravitational or purely gravitational instability developing along the arm. It is not clear why these chains are quite a rare phenomenon - and more so why sometimes the regular chain of complexes are observed in one arm only. Probably intergalactic magnetic field participated in formation of such chains. Apart from the complexes located along the arms, there are isolated giant complexes known (up to 700 pc in diameter) which look like super-gigantic but rather rarefied globular clusters. Until now only two of these formations are studied, in NGC 6946 and M51.

  3. Integration of the AVLIS (atomic vapor laser isotopic separation) process into the nuclear fuel cycle. [Effect of AVLIS feed requirements on overall fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    Hargrove, R.S.; Knighton, J.B.; Eby, R.S.; Pashley, J.H.; Norman, R.E.

    1986-08-01

    AVLIS RD and D efforts are currently proceeding toward full-scale integrated enrichment demonstrations in the late 1980's and potential plant deployment in the mid 1990's. Since AVLIS requires a uranium metal feed and produces an enriched uranium metal product, some change in current uranium processing practices are necessitated. AVLIS could operate with a UF/sub 6/-in UF/sub 6/-out interface with little effect to the remainder of the fuel cycle. This path, however, does not allow electric utility customers to realize the full potential of low cost AVLIS enrichment. Several alternative processing methods have been identified and evaluated which appear to provide opportunities to make substantial cost savings in the overall fuel cycle. These alternatives involve varying levels of RD and D resources, calendar time, and technical risk to implement and provide these cost reduction opportunities. Both feed conversion contracts and fuel fabricator contracts are long-term entities. Because of these factors, it is not too early to start planning and making decisions on the most advantageous options so that AVLIS can be integrated cost effectively into the fuel cycle. This should offer economic opportunity to all parties involved including DOE, utilities, feed converters, and fuel fabricators. 10 refs., 11 figs., 2 tabs.

  4. Spiral blood flow in aorta-renal bifurcation models.

    Science.gov (United States)

    Javadzadegan, Ashkan; Simmons, Anne; Barber, Tracie

    2016-01-01

    The presence of a spiral arterial blood flow pattern in humans has been widely accepted. It is believed that this spiral component of the blood flow alters arterial haemodynamics in both positive and negative ways. The purpose of this study was to determine the effect of spiral flow on haemodynamic changes in aorta-renal bifurcations. In this regard, a computational fluid dynamics analysis of pulsatile blood flow was performed in two idealised models of aorta-renal bifurcations with and without flow diverter. The results show that the spirality effect causes a substantial variation in blood velocity distribution, while causing only slight changes in fluid shear stress patterns. The dominant observed effect of spiral flow is on turbulent kinetic energy and flow recirculation zones. As spiral flow intensity increases, the rate of turbulent kinetic energy production decreases, reducing the region of potential damage to red blood cells and endothelial cells. Furthermore, the recirculation zones which form on the cranial sides of the aorta and renal artery shrink in size in the presence of spirality effect; this may lower the rate of atherosclerosis development and progression in the aorta-renal bifurcation. These results indicate that the spiral nature of blood flow has atheroprotective effects in renal arteries and should be taken into consideration in analyses of the aorta and renal arteries.

  5. A comment on spiral motions in projective relativity

    International Nuclear Information System (INIS)

    Muzzio, J.C.; Lousto, C.O.; Instituto de Astronomia y Fisica del Espacio de la Republica Argentina)

    1985-01-01

    Astronomical evidence has been inadequately invoked to support projective relativity. The spiral structure cannot be explained just by the existence of spiral orbits, and the use of Oort's constant to support the theory is also a misunderstanding. Besides, some mathematical inaccuracies make the application invalid. (author)

  6. Drift of Spiral Waves in Complex Ginzburg-Landau Equation

    International Nuclear Information System (INIS)

    Yang Junzhong; Zhang Mei

    2006-01-01

    The spontaneous drift of the spiral wave in a finite domain in the complex Ginzburg-Landau equation is investigated numerically. By using the interactions between the spiral wave and its images, we propose a phenomenological theory to explain the observations.

  7. Strained spiral vortex model for turbulent fine structure

    Science.gov (United States)

    Lundgren, T. S.

    1982-01-01

    A model for the intermittent fine structure of high Reynolds number turbulence is proposed. The model consists of slender axially strained spiral vortex solutions of the Navier-Stokes equation. The tightening of the spiral turns by the differential rotation of the induced swirling velocity produces a cascade of velocity fluctuations to smaller scale. The Kolmogorov energy spectrum is a result of this model.

  8. Nonuniqueness of self-propagating spiral galaxy models

    International Nuclear Information System (INIS)

    Freedman, W.L.; Madore, B.F.

    1984-01-01

    We demonstrate the nonuniqueness of the basic assumptions leading to spiral structure in self-propagating star formation models. Even in the case where star formation occurs purely spontaneously and does not propagate, we have generated spiral structure by adopting the radically different assumption where star formation is systematically inhibited

  9. A Fundamental Plane of Spiral Structure in Disk Galaxies

    NARCIS (Netherlands)

    Davis, Benjamin L.; Kennefick, Daniel; Kennefick, Julia; Westfall, Kyle B.; Shields, Douglas W.; Flatman, Russell; Hartley, Matthew T.; Berrier, Joel C.; Martinsson, Thomas P. K.; Swaters, Rob A.

    Spiral structure is the most distinctive feature of disk galaxies and yet debate persists about which theory of spiral structure is correct. Many versions of the density wave theory demand that the pitch angle be uniquely determined by the distribution of mass in the bulge and disk of the galaxy. We

  10. Profiles of the stochastic star formation process in spiral galaxies

    International Nuclear Information System (INIS)

    Comins, N.

    1981-01-01

    The formation of spiral arms in disc galaxies is generally attributed to the effects of spiral density waves. These relatively small (i.e. 5 per cent) non-axisymmetric perturbations of the interstellar medium cause spiral arms highlighted by O and B type stars to be created. In this paper another mechanism for spiral arm formation, the stochastic self-propagating star formation (SSPSF) process is examined. The SSPSF process combines the theory that shock waves from supernovae will compress the interstellar medium to create new stars, some of which will be massive enough to also supernova, with a disc galaxy's differential rotation to create spiral arms. The present work extends this process to the case where the probability of star formation from supernova shocks decreases with galactic radius. Where this work and previous investigations overlap (namely the uniform probability case), the agreement is very good, pretty spirals with various numbers of arms are generated. The decreasing probability cases, taken to vary as rsup(-j), still form spiral arms for 0 1.5 the spiral structure is essentially non-existent. (author)

  11. The cold interstellar medium - An HI view of spiral galaxies

    NARCIS (Netherlands)

    Sancisi, R; Bender, R; Davies, RL

    1996-01-01

    An HI view of spiral galaxies is presented. In the first part the standard picture of isolated, normal spiral galaxies is briefly reviewed. In the second part attention is drawn to all those phenomena, such as tidal interactions, accretion and mergers, that depend on the galaxy environment and seem

  12. Star formation and the surface brightness of spiral galaxies

    International Nuclear Information System (INIS)

    Phillipps, S.; Disney, M.

    1985-01-01

    The (blue) surface brightness of spiral galaxies is significantly correlated with their Hα linewidth. This can be most plausibly interpreted as a correlation of surface brightness with star formation rate. There is also a significant difference in surface brightness between galaxies forming stars in a grand design spiral pattern and those with floc star formation regions. (author)

  13. Up the Down Spiral with English: Guidelines, Project Insight.

    Science.gov (United States)

    Catholic Board of Education, Diocese of Cleveland, OH.

    This curriculum guide presents the philosophy, objectives, and processes which unify a student-centered English program based on Jerome Bruner's concept of the spiral curriculum. To illustrate the spiraling of the learning process (i.e., engagement, perception, interpretation, evaluation, and personal integration), the theme of "hero" is traced…

  14. Topographic Beta Spiral and Onshore Intrusion of the Kuroshio Current

    Science.gov (United States)

    Yang, De-Zhou; Huang, Rui Xin; Yin, Bao-shu; Feng, Xing-Ru; Chen, Hai-ying; Qi, Ji-Feng; Xu, Ling-jing; Shi, Yun-long; Cui, Xuan; Gao, Guan-Dong; Benthuysen, Jessica A.

    2018-01-01

    The Kuroshio intrusion plays a vitally important role in carrying nutrients to marginal seas. However, the key mechanism leading to the Kuroshio intrusion remains unclear. In this study we postulate a mechanism: when the Kuroshio runs onto steep topography northeast of Taiwan, the strong inertia gives rise to upwelling over topography, leading to a left-hand spiral in the stratified ocean. This is called the topographic beta spiral, which is a major player regulating the Kuroshio intrusion; this spiral can be inferred from hydrographic surveys. In the world oceans, the topographic beta spirals can be induced by upwelling generated by strong currents running onto steep topography. This is a vital mechanism regulating onshore intruding flow and the cross-shelf transport of energy and nutrients from the Kuroshio Current to the East China Sea. This topographic beta spiral reveals a long-term missing link between the oceanic general circulation theory and shelf dynamic theory.

  15. Spatial and mass distributions of molecular clouds and spiral structure

    International Nuclear Information System (INIS)

    Kwan, J.; Valdes, F.; National Optical Astronomy Observatories, Tucson, AZ)

    1987-01-01

    The growth of molecular clouds resulting from cloud-cloud collisions and coalescence in the Galactic ring between 4 and 8 kpc are modeled, taking into account the presence of a spiral potential and the mutual cloud-cloud gravitational attraction. The mean lifetime of molecular clouds is determined to be about 200 million years. The clouds are present in both spiral arm and interarm regions, but a spiral pattern in their spatial distribution is clearly discernible, with the more massive clouds showing a stronger correlation with the spiral arms. As viewed from within the Galactic disk, however, it is very difficult to ascertain that the molecular cloud distribution in longitude-velocity space has a spiral pattern. 19 references

  16. Suppression of Spiral Wave in Modified Orengonator Model

    International Nuclear Information System (INIS)

    Ma Jun; Wang Chunni; Jin Wuyin; Yi Ming

    2008-01-01

    In this paper, a spatial perturbation scheme is proposed to suppress the spiral wave in the modified Orengonator model, which is used to describe the chemical reaction in the light-sensitive media. The controllable external illumination Φ is perturbed with a spatial linear function. In our numerical simulation, the scheme is investigated by imposing the external controllable illumination on the space continuously and/or intermittently. The numerical simulation results confirm that the stable rotating spiral wave still can be removed with the scheme proposed in this paper even if the controllable Φ changed vs. time and space synchronously. Then the scheme is also used to control the spiral wave and turbulence in the modified Fitzhugh-Nagumo model. It is found that the scheme is effective to remove the sable rotating and meandering spiral wave but it costs long transient period and intensity of the gradient parameter to eliminate the spiral turbulence

  17. Neutral hydrogen and spiral structure in M33

    International Nuclear Information System (INIS)

    Newton, K.

    1980-01-01

    Observations of neutral hydrogen (H I) in the galaxy M33 are presented which have sufficient angular resolution (47 x 93 arcsec) to distinguish detailed H I spiral structure for the first time. H I spiral features extend over the entire disc; the pattern is broken and multi-armed with the best-defined arms lying at radii outside the brightest optical features. Several very narrow spiral 'filaments' are unresolved by the beam, implying true widths -1 , is perturbed near the inner spiral arms. These perturbations agree with the predictions of density-wave theory but may simply arise from the self-gravity of massive arms whether or not they are a quasi-stationary wave phenomenon. If the outer spiral features form a rigidly rotating density-wave pattern, the absence of large radial streaming motions along the features implies a small pattern speed ( -1 kpc -1 ), with corotation in the outer parts of the disc. (author)

  18. A FUNDAMENTAL PLANE OF SPIRAL STRUCTURE IN DISK GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Benjamin L.; Kennefick, Daniel; Kennefick, Julia; Shields, Douglas W. [Arkansas Center for Space and Planetary Sciences, University of Arkansas, 346 1/2 North Arkansas Avenue, Fayetteville, AR 72701 (United States); Westfall, Kyle B. [Kapteyn Astronomical Institute, University of Groningen, P.O. Box 800, NL-9700 AV Groningen (Netherlands); Flatman, Russell [School of Physics, Georgia Institute of Technology, 837 State Street, Atlanta, GA 30332 (United States); Hartley, Matthew T. [Department of Physics, University of Arkansas, 226 Physics Building, 835 West Dickson Street, Fayetteville, AR 72701 (United States); Berrier, Joel C. [Department of Physics and Astronomy, Rutgers, The State University of New Jersey, 136 Frelinghuysen Road, Piscataway, NJ 08854-8019 (United States); Martinsson, Thomas P. K. [Leiden Observatory, P.O. Box 9513, NL-2300 RA Leiden (Netherlands); Swaters, Rob A., E-mail: bld002@email.uark.edu [National Optical Astronomy Observatory, 950 North Cherry Avenue, Tucson, AZ 85719 (United States)

    2015-03-20

    Spiral structure is the most distinctive feature of disk galaxies and yet debate persists about which theory of spiral structure is correct. Many versions of the density wave theory demand that the pitch angle be uniquely determined by the distribution of mass in the bulge and disk of the galaxy. We present evidence that the tangent of the pitch angle of logarithmic spiral arms in disk galaxies correlates strongly with the density of neutral atomic hydrogen in the disk and with the central stellar bulge mass of the galaxy. These three quantities, when plotted against each other, form a planar relationship that we argue should be fundamental to our understanding of spiral structure in disk galaxies. We further argue that any successful theory of spiral structure must be able to explain this relationship.

  19. Circumnuclear Regions In Barred Spiral Galaxies. 1; Near-Infrared Imaging

    Science.gov (United States)

    Perez-Ramirez, D.; Knapen, J. H.; Peletier, R. F.; Laine, S.; Doyon, R.; Nadeau, D.

    2000-01-01

    We present sub-arcsecond resolution ground-based near-infrared images of the central regions of a sample of twelve barred galaxies with circumnuclear star formation activity, which is organized in ring-like regions typically one kiloparsec in diameter. We also present Hubble Space Telescope near-infrared images of ten of our sample galaxies, and compare them with our ground-based data. Although our sample galaxies were selected for the presence of circumnuclear star formation activity, our broad-band near-infrared images are heterogeneous, showing a substantial amount of small-scale structure in some galaxies, and practically none in others. We argue that, where it exists, this structure is caused by young stars, which also cause the characteristic bumps or changes in slope in the radial profiles of ellipticity, major axis position angle, surface brightness and colour at the radius of the circumnuclear ring in most of our sample galaxies. In 7 out of 10 HST images, star formation in the nuclear ring is clearly visible as a large number of small emitting regions, organised into spiral arm fragments, which are accompanied by dust lanes. NIR colour index maps show much more clearly the location of dust lanes and, in certain cases, regions of star formation than single broad-band images. Circumnuclear spiral structure thus outlined appears to be common in barred spiral galaxies with circumnuclear star formation.

  20. Recovering the observed b/c ratio in a dynamic spiral-armed cosmic ray model

    International Nuclear Information System (INIS)

    Benyamin, David; Piran, Tsvi; Shaviv, Nir J.; Nakar, Ehud

    2014-01-01

    We develop a fully three-dimensional numerical code describing the diffusion of cosmic rays (CRs) in the Milky Way. It includes the nuclear spallation chain up to oxygen, and allows the study of various CR properties, such as the CR age, grammage traversed, and the ratio between secondary and primary particles. This code enables us to explore a model in which a large fraction of the CR acceleration takes place in the vicinity of galactic spiral arms that are dynamic. We show that the effect of having dynamic spiral arms is to limit the age of CRs at low energies. This is because at low energies the time since the last spiral arm passage governs the CR age, and not diffusion. Using the model, the observed spectral dependence of the secondary to primary ratio is recovered without requiring any further assumptions such as a galactic wind, re-acceleration or various assumptions on the diffusivity. In particular, we obtain a secondary to primary ratio which increases with energy below about 1 GeV.

  1. Impact of biofilm accumulation on transmembrane and feed channel pressure drop: Effects of crossflow velocity, feed spacer and biodegradable nutrient

    KAUST Repository

    Dreszer, C.

    2014-03-01

    Biofilm formation causes performance loss in spiral-wound membrane systems. In this study a microfiltration membrane was used in experiments to simulate fouling in spiral-wound reverse osmosis (RO) and nanofiltration (NF) membrane modules without the influence of concentration polarization. The resistance of a microfiltration membrane is much lower than the intrinsic biofilm resistance, enabling the detection of biofilm accumulation in an early stage. The impact of biofilm accumulation on the transmembrane (biofilm) resistance and feed channel pressure drop as a function of the crossflow velocity (0.05 and 0.20ms-1) and feed spacer presence was studied in transparent membrane biofouling monitors operated at a permeate flux of 20Lm-2h-1. As biodegradable nutrient, acetate was dosed to the feed water (1.0 and 0.25mgL-1 carbon) to enhance biofilm accumulation in the monitors. The studies showed that biofilm formation caused an increased transmembrane resistance and feed channel pressure drop. The effect was strongest at the highest crossflow velocity (0.2ms-1) and in the presence of a feed spacer. Simulating conditions as currently applied in nanofiltration and reverse osmosis installations (crossflow velocity 0.2ms-1 and standard feed spacer) showed that the impact of biofilm formation on performance, in terms of transmembrane and feed channel pressure drop, was strong. This emphasized the importance of hydrodynamics and feed spacer design. Biomass accumulation was related to the nutrient load (nutrient concentration and linear flow velocity). Reducing the nutrient concentration of the feed water enabled the application of higher crossflow velocities. Pretreatment to remove biodegradable nutrient and removal of biomass from the membrane elements played an important part to prevent or restrict biofouling. © 2013 Elsevier Ltd.

  2. Imaging of head and neck tumors -- methods: CT, spiral-CT, multislice-spiral-CT

    International Nuclear Information System (INIS)

    Baum, Ulrich; Greess, Holger; Lell, Michael; Noemayr, Anton; Lenz, Martin

    2000-01-01

    Spiral-CT is standard for imaging neck tumors. In correspondence with other groups we routinely use spiral-CT with thin slices (3 mm), a pitch of 1.3-1.5 and an overlapping reconstruction increment (2-3 mm). In patients with dental fillings a short additional spiral parallel to the corpus of the mandible reduces artifacts behind the dental arches and improves the diagnostic value of CT. For the assessment of the base of the skull, the orbital floor, the palate and paranasal sinuses an additional examination in the coronal plane is helpful. Secondary coronal reconstructions of axial scans are helpful in the evaluation of the crossing of the midline by small tumors of the tongue base or palate. For an optimal vascular or tissue contrast a sufficient volume of contrast medium and a start delay greater than 70-80 s are necessary. In our opinion the best results can be achieved with a volume of 150 ml, a flow of 2.5 ml/s and a start delay of 80 s. Dynamic enhanced CT is only necessary in some special cases. There is clear indication for dynamic enhanced CT where a glomus tumor is suspected. Additional functional CT imaging during i-phonation and/or Valsalva's maneuver are of great importance to prove vocal cords mobility. Therefore, imaging during i-phonation is an elemental part of every thorough examination of the hypopharynx and larynx region. Multislice-spiral-CT allows almost isotropic imaging of the head and neck region and improves the assessment of tumor spread and lymph node metastases in arbitrary oblique planes. Thin structures (the base of the skull, the orbital floor, the hard palate) as well as the floor of the mouth can be evaluated sufficiently with multiplanar reformations. Usually, additional coronal scanning is not necessary with multislice-spiral-CT. Multislice-spiral-CT is especially advantageous in defining the critical relationships of tumor and lymph node metastases and for functional imaging of the hypopharynx and larynx not only in the

  3. Pathomorphism of spiral tibial fractures in computed tomography imaging.

    Science.gov (United States)

    Guzik, Grzegorz

    2011-01-01

    Spiral fractures of the tibia are virtually homogeneous with regard to their pathomorphism. The differences that are seen concern the level of fracture of the fibula, and, to a lesser extent, the level of fracture of the tibia, the length of fracture cleft, and limb shortening following the trauma. While conventional radiographs provide sufficient information about the pathomorphism of fractures, computed tomography can be useful in demonstrating the spatial arrangement of bone fragments and topography of soft tissues surrounding the fracture site. Multiple cross-sectional computed tomography views of spiral fractures of the tibia show the details of the alignment of bone chips at the fracture site, axis of the tibial fracture cleft, and topography of soft tissues that are not visible on standard radiographs. A model of a spiral tibial fracture reveals periosteal stretching with increasing spiral and longitudinal displacement. The cleft in tibial fractures has a spiral shape and its line is invariable. Every spiral fracture of both crural bones results in extensive damage to the periosteum and may damage bellies of the long flexor muscle of toes, flexor hallucis longus as well as the posterior tibial muscle. Computed tomography images of spiral fractures of the tibia show details of damage that are otherwise invisible on standard radiographs. Moreover, CT images provide useful information about the spatial location of the bone chips as well as possible threats to soft tissues that surround the fracture site. Every spiral fracture of the tibia is associated with disruption of the periosteum. 1. Computed tomography images of spiral fractures of the tibia show details of damage otherwise invisible on standard radiographs, 2. The sharp end of the distal tibial chip can damage the tibialis posterior muscle, long flexor muscles of the toes and the flexor hallucis longus, 3. Every spiral fracture of the tibia is associated with disruption of the periosteum.

  4. Nuclear Technology applications

    International Nuclear Information System (INIS)

    Cibils Machado, W. E- mail: wrcibils@adinet.com.uy

    2002-01-01

    The present work tries on the applications of the nuclear technology in the life daily, such as agriculture and feeding, human health, industry, non destructive essays, isotopic hydrology, and the nuclear power stations for electricity production and radioisotopes production

  5. Spiral wobbling beam illumination uniformity in HIF fuel target implosion

    Directory of Open Access Journals (Sweden)

    Kawata S.

    2013-11-01

    Full Text Available A few % wobbling-beam illumination nonuniformity is realized in heavy ion inertial confinement fusion (HIF throughout the heavy ion beam (HIB driver pulse by a newly introduced spiraling beam axis motion in the first two rotations. The wobbling HIB illumination was proposed to realize a uniform implosion in HIF. However, the initial imprint of the wobbling HIBs was a serious problem and introduces a large unacceptable energy deposition nonuniformity. In the wobbling HIBs illumination, the illumination nonuniformity oscillates in time and space. The oscillating-HIB energy deposition may produce a time-dependent implosion acceleration, which reduces the Rayleigh-Taylor (R-T growth [Laser Part. Beams 11, 757 (1993, Nuclear Inst. Methods in Phys. Res. A 606, 152 (2009, Phys. Plasmas 19, 024503 (2012] and the implosion nonuniformity. The wobbling HIBs can be generated in HIB accelerators and the oscillating frequency may be several 100 MHz ∼ 1 GHz [Phys. Rev. Lett. 104, 254801 (2010]. Three-dimensional HIBs illumination computations present that the few % wobbling HIBs illumination nonuniformity oscillates with the same wobbling HIBs frequency.

  6. Design of the 50 kW neutron converter for SPIRAL2 facility

    Energy Technology Data Exchange (ETDEWEB)

    Avilov, M.S. [Budker Institute of Nuclear Physics, 630090 Novosibirsk, SB RAS (Russian Federation); Tecchio, L.B., E-mail: tecchio@lnl.infn.i [Laboratori Nazionali di Legnaro, 35020 Legnaro (Italy); Titov, A.T. [Boreskov Institute of Catalysis, 630090 Novosibirsk, SB RAS (Russian Federation); Tsybulya, V.S. [Trofimuk Institute of Geology, 630090 Novosibirsk, SB RAS (Russian Federation); Zhmurikov, E.I. [Budker Institute of Nuclear Physics, 630090 Novosibirsk, SB RAS (Russian Federation)

    2010-06-21

    SPIRAL2 is a facility for the study of fundamental nuclear physics and multidisciplinary research. SPIRAL2 represents a major advance for research on exotic nuclei. The radioactive ion beam (RIB) production system is comprised of a neutron converter, a target and an ion source. This paper is dedicated to the designing of the 50 kW neutron converter for the SPIRAL2 facility. Among the different variants of the neutron converter, the one based on a rotating solid disk seems quite attractive due to its safety, ease in production and relatively low cost. Dense graphite used as the converter's material allows the production of high-intensity neutron flux and, at the same time, the heat removal from the converter by means of radiation cooling. Thermo-mechanical simulations performed in order to determine the basic geometry and physical characteristics of the neutron production target for SPIRAL2 facility, to define the appropriate beam power distribution, and to predict the target behaviour under the deuteron beam of nominal parameters (40 MeV, 1.2 mA, 50 kW) are presented. To study the main physical and mechanical properties and serviceability under operating conditions, several kinds of graphite have been analyzed and tested. The paper reports the results of such measurements. Radiation damage is the most important issue for the application of graphite as neutron converter. It is well known that the thermal conductivity of the neutron-irradiated graphite is reduced by a factor of 10 from the initial value after irradiation. Difference in volume expansions between the matrix and the fiber results in serious damage of neutron-irradiated C/C composites. Calculations showed that at high temperature the effect of neutron radiation is not so critical and that the change in thermal conductivity does not prevent the use of graphite as neutron converter.

  7. Design of the 50 kW neutron converter for SPIRAL2 facility

    International Nuclear Information System (INIS)

    Avilov, M.S.; Tecchio, L.B.; Titov, A.T.; Tsybulya, V.S.; Zhmurikov, E.I.

    2010-01-01

    SPIRAL2 is a facility for the study of fundamental nuclear physics and multidisciplinary research. SPIRAL2 represents a major advance for research on exotic nuclei. The radioactive ion beam (RIB) production system is comprised of a neutron converter, a target and an ion source. This paper is dedicated to the designing of the 50 kW neutron converter for the SPIRAL2 facility. Among the different variants of the neutron converter, the one based on a rotating solid disk seems quite attractive due to its safety, ease in production and relatively low cost. Dense graphite used as the converter's material allows the production of high-intensity neutron flux and, at the same time, the heat removal from the converter by means of radiation cooling. Thermo-mechanical simulations performed in order to determine the basic geometry and physical characteristics of the neutron production target for SPIRAL2 facility, to define the appropriate beam power distribution, and to predict the target behaviour under the deuteron beam of nominal parameters (40 MeV, 1.2 mA, 50 kW) are presented. To study the main physical and mechanical properties and serviceability under operating conditions, several kinds of graphite have been analyzed and tested. The paper reports the results of such measurements. Radiation damage is the most important issue for the application of graphite as neutron converter. It is well known that the thermal conductivity of the neutron-irradiated graphite is reduced by a factor of 10 from the initial value after irradiation. Difference in volume expansions between the matrix and the fiber results in serious damage of neutron-irradiated C/C composites. Calculations showed that at high temperature the effect of neutron radiation is not so critical and that the change in thermal conductivity does not prevent the use of graphite as neutron converter.

