WorldWideScience

Sample records for nuclear spin determination

  1. Dynamic nuclear spin polarization

    Energy Technology Data Exchange (ETDEWEB)

    Stuhrmann, H B [GKSS-Forschungszentrum Geesthacht GmbH (Germany)

    1996-11-01

    Polarized neutron scattering from dynamic polarized targets has been applied to various hydrogenous materials at different laboratories. In situ structures of macromolecular components have been determined by nuclear spin contrast variation with an unprecedented precision. The experiments of selective nuclear spin depolarisation not only opened a new dimension to structural studies but also revealed phenomena related to propagation of nuclear spin polarization and the interplay of nuclear polarisation with the electronic spin system. The observation of electron spin label dependent nuclear spin polarisation domains by NMR and polarized neutron scattering opens a way to generalize the method of nuclear spin contrast variation and most importantly it avoids precontrasting by specific deuteration. It also likely might tell us more about the mechanism of dynamic nuclear spin polarisation. (author) 4 figs., refs.

  2. The determination of the in situ structure by nuclear spin contrast variation

    Energy Technology Data Exchange (ETDEWEB)

    Stuhrmann, H.B. [GKSS Forschungszentrum, Geesthacht (Germany); Nierhaus, K.H. [Max-Planch-Institut fuer Molekulare Genetik, Berlin (Germany)

    1994-12-31

    Polarized neutron scattering from polarized nuclear spins in hydrogenous substances opens a new way of contrast variation. The enhanced contrast due to proton spin polarization was used for the in situ structure determination of tRNA of the functional complex of the E.coli ribosome.

  3. The determination of the in situ structure by nuclear spin contrast variation

    International Nuclear Information System (INIS)

    Stuhrmann, H.B.; Nierhaus, K.H.

    1994-01-01

    Polarized neutron scattering from polarized nuclear spins in hydrogenous substances opens a new way of contrast variation. The enhanced contrast due to proton spin polarization was used for the in situ structure determination of tRNA of the functional complex of the E.coli ribosome

  4. Determination of nuclear spins of short-lived isotopes by laser induced fluorescence

    International Nuclear Information System (INIS)

    Buchinger, F.; Dabkiewicz, P.; Kremmling, H.; Kuehl, T.; Mueller, A.C.; Schuessler, H.A.

    1980-01-01

    The spins of several nuclear ground and isomeric states have been measured for a number of mercury isotopes. The fluorescent light from the 6s6p 3 P 1 state is observed at 2537 Angstroem after excitation with the frequency doubled output of a pulsed dye laser. Four different laser induced fluorescence techniques were tested for their applicability: double resonance, Hanle effect, time delayed integral Hanle beats, and time resolved quantum beats. The sensitivity and selectivity of these models are compared with emphasis on the determination of spins of nuclei far from beta-stability, where short half lives and low production yields restrict the number of available atoms. The experiments were carried out on-line with the ISOLDE isotope separator at CERN at densities as low as 10 6 atoms/cm 3 . Results for the very neutron deficient high spin mercury isomers with half lives of several seconds, but also for the ground states of the abundant low spin stable mercury isotopes, are given as examples. The test measurements determined the nuclear spins of the odd sup(185m-191m)Hg isomers to be I = 13/2. (orig.)

  5. The Nuclear Spin Nanomagnet

    OpenAIRE

    Korenev, V. L.

    2007-01-01

    Linearly polarized light tuned slightly below the optical transition of the negatively charged exciton (trion) in a single quantum dot causes the spontaneous nuclear spin polarization (self-polarization) at a level close to 100%. The effective magnetic field of spin-polarized nuclei brings the optical transition energy into resonance with photon energy. The resonantly enhanced Overhauser effect sustains the stability of the nuclear self-polarization even in the absence of spin polarization of...

  6. Nuclear spins in nanostructures

    International Nuclear Information System (INIS)

    Coish, W.A.; Baugh, J.

    2009-01-01

    We review recent theoretical and experimental advances toward understanding the effects of nuclear spins in confined nanostructures. These systems, which include quantum dots, defect centers, and molecular magnets, are particularly interesting for their importance in quantum information processing devices, which aim to coherently manipulate single electron spins with high precision. On one hand, interactions between confined electron spins and a nuclear-spin environment provide a decoherence source for the electron, and on the other, a strong effective magnetic field that can be used to execute local coherent rotations. A great deal of effort has been directed toward understanding the details of the relevant decoherence processes and to find new methods to manipulate the coupled electron-nuclear system. A sequence of spectacular new results have provided understanding of spin-bath decoherence, nuclear spin diffusion, and preparation of the nuclear state through dynamic polarization and more general manipulation of the nuclear-spin density matrix through ''state narrowing.'' These results demonstrate the richness of this physical system and promise many new mysteries for the future. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  7. Nuclear spin off

    International Nuclear Information System (INIS)

    1984-01-01

    The focus for nuclear energy research in the UK has been mainly the generation of electricity. However, nuclear technology is also applied in many areas other than energy production. Nuclear Spin Off shows how technology has been transferred to industry, agriculture, medicine and other areas, creating considerable material benefit. Nuclear research has produced revolutionary new materials and measuring and detection techniques. This film shows a wide range of uses. (author)

  8. Determination of spins and radioactive widths of tellurium nuclear levels with capturre gamma rays

    International Nuclear Information System (INIS)

    Bianchini, F.G.

    1973-01-01

    Spins and levels widths of the tellurium, mainly 128 Te and 130 Te, were determinated by gamma spectroscopy. Measurements of inelastic and elastic scattering, angular distribution and scattering temperature dependence, were still made. Energy levels of this isotopes, were also determinated [pt

  9. Nuclear Spin Relaxation

    Indian Academy of Sciences (India)

    IAS Admin

    ments have shown that in some cases the nuclear spin systems may be held in special configurations called .... these methods have been commercialized, and used for clinical trials, in which hyperpolarized NMR is used to .... symmetric under exchange, meaning that exchanging the two nuclei leaves the state unchanged.

  10. Nuclear spin-off

    International Nuclear Information System (INIS)

    1981-11-01

    This booklet gives examples of 'nuclear spin off', from research programmes carried out for the UKAEA, under the following headings; non destructive testing; tribology; environmental protection; flow measurement; material sciences; mechanical engineering; marine services; biochemical technology; electronic instrumentation. (U.K.)

  11. Nuclear spin circular dichroism

    International Nuclear Information System (INIS)

    Vaara, Juha; Rizzo, Antonio; Kauczor, Joanna; Norman, Patrick; Coriani, Sonia

    2014-01-01

    Recent years have witnessed a growing interest in magneto-optic spectroscopy techniques that use nuclear magnetization as the source of the magnetic field. Here we present a formulation of magnetic circular dichroism (CD) due to magnetically polarized nuclei, nuclear spin-induced CD (NSCD), in molecules. The NSCD ellipticity and nuclear spin-induced optical rotation (NSOR) angle correspond to the real and imaginary parts, respectively, of (complex) quadratic response functions involving the dynamic second-order interaction of the electron system with the linearly polarized light beam, as well as the static magnetic hyperfine interaction. Using the complex polarization propagator framework, NSCD and NSOR signals are obtained at frequencies in the vicinity of optical excitations. Hartree-Fock and density-functional theory calculations on relatively small model systems, ethene, benzene, and 1,4-benzoquinone, demonstrate the feasibility of the method for obtaining relatively strong nuclear spin-induced ellipticity and optical rotation signals. Comparison of the proton and carbon-13 signals of ethanol reveals that these resonant phenomena facilitate chemical resolution between non-equivalent nuclei in magneto-optic spectra

  12. Spin temperature concept verified by optical magnetometry of nuclear spins

    Science.gov (United States)

    Vladimirova, M.; Cronenberger, S.; Scalbert, D.; Ryzhov, I. I.; Zapasskii, V. S.; Kozlov, G. G.; Lemaître, A.; Kavokin, K. V.

    2018-01-01

    We develop a method of nonperturbative optical control over adiabatic remagnetization of the nuclear spin system and apply it to verify the spin temperature concept in GaAs microcavities. The nuclear spin system is shown to exactly follow the predictions of the spin temperature theory, despite the quadrupole interaction that was earlier reported to disrupt nuclear spin thermalization. These findings open a way for the deep cooling of nuclear spins in semiconductor structures, with the prospect of realizing nuclear spin-ordered states for high-fidelity spin-photon interfaces.

  13. Nuclear spin polarization of targets

    International Nuclear Information System (INIS)

    Happer, W.

    1990-01-01

    Lasers can be used to produce milligrams to grams of noble gas nuclei with spin polarizations in excess of 50%. These quantities are sufficient to be very useful targets in nuclear physics experiments. Alkali-metal atoms are used to capture the angular momentum of circularly polarized laser photons, and the alkali-metal atoms transfer their angular momentum to noble gas atoms in binary or three-body collisions. Non-radiative collisions between the excited alkali atoms and molecular quenching gases are essential to avoid radiation trapping. The spin exchange can involve gas-phase van der Waals molecules, consisting of a noble gas atom and an alkali metal atom. Surface chemistry is also of great importance in determining the wall-induced relaxation rates of the noble gases

  14. Nuclear spin conversion in formaldehyde

    OpenAIRE

    Chapovsky, Pavel L.

    2000-01-01

    Theoretical model of the nuclear spin conversion in formaldehyde (H2CO) has been developed. The conversion is governed by the intramolecular spin-rotation mixing of molecular ortho and para states. The rate of conversion has been found equal 1.4*10^{-4}~1/s*Torr. Temperature dependence of the spin conversion has been predicted to be weak in the wide temperature range T=200-900 K.

  15. Nuclear Spins in Quantum Dots

    NARCIS (Netherlands)

    Erlingsson, S.I.

    2003-01-01

    The main theme of this thesis is the hyperfine interaction between the many lattice nuclear spins and electron spins localized in GaAs quantum dots. This interaction is an intrinsic property of the material. Despite the fact that this interaction is rather weak, it can, as shown in this thesis,

  16. Electron spin and nuclear spin manipulation in semiconductor nanosystems

    International Nuclear Information System (INIS)

    Hirayama, Yoshiro; Yusa, Go; Sasaki, Satoshi

    2006-01-01

    Manipulations of electron spin and nuclear spin have been studied in AlGaAs/GaAs semiconductor nanosystems. Non-local manipulation of electron spins has been realized by using the correlation effect between localized and mobile electron spins in a quantum dot- quantum wire coupled system. Interaction between electron and nuclear spins was exploited to achieve a coherent control of nuclear spins in a semiconductor point contact device. Using this device, we have demonstrated a fully coherent manipulation of any two states among the four spin levels of Ga and As nuclei. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  17. Nuclear spin and isospin excitations

    International Nuclear Information System (INIS)

    Osterfeld, F.

    1992-01-01

    A review is given of our present knowledge of collective spin-isospin excitations in nuclei. Most of this knowledge comes from intermediate-energy charge-exchange reactions and from inelastic electron- and proton-scattering experiments. The nuclear-spin dynamics is governed by the spin-isospin-dependent two-nucleon interaction in the medium. This interaction gives rise to collective spin modes such as the giant Gamow-Teller resonances. An interesting phenomenon is that the measured total Gamow-Teller transition strength in the resonance region is much less than a model-independent sum rule predicts. Two physically different mechanisms have been discussed to explain this so-called quenching of the total Gamow-Teller strength: coupling to subnuclear degrees of freedom in the form of Δ-isobar excitation and ordinary nuclear configuration mixing. Both detailed nuclear structure calculations and extensive analyses of the scattering data suggest that the nuclear configuration mixing effect is the more important quenching mechanism, although subnuclear degrees of freedom cannot be ruled out. The quenching phenomenon occurs for nuclear-spin excitations at low excitation energies (ω∼10--20 MeV) and small-momentum transfers (q≤0.5 fm -1 ). A completely opposite effect is anticipated in the high (ω,q)-transfer region (0≤ω≤500 MeV, 0.5≤q≤3 fm -1 ). The nuclear spin-isospin response might be enhanced due to the attractive pion field inside the nucleus. Charge-exchange reactions at GeV incident energies have been used to study the quasifree peak region and the Δ-resonance region. An interesting result of these experiments is that the Δ excitation in the nucleus is shifted downwards in energy relative to the Δ excitation of the free proton

  18. High-spin nuclear spectroscopy

    International Nuclear Information System (INIS)

    Diamond, R.M.

    1986-07-01

    High-spin spectroscopy is the study of the changes in nuclear structure, properties, and behavior with increasing angular momentum. It involves the complex interplay between collective and single-particle motion, between shape and deformation changes, particle alignments, and changes in the pairing correlations. A review of progress in theory, experimentation, and instrumentation in this field is given

  19. Nuclear spin noise in the central spin model

    Science.gov (United States)

    Fröhling, Nina; Anders, Frithjof B.; Glazov, Mikhail

    2018-05-01

    We study theoretically the fluctuations of the nuclear spins in quantum dots employing the central spin model which accounts for the hyperfine interaction of the nuclei with the electron spin. These fluctuations are calculated both with an analytical approach using homogeneous hyperfine couplings (box model) and with a numerical simulation using a distribution of hyperfine coupling constants. The approaches are in good agreement. The box model serves as a benchmark with low computational cost that explains the basic features of the nuclear spin noise well. We also demonstrate that the nuclear spin noise spectra comprise a two-peak structure centered at the nuclear Zeeman frequency in high magnetic fields with the shape of the spectrum controlled by the distribution of the hyperfine constants. This allows for direct access to this distribution function through nuclear spin noise spectroscopy.

  20. Experimental energy-dependent nuclear spin distributions

    International Nuclear Information System (INIS)

    Egidy, T. von; Bucurescu, D.

    2009-01-01

    A new method is proposed to determine the energy-dependent spin distribution in experimental nuclear-level schemes. This method compares various experimental and calculated moments in the energy-spin plane to obtain the spin-cutoff parameter σ as a function of mass A and excitation energy using a total of 7202 levels with spin assignment in 227 nuclei between F and Cf. A simple formula, σ 2 =0.391 A 0.675 (E-0.5Pa ' ) 0.312 , is proposed up to about 10 MeV that is in very good agreement with experimental σ values and is applied to improve the systematics of level-density parameters.

  1. Control of electron spin decoherence in nuclear spin baths

    Science.gov (United States)

    Liu, Ren-Bao

    2011-03-01

    Nuclear spin baths are a main mechanism of decoherence of spin qubits in solid-state systems, such as quantum dots and nitrogen-vacancy (NV) centers of diamond. The decoherence results from entanglement between the electron and nuclear spins, established by quantum evolution of the bath conditioned on the electron spin state. When the electron spin is flipped, the conditional bath evolution is manipulated. Such manipulation of bath through control of the electron spin not only leads to preservation of the center spin coherence but also demonstrates quantum nature of the bath. In an NV center system, the electron spin effectively interacts with hundreds of 13 C nuclear spins. Under repeated flip control (dynamical decoupling), the electron spin coherence can be preserved for a long time (> 1 ms) . Thereforesomecharacteristicoscillations , duetocouplingtoabonded 13 C nuclear spin pair (a dimer), are imprinted on the electron spin coherence profile, which are very sensitive to the position and orientation of the dimer. With such finger-print oscillations, a dimer can be uniquely identified. Thus, we propose magnetometry with single-nucleus sensitivity and atomic resolution, using NV center spin coherence to identify single molecules. Through the center spin coherence, we could also explore the many-body physics in an interacting spin bath. The information of elementary excitations and many-body correlations can be extracted from the center spin coherence under many-pulse dynamical decoupling control. Another application of the preserved spin coherence is identifying quantumness of a spin bath through the back-action of the electron spin to the bath. We show that the multiple transition of an NV center in a nuclear spin bath can have longer coherence time than the single transition does, when the classical noises due to inhomogeneous broadening is removed by spin echo. This counter-intuitive result unambiguously demonstrates the quantumness of the nuclear spin bath

  2. QED approach to the nuclear spin-spin coupling tensor

    International Nuclear Information System (INIS)

    Romero, Rodolfo H.; Aucar, Gustavo A.

    2002-01-01

    A quantum electrodynamical approach for the calculation of the nuclear spin-spin coupling tensor of nuclear-magnetic-resonance spectroscopy is given. Quantization of radiation fields within the molecule is considered and expressions for the magnetic field in the neighborhood of a nucleus are calculated. Using a generalization of time-dependent response theory, an effective spin-spin interaction is obtained from the coupling of nuclear magnetic moments to a virtual quantized magnetic field. The energy-dependent operators obtained reduce to usual classical-field expressions at suitable limits

  3. Controlling a nuclear spin in a nanodiamond

    Science.gov (United States)

    Knowles, Helena S.; Kara, Dhiren M.; Atatüre, Mete

    2017-09-01

    The sensing capability of a single optically bright electronic spin in diamond can be enhanced by making use of proximal dark nuclei as ancillary spins. Such systems, so far realized only in bulk diamond, can provide orders of magnitude higher sensitivity and spectral resolution in the case of magnetic sensing, as well as improved readout fidelity and state storage time in quantum information schemes. Nanodiamonds offer opportunities for scanning and embedded nanoscale probes, yet electronic-nuclear spin complexes have so far remained inaccessible. Here, we demonstrate coherent control of a 13C nuclear spin located 4 Å from a nitrogen-vacancy center in a nanodiamond and show coherent exchange between the two components of this hybrid spin system. We extract a free precession time T2* of 26 μ s for the nuclear spin, which exceeds the bare-electron free-precession time in nanodiamond by two orders of magnitude.

  4. The nuclear spin-orbit coupling

    International Nuclear Information System (INIS)

    Bell, J.S.; Skyrme, T.H.R.

    1994-01-01

    Analysis of the nucleon-nucleon scattering around 100 MeV has determined the spin-orbit coupling part of the two-body scattering matrix at that energy, and a reasonable extrapolation to lower energies is possible. This scattering amplitude has been used, in the spirit of Brueckner's nuclear model, to estimate the resultant single-body spin-orbit coupling for a single nucleon interacting with a large nucleus. This resultant potential has a radial dependence approximately proportional to r -1 d ρ /dr, and with a magnitude in good agreement with that required to explain the doublet splittings in nuclei and the polarization of nucleons scattered elastically off nuclei. (author). 14 refs, 2 figs

  5. Spin-off technologies developed through nuclear activities

    International Nuclear Information System (INIS)

    1993-01-01

    Given the changing role of government research establishments and the interest in maximizing return on capital and intellectual investment, determining the best way to apply or ''spin-off'' technologies from the nuclear field into other industrial and commercial sectors is of increasing concern. This study by the OECD Nuclear Energy Agency draws on expertise from numerous countries to determine what the spin-offs are, where they come from, and how they can best be fostered. It looks both at the results and process of spin-offs, and helps decision-makers in government and project leaders and managers in industry to maximize their benefits. (author)

  6. Electron and nuclear spin system polarization in semiconductors by light

    Energy Technology Data Exchange (ETDEWEB)

    Zakharchenya, B; Flejsher, V

    1981-02-01

    Discussed are the principles of optical electron spin orientation, dynamic polarization and cooling of nuclear spin systems in optical electron orientation, and behavioural characteristics of bound electron and nuclear spin systems of a semiconductor in the optical orientation situation.

  7. Algorithm for the generation of nuclear spin species and nuclear spin statistical weights

    International Nuclear Information System (INIS)

    Balasubramanian, K.

    1982-01-01

    A set of algorithms for the computer generation of nuclear spin species and nuclear spin statistical weights potentially useful in molecular spectroscopy is developed. These algorithms generate the nuclear spin species from group structures known as generalized character cycle indices (GCCIs). Thus the required input for these algorithms is just the set of all GCCIs for the symmetry group of the molecule which can be computed easily from the character table. The algorithms are executed and illustrated with examples

  8. Modulation Algorithms for Manipulating Nuclear Spin States

    OpenAIRE

    Liu, Boyang; Zhang, Ming; Dai, Hong-Yi

    2013-01-01

    We exploit the impact of exact frequency modulation on transition time of steering nuclear spin states from theoretical point of view. 1-stage and 2-stage Frequency-Amplitude-Phase modulation (FAPM) algorithms are proposed in contrast with 1-stage and 3-stage Amplitude-Phase modulation (APM) algorithms. The sufficient conditions are further present for transiting nuclear spin states within the specified time by these four modulation algorithms. It is demonstrated that transition time performa...

  9. Nuclear spin-lattice relaxation in nitroxide spin-label EPR.

    Science.gov (United States)

    Marsh, Derek

    2016-11-01

    Nuclear relaxation is a sensitive monitor of rotational dynamics in spin-label EPR. It also contributes competing saturation transfer pathways in T 1 -exchange spectroscopy, and the determination of paramagnetic relaxation enhancement in site-directed spin labelling. A survey shows that the definition of nitrogen nuclear relaxation rate W n commonly used in the CW-EPR literature for 14 N-nitroxyl spin labels is inconsistent with that currently adopted in time-resolved EPR measurements of saturation recovery. Redefinition of the normalised 14 N spin-lattice relaxation rate, b=W n /(2W e ), preserves the expressions used for CW-EPR, whilst rendering them consistent with expressions for saturation recovery rates in pulsed EPR. Furthermore, values routinely quoted for nuclear relaxation times that are deduced from EPR spectral diffusion rates in 14 N-nitroxyl spin labels do not accord with conventional analysis of spin-lattice relaxation in this three-level system. Expressions for CW-saturation EPR with the revised definitions are summarised. Data on nitrogen nuclear spin-lattice relaxation times are compiled according to the three-level scheme for 14 N-relaxation: T 1 n =1/W n . Results are compared and contrasted with those for the two-level 15 N-nitroxide system. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Optical switching of nuclear spin-spin couplings in semiconductors.

    Science.gov (United States)

    Goto, Atsushi; Ohki, Shinobu; Hashi, Kenjiro; Shimizu, Tadashi

    2011-07-05

    Two-qubit operation is an essential part of quantum computation. However, solid-state nuclear magnetic resonance quantum computing has not been able to fully implement this functionality, because it requires a switchable inter-qubit coupling that controls the time evolutions of entanglements. Nuclear dipolar coupling is beneficial in that it is present whenever nuclear-spin qubits are close to each other, while it complicates two-qubit operation because the qubits must remain decoupled to prevent unwanted couplings. Here we introduce optically controllable internuclear coupling in semiconductors. The coupling strength can be adjusted externally through light power and even allows on/off switching. This feature provides a simple way of switching inter-qubit couplings in semiconductor-based quantum computers. In addition, its long reach compared with nuclear dipolar couplings allows a variety of options for arranging qubits, as they need not be next to each other to secure couplings.

  11. India's nuclear spin-off

    International Nuclear Information System (INIS)

    Kaul, Ravi.

    1974-01-01

    After examining world-wide reactions of the foreign governments and news media to the India's peaceful nuclear experiment (PNE) in the Rajasthan Desert on 18 May 1974, development of nuclear technology in India is assessed and its economic advantages are described. Implications of the Non-Proliferation Treaty are explained. Psychological impact of India's PNE on India's neighbours and superpowers and associated political problems in context of proliferation of nuclear weapons are discussed in detail. (M.G.B.)

  12. Interference elimination: nuclear spin in the cabin

    International Nuclear Information System (INIS)

    Anon.

    1984-01-01

    Constructed on Michael Faraday's cage principle, such cabins enable nuclear spin tomographs to operate undisturbed by foreign radiation. The working signals of these medical research apparatus are screened from the environment so that radio and television reception are not affected. Details are given of the structure of the cabin, of the prefabricated structural elements of non-magnetic materials (chromium-nickel steel). (Auth.)

  13. The electron-nuclear spin system in (In,Ga)As quantum dots

    International Nuclear Information System (INIS)

    Auer, Thomas

    2008-01-01

    polarised by optically oriented electrons also in the studied sample, so that it is even a task to keep the nuclear spins randomly oriented. An important finding was to confirm that the nuclear spins can be significantly polarised also at zero external field. I showed that the polarised nuclear spin system can have a supporting effect on the electron spin polarisation or - when the direction of the nuclear field gains a large transverse component - may depolarise the resident electron spin further than the unpolarized nuclear fluctuation field. I demonstrated that the direction of the Overhauser field may indeed be directed by very small external fields. By determining the internal fields acting on the nuclear spins, the Knight field and the nuclear dipole-dipole field, it could be estimated that the nuclear spin system can in principle be polarised to a degree close to unity. The accumulation dynamics of the electron spins polarised via the effect of negative circular polarisation was found to occur on a timescale of hundred nanoseconds. The nuclear spin system becomes polarised by optical orientation within tens of milliseconds. Finally, I observed spin memory times in the system persisting over up to 0.5 s after the excitation had been switched off. This extremely long spin lifetimes were explained in terms of a coupled electron-nuclear spin state, the nuclear spin polaron. (orig.)

  14. Nuclear moment of inertia and spin distribution of nuclear levels

    International Nuclear Information System (INIS)

    Alhassid, Y.; Fang, L.; Liu, S.; Bertsch, G.F.

    2005-01-01

    We introduce a simple model to calculate the nuclear moment of inertia at finite temperature. This moment of inertia describes the spin distribution of nuclear levels in the framework of the spin-cutoff model. Our model is based on a deformed single-particle Hamiltonian with pairing interaction and takes into account fluctuations in the pairing gap. We derive a formula for the moment of inertia at finite temperature that generalizes the Belyaev formula for zero temperature. We show that a number-parity projection explains the strong odd-even effects observed in shell model Monte Carlo studies of the nuclear moment of inertia in the iron region

  15. Nuclear superdeformation at high spins

    International Nuclear Information System (INIS)

    Dudek, J.

    1991-01-01

    The newly discovered forms of nuclear behavior at exotic shape configurations are discussed from the theoretical point of view. The main emphasis is set on superdeformed nuclei and the strange mechanisms influencing their properties. In particular the feeding properties, alignment, pairing properties and the problem of anomalous degeneracies are discussed

  16. Determination of the Pt spin diffusion length by spin-pumping and spin Hall effect

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Wei; Pearson, John E.; Hoffmann, Axel [Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Vlaminck, Vincent [Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Colegio de Ciencias e Ingenería, Universidad San Fransciso de Quito, Quito (Ecuador); Divan, Ralu [Center for Nanoscale Materials, Argonne National Laboratory, Illinois 60439 (United States); Bader, Samuel D. [Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Center for Nanoscale Materials, Argonne National Laboratory, Illinois 60439 (United States)

    2013-12-09

    The spin diffusion length of Pt at room temperature and at 8 K is experimentally determined via spin pumping and spin Hall effect in permalloy/Pt bilayers. Voltages generated during excitation of ferromagnetic resonance from the inverse spin Hall effect and anisotropic magnetoresistance effect were investigated with a broadband approach. Varying the Pt layer thickness gives rise to an evolution of the voltage line shape due to the superposition of the above two effects. By studying the ratio of the two voltage components with the Pt layer thickness, the spin diffusion length of Pt can be directly extracted. We obtain a spin diffusion length of ∼1.2 nm at room temperature and ∼1.6 nm at 8 K.

  17. Core Technology Development of Nuclear spin polarization

    International Nuclear Information System (INIS)

    Yoo, Byung Duk; Gwon, Sung Ok; Kwon, Duck Hee; Lee, Sung Man

    2009-12-01

    In order to study nuclear spin polarization, we need several core technologies such as laser beam source to polarize the nuclear spin, low pressured helium cell development whose surface is essential to maintain polarization otherwise most of the polarized helium relaxed in short time, development of uniform magnetic field system which is essential for reducing relaxation, efficient vacuum system, development of polarization measuring system, and development of pressure raising system about 1000 times. The purpose of this study is to develop resonable power of laser system, that is at least 5 watt, 1083 nm, 4GHz tuneable. But the limitation of this research fund enforce to develop amplifying system into 5 watt with 1 watt system utilizing laser-diod which is already we have in stock. We succeeded in getting excellent specification of fiber laser system with power of 5 watts, 2 GHz linewidth, more than 80 GHz tuneable

  18. Physics of high spin nuclear states

    Energy Technology Data Exchange (ETDEWEB)

    Wyss, R [Joint Inst. for Heavy Ion Research, Oak Ridge, TN (United States); [MSI, Frescativ, Stockholm (Sweden)

    1992-08-01

    High spin physics is a vast topic addressing the variety of nuclear excitation modes. In the present paper, some general aspects related to recent highlights of nuclear spectroscopy are discussed. The relation between signature splitting and shape changes in the unique parity orbitals is elucidated. The relevance of the Pseudo SU(3) symmetry in the understanding of rotational band structure is addressed. Specific features of rotational bands of intruder configurations are viewed as a probe of the neutron-proton interaction. (author). 36 refs., 5 figs.

  19. Electron and nuclear spin system polarization in semiconductors by light

    International Nuclear Information System (INIS)

    Zakharchenya, B.; Flejsher, V.

    1981-01-01

    Discussed are the principles of optical electron spin orientation, dynamic polarization and cooling of nuclear spin systems in optical electron orientation, and behavioural characteristics of bound electron and nuclear spin systems of a semiconductor in the optical orientation situation. (J.P.)

  20. Nuclear spin states and quantum logical operations

    International Nuclear Information System (INIS)

    Orlova, T.A.; Rasulov, E.N.

    2006-01-01

    Full text: To build a really functional quantum computer, researchers need to develop logical controllers known as 'gates' to control the state of q-bits. In this work , equal quantum logical operations are examined with the emphasis on 1-, 2-, and 3-q-bit gates.1-q-bit quantum logical operations result in Boolean 'NOT'; the 'NOT' and '√NOT' operations are described from the classical and quantum perspective. For the 'NOT' operation to be performed, there must be a means to switch the state of q-bits from to and vice versa. For this purpose either a light or radio pulse of a certain frequency can be used. If the nucleus has the spin-down state, the spin will absorb a portion of energy from electromagnetic current and switch into the spin-up state, and the radio pulse will force it to switch into state. An operation thus described from purely classical perspective is clearly understood. However, operations not analogous to the classical type may also be performed. If the above mentioned radio pulses are only half the frequency required to cause a state switch in the nuclear spin, the nuclear spin will enter the quantum superposition state of the ground state (↓) and excited states (↑). A recurring radio pulse will then result in an operation equivalent to 'NOT', for which reason the described operation is called '√NOT'. Such an operation allows for the state of quantum superposition in quantum computing, which enables parallel processing of several numbers. The work also treats the principles of 2-q-bit logical operations of the controlled 'NOT' type (CNOT), 2-q-bit (SWAP), and the 3-q-bit 'TAFFOLI' gate. (author)

  1. Quantum dynamics of nuclear spins and spin relaxation in organic semiconductors

    Science.gov (United States)

    Mkhitaryan, V. V.; Dobrovitski, V. V.

    2017-06-01

    We investigate the role of the nuclear-spin quantum dynamics in hyperfine-induced spin relaxation of hopping carriers in organic semiconductors. The fast-hopping regime, when the carrier spin does not rotate much between subsequent hops, is typical for organic semiconductors possessing long spin coherence times. We consider this regime and focus on a carrier random-walk diffusion in one dimension, where the effect of the nuclear-spin dynamics is expected to be the strongest. Exact numerical simulations of spin systems with up to 25 nuclear spins are performed using the Suzuki-Trotter decomposition of the evolution operator. Larger nuclear-spin systems are modeled utilizing the spin-coherent state P -representation approach developed earlier. We find that the nuclear-spin dynamics strongly influences the carrier spin relaxation at long times. If the random walk is restricted to a small area, it leads to the quenching of carrier spin polarization at a nonzero value at long times. If the random walk is unrestricted, the carrier spin polarization acquires a long-time tail, decaying as 1 /√{t } . Based on the numerical results, we devise a simple formula describing the effect quantitatively.

  2. Evolution of nuclear shapes at high spins

    International Nuclear Information System (INIS)

    Johnson, N.R.

    1985-01-01

    The dynamic electric quadrupole (E2) moments are a direct reflection of the collective aspects of the nuclear wave functions. For this, Doppler-shift lifetime measurements have been done utilizing primarily the recoil-distance technique. The nuclei with neutron number N approx. 90 possess many interesting properties. These nuclei have very shallow minima in their potential energy surfaces, and thus, are very susceptible to deformation driving influences. It is the evolution of nuclear shapes as a function of spin or rotational frequency for these nuclei that has commanded much interest in the lifetime measurements discussed here. There is growing evidence that many deformed nuclei which have prolate shapes in their ground states conform to triaxial or oblate shapes at higher spins. Since the E2 matrix elements along the yrast line are sensitive indicators of deformation changes, measurements of lifetimes of these states to provide the matrix elements has become the major avenue for tracing the evolving shape of a nucleus at high spin. Of the several nuclei we have studied with N approx. 90, those to be discussed here are /sup 160,161/Yb and 158 Er. In addition, the preliminary, but interesting and surprising results from our recent investigation of the N = 98 nucleus, 172 W are briefly discussed. 14 refs., 5 figs

  3. Quantum information generation, storage and transmission based on nuclear spins

    Science.gov (United States)

    Zaharov, V. V.; Makarov, V. I.

    2018-05-01

    A new approach to quantum information generation, storage and transmission is proposed. It is shown that quantum information generation and storage using an ensemble of N electron spins encounter unresolvable implementation problems (at least at the present time). As an alternative implementation we discuss two promising radical systems, one with N equivalent nuclear spins and another with N nonequivalent nuclear spins. Detailed analysis shows that only the radical system containing N nonequivalent nuclei is perfectly matched for quantum information generation, storage and transmission. We develop a procedure based on pulsed electron paramagnetic resonance (EPR) and we apply it to the radical system with the set of nonequivalent nuclei. The resulting EPR spectrum contains 2N transition lines, where N is the number of the atoms with the nuclear spin 1/2, and each of these lines may be encoded with a determined qudit sequence. For encoding the EPR lines we propose to submit the radical system to two magnetic pulses in the direction perpendicular to the z axis of the reference frame. As a result, the radical system impulse response may be measured, stored and transmitted through the communications channel. Confirming our development, the ab initio analysis of the system with three anion radicals was done showing matching between the simulations and the theoretical predictions. The developed method may be easily adapted for quantum information generation, storage, processing and transmission in quantum computing and quantum communications applications.

  4. Nuclear spin polarized H and D by means of spin-exchange optical pumping

    Science.gov (United States)

    Stenger, Jörn; Grosshauser, Carsten; Kilian, Wolfgang; Nagengast, Wolfgang; Ranzenberger, Bernd; Rith, Klaus; Schmidt, Frank

    1998-01-01

    Optically pumped spin-exchange sources for polarized hydrogen and deuterium atoms have been demonstrated to yield high atomic flow and high electron spin polarization. For maximum nuclear polarization the source has to be operated in spin temperature equilibrium, which has already been demonstrated for hydrogen. In spin temperature equilibrium the nuclear spin polarization PI equals the electron spin polarization PS for hydrogen and is even larger than PS for deuterium. We discuss the general properties of spin temperature equilibrium for a sample of deuterium atoms. One result are the equations PI=4PS/(3+PS2) and Pzz=PSṡPI, where Pzz is the nuclear tensor polarization. Furthermore we demonstrate that the deuterium atoms from our source are in spin temperature equilibrium within the experimental accuracy.

  5. Electronic Spin Storage in an Electrically Readable Nuclear Spin Memory with a Lifetime >100 Seconds

    Science.gov (United States)

    McCamey, D. R.; Van Tol, J.; Morley, G. W.; Boehme, C.

    2010-12-01

    Electron spins are strong candidates with which to implement spintronics because they are both mobile and able to be manipulated. The relatively short lifetimes of electron spins, however, present a problem for the long-term storage of spin information. We demonstrated an ensemble nuclear spin memory in phosphorous-doped silicon, which can be read out electrically and has a lifetime exceeding 100 seconds. The electronic spin information can be mapped onto and stored in the nuclear spin of the phosphorus donors, and the nuclear spins can then be repetitively read out electrically for time periods that exceed the electron spin lifetime. We discuss how this memory can be used in conjunction with other silicon spintronic devices.

  6. International Conference on Spin Observables of Nuclear Probes

    CERN Document Server

    Goodman, Charles; Walker, George; Spin Observables of Nuclear Probes

    1988-01-01

    The proceedings of the "International Conference on Spin Observables of Nuclear Probes" are presented in this volume. This conference was held in Telluride, Colorado, March 14 -17, 1988, and was the fourth in the Telluride series of nuclear physics conferences. A continuing theme in the Telluride conference series has been the complementarity of various intermediate-energy projectiles for elucidating the nucleon-nucleon interaction and nuclear structure. Earlier conferences have contributed significantly to an understanding of spin currents in nuclei, in particular the distribution of Gamow-Teller strength using charge-exchange reactions. The previous conference on "Antinucleon and Nucleon Nucleus Interactions" compared nuclear information from tra­ tional probes to recent results from antinucleon reactions. The 1988 conference on Spin Observables of Nuclear Probes, put special emphasis on spin observables and brought together experts using spin information to probe nuclear structure. Spin observabl...

  7. Robust techniques for polarization and detection of nuclear spin ensembles

    Science.gov (United States)

    Scheuer, Jochen; Schwartz, Ilai; Müller, Samuel; Chen, Qiong; Dhand, Ish; Plenio, Martin B.; Naydenov, Boris; Jelezko, Fedor

    2017-11-01

    Highly sensitive nuclear spin detection is crucial in many scientific areas including nuclear magnetic resonance spectroscopy, magnetic resonance imaging (MRI), and quantum computing. The tiny thermal nuclear spin polarization represents a major obstacle towards this goal which may be overcome by dynamic nuclear spin polarization (DNP) methods. The latter often rely on the transfer of the thermally polarized electron spins to nearby nuclear spins, which is limited by the Boltzmann distribution of the former. Here we utilize microwave dressed states to transfer the high (>92 % ) nonequilibrium electron spin polarization of a single nitrogen-vacancy center (NV) induced by short laser pulses to the surrounding 13C carbon nuclear spins. The NV is repeatedly repolarized optically, thus providing an effectively infinite polarization reservoir. A saturation of the polarization of the nearby nuclear spins is achieved, which is confirmed by the decay of the polarization transfer signal and shows an excellent agreement with theoretical simulations. Hereby we introduce the polarization readout by polarization inversion method as a quantitative magnetization measure of the nuclear spin bath, which allows us to observe by ensemble averaging macroscopically hidden polarization dynamics like Landau-Zener-Stückelberg oscillations. Moreover, we show that using the integrated solid effect both for single- and double-quantum transitions nuclear spin polarization can be achieved even when the static magnetic field is not aligned along the NV's crystal axis. This opens a path for the application of our DNP technique to spins in and outside of nanodiamonds, enabling their application as MRI tracers. Furthermore, the methods reported here can be applied to other solid state systems where a central electron spin is coupled to a nuclear spin bath, e.g., phosphor donors in silicon and color centers in silicon carbide.

  8. Inelastic electron tunneling spectroscopy of a single nuclear spin.

    Science.gov (United States)

    Delgado, F; Fernández-Rossier, J

    2011-08-12

    Detection of a single nuclear spin constitutes an outstanding problem in different fields of physics such as quantum computing or magnetic imaging. Here we show that the energy levels of a single nuclear spin can be measured by means of inelastic electron tunneling spectroscopy (IETS). We consider two different systems, a magnetic adatom probed with scanning tunneling microscopy and a single Bi dopant in a silicon nanotransistor. We find that the hyperfine coupling opens new transport channels which can be resolved at experimentally accessible temperatures. Our simulations evince that IETS yields information about the occupations of the nuclear spin states, paving the way towards transport-detected single nuclear spin resonance.

  9. Nuclear Spin Nanomagnet in an Optically Excited Quantum Dot

    Science.gov (United States)

    Korenev, V. L.

    2007-12-01

    Linearly polarized light tuned slightly below the optical transition of the negatively charged exciton (trion) in a single quantum dot causes the spontaneous nuclear spin polarization (self-polarization) at a level close to 100%. The effective magnetic field of spin-polarized nuclei shifts the optical transition energy close to resonance with photon energy. The resonantly enhanced Overhauser effect sustains the stability of the nuclear self-polarization even in the absence of spin polarization of the quantum dot electron. As a result the optically selected single quantum dot represents a tiny magnet with the ferromagnetic ordering of nuclear spins—the nuclear spin nanomagnet.

  10. Two methods for nuclear spin determination in collinear laser spectroscopy: classical r.f. magnetic resonance and observation of the Larmor precession

    International Nuclear Information System (INIS)

    Bendali, N.; Duong, H.T.; Saint-Jalm, J.M.; Vialle, J.L.

    1984-01-01

    Measurement of nuclear spin in the collinear laser spectroscopy method has been investigated using a fast sodium atomic beam excited collinearly by a C.W. single mode dye laser beam. The atomic magnetic moments are first aligned by optical pumping process, then they interact with a static magnetic field H 0 . The magnetic alignment of the atomic system just at the exit of the magnetic field is monitored by the laser induced fluorescence. Upon varying the amplitude of H 0 , the fluorescence signal presents a fringed structure. This structure is due to the Larmor precession of the aligned magnetic moments around H 0 , and therefore it is a signature of the spin involved. The modulation patterns corresponding to different relative orientations of H 0 and light polarization direction, are fitted by an analytical formula. In a second step, a classical magnetic resonance experiment with a static magnetic field and a radiofrequency field has been performed. The monocinetic character of our fast atomic beam allowed us to observe, even at high r.f. power, resonances line shapes in agreement with the Majorana formula

  11. Exploring Localization in Nuclear Spin Chains

    Science.gov (United States)

    Wei, Ken Xuan; Ramanathan, Chandrasekhar; Cappellaro, Paola

    2018-02-01

    Characterizing out-of-equilibrium many-body dynamics is a complex but crucial task for quantum applications and understanding fundamental phenomena. A central question is the role of localization in quenching thermalization in many-body systems and whether such localization survives in the presence of interactions. Probing this question in real systems necessitates the development of an experimentally measurable metric that can distinguish between different types of localization. While it is known that the localized phase of interacting systems [many-body localization (MBL)] exhibits a long-time logarithmic growth in entanglement entropy that distinguishes it from the noninteracting case of Anderson localization (AL), entanglement entropy is difficult to measure experimentally. Here, we present a novel correlation metric, capable of distinguishing MBL from AL in high-temperature spin systems. We demonstrate the use of this metric to detect localization in a natural solid-state spin system using nuclear magnetic resonance (NMR). We engineer the natural Hamiltonian to controllably introduce disorder and interactions, and observe the emergence of localization. In particular, while our correlation metric saturates for AL, it slowly keeps increasing for MBL, demonstrating analogous features to entanglement entropy, as we show in simulations. Our results show that our NMR techniques, akin to measuring out-of-time correlations, are well suited for studying localization in spin systems.

  12. Spin squeezing of atomic ensembles via nuclear-electronic spin entanglement

    DEFF Research Database (Denmark)

    Fernholz, Thomas; Krauter, Hanna; Jensen, Kasper

    2008-01-01

    quantum limit for quantum memory experiments and applications in quantum metrology and is thus a complementary alternative to spin squeezing obtained via inter-atom entanglement. Squeezing of the collective spin is verified by quantum state tomography.......We demonstrate spin squeezing in a room temperature ensemble of 1012 Cesium atoms using their internal structure, where the necessary entanglement is created between nuclear and electronic spins of each individual atom. This state provides improvement in measurement sensitivity beyond the standard...

  13. Crystalline phase of sodium germanate system determined by x-ray diffraction and 23Na magic angle spinning nuclear magnetic resonance

    International Nuclear Information System (INIS)

    Hussin, R.; Holland, D.; Dupree, R.

    2000-01-01

    Crystalline products of sodium germanate glasses system with composition from 10 mol% to 50 mol% Na 2 O have been investigated using 23 Na magic angle spinning (MAS) nuclear magnetic resonance (NMR) spectroscopy and x-ray diffraction (XRD). Fitting of the 23 Na NMR spectra of the crystalline phases concerning different crystallographically sodium atom in sodium germanate system are reasonably reproducible as observed by the spectra obtained. The line shape simulations of the 23 Na NMR spectra yielded NMR quadrupolar parameters such as nuclear quadrupole coupling constants (C Q ), asymmetry parameters (η), and isotropic chemical shifts (δ i ). 23 Na NMR isotropic chemical shift may also provide further information on the structural environment of the sodium atom. A simple correlation between structure and NMR parameters to be tested can be used to probe the structure of sodium germanate glasses. The experimental 23 Na chemical shifts correlate well with an empirical shift parameter based on the total oxygen-cation bond valence and Na-O distances of all oxygen atoms in the first coordination sphere of the sodium cation. In this study the different phases in the sodium germanate system were identified. These results show that 23 Na NMR can provide examples of the types of structural information for sodium germanate system. (Author)

  14. Selective coupling of individual electron and nuclear spins with integrated all-spin coherence protection

    Science.gov (United States)

    Terletska, Hanna; Dobrovitski, Viatcheslav

    2015-03-01

    The electron spin of the NV center in diamond is a promising platform for spin sensing. Applying the dynamical decoupling, the NV electron spin can be used to detect the individual weakly coupled carbon-13 nuclear spins in diamond and employ them for small-scale quantum information processing. However, the nuclear spins within this approach remain unprotected from decoherence, which ultimately limits the detection and restricts the fidelity of the quantum operation. Here we investigate possible schemes for combining the resonant decoupling on the NV spin with the decoherence protection of the nuclear spins. Considering several schemes based on pulse and continuous-wave decoupling, we study how the joint electron-nuclear spin dynamics is affected. We identify regimes where the all-spin coherence protection improves the detection and manipulation. We also discuss potential applications of the all-spin decoupling for detecting spins outside diamond, with the purpose of implementing the nanoscale NMR. This work was supported by the US Department of Energy Basic Energy Sciences (Contract No. DE-AC02-07CH11358).

  15. Repetitive readout of a single electronic spin via quantum logic with nuclear spin ancillae.

    Science.gov (United States)

    Jiang, L; Hodges, J S; Maze, J R; Maurer, P; Taylor, J M; Cory, D G; Hemmer, P R; Walsworth, R L; Yacoby, A; Zibrov, A S; Lukin, M D

    2009-10-09

    Robust measurement of single quantum bits plays a key role in the realization of quantum computation and communication as well as in quantum metrology and sensing. We have implemented a method for the improved readout of single electronic spin qubits in solid-state systems. The method makes use of quantum logic operations on a system consisting of a single electronic spin and several proximal nuclear spin ancillae in order to repetitively readout the state of the electronic spin. Using coherent manipulation of a single nitrogen vacancy center in room-temperature diamond, full quantum control of an electronic-nuclear system consisting of up to three spins was achieved. We took advantage of a single nuclear-spin memory in order to obtain a 10-fold enhancement in the signal amplitude of the electronic spin readout. We also present a two-level, concatenated procedure to improve the readout by use of a pair of nuclear spin ancillae, an important step toward the realization of robust quantum information processors using electronic- and nuclear-spin qubits. Our technique can be used to improve the sensitivity and speed of spin-based nanoscale diamond magnetometers.

  16. Thermodynamics of Rh nuclear spins calculated by exact diagonalization

    DEFF Research Database (Denmark)

    Lefmann, K.; Ipsen, J.; Rasmussen, F.B.

    2000-01-01

    We have employed the method of exact diagonalization to obtain the full-energy spectrum of a cluster of 16 Rh nuclear spins, having dipolar and RK interactions between first and second nearest neighbours only. We have used this to calculate the nuclear spin entropy, and our results at both positi...

  17. On the spin saturation and thermal properties of nuclear matter

    International Nuclear Information System (INIS)

    Hassan, M.Y.M.; Ramadan, S.

    1983-12-01

    The binding energy and the incompressibility of nuclear matter with degree of spin saturation D is calculated using the Skyrme interaction and two forms of a velocity dependent effective potential. The effect of the degree of spin saturation D on the thermal properties of nuclear matter is also discussed. It is found that generally the pressure decreases with increasing D. (author)

  18. Atomic-Scale Nuclear Spin Imaging Using Quantum-Assisted Sensors in Diamond

    Directory of Open Access Journals (Sweden)

    A. Ajoy

    2015-01-01

    Full Text Available Nuclear spin imaging at the atomic level is essential for the understanding of fundamental biological phenomena and for applications such as drug discovery. The advent of novel nanoscale sensors promises to achieve the long-standing goal of single-protein, high spatial-resolution structure determination under ambient conditions. In particular, quantum sensors based on the spin-dependent photoluminescence of nitrogen-vacancy (NV centers in diamond have recently been used to detect nanoscale ensembles of external nuclear spins. While NV sensitivity is approaching single-spin levels, extracting relevant information from a very complex structure is a further challenge since it requires not only the ability to sense the magnetic field of an isolated nuclear spin but also to achieve atomic-scale spatial resolution. Here, we propose a method that, by exploiting the coupling of the NV center to an intrinsic quantum memory associated with the nitrogen nuclear spin, can reach a tenfold improvement in spatial resolution, down to atomic scales. The spatial resolution enhancement is achieved through coherent control of the sensor spin, which creates a dynamic frequency filter selecting only a few nuclear spins at a time. We propose and analyze a protocol that would allow not only sensing individual spins in a complex biomolecule, but also unraveling couplings among them, thus elucidating local characteristics of the molecule structure.

  19. Spin Modes in Nuclei and Nuclear Forces

    International Nuclear Information System (INIS)

    Suzuki, Toshio; Otsuka, Takaharu

    2011-01-01

    Spin modes in stable and unstable exotic nuclei are studied and important roles of tensor and three-body forces on nuclear structure are discussed. New shell model Hamiltonians, which have proper tensor components, are shown to explain shell evolutions toward drip-lines and spin properties of both stable and exotic nuclei, for example, Gamow-Teller transitions in 12 C and 14 C and an anomalous M1 transition in 17 C. The importance and the necessity of the repulsive monopole corrections in isospin T = 1 channel to the microscopic two-body interactions are pointed out. The corrections are shown to lead to the proper shell evolutions in neutron-rich isotopes. The three-body force, in particular the Fujita-Miyazawa force induced by Δ excitations, is pointed out to be responsible for the repulsive corrections among the valence neutrons. The important roles of the three-body force on the energies and transitions in exotic oxygen and calcium isotopes are demonstrated.

  20. Optically induced dynamic nuclear spin polarisation in diamond

    International Nuclear Information System (INIS)

    Scheuer, Jochen; Naydenov, Boris; Jelezko, Fedor; Schwartz, Ilai; Chen, Qiong; Plenio, Martin B; Schulze-Sünninghausen, David; Luy, Burkhard; Carl, Patrick; Höfer, Peter; Retzker, Alexander; Sumiya, Hitoshi; Isoya, Junichi

    2016-01-01

    The sensitivity of magnetic resonance imaging (MRI) depends strongly on nuclear spin polarisation and, motivated by this observation, dynamical nuclear spin polarisation has recently been applied to enhance MRI protocols (Kurhanewicz et al 2011 Neoplasia 13 81). Nuclear spins associated with the 13 C carbon isotope (nuclear spin I = 1/2) in diamond possess uniquely long spin lattice relaxation times (Reynhardt and High 2011 Prog. Nucl. Magn. Reson. Spectrosc. 38 37). If they are present in diamond nanocrystals, especially when strongly polarised, they form a promising contrast agent for MRI. Current schemes for achieving nuclear polarisation, however, require cryogenic temperatures. Here we demonstrate an efficient scheme that realises optically induced 13 C nuclear spin hyperpolarisation in diamond at room temperature and low ambient magnetic field. Optical pumping of a nitrogen-vacancy centre creates a continuously renewable electron spin polarisation which can be transferred to surrounding 13 C nuclear spins. Importantly for future applications we also realise polarisation protocols that are robust against an unknown misalignment between magnetic field and crystal axis. (paper)

  1. Isoscalar spin-spin interaction within the quasiparticle-phonon nuclear model

    International Nuclear Information System (INIS)

    Dao Tien Khoa; Ponomarev, V.Yu.; Vdovin, A.I.

    1986-01-01

    The isoscalar spin-spin interaction constant in the quasiparticle-phonon nuclear model (QPM) has been determined from the available experimental data on the isoscalar 1 + state (E x =5.846 MeV) in 208 Pb. The isoscalar spin-spin interaction turns out to be weaker than the isovector one by an order of magnitude. The cross sections of (e, e') and (p, p') reactions with the excitation of this 1 + -state have been calculated. The QPM gives a good description of the behaviour of (e, e')-cross section at q eff -1 and reproduces absolute value of this cross section with the effective g s -factors weaker than the g s -factors for free nucleon by 20%. The description of the (p, p')-angular distribution of 201 MeV photon inelastic scattering is poorer. The absolute value of the calculated (p, p') cross section overestimates the experimental data by a factor of about 1.4. This is consistent with the quenching factor for (e, e') cross section. The interaction with two-phonon configurations influences very weakly the isoscalar 1 + -level

  2. 1H MAS NMR (magic-angle spinning nuclear magnetic resonance) techniques for the quantitative determination of hydrogen types in solid catalysts and supports.

    Science.gov (United States)

    Kennedy, Gordon J; Afeworki, Mobae; Calabro, David C; Chase, Clarence E; Smiley, Randolph J

    2004-06-01

    Distinct hydrogen species are present in important inorganic solids such as zeolites, silicoaluminophosphates (SAPOs), mesoporous materials, amorphous silicas, and aluminas. These H species include hydrogens associated with acidic sites such as Al(OH)Si, non-framework aluminum sites, silanols, and surface functionalities. Direct and quantitative methodology to identify, measure, and monitor these hydrogen species are key to monitoring catalyst activity, optimizing synthesis conditions, tracking post-synthesis structural modifications, and in the preparation of novel catalytic materials. Many workers have developed several techniques to address these issues, including 1H MAS NMR (magic-angle spinning nuclear magnetic resonance). 1H MAS NMR offers many potential advantages over other techniques, but care is needed in recognizing experimental limitations and developing sample handling and NMR methodology to obtain quantitatively reliable data. A simplified approach is described that permits vacuum dehydration of multiple samples simultaneously and directly in the MAS rotor without the need for epoxy, flame sealing, or extensive glovebox use. We have found that careful optimization of important NMR conditions, such as magnetic field homogeneity and magic angle setting are necessary to acquire quantitative, high-resolution spectra that accurately measure the concentrations of the different hydrogen species present. Details of this 1H MAS NMR methodology with representative applications to zeolites, SAPOs, M41S, and silicas as a function of synthesis conditions and post-synthesis treatments (i.e., steaming, thermal dehydroxylation, and functionalization) are presented.

  3. Spin-spin interactions of electrons and also of nucleons create atomic molecular and nuclear structures

    International Nuclear Information System (INIS)

    Kaliambos, L.A.

    2008-01-01

    Fundamental interactions of spinning electrons at an interelectron separation less than 578.8 fm yield attractive electromagnetic forces with S = 0 creating vibrations under a motional emf. They explain the indistinguishability of electrons and give a vibration energy able for calculating the ground-state energies of many-electron atoms without using any perturbative approximation. Such forces create two-electron orbitals able to account for the exclusion principal and the mechanism of covalent bonds. In the outer subshells of atoms the penetrating orbitals interact also as pair-pair systems and deform drastically the probability densities of the quantum mechanical electron clouds. Such a dynamics of deformation removes the degeneracy and leads to the deviation from the shell scheme. However in the interior of atoms the large nuclear charge leads to a spherically symmetric potential with non-interacting pairs for creating shells of degenerate states giving an accurate explanation of the X-ray lines. On the other hand, considerable charge distributions in nucleons as multiples of 2e/3 and - e/3 determined by the magnetic moments, interact for creating the nuclear structure with p-n bonds. Such spin-spin interactions show that the dominant concept of the untisymmetric wave function for fermions is inapplicable not only in the simple p-n, p-p, and n-n systems but also in the LS coupling of atoms in which the electrons interact from different quantum states giving either S = 0 or S = l. (author)

  4. Nuclear spin-lattice relaxation in nitroxide spin-label EPR

    DEFF Research Database (Denmark)

    Marsh, Derek

    2016-01-01

    that the definition of nitrogen nuclear relaxation rate Wn commonly used in the CW-EPR literature for 14N-nitroxyl spin labels is inconsistent with that currently adopted in time-resolved EPR measurements of saturation recovery. Redefinition of the normalised 14N spin-lattice relaxation rate, b = Wn/(2We), preserves...... of spin-lattice relaxation in this three-level system. Expressions for CW-saturation EPR with the revised definitions are summarised. Data on nitrogen nuclear spin-lattice relaxation times are compiled according to the three-level scheme for 14N-relaxation: T1 n = 1/Wn. Results are compared and contrasted...

  5. Stimulated nuclear spin echos and spectral diffusion in glasses

    International Nuclear Information System (INIS)

    Borges, N.M.; Engelsberg, M.

    1984-01-01

    Experimental results of stimulated nuclear spin echos decay in glasses are presented. The measurements were performed in B 2 O 3 glasses, at the 23Na and 11 B resonance lines. The data analysis allows the study of Spectral diffusion at an inhomogeneous nuclear magnetic (NMR) resonance line, broadened for a desordered system of nuclear spins. A model is proposed to explain the time constants, and the particular form of the decay. (A.C.A.S.) [pt

  6. Statistical methods of spin assignment in compound nuclear reactions

    International Nuclear Information System (INIS)

    Mach, H.; Johns, M.W.

    1984-01-01

    Spin assignment to nuclear levels can be obtained from standard in-beam gamma-ray spectroscopy techniques and in the case of compound nuclear reactions can be complemented by statistical methods. These are based on a correlation pattern between level spin and gamma-ray intensities feeding low-lying levels. Three types of intensity and level spin correlations are found suitable for spin assignment: shapes of the excitation functions, ratio of intensity at two beam energies or populated in two different reactions, and feeding distributions. Various empirical attempts are examined and the range of applicability of these methods as well as the limitations associated with them are given. 12 references

  7. Statistical methods of spin assignment in compound nuclear reactions

    International Nuclear Information System (INIS)

    Mach, H.; Johns, M.W.

    1985-01-01

    Spin assignment to nuclear levels can be obtained from standard in-beam gamma-ray spectroscopy techniques and in the case of compound nuclear reactions can be complemented by statistical methods. These are based on a correlation pattern between level spin and gamma-ray intensities feeding low-lying levels. Three types of intensity and level spin correlations are found suitable for spin assignment: shapes of the excitation functions, ratio of intensity at two beam energies or populated in two different reactions, and feeding distributions. Various empirical attempts are examined and the range of applicability of these methods as well as the limitations associated with them are given

  8. Model independent spin determination at hadron colliders

    International Nuclear Information System (INIS)

    Edelhaeuser, Lisa

    2012-01-01

    By the end of the year 2011, both the CMS and ATLAS experiments at the Large Hadron Collider have recorded around 5 inverse femtobarns of data at an energy of 7 TeV. There are only vague hints from the already analysed data towards new physics at the TeV scale. However, one knows that around this scale, new physics should show up so that theoretical issues of the standard model of particle physics can be cured. During the last decades, extensions to the standard model that are supposed to solve its problems have been constructed, and the corresponding phenomenology has been worked out. As soon as new physics is discovered, one has to deal with the problem of determining the nature of the underlying model. A first hint is of course given by the mass spectrum and quantum numbers such as electric and colour charges of the new particles. However, there are two popular model classes, supersymmetric models and extradimensional models, which can exhibit almost equal properties at the accessible energy range. Both introduce partners to the standard model particles with the same charges and thus one needs an extended discrimination method. From the origin of these partners arises a relevant difference: The partners constructed in extradimensional models have the same spin as their standard model partners while in Supersymmetry they differ by spin 1/2. These different spins have an impact on the phenomenology of the two models. For example, one can exploit the fact that the total cross sections are affected, but this requires a very good knowledge of the couplings and masses involved. Another approach uses angular distributions depending on the particle spins. A prevailing method based on this idea uses the invariant mass distribution of the visible particles in decay chains. One can relate these distributions to the spin of the particle mediating the decay since it reflects itself in the highest power of the invariant mass s ff of the adjacent particles. In this thesis we

  9. Model independent spin determination at hadron colliders

    Energy Technology Data Exchange (ETDEWEB)

    Edelhaeuser, Lisa

    2012-04-25

    By the end of the year 2011, both the CMS and ATLAS experiments at the Large Hadron Collider have recorded around 5 inverse femtobarns of data at an energy of 7 TeV. There are only vague hints from the already analysed data towards new physics at the TeV scale. However, one knows that around this scale, new physics should show up so that theoretical issues of the standard model of particle physics can be cured. During the last decades, extensions to the standard model that are supposed to solve its problems have been constructed, and the corresponding phenomenology has been worked out. As soon as new physics is discovered, one has to deal with the problem of determining the nature of the underlying model. A first hint is of course given by the mass spectrum and quantum numbers such as electric and colour charges of the new particles. However, there are two popular model classes, supersymmetric models and extradimensional models, which can exhibit almost equal properties at the accessible energy range. Both introduce partners to the standard model particles with the same charges and thus one needs an extended discrimination method. From the origin of these partners arises a relevant difference: The partners constructed in extradimensional models have the same spin as their standard model partners while in Supersymmetry they differ by spin 1/2. These different spins have an impact on the phenomenology of the two models. For example, one can exploit the fact that the total cross sections are affected, but this requires a very good knowledge of the couplings and masses involved. Another approach uses angular distributions depending on the particle spins. A prevailing method based on this idea uses the invariant mass distribution of the visible particles in decay chains. One can relate these distributions to the spin of the particle mediating the decay since it reflects itself in the highest power of the invariant mass s{sub ff} of the adjacent particles. In this thesis

  10. Model independent spin determination at hadron colliders

    Energy Technology Data Exchange (ETDEWEB)

    Edelhaeuser, Lisa

    2012-04-25

    By the end of the year 2011, both the CMS and ATLAS experiments at the Large Hadron Collider have recorded around 5 inverse femtobarns of data at an energy of 7 TeV. There are only vague hints from the already analysed data towards new physics at the TeV scale. However, one knows that around this scale, new physics should show up so that theoretical issues of the standard model of particle physics can be cured. During the last decades, extensions to the standard model that are supposed to solve its problems have been constructed, and the corresponding phenomenology has been worked out. As soon as new physics is discovered, one has to deal with the problem of determining the nature of the underlying model. A first hint is of course given by the mass spectrum and quantum numbers such as electric and colour charges of the new particles. However, there are two popular model classes, supersymmetric models and extradimensional models, which can exhibit almost equal properties at the accessible energy range. Both introduce partners to the standard model particles with the same charges and thus one needs an extended discrimination method. From the origin of these partners arises a relevant difference: The partners constructed in extradimensional models have the same spin as their standard model partners while in Supersymmetry they differ by spin 1/2. These different spins have an impact on the phenomenology of the two models. For example, one can exploit the fact that the total cross sections are affected, but this requires a very good knowledge of the couplings and masses involved. Another approach uses angular distributions depending on the particle spins. A prevailing method based on this idea uses the invariant mass distribution of the visible particles in decay chains. One can relate these distributions to the spin of the particle mediating the decay since it reflects itself in the highest power of the invariant mass s{sub ff} of the adjacent particles. In this thesis

  11. The electron-spin--nuclear-spin interaction studied by polarized neutron scattering.

    Science.gov (United States)

    Stuhrmann, Heinrich B

    2007-11-01

    Dynamic nuclear spin polarization (DNP) is mediated by the dipolar interaction of paramagnetic centres with nuclear spins. This process is most likely to occur near paramagnetic centres at an angle close to 45 degrees with respect to the direction of the external magnetic field. The resulting distribution of polarized nuclear spins leads to an anisotropy of the polarized neutron scattering pattern, even with randomly oriented radical molecules. The corresponding cross section of polarized coherent neutron scattering in terms of a multipole expansion is derived for radical molecules in solution. An application using data of time-resolved polarized neutron scattering from an organic chromium(V) molecule is tested.

