WorldWideScience

Sample records for nuclear safety measurements

  1. Neutron nuclear data measurements for criticality safety

    Science.gov (United States)

    Guber, Klaus; Paradela, Carlos; Heyse, Jan; Kopecky, Stefan; Schillebeeckx, Peter; Siegler, Peter

    2017-09-01

    To support the US Department of Energy Nuclear Criticality Safety Program, neutron-induced cross section experiments were performed at the Geel Electron Linear Accelerator of the Joint Research Center Site Geel, European Union. Neutron capture and transmission measurements were carried out using metallic natural cerium and vanadium samples. Together with existing data, the measured data will be used for a new evaluation and will be submitted with covariances to the ENDF/B nuclear data library.

  2. Nuclear Reactor RA Safety Report, Vol. 14, Safety protection measures

    International Nuclear Information System (INIS)

    1986-11-01

    Nuclear reactor accidents can be caused by three type of errors: failure of reactor components including (1) control and measuring instrumentation, (2) errors in operation procedure, (3) natural disasters. Safety during reactor operation are secured during its design and construction and later during operation. Both construction and administrative procedures are applied to attain safe operation. Technical safety features include fission product barriers, fuel elements cladding, primary reactor components (reactor vessel, primary cooling pipes, heat exchanger in the pump), reactor building. Safety system is the system for safe reactor shutdown and auxiliary safety system. RA reactor operating regulations and instructions are administrative acts applied to avoid possible human error caused accidents [sr

  3. Nuclear safety

    International Nuclear Information System (INIS)

    1991-02-01

    This book reviews the accomplishments, operations, and problems faced by the defense Nuclear Facilities Safety Board. Specifically, it discusses the recommendations that the Safety Board made to improve safety and health conditions at the Department of Energy's defense nuclear facilities, problems the Safety Board has encountered in hiring technical staff, and management problems that could affect the Safety Board's independence and credibility

  4. Nuclear safety

    International Nuclear Information System (INIS)

    Tarride, Bruno

    2015-10-01

    The author proposes an overview of methods and concepts used in the nuclear industry, at the design level as well as at the exploitation level, to ensure an acceptable safety level, notably in the case of nuclear reactors. He first addresses the general objectives of nuclear safety and the notion of acceptable risk: definition and organisation of nuclear safety (relationships between safety authorities and operators), notion of acceptable risk, deterministic safety approach and main safety principles (safety functions and confinement barriers, concept of defence in depth). Then, the author addresses the safety approach at the design level: studies of operational situations, studies of internal and external aggressions, safety report, design principles for important-for-safety systems (failure criterion, redundancy, failure prevention, safety classification). The next part addresses safety during exploitation and general exploitation rules: definition of the operation domain and of its limits, periodic controls and tests, management in case of incidents, accidents or aggressions

  5. Nuclear law - Nuclear safety

    International Nuclear Information System (INIS)

    Pontier, Jean-Marie; Roux, Emmanuel; Leger, Marc; Deguergue, Maryse; Vallar, Christian; Pissaloux, Jean-Luc; Bernie-Boissard, Catherine; Thireau, Veronique; Takahashi, Nobuyuki; Spencer, Mary; Zhang, Li; Park, Kyun Sung; Artus, J.C.

    2012-01-01

    This book contains the contributions presented during a one-day seminar. The authors propose a framework for a legal approach to nuclear safety, a discussion of the 2009/71/EURATOM directive which establishes a European framework for nuclear safety in nuclear installations, a comment on nuclear safety and environmental governance, a discussion of the relationship between citizenship and nuclear, some thoughts about the Nuclear Safety Authority, an overview of the situation regarding the safety in nuclear waste burying, a comment on the Nome law with respect to electricity price and nuclear safety, a comment on the legal consequences of the Fukushima accident on nuclear safety in the Japanese law, a presentation of the USA nuclear regulation, an overview of nuclear safety in China, and a discussion of nuclear safety in the medical sector

  6. Nuclear Safety

    International Nuclear Information System (INIS)

    1978-09-01

    In this short paper it has only been possible to deal in a rather general way with the standards of safety used in the UK nuclear industry. The record of the industry extending over at least twenty years is impressive and, indeed, unique. No other industry has been so painstaking in protection of its workers and in its avoidance of damage to the environment. Headings are: introduction; how a nuclear power station works; radiation and its effects (including reference to ICRP, the UK National Radiological Protection Board, and safety standards); typical radiation doses (natural radiation, therapy, nuclear power programme and other sources); safety of nuclear reactors - design; key questions (matters of concern which arise in the public mind); safety of operators; safety of people in the vicinity of a nuclear power station; safety of the general public; safety bodies. (U.K.)

  7. On the Measures to Strengthen the Global Nuclear Safety Regime

    International Nuclear Information System (INIS)

    Hussein, A.Z.

    2008-01-01

    The fundamental safety objective to protect people and the environment from harmful effects of ionizing radiation applies to all circumstances that give rise to radiation risks. The intent and purpose of safety principles are to be applicable throughout the entire lifetime of all facilities and activities - existing and new utilized for peaceful purposes, and to protective actions to reduce radiation risks. Now as the nuclear option is being revisited in many places, a variety of stake holders will seek participation in such decisions. Nuclear and radiological accidents occurred wide world have served to arouse public concern. The development of here-and-now media capabilities have created an awareness that may not have previously existed. Improvement in educational systems and the development of the internet have made technical information and expertise available to individuals and locations that were previously without them. The core of the Global Nuclear Safety Regime (INSAG Series No.21) for nuclear installations are the activities undertaken by each state to ensure the safety and security of the nuclear installations within its jurisdiction. National efforts can be strengthened by: intergovernmental organizations, multinational networks among operators, multinational networks among regulators, multinational networks among scientists, the international nuclear industry, and the stake holders (public, news media, NGO's) that are engaged in Nuclear Safety. All of these efforts should be harnessed to enhance the achievement of safety

  8. Nuclear Safety

    Energy Technology Data Exchange (ETDEWEB)

    Silver, E G [ed.

    1989-01-01

    This document is a review journal that covers significant developments in the field of nuclear safety. Its scope includes the analysis and control of hazards associated with nuclear energy, operations involving fissionable materials, and the products of nuclear fission and their effects on the environment. Primary emphasis is on safety in reactor design, construction, and operation; however, the safety aspects of the entire fuel cycle, including fuel fabrication, spent-fuel processing, nuclear waste disposal, handling of radioisotopes, and environmental effects of these operations, are also treated.

  9. Nuclear safety

    International Nuclear Information System (INIS)

    1991-01-01

    This document brings together a series of articles illustrating the way nuclear safety is conceived organised and applied in France. It also deals with foreign experts contributions related to the safety of future nuclear power plants and the impact of probabilistic studies. The opinion of a french Deputy, pleading for nuclear transparency, is sustained by the final conclusions analysing the lessons learned from the past and the current priorities [fr

  10. One method for safety rod drop time measurement at nuclear reactors

    International Nuclear Information System (INIS)

    Pesic, M.; Marinkovic, P.; Stefanovic, D.

    1991-01-01

    One of many methods for measurement of short time intervals of moving elements is designed and applied at RB nuclear reactor for determination of safety rods drop times which are necessary for safety analyses. (author)

  11. Nuclear safety

    International Nuclear Information System (INIS)

    2014-01-01

    The Program on Nuclear Safety comprehends Radioprotection, Radioactive Waste Management and Nuclear Material Control. These activities are developed at the Nuclear Safety Directory. The Radioactive Waste Management Department (GRR) was formally created in 1983, to promote research and development, teaching and service activities in the field of radioactive waste. Its mission is to develop and employ technologies to manage safely the radioactive wastes generated at IPEN and at its customer’s facilities all over the country, in order to protect the health and the environment of today's and future generations. The Radioprotection Service (GRP) aims primarily to establish requirements for the protection of people, as workers, contractors, students, members of the general public and the environment from harmful effects of ionizing radiation. Furthermore, it also aims to establish the primary criteria for the safety of radiation sources at IPEN and planning and preparing for response to nuclear and radiological emergencies. The procedures about the management and the control of exposures to ionizing radiation are in compliance with national standards and international recommendations. Research related to the main activities is also performed. The Nuclear Material Control has been performed by the Safeguard Service team, which manages the accountability and the control of nuclear material at IPEN facilities and provides information related to these activities to ABACC and IAEA. (author)

  12. Nuclear safety in France

    International Nuclear Information System (INIS)

    Servant, J.

    1979-12-01

    The main areas of nuclear safety are considered in this paper, recalling the laws and resolutions in force and also the appropriate authority in each case. The following topics are reviewed: radiological protection, protection of workers, measures to be taken in case of an accident, radioactive effluents, impact on the environment of non-nuclear pollution, nuclear plant safety, protection against malicious acts, control and safeguard of nuclear materials, radioisotopes, transport of radioactive substances, naval propulsion, waste management, nuclear plant decommissioning and export of nuclear equipment and materials. Finally, the author describes the role of the general Secretariat of the Interdepartmental Committee on Nuclear Safety

  13. Nuclear safety culture and nuclear safety supervision

    International Nuclear Information System (INIS)

    Chai Jianshe

    2013-01-01

    In this paper, the author reviews systematically and summarizes up the development process and stage characteristics of nuclear safety culture, analysis the connotation and characteristics of nuclear safety culture, sums up the achievements of our country's nuclear safety supervision, dissects the challenges and problems of nuclear safety supervision. This thesis focused on the relationship between nuclear safety culture and nuclear safety supervision, they are essential differences, but there is a close relationship. Nuclear safety supervision needs to introduce some concepts of nuclear safety culture, lays emphasis on humanistic care and improves its level and efficiency. Nuclear safety supervision authorities must strengthen nuclear safety culture training, conduct the development of nuclear safety culture, make sure that nuclear safety culture can play significant roles. (author)

  14. Nuclear Safety Review 2013

    International Nuclear Information System (INIS)

    2013-07-01

    The Nuclear Safety Review 2013 focuses on the dominant nuclear safety trends, issues and challenges in 2012. The Executive Overview provides crosscutting and worldwide nuclear safety information along with a summary of the major sections covered in this report. Sections A-E of this report cover improving radiation, transport and waste safety; strengthening safety in nuclear installations; improving regulatory infrastructure and effectiveness; enhancing emergency preparedness and response (EPR); and civil liability for nuclear damage. The Appendix provides details on the activities of the Commission on Safety Standards (CSS), and activities relevant to the IAEA Safety Standards. The world nuclear community has made noteworthy progress in strengthening nuclear safety in 2012, as promoted by the IAEA Action Plan on Nuclear Safety (hereinafter referred to as ''the Action Plan''). For example, an overwhelming majority of Member States with operating nuclear power plants (NPPs) have undertaken and essentially completed comprehensive safety reassessments ('stress tests') with the aim of evaluating the design and safety aspects of plant robustness to protect against extreme events, including: defence in depth, safety margins, cliff edge effects, multiple failures, and the prolonged loss of support systems. As a result, many have introduced additional safety measures including mitigation of station blackout. Moreover, the IAEA's peer review services and safety standards have been reviewed and strengthened where needed. Capacity building programmes have been built or improved, and EPR programmes have also been reviewed and improved. Furthermore, in 2012, the IAEA continued to share lessons learned from the Fukushima Daiichi accident with the nuclear community including through three international experts' meetings (IEMs) on reactor and spent fuel safety, communication in the event of a nuclear or radiological emergency, and protection against extreme earthquakes and tsunamis

  15. Very high temperature measurements: Applications to nuclear reactor safety tests

    International Nuclear Information System (INIS)

    Parga, Clemente-Jose

    2013-01-01

    This PhD dissertation focuses on the improvement of very high temperature thermometry (1100 deg. C to 2480 deg. C), with special emphasis on the application to the field of nuclear reactor safety and severe accident research. Two main projects were undertaken to achieve this objective: - The development, testing and transposition of high-temperature fixed point (HTFP) metal-carbon eutectic cells, from metrology laboratory precision (±0.001 deg. C) to applied research with a reasonable degradation of uncertainties (±3-5 deg. C). - The corrosion study and metallurgical characterization of Type-C thermocouple (service temp. 2300 deg. C) prospective sheath material was undertaken to extend the survivability of TCs used for molten metallic/oxide corium thermometry (below 2000 deg. C)

  16. Implementation of an Enhanced Measurement Control Program for handling nuclear safety samples at WSRC

    International Nuclear Information System (INIS)

    Boler-Melton, C.; Holland, M.K.

    1991-01-01

    In the separation and purification of nuclear material, nuclear criticality safety (NCS) is of primary concern. The primary nuclear criticality safety controls utilized by the Savannah River Site (SRS) Separations Facilities involve administrative and process equipment controls. Additional assurance of NCS is obtained by identifying key process hold points where sampling is used to independently verify the effectiveness of production control. Nuclear safety measurements of samples from these key process locations provide a high degree of assurance that processing conditions are within administrative and procedural nuclear safety controls. An enhanced procedure management system aimed at making improvements in the quality, safety, and conduct of operation was implemented for Nuclear Safety Sample (NSS) receipt, analysis, and reporting. All procedures with nuclear safety implications were reviewed for accuracy and adequate detail to perform the analytical measurements safely, efficiently, and with the utmost quality. Laboratory personnel worked in a ''Deliberate Operating'' mode (a systematic process requiring continuous expert oversight during all phases of training, testing, and implementation) to initiate the upgrades. Thus, the effort to revise and review nuclear safety sample procedures involved a team comprised of a supervisor, chemist, and two technicians for each procedure. Each NSS procedure was upgraded to a ''Use Every Time'' (UET) procedure with sign-off steps to ensure compliance with each step for every nuclear safety sample analyzed. The upgrade program met and exceeded both the long and short term customer needs by improving measurement reliability, providing objective evidence of rigid adherence to program principles and requirements, and enhancing the system for independent verification of representative sampling from designated NCS points

  17. Measuring safety climate in a nuclear power plant - an experience sharing

    International Nuclear Information System (INIS)

    Vincy, M.U.; Varshney, Aloke; Khot, Pankaj

    2016-01-01

    In this paper the author discusses the experience gained in safety climate measurement of an Indian nuclear power plant. Safety performance is increasingly part of an organization's sustainable development. Nuclear power stations are falling under the category 'high reliability' industries in the world as far as work safety is concerned. Both the research and the practical experience continually point to two underlying factors that drive safety outcomes: the quality of an organisation's leadership and the resulting culture. After years of development in safety technology and safety management system in the industry, management of nuclear industry world over has come to recognize that safety culture has to be addressed if high standards of health and safety are to be maintained. Therefore, nuclear industries in India have been carrying out measurement of safety climate for more than ten years. The objectives of the study are to examine people's values, attitude, perception, competencies, and patterns of behaviour that determine the commitment to, and effectiveness of health and safety management in the industry based on a questionnaires survey and their analysis

  18. Cost-benefit comparison of nuclear and nonnuclear health and safety protective measures and regulations

    International Nuclear Information System (INIS)

    O'Donnell, E.P.; Mauro, J.J.