  8. Nuclear

    International Nuclear Information System (INIS)

    Anon.

    2000-01-01

    The first text deals with a new circular concerning the collect of the medicine radioactive wastes, containing radium. This campaign wants to incite people to let go their radioactive wastes (needles, tubes) in order to suppress any danger. The second text presents a decree of the 31 december 1999, relative to the limitations of noise and external risks resulting from the nuclear facilities exploitation: noise, atmospheric pollution, water pollution, wastes management and fire prevention. (A.L.B.)

  9. New Portraits of Spiral Galaxies NGC 613, NGC 1792 and NGC 3627

    Science.gov (United States)

    2003-12-01

    of this photo retains the original pixels. Note the many arms and the pronounced dust bands. North is up and East is left. NGC 613 is a beautiful barred spiral galaxy in the southern constellation Sculptor. This galaxy is inclined by 32 degrees and, contrary to most barred spirals, has many arms that give it a tentacular appearance. Prominent dust lanes are visible along the large-scale bar. Extensive star-formation occurs in this area, at the ends of the bar, and also in the nuclear regions of the galaxy. The gas at the centre, as well as the radio properties are indicative of the presence of a massive black hole in the centre of NGC 613. NGC 1792 ESO PR Photo 33b/03 ESO PR Photo 33b/03 [Preview - JPEG: 473 x 400 pix - 26k] [Normal - JPEG: 946 x 800 pix - 376k] [Full Res - JPEG: 2716 x 2297 pix - 3.2M] PR Photo 33b/03 shows the starburst spiral galaxy NGC 1792 . Note the numerous background galaxies in this sky field. North is up and East is to the left. NGC 1792 is located in the southern constellation Columba (The Dove) - almost on the border with the constellation Caelum (The Graving Tool) - and is a so-called starburst spiral galaxy. Its optical appearance is quite chaotic, due to the patchy distribution of dust throughout the disc of this galaxy. It is very rich in neutral hydrogen gas - fuel for the formation of new stars - and is indeed rapidly forming such stars. The galaxy is characterized by unusually luminous far-infrared radiation; this is due to dust heated by young stars. M 66 (NGC 3627) ESO PR Photo 33c/03 ESO PR Photo 33c/03 [Preview - JPEG: 469 x 400 pix - 24k] [Normal - JPEG: 938 x 800 pix - 383k] [Full Res - JPEG: 2698 x 2300 pix - 3.0M] PR Photo 33c/03 of the spiral galaxy M 66 (or NGC 3627). North towards upper left, West towards upper right. The third galaxy is NGC 3627 , also known as Messier 66, i.e. it is the 66th object in the famous catalogue of nebulae by French astronomer Charles Messier (1730 - 1817). It is located in the constellation

  10. Measurement error of spiral CT volumetry: influence of low dose CT technique

    International Nuclear Information System (INIS)

    Chung, Myung Jin; Cho, Jae Min; Lee, Tae Gyu; Cho, Sung Bum; Kim, Seog Joon; Baik, Sang Hyun

    2004-01-01

    To examine the possible measurement errors of lung nodule volumetry at the various scan parameters by using a small nodule phantom. We obtained images of a nodule phantom using a spiral CT scanner. The nodule phantom was made of paraffin and urethane and its real volume was known. For the CT scanning experiments, we used three different values for both the pitch of the table feed, i.e. 1:1, 1:15 and 1:2, and the tube current, i.e. 40 mA, 80 mA and 120 mA. All of the images acquired through CT scanning were reconstructed three dimensionally and measured with volumetry software. We tested the correlation between the true volume and the measured volume for each set of parameters using linear regression analysis. For the pitches of table feed of 1:1, 1:1.5 and 1:2, the mean relative errors were 23.3%, 22.8% and 22.6%, respectively. There were perfect correlations among the three sets of measurements (Pearson's coefficient = 1.000, p< 0.001). For the tube currents of 40 mA, 80 mA and 120 mA, the mean relative errors were 22.6%, 22.6% and 22.9%, respectively. There were perfect correlations among them (Pearson's coefficient=1.000, p<0.001). In the measurement of the volume of the lung nodule using spiral CT, the measurement error was not increased in spite of the tube current being decreased or the pitch of table feed being increased

  11. Spiral model pilot project information model

    Science.gov (United States)

    1991-01-01

    The objective was an evaluation of the Spiral Model (SM) development approach to allow NASA Marshall to develop an experience base of that software management methodology. A discussion is presented of the Information Model (IM) that was used as part of the SM methodology. A key concept of the SM is the establishment of an IM to be used by management to track the progress of a project. The IM is the set of metrics that is to be measured and reported throughout the life of the project. These metrics measure both the product and the process to ensure the quality of the final delivery item and to ensure the project met programmatic guidelines. The beauty of the SM, along with the IM, is the ability to measure not only the correctness of the specification and implementation of the requirements but to also obtain a measure of customer satisfaction.

  12. SPIRAL 2 RFQ Prototype First Tests

    CERN Document Server

    Ferdinand, Robin; Congretel, G; Curtoni, Aline; Delferriere, Olivier; Di Giacomo, Marco; France, Alain; Leboeuf, Didier; Thinel, Jean; Toussaint, Jean-Christian

    2005-01-01

    The SPIRAL2 RFQ is designed to accelerate at 88MHz two kinds of charge-over-mass ratio, Q/A, particles. The proposed injector can accelerate a 5 mA deuteron beam (Q/A=1/2) or a 1 mA particles beam with q/A=1/3 up to 0.75 MeV/A. It is a CW machine which has to show stable operation, provide the request availability, have the minimum losses in order to minimize the activation constraints and show the best quality/cost ratio. The prototype of this 4-vane RFQ has been built and tested. It allowed to verify the mechanical assembly concept (RFQ without any brazing step). The full power was easily injected in the cavity, with no concerns for the RF joints. The paper describes the different achievements.

  13. The role of spiral CT in patients with intermediate probability V/Q scans: can spiral CT replace pulmonary angiography?

    International Nuclear Information System (INIS)

    Vu, T.; Glenn, D.; Lovett, I.; Moses, J.; Wadhwa, S.S.; Nour, R.

    2000-01-01

    Full text: Spiral CT (SCT) has been advocated as a replacement for pulmonary angiography (PA)in patients with intermediate probability (IP) ventilation-perfusion lung scans (V/Q). More generally it has been proposed as a replacement for V/Q to detect Pulmonary Embolism. This study investigates the accuracy of SCT in the IP patient group 31 patients with IP scans (Modified PIOPED criteria) who were not at high risk of contrast nephrotoxicity were enrolled to have both SCT and PA within the 24 hours following their V/Q. Patients were classified as IP due to a single segmental mismatch (n=7) or a matched V/Q abnormality corresponding to CXR opacity (n=21), or both (n=3). PA is the gold standard for the detection of PE. SCT was read by an experienced radiologist blinded to the PA results. SCT was performed according to standard protocol. All SCT were technically satisfactory for interpretation. Pulmonary embolism was present in 9/31 patients (29%). Of the patients with PE detected by PA, SCT was positive in 4 (44% sensitivity). Of the 22 patients who did not have PE, SCT was negative in 21 and positive in one (96% specificity). In conclusion SCT has limited sensitivity for the detection of PE in patients with IP lung scans. SCT may not be an adequate replacement for PA. Copyright (2000) The Australian and New Zealand Society of Nuclear Medicine Inc

  14. Fluid flow in a spiral microfluidic duct

    Science.gov (United States)

    Harding, Brendan; Stokes, Yvonne

    2018-04-01

    We consider the steady, pressure driven flow of a viscous fluid through a microfluidic device having the geometry of a planar spiral duct with a slowly varying curvature and height smaller than width. For this problem, it is convenient to express the Navier-Stokes equations in terms of a non-orthogonal coordinate system. Then, after applying appropriate scalings, the leading order equations admit a relatively simple solution in the central region of the duct cross section. First-order corrections with respect to the duct curvature and aspect ratio parameters are also obtained for this region. Additional correction terms are needed to ensure that no slip and no penetration conditions are satisfied on the side walls. Our solutions allow for a top wall shape that varies with respect to the radial coordinate which allows us to study the flow in a variety of cross-sectional shapes, including trapezoidal-shaped ducts that have been studied experimentally. At leading order, the flow is found to depend on the local height and slope of the top wall within the central region. The solutions are compared with numerical approximations of a classical Dean flow and are found to be in good agreement for a small duct aspect ratio and a slowly varying and small curvature. We conclude that the slowly varying curvature typical of spiral microfluidic devices has a negligible impact on the flow in the sense that locally the flow does not differ significantly from the classical Dean flow through a duct having the same curvature.

  15. Magnetization reversal in ferromagnetic spirals via domain wall motion

    Science.gov (United States)

    Schumm, Ryan D.; Kunz, Andrew

    2016-11-01

    Domain wall dynamics have been investigated in a variety of ferromagnetic nanostructures for potential applications in logic, sensing, and recording. We present a combination of analytic and simulated results describing the reliable field driven motion of a domain wall through the arms of a ferromagnetic spiral nanowire. The spiral geometry is capable of taking advantage of the benefits of both straight and circular wires. Measurements of the in-plane components of the spirals' magnetization can be used to determine the angular location of the domain wall, impacting the magnetoresistive applications dependent on the domain wall location. The spirals' magnetization components are found to depend on the spiral parameters: the initial radius and spacing between spiral arms, along with the domain wall location. The magnetization is independent of the parameters of the rotating field used to move the domain wall, and therefore the model is valid for current induced domain wall motion as well. The speed of the domain wall is found to depend on the frequency of the rotating driving field, and the domain wall speeds can be reliably varied over several orders of magnitude. We further demonstrate a technique capable of injecting multiple domain walls and show the reliable and unidirectional motion of domain walls through the arms of the spiral.

  16. Galaxy Zoo: constraining the origin of spiral arms

    Science.gov (United States)

    Hart, Ross E.; Bamford, Steven P.; Keel, William C.; Kruk, Sandor J.; Masters, Karen L.; Simmons, Brooke D.; Smethurst, Rebecca J.

    2018-05-01

    Since the discovery that the majority of low-redshift galaxies exhibit some level of spiral structure, a number of theories have been proposed as to why these patterns exist. A popular explanation is a process known as swing amplification, yet there is no observational evidence to prove that such a mechanism is at play. By using a number of measured properties of galaxies, and scaling relations where there are no direct measurements, we model samples of SDSS and S4G spiral galaxies in terms of their relative halo, bulge and disc mass and size. Using these models, we test predictions of swing amplification theory with respect to directly measured spiral arm numbers from Galaxy Zoo 2. We find that neither a universal cored or cuspy inner dark matter profile can correctly predict observed numbers of arms in galaxies. However, by invoking a halo contraction/expansion model, a clear bimodality in the spiral galaxy population emerges. Approximately 40 per cent of unbarred spiral galaxies at z ≲ 0.1 and M* ≳ 1010M⊙ have spiral arms that can be modelled by swing amplification. This population display a significant correlation between predicted and observed spiral arm numbers, evidence that they are swing amplified modes. The remainder are dominated by two-arm systems for which the model predicts significantly higher arm numbers. These are likely driven by tidal interactions or other mechanisms.

  17. Propagation of spiral waves pinned to circular and rectangular obstacles.

    Science.gov (United States)

    Sutthiopad, Malee; Luengviriya, Jiraporn; Porjai, Porramain; Phantu, Metinee; Kanchanawarin, Jarin; Müller, Stefan C; Luengviriya, Chaiya

    2015-05-01

    We present an investigation of spiral waves pinned to circular and rectangular obstacles with different circumferences in both thin layers of the Belousov-Zhabotinsky reaction and numerical simulations with the Oregonator model. For circular objects, the area always increases with the circumference. In contrast, we varied the circumference of rectangles with equal areas by adjusting their width w and height h. For both obstacle forms, the propagating parameters (i.e., wavelength, wave period, and velocity of pinned spiral waves) increase with the circumference, regardless of the obstacle area. Despite these common features of the parameters, the forms of pinned spiral waves depend on the obstacle shapes. The structures of spiral waves pinned to circles as well as rectangles with the ratio w/h∼1 are similar to Archimedean spirals. When w/h increases, deformations of the spiral shapes are observed. For extremely thin rectangles with w/h≫1, these shapes can be constructed by employing semicircles with different radii which relate to the obstacle width and the core diameter of free spirals.

  18. Feeding Your Baby

    Medline Plus

    Full Text Available ... care Is it safe? Labor & birth Postpartum care Baby Caring for your baby Feeding your baby Family ... community Home > Baby > Feeding your baby Feeding your baby E-mail to a friend Please fill in ...

  19. Feeding Your Baby

    Medline Plus

    Full Text Available ... our online community Home > Baby > Feeding your baby Feeding your baby E-mail to a friend Please ... been added to your dashboard . Time to eat! Feeding your baby helps her grow healthy and strong. ...

  20. Breastfeeding vs. Formula Feeding

    Science.gov (United States)

    ... for Educators Search English Español Breastfeeding vs. Formula Feeding KidsHealth / For Parents / Breastfeeding vs. Formula Feeding What's ... work with a lactation specialist. All About Formula Feeding Commercially prepared infant formulas are a nutritious alternative ...

  1. Feeding tube insertion - gastrostomy

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/002937.htm Feeding tube insertion - gastrostomy To use the sharing features on this page, please enable JavaScript. A gastrostomy feeding tube insertion is the placement of a feeding ...

  2. Animal Feeding Operations

    Science.gov (United States)

    ... type=”submit” value=”Submit” /> Healthy Water Home Animal Feeding Operations Recommend on Facebook Tweet Share Compartir ... of Concentrated Animal Feeding Operations (CAFOs) What are Animal Feeding Operations (AFOs)? According to the United States ...

  3. The effect of pitch in multislice spiral/helical CT

    International Nuclear Information System (INIS)

    Wang, G.; Vannier, M.W.

    2000-01-01

    The purpose of this study is to understand the effect of pitch on raw data interpolation in multislice spiral/helical computed tomography (CT) and provide guidelines for scanner design and protocol optimization. Multislice spiral CT is mainly characterized by the three parameters: the number of detector arrays, the detector collimation, and the table increment per x-ray source rotation. The pitch in multislice spiral CT is defined as the ratio of the table increment over the detector collimation in this study. In parallel to the current framework for studying longitudinal image resolution, the central fan-beam rays of direct and opposite directions are considered, assuming a narrow cone-beam angle. Generally speaking, sampling in the Radon domain by the direct and opposite central rays is nonuniform along the longitudinal axis. Using a recently developed methodology for quantifying the sensibility of signal reconstruction from non-uniformly sampled finite points, the effect of pitch on raw data interpolation is analyzed in multislice spiral CT. Unlike single-slice spiral CT, in which image quality decreases monotonically as the pitch increases, the sensibility of raw data interpolation in multislice spiral CT increases, suggesting that image quality does not decrease monotonically in this case. The most favorable pitch can be found from the sensitivity-slice spiral CT is provided. The study on the effect of pitch using the sensitivity analysis approach reveals the fundamental characteristics of raw data interpolation in multislice spiral CT, and gives insights into interaction between pitch and image quality. These results may be valuable for design of multislice spiral CT scanners and imaging protocol optimization in clinical applications. (authors)

  4. Fabrication techniques of X-ray spiral zone plates

    International Nuclear Information System (INIS)

    Gao Nan; Zhu Xiaoli; Li Hailiang; Xie Changqing

    2010-01-01

    The techniques to make X-ray spiral zone plates using electron beam and X-ray lithography were studied. A master mask was fabricated on polyimide membrane by E-beam lithography and micro-electroplating. Spiral zone plates were efficiently replicated by X-ray lithography and micro-electroplating. By combining the techniques, spiral zone plates at 1 keV were successfully fabricate. With an outermost zone width of the 200 nm, and the gold absorbers thickness of 700 nm, the high quality zone plates can be used for X-ray phase contrast microscopy.(authors)

  5. Comments on H. Arp 'The persistent problem of spiral galaxies'

    International Nuclear Information System (INIS)

    Alfven, H.

    1987-04-01

    In his paper 'The persistent problem of Spiral Galaxies' H. Arp criticises the standard theory of spiral galaxies and demonstrates that introduction of plasma theory is necessary in order to understand the structure of spiral galaxies. In the present paper arguments are given in support of Arp's theory and suggestions are made how Arp's ideas should be developed. An important result of Arp's new approach is that there is no convincing argument for the belief that there is a 'missing mass'. This is important from a cosmological point of view. (author)

  6. A Software Development Simulation Model of a Spiral Process

    Science.gov (United States)

    Mizell, Carolyn; Malone, Linda

    2007-01-01

    There is a need for simulation models of software development processes other than the waterfall because processes such as spiral development are becoming more and more popular. The use of a spiral process can make the inherently difficult job of cost and schedule estimation even more challenging due to its evolutionary nature, but this allows for a more flexible process that can better meet customers' needs. This paper will present a discrete event simulation model of spiral development that can be used to analyze cost and schedule effects of using such a process in comparison to a waterfall process.

  7. Investigation on filter method for smoothing spiral phase plate

    Science.gov (United States)

    Zhang, Yuanhang; Wen, Shenglin; Luo, Zijian; Tang, Caixue; Yan, Hao; Yang, Chunlin; Liu, Mincai; Zhang, Qinghua; Wang, Jian

    2018-03-01

    Spiral phase plate (SPP) for generating vortex hollow beams has high efficiency in various applications. However, it is difficult to obtain an ideal spiral phase plate because of its continuous-varying helical phase and discontinued phase step. This paper describes the demonstration of continuous spiral phase plate using filter methods. The numerical simulations indicate that different filter method including spatial domain filter, frequency domain filter has unique impact on surface topography of SPP and optical vortex characteristics. The experimental results reveal that the spatial Gaussian filter method for smoothing SPP is suitable for Computer Controlled Optical Surfacing (CCOS) technique and obtains good optical properties.

  8. Elimination of spiral chaos by periodic force for the Aliev-Panfilov model

    OpenAIRE

    Sakaguchi, Hidetsugu; Fujimoto, Takefumi

    2003-01-01

    Spiral chaos appears in the two dimensional Aliev-Panfilov model. The generation mechanism of the spiral chaos is related to the breathing instability of pulse trains. The spiral chaos can be eliminated by applying periodic force uniformly. The elimination of spiral chaos is most effective, when the frequency of the periodic force is close to that of the breathing motion.

  9. Feeding the nuclear fuel cycle with a long term view; AREVA's front-end business units, uranium mining, UF6 conversion and isotopic enrichment

    International Nuclear Information System (INIS)

    Capus, G.A.P.; Autegert, R.

    2005-01-01

    As a leading provider of technological solutions for nuclear power generation and electricity transmission, the AREVA group has the unique capability of offering a fully integrated fuel supply, when requested by its customers. At the core of the AREVA group, COGEMA Front End Division is an essential part of the overall fuel supply chain. Composed of three Business Units and gathering several subsidiaries and joint 'ventures, this division enjoys several leading positions as shown by its market shares and historical production records. Current Uranium market evolutions put the natural uranium supply under focus. The uranium conversion segment also recently revealed some concerning evolutions. And no doubt, the market pressure will soon be directed also at the enrichment segment. Looking towards the long term, AREVA strongly believes that a nuclear power renewal is needed, especially to help limiting green house effect gas release. Therefore, to address future supplies needed to fuel the existing fleet of nuclear power plants, but also new ones, the AREVA group is planning very significant investments to build new facilities in all the three front-end market segments. As far as uranium mining is concerned, these new mines will be based upon uranium reserves of outstanding quality. As for uranium conversion and enrichment, two large projects will be based on the most advanced technologies. This paper is aimed at recalling COGEMA Front End Division experience, the current status of its plants and operating entities and will provide a detailed overview of its major projects. (authors)

  10. Experimental and numerical characterization of the water flow in spacer-filled channels of spiral-wound membranes

    KAUST Repository

    Bucs, Szilard

    2015-09-25

    Micro-scale flow distribution in spacer-filled flow channels of spiral-wound membrane modules was determined with a particle image velocimetry system (PIV), aiming to elucidate the flow behaviour in spacer-filled flow channels. Two-dimensional water velocity fields were measured in a flow cell (representing the feed spacer-filled flow channel of a spiral wound reverse osmosis membrane module without permeate production) at several planes throughout the channel height. At linear flow velocities (volumetric flow rate per cross-section of the flow channel considering the channel porosity, also described as crossflow velocities) used in practice (0.074 and 0.163 m∙s-1) the recorded flow was laminar with only slight unsteadiness in the upper velocity limit. At higher linear flow velocity (0.3 m∙s-1) the flow was observed to be unsteady and with recirculation zones. Measurements made at different locations in the flow cell exhibited very similar flow patterns within all feed spacer mesh elements, thus revealing the same hydrodynamic conditions along the length of the flow channel. Three-dimensional (3-D) computational fluid dynamics simulations were performed using the same geometries and flow parameters as the experiments, based on steady laminar flow assumption. The numerical results were in good agreement (0.85-0.95 Bray-Curtis similarity) with the measured flow fields at linear velocities of 0.074 and 0.163 m∙s-1, thus supporting the use of model-based studies in the optimization of feed spacer geometries and operational conditions of spiral wound membrane systems.

  11. Experimental and numerical characterization of the water flow in spacer-filled channels of spiral-wound membranes.

    Science.gov (United States)

    Bucs, Szilard S; Linares, Rodrigo Valladares; Marston, Jeremy O; Radu, Andrea I; Vrouwenvelder, Johannes S; Picioreanu, Cristian

    2015-12-15

    Micro-scale flow distribution in spacer-filled flow channels of spiral-wound membrane modules was determined with a particle image velocimetry system (PIV), aiming to elucidate the flow behaviour in spacer-filled flow channels. Two-dimensional water velocity fields were measured in a flow cell (representing the feed spacer-filled flow channel of a spiral wound reverse osmosis membrane module without permeate production) at several planes throughout the channel height. At linear flow velocities (volumetric flow rate per cross-section of the flow channel considering the channel porosity, also described as crossflow velocities) used in practice (0.074 and 0.163 m·s(-1)) the recorded flow was laminar with only slight unsteadiness in the upper velocity limit. At higher linear flow velocity (0.3 m·s(-1)) the flow was observed to be unsteady and with recirculation zones. Measurements made at different locations in the flow cell exhibited very similar flow patterns within all feed spacer mesh elements, thus revealing the same hydrodynamic conditions along the length of the flow channel. Three-dimensional (3-D) computational fluid dynamics simulations were performed using the same geometries and flow parameters as the experiments, based on steady laminar flow assumption. The numerical results were in good agreement (0.85-0.95 Bray-Curtis similarity) with the measured flow fields at linear velocities of 0.074 and 0.163 m·s(-1), thus supporting the use of model-based studies in the optimization of feed spacer geometries and operational conditions of spiral wound membrane systems. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Software trends for both the GANIL and spiral control

    International Nuclear Information System (INIS)

    David, L.; Lecorche, E.

    1999-01-01

    The Ganil facility has been running with a new control system since 1993. Many improvements have been done since that time to bring new capabilities to the system. So, in February 1996, when the Spiral control system was designed, it was mainly considered as an extension of the Ganil control system. This paper briefly recalls the basic architecture of the whole control system and the main choices upon which it relies. Then it presents the new software trends, to show how the Spiral control system has been integrated alongside the existing one. The last part describe the new developments and the most significant functionalities it brings as seen from the operator point of view, with some emphasis about the application programs for beam tuning. Indeed, these new programs have to be provided both for the spiral tuning with exotic ions beams and for the coupling of the Spiral and older Ganil facilities. (authors)

  13. Density wave theory and the classification of spiral galaxies

    International Nuclear Information System (INIS)

    Roberts, W.W. Jr.; Roberts, M.S.; Shu, F.H.

    1975-01-01

    Axisymmetric models of disk galaxies taken together with the density wave theory allow us to distinguish and categorize spiral galaxies by means of two fundamental galactic parameters: the total mass of the galaxy, divided by a characteristic dimension; and the degree of concentration of mass toward the galactic center. These two parameters govern the strength of the galactic shocks in the interstellar gas and the geometry of the spiral wave pattern. In turn, the shock strength and the theoretical pitch angle of the spiral arms play a major role in determining the degree of development of spiral structure in a galaxy and its Hubble type. The application of these results to 24 external galaxies demonstrates that the categorization of galaxies according to this theoretical framework correlates well with the accepted classification of these galaxies within the observed sequences of luminosity class and Hubble type

  14. The Clinical Learning Spiral: A Model to Develop Reflective Practitioners.

    Science.gov (United States)

    Stockhausen, Lynette

    1994-01-01

    The Clinical Learning Spiral incorporates reflective processes into undergraduate nursing education. It entails successive cycles of four phases: preparative (briefing, planning), constructive (practice development), reflective (debriefing), and reconstructive (planning for change and commitment to action). (SK)

  15. A model of the formation of spiral galaxies

    International Nuclear Information System (INIS)

    Brown, W.K.; Gritzo, L.A.

    1980-01-01

    It has been verified that the analytical results in a previous article for elliptical galaxies may also be used to describe spiral galaxies. Exploration of the model for small values of the principal parameter THETA yields surface mass density distributions as functions of radius which, while always displaying the exponential disk, describe both of the subcategories of spiral galaxies. Within the constraints of the model, the two main questions concerning spirals posed some years ago by Freeman appear to be successfully addressed. An intrinsic model mechanism has been identified that could account for the extended state of elliptical galaxies, as opposed to the flat disks of spirals. In general, the model correctly describes the relative sizes of the various types of galaxies. (orig.)

  16. Origin choice and petal loss in the flower garden of spiral wave tip trajectories

    OpenAIRE

    Gray, Richard A.; Wikswo, John P.; Otani, Niels F.

    2009-01-01

    Rotating spiral waves have been observed in numerous biological and physical systems. These spiral waves can be stationary, meander, or even degenerate into multiple unstable rotating waves. The spatiotemporal behavior of spiral waves has been extensively quantified by tracking spiral wave tip trajectories. However, the precise methodology of identifying the spiral wave tip and its influence on the specific patterns of behavior remains a largely unexplored topic of research. Here we use a two...