  12. An endohedral fullerene-based nuclear spin quantum computer

    International Nuclear Information System (INIS)

    Ju Chenyong; Suter, Dieter; Du Jiangfeng

    2011-01-01

    We propose a new scalable quantum computer architecture based on endohedral fullerene molecules. Qubits are encoded in the nuclear spins of the endohedral atoms, which posses even longer coherence times than the electron spins which are used as the qubits in previous proposals. To address the individual qubits, we use the hyperfine interaction, which distinguishes two modes (active and passive) of the nuclear spin. Two-qubit quantum gates are effectively implemented by employing the electronic dipolar interaction between adjacent molecules. The electron spins also assist in the qubit initialization and readout. Our architecture should be significantly easier to implement than earlier proposals for spin-based quantum computers, such as the concept of Kane [B.E. Kane, Nature 393 (1998) 133]. - Research highlights: → We propose an endohedral fullerene-based scalable quantum computer architecture. → Qubits are encoded on nuclear spins, while electron spins serve as auxiliaries. → Nuclear spins are individually addressed using the hyperfine interaction. → Two-qubit gates are implemented through the medium of electron spins.

  13. Nuclear spin cooling by electric dipole spin resonance and coherent population trapping

    Science.gov (United States)

    Li, Ai-Xian; Duan, Su-Qing; Zhang, Wei

    2017-09-01

    Nuclear spin fluctuation suppression is a key issue in preserving electron coherence for quantum information/computation. We propose an efficient way of nuclear spin cooling in semiconductor quantum dots (QDs) by the coherent population trapping (CPT) and the electric dipole spin resonance (EDSR) induced by optical fields and ac electric fields. The EDSR can enhance the spin flip-flop rate and may bring out bistability under certain conditions. By tuning the optical fields, we can avoid the EDSR induced bistability and obtain highly polarized nuclear spin state, which results in long electron coherence time. With the help of CPT and EDSR, an enhancement of 1500 times of the electron coherence time can been obtained after a 500 ns preparation time.

  14. Spin polarized states in strongly asymmetric nuclear matter

    International Nuclear Information System (INIS)

    Isayev, A.A.; Yang, J.

    2004-01-01

    The possibility of appearance of spin polarized states in strongly asymmetric nuclear matter is analyzed within the framework of a Fermi liquid theory with the Skyrme effective interaction. The zero temperature dependence of the neutron and proton spin polarization parameters as functions of density is found for SLy4 and SLy5 effective forces. It is shown that at some critical density strongly asymmetric nuclear matter undergoes a phase transition to the state with the oppositely directed spins of neutrons and protons while the state with the same direction of spins does not appear. In comparison with neutron matter, even small admixture of protons strongly decreases the threshold density of spin instability. It is clarified that protons become totally polarized within a very narrow density domain while the density profile of the neutron spin polarization parameter is characterized by the appearance of long tails near the transition density

  15. Nuclear spin-lattice relaxation in carbon nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Panich, A.M., E-mail: pan@bgu.ac.i [Department of Physics, Ben-Gurion University of the Negev, P.O. Box 653, Beer Sheva 84105 (Israel); Sergeev, N.A. [Institute of Physics, University of Szczecin, 70-451 Szczecin (Poland)

    2010-04-15

    Interpretation of nuclear spin-lattice relaxation data in the carbon nanostructures is usually based on the analysis of fluctuations of dipole-dipole interactions of nuclear spins and anisotropic electron-nuclear interactions responsible for chemical shielding, which are caused by molecular dynamics. However, many nanocarbon systems such as fullerene and nanotube derivatives, nanodiamonds and carbon onions reveal noticeable amount of paramagnetic defects with unpaired electrons originating from dangling bonds. The interaction between nuclear and electron spins strongly influences the nuclear spin-lattice relaxation, but usually is not taken into account, thus the relaxation data are not correctly interpreted. Here we report on the temperature dependent NMR spectra and spin-lattice relaxation measurements of intercalated fullerenes C{sub 60}(MF{sub 6}){sub 2} (M=As and Sb), where nuclear relaxation is caused by both molecular rotation and interaction between nuclei and unpaired electron spins. We present a detailed theoretical analysis of the spin-lattice relaxation data taking into account both these contributions. Good agreement between the experimental data and calculations is obtained. The developed approach would be useful in interpreting the NMR relaxation data in different nanostructures and their intercalation compounds.

  16. Nuclear spin content and constraints on exotic spin-dependent couplings

    International Nuclear Information System (INIS)

    Kimball, D F Jackson

    2015-01-01

    There are numerous recent and ongoing experiments employing a variety of atomic species to search for couplings of atomic spins to exotic fields. In order to meaningfully compare these experimental results, the coupling of the exotic field to the atomic spin must be interpreted in terms of the coupling to electron, proton, and neutron spins. Traditionally, constraints from atomic experiments on exotic couplings to neutron and proton spins have been derived using the single-particle Schmidt model for nuclear spin. In this model, particular atomic species are sensitive to either neutron or proton spin couplings, but not both. More recently, semi-empirical models employing nuclear magnetic moment data have been used to derive new constraints for non-valence nucleons. However, comparison of such semi-empirical models to detailed large-scale nuclear shell model calculations and analysis of known physical effects in nuclei show that existing semi-empirical models cannot reliably be used to predict the spin polarization of non-valence nucleons. The results of our re-analysis of nuclear spin content are applied to searches for exotic long-range monopole–dipole and dipole–dipole couplings of nuclei leading to significant revisions of some published constraints. (paper)

  17. Electronic readout of a single nuclear spin using a molecular spin transistor

    Science.gov (United States)

    Vincent, R.; Klyastskaya, S.; Ruben, M.; Wernsdorfer, W.; Balestro, F.

    2012-02-01

    Quantum control of individual spins in condensed matter devices is an emerging field with a wide range of applications ranging from nanospintronics to quantum computing [1,2]. The electron, with its spin and orbital degrees of freedom, is conventionally used as carrier of the quantum information in the devices proposed so far. However, electrons exhibit a strong coupling to the environment leading to reduced relaxation and coherence times. Indeed quantum coherence and stable entanglement of electron spins are extremely difficult to achieve. We propose a new approach using the nuclear spin of an individual metal atom embedded in a single-molecule magnet (SMM). In order to perform the readout of the nuclear spin, the quantum tunneling of the magnetization (QTM) of the magnetic moment of the SMM in a transitor-like set-up is electronically detected. Long spin lifetimes of an individual nuclear spin were observed and the relaxation characteristics were studied. The manipulation of the nuclear spin state of individual atoms embedded in magnetic molecules opens a completely new world, where quantum logic may be integrated.[4pt] [1] L. Bogani, W. Wernsdorfer, Nature Mat. 7, 179 (2008).[0pt] [2] M. Urdampilleta, S. Klyatskaya, J.P. Cleuziou, M. Ruben, W. Wernsdorfer, Nature Mat. 10, 502 (2011).

  18. Evolution of nuclear collectivity at high spins and temperatures

    International Nuclear Information System (INIS)

    Baktash, C.

    1989-01-01

    In the past few years, we have utilized the Spin Spectrometer and a variety of complementary probes (continuum γrays, proton-γ coincidence spectroscopy and γ decay of GDR) to study the nuclear response to the DIFFERENTIAL effects of increasing spin and temperature for constant values of excitation energy or spin, respectively. In this paper we shall describe two of the experiments that trace the properties of rapidly-rotating nuclei at small to moderate excitation energies. 22 refs., 7 figs

  19. Polarization of nuclear spins by a cold nanoscale resonator

    International Nuclear Information System (INIS)

    Butler, Mark C.; Weitekamp, Daniel P.

    2011-01-01

    A cold nanoscale resonator coupled to a system of nuclear spins can induce spin relaxation. In the low-temperature limit where spin-lattice interactions are ''frozen out,'' spontaneous emission by nuclear spins into a resonant mechanical mode can become the dominant mechanism for cooling the spins to thermal equilibrium with their environment. We provide a theoretical framework for the study of resonator-induced cooling of nuclear spins in this low-temperature regime. Relaxation equations are derived from first principles, in the limit where energy donated by the spins to the resonator is quickly dissipated into the cold bath that damps it. A physical interpretation of the processes contributing to spin polarization is given. For a system of spins that have identical couplings to the resonator, the interaction Hamiltonian conserves spin angular momentum, and the resonator cannot relax the spins to thermal equilibrium unless this symmetry is broken by the spin Hamiltonian. The mechanism by which such a spin system becomes ''trapped'' away from thermal equilibrium can be visualized using a semiclassical model, which shows how an indirect spin-spin interaction arises from the coupling of multiple spins to one resonator. The internal spin Hamiltonian can affect the polarization process in two ways: (1) By modifying the structure of the spin-spin correlations in the energy eigenstates, and (2) by splitting the degeneracy within a manifold of energy eigenstates, so that zero-frequency off-diagonal terms in the density matrix are converted to oscillating coherences. Shifting the frequencies of these coherences sufficiently far from zero suppresses the development of resonator-induced correlations within the manifold during polarization from a totally disordered state. Modification of the spin-spin correlations by means of either mechanism affects the strength of the fluctuating spin dipole that drives the resonator. In the case where product states can be chosen as energy

  20. Quantum computation with nuclear spins in quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Christ, H.

    2008-01-24

    The role of nuclear spins for quantum information processing in quantum dots is theoretically investigated in this thesis. Building on the established fact that the most strongly coupled environment for the potential electron spin quantum bit are the surrounding lattice nuclear spins interacting via the hyperfine interaction, we turn this vice into a virtue by designing schemes for harnessing this strong coupling. In this perspective, the ensemble of nuclear spins can be considered an asset, suitable for an active role in quantum information processing due to its intrinsic long coherence times. We present experimentally feasible protocols for the polarization, i.e. initialization, of the nuclear spins and a quantitative solution to our derived master equation. The polarization limiting destructive interference effects, caused by the collective nature of the nuclear coupling to the electron spin, are studied in detail. Efficient ways of mitigating these constraints are presented, demonstrating that highly polarized nuclear ensembles in quantum dots are feasible. At high, but not perfect, polarization of the nuclei the evolution of an electron spin in contact with the spin bath can be efficiently studied by means of a truncation of the Hilbert space. It is shown that the electron spin can function as a mediator of universal quantum gates for collective nuclear spin qubits, yielding a promising architecture for quantum information processing. Furthermore, we show that at high polarization the hyperfine interaction of electron and nuclear spins resembles the celebrated Jaynes-Cummings model of quantum optics. This result opens the door for transfer of knowledge from the mature field of quantum computation with atoms and photons. Additionally, tailored specifically for the quantum dot environment, we propose a novel scheme for the generation of highly squeezed collective nuclear states. Finally we demonstrate that even an unprepared completely mixed nuclear spin

  1. Quantum computation with nuclear spins in quantum dots

    International Nuclear Information System (INIS)

    Christ, H.

    2008-01-01

    The role of nuclear spins for quantum information processing in quantum dots is theoretically investigated in this thesis. Building on the established fact that the most strongly coupled environment for the potential electron spin quantum bit are the surrounding lattice nuclear spins interacting via the hyperfine interaction, we turn this vice into a virtue by designing schemes for harnessing this strong coupling. In this perspective, the ensemble of nuclear spins can be considered an asset, suitable for an active role in quantum information processing due to its intrinsic long coherence times. We present experimentally feasible protocols for the polarization, i.e. initialization, of the nuclear spins and a quantitative solution to our derived master equation. The polarization limiting destructive interference effects, caused by the collective nature of the nuclear coupling to the electron spin, are studied in detail. Efficient ways of mitigating these constraints are presented, demonstrating that highly polarized nuclear ensembles in quantum dots are feasible. At high, but not perfect, polarization of the nuclei the evolution of an electron spin in contact with the spin bath can be efficiently studied by means of a truncation of the Hilbert space. It is shown that the electron spin can function as a mediator of universal quantum gates for collective nuclear spin qubits, yielding a promising architecture for quantum information processing. Furthermore, we show that at high polarization the hyperfine interaction of electron and nuclear spins resembles the celebrated Jaynes-Cummings model of quantum optics. This result opens the door for transfer of knowledge from the mature field of quantum computation with atoms and photons. Additionally, tailored specifically for the quantum dot environment, we propose a novel scheme for the generation of highly squeezed collective nuclear states. Finally we demonstrate that even an unprepared completely mixed nuclear spin

  2. Distinction of nuclear spin states with the scanning tunneling microscope.

    Science.gov (United States)

    Natterer, Fabian Donat; Patthey, François; Brune, Harald

    2013-10-25

    We demonstrate rotational excitation spectroscopy with the scanning tunneling microscope for physisorbed H(2) and its isotopes HD and D(2). The observed excitation energies are very close to the gas phase values and show the expected scaling with the moment of inertia. Since these energies are characteristic for the molecular nuclear spin states we are able to identify the para and ortho species of hydrogen and deuterium, respectively. We thereby demonstrate nuclear spin sensitivity with unprecedented spatial resolution.

  3. Determination of intrinsic spin Hall angle in Pt

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yi; Deorani, Praveen; Qiu, Xuepeng; Kwon, Jae Hyun; Yang, Hyunsoo, E-mail: eleyang@nus.edu.sg [Department of Electrical and Computer Engineering, National University of Singapore, 117576 (Singapore)

    2014-10-13

    The spin Hall angle in Pt is evaluated in Pt/NiFe bilayers by spin torque ferromagnetic resonance measurements and is found to increase with increasing the NiFe thickness. To extract the intrinsic spin Hall angle in Pt by estimating the total spin current injected into NiFe from Pt, the NiFe thickness dependent measurements are performed and the spin diffusion in the NiFe layer is taken into account. The intrinsic spin Hall angle of Pt is determined to be 0.068 at room temperature and is found to be almost constant in the temperature range of 13–300 K.

  4. Determination of intrinsic spin Hall angle in Pt

    International Nuclear Information System (INIS)

    Wang, Yi; Deorani, Praveen; Qiu, Xuepeng; Kwon, Jae Hyun; Yang, Hyunsoo

    2014-01-01

    The spin Hall angle in Pt is evaluated in Pt/NiFe bilayers by spin torque ferromagnetic resonance measurements and is found to increase with increasing the NiFe thickness. To extract the intrinsic spin Hall angle in Pt by estimating the total spin current injected into NiFe from Pt, the NiFe thickness dependent measurements are performed and the spin diffusion in the NiFe layer is taken into account. The intrinsic spin Hall angle of Pt is determined to be 0.068 at room temperature and is found to be almost constant in the temperature range of 13–300 K.

  5. Calculation of nuclear spin-spin coupling constants using frozen density embedding

    Energy Technology Data Exchange (ETDEWEB)

    Götz, Andreas W., E-mail: agoetz@sdsc.edu [San Diego Supercomputer Center, University of California San Diego, 9500 Gilman Dr MC 0505, La Jolla, California 92093-0505 (United States); Autschbach, Jochen [Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260-3000 (United States); Visscher, Lucas, E-mail: visscher@chem.vu.nl [Amsterdam Center for Multiscale Modeling (ACMM), VU University Amsterdam, Theoretical Chemistry, De Boelelaan 1083, 1081 HV Amsterdam (Netherlands)

    2014-03-14

    We present a method for a subsystem-based calculation of indirect nuclear spin-spin coupling tensors within the framework of current-spin-density-functional theory. Our approach is based on the frozen-density embedding scheme within density-functional theory and extends a previously reported subsystem-based approach for the calculation of nuclear magnetic resonance shielding tensors to magnetic fields which couple not only to orbital but also spin degrees of freedom. This leads to a formulation in which the electron density, the induced paramagnetic current, and the induced spin-magnetization density are calculated separately for the individual subsystems. This is particularly useful for the inclusion of environmental effects in the calculation of nuclear spin-spin coupling constants. Neglecting the induced paramagnetic current and spin-magnetization density in the environment due to the magnetic moments of the coupled nuclei leads to a very efficient method in which the computationally expensive response calculation has to be performed only for the subsystem of interest. We show that this approach leads to very good results for the calculation of solvent-induced shifts of nuclear spin-spin coupling constants in hydrogen-bonded systems. Also for systems with stronger interactions, frozen-density embedding performs remarkably well, given the approximate nature of currently available functionals for the non-additive kinetic energy. As an example we show results for methylmercury halides which exhibit an exceptionally large shift of the one-bond coupling constants between {sup 199}Hg and {sup 13}C upon coordination of dimethylsulfoxide solvent molecules.

  6. Stabilization of the Electron-Nuclear Spin Orientation in Quantum Dots by the Nuclear Quadrupole Interaction

    Science.gov (United States)

    Dzhioev, R. I.; Korenev, V. L.

    2007-07-01

    The nuclear quadrupole interaction eliminates the restrictions imposed by hyperfine interaction on the spin coherence of an electron and nuclei in a quantum dot. The strain-induced nuclear quadrupole interaction suppresses the nuclear spin flip and makes possible the zero-field dynamic nuclear polarization in self-organized InP/InGaP quantum dots. The direction of the effective nuclear magnetic field is fixed in space, thus quenching the magnetic depolarization of the electron spin in the quantum dot. The quadrupole interaction suppresses the zero-field electron spin decoherence also for the case of nonpolarized nuclei. These results provide a new vision of the role of the nuclear quadrupole interaction in nanostructures: it elongates the spin memory of the electron-nuclear system.

  7. Relaxation of nuclear spin on holes in semiconductors

    International Nuclear Information System (INIS)

    Gr'ncharova, E.I.; Perel', V.I.

    1977-01-01

    The longitudienal relaxation time T 1 of nuclear spins due to dipole-dipole interaction with holes in semiconductors is calculated. Expressions for T 1 in cubic and uniaxial semiconductors are obtained for non-degenerate and degenerate cases. On the basis of comparison with available experimental data for silicon the agreement with the theoretical results is obtained. It is demonstrated that in uniaxial semiconductors the time of relaxation on holes for a nuclear spin directed along the c axis is considerably greater than that for a spin in the normal direction

  8. Nuclear data for the high-spin community

    Energy Technology Data Exchange (ETDEWEB)

    Firestone, R B [Lawrence Berkeley Lab., CA (United States); Singh, B [McMaster Univ., Hamilton, ON (Canada). Tandem Accelerator Lab.

    1992-08-01

    The Isotopes Project at Berkeley is developing the Evaluated High-Spin Data File, a subset of the Evaluated Nuclear Structure Data File (ENSDF). The following products were under development at the time of the conference: eighth edition of the Table of Isotopes, electronic table of isotopes, data bases, nuclear charts, nuclear wallet cards, nuclear CD-ROM, FAX data services, on-line data services.

  9. Relaxation of coupled nuclear spin systems

    International Nuclear Information System (INIS)

    Koenigsberger, E.

    1985-05-01

    The subject of the present work is the relaxation behaviour of scalarly coupled spin-1/2 systems. In the theoretical part the semiclassical Redfield equations are used. Dipolar (D), Chemical Shift Anisotropy (CSA) and Random Field (RF) interactions are considered as relaxation mechanisms. Cross correlations of dipolar interactions of different nuclei pairs and those between the D and the CSA mechanisms are important. The model of anisotropic molecular rotational relaxation and the extreme narrowing approximation are used to obtain the spectral density functions. The longitudinal relaxation data are analyzed into normal modes following Werbelow and Grant. The time evolution of normal modes is derived for the AX system with D-CSA cross terms. In the experimental part the hypothesis of dimerization in the cinnamic acid and the methyl cinnamate - AMX systems with DD cross terms - is corroborated by T 1 -time measurements and a calculation of the diffusion constants. In pentachlorobenzene - an AX system - taking into account of D-CSA cross terms enables the complete determination of movements anosotropy and the determination of the sign of the indirect coupling constant 1 Jsub(CH). (G.Q.)

  10. Spin state determination using Stern-Gerlach device

    International Nuclear Information System (INIS)

    Shirokov, M.I.

    1996-01-01

    The well-known Stern-Gerlach device is proposed here for determination of a particle spin state instead of using it for measurement of spin observables. It is shown that measurement of particle momentum distributions (before and after the action of the device magnetic field) allows one to determine the particle initial spin state in the case of an arbitrary spin value. It is demonstrated that one cannot use for this purpose the usual treatment of the Stern-Gerlach experiment based on the entanglement of spin and spatial states. 11 refs

  11. Vanishing current hysteresis under competing nuclear spin pumping processes in a quadruplet spin-blockaded double quantum dot

    Energy Technology Data Exchange (ETDEWEB)

    Amaha, S., E-mail: s-amaha@riken.jp [Quantum Spin Information Project, Japan Science and Technology Agency, ICORP, 3-1, Morinosato Wakamiya, Atsugi-shi, Kanagawa 243-0198 (Japan); Quantum Functional System Research Group, RIKEN Center for Emergent Matter Science, RIKEN, 3-1 Wako-shi, Saitama 351-0198 (Japan); Hatano, T. [Quantum Spin Information Project, Japan Science and Technology Agency, ICORP, 3-1, Morinosato Wakamiya, Atsugi-shi, Kanagawa 243-0198 (Japan); Department of Physics, Tohoku University, Sendai-shi, Miyagi 980-8578 (Japan); Tarucha, S. [Quantum Spin Information Project, Japan Science and Technology Agency, ICORP, 3-1, Morinosato Wakamiya, Atsugi-shi, Kanagawa 243-0198 (Japan); Quantum Functional System Research Group, RIKEN Center for Emergent Matter Science, RIKEN, 3-1 Wako-shi, Saitama 351-0198 (Japan); Department of Applied Physics, School of Engineering, University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Gupta, J. A.; Austing, D. G. [National Research Council of Canada, M50, Montreal Road, Ottawa, Ontario K1A 0R6 (Canada)

    2015-04-27

    We investigate nuclear spin pumping with five-electron quadruplet spin states in a spin-blockaded weakly coupled vertical double quantum dot device. Two types of hysteretic steps in the leakage current are observed on sweeping the magnetic field and are associated with bidirectional polarization of nuclear spin. Properties of the steps are understood in terms of bias-voltage-dependent conditions for the mixing of quadruplet and doublet spin states by the hyperfine interaction. The hysteretic steps vanish when up- and down-nuclear spin pumping processes are in close competition.

  12. Fingerprints of single nuclear spin energy levels using STM - ENDOR.

    Science.gov (United States)

    Manassen, Yishay; Averbukh, Michael; Jbara, Moamen; Siebenhofer, Bernhard; Shnirman, Alexander; Horovitz, Baruch

    2018-04-01

    We performed STM-ENDOR experiments where the intensity of one of the hyperfine components detected in ESR-STM is recorded while an rf power is irradiated into the tunneling junction and its frequency is swept. When the latter frequency is near a nuclear transition a dip in ESR-STM signal is observed. This experiment was performed in three different systems: near surface SiC vacancies where the electron spin is coupled to a next nearest neighbor 29 Si nucleus; Cu deposited on Si(111)7x7 surface, where the unpaired electron of the Cu atom is coupled to the Cu nucleus ( 63 Cu, 65 Cu) and on Tempo molecules adsorbed on Au(111), where the unpaired electron is coupled to a Nitrogen nucleus ( 14 N). While some of the hyperfine values are unresolved in the ESR-STM data due to linewidth we find that they are accurately determined in the STM-ENDOR data including those from remote nuclei, which are not detected in the ESR-STM spectrum. Furthermore, STM-ENDOR can measure single nuclear Zeeman frequencies, distinguish between isotopes through their different nuclear magnetic moments and detect quadrupole spectra. We also develop and solve a Bloch type equation for the coupled electron-nuclear system that facilitates interpretation of the data. The improved spectral resolution of STM - ENDOR opens many possibilities for nanometric scale chemical analysis. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Axial currents and nuclear spin orientation

    International Nuclear Information System (INIS)

    Minamisono, T.; Nojiri, Y.; Matsuta, K.

    1984-01-01

    This paper discusses the symmetries in the phenomena in which weak interaction is involved are largely violated, and it is still the up-to-date fore-front to study the structure of the nuclear weak currents and to learn the limitations on the applicabilities of the various relevant conservation laws as well as the nuclear structures studied by the β-decay. In this meeting, research works on the β-decay processes for the past 10 years have focused on the recoil order experiments designed to determine the limits of validity of the conserved vector current (CVC) theory and to test the G parity conservation i.e. the search for the second class currents (SCC), as well as to study the structure of the axial currents. Concerning the SCC, after intensive studies, but with not conclusive results, on the ft values of mirror β-decays in the early seventies, the correlation-type measurements on mass A=8, 12, 19 and 20 systems have been also carried out in various laboratories from 1975. Among those, concerns have been with the mass A=12 nuclear triad, /sup 12/B-/sup 12/C-/sup 12/N, the energy diagram of which is well known. The choice of this triad is because of the test done for the strong CVC predictions using the spectrum shapes of β-rays combined with the experimental analogue γ-width in /sup 12/C as well as those relevant nuclear structures. Thus, this A=12 system provides the best testing ground for the research described above

  14. Optical hyperpolarization of 13C nuclear spins in nanodiamond ensembles

    Science.gov (United States)

    Chen, Q.; Schwarz, I.; Jelezko, F.; Retzker, A.; Plenio, M. B.

    2015-11-01

    Dynamical nuclear polarization holds the key for orders of magnitude enhancements of nuclear magnetic resonance signals which, in turn, would enable a wide range of novel applications in biomedical sciences. However, current implementations of DNP require cryogenic temperatures and long times for achieving high polarization. Here we propose and analyze in detail protocols that can achieve rapid hyperpolarization of 13C nuclear spins in randomly oriented ensembles of nanodiamonds at room temperature. Our protocols exploit a combination of optical polarization of electron spins in nitrogen-vacancy centers and the transfer of this polarization to 13C nuclei by means of microwave control to overcome the severe challenges that are posed by the random orientation of the nanodiamonds and their nitrogen-vacancy centers. Specifically, these random orientations result in exceedingly large energy variations of the electron spin levels that render the polarization and coherent control of the nitrogen-vacancy center electron spins as well as the control of their coherent interaction with the surrounding 13C nuclear spins highly inefficient. We address these challenges by a combination of an off-resonant microwave double resonance scheme in conjunction with a realization of the integrated solid effect which, together with adiabatic rotations of external magnetic fields or rotations of nanodiamonds, leads to a protocol that achieves high levels of hyperpolarization of the entire nuclear-spin bath in a randomly oriented ensemble of nanodiamonds even at room temperature. This hyperpolarization together with the long nuclear-spin polarization lifetimes in nanodiamonds and the relatively high density of 13C nuclei has the potential to result in a major signal enhancement in 13C nuclear magnetic resonance imaging and suggests functionalized and hyperpolarized nanodiamonds as a unique probe for molecular imaging both in vitro and in vivo.

  15. International conference on spin observables of nuclear probes: Summary talk

    International Nuclear Information System (INIS)

    Garvey, G.T.

    1988-01-01

    A selected summary of the presentation and discussions at the 4th Telluride Conference is presented. The summary deals mainly with the effects of nuclear spin and isospin on the interaction between nucleons and their consequences in nuclear structure. 11 figs

  16. The domestication of nuclear spins by chemists and biologists

    CERN Document Server

    Ernst, R

    1992-01-01

    The usage of nuclear spins in chemistry and biology for exploring the structure and dynamics of matter is discussed. The main emphasis is put on the methodological aspects of multidimensional nuclear magnetic resonance (NMR) spectroscopy that are responsible for the success of this powerful analytical technique.

  17. Polarization transfer from polarized nuclear spin to μ- spin in muonic atom

    International Nuclear Information System (INIS)

    Kuno, Yoshitaka; Nagamine, Kanetada; Yamazaki, Toshimitsu.

    1987-02-01

    A theoretical study of polarization transfer from an initially-polarized nuclear spin to a μ - spin in a muonic atom is given. The switching of the hyperfine interaction at excited muonic states as well as at the ground 1s state is taken into account. The upper state of hyperfine doublet at the muonic 1s state is considered to proceed down to the lower state. It is found that as the hyperfine interaction becomes effective at higher excited muonic orbitals, a less extent of polarization is transferred from the nuclear spin to the μ - spin. The theoretical values obtained are compared with the recent experiment of μ - repolarization in a polarized 209 Bi target. (author)

  18. Dephasing due to Nuclear Spins in Large-Amplitude Electric Dipole Spin Resonance.

    Science.gov (United States)

    Chesi, Stefano; Yang, Li-Ping; Loss, Daniel

    2016-02-12

    We analyze effects of the hyperfine interaction on electric dipole spin resonance when the amplitude of the quantum-dot motion becomes comparable or larger than the quantum dot's size. Away from the well-known small-drive regime, the important role played by transverse nuclear fluctuations leads to a Gaussian decay with characteristic dependence on drive strength and detuning. A characterization of spin-flip gate fidelity, in the presence of such additional drive-dependent dephasing, shows that vanishingly small errors can still be achieved at sufficiently large amplitudes. Based on our theory, we analyze recent electric dipole spin resonance experiments relying on spin-orbit interactions or the slanting field of a micromagnet. We find that such experiments are already in a regime with significant effects of transverse nuclear fluctuations and the form of decay of the Rabi oscillations can be reproduced well by our theory.

  19. Nuclear spin relaxation by translational diffusion in solids

    International Nuclear Information System (INIS)

    Barton, W.A.; Sholl, C.A.

    1978-01-01

    The theory of nuclear spin relaxation by translational diffusion in solids developed in previous papers is applied to two-spin systems and third-nearest-neighbour jump models in FCC crystals. The two-spin systems describe the dipole-dipole interactions between stationary host spins and spins migrating amongst either the tetrahedral or the octahedral interstitial sites. The tetrahedral sites in a FCC crystal form a SC lattice and two models, the symmetric and asymmetric jump models, are considered for third-nearest-neighbour jumps on this lattice. Numerical results for the correlation function relevant for single crystals and polycrystals are presented over the entire temperature range. It is found that the simpler, but unphysical, symmetric jump model is a good approximation to the more complicated asymmetric jump model. (author)

  20. Nuclear spin warm up in bulk n -GaAs

    Science.gov (United States)

    Kotur, M.; Dzhioev, R. I.; Vladimirova, M.; Jouault, B.; Korenev, V. L.; Kavokin, K. V.

    2016-08-01

    We show that the spin-lattice relaxation in n -type insulating GaAs is dramatically accelerated at low magnetic fields. The origin of this effect, which cannot be explained in terms of well-known diffusion-limited hyperfine relaxation, is found in the quadrupole relaxation, induced by fluctuating donor charges. Therefore, quadrupole relaxation, which governs low field nuclear spin relaxation in semiconductor quantum dots, but was so far supposed to be harmless to bulk nuclei spins in the absence of optical pumping, can be studied and harnessed in the much simpler model environment of n -GaAs bulk crystal.

  1. Entanglement measures in embedding quantum simulators with nuclear spins

    Science.gov (United States)

    Xin, Tao; Pedernales, Julen S.; Solano, Enrique; Long, Gui-Lu

    2018-02-01

    We implement an embedding quantum simulator (EQS) in nuclear spin systems. The experiment consists of a simulator of up to three qubits, plus a single ancillary qubit, where we are able to efficiently measure the concurrence and the three-tangle of two-qubit and three-qubit systems as they undergo entangling dynamics. The EQS framework allows us to drastically reduce the number of measurements needed for this task, which otherwise would require full-state reconstruction of the qubit system. Our simulator is built of the nuclear spins of four 13C atoms in a molecule of trans-crotonic acid manipulated with NMR techniques.

  2. Determining Mechanical Parameters for Spin in Tennis Strings

    DEFF Research Database (Denmark)

    Bendtsen, Kaare; Rasmussen, Kasper; Hansen, Martin B.

    2015-01-01

    The ability to generate spin is a key element for any tennis player. However, the mechanical parameters of tennis strings which contribute to producing spin are poorly understood. This study attempted to determine some of these parameters through a spin test and a tensile test. Nine different...... string types with different gauges, geometry, price and user ratings were tested. The main finding of the study was that the three gauges of MSV Co Focus were able to generate significantly (p

  3. Multiple-Quantum Transitions and Charge-Induced Decoherence of Donor Nuclear Spins in Silicon

    Science.gov (United States)

    Franke, David P.; Pflüger, Moritz P. D.; Itoh, Kohei M.; Brandt, Martin S.

    2017-06-01

    We study single- and multiquantum transitions of the nuclear spins of an ensemble of ionized arsenic donors in silicon and find quadrupolar effects on the coherence times, which we link to fluctuating electrical field gradients present after the application of light and bias voltage pulses. To determine the coherence times of superpositions of all orders in the 4-dimensional Hilbert space, we use a phase-cycling technique and find that, when electrical effects were allowed to decay, these times scale as expected for a fieldlike decoherence mechanism such as the interaction with surrounding Si 29 nuclear spins.

  4. Schematic model of nuclear spin excitations

    International Nuclear Information System (INIS)

    Boucher, P.M.

    1990-01-01

    A simple model to estimate the strength of spin and nonspin collective states is presented. The model was inspired by early schematic models based on energy-weighted sum rules and is a useful tool for interpreting experimental data without the complexities of realistic microscopic calculations. The strength of collective states is calculated by assuming that a single collective state completely exhausts the energy-weighted sum rule. 19 refs

  5. Generating highly polarized nuclear spins in solution using dynamic nuclear polarization

    DEFF Research Database (Denmark)

    Wolber, J.; Ellner, F.; Fridlund, B.

    2004-01-01

    A method to generate strongly polarized nuclear spins in solution has been developed, using Dynamic Nuclear Polarization (DNP) at a temperature of 1.2K, and at a field of 3.354T, corresponding to an electron spin resonance frequency of 94GHz. Trityl radicals are used to directly polarize 13C...... and other low-γ nuclei. Subsequent to the DNP process, the solid sample is dissolved rapidly with a warm solvent to create a solution of molecules with highly polarized nuclear spins. Two main applications are proposed: high-resolution liquid state NMR with enhanced sensitivity, and the use...

  6. Manipulating spin in organic spintronics : probing the interplay between the electronic and nuclear spins in organic semiconductors

    NARCIS (Netherlands)

    Bobbert, P.A.

    2014-01-01

    The growing interest in spin manipulation in the field of spin electronics, or "spintronics," is due to the wealth of exciting possibilities that it offers in areas of magnetic sensing, new types of information storage, low-power electronics, and quantum information processing. Nuclear spin

  7. Determination of the K*(1800) spin parity

    Energy Technology Data Exchange (ETDEWEB)

    Brandenburg, G W; Carnegie, R K; Cashmore, R J; Davier, M; Dunwoodie, W M; Lasinski, T A; Leith, D W.G.S.; Matthews, J A.J.; Walden, P; Williams, S H [Stanford Linear Accelerator Center, Calif. (USA)

    1976-02-16

    A spherical harmonic moment analysis of the reactions K/sup -/p..-->..K/sup -/..pi../sup +/n and K/sup +/p..-->..K/sup +/..pi../sup -/..delta../sup + +/ at 13 GeV/c demonstrates the existence of a broad K* state with mass in the vicinity of 1800 MeV and spin parity 3/sup -/.

  8. Squeezing and entangling nuclear spins in helium 3

    DEFF Research Database (Denmark)

    Reinaudi, Gael; Sinatra, Alice; Dantan, Aurelien Romain

    2007-01-01

    We present a realistic model for transferring the squeezing or the entanglement of optical field modes to the collective ground state nuclear spin of 3He using metastability exchange collisions. We discuss in detail the requirements for obtaining good quantum state transfer efficiency and study t...

  9. Increasing Spin Coherence in Nanodiamond via Dynamic Nuclear Polarization

    Science.gov (United States)

    Gaebel, Torsten; Rej, Ewa; Boele, Thomas; Waddington, David; Reilly, David

    Nanodiamonds are of interest for quantum information technology, as metrological sensors, and more recently as a probe of biological environments. Here we present results examining how intrinsic defects can be used for dynamic nuclear polarization that leads to a dramatic increase in both T1 and T2 for 13C spins in nanodiamond. Mechanisms to explain this enhancement are discussed.

  10. Nuclear moments of inertia at high spins

    International Nuclear Information System (INIS)

    Deleplanque, M.A.

    1984-01-01

    For nuclei in high spin states a yrast-like part of a continuum γ-ray spectrum shows naturally how angular momentum is generated as a function of frequency. In rotational nuclei, the rotational frequency is omega = dE/dI approx. E/sub γ/2, half the collective E2 transition energy. The height of the spectrum for a rotor is proportional to dN/dE/sub γ/ = dI/4d omega. dI/d omega is a dynamic (second derivative of energy with spin) moment of inertia. It contains both alignments and collective effects and is therefore an effective moment of inertia J/sub eff//sup (2)/. It shows how much angular momentum is generated at each frequency. If the collective moment of inertia J/sub band//sup (2)/(omega) is measured (from γ-γ correlation experiments) for the same system, the collective and aligned (Δi) contributions to the increase of angular momentum ΔI in a frequency interval Δ omega can be separated: Δi/ΔI = 1 - J/sub band//sup (2)//J/sub eff//sup (2)/. This is at present the only way to extract such detailed information at the highest spin states where discrete lines cannot be resolved. An example of the spectra obtained in several Er nuclei is shown. They are plotted in units of the moment of inertia J/sub eff//sup (2)/. The high-energy part of the spectra has been corrected for incomplete feeding at these frequencies

  11. Hanle effect in (In,Ga)As quantum dots: Role of nuclear spin fluctuations

    OpenAIRE

    Kuznetsova, M. S.; Flisinski, K.; Gerlovin, I. Ya.; Ignatiev, I. V.; Kavokin, K. V.; Verbin, S. Yu.; Yakovlev, D. R.; Reuter, D.; Wieck, A. D.; Bayer, M.

    2013-01-01

    The role of nuclear spin fluctuations in the dynamic polarization of nuclear spins by electrons is investigated in (In,Ga)As quantum dots. The photoluminescence polarization under circularly polarized optical pumping in transverse magnetic fields (Hanle effect) is studied. A weak additional magnetic field parallel to the optical axis is used to control the efficiency of nuclear spin cooling and the sign of nuclear spin temperature. The shape of the Hanle curve is drastically modified with cha...

  12. Nuclear moments of inertia at high spin

    International Nuclear Information System (INIS)

    Deleplanque, M.A.

    1982-10-01

    The competition between collective motion and alignment at high spin can be evaluated by measuring two complementary dynamic moments of inertia. The first, I band, measured in γ-γ correlation experiments, relates to the collective properties of the nucleus. A new moment of inertia I/sub eff/ is defined here, which contains both collective and alignment effects. Both of these can be measured in continuum γ-ray spectra of rotational nuclei up to high frequencies. The evolution of γ-ray spectra for Er nuclei from mass 160 to 154 shows that shell effects can directly be observed in the spectra of the lighter nuclei

  13. Angstrom-Resolution Magnetic Resonance Imaging of Single Molecules via Wave-Function Fingerprints of Nuclear Spins

    Science.gov (United States)

    Ma, Wen-Long; Liu, Ren-Bao

    2016-08-01

    Single-molecule sensitivity of nuclear magnetic resonance (NMR) and angstrom resolution of magnetic resonance imaging (MRI) are the highest challenges in magnetic microscopy. Recent development in dynamical-decoupling- (DD) enhanced diamond quantum sensing has enabled single-nucleus NMR and nanoscale NMR. Similar to conventional NMR and MRI, current DD-based quantum sensing utilizes the "frequency fingerprints" of target nuclear spins. The frequency fingerprints by their nature cannot resolve different nuclear spins that have the same noise frequency or differentiate different types of correlations in nuclear-spin clusters, which limit the resolution of single-molecule MRI. Here we show that this limitation can be overcome by using "wave-function fingerprints" of target nuclear spins, which is much more sensitive than the frequency fingerprints to the weak hyperfine interaction between the targets and a sensor under resonant DD control. We demonstrate a scheme of angstrom-resolution MRI that is capable of counting and individually localizing single nuclear spins of the same frequency and characterizing the correlations in nuclear-spin clusters. A nitrogen-vacancy-center spin sensor near a diamond surface, provided that the coherence time is improved by surface engineering in the near future, may be employed to determine with angstrom resolution the positions and conformation of single molecules that are isotope labeled. The scheme in this work offers an approach to breaking the resolution limit set by the "frequency gradients" in conventional MRI and to reaching the angstrom-scale resolution.

  14. Symmetry rules for the indirect nuclear spin-spin coupling tensor revisited

    Science.gov (United States)

    Buckingham, A. D.; Pyykkö, P.; Robert, J. B.; Wiesenfeld, L.

    The symmetry rules of Buckingham and Love (1970), relating the number of independent components of the indirect spin-spin coupling tensor J to the symmetry of the nuclear sites, are shown to require modification if the two nuclei are exchanged by a symmetry operation. In that case, the anti-symmetric part of J does not transform as a second-rank polar tensor under symmetry operations that interchange the coupled nuclei and may be called an anti-tensor. New rules are derived and illustrated by simple molecular models.

  15. Monte Carlo simulation of nuclear spin relaxation in disordered system

    International Nuclear Information System (INIS)

    Luo, X.; Sholl, C.A.

    2002-01-01

    Full text: Nuclear spin relaxation is a very useful technique for obtaining information about diffusion in solids. The present work is motivated by relaxation experiments on H diffusing in disordered systems such as metallic glasses or quasicrystalline materials. A theory of the spectral density functions of the magnetic dipolar interactions between diffusing spins is required in order to relate the experimental data to diffusional parameters. In simple ordered systems, the spectral density functions are well understood and a simple BPP (exponential correlation function) model is often used to interpret the data. Diffusion in disordered systems involves a distribution of activation energies and the simple extension of the BPP model that has been used traditionally is of doubtful validity. A more rigorously based BPP model has been developed, and this model has recently been applied to H diffusion in a metal quasicrystal. The improved BPP model still, however, involves approximations and the accuracy of the parameters deduced from it is not clear. The present work involves a Monte Carlo simulation of diffusion in disordered systems and the calculation of the spectral density functions and relaxation rates. The simulations use two algorithms (discrete time and continuous time) for the time-development of the system, and correctly incorporate the Fermi-Dirac distribution for equilibrium occupation of sites, as required by the principle of detailed balance and only single site occupancy of sites. The results are compared with the BPP models for some site- and barrier-energy distributions arising from the structural disorder of the system. The improved BPP model is found to give reasonable values for the diffusion and disorder parameters. Quantitative estimates of the errors involved are determined

  16. Nuclear spin response studies in inelastic polarized proton scattering

    International Nuclear Information System (INIS)

    Jones, K.W.

    1988-01-01

    Spin-flip probabilities S/sub nn/ have been measured for inelastic proton scattering at incident proton energies around 300 MeV from a number of nuclei. At low excitation energies S/sub nn/ is below the free value. For excitation energies above about 30 MeV for momentum transfers between about 0.35 fm/sup /minus/1/ and 0.65 fm/sup / minus/1/ S/sub nn/ exceeds free values significantly. These results suggest that the relative ΔS = 1(ΔS = 0 + ΔS = 1) nuclear spin response approaches about 90% in the region of the enhancement. Comparison of the data with slab response calculations are presented. Decomposition of the measured cross sections into σ(ΔS = 0) and σ(ΔS = 1) permit extraction of nonspin-flip and spin-flip dipole and quadrupole strengths. 29 refs., 11 figs

  17. Photoinduced nuclear spin conversion of methyl groups of single molecules

    International Nuclear Information System (INIS)

    Sigl, A.

    2007-01-01

    A methyl group is an outstanding quantum system due to its special symmetry properties. The threefold rotation around one of its bond is isomorphic to the group of even permutations of the remaining protons, a property which imposes severe quantum restrictions on the system, for instance a strict correlation of rotational states with nuclear spin states. The resulting long lifetimes of the rotational tunneling states of the methyl group can be exploited for applying certain high resolution optical techniques, like hole burning or single molecule spectroscopy to optically switch the methyl group from one tunneling state to another therebye changing the nuclear spin of the protons. One goal of the thesis was to perform this switching in single methyl groups. To this end the methyl group was attached to a chromophoric system, in the present case terrylene, which is well suited for single molecule spectroscopy as well as for hole burning. Experiments were performed with the bare terrylene molecule in a hexadecane lattice which served as a reference system, with alphamethyl terrylene and betamethyl terrylene, both embedded in hexadecane, too. A single molecular probe is a highly sensitive detector for dynamic lattice instabilities. Already the bare terrylene probe showed a wealth of interesting local dynamic effects of the hexadecane lattice which could be well acounted for by the assumption of two nearly degenerate sites with rather different optical and thermal properties, all of which could be determined in a quantitative fashion. As to the methylated terrylene systems, the experiments verified that for betamethyl terrylene it is indeed possible to measure rotational tunneling events in single methyl groups. However, the spectral patterns obtained was much more complicated than expected pointing to the presence of three spectroscopically different methyl groups. In order to achieve a definite assignement, molecular mechanics simulations of the terrylene probes in the

  18. Paramagnetic material for quantum information processing: electronic and nuclear spins manipulations in β - Ga2O3: Ti

    International Nuclear Information System (INIS)

    Mentink-Vigier, Frederic

    2011-01-01

    Quantum information processing is a major challenge both on fundamental and technological grounds. In this research field, the spin bus concept relies on the use of both the electronic and nuclear spins in which the electron is used as a reading and writing head over the nuclei system which makes the qubit register. The requested material to build a spin bus must have unpaired electrons delocalized over a great number of nuclear spins having long decoherence time. In this work, we studied a spin system composed of titanium (III) interacting with multiple gallium nuclei in gallium oxide. We synthesized and studied the titanium paramagnetic center in gallium oxide single crystals by continuous wave EPR and ENDOR spectroscopy and showed that the electron is delocalized over eight neighbouring gallium nuclei. This study also revealed a strong isotopic effect on the nucleus-nucleus interaction mediated by the electron. When the two nearest gallium nuclei surrounding the titanium are identical (same isotopes) this interaction is one order of magnitude higher than in the case of inequivalent nuclei. This effect can be used in order to reduce the computation time. Finally, the dynamical properties of the spin system have been characterized by pulsed EPR and ENDOR spectroscopy. The electron spin decoherence is driven by instantaneous and spectral diffusion. The nuclear dynamical properties have also been studied in order to determine the order of magnitude of nuclear spin relaxation and decoherence time. (author) [fr

  19. Nuclear spin: Fifty years of ups and downs

    Energy Technology Data Exchange (ETDEWEB)

    Pines, A. [Lawrence Berkeley National Lab., CA (United States)

    1996-12-31

    Rumors of its demise notwithstanding, nuclear magnetic resonance (NMR) continues to flourish fifty years after our birth. The lecture will be a reminiscence about moments of excitation, coherence and relaxation in the history of NMR which produced, among other developments, spin echoes and time reversal, Fourier transform and multidimensional spectroscopy, magnetic resonance imaging, and high resolution solid state NMR. Applications of modern NMR spectroscopy cut across the boundaries of physics, chemistry, materials, biology and medicine.

  20. Beyond RPA in nuclear rotation and wobbling motion at high spin

    International Nuclear Information System (INIS)

    Kaneko, Kazunari

    1991-01-01

    A quantum mechanical method of the nuclear rotation and the wobbling motion at high spin beyond the small-oscillation approximation is represented within the framework of time-dependent mean-field theory with some constraints. The constraints which determine the choice of the rotating reference frame are considered in the spin-orientation frame and the principal-axis frame. The quantization under such constraints is performed by making use of the Dirac bracket. Then the commutation relations of the angular momentum are derived. (orig.)

  1. Nuclear spin dynamics in double quantum dots : Fixed points, transients, and intermittency

    NARCIS (Netherlands)

    Rudner, M.S.; Koppens, F.H.L.; Folk, J.A.; Vandersypen, L.M.K.; Levitov, L.S.

    2011-01-01

    Transport through spin-blockaded quantum dots provides a means for electrical control and detection of nuclear spin dynamics in the host material. Although such experiments have become increasingly popular in recent years, interpretation of their results in terms of the underlying nuclear spin

  2. Nuclear high-spin data for A = 174, 176 and 184

    Energy Technology Data Exchange (ETDEWEB)

    Junde, Huo [Jilin Univ. (China). Dept. of Physics

    1996-06-01

    Nuclear high-spin data are important in the frontier areas of nuclear structure physics. The information on A = 174, 176 and 184 mass chains from various reaction experiments together with their adopted high-spin levels and gamma transition properties are presented and discussed. High-spin data for A = 174, 176 and 184 mass chains were evaluated in 1995.

  3. Long lived quantum memory with nuclear atomic spins

    International Nuclear Information System (INIS)

    Sinatra, A.; Reinaudi, G.; Dantan, A.; Giacobino, E.; Pinard, M.

    2005-01-01

    We propose store non-classical states of light into the macroscopic collective nuclear spin (10 18 atoms) of a 3 He vapor, using metastability exchange collisions. We show that these collisions currently used to transfer orientation from the metastable state 2 3 S 1 to the ground state state of 3 He, may conserve quantum correlations and give a possible experimental scheme to perfectly map a squeezed vacuum field state onto a nuclear spin state, which should allow for extremely long storage times (hours). In addition to the apparent interest for quantum information, the scheme offers the intriguing possibility to create a long-lived non classical state for spins. During a metastability exchange collision an atom in the ground state state and an atom in the metastable triplet state 2 3 S exchange their electronic spin variables. The ground state atom is then brought into the metastable state and vice-versa. A laser transition is accessible from the metastable state so that the metastable atoms are coupled with light. This, together with metastability exchange collisions, provides an effective coupling between ground state atoms and light. In our scheme, a coherent field and a squeezed vacuum field excite a Raman transition between Zeeman sublevels of the metastable state, after the system is prepared in the fully polarized state by preliminary optical pumping. According to the intensity of the coherent field, which acts as a control parameter, the squeezing of the field can be selectively transferred either to metastable or to ground state atoms. Once it is encoded in the purely nuclear spin of the ground state of 3 He, which is 20 eV apart from the nearest excited state and interacts very little with the environment, the quantum state can survive for times as long as several hours. By lighting up only the coherent field in the same configuration as for the 'writing' phase, the nuclear spin memory can be 'read' after a long delay, the squeezing being transferred

  4. Nuclear structure at high and very high spin theoretical description

    International Nuclear Information System (INIS)

    Szymanski, Z.

    1983-11-01

    When the existence of nuclear shell structure is ignored and nuclear motion is assumed to be classical we may expect that the nuclear rotation resembles that of a liquid drop. Energy of the nucleus can be thus considered as a sum of three terms: surface energy, Coulomb energy and rotational energy. Nuclear moment of inertia is assumed to be that of a rigid-body. The results of a calculation of the energy surfaces in rotating nuclei by Cohen, Plasil and Swiatecki are discussed. Cranking procedure is analysed as a tool to investigate nucleonic orbits in a rotating nuclear potential. Some predictions concerning the possible onset of a superdeformed phase are given. The structure of nuclear rotation is examined in the presence of the short-range pairing forces that generate the superfluid correlations in the nucleus. Examples of the Bengtsson-Frauendorf plots (quasiparticle energies versus angular velocity of rotation) are given and discussed. The backbending phenomenon is analysed in terms of band crossing. The dependence of the crossing frequency on the pairing-force strength is discussed. Possibilities of the role of new components in the two-body force (quadrupole-pairing) are considered. Possibilities of the phase transition from superfluid to normal states in the nucleus are analysed. The role of the second (dynamic) moment of inertia I(2) in this analysis is discussed. In spherical weekly deformed nuclei (mostly oblate) angular momentum is aligned parallel to the nuclear symmetry axis. Rotation is of non collective origin in this case. Examples of the analysis of nuclear spectra in this case (exhibiting also the isomeric states called yrast (traps)) are given. Possible forms of the collective excitations superimposed on top of the high-spin states are discussed. In particular, the giant resonance excitations formed on top of the high-spin states are considered and their properties discussed

  5. Nuclear spin optical rotation and Faraday effect in gaseous and liquid water.

    Science.gov (United States)

    Pennanen, Teemu S; Ikäläinen, Suvi; Lantto, Perttu; Vaara, Juha

    2012-05-14

    Nuclear spin optical rotation (NSOR) of linearly polarized light, due to the nuclear spins through the Faraday effect, provides a novel probe of molecular structure and could pave the way to optical detection of nuclear magnetization. We determine computationally the effects of the liquid medium on NSOR and the Verdet constant of Faraday rotation (arising from an external magnetic field) in water, using the recently developed theory applied on a first-principles molecular dynamics trajectory. The gas-to-liquid shifts of the relevant antisymmetric polarizability and, hence, NSOR magnitude are found to be -14% and -29% for (1)H and (17)O nuclei, respectively. On the other hand, medium effects both enhance the local electric field in water and, via bulk magnetization, the local magnetic field. Together these two effects partially cancel the solvation influence on the single-molecular property. We find a good agreement for the hydrogen NSOR with a recent pioneering experiment on H(2)O(l).

  6. Nuclear spin-spin coupling in a van der Waals-bonded system: xenon dimer.

    Science.gov (United States)

    Vaara, Juha; Hanni, Matti; Jokisaari, Jukka

    2013-03-14

    Nuclear spin-spin coupling over van der Waals bond has recently been observed via the frequency shift of solute protons in a solution containing optically hyperpolarized (129)Xe nuclei. We carry out a first-principles computational study of the prototypic van der Waals-bonded xenon dimer, where the spin-spin coupling between two magnetically non-equivalent isotopes, J((129)Xe - (131)Xe), is observable. We use relativistic theory at the four-component Dirac-Hartree-Fock and Dirac-density-functional theory levels using novel completeness-optimized Gaussian basis sets and choosing the functional based on a comparison with correlated ab initio methods at the nonrelativistic level. J-coupling curves are provided at different levels of theory as functions of the internuclear distance in the xenon dimer, demonstrating cross-coupling effects between relativity and electron correlation for this property. Calculations on small Xe clusters are used to estimate the importance of many-atom effects on J((129)Xe - (131)Xe). Possibilities of observing J((129)Xe - (131)Xe) in liquid xenon are critically examined, based on molecular dynamics simulation. A simplistic spherical model is set up for the xenon dimer confined in a cavity, such as in microporous materials. It is shown that the on the average shorter internuclear distance enforced by the confinement increases the magnitude of the coupling as compared to the bulk liquid case, rendering J((129)Xe - (131)Xe) in a cavity a feasible target for experimental investigation.

  7. Response function of spin-isospin nuclear excitations

    International Nuclear Information System (INIS)

    Salvetti, A.R.

    1986-01-01

    The selected aspects of spin-isospir nuclear excitations are studied. The spreading width of M/ states in even Ca isotopes for the purpose of trying to understand the missing strenght specially in 44 Ca, was estimated. The doorway calculation, was used, considering the level of complexity next to the independent particle M/ state. Using a nuclear matter context, the system response function to a spin-isospin probe and verify how the response function behaves for free fermions and in the ring approximation was studied. Higher correlations to polarization propagation such as the induced interaction and self-energy corrections was introduced. The dopping of colletive effects by such collisions terms was verified. It was investigate how to estimate the short range term of the effective interaction in the spin-isospin channel and the possibility of detecting a difference between these short range terms in the longitudinal and the transverse channel, for understanding the absence of pior condensation precursor states and negative results in a recent attempt to detect differences between longitudinal and transverse response functions one naively expects theoretically. (author) [pt

  8. Nuclear structure at high-spin and large-deformation

    International Nuclear Information System (INIS)

    Shimizu, Yoshifumi R.

    2000-01-01

    Atomic nucleus is a finite quantal system and shows various marvelous features. One of the purposes of the nuclear structure study is to understand such features from a microscopic viewpoint of nuclear many-body problem. Recently, it is becoming possible to explore nuclear states under 'extreme conditions', which are far different from the usual ground states of stable nuclei, and new aspects of such unstable nuclei attract our interests. In this lecture, I would like to discuss the nuclear structure in the limit of rapid rotation, or the extreme states with very large angular momenta, which became accessible by recent advent of large arrays of gamma-ray detecting system; these devices are extremely useful to measure coincident multiple γ-rays following heavy-ion fusion reactions. Including such experimental aspects as how to detect the nuclear rotational states, I review physics of high-spin states starting from the elementary subjects of nuclear structure study. In would like also to discuss the extreme states with very large nuclear deformation, which are easily realized in rapidly rotating nuclei. (author)

  9. Optical switching of nuclear spin–spin couplings in semiconductors

    Science.gov (United States)

    Goto, Atsushi; Ohki, Shinobu; Hashi, Kenjiro; Shimizu, Tadashi

    2011-01-01

    Two-qubit operation is an essential part of quantum computation. However, solid-state nuclear magnetic resonance quantum computing has not been able to fully implement this functionality, because it requires a switchable inter-qubit coupling that controls the time evolutions of entanglements. Nuclear dipolar coupling is beneficial in that it is present whenever nuclear–spin qubits are close to each other, while it complicates two-qubit operation because the qubits must remain decoupled to prevent unwanted couplings. Here we introduce optically controllable internuclear coupling in semiconductors. The coupling strength can be adjusted externally through light power and even allows on/off switching. This feature provides a simple way of switching inter-qubit couplings in semiconductor-based quantum computers. In addition, its long reach compared with nuclear dipolar couplings allows a variety of options for arranging qubits, as they need not be next to each other to secure couplings. PMID:21730962

  10. Optical pumping of electron and nuclear spin in a negatively-charged quantum dot

    Science.gov (United States)

    Bracker, Allan; Gershoni, David; Korenev, Vladimir

    2005-03-01

    We report optical pumping of electron and nuclear spins in an individual negatively-charged quantum dot. With a bias-controlled heterostructure, we inject one electron into the quantum dot. Intense laser excitation produces negative photoluminescence polarization, which is easily erased by the Hanle effect, demonstrating optical pumping of a long-lived resident electron. The electron spin lifetime is consistent with the influence of nuclear spin fluctuations. Measuring the Overhauser effect in high magnetic fields, we observe a high degree of nuclear spin polarization, which is closely correlated to electron spin pumping.

  11. Subcriticality determination of nuclear reactor

    International Nuclear Information System (INIS)

    Borisenko, V.I.; Goranchuk, V.V.; Sidoruk, N.M.; Volokh, A.F.

    2014-01-01

    In this article the subcriticality determination of nuclear reactor is considered. Emphasized that, despite the requirements of regulatory documents on the subcriticality determination of WWER from the beginning of their operation, so far, this problem has not been solved. The results of subcriticality determination of Rossi-α method of the WWER-M is presented. The possibility of subcriticality determination of WWER is considered. The possibility of subcriticality determination of Rossi-α method with time resolution is of about 100 microseconds is also considered. The possible reasons for the error in subcriticality determination of the reactor are indicated

  12. Spectroscopic Measurement of LEAD-204 Isotope Shift and LEAD-205 Nuclear Spin.

    Science.gov (United States)

    Schonberger, Peter

    The isotope shift of ('204)Pb and the nuclear spin of 1.4 x 10('7)-y ('205)Pb was determined from a high -resolution optical measurement of the 6p('2) ('3)P(,o) -6p7s('3)P(,1)('o) 283.3-nm resonance line. The value of the shift, relative to ('208)Pb is -140.2(8) x 10('-3)cm(' -1), the negative sign indicating a shift to lower wave numbers. The precision is 3-4 times greater than that of previous measurements. The spin of ('205)Pb l = 5/2 was obtained from the measurement of the relative intensities of its three hyperfine components. This method of absorption spectroscopy determination of ground state nuclear spin is applicable to any stable or longlived isotope. High resolution optical absorption spectra were obtained with a 25.4cm diffraction grating in a 9.1m focal length Czerny-Turner spectrometer. A signal-averaging scanning technique was used to record the spectra. Increased precision in the isotope shift measurement was attained by using separated isotope samples of ('204)Pb and ('207)Pb. A controlled amount of the later was incorporated in the absorption cell to provide internal calibration by its 6p7s ('3)P(,1)('o) hfs separation. Absorption spectra were recorded for several optical thicknesses of the absorber. A single spin value of increased precision was derived from the entire set of combined data.