    1979-01-01

    This article compares the costs and benefits of health and safety measures and regulations in the nuclear and nonnuclear fields. A cost-benefit methodology for nuclear safety concerns is presented and applied to existing nuclear plant engineered safety features. Comparisons in terms of investment costs to achieve reductions in mortality rates are then made between nuclear plant safety features and the protective measures and regulations associated with nonnuclear risks, particularly with coal-fired power plants. These comparisons reveal a marked inconsistency in the cost effectiveness of health and safety policy, in which nuclear regulatory policy requires much greater investments to reduce the risk of public mortality than is required in nonnuclear areas where reductions in mortality rates could be achieved at much lower cost. A specific example of regulatory disparity regarding gaseous effluent limits for nuclear and fossil-fuel power plants is presented. It is concluded that a consistent health and safety regulatory policy based on uniform risk and cost-benefit criteria should be adopted and that future proposed Nuclear Regulatory Commission regulatory requirements should be critically evaluated from a cost-benefit viewpoint

  19. Order of 10 october 1977 on the special safety measures applicable to certain large nuclear installations

    International Nuclear Information System (INIS)

    1978-01-01

    This Order by the Minister of Industry, Commerce and Crafts and the Minister of Labour was made in implementation of Section 40 of Decree No. 75-306 of 28 April 1975 on the protection of workers against the hazards of ionizing radiation in large nuclear installations. It lays down the safety measures applicable to nuclear reactors and ancillary facilities, particle accelerators, irradiated fuel reprocessing plants and facilities for the storage of radioactive waste. (NEA) [fr

  20. Nuclear safety

    International Nuclear Information System (INIS)

    Arnott, D.

    1981-01-01

    Dr Arnott, scientific consultant to PANDORA, emphasises our lack of knowledge of the behaviour of highly active radioactive wastes, particularly effluents, and their characteristics. He proposes that they should be stored, preferably in a solidified state, until our knowledge allows their safe disposal. Political aspects and government policies are discussed and human fallibility is stressed. The nuclear establishment and nuclear power programme are severely criticised. (U.K.)

  1. No nuclear safety without security

    International Nuclear Information System (INIS)

    Anon.

    2016-01-01

    ead of Health and Safety - Nuclear Safety and Corporate Security at ENGIE Benelux, Pierre Doumont has the delicate job of defining and implementing measures, including cybersecurity, to prevent the risk of malevolent acts against tangible and intangible assets. He gives some hints on the contribution of nuclear security to safety.

  2. Nuclear criticality safety guide

    International Nuclear Information System (INIS)

    Pruvost, N.L.; Paxton, H.C.

    1996-09-01

    This technical reference document cites information related to nuclear criticality safety principles, experience, and practice. The document also provides general guidance for criticality safety personnel and regulators

  3. Nuclear criticality safety guide

    Energy Technology Data Exchange (ETDEWEB)

    Pruvost, N.L.; Paxton, H.C. [eds.

    1996-09-01

    This technical reference document cites information related to nuclear criticality safety principles, experience, and practice. The document also provides general guidance for criticality safety personnel and regulators.

  4. Nuclear safety. Improvement programme

    International Nuclear Information System (INIS)

    2000-01-01

    In this brochure the improvement programme of nuclear safety of the Mochovce NPP is presented in detail. In 1996, a 'Mochovce NPP Nuclear Safety Improvement Programme' was developed in the frame of unit 1 and 2 completion project. The programme has been compiled as a continuous one, with the aim to reach the highest possible safety level at the time of commissioning and to establish good preconditions for permanent safety improvement in future. Such an approach is in compliance with the world's trends of safety improvement, life-time extension, modernisation and nuclear station power increase. The basic document for development of the 'Programme' is the one titled 'Safety Issues and their Ranking for WWER 440/213 NPP' developed by a group of IAEA experts. The following organisations were selected for solution of the safety measures: EUCOM (Consortium of FRAMATOME, France, and SIEMENS, Germany); SKODA Prague, a.s.; ENERGOPROJEKT Prague, a.s. (EGP); Russian organisations associated in ATOMENERGOEXPORT; VUJE Trnava, a.s

  5. The role of nuclear law in nuclear safety after Fukushima

    International Nuclear Information System (INIS)

    Cardozo, Diva E. Puig

    2013-01-01

    The paper contains the following topics: nuclear law, origin and evolution, role of the legal instruments on nuclear safety, nuclear safety the impact of major nuclear accidents: Chernobyl and Fukushima. The response of the nuclear law post Fukushima. Safety and security. International framework for nuclear safety: nuclear convention joint convention on safety on spent fuel management and on the safety of radioactive waste management. The Fukushima World Conference on Nuclear Safety. Convention on Prompt Notification and Assistance in case of a Nuclear Accident or Radiological Emergency. Plan of Action for Nuclear Safety. IAEA recommendations for the safety transport of radioactive material. International framework for nuclear security. Convention on the Physical Protection of Nuclear Materials. International Convention for the Suppression of Acts Against Nuclear Terrorism. Resolution No. 1540 of the Security Council of United Nations (2004). Measures to strengthen international safety. Code of conduct on the safety research reactor

  6. Generic safety issues for nuclear power plants with pressurized heavy water reactors and measures for their resolution

    International Nuclear Information System (INIS)

    2007-06-01

    be used in reassessing the safety of individual operating plants. In 1998, the IAEA completed IAEA-TECDOC-1044 entitled Generic Safety Issues for Nuclear Power Plants with Light Water Reactors and Measures Taken for their Resolution and established the associated LWRGSIDB database (Computer Manual Series No. 13). The present compilation, which is based on broad international experience, is an extension of this work to cover pressurized heavy water reactors (PHWRs). As in the case of LWRs, it is one element in the framework of IAEA activities to assist Member States in reassessing the safety of operating nuclear power plants. It addresses generic safety issues identified in nuclear power plants using PHWRs. In most cases, the measures taken or planned to resolve these issues are also identified. The work on this report was initiated by the Senior Regulators of Countries Operating CANDU-Type Nuclear Power Plants at one of their annual meetings. It was carried out within the framework of the IAEA's programme on National Regulatory Infrastructure for Nuclear Installation Safety and serves to enhance regulatory effectiveness through the exchange of safety related information

  7. Generic safety issues for nuclear power plants with light water reactors and measures taken for their resolution

    International Nuclear Information System (INIS)

    1998-09-01

    The IAEA Conference on 'The Safety of Nuclear Power: Strategy for the Future' in 1991 was a milestone in nuclear safety. Two of the important items addressed by this conference were ensuring and enhancing safety of operating plants and treatment of nuclear power plants built to earlier safety standards. A number of publications related to these two items issued subsequent to this conference were: A Common Basis for Judging the Safety of Nuclear Power Plants Built to Earlier Standards, INSAG-9 (1995), the IAEA Safety Guide 50-SG-O12, periodic Safety Review of Operational Nuclear Power Plants (1994) and an IAEA publication on the Safety Evaluation of Operating Nuclear Power Plants Built to Earlier Standards - A Common Basis for Judgement (1997). Some of the findings of the 1991 Conference have not yet been fully addressed. An IAEA Symposium on reviewing the Safety of Existing Nuclear Power Plants in 1996 showed that there is an urgent need for operating organizations and national authorities to review operating nuclear power plants which do not meet the high safety levels of the vast majority of plants and to undertake improvements with assistance from the international community if required. Safety reviews of operating nuclear power plants take on added importance in the context of the Convention on Nuclear safety and its implementation. The purpose of this TECDOC compilation based on broad international experience, is to assist the Member States in the reassessment of operating plants by providing a list of generic safety issues identified in nuclear power plants together with measures taken to resolve these issues. These safety issues are generic in nature with regard to light water reactors and the measures for their resolution are for use as a reference for the safety reassessment of operating plants. The TECDOC covers issues thought to be significant to Member States based on consensus process. It provides an introduction to the use of generic safety issues for

  8. Nuclear Reactor Safety; (USA)

    Energy Technology Data Exchange (ETDEWEB)

    Cason, D.L.; Hicks, S.C. (eds.)

    1991-01-01

    This publication announces on an monthly basis the current worldwide information available on all safety-related aspects of reactors, including: accident analysis, safety systems, radiation protection, decommissioning and dismantling, and security measures. This publication contains the abstracts of DOE reports, journal articles, conference papers, patents, theses, and monographs added to the Energy Science and Technology Database (EDB) during the past month. Also included are other US information obtained through acquisition programs or interagency agreements and international information obtained through the International Energy Agency's Technology Data Exchange, the International Atomic Energy Agency's International Nuclear Information System, or government-to-government agreements.

  9. Nuclear criticality safety guide

    International Nuclear Information System (INIS)

    Ro, Seong Ki; Shin, Hee Seong; Park, Seong Won; Shin, Young Joon.

    1997-06-01

    Nuclear criticality safety guide was described for handling, transportation and storage of nuclear fissile materials in this report. The major part of the report was excerpted frp, TID-7016(revision 2) and nuclear criticality safety written by Knief. (author). 16 tabs., 44 figs., 5 refs

  10. Residual stress measurements in the dissimilar metal weld in pressurizer safety nozzle of nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Campos, Wagner R.C.; Rabello, Emerson G.; Mansur, Tanius R.; Scaldaferri, Denis H.B.; Paula, Raphael G., E-mail: wrcc@cdtn.br, E-mail: egr@cdtn.br, E-mail: tanius@cdtn.br, E-mail: dhbs@cdtn.br, E-mail: tanius@cdtn.br, E-mail: raphaelmecanica@gmail.com [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil); Souto, Joao P.R.S.; Carvalho Junior, Ideir T., E-mail: joprocha@yahoo.com.br, E-mail: ideir_engenharia@yahoo.com.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Dept. de Engenharia Metalurgica

    2013-07-01

    Weld residual stresses have a large influence on the behavior of cracking that could possibly occur under normal operation of components. In case of an unfavorable environment, both stainless steel and nickel-based weld materials can be susceptible to stress-corrosion cracking (SCC). Stress corrosion cracks were found in dissimilar metal welds of some pressurized water reactor (PWR) nuclear plants. In the nuclear reactor primary circuit the presence of tensile residual stress and corrosive environment leads to so-called Primary Water Stress Corrosion Cracking (PWSCC). The PWSCC is a major safety concern in the nuclear power industry worldwide. PWSCC usually occurs on the inner surface of weld regions which come into contact with pressurized high temperature water coolant. However, it is very difficult to measure the residual stress on the inner surfaces of pipes or nozzles because of inaccessibility. A mock-up of weld parts of a pressurizer safety nozzle was fabricated. The mock-up was composed of three parts: an ASTM A508 C13 nozzle, an ASTM A276 F316L stainless steel safe-end, an AISI 316L stainless steel pipe and different filler metals of nickel alloy 82/182 and AISI 316L. This work presents the results of measurements of residual strain from the outer surface of the mock-up welded in base metals and filler metals by hole-drilling strain-gage method of stress relaxation. (author)

  11. Residual stress measurements in the dissimilar metal weld in pressurizer safety nozzle of nuclear power plant

    International Nuclear Information System (INIS)

    Campos, Wagner R.C.; Rabello, Emerson G.; Mansur, Tanius R.; Scaldaferri, Denis H.B.; Paula, Raphael G.; Souto, Joao P.R.S.; Carvalho Junior, Ideir T.

    2013-01-01

    Weld residual stresses have a large influence on the behavior of cracking that could possibly occur under normal operation of components. In case of an unfavorable environment, both stainless steel and nickel-based weld materials can be susceptible to stress-corrosion cracking (SCC). Stress corrosion cracks were found in dissimilar metal welds of some pressurized water reactor (PWR) nuclear plants. In the nuclear reactor primary circuit the presence of tensile residual stress and corrosive environment leads to so-called Primary Water Stress Corrosion Cracking (PWSCC). The PWSCC is a major safety concern in the nuclear power industry worldwide. PWSCC usually occurs on the inner surface of weld regions which come into contact with pressurized high temperature water coolant. However, it is very difficult to measure the residual stress on the inner surfaces of pipes or nozzles because of inaccessibility. A mock-up of weld parts of a pressurizer safety nozzle was fabricated. The mock-up was composed of three parts: an ASTM A508 C13 nozzle, an ASTM A276 F316L stainless steel safe-end, an AISI 316L stainless steel pipe and different filler metals of nickel alloy 82/182 and AISI 316L. This work presents the results of measurements of residual strain from the outer surface of the mock-up welded in base metals and filler metals by hole-drilling strain-gage method of stress relaxation. (author)

  12. Nuclear Safety Regulations

    International Nuclear Information System (INIS)

    Novosel, N.; Prah, M.

    2008-01-01

    Beside new Ordinance on the control of nuclear material and special equipment ('Official Gazette' No. 15/08), from 2006 State Office for Nuclear Safety (SONS) adopted Ordinance on performing nuclear activities ('Official Gazette' No. 74/06) and Ordinance on special requirements which expert organizations must fulfil in order to perform certain activities in the field of nuclear safety ('Official Gazette' No. 74/06), based on Nuclear Safety Act ('Official Gazette' No. 173/03). The Ordinance on performing nuclear activities regulates the procedure of notification of the intent to perform nuclear activities, submitting the application for the issue of a licence to perform nuclear activities, and the procedure for issuing decisions on granting a licence to perform a nuclear activity. The Ordinance also regulates the content of the forms for notification of the intent to perform nuclear activities, as well as of the application for the issue of a licence to perform the nuclear activity and the method of keeping the register of nuclear activities. According to the Nuclear Safety Act, nuclear activities are the production, processing, use, storage, disposal, transport, import, export, possession or other handling of nuclear material or specified equipment. The Ordinance on special requirements which expert organizations must fulfil in order to perform certain activities in the field of nuclear safety regulates these mentioned conditions, whereas compliance is established by a decision passed by the SONS. Special requirements which expert organizations must fulfil in order to perform certain activities in the field of nuclear safety are organizational, technical, technological conditions and established system of quality assurance. In 2007, State Office for Nuclear Safety finalized the text of new Ordinance on conditions for nuclear safety and protection with regard to the siting, design, construction, use and decommissioning of a facility in which a nuclear activity is

  13. Measures to strengthen international co-operation in nuclear, radiation and transport safety and waste management. Nuclear safety review for the year 2003

    International Nuclear Information System (INIS)

    2004-01-01

    The Nuclear Safety Review for the Year 2003 presents an overview of the current issues and trends in nuclear, radiation, transport and radioactive waste safety during 2003. As in 2002 the overview is supported by more detailed Notes by the Secretariat: Safety Related Events and Issues Worldwide during 2003 (document 2004/Note 6), The Agency's Safety Standards: Activities during 2003 (document 2004/Note 7) and Providing for the Application of the Safety Standards (document 2004/Note 8). In January 2003, the Agency implemented an organization change and developed an integrated approach to reflect a broader assignment of nuclear safety and nuclear security and to better exploit synergy between them. The Office of Physical Protection and Material Security renamed to Office of Nuclear Security was transferred from the Department of Safeguards to the Department of Nuclear Safety, which became the Department of Nuclear Safety and Security to reflect the change. This Review provides information primarily on nuclear safety, and nuclear security will be addressed in a separate report

  14. Nuclear Safety Review 1991

    International Nuclear Information System (INIS)