  17. Thermal-Hydraulic Performance of Cross-Shaped Spiral Fuel in High-Power-Density BWRs

    International Nuclear Information System (INIS)

    Conboy, Thomas; Hejzlar, Pavel

    2006-01-01

    Power up-rating of existing nuclear reactors promises to be an area of great study for years to come. One of the major approaches to efficiently increasing power density is by way of advanced fuel design, and cross-shaped spiral-fuel has shown such potential in previous studies. Our work aims to model the thermal-hydraulic consequences of filling a BWR core with these spiral-shaped pins. The helically-wound pins have a cross-section resembling a 4-petaled flower. They fill an assembly in a tight bundle, their dimensions chosen carefully such that the petals of neighboring pins contact each other at their outer-most extent in a self-supporting lattice, absent of grid spacers. Potential advantages of this design raise much optimism from a thermal-hydraulic perspective. These spiral rods possess about 40% larger surface area than traditional rods, resulting in increased cooling and a proportional reduction in average surface heat flux. The thin petal-like extensions help by lowering thermal resistance between the hot central region of the pin and the bulk coolant flow, decreasing the maximum fuel temperature by 200 deg. C according to Finite Element (COSMOS) models. However, COSMOS models also predict a potential problem area at the 'elbow' region of two adjoining petals, where heat flux peaking is twice that along the extensions. Preliminary VIPRE models, which account only for the surface area increase, predict a 22% increase in critical power. It is also anticipated that the spiral twist would provide the flowing coolant with an additional radial velocity component, and likely promote turbulence and mixing within an assembly. These factors are expected to provide further margin for increased power density, and are currently being incorporated into the VIPRE model. The reduction in pressure drop inherent in any core without grid-spacers is also expected to be significant in aiding core stability, though this has not yet been quantified. Spiral-fuel seems to be a

  18. Predicting the impact of feed spacer modification on biofouling by hydraulic characterization and biofouling studies in membrane fouling simulators

    KAUST Repository

    Siddiqui, Amber

    2016-12-22

    Feed spacers are an essential part of spiral-wound reverse osmosis (RO) and nanofiltration (NF) membrane modules. Geometric modification of feed spacers is a potential option to reduce the impact of biofouling on the performance of membrane systems. The objective of this study was to evaluate the biofouling potential of two commercially available reference feed spacers and four modified feed spacers. The spacers were compared on hydraulic characterization and in biofouling studies with membrane fouling simulators (MFSs). The virgin feed spacer was characterized hydraulically by their resistance, measured in terms of feed channel pressure drop, performed by operating MFSs at varying feed water flow rates. Short-term (9 days) biofouling studies were carried out with nutrient dosage to the MFS feed water to accelerate the biofouling rate. Long-term (96 days) biofouling studies were done without nutrient dosage to the MFS feed water. Feed channel pressure drop was monitored and accumulation of active biomass was quantified by adenosine tri phosphate (ATP) determination. The six feed spacers were ranked on pressure drop (hydraulic characterization) and on biofouling impact (biofouling studies). Significantly different trends in hydraulic resistance and biofouling impact for the six feed spacers were observed. The same ranking for biofouling impact on the feed spacers was found for the (i) short-term biofouling study with nutrient dosage and the (ii) long-term biofouling study without nutrient dosage. The ranking for hydraulic resistance for six virgin feed spacers differed significantly from the ranking of the biofouling impact, indicating that hydraulic resistance of clean feed spacers does not predict the hydraulic resistance of biofouled feed spacers. Better geometric design of feed spacers can be a suitable approach to minimize impact of biofouling in spiral wound membrane systems.

  19. Scintigraphic diagnosis of spiral fracture in young children

    International Nuclear Information System (INIS)

    Hossein-Foucher, C.; Venel, H.; Lecouffe, P.; Ythier, H.; Legghe, R.; Marchandise, X.

    1988-01-01

    8 cases of unsuspected bone fracture in children, identified at bone scan are reported. Common features were the children's young age (1 to 3 years), the absence of clinical suspicion, the initially normal X-rays, the fracture type (spiral fracture of the tibia undisplaced), and the uniform appearance of the bone scan. These data confim the value of bone scan in limping children and suggest that spiral fracture of the tibia is a frequent and underdiagnosed condition in children [fr

  20. Observational effects of explosions in the nuclei of spiral galaxies

    International Nuclear Information System (INIS)

    Sanders, R.H.; Bania, T.M.

    1976-01-01

    We conclude that an explosive event will produce a distinct observational signature evidenced by an inner ringlike structure of the principal spiral tracers, conspicuous dips in the gas rotation curve at the locus of this ring, and a ringlike or double radio structure in the plane of the galaxy. Evidence is presented supporting the suggestion that one particular spiral galaxy, NGC 4736, exhibits this characteristic signature and therefore is a galaxy which may have undergone a recent explosive event in its nucleus

  1. Digitized Spiral Drawing: A Possible Biomarker for Early Parkinson's Disease.

    Science.gov (United States)

    San Luciano, Marta; Wang, Cuiling; Ortega, Roberto A; Yu, Qiping; Boschung, Sarah; Soto-Valencia, Jeannie; Bressman, Susan B; Lipton, Richard B; Pullman, Seth; Saunders-Pullman, Rachel

    2016-01-01

    Pre-clinical markers of Parkinson's Disease (PD) are needed, and to be relevant in pre-clinical disease, they should be quantifiably abnormal in early disease as well. Handwriting is impaired early in PD and can be evaluated using computerized analysis of drawn spirals, capturing kinematic, dynamic, and spatial abnormalities and calculating indices that quantify motor performance and disability. Digitized spiral drawing correlates with motor scores and may be more sensitive in detecting early changes than subjective ratings. However, whether changes in spiral drawing are abnormal compared with controls and whether changes are detected in early PD are unknown. 138 PD subjects (50 with early PD) and 150 controls drew spirals on a digitizing tablet, generating x, y, z (pressure) data-coordinates and time. Derived indices corresponded to overall spiral execution (severity), shape and kinematic irregularity (second order smoothness, first order zero-crossing), tightness, mean speed and variability of spiral width. Linear mixed effect adjusted models comparing these indices and cross-validation were performed. Receiver operating characteristic analysis was applied to examine discriminative validity of combined indices. All indices were significantly different between PD cases and controls, except for zero-crossing. A model using all indices had high discriminative validity (sensitivity = 0.86, specificity = 0.81). Discriminative validity was maintained in patients with early PD. Spiral analysis accurately discriminates subjects with PD and early PD from controls supporting a role as a promising quantitative biomarker. Further assessment is needed to determine whether spiral changes are PD specific compared with other disorders and if present in pre-clinical PD.

  2. A Software Development Simulation Model of a Spiral Process

    OpenAIRE

    Carolyn Mizell; Linda Malone

    2009-01-01

    This paper will present a discrete event simulation model of a spiral development lifecycle that can be used to analyze cost and schedule effects of using such a process in comparison to a waterfall process. There is a need for simulation models of software development processes other than the waterfall due to new processes becoming more widely used in order to overcome the limitations of the traditional waterfall lifecycle. The use of a spiral process can make the inherently difficult job of...

  3. The accelerated ISOL technique and the SPIRAL project

    International Nuclear Information System (INIS)

    Villari, A.C.C.

    2001-01-01

    The accelerated ISOL technique is presented as an introduction to the present status of the SPIRAL facility. SPIRAL is based on the very high intensity light and heavy ion beams available at GANIL. The facility will deliver radioactive beams with energies in the range between 1.7 A and 25 A MeV. The presently target-ion source production system, as well the new developments undertaken by the target ion-source group at GANIL are presented. (authors)

  4. Lung studies with spiral CT. pitch 1 versus pitch 2

    International Nuclear Information System (INIS)

    Sartoni Galloni, S.; Miceli, M.; Lipparino, M.; Burzi, M.; Gigli, F.; Rossi, M.S.; Santoli, G.; Guidarelli, G.

    1999-01-01

    In Spiral CT, the pitch is the ratio of the distance to tabletop travels per 360 degrees rotation to nominal slice width, expressed in mm. Performing Spiral CT examination with pitch 2 allows to reduce examination time, exposure and contrast dose, and X-ray tube overload. The authors investigated the yield of pitch 2 in lung parenchyma studies, particular relative to diagnostic image quality [it

  5. Synchronizing spiral waves in a coupled Rössler system

    International Nuclear Information System (INIS)

    Gao Jia-Zhen; Yang Shu-Xin; Xie Ling-Ling; Gao Ji-Hua

    2011-01-01

    The synchronisation of spiral patterns in a drive-response Rössler system is studied. The existence of three types of synchronisation is revealed by inspecting the coupling parameter space. Two transient stages of phase synchronisation and partial synchronisation are observed in a comparatively weak feedback coupling parameter regime, whilst complete synchronisation of spirals is found with strong negative couplings. Detailed observations of the synchronous process, such as oscillatory frequencies, parameters mismatches and amplitude variations, etc, are investigated via numerical simulations. (general)

  6. Colour-coded three-dimensional reconstruction from spiral CT data sets: Improvement from the physical point of view

    International Nuclear Information System (INIS)

    Wunderlich, A.P.; Lenz, M.; Kirsten, R.; Gerhardt, P.

    1993-01-01

    This paper demonstrates the possibility of improving the spatial depth impression of colour-coded three-dimensional reconstructions by modulation of colour saturation. Patients were observed with spiral computed tomography (slice thickness 10 mm, table feed 10 mm/s, reconstruction of overlapping axial images at 2 mm increment). Interesting anatomical and pathological objects (vessels, organs, tumours, metastases) were segmented, colour-coded, and reconstructed three-dimensionally. Spatial depth impression of the coloured objects could be improved by modulating not only the brightness, but also the colour saturation. (orig.) [de

  7. Left-handed compact MIMO antenna array based on wire spiral resonator for 5-GHz wireless applications

    Science.gov (United States)

    Alqadami, Abdulrahman Shueai Mohsen; Jamlos, Mohd Faizal; Soh, Ping Jack; Rahim, Sharul Kamal Abdul; Narbudowicz, Adam

    2017-01-01

    A compact coplanar waveguide-fed multiple-input multiple-output antenna array based on the left-handed wire loaded spiral resonators (SR) is presented. The proposed antenna consists of a 2 × 2 wire SR with two symmetrical microstrip feed lines, each line exciting a 1 × 2 wire SR. Left-handed metamaterial unit cells are placed on its reverse side and arranged in a 2 × 3 array. A reflection coefficient of less than -16 dB and mutual coupling of less than -28 dB are achieved at 5.15 GHz WLAN band.

  8. CHARACTERISTICS OF SPIRAL ARMS IN LATE-TYPE GALAXIES

    International Nuclear Information System (INIS)

    Honig, Z. N.; Reid, M. J.

    2015-01-01

    We have measured the positions of large numbers of H II regions in four nearly face-on, late-type, spiral galaxies: NGC 628 (M74), NGC 1232, NGC 3184, and NGC 5194 (M51). Fitting log-periodic spiral models to segments of each arm yields local estimates of spiral pitch angle and arm width. While pitch angles vary considerably along individual arms, among arms within a galaxy, and among galaxies, we find no systematic trend with galactocentric distance. We estimate the widths of the arm segments from the scatter in the distances of the H II regions from the spiral model. All major arms in these galaxies show spiral arm width increasing with distance from the galactic center, similar to the trend seen in the Milky Way. However, in the outermost parts of the galaxies, where massive star formation declines, some arms reverse this trend and narrow. We find that spiral arms often appear to be composed of segments of ∼5 kpc length, which join to form kinks and abrupt changes in pitch angle and arm width; these characteristics are consistent with properties seen in the large N-body simulations of D'Onghia et al. and others

  9. Porosity of spacer-filled channels in spiral-wound membrane systems: Quantification methods and impact on hydraulic characterization

    KAUST Repository

    Siddiqui, Amber

    2017-04-13

    The porosity of spacer-filled feed channels influences the hydrodynamics of spiral-wound membrane systems and impacts the overall performance of the system. Therefore, an exact measurement and a detailed understanding of the impact of the feed channel porosity is required to understand and improve the hydrodynamics of spiral-wound membrane systems applied for desalination and wastewater reuse. The objectives of this study were to assess the accuracy of porosity measurement techniques for feed spacers differing in geometry and thickness and the consequences of using an inaccurate method on hydrodynamic predictions, which may affect permeate production. Six techniques were applied to measure the porosity namely, three volumetric calculations based on spacer strand count together with cuboidal (SC), cylindrical (VCC) and ellipsoidal volume calculation (VCE) and three independent techniques based on volume displacement (VD), weight and density (WD) and computed tomography scanning (CT). The CT method was introduced as an alternative for the other five already existing and applied methods in practice.Six feed spacers used for the porosity measurement differed in filament thickness, angle between the filaments and mesh-size. The results of the studies showed differences between the porosities, measured by the six methods. The results of the microscopic techniques SC, VCC and VCE deviated significantly from measurements by VD, WD and CT, which showed similar porosity values for all spacer types.Depending on the maximum deviation of the porosity measurement techniques from –6% to +6%, (i) the linear velocity deviations were −5.6% and +6.4% respectively and (ii) the pressure drop deviations were –31% and +43% respectively, illustrating the importance of an accurate porosity measurement. Because of the accuracy and standard deviation, the VD and WD method should be applied for the porosity determination of spacer-filled channels, while the CT method is recommended for

  10. High-Tc Superconducting Thick-Film Spiral Magnet: Development and Characterization of a Single Spiral Module

    National Research Council Canada - National Science Library

    McGinnis, W

    1997-01-01

    The objective of this project was to make characterized and numerically model prototype modules of a new type of superconducting electromagnet based on stacked spirals of superconducting thick films...

  11. Galactic spiral arms formed by central explosions

    International Nuclear Information System (INIS)

    Havnes, O.

    1978-01-01

    Calculations have been made of spiral arm formation due to central explosions in a nucleus surrounded by a disc containing most of the galactic mass with the purpose of obtaining estimates on lifetimes of arms and the requirements on the energy involved in the process. The ejected gas is taken to be a few percent, or less, of the central nucleus and is ejected with velocities of the order of 1000 km s -1 . The gas, considered to be in forms of blobs, moves under the gravitational force from the disc and the nucleus and the drag force by the gas in the disc. The orbits of the blobs evolve towards the circular orbits of the disc due to this drag force and the velocities in the arms will therefore, after some time, approach those of a normal rotation curve. A relatively open structure will last 8 years. Stable ring structures with longer lifetimes may be formed by some explosions. With an energy of approximately 5 x 10 57 erg in the initial gas-blob motion and a duration of the explosion of approximately 10 7 years, the energy output in such explosions has to be > 10 43 erg s -1 . (Auth.)

  12. A Novel Class of Reconfigurable Spherical Fermat Spiral Multi-port Antennas

    Science.gov (United States)

    Caratelli, D.; Yarovoy, A.; Haider, N.

    Reconfigurability in antenna systems is a desired characteristic that has attracted attention in the past years. In this work, a novel class of spherical Fermat spiral multi-port antennas for next-generation wireless communications and radar applications is presented. The device modelling is carried out by using a computationally enhanced locally conformal finite-difference time-domain full-wave procedure. In this way, the circuital characteristics and radiation properties of the antennas are investigated accurately. The structure reconfigurability, in terms of frequency of operation and radiation efficiency, is technically performed by a suitable solid-state tuning circuitry adopted to properly change the feeding/loading conditions at the input ports of the antenna.

  13. Flocculent and grand design spiral galaxies in groups: time scales for the persistence of grand design spiral structures

    International Nuclear Information System (INIS)

    Elmegreen, B.G.; Elmegreen, D.M.

    1983-01-01

    Spiral arm classifications were made for 261 low-inclination galaxies in groups listed by Huchra and Geller. The fractional occurrence of grand design spiral structure in nonbarred galaxies was found to increase from approx.0.1 to approx.0.6 and then level off as the group crossing rate or galaxy collision rate in a group increases. A simple model is discussed where the random encounters between galaxies of any type and flocculent galaxies induce transient grand design spirals in the flocculent galaxies. If this grand-design stimulation occurs for binary collisions with impact parameters less than αR 25 , were R 25 is the galactic radius at 25 mag arcsec - 2 , and if the induced grand design spirals persist for an average time equal to #betta# galactic rotations, then the quantity α 2 #betta# equals approximately 3 x 10 4 . If binary collisions are responsible for grand design spirals, then this result implies either that the induced spirals last for many galactic rotations (#betta#>15), or that they can be stimulated by very remote encounters (α>45.) Alternatively, grand design spirals may be stimulated by multiple galaxy encounters, which would be the case for such large α, or by interactions with the potential well of the associated group, rather than by simple binary encounters. Weak correlations between the grand design fraction and the galaxy size, or between this fraction and the total number of galaxies in a group, were also found. Spiral structures of barred galaxies show no correlations with group environment

  14. SPIRAL COUNTER-CURRENT CHROMATOGRAPHY OF SMALL MOLECULES, PEPTIDES AND PROTEINS USING THE SPIRAL TUBING SUPPORT ROTOR

    OpenAIRE

    Knight, Martha; Finn, Thomas M.; Zehmer, John; Clayton, Adam; Pilon, Aprile

    2011-01-01

    An important advance in countercurrent chromatography (CCC) carried out in open flow-tubing coils, rotated in planetary centrifuges, is the new design to spread out the tubing in spirals. More spacing between the tubing was found to significantly increase the stationary phase retention, such that now all types of two-phase solvent systems can be used for liquid-liquid partition chromatography in the J-type planetary centrifuges. A spiral tubing support (STS) frame with circular channels was c...

  15. Practical nuclear medicine

    CERN Document Server

    Gemmell, Howard G; Sharp, Peter F

    2006-01-01

    Nuclear medicine plays a crucial role in patient care, and this book is an essential guide for all practitioners to the many techniques that inform clinical management. The first part covers the scientific basis of nuclear medicine, the rest of the book deals with clinical applications. Diagnostic imaging has an increasingly important role in patient management and, despite advances in other modalities (functional MRI and spiral CT), nuclear medicine continues to make its unique contribution by its ability to demonstrate physiological function. This book is also expanded by covering areas of d

  16. New insights into the X-ray properties of nearby barred spiral galaxy NGC 1672

    Science.gov (United States)

    Jenkins, L. P.; Brnadt, W. N.; Colbert, E. J. M.; Levan, A. J.; Roberts, T. P.; Ward, M. J.; Zezas, A.

    2008-02-01

    We present some preliminary results from new Chandra and XMM-Newton X-ray observations of the nearby barred spiral galaxy NGC1672. It shows dramatic nuclear and extra-nuclear star formation activity, including starburst regions located near each end of its strong bar, both of which host ultraluminous X-ray sources (ULXs). With the new high-spatial-resolution Chandra imaging, we show for the first time that NGC1672 possesses a faint ($L(X)~10^39 erg/s), hard central X-ray source surrounded by an X-ray bright circumnuclear starburst ring that dominates the X-ray emission in the region. The central source may represent low-level AGN activity, or alternatively the emission from X-ray binaries associated with star-formation in the nucleus.

  17. Differential effects of safflower oil versus fish oil feeding on insulin-stimulated glycogen synthesis, glycolysis, and pyruvate dehydrogenase flux in skeletal muscle: a 13C nuclear magnetic resonance study.

    Science.gov (United States)

    Jucker, B M; Cline, G W; Barucci, N; Shulman, G I

    1999-01-01

    To examine the effects of safflower oil versus fish oil feeding on in vivo intramuscular glucose metabolism and relative pyruvate dehydrogenase (PDH) versus tricarboxylic acid (TCA) cycle flux, rats were pair-fed on diets consisting of 1) 59% safflower oil, 2) 59% menhaden fish oil, or 3) 59% carbohydrate (control) in calories. Rates of glycolysis and glycogen synthesis were assessed by monitoring [1-(13)C]glucose label incorporation into [1-(13)C]glycogen, [3-(13)C]lactate, and [3-(13)C]alanine in the hindlimb of awake rats via 13C nuclear magnetic resonance (NMR) spectroscopy during a euglycemic (approximately 6 mmol/l) hyperinsulinemic (approximately 180 microU/ml) clamp. A steady-state isotopic analysis of lactate, alanine, and glutamate was used to determine the relative PDH versus TCA cycle flux present in muscle under these conditions. The safflower oil-fed rats were insulin resistant compared with control and fish oil-fed rats, as reflected by a markedly reduced glucose infusion rate (Ginf) during the clamp (21.4 +/- 2.3 vs. 31.6 +/- 2.8 and 31.7 +/- 1.9 mg x kg(-1) x min(-1) in safflower oil versus control and fish oil groups, respectively, P safflower oil group was associated with a lower rate of glycolysis (21.7 +/- 2.2 nmol x g(-1) x min(-1)) versus control (62.1 +/- 10.3 nmol x g(-1) x min(-1), P safflower oil, fish oil, and control, respectively) was detected. The intramuscular triglyceride (TG) content was increased in the safflower oil group (7.3 +/- 0.8 micromol/g) compared with the control group (5.2 +/- 0.8 micromol/g, P safflower oil (43 +/- 8%) versus the control (73 +/- 8%, P safflower oil feeding was a consequence of reduced glycolytic flux associated with an increase in relative free fatty acid/ketone oxidation versus TCA cycle flux, whereas fish oil feeding did not alter glucose metabolism and may in part be protective of insulin-stimulated glucose disposal by limiting intramuscular TG deposition.

  18. Research on performance of upstream pumping mechanical seal with different deep spiral groove

    International Nuclear Information System (INIS)

    Wang, Q; Chen, H L; Liu, T; Liu, Y H; Liu, Z B; Liu, D H

    2012-01-01

    As one new type of mechanical seal, Upstream Pumping Mechanical Seal has been widely used in fluid machinery. In this paper, structure of spiral groove is innovatively optimized to improve performance of Upstream Pumping Mechanical Seal with Spiral Groove: keeping the dam zone and the weir zone not changed, changing the bottom shape of spiral groove only, substituting different deep spiral groove for equal deep spiral groove. The simulation on Upstream Pumping Mechanical Seal with different deep spiral grooves is done using FVM method. According to calculation, the performances of opening force and pressure distribution on seals face are obtained. Five types of spiral grooves are analyzed, namely equal deep spiral groove, circumferential convergent ladder-like different deep spiral groove, circumferential divergent ladder-like different deep spiral groove, radial convergent ladder-like different deep spiral groove and radial divergent ladder-like different deep spiral groove. This paper works on twenty-five working conditions. The results indicate the performances of circumferential divergent 2-ladder different deep spiral groove are better than the others, with more opening force and better stabilization, while with the same leakage. The outcome provides theoretical support for application of Upstream Pumping Mechanical Seal with circumferential convergent ladder-like different deep spiral groove.

  19. Research on performance of upstream pumping mechanical seal with different deep spiral groove

    Science.gov (United States)

    Wang, Q.; Chen, H. L.; Liu, T.; Liu, Y. H.; Liu, Z. B.; Liu, D. H.

    2012-11-01

    As one new type of mechanical seal, Upstream Pumping Mechanical Seal has been widely used in fluid machinery. In this paper, structure of spiral groove is innovatively optimized to improve performance of Upstream Pumping Mechanical Seal with Spiral Groove: keeping the dam zone and the weir zone not changed, changing the bottom shape of spiral groove only, substituting different deep spiral groove for equal deep spiral groove. The simulation on Upstream Pumping Mechanical Seal with different deep spiral grooves is done using FVM method. According to calculation, the performances of opening force and pressure distribution on seals face are obtained. Five types of spiral grooves are analyzed, namely equal deep spiral groove, circumferential convergent ladder-like different deep spiral groove, circumferential divergent ladder-like different deep spiral groove, radial convergent ladder-like different deep spiral groove and radial divergent ladder-like different deep spiral groove. This paper works on twenty-five working conditions. The results indicate the performances of circumferential divergent 2-ladder different deep spiral groove are better than the others, with more opening force and better stabilization, while with the same leakage. The outcome provides theoretical support for application of Upstream Pumping Mechanical Seal with circumferential convergent ladder-like different deep spiral groove.

  20. Multiple spiral patterns in the transitional disk of HD 100546

    Science.gov (United States)

    Boccaletti, A.; Pantin, E.; Lagrange, A.-M.; Augereau, J.-C.; Meheut, H.; Quanz, S. P.

    2013-12-01

    Context. Protoplanetary disks around young stars harbor many structures related to planetary formation. Of particular interest, spiral patterns were discovered among several of these disks and are expected to be the sign of gravitational instabilities leading to giant planet formation or gravitational perturbations caused by already existing planets. In this context, the star HD 100546 presents some specific characteristics with a complex gaseous and dusty disk that includes spirals, as well as a possible planet in formation. Aims: The objective of this study is to analyze high-contrast and high angular resolution images of this emblematic system to shed light on critical steps in planet formation. Methods: We retrieved archival images obtained at Gemini in the near IR (Ks band) with the instrument NICI and processed the data using an advanced high contrast imaging technique that takes advantage of the angular differential imaging. Results: These new images reveal the spiral pattern previously identified with Hubble Space Telescope (HST) with an unprecedented resolution, while the large-scale structure of the disk is mostly cancelled by the data processing. The single pattern to the southeast in HST images is now resolved into a multi-armed spiral pattern. Using two models of a gravitational perturber orbiting in a gaseous disk, we attempted to constrain the characteristics of this perturber, assuming that each spiral is independent, and drew qualitative conclusions. The non-detection of the northeast spiral pattern observed in HST allows putting a lower limit on the intensity ratio between the two sides of the disk, which if interpreted as forward scattering, yields a larger anisotropic scattering than is derived in the visible. Also, we find that the spirals are likely to be spatially resolved with a thickness of about 5-10 AU. Finally, we did not detect the candidate planet in formation recently discovered in the Lp band, with a mass upper limit of 16-18 MJ

  1. Single-shot spiral imaging at 7 T.

    Science.gov (United States)

    Engel, Maria; Kasper, Lars; Barmet, Christoph; Schmid, Thomas; Vionnet, Laetitia; Wilm, Bertram; Pruessmann, Klaas P

    2018-03-25

    The purpose of this work is to explore the feasibility and performance of single-shot spiral MRI at 7 T, using an expanded signal model for reconstruction. Gradient-echo brain imaging is performed on a 7 T system using high-resolution single-shot spiral readouts and half-shot spirals that perform dual-image acquisition after a single excitation. Image reconstruction is based on an expanded signal model including the encoding effects of coil sensitivity, static off-resonance, and magnetic field dynamics. The latter are recorded concurrently with image acquisition, using NMR field probes. The resulting image resolution is assessed by point spread function analysis. Single-shot spiral imaging is achieved at a nominal resolution of 0.8 mm, using spiral-out readouts of 53-ms duration. High depiction fidelity is achieved without conspicuous blurring or distortion. Effective resolutions are assessed as 0.8, 0.94, and 0.98 mm in CSF, gray matter and white matter, respectively. High image quality is also achieved with half-shot acquisition yielding image pairs at 1.5-mm resolution. Use of an expanded signal model enables single-shot spiral imaging at 7 T with unprecedented image quality. Single-shot and half-shot spiral readouts deploy the sensitivity benefit of high field for rapid high-resolution imaging, particularly for functional MRI and arterial spin labeling. © 2018 International Society for Magnetic Resonance in Medicine.