  13. High-spin nuclear structure studies with radioactive ion beams

    International Nuclear Information System (INIS)

    Baktash, C.

    1992-01-01

    Two important developments in the sixties, namely the advent of heavy-ion accelerators and fabrication of Ge detectors, opened the way for the experimental studies of nuclear properties at high angular momentum. Addition of a new degree of freedom, namely spin, made it possible to observe such fascinating phenomena as occurrences and coexistence of a variety of novel shapes, rise, fall and occasionally rebirth of nuclear collectivity, and disappearance of pairing correlations. Today, with the promise of development of radioactive ion beams (RIB) and construction of the third-generation Ge-detection systems (GAMMASPHERE and EUROBALL), nuclear physicists are poised to explore new and equally fascinating phenomena that have been hitherto inaccessible. With the addition of yet another dimension, namely the isospin, they will be able to observe and verify predictions for exotic shapes as varied as rigid triaxiality, hyperdeformation and triaxial-octupole shapes, or to investigate the T=O pairing correlations. In this paper, the author reviews, separately for neutron-deficient and neutron-rich nuclei, these and a few other new high-spin physics opportunities that may be realized with RIB. Following this discussion, a list of the beam species, intensities and energies that are needed to fulfill these goals is presented. The paper concludes with a description of the experimental techniques and instrumentations that are required for these studies

  14. Dark matter spin determination with directional direct detection experiments

    Science.gov (United States)

    Catena, Riccardo; Conrad, Jan; Döring, Christian; Ferella, Alfredo Davide; Krauss, Martin B.

    2018-01-01

    If dark matter has spin 0, only two WIMP-nucleon interaction operators can arise as leading operators from the nonrelativistic reduction of renormalizable single-mediator models for dark matter-quark interactions. Based on this crucial observation, we show that about 100 signal events at next generation directional detection experiments can be enough to enable a 2 σ rejection of the spin 0 dark matter hypothesis in favor of alternative hypotheses where the dark matter particle has spin 1 /2 or 1. In this context, directional sensitivity is crucial since anisotropy patterns in the sphere of nuclear recoil directions depend on the spin of the dark matter particle. For comparison, about 100 signal events are expected in a CF4 detector operating at a pressure of 30 torr with an exposure of approximately 26,000 cubic-meter-detector days for WIMPs of 100 GeV mass and a WIMP-fluorine scattering cross section of 0.25 pb. Comparable exposures require an array of cubic meter time projection chamber detectors.

  15. Spin-off strategies for the improvement of the performance national nuclear R and D project

    International Nuclear Information System (INIS)

    Lee, T. J.; Kim, H. J.; Jung, H. S.; Yang, M. H.; Choi, Y. M.

    1998-01-01

    In the light of the strategic utilization of the national R and D projects, this paper is to induce the spin-off strategies to improve the national R and D effectiveness through analyzing the spin-off characteristics of nuclear technologies, the spin-off status of the advanced countries and the case study of Korean nuclear spin-offs. Spin-off process is viewed as a three-stage operation, such as preparation stage, implementation stage and maintenance stage. In order to find the correlation between the influencing factors and spin-off effectiveness, the Spearman's correlation coefficient was employed as a specific statistical technique. By integrating this correlation, spin-off process and spin-off strategies, this paper presents an efficient frame work to improve the spin-off effectiveness

  16. Probing Nuclear Spin Effects on Electronic Spin Coherence via EPR Measurements of Vanadium(IV) Complexes.

    Science.gov (United States)

    Graham, Michael J; Krzyaniak, Matthew D; Wasielewski, Michael R; Freedman, Danna E

    2017-07-17

    Quantum information processing (QIP) has the potential to transform numerous fields from cryptography, to finance, to the simulation of quantum systems. A promising implementation of QIP employs unpaired electronic spins as qubits, the fundamental units of information. Though molecular electronic spins offer many advantages, including chemical tunability and facile addressability, the development of design principles for the synthesis of complexes that exhibit long qubit superposition lifetimes (also known as coherence times, or T 2 ) remains a challenge. As nuclear spins in the local qubit environment are a primary cause of shortened superposition lifetimes, we recently conducted a study which employed a modular spin-free ligand scaffold to place a spin-laden propyl moiety at a series of fixed distances from an S = 1 / 2 vanadium(IV) ion in a series of vanadyl complexes. We found that, within a radius of 4.0(4)-6.6(6) Å from the metal center, nuclei did not contribute to decoherence. To assess the generality of this important design principle and test its efficacy in a different coordination geometry, we synthesized and investigated three vanadium tris(dithiolene) complexes with the same ligand set employed in our previous study: K 2 [V(C 5 H 6 S 4 ) 3 ] (1), K 2 [V(C 7 H 6 S 6 ) 3 ] (2), and K 2 [V(C 9 H 6 S 8 ) 3 ] (3). We specifically interrogated solutions of these complexes in DMF-d 7 /toluene-d 8 with pulsed electron paramagnetic resonance spectroscopy and electron nuclear double resonance spectroscopy and found that the distance dependence present in the previously synthesized vanadyl complexes holds true in this series. We further examined the coherence properties of the series in a different solvent, MeCN-d 3 /toluene-d 8 , and found that an additional property, the charge density of the complex, also affects decoherence across the series. These results highlight a previously unknown design principle for augmenting T 2 and open new pathways for the

  17. Spin assignments of nuclear levels above the neutron binding energy in $^{88}$Sr

    CERN Multimedia

    Neutron resonances reveal nuclear levels in the highly excited region of the nucleus around the neutron binding energy. Nuclear level density models are therefore usually calibrated to the number of observed levels in neutron-induced reactions. The gamma-ray cascade from the decay of the highly excited compound nucleus state to the ground state show dierences dependent on the initial spin. This results in a dierence in the multiplicity distribution which can be exploited. We propose to use the 4${\\pi}$ total absorption calorimeter (TAC) at the n TOF facility to determine the spins of resonances formed by neutrons incident on a metallic $^{87}$Sr sample by measuring the gamma multiplicity distributions for the resolved resonances. In addition we would like to use the available enriched $^{87}$Sr target for cross section measurements with the C$\\scriptscriptstyle{6}$D$\\scriptscriptstyle{6}$ detector setup.

  18. Nuclear spin relaxation due to chemical shift anisotropy of gas-phase 129Xe.

    Science.gov (United States)

    Hanni, Matti; Lantto, Perttu; Vaara, Juha

    2011-08-14

    Nuclear spin relaxation provides detailed dynamical information on molecular systems and materials. Here, first-principles modeling of the chemical shift anisotropy (CSA) relaxation time for the prototypic monoatomic (129)Xe gas is carried out, both complementing and predicting the results of NMR measurements. Our approach is based on molecular dynamics simulations combined with pre-parametrized ab initio binary nuclear shielding tensors, an "NMR force field". By using the Redfield relaxation formalism, the simulated CSA time correlation functions lead to spectral density functions that, for the first time, quantitatively determine the experimental spin-lattice relaxation times T(1). The quality requirements on both the Xe-Xe interaction potential and binary shielding tensor are investigated in the context of CSA T(1). Persistent dimers Xe(2) are found to be responsible for the CSA relaxation mechanism in the low-density limit of the gas, completely in line with the earlier experimental findings.

  19. Determinant representations of spin-operator matrix elements in the XX spin chain and their applications

    Science.gov (United States)

    Wu, Ning

    2018-01-01

    For the one-dimensional spin-1/2 XX model with either periodic or open boundary conditions, it is shown by using a fermionic approach that the matrix element of the spin operator Sj- (Sj-Sj'+ ) between two eigenstates with numbers of excitations n and n +1 (n and n ) can be expressed as the determinant of an appropriate (n +1 )×(n +1 ) matrix whose entries involve the coefficients of the canonical transformations diagonalizing the model. In the special case of a homogeneous periodic XX chain, the matrix element of Sj- reduces to a variant of the Cauchy determinant that can be evaluated analytically to yield a factorized expression. The obtained compact representations of these matrix elements are then applied to two physical scenarios: (i) Nonlinear optical response of molecular aggregates, for which the determinant representation of the transition dipole matrix elements between eigenstates provides a convenient way to calculate the third-order nonlinear responses for aggregates from small to large sizes compared with the optical wavelength; and (ii) real-time dynamics of an interacting Dicke model consisting of a single bosonic mode coupled to a one-dimensional XX spin bath. In this setup, full quantum calculation up to N ≤16 spins for vanishing intrabath coupling shows that the decay of the reduced bosonic occupation number approaches a finite plateau value (in the long-time limit) that depends on the ratio between the number of excitations and the total number of spins. Our results can find useful applications in various "system-bath" systems, with the system part inhomogeneously coupled to an interacting XX chain.

  20. Nuclear spin dynamics in soap solutions and related systems

    International Nuclear Information System (INIS)

    Bloom, M.

    1973-01-01

    Soap molecules consist of a hydrophilic head and a hydrophobic lipid tail. For example, potassium laureate, the soap molecule on which the most complete study of nuclear spin dynamics has been made has the chemical formula KCOO(CH 2 ) 10 CH 3 . High concentration (greater than or approximately equal to 20% soap molecules by weight) soap solutions in water form ordered, liquid crystal structures in which the polar heads are arranged on regular surfaces which define a lattice having long range order. The soap molecules diffuse very rapidly parallel to the surfaces and undergo rapid conformational changes. Studies of T 1 , Tsub(1p) and Tsub(D) have indicated a wide spectrum of correlation times associated with these changes. Because of the orientational order of the soap molecules, the dipolar interactions between nuclear spins on a single molecule are not averaged to zero by the molecular motions. Thus, it is possible to use NMR techniques normally applied to solids (i.e. transfer of Zeeman into dipolar order, etc.) to study their static and dynamical properties. These systems are unusual in that they are basically one-dimensional systems in which the effective, time-averaged, dipolar coupling constants become progressively stronger for protons closer to the polar heads ot the molecules. A review will be presented of the experimental and theoretical NMR work performed on such systems to date. (author)

  1. Correlation functions of electronic and nuclear spins in a Heisenberg antiferromagnet semi-infinite media

    International Nuclear Information System (INIS)

    Sarmento, E.F.

    1980-01-01

    Results are found for the correlation dynamic functions (or the correspondent green functions) between any combination including pairs of electronic anel nuclear spin operators in an antiferromagnet semi-infinite media., at low temperature T N . These correlation functions, are used to investigate, at the same time, the properties of surface spin waves in volume and surface. The dispersion relatons of nuclear and electronic spin waves coupled modes, in surface are found, resolving a system of linearized equatons of spin operators a system of linearized equations of spin operators. (author) [pt

  2. Solid state nuclear magnetic resonance: investigating the spins of nuclear related materials

    International Nuclear Information System (INIS)

    Charpentier, Th.

    2007-10-01

    The author reviews his successive research works: his research thesis work on the Multiple Quantum Magic Angle Spinning (MQMAS) which is a quadric-polar nucleus multi-quanta correlation spectroscopy method, the modelling of NMR spectra of disordered materials, the application to materials of interest for the nuclear industry (notably the glasses used for nuclear waste containment). He presents the various research projects in which he is involved: storing glasses, nuclear magnetic resonance in paramagnetism, solid hydrogen storing matrices, methodological and instrument developments in high magnetic field and high resolution solid NMR, long range distance measurement by solid state Tritium NMR (observing the structure and dynamics of biological complex systems at work)

  3. Voltage switching technique for detecting nuclear spin polarization in a quantum dot

    International Nuclear Information System (INIS)

    Takahashi, Ryo; Kono, Kimitoshi; Tarucha, Seigo; Ono, Keiji

    2010-01-01

    We have introduced a source-drain voltage switching technique for studying nuclear spins in a vertical double quantum dot. Switching the source-drain voltage between the spin-blockade state and the zero-bias Coulomb blockade state can tune the energy difference between the spin singlet and triplet, and effectively turn on/off the hyperfine interaction. Since the change in the nuclear spin state affects the source-drain current, nuclear spin properties can only be detected by transport measurement. Using this technique, we have succeeded in measuring the timescale of nuclear spin depolarization. Furthermore, combining this technique and an RF ac magnetic field, we successfully detected continuous-wave NMR signals of 75 As, 69 Ga, and 71 Ga, which are contained in a quantum dot. (author)

  4. Determination of the amounts of C, CH, CH/sub 2/ and CH/sub 3/ fragments by the spin echo method

    Energy Technology Data Exchange (ETDEWEB)

    Polonov, V.M.; Kalabin, G.A.; Kushnarev, D.F.; Latyshev, V.P.

    1984-01-01

    A new method is presented for the quantitative determination of primary, secondary, tertiary and quarternary carbon atoms in soluble coal products. The method is based on pulsed spin echo of /sup 13/C nuclear magnetic resonance.

  5. Nuclear-spin-dependent parity-nonconserving effects in thallium, lead and bismuth atoms

    International Nuclear Information System (INIS)

    Khriplovich, I.B.

    1994-01-01

    Nuclear-spin-dependent P-odd optical activity in atomic Tl, Pb and Bi is calculated. Its magnitude is expressed analytically through the main contribution to the optical rotation, which is independent of nuclear spin. The accuracy of results is discussed. 31 refs., 2 tabs

  6. Novel nuclear laser spectroscopy method using superfluid helium for measurement of spins and moments of exotic nuclei

    International Nuclear Information System (INIS)

    Furukawa, Takeshi; Wakui, Takashi; Yang, Xiaofei; Fujita, Tomomi; Imamura, Kei; Yamaguchi, Yasuhiro; Tetsuka, Hiroki; Tsutsui, Yoshiki; Mitsuya, Yosuke; Ichikawa, Yuichi; Ishibashi, Yoko; Yoshida, Naoki; Shirai, Hazuki; Ebara, Yuta; Hayasaka, Miki; Arai, Shino; Muramoto, Sosuke

    2013-01-01

    Highlights: • Development of a novel nuclear laser spectroscopy method using superfluid helium. • Observation of the Zeeman resonance with the 85 Rb beam introduced into helium. • Demonstration of deducing the nuclear spins from the observed resonance spectrum. -- Abstract: We have been developing a novel nuclear laser spectroscopy method “OROCHI” for determining spins and moments of exotic radioisotopes. In this method, we use superfluid helium as a stopping material of energetic radioisotope beams and then stopped radioisotope atoms are subjected to in situ laser spectroscopy in superfluid helium. To confirm the feasibility of this method for rare radioisotopes, we carried out a test experiment using a 85 Rb beam. In this experiment, we have successfully measured the Zeeman resonance signals from the 85 Rb atoms stopped in superfluid helium by laser-RF double resonance spectroscopy. This method is efficient for the measurement of spins and moments of more exotic nuclei

  7. Spectroscopic measurement of 204Pb isotope shift and 205Pb nuclear spin

    International Nuclear Information System (INIS)

    Schonberger, P.

    1984-01-01

    The isotope shift of 204 Pb and the nuclear spin of 1.4 X 10 7 -y 205 Pb was determined from a high-resolution optical measurement of the 6p 23 P 0 -6p7s 3 P 1 0 283.3-nm resonance line. The value of the shift, relative to 208 Pb is -140.2(8) x 10 -3 cm -1 , the negative sign indicating a shift to lower wave numbers. The precision is 3-4 times greater than that of previous measurements. The spin of 205 Pb I = 5/2 was obtained from the measurement of the relative intensities of its three hyperfine components. This method of absorption spectroscopy determination of ground state nuclear spin is applicable to any stable or long-lived isotope. High resolution optical absorption spectra were obtained with a 25.4 cm diffraction grating in a 9.1 m focal length Czerny-Turner spectrometer. A signal-averaging scanning technique was used to record the spectra. Increased precision in the isotope shift measurement was attained by using separated isotope samples of 204 Pb and 207 Pb

  8. Electrical Initialization of Electron and Nuclear Spins in a Single Quantum Dot at Zero Magnetic Field.

    Science.gov (United States)

    Cadiz, Fabian; Djeffal, Abdelhak; Lagarde, Delphine; Balocchi, Andrea; Tao, Bingshan; Xu, Bo; Liang, Shiheng; Stoffel, Mathieu; Devaux, Xavier; Jaffres, Henri; George, Jean-Marie; Hehn, Michel; Mangin, Stephane; Carrere, Helene; Marie, Xavier; Amand, Thierry; Han, Xiufeng; Wang, Zhanguo; Urbaszek, Bernhard; Lu, Yuan; Renucci, Pierre

    2018-04-11

    The emission of circularly polarized light from a single quantum dot relies on the injection of carriers with well-defined spin polarization. Here we demonstrate single dot electroluminescence (EL) with a circular polarization degree up to 35% at zero applied magnetic field. The injection of spin-polarized electrons is achieved by combining ultrathin CoFeB electrodes on top of a spin-LED device with p-type InGaAs quantum dots in the active region. We measure an Overhauser shift of several microelectronvolts at zero magnetic field for the positively charged exciton (trion X + ) EL emission, which changes sign as we reverse the injected electron spin orientation. This is a signature of dynamic polarization of the nuclear spins in the quantum dot induced by the hyperfine interaction with the electrically injected electron spin. This study paves the way for electrical control of nuclear spin polarization in a single quantum dot without any external magnetic field.

  9. Antiferromagnetic spin phase transition in nuclear matter with effective Gogny interaction

    International Nuclear Information System (INIS)

    Isayev, A.A.; Yang, J.

    2004-01-01

    The possibility of ferromagnetic and antiferromagnetic phase transitions in symmetric nuclear matter is analyzed within the framework of a Fermi liquid theory with the effective Gogny interaction. It is shown that at some critical density nuclear matter with the D1S effective force undergoes a phase transition to the antiferromagnetic spin state (opposite directions of neutron and proton spins). The self-consistent equations of spin polarized nuclear matter with the D1S force have no solutions corresponding to ferromagnetic spin ordering (the same direction of neutron and proton spins) and, hence, the ferromagnetic transition does not appear. The dependence of the antiferromagnetic spin polarization parameter as a function of density is found at zero temperature

  10. Hyperfine structure, nuclear spins and magnetic moments of some cesium isotopes

    International Nuclear Information System (INIS)

    Ekstroem, C.; Ingelman, S.; Wannberg, G.

    1977-03-01

    Using an atomic-beam magnetic resonance apparatus connected on-line with the ISOLDE isotope separator, CERN, hyperfine structure measurements have been performed in the 2 Ssub(1/2) electronic ground state of some cesium isotopes. An on-line oven system which efficiently converts a mass separated ion-beam of alkali isotopes to an atomic beam is described in some detail. Experimentally determined nuclear spins of sup(120, 121, 121m, 122, 122m, 123, 124, 126, 128, 130m, 135m)Cs and magnetic moments of sup(122, 123, 124, 126, 128, 130)Cs are reported and discussed in terms of different nuclear models. The experimental data indicate deformed nuclear shapes of the lightest cesium isotopes. (Auth.)

  11. Nuclear Spin relaxation mediated by Fermi-edge electrons in n-type GaAs

    Science.gov (United States)

    Kotur, M.; Dzhioev, R. I.; Kavokin, K. V.; Korenev, V. L.; Namozov, B. R.; Pak, P. E.; Kusrayev, Yu. G.

    2014-03-01

    A method based on the optical orientation technique was developed to measure the nuclear-spin lattice relaxation time T 1 in semiconductors. It was applied to bulk n-type GaAs, where T 1 was measured after switching off the optical excitation in magnetic fields from 400 to 1200 G at low (< 30 K) temperatures. The spin-lattice relaxation of nuclei in the studied sample with n D = 9 × 1016 cm-3 was found to be determined by hyperfine scattering of itinerant electrons (Korringa mechanism) which predicts invariability of T 1 with the change in magnetic field and linear dependence of the relaxation rate on temperature. This result extends the experimentally verified applicability of the Korringa relaxation law in degenerate semiconductors, previously studied in strong magnetic fields (several Tesla), to the moderate field range.

  12. The nuclear spin response to intermediate energy protons and deuterons at low momentum transfer

    International Nuclear Information System (INIS)

    Baker, F.T.; Djalali, C.; Glashausser, C.; Lenske, H.; Love, W.G.; Tomasi-Gustafsson, E.; Wambach, J.

    1997-01-01

    Measurements of polarization transfer in the inelastic scattering of intermediate energy protons and deuterons have yielded a wealth of data on the spin response of nuclei. This work complements the well-known studies of Gamow-Teller strength in charge-exchange reactions. The emphasis here is on a consistent determination of the S=1, T=0 response, practical only with deuterons, and on the proper separation of S=0 and S=1 strength in proton spectra for appropriate comparison with sum rules. We concentrate on two nuclei, 40 Ca and 12 C, at momentum transfers below about 1 fm -1 and on excitations up to about 50 MeV. The continuum second random phase approximation provides the primary theoretical tool for calculating and interpreting the response in terms of properties of the nucleon-nucleon force inside the nuclear medium. The reaction mechanism is described by the DWIA, applied here to continuum proton scattering almost as rigorously as it is usually applied to low energy excitations. A new DWIA formalism for the description of spin observables in deuteron scattering is used. Comparison of the proton and deuteron data with each other and with RPA/DWIA calculations yields interesting insights into the current state of understanding of collectivity and the nuclear spin response. (orig.)

  13. Electron and nuclear spin interactions in the optical spectra of single GaAs quantum dots.

    Science.gov (United States)

    Gammon, D; Efros, A L; Kennedy, T A; Rosen, M; Katzer, D S; Park, D; Brown, S W; Korenev, V L; Merkulov, I A

    2001-05-28

    Fine and hyperfine splittings arising from electron, hole, and nuclear spin interactions in the magneto-optical spectra of individual localized excitons are studied. We explain the magnetic field dependence of the energy splitting through competition between Zeeman, exchange, and hyperfine interactions. An unexpectedly small hyperfine contribution to the splitting close to zero applied field is described well by the interplay between fluctuations of the hyperfine field experienced by the nuclear spin and nuclear dipole/dipole interactions.

  14. Recursive polarization of nuclear spins in diamond at arbitrary magnetic fields

    International Nuclear Information System (INIS)

    Pagliero, Daniela; Laraoui, Abdelghani; Henshaw, Jacob D.; Meriles, Carlos A.

    2014-01-01

    We introduce an alternate route to dynamically polarize the nuclear spin host of nitrogen-vacancy (NV) centers in diamond. Our approach articulates optical, microwave, and radio-frequency pulses to recursively transfer spin polarization from the NV electronic spin. Using two complementary variants of the same underlying principle, we demonstrate nitrogen nuclear spin initialization approaching 80% at room temperature both in ensemble and single NV centers. Unlike existing schemes, our approach does not rely on level anti-crossings and is thus applicable at arbitrary magnetic fields. This versatility should prove useful in applications ranging from nanoscale metrology to sensitivity-enhanced NMR

  15. Room-temperature coupling between electrical current and nuclear spins in OLEDs

    Science.gov (United States)

    Malissa, H.; Kavand, M.; Waters, D. P.; van Schooten, K. J.; Burn, P. L.; Vardeny, Z. V.; Saam, B.; Lupton, J. M.; Boehme, C.

    2014-09-01

    The effects of external magnetic fields on the electrical conductivity of organic semiconductors have been attributed to hyperfine coupling of the spins of the charge carriers and hydrogen nuclei. We studied this coupling directly by implementation of pulsed electrically detected nuclear magnetic resonance spectroscopy in organic light-emitting diodes (OLEDs). The data revealed a fingerprint of the isotope (protium or deuterium) involved in the coherent spin precession observed in spin-echo envelope modulation. Furthermore, resonant control of the electric current by nuclear spin orientation was achieved with radiofrequency pulses in a double-resonance scheme, implying current control on energy scales one-millionth the magnitude of the thermal energy.

  16. Nuclear reactivity indices in the context of spin polarized density functional theory

    International Nuclear Information System (INIS)

    Cardenas, Carlos; Lamsabhi, Al Mokhtar; Fuentealba, Patricio

    2006-01-01

    In this work, the nuclear reactivity indices of density functional theory have been generalized to the spin polarized case and their relationship to electron spin polarized indices has been established. In particular, the spin polarized version of the nuclear Fukui function has been proposed and a finite difference approximation has been used to evaluate it. Applications to a series of triatomic molecules demonstrate the ability of the new functions to predict the geometrical changes due to a change in the spin multiplicity. The main equations in the different ensembles have also been presented

  17. Order and chaos in the nonlinear response of driven nuclear spin systems

    Energy Technology Data Exchange (ETDEWEB)

    Brun, E; Derighetti, B; Holzner, R; Ravani, M [Zurich Univ. (Switzerland). Inst. fuer Physik

    1984-01-01

    The authors report on observations of ordered and chaotic behavior of a nonlinear system of strongly polarized nuclear spins inside the tuning coil of an NMR detector. The combined system: spins plus LC-circuit, may act as a nonlinear bistable absorber or a spin-flip laser, depending on the sign of the nuclear spin polarization. For the NMR laser experimental evidence is presented for limit-cycle behavior, sequences of bifurcations which lead to chaos, intermittency, multistability, and pronounced hysteresis effects. The experimental facts are compared with computer solutions of appropriate Bloch equations for the macroscopic order parameters.

  18. Optical-coupling nuclear spin maser under highly stabilized low static field

    Energy Technology Data Exchange (ETDEWEB)

    Yoshimi, A., E-mail: yoshimi@ribf.riken.jp [RIKEN Nishina Center (Japan); Inoue, T.; Uchida, M.; Hatakeyama, N.; Asahi, K. [Tokyo Institute of Technology, Department of Physics (Japan)

    2008-01-15

    A nuclear spin maser of a new type, that employs a feedback scheme based on optical nuclear spin detection, has been fabricated. The spin maser is operated at a low static field of 30 mG by using the optical detection method. The frequency stability and precision of the spin maser have been improved by a highly stabilized current source for the static magnetic field. An experimental setup to search for an electric dipole moment (EDM) in {sup 129}Xe atom is being developed.

  19. Solution of problem of determining spin properties of molecules in unitary formalism of quantum chemistry

    International Nuclear Information System (INIS)

    Klimko, G.T.; Luzanov, A.V.

    1988-01-01

    An analysis has been made of the problem of calculating one- and two-particle spin densities, which are needed in calculations of spin-orbit and spin-spin coupling. The proposed solution is oriented toward the application of computational algorithms using unitary group representations; the solution consists of explicit expressions for the matrix elements of spin density operators in terms of the means of products of spin-free generators. This has eliminated a serious problem encountered previously in determining spin characteristics of molecules within the framework of unitary formalism

  20. Nuclear spin bath effects in molecular nanomagnets: Direct quantum mechanical simulations

    Science.gov (United States)

    Sinitsyn, N. A.; Dobrovitski, V. V.

    2004-11-01

    We investigate the influence of nuclear spins on the electronic spin tunneling in magnetic molecules such as Fe8 , focusing on the role of the spin diffusion in the nuclear spin bath. We simulate the quantum spin dynamics by numerically solving the time-dependent Schrödinger equation for the compound system (the electronic spin plus the bath spins). Our results demonstrate that the effect of the spin bath cannot always be modeled as a randomly varying magnetic field acting on the electronic spin. We consider two dynamical regimes: the spin relaxation in a constant magnetic field, and the spin tunneling in the linearly varying magnetic field passing the avoided level crossing, so-called Landau-Zener-Stückelberg (LZS) transition. For the first regime, we confirmed that the hole in the magnetization distribution has the width of the hyperfine fields distribution. For the second regime, we found that the transition probability for moderately slow sweeps deviates from the standard LZS prediction, while for the fast sweeps the deviation is negligible.

  1. Boundary between the thermal and statistical polarization regimes in a nuclear spin ensemble

    International Nuclear Information System (INIS)

    Herzog, B. E.; Cadeddu, D.; Xue, F.; Peddibhotla, P.; Poggio, M.

    2014-01-01

    As the number of spins in an ensemble is reduced, the statistical fluctuations in its polarization eventually exceed the mean thermal polarization. This transition has now been surpassed in a number of recent nuclear magnetic resonance experiments, which achieve nanometer-scale detection volumes. Here, we measure nanometer-scale ensembles of nuclear spins in a KPF 6 sample using magnetic resonance force microscopy. In particular, we investigate the transition between regimes dominated by thermal and statistical nuclear polarization. The ratio between the two types of polarization provides a measure of the number of spins in the detected ensemble.

  2. The origin of nuclear spin and its effect durning intermediate energy heavy ion collisions

    International Nuclear Information System (INIS)

    Zhang Guoqiang; Cao Xiguang; Fu Yao; Ma Yugang; Cai Xiangzhou; Wang Hongwei; Fang Deqing; Tian Wendong; Chen Jingen; Guo Wei; Liu Guihua

    2010-01-01

    We use the heavy-ion phase-space exploration (HIPSE) model to discuss the origin of the nuclear spin and its effect in Intermediate energy nuclear reaction. It is found that the spin of projectile depends on the impact parameter of the reaction system heavily, while on the violence lightly by contrast. Some interesting multifragmentation phenomena related to the spin are shown, especially those of phase transition. At the same time, the role of excited energy for multifragmentation is also invested. We find the later plays a more robust role durning the nuclear disintegration. (authors)

  3. Protocol for generating multiphoton entangled states from quantum dots in the presence of nuclear spin fluctuations

    DEFF Research Database (Denmark)

    Denning, Emil Vosmar; Iles-Smith, Jake; McCutcheon, Dara P. S.

    2017-01-01

    Multiphoton entangled states are a crucial resource for many applications inquantum information science. Semiconductor quantum dots offer a promising route to generate such states by mediating photon-photon correlations via a confinedelectron spin, but dephasing caused by the host nuclear spin...... environment typically limits coherence (and hence entanglement) between photons to the spin T2* time of a few nanoseconds. We propose a protocol for the deterministic generation of multiphoton entangled states that is inherently robust against the dominating slow nuclear spin environment fluctuations, meaning...... that coherence and entanglement is instead limited only by the much longer spin T2 time of microseconds. Unlike previous protocols, the present schemeallows for the generation of very low error probability polarisation encoded three-photon GHZ states and larger entangled states, without the need for spin echo...

  4. High-spin nuclear target of 178m2Hf: creation and nuclear reaction studies

    International Nuclear Information System (INIS)

    Oganessyan, Yu.Ts.; Karamyan, S.A.; Gangrskij, Yu.P.

    1993-01-01

    A long-lived (31 years) four-quasiparticle isomer 178m 2 Hf(I,K π =16,16 + ) was produced in microweight quantities using the nuclear reaction 176 Yb( 4 He, 2n). Methods of precision chemistry and mass-separation for the purification of the produced Hf material have been developed. Thin targets of isomeric hafnium-178 on carbon backings were prepared and used in experiments on a neutron, proton and deuteron beams. First results on nuclear reactions on a high-spin exotic target were obtained. Experiments on electromagnetic interactions of the isomeric hafnium using methods of the collinear laser spectroscopy as well as of the nuclear orientation of hafnium implanted into a crystalline media were started. 11 refs.; 11 figs.; 2 tabs

  5. USING MAGNETIC MOMENTS TO UNVEIL THE NUCLEAR STRUCTURE OF LOW-SPIN NUCLEAR STATES

    Directory of Open Access Journals (Sweden)

    Diego A. Torres

    2011-07-01

    Full Text Available The experimental study of magnetic moments for nuclear states near the ground state, I ≤ 2, provides a powerful tool to test nuclear structure models. Traditionally, the use of Coulomb excitation reactions has been used to study low spin states, mostly I = 2. The use of alternative reaction channels, such as α transfer, for the production of radioactive species that, otherwise, will be only produced in future radioactive beam facilities has proved to be an alternative to measure not only excited states with I > 2, but to populate and study long-live radioactive nuclei. This contribution will present the experimental tools and challenges for the use of the transient field technique for the measurement of g factors in nuclear states with I ≤ 2, using Coulomb excitation and α-transfer reactions. Recent examples of experimental results near the N = 50 shell closure, and the experimental challenges for future implementations with radioactive beams, will be discussed.

  6. On the properties of nuclear matter with an excess of neutrons, spin-up neutrons and spin-up protons using effective nucleon-nucleon potential

    International Nuclear Information System (INIS)

    Hassan, M.Y.; Ramadan, S.

    1978-01-01

    The binding energy of nuclear matter with an excess of neutrons, with spin-up neutrons and spin-up protons (characterized by the corresponding parameters αsub(tau)=(N-Z)/A, αsub(n)=(N(up)-N(down))/A, and αsub(p)=(Z(up)-Z(down))/A) contains three symmetry energies: the isospin symmetry energy epsilon sub(tau), the spin symmetry energy epsilon sub(sigma) and the spin-isospin symmetry energy epsilon sub(sigma tau). These energies are calculated using velocity-dependent effective potential of s-wave interaction, which was developed by Dzhibuti and Mamasakhlisov. The spin, isospin and spin-isospin dependent parts of the single-particle potential in nuclear matter are also calculated using the same effective nucleon-nucleon potentials. The spin-spin part of the optical model potential is estimated. (author)

  7. Efficient eigenvalue determination for arbitrary Pauli products based on generalized spin-spin interactions

    Science.gov (United States)

    Leibfried, D.; Wineland, D. J.

    2018-03-01

    Effective spin-spin interactions between ? qubits enable the determination of the eigenvalue of an arbitrary Pauli product of dimension N with a constant, small number of multi-qubit gates that is independent of N and encodes the eigenvalue in the measurement basis states of an extra ancilla qubit. Such interactions are available whenever qubits can be coupled to a shared harmonic oscillator, a situation that can be realized in many physical qubit implementations. For example, suitable interactions have already been realized for up to 14 qubits in ion traps. It should be possible to implement stabilizer codes for quantum error correction with a constant number of multi-qubit gates, in contrast to typical constructions with a number of two-qubit gates that increases as a function of N. The special case of finding the parity of N qubits only requires a small number of operations that is independent of N. This compares favorably to algorithms for computing the parity on conventional machines, which implies a genuine quantum advantage.

  8. Sealed magic angle spinning nuclear magnetic resonance probe and process for spectroscopy of hazardous samples

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Herman M.; Washton, Nancy M.; Mueller, Karl T.; Sears, Jr., Jesse A.; Townsend, Mark R.; Ewing, James R.

    2016-06-14

    A magic-angle-spinning (MAS) nuclear magnetic resonance (NMR) probe is described that includes double containment enclosures configured to seal and contain hazardous samples for analysis. The probe is of a modular design that ensures containment of hazardous samples during sample analysis while preserving spin speeds for superior NMR performance and convenience of operation.

  9. Dynamical nuclear spin polarization induced by electronic current through double quantum dots

    International Nuclear Information System (INIS)

    Lopez-Monis, Carlos; Platero, Gloria; Inarrea, Jesus

    2011-01-01

    We analyse electron-spin relaxation in electronic transport through coherently coupled double quantum dots (DQDs) in the spin blockade regime. In particular, we focus on hyperfine (HF) interaction as the spin-relaxation mechanism. We pay special attention to the effect of the dynamical nuclear spin polarization induced by the electronic current on the nuclear environment. We discuss the behaviour of the electronic current and the induced nuclear spin polarization versus an external magnetic field for different HF coupling intensities and interdot tunnelling strengths. We take into account, for each magnetic field, all HF-mediated spin-relaxation processes coming from different opposite spin level approaches. We find that the current as a function of the external magnetic field shows a peak or a dip and that the transition from a current dip to a current peak behaviour is obtained by decreasing the HF coupling or by increasing the interdot tunnelling strength. We give a physical picture in terms of the interplay between the electrons tunnelling out of the DQD and the spin-flip processes due to the nuclear environment.

  10. Measurement of single electron and nuclear spin states based on optically detected magnetic resonance

    Energy Technology Data Exchange (ETDEWEB)

    Berman, Gennady P [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Bishop, Alan R [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Chernobrod, Boris M [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Hawley, Marilyn E [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Brown, Geoffrey W [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Tsifrinovich, Vladimir I [Polytechnic University, Brooklyn, NY 11201 (United States)

    2006-05-15

    A novel approach for measurement of single electron and nuclear spin states is suggested. Our approach is based on optically detected magnetic resonance in a nano-probe located at the apex of an AFM tip. The method provides single electron spin sensitivity with nano-scale spatial resolution.

  11. Measurement of single electron and nuclear spin states based on optically detected magnetic resonance

    International Nuclear Information System (INIS)

    Berman, Gennady P; Bishop, Alan R; Chernobrod, Boris M; Hawley, Marilyn E; Brown, Geoffrey W; Tsifrinovich, Vladimir I

    2006-01-01

    A novel approach for measurement of single electron and nuclear spin states is suggested. Our approach is based on optically detected magnetic resonance in a nano-probe located at the apex of an AFM tip. The method provides single electron spin sensitivity with nano-scale spatial resolution

  12. Nuclear spin-lattice relaxation in n -type insulating and metallic GaAs single crystals

    Science.gov (United States)

    Lu, J.; Hoch, M. J. R.; Kuhns, P. L.; Moulton, W. G.; Gan, Z.; Reyes, A. P.

    2006-09-01

    The coupling of electron and nuclear spins in n-GaAs changes significantly as the donor concentration n increases through the insulator-metal critical concentration nC˜1.2×1016cm-3 . The present measurements of the Ga71 relaxation rates W made as a function of magnetic field (1-13T) and temperature (1.5-300K) for semi-insulating GaAs and for three doped n-GaAs samples with donor concentrations n=5.9×1015 , 7×1016 , and 2×1018cm-3 , show marked changes in the relaxation behavior with n . Korringa-like relaxation is found in both metallic samples for T30K phonon-induced nuclear quadrupolar relaxation is dominant. The relaxation rate measurements permit determination of the electron probability density at Ga71 sites. A small Knight shift of -3.3ppm was measured on the most metallic (2×1018cm-3) sample using magic-angle spinning at room temperature. For the n=5.9×1015cm-3 sample, a nuclear relaxation model involving the Fermi contact hyperfine interaction, rapid spin diffusion, and exchange coupled local moments is proposed. While the relaxation rate behavior with temperature for the weakly metallic sample, n=7×1016cm-3 , is similar to that found for the just-insulating sample, the magnetic field dependence is quite different. For the 5.9×1015cm-3 sample, increasing the magnetic field leads to a decrease in the relaxation rate, while for the 7×1016cm-3 sample this results in an increase in the relaxation rate ascribed to an increase in the density of states at the Fermi level as the Landau level degeneracy is increased.

  13. Correlation functions of electronic and nuclear spins in a Heisenberg antiferromagnet semi-infinite medium

    International Nuclear Information System (INIS)

    Sarmento, E.F.

    1981-01-01

    Results are found for the dynamical correlation functions (or its corresponding Green's functions) among any combination including operator pairs of electronic and nuclear spins in an antiferromagnet semi-infinite medium, at low temperatures T [pt

  14. The 40th anniversary of the discovery of NMR-chemical shift and nuclear spin-spin coupling

    International Nuclear Information System (INIS)

    Zhu Zhenghe; Gou Qingquan

    1989-01-01

    After the discovery of NMR Phenomenon in the physics laboratories of E.M.Purcell at Harvard and F.Bloch at Stanford in 1946, W.G.Proctor and F.C.Yu made the successful discovery of NMR-chemical shift and nuclear spin-spin coupling at Stanford in 1950, Which brought NMR spectroscopy from the physics laboratory to the laboratories of many different fields. This is worth memorizing. Retrospecting the past 40 years, it is sure that chemical shift theory will be much more prosperous prospects

  15. External magnetic field induced anomalies of spin nuclear dynamics in thin antiferromagnetic films

    International Nuclear Information System (INIS)

    Tarasenko, S.V.

    1995-01-01

    It is shown that if the thickness of homogeneously magnetized plate of high-axial antiferromagnetic within H external magnetic field becomes lower the critical one, then the effect of dynamic magnetoelastic interaction on Soul-Nakamura exchange of nuclear spins results in formation of qualitatively new types of spreading nuclear spin waves no else compared neither within the model of unrestricted magnetic nor at H = 0 in case of thin plate of high-axial antiferromagnetic. 10 refs

  16. Nuclear spin of 185Au and hyperfine structure of 188Au

    International Nuclear Information System (INIS)

    Ekstroem, C.; Ingelman, S.; Wannberg, G.

    1977-03-01

    The nuclear spin of 185 Au, I = 5/2, and the hyperfine separation of 188 Au, Δγ = +- 2992(30) MHz, have been measured with the atomic-beam magnetic resonance method. The spin of 185 Au indicates a deformed nuclear shape in the ground state. The small magnetic moment of 188 Au is close in value to those of the heavier I = 1 gold isotopes 190 192 194 Au, being located in a typical transition region. (Auth.)

  17. All-electric control of donor nuclear spin qubits in silicon

    Science.gov (United States)

    Sigillito, Anthony J.; Tyryshkin, Alexei M.; Schenkel, Thomas; Houck, Andrew A.; Lyon, Stephen A.

    2017-10-01

    The electronic and nuclear spin degrees of freedom of donor impurities in silicon form ultra-coherent two-level systems that are potentially useful for applications in quantum information and are intrinsically compatible with industrial semiconductor processing. However, because of their smaller gyromagnetic ratios, nuclear spins are more difficult to manipulate than electron spins and are often considered too slow for quantum information processing. Moreover, although alternating current magnetic fields are the most natural choice to drive spin transitions and implement quantum gates, they are difficult to confine spatially to the level of a single donor, thus requiring alternative approaches. In recent years, schemes for all-electrical control of donor spin qubits have been proposed but no experimental demonstrations have been reported yet. Here, we demonstrate a scalable all-electric method for controlling neutral 31P and 75As donor nuclear spins in silicon. Using coplanar photonic bandgap resonators, we drive Rabi oscillations on nuclear spins exclusively using electric fields by employing the donor-bound electron as a quantum transducer, much in the spirit of recent works with single-molecule magnets. The electric field confinement leads to major advantages such as low power requirements, higher qubit densities and faster gate times. Additionally, this approach makes it possible to drive nuclear spin qubits either at their resonance frequency or at its first subharmonic, thus reducing device bandwidth requirements. Double quantum transitions can be driven as well, providing easy access to the full computational manifold of our system and making it convenient to implement nuclear spin-based qudits using 75As donors.

  18. Search for electric dipole moment in 129Xe atom using active nuclear spin maser

    Directory of Open Access Journals (Sweden)

    Ichikawa Y.

    2014-03-01

    Full Text Available An experimental search for an electric dipole moment in the diamagnetic atom 129Xe is in progress through the precision measurement of spin precession frequency using an active nuclear spin maser. A 3He comagnetometer has been incorporated into the active spin maser system in order to cancel out the long-term drifts in the external magnetic field. Also, a double-cell geometry has been adopted in order to suppress the frequency shifts due to interaction with polarized Rb atoms. The first EDM measurement with the 129Xe active spin maser and the 3He comagnetometer has been conducted.

  19. Determination of the spin polarization of a 4He+ ion beam

    International Nuclear Information System (INIS)

    Suzuki, T.; Yamauchi, Y.

    2008-01-01

    It was demonstrated that the spin polarization of a 4 He + ion beam (P He + ) can be determined from the spin dependence of the electron emission in the deexcitation process of spin-polarized He metastable atoms (He*, 2 3 S 1 ) and spin-polarized He + ions on Fe (100) surfaces. On Fe (100) surfaces, both He* and He + deexcite via Auger neutralization, and therefore, the spin asymmetry obtained from spin-polarized He + ion neutralization spectroscopy should be equal to that from spin-polarized metastable He* deexcitation spectroscopy. The spin polarization of He* was obtained from Stern-Gerlach measurements. P He + was finally determined to be 0.19±0.02

  20. Tensor quasiparticle interaction and spin-isospin sound in nuclear matter

    International Nuclear Information System (INIS)

    Haensel, P.

    1979-01-01

    The effect of the tensor components of the quasiparticle interaction in nuclear matter on the spin-isospin sound type excitations is studied. Numerical results are obtained using a simplified model of the quasiparticle interaction in nuclear matter. The quasiparticle distribution matrix corresponding to the spin-isospin sound is found to be qualitatively different from that obtained for purely central quasiparticle interaction. The macroscopic effects, however, are restricted to a small change in the phase velocity of the spin-isospin sound. (Auth.)

  1. Nuclear and hadronic reaction mechanisms producing spin asymmetry

    Indian Academy of Sciences (India)

    We briefly review concept of the quark recombination (QRC) model and a general success of the model. To solve the existing problem, so called anomalous spin observables, in the high energy hyperon spin phenomena, we propose a mechanism; the primarily produced quarks, which are predominantly and quarks, ...

  2. Nuclear and hadronic reaction mechanisms producing spin asymmetry

    Indian Academy of Sciences (India)

    naka

    are predominantly u and d quarks, act as the leading partons to form the hyperons. Extension of the quark recombination concept with this mechanism is successful in providing a good account of the anomalous spin observables. Another kind of anomaly, the non-zero analysing power and spin depolarization in the A ...

  3. Zeeman perturbed nuclear quadrupole spin echo envelope modulations for spin 3/2 nuclei in polycrystalline specimens

    Science.gov (United States)

    Ramachandran, R.; Narasimhan, P. T.

    The results of theoretical and experimental studies of Zeeman-perturbed nuclear quadrupole spin echo envelope modulations (ZSEEM) for spin 3/2 nuclei in polycrystalline specimens are presented. The response of the Zeeman-perturbed spin ensemble to resonant two pulse excitations has been calculated using the density matrix formalism. The theoretical calculation assumes a parallel orientation of the external r.f. and static Zeeman fields and an arbitrary orientation of these fields to the principal axes system of the electric field gradient. A numerical powder averaging procedure has been adopted to simulate the response of the polycrystalline specimens. Using a coherent pulsed nuclear quadrupole resonance spectrometer the ZSEEM patterns of the 35Cl nuclei have been recorded in polycrystalline specimens of potassium chlorate, barium chlorate, mercuric chloride (two sites) and antimony trichloride (two sites) using the π/2-τ-π/2 sequence. The theoretical and experimental ZSEEM patterns have been compared. In the case of mercuric chloride, the experimental 35Cl ZSEEM patterns are found to be nearly identical for the two sites and correspond to a near-zero value of the asymmetry parameter, η, of the electric field gradient tensor. The difference in the η values for the two 35Cl sites (η ˜0·06 and η˜0·16) in antimony trichloride is clearly reflected in the experimental and theoretical ZSEEM patterns. The present study indicates the feasibility of evaluating η for spin 3/2 nuclei in polycrystalline specimens from ZSEEM investigations.

  4. Noise-Resilient Quantum Computing with a Nitrogen-Vacancy Center and Nuclear Spins.

    Science.gov (United States)

    Casanova, J; Wang, Z-Y; Plenio, M B

    2016-09-23

    Selective control of qubits in a quantum register for the purposes of quantum information processing represents a critical challenge for dense spin ensembles in solid-state systems. Here we present a protocol that achieves a complete set of selective electron-nuclear gates and single nuclear rotations in such an ensemble in diamond facilitated by a nearby nitrogen-vacancy (NV) center. The protocol suppresses internuclear interactions as well as unwanted coupling between the NV center and other spins of the ensemble to achieve quantum gate fidelities well exceeding 99%. Notably, our method can be applied to weakly coupled, distant spins representing a scalable procedure that exploits the exceptional properties of nuclear spins in diamond as robust quantum memories.

  5. Multitudes of Stable States in a Periodically Driven Electron-Nuclear Spin System in a Quantum Dot

    OpenAIRE

    Korenev, V. L.

    2010-01-01

    The periodical modulation of circularly polarized light with a frequency close to the electron spin resonance frequency induces a sharp change of the single electron spin orientation. Hyperfine interaction provides a feedback, thus fixing the precession frequency of the electron spin in the external and the Overhauser field near the modulation frequency. The nuclear polarization is bidirectional and the electron-nuclear spin system (ENSS) possesses a few stable states. A similar frequency-loc...

  6. Optical neural network system for pose determination of spinning satellites

    Science.gov (United States)

    Lee, Andrew; Casasent, David

    1990-01-01

    An optical neural network architecture and algorithm based on a Hopfield optimization network are presented for multitarget tracking. This tracker utilizes a neuron for every possible target track, and a quadratic energy function of neural activities which is minimized using gradient descent neural evolution. The neural net tracker is demonstrated as part of a system for determining position and orientation (pose) of spinning satellites with respect to a robotic spacecraft. The input to the system is time sequence video from a single camera. Novelty detection and filtering are utilized to locate and segment novel regions from the input images. The neural net multitarget tracker determines the correspondences (or tracks) of the novel regions as a function of time, and hence the paths of object (satellite) parts. The path traced out by a given part or region is approximately elliptical in image space, and the position, shape and orientation of the ellipse are functions of the satellite geometry and its pose. Having a geometric model of the satellite, and the elliptical path of a part in image space, the three-dimensional pose of the satellite is determined. Digital simulation results using this algorithm are presented for various satellite poses and lighting conditions.

  7. A Determination of the Neutron Spin Structure Function

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, Emlyn W

    2003-08-18

    The authors report the results of the experiment E142 which measured the spin dependent structure function of the neutron, g{sub 1}{sup n}(x, Q{sup 2}). The experiment was carried out at the Stanford Linear Accelerator Center by measuring an asymmetry in the deep inelastic scattering of polarized electrons from a polarized {sup 3}He target, at electron energies from 19 to 26 GeV. The structure function was determined over the kinematic range 0.03 < BJorken x < 0.6 and 1.0 < Q{sup 2} < 5.5 (GeV/c){sup 2}. An evaluation of the integral {integral}{sub 0}{sup 1} g{sub 1}{sup n}(x,Q{sup 2})dx at fixed Q{sup 2} = 2 (GeV/c){sup 2} yields the final result {Lambda}{sub 1}{sup n} = -0.032 {+-} 0.006 (stat.) {+-} 0.009 (syst.). This result, when combined with the integral of the proton spin structure function measured in other experiments, confirms the fundamental Bjorken sum rule with O({alpha}{sub s}{sup 3}) corrections to within one standard deviation. This is a major success for perturbative Quantum Chromodynamics. Some ancillary results include the findings that the Ellis-Jaffe sum rule for the neutron is violated at the 2 {sigma} level, and that the total contribution of the quarks to the helicity of the nucleon is 0.36 {+-} 0.10. The strange sea polarization is estimated to be small and negative, {Delta}s = -0.07 {+-} 0.04.

  8. Schemes of detecting nuclear spin correlations by dynamical decoupling based quantum sensing

    Science.gov (United States)

    Ma, Wen-Long Ma; Liu, Ren-Bao

    Single-molecule sensitivity of nuclear magnetic resonance (NMR) and angstrom resolution of magnetic resonance imaging (MRI) are the highest challenges in magnetic microscopy. Recent development in dynamical decoupling (DD) enhanced diamond quantum sensing has enabled NMR of single nuclear spins and nanoscale NMR. Similar to conventional NMR and MRI, current DD-based quantum sensing utilizes the frequency fingerprints of target nuclear spins. Such schemes, however, cannot resolve different nuclear spins that have the same noise frequency or differentiate different types of correlations in nuclear spin clusters. Here we show that the first limitation can be overcome by using wavefunction fingerprints of target nuclear spins, which is much more sensitive than the ''frequency fingerprints'' to weak hyperfine interaction between the targets and a sensor, while the second one can be overcome by a new design of two-dimensional DD sequences composed of two sets of periodic DD sequences with different periods, which can be independently set to match two different transition frequencies. Our schemes not only offer an approach to breaking the resolution limit set by ''frequency gradients'' in conventional MRI, but also provide a standard approach to correlation spectroscopy for single-molecule NMR.

  9. Nuclear spin-orbit splitting from an intermediate Δ excitation

    International Nuclear Information System (INIS)

    Ohta, K.; Terasawa, T.; Tohyama, M.

    1980-01-01

    The strength of the single particle spin-orbit potential is calculated from the two pion exchange box diagrams involving an intermediate Δ(1232) resonance excitation by taking account of the exclusion principle for the intermediate nucleon states. The effect of the rho meson is also considered. The predicted strength is found to account for a substantial part of the empirical spin-orbit splittings

  10. Perturbation of nuclear spin polarizations in solid state NMR of nitroxide-doped samples by magic-angle spinning without microwaves

    International Nuclear Information System (INIS)

    Thurber, Kent R.; Tycko, Robert

    2014-01-01

    We report solid state 13 C and 1 H nuclear magnetic resonance (NMR) experiments with magic-angle spinning (MAS) on frozen solutions containing nitroxide-based paramagnetic dopants that indicate significant perturbations of nuclear spin polarizations without microwave irradiation. At temperatures near 25 K, 1 H and cross-polarized 13 C NMR signals from 15 N, 13 C-labeled L-alanine in trinitroxide-doped glycerol/water are reduced by factors as large as six compared to signals from samples without nitroxide doping. Without MAS or at temperatures near 100 K, differences between signals with and without nitroxide doping are much smaller. We attribute most of the reduction of NMR signals under MAS near 25 K to nuclear spin depolarization through the cross-effect dynamic nuclear polarization mechanism, in which three-spin flips drive nuclear polarizations toward equilibrium with spin polarization differences between electron pairs. When T 1e is sufficiently long relative to the MAS rotation period, the distribution of electron spin polarization across the nitroxide electron paramagnetic resonance lineshape can be very different from the corresponding distribution in a static sample at thermal equilibrium, leading to the observed effects. We describe three-spin and 3000-spin calculations that qualitatively reproduce the experimental observations

  11. Perturbation of nuclear spin polarizations in solid state NMR of nitroxide-doped samples by magic-angle spinning without microwaves.

    Science.gov (United States)

    Thurber, Kent R; Tycko, Robert

    2014-05-14

    We report solid state (13)C and (1)H nuclear magnetic resonance (NMR) experiments with magic-angle spinning (MAS) on frozen solutions containing nitroxide-based paramagnetic dopants that indicate significant perturbations of nuclear spin polarizations without microwave irradiation. At temperatures near 25 K, (1)H and cross-polarized (13)C NMR signals from (15)N,(13)C-labeled L-alanine in trinitroxide-doped glycerol/water are reduced by factors as large as six compared to signals from samples without nitroxide doping. Without MAS or at temperatures near 100 K, differences between signals with and without nitroxide doping are much smaller. We attribute most of the reduction of NMR signals under MAS near 25 K to nuclear spin depolarization through the cross-effect dynamic nuclear polarization mechanism, in which three-spin flips drive nuclear polarizations toward equilibrium with spin polarization differences between electron pairs. When T1e is sufficiently long relative to the MAS rotation period, the distribution of electron spin polarization across the nitroxide electron paramagnetic resonance lineshape can be very different from the corresponding distribution in a static sample at thermal equilibrium, leading to the observed effects. We describe three-spin and 3000-spin calculations that qualitatively reproduce the experimental observations.

  12. Perturbation of nuclear spin polarizations in solid state NMR of nitroxide-doped samples by magic-angle spinning without microwaves

    Energy Technology Data Exchange (ETDEWEB)

    Thurber, Kent R., E-mail: thurberk@niddk.nih.gov; Tycko, Robert [Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520 (United States)

    2014-05-14

    We report solid state {sup 13}C and {sup 1}H nuclear magnetic resonance (NMR) experiments with magic-angle spinning (MAS) on frozen solutions containing nitroxide-based paramagnetic dopants that indicate significant perturbations of nuclear spin polarizations without microwave irradiation. At temperatures near 25 K, {sup 1}H and cross-polarized {sup 13}C NMR signals from {sup 15}N,{sup 13}C-labeled L-alanine in trinitroxide-doped glycerol/water are reduced by factors as large as six compared to signals from samples without nitroxide doping. Without MAS or at temperatures near 100 K, differences between signals with and without nitroxide doping are much smaller. We attribute most of the reduction of NMR signals under MAS near 25 K to nuclear spin depolarization through the cross-effect dynamic nuclear polarization mechanism, in which three-spin flips drive nuclear polarizations toward equilibrium with spin polarization differences between electron pairs. When T{sub 1e} is sufficiently long relative to the MAS rotation period, the distribution of electron spin polarization across the nitroxide electron paramagnetic resonance lineshape can be very different from the corresponding distribution in a static sample at thermal equilibrium, leading to the observed effects. We describe three-spin and 3000-spin calculations that qualitatively reproduce the experimental observations.

  13. All-optical control of long-lived nuclear spins in rare-earth doped nanoparticles.

    Science.gov (United States)

    Serrano, D; Karlsson, J; Fossati, A; Ferrier, A; Goldner, P

    2018-05-29

    Nanoscale systems that coherently couple to light and possess spins offer key capabilities for quantum technologies. However, an outstanding challenge is to preserve properties, and especially optical and spin coherence lifetimes, at the nanoscale. Here, we report optically controlled nuclear spins with long coherence lifetimes (T 2 ) in rare-earth-doped nanoparticles. We detect spins echoes and measure a spin coherence lifetime of 2.9 ± 0.3 ms at 5 K under an external magnetic field of 9 mT, a T 2 value comparable to those obtained in bulk rare-earth crystals. Moreover, we achieve spin T 2 extension using all-optical spin dynamical decoupling and observe high fidelity between excitation and echo phases. Rare-earth-doped nanoparticles are thus the only nano-material in which optically controlled spins with millisecond coherence lifetimes have been reported. These results open the way to providing quantum light-atom-spin interfaces with long storage time within hybrid architectures.

  14. Pion Condensation and Alternating Layer Spin Model in Symmetric Nuclear Matter : Use of Extended Effective Nuclear Forces : Nuclear Physics

    OpenAIRE

    Teiji, KUNIHIRO; Tatsuyuki, TAKATSUKA; Ryozo, TAMAGAKI; Department of National Sciences, Ryukoku University; College of Humanities and Social Sciences, Iwate University; Department of Physics, Kyoto University

    1985-01-01

    Pion condensation in the symmetric nuclear matter is investigated on the basis of the ALS (alternating-layer-spin) model which provides a good description for the π^0 condensation. We perform energy calculations in a realistic way where the isobar (Δ)-mixing, the short range effects and the exchange energy of the interaction are taken into account. The Δ-mixing effect is built in the model state as previously done in the neutron matter. We preferentially employ G-0 force of Sprung and Banerje...

  15. Solid-state nuclear-spin quantum computer based on magnetic resonance force microscopy

    International Nuclear Information System (INIS)

    Berman, G. P.; Doolen, G. D.; Hammel, P. C.; Tsifrinovich, V. I.

    2000-01-01

    We propose a nuclear-spin quantum computer based on magnetic resonance force microscopy (MRFM). It is shown that an MRFM single-electron spin measurement provides three essential requirements for quantum computation in solids: (a) preparation of the ground state, (b) one- and two-qubit quantum logic gates, and (c) a measurement of the final state. The proposed quantum computer can operate at temperatures up to 1 K. (c) 2000 The American Physical Society

  16. Chip-Scale Combinatorial Atomic Navigator (C-SCAN) Low Drift Nuclear Spin Gyroscope

    Science.gov (United States)

    2018-01-01

    suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704...spin-exchange relaxation in a finite magnetic field. We operated the gyroscope using a Ramsey-type interrogation sequence with nuclear spin precession...shift by a factor of 105. Here we use the approach of a Ramsey clock interrogation scheme, where the optical pumping, free evolution, and measurement

  17. The MONSTER solves nuclear structure problems at low and high spins

    International Nuclear Information System (INIS)

    Hammaren, E.; Schmid, K.W.; Gruemmer, F.

    1984-01-01

    A microscopic, particle-number and spin conserving nuclear structure model is discussed. Within a unique theory the model can describe excitation energies, moments, transitions and spectroscopic factors at low and high spins of odd-mass and doubly-even nuclei in all mass regions. With a realistic two-body Hamiltonian extracted via a G-matric description from nucleon-nucleon scattering data. The model is here applied to nuclei in the A=130 region

  18. RPA spin-isospin nuclear response in the deep inelastic region

    International Nuclear Information System (INIS)

    Alberico, W.M.; Molinari, A.; De Pace, A.; Johnson, M.B.; Ericson, M.

    1985-11-01

    The spin-isospin volume responses of a finite nucleus are evaluated in the RPA frame, utilizing a harmonic oscillator basis. Particular emphasis is given to the mixing between the longitudinal and transverse couplings, which arise at the nuclear surface. We show that it reduces somewhat the contrast between the two spin responses. We compare the calculated transverse response with the experimental one extracted from deep inelastic electron scattering

  19. {beta}-Ray angular distribution from purely nuclear spin aligned {sup 20}F

    Energy Technology Data Exchange (ETDEWEB)

    Nagatomo, T., E-mail: nagatomo@riken.jp [RIKEN Nishina Center (Japan); Matsuta, K. [Osaka University (Japan); Minamisono, K. [NSCL/MSU (United States); Sumikama, T. [Tokyo University of Science (Japan); Mihara, M. [Osaka University (Japan); Ozawa, A.; Tagishi, Y. [University of Tsukuba (Japan); Ogura, M.; Matsumiya, R.; Fukuda, M. [Osaka University (Japan); Yamaguchi, M.; Yasuno, T.; Ohta, H.; Hashizume, Y. [University of Tsukuba (Japan); Fujiwara, H. [Osaka University (Japan); Chiba, A. [University of Tsukuba (Japan); Minamisono, T. [Fukui University of Technology (Japan)

    2007-11-15

    The alignment correlation term in the {beta}-ray angular distribution from purely nuclear spin aligned {sup 20}F has been measured to test the G-parity conservation law which is one of the fundamental symmetries in the weak nucleon current. We utilized the hyperfine interaction of {sup 20}F in an MgF{sub 2} single crystal and successfully created the pure alignment from the polarization by means of the spin manipulation technique based on the {beta}-NMR method.