    1993-01-01

    A survey of IAEA activities in the field of nuclear safety with particular emphasis on the international cooperation in safety assessment of research reactors, early WWER type reactors is given. 12 tabs., 2 figs

  15. Implementing and measuring safety goals and safety culture. 2. Extensive Efforts to Learn Lessons from Overseas Nuclear Power Plants

    International Nuclear Information System (INIS)

    Maki, Nobuo

    2001-01-01

    The transfer of nuclear power plant (NPP) operating experiences is one of the important measures for the safe operation of NPPs. The Institute of Nuclear Power Operations (INPO),World Association of Nuclear Operators (WANO), and Nuclear Information Center of Central Research Institute of Electric Power Industry are the organizations providing Japanese utilities with useful information on incidents and accidents that have occurred at foreign NPPs. The Kansai Electric Power Company (KEPCO) has established two organizations to make extensive efforts to learn lessons from overseas NPPs: One is the Nuclear Power Plant Maintenance Training Center (MTC), and the other is the Institute of Nuclear Safety System (INSS). This paper describes the function of these organizations in transferring knowledge and expertise to ensure the safe operation of Japanese NPPs as well as recent outcomes. MTC was set up in October 1983. Before its establishment, expertise on NPP maintenance was mainly transferred on an on-the-job basis through daily maintenance work. However, after various NPP incidents and accidents, the importance of off-site training for maintenance personnel was emphasized. MTC possesses full-sized or nearly full sized mockups of Mihama NPP Unit 3 and Takahama NPP Unit 3. Furthermore, many kinds of mechanical, electrical, and instrumental equipment are furnished for training. In 1999, more than 2400 (man/day) maintenance personnel in total had training at MTC. In the tube rupture accident of a steam generator of KEPCO's Mihama Unit 2 on February 9, 1991, the emergency core cooling system actuated for the first time in the history of NPP operation in Japan. The cause of the accident was a fault in the manufacturing process of the steam generator, which was not detected until the accident. After an in-depth evaluation of the accident, many corrective actions were taken to prevent the recurrence of a similar accident. As a part of the actions, KEPCO established INSS in March

  16. Nuclear power safety

    International Nuclear Information System (INIS)

    1988-01-01

    The International Atomic Energy Agency, the organization concerned with worldwide nuclear safety has produced two international conventions to provide (1) prompt notification of nuclear accidents and (2) procedures to facilitate mutual assistance during an emergency. IAEA has also expanded operational safety review team missions, enhanced information exchange on operational safety events at nuclear power plants, and planned a review of its nuclear safety standards to ensure that they include the lessons learned from the Chernobyl nuclear plant accident. However, there appears to be a nearly unanimous belief among IAEA members that may attempt to impose international safety standards verified by an international inspection program would infringe on national sovereignty. Although several Western European countries have proposed establishing binding safety standards and inspections, no specific plant have been made; IAEA's member states are unlikely to adopt such standards and an inspection program

  17. Nuclear Safety Culture

    International Nuclear Information System (INIS)

    2017-01-01

    Ethics is caring about people and Safety is caring that no physical harm comes to people.Therefore Safety is a type of Ethical Behavior. Culture: is The Way We Do Things Here.Safety Culture is mixture of organization traditions, values, attitudes and behaviors modeled by Its leaders and internalized by its members that serve to make nuclear safety the overriding priority. Safety Culture is that assembly of characteristics and attitudes in Organisations and individuals which established that, as an overriding priority, nuclear plant safety issues receive the attention warranted by their significance

  18. Nuclear Safety through International Cooperation

    International Nuclear Information System (INIS)

    Flory, Denis

    2013-01-01

    The Fukushima Daiichi nuclear accident was the worst at a nuclear facility since the Chernobyl accident in 1986. It caused deep public anxiety and damaged confidence in nuclear power. Following this accident, strengthening nuclear safety standards and emergency response has become an imperative at the global level. The IAEA is leading in developing a global approach, and the IAEA Action Plan on Nuclear Safety is providing a comprehensive framework and acting as a significant driving force to identify lessons learned and to implement safety improvements. Strengthening nuclear safety is addressed through a number of measures proposed in the Action Plan including 12 main actions focusing on safety assessments in the light of the accident. Significant progress has been made in assessing safety vulnerabilities of nuclear power plants, strengthening the IAEA's peer review services, improvements in emergency preparedness and response capabilities, strengthening and maintaining capacity building, as well as widening the scope and enhancing communication and information sharing with Member States, international organizations and the public. Progress has also been made in reviewing the IAEA's safety standards, which continue to be widely applied by regulators, operators and the nuclear industry in general, with increased attention and focus on accident prevention, in particular severe accidents, and emergency preparedness and response.

  19. Nuclear Safety in Europe

    International Nuclear Information System (INIS)

    Birkhofer, A.

    1994-01-01

    The situation of nuclear safety in Western and Eastern Europe is described, focusing on the French and German approaches. The paper starts with an overview of the historical development and proceeds with recent trends in monitoring and improving the safety status of current plants, the approach to accident management, and the objectives of the development of future reactor concepts. Furthermore, important problems of nuclear safety in Central and Eastern Europe are discussed. 1 fig

  20. Nuclear safety in perspective

    DEFF Research Database (Denmark)

    Andersson, K.; Sjöberg, B.M.D.; Lauridsen, Kurt

    2003-01-01

    The aim of the NKS/SOS-1 project has been to enhance common understanding about requirements for nuclear safety by finding improved means of communicat-ing on the subject in society. The project, which has been built around a number of seminars, wassupported by limited research in three sub......-projects: Risk assessment Safety analysis Strategies for safety management The report describes an industry in change due to societal factors. The concepts of risk and safety, safety management and systems forregulatory oversight are de-scribed in the nuclear area and also, to widen the perspective, for other...

  1. Nuclear reactor safety systems

    International Nuclear Information System (INIS)

    Ball, R.M.; Roberts, R.C.

    1980-01-01

    A safety system for shutting down a nuclear reactor under overload conditions is described. The system includes a series of parallel-connected computer memory type look-up tables each of which receives data on a particular reactor parameter and in each of which a precalculated functional value for that parameter is stored indicative of the percentage of maximum reactor load that the parameter contributes. The various functional values corresponding to the actual measured parameters are added together to provide a control signal used to shut down the reactor under overload conditions. (U.K.)

  2. White paper on nuclear safety in 2005

    International Nuclear Information System (INIS)

    2006-04-01

    The white paper consists of four parts. The first part described the outline of international discussions on safety culture and activities promoted by utilities and regulatory bodies in Japan. The second part explained the main activities of the Nuclear Safety Commission of Japan and nuclear regulatory authorities on nuclear safety regulation. The third part introduced various activities for ensuring overall nuclear safety in Japan, such as safety regulation systems for nuclear facilities, disaster measures at nuclear facilities, progress in nuclear research, nuclear safety regulation by risk-informed utilization, environmental radiation surveys, international cooperation on nuclear safety. The forth part contained various materials and data related to the Nuclear Safety Commission of Japan. (J.P.N.)

  3. National nuclear safety report 2005. Convention on nuclear safety

    International Nuclear Information System (INIS)

    2006-01-01

    This National Nuclear Safety Report was presented at the 3rd. Review meeting. In general the information contained in the report are: Highlights / Themes; Follow-up from 2nd. Review meeting; Challenges, achievements and good practices; Planned measures to improve safety; Updates to National report to 3rd. Review meeting; Questions from peer review of National Report; and Conclusions

  4. Nuclear power and safety

    International Nuclear Information System (INIS)

    Saunders, P.; Tasker, A.

    1991-01-01

    Nuclear power currently provides about a fifth of both Britain's and the world's electricity. It is the largest single source of electricity in Western Europe; in France three quarters of electricity is generated by nuclear power stations. This booklet is about the safety of those plants. It approaches the subject by outlining the basic principles and approaches behind nuclear safety, describing the protective barriers and safety systems that are designed to prevent the escape of radioactive material, and summarising the regulations that govern the construction and operation of nuclear power stations. The aim is to provide a general understanding of the subject by explaining the general principles of the Advanced Gas Cooled Reactor and setting out the UKAEA strategy for nuclear safety, the objective being always to minimize risk. (author)

  5. Nuclear regulation and safety

    International Nuclear Information System (INIS)

    Hendrie, J.M.

    1982-01-01

    Nuclear regulation and safety are discussed from the standpoint of a hypothetical country that is in the process of introducing a nuclear power industry and setting up a regulatory system. The national policy is assumed to be in favor of nuclear power. The regulators will have responsibility for economic, reliable electric production as well as for safety. Reactor safety is divided into three parts: shut it down, keep it covered, take out the afterheat. Emergency plans also have to be provided. Ways of keeping the core covered with water are discussed

  6. Measures taken to improve nuclear safety on EdF PWRs in operation

    International Nuclear Information System (INIS)

    Kus, J.-P.; Norvez, G.

    1993-01-01

    In parallel with its major nuclear programme (56 PWR units in service or under construction), France has developed an original philosophy in the field of Nuclear Safety. This comprehensive philosophy ensures a fine balance and coordination between design and operation, it provides a methodology to design, construct and operate a safe nuclear plant. Actual experience is then continuously compared to the initial expectation and the methodology refined whenever necessary. This methodology is fully applied to the new 1400 MWe plant series presently under construction. The essential elements are also backfitted into all previous units, thereby giving them an equivalent level of safety. The French PWR park can therefore be considered as very homogeneous with regard to its safety level, regarding both its design and operation. (author)

  7. Nuclear safety project

    International Nuclear Information System (INIS)

    Anon.

    1980-11-01

    The 17th semi-annual report 1980/1 is a description of work within the Nuclear Safety Project performed in the first six months of 1980 in the nuclear safety field by KfK institutes and departments and by external institutions on behalf of KfK. The chosen kind of this report is that of short summaries, containing the topics - work performed, results obtained, plans for future work. (orig.) [de

  8. Role of Laws and Regulations For Nuclear Energy Installation in Developing Safety Measures Against Accident

    International Nuclear Information System (INIS)

    Hussein, A.Z.; Zakaria, Kh.M.

    2011-01-01

    The energy industry has been considered as an economic development driver. The fundamental safety policy for nuclear facilities is to protect health and safety of the public and the site personnel against undue risks associated with radiation and radioactive materials resulting from normal operation and abnormal conditions. This policy is implemented, based on the as low as reasonably achievable (ALARA) principle for normal operation and the defense-in-depth principle (prevention of the occurrence of anomalies, prevention of the escalation of anomalies into accidents, and prevention of excessive release of radioactive materials into the environment), through establishment of safety guides and standards. More over the consideration of suitable site selection and safety design, verification by safety evaluation, quality assurance for manufacturing, construction and operation, periodic testing and inspection, confirmation by regulatory bodies, and reflection of experienced troubles to safety countermeasures. Are of these paramount importance concepts are applied variety of nuclear facilities, which is, nuclear reactors, uranium enrichment plants, fuel conversion/fabrication plants, reprocessing plants, radioactive waste management facilities, and so on, considering unique features of each facility.

  9. Nuclear power and safety

    International Nuclear Information System (INIS)

    Chidambaram, R.

    1992-01-01

    Some aspects of safety of nuclear power with special reference to Indian nuclear power programme are discussed. India must develop technology to protect herself from the adverse economic impact arising out of the restrictive regime which is being created through globalization of safety and environmental issues. Though the studies done and experience gained so far have shown that the PHWR system adopted by India has a number of superior safety features, research work is needed in the field of operation and maintenance of reactors and also in the field of reactor life extension through delaying of ageing effects. Public relations work must be pursued to convince the public at large of the safety of nuclear power programme. The new reactor designs in the second stage of evolution are based on either further improvement of existing well-proven designs or adoptions of more innovative ideas based on physical principles to ensure a higher level of safety. The development of Indian nuclear power programme is characterised by a balanced approach in the matter of assuring safety. Safety enforcement is not just looked upon as a pure administrative matter, but experts with independent minds are also involved in safety related matters. (M.G.B.)

  10. Elements of nuclear safety

    CERN Document Server

    Libmann, Jacques

    1996-01-01

    This basically educational book is intended for all involved in nuclear facility safety. It dissects the principles and experiences conducive to the adoption of attitudes compliant with what is now known as "safety culture". This book is accessible to a wide range of readers.

  11. Approaches to nuclear safety

    International Nuclear Information System (INIS)

    Watkins, J.D.

    1990-01-01

    This article examines the factors which affect the safe operation of a nuclear power plant. Some of these are an organizational and individual dedication to safety and excellence in every aspect of plant functions, international cooperation, and advanced reactor design. These are in addition to excellence in management of nuclear plants and the training of key operations personnel. The author feels all of these are necessary to restore public confidence in nuclear power

  12. Nuclear power plant safety

    International Nuclear Information System (INIS)

    Otway, H.J.

    1974-01-01

    Action at the international level will assume greater importance as the number of nuclear power plants increases, especially in the more densely populated parts of the world. Predictions of growth made prior to October 1973 [9] indicated that, by 1980, 14% of the electricity would be supplied by nuclear plants and by the year 2000 this figure would be about 50%. This will make the topic of international co-operation and standards of even greater importance. The IAEA has long been active in providing assistance to Member States in the siting design and operation of nuclear reactors. These activities have been pursued through advisory missions, the publication of codes of practice, guide books, technical reports and in arranging meetings to promote information exchange. During the early development of nuclear power, there was no well-established body of experience which would allow formulation of internationally acceptable safety criteria, except in a few special cases. Hence, nuclear power plant safety and reliability matters often received an ad hoc approach which necessarily entailed a lack of consistency in the criteria used and in the levels of safety required. It is clear that the continuation of an ad hoc approach to safety will prove inadequate in the context of a world-wide nuclear power industry, and the international trade which this implies. As in several other fields, the establishment of internationally acceptable safety standards and appropriate guides for use by regulatory bodies, utilities, designers and constructors, is becoming a necessity. The IAEA is presently planning the development of a comprehensive set of basic requirements for nuclear power plant safety, and the associated reliability requirements, which would be internationally acceptable, and could serve as a standard frame of reference for nuclear plant safety and reliability analyses

  13. Nuclear safety chains

    International Nuclear Information System (INIS)

    Robbins, M.C.; Eames, G.F.; Mayell, J.R.