  2. Spiral waves characterization: Implications for an automated cardiodynamic tissue characterization.

    Science.gov (United States)

    Alagoz, Celal; Cohen, Andrew R; Frisch, Daniel R; Tunç, Birkan; Phatharodom, Saran; Guez, Allon

    2018-07-01

    Spiral waves are phenomena observed in cardiac tissue especially during fibrillatory activities. Spiral waves are revealed through in-vivo and in-vitro studies using high density mapping that requires special experimental setup. Also, in-silico spiral wave analysis and classification is performed using membrane potentials from entire tissue. In this study, we report a characterization approach that identifies spiral wave behaviors using intracardiac electrogram (EGM) readings obtained with commonly used multipolar diagnostic catheters that perform localized but high-resolution readings. Specifically, the algorithm is designed to distinguish between stationary, meandering, and break-up rotors. The clustering and classification algorithms are tested on simulated data produced using a phenomenological 2D model of cardiac propagation. For EGM measurements, unipolar-bipolar EGM readings from various locations on tissue using two catheter types are modeled. The distance measure between spiral behaviors are assessed using normalized compression distance (NCD), an information theoretical distance. NCD is a universal metric in the sense it is solely based on compressibility of dataset and not requiring feature extraction. We also introduce normalized FFT distance (NFFTD) where compressibility is replaced with a FFT parameter. Overall, outstanding clustering performance was achieved across varying EGM reading configurations. We found that effectiveness in distinguishing was superior in case of NCD than NFFTD. We demonstrated that distinct spiral activity identification on a behaviorally heterogeneous tissue is also possible. This report demonstrates a theoretical validation of clustering and classification approaches that provide an automated mapping from EGM signals to assessment of spiral wave behaviors and hence offers a potential mapping and analysis framework for cardiac tissue wavefront propagation patterns. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Negative spiral CT in acute pulmonary embolism

    Energy Technology Data Exchange (ETDEWEB)

    Nilsson, T.; Olausson, A. [Karolinska Hospital, Stockholm (Sweden). Dept. of Thoracic Radiology; Johnsson, H. [Karolinska Hospital, Stockholm (Sweden). Dept. of Internal Medicine; Nyman, U. [County Hospital, Trelleborg (Sweden). Dept. of Radiology; Aspelin, P. [Huddinge Univ. Hospital (Sweden). Dept. of Radiology

    2002-09-01

    Purpose: To retrospectively evaluate the clinical outcome of non-anticoagulated patients with clinically suspected acute pulmonary embolism (PE) and no symptoms or signs of deep venous thrombosis (DVT) following a negative contrast medium-enhanced spiral CT of the pulmonary arteries (s-CTPA). Material and Methods: During a 24-month period, 739 of 751 patients underwent s-CTPA with acceptable diagnostic quality for clinically suspected acute PE. All patients who had a CT study not positive for PE were followed up with a questionnaire, a telephone interview and review of all medical reports, including autopsies and death certificates for any episodes of venous thromboembolism (VTE) during a 3-month period. Results: PE was diagnosed in 158 patients. Of the remaining 581 patients with a negative s-CTPA, 45 patients were lost to follow-up. 88 patients were excluded because of anticoagulation treatment (cardiac disorder n=32, chronic VTE or acute symptomatic DVT n=31, PE diagnosed at pulmonary angiography n=1, thrombus prophylaxis during diagnostic work-up or other reasons than VTE n=24) and 7 patients undergoing lower extremity venous studies because of symptoms of DVT (all negative). Thus, 441 patients with a negative s-CTPA and no DVT symptoms, venous studies or anticoagulant treatment constituted the follow-up cohort. Four of these patients had proven VTE (all PE) during the 3-month follow-up period. Two of the PE episodes contributed to the patient's death. Conclusion: Patients with clinically suspected acute PE, no symptoms or signs of DVT and a negative single slice s-CTPA using 3-5 mm collimation, may safely be left without anticoagulation treatment unless they are critically ill, have a limited cardiopulmonary reserve and/or if a high clinical suspicion remains.

  4. CHARACTERIZING SPIRAL ARM AND INTERARM STAR FORMATION

    Energy Technology Data Exchange (ETDEWEB)

    Kreckel, K.; Schinnerer, E.; Meidt, S. [Max Planck Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg (Germany); Blanc, G. A. [Departamento de Astronomía, Universidad de Chile, Camino del Observatorio 1515, Las Condes, Santiago (Chile); Groves, B. [Research School of Astronomy and Astrophysics, Australian National University, Canberra, ACT 2611 (Australia); Adamo, A. [Department of Astronomy, The Oskar Klein Centre, Stockholm University, AlbaNova University Centre, SE-106 91 Stockholm (Sweden); Hughes, A., E-mail: kreckel@mpia.de [CNRS, IRAP, 9 Av. du Colonel Roche, BP 44346, F-31028 Toulouse cedex 4 (France)

    2016-08-20

    Interarm star formation contributes significantly to a galaxy’s star formation budget and provides an opportunity to study stellar birthplaces unperturbed by spiral arm dynamics. Using optical integral field spectroscopy of the nearby galaxy NGC 628 with VLT/MUSE, we construct H α maps including detailed corrections for dust extinction and stellar absorption to identify 391 H ii regions at 35 pc resolution over 12 kpc{sup 2}. Using tracers sensitive to the underlying gravitational potential, we associate H ii regions with either arm (271) or interarm (120) environments. Using our full spectral coverage of each region, we find that most physical properties (luminosity, size, metallicity, ionization parameter) of H ii regions are independent of environment. We calculate the fraction of H α luminosity due to the background of diffuse ionized gas (DIG) contaminating each H ii region, and find the DIG surface brightness to be higher within H ii regions than in the surroundings, and slightly higher within arm H ii regions. Use of the temperature-sensitive [S ii]/H α line ratio instead of the H α surface brightness to identify the boundaries of H ii regions does not change this result. Using the dust attenuation as a tracer of the gas, we find depletion times consistent with previous work (2 × 10{sup 9} yr) with no differences between the arm and interarm, but this is very sensitive to the DIG correction. Unlike molecular clouds, which can be dynamically affected by the galactic environment, we see fairly consistent properties of H ii regions in both arm and interarm environments. This suggests either a difference in star formation and feedback in arms or a decoupling of dense star-forming clumps from the more extended surrounding molecular gas.

  5. Formation of polymeric toroidal-spiral particles.

    Science.gov (United States)

    Sharma, Vishal; Szymusiak, Magdalena; Shen, Hao; Nitsche, Ludwig C; Liu, Ying

    2012-01-10

    Compared to spherical matrices, particles with well-defined internal structure provide large surface to volume ratio and predictable release kinetics for the encapsulated payloads. We describe self-assembly of polymeric particles, whereby competitive kinetics of viscous sedimentation, diffusion, and cross-linking yield a controllable toroidal-spiral (T-S) structure. Precursor polymeric droplets are splashed through the surface of a less dense, miscible solution, after which viscous forces entrain the surrounding bulk solution into the sedimenting polymer drop to form T-S channels. The intricate structure forms because low interfacial tension between the two miscible solutions is dominated by viscous forces. The biocompatible polymer, poly(ethylene glycol) diacrylate (PEG-DA), is used to demonstrate the solidification of the T-S shapes at various configurational stages by UV-triggered cross-linking. The dimensions of the channels are controlled by Weber number during impact on the surface, and Reynolds number and viscosity ratio during subsequent sedimentation. We anticipate applications of the T-S particle in drug delivery, wherein diffusion through these T-S channels and the polymer matrix would offer parallel release pathways for molecules of different sizes. Polyphosphate, as a model macromolecule, is entrained in T-S particles during their formation. The in vitro release kinetics of polyphosphate from the T-S particles with various channel length and width is reported. In addition, self-assembly of T-S particles occurs in a single step under benign conditions for delicate macromolecules, and appears conducive to scaleup.

  6. Functional feeding groups of aquatic insect families in Latin America: a critical analysis and review of existing literature

    OpenAIRE

    Alonso Ramírez; Pablo E Gutiérrez-Fonseca

    2014-01-01

    Aquatic macroinvertebrates are involved in numerous processes within aquatic ecosystems. They often have important effects on ecosystem processes such as primary production (via grazing), detritus breakdown, and nutrient mineralization and downstream spiraling. The functional feeding groups (FFG) classification was developed as a tool to facilitate the incorporation of macroinvertebrates in studies of aquatic ecosystems. This classification has the advantage of combining morphological charact...

  7. Use of the SPIRAL 2 facility for material irradiations with 14 MeV energy neutrons

    International Nuclear Information System (INIS)

    Mosnier, A.; Ridikas, D.; Ledoux, X.; Pellemoine, F.; Anne, R.; Huguet, Y.; Lipa, M.; Magaud, P.; Marbach, G.; Saint-Laurent, M.G.; Villari, A.C.C.

    2005-01-01

    The primary goal of an irradiation facility for fusion applications will be to generate a material irradiation database for the design, construction, licensing and safe operation of a fusion demonstration power station (e.g., DEMO). This will be achieved through testing and qualifying material performance under neutron irradiation that simulates service up to the full lifetime anticipated in the power plant. Preliminary investigations of 14 MeV neutron effects on different kinds of fusion material could be assessed by the SPIRAL 2 Project at GANIL (Caen, France), aiming at rare isotope beams production for nuclear physics research with first beams expected by 2009. In SPIRAL 2, a deuteron beam of 5 mA and 40 MeV interacts with a rotating carbon disk producing high-energy neutrons (in the range between 1 and 40 MeV) via C (d, xn) reactions. Then, the facility could be used for 3-4 months y -1 for material irradiation purposes. This would correspond to damage rates in the order of 1-2 dpa y -1 (in Fe) in a volume of ∼10 cm 3 . Therefore, the use of miniaturized specimens will be essential in order to effectively utilize the available irradiation volume in SPIRAL 2. Sample package irradiation temperature would be in the range of 250-1000 deg. C. The irradiation level of 1-2 dpa y -1 with 14 MeV neutrons (average energy) may be interesting for micro-structural and metallurgical investigations (e.g., mini-traction, small punch tests, etc.) and possibly for the understanding of specimen size/geometric effects of critical material properties. Due to the small test cell volume, sample in situ experiments are not foreseen. However, sample packages would be, if required, available each month after transfer in a special hot cell on-site

  8. Stabilization of spiral wave and turbulence in the excitable media using parameter perturbation scheme

    International Nuclear Information System (INIS)

    Ma Jun; Wang Chunni; Li Yanlong; Pu Zhongsheng; Jin Wuyin

    2008-01-01

    This paper proposes a scheme of parameter perturbation to suppress the stable rotating spiral wave, meandering spiral wave and turbulence in the excitable media, which is described by the modified Fitzhugh–Nagumo (MFHN) model. The controllable parameter in the MFHN model is perturbed with a weak pulse and the pulse period is decided by the rotating period of the spiral wave approximatively. It is confirmed that the spiral wave and spiral turbulence can be suppressed greatly. Drift and instability of spiral wave can be observed in the numerical simulation tests before the whole media become homogeneous finally. (general)

  9. Can cluster environment modify the dynamical evolution of spiral galaxies?

    Science.gov (United States)

    Amram, P.; Balkowski, C.; Cayatte, V.; Marcelin, M.; Sullivan, W. T., III

    1993-01-01

    Over the past decade many effects of the cluster environment on member galaxies have been established. These effects are manifest in the amount and distribution of gas in cluster spirals, the luminosity and light distributions within galaxies, and the segregation of morphological types. All these effects could indicate a specific dynamical evolution for galaxies in clusters. Nevertheless, a more direct evidence, such as a different mass distribution for spiral galaxies in clusters and in the field, is not yet clearly established. Indeed, Rubin, Whitmore, and Ford (1988) and Whitmore, Forbes, and Rubin (1988) (referred to as RWF) presented evidence that inner cluster spirals have falling rotation curves, unlike those of outer cluster spirals or the great majority of field spirals. If falling rotation curves exist in centers of clusters, as argued by RWF, it would suggest that dark matter halos were absent from cluster spirals, either because the halos had become stripped by interactions with other galaxies or with an intracluster medium, or because the halos had never formed in the first place. Even if they didn't disagree with RWF, other researchers pointed out that the behaviour of the slope of the rotation curves of spiral galaxies (in Virgo) is not so clear. Amram, using a different sample of spiral galaxies in clusters, found only 10% of declining rotation curves (2 declining vs 17 flat or rising) in opposition to RWF who find about 40% of declining rotation curves in their sample (6 declining vs 10 flat or rising), we will hereafter briefly discuss the Amram data paper and compare it to the results of RWF. We have measured the rotation curves for a sample of 21 spiral galaxies in 5 nearby clusters. These rotation curves have been constructed from detailed two-dimensional maps of each galaxy's velocity field as traced by emission from the Ha line. This complete mapping, combined with the sensitivity of our CFHT 3.60 m. + Perot-Fabry + CCD observations, allows

  10. On wave dark matter in spiral and barred galaxies

    International Nuclear Information System (INIS)

    Martinez-Medina, Luis A.; Matos, Tonatiuh; Bray, Hubert L.

    2015-01-01

    We recover spiral and barred spiral patterns in disk galaxy simulations with a Wave Dark Matter (WDM) background (also known as Scalar Field Dark Matter (SFDM), Ultra-Light Axion (ULA) dark matter, and Bose-Einstein Condensate (BEC) dark matter). Here we show how the interaction between a baryonic disk and its Dark Matter Halo triggers the formation of spiral structures when the halo is allowed to have a triaxial shape and angular momentum. This is a more realistic picture within the WDM model since a non-spherical rotating halo seems to be more natural. By performing hydrodynamic simulations, along with earlier test particles simulations, we demonstrate another important way in which wave dark matter is consistent with observations. The common existence of bars in these simulations is particularly noteworthy. This may have consequences when trying to obtain information about the dark matter distribution in a galaxy, the mere presence of spiral arms or a bar usually indicates that baryonic matter dominates the central region and therefore observations, like rotation curves, may not tell us what the DM distribution is at the halo center. But here we show that spiral arms and bars can develop in DM dominated galaxies with a central density core without supposing its origin on mechanisms intrinsic to the baryonic matter

  11. Spiral CT findings of inflammatory pseudotumor of the liver

    International Nuclear Information System (INIS)

    Lee, Ha Jong; Nam, Kyung Jin; Lee, Ki Nam; Park, Byeong Ho; Choi, Jong Cheol; Koo, Bong Sik; Nam, Ki Dong; Kim, Chan Seong

    1998-01-01

    To assess the spiral CT findings of inflammatory pseudotumor of the liver(IPTL), in order to distinguish this tumor from hepatocellular carcinoma, hepatic abscess or other space occupying liver lesions. The spiral CT findings of IPTL were retrospectively evaluated in six patients. All cases were confirmed by ultrasonography-guided gun biopsy. Four patients were men and two were women, and they were aged between 37 and 74 (mean, 49) years. The site, size, and number of IPTL were assessed, and their enhancement patterns were evaluated during the arterial, portal and delayed phases of spiral CT. Five cases involved a solitary mass and in one there were multiple masses with surrounding small nodules. Four cases occurred in the right lobe and two in the left lobe. Four of five surrounding nodules were in the left lobe. During the arterial phase of spiral CT scanning, three layers were separated from four of five cases of solitary mass;they were composed of central and peripheral portions of low attenuation, and an intermediate portion of isoattenuation. Delayed enhancement of the peripheral portion was prominent during the delayed phase. In the case involving multiple masses three layers were not seen during the arterial phase, but during the delayed phase enhancement was noted. The features of three layers, as seen on spiral CT, is considered to be very specific for distinguishing IPTL from other hepatic focal lesions.=20

  12. A spiral-based volumetric acquisition for MR temperature imaging.

    Science.gov (United States)

    Fielden, Samuel W; Feng, Xue; Zhao, Li; Miller, G Wilson; Geeslin, Matthew; Dallapiazza, Robert F; Elias, W Jeffrey; Wintermark, Max; Butts Pauly, Kim; Meyer, Craig H

    2018-06-01

    To develop a rapid pulse sequence for volumetric MR thermometry. Simulations were carried out to assess temperature deviation, focal spot distortion/blurring, and focal spot shift across a range of readout durations and maximum temperatures for Cartesian, spiral-out, and retraced spiral-in/out (RIO) trajectories. The RIO trajectory was applied for stack-of-spirals 3D imaging on a real-time imaging platform and preliminary evaluation was carried out compared to a standard 2D sequence in vivo using a swine brain model, comparing maximum and mean temperatures measured between the two methods, as well as the temporal standard deviation measured by the two methods. In simulations, low-bandwidth Cartesian trajectories showed substantial shift of the focal spot, whereas both spiral trajectories showed no shift while maintaining focal spot geometry. In vivo, the 3D sequence achieved real-time 4D monitoring of thermometry, with an update time of 2.9-3.3 s. Spiral imaging, and RIO imaging in particular, is an effective way to speed up volumetric MR thermometry. Magn Reson Med 79:3122-3127, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  13. Propagating star formation and irregular structure in spiral galaxies

    International Nuclear Information System (INIS)

    Mueller, M.W.; Arnett, W.D.

    1976-01-01

    A simple model is proposed which describes the irregular optical appearance often seen in late-type spiral galaxies. If high-mass stars produce spherical shock waves which induce star formation, new high-mass stars will be born which, in turn, produce new shock waves. When this process operates in a differentially rotating disk, our numerical model shows that large-scale spiral-shaped regions of star formation are built up. The structure is seen to be most sensitive to a parameter which governs how often a region of the interstellar medium can undergo star formation. For a proper choice of this parameter, large-scale features disappear before differential rotation winds them up. New spiral features continuously form, so some spiral structure is seen indefinitely. The structure is not the classical two-armed symmetric spiral pattern which the density-wave theory attempts to explain, but it is asymmetric and disorderly.The mechanism of propagating star formation used in our model is consistent with observations which connect young OB associations with expanding shells of gas. We discuss the possible interaction of this mechanism with density waves

  14. Spiral scan long object reconstruction through PI line reconstruction

    International Nuclear Information System (INIS)

    Tam, K C; Hu, J; Sourbelle, K

    2004-01-01

    The response of a point object in a cone beam (CB) spiral scan is analysed. Based on the result, a reconstruction algorithm for long object imaging in spiral scan cone beam CT is developed. A region-of-interest (ROI) of the long object is scanned with a detector smaller than the ROI, and a portion of it can be reconstructed without contamination from overlaying materials. The top and bottom surfaces of the ROI are defined by two sets of PI lines near the two ends of the spiral path. With this novel definition of the top and bottom ROI surfaces and through the use of projective geometry, it is straightforward to partition the cone beam image into regions corresponding to projections of the ROI, the overlaying objects or both. This also simplifies computation at source positions near the spiral ends, and makes it possible to reduce radiation exposure near the spiral ends substantially through simple hardware collimation. Simulation results to validate the algorithm are presented

  15. Continuing research on the classical spiraling photon model

    Science.gov (United States)

    Li, Hongrui

    2014-11-01

    Based no the classical spiraling photon model proposed by Hongrui Li, the laws of reflection, refraction of a single photon can be derived. Moreover, the polarization, total reflection, evanescent wave and Goos-Hanchen shift of a single photon can be elucidated. However, this photon model is still unfinished. Especially, the spiraling diameter of a photon is not definite. In this paper, the continuous research works on this new theory are reported. According to the facts that the diffraction limit of light and the smallest diameter of the focal spot of lenses are all equal to the wavelength λ of the light, we can get that the spiraling diameter of a photon equals to the wavelength λ, so we gain that the angle between the linear velocity of the spiraling photon υ and the component of the linear velocity in the forward direction υb is 45°, and the energy of a classical spiraling photon E = (1/2)mυ2 = (1/2)m2c2 = mc2. This coincides with Einstein's mass-energy relation. While it is obtained that the velocity of the evanescent wave in the vacuum is slower than the velocity of light in glass in straight line. In such a way, the optical fiber can slow the light down. In addition, the force analysis of a single photon in optical tweezers system is discussed. And the reason that the laser beam can capture the particle slightly downstream from the focal point can be explained.

  16. Feeding Your Baby

    Medline Plus

    Full Text Available ... for your baby Feeding your baby Family health & safety Complications & Loss Pregnancy complications Preterm labor & premature birth ... for your baby Feeding your baby Family health & safety Complications & Loss Pregnancy complications Preterm labor & premature birth ...

  17. Feeding Your Baby

    Medline Plus

    Full Text Available ... questions Email sign up Join our online community Home > Baby > Feeding your baby Feeding your baby E- ... We're working to radically improve the health care they receive. We're pioneering research to find ...

  18. Feeding Your Baby

    Medline Plus

    Full Text Available ... fitness Prenatal care Is it safe? Labor & birth Postpartum care Baby Caring for your baby Feeding your ... fitness Prenatal care Is it safe? Labor & birth Postpartum care Baby Caring for your baby Feeding your ...

  19. Feeding Your Baby

    Medline Plus

    Full Text Available ... Home > Baby > Feeding your baby Feeding your baby E-mail to a friend Please fill in all fields. Please enter a valid e-mail address. Your information: Your recipient's information: Your ...

  20. Feeding tube - infants

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/007235.htm Feeding tube - infants To use the sharing features on this page, please enable JavaScript. A feeding tube is a small, soft, plastic tube placed ...

  1. Gastrostomy feeding tube - bolus

    Science.gov (United States)

    Feeding - gastrostomy tube - bolus; G-tube - bolus; Gastrostomy button - bolus; Bard Button - bolus; MIC-KEY - bolus ... KEY, 3 to 8 weeks after surgery. These feedings will help your child grow strong and healthy. ...

  2. Feeding Your Baby

    Medline Plus

    Full Text Available ... Frequently asked questions Email sign up Join our online community Home > Baby > Feeding your baby Feeding your baby E-mail to a friend Please fill in all fields. Please enter a ...

  3. Feeding Your Baby

    Medline Plus

    Full Text Available ... Frequently asked questions Email sign up Join our online community March for Babies Nacersano Share Your Story ... Frequently asked questions Email sign up Join our online community Home > Baby > Feeding your baby Feeding your ...

  4. Experimental investigation of a spiral-wound pressure-retarded osmosis membrane module for osmotic power generation.

    Science.gov (United States)

    Kim, Yu Chang; Kim, Young; Oh, Dongwook; Lee, Kong Hoon

    2013-03-19

    Pressure-retarded osmosis (PRO) uses a semipermeable membrane to produce renewable energy from salinity-gradient energy. A spiral-wound (SW) design is one module configuration of the PRO membrane. The SW PRO membrane module has two different flow paths, axial and spiral, and two different spacers, net and tricot, for draw- and feed-solution streams, respectively. This study used an experimental approach to investigate the relationship between two interacting flow streams in a prototype SW PRO membrane module, and the adverse impact of a tricot fabric spacer (as a feed spacer) on the PRO performance, including water flux and power density. The presence of the tricot spacer inside the membrane envelope caused a pressure drop due to flow resistance and reduced osmotic water permeation due to the shadow effect. The dilution of the draw solution by water permeation resulted in the reduction of the osmotic pressure difference along a pressure vessel. For a 0.6 M NaCl solution and tap water, the water flux and corresponding maximum power density were 3.7 L m(-2)h(-1) and 1.0 W/m(2) respectively at a hydraulic pressure difference of 9.8 bar. The thickness and porosity of the tricot spacer should be optimized to achieve high SW PRO module performance.

  5. Geometrical study of phyllotactic patterns by Bernoulli spiral lattices.

    Science.gov (United States)

    Sushida, Takamichi; Yamagishi, Yoshikazu

    2017-06-01

    Geometrical studies of phyllotactic patterns deal with the centric or cylindrical models produced by ideal lattices. van Iterson (Mathematische und mikroskopisch - anatomische Studien über Blattstellungen nebst Betrachtungen über den Schalenbau der Miliolinen, Verlag von Gustav Fischer, Jena, 1907) suggested a centric model representing ideal phyllotactic patterns as disk packings of Bernoulli spiral lattices and presented a phase diagram now called Van Iterson's diagram explaining the bifurcation processes of their combinatorial structures. Geometrical properties on disk packings were shown by Rothen & Koch (J. Phys France, 50(13), 1603-1621, 1989). In contrast, as another centric model, we organized a mathematical framework of Voronoi tilings of Bernoulli spiral lattices and showed mathematically that the phase diagram of a Voronoi tiling is graph-theoretically dual to Van Iterson's diagram. This paper gives a review of two centric models for disk packings and Voronoi tilings of Bernoulli spiral lattices. © 2017 Japanese Society of Developmental Biologists.

  6. Extending the GANIL control system for the SPIRAL project

    International Nuclear Information System (INIS)

    Lecorche, E.

    1997-01-01

    The SPIRAL project under construction at GANIL aims to deliver radioactive ion beams to the physicists by the end of 1998. In 1996, it has been proposed to achieve most of the SPIRAL control system as an extension of the system currently in use at GANIL. Therefore the main features of the GANIL control system design are first recalled. Then the paper shows how the GANIL control system should have been upgraded and extended to integrate the SPIRAL project. This evolution had to cope with the specific needs brought by the new machine and to consider the size of the project which is around one third of the GANIL control system volume. Lastly current status of the system is given. (author)

  7. Kinematical and dynamical models for barred spiral galaxies

    International Nuclear Information System (INIS)

    Davoust, E.

    1983-01-01

    This is a review of published works on the kinematics and dynamics of stellar bars and barred spiral galaxies. The periodic orbits of stars are elongated along the bar and enhance it out to a certain distance from the center. The important role of the interstellar gas is pointed out by the models of gas clouds and flows: the trajectories are also along the bar, but shock waves arise in front of the bar and transient spiral structures appear at its ends. These models reproduce the observed velocity fields fairly well. The investigations of the stability of axisymmetric galactic disks show that they are very unstable with respect to bar shaped perturbations and might explain why two thirds of the known spiral galaxies are barred [fr

  8. Vascular imaging with spiral CT. The way to CY angiography

    International Nuclear Information System (INIS)

    Prokop, M.; Schaefer, C.; Kalender, W.A.; Polacin, A.; Galanski, M.