  20. Polarized photoproduction from nuclear targets with arbitrary spin and relation to deep inelastic scattering

    International Nuclear Information System (INIS)

    Hoodbhoy, P.; Massachusetts Inst. of Tech., Cambridge; Quaid-i-Azam Univ., Islamabad

    1990-01-01

    Inclusive photo-production from polarized targets of arbitrary spin is analyzed by using multipoles. The Drell-Hearn-Gerasimov sum rule, which was originally fromulated for spin-1/2 targets, is generalized to all spins and multipoles, and shown to have some interesting consequences. Measurements to test the new rules, or to derive nuclear structure information from them, could be incorporated into existing plans at electron accelerator facilities. Finally, the possible relevance of these generalized sum rules to sum rules measurable in polarized lepton-polarized target deep inelastic inclusive scattering is discussed. (orig.)

  1. Optical Pumping of the Electronic and Nuclear Spin of Single Charge-Tunable Quantum Dots

    Science.gov (United States)

    Bracker, A. S.; Stinaff, E. A.; Gammon, D.; Ware, M. E.; Tischler, J. G.; Shabaev, A.; Efros, Al. L.; Park, D.; Gershoni, D.; Korenev, V. L.; Merkulov, I. A.

    2005-02-01

    We present a comprehensive examination of optical pumping of spins in individual GaAs quantum dots as we change the net charge from positive to neutral to negative with a charge-tunable heterostructure. Negative photoluminescence polarization memory is enhanced by optical pumping of ground state electron spins, which we prove with the first measurements of the Hanle effect on an individual quantum dot. We use the Overhauser effect in a high longitudinal magnetic field to demonstrate efficient optical pumping of nuclear spins for all three charge states of the quantum dot.

  2. Origin of the finite nuclear spin and its effect in intermediate energy heavy ion collisions

    International Nuclear Information System (INIS)

    Zhang Guoqiang; Cao Xiguang; Fu Yao

    2012-01-01

    The heavy-ion phase-space exploration (HIPSE) model is used to discuss the origin of the nuclear spin in intermediate energy heavy-ion collision (HIC). The spin of maximal projectile-like fragment is found to depend strongly on impact parameter of a reaction system,while it relates weakly to the collision violence. Some interesting multi-fragmentation phenomena related to the spin are shown. We also found that the excitation energy in the de-excitation stage plays a robust role at the de-excitation stage in HIC. (authors)

  3. Monte Carlo determination of the spin-dependent potentials

    International Nuclear Information System (INIS)

    Campostrini, M.; Moriarty, K.J.M.; Rebbi, C.

    1987-05-01

    Calculation of the bound states of heavy quark systems by a Hamiltonian formulation based on an expansion of the interaction into inverse powers of the quark mass is discussed. The potentials for the spin-orbit and spin-spin coupling between quark and antiquark, which are responsible for the fine and hyperfine splittings in heavy quark spectroscopy, are expressed as expectation values of Wilson loop factors with suitable insertions of chromomagnetic or chromoelectric fields. A Monte Carlo simulation has been used to evaluate the expectation values and, from them, the spin-dependent potentials. The Monte Carlo calculation is reported to show a long-range, non-perturbative component in the interaction

  4. On the Convergence of the ccJ-pVXZ and pcJ-n Basis Sets in CCSD Calculations of Nuclear Spin-Spin Coupling Constants

    DEFF Research Database (Denmark)

    Faber, Rasmus; Sauer, Stephan P. A.

    2018-01-01

    The basis set convergence of nuclear spin-spin coupling constants (SSCC) calculated at the coupled cluster singles and doubles (CCSD) level has been investigated for ten difficult molecules. Eight of the molecules contain fluorine atoms and nine contain double or triple bonds. Results obtained...

  5. Correlated calculations of indirect nuclear spin-spin coupling constants using second-order polarization propagator approximations: SOPPA and SOPPA(CCSD)

    DEFF Research Database (Denmark)

    Enevoldsen, Thomas; Oddershede, Jens; Sauer, Stephan P. A.

    1998-01-01

    We present correlated calculations of the indirect nuclear spin-spin coupling constants of HD, HF, H2O, CH4, C2H2, BH, AlH, CO and N2 at the level of the second-order polarization propagator approximation (SOPPA) and the second-order polarization propagator approximation with coupled-cluster sing...

  6. Nuclear spin polarized alkali beams (Li and Na): Production and acceleration

    International Nuclear Information System (INIS)

    Jaensch, H.; Becker, K.; Blatt, K.; Leucker, H.; Fick, D.

    1987-01-01

    Recent improvements of the Heidelberg source for polarized heavy ions (PSI) are described. By means of optical pumping in combination with the existing multipole separation magnet the beam figure of merit (polarization 2 x intensity) was doubled. 7 Li and 23 Na atomic beams can now be produced in pure hyperfine magnetic substates. Fast switching of the polarization is achieved by an adiabatic medium field transition. The hyperfine magnetic substate population is determined by laser-induced fluorescence spectroscopy. In routine operation atomic beams with nuclear polarization p α ≥0.85 (α=z, zz) are obtained. The acceleration of polarized 23 Na - ions by a 12 MV tandem accelerator introduces a new problem: the energy at the terminal stripper foil is not sufficient to produce a usable yield of naked ions. For partially stripped ions hyperfine interaction of the remaining electrons with the nuclear spin reduces the nuclear polarization. Using in addition the Heidelberg postaccelerator 23 Na 9+ beams of energies between 49 and 184 MeV were obtained with an alignment on target of P zz ≅0.45. 7 Li beams have also been accelerated up to 45 MeV with an alignment of P zz =0.69. (orig.)

  7. On the properties of nuclear matter with an excess of neutrons, of spin-up neutrons and of spin-up protons using the Skyrme interaction

    International Nuclear Information System (INIS)

    Hassan, M.Y.M.; Ramadan, S.

    1983-11-01

    The binding energy of nuclear matter with an excess of neutrons, of spin-up neutrons, and of spin-up protons (characterized by the corresponding parameters, αsub(tau)=(N-Z/A), αsub(n)=(Nup-Ndown)/A, and αsub(rho)=(Zup-Zdown)/A), contains three symmetry energies: the isospin symmetry energy Esub(tau), the spin symmetry energy Esub(σ), and spin-isospin symmetry energy Esub(σtau). General expressions for Esub(σ), Esub(tau) and Esub(σtau) are given in the case of the Skyrme interaction. These values are compared with previous results obtained by Dabrowski and Haensel (DH) with Brueckner-Gammel-Thaler, the Hamada-Johnston, and the Reid soft core nucleon-nucleon potentials. The spin, isospin and spin-isospin dependent parts of the single-particle potential in nuclear matter are also calculated using the Skyrme interaction. The spin, isospin and spin-isospin incompressibility are calculated using the Skyrme interaction. The spin-spin part of the optical model potential is estimated. The results are compared with those of Dabrowski and Haensel (DH) and Hassan and Ramadan. (author)

  8. Anomalous longitudinal relaxation of nuclear spins in CaF{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Kropf, Chahan M. [Institute of Physics, University of Freiburg, Hermann-Herder-Str. 3, D-79104, Freiburg (Germany); Kohlrautz, Jonas; Haase, Juergen [University of Leipzig, Faculty of Physics and Earth Sciences, Linnestr. 5, 04103, Leipzig (Germany); Fine, Boris V. [Skolkovo Institute of Science and Technology, 100 Novaya Str., Skolkovo, Moscow Region, 143025 (Russian Federation); Institute for Theoretical Physics, University of Heidelberg, Philosophenweg 12, 69120, Heidelberg (Germany)

    2017-06-15

    We consider the effect of non-secular resonances for interacting nuclear spins in solids which were predicted theoretically to exist in the presence of strong static and strong radio-frequency magnetic fields. These resonances imply corrections to the standard secular approximation for the nuclear spin-spin interaction in solids, which, in turn, should lead to an anomalous longitudinal relaxation in nuclear magnetic resonance experiments. In this article, we investigate the feasibility of the experimental observation of this anomalous longitudinal relaxation in calcium fluoride (CaF{sub 2}) and conclude that such an observation is realistic. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. Theory for cross effect dynamic nuclear polarization under magic-angle spinning in solid state nuclear magnetic resonance: the importance of level crossings.

    Science.gov (United States)

    Thurber, Kent R; Tycko, Robert

    2012-08-28

    We present theoretical calculations of dynamic nuclear polarization (DNP) due to the cross effect in nuclear magnetic resonance under magic-angle spinning (MAS). Using a three-spin model (two electrons and one nucleus), cross effect DNP with MAS for electron spins with a large g-anisotropy can be seen as a series of spin transitions at avoided crossings of the energy levels, with varying degrees of adiabaticity. If the electron spin-lattice relaxation time T(1e) is large relative to the MAS rotation period, the cross effect can happen as two separate events: (i) partial saturation of one electron spin by the applied microwaves as one electron spin resonance (ESR) frequency crosses the microwave frequency and (ii) flip of all three spins, when the difference of the two ESR frequencies crosses the nuclear frequency, which transfers polarization to the nuclear spin if the two electron spins have different polarizations. In addition, adiabatic level crossings at which the two ESR frequencies become equal serve to maintain non-uniform saturation across the ESR line. We present analytical results based on the Landau-Zener theory of adiabatic transitions, as well as numerical quantum mechanical calculations for the evolution of the time-dependent three-spin system. These calculations provide insight into the dependence of cross effect DNP on various experimental parameters, including MAS frequency, microwave field strength, spin relaxation rates, hyperfine and electron-electron dipole coupling strengths, and the nature of the biradical dopants.

  10. Inhomogeneous nuclear spin polarization induced by helicity-modulated optical excitation of fluorine-bound electron spins in ZnSe

    Science.gov (United States)

    Heisterkamp, F.; Greilich, A.; Zhukov, E. A.; Kirstein, E.; Kazimierczuk, T.; Korenev, V. L.; Yugova, I. A.; Yakovlev, D. R.; Pawlis, A.; Bayer, M.

    2015-12-01

    Optically induced nuclear spin polarization in a fluorine-doped ZnSe epilayer is studied by time-resolved Kerr rotation using resonant excitation of donor-bound excitons. Excitation with helicity-modulated laser pulses results in a transverse nuclear spin polarization, which is detected as a change of the Larmor precession frequency of the donor-bound electron spins. The frequency shift in dependence on the transverse magnetic field exhibits a pronounced dispersion-like shape with resonances at the fields of nuclear magnetic resonance of the constituent zinc and selenium isotopes. It is studied as a function of external parameters, particularly of constant and radio frequency external magnetic fields. The width of the resonance and its shape indicate a strong spatial inhomogeneity of the nuclear spin polarization in the vicinity of a fluorine donor. A mechanism of optically induced nuclear spin polarization is suggested based on the concept of resonant nuclear spin cooling driven by the inhomogeneous Knight field of the donor-bound electron.

  11. Transient nutation electron spin resonance spectroscopy on spin-correlated radical pairs: A theoretical analysis on hyperfine-induced nuclear modulations

    Science.gov (United States)

    Weber, Stefan; Kothe, Gerd; Norris, James R.

    1997-04-01

    The influence of anisotropic hyperfine interaction on transient nutation electron paramagnetic resonance (EPR) of light-induced spin-correlated radical pairs is studied theoretically using the density operator formalism. Analytical expressions for the time evolution of the transient EPR signal during selective microwave excitation of single transitions are derived for a model system comprised of a weakly coupled radical pair and one hyperfine-coupled nucleus with I=1/2. Zero-quantum electron coherence and single-quantum nuclear coherence are created as a result of the sudden light-induced generation of the radical pair state from a singlet-state precursor. Depending on the relative sizes of the nuclear Zeeman frequency and the secular and pseudo-secular parts of the hyperfine coupling, transitions between levels with different nuclear spin orientations are predicted to modulate the time-dependent EPR signal. These modulations are in addition to the well-known transient nutations and electron zero-quantum precessions. Our calculations provide insight into the mechanism of recent experimental observations of coherent nuclear modulations in the time-resolved EPR signals of doublets and radical pairs. Two distinct mechanisms of the modulations are presented for various microwave magnetic field strengths. The first modulation scheme arises from electron and nuclear coherences initiated by the laser excitation pulse and is "read out" by the weak microwave magnetic field. While the relative modulation depth of these oscillations with respect to the signal intensity is independent of the Rabi frequency, ω1, the frequencies of this coherence phenomenon are modulated by the effective microwave amplitude and determined by the nuclear Zeeman interaction and hyperfine coupling constants as well as the electron-electron spin exchange and dipolar interactions between the two radical pair halves. In a second mechanism the modulations are both created and detected by the microwave

  12. Nuclear spin relaxation in a spin-1/2 antiferromagnetic Heisenberg chain at high fields

    International Nuclear Information System (INIS)

    Lyo, S.K.

    1981-01-01

    The proton spin relaxation rate is calculated in the one-dimensional spin-1/2 Heisenberg antiferromagnet α-bis (N-methylsalicylaldiminato)-copper (II), α-CuNSal by using a fermion representation for magnons above the critical field where the magnon spectrum develops a gap. The one-magnon process which is dominant below the critical field is shown to be absent in the presence of a gap in contrast to a previous theory. Instead, we find that the three-magnon rate is large enough to explain the data at low fields. The two-magnon off-resonance damping which enters the expression for the three-magnon rate is calculated by solving the two-magnon scattering exactly, leading to a much smaller value of the rate than that predicted by the Born approximation. Also, in an unsuccessful attempt to resolve the discrepancy between the recently calculated two-magnon rate (dominant at high fields) and the data of α-CuNSal reported by Azevedo et al., we carry out the vertex correction for the spin-density correlation function by summing the RPA series as well as the exchange ladders for the polarization part. We find that, although the exchange enhancement is significantly large, it is nearly canceled out by the RPA correction, and the net effect of the vertex correction is small. This result agrees with the recent data of the similar spin-1/2 antiferromagnetic Heisenberg chain system CuSO 4 x5H 2 O reported by Groen et al. On the other hand, it disagrees with a recent calculation of the two-magnon rate based on a boson representation of spins. To resolve this discrepancy we examine the effect of the boson self-energy correction on the two-magnon rate. The boson spectral shift is found to be quite large in the region where the cited two-boson rate deviates from the two-fermion rate. As a result the two-boson rate is significantly reduced, leading to reasonable agreement with the two-fermion rate

  13. Experimental status of the nuclear spin scissors mode

    Science.gov (United States)

    Balbutsev, E. B.; Molodtsova, I. V.; Schuck, P.

    2018-04-01

    With the Wigner function moments (WFM) method the scissors mode of the actinides and rare earth nuclei are investigated. The unexplained experimental fact that in 232Th a double hump structure is found finds a natural explanation within WFM. It is predicted that the lower peak corresponds to an isovector spin scissors mode whereas the higher-lying states corresponds to the conventional isovector orbital scissors mode. The experimental situation is scrutinized in this respect concerning practically all results of M 1 excitations.

  14. Canadian experience with spin-offs from nuclear technology

    International Nuclear Information System (INIS)

    Lennox, C.G.; Garvey, P.M.

    1989-01-01

    The innovation process introduced into AECL's research laboratories is described, with its achievements in increased commercial and spin-off businesses. In particular, the role of the champion or entrepreneur is emphasized in the manner in which he/she interacts within a dedicated team to pursue each opportunity. Examples are provided of several commercial and business development opportunities resulting from the background research programs

  15. Nuclear spin-spin coupling constants of linear carbon chains terminated by coronene molecules: a first principles study

    International Nuclear Information System (INIS)

    Oliveira, Joao Paulo Cavalcante; Mota, F. de Brito; Rivelino, Roberto

    2011-01-01

    Full text. Carbon nano wires made of long linear atomic chains have attracted considerable interest due to their potential applications in nano electronics. We report a density-functional-theory study of the nuclear spin-spin coupling constants for nano assemblies made of two coronene molecules bridged by carbon linear chains, considering distinct sizes and spin multiplicities. Also, we examine the effects of two terminal conformations (syn and anti) of the terminal anchor pieces on the magnetic properties of the carbon chains via 13 C NMR calculations. Our results reveal that simplified chemical models such as those based on cumulenes or polyynes are not appropriate to describe the linear chains with sp 2 terminations. For these types of atomic chains, the electronic ground state of the even-numbered chains can be singlet or triplet, whereas the ground state of the odd-numbered chains can be doublet or quartet. We discuss how the 13 C NMR chemical shift absorption is affected by increasing the size and changing the parity of the linear carbon chains. We have found that the J coupling constants between the carbon atoms in the linear chains present a well-defined pattern, in good accordance with our electronic structure calculations. For example, in the -C 4 - units we obtain couplings of 43.8, 114.5, 84.6, 114.5, and 43.8 Hz from one end to the other

  16. Restricted magnetically balanced basis applied for relativistic calculations of indirect nuclear spin-spin coupling tensors in the matrix Dirac-Kohn-Sham framework

    International Nuclear Information System (INIS)

    Repisky, Michal; Komorovsky, Stanislav; Malkina, Olga L.; Malkin, Vladimir G.

    2009-01-01

    The relativistic four-component density functional approach based on the use of restricted magnetically balanced basis (mDKS-RMB), applied recently for calculations of NMR shielding, was extended for calculations of NMR indirect nuclear spin-spin coupling constants. The unperturbed equations are solved with the use of a restricted kinetically balanced basis set for the small component while to solve the second-order coupled perturbed DKS equations a restricted magnetically balanced basis set for the small component was applied. Benchmark relativistic calculations have been carried out for the X-H and H-H spin-spin coupling constants in the XH 4 series (X = C, Si, Ge, Sn and Pb). The method provides an attractive alternative to existing approximate two-component methods with transformed Hamiltonians for relativistic calculations of spin-spin coupling constants of heavy-atom systems. In particular, no picture-change effects arise in our method for property calculations

  17. Nuclear effects in electron spin resonance of crystalline solids

    International Nuclear Information System (INIS)

    Ursu, I.; Nistor, S.V.

    1976-01-01

    A survey on the theory of paramagnetic ions in crystals is given. Some recent applications in which nuclear properties are studied by means of the ESR method are presented against this background. Finer effects in the hyperfine structure of ESR spectra, temperature dependance of the hyperfine coupling of S-state ions, observation of nuclear isotopic shift in ESR represent the applications discussed

  18. Towards the improvement of spin-isospin properties in nuclear energy density functionals

    International Nuclear Information System (INIS)

    Roca-Maza, X.; Colò, G.; Liang, H. Z.; Sagawa, H.; Meng, J.; Ring, P.; Zhao, P. W.

    2016-01-01

    We address the problem of improving existing nuclear Energy Density Functionals (EDFs) in the spin-isospin channel. For that, we propose two different ways. The first one is to carefully take into account in the fitting protocol some of the key ground state properties for an accurate description of the most studied spin-isospin resonances: the Gamow-Teller Resonance (GTR) [1]. The second consists in providing a strategy to build local covariant EDF keeping the main features from their non-local counterparts [2]. The RHF model based on a Lagrangian where heavy mesons carry the nuclear effective interaction have been shown to be successful in the description of spin-isospin resonances [3]. (paper)

  19. Spin Coherence in Semiconductor Nanostructures

    National Research Council Canada - National Science Library

    Flatte, Michael E

    2006-01-01

    ... dots, tuning of spin coherence times for electron spin, tuning of dipolar magnetic fields for nuclear spin, spontaneous spin polarization generation and new designs for spin-based teleportation and spin transistors...

  20. The role of level anti-crossings in nuclear spin hyperpolarization

    NARCIS (Netherlands)

    Ivanov, Konstantin L.; Pravdivtsev, Andrey N.; Yurkovskaya, Alexandra V.; Vieth, Hans Martin; Kaptein, R

    2014-01-01

    Nuclear spin hyperpolarization is an important resource for increasing the sensitivity of NMR spectroscopy and MRI. Signal enhancements can be as large as 3-4 orders of magnitude. In hyperpolarization experiments, it is often desirable to transfer the initial polarization to other nuclei of choice,

  1. Phosphorus-doped thin silica films characterized by magic-angle spinning nuclear magnetic resonance spectroscopy

    DEFF Research Database (Denmark)

    Jacobsen, H.J.; Skibsted, J.; Kristensen, Martin

    2001-01-01

    Magic-angle spinning nuclear magnetic resonance spectra of 31P and 29Si have been achieved for a thin silica film doped with only 1.8% 31P and deposited by plasma enhanced chemical vapor deposition on a pure silicon wafer. The observation of a symmetric 31P chemical shift tensor is consistent...

  2. Shell structure at high spin and the influence on nuclear shapes

    International Nuclear Information System (INIS)

    Khoo, T.L.; Chowdhury, P.; Ahmad, I.

    1982-01-01

    Nuclear structure at high spin is influenced by a combination of liquid-drop and shell-structure effects. For N 90. The competition between oblate and prolate driving effects leads to a prolate-to-oblate shape transition in 154 Dy 88 . The role of rotation-aligned configurations in the shape change is discussed

  3. Isotopic and spin-nuclear effects in solid hydrogens (Review Article)

    Science.gov (United States)

    Freiman, Yuri A.; Crespo, Yanier

    2017-12-01

    The multiple isotopic family of hydrogens (H2, HD, D2, HT, DT, T2) due to large differences in the de Boer quantum parameter and inertia moments displays a diversity of pronounced quantum isotopic solid-state effects. The homonuclear members of this family (H2, D2, T2) due to the permutation symmetry are subjects of the constraints of quantum mechanics which link the possible rotational states of these molecules to their total nuclear spin giving rise to the existence of two spin-nuclear modifications, ortho- and parahydrogens, possessing substantially different properties. Consequently, hydrogen solids present an unique opportunity for studying both isotope and spin-nuclear effects. The rotational spectra of heteronuclear hydrogens (HD, HT, DT) are free from limitations imposed by the permutation symmetry. As a result, the ground state of these species in solid state is virtually degenerate. The most dramatic consequence of this fact is an effect similar to the Pomeranchuk effect in 3He which in the case of the solid heteronuclear hydrogens manifests itself as the reentrant broken symmetry phase transitions. In this review article we discuss thermodynamic and kinetic effects pertaining to different isotopic and spin-nuclear species, as well as problems that still remain to be solved.

  4. Calculation of nuclear-spin-relaxation rate for spin-polarized atomic hydrogen

    International Nuclear Information System (INIS)

    Ahn, R.M.C.; Eijnde, J.P.H.W.V.; Verhaar, B.J.

    1983-01-01

    Approximations introduced in previous calculations of spin relaxation for spin-polarized atomic hydrogen are investigated by carrying out a more exact coupled-channel calculation. With the exception of the high-temperature approximation, the approximations turn out to be justified up to the 10 -3 level of accuracy. It is shown that at the lowest temperatures for which experimental data are available, the high-temperature limit underestimates relaxation rates by a factor of up to 2. For a comparison with experimental data it is also of interest to pay attention to the expression for the atomic hydrogen relaxation rates in terms of transition amplitudes for two-particle collisions. Discrepancies by a factor of 2 among previous derivations of relaxation rates are pointed out. To shed light on these discrepancies we present two alternative derivations in which special attention is paid to identical-particle aspects. Comparing with experiment, we find our theoretical volume relaxation rate to be in better agreement with measured values than that obtained by other groups. The theoretical surface relaxation rate, however, still shows a discrepancy with experiment by a factor of order 50

  5. Nuclear spin measurement using the angular correlation method

    International Nuclear Information System (INIS)

    Schapira, J.-P.

    The double angular correlation method is defined by a semi-classical approach (Biendenharn). The equivalence formula in quantum mechanics are discussed for coherent and incoherent angular momentum mixing; the correlations are described from the density and efficiency matrices (Fano). The ambiguities in double angular correlations can be sometimes suppressed (emission of particles with a high orbital momentum l), using triple correlations between levels with well defined spin and parity. Triple correlations are applied to the case where the direction of linear polarization of γ-rays is detected [fr

  6. Higgs Spin Determination and Unitarity of Vector-boson Scattering at the LHC

    CERN Document Server

    Frank, Jessica

    After the discovery of a new particle at the Large Hadron Collider (LHC), it is crucial to definitely verify or disprove whether this new 125 − 126 GeV resonance is the Higgs boson of the Standard Model (SM). Thus, its features, including its spin, have to be determined. In order to distinguish the two most likely spin hypotheses, spin-0 or spin-2, the phenomenology of light spin-2 resonances produced in different gluon-fusion and vectorboson-fusion processes at the LHC is studied. Starting from an effective model for the interaction of a spin-2 particle with SM gauge bosons, cross sections and differential distributions are calculated within the Monte Carlo program Vbfnlo. Whereas with specific model parameters, such a spin-2 resonance can mimic rates and transverse-momentum distributions of a SM Higgs boson in the main decay channels γγ, WW and ZZ, several distributions allow to separate spin-2 from spin-0, almost independently of model parameters. Since the SM Higgs boson ensures the unitarity of the S...

  7. Analytical approaches to the determination of spin-dependent parton distribution functions at NNLO approximation

    Science.gov (United States)

    Salajegheh, Maral; Nejad, S. Mohammad Moosavi; Khanpour, Hamzeh; Tehrani, S. Atashbar

    2018-05-01

    In this paper, we present SMKA18 analysis, which is a first attempt to extract the set of next-to-next-leading-order (NNLO) spin-dependent parton distribution functions (spin-dependent PDFs) and their uncertainties determined through the Laplace transform technique and Jacobi polynomial approach. Using the Laplace transformations, we present an analytical solution for the spin-dependent Dokshitzer-Gribov-Lipatov-Altarelli-Parisi evolution equations at NNLO approximation. The results are extracted using a wide range of proton g1p(x ,Q2) , neutron g1n(x ,Q2) , and deuteron g1d(x ,Q2) spin-dependent structure functions data set including the most recent high-precision measurements from COMPASS16 experiments at CERN, which are playing an increasingly important role in global spin-dependent fits. The careful estimations of uncertainties have been done using the standard Hessian error propagation. We will compare our results with the available spin-dependent inclusive deep inelastic scattering data set and other results for the spin-dependent PDFs in literature. The results obtained for the spin-dependent PDFs as well as spin-dependent structure functions are clearly explained both in the small and large values of x .

  8. Determining fissile content of nuclear fuel elements

    International Nuclear Information System (INIS)

    Arya, S.P.; Grossman, L.N.; Schoenig, F.C.

    1980-01-01

    This invention relates to the determination of the fissile fuel content of fuel for nuclear reactors. A nondestructive method is described for determining rapidly, accurately and simultaneously the fissile content, enrichment and location of fuel material which may also contain amounts of burnable poison, by detecting the γ-rays emitted from the fuel material due to natural radioactive decay. (U.K.)

  9. Nuclear structure of 94,95Mo at high spins

    International Nuclear Information System (INIS)

    Kharraja, B.; Ghugre, S.S.; Garg, U.; Janssens, R.V.; Carpenter, M.P.; Crowell, B.; Khoo, T.L.; Lauritsen, T.; Nisius, D.; Reviol, W.; Mueller, W.F.; Riedinger, L.L.; Kaczarowski, R.

    1998-01-01

    The high-spin level structures of 94,95 Mo (N=52,53) have been investigated via the 65 Cu( 36 S, αp2n) 94 Mo and 65 Cu( 36 S, αpn) 95 Mo reactions at 142 MeV. The level schemes have been extended up to spin J∼19ℎ and excitation energies E x ∼12 MeV. Spherical shell-model calculations have been performed and compared with the experimental energy levels. The level structure of 94 Mo exhibits a single-particle nature and the higher-angular-momentum states are dominated by the excitation of a g 9/2 neutron across the N=50 shell gap. The level sequences observed in 95 Mo have been interpreted on the basis of the spherical shell model and weak coupling of a d 5/2 or a g 7/2 neutron to the 94 Mo core. copyright 1998 The American Physical Society

  10. The Spin Structure of the Neutron Determined Using a Polarized He-3 Target

    Energy Technology Data Exchange (ETDEWEB)

    Middleton, H

    2004-01-06

    Described is a study of the internal spin structure of the neutron performed by measuring the asymmetry in spin-dependent deep inelastic scattering of polarized electrons from nuclear polarized {sup 3}He. Stanford Linear Accelerator experiment E142's sample of 400 million scattering events collected at beam energies between 19 and 26 GeV led to the most precise measurement of a nucleon spin structure function to date. The {sup 3}He target represents a major advance in polarized target technology, using the technique of spin exchange with optically pumped rubidium vapor to produce a typical {sup 3}He nuclear polarization of 34% in a 30cm long target cell with a gas density of 2.3 x 10{sup 20} cm{sup -3}. The target polarization was measured to {+-}7% using an Adiabatic Fast Passage NMR system calibrated with the thermal equilibrium polarization of the protons in a sample of water. The relatively high polarization and target thickness were the result of the development of large volume glass target cells which had inherent nuclear spin relaxation times for the {sup 3}He gas of as long as 70 hours. A target cell production procedure is presented which focuses on special glass blowing techniques to minimize surface interactions with the {sup 3}He nuclei and careful gas purification and vacuum system procedures to reduce relaxation inducing impurities.

  11. Magnetic pseudo-fields in a rotating electron-nuclear spin system

    Science.gov (United States)

    Wood, A. A.; Lilette, E.; Fein, Y. Y.; Perunicic, V. S.; Hollenberg, L. C. L.; Scholten, R. E.; Martin, A. M.

    2017-11-01

    Analogous to the precession of a Foucault pendulum observed on the rotating Earth, a precessing spin observed in a rotating frame of reference appears frequency-shifted. This can be understood as arising from a magnetic pseudo-field in the rotating frame that nevertheless has physically significant consequences, such as the Barnett effect. To detect these pseudo-fields, a rotating-frame sensor is required. Here we use quantum sensors, nitrogen-vacancy (NV) centres, in a rapidly rotating diamond to detect pseudo-fields in the rotating frame. Whereas conventional magnetic fields induce precession at a rate proportional to the gyromagnetic ratio, rotation shifts the precession of all spins equally, and thus primarily affect 13C nuclear spins in the sample. We are thus able to explore these effects via quantum sensing in a rapidly rotating frame, and define a new approach to quantum control using rotationally induced nuclear spin-selective magnetic fields. This work provides an integral step towards realizing precision rotation sensing and quantum spin gyroscopes.

  12. Advances and applications of dynamic-angle spinning nuclear magnetic resonance

    Energy Technology Data Exchange (ETDEWEB)

    Baltisberger, Jay Harvey [Univ. of California, Berkeley, CA (United States)

    1993-06-01

    This dissertation describes nuclear magnetic resonance experiments and theory which have been developed to study quadrupolar nuclei (those nuclei with spin greater than one-half) in the solid state. Primarily, the technique of dynamic-angle spinning (DAS) is extensively reviewed and expanded upon in this thesis. Specifically, the improvement in both the resolution (two-dimensional pure-absorptive phase methods and DAS angle choice) and sensitivity (pulse-sequence development), along with effective spinning speed enhancement (again through choice of DAS conditions or alternative multiple pulse schemes) of dynamic-angle spinning experiment was realized with both theory and experimental examples. The application of DAS to new types of nuclei (specifically the {sup 87}Rb and {sup 85}Rb nuclear spins) and materials (specifically amorphous solids) has also greatly expanded the possibilities of the use of DAS to study a larger range of materials. This dissertation is meant to demonstrate both recent advances and applications of the DAS technique, and by no means represents a comprehensive study of any particular chemical problem.

  13. Advances and applications of dynamic-angle spinning nuclear magnetic resonance

    International Nuclear Information System (INIS)

    Baltisberger, J.H.

    1993-06-01

    This dissertation describes nuclear magnetic resonance experiments and theory which have been developed to study quadrupolar nuclei (those nuclei with spin greater than one-half) in the solid state. Primarily, the technique of dynamic-angle spinning (DAS) is extensively reviewed and expanded upon in this thesis. Specifically, the improvement in both the resolution (two-dimensional pure-absorptive phase methods and DAS angle choice) and sensitivity (pulse-sequence development), along with effective spinning speed enhancement (again through choice of DAS conditions or alternative multiple pulse schemes) of dynamic-angle spinning experiment was realized with both theory and experimental examples. The application of DAS to new types of nuclei (specifically the 87 Rb and 85 Rb nuclear spins) and materials (specifically amorphous solids) has also greatly expanded the possibilities of the use of DAS to study a larger range of materials. This dissertation is meant to demonstrate both recent advances and applications of the DAS technique, and by no means represents a comprehensive study of any particular chemical problem

  14. Nuclear spin dominated relaxation of atomic tunneling systems in glasses

    Energy Technology Data Exchange (ETDEWEB)

    Luck, Annina

    2016-11-16

    The measurements performed in this thesis have revealed a non phononic relaxation channel for atomic tunneling systems in glasses at very low temperatures due to the presence of nuclear electric quadrupoles. Dielectric measurements on the multicomponent glasses N-KZFS11 and HY-1, containing {sup 181}Ta and {sup 165}Ho, respectively, that both carry very large nuclear electric quadrupole moments, show a relaxation rate in the kilohertz range, that is constant for temperatures exceeding the nuclear quadrupole splitting of the relevant isotopes. The results are compared to measurements performed on the glasses Herasil and N-BK7 that both contain no large nuclear quadrupole moments. Using three different setups to measure the complex dielectric function, the measurements cover almost eight orders of magnitude in frequency from 60 Hz to 1 GHz and temperatures down to 7.5 mK. This has allowed us a detailed study of the novel effects observed within this thesis and has led to a simplified model explaining the effects of nuclear electric quadrupoles on the behavior of glasses at low temperatures. Numeric calculations based on this model are compared to the measured data.

  15. Superdeformed and high-spin nuclear structure data on the INTERNET

    International Nuclear Information System (INIS)

    Singh, B.; Firestone, R.B.; Chu, S.Y.F.

    1997-01-01

    With the advent of the large detector arrays GAMMASPHERE, EUROGAM, and GASP, a wealth of new information about the properties of nuclei at high spin has become available. Superdeformed and high-spin nuclear structure data and associated bibliographic information made available on INTERNET by the Isotopes Project at LBNL are described. The Table of Superdeformed Bands and Fission Isomers on the INTERNET will be updated continuously, and new recent reference lists will be provided approximately every three months. This information will also be published annually in the Table of Isotopes CD-ROM updates. (author)

  16. Influence of the spin-orbit coupling on nuclear superfluidity along the N=Z line

    International Nuclear Information System (INIS)

    Juillet, O.; Josse, S.

    2000-01-01

    We show that the spin-orbit potential of the nuclear mean field destroys isoscalar superfluid correlations in self-conjugate nuclei. Using group theory and boson mapping techniques on a Hamiltonian including single particle splittings and a SO ST (8) pairing interaction, we give analytical expression for the spin-orbit dependence of some N =Z properties such as the relative position of T = 0 and T = 1 states in odd-odd systems or double binding-energy differences of even-even nuclei. (authors)

  17. Dynamic nuclear polarization of membrane proteins: covalently bound spin-labels at protein–protein interfaces

    International Nuclear Information System (INIS)

    Wylie, Benjamin J.; Dzikovski, Boris G.; Pawsey, Shane; Caporini, Marc; Rosay, Melanie; Freed, Jack H.; McDermott, Ann E.

    2015-01-01

    We demonstrate that dynamic nuclear polarization of membrane proteins in lipid bilayers may be achieved using a novel polarizing agent: pairs of spin labels covalently bound to a protein of interest interacting at an intermolecular interaction surface. For gramicidin A, nitroxide tags attached to the N-terminal intermolecular interface region become proximal only when bimolecular channels forms in the membrane. We obtained signal enhancements of sixfold for the dimeric protein. The enhancement effect was comparable to that of a doubly tagged sample of gramicidin C, with intramolecular spin pairs. This approach could be a powerful and selective means for signal enhancement in membrane proteins, and for recognizing intermolecular interfaces

  18. Effect of nonlinearity of spin interaction with electromagnetic resonance field on characteristics of polarized nuclear target

    International Nuclear Information System (INIS)

    Vertij, A.A.; Gavrilov, S.P.; Shestopalov, V.P.

    1990-01-01

    Interaction of incident nuclear particle beam with J = 1/2 (neutrons) spin and (J = 1/2) protons with the target substance is considered. It is shown that neutron polarization at the target exit and neutron transparency (G) of the target depend significantly on incident wave amplitude level and physical parameter values which characterize the target, such as target temperature, resonator mirror reflection factor, number of spins interacting with the field, etc. Under interaction of neutrons with a target resonator which features a high mirror reflection factor and low losses for absorption which is not related to magnetic dipole absorption, a bistable response of neutron polarization and G manifests itself. 1 ref

  19. Determining the spin dependent mean free path in Co90Fe10 using giant magnetoresistance

    Science.gov (United States)

    Shakespear, K. F.; Perdue, K. L.; Moyerman, S. M.; Checkelsky, J. G.; Harberger, S. S.; Tamboli, A. C.; Carey, M. J.; Sparks, P. D.; Eckert, J. C.

    2005-05-01

    The spin dependent mean free path in Co90Fe10 is determined as a function of temperature down to 5K using two different spin valve structures. At 5K the spin dependent mean free path for one structure was measured to be 9.4±1.4nm, decreasing by a factor of 3 by 350K. For the other structure, it is 7.5±0.5nm at 5K and decreased by a factor of 1.5 by 350K. In both cases, the spin dependent mean free path approaches the typical thickness of ferromagnetic layers in spin valves at room temperature and, thus, has an impact on the choice of design parameters for the development of new spintronic devices.

  20. Determination of uranium traces in nuclear cans of nuclear reactors

    International Nuclear Information System (INIS)

    Acosta L, E.; Benavides M, A.M.; Sanchez P, L.

    1996-01-01

    To quantify the uranium content as impurity can be found in zirconium alloys and zircaloy, utilized to construct the sheaths containing fuels of the reactors of nuclear plants. The determination by fluorescence spectroscopy was employed as quality control measurement, at once the corrosion resistance, diminish with the increase of the uranium content in the alloys. (Author)

  1. Contribution to the study of thermal mixing between nuclear spin systems; Contribution a l'etude du melange thermique entre systemes de spins nucleaires

    Energy Technology Data Exchange (ETDEWEB)

    Goldmann, M [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1967-02-15

    This work describes methods of dynamic nuclear polarization in solids based on the thermal mixing between nuclear spin systems. The description of the thermal mixing processes involves most of the fundamental aspects of the spin temperature theory. The experiments, conducted with paradichlorobenzene and para-dibromobenzene, yield a detailed confirmation of the theoretical predictions. (author) [French] Ce travail decrit des methodes de polarisation dynamique nucleaire dans les solides basees sur le melange thermique entre systemes de spins nucleaires. La description des processus de melange thermique met en jeu la plupart des aspects fondamentaux de la theorie de la temperature de spin. Les experiences, realisees avec du paradichlorobenzene et du paradibromobenzene, apportent une confirmation detaillee des previsions theoriques. (auteur)

  2. An elementary quantum network using robust nuclear spin qubits in diamond

    Science.gov (United States)

    Kalb, Norbert; Reiserer, Andreas; Humphreys, Peter; Blok, Machiel; van Bemmelen, Koen; Twitchen, Daniel; Markham, Matthew; Taminiau, Tim; Hanson, Ronald

    Quantum registers containing multiple robust qubits can form the nodes of future quantum networks for computation and communication. Information storage within such nodes must be resilient to any type of local operation. Here we demonstrate multiple robust memories by employing five nuclear spins adjacent to a nitrogen-vacancy defect centre in diamond. We characterize the storage of quantum superpositions and their resilience to entangling attempts with the electron spin of the defect centre. The storage fidelity is found to be limited by the probabilistic electron spin reset after failed entangling attempts. Control over multiple memories is then utilized to encode states in decoherence protected subspaces with increased robustness. Furthermore we demonstrate memory control in two optically linked network nodes and characterize the storage capabilities of both memories in terms of the process fidelity with the identity. These results pave the way towards multi-qubit quantum algorithms in a remote network setting.

  3. Basis for calculating cross sections for nuclear magnetic resonance spin-modulated polarized neutron scattering.

    Science.gov (United States)

    Kotlarchyk, Michael; Thurston, George M

    2016-12-28

    In this work we study the potential for utilizing the scattering of polarized neutrons from nuclei whose spin has been modulated using nuclear magnetic resonance (NMR). From first principles, we present an in-depth development of the differential scattering cross sections that would arise in such measurements from a hypothetical target system containing nuclei with non-zero spins. In particular, we investigate the modulation of the polarized scattering cross sections following the application of radio frequency pulses that impart initial transverse rotations to selected sets of spin-1/2 nuclei. The long-term aim is to provide a foundational treatment of the scattering cross section associated with enhancing scattering signals from selected nuclei using NMR techniques, thus employing minimal chemical or isotopic alterations, so as to advance the knowledge of macromolecular or liquid structure.

  4. Effect of deformation and orientation on spin orbit density dependent nuclear potential

    Science.gov (United States)

    Mittal, Rajni; Kumar, Raj; Sharma, Manoj K.

    2017-11-01

    Role of deformation and orientation is investigated on spin-orbit density dependent part VJ of nuclear potential (VN=VP+VJ) obtained within semi-classical Thomas Fermi approach of Skyrme energy density formalism. Calculations are performed for 24-54Si+30Si reactions, with spherical target 30Si and projectiles 24-54Si having prolate and oblate shapes. The quadrupole deformation β2 is varying within range of 0.023 ≤ β2 ≤0.531 for prolate and -0.242 ≤ β2 ≤ -0.592 for oblate projectiles. The spin-orbit dependent potential gets influenced significantly with inclusion of deformation and orientation effect. The spin-orbit barrier and position gets significantly influenced by both the sign and magnitude of β2-deformation. Si-nuclei with β220. The possible role of spin-orbit potential on barrier characteristics such as barrier height, barrier curvature and on the fusion pocket is also probed. In reference to prolate and oblate systems, the angular dependence of spin-orbit potential is further studied on fusion cross-sections.

  5. Sum rule approach to the nuclear response in the isovector spin channel

    International Nuclear Information System (INIS)

    Alberico, W.M.; Ericson, M.; Molinari, A.

    1982-01-01

    We study the global features of the response of infinite nuclear matter in the spin-isospin channel through the energy weighted sum rules S 1 and Ssub(-) 1 . In particular we compare the outcome of the ring approximation with the exact RPA evaluation of the sum rules. We also investigate the influence of the collective character of the response, induced by the particle hole force for a longitudinal and transverse spin couplings. We show that S 1 is insensitive to the collectivity of the response, as long as the Δ degree of freedom is ignored. The inverse energy weighted sum rule on the other hand, which is linked to the paramagnetic susceptibility, always reflects the hardening or softening of the nuclear response, due to the repulsive or attractive character of the p-h force. This quantity is well suited to the comparison with the experiments, which we perform for 12 C and 56 Fe. (orig.)

  6. On determining fluxgate magnetometer spin axis offsets from mirror mode observations

    Science.gov (United States)

    Plaschke, Ferdinand; Narita, Yasuhito

    2016-09-01

    In-flight calibration of fluxgate magnetometers that are mounted on spacecraft involves finding their outputs in vanishing ambient fields, the so-called magnetometer offsets. If the spacecraft is spin-stabilized, then the spin plane components of these offsets can be relatively easily determined, as they modify the spin tone content in the de-spun magnetic field data. The spin axis offset, however, is more difficult to determine. Therefore, usually Alfvénic fluctuations in the solar wind are used. We propose a novel method to determine the spin axis offset: the mirror mode method. The method is based on the assumption that mirror mode fluctuations are nearly compressible such that the maximum variance direction is aligned to the mean magnetic field. Mirror mode fluctuations are typically found in the Earth's magnetosheath region. We introduce the method and provide a first estimate of its accuracy based on magnetosheath observations by the THEMIS-C spacecraft. We find that 20 h of magnetosheath measurements may already be sufficient to obtain high-accuracy spin axis offsets with uncertainties on the order of a few tenths of a nanotesla, if offset stability can be assumed.

  7. On determining fluxgate magnetometer spin axis offsets from mirror mode observations

    Directory of Open Access Journals (Sweden)

    F. Plaschke

    2016-09-01

    Full Text Available In-flight calibration of fluxgate magnetometers that are mounted on spacecraft involves finding their outputs in vanishing ambient fields, the so-called magnetometer offsets. If the spacecraft is spin-stabilized, then the spin plane components of these offsets can be relatively easily determined, as they modify the spin tone content in the de-spun magnetic field data. The spin axis offset, however, is more difficult to determine. Therefore, usually Alfvénic fluctuations in the solar wind are used. We propose a novel method to determine the spin axis offset: the mirror mode method. The method is based on the assumption that mirror mode fluctuations are nearly compressible such that the maximum variance direction is aligned to the mean magnetic field. Mirror mode fluctuations are typically found in the Earth's magnetosheath region. We introduce the method and provide a first estimate of its accuracy based on magnetosheath observations by the THEMIS-C spacecraft. We find that 20 h of magnetosheath measurements may already be sufficient to obtain high-accuracy spin axis offsets with uncertainties on the order of a few tenths of a nanotesla, if offset stability can be assumed.

  8. Effects of nuclear spins on the transport properties of the edge of two-dimensional topological insulators

    Science.gov (United States)

    Hsu, Chen-Hsuan; Stano, Peter; Klinovaja, Jelena; Loss, Daniel

    2018-03-01

    The electrons in the edge channels of two-dimensional topological insulators can be described as a helical Tomonaga-Luttinger liquid. They couple to nuclear spins embedded in the host materials through the hyperfine interaction, and are therefore subject to elastic spin-flip backscattering on the nuclear spins. We investigate the nuclear-spin-induced edge resistance due to such backscattering by performing a renormalization-group analysis. Remarkably, the effect of this backscattering mechanism is stronger in a helical edge than in nonhelical channels, which are believed to be present in the trivial regime of InAs/GaSb quantum wells. In a system with sufficiently long edges, the disordered nuclear spins lead to an edge resistance which grows exponentially upon lowering the temperature. On the other hand, electrons from the edge states mediate an anisotropic Ruderman-Kittel-Kasuya-Yosida nuclear spin-spin interaction, which induces a spiral nuclear spin order below the transition temperature. We discuss the features of the spiral order, as well as its experimental signatures. In the ordered phase, we identify two backscattering mechanisms, due to charge impurities and magnons. The backscattering on charge impurities is allowed by the internally generated magnetic field, and leads to an Anderson-type localization of the edge states. The magnon-mediated backscattering results in a power-law resistance, which is suppressed at zero temperature. Overall, we find that in a sufficiently long edge the nuclear spins, whether ordered or not, suppress the edge conductance to zero as the temperature approaches zero.

  9. Contrast generation in the nuclear-spin tomography by pulsed ultrasound

    International Nuclear Information System (INIS)

    Oehms, Ole Benjamin

    2009-01-01

    In the framework of this thesis a combined method of ultrasound and nuclear-spin tomography is presented. Via ultrasound pulses by the sound-radiation force in liquids and tissue phantoms motions are generated, which depend on ther viscoelastic properties. This motions are made visible by a motion-sensitive tomograph sequence in the phase image of the tomograph in form of a phase change. The first measurements on simple phantoms and liquids are presented. [de

  10. Determination operation Time Risk of Box Spinning Components-oe Spinning Machine

    OpenAIRE

    Slobodan Stefanovic

    2013-01-01

    Based on the constructed dependency diagram reliability of the exploitation operation time of each constituent components of the analyzed frame in the case of selected statistical distributions, areas of the operation exploitation and repair intervals are determined. This is done by determining the first inflection points. Based on these points analysis to determine the time of safety operation of frame components with allowable risk to the segmental linear function of the intensity of failur...

  11. Effects of nuclear structure in the spin-dependent scattering of weakly interacting massive particles

    Science.gov (United States)

    Nikolaev, M. A.; Klapdor-Kleingrothaus, H. V.

    1993-06-01

    We present calculations of the nuclear from factors for spin-dependent elastic scattering of dark matter WIMPs from123Te and131Xe isotopes, proposed to be used for dark matter detection. A method based on the theory of finite Fermi systems was used to describe the reduction of the single-particle spin-dependent matrix elements in the nuclear medium. Nucleon single-particle states were calculated in a realistic shell model potential; pairing effects were treated within the BCS model. The coupling of the lowest single-particle levels in123Te to collective 2+ excitations of the core was taken into account phenomenologically. The calculated nuclear form factors are considerably less then the single-particle ones for low momentum transfer. At high momentum transfer some dynamical amplification takes place due to the pion exchange term in the effective nuclear interaction. But as the momentum transfer increases, the difference disappears, the momentum transfer increases and the quenching effect disappears. The shape of the nuclear form factor for the131Xe isotope differs from the one obtained using an oscillator basis.

  12. Effects of nuclear structure in the spin-dependent scattering of weakly interacting massive particles

    International Nuclear Information System (INIS)

    Nikolaev, M.A.; Klapdor-Kleingrothaus, H.V.

    1993-01-01

    We present calculations of the nuclear from factors for spin-dependent elastic scattering of dark matter WIMPs from 123 Te and 131 Xe isotopes, proposed to be used for dark matter detection. A method based on the theory of finite Fermi systems was used to describe the reduction of the single-particle spin-dependent matrix elements in the nuclear medium. Nucelon single-particle states were calculated in a realistic shell model potential; pairing effects were treated within the BCS model. The coupling of the lowest single-particle levels in 123 Te to collective 2 + excitations of the core was taken into account phenomenologically. The calculated nuclear form factors are considerably less then the single-particle ones for low momentum transfer. At high momentum transfer some dynamical amplification takes place due to the pion exchange term in the effective nuclear interaction. But as the momentum transfer increases, the difference disappears, the momentum transfer increases and quenching effect disappears. The shape of the nuclear form factor for the 131 Xe isotope differs from the one obtained using an oscillator basis. (orig.)

  13. Magnitude determination for large underground nuclear explosions

    Energy Technology Data Exchange (ETDEWEB)

    Porter, Lawrence D [Lawrence Radiation Laboratory, University of California, Livermore, CA (United States)

    1970-05-15

    A method is presented for determining the local magnitudes for large underground nuclear explosions. The Gutenberg-Richter nomograph is applied to the peak amplitudes for 24 large underground nuclear explosions that took place in Nevada. The amplitudes were measured at 18 California Wood-Anderson stations located 150-810 km from the explosion epicenter. The variation of the individual station magnitudes and magnitude corrections and the variation of the average and rms error estimates in the magnitude determinations are examined with respect to distance, azimuth, and event location. The magnitude prediction capability of the Gutenberg-Richter nomograph is examined on the basis of these two criteria, and certain corrections are suggested. The azimuthal dependence of the individual station magnitudes is investigated, and corrections for the California stations are calculated. Statistical weighting schemes for two-component data are employed, and the assumptions and limitations in the use of peak amplitudes are discussed. (author)

  14. Analytic treatment of nuclear spin-lattice relaxation for diffusion in a cone model

    Science.gov (United States)

    Sitnitsky, A. E.

    2011-12-01

    We consider nuclear spin-lattice relaxation rate resulted from a diffusion equation for rotational wobbling in a cone. We show that the widespread point of view that there are no analytical expressions for correlation functions for wobbling in a cone model is invalid and prove that nuclear spin-lattice relaxation in this model is exactly tractable and amenable to full analytical description. The mechanism of relaxation is assumed to be due to dipole-dipole interaction of nuclear spins and is treated within the framework of the standard Bloemberger, Purcell, Pound-Solomon scheme. We consider the general case of arbitrary orientation of the cone axis relative the magnetic field. The BPP-Solomon scheme is shown to remain valid for systems with the distribution of the cone axes depending only on the tilt relative the magnetic field but otherwise being isotropic. We consider the case of random isotropic orientation of cone axes relative the magnetic field taking place in powders. Also we consider the cases of their predominant orientation along or opposite the magnetic field and that of their predominant orientation transverse to the magnetic field which may be relevant for, e.g., liquid crystals. Besides we treat in details the model case of the cone axis directed along the magnetic field. The latter provides direct comparison of the limiting case of our formulas with the textbook formulas for free isotropic rotational diffusion. The dependence of the spin-lattice relaxation rate on the cone half-width yields results similar to those predicted by the model-free approach.

  15. Determination of nuclear fuel burn-up

    International Nuclear Information System (INIS)

    Kristak, J.; Vobecky, M.

    1973-01-01

    Samples containing a known content of 235 U were irradiated with several different neutron doses and activities were determined of radionuclides including 125 Sb, 144 Ce, 134 Cs, 154 Eu, 103 Ru, 95 Zr. The values thus obtained were divided by the 137 Cs activity value. The resulting neutron dose-dependent value is plotted into a calibration graph. The degree of nuclear fuel burn-up is obtained from the graph using an experimentally determined ratio of the activities of the above radionuclides. (B.S.)

  16. The role of spin-orbit potential in nuclear prolate-shape dominance

    Energy Technology Data Exchange (ETDEWEB)

    Takahara, Satoshi, E-mail: staka@ks.kyorin-u.ac.jp [Kyorin University, School of Medicine, Mitaka, Tokyo 181-8611 (Japan); Onishi, Naoki [University of Tokyo (Japan); University of Yamanashi (Japan); Shimizu, Yoshifumi R. [Department of Physics, Graduate School of Science, Kyushu University, Fukuoka 812-8581 (Japan); Tajima, Naoki [Department of Applied Physics, University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507 (Japan)

    2011-08-26

    It is confirmed, in terms of the Woods-Saxon-Strutinsky method, that the spin-orbit potential plays a decisive role in the predominance of prolate deformation, which has been a long standing problem in nuclear physics. It is originated from the combined effects of the spin-orbit coupling and the diffused surface of the potential, in agreement with the previous work based on a more schematic Nilsson-Strutinsky method. The degree of prolate-shape dominance exhibits an oscillatory behavior with respect to the strength of spin-orbit potential and, the prolate-shape dominance is realized at the proper strength of the spin-orbit potential together with the standard surface diffuseness; this oscillatory behavior disappears in case of small diffuseness corresponding to ellipsoidal cavity. The calculated energy differences between oblate and prolate minima in this Letter are consistent with those of our extensive self-consistent calculations of the Hartree-Fock + BCS method with the Skyrme interaction.

  17. The role of spin-orbit potential in nuclear prolate-shape dominance

    International Nuclear Information System (INIS)

    Takahara, Satoshi; Onishi, Naoki; Shimizu, Yoshifumi R.; Tajima, Naoki

    2011-01-01

    It is confirmed, in terms of the Woods-Saxon-Strutinsky method, that the spin-orbit potential plays a decisive role in the predominance of prolate deformation, which has been a long standing problem in nuclear physics. It is originated from the combined effects of the spin-orbit coupling and the diffused surface of the potential, in agreement with the previous work based on a more schematic Nilsson-Strutinsky method. The degree of prolate-shape dominance exhibits an oscillatory behavior with respect to the strength of spin-orbit potential and, the prolate-shape dominance is realized at the proper strength of the spin-orbit potential together with the standard surface diffuseness; this oscillatory behavior disappears in case of small diffuseness corresponding to ellipsoidal cavity. The calculated energy differences between oblate and prolate minima in this Letter are consistent with those of our extensive self-consistent calculations of the Hartree-Fock + BCS method with the Skyrme interaction.

  18. Proposed procedure for experimental determination of the spin-parity of the new particle X(3410)

    Energy Technology Data Exchange (ETDEWEB)

    Chao, P; Tseng, T; Chou, C

    1977-01-01

    A procedure is proposed for the experimental determination of the spin-parity of the new particle X(3410). It consists of choosing the events representing the radiative decay psi ..-->.. X(3410) + ..gamma.. from the psi-production experiment at ..sqrt..s = 6.84 GeV, and measuring the angular distribution of the ..gamma.. photon produced in the process, and also the energy distribution of two pseudo-scalar mesons from the subsequent decay of X. The result of calculation shows that the spin-parity of X(3410) can be determined with certainty and good sensitivity.

  19. Impact of hadronic and nuclear corrections on global analysis of spin-dependent parton distributions

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez-Delgado, Pedro [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Accardi, Alberto [Hampton University, Hampton, VA (United States); Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Melnitchouk, Wally [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States)

    2014-02-01

    We present the first results of a new global next-to-leading order analysis of spin-dependent parton distribution functions from the most recent world data on inclusive polarized deep-inelastic scattering, focusing in particular on the large-x and low-Q^2 regions. By directly fitting polarization asymmetries we eliminate biases introduced by using polarized structure function data extracted under nonuniform assumptions for the unpolarized structure functions. For analysis of the large-x data we implement nuclear smearing corrections for deuterium and 3He nuclei, and systematically include target mass and higher twist corrections to the g_1 and g_2 structure functions at low Q^2. We also explore the effects of Q^2 and W^2 cuts in the data sets, and the potential impact of future data on the behavior of the spin-dependent parton distributions at large x.

  20. Pure spin-3/2 propagator for use in particle and nuclear physics

    Science.gov (United States)

    Kristiano, J.; Clymton, S.; Mart, T.

    2017-11-01

    We propose the use of a pure spin-3/2 propagator in the (3 /2 ,0 )⊕(0 ,3 /2 ) representation in particle and nuclear physics. To formulate the propagator in a covariant form we use the antisymmetric tensor spinor representation and we consider the Δ resonance contribution to the elastic π N scattering as an example. We find that the use of a conventional gauge-invariant interaction Lagrangian leads to a problem: the obtained scattering amplitude does not exhibit the resonance behavior. To overcome this problem we modify the interaction by adding a momentum dependence. As in the case of the Rarita-Schwinger formalism, we find that a perfect resonance description could be obtained in the pure spin-3/2 formulation only if hadronic form factors were considered in the interactions.

  1. Size dependence of 13C nuclear spin-lattice relaxation in micro- and nanodiamonds

    Science.gov (United States)

    Panich, A. M.; Sergeev, N. A.; Shames, A. I.; Osipov, V. Yu; Boudou, J.-P.; Goren, S. D.

    2015-02-01

    Size dependence of physical properties of nanodiamond particles is of crucial importance for various applications in which defect density and location as well as relaxation processes play a significant role. In this work, the impact of defects induced by milling of micron-sized synthetic diamonds was studied by magnetic resonance techniques as a function of the particle size. EPR and 13C NMR studies of highly purified commercial synthetic micro- and nanodiamonds were done for various fractions separated by sizes. Noticeable acceleration of 13C nuclear spin-lattice relaxation with decreasing particle size was found. We showed that this effect is caused by the contribution to relaxation coming from the surface paramagnetic centers induced by sample milling. The developed theory of the spin-lattice relaxation for such a case shows good compliance with the experiment.

  2. Resonance-inclined optical nuclear spin polarization of liquids in diamond structures

    Science.gov (United States)

    Chen, Q.; Schwarz, I.; Jelezko, F.; Retzker, A.; Plenio, M. B.

    2016-02-01

    Dynamic nuclear polarization (DNP) of molecules in a solution at room temperature has the potential to revolutionize nuclear magnetic resonance spectroscopy and imaging. The prevalent methods for achieving DNP in solutions are typically most effective in the regime of small interaction correlation times between the electron and nuclear spins, limiting the size of accessible molecules. To solve this limitation, we design a mechanism for DNP in the liquid phase that is applicable for large interaction correlation times. Importantly, while this mechanism makes use of a resonance condition similar to solid-state DNP, the polarization transfer is robust to a relatively large detuning from the resonance due to molecular motion. We combine this scheme with optically polarized nitrogen-vacancy (NV) center spins in nanodiamonds to design a setup that employs optical pumping and is therefore not limited by room temperature electron thermal polarization. We illustrate numerically the effectiveness of the model in a flow cell containing nanodiamonds immobilized in a hydrogel, polarizing flowing water molecules 4700-fold above thermal polarization in a magnetic field of 0.35 T, in volumes detectable by current NMR scanners.

  3. Generalized nuclear Fukui functions in the framework of spin-polarized density-functional theory

    International Nuclear Information System (INIS)

    Chamorro, E.; Proft, F. de; Geerlings, P.

    2005-01-01

    An extension of Cohen's nuclear Fukui function is presented in the spin-polarized framework of density-functional theory (SP-DFT). The resulting new nuclear Fukui function indices Φ Nα and Φ Sα are intended to be the natural descriptors for the responses of the nuclei to changes involving charge transfer at constant multiplicity and also the spin polarization at constant number of electrons. These generalized quantities allow us to gain new insights within a perturbative scheme based on DFT. Calculations of the electronic and nuclear SP-DFT quantities are presented within a Kohn-Sham framework of chemical reactivity for a sample of molecules, including H 2 O, H 2 CO, and some simple nitrenes (NX) and phosphinidenes (PX), with X=H, Li, F, Cl, OH, SH, NH 2 , and PH 2 . Results have been interpreted in terms of chemical bonding in the context of Berlin's theorem, which provides a separation of the molecular space into binding and antibinding regions

  4. Spectroscopical determination of impurities in nuclear graphite

    International Nuclear Information System (INIS)

    Lordello, A.R.; Tognini, R.P.

    1975-01-01

    A spectrochemical method for the direct determination of B, Cd, Si, Hg, Fe, Mg, Mn, Cr, Ni, Al, Mo, Ti, Sr, Na, Zn, and As in nuclear grade graphite is described. A 9:1 ratio of graphite to copper difluoride is used in the preparation of samples and standards. The excitation is carried out in a d-c at 10 amperes. The copper fluoride used as spectrographic buffer serves to increase the volatilization rate of the impurities and to diminish the differences in the nature of the analytical and calibration samples. The relative standard deviations for the determination of the 16 trace elements, except Sr, Fe, Cd, Al and Si, are in the range of 8 - 20% in their appropriate calibration levels. For the latter five elements they are approximately 20-40%

  5. Nuclear relaxation study of the spin dynamics in a one-dimensional Heisenberg system, TMMC

    International Nuclear Information System (INIS)

    Bakheit, M.A.