    1981-01-01

    An original scheme has been developed for expressing the complex interrelationships associated with the engineered safeguards provided for a nuclear power station. This management tool, based upon network diagrams called Nuclear Safety Chains, looks at the function required of a particular item of safety plant, defines all of the vital supplies and support features necessary for successful operation, and expresses them in visual form, to facilitate analysis and optimisation for operations and maintenance staff. The safety chains are confined to manual schemes at present, although they are designed to be compatible with modern computer techniques. Their usefulness with any routine maintenance planning application on high technology plant is already being appreciated. (author)

  14. Nuclear Safety. 1997

    International Nuclear Information System (INIS)

    1998-01-01

    A quick review of the nuclear safety at EDF may be summarized as follows: - the nuclear safety at EDF maintains at a rather good standard; - none of the incidents that took place has had any direct impact upon safety; - the availability remained good; - initiation of the floor 4 reactor generation (N4 unit - 1450 MW) ensued without major difficulties (the Civaux 1 NPP has been coupled to the power network at 24 december 1997); - the analysis of the incidents interesting from the safety point of view presents many similarities with earlier ones. Significant progress has been recorded in promoting actively and directly a safe operation by making visible, evident and concrete the exertion of the nuclear operation responsibility and its control by the hierarchy. The report develops the following chapters and subjects: 1. An overview on 1997; 1.1. The technical issues of the nuclear sector; 1.2. General performances in safety; 1.3. The main incidents; 1.4. Wastes and radiation protection; 2. Nuclear safety management; 2.1. Dynamics and results; 2.2. Ameliorations to be consolidated; 3. Other important issues in safety; 3.1. Probabilistic safety studies; 3.2. Approach for safety re-evaluation; 3.3. The network safety; 3.4. Crisis management; 3.5. The Lifetime program; 3.6. PWR; 3.7. Documentation; 3.8. Competence; 4. Safety management in the future; 4.1. An open future; 4.2. The fast neutron NPP at Creys-Malville; 4.3. Stabilization of the PWR reference frame; 4.4. Implementing the EURATOM directive regarding the radiation protection standards; 4.5. Development of biomedical research and epidemiological studies; 4.6. New regulations concerning the liquid and gaseous effluents; 5. Visions of an open future; 5.1. Alternative views upon safety ay EDF; 5.2. Safety authority; 5.3. International considerations; 5.4. What happens abroad; 5.5. References from non-nuclear domain. Four appendices are added referring to policy of safety management, policy of human factors in NPPs

  15. National nuclear safety report 1998. Convention on nuclear safety

    International Nuclear Information System (INIS)

    1998-01-01

    The Argentine Republic subscribed the Convention on Nuclear Safety, approved by a Diplomatic Conference in Vienna, Austria, in June 17th, 1994. According to the provisions in Section 5th of the Convention, each Contracting Party shall submit for its examination a National Nuclear Safety Report about the measures adopted to comply with the corresponding obligations. This Report describes the actions that the Argentine Republic is carrying on since the beginning of its nuclear activities, showing that it complies with the obligations derived from the Convention, in accordance with the provisions of its Article 4. The analysis of the compliance with such obligations is based on the legislation in force, the applicable regulatory standards and procedures, the issued licenses, and other regulatory decisions. The corresponding information is described in the analysis of each of the Convention Articles constituting this Report. The present National Report has been performed in order to comply with Article 5 of the Convention on Nuclear Safety, and has been prepared as much as possible following the Guidelines Regarding National Reports under the Convention on Nuclear Safety, approved in the Preparatory Meeting of the Contracting Parties, held in Vienna in April 1997. This means that the Report has been ordered according to the Articles of the Convention on Nuclear Safety and the contents indicated in the guidelines. The information contained in the articles, which are part of the Report shows the compliance of the Argentine Republic, as a contracting party of such Convention, with the obligations assumed

  16. National nuclear safety report 2004. Convention on nuclear safety

    International Nuclear Information System (INIS)

    2004-01-01

    The second National Nuclear Safety Report was presented at the second review meeting of the Nuclear Safety Convention. At that time it was concluded that Argentina met the obligations of the Convention. This third National Nuclear Safety Report is an updated report which includes all safety aspects of the Argentinian nuclear power plants and the measures taken to enhance the safety of the plants. The present report also takes into account the observations and discussions maintained during the second review meeting. The conclusion made in the first review meeting about the compliance by Argentina of the obligations of the Convention are included as Annex I and those belonging to the second review meeting are included as Annex II. In general, the information contained in this Report has been updated since March 31, 2001 to April 30, 2004. Those aspects that remain unchanged were not addressed in this third report. As a result of the detailed analysis of all the Articles, it can be stated that the country fulfils all the obligations imposed by the Nuclear Safety Convention. The questions and answers originated at the Second Review Meeting are included as Annex III

  17. National Nuclear Safety Report 2001. Convention on Nuclear Safety

    International Nuclear Information System (INIS)

    2001-01-01

    The First National Nuclear Safety Report was presented at the first review meeting of the Nuclear Safety Convention. At that time it was concluded that Argentina met the obligations of the Convention. This second National Nuclear Safety Report is an updated report which includes all safety aspects of the Argentinian nuclear power plants and the measures taken to enhance the safety of the plants. The present report also takes into account the observations and discussions maintained during the first review meeting. The conclusion made in the first review meeting about the compliance by Argentina of the obligations of the Convention are included as Annex 1. In general, the information contained in this Report has been updated since March 31, 1998 to March 31, 2001. Those aspects that remain unchanged were not addressed in this second report with the objective of avoiding repetitions and in order to carry out a detailed analysis considering article by article. As a result of the above mentioned detailed analysis of all the Articles, it can be stated that the country fulfils all the obligations imposed by the Nuclear Safety Convention

  18. Nuclear safety in perspective

    International Nuclear Information System (INIS)

    Andersson, K.; Sjoeberg, B.M.D.; Lauridsen, K.; Wahlstroem, B.

    2002-06-01

    The aim of the NKS/SOS-1 project has been to enhance common understanding about requirements for nuclear safety by finding improved means of communicating on the subject in society. The project, which has been built around a number of seminars, was supported by limited research in three sub-projects: 1) Risk assessment, 2) Safety analysis, and 3) Strategies for safety management. The report describes an industry in change due to societal factors. The concepts of risk and safety, safety management and systems for regulatory oversight are described in the nuclear area and also, to widen the perspective, for other industrial areas. Transparency and public participation are described as key elements in good risk communication, and case studies are given. Environmental Impact Assessment and Strategic Environmental Assessment are described as important overall processes within which risk communication can take place. Safety culture, safety indicators and quality systems are important concepts in the nuclear safety area are very useful, but also offer important challenges for the future. They have been subject to special attention in the project. (au)

  19. Nuclear safety endeavour in Korea

    International Nuclear Information System (INIS)

    Sang-hoon lee

    1987-01-01

    Korea's nuclear power plant program is growing. As it grows, nuclear safety becomes an important issue. This article traces the development of Korean nuclear power program, the structure of the nuclear industries, the Nuclear Safety Center and its roles in the regulation and licensing of nuclear power plant, and also identifies some of the activities carried out to enhance the safety of nuclear power plants. (author)

  20. Nuclear Safety Charter

    International Nuclear Information System (INIS)

    2008-01-01

    The AREVA 'Values Charter' reaffirmed the priority that must be given to the requirement for a very high level of safety, which applies in particular to the nuclear field. The purpose of this Nuclear Safety Charter is to set forth the group's commitments in the field of nuclear safety and radiation protection so as to ensure that this requirement is met throughout the life cycle of the facilities. It should enable each of us, in carrying out our duties, to commit to this requirement personally, for the company, and for all stakeholders. These commitments are anchored in organizational and action principles and in complete transparency. They build on a safety culture shared by all personnel and maintained by periodic refresher training. They are implemented through Safety, Health, and Environmental management systems. The purpose of these commitments, beyond strict compliance with the laws and regulations in force in countries in which we operate as a group, is to foster a continuous improvement initiative aimed at continually enhancing our overall performance as a group. Content: 1 - Organization: responsibility of the group's executive management and subsidiaries, prime responsibility of the operator, a system of clearly defined responsibilities that draws on skilled support and on independent control of operating personnel, the general inspectorate: a shared expertise and an independent control of the operating organization, an organization that can be adapted for emergency management. 2 - Action principles: nuclear safety applies to every stage in the plant life cycle, lessons learned are analyzed and capitalized through the continuous improvement initiative, analyzing risks in advance is the basis of Areva's safety culture, employees are empowered to improve nuclear Safety, the group is committed to a voluntary radiation protection initiative And a sustained effort in reducing waste and effluent from facility Operations, employees and subcontractors are treated

  1. Response to 'Audiences, rationales and quantitative measure for demonstrations of nuclear safety and licensing by tests'

    International Nuclear Information System (INIS)

    Taylor, J.J.

    1990-01-01

    There are key overriding issues which are independent of the specific nature of the nuclear system itself which require concentrated attention to assure public safety and reliable, economic operation: - the need to keep the risk of external events to an acceptable level for all reactor systems; - the need to assure highly reliable operation of all elements of the system, many of which are the same regardless of what the nuclear system is composed of; - the importance of human proficiency in operating this total complex in a highly reliable manner. Nuclear system-specific demonstrations of public safety, although valuable, will not accomplish this and will not convince the public that there is zero risk. The very claim that a nuclear system or for that matter any big industrial complex, poses zero public risk raises a credibility gap with the public and is, therefore, counterproductive. So, we must take the dull, detailed technical steps to address the challenge: - define the minimal risk and accept that there is no zero risk; - demonstrate the achievement of that risk by detailed testing, conformance to standards and regulation, and trouble-free operation

  2. Synergy in the areas of NPP nuclear safety and nuclear security

    International Nuclear Information System (INIS)

    Dybach, A.M.; Kuzmyak, I.Ya.; Kukhotskij, A.V.

    2013-01-01

    The paper considers the question of synergy between nuclear safety and nuclear security. Special attention is paid to identifying interface of the two areas of safety and definition of common principles for nuclear security and nuclear safety measures. The principles of defense in depth, safety culture and graded approach are analyzed in detail.Specific features characteristic of nuclear safety and security are outlined

  3. Managing nuclear safety at Point Lepreau

    International Nuclear Information System (INIS)

    Paciga, J.

    1997-01-01

    Managing nuclear safety at Point Lepreau nuclear power plant is described, including technical issues (station aging, definition of the safe operating envelope, design configuration management, code validation, safety analysis and engineering standards); regulatory issues (action items, probabilistic safety assessment, event investigation, periodic safety review, prioritization of regulatory issues, cost benefit assessment); human performance issues (goals and measures, expectations and accountability, supervisory training, safety culture, configuration management, quality of operations and maintenance)

  4. Nuclear safety in France

    International Nuclear Information System (INIS)

    Laverie, M.

    1981-02-01

    The principles and rules governing the safety of nuclear installations are defined as from three fundamental principles and three practical rules as follows: First principle: the operator is responsible and of the highest order. Second principle: the public authorities exercise their control responsibility with respect to the design, construction and running of the installations. Third principle: nuclear safety, this is to accept that man and his technique are not infallible and that one must be prepared to control the unpredictable. First rule: the installations must include several 'lines of defence' in succession and to the extent where this is possible these must be independent of each other. Second rule: procedures are required and supervised by the Government Departments. Third rule: nuclear safety requires that any incident or anomaly must undergo an analysis in depth and is also based on a standing 'clinical' examination of the installations. The definition is given as to how the public authorities exercise their intervention: terms and conditions of the intervention by the safety authorities, authorization procedures, surveillance of the installations, general technical regulations. Two specific subjects are presented in the addendum, (a) the choice of nuclear power station sites in France and (b) the storage of radioactive wastes [fr

  5. Results of safety analysis concerning level gauge of pressurizer and related measures for Ohi Nuclear Power Station

    International Nuclear Information System (INIS)

    1979-01-01

    The results of safety analysis concerning the level gauge of a pressurizer and the related measures for the Ohi Nuclear Power Station, which were reported by the Ministry of International Trade and Industry on May 1, 1979, and then investigated and presented by the Nuclear Reactor Safety Special Investigation Committee, are regarded as appropriate by the Atomic Energy Safety Commission (AESC) on May 19, 1979. This analysis and investigation were conducted in relation to the accident in the Three Mile Island (TMI) No. 2 nuclear power plant, occurred on March 28, 1979. In this investigation the influences of the problem concerning the level gauge for a pressurizer of the Ohi Nuclear Power Station on the function and the performance of emergency core cooling system (ECCS) for pressurized water reactors were analyzed, simulating the initial phenomena of the accident in TMI. As for the adequacy of the prior conditions of safety analysis and the analytical codes, the following three points were investigated; 1) the adequacy of accident conditions which were set as the subjects of safety analysis, 2) the adequacy of the assumption supposing that the auxiliary feed water pump is started by manual operation fifteen minutes after accident occurrence, and 3) the adequacy of the analytical Codes MARVEL and SATAN-6. The analytical results showed that the relief valve on a pressurizer does not operate at the similar accident to TMI in the Ohi Nuclear Power Station, because the difference of design exists between both plants, and also even if the relief valve on a pressurizer operates and does not close, the core is cooled sufficiently in the Ohi Nuclear Power Station. (Nakai, Y.)

  6. Nuclear safety: risks and regulation

    International Nuclear Information System (INIS)

    Wood, W.C.

    1983-01-01

    Taking a fresh look at nuclear safety regulations, this study finds that the mandate and organization of the Nuclear Regulatory Commission (NRC) militate against its making sound decisions. The author criticizes failures to make hard decisions on societal risk, to clarify responsibility, and to implement cost-effective safety measures. Among his recommendations are reorganization of the NRC under a single authoritative administrator, separation of technical issues from social ones, and reform of the Price-Anderson Act. The author concludes that the worst eventuality would be to continue the current state of indecision. 161 references, 6 figures, 4 tables

  7. Redefining interrelationship between nuclear safety, nuclear security and safeguards

    International Nuclear Information System (INIS)

    Irie, Kazutomo

    2012-01-01

    Since the beginning of this century, the so-called 3Ss (Nuclear Safety, Nuclear Security and Safeguards) have become major regulatory areas for peaceful uses of nuclear energy. In order to rationalize the allocation of regulatory resources, interrelationship of the 3Ss should be investigated. From the viewpoint of the number of the parties concerned in regulation, nuclear security is peculiar with having “aggressors” as the third party. From the viewpoint of final goal of regulation, nuclear security in general and safeguards share the goal of preventing non-peaceful uses of nuclear energy, though the goal of anti-sabotage within nuclear security is rather similar to nuclear safety. As often recognized, safeguards are representative of various policy tools for nuclear non-proliferation. Strictly speaking, it is not safeguards as a policy tool but nuclear non-proliferation as a policy purpose that should be parallel to other policy purposes (nuclear safety and nuclear security). That suggests “SSN” which stands for Safety, Security and Non-proliferation is a better abbreviation rather than 3Ss. Safeguards as a policy tool should be enumerated along with nuclear safety regulation, nuclear security measures and trade controls on nuclear-related items. Trade controls have been playing an important role for nuclear non-proliferation. These policy tools can be called “SSST” in which Trade controls are also emphasized along with Safety regulation, Security measures and Safeguards. (author)

  8. A philosophy for space nuclear systems safety

    International Nuclear Information System (INIS)

    Marshall, A.C.

    1992-01-01

    The unique requirements and contraints of space nuclear systems require careful consideration in the development of a safety policy. The Nuclear Safety Policy Working Group (NSPWG) for the Space Exploration Initiative has proposed a hierarchical approach with safety policy at the top of the hierarchy. This policy allows safety requirements to be tailored to specific applications while still providing reassurance to regulators and the general public that the necessary measures have been taken to assure safe application of space nuclear systems. The safety policy used by the NSPWG is recommended for all space nuclear programs and missions

  9. Convention on nuclear safety

    International Nuclear Information System (INIS)

    1994-01-01

    The Convention on Nuclear Safety was adopted on 17 June 1994 by Diplomatic Conference convened by the International Atomic Energy Agency at its Headquarters from 14 to 17 June 1994. The Convention will enter into force on the ninetieth day after the date of deposit with the Depository (the Agency's Director General) of the twenty-second instrument of ratification, acceptance or approval, including the instruments of seventeen States, having each at leas one nuclear installation which has achieved criticality in a reactor core. The text of the Convention as adopted is reproduced in the Annex hereto for the information of all Member States

  10. NPP Mochovce nuclear safety enhancement program

    International Nuclear Information System (INIS)

    Cech, J.; Baumester, P.