    1993-01-01

    Spiral CT is a technique that allows for high-quality two-dimensional angiographic projections and 3D imaging of vascular structures. The authors present the technical and methodological principles of the technique, including scan parameters and parameters of contrast application for various clinical imaging tasks. They present their experience with over 150 clinical cases using spiral CT angiography. Suitable applications of this technique include cogenital anomalies, aneurysms, dissections, stenoses, thrombi and vascular tumor involvement. Given a problem-adapted examination technique, pathologic changes in vessels of as little as 2 mm can be visualized. In some cases with complex vascular anatomy, spiral CT angiography can be superior to arterial angiography. (orig.) [de

  9. Extending the GANIL control system for the SPIRAL project

    Energy Technology Data Exchange (ETDEWEB)

    Lecorche, E

    1997-12-31

    The SPIRAL project under construction at GANIL aims to deliver radioactive ion beams to the physicists by the end of 1998. In 1996, it has been proposed to achieve most of the SPIRAL control system as an extension of the system currently in use at GANIL. Therefore the main features of the GANIL control system design are first recalled. Then the paper shows how the GANIL control system should have been upgraded and extended to integrate the SPIRAL project. This evolution had to cope with the specific needs brought by the new machine and to consider the size of the project which is around one third of the GANIL control system volume. Lastly current status of the system is given. (author) 5 refs.

  10. Auditory Mechanics of the Tectorial Membrane and the Cochlear Spiral

    Science.gov (United States)

    Gavara, Núria; Manoussaki, Daphne; Chadwick, Richard S.

    2012-01-01

    Purpose of review This review is timely and relevant since new experimental and theoretical findings suggest that cochlear mechanics from the nanoscale to the macroscale are affected by mechanical properties of the tectorial membrane and the spiral shape. Recent findings Main tectorial membrane themes covered are i) composition and morphology, ii) nanoscale mechanical interactions with the outer hair cell bundle, iii) macroscale longitudinal coupling, iv) fluid interaction with inner hair cell bundles, v) macroscale dynamics and waves. Main cochlear spiral themes are macroscale low-frequency energy focusing and microscale organ of Corti shear gain. Implications Findings from new experimental and theoretical models reveal exquisite sensitivity of cochlear mechanical performance to tectorial membrane structural organization, mechanics, and its positioning with respect to hair bundles. The cochlear spiral geometry is a major determinant of low frequency hearing. Suggestions are made for future research directions. PMID:21785353

  11. Visibility in a pure model of golden spiral phyllotaxis.

    Science.gov (United States)

    Herrmann, Burghard

    2018-07-01

    This paper considers the geometry of plants with golden spiral phyllotaxis, i.e. growing leaf by leaf on a spiral with golden divergence angle, via the simplest mathematical model, a cylinder with regular arrangement of points on its surface. As is well-known, Fibonacci numbers appear by means of the order of parastichies. This fact is shown to be a straightforward application of logical consequences to a particular model with respect to pure visibility. This notion is very similar to that of contact parastichies. The 3-D cylindrical model of golden spiral phyllotaxis abstracts from the form of leaves and identifies them with points. Pure visibility is specified in the 2-D representation so that common sense parastichies can be scrutinized. The main Theorem states that the orders of the purely most visible parastichies are Fibonacci numbers. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Shunt impedance of spiral loaded resonant rf cavities

    International Nuclear Information System (INIS)

    Peebles, P.Z. Jr.; Parvarandeh, M.

    1975-01-01

    Based upon a treatment of the spiral loaded resonant radio frequency cavity as a shorted quarter-wave transmission line, a model for shunt impedance is developed. The model is applicable to loosely wound spirals in large diameter containers. Theoretical shunt impedance is given for spirals wound from tubing of circular or rectangular cross section. The former produces higher shunt impedance. Measurements made at Oak Ridge National Laboratory on 17 copper cavities are described which support the theoretical results. Theoretical results are also compared to data from twenty-three additional cavities measured at Los Alamos Scientific Laboratory. It is shown that the theoretical function forms a useful means of interpreting the quality of constructed cavities. (author)

  13. Global spiral structure of M81 - radio continuum maps

    International Nuclear Information System (INIS)

    Bash, F.N.; Kaufman, M.; Ohio State Univ., Columbus)

    1986-01-01

    VLA observations of the radio continuum emission from M81 at 6 and 20 cm are presented and used to check the predictions of density-wave theories. Both thermal and nonthermal radiation from the spiral arms are detected. Most of the bright knots along the radio arms are giant radio H II regions. The nonthermal emission defines spiral arms that are patchy and well-resolved, with a width of 1-2 kpc. The observed nonthermal arms are too broad to agree with the continuum gasdynamical calculations of Roberts (1969), Shu et al. (1972), and Visser (1978, 1980) for a classical density wave model. The observed arm widths appear consistent with the predictions of density-wave models that emphasize the clumpy nature of the ISM. The 20 cm arms appear to spiral outward from a faint inner H I ring, suggesting that the ring is produced by the inner Lindblad resonance. 36 references

  14. Simulation algorithm for spiral case structure in hydropower station

    Directory of Open Access Journals (Sweden)

    Xin-yong Xu

    2013-04-01

    Full Text Available In this study, the damage-plasticity model for concrete that was verified by the model experiment was used to calculate the damage to a spiral case structure based on the damage mechanics theory. The concrete structure surrounding the spiral case was simulated with a three-dimensional finite element model. Then, the distribution and evolution of the structural damage were studied. Based on investigation of the change of gap openings between the steel liner and concrete structure, the impact of the non-uniform variation of gaps on the load-bearing ratio between the steel liner and concrete structure was analyzed. The comparison of calculated results of the simplified and simulation algorithms shows that the simulation algorithm is a feasible option for the calculation of spiral case structures. In addition, the shell-spring model was introduced for optimization analysis, and the results were reasonable.

  15. Flocculent and grand design spiral arm structure in cluster galaxies

    International Nuclear Information System (INIS)

    Elmegreen, D.M.

    1982-01-01

    A total of 829 spiral galaxies in 22 clusters having redshifts between z = 0.02 and 0.06 were classified according to the appearance of their spiral arm structures. The fraction of galaxies that have a grand design spiral structure was found to be higher among barred galaxies than among non-barred galaxies (at z = 0.02, 95 per cent of strongly barred galaxies have a grand design, compared with 67 per cent of non-barred or weakly barred galaxies). Cluster galaxies and distant non-cluster galaxies have the same fraction of grand design galaxies when resolution effects are considered. The grand design fraction among cluster galaxies is also similar to the fraction observed among nearby galaxies in binary systems and in groups. (author)

  16. New developments in the theory of spiral galaxies

    International Nuclear Information System (INIS)

    Thielheim, K.O.

    1982-01-01

    About 30% of all galaxies exhibit spiral forms, 60% are elliptical and 10% irregular. It is the objective of galactic dynamics to explain these structural features. A first generation of self-consistent N-body simulations indicates that ellipticals are equilibrium configurations of gravitationally interacting multi-particle systems for which unfortunately a theory does not yet exist. Recent progress has been made on the modal analysis of Freeman disks. In a second generation of N-body simulations spiral density waves have been reproduced in disk configurations. As an alternative to the Lin-Shu conjecture based on the QSSS-hypothesis the author considers a mechanism by which spiral density waves are produced in the surrounding disk as a consequence of the slow increase of the quadrupole moment of a central oval shaped equilibrium configuration immersed in the disk. (Auth.)

  17. The potentials of spiral CT for detection of focal liver lesions; Moeglichkeiten der Spiral-CT zur Diagnostik fokaler Leberlaesionen

    Energy Technology Data Exchange (ETDEWEB)

    Helmberger, H. [Technische Univ. Muenchen, Klinikum rechts der Iser, Inst. fuer Roentgendiagnostik (Germany); Kersting-Sommerhoff, B. [Technische Univ. Muenchen, Klinikum rechts der Iser, Inst. fuer Roentgendiagnostik (Germany); Lenz, M. [Technische Univ. Muenchen, Klinikum rechts der Iser, Inst. fuer Roentgendiagnostik (Germany); Kirsten, R. [Technische Univ. Muenchen, Klinikum rechts der Iser, Inst. fuer Roentgendiagnostik (Germany); Bautz, W. [Technische Univ. Muenchen, Klinikum rechts der Iser, Inst. fuer Roentgendiagnostik (Germany)

    1996-03-01

    Spiral CT currently is the modality of choice for all aspects of diagnostic evaluation of the liver. Optimal selection of treatment should be based inter alia on the findings obtained by spiral CT with arterial application of contrast medium, as for example S-CTA (primary liver tumors), or S-CTAP (secondary liver tumors). Ultrasonography is the major supplementing modality. In the near future, MR imaging applying liver-specific contrast-enhancing agents is expected to become an important competing technique, and further developments of interest in diagnostic imaging of the liver are in the offing: it is not yet known which technique will be the modality of choice at the onset of the 21st century. (orig.) [Deutsch] Die Spiral-CT ist zur Zeit das empfehlenswerte Verfahren fuer alle Fragen der Leberdiagnostik. Zur optimalen praetherapeutischen Beurteilung der Leber sollte die Spiral-CT mit arterieller Kontrastmittelapplikation als S-CTA (primaere Lebertumoren) bzw. S-CTAP (sekundaere Lebertumoren) durchgefuehrt werden. Der US kommt ein Stellenwert als ergaenzende Methode zu. In Zukunft wird die MRT mit leberspezifischen Kontrastmitteln ein konkurrierendes Verfahren zur Spiral-CT darstellen, wobei eine weitere interessante Entwicklung auf dem Gebiet der hepatischen Bildgebung zu erwarten ist: Das diagnostische Verfahren der Wahl fuer die Leber zu Beginn des 21. Jahrhunderts ist noch nicht definiert. (orig.)

  18. PROTOPLANETARY DISK HEATING AND EVOLUTION DRIVEN BY SPIRAL DENSITY WAVES

    Energy Technology Data Exchange (ETDEWEB)

    Rafikov, Roman R., E-mail: rrr@ias.edu [Institute for Advanced Study, Einstein Drive, Princeton, NJ 08540 (United States)

    2016-11-10

    Scattered light imaging of protoplanetary disks often reveals prominent spiral arms, likely excited by massive planets or stellar companions. Assuming that these arms are density waves, evolving into spiral shocks, we assess their effect on the thermodynamics, accretion, and global evolution of the disk. We derive analytical expressions for the direct (irreversible) heating, angular momentum transport, and mass accretion rate induced by disk shocks of arbitrary amplitude. These processes are very sensitive to the shock strength. We show that waves of moderate strength (density jump at the shock ΔΣ/Σ ∼ 1) result in negligible disk heating (contributing at the ∼1% level to the energy budget) in passive, irradiated protoplanetary disks on ∼100 au scales, but become important within several au. However, shock heating is a significant (or even dominant) energy source in disks of cataclysmic variables, stellar X-ray binaries, and supermassive black hole binaries, heated mainly by viscous dissipation. Mass accretion induced by the spiral shocks is comparable to (or exceeds) the mass inflow due to viscous stresses. Protoplanetary disks featuring prominent global spirals must be evolving rapidly, in ≲0.5 Myr at ∼100 au. A direct upper limit on the evolution timescale can be established by measuring the gravitational torque due to the spiral arms from the imaging data. We find that, regardless of their origin, global spiral waves must be important agents of the protoplanetary disk evolution. They may serve as an effective mechanism of disk dispersal and could be related to the phenomenon of transitional disks.

  19. PROTOPLANETARY DISK HEATING AND EVOLUTION DRIVEN BY SPIRAL DENSITY WAVES

    International Nuclear Information System (INIS)

    Rafikov, Roman R.

    2016-01-01

    Scattered light imaging of protoplanetary disks often reveals prominent spiral arms, likely excited by massive planets or stellar companions. Assuming that these arms are density waves, evolving into spiral shocks, we assess their effect on the thermodynamics, accretion, and global evolution of the disk. We derive analytical expressions for the direct (irreversible) heating, angular momentum transport, and mass accretion rate induced by disk shocks of arbitrary amplitude. These processes are very sensitive to the shock strength. We show that waves of moderate strength (density jump at the shock ΔΣ/Σ ∼ 1) result in negligible disk heating (contributing at the ∼1% level to the energy budget) in passive, irradiated protoplanetary disks on ∼100 au scales, but become important within several au. However, shock heating is a significant (or even dominant) energy source in disks of cataclysmic variables, stellar X-ray binaries, and supermassive black hole binaries, heated mainly by viscous dissipation. Mass accretion induced by the spiral shocks is comparable to (or exceeds) the mass inflow due to viscous stresses. Protoplanetary disks featuring prominent global spirals must be evolving rapidly, in ≲0.5 Myr at ∼100 au. A direct upper limit on the evolution timescale can be established by measuring the gravitational torque due to the spiral arms from the imaging data. We find that, regardless of their origin, global spiral waves must be important agents of the protoplanetary disk evolution. They may serve as an effective mechanism of disk dispersal and could be related to the phenomenon of transitional disks.

  20. Initial clinical experience with spiral CT angiography in the abdomen

    International Nuclear Information System (INIS)

    Gaa, J.; Stehling, M.K.; Costello, P.

    1993-01-01

    The latest developments in modern CT instruments, offering scanning times of a second, opened up new possibilities in CT imaging in combination with the spiral technique. The data set normally taken with single-breath-hold technique is free of respiratory artefacts and thus is a good basis for accurate 3D image reconstruction. Spiral CTA allows a non-invasive 3D imaging of various blood vessels. Patients with abdominal aortic aneurysms of aorto-iliac bypass can be examined as outpatients within 15 minutes. (orig.) [de

  1. Rediscovering the Giant Low Surface Brightness Spiral Galaxy Malin 1

    Science.gov (United States)

    Galaz, Gaspar

    2018-01-01

    I summarize the latest discoveries regarding this ramarkable diffuse and giant galaxy, the largest single spiral in the universe so far. I describe how the latest discoveries could have been done easily 20 years ago, but an incredible summation of facts and some astronomical sociology, keeped many of them undisclosed. I present the most conspicuous features of the giant spiral arms of Malin 1, including stellar density, colors, stellar populations and some modeling describing their past evolution to the current state. I conclude with pending issues regarding stellar formation in Malin 1, and the efforts to detect its elusive molecular gas.

  2. Recent Advances in the Analysis of Spiral Bevel Gears

    Science.gov (United States)

    Handschuh, Robert F.

    1997-01-01

    A review of recent progress for the analysis of spiral bevel gears will be described. The foundation of this work relies on the description of the gear geometry of face-milled spiral bevel gears via the approach developed by Litvin. This methodology was extended by combining the basic gear design data with the manufactured surfaces using a differential geometry approach, and provides the data necessary for assembling three-dimensional finite element models. The finite element models have been utilized to conduct thermal and structural analysis of the gear system. Examples of the methods developed for thermal and structural/contact analysis are presented.

  3. Multiarm spirals on the periphery of disc galaxies

    Science.gov (United States)

    Lubov, Spiegel; Evgeny, Polyachenko

    2018-04-01

    Spiral patterns in some disc galaxies have two arms in the centre, and three or more arms on the periphery. The same result is also obtained in numerical simulations of stellar and gaseous discs.We argue that such patterns may occur due to fast cooling of the gas, resulting in formation of giant molecular clouds. The timescale of this process is 50 Myr, the factor of 10 shorter than of ordinary secular instability. The giant molecular clouds give rise to multiarm spirals through the mechanism of swing amplification.

  4. The color gradient in spiral galaxies: application to M 81

    International Nuclear Information System (INIS)

    Segalovitz, A.

    1975-01-01

    The calculated development of the color of a star cluster is used to predict the expected color evolution, as a function of radius, in a spiral galaxy. It is assumed that the fraction of gas which is converted into stars during a spiral arm passage is a function of radius only. Applying this model to M 81, it is shown that the observed color and mass distributions can be explained by an initial disk-like gas distribution proportional to the inverse square of the radius and a consumption fraction which is an increasing function of radius. (orig.) [de

  5. The Galactic Centre Mini-Spiral with CARMA

    Science.gov (United States)

    Kunneriath, D.; Eckart, A.; Vogel, S. N.; Teuben, P.; Muzic, K.; Schodel. R.; Garcia-Marin, M.; Moultaka, J.; Staguhn, J.; Straubmeier, C.; hide

    2012-01-01

    The Galactic centre mini-spiral region is a mixture of gas and dust with temperatures ranging from a few hundred K to 10(exp 4) K. We report results from 1.3 and 3mm radio interferometric observations of this region with CARMA, and present a spectral index map of this region. We find a range of emission mechanisms in the region, including the inverted synchrotron spectrum of Sgr A*, free-free emission from the mini-spiral arms, and a possible dust emission contribution indicated by a positive spectral index.

  6. SPIRAL2 Week 2011 - Slides of the presentations

    International Nuclear Information System (INIS)

    Gales, S.; Jacquemet, M.; Lewitowicz, M.; Petit, E.; Biarrote, J.L.; Uriot, D.; Thuillier, T.; Peaucelle, C.; Barue, C.; Van Hille, C.; Bernaudin, P.E.; Galdemard, P.; Ausset, P.; Dolegieviez, P.; Levallois, R.; Marchetto, M.; Pasini, M.; Quiclet, M.; Danna, O.; Lunney, D.; Di Giacomo, M.

    2013-01-01

    The main goal of the meeting is to present and discuss the current status of the SPIRAL2 project at GANIL in front of a large community of scientists and engineers. The program of the meeting will include presentations on scientific and technical developments related to the baseline project, experiments and theory. The main topics to be discussed at the conference have been: -) Driver Accelerators, -) Production of radioactive ion beams (RIB), -) Safety, -) RIB Facilities Worldwide (FAIR, Riken Nishina Center, SPES project, FRIB project) -) FP7 SPIRAL2 Preparatory Phase, -) Experiments with RIB and Theory. This document is made up of the slides of the presentations

  7. Resonant fields created by spiral electric currents in Tokamaks

    International Nuclear Information System (INIS)

    Fernandes, A.S.; Caldas, I.L.

    1985-01-01

    The influence of the resonant magnetic perturbations, created by electric currents in spirals, on the plasma confinement in a tokamak with circular section and large aspect ratio is investigated. These perturbations create magnetic islands around the rational magnetic surface which has the helicity of the helicoidal currents. The intensities of these currents are calculated in order to the magnetic islands reach the limiter or others rational surfaces, what could provoke the plasma disrupture. The electric current intensities are estimated, in two spiral sets with different helicities, which create a predominantly stocastic region among the rational magnetic surfaces with these helicities. (L.C.) [pt

  8. Classifying and modelling spiral structures in hydrodynamic simulations of astrophysical discs

    Science.gov (United States)

    Forgan, D. H.; Ramón-Fox, F. G.; Bonnell, I. A.

    2018-05-01

    We demonstrate numerical techniques for automatic identification of individual spiral arms in hydrodynamic simulations of astrophysical discs. Building on our earlier work, which used tensor classification to identify regions that were `spiral-like', we can now obtain fits to spirals for individual arm elements. We show this process can even detect spirals in relatively flocculent spiral patterns, but the resulting fits to logarithmic `grand-design' spirals are less robust. Our methods not only permit the estimation of pitch angles, but also direct measurements of the spiral arm width and pattern speed. In principle, our techniques will allow the tracking of material as it passes through an arm. Our demonstration uses smoothed particle hydrodynamics simulations, but we stress that the method is suitable for any finite-element hydrodynamics system. We anticipate our techniques will be essential to studies of star formation in disc galaxies, and attempts to find the origin of recently observed spiral structure in protostellar discs.

  9. Origin choice and petal loss in the flower garden of spiral wave tip trajectories.

    Science.gov (United States)

    Gray, Richard A; Wikswo, John P; Otani, Niels F

    2009-09-01

    Rotating spiral waves have been observed in numerous biological and physical systems. These spiral waves can be stationary, meander, or even degenerate into multiple unstable rotating waves. The spatiotemporal behavior of spiral waves has been extensively quantified by tracking spiral wave tip trajectories. However, the precise methodology of identifying the spiral wave tip and its influence on the specific patterns of behavior remains a largely unexplored topic of research. Here we use a two-state variable FitzHugh-Nagumo model to simulate stationary and meandering spiral waves and examine the spatiotemporal representation of the system's state variables in both the real (i.e., physical) and state spaces. We show that mapping between these two spaces provides a method to demarcate the spiral wave tip as the center of rotation of the solution to the underlying nonlinear partial differential equations. This approach leads to the simplest tip trajectories by eliminating portions resulting from the rotational component of the spiral wave.

  10. The Fundamental Structure and the Reproduction of Spiral Wave in a Two-Dimensional Excitable Lattice.

    Science.gov (United States)

    Qian, Yu; Zhang, Zhaoyang

    2016-01-01

    In this paper we have systematically investigated the fundamental structure and the reproduction of spiral wave in a two-dimensional excitable lattice. A periodically rotating spiral wave is introduced as the model to reproduce spiral wave artificially. Interestingly, by using the dominant phase-advanced driving analysis method, the fundamental structure containing the loop structure and the wave propagation paths has been revealed, which can expose the periodically rotating orbit of spiral tip and the charity of spiral wave clearly. Furthermore, the fundamental structure is utilized as the core for artificial spiral wave. Additionally, the appropriate parameter region, in which the artificial spiral wave can be reproduced, is studied. Finally, we discuss the robustness of artificial spiral wave to defects.

  11. Spiral model of the Galaxy from observations of the interstellar light attenuation

    International Nuclear Information System (INIS)

    Urasin, L.A.

    1987-01-01

    The model of two arms spiral structure of the Galaxy is made from the observations of space distribution of the interstellar dust matter. This model is the logarithmic spiral with characteristic angle (pith) 6.5 deg

  12. Breast-Feeding Twins: Making Feedings Manageable

    Science.gov (United States)

    ... Department of Health and Human Services Office on Women's Health. http://www.womenshealth.gov/publications/our-publications/breastfeeding-guide. Accessed March 11, 2015. Shelov SP, et al. Feeding your ...

  13. Feed safety in the feed supply chain

    Directory of Open Access Journals (Sweden)

    Pinotti, L.

    2011-01-01

    Full Text Available A number of issues have weakened the public's confidence in the quality and wholesomeness of foods of animal origin. As a result farmers, nutritionists, industry and governments have been forced to pay serious attention to animal feedstuff production processes, thereby acknowledging that animal feed safety is an essential prerequisite for human food safety. Concerns about these issues have produced a number of important effects including the ban on the use of processed animal proteins, the ban on the addition of most antimicrobials to farm animals diets for growth‐promotion purposes, and the implementation of feed contaminant regulations in the EU. In this context it is essential to integrate knowledge on feed safety and feed supply. Consequently, purchase of new and more economic sources of energy and protein in animal diets, which is expected to conform to adequate quality, traceability, environmental sustainability and safety standards, is an emerging issue in livestock production system.

  14. Spiral wave drift and complex-oscillatory spiral waves caused by heterogeneities in two-dimensional in vitro cardiac tissues

    International Nuclear Information System (INIS)

    Woo, Sung-Jae; Hong, Jin Hee; Kim, Tae Yun; Bae, Byung Wook; Lee, Kyoung J

    2008-01-01

    Understanding spiral reentry wave dynamics in cardiac systems is important since it underlies various cardiac arrhythmia including cardiac fibrillation. Primary cultures of dissociated cardiac cells have been a convenient and useful system for studying cardiac wave dynamics, since one can carry out systematic and quantitative studies with them under well-controlled environments. One key drawback of the dissociated cell culture is that, inevitably, some spatial inhomogeneities in terms of cell types and density, and/or the degree of gap junction connectivity, are introduced to the system during the preparation. These unintentional spatial inhomogeneities can cause some non-trivial wave dynamics, for example, the entrainment dynamics among different spiral waves and the generation of complex-oscillatory spiral waves. The aim of this paper is to quantify these general phenomena in an in vitro cardiac system and provide explanations for them with a simple physiological model having some realistic spatial inhomogeneities incorporated

  15. Biofouling in capillary and spiral wound membranes facilitated by marine algal bloom

    KAUST Repository

    Villacorte, L.O.

    2017-10-11

    Algal-derived organic matter (AOM), particularly transparent exopolymer particles, has been suspected to facilitate biofilm development in membrane systems (e.g., seawater reverse osmosis). This study demonstrates the possible role of AOM on biofouling in membrane systems affected by marine algal blooms. The tendency of AOM from bloom-forming marine algae to adhere to membranes and its ability to enhance biofilm growth were measured using atomic force microscopy, flow cytometry, liquid chromatography and accelerated membrane biofouling experiments. Adhesion force measurements indicate that AOM tends to adhere to clean membranes and even more strongly to AOM-fouled membranes. Batch growth tests illustrate that the capacity of seawater to support bacterial growth can significantly increase with AOM concentration. Biofouling experiments with spiral wound and capillary membranes illustrate that when nutrients availability are not limited in the feed water, a high concentration of AOM – whether in suspension or attached to the membrane – can substantially accelerates biofouling. A significantly lower biofouling rate was observed on membranes exposed to feed water spiked only with AOM or easily biodegradable nutrients. The abovementioned findings indicate that AOM facilitates the onset of membrane biofouling primarily as a conditioning platform and to some extent as a nutrient source for biofilm-forming bacteria.

  16. Biofouling in capillary and spiral wound membranes facilitated by marine algal bloom

    KAUST Repository

    Villacorte, L.O.; Ekowati, Y.; Calix-Ponce, H.N.; Kisielius, V.; Kleijn, J.M.; Vrouwenvelder, Johannes S.; Schippers, J.C.; Kennedy, M.D.

    2017-01-01

    Algal-derived organic matter (AOM), particularly transparent exopolymer particles, has been suspected to facilitate biofilm development in membrane systems (e.g., seawater reverse osmosis). This study demonstrates the possible role of AOM on biofouling in membrane systems affected by marine algal blooms. The tendency of AOM from bloom-forming marine algae to adhere to membranes and its ability to enhance biofilm growth were measured using atomic force microscopy, flow cytometry, liquid chromatography and accelerated membrane biofouling experiments. Adhesion force measurements indicate that AOM tends to adhere to clean membranes and even more strongly to AOM-fouled membranes. Batch growth tests illustrate that the capacity of seawater to support bacterial growth can significantly increase with AOM concentration. Biofouling experiments with spiral wound and capillary membranes illustrate that when nutrients availability are not limited in the feed water, a high concentration of AOM – whether in suspension or attached to the membrane – can substantially accelerates biofouling. A significantly lower biofouling rate was observed on membranes exposed to feed water spiked only with AOM or easily biodegradable nutrients. The abovementioned findings indicate that AOM facilitates the onset of membrane biofouling primarily as a conditioning platform and to some extent as a nutrient source for biofilm-forming bacteria.