    1974-01-01

    Changes in the nuclear relaxation time as a function of the magnetic field intensity in TMMC are very different wether the field direction is parallel or perpendicular to the direction of the exchange chains (vector c). In parallel field, the relaxation probability increases as the field decreases. The process of spin diffusion in a one-dimensional system is well illustrated by the changes experimentally observed. In perpendicular field, the relaxation probability is constant as far as H 0 >2kG, it clearly decreases for H 0 [fr

  6. Scanning tunnelling microscope fabrication of phosphorus array in silicon for a nuclear spin quantum computer

    International Nuclear Information System (INIS)

    O'Brien, J.L.; Schofield, S.R.; Simmons, M.Y.; Clark, R.G.; Dzurak, A.S.; Prawer, S.; Adrienko, I.; Cimino, A.

    2000-01-01

    Full text: In the vigorous worldwide effort to experimentally build a quantum computer, recent intense interest has focussed on solid state approaches for their promise of scalability. Particular attention has been given to silicon-based proposals that can readily be integrated into conventional computing technology. For example the Kane design uses the well isolated nuclear spin of phosphorous donor nuclei (I=1/2) as the qubits embedded in isotopically pure 28 Si (I=0). We demonstrate the ability to fabricate a precise array of P atoms on a clean Si surface with atomic-scale resolution compatible with the fabrication of the Kane quantum computer

  7. Discretization of the total magnetic field by the nuclear spin bath in fluorine-doped ZnSe.

    Science.gov (United States)

    Zhukov, E A; Kirstein, E; Kopteva, N E; Heisterkamp, F; Yugova, I A; Korenev, V L; Yakovlev, D R; Pawlis, A; Bayer, M; Greilich, A

    2018-05-16

    The coherent spin dynamics of fluorine donor-bound electrons in ZnSe induced by pulsed optical excitation is studied in a perpendicular applied magnetic field. The Larmor precession frequency serves as a measure for the total magnetic field exerted onto the electron spins and, surprisingly, does not increase linearly with the applied field, but shows a step-like behavior with pronounced plateaus, given by multiples of the laser repetition rate. This discretization occurs by a feedback mechanism in which the electron spins polarize the nuclear spins, which in turn generate a local Overhauser field adjusting the total magnetic field accordingly. Varying the optical excitation power, we can control the plateaus, in agreement with our theoretical model. From this model, we trace the observed discretization to the optically induced Stark field, which causes the dynamic nuclear polarization.

  8. Quantum correlations in a system of nuclear s = 1/2 spins in a strong magnetic field

    International Nuclear Information System (INIS)

    Fel’dman, E B; Kuznetsova, E I; Yurishchev, M A

    2012-01-01

    Entanglement and quantum discord for a pair of nuclear spins s = 1/2 in a nanopore filled with a gas of spin-carrying molecules (atoms) are studied. The correlation functions describing dynamics of dipolar-coupled spins in a nanopore are found. The dependence of spin-pair entanglement on the temperature and the number of spins is obtained from the reduced density matrix, which is centrosymmetric (CS). An analytic expression for the concurrence is obtained for an arbitrary CS density matrix. It is shown that the quantum discord as a measure of quantum correlations attains a significant value at low temperatures. It is also shown that the discord in the considered model has ‘flickering’ character and disappears periodically in the course of time evolution of the system. The geometric discord is studied for arbitrary 4 × 4 CS density matrices. (paper)

  9. Relativistic theory of nuclear spin-rotation tensor with kinetically balanced rotational London orbitals

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Yunlong; Zhang, Yong; Liu, Wenjian, E-mail: liuwjbdf@gmail.com [Beijing National Laboratory for Molecular Sciences, Institute of Theoretical and Computational Chemistry, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, and Center for Computational Science and Engineering, Peking University, Beijing 100871 (China)

    2014-10-28

    Both kinetically balanced (KB) and kinetically unbalanced (KU) rotational London orbitals (RLO) are proposed to resolve the slow basis set convergence in relativistic calculations of nuclear spin-rotation (NSR) coupling tensors of molecules containing heavy elements [Y. Xiao and W. Liu, J. Chem. Phys. 138, 134104 (2013)]. While they perform rather similarly, the KB-RLO Ansatz is clearly preferred as it ensures the correct nonrelativistic limit even with a finite basis. Moreover, it gives rise to the same “direct relativistic mapping” between nuclear magnetic resonance shielding and NSR coupling tensors as that without using the London orbitals [Y. Xiao, Y. Zhang, and W. Liu, J. Chem. Theory Comput. 10, 600 (2014)].

  10. Relativistic four-component calculations of indirect nuclear spin-spin couplings with efficient evaluation of the exchange-correlation response kernel

    Energy Technology Data Exchange (ETDEWEB)

    Křístková, Anežka; Malkin, Vladimir G. [Institute of Inorganic Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, SK-84536 Bratislava (Slovakia); Komorovsky, Stanislav; Repisky, Michal [Centre for Theoretical and Computational Chemistry, University of Tromsø - The Arctic University of Norway, N-9037 Tromsø (Norway); Malkina, Olga L., E-mail: olga.malkin@savba.sk [Institute of Inorganic Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, SK-84536 Bratislava (Slovakia); Department of Inorganic Chemistry, Comenius University, Bratislava (Slovakia)

    2015-03-21

    In this work, we report on the development and implementation of a new scheme for efficient calculation of indirect nuclear spin-spin couplings in the framework of four-component matrix Dirac-Kohn-Sham approach termed matrix Dirac-Kohn-Sham restricted magnetic balance resolution of identity for J and K, which takes advantage of the previous restricted magnetic balance formalism and the density fitting approach for the rapid evaluation of density functional theory exchange-correlation response kernels. The new approach is aimed to speedup the bottleneck in the solution of the coupled perturbed equations: evaluation of the matrix elements of the kernel of the exchange-correlation potential. The performance of the new scheme has been tested on a representative set of indirect nuclear spin-spin couplings. The obtained results have been compared with the corresponding results of the reference method with traditional evaluation of the exchange-correlation kernel, i.e., without employing the fitted electron densities. Overall good agreement between both methods was observed, though the new approach tends to give values by about 4%-5% higher than the reference method. On the average, the solution of the coupled perturbed equations with the new scheme is about 8.5 times faster compared to the reference method.

  11. Relativistic four-component calculations of indirect nuclear spin-spin couplings with efficient evaluation of the exchange-correlation response kernel

    International Nuclear Information System (INIS)

    Křístková, Anežka; Malkin, Vladimir G.; Komorovsky, Stanislav; Repisky, Michal; Malkina, Olga L.

    2015-01-01

    In this work, we report on the development and implementation of a new scheme for efficient calculation of indirect nuclear spin-spin couplings in the framework of four-component matrix Dirac-Kohn-Sham approach termed matrix Dirac-Kohn-Sham restricted magnetic balance resolution of identity for J and K, which takes advantage of the previous restricted magnetic balance formalism and the density fitting approach for the rapid evaluation of density functional theory exchange-correlation response kernels. The new approach is aimed to speedup the bottleneck in the solution of the coupled perturbed equations: evaluation of the matrix elements of the kernel of the exchange-correlation potential. The performance of the new scheme has been tested on a representative set of indirect nuclear spin-spin couplings. The obtained results have been compared with the corresponding results of the reference method with traditional evaluation of the exchange-correlation kernel, i.e., without employing the fitted electron densities. Overall good agreement between both methods was observed, though the new approach tends to give values by about 4%-5% higher than the reference method. On the average, the solution of the coupled perturbed equations with the new scheme is about 8.5 times faster compared to the reference method

  12. Determination of leakage areas in nuclear piping

    International Nuclear Information System (INIS)

    Keim, E.

    1997-01-01

    For the design and operation of nuclear power plants the Leak-Before-Break (LBB) behavior of a piping component has to be shown. This means that the length of a crack resulting in a leak is smaller than the critical crack length and that the leak is safely detectable by a suitable monitoring system. The LBB-concept of Siemens/KWU is based on computer codes for the evaluation of critical crack lengths, crack openings, leakage areas and leakage rates, developed by Siemens/KWU. In the experience with the leak rate program is described while this paper deals with the computation of crack openings and leakage areas of longitudinal and circumferential cracks by means of fracture mechanics. The leakage areas are determined by the integration of the crack openings along the crack front, considering plasticity and geometrical effects. They are evaluated with respect to minimum values for the design of leak detection systems, and maximum values for controlling jet and reaction forces. By means of fracture mechanics LBB for subcritical cracks has to be shown and the calculation of leakage areas is the basis for quantitatively determining the discharge rate of leaking subcritical through-wall cracks. The analytical approach and its validation will be presented for two examples of complex structures. The first one is a pipe branch containing a circumferential crack and the second one is a pipe bend with a longitudinal crack

  13. Determination of leakage areas in nuclear piping

    Energy Technology Data Exchange (ETDEWEB)

    Keim, E. [Siemens/KWU, Erlangen (Germany)

    1997-04-01

    For the design and operation of nuclear power plants the Leak-Before-Break (LBB) behavior of a piping component has to be shown. This means that the length of a crack resulting in a leak is smaller than the critical crack length and that the leak is safely detectable by a suitable monitoring system. The LBB-concept of Siemens/KWU is based on computer codes for the evaluation of critical crack lengths, crack openings, leakage areas and leakage rates, developed by Siemens/KWU. In the experience with the leak rate program is described while this paper deals with the computation of crack openings and leakage areas of longitudinal and circumferential cracks by means of fracture mechanics. The leakage areas are determined by the integration of the crack openings along the crack front, considering plasticity and geometrical effects. They are evaluated with respect to minimum values for the design of leak detection systems, and maximum values for controlling jet and reaction forces. By means of fracture mechanics LBB for subcritical cracks has to be shown and the calculation of leakage areas is the basis for quantitatively determining the discharge rate of leaking subcritical through-wall cracks. The analytical approach and its validation will be presented for two examples of complex structures. The first one is a pipe branch containing a circumferential crack and the second one is a pipe bend with a longitudinal crack.

  14. The Role of Self-Interaction Corrections, Vibrations, and Spin-Orbit in Determining the Ground Spin State in a Simple Heme

    Directory of Open Access Journals (Sweden)

    Der-you Kao

    2017-10-01

    Full Text Available Without self-interaction corrections or the use of hybrid functionals, approximations to the density-functional theory (DFT often favor intermediate spin systems over high-spin systems. In this paper, we apply the recently proposed Fermi–Löwdin-orbital self-interaction corrected density functional formalism to a simple tetra-coordinated Fe(II-porphyrin molecule and show that the energetic orderings of the S = 1 and S = 2 spin states are changed qualitatively relative to the results of Generalized Gradient Approximation (developed by Perdew, Burke, and Ernzerhof, PBE-GGA and Local Density Approximation (developed by Perdew and Wang, PW92-LDA. Because the energetics, associated with changes in total spin, are small, we have also calculated the second-order spin–orbit energies and the zero-point vibrational energies to determine whether such corrections could be important in metal-substituted porphins. Our results find that the size of the spin–orbit and vibrational corrections to the energy orderings are small compared to the changes due to the self-interaction correction. Spin dependencies in the Infrared (IR/Raman spectra and the zero-field splittings are provided as a possible means for identifying the spin in porphyrins containing Fe(II.

  15. Instrumentation for cryogenic magic angle spinning dynamic nuclear polarization using 90L of liquid nitrogen per day.

    Science.gov (United States)

    Albert, Brice J; Pahng, Seong Ho; Alaniva, Nicholas; Sesti, Erika L; Rand, Peter W; Saliba, Edward P; Scott, Faith J; Choi, Eric J; Barnes, Alexander B

    2017-10-01

    Cryogenic sample temperatures can enhance NMR sensitivity by extending spin relaxation times to improve dynamic nuclear polarization (DNP) and by increasing Boltzmann spin polarization. We have developed an efficient heat exchanger with a liquid nitrogen consumption rate of only 90L per day to perform magic-angle spinning (MAS) DNP experiments below 85K. In this heat exchanger implementation, cold exhaust gas from the NMR probe is returned to the outer portion of a counterflow coil within an intermediate cooling stage to improve cooling efficiency of the spinning and variable temperature gases. The heat exchange within the counterflow coil is calculated with computational fluid dynamics to optimize the heat transfer. Experimental results using the novel counterflow heat exchanger demonstrate MAS DNP signal enhancements of 328±3 at 81±2K, and 276±4 at 105±2K. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Determination of efficacy of nuclear medicine procedures

    International Nuclear Information System (INIS)

    Saenger, E.L.; Buncher, C.R.; Specker, B.; McDevitt, R.A.

    1984-01-01

    Nuclear medicine, a high technology field, is evaluated as to its usefulness. This paper describes the SNM study of 2023 patients comparing two methods evaluating efficacy for lung scanning (LS). Only the referring physicians determined the probabilities of the most important (MI) and most likely (ML) diagnoses and management before and after lung scanning. A logistic regression model was developed for probability of a signout diagnosis of PE. Equal patient groups tested the validity of the regression equations for the probability of PE as MI or ML. The models developed on Group I (G-I) and used on Group II (G-II) gave similar results. This shows that LS classifies PE and NOT PE categories where PE was considered both MI and ML. Entropy minimax pattern detection (EMPD) attempts prediction of signout diagnosis and management from prior patient attributes. In 2023 cases, attributes alone could not eliminate the use of LS for all patients. Comparing the two methods, the predictive values, sensitivity and specificity of each method are similar. EMPD predicts on a relatively small percent (40% before LS, 71% post LS) while the logistic equation predicts on 100% of the cases. An advantage of EMPD is that it does not require estimates of prior probability. However, LR, uses this estimate, thus incorporating intuitive knowledge not evaluated by EMPD. These methods are unique in showing that LS can direct the referring physician toward or away from anticoagulant therapy based on findings of the lung scan

  17. On the thermal properties of polarized nuclear matter

    International Nuclear Information System (INIS)

    Hassan, M.Y.M.; Montasser, S.S.; Ramadan, S.

    1979-08-01

    The thermal properties of polarized nuclear matter are calculated using Skyrme III interaction modified by Dabrowski for polarized nuclear matter. The temperature dependence of the volume, isospin, spin and spin isospin pressure and energies are determined. The temperature, isospin, spin and spin isospin dependence of the equilibrium Fermi momentum is also discussed. (author)

  18. Contribution to the safety assessment of instrumentation and control software for nuclear power plants. Application to spin N4

    International Nuclear Information System (INIS)

    Soubies, B.; Boulc'h, J.; Elsensohn, O.; Le Meur, M.; Henry, J.Y.

    1994-01-01

    The process of licensing nuclear power plants for operation consists of mandatory steps featuring detailed examination of the instrumentation and control system. Significant changes were introduced by the operator in the process of designing and producing 1400 MWe pressurized water reactor safety systems and, in particular, in the case of the Digital Integrated Protection System, (French abbreviation SPIN). The methodology applied by the Institute of Protection and Nuclear Safety (IPSN) to examine the software of this system is described. It consists of the methods used by the manufacturer to develop SPIN software for the 1400 MWe PWRs, and the approach adopted by the IPSN to evaluate SPIN safety softwares of the protection system for the N4 series of reactors. (R.P.). 2 refs

  19. Modelling the molecular composition and nuclear-spin chemistry of collapsing prestellar sources

    Science.gov (United States)

    Hily-Blant, P.; Faure, A.; Rist, C.; Pineau des Forêts, G.; Flower, D. R.

    2018-04-01

    We study the gravitational collapse of prestellar sources and the associated evolution of their chemical composition. We use the University of Grenoble Alpes Astrochemical Network (UGAN), which includes reactions involving the different nuclear-spin states of H2, H+3, and of the hydrides of carbon, nitrogen, oxygen, and sulfur, for reactions involving up to seven protons. In addition, species-to-species rate coefficients are provided for the ortho/para interconversion of the H_3^+ + H2 system and isotopic variants. The composition of the medium is followed from an initial steady state through the early phase of isothermal gravitational collapse. Both the freeze-out of the molecules on to grains and the coagulation of the grains were incorporated in the model. The predicted abundances and column densities of the spin isomers of ammonia and its deuterated forms are compared with those measured recently towards the prestellar cores H-MM1, L16293E, and Barnard B1. We find that gas-phase processes alone account satisfactorily for the observations, without recourse to grain-surface reactions. In particular, our model reproduces both the isotopologue abundance ratios and the ortho:para ratios of NH2D and NHD2 within observational uncertainties. More accurate observations are necessary to distinguish between full scrambling processes—as assumed in our gas-phase network—and direct nucleus- or atom-exchange reactions.

  20. Study of γ-irradiated lithographic polymers by electron spin resonance and electron nuclear double resonance

    International Nuclear Information System (INIS)

    Schlick, S.; Kevan, L.

    1982-01-01

    The room temperature gamma irradiation degradation of the lithographic polymers, poly(methylmethacrylate) (PMMA), poly(methyl-α-chloroacrylate) (PMCA), poly(methyl-α-fluoroacrylate) (PMFA), and poly(methylacrylonitrile) (PMCN), have been studied by electron spin resonance and electron nuclear double resonance (ENDOR) to assess their molecular degradation processes of relevance to electron beam lithography. Two classes of radicals are found, chain radicals and chain scission radicals. PMMA and PMCA mainly form chain scission radicals consistent with degradation while for PMCN the resolution is poorer, and this is only probable. PMFA forms mainly chain radicals consistent with predominant crosslinking. The total radical yield is greatest in PMCA and PMCN. ENDOR is used to assess the compactness of the radiation degradation region for PMMA and PMCA and hence the potential resolution of the resist; this appears to be about the same for these methacrylate polymers

  1. Theory of radiative muon capture with applications to nuclear spin and isospin doublets

    International Nuclear Information System (INIS)

    Hwang, W.P.; Primakoff, H.

    1978-01-01

    A theory of radiative muon capture, with applications to nuclear spin and isospin doublets, is formulated on the basis of the conservation of the hadronic electromagnetic current, the conservation of the hadronic weak polar currents, the partial conservation of the hadronic weak axial-vector current, the SU(2) x SU(2) current algebra for the various hadronic current, and a simplifying dynamical approximation for the hadron-radiating part of the transition amplitude: the ''linearity hypothesis''. The resultant total transition amplitude, which also includes the muon-radiating part, is worked out explicitly and applied to treat the processes μ - p → ν/sub μ/nγ and μ - 3 He → ν/sub μ/ 3 Hγ

  2. Electron spin resonance and its implication on the maximum nuclear polarization of deuterated solid target materials

    International Nuclear Information System (INIS)

    Heckmann, J.; Meyer, W.; Radtke, E.; Reicherz, G.; Goertz, S.

    2006-01-01

    ESR spectroscopy is an important tool in polarized solid target material research, since it allows us to study the paramagnetic centers, which are used for the dynamic nuclear polarization (DNP). The polarization behavior of the different target materials is strongly affected by the properties of these centers, which are added to the diamagnetic materials by chemical doping or irradiation. In particular, the ESR linewidth of the paramagnetic centers is a very important parameter, especially concerning the deuterated target materials. In this paper, the results of the first precise ESR measurements of the deuterated target materials at a DNP-relevant magnetic field of 2.5 T are presented. Moreover, these results allowed us to experimentally study the correlation between ESR linewidth and maximum deuteron polarization, as given by the spin-temperature theory

  3. Role of nuclear penetration effects in spin assignments. [J, transitions, internal conversion

    Energy Technology Data Exchange (ETDEWEB)

    Sahota, H S [Punjabi Univ., Patiala (India). Dept. of Physics

    1976-04-01

    Nuclear penetrations have been found to affect the internal conversion process of the retarded magnetic dipole transitions. In all cases where the penetration coefficient has been found to be essentially different from unity the transition is 1-forbidden. This criterian has been applied to the case of 191 keV transition in /sup 197/Au where the spin of the 268 keV level could not be deduced uniquely by any of the existing methods. The result is that the 199 keV transition has a dynamic contribution to its internal conversion process with the penetration coefficient lambda = 5.5 +- 0.9. To illustrate the applicability of the criterian further two more cases namely that of the 92 keV transition in /sup 131/Cs and 182 keV transition in /sup 129/Cs are also included.

  4. Giant titanium electron wave function in gallium oxide: A potential electron-nuclear spin system for quantum information processing

    Science.gov (United States)

    Mentink-Vigier, Frédéric; Binet, Laurent; Vignoles, Gerard; Gourier, Didier; Vezin, Hervé

    2010-11-01

    The hyperfine interactions of the unpaired electron with eight surrounding G69a and G71a nuclei in Ti-doped β-Ga2O3 were analyzed by electron paramagnetic resonance (EPR) and electron-nuclear double resonance (ENDOR) spectroscopies. They are dominated by strong isotropic hyperfine couplings due to a direct Fermi contact interaction with Ga nuclei in octahedral sites of rutile-type chains oriented along b axis, revealing a large anisotropic spatial extension of the electron wave function. Titanium in β-Ga2O3 is thus best described as a diffuse (Ti4+-e-) pair rather than as a localized Ti3+ . Both electron and G69a nuclear spin Rabi oscillations could be observed by pulsed EPR and pulsed ENDOR, respectively. The electron spin decoherence time is about 1μs (at 4 K) and an upper bound of 520μs (at 8 K) is estimated for the nuclear decoherence time. Thus, β-Ga2O3:Ti appears to be a potential spin-bus system for quantum information processing with a large nuclear spin quantum register.

  5. Anisotropic Rotational Diffusion Studied by Nuclear Spin Relaxation and Molecular Dynamics Simulation: An Undergraduate Physical Chemistry Laboratory

    Science.gov (United States)

    Fuson, Michael M.

    2017-01-01

    Laboratories studying the anisotropic rotational diffusion of bromobenzene using nuclear spin relaxation and molecular dynamics simulations are described. For many undergraduates, visualizing molecular motion is challenging. Undergraduates rarely encounter laboratories that directly assess molecular motion, and so the concept remains an…

  6. Singular Value Decomposition Method to Determine Distance Distributions in Pulsed Dipolar Electron Spin Resonance.

    Science.gov (United States)

    Srivastava, Madhur; Freed, Jack H

    2017-11-16

    Regularization is often utilized to elicit the desired physical results from experimental data. The recent development of a denoising procedure yielding about 2 orders of magnitude in improvement in SNR obviates the need for regularization, which achieves a compromise between canceling effects of noise and obtaining an estimate of the desired physical results. We show how singular value decomposition (SVD) can be employed directly on the denoised data, using pulse dipolar electron spin resonance experiments as an example. Such experiments are useful in measuring distances and their distributions, P(r) between spin labels on proteins. In noise-free model cases exact results are obtained, but even a small amount of noise (e.g., SNR = 850 after denoising) corrupts the solution. We develop criteria that precisely determine an optimum approximate solution, which can readily be automated. This method is applicable to any signal that is currently processed with regularization of its SVD analysis.

  7. Solid state nuclear magnetic resonance with magic-angle spinning and dynamic nuclear polarization below 25 K.

    Science.gov (United States)

    Thurber, Kent R; Potapov, Alexey; Yau, Wai-Ming; Tycko, Robert

    2013-01-01

    We describe an apparatus for solid state nuclear magnetic resonance (NMR) with dynamic nuclear polarization (DNP) and magic-angle spinning (MAS) at 20-25 K and 9.4 Tesla. The MAS NMR probe uses helium to cool the sample space and nitrogen gas for MAS drive and bearings, as described earlier, but also includes a corrugated waveguide for transmission of microwaves from below the probe to the sample. With a 30 mW circularly polarized microwave source at 264 GHz, MAS at 6.8 kHz, and 21 K sample temperature, greater than 25-fold enhancements of cross-polarized (13)C NMR signals are observed in spectra of frozen glycerol/water solutions containing the triradical dopant DOTOPA-TEMPO when microwaves are applied. As demonstrations, we present DNP-enhanced one-dimensional and two-dimensional (13)C MAS NMR spectra of frozen solutions of uniformly (13)C-labeled l-alanine and melittin, a 26-residue helical peptide that we have synthesized with four uniformly (13)C-labeled amino acids. Published by Elsevier Inc.

  8. Study of the nuclear spin-orbit interaction by performing the transfer reaction 36S(d,p)37S and 34Si(d,p)35Si

    International Nuclear Information System (INIS)

    Burgunder, G.

    2011-12-01

    The spin-orbit interaction depends on the spin orientation of the nucleons with respect to their angular momenta as well as on the derivative of the nuclear density. Even though this density dependence is used in all mean field model, it has never been tested yet due to the lack of data. We propose an original method to test this density dependence by comparing a bubble nucleus ( 34 Si) to a normal nucleus ( 36 S). The 34 Si exhibits a central density which is depleted by a factor of two which induces a non-zero central density derivative and should change the strength of the spin orbit interaction for the inner orbits such as the p orbits (L=1). By performing (d,p) transfer reactions with 36 S and 34 Si beams, the p(3/2) and p(1/2) spin orbit splitting can be inferred for these nuclei. Depending on the models, the spin-orbit splitting varies from 7% (VlowK interaction) up to 70% (Relativistic mean field approach). Beams of 36 S and 34 Si, produced at the LISE spectrometer at 20 A.MeV, were impinged onto a CD 2 target. Tracking the beam particles was achieved using 2 xy beam tracking gas detectors. Protons emitted were detected by 4 multi-segmented Si detectors (MUST2) placed at backwards angles. Gammas issued from the excited states decay were detected in the 4 EXOGAM segmented Germanium detectors. Transfer like nuclei were identified with an ionization chamber and a plastic detector. The excitation energy spectra of the 37 S and 35 Si are determined up to about 7 MeV. Spectroscopic factors and energies of p and f states are derived for the first time in 35 Si. The two nuclei show strong similarity for the f spin-orbit partners, whereas the p(3/2) - p(1/2) energy gap is reduced by 55%. (author)

  9. The nuclear deformation versus spin-flip like excitations and the suppression of the 2νββ amplitude

    International Nuclear Information System (INIS)

    Raduta, A.A.; Delion, D.S.; Faessler, Amand

    1997-01-01

    We were the first who investigated the influence of spin-flip and non-spin-flip configuration on the separation of the transition amplitude of the Gamow-Teller double beta decay. A realistic Hamiltonian and a projected spherical single particle basis is considered, while the effects are generated by three antagonistic sources: spin-flip, non-spin-flip like excitation and nuclear deformation. Moreover, by a smooth variation of a deformation parameter one could bridge the spherical and deformed pictures. Although our application is not aimed at describing the experimental situation we chose as input data those corresponding to the transition 82 Se → 82 Kr. For near spherical case there are two resonances in M GT , one having a spin-flip structure and identified as GT resonance and one of non-spin-flip structure, placed at low energy. For large deformation and vanishing g pp coupling constant there are two resonances of spin-flip and non-spin-flip natures (ΔI = 1 and 0, respectively) and located at the same energy, what indicates that the deformation acts against the separation of this resonances. In conclusion, our calculation showed that the mechanism of M GT suppression is different for spherical and deformed nuclei. In both cases approaching the critical value of g pp where the RPA breaks down, a lot of strength is accumulated in lowest RPA state and, while in the spherical case this has a non spin-flip nature, in the deformed case the state is a mixture of both types of configurations

  10. Degradation of organochloride pesticides by molten salt oxidation at IPEN: spin-off nuclear activities

    International Nuclear Information System (INIS)

    Lainetti, Paulo E.O.

    2013-01-01

    Nuclear spin-off has at least two dimensions. It may provide benefits to the society such as enlarge knowledge base, strengthen infrastructure and benefit technology development. Besides this, to emphasize that some useful technologies elapsed from nuclear activities can affect favorably the public opinion about nuclear energy. In this paper is described a technology developed initially by the Rockwell Int. company in the USA more than thirty years ago to solve some problems of nuclear fuel cycle wastes. For different reasons the technology was not employed. In the last years the interest in the technology was renewed and IPEN has developed his version of the method applicable mainly to the safe degradation of hazardous wastes. This study was motivated by the world interest in the development of advanced processes of waste decomposition, due to the need of safer decomposition processes, particularly for the POPs - persistent organic pollutants and particularly for the organ chlorides. A tendency observed at several countries is the adoption of progressively more demanding legislation for the atmospheric emissions, resultants of the waste decomposition processes. The suitable final disposal of hazardous organic wastes such as PCBs (polychlorinated biphenyls), pesticides, herbicides and hospital residues constitutes a serious problem. In some point of their life cycles, these wastes should be destroyed, in reason of the risk that they represent for the human being, animals and plants. The process involves using a chemical reactor containing molten salts, sodium carbonate or some alkaline carbonates mixtures to decompose the organic waste. The decomposition is performed by submerged oxidation and the residue is injected below the surface of a turbulent salt bath along with the oxidizing agent. Decomposition of halogenated compounds, among which some pesticides, is particularly effective in molten salts. The process presents properties such as intrinsically safe

  11. Nuclear moments, spins and charge radii of copper isotopes from N=28 to N=50 by collinear fast-beam laser spectroscopy

    CERN Document Server

    2002-01-01

    We aim at establishing an unambiguous spin determination of the ground and isomeric states in the neutron rich Cu-isotopes from A=72 up to A=78 and to measure the magnetic and quadrupole moments between the N=28 and N=50 shell closures. This study will provide information on the double-magicity of $^{56}$Ni and $^{78}$Ni, both at the extremes of nuclear stability. It will provide evidence on the suggested inversion of ground state spin around A$\\approx$74, due to the monopole migration of the $\\pi f_{5/2}$ level. The collinear laser spectroscopy technique will be used, which furthermore provides information on the changes in mean square charge radii between both neutron shell closures, probing a possible onset of deformation in this region.

  12. Determination of the amounts of C, CH, CH/sub 2/, and CH fragments by the spin echo method

    Energy Technology Data Exchange (ETDEWEB)

    Polonov, V.M.; Kalabin, G.A.; Kushnarev, D.F.; Latyshev, V.P.

    1984-01-01

    A new method has been developed for the quantitative determination of the amounts of primary, secondary, tertiary, and quaternary carbon atoms in soluble products of coal origin which is based on pulsed sequence of /sup 13/C NMR spin echo.

  13. Floquet-Magnus expansion for general N-coupled spins systems in magic-angle spinning nuclear magnetic resonance spectra

    Science.gov (United States)

    Mananga, Eugene Stephane; Charpentier, Thibault

    2015-04-01

    In this paper we present a theoretical perturbative approach for describing the NMR spectrum of strongly dipolar-coupled spin systems under fast magic-angle spinning. Our treatment is based on two approaches: the Floquet approach and the Floquet-Magnus expansion. The Floquet approach is well known in the NMR community as a perturbative approach to get analytical approximations. Numerical procedures are based on step-by-step numerical integration of the corresponding differential equations. The Floquet-Magnus expansion is a perturbative approach of the Floquet theory. Furthermore, we address the " γ -encoding" effect using the Floquet-Magnus expansion approach. We show that the average over " γ " angle can be performed for any Hamiltonian with γ symmetry.

  14. Measuring nuclear-spin-dependent parity violation with molecules: Experimental methods and analysis of systematic errors

    Science.gov (United States)

    Altuntaş, Emine; Ammon, Jeffrey; Cahn, Sidney B.; DeMille, David

    2018-04-01

    Nuclear-spin-dependent parity violation (NSD-PV) effects in atoms and molecules arise from Z0 boson exchange between electrons and the nucleus and from the magnetic interaction between electrons and the parity-violating nuclear anapole moment. It has been proposed to study NSD-PV effects using an enhancement of the observable effect in diatomic molecules [D. DeMille et al., Phys. Rev. Lett. 100, 023003 (2008), 10.1103/PhysRevLett.100.023003]. Here we demonstrate highly sensitive measurements of this type, using the test system 138Ba19F. We show that systematic errors associated with our technique can be suppressed to at least the level of the present statistical sensitivity. With ˜170 h of data, we measure the matrix element W of the NSD-PV interaction with uncertainty δ W /(2 π )<0.7 Hz for each of two configurations where W must have different signs. This sensitivity would be sufficient to measure NSD-PV effects of the size anticipated across a wide range of nuclei.

  15. Nuclear response theory for spin-isospin excitations in a relativistic quasiparticle-phonon coupling framework

    Energy Technology Data Exchange (ETDEWEB)

    Robin, Caroline; Litvinova, Elena [Western Michigan University, Department of Physics, Kalamazoo, MI (United States)

    2016-07-15

    A new theoretical approach to spin-isospin excitations in open-shell nuclei is presented. The developed method is based on the relativistic meson-exchange nuclear Lagrangian of Quantum Hadrodynamics and extends the response theory for superfluid nuclear systems beyond relativistic quasiparticle random phase approximation in the proton-neutron channel (pn-RQRPA). The coupling between quasiparticle degrees of freedom and collective vibrations (phonons) introduces a time-dependent effective interaction, in addition to the exchange of pion and ρ-meson taken into account without retardation. The time-dependent contributions are treated in the resonant time-blocking approximation, in analogy to the previously developed relativistic quasiparticle time-blocking approximation (RQTBA) in the neutral (non-isospin-flip) channel. The new method is called proton-neutron RQTBA (pn-RQTBA) and is applied to the Gamow-Teller resonance in a chain of neutron-rich nickel isotopes {sup 68-78}Ni. A strong fragmentation of the resonance along with quenching of the strength, as compared to pn-RQRPA, is obtained. Based on the calculated strength distribution, beta-decay half-lives of the considered isotopes are computed and compared to pn-RQRPA half-lives and to experimental data. It is shown that a considerable improvement of the half-life description is obtained in pn-RQTBA because of the spreading effects, which bring the lifetimes to a very good quantitative agreement with data. (orig.)

  16. Demonstration of a Sensitive Method to Measure Nuclear-Spin-Dependent Parity Violation

    Science.gov (United States)

    Altuntaş, Emine; Ammon, Jeffrey; Cahn, Sidney B.; DeMille, David

    2018-04-01

    Nuclear-spin-dependent parity violation (NSD-PV) effects in atoms and molecules arise from Z0 boson exchange between electrons and the nucleus, and from the magnetic interaction between electrons and the parity-violating nuclear anapole moment. We demonstrate measurements of NSD-PV that use an enhancement of the effect in diatomic molecules, here using the test system 138Ba 19. Our sensitivity surpasses that of any previous atomic parity violation measurement. We show that systematic errors can be suppressed to at least the level of the present statistical sensitivity. We measure the matrix element W of the NSD-PV interaction with total uncertainty δ W /(2 π )<0.7 Hz , for each of two configurations where W must have different signs. This sensitivity would be sufficient to measure NSD-PV effects of the size anticipated across a wide range of nuclei including 137Ba in 137BaF, where |W |/(2 π )≈5 Hz is expected.

  17. Nuclear spin-isospin excitations from covariant quasiparticle-vibration coupling

    Science.gov (United States)

    Robin, Caroline; Litvinova, Elena

    2016-09-01

    Methods based on the relativistic Lagrangian of quantum hadrodynamics and nuclear field theory provide a consistent framework for the description of nuclear excitations, naturally connecting the high- and medium-energy scales of mesons to the low-energy domain of nucleonic collective motion. Applied in the neutral channel, this approach has been quite successful in describing the overall transition strength up to high excitation energies, as well as fine details of the low-lying distribution. Recently, this method has been extended to the description of spin-isospin excitations in open-shell nuclei. In the charge-exchange channel, the coupling between nucleons and collective vibrations generates a time-dependent proton-neutron effective interaction, in addition to the static pion and rho-meson exchange, and introduces complex configurations that induce fragmentation and spreading of the resonances. Such effects have a great impact on the quenching of the strength and on the computing of weak reaction rates that are needed for astrophysics modeling. Gamow-Teller transitions in medium-mass nuclei and associated beta-decay half-lives will be presented. Further developments aiming to include additional ground-state correlations will also be discussed. This work is supported by US-NSF Grants PHY-1404343 and PHY-1204486.

  18. Large-scale nuclear structure calculations for spin-dependent WIMP scattering with chiral effective field theory currents

    OpenAIRE

    Klos, P.; Menéndez, J.; Gazit, D.; Schwenk, A.

    2013-01-01

    We perform state-of-the-art large-scale shell-model calculations of the structure factors for elastic spin-dependent WIMP scattering off 129,131Xe, 127I, 73Ge, 19F, 23Na, 27Al, and 29Si. This comprehensive survey covers the non-zero-spin nuclei relevant to direct dark matter detection. We include a pedagogical presentation of the formalism necessary to describe elastic and inelastic WIMP-nucleus scattering. The valence spaces and nuclear interactions employed have been previously used in nucl...

  19. Constitutional determinants of nuclear power plant upgrading

    International Nuclear Information System (INIS)

    Mann, Thomas

    2013-01-01

    Around half a year ago the European stress test for nuclear power plants, a precautionary measure initiated by the European Council in March 2011 in response to the Fukushima disaster, revealed that while German nuclear power plants show a high degree of robustness compared with those in other European countries, they nevertheless required upgrading in one or the other respect (earthquake warning systems, protection against crashing civil passenger airplanes). The present article investigates whether this upgrading requirement can justify an injunction to carry out structural retrofitting measures or whether obligations to this end can be excluded on grounds of reasonability in view of the recent decision taken by the German parliament to phase out nuclear energy.

  20. Note on sideband intensities in one-dimensional magic angle spinning nuclear magnetic resonance

    NARCIS (Netherlands)

    Well, van H.F.J.M.; Vankan, J.M.J.; Janssen, A.J.E.M.

    1991-01-01

    It is well known that in the NMR spectra of solid samples spinning at the magic angle centrebands and sidebands occur. The centrebands are found at the isotropic value of the chemical shift and the sidebands are found at integral multiples of the spinning frequency as long as the spinning frequency

  1. Theoretical studies on nuclear spin selective quantum dynamics of non-linear molecules; Theoretische Untersuchung zur Quantendynamik der Kernspinisomere nicht-linearer Molekuele

    Energy Technology Data Exchange (ETDEWEB)

    Grohmann, Thomas

    2012-05-31

    In this thesis the wave packet dynamics of nuclear spin isomers of polyatomic molecules after interaction with static and time-dependent magnetic fields and moderate intense nonresonant laser pulses is investigated. In particular, the process of inducing (internal) molecular rotation as well as alignment of molecules by manipulating their rotational or rotational-torsional degrees of freedom is studied. In the first part of the thesis all theoretical concepts for identifying nuclear spin isomers and for describing their quantum dynamics will be discussed. Especially the symmetrization postulate and themolecular symmetry group will be introduced and illustrated for some examples of molecules. These concepts will be extended to the case of identifying nuclear spin isomers in the presence of an external field. In the second part it is shown for nitromethane that magnetic fields are able to induce unidirectional rotations in opposite directions for different nuclear spin isomers of molecules containing methyl groups if the dipolar interaction is included. Additionally, it is demonstrated that different nuclear spin isomers of a chemical compound may show different alignment after the interaction with a moderate intense laser pulse. As shown for the rigid symmetric top propadien and the rigid asymmetric tops ethene and analogues, distinct pairs of nuclear spin isomers show at certain points in time a complementary behavior: while one isomer is showing alignment the partner isomer is showing anti-alignment. Moreover, it is illustrated that not every nuclear spin isomer can be aligned equally efficient. The alignment of non-rigid molecules is considered as well. As an example for a molecule with feasible torsion in the electronic ground state, the alignment of diboron tetrafluoride is investigated. It becomes apparent that not only rotational but also the torsional dynamics of the molecules is nuclear spin selective; different nuclear spin isomers have at distinct points

  2. Determination of phthalate esters in physiological saline solution by monolithic silica spin column extraction method

    Directory of Open Access Journals (Sweden)

    Lu Lu

    2011-05-01

    Full Text Available Monolithic silica spin column extraction (MonoSpin-SPE was developed as a simple, sensitive, and eco-friendly pretreatment method which combined with ultra-fast liquid chromatography-mass spectrometry (UFLC-MS to determine the levels of six phthalate esters, dimethyl-(DMP, diethyl-(DEP, dipropyl- [DPrP], butyl-benzyl-(BBP, dicyclohexyl(DcHP, and di- n-octyl-(DOP phthalate in physiological saline samples. Under optimized experimental conditions, the method was linear in the following ranges: 0.2- 50 μ/L for DMP, DEP, DPrP, DcHP and DOP; 5 – 100 μ/L for BBP. The correlation coefficients (R2 were in the range of O. 9951 – O. 9995 for all the analytes and the limits of detection (LODs and limits of quantification (LOQs were in the ranges of 0.02 – 0.9 μ/L and 0.08 – 2.7 μ/L, respectively. The pretreatment process showed good reproducibility with inter-day and intra-day relative standard deviations (RSDs below 8.5% and 11.2%, respectively. This method was used to determine the levels of six phthalate esters in physiological saline samples and the recoveries ranged from 71.2% to 107. 3%. DMP and DEP were found in actual physical saline samples (brand A and brand B. Keywords: Monolithic silica spin column, Phthalate esters, Physiological saline samples, Ultra fast liquid chromatographymass spectrometry (UFLC-MS

  3. Effects of spin vacancies on the correlated spin dynamics in La2Cu1-xZnxO4 from 63Cu nuclear quadrupole resonance relaxation

    International Nuclear Information System (INIS)

    Carretta, P.; Rigamonti, A.; Sala, R.

    1997-01-01

    63 Cu nuclear quadrupole resonance (NQR) relaxation measurements in La 2 CuO 4 doped Zn are used in order to investigate the temperature dependence of the in-plane magnetic correlation length ξ 2D and the effects associated to spin vacancies in two dimensional quantum Heisenberg antiferromagnets (QHAF). The relaxation rates T 1 -1 and T 2 -1 have been related to the static generalized susceptibility χ(q,0) and to the decay rate Γ q of the normal excitations. By using scaling arguments for χ(q,0) and Γ q , the relaxation rates have been expressed in close form in terms of ξ 2D (x,T) and its dependence on temperature and spin doping x thus extracted. The experimental findings are analyzed in light of the renormalized classical (RC) and quantum critical (QC) behaviors predicted for ξ 2D by recent theories for S=1/2 HAF in square lattices. It is first shown that in pure La 2 CuO 4 , ξ 2D is consistent with a RC regime up to about 900 K, with tendency toward the QC regime above. The spin vacancies reduce the Nacute eel temperature according to the law T N (x)∼T N (0)(1 3.5x). From the temperature dependence of 63 Cu NQR relaxation rate T 1 -1 , T 2 -1 and from the composition dependence of T N it is consistently proved that the effect on ξ 2D can be accounted for by the modification of the spin stiffness in a simple dilutionlike model, the system still remaining in the RC regime, at least for T≤900 K. copyright 1997 American Institute of Physics

  4. Contribution to the safety assessment of instrumentation and control software for nuclear power plants: Application to SPIN N4

    Energy Technology Data Exchange (ETDEWEB)

    Soubies, B.; Henry, J.Y.; Le Meur, M. [and others

    1995-04-01

    1300 MWe pressurised water reactors (PWRs), like the 1400 MWe reactors, operate with microprocessor-based safety systems. This is particularly the case for the Digital Integrated Protection System (SPIN), which trips the reactor in an emergency and sets in action the safeguard functions. The softwares used in these systems must therefore be highly dependable in the execution of their functions. In the case of SPIN, three players are working at different levels to achieve this goal: the protection system manufacturer, Merlin Gerin; the designer of the nuclear steam supply system, Framatome; the operator of the nuclear power plants, Electricite de France (EDF), which is also responsible for the safety of its installations. Regulatory licenses are issued by the French safety authority, the Nuclear Installations Safety Directorate (French abbreviation DSIN), subsequent to a successful examination of the technical provisions adopted by the operator. This examination is carried out by the IPSN and the standing group on nuclear reactors. This communication sets out: the methods used by the manufacturer to develop SPIN software for the 1400 MWe PWRs (N4 series); the approach adopted by the IPSN to evaluate the safety software of the protection system for the N4 series of reactors.

  5. Asymptotics of Toeplitz determinants and the emptiness formation probability for the XY spin chain

    International Nuclear Information System (INIS)

    Franchini, Fabio; Abanov, Alexander G

    2005-01-01

    We study an asymptotic behaviour of a special correlator known as the emptiness formation probability (EFP) for the one-dimensional anisotropic XY spin-1/2 chain in a transverse magnetic field. This correlator is essentially the probability of formation of a ferromagnetic string of length n in the antiferromagnetic ground state of the chain and plays an important role in the theory of integrable models. For the XY spin chain, the correlator can be expressed as the determinant of a Toeplitz matrix and its asymptotical behaviours for n → ∞ throughout the phase diagram are obtained using known theorems and conjectures on Toeplitz determinants. We find that the decay is exponential everywhere in the phase diagram of the XY model except on the critical lines, i.e. where the spectrum is gapless. In these cases, a power-law prefactor with a universal exponent arises in addition to an exponential or Gaussian decay. The latter Gaussian behaviour holds on the critical line corresponding to the isotropic XY model, while at the critical value of the magnetic field the EFP decays exponentially. At small anisotropy one has a crossover from the Gaussian to the exponential behaviour. We study this crossover using the bosonization approach

  6. Determination of action zone in the nuclear / radiology handling process

    International Nuclear Information System (INIS)

    Ade Awalludin

    2013-01-01

    Assessment has been conducted on determination of action zone in nuclear or radiological emergency. The assessment is taken into account radiological risk level in nuclear or radiological emergency management process outside nuclear installation. Managing of nuclear emergency is same as that one of other emergency by adding the principles of radiation protection. This study aims to provide guidance in making of safety and security perimeter outside the nuclear installation for first responders during nuclear/radiological emergency based on dose rate, contamination level or distance from the scene. Separation of working zone is important for first responder safety that works in radiological environment in the event of nuclear or radiation emergency without violating their standard operating procedure. Value limit of safety and security perimeter has been made according to the conditions in Indonesia and considering the applicability in practical. (author)

  7. Nuclear spin dynamics in solid {sup 3}He at ultralow temperatures; Kernspindynamik in festem {sup 3}He bei ultratiefen Temperaturen

    Energy Technology Data Exchange (ETDEWEB)

    Kath, Matthias

    2009-11-06

    In this thesis the experimental study of the spin dynamics of solid {sup 3}He is described. By means of magnetization measurements above 3 mK a Curie-Weiss behaviour was found with {theta}{sub W}{approx}2.1 mK and by this an order parameter of J={theta}{sub W}k{sub B}/{approx}-0.5 Kk{sub B} was observed, while in the range of 1 to 3 mK a pure Curie behaviour was found. By means of NMR measurements the values of {tau}{sub 1}(6 mK)=240 ms{+-}12 ms and {tau}{sub 1}(1 mK){approx} 40 ms were determined, while spin-echo measurements yielded the spin-spin relaxation time {tau}{sub 2}(6 mK)=4540 {mu}s{+-}140 {mu}s. Furthermore neutron scattering studies were performed. (HSI)

  8. Nuclear forensics and nuclear analytical chemistry - iridium determination in a referred forensic sample

    International Nuclear Information System (INIS)

    Basu, A.K.; Bhadkambekar, C.A.; Tripathi, A.B.R.; Chattopadhyay, N.; Ghosh, P.

    2010-01-01

    Nuclear approaches for compositional characterization has bright application prospect in forensic perspective towards assessment of nature and origin of seized material. The macro and micro physical properties of nuclear materials can be specifically associated with a process or type of nuclear activity. Under the jurisdiction of nuclear analytical chemistry as well as nuclear forensics, thrust areas of scientific endeavor like determination of radioisotopes, isotopic and mass ratios, analysis for impurity contents, arriving at chemical forms/species and physical parameters play supporting evidence in forensic investigations. The analytical methods developed for this purposes can be used in international safeguards as well for nuclear forensics. Nuclear material seized in nuclear trafficking can be identified and a profile of the nuclear material can be created

  9. Monte Carlo simulation and theory in Gaussian approximation of a phase transition in the nuclear spin system of a solid

    Energy Technology Data Exchange (ETDEWEB)

    Merkulov, I A; Papava, Y I; Ponomarenko, V V [Leningradskij Gosudarstvennyj Univ., Leningrad (Russian Federation); Vasiliev, S I [Carleton Univ., Ottawa, ON (Canada). Dept. of Physics

    1988-02-01

    A phase transition of the nuclear spin system of a solid with dipolar and indirect scalar interactions is considered. Monte Carlo simulations of the spin-system isothermic states and of the adiabatic demagnetization process have been made. The structures and energies of the ground states and the values of the critical temperatures, T[sub C], and minimal polarizations, [rho][sub C], at which adiabatic demagnetization leads to spontaneous spin ordering, calculated for the GaAs and CaF[sub 2] nuclear spin systems, are presented. The results of numerical simulations are compared with the experimental data for CaF[sub 2]. The Weiss-field model is extended to the case of adiabatic demagnetization. The fluctuations of the local field are taken into account in the Gaussian approximation. It is shown that the proposed approach allows one to obtain asymptotically correct results both for T >> T[sub C] and T << T[sub C]. The results of the calculations in the Gaussian approximation are compared with the numerical simulations. (10 refs., 9 figs., tab.).

  10. Nuclear spin state-resolved cavity ring-down spectroscopy diagnostics of a low-temperature H3+ -dominated plasma

    International Nuclear Information System (INIS)

    Hejduk, Michal; Dohnal, Petr; Varju, Jozef; Rubovič, Peter; Plašil, Radek; Glosík, Juraj

    2012-01-01

    We have applied a continuous-wave near-infrared cavity ring-down spectroscopy method to study the parameters of a H 3 + -dominated plasma at temperatures in the range 77–200 K. We monitor populations of three rotational states of the ground vibrational state corresponding to para and ortho nuclear spin states in the discharge and the afterglow plasma in time and conclude that abundances of para and ortho states and rotational temperatures are well defined and stable. The non-trivial dependence of a relative population of para- H 3 + on a relative population of para-H 2 in a source H 2 gas is described. The results described in this paper are valuable for studies of state-selective dissociative recombination of H 3 + ions with electrons in the afterglow plasma and for the design of sources of H 3 + ions in a specific nuclear spin state. (paper)

  11. Nuclear spin state-resolved cavity ring-down spectroscopy diagnostics of a low-temperature H_3^+ -dominated plasma

    Science.gov (United States)

    Hejduk, Michal; Dohnal, Petr; Varju, Jozef; Rubovič, Peter; Plašil, Radek; Glosík, Juraj

    2012-04-01

    We have applied a continuous-wave near-infrared cavity ring-down spectroscopy method to study the parameters of a H_3^+ -dominated plasma at temperatures in the range 77-200 K. We monitor populations of three rotational states of the ground vibrational state corresponding to para and ortho nuclear spin states in the discharge and the afterglow plasma in time and conclude that abundances of para and ortho states and rotational temperatures are well defined and stable. The non-trivial dependence of a relative population of para- H_3^+ on a relative population of para-H2 in a source H2 gas is described. The results described in this paper are valuable for studies of state-selective dissociative recombination of H_3^+ ions with electrons in the afterglow plasma and for the design of sources of H_3^+ ions in a specific nuclear spin state.

  12. Dynamical suppression of nuclear-spin decoherence time in Si and GaAs using inversion pulses

    International Nuclear Information System (INIS)

    Watanabe, S.; Harada, J.; Sasaki, S.; Hirayama, Y.

    2007-01-01

    We found that nuclear-spin decoherence is suppressed by applying inversion pulses such as alternating phase Carr-Purcell (APCP) and Carr-Purcell-Meiboom-Gill (CPMG) sequences in silicon and GaAs. The decoherence time reaches ∼1.3s by applying inversion pulses, which is ∼200 times as long as the characteristic decay time obtained from the Hahn echo sequence (∼6ms) in silicon

  13. Determination of the origin of unknown irradiated nuclear fuel.

    Science.gov (United States)

    Nicolaou, G

    2006-01-01

    An isotopic fingerprinting method is presented to determine the origin of unknown nuclear material with forensic importance. Spent nuclear fuel of known origin has been considered as the 'unknown' nuclear material in order to demonstrate the method and verify its prediction capabilities. The method compares, using factor analysis, the measured U, Pu isotopic compositions of the 'unknown' material with U, Pu isotopic compositions simulating well known spent fuels from a range of commercial nuclear power stations. Then, the 'unknown' fuel has the same origin as the commercial fuel with which it exhibits the highest similarity in U, Pu compositions.

  14. Determination of the origin of unknown irradiated nuclear fuel

    International Nuclear Information System (INIS)

    Nicolaou, G.

    2006-01-01

    An isotopic fingerprinting method is presented to determine the origin of unknown nuclear material with forensic importance. Spent nuclear fuel of known origin has been considered as the 'unknown' nuclear material in order to demonstrate the method and verify its prediction capabilities. The method compares, using factor analysis, the measured U, Pu isotopic compositions of the 'unknown' material with U, Pu isotopic compositions simulating well known spent fuels from a range of commercial nuclear power stations. Then, the 'unknown' fuel has the same origin as the commercial fuel with which it exhibits the highest similarity in U, Pu compositions

  15. Roll Attitude Determination of Spin Projectile Based on GPS and Magnetoresistive Sensor

    Directory of Open Access Journals (Sweden)

    Dandan Yuan

    2017-01-01

    Full Text Available Improvement in attack accuracy of the spin projectiles is a very significant objective, which increases the overall combat efficiency of projectiles. The accurate determination of the projectile roll attitude is the recent objective of the efficient guidance and control. The roll measurement system for the spin projectile is commonly based on the magnetoresistive sensor. It is well known that the magnetoresistive sensor produces a sinusoidally oscillating signal whose frequency slowly decays with time, besides the possibility of blind spot. On the other hand, absolute sensors such as GPS have fixed errors even though the update rates are generally low. To earn the benefit while eliminating weaknesses from both types of sensors, a mathematical model using filtering technique can be designed to integrate the magnetoresistive sensor and GPS measurements. In this paper, a mathematical model is developed to integrate the magnetoresistive sensor and GPS measurements in order to get an accurate prediction of projectile roll attitude in a real flight time. The proposed model is verified using numerical simulations, which illustrated that the accuracy of the roll attitude measurement is improved.

  16. Lamb shift and fine structure at n =2 in a hydrogenlike muonic atom with the nuclear spin I =0

    Science.gov (United States)

    Korzinin, Evgeny Yu.; Shelyuto, Valery A.; Ivanov, Vladimir G.; Karshenboim, Savely G.

    2018-01-01

    The paper is devoted to the Lamb shift and fine structure in a hydrogenlike muonic atom with a spinless nucleus up to the order α5m with all the recoil corrections included. Enhanced contributions of a higher order are also considered. We present the results on the pure QED contribution and on the finite-nuclear-size contribution, proportional to RN2, with the higher-order corrections included. We also consider the consistency of the pure QED theory and the evaluation of the nuclear-structure effects. Most of the QED theory is the same as the theory for the case of the nuclear spin 1/2. Additional nuclear-spin-dependent terms are considered in detail. The issue of the difference for the theories with a spinor nucleus and a scalar one is discussed for the recoil contributions in the order (Zα ) 4m ,α (Zα ) 4m , and (Zα ) 5m . The numerical results are presented for the muonic atoms with two lightest scalar nuclei, helium-4 and beryllium-10. We compare the theory of those muonic atoms with theory for the muonic hydrogen. Some higher-order finite-nuclear-size corrections for the Lamb shift in muonic hydrogen are revisited.

  17. Selectively dispersed isotope labeling for protein structure determination by magic angle spinning NMR

    Energy Technology Data Exchange (ETDEWEB)

    Eddy, Matthew T. [Massachusetts Institute of Technology, Department of Chemistry (United States); Belenky, Marina [Brandeis University, Department of Chemistry (United States); Sivertsen, Astrid C. [Massachusetts Institute of Technology, Francis Bitter Magnet Laboratory (United States); Griffin, Robert G. [Massachusetts Institute of Technology, Department of Chemistry (United States); Herzfeld, Judith, E-mail: herzfeld@brandeis.edu [Brandeis University, Department of Chemistry (United States)

    2013-10-15

    The power of nuclear magnetic resonance spectroscopy derives from its site-specific access to chemical, structural and dynamic information. However, the corresponding multiplicity of interactions can be difficult to tease apart. Complimentary approaches involve spectral editing on the one hand and selective isotope substitution on the other. Here we present a new 'redox' approach to the latter: acetate is chosen as the sole carbon source for the extreme oxidation numbers of its two carbons. Consistent with conventional anabolic pathways for the amino acids, [1-{sup 13}C] acetate does not label {alpha} carbons, labels other aliphatic carbons and the aromatic carbons very selectively, and labels the carboxyl carbons heavily. The benefits of this labeling scheme are exemplified by magic angle spinning spectra of microcrystalline immunoglobulin binding protein G (GB1): the elimination of most J-couplings and one- and two-bond dipolar couplings provides narrow signals and long-range, intra- and inter-residue, recoupling essential for distance constraints. Inverse redox labeling, from [2-{sup 13}C] acetate, is also expected to be useful: although it retains one-bond couplings in the sidechains, the removal of CA-CO coupling in the backbone should improve the resolution of NCACX spectra.

  18. Nuclear shape transitions and some properties of aligned-particle configurations at high spin

    International Nuclear Information System (INIS)

    Koo, T.L.; Chowdhury, P.; Emling, H.

    1982-01-01

    Two topics are addressed in this paper. First, we discuss the variation of shapes with spin and neutron number for nuclei in the N approx. = 88 transitional region. Second, we present comments on the feeding times of very high spin single-particle yrast states

  19. Collective spin by linearization of the Schrodinger equation for nuclear collective motion

    International Nuclear Information System (INIS)

    Greiner, M.; Scheid, W.; Herrmann, R.

    1988-01-01

    The free Schrodinger equation for multipole degrees of freedom is linearized so that energy and momentum operators appear only in first order. As an example, the authors demonstrate the linearization procedure for quadrupole degrees of freedom. The wave function solving this equation carries a spin. The authors derive the operator of the collective spin and its eigen values depending on multipolarity

  20. Theory of long-lived nuclear spin states in methyl groups and quantum-rotor induced polarisation.

    Science.gov (United States)

    Dumez, Jean-Nicolas; Håkansson, Pär; Mamone, Salvatore; Meier, Benno; Stevanato, Gabriele; Hill-Cousins, Joseph T; Roy, Soumya Singha; Brown, Richard C D; Pileio, Giuseppe; Levitt, Malcolm H

    2015-01-28

    Long-lived nuclear spin states have a relaxation time much longer than the longitudinal relaxation time T1. Long-lived states extend significantly the time scales that may be probed with magnetic resonance, with possible applications to transport and binding studies, and to hyperpolarised imaging. Rapidly rotating methyl groups in solution may support a long-lived state, consisting of a population imbalance between states of different spin exchange symmetries. Here, we expand the formalism for describing the behaviour of long-lived nuclear spin states in methyl groups, with special attention to the hyperpolarisation effects observed in (13)CH3 groups upon rapidly converting a material with low-barrier methyl rotation from the cryogenic solid state to a room-temperature solution [M. Icker and S. Berger, J. Magn. Reson. 219, 1 (2012)]. We analyse the relaxation properties of methyl long-lived states using semi-classical relaxation theory. Numerical simulations are supplemented with a spherical-tensor analysis, which captures the essential properties of methyl long-lived states.

  1. Theory of long-lived nuclear spin states in methyl groups and quantum-rotor induced polarisation

    International Nuclear Information System (INIS)

    Dumez, Jean-Nicolas; Håkansson, Pär; Mamone, Salvatore; Meier, Benno; Stevanato, Gabriele; Hill-Cousins, Joseph T.; Roy, Soumya Singha; Brown, Richard C. D.; Pileio, Giuseppe; Levitt, Malcolm H.

    2015-01-01

    Long-lived nuclear spin states have a relaxation time much longer than the longitudinal relaxation time T 1 . Long-lived states extend significantly the time scales that may be probed with magnetic resonance, with possible applications to transport and binding studies, and to hyperpolarised imaging. Rapidly rotating methyl groups in solution may support a long-lived state, consisting of a population imbalance between states of different spin exchange symmetries. Here, we expand the formalism for describing the behaviour of long-lived nuclear spin states in methyl groups, with special attention to the hyperpolarisation effects observed in 13 CH 3 groups upon rapidly converting a material with low-barrier methyl rotation from the cryogenic solid state to a room-temperature solution [M. Icker and S. Berger, J. Magn. Reson. 219, 1 (2012)]. We analyse the relaxation properties of methyl long-lived states using semi-classical relaxation theory. Numerical simulations are supplemented with a spherical-tensor analysis, which captures the essential properties of methyl long-lived states

  2. Feeding times of high spin states in sup(152,154)Dy: Probes of nuclear structure above the yrast line

    International Nuclear Information System (INIS)

    Azgui, F.; Emling, H.; Grosse, E.; Michel, C.; Simon, R.S.; Spreng, W.; Wollersheim, H.J.; Khoo, T.L.; Chowdhury, P.; Frekers, D.; Janssens, R.V.F.; Pakkanen, A.; Daly, P.J.; Kortelahti, M.; Schwalm, D.; Seiler-Clark, G.

    1985-01-01

    Measurements of feeding times of high spin yrast states up to spin 30 (h/2π) in 154 Dy and 36 (h/2π) in 152 Dy were utilized to obtain information about possible spin dependent shape changes. The reactions 25 Mg ( 134 Xe, 5n), 124 Sn ( 34 S, 4n) and 25 Mg ( 132 Xe, 5n), 122 Sn ( 34 S, 4n) were used to populate the high spin states in 154 Dy and 152 Dy, respectively. Feeding times as well as lifetimes were determined with the recoil distance technique. In 152 Dy only long feeding times (>=10 ps) could be identified, indicating that the aligned-particle yrast states are fed through configurations of similar character, with little direct population from collective cascades in the continuum region. In 154 Dy discrete states with I<=30 (h/2π) have lifetimes which are characteristically collective, whereas the preyrast cascades exhibit both fast (< or approx.1 ps) and slow (proportional10 ps) feeding components. The latter imply a change with increasing spin from collective to aligned-particle character, probably associated with a prolate to oblate shape transition. (orig.)