    1997-01-01

    Nuclear power plant Mochovce is currently under construction and an extensive nuclear safety enhancement programme is under way. The upgrading and modifications are based on IAEA documents and on those of the Nuclear Regulatory Authority of the Slovak Republic. Based on a contract concluded with Riskaudit from the CEC, safety examinations of the Mochovce design were performed. An extensive list of technical specifications of safety measures is given. (M.D.)

  11. An international nuclear safety regime

    International Nuclear Information System (INIS)

    Rosen, M.

    1995-01-01

    For all the parties involved with safe use of nuclear energy, the opening for signature of the 'Convention on Nuclear Safety' (signed by 60 countries) and the ongoing work to prepare a 'Convention on Radioactive Waste Safety' are particularly important milestones. 'Convention on Nuclear Safety' is the first legal instrument that directly addresses the safety of nuclear power plants worldwide. The two conventions are only one facet of international cooperation to enhance safety. A review of some cooperative efforts of the past decades, and some key provisions of the new safety conventions, presented in this paper, show how international cooperation is increasing nuclear safety worldwide. The safety philosophy and practices involved with legal framework for the safe use of nuclear power will foster a collective international involvement and commitment. It will be a positive step towards increasing public confidence in nuclear power

  12. Safety culture in the nuclear versus non-nuclear organization

    Energy Technology Data Exchange (ETDEWEB)

    Haber, S.B.; Shurberg, D.A.

    1996-10-01

    The importance of safety culture in the safe and reliable operation of nuclear organizations is not a new concept. The greatest barriers to this area of research are twofold: (1) the definition and criteria of safety culture for a nuclear organization and (2) the measurement of those attributes in an objective and systematic fashion. This paper will discuss a proposed resolution of those barriers as demonstrated by the collection of data across nuclear and non-nuclear facilities over a two year period.

  13. Safety culture in the nuclear versus non-nuclear organization

    International Nuclear Information System (INIS)

    Haber, S.B.; Shurberg, D.A.

    1996-01-01

    The importance of safety culture in the safe and reliable operation of nuclear organizations is not a new concept. The greatest barriers to this area of research are twofold: (1) the definition and criteria of safety culture for a nuclear organization and (2) the measurement of those attributes in an objective and systematic fashion. This paper will discuss a proposed resolution of those barriers as demonstrated by the collection of data across nuclear and non-nuclear facilities over a two year period

  14. Nuclear power and nuclear safety 2009

    International Nuclear Information System (INIS)

    Lauritzen, B.; Oelgaard, P.L.; Kampmann, D.; Nystrup, P.E.; Thorlaksen, B.

    2010-05-01

    The report is the seventh report in a series of annual reports on the international development of nuclear power production, with special emphasis on safety issues and nuclear emergency preparedness. The report is written in collaboration between Risoe DTU and the Danish Emergency Management Agency. The report for 2009 covers the following topics: status of nuclear power production, regional trends, reactor development, safety related events, international relations, conflicts and the European safety directive. (LN)

  15. Audiences, rationales and quantitative measure for demonstrations of nuclear safety and licensing by tests

    International Nuclear Information System (INIS)

    Lidsky, L.M.

    1990-01-01

    Nuclear power is one of several potential prime movers under consideration for central station production of electricity. As with any technology, the extent of its utilization depends on a complex set of interactions determined by its particular physical embodiments and the structure and temper of the society in which its use is considered. This paper focuses on the situation in the United States; its conclusions cannot easily be extrapolated to other nations. The interplay of indigenous resource base, political structure, and history is complex and must be analyzed case-by-case. I believe that the development of nuclear power plants with the ability to survive a definitive worst-case, 'absolute', test is a minimum requirement if nuclear power is to play a significant role in the future. The test protocols are somewhat dependent upon plant design, but include, at a minimum, simultaneous loss of coolant, control rod withdrawal, and the presence of a malicious operator. The test requirements are not determined by cost-benefit analysis nor by the imposition of mandated safety goals. They are substantially more stringent than would be required to meet even the most conservative commercial standards. Nonetheless, imposition of an absolute test is essential if the social and political prerequisites for the utilization of nuclear power are to be put in place. There are, of course, many other essential conditions, low cost being prime among them. The de facto imposition of an absolute test requirement would have several notable beneficial side effects: It would, for example, change the role of the NRC to one that has far greater public acceptance and it would lead to 'market force' standardization with attendant commercial ramifications

  16. SAFETY MEASURES

    CERN Multimedia

    Relations with the Host States Service; Tel. 75152

    2001-01-01

    Following the recent terrorist attacks, the French authorities have introduced increased-vigilance measures («Vigipirate renforcé») as part of their prevention of terrorism campaign and have expressed the wish to extend these measures to the French part of the CERN site. The Organization has acceded to this request with the understanding that its international status will be respectd and has granted the French Gendarmerie right of access to the Prévessin site and to the LEP/LHC sites on French territory.

  17. Safety of nuclear installations

    International Nuclear Information System (INIS)

    Esteves, R.G.

    1987-01-01

    The safety philosophy of a PWR type reactor distinguishing three levels of safety, is presented. At the first level, the concept of reactivity defining coefficients which measure the reactivity variation is introduced. At the second level, the reactor protection system establishing the design criteria to assure the high reliability, is defined. At the third level, the protection barriers to contain the consequences of accident evolution, are defined. (M.C.K.) [pt

  18. Nuclear Safety Review for 2014

    International Nuclear Information System (INIS)

    2014-07-01

    The Nuclear Safety Review 2014 focuses on the dominant nuclear safety trends, issues and challenges in 2013. The Executive Overview provides general nuclear safety information along with a summary of the major issues covered in this report: strengthening safety in nuclear installations; improving radiation, transport and waste safety; enhancing emergency preparedness and response (EPR); improving regulatory infrastructure and effectiveness; and strengthening civil liability for nuclear damage. The Appendix provides details on the activities of the Commission on Safety Standards, and activities relevant to the Agency’s safety standards. The global nuclear community has made steady and continuous progress in strengthening nuclear safety in 2013, as promoted by the IAEA Action Plan on Nuclear Safety (hereinafter referred to as “the Action Plan”) and reported in Progress in the Implementation of the IAEA Action Plan on Nuclear Safety (document GOV/INF/2013/8-GC(57)/INF/5), and the Supplementary Information to that report and Progress in the Implementation of the IAEA Action Plan on Nuclear Safety (document GOV/INF/2014/2). • Significant progress continues to be made in several key areas, such as assessments of safety vulnerabilities of nuclear power plants (NPPs), strengthening of the Agency’s peer review services, improvements in EPR capabilities, strengthening and maintaining capacity building, and protecting people and the environment from ionizing radiation. The progress that has been made in these and other areas has contributed to the enhancement of the global nuclear safety framework. • Significant progress has also been made in reviewing the Agency’s safety standards, which continue to be widely applied by regulators, operators and the nuclear industry in general, with increased attention and focus on vitally important areas such as design and operation of NPPs, protection of NPPs against severe accidents, and EPR. • The Agency continued to

  19. Nuclear reactor safety device

    Science.gov (United States)

    Hutter, Ernest

    1986-01-01

    A safety device is disclosed for use in a nuclear reactor for axially repositioning a control rod with respect to the reactor core in the event of an upward thermal excursion. Such safety device comprises a laminated helical ribbon configured as a tube-like helical coil having contiguous helical turns with slidably abutting edges. The helical coil is disclosed as a portion of a drive member connected axially to the control rod. The laminated ribbon is formed of outer and inner laminae. The material of the outer lamina has a greater thermal coefficient of expansion than the material of the inner lamina. In the event of an upward thermal excursion, the laminated helical coil curls inwardly to a smaller diameter. Such inward curling causes the total length of the helical coil to increase by a substantial increment, so that the control rod is axially repositioned by a corresponding amount to reduce the power output of the reactor.

  20. Nuclear and radiation safety policy

    International Nuclear Information System (INIS)

    Mikus, T; Strycek, E.

    1998-01-01

    Slovenske elektrarne (SE) is a producer of electricity and heat, including from nuclear fuel source. The board of SE is ultimately responsible for nuclear and radiation safety matters. In this leaflet main principles of maintaining nuclear and radiation safety of the Company SE are explained

  1. Nuclear reactor safety system

    International Nuclear Information System (INIS)

    Ball, R.M.; Roberts, R.C.

    1983-01-01

    The invention provides a safety system for a nuclear reactor which uses a parallel combination of computer type look-up tables each of which receives data on a particular parameter (from transducers located in the reactor system) and each of which produces the functional counterpart of that particular parameter. The various functional counterparts are then added together to form a control signal for shutting down the reactor. The functional counterparts are developed by analysis of experimental thermal and hydraulic data, which are used to form expressions that define safe conditions

  2. White paper on nuclear safety in 2009

    International Nuclear Information System (INIS)

    2009-06-01

    It deals with a general introduction of nuclear safety like general safety, safety regulation and system law and standard. It indicates of nuclear energy facility safety about general safety, safety regulation of operating nuclear power plant safety regulation under constructing nuclear power plant. It deals with radiation facility safety, monitoring of environmental radiation, radiation protection, radiation control, international cooperating on nuclear energy safety and establishment of safety regulation.

  3. Nuclear power indices and safety

    International Nuclear Information System (INIS)

    Bennet, L.L.; Fizher, D.; Nechaev, A.

    1987-01-01

    Problems discussed at the IAEA International Conference on nuclear power indices and safety held in Vienna from 28 September to 2 October, 1987 are considered. Representatives from 40 countries and 12 international organizations participated in the conference. It is marked that by the end of this century nuclear power plant capacities in developing countries will increase by more than twice. In developed countries increase of installed capacity by 65 % is forecasted. It is stressed that competently constructed and operated NPPs will be successfully competing with coal-fueled power plants in the majority of the world regions. Much attention was paid to reports on measures taken after Chernobyl' accident and its radiation effects on people helth. It is shown that parallel with fundamental theoretical studies on NPP safety as a complex engineering system much attention is paid to some problems of designing and operation of such facilities. Fuel cycle problems, radioactive waste and spent fuel storage and disposal in particular, are considered

  4. Researches in nuclear safety

    International Nuclear Information System (INIS)

    Souchet, Y.

    2009-01-01

    This article comprises three parts: 1 - some general considerations aiming at explaining the main motivations of safety researches, and at briefly presenting the important role of some organisations in the international conciliation, and the most common approach used in safety researches (analytical experiments, calculation codes, global experiments); 2 - an overview of some of the main safety problems that are the object of worldwide research programs (natural disasters, industrial disasters, criticality, human and organisational factors, fuel behaviour in accidental situation, serious accidents: core meltdown, corium spreading, failure of the confinement building, radioactive releases). Considering the huge number of research topics, this part cannot be exhaustive and many topics are not approached; 3 - the presentation of two research programs addressing very different problems: the evaluation of accidental releases in the case of a serious accident (behaviour of iodine and B 4 C, air infiltration, fission products release) and the propagation of a fire in a facility (PRISME program). These two programs belong to an international framework involving several partners from countries involved in nuclear energy usage. (J.S.)

  5. Summary of Great East Japan Earthquake response at Onagawa Nuclear Power Station and further safety improvement measures

    International Nuclear Information System (INIS)

    Sato, Toru

    2013-01-01

    A large earthquake occurred on March 11, 2011 and tsunami was generated following it. The East Japan suffered serious damage by the earthquake and tsunami. This is called the Great East Japan Earthquake. Onagawa Nuclear Power Station (NPS) is located closest to the epicenter of Great East Japan Earthquake. We experienced intense shake by the earthquake and some flooding from the tsunami, however, we have succeeded safely cold shutdown of the reactors. In this paper, we introduce summary of Great East Japan Earthquake response a Onagawa NPS and safety improvement measures which are based on both experience of Onagawa NPS and lesson from Fukushima Daiichi NPS accident. (author)

  6. Redefining interrelationship between nuclear safety, nuclear security and safeguards

    International Nuclear Information System (INIS)

    Irie, Kazutomo

    2011-01-01

    Since the beginning of this century, the so-called 3Ss (Nuclear Safety, Nuclear Security and Safeguards) have become major regulatory areas for peaceful uses of nuclear energy. The importance of the 3Ss is now emphasized to countries which are newly introducing nuclear power generation. However, as role models for those newcomers, existing nuclear power countries are also required to strengthen their regulatory infrastructure for the 3Ss. In order to rationalize the allocation of regulatory resources, interrelationship of the 3Ss should be investigated. From the viewpoint of the number of the parties concerned in regulation, nuclear security is peculiar with having 'aggressors' as the third party. From the viewpoint of final goal of regulation, nuclear security in general and safeguards share the goal of preventing non-peaceful uses of nuclear energy, though the goal of anti-sabotage within nuclear security is rather similar to nuclear safety. As often recognized, safeguards are representative of various policy tools for nuclear non-proliferation. Strictly speaking, it is not safeguards as a policy tool but nuclear non-proliferation as a policy purpose that should be parallel to other policy purposes (nuclear safety and nuclear security). That suggests 'SSN' which stands for Safety, Security and Non-proliferation is a better abbreviation rather than 3Ss. Safeguards as a policy tool should be enumerated along with nuclear safety regulation, nuclear security measures and trade controls on nuclear-related items. Trade controls have been playing an important role for nuclear non-proliferation. These policy tools can be called 'SSST' in which Trade controls are also emphasized along with Safety regulation, Security measures and Safeguards. Recently, it becomes quite difficult to clearly demarcate these policy tools. As nuclear security concept is expanding, the denotation of nuclear security measures is also expanding. Nuclear security measures are more and more

  7. International Aspects of Nuclear Safety

    International Nuclear Information System (INIS)

    Lash, T.R.