  17. Measurement of Galactic Logarithmic Spiral Arm Pitch Angle Using Two-Dimensional Fast Fourier Transform Decomposition

    OpenAIRE

    Davis, Benjamin L.; Berrier, Joel C.; Shields, Douglas W.; Kennefick, Julia; Kennefick, Daniel; Seigar, Marc S.; Lacy, Claud H. S.; Puerari, Ivânio

    2012-01-01

    A logarithmic spiral is a prominent feature appearing in a majority of observed galaxies. This feature has long been associated with the traditional Hubble classification scheme, but historical quotes of pitch angle of spiral galaxies have been almost exclusively qualitative. We have developed a methodology, utilizing two-dimensional fast Fourier transformations of images of spiral galaxies, in order to isolate and measure the pitch angles of their spiral arms. Our technique provides a quanti...

  18. Smooth-arm spiral galaxies: their properties and significance to cluster-galaxy evolution

    International Nuclear Information System (INIS)

    Wilkerson, M.S.

    1979-01-01

    In this dissertation a number of galaxies with optical appearances between those of normal, actively-star-forming spirals and SO galaxies have been examined. These so-called smooth-arm spiral galaxies exhibit spiral arms without any of the spiral tracers - H II regions, O-B star associations, dust - indicative of current star formation. Tests were made to find if, perhaps, these smooth-arm spirals could have, at one time, been normal, actively-star-forming spirals whose gas had been somehow removed; and that are currently transforming into SO galaxies. This scenario proceeds as (1) removal of gas, (2) gradual dying of disk density wave, (3) emergence of SO galaxy. If the dominant method of gas removal is ram-pressure stripping by a hot, intracluster medium, then smooth-arm spirals should occur primarily in x-ray clusters. Some major findings of this dissertation are as follows: (1) Smooth-arm spirals are redder than normal spirals of the same morphological type. Most smooth-arm spirals cannot be distinguished by color from SO galaxies. (2) A weak trend exists for smooth-arm spirals with stronger arms to be bluer than those with weaker arms; thus implying that the interval since gas removal has been shorter for the galaxies with stronger arms. (3) Smooth-arm spirals are deficient in neutral hydrogen - sometimes by an order of magnitude or, possibly, more

  19. A Spiral Task as a Model for In-Service Teacher Education

    Science.gov (United States)

    Fried, Michael N.; Amit, Miriam

    2005-01-01

    The spiral approach has long been used by curriculum designers to deepen students' knowledge of scientific and mathematical concepts and to bring students to higher levels of abstraction. The benefits of a spiral approach, however, can also be extended to teacher education. This paper describes a spiral activity employed by the "Kidumatica"…

  20. Optimization of feed water control for auxiliary boiler

    International Nuclear Information System (INIS)

    Li Lingmao

    2004-01-01

    This paper described the feed water control system of the auxiliary boiler steam drum in Qinshan Phase III Nuclear Power Plant, analyzed the deficiency of the original configuration, and proposed the optimized configuration. The optimized feed water control system can ensure the stable and safe operation of the auxiliary boiler, and the normal operation of the users. (author)

  1. Nucleonica: a platform for organisational knowledge management in the nuclear domain

    International Nuclear Information System (INIS)

    Magill, J.; Magill, N.F.

    2010-01-01

    The nuclear science web portal Nucleonica is considered from a knowledge management perspective. In particular, Nucleonica's 'knowledge objects' are considered within the context of Nonaka's 'knowledge spiral' model for organisational knowledge creation, transfer and dissemination. (authors)

  2. The findings and the role of axial CT imaging and 3D imaging of gastric lesion by spiral CT

    International Nuclear Information System (INIS)

    Lee, Dong Ho; Ko, Young Tae

    1996-01-01

    The purpose of this study is to assess the efficacy of axial CT imaging and 3D imaging by spiral CT in the detection and evaluation of gastric lesion. Seventy-seven patients with pathologically-proven gastric lesions underwent axial CT and 3D imaging by spiral CT. There were 49 cases of advanced gastric carcinoma(AGC), 21 of early gastric carcinoma (EGC), three of benign ulcers, three of leiomyomas, and one case of lymphoma. Spiral CT was performed with 3-mm collimation, 4.5mm/sec table feed, and 1-1.5-mm reconstruction interval after the ingestion of gas. 3D imaging was obtained using the SSD technique, and on analysis a grade was given(excellent, good, poor). Axial CT scan was performed with 5-mm collimation, 7mm/sec table feed, and 5-mm reconstruction interval after the ingestion of water. Among 49 cases of AGC, excellent 3D images were obtained in seven patients (14.3%), good 3D images in 30(61.2%), and poor 3D images in 12(24.5%). Among the 12 patients with poor images, the cancers were located at the pyloric antrum in eight cases, were AGC Borrmann type 4 in three cases, and EGC-mimicking lesion in one case. Using axial CT scan alone, Borrmann's classification based tumor morphology were accurately identified in 67.3% of cases, but using 3D imaging, the corresponding figure was 85.7%. In 33 cases receiving surgery, good correlation between axial CT scan and pathology occurred in 72.7% of T class, and 69.7% of N class. Among 21 cases of EGC, excellent 3D images were obtained in three patients (14.3%), good 3D images in 14 (66.7%), and poor 3D images in two (9.5%). The other two cases of EGC were not detected. By axial CT scan, no tumor was detected in four cases, and there were two doubtful cases. 3D images of three benign ulcers were excellent in one case and good in two. 3D images of three leiomyomas and one lymphoma were excellent. Combined axial CT imaging and 3D imaging by spiral CT has the potential to accurately diagnose gastric lesions other than AGC

  3. Analysis of contour images using optics of spiral beams

    Science.gov (United States)

    Volostnikov, V. G.; Kishkin, S. A.; Kotova, S. P.

    2018-03-01

    An approach is outlined to the recognition of contour images using computer technology based on coherent optics principles. A mathematical description of the recognition process algorithm and the results of numerical modelling are presented. The developed approach to the recognition of contour images using optics of spiral beams is described and justified.

  4. The thickness of the HI gas layer in spiral galaxies

    NARCIS (Netherlands)

    Sicking, Floris Jan

    1997-01-01

    In the present study, in two inclined spiral galaxies, NGC 3198 and NGC 2403, the HI random velocity dispersion and layer thickness will be measured simultaneously. This will be done from the HI velocity dispersion field (the distribution on the sky of the observed HI line of sight velocity

  5. Dark matter and rotation curves of spiral galaxies

    Czech Academy of Sciences Publication Activity Database

    Křížek, Michal; Křížek, Filip; Somer, L.

    2016-01-01

    Roč. 25, April (2016), s. 64-77 ISSN 1313-2709 R&D Projects: GA MŠk(CZ) LG15052 Institutional support: RVO:67985840 ; RVO:61389005 Keywords : red dwarf * dark matter * spiral galaxy Subject RIV: BA - General Mathematics http://www.astro.bas.bg/AIJ/issues/n25/MKrizek.pdf

  6. Ultra wideband coplanar waveguide fed spiral antenna for humanitarian demining

    DEFF Research Database (Denmark)

    Thaysen, Jesper; Jakobsen, Kaj Bjarne; Appel-Hansen, Jørgen

    2000-01-01

    to 1 bandwidth with a return loss better than 10 dB from 0.4 to 3.8 GHz is presented. A wideband balun covering the frequency range of the antenna was developed. The constructed spiral antenna is very useful in a stepped frequency ground penetrating radar for humanitarian demining due to the very...

  7. Theory of the paraxial ion trajectory in the spiral inflector

    International Nuclear Information System (INIS)

    Toprek, Dragan

    2000-01-01

    This paper presents the analytical and numerical theory of the paraxial ion trajectory through the spiral inflector. Analytical expressions for the equations which describe the paraxial ion trajectory are derived. The analytical derivations of the electric field expansion around the central ion trajectory has also been studied

  8. The dynamics of the spiral structure in galaxies

    International Nuclear Information System (INIS)

    Contopoulos, G.

    1979-01-01

    The basic ideas and current problems of the linear and non-linear theory of spiral structure are reviewed. Some recent work on the response density and possible self-consistent solutions of bars with an Inner Lindblad Resonance are described. (Auth.)

  9. Orientation of spiral galaxies in the local supercluster

    International Nuclear Information System (INIS)

    Jaaniste, J.A.; Saar, E.M.

    1977-01-01

    Two alternative models for the spatial orientation of galaxies - parallelism and perpendicularity of the planes of galaxies with respect to the supergalactic plane - are compared with the observed orientations of spiral galaxies within the volume of the radius of 50 Mpc. The first model does not agree with experimental data whereas the second one-perpendicularity of the planes - describes the above data well

  10. A SEARCH FOR SPIRAL GALAXIES WITH EXTENDED HI DISKS

    NARCIS (Netherlands)

    BROEILS, AH; VANWOERDEN, H

    1994-01-01

    We present short 21-cm line observations of about 50 spiral galaxies, made with the Westerbork Synthesis Radio Telescope. They form the first stage of a two-stage project to study the relation between the shape of extended rotation curves and galaxy properties, such as luminosity and morphological

  11. The present-day galaxy population in spiral galaxies

    NARCIS (Netherlands)

    Peletier, Reynier; Antonelli, LA; Limongi, M; Menci, N; Tornambe, A; Brocato, E; Raimondo, G

    2009-01-01

    Although there are many more stellar population studies of elliptical and lenticular galaxies, studies of spiral galaxies are catching up, due to higher signal to noise data on one hand, and better analysis methods on the other. Here I start by discussing some modern methods of analyzing integrated

  12. Stability of spiral welded tubes in Quay Walls

    NARCIS (Netherlands)

    Gresnigt, A.M.; van Es, S.H.J.

    2013-01-01

    A European research project (RFCS) has started to provide economic and safe guidance for the design of spirally welded tubes in combined walls. The main motivation for this project called COMBITUBE is that the current Eurocode 3 regulations for tubes in quay walls lead to uneconomic designs, because

  13. Measurement of lung volumes : usefulness of spiral CT

    International Nuclear Information System (INIS)

    Kang, Ho Yeong; Kwak, Byung Kook; Lee, Sang Yoon; Kim, Soo Ran; Lee, Shin Hyung; Lee, Chang Joon; Park, In Won

    1996-01-01

    To evaluate the usefulness of spiral CT in the measurement of lung volumes. Fifteen healthy volunteers were studied by both spirometer and spiral CT at full inspiration and expiration in order to correlated their results, including total lung capacity (TLC), vital capacity (VC) and residual volume (RV). 3-D images were reconstructed from spiral CT, and we measured lung volumes at a corresponding CT window range ; their volumes were compared with the pulmonary function test (paired t-test). The window range corresponding to TLC was from -1000HU to -150HU (p=0.279, r=0.986), and for VC from -910HU to -800HU (p=0.366, r=0.954) in full-inspiratory CT. The optimal window range for RV in full-expiratory CT was from -1000HU to -450HU (p=0.757, r=0.777), and TLC-VC in full-inspiratory CT was also calculated (p=0.843, r=0.847). Spiral CT at full inspiration can used to lung volumes such as TLC, VC and RV

  14. Kinematic properties of supergiants in the Perseus spiral arm

    Energy Technology Data Exchange (ETDEWEB)

    Gerasimenko, T P [Ural' skij Gosudarstvennyj Univ., Sverdlovsk (USSR)

    1963-05-01

    Large-scale inhomogeneity of the velocity field in the Perseus spiral arm region is found on the basis of the analysis of spatial motions of supergiants. The inhomogeneity seems to be connected with both presence of large groups of young stars and systematic motions in the arm predicted by the density wave theory. Proper motions of 78 stars are presented.

  15. Long term complications of the intraprostatic spiral. Case report

    DEFF Research Database (Denmark)

    Krogh, J

    1992-01-01

    A 76-year-old man had an intraprostatic spiral inserted to relieve bladder outlet obstruction that was caused by benign prostatic hypertrophy. After 30 months numerous complications had arisen including severe encrustations, urethral stricture, and sclerosis of the bladder neck. Regular replaceme...

  16. A combined optical, SEM and STM study of growth spirals

    Indian Academy of Sciences (India)

    Some novel results of a combined sequential study of growth spirals on the basal surface of the richly polytypic CdI2 crystals by optical microscopy, scanning electron microscopy (SEM) and scanning tunneling microscopy (STM) are presented and discussed. In confirmation of the known structural data, the STM pictures ...

  17. Spiral density waves and vertical circulation in protoplanetary discs

    Science.gov (United States)

    Riols, A.; Latter, H.

    2018-06-01

    Spiral density waves dominate several facets of accretion disc dynamics - planet-disc interactions and gravitational instability (GI) most prominently. Though they have been examined thoroughly in two-dimensional simulations, their vertical structures in the non-linear regime are somewhat unexplored. This neglect is unwarranted given that any strong vertical motions associated with these waves could profoundly impact dust dynamics, dust sedimentation, planet formation, and the emissivity of the disc surface. In this paper, we combine linear calculations and shearing box simulations in order to investigate the vertical structure of spiral waves for various polytropic stratifications and wave amplitudes. For sub-adiabatic profiles, we find that spiral waves develop a pair of counter-rotating poloidal rolls. Particularly strong in the non-linear regime, these vortical structures issue from the baroclinicity supported by the background vertical entropy gradient. They are also intimately connected to the disc's g modes which appear to interact non-linearly with the density waves. Furthermore, we demonstrate that the poloidal rolls are ubiquitous in gravitoturbulence, emerging in the vicinity of GI spiral wakes, and potentially transporting grains off the disc mid-plane. Other than hindering sedimentation and planet formation, this phenomena may bear on observations of the disc's scattered infrared luminosity. The vortical features could also impact on the turbulent dynamo operating in young protoplanetary discs subject to GI, or possibly even galactic discs.

  18. A Spiral And Discipline-Oriented Curriculum In Medical Imaging

    DEFF Research Database (Denmark)

    Wilhjelm, Jens E.; Hanson, Lars G.; Henneberg, Kaj-Åge

    2011-01-01

    This contribution describes and evaluates an experimental combination of a spiral and discipline-oriented curriculum implemented in the bachelor’s and master’s program in Medicine and Technology. The implementation in the master’s program is in the form of a study line in Medical Imaging and Radi......This contribution describes and evaluates an experimental combination of a spiral and discipline-oriented curriculum implemented in the bachelor’s and master’s program in Medicine and Technology. The implementation in the master’s program is in the form of a study line in Medical Imaging...... and Radiation Physics containing three disciplines: Imaging modalities, Radiation therapy and Image processing. The two imaging courses in the bachelor’s program and the first imaging course in the master’s program follow a spiral curriculum in which most disciplines are encountered in all courses......, but in a gradually more advanced manner. The remaining courses in the master’s program follow a discipline-oriented curriculum. From a practical point of view, the spiral course portfolio works well in an undergraduate environment, where the courses involved are to be taken by all students and in the order planned...

  19. Structure analysis of edge-on spiral galaxies

    NARCIS (Netherlands)

    deGrijs, R; vanderKruit, PC

    The stellar distribution of a small sample of edge-on spiral galaxies is examined in B, V, R, and I by fitting model distributions to the light profiles, both perpendicular to the galaxy planes and along the major axes. We have developed a method to compare the fits for the models obtained for

  20. A generating mechanism of spiral structure in barred galaxies

    International Nuclear Information System (INIS)

    Thielheim, K.O.; Wolff, H.

    1982-01-01

    The time-dependent response of non-interacting stars to growing oval distortions in disc galaxies is calculated by following their motion numerically and Fourier-analysing their positions. Long-lived spiral density waves are found for fast-growing perturbations as well as in cases in which the perturbation evolves only slowly, compared with a characteristic internal rotation period of the disc. This mechanism of driving a spiral structure in non-self-gravitating stellar discs provides an explanation for the long-lived global spiral patterns, observed in N-body experiments showing an evolving central bar, that is not based on the self-gravitation in the disc. In conjunction with the theory of Lynden-Bell according to which angular momentum transfer in the disc leads to a slow increase of the oval distortion, this effect provides a general mechanism for the generation of spiral structure in barred galaxies. In addition to stellar discs with velocity dispersion, cold discs, with the stars initially in circular motion, which bear great similarity to gaseous discs, are investigated. The linear epicyclic approximation is used to develop an analytical description of the generating mechanism. (author)

  1. Fostering Transfer of Study Strategies: A Spiral Model.

    Science.gov (United States)

    Davis, Denise M.; Clery, Carolsue

    1994-01-01

    Describes the design and implementation of a Spiral Model for the introduction and repeated practice of study strategies, based on Taba's model for social studies. In a college reading and studies strategies course, key strategies were introduced early and used through several sets of humanities and social and physical sciences readings. (Contains…

  2. Spontaneous generation of spiral waves by a hydrodynamic instability

    NARCIS (Netherlands)

    Habibi, M.; Møller, P.C.F.; Ribe, N.M.; Bonn, D.

    2008-01-01

    The coiling of a thin filament of viscous fluid falling onto a surface is a common and easily reproducible hydrodynamic instability. Here we report for the first time that this instability can generate regular spiral patterns, in which air bubbles are trapped in the coil and then advected

  3. Opaque spiral disks - Some empirical facts and consequences

    NARCIS (Netherlands)

    Valentijn, Edwin A.

    1990-01-01

    Results for the Sb and Sc galaxies, as obtained from the analysis of the optical ESO-LV data, are reviewed, and the implied constraints for the properties of the absorbing components in spiral disks are discussed. An alternative interpretation of flat rotation curves and a revised extinction model

  4. Spiral intensity patterns in the internally pumped optical parametric oscillator

    DEFF Research Database (Denmark)

    Lodahl, Peter; Bache, Morten; Saffman, Mark

    2001-01-01

    We describe a nonlinear optical system that supports spiral pattern solutions in the field intensity. This new spatial structure is found to bifurcate above a secondary instability in the internally pumped optical parametric oscillator. The analytical predictions of threshold and spatial scale...

  5. Exact cone beam CT with a spiral scan

    International Nuclear Information System (INIS)

    Tam, K.C.; Samarasekera, S.; Sauer, F.

    1998-01-01

    A method is developed which makes it possible to scan and reconstruct an object with cone beam x-rays in a spiral scan path with area detectors much shorter than the length of the object. The method is mathematically exact. If only a region of interest of the object is to be imaged, a top circle scan at the top level of the region of interest and a bottom circle scan at the bottom level of the region of interest are added. The height of the detector is required to cover only the distance between adjacent turns in the spiral projected at the detector. To reconstruct the object, the Radon transform for each plane intersecting the object is computed from the totality of the cone beam data. This is achieved by suitably combining the cone beam data taken at different source positions on the scan path; the angular range of the cone beam data required at each source position can be determined easily with a mask which is the spiral scan path projected on the detector from the current source position. The spiral scan algorithm has been successfully validated with simulated cone beam data. (author)

  6. Advanced Manufacture of Spiral Bevel and Hypoid Gears

    Directory of Open Access Journals (Sweden)

    Vilmos Simon

    2016-11-01

    Full Text Available In this study, an advanced method for the manufacture of spiral bevel and hypoid gears on CNC hypoid generators is proposed. The optmal head-cutter geometry and machine tool settings are determined to introduce the optimal tooth surface modifications into the teeth of spiral bevel and hypoid gears. The aim of these tooth surface modifications is to simultaneously reduce the tooth contact pressure and the transmission errors, to maximize the EHD load carrying capacity of the oil film, and to minimize power losses in the oil film. The proposed advanced method for the manufacture of spiral bevel and hypoid gears is based on machine tool setting variation on the cradle-type generator conducted by optimal polynomial functions and on the use of a CNC hypoid generator. An algorithm is developed for the execution of motions on the CNC hypoid generator using the optimal relations on the cradle-type machine. Effectiveness of the method was demonstrated by using spiral bevel and hypoid gear examples. Significant improvements in the operating characteristics of the gear pairs are achieved.

  7. SPIRAL (Sandia's Program for Information Retrieval and Listing)

    Science.gov (United States)

    West, Leslie E.

    The general scope of SPIRAL is storage of free-flowing text information into a machine-readable library and recall of any portions of this stored information that are relevant to an inquiry. The major objectives in the design of the system were (1) to make it easy to use by persons unfamiliar with computer systems; and (2) to make it efficient, in…

  8. A formulation of spiral inflector design and its application to SF cyclotron

    International Nuclear Information System (INIS)

    Sekiguchi, M.; Shida, Y.; Ohshiro, Y.; Fujita, M.; Yamazaki, T.; Yamazaki, N.; Nishiguchi, M.

    1992-07-01

    Ion trajectories through a spiral inflector are analyzed. In the case of a uniform magnetic field, it is shown that the central trajectory can be expressed as a simple analytical form, which includes all the inflector types already known. By using a curvilinear coordinate along the central trajectory, the equations of motion of non-central ions are modified to describe the ion motion in the transverse and longitudinal planes. A method is presented to expand the electric potential around the central trajectory to calculate the electric field to be used in the equations of motion. In the method, an electric potential thus obtained is used instead of the electric field, which guarantees the energy conservation of the ions through the inflector. Numerical studies have been carried out for design of an inflector for the SF cyclotron at the Institute for Nuclear Study, University of Tokyo. (author)

  9. Evolution of Gas Across Spiral Arms in the Whirlpool Galaxy

    Science.gov (United States)

    Louie, Melissa Nicole

    To investigate the dynamic evolution of gas across spiral arms, we conducted a detailed study of the gas and star formation along the spiral arms in the Whirlpool Galaxy, M51. This nearby, face-on spiral galaxy provides a unique laboratory to study the relationship between gas dynamics and star formation. The textbook picture of interstellar medium (ISM) evolution is rapidly changing. Molecular gas was once believed to form along spiral arms from the diffuse atomic gas in the inter-arm regions. Star formation occurs within giant molecular clouds during spiral arm passage. Lastly, the molecular gas is photo-dissociated back into atomic gas by massive stars on the downstream side of the spiral arm. Recent evidence, however, is revealing a new picture of the interstellar medium and the process of star formation. We seek development of a new picture by studying the development and evolution of molecular gas and the role of large scale galactic dynamics in organizing the interstellar medium. This thesis begins by presenting work measuring the geometrical offsets between interstellar gas and recent star formation. Interstellar gas is traced by atomic hydrogen and carbon monoxide (CO). Star formation is traced by ionized hydrogen recombination lines and infrared emission from dust warmed by young bright stars. Measuring these offsets can help determine the underlying large scale galactic dynamics. Along the spiral arms in M51, offsets between CO and the star formation tracers suggest that gas is flowing through the spiral arms, but the offsets do not show the expected signature of a single pattern speed and imply a more complicated pattern. This thesis also examines the intermediate stages of gas evolution, by studying a denser component of the ISM closer to which stars will form. Only a small percent of the bulk molecular gas will become dense enough to form stars. HCN and HCO+ probe densities ˜104 cm-3, where as the bulk gas is 500 cm-3. This thesis looks at HCN and

  10. Model for Simulating a Spiral Software-Development Process

    Science.gov (United States)

    Mizell, Carolyn; Curley, Charles; Nayak, Umanath

    2010-01-01

    A discrete-event simulation model, and a computer program that implements the model, have been developed as means of analyzing a spiral software-development process. This model can be tailored to specific development environments for use by software project managers in making quantitative cases for deciding among different software-development processes, courses of action, and cost estimates. A spiral process can be contrasted with a waterfall process, which is a traditional process that consists of a sequence of activities that include analysis of requirements, design, coding, testing, and support. A spiral process is an iterative process that can be regarded as a repeating modified waterfall process. Each iteration includes assessment of risk, analysis of requirements, design, coding, testing, delivery, and evaluation. A key difference between a spiral and a waterfall process is that a spiral process can accommodate changes in requirements at each iteration, whereas in a waterfall process, requirements are considered to be fixed from the beginning and, therefore, a waterfall process is not flexible enough for some projects, especially those in which requirements are not known at the beginning or may change during development. For a given project, a spiral process may cost more and take more time than does a waterfall process, but may better satisfy a customer's expectations and needs. Models for simulating various waterfall processes have been developed previously, but until now, there have been no models for simulating spiral processes. The present spiral-process-simulating model and the software that implements it were developed by extending a discrete-event simulation process model of the IEEE 12207 Software Development Process, which was built using commercially available software known as the Process Analysis Tradeoff Tool (PATT). Typical inputs to PATT models include industry-average values of product size (expressed as number of lines of code

  11. Chiral spiral waveguides based on MMI crossings: theory and experiments

    Science.gov (United States)

    Cherchi, Matteo; Ylinen, Sami; Harjanne, Mikko; Kapulainen, Markku; Vehmas, Tapani; Aalto, Timo

    2016-03-01

    We introduce a novel type of chiral spiral waveguide where the usual waveguide crossings are replaced by 100:0 Multimode Interferometers (MMIs), i.e. 2x2 splitters that couple all the input light in the cross output port. Despite the topological equivalence with the standard configuration, we show how resorting to long MMIs has non-trivial advantages in terms of footprint and propagation length. An accurate analytic model is also introduced to show the impact of nonidealities on the spiral performances, including propagation loss and cross-talk. We have designed and fabricated three chiral spirals on our platform, based on 3 μm thick silicon strip waveguides with 0.13 dB/cm propagation loss, and 1.58 mm long MMIs. The fabricated spirals have 7, 13 and 49 loops respectively, corresponding to the effective lengths 6.6 cm, 12.5 cm and 47.9 cm. The proposed model is successfully applied to the experimental results, highlighting MMI extinction ratio of about 16.5 dB and MMI loss of about 0.08 dB, that are much worse compared to the simulated 50 dB extinction and 0.01 dB loss. This imposes an upper limit to the number of rounds, because light takes shortcuts through the bar MMI ports. Nevertheless, the novel chiral spiral waveguides outperform what is achievable in mainstream silicon photonics platforms based on submicron waveguides in terms of length and propagation losses, and they are promising candidates for the realization of integrated gyroscopes. They can be significantly further improved by replacing the MMIs with adiabatic 100:0 splitters, ensuring lower cross-talk and broader bandwidth.