  3. Nuclear magnetic relaxation by the dipolar EMOR mechanism: Multi-spin systems

    Science.gov (United States)

    Chang, Zhiwei; Halle, Bertil

    2017-08-01

    In aqueous systems with immobilized macromolecules, including biological tissues, the longitudinal spin relaxation of water protons is primarily induced by exchange-mediated orientational randomization (EMOR) of intra- and intermolecular magnetic dipole-dipole couplings. Starting from the stochastic Liouville equation, we have previously developed a rigorous EMOR relaxation theory for dipole-coupled two-spin and three-spin systems. Here, we extend the stochastic Liouville theory to four-spin systems and use these exact results as a guide for constructing an approximate multi-spin theory, valid for spin systems of arbitrary size. This so-called generalized stochastic Redfield equation (GSRE) theory includes the effects of longitudinal-transverse cross-mode relaxation, which gives rise to an inverted step in the relaxation dispersion profile, and coherent spin mode transfer among solid-like spins, which may be regarded as generalized spin diffusion. The GSRE theory is compared to an existing theory, based on the extended Solomon equations, which does not incorporate these phenomena. Relaxation dispersion profiles are computed from the GSRE theory for systems of up to 16 protons, taken from protein crystal structures. These profiles span the range from the motional narrowing limit, where the coherent mode transfer plays a major role, to the ultra-slow motion limit, where the zero-field rate is closely related to the strong-collision limit of the dipolar relaxation rate. Although a quantitative analysis of experimental data is beyond the scope of this work, it is clear from the magnitude of the predicted relaxation rate and the shape of the relaxation dispersion profile that the dipolar EMOR mechanism is the principal cause of water-1H low-field longitudinal relaxation in aqueous systems of immobilized macromolecules, including soft biological tissues. The relaxation theory developed here therefore provides a basis for molecular-level interpretation of endogenous soft

  4. The determination of nuclear matter temperature and density

    International Nuclear Information System (INIS)

    Wolf, K.L.

    1981-01-01

    The purpose of this paper is to review some of the things we have learned about nuclear matter under extreme conditions during the past few years in relativistic heavy ion studies. High energy heavy-ion collisions provide a unique mechanism for exploring the dependence of the nuclear potential energy epsilon(rho,T) on the degree of compression and excitation, and may even show the existence of new phases of matter. Thus the determination of the nuclear equation of state remains the ultimate goal of many researchers in this field. (orig.)

  5. Nuclear yield determinations using isotope-separator-on-line arrangements

    International Nuclear Information System (INIS)

    Rudstam, G.

    1975-01-01

    The delay between the formation of a nuclear reaction product and its collection in front of measuring equipment in ISOL arrangements using integrated target-ion source systems has been analyzed. It is shown that a typical delay function takes the form const x (1-esup(-γt))esup(-μt) with γ >> μ. The results can be used for decay corrections in nuclear yield determinations. (Auth.)

  6. Unraveling multi-spin effects in rotational resonance nuclear magnetic resonance using effective reduced density matrix theory

    International Nuclear Information System (INIS)

    SivaRanjan, Uppala; Ramachandran, Ramesh

    2014-01-01

    A quantum-mechanical model integrating the concepts of reduced density matrix and effective Hamiltonians is proposed to explain the multi-spin effects observed in rotational resonance (R 2 ) nuclear magnetic resonance (NMR) experiments. Employing this approach, the spin system of interest is described in a reduced subspace inclusive of its coupling to the surroundings. Through suitable model systems, the utility of our theory is demonstrated and verified with simulations emerging from both analytic and numerical methods. The analytic results presented in this article provide an accurate description/interpretation of R 2 experimental results and could serve as a test-bed for distinguishing coherent/incoherent effects in solid-state NMR

  7. Unraveling multi-spin effects in rotational resonance nuclear magnetic resonance using effective reduced density matrix theory

    Energy Technology Data Exchange (ETDEWEB)

    SivaRanjan, Uppala; Ramachandran, Ramesh, E-mail: rramesh@iisermohali.ac.in [Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Manauli, P.O. Box-140306, Mohali, Punjab (India)

    2014-02-07

    A quantum-mechanical model integrating the concepts of reduced density matrix and effective Hamiltonians is proposed to explain the multi-spin effects observed in rotational resonance (R{sup 2}) nuclear magnetic resonance (NMR) experiments. Employing this approach, the spin system of interest is described in a reduced subspace inclusive of its coupling to the surroundings. Through suitable model systems, the utility of our theory is demonstrated and verified with simulations emerging from both analytic and numerical methods. The analytic results presented in this article provide an accurate description/interpretation of R{sup 2} experimental results and could serve as a test-bed for distinguishing coherent/incoherent effects in solid-state NMR.

  8. Nuclear Magnetic Resonance Spectroscopy Applications: Proton NMR In Biological Objects Subjected To Magic Angle Spinning

    International Nuclear Information System (INIS)

    Wind, Robert A.; Hu, Jian Zhi

    2005-01-01

    Proton NMR in Biological Objects Submitted to Magic Angle Spinning, In Encyclopedia of Analytical Science, Second Edition (Paul J. Worsfold, Alan Townshend and Colin F. Poole, eds.), Elsevier, Oxford 6:333-342. Published January 1, 2005. Proposal Number 10896

  9. Burnup determination of mass spectrometry for nuclear fuels

    International Nuclear Information System (INIS)

    Zhang Chunhua.

    1987-01-01

    The various methods currently being used in burnup determination of nuclear fuels are studied and reviewed. The mass spectrometry method of destructive testing is discussed emphatically. The burnup determination of mass spectrometry includes heavy isotopic abundance ratio method and isotope dilution mass spectrometry used as burnup indicator for the fission products. The former is applied to high burnup level, but the later to various burnup level. According to experiences, some problems which should be noticed in burnup determination of mass spectrometry are presented

  10. An approach for determining the acceptable levels of nuclear risk

    International Nuclear Information System (INIS)

    1978-03-01

    The objective of this study was to develop a methodology for determining the acceptable levels of risk with respect to nuclear energy. It was concluded that the Atomic Energy Control Board should identify the interest groups that affect its choice of an acceptable level of risk, determine their expectations, and balance the expectations of the various groups such that the resulting acceptable level of risk is still acceptable to the Board. This would be done by interviewing experts on the subject of nuclear safety, developing and pretesting a public questionnaire, and surveying the public on acceptable cost-risk combinations

  11. Using nuclear methods for analyzing materials and determining concentration gradients

    International Nuclear Information System (INIS)

    Darras, R.

    After reviewing the various type of nuclear chemical analysis methods, the possibilities of analysis by activation and direct observation of nuclear reactions are specifically described. These methods make it possible to effect analyses of trace-elements or impurities, even as traces, in materials, with selectivity, accuracy and great sensitivity. This latter property makes them advantageous too for determining major elements in small quantities of available matter. Furthermore, they lend themselves to carrying out superficial analyses and the determination of concentration gradients, given the careful choice of the nature and energy of the incident particles. The paper is illustrated with typical examples of analyses on steels, pure iron, refractory metals, etc [fr

  12. Development of a 3He nuclear spin flip system on an in-situ SEOP 3He spin filter and demonstration for a neutron reflectometer and magnetic imaging technique

    International Nuclear Information System (INIS)

    Hayashida, H; Kira, H; Miyata, N; Akutsu, K; Mizusawa, M; Parker, J D; Matsumoto, Y; Oku, T; Sakai, K; Hiroi, K; Shinohara, T; Takeda, M; Yamazaki, D; Oikawa, K; Harada, M; Ino, T; Imagawa, T; Ohkawara, M; Ohoyama, K; Kakurai, K

    2016-01-01

    We have been developing a 3 He neutron spin filter (NSF) using the spin exchange optical pumping (SEOP) technique. The 3 He NSF provides a high-energy polarized neutron beam with large beam size. Moreover the 3 He NSF can work as a π-flipper for a polarized neutron beam by flipping the 3 He nuclear spin using a nuclear magnetic resonance (NMR) technique. For NMR with the in-situ SEOP technique, the polarization of the laser must be reversed simultaneously because a non-reversed laser reduces the polarization of the spin-flipped 3 He. To change the polarity of the laser, a half-wavelength plate was installed. The rotation angle of the half-wavelength plate was optimized, and a polarization of 97% was obtained for the circularly polarized laser. The 3 He polarization reached 70% and was stable over one week. A demonstration of the 3 He nuclear spin flip system was performed at the polarized neutron reflectometer SHARAKU (BL17) and NOBORU (BL10) at J-PARC. Off-specular measurement from a magnetic Fe/Cr thin film and magnetic imaging of a magnetic steel sheet were performed at BL17 and BL10, respectively. (paper)

  13. Nuclear spin Hall and Klein tunneling effects during oxidation with electric and magnetic field inductions in graphene.

    Science.gov (United States)

    Little, Reginald B; McClary, Felicia; Rice, Bria; Jackman, Corine; Mitchell, James W

    2012-12-14

    The recent observation of the explosive oxidation of graphene with enhancement for decreasing temperature and the requirements for synchronizing oxidants for collective oxidation-reduction (redox) reactions presented a chemical scenario for the thermal harvesting by the magnetic spin Hall Effect. More experimental data are presented to demonstrate such spin Hall Effect by determining the influence of spins of so-called spectator fermionic cations. Furthermore, the so-called spectator bosonic cations are discovered to cause a Klein tunneling effect during the redox reaction of graphene. The Na(+) and K(+), fermionic cations and the Mg(2+) and Ca(2+), bosonic cations were observed and compared under a variety of experimental conditions: adiabatic reactions with initial temperatures (18-22 °C); reactions toward infinite dilution; isothermal reactions under nonadiabatic conditions at low temperature of 18 °C; reactions under paramagnetic O(2) or diamagnetic N(2) atmospheres of different permeabilities; reactions in applied and no applied external magnetic field; and reactions toward excess concentrations of common and uncommon Na(+) and Mg(2+) cations. The observed reaction kinetics and dynamics under these various, diverse conditions are consistent with the spin Hall mechanism, energy harvesting and short time violation of Second Law of Thermodynamics for redox reactions of graphene by the Na(+)K(+) mixture and are consistent with the Klein tunnel mechanism for the redox reactions of graphene by the Mg(2+)Ca(2+) mixture. Mixed spin Hall and Klein tunnel mechanisms are discovered to slow and modulate explosive redox reactions. Such spin Hall Effect also gives explanation of recent tunneling of electrons through boron nitride.

  14. Nanoscale quantum gyroscope using a single 13C nuclear spin coupled with a nearby NV center in diamond

    Science.gov (United States)

    Song, Xuerui; Wang, Liujun; Feng, Fupan; Lou, Liren; Diao, Wenting; Duan, Chongdi

    2018-03-01

    Developing gyroscopes based on quantum systems are important for inertial sensing applications, and its underlying physics is of fundamental interest. In this paper, we proposed a new type of gyroscope based on the Berry phase generated during rotation of the quantum system by using a single 13C nuclear spin coupled with a nearby nitrogen-vacancy center in diamond. Due to the atom-scale size of the quantum system, rotation information can be obtained with high spatial resolution. The gyroscope can be manipulated at room temperature and without the need for a strong magnetic field, which is also beneficial to its further applications.

  15. Efficient calculation of nuclear spin-rotation constants from auxiliary density functional theory

    Energy Technology Data Exchange (ETDEWEB)

    Zuniga-Gutierrez, Bernardo, E-mail: bzuniga.51@gmail.com [Departamento de Ciencias Computacionales, Universidad de Guadalajara, Blvd. Marcelino García Barragán 1421, C.P. 44430 Guadalajara, Jalisco (Mexico); Camacho-Gonzalez, Monica [Universidad Tecnológica de Tecámac, División A2, Procesos Industriales, Carretera Federal México Pachuca Km 37.5, Col. Sierra Hermosa, C.P. 55740 Tecámac, Estado de México (Mexico); Bendana-Castillo, Alfonso [Universidad Tecnológica de Tecámac, División A3, Tecnologías de la Información y Comunicaciones, Carretera Federal México Pachuca Km 37.5, Col. Sierra Hermosa, C.P. 55740 Tecámac, Estado de México (Mexico); Simon-Bastida, Patricia [Universidad Tecnlógica de Tulancingo, División Electromecánica, Camino a Ahuehuetitla No. 301, Col. Las Presas, C.P. 43642 Tulancingo, Hidalgo (Mexico); Calaminici, Patrizia; Köster, Andreas M. [Departamento de Química, CINVESTAV, Avenida Instituto Politécnico Nacional 2508, A.P. 14-740, México D.F. 07000 (Mexico)

    2015-09-14

    The computation of the spin-rotation tensor within the framework of auxiliary density functional theory (ADFT) in combination with the gauge including atomic orbital (GIAO) scheme, to treat the gauge origin problem, is presented. For the spin-rotation tensor, the calculation of the magnetic shielding tensor represents the most demanding computational task. Employing the ADFT-GIAO methodology, the central processing unit time for the magnetic shielding tensor calculation can be dramatically reduced. In this work, the quality of spin-rotation constants obtained with the ADFT-GIAO methodology is compared with available experimental data as well as with other theoretical results at the Hartree-Fock and coupled-cluster level of theory. It is found that the agreement between the ADFT-GIAO results and the experiment is good and very similar to the ones obtained by the coupled-cluster single-doubles-perturbative triples-GIAO methodology. With the improved computational performance achieved, the computation of the spin-rotation tensors of large systems or along Born-Oppenheimer molecular dynamics trajectories becomes feasible in reasonable times. Three models of carbon fullerenes containing hundreds of atoms and thousands of basis functions are used for benchmarking the performance. Furthermore, a theoretical study of temperature effects on the structure and spin-rotation tensor of the H{sup 12}C–{sup 12}CH–DF complex is presented. Here, the temperature dependency of the spin-rotation tensor of the fluorine nucleus can be used to identify experimentally the so far unknown bent isomer of this complex. To the best of our knowledge this is the first time that temperature effects on the spin-rotation tensor are investigated.

  16. Efficient calculation of nuclear spin-rotation constants from auxiliary density functional theory

    International Nuclear Information System (INIS)

    Zuniga-Gutierrez, Bernardo; Camacho-Gonzalez, Monica; Bendana-Castillo, Alfonso; Simon-Bastida, Patricia; Calaminici, Patrizia; Köster, Andreas M.

    2015-01-01

    The computation of the spin-rotation tensor within the framework of auxiliary density functional theory (ADFT) in combination with the gauge including atomic orbital (GIAO) scheme, to treat the gauge origin problem, is presented. For the spin-rotation tensor, the calculation of the magnetic shielding tensor represents the most demanding computational task. Employing the ADFT-GIAO methodology, the central processing unit time for the magnetic shielding tensor calculation can be dramatically reduced. In this work, the quality of spin-rotation constants obtained with the ADFT-GIAO methodology is compared with available experimental data as well as with other theoretical results at the Hartree-Fock and coupled-cluster level of theory. It is found that the agreement between the ADFT-GIAO results and the experiment is good and very similar to the ones obtained by the coupled-cluster single-doubles-perturbative triples-GIAO methodology. With the improved computational performance achieved, the computation of the spin-rotation tensors of large systems or along Born-Oppenheimer molecular dynamics trajectories becomes feasible in reasonable times. Three models of carbon fullerenes containing hundreds of atoms and thousands of basis functions are used for benchmarking the performance. Furthermore, a theoretical study of temperature effects on the structure and spin-rotation tensor of the H 12 C– 12 CH–DF complex is presented. Here, the temperature dependency of the spin-rotation tensor of the fluorine nucleus can be used to identify experimentally the so far unknown bent isomer of this complex. To the best of our knowledge this is the first time that temperature effects on the spin-rotation tensor are investigated

  17. Efficient calculation of nuclear spin-rotation constants from auxiliary density functional theory.

    Science.gov (United States)

    Zuniga-Gutierrez, Bernardo; Camacho-Gonzalez, Monica; Bendana-Castillo, Alfonso; Simon-Bastida, Patricia; Calaminici, Patrizia; Köster, Andreas M

    2015-09-14

    The computation of the spin-rotation tensor within the framework of auxiliary density functional theory (ADFT) in combination with the gauge including atomic orbital (GIAO) scheme, to treat the gauge origin problem, is presented. For the spin-rotation tensor, the calculation of the magnetic shielding tensor represents the most demanding computational task. Employing the ADFT-GIAO methodology, the central processing unit time for the magnetic shielding tensor calculation can be dramatically reduced. In this work, the quality of spin-rotation constants obtained with the ADFT-GIAO methodology is compared with available experimental data as well as with other theoretical results at the Hartree-Fock and coupled-cluster level of theory. It is found that the agreement between the ADFT-GIAO results and the experiment is good and very similar to the ones obtained by the coupled-cluster single-doubles-perturbative triples-GIAO methodology. With the improved computational performance achieved, the computation of the spin-rotation tensors of large systems or along Born-Oppenheimer molecular dynamics trajectories becomes feasible in reasonable times. Three models of carbon fullerenes containing hundreds of atoms and thousands of basis functions are used for benchmarking the performance. Furthermore, a theoretical study of temperature effects on the structure and spin-rotation tensor of the H(12)C-(12)CH-DF complex is presented. Here, the temperature dependency of the spin-rotation tensor of the fluorine nucleus can be used to identify experimentally the so far unknown bent isomer of this complex. To the best of our knowledge this is the first time that temperature effects on the spin-rotation tensor are investigated.

  18. The possibility to determine a constant of spin-orbit interaction by scanning tunneling microscopy method

    International Nuclear Information System (INIS)

    Khotkevich, N.V.; Kolesnichenko, Yu.A.; Vovk, N.P.

    2016-01-01

    The electron tunneling from the quasi-two-dimensional (surface) states with the spin-orbit interaction into bulk-mode states is studied in the framework of a model of an infinitely thin inhomogeneous tunnel magnetic barrier. The influence of the scattering of quasi-two-dimensional electrons by a single magnetic defect on the tunnel current is analyzed. Analytic formulas for the conductance of a tunnel point-contact as a function of its distance from the defect are obtained. It is shown that the analysis of the local magnetization density around the defect by means of spin-polarized scanning tunneling microscopy allows finding the constant of spin orbit interaction.

  19. A method for the accurate determination of the polarization of a neutron beam using a polarized 3He spin filter

    International Nuclear Information System (INIS)

    Greene, G.L.; Thompson, A.K.; Dewey, M.S.

    1995-01-01

    A new method for the accurate determination of the degree of polarization of a neutron beam which has been polarized by transmission through a spin polarized 3 He cell is given. The method does not require the use of an analyzer or spin flipper nor does it require an accurate independent determination of the 3 He polarization. The method provides a continuous on-line determination of the neutron polarization. The method may be of use in the accurate determination of correlation coefficients in neutron beta decay which provide a test of the standard model for the electroweak interaction. The method may also provide an accurate procedure for the calibration of polarized 3 He targets used in medium and high energy scattering experiments. ((orig.))

  20. Study of nuclear isovector spin responses from polarization transfer in (p,n) reactions at intermediate energies

    International Nuclear Information System (INIS)

    Wakasa, Tomotsugu

    1997-01-01

    We have measured a complete set of polarization transfer observables has been measured for quasi-free (p vector, n vector) reactions on 2 H, 6 Li, 12 C, 40 Ca, and 208 Pb at a bombarding energy of 346MeV and a laboratory scattering angle of 22deg (q=1.7 fm -1 ). The polarization transfer observables for all five targets are remarkably similar. These polarization observables yield separated spin-longitudinal (σ·q) and spin-transverse (σxq) nuclear responses. These results are compared to the spin-transverse responses measured in deep-inelastic electron scattering as well as to nuclear responses based on the random phase approximation. Such a comparison reveals an enhancement in the (p vector, n vector) spin-transverse channel, which masks the effect of pionic correlations in the response ratio. Second, the double differential cross sections at θ lab between 0deg and 12.3deg and the polarization transfer D NN at 0deg for the 90 Zr(p,n) reaction are measured at a bombarding energy of 295MeV. The Gamow-Teller(GT) strength B(GT) in the continuum deduced from the L=0 cross section is compared both with the perturbative calculation by Bertsch and Hamamoto and with the second-order random phase approximation calculation by Drozdz et al. The sum of B(GT) values up to 50MeV excitation becomes S β- =28.0±1.6 after subtracting the contribution of the isovector spin-monopole strength. This S β- value of 28.0±1.6 corresponds to about (93±5)% of the minimum value of the sum-rule 3(N-Z)=30. Last, first measurements of D NN (0deg) for (p vector, n vector) reactions at 295MeV yield large negative values up to 50MeV excitation for the 6 Li, 11 B, 12 C, 13 C(p vector, n vector) reactions. DWIA calculations using the Franey and Love (FL) 270MeV interaction reproduce differential cross sections and D NN (0deg) values, while the FL 325MeV interaction yield D NN (0deg) values less negative than the experimental values. (J.P.N.)

  1. New results on spin determination of nanosatellite BLITS from High Repetition Rate SLR data

    Science.gov (United States)

    Kucharski, D.; Kirchner, G.; Lim, H.-C.; Koidl, F.

    2013-03-01

    The nanosatellite BLITS (Ball Lens In The Space) demonstrates a successful design of the new spherical lens type satellite for Satellite Laser Ranging (SLR). The spin parameters of the satellite were calculated from more than 1000 days of SLR data collected from 6 High Repetition Rate (HRR) systems: Beijing, Changchun, Graz, Herstmonceux, Potsdam, Shanghai.Analysis of the 892 passes (September 26, 2009-June 18, 2012) shows precession of the spin axis around orientation of the along track vector calculated at the launch epoch of the satellite RA = 9h16m39s, Dec = 43.1°. The spin period of BLITS remains stable with the mean value Tmean = 5.613 s, RMS = 11 ms. The incident angle between the spin axis and the symmetry axis of the body changes within 60° range.

  2. nuclear and atomic methods applied in the determination of some

    African Journals Online (AJOL)

    NAA is a quantitative and qualitative method for the precise determination of a number of major, minor and trace elements in different types of geological, environmental and biological samples. It is based on nuclear reaction between neutron and target nuclei of a sample material. It is a useful method for the simultaneous.

  3. Determination of 93Zr in nuclear power plant wastes

    DEFF Research Database (Denmark)

    Osváth, Szabolcs; Vajda, Nora; Molnar, Zsuzsa

    2017-01-01

    A radioanalytical method (based on separation using UTEVA columns and ICP-MS measurement) has been used for determination of 93Zr in 37 nuclear power plant samples. As 93Nb might affect the detection of 93Zr, Monte Carlo activation model was used to calculate the expected 93Zr/natZr mass ratio...

  4. /sup 13/C-/sup 13/C spin-spin coupling constants in structural investigations. I. New method of determining the configuration of oximes and their derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Krivdin, L.B.; Shcherbakov, V.V.; Kalabin, G.A.

    1986-07-10

    It was shown that the direct /sup 13/C-/sup 13/C spin-spin coupling constants can be used for the unambiguous identification of the configurational isomers of oximes and their derivatives. The stereospecificity of the constants is explained by the additional contribution from the unshared electron pair of the nitrogen atom to the spin-spin coupling constant between the adjacent carbon nuclei in the cis position.

  5. Magic Angle Spinning NMR Structure Determination of Proteins from Pseudocontact Shifts

    KAUST Repository

    Li, Jianping; Pilla, Kala Bharath; Li, Qingfeng; Zhang, Zhengfeng; Su, Xuncheng; Huber, Thomas; Yang, Jun

    2013-01-01

    Magic angle spinning solid-state NMR is a unique technique to study atomic-resolution structure of biomacromolecules which resist crystallization or are too large to study by solution NMR techniques. However, difficulties in obtaining sufficient number of long-range distance restraints using dipolar coupling based spectra hamper the process of structure determination of proteins in solid-state NMR. In this study it is shown that high-resolution structure of proteins in solid phase can be determined without the use of traditional dipolar-dipolar coupling based distance restraints by combining the measurements of pseudocontact shifts (PCSs) with Rosetta calculations. The PCSs were generated by chelating exogenous paramagnetic metal ions to a tag 4-mercaptomethyl-dipicolinic acid, which is covalently attached to different residue sites in a 56-residue immunoglobulin-binding domain of protein G (GB1). The long-range structural restraints with metal-nucleus distance of up to ∼20 Å are quantitatively extracted from experimentally observed PCSs, and these are in good agreement with the distances back-calculated using an X-ray structure model. Moreover, we demonstrate that using several paramagnetic ions with varied paramagnetic susceptibilities as well as the introduction of paramagnetic labels at different sites can dramatically increase the number of long-range restraints and cover different regions of the protein. The structure generated from solid-state NMR PCSs restraints combined with Rosetta calculations has 0.7 Å root-mean-square deviation relative to X-ray structure. © 2013 American Chemical Society.

  6. Magic Angle Spinning NMR Structure Determination of Proteins from Pseudocontact Shifts

    KAUST Repository

    Li, Jianping

    2013-06-05

    Magic angle spinning solid-state NMR is a unique technique to study atomic-resolution structure of biomacromolecules which resist crystallization or are too large to study by solution NMR techniques. However, difficulties in obtaining sufficient number of long-range distance restraints using dipolar coupling based spectra hamper the process of structure determination of proteins in solid-state NMR. In this study it is shown that high-resolution structure of proteins in solid phase can be determined without the use of traditional dipolar-dipolar coupling based distance restraints by combining the measurements of pseudocontact shifts (PCSs) with Rosetta calculations. The PCSs were generated by chelating exogenous paramagnetic metal ions to a tag 4-mercaptomethyl-dipicolinic acid, which is covalently attached to different residue sites in a 56-residue immunoglobulin-binding domain of protein G (GB1). The long-range structural restraints with metal-nucleus distance of up to ∼20 Å are quantitatively extracted from experimentally observed PCSs, and these are in good agreement with the distances back-calculated using an X-ray structure model. Moreover, we demonstrate that using several paramagnetic ions with varied paramagnetic susceptibilities as well as the introduction of paramagnetic labels at different sites can dramatically increase the number of long-range restraints and cover different regions of the protein. The structure generated from solid-state NMR PCSs restraints combined with Rosetta calculations has 0.7 Å root-mean-square deviation relative to X-ray structure. © 2013 American Chemical Society.

  7. Low-temperature dynamic nuclear polarization with helium-cooled samples and nitrogen-driven magic-angle spinning.

    Science.gov (United States)

    Thurber, Kent; Tycko, Robert

    2016-03-01

    We describe novel instrumentation for low-temperature solid state nuclear magnetic resonance (NMR) with dynamic nuclear polarization (DNP) and magic-angle spinning (MAS), focusing on aspects of this instrumentation that have not been described in detail in previous publications. We characterize the performance of an extended interaction oscillator (EIO) microwave source, operating near 264 GHz with 1.5 W output power, which we use in conjunction with a quasi-optical microwave polarizing system and a MAS NMR probe that employs liquid helium for sample cooling and nitrogen gas for sample spinning. Enhancement factors for cross-polarized (13)C NMR signals in the 100-200 range are demonstrated with DNP at 25K. The dependences of signal amplitudes on sample temperature, as well as microwave power, polarization, and frequency, are presented. We show that sample temperatures below 30K can be achieved with helium consumption rates below 1.3 l/h. To illustrate potential applications of this instrumentation in structural studies of biochemical systems, we compare results from low-temperature DNP experiments on a calmodulin-binding peptide in its free and bound states. Published by Elsevier Inc.

  8. The future of nuclear power determines tasks of Ukraines nuclear fuel cycle

    International Nuclear Information System (INIS)

    Paton, B.Ye.; Neklyudov, I.M.; Krasnorutskij, V.S.

    2013-01-01

    This study provides a brief analysis on the status and development of nuclear power in the world. The present results of physical and engineering development demonstrate that in the longer term, nuclear energy as a key macro energy source is able to secure the existence and development of mankind. Based on the demand for sustainable socioeconomic existence of Ukraine as a state, there have been determined major tasks for the development of nuclear fuel cycle of Ukraine that have to be implemented at present and in the medium term

  9. Devices and process for high-pressure magic angle spinning nuclear magnetic resonance

    Energy Technology Data Exchange (ETDEWEB)

    Hoyt, David W.; Sears, Jesse A.; Turcu, Romulus V. F.; Rosso, Kevin M.; Hu, Jian Zhi

    2017-12-05

    A high-pressure magic angle spinning (MAS) rotor is detailed that includes a high-pressure sample cell that maintains high pressures exceeding 150 bar. The sample cell design minimizes pressure losses due to penetration over an extended period of time.

  10. Charged pion electroproduction, a selective probe of nuclear spin isospin responses

    International Nuclear Information System (INIS)

    Chanfray, G.; Delorme, J.

    1983-05-01

    We study the reaction of pion electroproduction on nuclei in the quasi-elastic region. We show that detection of the pion in the direction of the virtual photon permits the separation of the spin longitudinal and transverse responses through a Rosenbluth plot. Emphasis is also put on consistency between medium effects and gauge invariance

  11. Devices and process for high-pressure magic angle spinning nuclear magnetic resonance

    Science.gov (United States)

    Hoyt, David W; Sears, Jr., Jesse A; Turcu, Romulus V.F.; Rosso, Kevin M; Hu, Jian Zhi

    2014-04-08

    A high-pressure magic angle spinning (MAS) rotor is detailed that includes a high-pressure sample cell that maintains high pressures exceeding 150 bar. The sample cell design minimizes pressure losses due to penetration over an extended period of time.

  12. Characterization of Chemical Exchange Using Relaxation Dispersion of Hyperpolarized Nuclear Spins.

    Science.gov (United States)

    Liu, Mengxiao; Kim, Yaewon; Hilty, Christian

    2017-09-05

    Chemical exchange phenomena are ubiquitous in macromolecules, which undergo conformational change or ligand complexation. NMR relaxation dispersion (RD) spectroscopy based on a Carr-Purcell-Meiboom-Gill pulse sequence is widely applied to identify the exchange and measure the lifetime of intermediate states on the millisecond time scale. Advances in hyperpolarization methods improve the applicability of NMR spectroscopy when rapid acquisitions or low concentrations are required, through an increase in signal strength by several orders of magnitude. Here, we demonstrate the measurement of chemical exchange from a single aliquot of a ligand hyperpolarized by dissolution dynamic nuclear polarization (D-DNP). Transverse relaxation rates are measured simultaneously at different pulsing delays by dual-channel 19 F NMR spectroscopy. This two-point measurement is shown to allow the determination of the exchange term in the relaxation rate expression. For the ligand 4-(trifluoromethyl)benzene-1-carboximidamide binding to the protein trypsin, the exchange term is found to be equal within error limits in neutral and acidic environments from D-DNP NMR spectroscopy, corresponding to a pre-equilibrium of trypsin deprotonation. This finding illustrates the capability for determination of binding mechanisms using D-DNP RD. Taking advantage of hyperpolarization, the ligand concentration in the exchange measurements can reach on the order of tens of μM and protein concentration can be below 1 μM, i.e., conditions typically accessible in drug discovery.

  13. Quantitative determination of spin-dependent quasiparticle renormalization in ferromagnetic 3d metals

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Barriga, Jaime; Varykhalov, Andrei; Fink, Joerg; Rader, Oliver; Duerr, Hermann; Eberhardt, Wolfgang [Bessy GmbH, Berlin (Germany)

    2008-07-01

    Spin dependent low-energy electronic excitations in 3d ferromagnets are of special interest due to the need of a microscopic understanding of the electronic structure of solids. Low-energy electrons (or holes) become dressed by a cloud of excitations resulting in quasiparticles of a finite lifetime and a different effective mass. These type of excitations have been studied by many theoretical methods, and it has been found that because of many body effects no sharp quasiparticle peaks exist for binding energies larger than 2 eV. Interestingly, it has been shown that strong correlation effects could particularly affect majority spin electrons, leading to a pronounced damping of quasiparticles at binding energies around 2 eV and above. In order to give an experimental corroboration to these findings, we have performed a systematic study of the spin-dependent quasiparticle lifetime and band structure of ferromagnetic 3d transition metal surfaces by means of spin and angle-resolved photoemission spectroscopy. On hcp Co(0001), fcc Ni(111) and bcc Fe(110), we have found a more pronounced renormalization of the majority spin quasiparticle spectral weight going from Ni to Co which are both strong ferromagnets. For Fe, a weak ferromagnet, such a process becomes more prominent in the minority channel.

  14. Quantum entanglement analysis of an optically excited coupling of two nuclear spins via a mediator: Combining the quantum concurrence and negativity

    Science.gov (United States)

    Fu, Chenghua; Hu, Zhanning

    2018-03-01

    In this paper, we investigate the characteristics of the nuclear spin entanglement generated by an intermedium with an optically excited triplet. Significantly, the interaction between the two nuclear spins presents to be a direct XY coupling in each of the effective subspace Hamiltonians which are obtained by applying a transformation on the natural Hamiltonian. The quantum concurrence and negativity are discussed to quantitatively describe the quantum entanglement, and a comparison between them can reveal the nature of their relationship. An innovative general equation describing the relationship between the concurrence and negativity is explicitly obtained.

  15. Angular velocity determination of spinning solar sails using only a sun sensor

    Directory of Open Access Journals (Sweden)

    Kun Zhai

    2017-02-01

    Full Text Available The direction of the sun is the easiest and most reliable observation vector for a solar sail running in deep space exploration. This paper presents a new method using only raw measurements of the sun direction vector to estimate angular velocity for a spinning solar sail. In cases with a constant spin angular velocity, the estimation equation is formed based on the kinematic model for the apparent motion of the sun direction vector; the least-squares solution is then easily calculated. A performance criterion is defined and used to analyze estimation accuracy. In cases with a variable spin angular velocity, the estimation equation is developed based on the kinematic model for the apparent motion of the sun direction vector and the attitude dynamics equation. Simulation results show that the proposed method can quickly yield high-precision angular velocity estimates that are insensitive to certain measurement noises and modeling errors.

  16. Spin and orbital magnetisation densities determined by Compton scattering of photons

    International Nuclear Information System (INIS)

    Collins, S.P.; Laundy, D.; Cooper, M.J.; Lovesey, S.W.; Uppsala Univ.

    1990-03-01

    Compton scattering of a circularly polarized photon beam is shown to provide direct information on orbital and spin magnetisation densities. Experiments are reported which demonstrate the feasibility of the method by correctly predicting the ratio of spin and orbital magnetisation components in iron and cobalt. A partially polarised beam of 45 keV photons from the Daresbury Synchrotron Radiation Source produces charge-magnetic interference scattering which is measured by a field-difference method. Theory shows that the interference cross section contains the Compton profile of polarised electrons modulated by a structure factor which is a weighted sum of spin and orbital magnetisations. In particular, the scattering geometry for which the structure factor vanishes yields a unique value for the ratio of the magnetisation densities. Compton scattering, being an incoherent process, provides data on total unit cell magnetisations which can be directly compared with bulk data. In this respect, Compton scattering complements magnetic neutron and photon Bragg diffraction. (author)

  17. Spin motion determination of the Envisat satellite through laser ranging measurements from a single pass measured by a single station

    Science.gov (United States)

    Pittet, Jean-Noël; Šilha, Jiří; Schildknecht, Thomas

    2018-02-01

    The Satellite Laser Ranging (SLR) technology is used to accurately determine the position of space objects equipped with so-called retro-reflectors or retro-reflector arrays (RRA). This type of measurement allows to measure the range to the spacecraft with high precision, which leads to determination of very accurate orbits for these targets. Non-active spacecraft, which are not attitude controlled any longer, tend to start to spin or tumble under influence of the external and internal torques and forces. If the return signal is measured for a non-spherical non-active rotating object, the signal in the range residuals with respect to the reference orbit is more complex. For rotating objects the return signal shows an oscillating pattern or patterns caused by the RRA moving around the satellite's centre of mass. This behaviour is projected onto the radial component measured by the SLR. In our work, we demonstrate how the SLR ranging technique from one sensor to a satellite equipped with a RRA can be used to precisely determine its spin motion during one passage. Multiple SLR measurements of one target over time allow to accurately monitor spin motion changes which can be further used for attitude predictions. We show our solutions of the spin motion determined for the non-active ESA satellite Envisat obtained from measurements acquired during years 2013-2015 by the Zimmerwald SLR station, Switzerland. All the necessary parameters are defined for our own so-called point-like model which describes the motion of a point in space around the satellite centre of mass.

  18. Self-consistent determination of quasiparticle properties in nuclear matter

    International Nuclear Information System (INIS)

    Oset, E.; Palanques-Mestre, A.

    1981-01-01

    The self-energy of nuclear matter is calculated by directing the attention to the energy and momentum dependent pieces which determine the quasiparticle properties. A microscopic approach is followed which starts from the boson exchange picture for the NN interaction, then the π-and p-mesons are shown to play a major role in the nucleon renormalization. The calculation is done self-consistently and the effective mass and pole strength determined as a function of the nuclear density and momentum. Particular emphasis is put on the non-static character of the interaction and its consequences. Finally a comparison is made with other calculations and with experimental results. The consequences of the nucleon renormalization in pion condensation are also examined with the result that the critical density is pushed up appreciably. (orig.)

  19. Spin-Mechatronics

    Science.gov (United States)

    Matsuo, Mamoru; Saitoh, Eiji; Maekawa, Sadamichi

    2017-01-01

    We investigate the interconversion phenomena between spin and mechanical angular momentum in moving objects. In particular, the recent results on spin manipulation and spin-current generation by mechanical motion are examined. In accelerating systems, spin-dependent gauge fields emerge, which enable the conversion from mechanical angular momentum into spins. Such a spin-mechanical effect is predicted by quantum theory in a non-inertial frame. Experiments which confirm the effect, i.e., the resonance frequency shift in nuclear magnetic resonance, the stray field measurement of rotating metals, and electric voltage generation in liquid metals, are discussed.

  20. Determination of chlorine in nuclear-grade uranium compounds

    International Nuclear Information System (INIS)

    Yang Chunqing; Liu Fuyun; Huang Dianfan

    1988-01-01

    The determination of chlorine in nuclear-grade uranium compounds is discribed. Chlorine is separated from uranium oxide pyrohydrolytically with stream of wet oxygen in a furnace at 800 ∼ 900 deg C. Chlorine is volatilized as hydrochloric acid, absorbed in a dilute alkaline solution and measured with chlorine-selective electrode. This method covers the concentration range of 10 ∼ 500 pm chlorine in uranium oxide. Precision of at least ± 10% and recovery of 85 ∼ 108% have been reported

  1. Nuclear spin-magnon relaxation in two-dimensional Heisenberg antiferromagnets

    International Nuclear Information System (INIS)

    Wal, A.J. van der.

    1979-01-01

    Experiments are discussed of the dependence on temperature and magnetic field of the longitudinal relaxation time of single crystals of antiferromagnetically ordered insulators, i.e. in the temperature range below the Neel temperature and in fields up to the spin-flop transition. The experiments are done on 19 F nuclei in the Heisenberg antiferromagnets K 2 MnF 4 and K 2 NiF 4 , the magnetic structure of which is two-dimensional quadratic. (C.F.)

  2. Study on gamma-ray transitions induced in nuclear spin isomers by X-rays

    International Nuclear Information System (INIS)

    Yang Tianli; Hao Fanhua; Liu Xiaoya; Gong Jian

    2005-10-01

    The development of induced X-ray has been summarized for high spin isomer. the radiation model, transition mechanism and experiment plan have been introduced. The experiments about isomers 180m Ta and 178m2 Hf have been narrated in detail respectively, and the analysis between those results have been obtained. The reasonable theoretical frame and good experimental data have offered the powerful technique base for pumping γ-ray laser with low energy. (authors)

  3. Four-Component Relativistic Density-Functional Theory Calculations of Nuclear Spin-Rotation Constants: Relativistic Effects in p-Block Hydrides.

    Science.gov (United States)

    Komorovsky, Stanislav; Repisky, Michal; Malkin, Elena; Demissie, Taye B; Ruud, Kenneth

    2015-08-11

    We present an implementation of the nuclear spin-rotation (SR) constants based on the relativistic four-component Dirac-Coulomb Hamiltonian. This formalism has been implemented in the framework of the Hartree-Fock and Kohn-Sham theory, allowing assessment of both pure and hybrid exchange-correlation functionals. In the density-functional theory (DFT) implementation of the response equations, a noncollinear generalized gradient approximation (GGA) has been used. The present approach enforces a restricted kinetic balance condition for the small-component basis at the integral level, leading to very efficient calculations of the property. We apply the methodology to study relativistic effects on the spin-rotation constants by performing calculations on XHn (n = 1-4) for all elements X in the p-block of the periodic table and comparing the effects of relativity on the nuclear SR tensors to that observed for the nuclear magnetic shielding tensors. Correlation effects as described by the density-functional theory are shown to be significant for the spin-rotation constants, whereas the differences between the use of GGA and hybrid density functionals are much smaller. Our calculated relativistic spin-rotation constants at the DFT level of theory are only in fair agreement with available experimental data. It is shown that the scaling of the relativistic effects for the spin-rotation constants (varying between Z(3.8) and Z(4.5)) is as strong as for the chemical shieldings but with a much smaller prefactor.

  4. Determination of the physical parameters distribution in spin transition compounds using experimental FORC diagram

    International Nuclear Information System (INIS)

    Tanasa, Radu; Linares, Jorge; Enachescu, Cristian; Varret, Francois; Stancu, Alexandru

    2006-01-01

    Spin transitions materials are characterized with an innovative experimental method, i.e. first-order reversal curve (FORC) diagram. The interpretation of the results is performed in the framework of two different Ising-like models: a mean-field approach and the exact solution done by the Monte Carlo entropic sampling (MCES) method

  5. Criteria for accurate determination of the magnon relaxation length from the nonlocal spin Seebeck effect

    NARCIS (Netherlands)

    Shan, Juan; Cornelissen, Ludo Johannes; Liu, Jing; Ben Youssef, J.; Liang, Lei; van Wees, Bart

    2017-01-01

    The nonlocal transport of thermally generated magnons not only unveils the underlying mechanism of the spin Seebeck effect, but also allows for the extraction of the magnon relaxation length (λm) in a magnetic material, the average distance over which thermal magnons can propagate. In this study, we

  6. Nuclear fuel technology - Determination of uranium in uranyl nitrate solutions of nuclear grade quality - Gravimetric method

    International Nuclear Information System (INIS)

    2003-01-01

    This International Standard specifies a precise and accurate gravimetric method for determining the mass fraction of uranium in uranyl nitrate solutions of nuclear grade quality containing more than 100 g/kg of uranium. Non-volatile impurities influence the accuracy of the method

  7. US Nuclear Non-Proliferation Policy: impact on exports and nuclear industry could not be determined

    International Nuclear Information System (INIS)

    Staats, E.B.

    1980-01-01

    The Nuclear Non-Proliferation Act of 1978 established new measures to prevent the diversion to weapons use of peaceful nuclear exports. It also created a policy to confirm US reliability as a nuclear supplier. GAO did not identify any export sales lost as a result of the Act, but did find indications that nonprofileration policies can influence export sales. Based on avavailable data, GAO could not determine the impact of the Act on the competitiveness of US nuclear exports. However, US companies are at some disadvantage because importers perceive that implementation of the Act may result in delayed export licenses. The United States dominated the nuclear export market through the early 1970s. However, foreign competitors, some aided by US technology transfers, emerged to monopolize home markets and complete for third-country business. Further, the market has been depressed since 1974 and prospects for US nuclear power plant exports have dimmed greatly. However, US companies continue to view exports as important to sustain production capacity

  8. Nuclear magnetic relaxation induced by exchange-mediated orientational randomization: longitudinal relaxation dispersion for a dipole-coupled spin-1/2 pair.

    Science.gov (United States)

    Chang, Zhiwei; Halle, Bertil

    2013-10-14

    In complex biological or colloidal samples, magnetic relaxation dispersion (MRD) experiments using the field-cycling technique can characterize molecular motions on time scales ranging from nanoseconds to microseconds, provided that a rigorous theory of nuclear spin relaxation is available. In gels, cross-linked proteins, and biological tissues, where an immobilized macromolecular component coexists with a mobile solvent phase, nuclear spins residing in solvent (or cosolvent) species relax predominantly via exchange-mediated orientational randomization (EMOR) of anisotropic nuclear (electric quadrupole or magnetic dipole) couplings. The physical or chemical exchange processes that dominate the MRD typically occur on a time scale of microseconds or longer, where the conventional perturbation theory of spin relaxation breaks down. There is thus a need for a more general relaxation theory. Such a theory, based on the stochastic Liouville equation (SLE) for the EMOR mechanism, is available for a single quadrupolar spin I = 1. Here, we present the corresponding theory for a dipole-coupled spin-1/2 pair. To our knowledge, this is the first treatment of dipolar MRD outside the motional-narrowing regime. Based on an analytical solution of the spatial part of the SLE, we show how the integral longitudinal relaxation rate can be computed efficiently. Both like and unlike spins, with selective or non-selective excitation, are treated. For the experimentally important dilute regime, where only a small fraction of the spin pairs are immobilized, we obtain simple analytical expressions for the auto-relaxation and cross-relaxation rates which generalize the well-known Solomon equations. These generalized results will be useful in biophysical studies, e.g., of intermittent protein dynamics. In addition, they represent a first step towards a rigorous theory of water (1)H relaxation in biological tissues, which is a prerequisite for unravelling the molecular basis of soft

  9. Spectrally resolved hyperfine interactions between polaron and nuclear spins in organic light emitting diodes: Magneto-electroluminescence studies

    Energy Technology Data Exchange (ETDEWEB)

    Crooker, S. A.; Kelley, M. R.; Martinez, N. J. D.; Nie, W.; Mohite, A.; Nayyar, I. H.; Tretiak, S.; Smith, D. L. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Liu, F.; Ruden, P. P. [University of Minnesota, Minneapolis, Minnesota 55455 (United States)

    2014-10-13

    We use spectrally resolved magneto-electroluminescence (EL) measurements to study the energy dependence of hyperfine interactions between polaron and nuclear spins in organic light-emitting diodes. Using layered devices that generate bright exciplex emission, we show that the increase in EL emission intensity I due to small applied magnetic fields of order 100 mT is markedly larger at the high-energy blue end of the EL spectrum (ΔI/I ∼ 11%) than at the low-energy red end (∼4%). Concurrently, the widths of the magneto-EL curves increase monotonically from blue to red, revealing an increasing hyperfine coupling between polarons and nuclei and directly providing insight into the energy-dependent spatial extent and localization of polarons.

  10. Contrast generation in the nuclear-spin tomography by pulsed ultrasound; Kontrasterzeugung in der Kernspintomographie durch gepulsten Ultraschall

    Energy Technology Data Exchange (ETDEWEB)

    Oehms, Ole Benjamin

    2009-07-10

    In the framework of this thesis a combined method of ultrasound and nuclear-spin tomography is presented. Via ultrasound pulses by the sound-radiation force in liquids and tissue phantoms motions are generated, which depend on ther viscoelastic properties. This motions are made visible by a motion-sensitive tomograph sequence in the phase image of the tomograph in form of a phase change. The first measurements on simple phantoms and liquids are presented. [German] Im Rahmen dieser Arbeit wird eine kombinierte Methode aus Ultraschall und Kernspintomographie vorgestellt. Ueber Ultraschallpulse werden durch die Schallstrahlungskraft in Fluessigkeiten und Gewebephantomen Bewegungen erzeugt, die von den viskoelastischen Eigenschaften abhaengen. Diese Bewegungen werden mit einer bewegungssensitiven Tomographensequenz im Phasenbild des Tomographen in Form einer Phasenaenderung sichtbar gemacht. Die ersten Messungen an einfachen Phantomen und Fluessigkeiten werden praesentiert. (orig.)

  11. Model for the determination of the nuclear fuel

    International Nuclear Information System (INIS)

    Azevedo, J.B.L. de.

    1979-09-01

    The Nuclear Fuel Cost Determination Model, MDCN, is a computer program written in FORTRAN IV, meant to calculate the nuclear fuel cost employed in nuclear power plants for heat or electrical energy generation. The economic principles employed are: capital recovery proportional to the energy generation, present worth method for the equivalence of costs and levelized fuel cost calculation. This model presents some inovations in comparasion with other models already in use, since it takes into account refueling and maintenance outages and it does not fix the fuel cycle steps (industrial processes and services). The first inovation leads to a more realistic cost determination and permits the model to be employed together with hydrothermal power system simulators; the second permits a more flexible use of the model, like economical comparison of fuel cycles. Complementing the main body of the work, where the theoretical fundamentals and methodology necessary to the calculation developments are discussed, annexes are included treating in greater detail some specific itens; the more important ones refer to the FORTRAN program, input data preparation and example. (Author) [pt

  12. Thermal coupling in low fields between the nuclear and electronic spins in Tm2+ doped CaF2

    International Nuclear Information System (INIS)

    Urbina, Cristian.

    1977-01-01

    It is shown that in a CaF 2 crystal doped with divalent thulium ions there is in low fields, a thermal coupling between the electron magnetic moments of Tm 2+ and the nuclear moments of 19 F. When these ones have been lowered down to temperature through dynamical high-field polarization and adiabatic demagnetization in succession the resulting polarisation of the formed ones can overstep their original polarization in high field. A trial is given to explain this Zeeman electronic energy cooling through nuclear Zeeman energy with invoking a thermal coupling between both systems through the spin-spin electronic interaction but no theoretical model is developed in view of a quantitative explanation of the dynamics of such a process. The magnetic resonance spectrum of Tm 2 + in low field is also investigated: an important shift and narrowing of the electron resonance line in low field are obtained when 19 F nuclei are very cold. This special spectral characters are explained as due to magnetic interactions between electronic impurities and the neighbouring 19 F nuclei and a theoretical model is developed (based on the local Weiss field approximation) which explains rather well the changes in the spectral shift as a function of the 19 F nucleus temperature. A second theoretical model has also been developed in view of a quantitative explanation of both the narrowing and shift of the spectrum, but its prediction disagree with the experimental results. It is shown that in low fieldsx it is possible to get rid of paramagnetic impurities after they have been reused as reducing agents for 19 F nucleus entropy populating at about 80%, a non magnetic metastable state with these impurities [fr

  13. A knowledge based method for nuclear plant loading pattern determination

    International Nuclear Information System (INIS)

    Dauboin, P.

    1990-01-01

    This paper deals with the design of a knowledge based system for solving an industrial problem which occurs in nuclear fuel management. The problem lies in determining satisfactory loading patterns for nuclear plants. Its primary feature consists in the huge search space involved. Conventional resolution processes are formally defined and analyzed: there is no general algorithm which guarantees to always provide a reasonable solution in each situation. We propose a new approach to solve this constrained search problem using domain-specific knowledge and general constraint-based heuristics. During a preprocessing step, a problem dependent search algorithm is designed. This procedure is then automatically implemented in FORTRAN. The generated routines have proved to be very efficient finding solutions which could not have been provided using logic programming. A prototype expert system has already been applied to actual reload pattern searches. While combining efficiency and flexibility, this knowledge based system enables human experts to rapidly match new constraints and requirements

  14. Spin-locking of half-integer quadrupolar nuclei in nuclear magnetic resonance of solids: second-order quadrupolar and resonance offset effects.

    Science.gov (United States)

    Ashbrook, Sharon E; Wimperis, Stephen

    2009-11-21

    Spin-locking of spin I=3/2 and I=5/2 nuclei in the presence of small resonance offset and second-order quadrupolar interactions has been investigated using both exact and approximate theoretical and experimental nuclear magnetic resonance (NMR) approaches. In the presence of second-order quadrupolar interactions, we show that the initial rapid dephasing that arises from the noncommutation of the state prepared by the first pulse and the spin-locking Hamiltonian gives rise to tensor components of the spin density matrix that are antisymmetric with respect to inversion, in addition to those symmetric with respect to inversion that are found when only a first-order quadrupolar interaction is considered. We also find that spin-locking of multiple-quantum coherence in a static solid is much more sensitive to resonance offset than that of single-quantum coherence and show that good spin-locking of multiple-quantum coherence can still be achieved if the resonance offset matches the second-order shift of the multiple-quantum coherence in the appropriate reference frame. Under magic angle spinning (MAS) conditions, and in the "adiabatic" limit, we demonstrate that rotor-driven interconversion of central-transition single- and three-quantum coherences for a spin I=3/2 nucleus can be best achieved by performing the spin-locking on resonance with the three-quantum coherence in the three-quantum frame. Finally, in the "sudden" MAS limit, we show that spin I=3/2 spin-locking behavior is generally similar to that found in static solids, except when the central-transition nutation rate matches a multiple of the MAS rate and a variety of rotary resonance phenomena are observed depending on the internal spin interactions present. This investigation should aid in the application of spin-locking techniques to multiple-quantum NMR of quadrupolar nuclei and of cross-polarization and homonuclear dipolar recoupling experiments to quadrupolar nuclei such as (7)Li, (11)B, (17)O, (23)Na, and

  15. chemical determination of burnup ratio in nuclear fuels

    International Nuclear Information System (INIS)

    Guereli, L.

    1997-01-01

    Measurements of the extent of fission are important to determine the irradiation performance of a nuclear fuel. The energy released per unit mass of uranium (burnup) can be determined from measurement of the percent of heavy atoms that have fissioned during irradiation.The preferred method for this determination is choosing a suitable fission monitor (usually ''1''4''8Nd) and its determination after separation from the fuel matrix. In thermal reactor fuels where the only heavy element in the starting material is uranium, uranium depletion can be used for burnup determination. ''2''3''5U depletion method requires measurement of uranium isotopic ratios of both irradiated and unirradiated fuel. Isotopic ratios can be determined by thermal ionization mass spectrometer following separation of uranium from the fuel matrix. Separation procedures include solvent extraction, ion exchange and anion exchange chromatography. Another fission monitor used is ''1''3''9La determination by HPLC. Because La is monoisotopic (''1''3''9La) in the fuel, it can be determined by chemical analysis techniques

  16. Nuclear magnetic relaxation induced by exchange-mediated orientational randomization: longitudinal relaxation dispersion for spin I = 1.

    Science.gov (United States)

    Nilsson, Tomas; Halle, Bertil

    2012-08-07

    The frequency dependence of the longitudinal relaxation rate, known as the magnetic relaxation dispersion (MRD), can provide a frequency-resolved characterization of molecular motions in complex biological and colloidal systems on time scales ranging from 1 ns to 100 μs. The conformational dynamics of immobilized proteins and other biopolymers can thus be probed in vitro or in vivo by exploiting internal water molecules or labile hydrogens that exchange with a dominant bulk water pool. Numerous water (1)H and (2)H MRD studies of such systems have been reported, but the widely different theoretical models currently used to analyze the MRD data have resulted in divergent views of the underlying molecular motions. We have argued that the essential mechanism responsible for the main dispersion is the exchange-mediated orientational randomization (EMOR) of anisotropic nuclear (electric quadrupole or magnetic dipole) couplings when internal water molecules or labile hydrogens escape from orientationally confining macromolecular sites. In the EMOR model, the exchange process is thus not just a means of mixing spin populations but it is also the direct cause of spin relaxation. Although the EMOR theory has been used in several studies to analyze water (2)H MRD data from immobilized biopolymers, the fully developed theory has not been described. Here, we present a comprehensive account of a generalized version of the EMOR theory for spin I = 1 nuclides like (2)H. As compared to a previously described version of the EMOR theory, the present version incorporates three generalizations that are all essential in applications to experimental data: (i) a biaxial (residual) electric field gradient tensor, (ii) direct and indirect effects of internal motions, and (iii) multiple sites with different exchange rates. In addition, we describe and assess different approximations to the exact EMOR theory that are useful in various regimes. In particular, we consider the experimentally

  17. Determining the orientation and spin period of TOPEX/Poseidon satellite by a photometric method

    Science.gov (United States)

    Kudak, V. I.; Epishev, V. P.; Perig, V. M.; Neybauer, I. F.

    2017-07-01

    We present the results of photometric observations of the TOPEX/Poseidon satellite performed during 2008-2016. The satellite become space debris after a failure in January, 2006, in a low Earth orbit. In the Laboratory of Space Research of Uzhhorod National University 73 light curves of the spacecraft were obtained. Standardization of photometric light curves is briefly explained. We have calculated the color indices of reflecting surfaces and the spin rate change. The general tendency of the latter is described by an exponential decay function. The satellite spin periods based on 126 light curves (including 53 light curves from the MMT-9 project operating since 2014) were taken into account. In 2016 the period of its own rotation reached its minimum of 10.6 s. A method to derive the direction of the spin axis of an artificial satellite and the angles of the light scattered by its surface has been developed in the Laboratory of Space Research of Uzhhorod National University. We briefly describe the "Orientation" program used for these purposes. The orientation of the TOPEX/Poseidon satellite in mid-2016 is given. The angle of precession β = 45°-50° and period of precession P pr = 141.5 s have been defined. The reasons for the identified nature of the satellite's own rotation have been found. They amount to the perturbation caused by a deviation of the Earth gravity field from a central-symmetric shape and the presence of moving parts on the satellite.

  18. Floating Characteristics of Rudders and Elevators in Spinning Attitudes as Determined From Hinge-Moment-Coefficient Data With Application to Personal-Owner-Type Airplanes

    National Research Council Canada - National Science Library

    Bihrle, William

    1950-01-01

    A study was made of available rudder and elevator hinge-moment-coefficient-coefficient data in order to determine the floating characteristics of various types of rudders and elevators in spinning attitudes...

  19. Determination of 36Cl in nuclear waste from reactor decommissioning

    DEFF Research Database (Denmark)

    Hou, Xiaolin; Frøsig, Lars; Nielsen, Sven Poul

    2007-01-01

    An analytical method for the determination of Cl-36 in nuclear waste such as graphite, heavy concrete, steel, aluminum, and lead was developed. Several methods were investigated for decomposing the samples. AgCl precipitation was used to separate Cl-36 from the matrix elements, followed by ion......-exchange chromatography to remove interfering radionuclides. The purified Cl-36 was then measured by liquid scintillation counting. The chemical yield of chlorine, as measured by ICPMS, is above 70% and the decontamination factors for all interfering radionuclides are greater than 10(6). The detection limit...

  20. Determination of palladium in biological samples applying nuclear analytical techniques

    International Nuclear Information System (INIS)

    Cavalcante, Cassio Q.; Sato, Ivone M.; Salvador, Vera L. R.; Saiki, Mitiko

    2008-01-01

    This study presents Pd determinations in bovine tissue samples containing palladium prepared in the laboratory, and CCQM-P63 automotive catalyst materials of the Proficiency Test, using instrumental thermal and epithermal neutron activation analysis and energy dispersive X-ray fluorescence techniques. Solvent extraction and solid phase extraction procedures were also applied to separate Pd from interfering elements before the irradiation in the nuclear reactor. The results obtained by different techniques were compared against each other to examine sensitivity, precision and accuracy. (author)

  1. Determination of air pollutants by nuclear chemical analysis

    International Nuclear Information System (INIS)

    Lesny, J.; Toelgyessy, J.

    1975-01-01

    Nuclear analytical methods are discussed with a view to their applicability in the determination of air pollutants. It is shown that some methods (use of radioactive kryptonates in automatic analyzers, application of activation analysis, X-ray fluorescence methods) are developed in theory and proven in practice in such an extent to be widely used in the near future in the control of the environment. Many other methods are becoming increasingly important for the solution of specific problems of environmental protection (such as the control of sudden environmental contamination in the proximity of chemical plants and industrial centers). (author)

  2. Nuclear spin relaxation due to hydrogen diffusion in b.c.c. metals

    International Nuclear Information System (INIS)

    Faux, D.A.; Hall, C.K.

    1989-01-01

    We present Monte Carlo simulation results for the proton-proton contribution to the T 1 -1 relaxation rate for hydrogen spins diffusing on the tetrahedral sites of a b.c.c. metal. It is assumed that each hydrogen blocks all sites to the zeroth (no multiple-occupancy), second or third neighbour and that longer-range interactions may be neglected. Comparisons are made to the BPP and Torrey models. It is found that both the BPP and Torrey models give reasonable values for the peak height but that their predictions for the peak position and the high- and low-temperature limit are in error, particularly for large blocking distances. (orig.)

  3. Effect of nuclear spin on chemical reactions and internal molecular rotation

    International Nuclear Information System (INIS)

    Sterna, L.L.

    1980-12-01

    Part I of this dissertation is a study of the magnetic isotope effect, and results are presented for the separation of 13 C and 12 C isotopes. Two models are included in the theoretical treatment of the effect. In the first model the spin states evolve quantum mechanically, and geminate recombination is calculated by numerically integrating the collision probability times the probability the radical pair is in a singlet state. In the second model the intersystem crossing is treated via first-order rate constants which are average values of the hyperfine couplings. Using these rate constants and hydrodynamic diffusion equations, an analytical solution, which accounts for all collisions, is obtained for the geminate recombination. The two reactions studied are photolysis of benzophenone and toluene and the photolytic decomposition of dibenzylketone (1,3-diphenyl-2-propanone). No magnetic isotope effect was observed in the benzophenone reaction. 13 C enrichment was observed for the dibenzylketone reaction, and this enrichment was substantially enhanced at intermediate viscosities and low temperatures. Part II of this dissertation is a presentation of theory and results for the use of Zeeman spin-lattice relaxation as a probe of methyl group rotation in the solid state. Experimental results are presented for the time and angular dependences of rotational polarization, the methyl group magnetic moment, and methyl-methyl steric interactions. The compounds studied are 2,6-dimethylphenol, methyl iodide, 1,4,5,8-tetramethylanthracene, 1,4,5,8-tetramethylnaphthalene, 1,2,4,5-tetramethylbenzene, and 2,3-dimethylmaleicanhydride

  4. The role of the axial anomaly in determining spin-dependent parton distributions

    International Nuclear Information System (INIS)

    Carlitz, R.D.; Collins, J.C.; Mueller, A.H.