    2000-01-01

    Even though not all the world's nations have developed a nuclear power industry, nuclear safety is unquestionably an international issue. Perhaps the most compelling proof is the 1986 accident at Chornobyl nuclear power plant in what is now Ukraine. The U.S. Department of Energy conducts a comprehensive, cooperative effort to reduce risks at Soviet-designed nuclear power plants. In the host countries : Armenia, Ukraine, Russia, Bulgaria, the Czech Republic, Hungary, Lithuania, Slovakia, and Kazakhstan joint projects are correcting major safety deficiencies and establishing nuclear safety infrastructures that will be self-sustaining.The U.S. effort has six primary goals: 1. Operational Safety - Implement the basic elements of operational safety consistent with internationally accepted practices. 2. Training - Improve operator training to internationally accepted standards. 3. Safety Maintenance - Help establish technically effective maintenance programs that can ensure the reliability of safety-related equipment. 4. Safety Systems - Implement safety system improvements consistent with remaining plant lifetimes. 5. Safety Evaluations - Transfer the capability to conduct in-depth plant safety evaluations using internationally accepted methods. 6. Legal and Regulatory Capabilities - Facilitate host-country implementation of necessary laws and regulatory policies consistent with their international treaty obligations governing the safe use of nuclear power

  8. Nuclear reactors safety issues

    International Nuclear Information System (INIS)

    Barre, Francois; Seiler, Nathalie

    2008-01-01

    Full text of publication follows: Since the seventies, economic incentives have led the utilities to drive a permanent evolution of the light water reactor (LWR). The evolution deals with the reactor designs as well as the way to operate them in a more flexible manner. It is for instance related to the fuel technologies and management. On the one hand, the technologies are in continuous evolution, such as the fuel pellets (MOX, Gd fuel, or Cr doped fuels..) as well as advanced cladding materials (M5 TM , MDA or ZIRLO). On the other hand, the fuel management is also subject to continuous evolution in particular in terms of increasing the level of burn-up, the reactor (core) power, the enrichment, as well as the duration of reactor cycles. For instance, in a few years in France, the burn-up has raised beyond the value of 39 GWj/t, initially authorized up to 52 GWj/t for the UO 2 fuel. In the near future, utilities foreseen to reach fuel burn-up of 60 GWj/t for MOX fuel and 70 GWj/t for UO 2 fuel. Furthermore, the future reactor of fourth generation will use new fuels of advanced conception. Furthermore with the objective of improving the safety margins, methods and calculation tools used by the utilities in the elaboration of their safety demonstrations submitted to the Safety Authority, are in movement. The margin evaluation methodologies often consist of a calculation chain of best-estimate multi-field simulations (e.g. various codes being coupled to simulate in a realistic way the evolution of the thermohydraulic, neutronic and mechanic state of the reactor). The statistical methods are more and more sophisticated and the computer codes are integrating ever-complex physical models (e.g. three-dimensional at fine scale). Following this evolution, the Institute of Radioprotection and Nuclear Safety (IRSN), whose one of the roles is to examine the safety records and to rend a technical expertise, considers the necessity of reevaluating the safety issues for advanced

  9. International Symposium on Nuclear Safety

    International Nuclear Information System (INIS)

    2013-03-01

    Nuclear Regulatory Authority of the Slovak Republic and the Embassy of Japan in the Slovak Republic, under the auspices of the Deputy Prime Minister and Minister of Foreign and European Affairs Mr Lajcak organized International Symposium on Nuclear Safety on 14 and 15 March 2013. The symposium took place almost exactly two years after the occurrence of accidents at the Japanese nuclear power plant Fukushima Daichi. The main mission of the symposium was an attempt to contribute to the improvement of nuclear safety by sharing information and lessons presented by Japanese experts with experts from the region, the International Atomic Energy Agency (IAEA) and the European Commission. The aim of the symposium, unlike many other events organized in connection with the events in Fukushima Daichi NPP, was a summary of the results of stress tests and measures update adopted by the international community, especially within Europe. Panel discussion was included to the program of the symposium for this aim was, mainly focused on the current state of implementation of the National Action Plan of the Slovak Republic, the Czech Republic, Poland, Ukraine and Switzerland and the IAEA Action Plan.

  10. Nuclear safety review for 1984

    International Nuclear Information System (INIS)

    1985-08-01

    This publication is based on the fourth Nuclear Safety Review prepared by the IAEA Secretariat for presentation to the Board of Governors. It discusses relevant international activities in 1984 and the current status of nuclear safety and radiation protection, and looks ahead to anticipated developments

  11. Nuclear safety legislation and supervision in China

    International Nuclear Information System (INIS)

    Zhang Shiguan

    1991-02-01

    The cause for the urgent need of nuclear safety legislation and supervision in China is firstly described, and then a brief introduction to the basic principle and guideline of nuclear safety is presented. Finally the elaboration on the establishment of nuclear safety regulatory system, the enactment of a series of regulations and safety guides, and the implementation of licencing, nuclear safety supervision and research for ensuring the safety of nuclear energy, since the founding of the National Nuclear Safety Administration, are introduced

  12. Japan reforms its nuclear safety

    International Nuclear Information System (INIS)

    Anon.

    2013-01-01

    The Fukushima Daiichi NPP accident deeply questioned the bases of nuclear safety and nuclear safety regulation in Japan. It also resulted in a considerable loss of public confidence in the safety of nuclear power across the world. Although the accident was caused by natural phenomena, institutional and human factors also largely contributed to its devastating consequences, as shown by the Japanese Diet's and Government's investigation reports. 'Both regulators and licensees were held responsible and decided to fully reconsider the existing approaches to nuclear safety. Consequently, the regulatory system underwent extensive reform based on the lessons learned from the accident,' Yoshihiro Nakagome, the President of Japan Nuclear Energy Safety Organisation, an ETSON member TSO, explains. (orig.)

  13. White paper on nuclear safety in 1984

    International Nuclear Information System (INIS)

    1984-01-01

    When the development and utilization of atomic energy are advanced, the ensuring of safety is an indispensable prerequisite. Therefore in Japan, the various measures for ensuring safety, such as strict safety examination, the perfection of the guidelines and standards used for the safety examination, the public hearings to hear the opinion of local inhabitants and the reflection of the learnings from accidents and failures to the safety countermeasures, have been positively carried out. The nuclear power generation in Japan has faced a number of problems during its 20 year history concerning the safety, but now it has reached the high safety level as seen in the rise of capacity ratio. In this annual report, the experience of accidents and failures in Japanese and foreign nuclear power stations and the results of safety research are shown, and the ways of reflecting those to safety measures are analyzed in the first part. In the second part, the present status of the measures for ensuring safety related to atomic energy facilities such as nuclear power stations and nuclear fuel facilities is described. The various related data are attached. (Kako, I.)

  14. Supercomputing and nuclear safety

    International Nuclear Information System (INIS)

    Livolant, M.; Durin, M.; Micaelli, J.C.

    2003-01-01

    Safety is essential for nuclear installations: it is necessary to avoid the release of radioactive materials outside them. So, they are designed, built and operated in a way which allows to prevent accidents, to keep the system in a safe situation even if the largest accident taken for the design happens, and to protect the population from harm in case of an out of design accident. Limiting the analysis to the light water reactors, we can consider the interest of supercomputing in the following domains: - Primary circuit loss of coolant accident; - Computational Fluid Dynamics safety studies; - Treatment of uncertainties; - Simulators; - Severe accidents. The first topic, primary circuit loss of coolant accident, has contributed since many years to the development of high level codes to compute the behaviour of water-stream mixtures in a high pressure ruptured circuit, the objective being to maintain the cooling of the core in spite of the continued heat source of the fission products. Well known codes like RELAP and CATHARE are largely in use. Research is in progress to improve the physical and numerical models and to extend the scope of calculations. The second topic is in progress, and a large variety of applications are largely in use or foreseen at least for research or exploratory studies. Direct use of those techniques for proving the safety of systems will require a large work of validation, including comparison with experiments, and significant improvements in easiness of use and speed of calculation. Typically, complex safety calculations are made with the best models and the best values of parameters, but there are uncertainties in the models and the parameters, and a safety analysis has to consider the worst conditions. There are not fully satisfactory methods to take care of the uncertainties, specially in the models, and, whichever they are, they multiply the calculation time by a factor between ten and hundred. Operational simulators exist, at least

  15. The role of nuclear law in nuclear safety after Fukushima; El rol del derecho nuclear en seguridad nuclear luego de Fukushima

    Energy Technology Data Exchange (ETDEWEB)

    Cardozo, Diva E. Puig, E-mail: d.puig@adinet.com.uy [International Nuclear Law Association (INLA), Montevideo (Uruguay)

    2013-07-01

    The paper contains the following topics: nuclear law, origin and evolution, role of the legal instruments on nuclear safety, nuclear safety the impact of major nuclear accidents: Chernobyl and Fukushima. The response of the nuclear law post Fukushima. Safety and security. International framework for nuclear safety: nuclear convention joint convention on safety on spent fuel management and on the safety of radioactive waste management. The Fukushima World Conference on Nuclear Safety. Convention on Prompt Notification and Assistance in case of a Nuclear Accident or Radiological Emergency. Plan of Action for Nuclear Safety. IAEA recommendations for the safety transport of radioactive material. International framework for nuclear security. Convention on the Physical Protection of Nuclear Materials. International Convention for the Suppression of Acts Against Nuclear Terrorism. Resolution No. 1540 of the Security Council of United Nations (2004). Measures to strengthen international safety. Code of conduct on the safety research reactor.

  16. Nuclear power: Siting and safety

    International Nuclear Information System (INIS)

    Openshaw, S.

    1986-01-01

    By 2030, half, or even two-thirds, of all electricity may be generated by nuclear power. Major reactor accidents are still expected to be rare occurrences, but nuclear safety is largely a matter of faith. Terrorist attacks, sabotage, and human error could cause a significant accident. Reactor siting can offer an additional, design-independent margin of safety. Remote geographical sites for new plants would minimize health risks, protect the industry from negative changes in public opinion concerning nuclear energy, and improve long-term public acceptance of nuclear power. U.K. siting practices usually do not consider the contribution to safety that could be obtained from remote sites. This book discusses the present trends of siting policies of nuclear power and their design-independent margin of safety

  17. Nuclear Powerplant Safety: Operations.

    Science.gov (United States)

    Department of Energy, Washington, DC. Nuclear Energy Office.

    Powerplant systems and procedures that ensure the day-to-day health and safety of people in and around the plant is referred to as operational safety. This safety is the result of careful planning, good engineering and design, strict licensing and regulation, and environmental monitoring. Procedures that assure operational safety at nuclear…

  18. Effectiveness of the Convention on Nuclear Safety

    International Nuclear Information System (INIS)

    Schwarz, G.

    2016-01-01

    The Convention on Nuclear Safety (CNS) has been established after the Chernobyl accident with the primary objective of achieving and maintaining a high level of nuclear safety worldwide, through the enhancement of national measures and international cooperation. The CNS is an incentive convention. It defines the basic safety standard which shall be met by the Contracting Parties. The verification of compliance is based on a self-assessment by the Countries and a Peer Review by the other Contracting Parties. As of July 2015, there are 78 Contracting Parties. Among the Contracting Parties of the Convention are all countries operating nuclear power plants except the Islamic Republic of Iran and Taiwan, all countries constructing nuclear power plants, all countries having nuclear power plants in long term shutdown and all countries having signed contracts for the construction of nuclear power plants. The National Reports under the CNS therefore cover almost all nuclear power plants of the world. The peer review of reports, questions and answers that are exchanged in connection with the Review Meetings provided a unique overview of nuclear safety provisions and issues in countries planning or operating nuclear power plants. This is especially important for neighbouring countries to those operating nuclear power plants.

  19. Optimization of nuclear safety systems

    International Nuclear Information System (INIS)

    Beninson, D.; Gonzalez, A.J.

    1981-01-01

    The paper presents an approach for selecting the level of ambition of nuclear safety by a process of optimization based on cost-benefit considerations. Optimization has been incorporated as a requirement for radiation protection, to keep doses ''as low as reasonably achievable''. In radiation protection, optimization takes account of the costs of protection and the costs of the detriment, minimizing the sum of both. Optimization of a nuclear safety system could conceptually treat similarly the cost of potential damages from nuclear accidents and the cost associated with achieving a given level of safety. Within the above framework a method of optimizing the design of nuclear safety systems is presented, and a simple case of redundancy by output voting techniques is given. (author)

  20. Nuclear safety research master plan

    International Nuclear Information System (INIS)

    Ha, Jae Joo; Yang, J. U.; Jun, Y. S. and others

    2001-06-01

    The SRMP (Safety Research Master Plan) is established to cope with the changes of nuclear industry environments. The tech. tree is developed according to the accident progress of the nuclear reactor. The 11 research fields are derived to cover the necessary technologies to ensure the safety of nuclear reactors. Based on the developed tech. tree, the following four main research fields are derived as the main safety research areas: 1. Integrated nuclear safety enhancement, 2. Thermal hydraulic experiment and assessment, 3. Severe accident management and experiment, and 4. The integrity of equipment and structure. The research frame and strategies are also recommended to enhance the efficiency of research activity, and to extend the applicability of research output

  1. Nuclear safety research master plan

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Jae Joo; Yang, J. U.; Jun, Y. S. and others

    2001-06-01

    The SRMP (Safety Research Master Plan) is established to cope with the changes of nuclear industry environments. The tech. tree is developed according to the accident progress of the nuclear reactor. The 11 research fields are derived to cover the necessary technologies to ensure the safety of nuclear reactors. Based on the developed tech. tree, the following four main research fields are derived as the main safety research areas: 1. Integrated nuclear safety enhancement, 2. Thermal hydraulic experiment and assessment, 3. Severe accident management and experiment, and 4. The integrity of equipment and structure. The research frame and strategies are also recommended to enhance the efficiency of research activity, and to extend the applicability of research output.

  2. Dukovany nuclear power plant safety

    International Nuclear Information System (INIS)

    1999-01-01

    Presentation covers recommended safety issues for the Dukovany NPP which have been solved with satisfactory conclusions. Safety issues concerned include: radiation safety; nuclear safety; security; emergency preparedness; health protection at work; fire protection; environmental protection; chemical safety; technical safety. Quality assurance programs at all stages on NPP life time is described. Report includes description of NPP staff training provision, training simulator, emergency operating procedures, emergency preparedness, Year 2000 problem, inspections and life time management. Description of Dukovany Plant Safety Analysis Projects including integrity of the equipment, modernisation, equipment innovation and safety upgrading program show that this approach corresponds to the actual practice applied in EU countries, and fulfilment of current IAEA requirements for safety enhancement of the WWER 440/213 units in the course of MORAWA Equipment Upgrading program

  3. Safety goals for nuclear power

    International Nuclear Information System (INIS)

    Fischhoff, B.