  12. A novel spiral reactor for biodiesel production in supercritical ethanol

    International Nuclear Information System (INIS)

    Farobie, Obie; Sasanami, Kazuma; Matsumura, Yukihiko

    2015-01-01

    Highlights: • A novel spiral reactor for biodiesel production in supercritical ethanol was proposed. • The spiral reactor employed in this study successfully recovered heat. • The effects of temperature and time on FAEE yield were investigated. • FAEE yield as high as 0.937 mol/mol was obtained at 350 °C after 30 min. • The second-order kinetic model expressed the experimental yield well. - Abstract: A spiral reactor is proposed as a novel reactor design for biodiesel production under supercritical conditions. Since the spiral reactor serves as a heat exchanger, it offers the advantage of reduced apparatus space compared to conventional supercritical equipment. Experimental investigations were carried out at reaction temperatures of 270–400 °C, pressure of 20 MPa, oil-to-ethanol molar ratio of 1:40, and reaction times of 3–30 min. An FAEE yield of 0.937 mol/mol was obtained in a short reaction time of 30 min at 350 °C and oil-to-ethanol molar ratio of 1:40 under a reactor pressure of 20 MPa. The spiral reactor was not only as effective as conventional reactor in terms of transesterification reactor but also was superior in terms of heat recovery. A second-order kinetic model describing the transesterification of canola oil in supercritical ethanol was proposed, and the reaction was observed to follow Arrhenius behavior. The corresponding reaction rate constants and the activation energies as well as pre-exponential factors were determined

  13. Computerized spiral analysis using the iPad.

    Science.gov (United States)

    Sisti, Jonathan A; Christophe, Brandon; Seville, Audrey Rakovich; Garton, Andrew L A; Gupta, Vivek P; Bandin, Alexander J; Yu, Qiping; Pullman, Seth L

    2017-01-01

    Digital analysis of writing and drawing has become a valuable research and clinical tool for the study of upper limb motor dysfunction in patients with essential tremor, Parkinson's disease, dystonia, and related disorders. We developed a validated method of computerized spiral analysis of hand-drawn Archimedean spirals that provides insight into movement dynamics beyond subjective visual assessment using a Wacom graphics tablet. While the Wacom tablet method provides robust data, more widely available mobile technology platforms exist. We introduce a novel adaptation of the Wacom-based method for the collection of hand-drawn kinematic data using an Apple iPad. This iPad-based system is stand-alone, easy-to-use, can capture drawing data with either a finger or capacitive stylus, is precise, and potentially ubiquitous. The iPad-based system acquires position and time data that is fully compatible with our original spiral analysis program. All of the important indices including degree of severity, speed, presence of tremor, tremor amplitude, tremor frequency, variability of pressure, and tightness are calculated from the digital spiral data, which the application is able to transmit. While the iPad method is limited by current touch screen technology, it does collect data with acceptable congruence compared to the current Wacom-based method while providing the advantages of accessibility and ease of use. The iPad is capable of capturing precise digital spiral data for analysis of motor dysfunction while also providing a convenient, easy-to-use modality in clinics and potentially at home. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Spiral arms and disc stability in the Andromeda galaxy

    Science.gov (United States)

    Tenjes, P.; Tuvikene, T.; Tamm, A.; Kipper, R.; Tempel, E.

    2017-04-01

    Aims: Density waves are often considered as the triggering mechanism of star formation in spiral galaxies. Our aim is to study relations between different star formation tracers (stellar UV and near-IR radiation and emission from H I, CO, and cold dust) in the spiral arms of M 31, to calculate stability conditions in the galaxy disc, and to draw conclusions about possible star formation triggering mechanisms. Methods: We selected fourteen spiral arm segments from the de-projected data maps and compared emission distributions along the cross sections of the segments in different datasets to each other, in order to detect spatial offsets between young stellar populations and the star-forming medium. By using the disc stability condition as a function of perturbation wavelength and distance from the galaxy centre, we calculated the effective disc stability parameters and the least stable wavelengths at different distances. For this we used a mass distribution model of M 31 with four disc components (old and young stellar discs, cold and warm gaseous discs) embedded within the external potential of the bulge, the stellar halo, and the dark matter halo. Each component is considered to have a realistic finite thickness. Results: No systematic offsets between the observed UV and CO/far-IR emission across the spiral segments are detected. The calculated effective stability parameter has a lowest value of Qeff ≃ 1.8 at galactocentric distances of 12-13 kpc. The least stable wavelengths are rather long, with the lowest values starting from ≃ 3 kpc at distances R > 11 kpc. Conclusions: The classical density wave theory is not a realistic explanation for the spiral structure of M 31. Instead, external causes should be considered, such as interactions with massive gas clouds or dwarf companions of M 31.

  15. Biogas feed analysis

    OpenAIRE

    Song, Yuan

    2008-01-01

    Biogas production is regarded as the best energy recovery process from wet organic solid wastes (WOSW). Feed composition, storage conditions and time will influence the compositions of feed to biogas processes. In this study, apple juice from Meierienes Juice factory was used as the model substrates to mimic the liquid phase that can be extracted from fruit or juice industry WOSW. A series of batch experiments were carried out with different initial feed concentrations (0, 1, 2, 5, 10 %) of a...

  16. Breastfeeding is best feeding.

    Science.gov (United States)

    Cutting, W

    1995-02-01

    The traditional practice of breast feeding is the best means to make sure infants grow up healthy. It costs nothing. Breast milk contains antibodies and other substances which defend against disease, especially those linked to poor food hygiene and inadequate water and sanitation. In developing countries, breast fed infants are at least 14 times less likely to die from diarrhea than those who are not breast fed. Urbanization and promotion of infant formula undermine breast feeding. Even though infants up to age 4-6 months should receive only breast milk to remain as healthy as possible, infants aged less than 4-6 months often receive other milks or gruels. Attendance of health workers at delivery and their contact with mother-infant pairs after delivery are ideal opportunities to encourage mothers to breast feed. In fact, if health workers provide mothers skilled support with breast feeding, mothers are more likely to breast feed well and for a longer time. Health workers need counseling skills and firm knowledge of techniques on breast feeding and of how to master common difficulties to help mothers with breast feeding. Listening skills and confidence building skills are also needed. Good family and work place support allows women in paid employment outside the home to continue breast feeding. Breast feeding is very important in emergency situations where access to water, sanitation, food, and health care is limited (e.g., refugee camps). In these situations, health workers should especially be aware of women's ability to breast feed and to support their breast feeding. HIV can be transmitted to nursing infants from HIV infected mothers. Yet one must balance this small risk against the possibility of contracting other serious infections (e.g., diarrhea) through alternative infant feeding, particularly if there is no access to potable water and sanitation.

  17. NUCLEOTIDES IN INFANT FEEDING

    Directory of Open Access Journals (Sweden)

    L.G. Mamonova

    2007-01-01

    Full Text Available The article reviews the application of nucleotides-metabolites, playing a key role in many biological processes, for the infant feeding. The researcher provides the date on the nucleotides in the women's milk according to the lactation stages. She also analyzes the foreign experience in feeding newborns with nucleotides-containing milk formulas. The article gives a comparison of nucleotides in the adapted formulas represented in the domestic market of the given products.Key words: children, feeding, nucleotides.

  18. Comparison of M33 and NGC7793: stochastic models of spiral galaxies modulated by density waves

    International Nuclear Information System (INIS)

    Smith, G.; Elmegreen, B.G.; Elmegreen, D.M.

    1984-01-01

    Two late-type spiral galaxies with similar kinematic and photometric properties but different spiral arm structures, M33 and NGC7793, are compared to model galaxies with stochastic self-propagating star formation. The spontaneous probability, Psub(sp), representing the rate of primary star formation, is modulated by a smooth, density wave-like spiral pattern in the models of M33. When propagating star formation is included, these models show no age gradients in the underlying spiral arms. Models which have no imposed spiral modulation to Psub(sp) resemble the observed structure of NGC7793. (author)

  19. Infectious waste feed system

    Science.gov (United States)

    Coulthard, E. James

    1994-01-01

    An infectious waste feed system for comminuting infectious waste and feeding the comminuted waste to a combustor automatically without the need for human intervention. The system includes a receptacle for accepting waste materials. Preferably, the receptacle includes a first and second compartment and a means for sealing the first and second compartments from the atmosphere. A shredder is disposed to comminute waste materials accepted in the receptacle to a predetermined size. A trough is disposed to receive the comminuted waste materials from the shredder. A feeding means is disposed within the trough and is movable in a first and second direction for feeding the comminuted waste materials to a combustor.

  20. Use of nuclear and related techniques to develop simple tannin assays for predicting and improving the safety and efficiency of feeding ruminants on tanniniferous tree foliage: Achievements, result implications, and future research

    Energy Technology Data Exchange (ETDEWEB)

    Makkar, H.P.S. [Animal Production and Health Section, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna (Austria)]. E-mail: h.makkar@iaea.org

    2005-08-19

    The utilization of unconventional feed resources holds great relevance to developing countries, where the main constraint to livestock development is the scarcity and fluctuation of the quality and quantity of the year-around animal feed supply. There is a serious shortage in concentrated animal feeds such as soybean, cottonseed and groundnut meals, etc. In addition, the human population is increasingly rapidly and arable land is decreasing, due to solid degradation, urbanization and industrialization. Production of grain in developing countries is mostly for human consumption. Novel approaches through the utilization of tree leaves, agro-industrial by-products, aquatic sources are required to bridge the gap between supply and demand of feeds. As the demand for food rises, including that of animal origin, unconventional feed resources including tanninferous plants must play an increasingly important part in the diet of animals, in particular for ruminants in smallholder farming systems in developing countries.

  1. Use of nuclear and related techniques to develop simple tannin assays for predicting and improving the safety and efficiency of feeding ruminants on tanniniferous tree foliage: Achievements, result implications, and future research

    International Nuclear Information System (INIS)

    Makkar, H.P.S.

    2005-01-01

    The utilization of unconventional feed resources holds great relevance to developing countries, where the main constraint to livestock development is the scarcity and fluctuation of the quality and quantity of the year-around animal feed supply. There is a serious shortage in concentrated animal feeds such as soybean, cottonseed and groundnut meals, etc. In addition, the human population is increasingly rapidly and arable land is decreasing, due to solid degradation, urbanization and industrialization. Production of grain in developing countries is mostly for human consumption. Novel approaches through the utilization of tree leaves, agro-industrial by-products, aquatic sources are required to bridge the gap between supply and demand of feeds. As the demand for food rises, including that of animal origin, unconventional feed resources including tanninferous plants must play an increasingly important part in the diet of animals, in particular for ruminants in smallholder farming systems in developing countries

  2. Spiral Wave in Small-World Networks of Hodgkin-Huxley Neurons

    International Nuclear Information System (INIS)

    Ma Jun; Zhang Cairong; Yang Lijian; Wu Ying

    2010-01-01

    The effect of small-world connection and noise on the formation and transition of spiral wave in the networks of Hodgkin-Huxley neurons are investigated in detail. Some interesting results are found in our numerical studies. i) The quiescent neurons are activated to propagate electric signal to others by generating and developing spiral wave from spiral seed in small area. ii) A statistical factor is defined to describe the collective properties and phase transition induced by the topology of networks and noise. iii) Stable rotating spiral wave can be generated and keeps robust when the rewiring probability is below certain threshold, otherwise, spiral wave can not be developed from the spiral seed and spiral wave breakup occurs for a stable rotating spiral wave. iv) Gaussian white noise is introduced on the membrane of neurons to study the noise-induced phase transition on spiral wave in small-world networks of neurons. It is confirmed that Gaussian white noise plays active role in supporting and developing spiral wave in the networks of neurons, and appearance of smaller factor of synchronization indicates high possibility to induce spiral wave. (interdisciplinary physics and related areas of science and technology)

  3. MEASUREMENT OF GALACTIC LOGARITHMIC SPIRAL ARM PITCH ANGLE USING TWO-DIMENSIONAL FAST FOURIER TRANSFORM DECOMPOSITION

    International Nuclear Information System (INIS)

    Davis, Benjamin L.; Berrier, Joel C.; Shields, Douglas W.; Kennefick, Julia; Kennefick, Daniel; Seigar, Marc S.; Lacy, Claud H. S.; Puerari, Ivânio

    2012-01-01

    A logarithmic spiral is a prominent feature appearing in a majority of observed galaxies. This feature has long been associated with the traditional Hubble classification scheme, but historical quotes of pitch angle of spiral galaxies have been almost exclusively qualitative. We have developed a methodology, utilizing two-dimensional fast Fourier transformations of images of spiral galaxies, in order to isolate and measure the pitch angles of their spiral arms. Our technique provides a quantitative way to measure this morphological feature. This will allow comparison of spiral galaxy pitch angle to other galactic parameters and test spiral arm genesis theories. In this work, we detail our image processing and analysis of spiral galaxy images and discuss the robustness of our analysis techniques.

  4. Measurement of Galactic Logarithmic Spiral Arm Pitch Angle Using Two-dimensional Fast Fourier Transform Decomposition

    Science.gov (United States)

    Davis, Benjamin L.; Berrier, Joel C.; Shields, Douglas W.; Kennefick, Julia; Kennefick, Daniel; Seigar, Marc S.; Lacy, Claud H. S.; Puerari, Ivânio

    2012-04-01

    A logarithmic spiral is a prominent feature appearing in a majority of observed galaxies. This feature has long been associated with the traditional Hubble classification scheme, but historical quotes of pitch angle of spiral galaxies have been almost exclusively qualitative. We have developed a methodology, utilizing two-dimensional fast Fourier transformations of images of spiral galaxies, in order to isolate and measure the pitch angles of their spiral arms. Our technique provides a quantitative way to measure this morphological feature. This will allow comparison of spiral galaxy pitch angle to other galactic parameters and test spiral arm genesis theories. In this work, we detail our image processing and analysis of spiral galaxy images and discuss the robustness of our analysis techniques.

  5. MEASUREMENT OF GALACTIC LOGARITHMIC SPIRAL ARM PITCH ANGLE USING TWO-DIMENSIONAL FAST FOURIER TRANSFORM DECOMPOSITION

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Benjamin L.; Berrier, Joel C.; Shields, Douglas W.; Kennefick, Julia; Kennefick, Daniel; Seigar, Marc S.; Lacy, Claud H. S. [Arkansas Center for Space and Planetary Sciences, 202 Field House, University of Arkansas, Fayetteville, AR 72701 (United States); Puerari, Ivanio [Instituto Nacional de Astrofisica, Optica y Electronica, Calle Luis Enrique Erro 1, 72840 Santa Maria Tonantzintla, Puebla (Mexico)

    2012-04-01

    A logarithmic spiral is a prominent feature appearing in a majority of observed galaxies. This feature has long been associated with the traditional Hubble classification scheme, but historical quotes of pitch angle of spiral galaxies have been almost exclusively qualitative. We have developed a methodology, utilizing two-dimensional fast Fourier transformations of images of spiral galaxies, in order to isolate and measure the pitch angles of their spiral arms. Our technique provides a quantitative way to measure this morphological feature. This will allow comparison of spiral galaxy pitch angle to other galactic parameters and test spiral arm genesis theories. In this work, we detail our image processing and analysis of spiral galaxy images and discuss the robustness of our analysis techniques.

  6. On the possibility of simultaneous spiral and superfluid ordering in a Fermi-liquid

    International Nuclear Information System (INIS)

    Peletminskij, S.V.; Yatsenko, A.A.; Shulga, S.N.

    2004-01-01

    The paper concerns a particular possibility of ordering for Fermi systems - a superfluid spiral ordering, at which in addition to the phase invariance breakdown there occurs a violence of the translational and the spin rotation invariance. A general approach of studying of the superfluid spiral ordering is formulated on the basis of the Fermi liquid method. For a monocomponent Fermi system self-consistency equations for four order parameters and the temperature of simultaneous transition to spiral and superfluid states are obtained. The system of equations is studied under the assumption of two order parameters being distinct from zero. The spiral parameter dependences of the transition temperature and the energy gap in the spectrum of elementary fermion excitations are calculated. An interval of the spiral parameter values within which the superfluid spiral ordering can exist is determined. The spin correlation function at the spiral ordering is studied

  7. Floating venous thrombi: diagnosis with spiral-CT-venography; Diagnose flottierender venoeser Thromben mittels Phlebo-Spiral-CT

    Energy Technology Data Exchange (ETDEWEB)

    Gartenschlaeger, M. [Mainz Univ. (Germany). Klinik fuer Radiologie; Klose, K.J. [Univ. Marburg, Medizinisches Zentrum fuer Innere Medizin, Abt. Poliklinik (Germany); Schmidt, J.A. [Univ. Marburg, Medizinisches Zentrum fuer Radiologie, Abt. fuer Strahlendiagnostik (Germany)

    1996-05-01

    Local application of contrast agent into an ipsilateral dorsal foot vein and spiral CT were used to examine 16 consecutive cases with deep venous thrombosis proven at conventional venography; in addition, colour Doppler flow imaging was performed. At conventional venography, 8/16 thrombi appeared to be floating and the remaining 8/16 were adherent to the vessel wall. Spiral-CT showed 15/16 thrombi to be adherent to the vessel wall; the floating thrombus correlated with findings in conventional venography. At colour Doppler flow imaging 3/16 thrombi were considered floating, one of them was discordant to conventional venography. The comparison of conventional venography to spiral-CT demonstrates complete agreement for adherence to vessel wall seen in conventional venography (p=1,0) and significant discordance in cases with free-floating appearance in conventional venography. Adherence of thrombi to the wall of the vessel at conventional venography is in agreement with computed tomography. Conventional venography probably overestimates the prevalence of free floating thrombi. (orig./MG) [Deutsch] Mittels lokaler Kontrastmittelapplikation in eine ipsilaterale Fussrueckenvene und Spiral-CT wurden 16 konsekutive Faelle konventionell phlebographisch gesicherter Phlebothrombose untersucht, zusaetzlich wurde die farbkodierte Doppler-Ultraschalluntersuchung durchgefuehrt. In der konventionellen Phlebographie waren 8/16 Thromben flottierend, die uebrigen 8/16 wandadhaerent. In der Spiral-CT zeigten sich Wandadhaerenzen in 15/16 Faellen; der nachgewiesene flottierende Thrombus stimmte mit der konventionellen Phlebographie ueberein. Im farbkodierten Doppler-Ultraschall erschienen die Thromben in 3/16 Faellen flottierend, darunter ein von der konventionellen Phlebographie abweichender Befund. Der Vergleich von konventioneller und CT-Phlebographie ergab eine komplette Uebereinstimmung fuer konventionell phlebographisch nachgewiesene Wandadhaerenz und eine signifikante Abweichung

  8. The instability of the spiral wave induced by the deformation of elastic excitable media

    International Nuclear Information System (INIS)

    Ma Jun; Jia Ya; Wang Chunni; Li Shirong

    2008-01-01

    There are some similarities between the spiral wave in excitable media and in cardiac tissue. Much evidence shows that the appearance and instability of the spiral wave in cardiac tissue can be linked to one kind of heart disease. There are many models that can be used to investigate the formation and instability of the spiral wave. Cardiac tissue is excitable and elastic, and it is interesting to simulate the transition and instability of the spiral wave induced by media deformation. For simplicity, a class of the modified Fitzhugh-Nagumo (MFHN) model, which can generate a stable rotating spiral wave, meandering spiral wave and turbulence within appropriate parameter regions, will be used to simulate the instability of the spiral wave induced by the periodical deformation of media. In the two-dimensional case, the total acreage of elastic media is supposed to be invariable in the presence of deformation, and the problem is described with L x x L y = N x ΔxN x Δy = L' x L' y = N x Δx'N x Δy'. In our studies, elastic media are decentralized into N x N sites and the space of the adjacent sites is changed to simulate the deformation of elastic media. Based on the nonlinear dynamics theory, the deformation effect on media is simplified and simulated by perturbing the diffusion coefficients D x and D y with different periodical signals, but the perturbed diffusion coefficients are compensatory. The snapshots of our numerical results find that the spiral wave can coexist with the spiral turbulence, instability of the spiral wave and weak deformation of the spiral wave in different conditions. The ratio parameter ε and the frequency of deformation forcing play a deterministic role in inducing instability of the spiral wave. Extensive studies confirm that the instability of the spiral wave can be induced and developed only if an appropriate frequency for deformation is used. We analyze the power spectrum for the time series of the mean activator of four sampled sites

  9. The instability of the spiral wave induced by the deformation of elastic excitable media

    Science.gov (United States)

    Ma, Jun; Jia, Ya; Wang, Chun-Ni; Li, Shi-Rong

    2008-09-01

    There are some similarities between the spiral wave in excitable media and in cardiac tissue. Much evidence shows that the appearance and instability of the spiral wave in cardiac tissue can be linked to one kind of heart disease. There are many models that can be used to investigate the formation and instability of the spiral wave. Cardiac tissue is excitable and elastic, and it is interesting to simulate the transition and instability of the spiral wave induced by media deformation. For simplicity, a class of the modified Fitzhugh-Nagumo (MFHN) model, which can generate a stable rotating spiral wave, meandering spiral wave and turbulence within appropriate parameter regions, will be used to simulate the instability of the spiral wave induced by the periodical deformation of media. In the two-dimensional case, the total acreage of elastic media is supposed to be invariable in the presence of deformation, and the problem is described with Lx × Ly = N × ΔxN × Δy = L'xL'y = N × Δx'N × Δy'. In our studies, elastic media are decentralized into N × N sites and the space of the adjacent sites is changed to simulate the deformation of elastic media. Based on the nonlinear dynamics theory, the deformation effect on media is simplified and simulated by perturbing the diffusion coefficients Dx and Dy with different periodical signals, but the perturbed diffusion coefficients are compensatory. The snapshots of our numerical results find that the spiral wave can coexist with the spiral turbulence, instability of the spiral wave and weak deformation of the spiral wave in different conditions. The ratio parameter ɛ and the frequency of deformation forcing play a deterministic role in inducing instability of the spiral wave. Extensive studies confirm that the instability of the spiral wave can be induced and developed only if an appropriate frequency for deformation is used. We analyze the power spectrum for the time series of the mean activator of four sampled sites

  10. Selection of Feed Intake or Feed Efficiency

    DEFF Research Database (Denmark)

    Veerkamp, Roel F; Pryce, Jennie E; Spurlock, Diane

    2013-01-01

    . In February 2013, the co-authors discussed how information on DMI should be incorporated in the breeding decisions. The aim of this paper is to present the overall discussion and main positions taken by the group on four topics related to feed efficiency: i) breeding goal definition; ii) biological variation...

  11. Feeding Your Baby

    Medline Plus

    Full Text Available ... baby formula , find out how to choose the best one for your baby and how to make bottle-feeding safe. And then get ready for solid foods ! In This Topic Breastfeeding help Breastfeeding is best Food allergies and baby Formula feeding How to ...

  12. Feeding Your Baby

    Medline Plus

    Full Text Available ... In This Topic Breastfeeding help Breastfeeding is best Food allergies and baby Formula feeding How to breastfeed Keeping breast milk safe and healthy Problems and discomforts when breastfeeding Starting your baby on solid foods Using a breast pump Baby Feeding your baby ...

  13. Feeding Your Baby

    Medline Plus

    Full Text Available ... In This Topic Breastfeeding help Breastfeeding is best Food allergies and baby Formula feeding How to breastfeed Keeping a breastfeeding log Keeping breast milk safe and healthy Problems and discomforts when breastfeeding Starting your baby on solid foods Using a breast pump Baby Feeding your baby ...

  14. The potential of standard and modified feed spacers for biofouling control

    KAUST Repository

    Araújo, Paula A.

    2012-06-01

    The impact of feed spacers on initial feed channel pressure (FCP) drop, FCP increase and biomass accumulation has been studied in membrane fouling simulators using feed spacers applied in commercially available nanofiltration and reverse osmosis spiral wound membrane modules. All spacers had a similar geometry.Our studies showed that biofouling was not prevented by (i) variation of spacer thickness, (ii) feed spacer orientation, (iii) feed spacer coating with silver, copper or gold and (iv) using a biostatic feed spacer. At constant feed flow, a lower FCP and FCP increase were observed for a thicker feed spacer. At constant linear flow velocity, roughly the same FCP development and biomass accumulation were found irrespective of the feed spacer thickness: hydrodynamics and substrate load were more important for development and impact of biofouling than the thickness of currently applied spacers. Use of biostatic and metal coated spacers were not effective for biofouling control. The same small reduction of biofouling rate was observed with copper and silver coated spacers as well as uncoated 45° rotated spacers.The studied modified spacers were not effective for biofouling prevention and control. The impact of biofouling on FCP increase was reduced significantly by a lower linear flow velocity, while spacer orientation and spacer thickness in membrane modules had a smaller but still significant effect. © 2012 Elsevier B.V.

  15. The potential of standard and modified feed spacers for biofouling control

    KAUST Repository

    Araú jo, Paula A.; Kruithof, Joop C.; van Loosdrecht, Mark C.M.; Vrouwenvelder, Johannes S.

    2012-01-01

    The impact of feed spacers on initial feed channel pressure (FCP) drop, FCP increase and biomass accumulation has been studied in membrane fouling simulators using feed spacers applied in commercially available nanofiltration and reverse osmosis spiral wound membrane modules. All spacers had a similar geometry.Our studies showed that biofouling was not prevented by (i) variation of spacer thickness, (ii) feed spacer orientation, (iii) feed spacer coating with silver, copper or gold and (iv) using a biostatic feed spacer. At constant feed flow, a lower FCP and FCP increase were observed for a thicker feed spacer. At constant linear flow velocity, roughly the same FCP development and biomass accumulation were found irrespective of the feed spacer thickness: hydrodynamics and substrate load were more important for development and impact of biofouling than the thickness of currently applied spacers. Use of biostatic and metal coated spacers were not effective for biofouling control. The same small reduction of biofouling rate was observed with copper and silver coated spacers as well as uncoated 45° rotated spacers.The studied modified spacers were not effective for biofouling prevention and control. The impact of biofouling on FCP increase was reduced significantly by a lower linear flow velocity, while spacer orientation and spacer thickness in membrane modules had a smaller but still significant effect. © 2012 Elsevier B.V.