    1989-01-01

    It is shown that the forward matrix elements of j 5 μ , the flavor singlet axial vector current, do not measure the helicity carried by quarks and anti-quarks but also include a spin-dependent gluonic component due to the anomaly. Detailed phenomenological and field theoretic reasons are given for the necessity of a gluonic component in the matrix element of j 5 μ . The first higher order corrections to the basic box and triangle graphs are discussed and shown not to modify the conclusions drawn in the leading order calculation. We close with a few comments on the possible phenomenological implications of the anomalous contribution. 25 refs., 6 figs

  5. Single-Spin Polarization Effects and the Determination of Timelike Proton Form Factors

    Energy Technology Data Exchange (ETDEWEB)

    Brodsky, S

    2003-10-24

    We show that measurements of the proton's polarization in e{sup +}e{sup -} {yields} p{bar p} strongly discriminate between analytic forms of models which fit the proton form factors in the spacelike region. In particular, the single-spin asymmetry normal to the scattering plane measures the relative phase difference between the timelike G{sub E} and G{sub M} form factors. The expected proton polarization in the timelike region is large, of order of several tens of percent.

  6. Determination of acceptable risk criteria for nuclear waste management

    International Nuclear Information System (INIS)

    Cohen, J.J.

    1977-01-01

    The initial phase of the work performed during FY 1977 consisted of performing a ''scoping'' study to define issues, determine an optimal methodology for their resolution, and compile a data base for acceptable risk criteria development. The issues, spanning technical, psychological, and ethical dimensions, were categorized in seven major areas: (1) unplanned or accidental events, (2) present vs future risks, (3) institutional controls and retrievability, (4) dose-response mechanism and uncertainty, (5) spatial distribution of exposed populations, (6) different types of nuclear wastes, and (7) public perception. The optimum methodology for developing ARC was determined to be multi-attribute decision analysis encompassing numerous specific techniques for choosing, from among several alternatives, the optimal course of action when the alternatives are constrained to meet specified attributes. The data base developed during the study comprises existing regulations and guidelines, maximum permissible dose, natural geologic hazards, nonradioactive hazardous waste practices, bioethical perspectives, and data from an opinion survey

  7. Determination of plutonium 241 in solutions of nuclear wastes

    International Nuclear Information System (INIS)

    Raymond, A.; Bilcot, J.B.; Poletiko, C.

    1990-09-01

    Determination of plutonium 241 in nuclear wastes is important because of long period and high energy of some daughter products. In this report are presented two quantitative analysis methods using both scintillation techniques: A complete method, in any case, by selective extraction of plutonium on an anionic resin allowing simultaneous determination of Pu 241 and the sum of other plutonium isotopes; a simplified method when alpha activity is higher than beta/gamma activity by liquid extraction with TTA. These methods are applied for analysis of 4 waste types: cement encapsulated wastes, bitumen encapsulated wastes, incineration ashes, leaching of encapsulated incineration ashes. In these 4 examples, Pu 241 activity is equal or higher than the sum of alpha plutonium isotope activity. Separation efficiency, measured from Pu 239 or with Pu 236 as tracer, is between 90 and 99% [fr

  8. Determination of acceptable risk criteria for nuclear waste management

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, J.J.

    1977-10-21

    The initial phase of the work performed during FY 1977 consisted of performing a ''scoping'' study to define issues, determine an optimal methodology for their resolution, and compile a data base for acceptable risk criteria development. The issues, spanning technical, psychological, and ethical dimensions, were categorized in seven major areas: (1) unplanned or accidental events, (2) present vs future risks, (3) institutional controls and retrievability, (4) dose-response mechanism and uncertainty, (5) spatial distribution of exposed populations, (6) different types of nuclear wastes, and (7) public perception. The optimum methodology for developing ARC was determined to be multi-attribute decision analysis encompassing numerous specific techniques for choosing, from among several alternatives, the optimal course of action when the alternatives are constrained to meet specified attributes. The data base developed during the study comprises existing regulations and guidelines, maximum permissible dose, natural geologic hazards, nonradioactive hazardous waste practices, bioethical perspectives, and data from an opinion survey.

  9. Determination of soluble carbon in nuclear grade boron carbide

    International Nuclear Information System (INIS)

    Vega Bustillos, J.O.; Gomes, R.; Camaro, J.; Zorzetto, F.; Domingues, P.; Riella, H.

    1990-05-01

    The present work describes two different techniques (manometric and wet chemical) for the soluble carbon determination in nuclear grade boron carbide. The techniques are based on the reaction of the boron carbide with a sulfocromic mixture, generating CO 2 . The techniques differ on the mode they do the measurement of CO 2 produced. By wet chemical technique the CO 2 is absorved in a barium hydroxide solution and is determinated by titration. In the manometric technique the CO 2 gas is measured using a McLeod gauge. The gas produced by the latter technique is analysed by mass spectrometry. The details of the analytical technique and the data obtained are discussed. (author) [pt

  10. Subcriticality determination of nuclear fuel assembly by Mihalczo method

    International Nuclear Information System (INIS)

    Yamane, Yoshihiro; Watanabe, Shoji; Nishina, Kojiro; Miyoshi, Yoshinori; Suzaki, Takenori; Kobayashi, Iwao.

    1986-01-01

    To establish a technique of on-site subcriticality determination suitable for the criticality safety management of nuclear fuel assembly, the applicability of the method proposed by Mihalczo was examined with the Tank-type Critical Assembly (TCA) of the Japan Atomic Energy Research Institute. In the Mihalczo method, cross power spectral densities and auto power spectral densities are evaluated from the output currents of an ionization chamber containing 252 Cf neutron source and two neutron detectors. The principle of this method is that the spectral ratio formed by the power spectral densities mentioned can be related to the subcriticality by the help of a stochastic theory. Throughout our data processing, an improved formula taking account of the neutron extinction at a detection process was used. Up to the subcriticality of 15 dollars, the Mihalczo method agreed with the water-level worth method, which has been a standard method of reactivity determination at the TCA facility. The systems treated in the present report hold symmetry concerning the nuclear fuel configuration and the 252 Cf chamber position. It was clarified that, contrary to Mihalczo's assertion, the factor converting the spectral ratio to a subcriticality depends on subcriticality itself. (author)

  11. India and Iran's nuclear issue: the three policy determinants

    International Nuclear Information System (INIS)

    Rajiv, S. Samuel C.

    2011-01-01

    Three broad policy determinants can be discerned in Indian reactions to the Iranian nuclear issue. These include: 'strategic autonomy' as it relates to Indian foreign policy decision making; concerns regarding 'regional strategic stability' as it relates to events in its 'proximate neighbourhood'; and 'national security' implications on account of operative clandestine proliferation networks. Issues relating to the role of the US in influencing Indian policy positions at international forums and vis-a-vis domestic policy were prominent as regards the first determinant. Threats and 'advice' by American policy makers and law makers on specific issues like the Indo-US nuclear deal and the Iran-Pakistan-India gas pipeline gave further grist to critics. However, an analysis of India's concerns regarding the other two policy considerations, i.e., strategic stability and national security were 'real and present' and also dominated public discourse as well. With India having become a non-permanent member of the UN Security Council from January 2011, it should be the task of Indian diplomacy, at the UNSC as well as at other bilateral and multilateral settings, to help expand the space for the application of 'satisfactory strategies' and reduce the range of 'unsatisfactory strategies'. (author)

  12. Quantum communication through a spin chain with interaction determined by a Jacobi matrix

    International Nuclear Information System (INIS)

    Chakrabarti, R; Van der Jeugt, J

    2010-01-01

    We obtain the time-dependent correlation function describing the evolution of a single spin excitation state in a linear spin chain with isotropic nearest-neighbour XY coupling, where the Hamiltonian is related to the Jacobi matrix of a set of orthogonal polynomials. For the Krawtchouk polynomial case, an arbitrary element of the correlation function is expressed in a simple closed form. Its asymptotic limit corresponds to the Jacobi matrix of the Charlier polynomial, and may be understood as a unitary evolution resulting from a Heisenberg group element. Correlation functions for Hamiltonians corresponding to Jacobi matrices for the Hahn, dual Hahn and Racah polynomials are also studied. For the Hahn polynomials we obtain the general correlation function, some of its special cases and the limit related to the Meixner polynomials, where the su(1, 1) algebra describes the underlying symmetry. For the cases of dual Hahn and Racah polynomials, the general expressions of the correlation functions contain summations which are not of hypergeometric type. Simplifications, however, occur in special cases.

  13. Exploiting level anti-crossings for efficient and selective transfer of hyperpolarization in coupled nuclear spin systems

    NARCIS (Netherlands)

    Pravdivtsev, A.N.; Yurkovskaya, A.V.; Kaptein, R.; Miesel, K.; Vieth, H.-M.; Ivanov, K.L.

    2013-01-01

    Spin hyperpolarization can be coherently transferred to other nuclei in field-cycling NMR experiments. At low magnetic fields spin polarization is redistributed in a strongly coupled network of spins. Polarization transfer is most efficient at fields where level anti-crossings (LACs) occur for the

  14. Influence of intramolecular f-f interactions on nuclear spin driven quantum tunneling of magnetizations in quadruple-decker phthalocyanine complexes containing two terbium or dysprosium magnetic centers.

    Science.gov (United States)

    Fukuda, Takamitsu; Matsumura, Kazuya; Ishikawa, Naoto

    2013-10-10

    Nuclear spin driven quantum tunneling of magnetization (QTM) phenomena, which arise from admixture of more than two orthogonal electronic spin wave functions through the couplings with those of the nuclear spins, are one of the important magnetic relaxation processes in lanthanide single molecule magnets (SMMs) in the low temperature range. Although recent experimental studies have indicated that the presence of the intramolecular f-f interactions affects their magnetic relaxation processes, little attention has been given to their mechanisms and, to the best of our knowledge, no rational theoretical models have been proposed for the interpretations of how the nuclear spin driven QTMs are influenced by the f-f interactions. Since quadruple-decker phthalocyanine complexes with two terbium or dysprosium ions as the magnetic centers show moderate f-f interactions, these are appropriate to investigate the influence of the f-f interactions on the dynamic magnetic relaxation processes. In the present paper, a theoretical model including ligand field (LF) potentials, hyperfine, nuclear quadrupole, magnetic dipolar, and the Zeeman interactions has been constructed to understand the roles of the nuclear spins for the QTM processes, and the resultant Zeeman plots are obtained. The ac susceptibility measurements of the magnetically diluted quadruple-decker monoterbium and diterbium phthalocyanine complexes, [Tb-Y] and [Tb-Tb], have indicated that the presence of the f-f interactions suppresses the QTMs in the absence of the external magnetic field (H(dc)) being consistent with previous reports. On the contrary, the faster magnetic relaxation processes are observed for [Tb-Tb] than [Tb-Y] at H(dc) = 1000 Oe, clearly demonstrating that the QTMs are rather enhanced in the presence of the external magnetic field. Based on the calculated Zeeman diagrams, these observations can be attributed to the enhanced nuclear spin driven QTMs for [Tb-Tb]. At the H(dc) higher than 2000 Oe, the

  15. Separation and determination of strontium-90 in burnout nuclear fuel

    International Nuclear Information System (INIS)

    Khermann, A.; Katsvinkel', I.

    1975-01-01

    Developed was a simple and selective chromatographic method of the separation of strontium-90, by the content of which it is possible to judge about the degree of nuclear fuel burnup. Among the studied ion exchangers for strontium separation the best results are exhibited by strongly acidic organic cationite, i.e. vofatite (on the base of styrene, 8%-divinylbenzene) in the H + form. Elution was performed by hydrochloric or oxalic acids. The method allows to achieve a high degree of Sr-90 purification from other fission products. Using the method the Sr-90 content was determined in burnup fuel of the fuel elements of EK-10 type. At the fuel storage period less than 2 years it becomes necessary to determine both Sr-90 and Sr-89. Determination of Sr-90 in the presence of Sr-89 was made by daughter product of Sr-90 - Y-90, which is separated in ion-exchange coloumn. Some other methods of Sr-90 determination in the presence of Sr-89 are noted

  16. Electron spin resonance of Gd in the nuclear cooling agent: PrNi5 single crystals

    International Nuclear Information System (INIS)

    Levin, R.; Davidov, D.; Grayevsky, A.; Shaltiel, D.; Zevin, V.

    1980-01-01

    The ESR of Gd in single crystals of PrNi 5 is observed to exhibit significant angular dependence of the resonance position and linewidth at low temperatures. This is interpreted in terms of the axial spin Hamiltonian which takes the anisotropic susceptibility and the Gd-Pr exchange into consideration. From lineshape analysis the axial crystal field parameter and isotropic Gd-Pr exchange are derived. The Gd ESR linewidth increases with temperature; the thermal broadening is angularly dependent. This is similar to that observed for the Pr NMR in PrNi 5 single crystals. Both the NMR and ESR thermal broadenings are attributed to low-frequency fluctuations of the Pr ions induced by the Pr-Pr exchange coupling. A model for hexagonal Van-Vleck compounds is given and with the linewidth enables the Pr-Pr exchange coupling, under the assumption of a Gaussian or a Lorenzian distribution of the low-frequency fluctuation spectra, to be extracted. It is suggested that the angular dependence of the ESR thermal broadening is due to the Gd-Pr exchange coupling. (UK)

  17. Free-Spinning-Tunnel Investigation to Determine the Effect of Spin-Recovery Rockets and Thrust Simulation on the Recovery Characteristics of a 1/21-Scale Model of the Chance Vought F7U-3 Airplane, TED No. NACA AD 3103

    Science.gov (United States)

    Burk, Sanger H., Jr.; Healy, Frederick M.

    1955-01-01

    An investigation of a l/21-scale model of the Chance Vought F7U-3 airplane in the co&at-load- condition has been conducted in the Langley 20-foot free-spinning tunnel, The recovery characteristics of the model were determined by use of spin-recovery rockets for the erect and inverted spinning condition. The rockets were so placed as to provide either a yawing or rolling moment about the model center of gravity. Also included in the investigation were tests to determine the effect of simulated engine thrust on the recovery characteristics of the model. On the basis of model tests, recoveries from erect and inverted spins were satisfactory when a yawing moment of 22,200 foot-pounds (full scale) was provided against the spin by rockets attached to the wing tips; the anti-spin yawing moment was applied for approximately 9 seconds, (full scale). Satisfactory recoveries were obtained from erect spins when a rolling moment of 22,200 foot-pounds (full scale) was provided with the spin (rolls right wing down in right spin). Although the inverted spin was satisfactorily terminated when a rolling moment of equal magnitude was provided, a roll rocket was not considered to be an optimum spin-recovery device to effect recoveries from inverted spins for this airplane because of resulting gyrations during spin recovery. Simulation of engine thrust had no apparent effect on the spin recovery characteristics.

  18. Determination of the bandheads spin and investigation of identical bands for Even - A nuclei of the superdeformed mass region 190

    International Nuclear Information System (INIS)

    Shalaby, A.S.

    2005-01-01

    Using the three-parameter expression of harris expansion of the rotational energy, the dynamical moment of inertia is represented by a power-series expansion in even powers of the rotational frequency. The three expansion coefficients were determined by using Marquardt method of nonlinear least-squares routines, to fit the proposed dynamical moment of inertia with its recent experimental data for the superdeformed (SD) nuclei in the A 190 mass region. The calculated dynamical moment of inertia with the best parameters is then integrated to obtain the spin, which in turn was used to determine the static moment of inertia. The comparison of the dynamic moment of inertia and spin with their available experimental data shows good agreements between them. These procedures were succeedingly done for nine superdeformed bands in the A 190 nuclei: 1 90Hg(B1, B3), 1 94PB(B1, B2, B3), 1 96PB(B1, B2, B3), 1 94PB(B1, B22, B3), 1 96BP((B1, B2, B3) and 1 98PO. We have also investigated the identity exist among these SD bands. It was shown that some of these SD bands are identical to each other

  19. Determination of shell energies. Nuclear deformations and fission barriers

    International Nuclear Information System (INIS)

    Koura, Hiroyuki; Tachibana, Takahiro; Uno, Masahiro; Yamada, Masami.

    1996-01-01

    We have been studying a method of determining nuclear shell energies and incorporating them into a mass formula. The main feature of this method lies in estimating shell energies of deformed nuclei from spherical shell energies. We adopt three assumptions, from which the shell energy of a deformed nucleus is deduced to be a weighted sum of spherical shell energies of its neighboring nuclei. This shell energy should be called intrinsic shell energy since the average deformation energy also acts as an effective shell energy. The ground-state shell energy of a deformed nucleus and its equilibrium shape can be obtained by minimizing the sum of these two energies with respect to variation of deformation parameters. In addition, we investigate the existence of fission isomers for heavy nuclei with use of the obtained shell energies. (author)

  20. Difusão de spins nucleares em meios porosos - uma abordagem computacional da RMN

    OpenAIRE

    Éverton Lucas-Oliveira

    2015-01-01

    A Ressonância Magnética Nuclear (RMN) é uma importante técnica empregada nas principais áreas de conhecimento, tais como, Física, Química e Medicina. Importantes trabalhos da RMN aplicada ao estudo da dinâmica de moléculas em fluidos presentes em meios porosos permitiram que esta técnica ganhasse também notoriedade na indústria do petróleo. O presente projeto é fundamentado em alguns destes trabalhos seminais, reproduzindo, através de modelos físico-computacionais, os principais efeitos físic...

  1. Photoinduced nuclear spin conversion of methyl groups of single molecules; Photoinduzierte Kernspinkonversion von Methylgruppen an einzelnen Molekuelen. Lochbrenn- und Einzelmolekuelspektroskopie an Terrylen und Methylderivaten

    Energy Technology Data Exchange (ETDEWEB)

    Sigl, A.

    2007-12-28

    A methyl group is an outstanding quantum system due to its special symmetry properties. The threefold rotation around one of its bond is isomorphic to the group of even permutations of the remaining protons, a property which imposes severe quantum restrictions on the system, for instance a strict correlation of rotational states with nuclear spin states. The resulting long lifetimes of the rotational tunneling states of the methyl group can be exploited for applying certain high resolution optical techniques, like hole burning or single molecule spectroscopy to optically switch the methyl group from one tunneling state to another therebye changing the nuclear spin of the protons. One goal of the thesis was to perform this switching in single methyl groups. To this end the methyl group was attached to a chromophoric system, in the present case terrylene, which is well suited for single molecule spectroscopy as well as for hole burning. Experiments were performed with the bare terrylene molecule in a hexadecane lattice which served as a reference system, with alphamethyl terrylene and betamethyl terrylene, both embedded in hexadecane, too. A single molecular probe is a highly sensitive detector for dynamic lattice instabilities. Already the bare terrylene probe showed a wealth of interesting local dynamic effects of the hexadecane lattice which could be well acounted for by the assumption of two nearly degenerate sites with rather different optical and thermal properties, all of which could be determined in a quantitative fashion. As to the methylated terrylene systems, the experiments verified that for betamethyl terrylene it is indeed possible to measure rotational tunneling events in single methyl groups. However, the spectral patterns obtained was much more complicated than expected pointing to the presence of three spectroscopically different methyl groups. In order to achieve a definite assignement, molecular mechanics simulations of the terrylene probes in the

  2. Seismic methodology in determining basis earthquake for nuclear installation

    International Nuclear Information System (INIS)

    Ameli Zamani, Sh.

    2008-01-01

    Design basis earthquake ground motions for nuclear installations should be determined to assure the design purpose of reactor safety: that reactors should be built and operated to pose no undue risk to public health and safety from earthquake and other hazards. Regarding the influence of seismic hazard to a site, large numbers of earthquake ground motions can be predicted considering possible variability among the source, path, and site parameters. However, seismic safety design using all predicted ground motions is practically impossible. In the determination of design basis earthquake ground motions it is therefore important to represent the influences of the large numbers of earthquake ground motions derived from the seismic ground motion prediction methods for the surrounding seismic sources. Viewing the relations between current design basis earthquake ground motion determination and modem earthquake ground motion estimation, a development of risk-informed design basis earthquake ground motion methodology is discussed for insight into the on going modernization of the Examination Guide for Seismic Design on NPP

  3. Determination of reservoir effective porosity using nuclear magnetic logging data

    International Nuclear Information System (INIS)

    Aksel'rod, S.M.; Danevich, V.I.; Sadykov, D.M.

    1979-01-01

    In connection with the development of nuclear magnetic logging (NML) the possibility has occurred to determine the effective porosity coefficient for rocks directly under the conditions of their occurrence. The initial amplitude of a signal of free precession of NML is proportional to the quantity of free fluid in the rock volume, which is determined by the index of free fluid (IFF). On the basis of the laboratory studies it is shown that the relation between IFF and free water content is always linear and doesn't depend on lithological characteristics of rocks, porous dimensions and distribution. Using this relation it's possible to estimate bound water content. While filling the reservoir with weakly mineralized water the IFF value coincides numerically with the effective porosity coefficient. Otherwise the content of hydrogen nuclei in a volume unit is much less; while calculating the effective porosity coefficient this fact is recorded by the index of the amplitude decrease which depends on temperature and increases with its growth (for oils). In strata containing intercalations of reservoirs and non-reservoirs the averaged according to stratum IFF value determines the mean-weighted values of effective porosity

  4. The nuclear deformation versus the spin-flip like excitations and the suppression of the 2 νββ decay amplitude

    International Nuclear Information System (INIS)

    Raduta, A. A.; Delion, D. S.; Faessler, A.

    1998-01-01

    The suppression mechanism of the Gamow-Teller double beta decay amplitude M GT is studied using a many body Hamiltonian which describes a composite system of protons and neutrons moving in a projected spherical single particle basis. Alike nucleons interact through pairing, while protons and neutrons by a separable dipole-dipole force both in the particle-hole (ph) and particle-particle (pp) channels. The spin-flip and non-spin-flip components of the QRPA phonons have different contributions to the M GT value. The relative magnitudes and phases depend on both the strength of the particle-particle interaction (g pp ) and nuclear deformation. The deformation yields a fragmentation of the M GT value on one hand and washes out the separation of states of pure spin-flip and non spin-flip structures. Due to this effect, M GT has only one fragmented resonance structure in the low part of the spectrum. The mechanism of M GT suppression is different for spherical and deformed nuclei. While for spherical situation the resonances of pure spin-flip and non spin-flip character are separated in energy, for deformed case the two resonances coincide. In both cases, approaching the critical value of g pp , where the Random Phase Approximation (RPA) breaks down, a lot of strength is accumulated in the lowest RPA state. The difference is that, while in the spherical case this has a non spin-flip nature, in the deformed case the state is a mixture of both types of configurations. (authors)

  5. Nuclear fuel technology - Tank calibration and volume determination for nuclear materials accountancy - Part 1: Procedural overview

    International Nuclear Information System (INIS)

    2007-01-01

    Accurate determinations of volume are a fundamental component of any measurement-based system of control and accountability in a facility that processes or stores nuclear materials in liquid form. Volume determinations are typically made with the aid of a calibration or volume measurement equation that relates the response of the tank's measurement system to some independent measure of tank volume. The ultimate purpose of the calibration exercise is to estimate the tank's volume measurement equation (the inverse of the calibration equation), which relates tank volume to measurement system response. The steps carried out to acquire data for estimating the tank's calibration or volume measurement equation are collectively described as the process of tank calibration. This part of ISO 18213 describes procedures for tank calibration and volume determination for nuclear process tanks equipped with pressure-measurement systems for determining liquid content. Specifically, overall guidance is provided for planning a calibration exercise undertaken to obtain the data required for the measurement equation to estimate a tank's volume. The key steps in the procedure are also presented for subsequently using the estimated volume-measurement equation to determine tank liquid volumes. The procedures presented apply specifically to tanks equipped with bubbler probe systems for measuring liquid content. Moreover, these procedures produce reliable results only for clear (i.e. without suspended solids), homogeneous liquids that are at both thermal and static equilibrium. The paper elaborates on scope, physical principles involved, the calibration model, equipment required, a typical tank calibration procedure, calibration planning and pre-calibration activities, and volume determination. A bibliography is provided

  6. Experimental investigation of vector static magnetic field detection using an NV center with a single first-shell 13C nuclear spin in diamond

    Science.gov (United States)

    Jiang, Feng-Jian; Ye, Jian-Feng; Jiao, Zheng; Jiang, Jun; Ma, Kun; Yan, Xin-Hu; Lv, Hai-Jiang

    2018-05-01

    We perform a proof-of-principle experiment that uses a single negatively charged nitrogen–vacancy (NV) color center with a nearest neighbor 13C nuclear spin in diamond to detect the strength and direction (including both polar and azimuth angles) of a static vector magnetic field by optical detection magnetic resonance (ODMR) technique. With the known hyperfine coupling tensor between an NV center and a nearest neighbor 13C nuclear spin, we show that the information of static vector magnetic field could be extracted by observing the pulsed continuous wave (CW) spectrum. Project supported by the National Natural Science Foundation of China (Grant Nos. 11305074, 11135002, and 11275083), the Key Program of the Education Department Outstanding Youth Foundation of Anhui Province, China (Grant No. gxyqZD2017080), and the Education Department Natural Science Foundation of Anhui Province, China (Grant No. KJHS2015B09).

  7. Spin-polarized 3He nuclear targets and metastable 4He atoms by optical pumping with a tunable, Nd:YAP laser

    International Nuclear Information System (INIS)

    Bohler, C.L.; Schearer, L.D.; Leduc, M.; Nacher, P.J.; Zachorowski, L.; Milner, R.G.; McKeown, R.D.; Woodward, C.E.

    1988-01-01

    Several Nd:YAP lasers were constructed which could be broadly tuned in the 1083-nm region which includes the helium 2 3 S-2 3 P transition, using a Lyot filter and thin, uncoated etalons within the laser cavity. 1 W of power could be extracted at 1083 nm through a 1% transmitting output coupler. This laser beam was used to optically pump metastable 4 He and 3 He 2 3 S helium atoms in a weak discharge cell, spin polarizing the metastable ensemble. In a 3 He cell the polarization is transferred to the nuclear spin system. A 3 He target cell at 0.3 Torr was polarized to 52% in a few minutes. We describe the application of this system to the design of polarized targets for experiments in nuclear physics

  8. Spin Current Noise of the Spin Seebeck Effect and Spin Pumping

    Science.gov (United States)

    Matsuo, M.; Ohnuma, Y.; Kato, T.; Maekawa, S.

    2018-01-01

    We theoretically investigate the fluctuation of a pure spin current induced by the spin Seebeck effect and spin pumping in a normal-metal-(NM-)ferromagnet(FM) bilayer system. Starting with a simple ferromagnet-insulator-(FI-)NM interface model with both spin-conserving and non-spin-conserving processes, we derive general expressions of the spin current and the spin-current noise at the interface within second-order perturbation of the FI-NM coupling strength, and estimate them for a yttrium-iron-garnet-platinum interface. We show that the spin-current noise can be used to determine the effective spin carried by a magnon modified by the non-spin-conserving process at the interface. In addition, we show that it provides information on the effective spin of a magnon, heating at the interface under spin pumping, and spin Hall angle of the NM.

  9. Direct observation of low energy nuclear spin excitations in HoCrO3 by high resolution neutron spectroscopy.

    Science.gov (United States)

    Chatterji, T; Jalarvo, N; Kumar, C M N; Xiao, Y; Brückel, Th

    2013-07-17

    We have investigated low energy nuclear spin excitations in the strongly correlated electron compound HoCrO3. We observe clear inelastic peaks at E = 22.18 ± 0.04 μeV in both energy loss and gain sides. The energy of the inelastic peaks remains constant in the temperature range 1.5-40 K at which they are observed. The intensity of the inelastic peak increases at first with increasing temperature and then decreases at higher temperatures. The temperature dependence of the energy and intensity of the inelastic peaks is very unusual compared to that observed in other Nd, Co, V and also simple Ho compounds. Huge quasielastic scattering appears at higher temperatures presumably due to the fluctuating electronic moments of the Ho ions that get increasingly disordered at higher temperatures. The strong quasielastic scattering may also originate in the first Ho crystal-field excitations at about 1.5 meV.

  10. Theory of nuclear spin relaxation in disordered systems: comparison of Bloembergen-Purcell-Pound models and Monte Carlo simulations

    International Nuclear Information System (INIS)

    Luo Xinjun; Sholl, C.A.

    2002-01-01

    Two Bloembergen-Purcell-Pound (BPP) models for analysing nuclear spin relaxation data for translational diffusion in disordered systems are compared with Monte Carlo simulations. One model (the a-BPP model, 'a' standing for average) is commonly used for disordered systems and the other (the Cameron-Sholl BPP model) is more rigorously based and can distinguish between site-and barrier-energy disorder. Simulated relaxation data produced using Gaussian distributions of energy disorder are analysed using the models, and the parameters obtained from the fits are compared with the values used for the simulations. It is found that both models can give reasonable fits to the data. Both models also give reasonable agreement with the simulation parameters provided that the standard deviation of the energy distribution for the a-BPP model is interpreted as the average of the site-and barrier-energy standard deviations. Quantitative estimates are given of the accuracy of the parameters from the fits. (author)

  11. Relation between molecular electronic structure and nuclear spin-induced circular dichroism

    DEFF Research Database (Denmark)

    Štěpánek, Petr; Coriani, Sonia; Sundholm, Dage

    2017-01-01

    with spatially localized, high-resolution information. To survey the factors relating the molecular and electronic structure to the NSCD signal, we theoretically investigate NSCD of twenty structures of the four most common nucleic acid bases (adenine, guanine, thymine, cytosine). The NSCD signal correlates...... with the spatial distribution of the excited states and couplings between them, reflecting changes in molecular structure and conformation. This constitutes a marked difference to the nuclear magnetic resonance (NMR) chemical shift, which only reflects the local molecular structure in the ground electronic state....... The calculated NSCD spectra are rationalized by means of changes in the electronic density and by a sum-over-states approach, which allows to identify the contributions of the individual excited states. Two separate contributions to NSCD are identified and their physical origins and relative magnitudes...

  12. Fabrication of 121Sb isotopic targets for the study of nuclear high spin features

    Science.gov (United States)

    Devi, K. Rojeeta; Kumar, Suresh; Kumar, Neeraj; Abhilash, S. R.; Kabiraj, D.

    2018-06-01

    Isotopic 121Sb targets with 197Au backing have been prepared by Physical Vapor Deposition (PVD) method using the diffusion pump based coating unit at target laboratory, Inter University Accelerator Centre (IUAC), New Delhi, India. The target thickness was measured by stylus profilo-meter and the purity of the targets was investigated by Energy Dispersive X-ray Analysis (EDXA). One of these targets has been used in an experiment which was performed at IUAC for nuclear structure study through fusion evaporation reaction. The excitation function of the 121Sb(12C, yxnγ) reaction has been performed for energies 58 to 70 MeV in steps of 4 MeV. The experimental results were compared with the calculations of statistical models : PACE4 and CASCADE. The methods adopted to achieve best quality foils and good deposition efficiency are reported in this paper.

  13. Recycling of radioactively contaminated scrap from the nuclear cycle and spin-off for other application

    Directory of Open Access Journals (Sweden)

    Quade, U.

    2005-12-01

    Full Text Available In the 1980ies, Siempelkamp foundry in Krefeld, Germany, developed a process to melt medium and slightly radioactive metals from decommissioning and maintenance works in nuclear power plants. Since 1989, in the CARLA melting plant which is licensed according to the German radiation protection ordinance (StrlSchV, metals are being molten which, for the largest part, can be reused. Since 1998, in a second plant, the GERTA melting plant, metals with a content of mercury up to 1 weight %, natural radioactivity up to 500 Bq/g and other chemical contaminations are being molten and completely decontaminated, so that these metals can be reused in the steel cycle. The following text is describing the melting process, acceptance criteria for contaminated scrap and recycling paths for the produced ingots and slags.

    La fundición Siempelkamp en Krefeld, Alemania, desarrolló, en los años 80, un proceso para fundir metales mediana y levemente radioactivos, procedentes de reparaciones o desmantelamiento de plantas nucleares. En la planta de fundición CARLA, que cumple los requisitos del decreto de protección contra radiaciones de la República Federal de Alemania, se funden metales desde 1989, de los cuales la mayor parte puede ser utilizada nuevamente. Desde 1998, en una segunda planta, fundición GERTA, se funden y descontaminan totalmente, metales de hasta un 1 % de peso de mercurio, con una radioactividad natural de hasta 500 Bq/g y con otros contaminantes químicos. De este modo los metales pueden ser nuevamente utilizados en el ciclo metálico. El texto adjunto describe el método para el fundido, los criterios para aceptar chatarra contaminada y las vías de utilización para los bloques de metal y escorias generadas en el proceso.

  14. Liver iron content determined by MRI. Spin-echo vs. gradient-echo

    Energy Technology Data Exchange (ETDEWEB)

    Juchems, M.S.; Wunderlich, A.P. [Universitaetskliniken Ulm (Germany). Klinik fuer Diagnostische und Interventionelle Radiologie; Cario, H. [Universitaetskliniken Ulm (Germany). Klinik fuer Kinder- und Jugendmedizin; Schmid, M. [Stadtspital Triemli, Zuerich (Switzerland). Medizinische Onkologie und Haematologie

    2012-05-15

    Purpose: Liver iron content (LIC) measurement plays a central role in the management of patients with transfusional iron overload. Calculating the LIC with data obtained from standardized MRI sequences represents an attractive alternative diagnostic possibility. The purpose of this study was to compare the LIC measurement obtained with gradient-echo (GRE) sequences to the mean liver proton transverse relaxation (R2) acquired with SE sequences. Materials and Methods: 68 patients with iron overload (median age: 24, range: 3 - 88) underwent 1.5 T MRI for liver iron content measurement. All patients received spin-echo (SE) and gradient-echo (GRE) sequences. Results: The two MRI methods revealed different liver iron content results although a significant correlation was found (r = 0.85, p < 0.001). Values evaluated using GRE sequences (median: 260 {mu}mol/g dry weight [d.w.], range: 6 - 732) were generally higher than those obtained by SE examinations (median: 161 {mu}mol /g d.w., range: 5 - 830). Conclusion: In conclusion, our study revealed different results for both MRI measurements, which could lead to different decisions concerning the management of chelation therapy in individual patients. (orig.)

  15. Effects of strain and quantum confinement in optically pumped nuclear magnetic resonance in GaAs: Interpretation guided by spin-dependent band structure calculations

    Science.gov (United States)

    Wood, R. M.; Saha, D.; McCarthy, L. A.; Tokarski, J. T.; Sanders, G. D.; Kuhns, P. L.; McGill, S. A.; Reyes, A. P.; Reno, J. L.; Stanton, C. J.; Bowers, C. R.

    2014-10-01

    A combined experimental-theoretical study of optically pumped nuclear magnetic resonance (OPNMR) has been performed in a GaAs /A l0.1G a0.9As quantum well film epoxy bonded to a Si substrate with thermally induced biaxial strain. The photon energy dependence of the Ga OPNMR signal was recorded at magnetic fields of 4.9 and 9.4 T at a temperature of 4.8-5.4 K. The data were compared to the nuclear spin polarization calculated from the electronic structure and differential absorption to spin-up and spin-down states of the electron conduction band using a modified k .p model based on the Pidgeon-Brown model. Comparison of theory with experiment facilitated the assignment of features in the OPNMR energy dependence to specific interband Landau level transitions. The results provide insight into how effects of strain and quantum confinement are manifested in optical nuclear polarization in semiconductors.

  16. Determination of proton-nucleon analyzing powers and spin-rotation-depolarization parameters at 500 MeV

    International Nuclear Information System (INIS)

    Marshall, J.A.; Barlett, M.L.; Fergerson, R.W.; Hoffmann, G.W.; Milner, E.C.; Ray, L.; Amann, J.F.; Bonner, B.E.; McClelland, J.B.

    1986-01-01

    500 MeV p-arrow-right+p elastic and quasielastic, and p-arrow-right+n quasielastic, analyzing powers (A/sub y/) and spin-rotation-depolarization parameters (D/sub S//sub S/, D/sub S//sub L/, D/sub L//sub S/, D/sub L//sub L/, D/sub N//sub N/) were determined for center-of-momentum angular ranges 6.8 0 -55.4 0 (elastic) and 22.4 0 -55.4 0 (quasielastic); liquid hydrogen and deuterium targets were used. The p-arrow-right+p elastic and quasielastic results are in good agreement; both the p-arrow-right+p and p-arrow-right+n parameters are well described by current phase shift solutions

  17. Pairwise NMR experiments for the determination of protein backbone dihedral angle Φ based on cross-correlated spin relaxation

    International Nuclear Information System (INIS)

    Takahashi, Hideo; Shimada, Ichio

    2007-01-01

    Novel cross-correlated spin relaxation (CCR) experiments are described, which measure pairwise CCR rates for obtaining peptide dihedral angles Φ. The experiments utilize intra-HNCA type coherence transfer to refocus 2-bond J NCα coupling evolution and generate the N (i)-C α (i) or C'(i-1)-C α (i) multiple quantum coherences which are required for measuring the desired CCR rates. The contribution from other coherences is also discussed and an appropriate setting of the evolution delays is presented. These CCR experiments were applied to 15 N- and 13 C-labeled human ubiquitin. The relevant CCR rates showed a high degree of correlation with the Φ angles observed in the X-ray structure. By utilizing these CCR experiments in combination with those previously established for obtaining dihedral angle Ψ, we can determine high resolution structures of peptides that bind weakly to large target molecules

  18. The Principal of International Nuclear Event Scale Determination and Its Implementation

    International Nuclear Information System (INIS)

    Piping Supriatna

    2006-01-01

    International Nuclear Event Scale (INES) is a scale system for determination nuclear event level on an international scale. Comprehension of INES system commonly as a way to motivate communication between nuclear management and the public, in accordance with disturbance to public safety level as the impact of nuclear installation accident. By using INES as the scaling system, the nuclear event is easy to be understood by nuclear group, journalist or by the public directly. In this report has been analyzed the procedure of nuclear event level determination refer to INES scaling system and its implementation in the field. In order to get same perception in determination of nuclear event level, it is necessary to improve full comprehension for INES and its implementation. (author)

  19. A nuclear data library for activity determinations of selected nuclides

    International Nuclear Information System (INIS)

    Baard, J.H.

    1991-11-01

    This report describes the GAMLIB 1-5 library, which is used in the calculation of the activity of radionuclides present in the gamma-ray spectra of irradiated neutron fluence detectors. The library contains all constants needed to calculate the activity for reactions normally applied in neutron fluence determinations, performed in irradiation experiments in the HFR. It also contains the nuclide constants for the activity calculation of gamma-ray measurements of U and Pu samples. The library consists of two kinds of tables, the first containing gamma-ray energies and gamma-ray emission probabilities with their uncertainties and the nuclide code, the other the nuclide code, decay constant, gamma -ray energies and gamma-ray emission probabilities. No cross-section data are stored in this library. All the relevant dat of the Nuclear Data Guide (Dordrecht, Kluwer 1989) have been used as base for this library. Other data have been obtained from recent literature. This library comprises 155 nuclides and 1115 gamma-ray energies. (author). 9 refs

  20. Factors determining the UK's back-end nuclear fuel cycle strategy and future nuclear systems

    International Nuclear Information System (INIS)

    Dunn, M.J.; Ainsworth, Z.E.

    2002-01-01

    Nuclear generating capacity in the UK is static with no units currently under construction. The AGRs and the UK's only PWR, Sizewell B, are operated by British Energy Generation Ltd (BEGL) and British Energy Generation (UK) Ltd (BEG(UK)L), who are subsidiaries of British Energy plc (BE) which was privatised in July 1996. Ownership of the Magnox stations, which were excluded from this privatisation, has now been transferred to BNFL.Government policy on spent fuel management in the UK is that it is for the owners of the spent fuel to decide on the appropriate spent fuel management options, based on their own commercial judgement, subject to meeting the necessary regulatory requirements. The main factors which have predominantly determined UK utility decisions on spent fuel management, to date, have been based on the technical considerations of the spent fuel characteristics, economic attractiveness of the options and at reactor site spent fuel storage capacities. To date, reprocessing has been the dominant form of spent fuel treatment in the UK. Spent fuel storage facilities consist of a mixture of at-reactor stores and large, centralised ponds associated with the reprocessing activities which take place at the Sellafield site. BEGL and BEG(UK)L have contracts for the lifetime arisings of AGR fuel which allow for all AGR spent fuel to be sent to Sellafield for reprocessing or long-term storage. The prompt reprocessing of all Magnox fuel will continue, and spent PWR fuel will continue to be stored at the reactor site in the short to medium term. It is likely that a combination of factors, which are discussed later in this paper, will continue to affect back-end nuclear fuel cycle strategy and future nuclear systems. (author)

  1. A nuclear magnetic resonance and electron spin resonance study on the dynamics of pentacoordinated organophosphorus compounds

    International Nuclear Information System (INIS)

    Keijzer, A.E.H. de.

    1988-01-01

    In this thesis the role of the steric and electronic effects on the fundamental dynamic behaviour of pentacoordinated phosporus compounds is further elaborated. In chapter 2 a variable temperature 13 C NMR study, performed on a series of monocyclic oxyphosphoranes, is presented. The investigations were carried out to determine the influence of the conformational transmission effect on the barriers to pseudorotation in pentacoordinated phosphorus compounds. Chapter 3 also comprises a variable temperature 13 C NMR study on pentacoordinated phosphorus compounds. In this chapter, however, an additional high-resolution 1 H NMR study on the conformational equilibria around the P-O-C-C-O fragments is included. These studies were performed in order to determine whether the enhancement of the reorganization rates around phosphorus is brought about by accelerated pseudorotation or by the involvement of hexacoordinated zwitterionic phosphorus intermediates. In chapter 4, a 31 P NMR study on the solvolysis rate of several phosphinate esters is described. This study was performed in order to determine the influence of the conformational transmission effect on the solvolysis rate of phosphate esters. A number of phosphates is examined in which, during the course of the solvolysis reaction, the conformational transmission effect is bound to be present or absent respectively. Moreover, it is discussed in which way the concept of conformational transmission induced differences in solvolysis rates can be used as a probe to examine the reactions of biologically important phosphate esters. In chapters 5 and 6 ESR studies on the influence of steric and electronic factors on phosphoranyl formation in solution, and on the intramolecular electron transfer in phosphoranyl radicals are presented. (author). 121 refs.; 33 figs.; 17 figs

  2. A study on the improvement of spin-off effectiveness of national nuclear R and D activities

    International Nuclear Information System (INIS)

    Yang, Maeng Ho; Lee, T. J.

    1997-02-01

    This study consists of two parts. One is to identify factors affecting technological effectiveness of the spin-off process that is defined as the technology transfer process from government sponsored research institutes (GRI's) to the civilian sector. The other is to analyze the environment of the spin-off process and to suggest guidelines for addition, this study also examines spin-off effectiveness with technology transfer types. To validate the conceptual model and hypotheses of the spin-off process, data are collected from 12 cases through in-depth interviews and questionnaires. Spearman correlation analysis is employed in order to test the hypotheses on the spin-off process. (author). 50 refs., 17 tabs., 12 figs

  3. The nuclear deformation versus the spin-flip like excitations and the suppression of the 2νββ decay amplitude

    International Nuclear Information System (INIS)

    Raduta, A.A.; Delion, D.S.; Faessler, A.

    1997-01-01

    The suppression mechanism of the Gamow-Teller double beta decay amplitude M GT is studied using a many body Hamiltonian which describes a composite system of protons and neutrons moving in a projected spherical single particle basis. Alike nucleons interact through pairing while protons and neutrons by a separable dipole-dipole force both in the particle-hole (ph) and particle-particle (pp) channels. The spin-flip and non-spin-flip components of the QRPA phonons have a differents contribution to the M GT values. The relative magnitudes and phases depend both on the strength of the particle-particle interaction (g pp ) and on the nuclear deformation. The deformation yields a fragmentation of the M GT value on one hand and washes out the separation of states of pure spin-flip and non-spin-flip structures. Due to this effect M GT has only one fragmented resonance structure in the low part of the spectrum. (orig.)

  4. Nuclear spin effect on recombination of H₃⁺ ions with electrons at 77 K.

    Science.gov (United States)

    Varju, J; Hejduk, M; Dohnal, P; Jílek, M; Kotrík, T; Plašil, R; Gerlich, D; Glosík, J

    2011-05-20

    Utilizing different ratios of para to ortho H₂ in normal and para enriched hydrogen, we varied the population of para-H₃⁺ in an H₃⁺ dominated plasma at 77 K. Absorption spectroscopy was used to measure the densities of the two lowest rotational states of H₃⁺. Monitoring plasma decays at different populations of para-H₃⁺ allowed us to determine the rate coefficients for binary recombination of para-H₃⁺ and ortho-H₃⁺ ions: (p)α(bin)(77 K) = (1.9 ± 0.4) × 10⁻⁷ cm³ s⁻¹ and (o)α(bin)(77 K) = (0.2 ± 0.2) × 10⁻⁷ cm³ s⁻¹.

  5. Nuclear Spin Effect on Recombination of H3+ Ions with Electrons at 77 K

    Science.gov (United States)

    Varju, J.; Hejduk, M.; Dohnal, P.; Jílek, M.; Kotrík, T.; Plašil, R.; Gerlich, D.; Glosík, J.

    2011-05-01

    Utilizing different ratios of para to ortho H2 in normal and para enriched hydrogen, we varied the population of para-H3+ in an H3+ dominated plasma at 77 K. Absorption spectroscopy was used to measure the densities of the two lowest rotational states of H3+. Monitoring plasma decays at different populations of para-H3+ allowed us to determine the rate coefficients for binary recombination of H3+ and ortho-H3+ ions: αbinp(77K)=(1.9±0.4)×10-7cm3s-1 and αbino(77K)=(0.2±0.2)×10-7cm3s-1.

  6. Nuclear Spin Effect on Recombination of H3+ Ions with Electrons at 77 K

    International Nuclear Information System (INIS)

    Varju, J.; Hejduk, M.; Dohnal, P.; Jilek, M.; Kotrik, T.; Plasil, R.; Gerlich, D.; Glosik, J.

    2011-01-01

    Utilizing different ratios of para to ortho H 2 in normal and para enriched hydrogen, we varied the population of para-H 3 + in an H 3 + dominated plasma at 77 K. Absorption spectroscopy was used to measure the densities of the two lowest rotational states of H 3 + . Monitoring plasma decays at different populations of para-H 3 + allowed us to determine the rate coefficients for binary recombination of H 3 + and ortho-H 3 + ions: p α bin (77 K)=(1.9±0.4)x10 -7 cm 3 s -1 and o α bin (77 K)=(0.2±0.2)x 10 -7 cm 3 s -1 .

  7. Numerical design of RNnν symmetry-based RF pulse schemes for recoupling and decoupling of nuclear spin interactions at high MAS frequencies

    International Nuclear Information System (INIS)

    Herbst, Christian; Herbst, Jirada; Leppert, Joerg; Ohlenschlaeger, Oliver; Goerlach, Matthias; Ramachandran, Ramadurai

    2009-01-01

    An approach for the efficient implementation of RN n ν symmetry-based pulse schemes that are often employed for recoupling and decoupling of nuclear spin interactions in biological solid state NMR investigations is demonstrated at high magic-angle spinning frequencies. RF pulse sequences belonging to the RN n ν symmetry involve the repeated application of the pulse sandwich {R φ R -φ }, corresponding to a propagator U RF = exp(-i4φI z ), where φ = πν/N and R is typically a pulse that rotates the nuclear spins through 180 o about the x-axis. In this study, broadband, phase-modulated 180 o pulses of constant amplitude were employed as the initial 'R' element and the phase-modulation profile of this 'R' element was numerically optimised for generating RN n ν symmetry-based pulse schemes with satisfactory magnetisation transfer characteristics. At representative MAS frequencies, RF pulse sequences were implemented for achieving 13 C- 13 C double-quantum dipolar recoupling and through bond scalar coupling mediated chemical shift correlation and evaluated via numerical simulations and experimental measurements. The results from these investigations are presented here

  8. Electron spin resonance (ESR), electron nuclear double resonance (ENDOR) and general triple resonance of irradiated biocarbonates

    International Nuclear Information System (INIS)

    Schramm, D.U.; Rossi, A.M.

    1996-01-01

    Several irradiated bicarbonates were studied by magnetic resonance techniques. Seven paramagnetic species, attributed to CO 2 - , SO 2 - and SO 3 - were identified. Comparison between radiation induced defects in bioaragonites and aragonite single-crystals show that isotropic and orthorhombic CO 2 - centers with broad line spectra are not produced in the latter samples. Vibrational and rotational properties of isotropic CO 2 - centers were studied from low temperature Q-band spectras. Vibrational frequency is determined from the 13 CO 2 - hyperfine spectrum and yielded ν 1.54 x 10 13 s -1 . The correlation time for isotropic CO 2 - , τc) = 1.2 x 10 -11 s (T = 300 K0, is typical of radicals rotating in liquids. ENDOR and General Triple spectroscopy show that orthorhombic CO 2 - centres are surrounded by water molecules located in the second nearest CO 2 2- sites at 5.14, 5.35 and 6.02 A. Water molecules replacing carbonates or as liquid inclusion of growth solution in local crystal imperfections may be responsible for the variety of orthorhombic and isotropic CO 2 - species, respectively. (author)

  9. Solvent Effects on Nuclear Magnetic Resonance 2J(C,Hf and 1J(C,Hf Spin–Spin Coupling Constants in Acetaldehyde

    Directory of Open Access Journals (Sweden)

    Angel Esteban

    2003-02-01

    Full Text Available Abstract: The known solvent dependence of 1J(Cc,Hf and 2J(C1,Hf couplings in acetaldehyde is studied from a theoretical viewpoint based on the density functional theory approach where the dielectric solvent effect is taken into account with the polarizable continuum model. The four terms of scalar couplings, Fermi contact, paramagnetic spin orbital, diamagnetic spin orbital and spin dipolar, are calculated but the solvent effect analysis is restricted to the first term since for both couplings it is by far the dominant contribution. Experimental trends of Δ1J(Cc,Hf and Δ2J(C1,Hf Vs ε (the solvent dielectric constant are correctly reproduced although they are somewhat underestimated. Specific interactions between solute and solvent molecules are studied for dimethylsulfoxide, DMSO, solutions considering two different one-to-one molecular complexes between acetaldehyde and DMSO. They are determined by interactions of type C=O---H---C and S=O---H---C, and the effects of such interactions on 1J(Cc,Hf and 2J(C1,Hf couplings are analyzed. Even though only in a semiquantitative way, it is shown that the effect of such interactions on the solvent effects, of Δ1J(Cc,Hf and Δ2J(C1,Hf, tend to improve the agreement between calculated and experimental values. These results seem to indicate that a continuum dielectric model has not enough flexibility for describing quantitatively solvent effects on spin-spin couplings. Apparently, even for relatively weak hydrogen bonding, the contribution from “direct” interactions is of the same order of magnitude as the “dielectric” effect.

  10. Optically controlled locking of the nuclear field via coherent dark-state spectroscopy.

    Science.gov (United States)

    Xu, Xiaodong; Yao, Wang; Sun, Bo; Steel, Duncan G; Bracker, Allan S; Gammon, Daniel; Sham, L J

    2009-06-25

    A single electron or hole spin trapped inside a semiconductor quantum dot forms the foundation for many proposed quantum logic devices. In group III-V materials, the resonance and coherence between two ground states of the single spin are inevitably affected by the lattice nuclear spins through the hyperfine interaction, while the dynamics of the single spin also influence the nuclear environment. Recent efforts have been made to protect the coherence of spins in quantum dots by suppressing the nuclear spin fluctuations. However, coherent control of a single spin in a single dot with simultaneous suppression of the nuclear fluctuations has yet to be achieved. Here we report the suppression of nuclear field fluctuations in a singly charged quantum dot to well below the thermal value, as shown by an enhancement of the single electron spin dephasing time T(2)*, which we measure using coherent dark-state spectroscopy. The suppression of nuclear fluctuations is found to result from a hole-spin assisted dynamic nuclear spin polarization feedback process, where the stable value of the nuclear field is determined only by the laser frequencies at fixed laser powers. This nuclear field locking is further demonstrated in a three-laser measurement, indicating a possible enhancement of the electron spin T(2)* by a factor of several hundred. This is a simple and powerful method of enhancing the electron spin coherence time without use of 'spin echo'-type techniques. We expect that our results will enable the reproducible preparation of the nuclear spin environment for repetitive control and measurement of a single spin with minimal statistical broadening.

  11. Nuclear spin relaxation due to motion on inequivalent sites: H diffusion on O and T sites in the face-centred cubic structure

    International Nuclear Information System (INIS)

    Luo Xinjun; Sholl, C A

    2003-01-01

    Magnetization recoveries for nuclear spin relaxation of like spins due to magnetic dipolar coupling and diffusion on inequivalent sites involve a sum of exponentials. The theory is applied to diffusion on octahedral and tetrahedral interstitial sites in the face-centred cubic structure. Monte Carlo simulations have been used to generate relaxation data for parameters typical for H in metals. It is found that only a single exponential would be observable in the high- and low-temperature limits, but that two-exponential recoveries could be observable in the vicinity of the maximum in the relaxation rate as a function of temperature. The Monte Carlo relaxation data has been fitted using a Bloembergen-Pound-Purcell (BPP) model to assess the accuracy of the BPP model

  12. Determination Public Acceptance Segmentation for Nuclear Power Program Interest

    International Nuclear Information System (INIS)

    Syirrazie Che Soh; Aini Wahidah Abdul Wahab

    2012-01-01

    This paper is focus to discuss segmentation aspect among inter-disciplinary group of public. This discussion is the pre-stage to ensure the right initiative strategies are implemented to gain public interest and acceptance towards on developing nuclear power plant. The applied strategies are implemented based on different interest among the different groups of public. These strategies may increase public acceptance level towards developing nuclear power plant. (author)

  13. Technique for magnetic susceptibility determination in the highly doped semiconductors by electron spin resonance

    Energy Technology Data Exchange (ETDEWEB)

    Veinger, A. I.; Zabrodskii, A. G.; Tisnek, T. V.; Goloshchapov, S. I.; Semenikhin, P. V. [Ioffe Institute of the Russian Academy of Sciences, St. Petersburg (Russian Federation)

    2014-08-20

    A method for determining the magnetic susceptibility in the highly doped semiconductors is considered. It is suitable for the semiconductors near the metal - insulator transition when the conductivity changes very quickly with the temperature and the resonance line form distorts. A procedure that is based on double integration of the positive part of the derivative of the absorption line having a Dyson shape and takes into account the depth of the skin layer is described. Analysis is made for the example of arsenic-doped germanium samples at a rather high concentration corresponding to the insulator-metal phase transition.

  14. When measured spin polarization is not spin polarization

    International Nuclear Information System (INIS)

    Dowben, P A; Wu Ning; Binek, Christian

    2011-01-01

    Spin polarization is an unusually ambiguous scientific idiom and, as such, is rarely well defined. A given experimental methodology may allow one to quantify a spin polarization but only in its particular context. As one might expect, these ambiguities sometimes give rise to inappropriate interpretations when comparing the spin polarizations determined through different methods. The spin polarization of CrO 2 and Cr 2 O 3 illustrate some of the complications which hinders comparisons of spin polarization values. (viewpoint)

  15. Nuclear magnetic relaxation by the dipolar EMOR mechanism: General theory with applications to two-spin systems.

    Science.gov (United States)

    Chang, Zhiwei; Halle, Bertil

    2016-02-28

    In aqueous systems with immobilized macromolecules, including biological tissue, the longitudinal spin relaxation of water protons is primarily induced by exchange-mediated orientational randomization (EMOR) of intra- and intermolecular magnetic dipole-dipole couplings. We have embarked on a systematic program to develop, from the stochastic Liouville equation, a general and rigorous theory that can describe relaxation by the dipolar EMOR mechanism over the full range of exchange rates, dipole coupling strengths, and Larmor frequencies. Here, we present a general theoretical framework applicable to spin systems of arbitrary size with symmetric or asymmetric exchange. So far, the dipolar EMOR theory is only available for a two-spin system with symmetric exchange. Asymmetric exchange, when the spin system is fragmented by the exchange, introduces new and unexpected phenomena. Notably, the anisotropic dipole couplings of non-exchanging spins break the axial symmetry in spin Liouville space, thereby opening up new relaxation channels in the locally anisotropic sites, including longitudinal-transverse cross relaxation. Such cross-mode relaxation operates only at low fields; at higher fields it becomes nonsecular, leading to an unusual inverted relaxation dispersion that splits the extreme-narrowing regime into two sub-regimes. The general dipolar EMOR theory is illustrated here by a detailed analysis of the asymmetric two-spin case, for which we present relaxation dispersion profiles over a wide range of conditions as well as analytical results for integral relaxation rates and time-dependent spin modes in the zero-field and motional-narrowing regimes. The general theoretical framework presented here will enable a quantitative analysis of frequency-dependent water-proton longitudinal relaxation in model systems with immobilized macromolecules and, ultimately, will provide a rigorous link between relaxation-based magnetic resonance image contrast and molecular parameters.

  16. Determination of spin, magnetic moment and isotopic shift of neutron rich 205Hg by optical pumping

    International Nuclear Information System (INIS)

    Rodriguez, J.; Bonn, J.; Huber, G.; Kluge, H.J.; Otten, E.W.; European Organisation for Nuclear Research, Geneva

    1975-01-01

    Neutron rich 205 Hg(Tsub(1/2) = 5.2 min) was produced and on-line mass separated at the ISOLDE facility at CERN. The polarization achieved by optical pumping via the atomic line (6s 21 S 0 - 6s6p 3 P 1 , lambda = 2,537 A) was monitored by the β decay asymmetry. Hyperfine structure and isotopic shift of the 205 Hg absorption line was determined by Zeeman scanning. In addition a magnetic resoncance was performed on the polarized 205 Hg nuclei in the atomic ground state. The results are: I( 205 Hg) = 1/2 (confirmed); μ(I, 205 Hg) = 0.5915(1)μ(N) (uncorrected for diamagnetism); isotopic shift deltaν(204/205) = ν( 205 Hg) - ν( 204 Hg) = -1.8(1)GHz. μ(I) and IS are discussed briefly in the frame of current literature. (orig.) [de

  17. A measurement of the spin asymmetry and determination of the structure function g1 in deep inelastic muon-proton scattering

    International Nuclear Information System (INIS)

    Ashman, J.; Combley, F.; Salmon, D.; Wheeler, S.; Baum, G.; Caputo, M.C.; Hughes, V.W.; Oppenheim, R.F.; Papavassiliou, V.; Piegaia, R.; Schueler, K.P.; Bee, C.P.; Brown, S.C.; Court, G.; Francis, D.; Gabathuler, E.; Gamet, R.; Hayman, P.; Holt, J.R.; Jones, T.; Matthews, M.; Wimpenny, S.J.; Coignet, G.; Windmolders, R.

    1988-01-01

    The spin asymmetry in deep inelastic scattering of longitudinally polarised muons by longitudinally polarised protons has been measured over a large x range (0.01 1 (x) for the proton has been determined and its integral over x found to be 0.114±0.012±0.026, in disagreement with the Ellis-Jaffe sum rule. Assuming the validity of the Bjorken sum rule, this result implies a significant negative value for the integral of g 1 for the neutron. These values for the integrals of g 1 lead to the conclusion that the total quark spin constitutes a rather small fraction of the spin of the nucleon. (orig.)

  18. Observation of rotating nuclear molecules and determination of their lifetimes

    Energy Technology Data Exchange (ETDEWEB)

    Comas, V.; Heinz, S.; Ackermann, D.; Heredia, J.; Hessberger, F.P.; Khuyagbaatar, J.; Kindler, B.; Lommel, B.; Mann, R. [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany); Hofmann, S. [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany); Goethe-Universitaet Frankfurt, Institut fuer Physik, Frankfurt (Germany)

    2012-12-15

    Long-living rotating nuclear molecules (or ''dinuclear systems'') have been observed at the velocity filter SHIP at GSI in reactions of {sup 64}Ni + {sup 207}Pb at Coulomb barrier energies. The rotation was directly revealed by the velocity spectra of deep inelastic target-like transfer products which are formed during the lifetime of the nuclear molecule and emitted after its breakup. The corresponding rotation angles were about 180 degree pointing to long nuclear interaction times or lifetimes of the system, respectively. We deduced the lifetimes from the lines in the velocity spectra originating from two different rotation angles. Further, the unambiguous correlation of a certain transfer product with its individual velocity spectrum allowed us to study the lifetimes as a function of the number of transferred protons. (orig.)

  19. Nuclear Spin Lattice Relaxation and Conductivity Studies of the Non-Arrhenius Conductivity Behavior in Lithium Fast Ion Conducting Sulfide Glasses

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Benjamin Michael [Iowa State Univ., Ames, IA (United States)

    2003-01-01

    As time progresses, the world is using up more of the planet's natural resources. Without technological advances, the day will eventually arrive when these natural resources will no longer be sufficient to supply all of the energy needs. As a result, society is seeing a push for the development of alternative fuel sources such as wind power, solar power, fuel cells, and etc. These pursuits are even occurring in the state of Iowa with increasing social pressure to incorporate larger percentages of ethanol in gasoline. Consumers are increasingly demanding that energy sources be more powerful, more durable, and, ultimately, more cost efficient. Fast Ionic Conducting (FIC) glasses are a material that offers great potential for the development of new batteries and/or fuel cells to help inspire the energy density of battery power supplies. This dissertation probes the mechanisms by which ions conduct in these glasses. A variety of different experimental techniques give a better understanding of the interesting materials science taking place within these systems. This dissertation discusses Nuclear Magnetic Resonance (NMR) techniques performed on FIC glasses over the past few years. These NMR results have been complimented with other measurement techniques, primarily impedance spectroscopy, to develop models that describe the mechanisms by which ionic conduction takes place and the dependence of the ion dynamics on the local structure of the glass. The aim of these measurements was to probe the cause of a non-Arrhenius behavior of the conductivity which has been seen at high temperatures in the silver thio-borosilicate glasses. One aspect that will be addressed is if this behavior is unique to silver containing fast ion conducting glasses. more specifically, this study will determine if a non-Arrhenius correlation time, τ, can be observed in the Nuclear Spin Lattice Relaxation (NSLR) measurements. If so, then can this behavior be modeled with a new single

  20. Dynamically Decoupled 13C Spins in Hyperpolarized Nanodiamond

    Science.gov (United States)

    Rej, Ewa; Gaebel, Torsten; Boele, Thomas; Waddington, David; Reilly, David

    The spin-spin relaxation time, T2, which determines how long a quantum state remains coherent, is an important factor for many applications ranging from MRI to quantum computing. A common technique used in quantum information technology to extend the T2, involves averaging out certain noise spectra via dynamical decoupling sequences. Depending on the nature of the noise in the system, specific sequences, such as CPMG, UDD or KDD, can be tailored to optimize T2. Here we combine hyperpolarization techniques and dynamical decoupling sequences to extend the T2 of 13C nuclear spins in nanodiamond by three orders of magnitude.