    1984-02-01

    The key policy question in managing hazardous technologies is often some variant of How safe is safe enough. The US Nuclear Regulatory Commission has recently broached this topic by adopting safety goals defining acceptable risk levels for nuclear power plants. These goals are analyzed here with a general theory of standard setting (Fischhoff, 1983) which asks: (1) Are standards an appropriate policy tool in this case. (2) Can the Commission's safety philosophy be defended. (3) Do the operational goals capture that philosophy. The anlaysis shows the safety goals proposal to be sophisticated in some respects, incomplete in others. More generally, it points to difficulties with the concept of acceptable risk and any attempt to build policy instruments around it. Although focused on the NRC's safety goals, the present analysis is a prototype of what can be learned by similarly detailed consideration of other standards, not only for nuclear power but also for other hazardous technologies, as well as for issues unrelated to safety

  4. Nuclear safety and probabilistic methods

    International Nuclear Information System (INIS)

    Tanguy, Pierre

    1976-01-01

    Having first recalled the principles of conventional methodology concerning nuclear safety, the probabilistic approach is defined, as it has been elaborated by Dr Farmer. The basic rules which determined the elaboration of the Rasmussen report as well as the main conclusions of this report are commented. Definition of the evolution prospects - possible and advisable - of the probabilistic method as concerns nuclear safety are defined [fr

  5. Progress of nuclear safety research. 2001

    Energy Technology Data Exchange (ETDEWEB)

    Anoda, Yoshinari; Sasajima, Hideo; Nishiyama, Yutaka (eds.) [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment] [and others

    2001-10-01

    JAERI is conducting nuclear safety research primarily at the Nuclear Safety Research Center in close cooperation with the related departments in accordance with the Long Term Plan for Development and Utilization of Nuclear Energy or the Safety Research Annual Plan issued by the Japanese government. The safety research at JAERI concerns the engineering safety of nuclear power plants and nuclear fuel cycle facilities, and radioactive waste management as well as advanced technology for safety improvement or assessment. Also, JAERI has conducted international collaboration to share the information on common global issues of nuclear safety. This report summarizes the nuclear safety research activities of JAERI from April 1999 through March 2001. (author)

  6. Cultivation of nuclear safety culture in Guangdong Nuclear Power Station (GNPS)

    International Nuclear Information System (INIS)

    Lu Wei; Tang Yanzhao

    2004-01-01

    Probed into the concept and developing phases of safety couture in the management of nuclear power station, especially analyzed the background and the road of cultivating nuclear safety culture in GNPS, highlighted the core concept of GNPS nuclear safety culture, presented GNPS safety culture indicators, summarized the major measures taken by GNPS, depicted the propagandizing process of transparency in GNPS, and systematically appraised the effect of GNPS in implementing nuclear safety culture. (authors)

  7. The internationalization of nuclear safety

    International Nuclear Information System (INIS)

    Rosen, M.

    1989-01-01

    Nuclear safety is interlinked in many ways with the themes of this conference. In searching for co-operative activities that touch on global energy and environmental problems and on initiatives that relieve international tensions, the ongoing developments in nuclear power safety offer a number of successful examples. Commercial nuclear power has been with us for more than 30 years, and with 26 countries operating plants in addition to 6 more constructing their first, there has been an ongoing global co-operation, coinciding of Chernobyl with Glasnost, along with the increasing awareness of the benefits of common solutions to safety issues, have brought about an internationalization of nuclear safety. Although the main responsibility for safety rests with each operator and its government, a primary driving force expanding international co-operation is the transboundary aspects of nuclear energy, as vividly demonstrated by Chernobyl accident. In this presentation we focus on the mechanisms already in place that foster cooperation in the nuclear safety area

  8. Nuclear safety - Culture or obsession?

    International Nuclear Information System (INIS)

    Pereira Villar, Heldio

    2002-01-01

    Although nuclear activities are among the safest, having an enviable record in this respect, public perception is quite different. It is argued here that, regardless of the fact that environmental groups and the media in general look unfavourably towards the nuclear sector, the emphasis the sector places on safety matters is a liability rather than a asset. In short, public acceptance of a risky enterprise increases with the safety concerns shown by an entrepreneur up to a certain point. Beyond this threshold the enterprise is found too risky to be accepted, and it looks like the nuclear establishment has already crossed it. Ideas for further relationship with the public are then shown. (author)

  9. The safety of nuclear installations

    International Nuclear Information System (INIS)

    1993-01-01

    This Safety Fundamental publication sets out basic objectives, concepts and principles for ensuring safety that can be used both by the IAEA in its international assistance operations and by Member States in their national nuclear programmes. These Safety Fundamentals apply primarily to those nuclear installations in which the stored energy developed in certain situations could potentially results in the release of radioactive material from its designated location with the consequent risk of radiation exposure of people. These principles are applicable to a broad range of nuclear installations, but their detailed application will depend on the particular technology and the risks posed by it. In addition to nuclear power plants, such installations may include: research reactors and facilities, fuel enrichment, manufacturing and reprocessing plants; and certain facilities for radioactive waste treatment and storage

  10. Nuclear safety management at the Wolsong NGS

    International Nuclear Information System (INIS)

    Han Bong-Seob

    1997-01-01

    Nuclear safety management at the Wolsong nuclear power plant is described, including the following issues: site selection; plant history; operational goals; operational guidelines; reactor safety; safety training; plant maintenance; management of plant equipment lifetime; future tasks

  11. Safety of nuclear power reactors

    International Nuclear Information System (INIS)

    MacPherson, H.G.

    1982-01-01

    Safety is the major public issue to be resolved or accommodated if nuclear power is to have a future. Probabilistic Risk Analysis (PRA) of accidental releases of low-level radiation, the spread and activity of radiation in populated areas, and the impacts on public health from exposure evolved from the earlier Rasmussen Reactor Safety Study. Applications of the PRA technique have identified design peculiarities in specific reactors, thus increasing reactor safety and establishing a quide for evaluating reactor regulations. The Nuclear Regulatory Commission and reactor vendors must share with utilities the responsibility for reactor safety in the US and for providing reasonable assurance to the public. This entails persuasive public education and information that with safety a top priority, changes now being made in light water reactor hardware and operations will be adequate. 17 references, 2 figures, 2 tables

  12. Nuclear safety and public debate

    International Nuclear Information System (INIS)

    Tanguy, P.

    1997-01-01

    In this article are evoked the question of nuclear safety and the public opinion, from the beginning of nuclear power plants in 1954 where a peaceful use of nuclear energy is developed in minds. If the aim was to avoid any important accident, the Three Miles Island accident and more recently the Chernobyl accident provoked a shock in public opinion and marked a peak of nuclear controversy. From this point, the policy of transparence and a best information of the public taken as a partner are necessary to maintain the dialogue. (N.C.)

  13. Nuclear power systems: Their safety

    International Nuclear Information System (INIS)

    Myers, L.C.

    1993-01-01

    Mankind utilizes energy in many forms and from a variety of sources. Canada is one of a growing number of countries which have chosen to embrace nuclear-electric generation as a component of their energy systems. As of August 1992 there were 433 power reactors operating in 35 countries and accounting for more than 15% of the world's production of electricity. In 1992, thirteen countries derived at least 25% of their electricity from nuclear units, with France leading at nearly 70%. In the same year, Canada produced about 16% of its electricity from nuclear units. Some 68 power reactors are under construction in 16 countries, enough to expand present generating capacity by close to 20%. No human endeavour carries the guarantee of perfect safety and the question of whether or not nuclear-electric generation represents an 'acceptable' risk to society has long been vigorously debated. Until the events of late April 1986, nuclear safety had indeed been an issue for discussion, for some concern, but not for alarm. The accident at the Chernobyl reactor in the USSR has irrevocably changed all that. This disaster brought the matter of nuclear safety back into the public mind in a dramatic fashion. This paper discusses the issue of safety in complex energy systems and provides brief accounts of some of the most serious reactor accidents which have occurred to date. (author). 7 refs

  14. Saclay transparency and nuclear safety report 2009

    International Nuclear Information System (INIS)

    2006-01-01

    After a general presentation of the Saclay CEA Centre, this report presents the various safety arrangements in the different basic nuclear installations it possesses. These arrangements can be administrative, technical, or related to emergency situations or to inspections. It describes the organisation of radioprotection in the Saclay CEA Centre, indicates highlights for 2009, and gives results of dose measurements performed on the personnel. It reports significant events regarding nuclear safety and radioprotection in the various installations, gives and comments release measurements results and their impact on the environment (gaseous and liquid releases). It gives an overview of radioactive wastes stored in the different installations

  15. NRC - regulator of nuclear safety

    International Nuclear Information System (INIS)

    1997-01-01

    The U.S. Nuclear Regulatory Commission (NRC) was formed in 1975 to regulate the various commercial and institutional uses of nuclear energy, including nuclear power plants. The agency succeeded the Atomic Energy Commission, which previously had responsibility for both developing and regulating nuclear activities. Federal research and development work for all energy sources, as well as nuclear weapons production, is now conducted by the U.S. Department of Energy. Under its responsibility to protect public health and safety, the NRC has three principal regulatory functions: (1) establish standards and regulations, (2) issue licenses for nuclear facilities and users of nuclear materials, and (3) inspect facilities and users of nuclear materials to ensure compliance with the requirements. These regulatory functions relate to both nuclear power plants and to other uses of nuclear materials - like nuclear medicine programs at hospitals, academic activities at educational institutions, research work, and such industrial applications as gauges and testing equipment. The NRC places a high priority on keeping the public informed of its work. The agency recognizes the interest of citizens in what it does through such activities as maintaining public document rooms across the country and holding public hearings, public meetings in local areas, and discussions with individuals and organizations

  16. Nuclear criticality safety in Canada

    International Nuclear Information System (INIS)

    Shultz, K.R.

    1980-04-01

    The approach taken to nuclear criticality safety in Canada has been influenced by the historical development of participants. The roles played by governmental agencies and private industry since the Atomic Energy Control Act was passed into Canadian Law in 1946 are outlined to set the scene for the current situation and directions that may be taken in the future. Nuclear criticality safety puts emphasis on the control of materials called special fissionable material in Canada. A brief account is given of the historical development and philosophy underlying the existing regulations governing special fissionable material. Subsequent events have led to a change in emphasis in the regulatory process that has not yet been fully integrated into Canadian legislation and regulations. Current efforts towards further development of regulations governing the practice of nuclear criticality safety are described. (auth)

  17. Nuclear criticality safety in Canada

    International Nuclear Information System (INIS)

    Shultz, K.R.

    1980-01-01

    The approach taken to nuclear criticality safety in Canada has been influenced by the historical development of participants. The roles played by governmental agencies and private industry since the Atomic Energy Control Act was passed into Canadian Law in 1946 are outlined to set the scene for the current situation and directions that may be taken in the future. Nuclear criticality safety puts emphasis on the control of materials called special fissionable material in Canada. A brief account is given of the historical development and philosophy underlying the existing regulations governing special fissionable material. Subsequent events have led to a change in emphasis in the regulatory process that has not yet been fully integrated into Canadian legislation and regulations. Current efforts towards further development of regulations governing the practice of nuclear criticality safety are described

  18. Nuclear energy safety - new challenges

    Energy Technology Data Exchange (ETDEWEB)

    Rausch, Julio Cezar; Fonseca, Renato Alves da, E-mail: jrausch@cnen.gov.b, E-mail: rfonseca@cnen.gov.b [Comissao Nacional de Energia Nuclear (CNEN), Rio de Janeiro, RJ (Brazil)

    2011-07-01

    Fukushima accident in March this year, the second most serious nuclear accident in the world, put in evidence a discussion that in recent years with the advent of the 'nuclear renaissance' has been relegated in the background: what factors influence the use safe nuclear energy? Organizational precursor, latent errors, reduction in specific areas of competence and maintenance of nuclear programs is a scenario where the guarantee of a sustainable development of nuclear energy becomes a major challenge for society. A deep discussion of factors that influenced the major accidents despite the nuclear industry use of the so-called 'lessons learned' is needed. Major accidents continue to happen if a radical change is not implemented in the focus of safety culture. (author)

  19. Nuclear energy safety - new challenges

    International Nuclear Information System (INIS)

    Rausch, Julio Cezar; Fonseca, Renato Alves da

    2011-01-01

    Fukushima accident in March this year, the second most serious nuclear accident in the world, put in evidence a discussion that in recent years with the advent of the 'nuclear renaissance' has been relegated in the background: what factors influence the use safe nuclear energy? Organizational precursor, latent errors, reduction in specific areas of competence and maintenance of nuclear programs is a scenario where the guarantee of a sustainable development of nuclear energy becomes a major challenge for society. A deep discussion of factors that influenced the major accidents despite the nuclear industry use of the so-called 'lessons learned' is needed. Major accidents continue to happen if a radical change is not implemented in the focus of safety culture. (author)

  20. The nuclear controversy and nuclear safety techniques

    International Nuclear Information System (INIS)

    Ragnarson, P.

    1979-09-01

    Survey interviews with 125 Swedish nuclear safety engineers are summarized and commented upon. A short historical background is given, claiming that the major safety issues of nuclear energy have been debated continously during the 50's and 60's in a way that could well have been watched and interpreted by a political, democratic system involving political parties, government departments, etc. With a few exceptions, these 125 engineers represent 10 - 20 years experience in nuclear research and development. By definition they belong to a professional group of about 800 in Sweden (1978). The main aim of the study is to find out if (how and why) a public debate can bring about changes in an industrially established technology by influencing the attitudes and technical judgements of the individuals and/or organizations involved. Examples are given in which the nuclear specialists themselves admit or claim that direct or indirect impacts from the public debate have been important. A common experience is that the scientists and engineers have been forced to broaden their professional scope through a time-consuming but - on the whole - 'positive' process. A year after the interviews started, a serious reactor accident occured near Harrisburg, Pennsylvania. The group has been used for a survey of the immediate reactions in order to see if it could cause sudden changes of attitudes among the experts. A minority demonstrated clear changes towards a more cautious attitude regarding nuclear risks. (author)

  1. Effectiveness of transmitting safety-measures information in risk communication of nuclear power generation. Evaluation by the receiver of the messages

    International Nuclear Information System (INIS)

    Matsumoto, Takanobu; Shiomi, Tetsuro

    2004-01-01

    Effectiveness of risk communication were previously discussed through both ''risk information'' and ''benefit information'' of its topics. However, in technical facilities facilities such as nuclear power plant where safeness is an important concern, not only these two aspects but also safety-measures information'' are required. There have been previously no such discussions about risk communication that included ''safety-measures information''. In this report, we investigated general public's view of the difference in effectiveness of risk communication between two cases. In the first case, only ''risk'' and ''benefit information'' were given. In the second case, we added ''safety-measures information'' as well as ''risk'' and benefit information''. Measurement of the effect was performed using a questionnaire. We divided the subjects into two groups. Each group was shown one side of two pamphlets which had information concerning two conditions, and asked how it feels about ''reliance on information'', ''reliance on informer'', ''posture considered with informer'' which are factors in the process of the attitude change that is shown in the paradigm of risk communication (Kinoshita and Kikkawa, (1990)). Prior to this investigation, we identified each subject is position on nuclear power generation. Thus we were able to clarify the effectiveness of each risk communication style depending on each subject is position (approval, neutrality, objection). As a result, we reached the following conclusions: First about ''reliance on information'', where asked whether the contents of a pamphlet would be reliable, it was found that the person negative to nuclear power generation evaluated lower the pamphlet which included ''safety-measures information'' than the other. However, it was found that regardless of the difference in the position towards nuclear power generation, people who read the pamphlet including ''safety-measures information'' evaluated higher ''reliance on

  2. Nuclear materials facility safety initiative

    International Nuclear Information System (INIS)

    Peddicord, K.L.; Nelson, P.; Roundhill, M.; Jardine, L.J.; Lazarev, L.; Moshkov, M.; Khromov, V.V.; Kruchkov, E.; Bolyatko, V.; Kazanskij, Yu.; Vorobeva, I.; Lash, T.R.; Newton, D.; Harris, B.

    2000-01-01

    Safety in any facility in the nuclear fuel cycle is a fundamental goal. However, it is recognized that, for example, should an accident occur in either the U.S. or Russia, the results could seriously delay joint activities to store and disposition weapons fissile materials in both countries. To address this, plans are underway jointly to develop a nuclear materials facility safety initiative. The focus of the initiative would be to share expertise which would lead in improvements in safety and safe practices in the nuclear fuel cycle.The program has two components. The first is a lab-to-lab initiative. The second involves university-to-university collaboration.The lab-to-lab and university-to-university programs will contribute to increased safety in facilities dealing with nuclear materials and related processes. These programs will support important bilateral initiatives, develop the next generation of scientists and engineers which will deal with these challenges, and foster the development of a safety culture

  3. Realism in nuclear criticality safety

    International Nuclear Information System (INIS)

    McLaughlin, T. P.