  16. Prevention of nuclear war

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    Removing the threat of a nuclear war-as the General Assembly formally stated in the Final Document of its first special session devoted to disarmament, in 1978-is considered to be the task of the present day. In that Document, the General Assembly sought to establish principles, guidelines and procedures for preventing nuclear war. It declared that to that end, it was imperative to remove the threat of nuclear weapons, to halt and reverse the nuclear-arms race until the total elimination of nuclear weapons and their delivery systems had been achieved (see chapter iv), and to prevent the proliferation of nuclear weapons (see chapter VII). At the same time, it called for other measures designed to prevent the outbreak of nuclear war and to lessen the danger of the treat or use of nuclear weapons. The Assembly's clear call for action was dictated by the awareness that there was no insuperable barrier dividing peace from war and that, unless nations brought the spiralling nuclear-arms race to an end, the day might come when nuclear weapons would actually be used, with catastrophic consequences. In adopting the Final Document, the international community achieved, for the first time, a consensus on an international disarmament strategy having as its immediate goal the elimination of the danger of a nuclear war and the implementation of measures to halt and reverse the arms race. The General Assembly, at its second special session on disarmament, in 1982, reaffirmed the validity of the 1978 Final Document. This paper reports that nuclear issues and in particular the prevention of nuclear war remain, however, major concerns of all States. Undoubtedly, all nations have a vital interest in the negotiation of effective measures for her prevention of nuclear war, since nuclear weapons pose a unique threat to human survival. If nuclear war were to occur, its consequences would be global, not simple regional

  17. The role of spiral CT in pelvic trauma management

    International Nuclear Information System (INIS)

    Cheung, E.C.F.; Fung, K.K.L.

    1999-01-01

    Rapid and accurate assessment of pelvic injury is critical for good patient management. Plain X-ray is often used as a preliminary evaluation of the injury but this may not give adequate diagnosis of the acetabulum fracture, subtle fracture of the pelvic bone and the associated soft tissue injuries. Nowadays, spiral CT has taken an increasing role in the evaluation of pelvic trauma. It gives a rapid assessment of the bone and soft tissue injuries as compared to conventional CT. Besides, 2-D (multiplanar imaging) and 3-D image reconstruction with multiple angle views, provide the maximum information which facilitates detailed pelvic trauma evaluation. Three cases were used to illustrate the role of spiral CT in pelvic trauma management. Copyright (1999) Blackwell Science Pty Ltd

  18. Heat transfer studies on spiral plate heat exchanger

    Directory of Open Access Journals (Sweden)

    Rajavel Rangasamy

    2008-01-01

    Full Text Available In this paper, the heat transfer coefficients in a spiral plate heat exchanger are investigated. The test section consists of a plate of width 0.3150 m, thickness 0.001 m and mean hydraulic diameter of 0.01 m. The mass flow rate of hot water (hot fluid is varying from 0.5 to 0.8 kg/s and the mass flow rate of cold water (cold fluid varies from 0.4 to 0.7 kg/s. Experiments have been conducted by varying the mass flow rate, temperature, and pressure of cold fluid, keeping the mass flow rate of hot fluid constant. The effects of relevant parameters on spiral plate heat exchanger are investigated. The data obtained from the experimental study are compared with the theoretical data. Besides, a new correlation for the Nusselt number which can be used for practical applications is proposed.

  19. Design of wireless data transmission system for spiral CT

    International Nuclear Information System (INIS)

    Wang Jue; Wang Fuquan; Liu Huaili

    2010-01-01

    A new wireless data transmission scheme based on UWB was proposed after studying the structure and character of spiral CT transmission system, the system was designed and validated. Using UWB device as wireless module to realize wireless data transmission. Using FPGA as main controller to meet the requirement of timing control for system module. Using two pieces of SDRAM in pingpang operation to realize large capacity storage mechanism. Using USB 2.0 interface to realize high-speed connection with UWB module. The results show that the transmission speed of the system arrival at 16.87 M bit ps within 3 meters, and the precision is 100%, it can be used for line-array spiral CT. (authors)

  20. Heating hydrocarbon containing formations in a spiral startup staged sequence

    Science.gov (United States)

    Vinegar, Harold J [Bellaire, TX; Miller, David Scott [Katy, TX

    2009-12-15

    Methods for treating a hydrocarbon containing formation are described herein. Methods may include treating a first zone of the formation. Treatment of a plurality of zones of the formation may be begun at selected times after the treatment of the first zone begins. The treatment of at least two successively treated zones may begin at a selected time after treatment of the previous zone begins. At least two of the successively treated zones may be adjacent to the zone treated previously. The successive treatment of the zones proceeds in an outward, substantially spiral sequence from the first zone so that the treatment of the zones may move substantially spirally outwards towards a boundary of the treatment area.

  1. Chiral spiral induced by a strong magnetic field

    Directory of Open Access Journals (Sweden)

    Abuki Hiroaki

    2016-01-01

    Full Text Available We study the modification of the chiral phase structure of QCD due to an external magnetic field. We first demonstrate how the effect of magnetic field can systematically be incorporated into a generalized Ginzburg-Landau framework. We then analyze the phase structure in the vicinity of the chiral critical point. In the chiral limit, the effect is found to be so drastic that it brings a “continent” of chiral spiral in the phase diagram, by which the chiral tricritical point is totally washed out. This is the case no matter how small the intensity of magnetic field is. On the other hand, the current quark mass protects the chiral critical point from a weak magnetic field. However, the critical point will eventually be covered by the chiral spiral phase as the magnetic field grows.

  2. Mass models for disk and halo components in spiral galaxies

    International Nuclear Information System (INIS)

    Athanassoula, E.; Bosma, A.

    1987-01-01

    The mass distribution in spiral galaxies is investigated by means of numerical simulations, summarizing the results reported by Athanassoula et al. (1986). Details of the modeling technique employed are given, including bulge-disk decomposition; computation of bulge and disk rotation curves (assuming constant mass/light ratios for each); and determination (for spherical symmetry) of the total halo mass out to the optical radius, the concentration indices, the halo-density power law, the core radius, the central density, and the velocity dispersion. Also discussed are the procedures for incorporating galactic gas and checking the spiral structure extent. It is found that structural constraints limit disk mass/light ratios to a range of 0.3 dex, and that the most likely models are maximum-disk models with m = 1 disturbances inhibited. 19 references

  3. Spiral arms and a supernova-dominated interstellar medium

    International Nuclear Information System (INIS)

    Brand, P.W.J.L.; Heathcote, S.R.

    1982-01-01

    Models of the interstellar medium (ISM) utilizing the large energy output of supernovae to determine the average kinematical properties of the gas, are subjected to an imposed (spiral) density wave. The consequent appearance of the ISM is considered. In particular the McKee-Ostriker model with cloud evaporation is used, but it is shown that the overall appearance of the galaxy model does not change significantly if a modification of Cox's mechanism, with no cloud evaporation, is incorporated. It is found that a spiral density wave shock can only be self-sustaining if quite restrictive conditions are imposed on the values of the galactic supernova rate and the mean interstellar gas density. (author)

  4. Synchronized control of spiral CT scan for security inspection device

    International Nuclear Information System (INIS)

    Wang Jue; Jiang Zenghui; Wang Fuquan

    2008-01-01

    In security inspection system of spiral CT, the synchronization between removing and rotating, and the scan synchronization between rotating and sampling influence quality of image reconstruction, so it is difficulty and important that how to realize synchronized scan. According to the controlling demand of multi-slice Spiral CT, the method to realize synchronized scan is given. a synchronized control system is designed, in which we use a industrial PC as the control computer, use magnetic grids as position detectors, use alternating current servo motor and roller motor as drivers respectively drive moving axis and rotating axis. This method can solve the problem of synchronized scan, and has a feasibility and value of use. (authors)

  5. Ion source developments for RNB production at Spiral / GANIL

    International Nuclear Information System (INIS)

    Villari, A.C.C.; Barue, C.; Gaubert, G.; Gibouin, S.; Huguet, Y.; Jardin, P.; Kandri-Rody, S.; Landre-Pellemoine, F.; Lecesne, N.; Leroy, R.; Lewitowicz, M.; Marry, C.; Maunoury, L.; Pacquet, J.Y.; Rataud, J.P.; Saint-Laurent, M.G.; Stodel, C.; Lichtenthaeler, R.; Angelique, J.C.; Orr, N.A.

    2000-01-01

    The first on-line production system for SPIRAL/GANIL (Radioactive Ion Production System with Acceleration on-Line) phase-I has been commissioned on the SIRa (Radioactive Ion Separator) test bench. Exotic multicharged noble gas ion beams have been obtained during several days. In parallel, a new ECRIS (Electron Cyclotron Resonance Ion Source) for mono-charged ions has also been developed. Preliminary, off-line results are presented. (authors)

  6. Artificial magnetic metamaterial design by using spiral resonators

    OpenAIRE

    Baena, J.D.; Marqués Sillero, Ricardo; Medina Mena, Francisco; Martel Villagrán, Jesús

    2004-01-01

    A metallic planar particle, that will be called spiral resonator (SR), is introduced as a useful artificial atom for artificial magnetic media design and fabrication. A simple theoretical model which provides the most relevant properties and parameters of the SR is presented. The model is validated by both electromagnetic simulation and experiments. The applications of SR's include artificial negative magnetic permeability media (NMPM) and left-handed-media (LHM) design. The main advantages o...

  7. Large scale filaments associated with Milky Way spiral arms

    Science.gov (United States)

    Wang, Ke; Testi, Leonardo; Ginsburg, Adam; Walmsley, Malcolm; Molinari, Sergio; Schisano, Eugenio

    2015-08-01

    The ubiquity of filamentary structure at various scales through out the Galaxy has triggered a renewed interest in their formation, evolution, and role in star formation. The largest filaments can reach up to Galactic scale as part of the spiral arm structure. However, such large scale filaments are hard to identify systematically due to limitations in identifying methodology (i.e., as extinction features). We present a new approach to directly search for the largest, coldest, and densest filaments in the Galaxy, making use of sensitive Herschel Hi-GAL data complemented by spectral line cubes. We present a sample of the 9 most prominent Herschel filaments from a pilot search field. These filaments measure 37-99 pc long and 0.6-3.0 pc wide with masses (0.5-8.3)×104 Msun, and beam-averaged (28", or 0.4-0.7 pc) peak H2 column densities of (1.7-9.3)x1022 cm-2. The bulk of the filaments are relatively cold (17-21 K), while some local clumps have a dust temperature up to 25-47 K due to local star formation activities. All the filaments are located within spiral arm model incorporating the latest parallax measurements, we find that 7/9 of them reside within arms, but most are close to arm edges. These filaments are comparable in length to the Galactic scale height and therefore are not simply part of a grander turbulent cascade. These giant filaments, which often contain regularly spaced pc-scale clumps, are much larger than the filaments found in the Herschel Gould's Belt Survey, and they form the upper ends in the filamentary hierarchy. Full operational ALMA and NOEMA will be able to resolve and characterize similar filaments in nearby spiral galaxies, allowing us to compare the star formation in a uniform context of spiral arms.

  8. Scintigraphic diagnosis of spiral fracture in young children

    International Nuclear Information System (INIS)

    Hossein-Foucher, C.; Venel, H.; Legouffe, P.; Ythier, H.; Legghe, R.; Marchandise, X.

    1988-01-01

    The authors report 8 cases of unsuspected bone fracture in children, identified at bone scan. Common features were the children's young age (1 to 3 years), the absence of clinical suspicion, the initially normal X-rays, the fracture type (sprial fracture of the tibia undisplaced), and the uniform of appearance the bone scan. These data confirm the value of the bone scan in limping children and suggest that spiral fracture of the tibia is a frequent and underdiagnosed condition in children [fr

  9. Spiral model of procedural cycle of educational process management

    Directory of Open Access Journals (Sweden)

    Bezrukov Valery I.

    2016-01-01

    Full Text Available The article analyzes the nature and characteristics of the spiral model Procedure educational systems management cycle. The authors identify patterns between the development of information and communication technologies and the transformation of the education management process, give the characteristics of the concept of “information literacy” and “Media Education”. Consider the design function, determine its potential in changing the traditional educational paradigm to the new - information.

  10. Spiral and Rotor Patterns Produced by Fairy Ring Fungi

    Science.gov (United States)

    Karst, N.; Dralle, D.; Thompson, S. E.

    2015-12-01

    Soil fungi fill many essential ecological and biogeochemical roles, e.g. decomposing litter, redistributing nutrients, and promoting biodiversity. Fairy ring fungi offer a rare glimpse into the otherwise opaque spatiotemporal dynamics of soil fungal growth, because subsurface mycelial patterns can be inferred from observations at the soil's surface. These observations can be made directly when the fungi send up fruiting bodies (e.g., mushrooms and toadstools), or indirectly via the effect the fungi have on neighboring organisms. Grasses in particular often temporarily thrive on the nutrients liberated by the fungus, creating bands of rich, dark green turf at the edge of the fungal mat. To date, only annular (the "ring" in fairy ring) and arc patterns have been described in the literature. We report observations of novel spiral and rotor pattern formation in fairy ring fungi, as seen in publically available high-resolution aerial imagery of 22 sites across the continental United States. To explain these new behaviors, we first demonstrate that a well-known model describing fairy ring formation is equivalent to the Gray-Scott reaction-diffusion model, which is known to support a wide range of dynamical behaviors, including annular traveling waves, rotors, spirals, and stable spatial patterns including spots and stripes. Bifurcation analysis and numerical simulation are then used to define the region of parameter space that supports spiral and rotor formation. We find that this region is adjacent to one within which typical fairy rings develop. Model results suggest simple experimental procedures that could potentially induce traditional ring structures to exhibit rotor or spiral dynamics. Intriguingly, the Gray-Scott model predicts that these same procedures could be used to solicit even richer patterns, including spots and stripes, which have not yet been identified in the field.

  11. Investigation of spiral blood flow in a model of arterial stenosis.

    Science.gov (United States)

    Paul, Manosh C; Larman, Arkaitz

    2009-11-01

    The spiral component of blood flow has both beneficial and detrimental effects in human circulatory system [Stonebridge PA, Brophy CM. Spiral laminar flow in arteries? Lancet 1991; 338: 1360-1]. We investigate the effects of the spiral blood flow in a model of three-dimensional arterial stenosis with a 75% cross-sectional area reduction at the centre by means of computational fluid dynamics (CFD) techniques. The standard k-omega model is employed for simulation of the blood flow for the Reynolds number of 500 and 1000. We find that for Re=500 the spiral component of the blood flow increases both the total pressure and velocity of the blood, and some significant differences are found between the wall shear stresses of the spiral and non-spiral induced flow downstream of the stenosis. The turbulent kinetic energy is reduced by the spiral flow as it induces the rotational stabilities in the forward flow. For Re=1000 the tangential component of the blood velocity is most influenced by the spiral speed, but the effect of the spiral flow on the centreline turbulent kinetic energy and shear stress is mild. The results of the effects of the spiral flow are discussed in the paper along with the relevant pathological issues.

  12. Magnetostrictive hypersound generation by spiral magnets in the vicinity of magnetic field induced phase transition

    Energy Technology Data Exchange (ETDEWEB)

    Bychkov, Igor V. [Chelyabinsk State University, 129 Br. Kashirinykh Str., Chelyabinsk 454001 (Russian Federation); South Ural State University (National Research University), 76 Lenin Prospekt, Chelyabinsk 454080 (Russian Federation); Kuzmin, Dmitry A., E-mail: kuzminda@csu.ru [Chelyabinsk State University, 129 Br. Kashirinykh Str., Chelyabinsk 454001 (Russian Federation); South Ural State University (National Research University), 76 Lenin Prospekt, Chelyabinsk 454080 (Russian Federation); Kamantsev, Alexander P.; Koledov, Victor V.; Shavrov, Vladimir G. [Kotelnikov Institute of Radio-engineering and Electronics of RAS, Mokhovaya Street 11-7, Moscow 125009 (Russian Federation)

    2016-11-01

    In present work we have investigated magnetostrictive ultrasound generation by spiral magnets in the vicinity of magnetic field induced phase transition from spiral to collinear state. We found that such magnets may generate transverse sound waves with the wavelength equal to the spiral period. We have examined two types of spiral magnetic structures: with inhomogeneous exchange and Dzyaloshinskii–Moriya interactions. Frequency of the waves from exchange-caused spiral magnetic structure may reach some THz, while in case of Dzyaloshinskii–Moriya interaction-caused spiral it may reach some GHz. These waves will be emitted like a sound pulses. Amplitude of the waves is strictly depends on the phase transition speed. Some aspects of microwaves to hypersound transformation by spiral magnets in the vicinity of phase transition have been investigated as well. Results of the work may be interesting for investigation of phase transition kinetics as well, as for various hypersound applications. - Highlights: • Magnetostrictive ultrasound generation by spiral magnets at phase transition (PT) is studied. • Spiral magnets during PT may generate transverse sound with wavelength equal to spiral period. • Amplitude of the sound is strictly depends on the phase transition speed. • Microwave-to-sound transformation in the vicinity of PT is investigated as well.

  13. Ultra-precision turning of complex spiral optical delay line

    Science.gov (United States)

    Zhang, Xiaodong; Li, Po; Fang, Fengzhou; Wang, Qichang

    2011-11-01

    Optical delay line (ODL) implements the vertical or depth scanning of optical coherence tomography, which is the most important factor affecting the scanning resolution and speed. The spinning spiral mirror is found as an excellent optical delay device because of the high-speed and high-repetition-rate. However, it is one difficult task to machine the mirror due to the special shape and precision requirement. In this paper, the spiral mirror with titled parabolic generatrix is proposed, and the ultra-precision turning method is studied for its machining using the spiral mathematic model. Another type of ODL with the segmental shape is also introduced and machined to make rotation balance for the mass equalization when scanning. The efficiency improvement is considered in details, including the rough cutting with the 5- axis milling machine, the machining coordinates unification, and the selection of layer direction in turning. The onmachine measuring method based on stylus gauge is designed to analyze the shape deviation. The air bearing is used as the measuring staff and the laser interferometer sensor as the position sensor, whose repeatability accuracy is proved up to 10nm and the stable feature keeps well. With this method developed, the complex mirror with nanometric finish of 10.7nm in Ra and the form error within 1um are achieved.

  14. Spiral Gradient Coil Design for Use in Cylindrical MRI Systems.

    Science.gov (United States)

    Wang, Yaohui; Xin, Xuegang; Liu, Feng; Crozier, Stuart

    2018-04-01

    In magnetic resonance imaging, the stream function based method is commonly used in the design of gradient coils. However, this method can be prone to errors associated with the discretization of continuous current density and wire connections. In this paper, we propose a novel gradient coil design scheme that works directly in the wire space, avoiding the system errors that may appear in the stream function approaches. Specifically, the gradient coil pattern is described with dedicated spiral functions adjusted to allow the coil to produce the required field gradients in the imaging area, minimal stray field, and other engineering terms. The performance of a designed spiral gradient coil was compared with its stream-function counterpart. The numerical evaluation shows that when compared with the conventional solution, the inductance and resistance was reduced by 20.9 and 10.5%, respectively. The overall coil performance (evaluated by the figure of merit (FoM)) was improved up to 26.5% for the x -gradient coil design; for the z-gradient coil design, the inductance and resistance were reduced by 15.1 and 6.7% respectively, and the FoM was increased by 17.7%. In addition, by directly controlling the wire distributions, the spiral gradient coil design was much sparser than conventional coils.

  15. Infrared emission and tidal interactions of spiral galaxies

    International Nuclear Information System (INIS)

    Byrd, G.G.

    1987-01-01

    Computer simulations of tidal interactions of spiral galaxies are used to attempt to understand recent discoveries about infrared (IR) emitting galaxies. It is found that the stronger tidal perturbation by a companion the more disk gas clouds are thrown into nucleus crossing orbits and the greater the velocity jumps crossing spiral arms. Both these tidally created characteristics would create more IR emission by high speed cloud collisions and more IR via effects of recently formed stars. This expectation at greater tidal perturbation matches the observation of greater IR emission for spiral galaxies with closer and/or more massive companions. The greater collision velocities found at stronger perturbations on the models will also result in higher dust temperature in the colliding clouds. In the IR pairs examined, most have only one member, the larger, detected and when both are detected, the larger is always the more luminous. In simulations and in a simple analytic description of the strong distance dependence of the tidal force, it is found that the big galaxy of a pair is more strongly affected than the small

  16. Floating venous thrombi: diagnosis with spiral-CT-venography

    International Nuclear Information System (INIS)

    Gartenschlaeger, M.; Schmidt, J.A.

    1996-01-01

    Local application of contrast agent into an ipsilateral dorsal foot vein and spiral CT were used to examine 16 consecutive cases with deep venous thrombosis proven at conventional venography; in addition, colour Doppler flow imaging was performed. At conventional venography, 8/16 thrombi appeared to be floating and the remaining 8/16 were adherent to the vessel wall. Spiral-CT showed 15/16 thrombi to be adherent to the vessel wall; the floating thrombus correlated with findings in conventional venography. At colour Doppler flow imaging 3/16 thrombi were considered floating, one of them was discordant to conventional venography. The comparison of conventional venography to spiral-CT demonstrates complete agreement for adherence to vessel wall seen in conventional venography (p=1,0) and significant discordance in cases with free-floating appearance in conventional venography. Adherence of thrombi to the wall of the vessel at conventional venography is in agreement with computed tomography. Conventional venography probably overestimates the prevalence of free floating thrombi. (orig./MG) [de

  17. Demonstration of pulmonary embolism with gadolinium-enhanced spiral CT

    Energy Technology Data Exchange (ETDEWEB)

    Coche, E.E.; Hammer, F.D.; Goffette, P.P. [Dept. of Radiology, St. Luc University Hospital, Brussels (Belgium)

    2001-11-01

    The authors report a case of successful detection of pulmonary embolism using gadolinium-enhanced spiral CT (Gadodiamide, 0.4 mmol/kg, 2 ml/s, delay 18 s) in a 77-year-old woman, with previous allergy to iodinated contrast medium, and renal failure, who presented with pulmonary arterial hypertension. Doppler ultrasound of the lower limbs was first performed and revealed a deep venous thrombosis of the right lower limb. To establish if venous thrombosis was the cause of pulmonary hypertension and to confirm that pulmonary endarterectomy was not indicated in this situation, several imaging modalities were performed. Lung scintigraphy and MRI were non-diagnostic. Gadolinium-enhanced spiral CT demonstrated a large thrombus located proximally and in a segmental artery of the right lower lobe. This case illustrates the potential usefulness of gadolinium as alternative contrast agent with spiral CT to diagnose pulmonary embolism and elucidate the cause of pulmonary arterial hypertension in a patient with some contraindications for iodinated contrast medium injection. (orig.)

  18. Intracranial aneurysms: evaluation in 200 patients with spiral CT angiography

    International Nuclear Information System (INIS)

    Young, N.; Kingston, R.J.; Markson, G.; Dorsch, N.W.C.; McMahon, J.

    2001-01-01

    The goal of this study was to assess the usefulness of spiral CT angiography (CTA) with three- dimensional reconstructions in defining intracranial aneurysms, particularly around the Circle of Willis. Two hundred consecutive patients with angiographic and/or surgical correlation were studied between 1993 and 1998, with CTA performed on a GE HiSpeed unit and Windows workstation. The following clinical situations were evaluated: conventional CT suspicion of an aneurysm; follow-up of treated aneurysm remnants or of untreated aneurysms; subarachnoid haemorrhage (SAH) and negative angiography; family or past aneurysm history; and for improved definition of aneurysm anatomy. Spiral CTA detected 140 of 144 aneurysms, and an overall sensitivity of 97%, including 30 of 32 aneurysms 3 mm or less in size. In 38 patients with SAH and negative angiography, CTA found six of the seven aneurysms finally diagnosed. There was no significant artefact in 17 of 23 patients (74%) with clips. The specificity of CTA was 86% with 8 false-positive cases. Spiral CTA is very useful in demonstrating intracranial aneurysms. (orig.)

  19. TURBULENCE AND STAR FORMATION IN A SAMPLE OF SPIRAL GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Maier, Erin; Chien, Li-Hsin [Department of Physics and Astronomy, Northern Arizona University 527 S Beaver Street, Flagstaff, AZ 86011 (United States); Hunter, Deidre A., E-mail: erin-maier@uiowa.edu, E-mail: Lisa.Chien@nau.edu, E-mail: dah@lowell.edu [Lowell Observatory 1400 W Mars Hill Road, Flagstaff, AZ 86001 (United States)

    2016-11-01

    We investigate turbulent gas motions in spiral galaxies and their importance to star formation in far outer disks, where the column density is typically far below the critical value for spontaneous gravitational collapse. Following the methods of Burkhart et al. on the Small Magellanic Cloud, we use the third and fourth statistical moments, as indicators of structures caused by turbulence, to examine the neutral hydrogen (H i) column density of a sample of spiral galaxies selected from The H i Nearby Galaxy Survey. We apply the statistical moments in three different methods—the galaxy as a whole, divided into a function of radii and then into grids. We create individual grid maps of kurtosis for each galaxy. To investigate the relation between these moments and star formation, we compare these maps with their far-ultraviolet images taken by the Galaxy Evolution Explorer satellite.We find that the moments are largely uniform across the galaxies, in which the variation does not appear to trace any star-forming regions. This may, however, be due to the spatial resolution of our analysis, which could potentially limit the scale of turbulent motions that we are sensitive to greater than ∼700 pc. From comparison between the moments themselves, we find that the gas motions in our sampled galaxies are largely supersonic. This analysis also shows that the Burkhart et al. methods may be applied not just to dwarf galaxies but also to normal spiral galaxies.

  20. Spiral phyllotaxis underlies constrained variation in Anemone (Ranunculaceae) tepal arrangement.

    Science.gov (United States)

    Kitazawa, Miho S; Fujimoto, Koichi

    2018-05-01

    Stabilization and variation of floral structures are indispensable for plant reproduction and evolution; however, the developmental mechanism regulating their structural robustness is largely unknown. To investigate this mechanism, we examined positional arrangement (aestivation) of excessively produced perianth organs (tepals) of six- and seven-tepaled (lobed) flowers in six Anemone species (Ranunculaceae). We found that the tepal arrangement that occurred in nature varied intraspecifically between spiral and whorled arrangements. Moreover, among the studied species, variation was commonly limited to three types, including whorls, despite five geometrically possible arrangements in six-tepaled flowers and two types among six possibilities in seven-tepaled flowers. A spiral arrangement, on the other hand, was unique to five-tepaled flowers. A spiral phyllotaxis model with stochasticity on initiating excessive primordia accounted for these limited variations in arrangement in cases when the divergence angle between preexisting primordia was less than 144°. Moreover, interspecific differences in the frequency of the observed arrangements were explained by the change of model parameters that represent meristematic growth and differential organ growth. These findings suggest that the phyllotaxis parameters are responsible for not only intraspecific stability but interspecific difference of floral structure. Decreasing arrangements from six-tepaled to seven-tepaled Anemone flowers demonstrate that the stabilization occurs as development proceeds to increase the component (organ) number, in contrast from the intuition that the variation will be larger due to increasing number of possible states (arrangements).