  1. Nuclear magnetic resonance line-shape analysis and determination of exchange rates

    International Nuclear Information System (INIS)

    Rao, B.D.

    1989-01-01

    The fact that chemical exchange processes occur at rates that cover a broad range and produce readily detectable effects on the spectrum is one of the attractive features of high-resolution NMR. The description of these line shapes in the presence of spin-spin coupling requires the density matrix theory which is rather complex. Analysis of the line shapes usually needs computer simulations and is capable of providing reliable information on the exchange rates as well as spectral parameters in the absence of exchange. Simplified procedures, ignoring spin-spin coupling, often result in deviations in these exchange and spectral parameters determined. A step-by-step procedure is detailed in this chapter for setting up the matrices required for computing the line shapes of exchanges involving weakly coupled spin systems on the basis of the density matrix theory without the need for a detailed understanding of the theory. A knowledge of the energy level structure and allowed transitions in the NMR spectra of the individual weakly coupled spin systems is all that is required. The procedure is amenable to numerical computation. The group of illustrative examples chosen to demonstrate the development of the computational tools cover some of the commonly encountered cases of exchange from simple systems to rather complex ones. Such exchanges occur frequently in biological molecules, especially those involving enzyme-substrate complexes. In cases where the experimental line shapes are obtained with respectable precision, and the relevant exchange processes are unambiguously identifiable, the computer simulation method of line-shape analysis is capable of providing useful and incisive information. The example of the 31P exchanges in the adenylate kinase is illustrative of this point

  2. Enabling legislation and regulatory determinations for a nuclear power programme

    International Nuclear Information System (INIS)

    Ha-Vinh, Phuong

    1975-01-01

    Broad definition of the scope of enabling legislation, identification of branches of laws involved in the licensing and regulatory control, overview of some typical licensing practices and provisions, some specific legislative or regulatory requirements including financial security to over nuclear liability. (HP) [de

  3. Inter-spin distance determination using L-band (1-2 GHz) non-adiabatic rapid sweep electron paramagnetic resonance (NARS EPR)

    Science.gov (United States)

    Kittell, Aaron W.; Hustedt, Eric J.; Hyde, James S.

    2014-01-01

    Site-directed spin-labeling electron paramagnetic resonance (SDSL EPR) provides insight into the local structure and motion of a spin probe strategically attached to a molecule. When a second spin is introduced to the system, macromolecular information can be obtained through measurement of inter-spin distances either by continuous wave (CW) or pulsed electron double resonance (ELDOR) techniques. If both methodologies are considered, inter-spin distances of 8 to 80 Å can be experimentally determined. However, there exists a region at the upper limit of the conventional X-band (9.5 GHz) CW technique and the lower limit of the four-pulse double electron-electron resonance (DEER) experiment where neither method is particularly reliable. The work presented here utilizes L-band (1.9 GHz) in combination with non-adiabatic rapid sweep (NARS) EPR to address this opportunity by increasing the upper limit of the CW technique. Because L-band linewidths are three to seven times narrower than those at X-band, dipolar broadenings that are small relative to the X-band inhomogeneous linewidth become observable, but the signal loss due to the frequency dependence of the Boltzmann factor, has made L-band especially challenging. NARS has been shown to increase sensitivity by a factor of five, and overcomes much of this loss, making L-band distance determination more feasible [1]. Two different systems are presented and distances of 18–30 Å have been experimentally determined at physiologically relevant temperatures. Measurements are in excellent agreement with a helical model and values determined by DEER. PMID:22750251

  4. Mesoporous Silica Nanoparticles Loaded with Surfactant: Low Temperature Magic Angle Spinning 13C and 29Si NMR Enhanced by Dynamic Nuclear Polarization

    Energy Technology Data Exchange (ETDEWEB)

    Lafon, Olivier [Universite de Lille Nord de France; Thankamony, Aany S. Lilly [Universite de Lille Nord de France; Kokayashi, Takeshi [Ames Laboratory; Carnevale, Diego [Ecole Polytechnique Federale de Lausanne; Vitzthum, Veronika [Ecole Polytechnique Federale de Lausanne; Slowing, Igor I. [Ames Laboratory; Kandel, Kapil [Ames Laboratory; Vezin, Herve [Universite de Lille Nord de France; Amoureux, Jean-Paul [Universite de Lille Nord de France; Bodenhausen, Geoffrey [Ecole Polytechnique Federale de Lausanne; Pruski, Marek [Ames Laboratory

    2012-12-21

    We show that dynamic nuclear polarization (DNP) can be used to enhance NMR signals of 13C and 29Si nuclei located in mesoporous organic/inorganic hybrid materials, at several hundreds of nanometers from stable radicals (TOTAPOL) trapped in the surrounding frozen disordered water. The approach is demonstrated using mesoporous silica nanoparticles (MSN), functionalized with 3-(N-phenylureido)propyl (PUP) groups, filled with the surfactant cetyltrimethylammonium bromide (CTAB). The DNP-enhanced proton magnetization is transported into the mesopores via 1H–1H spin diffusion and transferred to rare spins by cross-polarization, yielding signal enhancements εon/off of around 8. When the CTAB molecules are extracted, so that the radicals can enter the mesopores, the enhancements increase to εon/off ≈ 30 for both nuclei. A quantitative analysis of the signal enhancements in MSN with and without surfactant is based on a one-dimensional proton spin diffusion model. The effect of solvent deuteration is also investigated.

  5. Experimental determination of spin-dependent electron density by joint refinement of X-ray and polarized neutron diffraction data.

    Science.gov (United States)

    Deutsch, Maxime; Claiser, Nicolas; Pillet, Sébastien; Chumakov, Yurii; Becker, Pierre; Gillet, Jean Michel; Gillon, Béatrice; Lecomte, Claude; Souhassou, Mohamed

    2012-11-01

    New crystallographic tools were developed to access a more precise description of the spin-dependent electron density of magnetic crystals. The method combines experimental information coming from high-resolution X-ray diffraction (XRD) and polarized neutron diffraction (PND) in a unified model. A new algorithm that allows for a simultaneous refinement of the charge- and spin-density parameters against XRD and PND data is described. The resulting software MOLLYNX is based on the well known Hansen-Coppens multipolar model, and makes it possible to differentiate the electron spins. This algorithm is validated and demonstrated with a molecular crystal formed by a bimetallic chain, MnCu(pba)(H(2)O)(3)·2H(2)O, for which XRD and PND data are available. The joint refinement provides a more detailed description of the spin density than the refinement from PND data alone.

  6. Study of the nuclear structure far from stability: Coulomb excitation of neutron-rich Rb isotopes around N=60; Production of nuclear spin polarized beams using the tilted foils technique

    International Nuclear Information System (INIS)

    Sotty, C.

    2013-01-01

    The underlying structure in the region A ∼ 100, N ∼ 60 has been under intensive and extensive investigation, mainly by β-decay and γ-ray spectroscopy from fission processes. Around N ∼ 60, by adding just few neutrons, protons a rapid shape change occurs from spherical-like to well deformed g.s. shape. Shape coexistence has been observed in the Sr and Zr nuclei, and is expected to take place in the whole region. The mechanisms involved in the appearance of the deformation is not well understood. The interplay between down-sloping and up-sloping neutron Nilsson orbital is evoked as one of the main reasons for the sudden shape change. However, a clear identification of the active proton and neutron orbitals was still on-going. For that purpose, the neutron rich 93;95;97;99 Rb isotopes have been studied by Coulomb excitation at CERN (ISOLDE) using the REX-ISOLDE post-accelerator and the MINIBALL setup. The completely unknown structures of 97;99 Rb have been populated and observed. Prompt γ-ray coincidences of low-lying states have been observed and time-correlated in order to build level schemes. The associated transition strengths have been extracted with the GOSIA code. The observed matrix elements of the electromagnetic operator constituted new inputs of further theoretical calculations giving new insight on the involved orbitals. The sensitivity of such experiment can be increased using nuclear spin polarized radioactive ion beam. For that purpose the Tilted Foils Technique (TFT) of polarization has been investigated at CERN. This technique consists to spin polarize the ion beam, passing through thin foils tilted at an oblique angle with respect to the beam direction. The initially obtained atomic polarization is transferred to the nucleus by hyperfine interaction. This technique does not depend on the chemical nature of the element. Short lived nuclei can be polarized in-flight without any need to be stopped in a catcher. It opens up the possibility to

  7. Determination of nuclear-matter temperature and density

    International Nuclear Information System (INIS)

    Wolf, K.L.

    1980-01-01

    Some of the things learned about nuclear matter under extreme conditions during the past few years in relativistic heavy ion studies are reviewed. Two developments are discussed. The completion of analyses and publication of results from the impact parameter selected, single-particle inclusive experiments have proven to be important. Preliminary results from the new generation of two-particle correlation and particle-exclusive measurements, especially those using streamer chambers, look even more definitive. Also the measurement of more exotic ejectiles with long mean free paths in nuclear matter promises to provide more basic information. Calculations are offering real guidance and are providing explanations of high energy collisions. The Monte Carlo and intranuclear cascade calculations discussed are especially informative

  8. Multiaxial Polarity Determines Individual Cellular and Nuclear Chirality.

    Science.gov (United States)

    Raymond, Michael J; Ray, Poulomi; Kaur, Gurleen; Fredericks, Michael; Singh, Ajay V; Wan, Leo Q

    2017-02-01

    Intrinsic cell chirality has been implicated in the left-right (LR) asymmetry of embryonic development. Impaired cell chirality could lead to severe birth defects in laterality. Previously, we detected cell chirality with an in vitro micropatterning system. Here, we demonstrate for the first time that chirality can be quantified as the coordination of multiaxial polarization of individual cells and nuclei. Using an object labeling, connected component based method, we characterized cell chirality based on cell and nuclear shape polarization and nuclear positioning of each cell in multicellular patterns of epithelial cells. We found that the cells adopted a LR bias the boundaries by positioning the sharp end towards the leading edge and leaving the nucleus at the rear. This behavior is consistent with the directional migration observed previously on the boundary of micropatterns. Although the nucleus is chirally aligned, it is not strongly biased towards or away from the boundary. As the result of the rear positioning of nuclei, the nuclear positioning has an opposite chirality to that of cell alignment. Overall, our results have revealed deep insights of chiral morphogenesis as the coordination of multiaxial polarization at the cellular and subcellular levels.

  9. Experimental determination of the complete spin structure for anti-proton + proton -> anti-\\Lambda + \\Lambda at anti-proton beam momentum of 1.637 GeV/c

    CERN Document Server

    Paschke, K.D.; Berdoz, A.; Franklin, G.B.; Khaustov, P.; Meyer, C.A.; Bradtke, C.; Gehring, R.; Goertz, S.; Harmsen, J.; Meier, A.; Meyer, W.; Radtke, E.; Reicherz, G.; Dutz, H.; Pluckthun, M.; Schoch, B.; Dennert, H.; Eyrich, W.; Hauffe, J.; Metzger, A.; Moosburger, M.; Stinzing, F.; Wirth, St.; Fischer, H.; Franz, J.; Heinsius, F.H.; Kriegler, E.; Schmitt, H.; Bunker, B.; Hertzog, D.; Jones, T.; Tayloe, R.; Broders, R.; Geyer, R.; Kilian, K.; Oelert, W.; Rohrich, K.; Sachs, K.; Sefzick, T.; Bassalleck, B.; Eilerts, S.; Fields, D.E.; Kingsberry, P.; Lowe, J.; Stotzer, R.; Johansson, T.; Pomp, S.; Wirth, St.

    2006-01-01

    The reaction anti-proton + proton -> anti-\\Lambda + \\Lambda -> anti-proton + \\pi^+ + proton + \\pi^- has been measured with high statistics at anti-proton beam momentum of 1.637 GeV/c. The use of a transversely-polarized frozen-spin target combined with the self-analyzing property of \\Lambda/anti-\\Lambda decay allows access to unprecedented information on the spin structure of the interaction. The most general spin-scattering matrix can be written in terms of eleven real parameters for each bin of scattering angle, each of these parameters is determined with reasonable precision. From these results all conceivable spin-correlations are determined with inherent self-consistency. Good agreement is found with the few previously existing measurements of spin observables in anti-proton + proton -> anti-\\Lambda + \\Lambda near this energy. Existing theoretical models do not give good predictions for those spin-observables that had not been previously measured.

  10. Spin current

    CERN Document Server

    Valenzuela, Sergio O; Saitoh, Eiji; Kimura, Takashi

    2012-01-01

    In a new branch of physics and technology called spin-electronics or spintronics, the flow of electrical charge (usual current) as well as the flow of electron spin, the so-called 'spin current', are manipulated and controlled together. This book provides an introduction and guide to the new physics and application of spin current.

  11. NUCLEON SPIN: Enigma confirmed

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    In 1987 the European Muon Collaboration (EMC - June 1988, page 9) reported results from a polarized muon-proton scattering experiment at CERN which puzzled the particle and nuclear physics communities. Contrary to the prediction of the naive quark model, the EMC found that little of the proton spin seemed to be carried by the spins of the quarks. An extensive experimental programme was therefore immediately proposed at CERN, SLAC (Stanford) and DESY (Hamburg) to measure the spin structure function of the neutron and to repeat the proton measurement with improved accuracy

  12. High spin structure functions

    International Nuclear Information System (INIS)

    Khan, H.

    1990-01-01

    This thesis explores deep inelastic scattering of a lepton beam from a polarized nuclear target with spin J=1. After reviewing the formation for spin-1/2, the structure functions for a spin-1 target are defined in terms of the helicity amplitudes for forward compton scattering. A version of the convolution model, which incorporates relativistic and binding energy corrections is used to calculate the structure functions of a neutron target. A simple parameterization of these structure functions is given in terms of a few neutron wave function parameters and the free nucleon structure functions. This allows for an easy comparison of structure functions calculated using different neutron models. (author)

  13. Determination of the magnetic impurities contribution to the nuclear relaxation in metals

    International Nuclear Information System (INIS)

    Cohen, A.M.

    1982-01-01

    The renormalization group techniques developed by Wilson for the Kondo problem are applied, for the first time, to the calculation of nuclear spin relaxation rates in dilute magnetic alloys. A procedure that calculates the longitudinal relaxation time T 1 over the entire temperature range 0 B T 1 is derived; for distances R between the impurity and the nucleus large compared to the inverse Fermi momentum H f , the result is identical to Korringa's expression for the nuclear spin relaxation rate in the pure metal. For smaller k F R, T 1 increases and becomes infinite as k F R→0. A numerical approach, capable of calculating T 1 at finite temperatures, is presented and tested by calculating T 1 for T→0; the numerical results are in excellent agreement with the analytical expression discussed above. Only for k F R→ infinity do the results for T 1 at T=0 agree with those found by Roshen and Saam, who recently analysed this problem in the light of Nozieres's Fermi liquid theory. The reasons for the discrepancy for finite k F R are discussed. (author) [pt

  14. Nuclear magnetic resonance in solids: evolution of spin temperature under multipulse irradiation and high symmetry molecular motions

    International Nuclear Information System (INIS)

    Quiroga, Luis

    1982-01-01

    In a first part, autocorrelation functions are calculated taking into account the symmetry of molecular motions by group theoretical techniques. This very general calculation method is then used to evaluate the NMR spin-lattice relaxation times T 1 and T 1 p as a function of the relative orientations of the magnetic field, the crystal and the rotation axis, in particular for cyclic, dihedral and cubic groups. Models of molecular reorientations such as jumps between a finite number of allowed orientations, rotational diffusion and superimposed reorientations are all investigated with the same formalism. In part two, the effect of the coherent excitation of spins, by multipulse sequences of the WHH-4 type, on the evolution of the heat capacity and spin temperature of the dipolar reservoir is analysed. It is shown both theoretically and experimentally that adiabatic (reversible) reduction of the dipolar Hamiltonian and its spin temperature is obtained when the amplitude of pulses (rotation angle) is slowly raised. The sudden switching on and off of the HW-8 sequence is then shown to lead to the same reversible reduction in a shorter time. It is also shown that, by this way, sensibility and selectivity of double resonance measurements of weak gyromagnetic ratio nuclei are strongly increased. This is experimentally illustrated in some cases. (author) [fr

  15. The determination of trainee teachers' conceptual frameworks about nuclear energy and environment

    Energy Technology Data Exchange (ETDEWEB)

    Aladag, C [Department of Geography, Faculty of Educational, University of Necmettin Erbakan, Kenya (Turkey)

    2013-07-01

    The aim of this study is to reveal the cognitive construction about the relationship between nuclear energy and environment of the undergraduates who have studied science of environment by using word association test and to determine the conception mistakes. The research was made on 81 trainee teachers who study at Ahmet Kelerlu Faculty of Education Department of Geography and Biology, University of Necmettin Erbakan on 2012-2013 academic year fall semester. In the study, it was seen that the topics which the undergraduates mostly refer in their written statements were the nuclear energy's indication of improvement of countries, its necessity, nuclear accidents, nuclear weapons and the ecocide. The other opinions which gained importance were nuclear reaction, nuclear raw material and countries producing nuclear energy. It's seen that nuclear accidents and nuclear weapons are very effective on the graduates' point of view. The opinions about nuclear energy's harm to the environment show that environmental awareness became of secondary importance. The written concepts about these two opinions are very close to each other by percentage. Mainly, the radiation effects caused by the nuclear accidents constitute the fundamental point of undergraduates' perception of environment. (author)

  16. SD-CAS: Spin Dynamics by Computer Algebra System.

    Science.gov (United States)

    Filip, Xenia; Filip, Claudiu

    2010-11-01

    A computer algebra tool for describing the Liouville-space quantum evolution of nuclear 1/2-spins is introduced and implemented within a computational framework named Spin Dynamics by Computer Algebra System (SD-CAS). A distinctive feature compared with numerical and previous computer algebra approaches to solving spin dynamics problems results from the fact that no matrix representation for spin operators is used in SD-CAS, which determines a full symbolic character to the performed computations. Spin correlations are stored in SD-CAS as four-entry nested lists of which size increases linearly with the number of spins into the system and are easily mapped into analytical expressions in terms of spin operator products. For the so defined SD-CAS spin correlations a set of specialized functions and procedures is introduced that are essential for implementing basic spin algebra operations, such as the spin operator products, commutators, and scalar products. They provide results in an abstract algebraic form: specific procedures to quantitatively evaluate such symbolic expressions with respect to the involved spin interaction parameters and experimental conditions are also discussed. Although the main focus in the present work is on laying the foundation for spin dynamics symbolic computation in NMR based on a non-matrix formalism, practical aspects are also considered throughout the theoretical development process. In particular, specific SD-CAS routines have been implemented using the YACAS computer algebra package (http://yacas.sourceforge.net), and their functionality was demonstrated on a few illustrative examples. Copyright © 2010 Elsevier Inc. All rights reserved.

  17. Review of fracture properties of nuclear materials determined by Hertzian indentation

    International Nuclear Information System (INIS)

    Routbort, J.; Matzke, H.

    1985-01-01

    A brief description of the determination of the surface fracture energy and the fracture toughness from a Hertzian indentation test is given. A number of theoretical and experimental problems are discussed. Results obtained on a variety of nuclear fuels and nuclear-waste-containment materials are reviewed and compared with values measured by other techniques. The Hertzian indentation test yields reliable fracture parameters

  18. Ab initio determination of the nuclear quadrupole moments of 114In, 115In, and 117In

    International Nuclear Information System (INIS)

    Errico, Leonardo A.; Renteria, Mario

    2006-01-01

    We present here ab initio determinations of the nuclear-quadrupole moment Q of hyperfine-probe-nuclear states of three different In isotopes: the 5 + 192 keV excited state of 114 In (probe for nuclear quadrupole alignment spectroscopy), the 9/2 + ground state of 115 In (nuclear magnetic and nuclear quadrupole resonance probe), and the 3/2 + 659 keV excited state of 117 In (perturbed angular correlations probe). These nuclear-quadrupole moments were determined by comparing experimental nuclear-quadrupole frequencies to the electric field gradient tensor calculated with high accuracy at In sites in metallic indium within the density functional theory. These ab initio calculations were performed with the full-potential linearized augmented plane wave method. The results obtained for the quadrupole moments of 114 In [Q( 114 In)=-0.14(1) b] are in clear discrepancy with those reported in the literature [Q( 114 In)=+0.16(6) b and +0.739(12) b]. For 115 In and 117 In our results are in excellent agreement with the literature and in the last case Q( 117 In) is determined with more precision. In the case of Q( 117 In), its sign cannot be determined because standard γ-γ perturbed angular correlations experiments are not sensitive to the sign of the nuclear-quadrupole frequency

  19. Nuclear medical determination of left ventricular diastolic function in coronary heart disease

    International Nuclear Information System (INIS)

    Brugger, P.; Laesser, W.K.; Kullich, W.; Stoiberer, I.; Klein, G.

    1985-01-01

    In 64 patients with coronary heart disease, the left ventricular diastolic function was determined by means of a new nuclear medical method (nuclear stethoscope). The investigations revealed an abnormal diastolic filling in 85.9% of the cases on the basis of the parameters peak filling rate and time to peak filling rate as manifestation of a disturbed ventricular function

  20. Electron spin resonance as a high sensitivity technique for environmental magnetism: determination of contamination in carbonate sediments

    Science.gov (United States)

    Crook, Nigel P.; Hoon, Stephen R.; Taylor, Kevin G.; Perry, Chris T.

    2002-05-01

    This study investigates the application of high sensitivity electron spin resonance (ESR) to environmental magnetism in conjunction with the more conventional techniques of magnetic susceptibility, vibrating sample magnetometry (VSM) and chemical compositional analysis. Using these techniques we have studied carbonate sediment samples from Discovery Bay, Jamaica, which has been impacted to varying degrees by a bauxite loading facility. The carbonate sediment samples contain magnetic minerals ranging from moderate to low concentrations. The ESR spectra for all sites essentially contain three components. First, a six-line spectra centred around g = 2 resulting from Mn2+ ions within a carbonate matrix; second a g = 4.3 signal from isolated Fe3+ ions incorporated as impurities within minerals such as gibbsite, kaolinite or quartz; third a ferrimagnetic resonance with a maxima at 230 mT resulting from the ferrimagnetic minerals present within the bauxite contamination. Depending upon the location of the sites within the embayment these signals vary in their relative amplitude in a systematic manner related to the degree of bauxite input. Analysis of the ESR spectral components reveals linear relationships between the amplitude of the Mn2+ and ferrimagnetic signals and total Mn and Fe concentrations. To assist in determining the origin of the ESR signals coral and bauxite reference samples were employed. Coral representative of the matrix of the sediment was taken remote from the bauxite loading facility whilst pure bauxite was collected from nearby mining facilities. We find ESR to be a very sensitive technique particularly appropriate to magnetic analysis of ferri- and para-magnetic components within environmental samples otherwise dominated by diamagnetic (carbonate) minerals. When employing typical sample masses of 200 mg the practical detection limit of ESR to ferri- and para-magnetic minerals within a diamagnetic carbonate matrix is of the order of 1 ppm and 1 ppb

  1. Determination of radionuclides. Fingerprint determination on protection clothing from the controlled areas in nuclear facilities

    International Nuclear Information System (INIS)

    Scholand, Soeren

    2014-01-01

    ENS (Euro Nuclear Services) in Coevorden, Netherlands, is decontaminating und providing protection clothing for the personnel in nuclear facilities. The capacity of the laundry is about 750 kg/h. The clean laundry section is cleaning non-contaminated or very low contaminated articles, i.e. socks or underwear. Fingerprint is defined as the activity of certain radionuclides that differs in the different nuclear facilities. For the reception inspection the dose rate measured with scintillation detectors is compared with the customer specific fingerprint. The total activity is usually 2000 Bq/g. The dose rate limit is 0.3 mSv/h.

  2. Determination of the Fe magnetic anisotropies and the CoO frozen spins in epitaxial CoO/Fe/Ag(001)

    Energy Technology Data Exchange (ETDEWEB)

    Meng, J. Li, Y.; Park, J. S.; Jenkins, C. A.; Arenholz, E.; Scholl, A.; Tan, A.; Son, H.; Zhao, H. W.; Hwang, Chanyong; Qiu, Z. Q.

    2011-04-28

    CoO/Fe/Ag(001) films were grown epitaxially and studied by X-ray Magnetic Circular Dichroism (XMCD) and X-ray Magnetic Linear Dichroism (XMLD). After field cooling along the Fe[100] axis to 80 K, exchange bias, uniaxial anisotropy, and 4-fold anisotropy of the films were determined by hysteresis loop and XMCD measurements by rotating the Fe magnetization within the film plane. The CoO frozen spins were determined by XMLD measurement as a function of CoO thickness.We find that among the exchange bias, uniaxial anisotropy, and 4-fold anisotropy, only the uniaxial magnetic anisotropy follows thickness dependence of the CoO frozen spins.

  3. Geometrical spin symmetry and spin

    International Nuclear Information System (INIS)

    Pestov, I. B.

    2011-01-01

    Unification of General Theory of Relativity and Quantum Mechanics leads to General Quantum Mechanics which includes into itself spindynamics as a theory of spin phenomena. The key concepts of spindynamics are geometrical spin symmetry and the spin field (space of defining representation of spin symmetry). The essence of spin is the bipolar structure of geometrical spin symmetry induced by the gravitational potential. The bipolar structure provides a natural derivation of the equations of spindynamics. Spindynamics involves all phenomena connected with spin and provides new understanding of the strong interaction.

  4. Spin coherence in phosphorescent triplet states

    International Nuclear Information System (INIS)

    Hof, C.A. van 't

    1977-01-01

    The electron spin echo is studied on the dephasing mechanism in the photo-excited triplet state of quinoline in a durene host. First, a comparative investigation of the merits of the different spin echo techniques is presented. It turns out that the rotary echo generally yields a longer phase memory time than the two-pulse echo, whereas in the Carr-Purcell experiment, the dephasing can even be largely suppressed. Secondly, it is shown that the dephasing mechanism is determined by the nuclear spins of the guest molecules as well as those in the host material. A theoretical basis for interpreting the effect of vibronic relaxation on the decay rate of the rotary echo, as observed in parabenzoquinone, is given. Similar experiments in aniline reveal also that in this molecule, two close-lying triplet states exist, which is attributed to an inversion vibration analogous to the well-known example in ammonia

  5. Nuclear medical methods for determination of bone mineral content

    International Nuclear Information System (INIS)

    Fischer, M.; Kempers, B.; Tschepke, H.D.; Spitz, J.

    1988-01-01

    Osteoporosis is becoming recognized as a major social and economical health problem. Bone mineral content (BMC) depends on many hormonal and metabolic factors. The pathophysiological mechanism of the loss of bone mass is still unclear. For preventive diagnosis and treatment of osteoporosis, quantitative technology is required that will measure BMC with high precision and reproducibility. Nuclear medical methods permit the BMC of the appendicular skeleton to be measured by single photon absorptiometry. Whole-body BMC, as well as spine and femur BMC, can be measured by dual photon absorptiometry. The results from both procedures are reasonably precise and correlate well with the ash weight of isolated bone. The radiation exposure level in both SPA and DPA is low. SPA and DPA may be used for cost-effective screening of high-risk patients to predict the likelihood of future fractures and control osteoporosis therapy. (orig.) [de

  6. Determining phenols in coal conversion products by nuclear magnetic resonance

    Energy Technology Data Exchange (ETDEWEB)

    Kanitskaya, L.V.; Kushnarev, D.F.; Polonov, V.M.; Kalabin, G.A.

    1985-03-01

    Possibility of using nuclear magnetic resonance spectra of the hydrogen 1 (/sup 1/H) isotope for a qualitative and quantitative evaluation of the hydroxyl groups in the products of coal processing is investigated. The basis of the method is the fact that in NMR spectra of the /sup 1/H in organic compounds with acid protons, the latter are unprotected when strong bases are used as solvents because of intermolecular hydrogen bonds. The resin from the medium-temperature semicoking of Cheremkhovskii coals, its hydrogenate, and phenol fraction of the hydrogenate were used for the investigation. The results were compared with the results of other NMR spectroscopy methods. The high solubility of hexamethanol and the fact that the products can be analyzed in the natural state, are some advantages of the method. 18 references.

  7. Nuclear parameters determination of the 127Te β - decay: a proposal for teaching nuclear physics

    International Nuclear Information System (INIS)

    Batista, Wagner Fonseca

    2011-01-01

    A study of the 127 Te β - decay was carried out by means of gamma spectroscopy measurements using high resolution HPGe detector, in the region from 30 keV to 1.0 MeV, aiming to get a better understanding of the 127 Te nuclear structure. The radioactive sources of 12 7Te were obtained from the 126 Te(n,γ) 1 '2 7 Te nuclear reaction produced in the IEA- R1 nuclear reactor at IPEN/CNEN-SP. Five gamma t ransitions previously attributed to this decay were confirmed with a better precision than previously. The half-life of 127 Te was also studied resulting in data with lower uncertainty. Using a set of data selected from gamma spectroscopy measurements was developed and applied a didactic proposal for high school students using the Excel software. (author)

  8. Various methods for determination of liquid viscosity with nuclear track membranes

    International Nuclear Information System (INIS)

    Guo Shilun

    1991-01-01

    A systematic study has been performed of the methods for determination of liquid viscosity with nuclear track membranes. Absolute and relative measurements have been suggested, the latter including relative measurements of absolute viscosity and kinematic viscosity. The study shows that the nuclear track membrane is a unique element for determination of liquid viscosity because it is small in volume, accurate in results and easy to manipulate in industries and laboratories

  9. Kinetic Isotope Effect Determination Probes the Spin of the Transition State, Its Stereochemistry, and Its Ligand Sphere in Hydrogen Abstraction Reactions of Oxoiron(IV) Complexes.

    Science.gov (United States)

    Mandal, Debasish; Mallick, Dibyendu; Shaik, Sason

    2018-01-16

    This Account outlines interplay of theory and experiment in the quest to identify the reactive-spin-state in chemical reactions that possess a few spin-dependent routes. Metalloenzymes and synthetic models have forged in recent decades an area of increasing appeal, in which oxometal species bring about functionalization of hydrocarbons under mild conditions and via intriguing mechanisms that provide a glimpse of Nature's designs to harness these reactions. Prominent among these are oxoiron(IV) complexes, which are potent H-abstractors. One of the key properties of oxoirons is the presence of close-lying spin-states, which can mediate H-abstractions. As such, these complexes form a fascinating chapter of spin-state chemistry, in which chemical reactivity involves spin-state interchange, so-called two-state reactivity (TSR) and multistate reactivity (MSR). TSR and MSR pose mechanistic challenges. How can one determine the structure of the reactive transition state (TS) and its spin state for these mechanisms? Calculations can do it for us, but the challenge is to find experimental probes. There are, however, no clear kinetic signatures for the reactive-spin-state in such reactions. This is the paucity that our group has been trying to fill for sometime. Hence, it is timely to demonstrate how theory joins experiment in realizing this quest. This Account uses a set of the H-abstraction reactions of 24 synthetic oxoiron(IV) complexes and 11 hydrocarbons, together undergoing H-abstraction reactions with TSR/MSR options, which provide experimentally determined kinetic isotope effect (KIE exp ) data. For this set, we demonstrate that comparing KIE exp results with calculated tunneling-augmented KIE (KIE TC ) data leads to a clear identification of the reactive spin-state during H-abstraction reactions. In addition, generating KIE exp data for a reaction of interest, and comparing these to KIE TC values, provides the mechanistic chemist with a powerful capability to

  10. Measuring the spin polarization of alkali-metal atoms using nuclear magnetic resonance frequency shifts of noble gases

    Directory of Open Access Journals (Sweden)

    X. H. Liu

    2015-10-01

    Full Text Available We report a novel method of measuring the spin polarization of alkali-metal atoms by detecting the NMR frequency shifts of noble gases. We calculated the profile of 87Rb D1 line absorption cross sections. We then measured the absorption profile of the sample cell, from which we calculated the 87Rb number densities at different temperatures. Then we measured the frequency shifts resulted from the spin polarization of the 87Rb atoms and calculated its polarization degrees at different temperatures. The behavior of frequency shifts versus temperature in experiment was consistent with theoretical calculation, which may be used as compensative signal for the NMRG closed-loop control system.

  11. Studies of the spin-isospin response of the nuclear continuum using intermediate energy hadrons. Final technical report

    International Nuclear Information System (INIS)

    Baker, F.T.

    1999-01-01

    The work supported by this grant has had two main thrusts. One involved study of the spin, isospin, and multipole content of the continuum of nuclei, a continuation and completion of work done at LAMPF, Saturne, and TRIUMF. Most of the work has used (bar p, bar pprime) or (bar d, bar dprime) reactions, measuring spin observable to infer properties of the target nuclei. Publications resulting from this work have included seven refereed articles and letters, five abstracts and conference talks, one of which was invited. The second thrust involved preparatory work for experiments at CEBAF. The author was involved in Hall A work and the construction, installation, and initial experiments using the proton focal plane polarimeter. Experiments began in 1997 and no referred publications have yet been completed; ten abstracts and conference talks have been published

  12. Wigner-Kirkwood expansion of the quasi-elastic nuclear responses and application to spin-isospin responses

    International Nuclear Information System (INIS)

    Chanfray, G.

    1988-01-01

    We derive a semi-classical Wigner-Kirkwood expansion (Planck constant expansion) of the linear response functions. We find that the semi-classical results compare very well to the quantum mechanical calculations. We apply our formalism to the spin-isospin responses and show that surface-peaked Planck constant 2 corrections considerably decrease the ratio longitudinal/transverse as obtained through the Los Alamos (longitudinal momentum) experiment

  13. Determining factors of the effectiveness of IP-based spin-offs: comparing the Netherlands and the US

    NARCIS (Netherlands)

    Bekkers, R.N.A.; Gilsing, V.A.; Steen, van der M.

    2006-01-01

    In this paper we describe and analyse IP-based spin-offs as a relatively new phenomenon for transferring knowledge from science to industry. We argue that the effectiveness of this mechanism is subject to a complex array of institutional factors. These factors entail national, sectoral, regional and

  14. Density determination of sintered ceramic nuclear fuel materials

    International Nuclear Information System (INIS)

    Landspersky, H.; Medek, J.

    1980-01-01

    The feasibility was tested of using solids for pycnometric determination of the density of uranium dioxide-based sintered ceramic fuel materials manufactured by the sol-gel method in the shape of spherical particles of 0.7 to 1.0 mm in size and of particles smaller than 200 μm. For fine particles, this is the only usable method of determining their density which is a very important parameter of the fine fraction when it is employed for the manufacture of fuel elements by vibration compacting. The method consists in compacting a mixture of pycnometric material and dispersed particles of uranium dioxide, determining the size and weight of the compact, and in calculating the density of the material measured from the weight of the oxide sample in the mixture. (author)

  15. A review of flow analysis methods for determination of radionuclides in nuclear wastes and nuclear reactor coolants.

    Science.gov (United States)

    Trojanowicz, Marek; Kołacińska, Kamila; Grate, Jay W

    2018-06-01

    The safety and security of nuclear power plant operations depend on the application of the most appropriate techniques and methods of chemical analysis, where modern flow analysis methods prevail. Nevertheless, the current status of the development of these methods is more limited than it might be expected based on their genuine advantages. The main aim of this paper is to review the automated flow analysis procedures developed with various detection methods for the nuclear energy industry. The flow analysis methods for the determination of radionuclides, that have been reported to date, are primarily focused on their environmental applications. The benefits of the application of flow methods in both monitoring of the nuclear wastes and process analysis of the primary circuit coolants of light water nuclear reactors will also be discussed. The application of either continuous flow methods (CFA) or injection methods (FIA, SIA) of the flow analysis with the β-radiometric detection shortens the analysis time and improves the precision of determination due to mechanization of certain time-consuming operations of the sample processing. Compared to the radiometric detection, the mass spectrometry (MS) detection enables one to perform multicomponent analyses as well as the determination of transuranic isotopes with much better limits of detection. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Determining the efficacy of nuclear security through computer simulation

    Energy Technology Data Exchange (ETDEWEB)

    Chornobo, N.; Waller, E., E-mail: nicholas.chornoboy@uoit.ca [University of Ontario Institute of Technology, Oshawa, ON (Canada)

    2015-07-01

    Currently when creating new security regimes or analyzing current ones it is difficult to determine how effective they are or will be. This leads to many decisions being made using subjective expert opinion or expensive live exercises. While these are useful for determining the effectiveness it would be ideal to have an easy way to simulate and attack through software in order to allow rapid testing of many different scenarios simply. This work focuses on modifying the force on force simulator stage to run these kinds of tests. (author)

  17. Determination of uranium traces in fuel cans of nuclear reactors

    International Nuclear Information System (INIS)

    Acosta L, C.E.; Benavides M, A.M.; Sanchez P, L.A.; Nava S, G.F.

    1997-01-01

    The objective of this work is to quantify the uranium content that as impurity can be found in zircon and zircaloy alloys which are used in the construction of fuel cans. The determination of this serves as a quality control measure due to that the increment of uranium content in alloy, diminishing the corrosion resistance. The fluorimetric method was used to do this determination. It is a very sensitive, reliable, rapid method also high reproducibility and repeatability as well as low detection limits (0.25 mg/kg). (Author)

  18. Nuclear determination of saturation profiles in core plugs

    International Nuclear Information System (INIS)

    Sletsgaard, J.; Oelgaard, P.L.

    1997-01-01

    A method to determine liquid saturations in core plugs during flooding is of importance when the relative permeability and capillary pressure function are to be determined. This part of the EFP-95 project uses transmission of γ-radiation to determine these saturations. In γ-transmission measurements, the electron density of the given substance is measured. This is an advantage as compared to methods that use electric conductivity, since neither oil nor gas conducts electricity. At the moment a single 137 Cs-source is used, but a theoretical investigation of whether it is possible to determine three saturations, using two radioactive sources with different γ-energies, has been performed. Measurements were made on three core plugs. To make sure that the measurements could be reproduced, all the plugs had a point of reference, i.e. a mark so that it was possible to place the plug same way every time. Two computer programs for calculation of saturation and porosity and the experimental setup are listed. (EG)

  19. Spectrographic determination of lithium in nuclear grade calcium

    International Nuclear Information System (INIS)

    Artaud, J.; Cittanova, J.

    1957-01-01

    A method is described for the spectrographic determination of lithium in calcium. The samples are converted directly to CaCO 3 . A method of fractional distillation in the arc, using KCl as carrier, makes it possible to detect and measure the Li content to 0,1 ppm. (author) [fr

  20. Cluster-spin dynamics in a GaMo{sub 4}S{sub 8}-type compound: {sup 27}Al nuclear magnetic resonance study of AlMo{sub 4}S{sub 8}

    Energy Technology Data Exchange (ETDEWEB)

    Ikeno, R; Nakamura, H; Kohara, T [Graduate School of Material Science, University of Hyogo, Kamigori, Ako-gun, Hyogo 678-1297 (Japan)

    2007-01-31

    The cluster-spin dynamics of the tetrahedral Mo{sub 4} cluster, involved in AlMo{sub 4}S{sub 8} with a cubic GaMo{sub 4}S{sub 8} type structure, was investigated by NMR of the nonmagnetic {sup 27}Al site located outside the cluster. The nuclear spin-lattice relaxation is described well by the conventional local moment model assuming the presence of S=1/2 at each cluster, indicating that each Mo{sub 4} cluster behaves like a local spin with rigid magnitude. This behaviour is in contrast to the in-cluster relaxation, which reflects the spin-density fluctuations inside the cluster as a small unit of metal.

  1. Determination of 237Np in environmental and nuclear samples: A review of the analytical method

    International Nuclear Information System (INIS)

    Thakur, P.; Mulholland, G.P.

    2012-01-01

    A number of analytical methods has been developed and used for the determination of neptunium in environmental and nuclear fuel samples using alpha, ICP–MS spectrometry, and other analytical techniques. This review summarizes and discusses development of the radiochemical procedures for separation of neptunium (Np), since the beginning of the nuclear industry, followed by a more detailed discussion on recent trends in the separation of neptunium. This article also highlights the progress in analytical methods and issues associated with the determination of neptunium in environmental samples. - Highlights: ► Determination of Np in environmental and nuclear samples is reviewed. ► Various analytical methods used for the determination of Np are listed. ► Progress and issues associated with the determination of Np are discussed.

  2. Spin-orbit ZORA and four-component Dirac-Coulomb estimation of relativistic corrections to isotropic nuclear shieldings and chemical shifts of noble gas dimers.

    Science.gov (United States)

    Jankowska, Marzena; Kupka, Teobald; Stobiński, Leszek; Faber, Rasmus; Lacerda, Evanildo G; Sauer, Stephan P A

    2016-02-05

    Hartree-Fock and density functional theory with the hybrid B3LYP and general gradient KT2 exchange-correlation functionals were used for nonrelativistic and relativistic nuclear magnetic shielding calculations of helium, neon, argon, krypton, and xenon dimers and free atoms. Relativistic corrections were calculated with the scalar and spin-orbit zeroth-order regular approximation Hamiltonian in combination with the large Slater-type basis set QZ4P as well as with the four-component Dirac-Coulomb Hamiltonian using Dyall's acv4z basis sets. The relativistic corrections to the nuclear magnetic shieldings and chemical shifts are combined with nonrelativistic coupled cluster singles and doubles with noniterative triple excitations [CCSD(T)] calculations using the very large polarization-consistent basis sets aug-pcSseg-4 for He, Ne and Ar, aug-pcSseg-3 for Kr, and the AQZP basis set for Xe. For the dimers also, zero-point vibrational (ZPV) corrections are obtained at the CCSD(T) level with the same basis sets were added. Best estimates of the dimer chemical shifts are generated from these nuclear magnetic shieldings and the relative importance of electron correlation, ZPV, and relativistic corrections for the shieldings and chemical shifts is analyzed. © 2015 Wiley Periodicals, Inc.

  3. Determination of iron 55 in nuclear wastes and effluents

    International Nuclear Information System (INIS)

    Raymond, A.; Revy, D.

    1989-01-01

    The methods for iron 55 analysis, described in this report allows measurement in different types of radioactive wastes after a specific chemical separation. Detection limit is near 1 Bq/l and the concentration factor can reach 100. Activity level found show that iron 55 is a major activation product, then the chemical determination is indispensable for a complete inventory of radionuclides in radioactive wastes [fr

  4. Nuclear equipment to determine soil and water mass attenuation coefficients

    International Nuclear Information System (INIS)

    Zucchi, O.L.A.D.; Nascimento Filho, V.F. do

    1984-01-01

    The feasibility of substituting the monochannel gamma spectrometer, traditionally used in the gamma ray attenuation technique, for a less sophisticated and less expensive system of integral counting is studied. The proposed system can be operated by a non-specialized person. Three detection systems were used in the determination of the mass attenuation coefficients for different types of soil and for water. (M.A.C.) [pt

  5. Recoupling and decoupling of nuclear spin interactions at high MAS frequencies: numerical design of CNnν symmetry-based RF pulse schemes

    International Nuclear Information System (INIS)

    Herbst, Christian; Herbst, Jirada; Kirschstein, Anika; Leppert, Joerg; Ohlenschlaeger, Oliver; Goerlach, Matthias; Ramachandran, Ramadurai

    2009-01-01

    The CN n ν class of RF pulse schemes, commonly employed for recoupling and decoupling of nuclear spin interactions in magic angle spinning solid state NMR studies of biological systems, involves the application of a basic 'C' element corresponding to an RF cycle with unity propagator. In this study, the design of CN n ν symmetry-based RF pulse sequences for achieving 13 C- 13 C double-quantum dipolar recoupling and through bond scalar coupling mediated 13 C- 13 C chemical shift correlation has been examined at high MAS frequencies employing broadband, constant-amplitude, phase-modulated basic 'C' elements. The basic elements were implemented as a sandwich of a small number of short pulses of equal duration with each pulse characterised by an RF phase value. The phase-modulation profile of the 'C' element was optimised numerically so as to generate efficient RF pulse sequences. The performances of the sequences were evaluated via numerical simulations and experimental measurements and are presented here

  6. Contribution to the evaluation of safety of software used in command control systems in nuclear plants: application to the SPIN N4

    International Nuclear Information System (INIS)

    Soubies, B.; Boulc'h, J.; Elsensohn, O.; Le Meur, M.; Henry, J.Y.

    1994-06-01

    The licensing procedures process of nuclear plants features compulsory steps which bring about a thorough exam of the commands control system. This analysis accounts for the aspects linked to technologies (integrated circuits, software packages) which have been chosen by the manufacturer for the programmed systems in charge of safety functions. Important innovations have been introduced in terms of design and manufacturing processes of safety systems of 1400 MWe pressurized water reactors, more precisely for the integrated numerical protection system (SPIN). The methodology used by the IPSN for the exam of the software of this system is presented in the communication. This methodology leads the IPSN to carry out studies and developments of tools keeping in sight as their main goal to bring substantial help to analysis. (authors). 2 refs

  7. Crocus sativus Petals: Waste or Valuable Resource? The Answer of High-Resolution and High-Resolution Magic Angle Spinning Nuclear Magnetic Resonance.

    Science.gov (United States)

    Righi, Valeria; Parenti, Francesca; Tugnoli, Vitaliano; Schenetti, Luisa; Mucci, Adele

    2015-09-30

    Intact Crocus sativus petals were studied for the first time by high-resolution magic angle spinning nuclear magnetic resonance (HR-MAS NMR) spectroscopy, revealing the presence of kinsenoside (2) and goodyeroside A (3), together with 3-hydroxy-γ-butyrolactone (4). These findings were confirmed by HR-NMR analysis of the ethanol extract of fresh petals and showed that, even though carried out rapidly, partial hydrolysis of glucopyranosyloxybutanolides occurs during extraction. On the other hand, kaempferol 3-O-sophoroside (1), which is "NMR-silent" in intact petals, is present in extracts. These results suggest to evaluate the utilization of saffron petals for phytopharmaceutical and nutraceutical purposes to exploit a waste product of massive production of commercial saffron and point to the application of HR-MAS NMR for monitoring bioactive compounds directly on intact petals, avoiding the extraction procedure and the consequent hydrolysis reaction.

  8. Towards real-time metabolic profiling of a biopsy specimen during a surgical operation by 1H high resolution magic angle spinning nuclear magnetic resonance: a case report

    Directory of Open Access Journals (Sweden)

    Piotto Martial

    2012-01-01

    Full Text Available Abstract Introduction Providing information on cancerous tissue samples during a surgical operation can help surgeons delineate the limits of a tumoral invasion more reliably. Here, we describe the use of metabolic profiling of a colon biopsy specimen by high resolution magic angle spinning nuclear magnetic resonance spectroscopy to evaluate tumoral invasion during a simulated surgical operation. Case presentation Biopsy specimens (n = 9 originating from the excised right colon of a 66-year-old Caucasian women with an adenocarcinoma were automatically analyzed using a previously built statistical model. Conclusions Metabolic profiling results were in full agreement with those of a histopathological analysis. The time-response of the technique is sufficiently fast for it to be used effectively during a real operation (17 min/sample. Metabolic profiling has the potential to become a method to rapidly characterize cancerous biopsies in the operation theater.

  9. Nuclear spins, magnetic moments and quadrupole moments of Cu isotopes from N = 28 to N = 46: probes for core polarization effects

    CERN Document Server

    Vingerhoets, P; Avgoulea, M; Billowes, J; Bissell, M L; Blaum, K; Brown, B A; Cheal, B; De Rydt, M; Forest, D H; Geppert, Ch; Honma, M; Kowalska, M; Kramer, J; Krieger, A; Mane, E; Neugart, R; Neyens, G; Nortershauser, W; Otsuka, T; Schug, M; Stroke, H H; Tungate, G; Yordanov, D T

    2010-01-01

    Measurements of the ground-state nuclear spins, magnetic and quadrupole moments of the copper isotopes from 61Cu up to 75Cu are reported. The experiments were performed at the ISOLDE facility, using the technique of collinear laser spectroscopy. The trend in the magnetic moments between the N=28 and N=50 shell closures is reasonably reproduced by large-scale shell-model calculations starting from a 56Ni core. The quadrupole moments reveal a strong polarization of the underlying Ni core when the neutron shell is opened, which is however strongly reduced at N=40 due to the parity change between the $pf$ and $g$ orbits. No enhanced core polarization is seen beyond N=40. Deviations between measured and calculated moments are attributed to the softness of the 56Ni core and weakening of the Z=28 and N=28 shell gaps.

  10. Determination of nuclear tracks parameters on sequentially etched PADC detectors

    Science.gov (United States)

    Horwacik, Tomasz; Bilski, Pawel; Koerner, Christine; Facius, Rainer; Berger, Thomas; Nowak, Tomasz; Reitz, Guenther; Olko, Pawel

    Polyallyl Diglycol Carbonate (PADC) detectors find many applications in radiation protection. One of them is the cosmic radiation dosimetry, where PADC detectors measure the linear energy transfer (LET) spectra of charged particles (from protons to heavy ions), supplementing TLD detectors in the role of passive dosemeter. Calibration exposures to ions of known LET are required to establish a relation between parameters of track observed on the detector and LET of particle creating this track. PADC TASTRAK nuclear track detectors were exposed to 12 C and 56 Fe ions of LET in H2 O between 10 and 544 keV/µm. The exposures took place at the Heavy Ion Medical Accelerator (HIMAC) in Chiba, Japan in the frame of the HIMAC research project "Space Radiation Dosimetry-Ground Based Verification of the MATROSHKA Facility" (20P-240). Detectors were etched in water solution of NaOH with three different temperatures and for various etching times to observe the appearance of etched tracks, the evolution of their parameters and the stability of the etching process. The applied etching times (and the solution's concentrations and temperatures) were: 48, 72, 96, 120 hours (6.25 N NaOH, 50 O C), 20, 40, 60, 80 hours (6.25 N NaOH, 60 O C) and 8, 12, 16, 20 hours (7N NaOH, 70 O C). The analysis of the detectors involved planimetric (2D) measurements of tracks' entrance ellipses and mechanical measurements of bulk layer thickness. Further track parameters, like angle of incidence, track length and etch rate ratio were then calculated. For certain tracks, results of planimetric measurements and calculations were also compared with results of optical track profile (3D) measurements, where not only the track's entrance ellipse but also the location of the track's tip could be directly measured. All these measurements have been performed with the 2D/3D measurement system at DLR. The collected data allow to create sets of V(LET in H2 O) calibration curves suitable for short, intermediate and

  11. Spin dynamics of the itinerant helimagnet MnSi studied by positive muon spin relaxation

    International Nuclear Information System (INIS)

    Kadono, R.; Matsuzaki, T.; Yamazaki, T.; Kreitzman, S.R.; Brewer, J.H.

    1990-03-01

    The local magnetic fields and spin dynamics of the itinerant helimagnet MnSi(T c ≅ 29.5 K) have been studied experimentally using positive muon spin rotation/relaxation (μ + SR) methods. In the ordered phase (T c ), zero-field μSR was used to measure the hyperfine fields at the muon sites as well as the muon spin-lattice relaxation time T 1 μ . Two magnetically inequivalent interstitial μ + sites were found with hyperfine coupling constants A hf (1) = -3.94 kOe/μ B and A hf (2) = -6.94 kOe/μ B , respectively. In the paramagnetic phase (T > T c ), the muon-nuclear spin double relaxation technique was used to simultaneously but independently determine the spin-lattice relaxation time T 1 Mn of 55 Mn spins and that of positive muons (T 1 μ ) over a wide temperature range (T c 1 Mn and T 1 μ in both phases shows systematic deviations from the predictions of self-consistent renormalization (SCR) theory. (author)

  12. Spin polarized deuterium

    International Nuclear Information System (INIS)

    Glyde, H.R.; Hernadi, S.I.

    1986-01-01

    Several ground state properties of (electron) spin-polarized deuterium (D) such as the energy, single quasiparticle energies and lifetimes, Landau parameters and sound velocities are evaluated. The calculations begin with the Kolos-Wolneiwicz potential and use the Galitskii-FeynmanHartree-Fock (GFHF) approximation. The deuteron nucleas has spin I = 1, and spin states I/sub z/ = 1,0,-1. We explore D 1 , D 2 and D 3 in which, respectively, one spin state only is populated, two states are equally populated, and three states are equally populated. We find the GFHF describes D 1 well, but D 2 and D 3 less well. The Landau parameters, F/sub L/, are small compared to liquid 3 He and very small for doubly polarized D 1 (i.e. the F/sub L/ decrease with nuclear polarization)

  13. ANL calculational methodologies for determining spent nuclear fuel source term

    International Nuclear Information System (INIS)

    McKnight, R. D.

    2000-01-01

    Over the last decade Argonne National Laboratory has developed reactor depletion methods and models to determine radionuclide inventories of irradiated EBR-II fuels. Predicted masses based on these calculational methodologies have been validated using available data from destructive measurements--first from measurements of lead EBR-II experimental test assemblies and later using data obtained from processing irradiated EBR-II fuel assemblies in the Fuel Conditioning Facility. Details of these generic methodologies are described herein. Validation results demonstrate these methods meet the FCF operations and material control and accountancy requirements

  14. Aluminum and gallium nuclei as microscopic probes for pulsed electron-nuclear double resonance diagnostics of electric-field gradient and spin density in garnet ceramics doped with paramagnetic ions

    Science.gov (United States)

    Uspenskaya, Yu. A.; Mamin, G. V.; Babunts, R. A.; Badalyan, A. G.; Edinach, E. V.; Asatryan, H. R.; Romanov, N. G.; Orlinskii, S. B.; Khanin, V. M.; Wieczorek, H.; Ronda, C.; Baranov, P. G.

    2018-03-01

    The presence of aluminum and gallium isotopes with large nuclear magnetic and quadrupole moments in the nearest environment of impurity ions Mn2+ and Ce3+ in garnets made it possible to use hyperfine and quadrupole interactions with these ions to determine the spatial distribution of the unpaired electron and the gradient of the electric field at the sites of aluminum and gallium in the garnet lattice. High-frequency (94 GHz) electron spin echo detected electron paramagnetic resonance and electron-nuclear double resonance measurements have been performed. Large difference in the electric field gradient and quadrupole splitting at octahedral and tetrahedral sites allowed identifying the positions of aluminum and gallium ions in the garnet lattice and proving that gallium first fills tetrahedral positions in mixed aluminum-gallium garnets. This should be taken into account in the development of garnet-based scintillators and lasers. It is shown that the electric field gradient at aluminum nuclei near Mn2+ possessing an excess negative charge in the garnet lattice is ca. 2.5 times larger than on aluminum nuclei near Ce3+.

  15. Determination of the fission coefficients in thermal nuclear reactors for antineutrino detection

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, Lenilson M. [Coordenacao dos Programas de Pos-Graduacao de Engenharia (PEN/COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear; Cabral, Ronaldo G., E-mail: rgcabral@ime.eb.b [Instituto Militar de Engenharia (IME), Rio de Janeiro, RJ (Brazil); Anjos, Joao C.C. dos, E-mail: janjos@cbpf.b [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil). Dept. GLN - G

    2011-07-01

    The nuclear reactors in operation periodically need to change their fuel. It is during this process that these reactors are more vulnerable to occurring of several situations of fuel diversion, thus the monitoring of the nuclear installations is indispensable to avoid events of this nature. Considering this fact, the most promissory technique to be used for the nuclear safeguard for the nonproliferation of nuclear weapons, it is based on the detection and spectroscopy of antineutrino from fissions that occur in the nuclear reactors. The detection and spectroscopy of antineutrino, they both depend on the single contribution for the total number of fission of each actinide in the core reactor, these contributions receive the name of fission coefficients. The goal of this research is to show the computational and mathematical modeling used to determinate these coefficients for PWR reactors. (author)

  16. Determining the CP nature of spin-0 mediators in associated production of dark matter and tt̄ pairs

    Energy Technology Data Exchange (ETDEWEB)

    Haisch, Ulrich [Rudolf Peierls Centre for Theoretical Physics, University of Oxford,OX1 3NP Oxford (United Kingdom); CERN, Theoretical Physics Department,CH-1211 Geneva 23 (Switzerland); Pani, Priscilla [Department of Physics, Stockholm University,AlbaNova University Center, 106 91 Stockholm (Sweden); CERN, Experimental Physics Department,CH-1211 Geneva 23 (Switzerland); Polesello, Giacomo [INFN, Sezione di Pavia,Via Bassi 6, 27100 Pavia (Italy); CERN, Experimental Physics Department,CH-1211 Geneva 23 (Switzerland)

    2017-02-27

    In the framework of spin-0 s-channel simplified models, we explore the possibility of assessing the structure of dark matter interactions through the associate production of dark matter and tt̄ pairs. To this purpose, final states with two leptons are considered and the kinematic properties of the dilepton system is studied. We develop a realistic analysis strategy and provide a detailed evaluation of the achievable sensitivity for the dark matter signal assuming integrated luminosities of 300 fb{sup −1} and 3 ab{sup −1} at the 14 TeV LHC. Furthermore, upper limits on the mediator masses for which the two different CP hypotheses can be distinguished are derived. The obtained limits on the signal strengths are finally translated into constraints on the parameter space of two spin-0 simplified models including a scenario with an extended Higgs sector.

  17. High-pressure, high-temperature magic angle spinning nuclear magnetic resonance devices and processes for making and using same

    Science.gov (United States)

    Hu, Jian Zhi; Hu, Mary Y.; Townsend, Mark R.; Lercher, Johannes A.; Peden, Charles H. F.

    2015-10-06

    Re-usable ceramic magic angle spinning (MAS) NMR rotors constructed of high-mechanic strength ceramics are detailed that include a sample compartment that maintains high pressures up to at least about 200 atmospheres (atm) and high temperatures up to about least about 300.degree. C. during operation. The rotor designs minimize pressure losses stemming from penetration over an extended period of time. The present invention makes possible a variety of in-situ high pressure, high temperature MAS NMR experiments not previously achieved in the prior art.

  18. Operator spin foam models

    International Nuclear Information System (INIS)

    Bahr, Benjamin; Hellmann, Frank; Kaminski, Wojciech; Kisielowski, Marcin; Lewandowski, Jerzy

    2011-01-01

    The goal of this paper is to introduce a systematic approach to spin foams. We define operator spin foams, that is foams labelled by group representations and operators, as our main tool. A set of moves we define in the set of the operator spin foams (among other operations) allows us to split the faces and the edges of the foams. We assign to each operator spin foam a contracted operator, by using the contractions at the vertices and suitably adjusted face amplitudes. The emergence of the face amplitudes is the consequence of assuming the invariance of the contracted operator with respect to the moves. Next, we define spin foam models and consider the class of models assumed to be symmetric with respect to the moves we have introduced, and assuming their partition functions (state sums) are defined by the contracted operators. Briefly speaking, those operator spin foam models are invariant with respect to the cellular decomposition, and are sensitive only to the topology and colouring of the foam. Imposing an extra symmetry leads to a family we call natural operator spin foam models. This symmetry, combined with assumed invariance with respect to the edge splitting move, determines a complete characterization of a general natural model. It can be obtained by applying arbitrary (quantum) constraints on an arbitrary BF spin foam model. In particular, imposing suitable constraints on a spin(4) BF spin foam model is exactly the way we tend to view 4D quantum gravity, starting with the BC model and continuing with the Engle-Pereira-Rovelli-Livine (EPRL) or Freidel-Krasnov (FK) models. That makes our framework directly applicable to those models. Specifically, our operator spin foam framework can be translated into the language of spin foams and partition functions. Among our natural spin foam models there are the BF spin foam model, the BC model, and a model corresponding to the EPRL intertwiners. Our operator spin foam framework can also be used for more general spin

  19. Determination of B and Li in nuclear materials by secondary-ion mass spectrometry

    International Nuclear Information System (INIS)

    Eby, R.E.; Christie, W.H.

    1981-01-01

    Secondary ion mass spectrometry (SIMS) was used to perform mass and isotopic analysis for B and Li in samples that are not readily amenable to more conventional mass spectrometric techniques (e.g., surface ionization, electron impact, etc.). In this paper three specific applications of SIMS analysis to nuclear materials are discussed: first, the quantitative determination of B and its isotopic composition in borosilicate glasses; second, the determination of the isotopic composition of B and Li in irradiated nuclear-grade aluminum oxide/boron carbide composite pellets, and, lastly, the quantitative and isotopic determination of B and Li in highly radioactive solutions of unknown composition

  20. Experimental determination of the spin-rotation coupling constant in the Cs129Xe and K129Xe molecules

    International Nuclear Information System (INIS)

    Wu, Z.; Happer, W.

    1984-01-01

    Since alkali-noble gas van der Waals molecules are involved in the spin transfer process, the physics can be naturally divided into two parts. One of them is to study the formation and break-up rates of the molecules, the chemical equilibrium constant, etc. The other aspect of this problem is to study how the individual angular momenta evolve during the lifetime of the molecule. The experiments described address the second aspect