    2009-01-01

    Commercial nuclear power plant operation and regulation have made remarkable progress since the Three Mile Island Accident. This is attributed largely to a heavy dose of introspection and self-regulation by the industry and to a significant infusion of risk-informed and performance-based regulation by the Nuclear Regulatory Commission. This truly represents reality in action both by the plant operators and the regulators. On the other hand, the implementation of nuclear criticality safety in ex-reactor operations involving significant quantities of fissile material has not progressed, but, tragically, it has regressed. Not only is the practice of the discipline in excess of a factor of ten more expensive than decades ago; the trend continues. This unfortunate reality is attributed to a lack of coordination within the industry (as contrasted to what occurred in the reactor operations sector), and to a lack of implementation of risk-informed and performance-based regulation by the NRC While the criticality safety discipline is orders of magnitude smaller than the reactor safety discipline, both operators and regulators must learn from the progress made in reactor safety and apply it to the former to reduce the waste, inefficiency and potentially increased accident risks associated with current practices. Only when these changes are made will there be progress made toward putting realism back into nuclear criticality safety. (authors)

  4. Safety culture in nuclear power enterprise

    International Nuclear Information System (INIS)

    Zou Zhengyu; Su Luming

    2008-01-01

    The International Atomic Energy Agency (IAEA) introduced the concept of safety culture when analyzing the Chernobyl accident. Safety culture has now been widely accepted and practiced by nuclear enterprise in the world. As an important safeguard for nuclear safety, safety culture has become the core of nuclear power enterprise and entitled as the soul of nuclear enterprise. This paper analyzes the three levels of safety culture and describes its three developing phases. (authors)

  5. Basic safety principles for nuclear power plant

    International Nuclear Information System (INIS)

    Zhang Shiguan

    1989-01-01

    To ensure the safety operation of nuclear power plant, one should strictly adhere to the implelmentation of safety codes and the establishment of nuclear safety code system, as well as the applicable basic safety principles of nuclear power plants. This article briefly introduce the importance of nuclear codes and its economic benefits and the implementation of basic safety principles to be accumulated in practice for many years by various countries

  6. 25 years of nuclear safety

    International Nuclear Information System (INIS)

    Curien, H.; Duclos, D.; Saint Raymond, Ph.

    1998-01-01

    This philosophical dossier is devoted to the last 25 years of nuclear safety. It is organized around three main subjects: the control, the communication with the public and the international relations. The control affected the builder and the operator, but also an independent authority. This duality is essential. The public relations became a main point in the risks management. The transparency leads to a better public information. The last part is devoted to the international relations. It affects the international regulations but also the opinion exchange. The nuclear industries (and even non nuclear industries) should take inspiration from the foreign management and experiences. (A.L.B.)

  7. Nuclear data for criticality safety

    International Nuclear Information System (INIS)

    Westfall, R.M.

    1994-01-01

    A brief overview is presented on emerging requirements for new criticality safety analyses arising from applications involving nuclear waste management, facility remediation, and the storage of nuclear weapons components. A derivation of criticality analyses from the specifications of national consensus standards is given. These analyses, both static and dynamic, define the needs for nuclear data. Integral data, used primarily for analytical validation, and differential data, used in performing the analyses, are listed, along with desirable margins of uncertainty. Examples are given of needs for additional data to address systems having intermediate neutron energy spectra and/or containing nuclides of intermediate mass number

  8. Nuclear safety in crisis regions

    Energy Technology Data Exchange (ETDEWEB)

    Ustohalova, Veronika; Englert, Matthias

    2017-04-12

    The use of nuclear energy demands extensive institutional and material infrastructure upon a foundation of stable intrastate conditions and interstate relations. Conflicts can result in catastrophic accidents, either deliberately or unintentionally. If there are nuclear facilities located in a crisis region, the risk of a nuclear disaster is markedly heightened. This can be explained not only in terms of the strategic relevance of the energy supply in military conflicts, but also the increased accident risks and hazards arising from collateral damage, as well as the erosion of the safety culture and institutional control in crisis regions with a nuclear infrastructure. Even just the escalation of a political dispute or the persistence of low intensity conflicts can make it generally more difficult and complex to maintain nuclear safety, if intrastate safety mechanisms come under strain or even fail as a result. So far no instance of military escalation, past or present, has led to an accident in a civil nuclear facility. Nevertheless, questions are clearly raised about the vulnerability of nuclear facilities in crisis regions and the risks associated with this vulnerability. Despite the potentially far-reaching consequences, too little attention is currently being paid to the linkage between intra- and interstate conflicts and the safety of nuclear facilities in crisis regions. The aim of the research presented here was to explore this theme and, after laying the groundwork in this manner, to raise awareness among policy-makers and the wider public. In this context the escalation of conflicts in the Ukraine is a particular focus. The first part of the report begins with a systematic look at the link between crisis regions and/or conflicts and nuclear safety. The various impact pathways relating to nuclear facility safety and the associated risks are described in relation to potential hazards induced by crises and wars. A nuclear facility can itself become a theatre

  9. Nuclear safety in crisis regions

    International Nuclear Information System (INIS)

    Ustohalova, Veronika; Englert, Matthias

    2017-01-01

    The use of nuclear energy demands extensive institutional and material infrastructure upon a foundation of stable intrastate conditions and interstate relations. Conflicts can result in catastrophic accidents, either deliberately or unintentionally. If there are nuclear facilities located in a crisis region, the risk of a nuclear disaster is markedly heightened. This can be explained not only in terms of the strategic relevance of the energy supply in military conflicts, but also the increased accident risks and hazards arising from collateral damage, as well as the erosion of the safety culture and institutional control in crisis regions with a nuclear infrastructure. Even just the escalation of a political dispute or the persistence of low intensity conflicts can make it generally more difficult and complex to maintain nuclear safety, if intrastate safety mechanisms come under strain or even fail as a result. So far no instance of military escalation, past or present, has led to an accident in a civil nuclear facility. Nevertheless, questions are clearly raised about the vulnerability of nuclear facilities in crisis regions and the risks associated with this vulnerability. Despite the potentially far-reaching consequences, too little attention is currently being paid to the linkage between intra- and interstate conflicts and the safety of nuclear facilities in crisis regions. The aim of the research presented here was to explore this theme and, after laying the groundwork in this manner, to raise awareness among policy-makers and the wider public. In this context the escalation of conflicts in the Ukraine is a particular focus. The first part of the report begins with a systematic look at the link between crisis regions and/or conflicts and nuclear safety. The various impact pathways relating to nuclear facility safety and the associated risks are described in relation to potential hazards induced by crises and wars. A nuclear facility can itself become a theatre

  10. Regional cooperation on nuclear safety

    International Nuclear Information System (INIS)

    Kato, W.Y.; Chen, J.H.; Kim, D.H.; Simmons, R.B.V.; Surguri, S.

    1985-01-01

    A review has been conducted of a number of multi-national and bilateral arrangements between governments and between utility-sponsored organizations which provide the framework for international cooperation in the field of nuclear safety. These arrangements include the routine exchange operational data, experiences, technical reports and regulatory data, provision of special assistance when requested, collaboration in safety research, and the holding of international conferences and seminars. Areas which may be better suited for cooperation on a regional basis are identified. These areas include: exchange of operational data and experience, sharing of emergency planning information, and collaboration in safety research. Mechanisms to initiate regional cooperation in these areas are suggested

  11. Nuclear Safety Review for 2015

    International Nuclear Information System (INIS)

    2015-06-01

    The Nuclear Safety Review 2015 focuses on the dominant nuclear safety trends, issues and challenges in 2014. The Executive Overview provides general nuclear safety information along with a summary of the major issues covered in this report: improving radiation, transport and waste safety; strengthening safety in nuclear installations; enhancing emergency preparedness and response (EPR); and strengthening civil liability for nuclear damage. The Appendix provides details on the activities of the Commission on Safety Standards (CSS), and activities relevant to the Agency’s safety standards. The global nuclear community continued to make steady progress in improving nuclear safety throughout the world in 2014; and, the Agency and its Member States continued to implement the IAEA Action Plan on Nuclear Safety (hereinafter referred to as “the Action Plan”), which was endorsed by the General Conference in 2011 after the Fukushima Daiichi accident in March 2011. • Significant progress has been made in reviewing and revising various Agency’s safety standards in areas such as management of radioactive waste, design basis hazard levels, protection of nuclear power plants (NPPs) against severe accidents, design margins to avoid cliff edge effects, multiple facilities at one site, and strengthening the prevention of unacceptable radiological consequences to the public and the environment, communications and EPR. In addition, the Guidelines for Drafting IAEA Safety Standards and Nuclear Security Series Publications was issued in July 2014.• The Agency continued to analyse the relevant technical aspects of the Fukushima Daiichi accident and to share and disseminate lessons learned to the wider nuclear community. In 2014, the Agency organized two international experts’ meetings (IEMs), one on radiation protection and one on severe accident management. Reports from previous IEMs were also published in 2014: IAEA Report on Human and Organizational Factors in Nuclear

  12. Nuclear power: levels of safety

    International Nuclear Information System (INIS)

    Lidsky, L.M.

    1988-01-01

    The rise and fall of the nuclear power industry in the United States is a well-documented story with enough socio-technological conflict to fill dozens of scholarly, and not so scholarly, books. Whatever the reasons for the situation we are now in, and no matter how we apportion the blame, the ultimate choice of whether to use nuclear power in this country is made by the utilities and by the public. Their choices are, finally, based on some form of risk-benefit analysis. Such analysis is done in well-documented and apparently logical form by the utilities and in a rather more inchoate but not necessarily less accurate form by the public. Nuclear power has failed in the United States because both the real and perceived risks outweigh the potential benefits. The national decision not to rely upon nuclear power in its present form is not an irrational one. A wide ranging public balancing of risk and benefit requires a classification of risk which is clear and believable for the public to be able to assess the risks associated with given technological structures. The qualitative four-level safety ladder provides such a framework. Nuclear reactors have been designed which fit clearly and demonstrably into each of the possible qualitative safety levels. Surprisingly, it appears that safer may also mean cheaper. The intellectual and technical prerequisites are in hand for an important national decision. Deployment of a qualitatively different second generation of nuclear reactors can have important benefits for the United States. Surprisingly, it may well be the nuclear establishment itself, with enormous investments of money and pride in the existing nuclear systems, that rejects second generation reactors. It may be that we will not have a second generation of reactors until the first generation of nuclear engineers and nuclear power advocates has retired

  13. Nuclear reactor safety

    International Nuclear Information System (INIS)

    Buhl, A.R.

    1979-01-01

    Dr. Buhl feels that nuclear-energy issues are too complex to be understood as single topics, and can only be understood in relationship to broader issues. In fact, goals and risks associated with all energy options must be seen as interrelated with other broad issues, and it should be understood that there are presently no clearcut criteria to ensure that the best decisions are made. The technical community is responsible for helping the public to understand the basic incompatibility of hard and soft technologies and that there is no risk-free energy source. Four principles are outlined for assessing the risks of various energy technologies: (1) take a holistic view; (2) compare the risk with the unit energy output; (3) compare the risk with those of everyday activities; and (4) identify unusual risks associated with a particular option. Dr. Buhl refers to the study conducted by Dr. Inhaber of Canada who used this approach and concluded that nuclear power and natural gas have the lowest overall risk

  14. Nordic projects concerning nuclear safety

    International Nuclear Information System (INIS)

    Soerensen, H.C.

    1988-11-01

    The report describes the nature of the work done in the first half of 1988 within the field of nuclear safety (1985-89) under the Nordic program for 1985-89. Five programmes and their documentation, are described and complete lists of addresses and of persons involved is given. (AB)

  15. Nuclear Safety Review for the Year 2006

    International Nuclear Information System (INIS)

    2007-07-01

    As the Agency begins its 50th year of service to the peaceful uses of nuclear energy, there are clear signs of renewed interest in the nuclear power option. Around the world there are plans for both new and reinvigorated nuclear power development and other uses of nuclear technology. It is essential that future planning for applications of nuclear energy and related efforts are complemented with equally ambitious plans for the establishment and enhancement of sustainable safety infrastructures. Plans must be made to transfer knowledge effectively from experienced staff that will soon retire from vendors, regulatory bodies and operating organizations. Equally important are plans for the education and training of the next generation of individuals with the knowledge and expertise to support nuclear and radiation safety. In 2006, the International Nuclear Safety Group (INSAG) issued a report on the global nuclear safety regime which concludes that the regime is functioning at an effective level today, but its impact on improving safety could be enhanced by pursuing measured change. In 2006, the Board of Governors approved the Safety Fundamentals upon which the IAEA Safety Standards are based. The Safety Fundamentals establish that the prime responsibility for safety rests with the person or organization responsible for facilities and activities that give rise to radiation risks. The Safety Fundamentals also state that an effective legal and governmental framework for safety must be established and sustained. The challenge now is to ensure that the IAEA Safety Standards are applied in an appropriate manner by the entire nuclear community. Both in anticipation of expanding uses of nuclear energy and to conform to current international standards, legislative and regulatory reform is underway in a number of Member States. Most Member States now recognize that stakeholders need to be involved in decisions involving nuclear technology. The challenge remains on how to engage

  16. Autoclave nuclear criticality safety analysis

    Energy Technology Data Exchange (ETDEWEB)

    D`Aquila, D.M. [Martin Marietta Energy Systems, Inc., Piketon, OH (United States); Tayloe, R.W. Jr. [Battelle, Columbus, OH (United States)

    1991-12-31

    Steam-heated autoclaves are used in gaseous diffusion uranium enrichment plants to heat large cylinders of UF{sub 6}. Nuclear criticality safety for these autoclaves is evaluated. To enhance criticality safety, systems are incorporated into the design of autoclaves to limit the amount of water present. These safety systems also increase the likelihood that any UF{sub 6} inadvertently released from a cylinder into an autoclave is not released to the environment. Up to 140 pounds of water can be held up in large autoclaves. This mass of water is sufficient to support a nuclear criticality when optimally combined with 125 pounds of UF{sub 6} enriched to 5 percent U{sup 235}. However, water in autoclaves is widely dispersed as condensed droplets and vapor, and is extremely unlikely to form a critical configuration with released UF{sub 6}.

  17. Safety protection of nuclear facilities and nuclear materials

    International Nuclear Information System (INIS)

    Lukavsky, J.

    1987-01-01

    Safety protection is discussed of nuclear facilities and of nuclear materials, which is a specific element of guaranteeing nuclear safety. Its task is to maximally restrict the risk of misuse of nuclear facilities and nuclear materials for endangering human lives and health and the environment. Concrete requirements for the barriers and technical means and for security of nuclear facilities and nuclear materials are based on this approach. In the CSSR, a legal norm is being prepared that will enact the said requirements for safety protection of nuclear facilities and nuclear materials. (Z.M.)

  18. Strategies for nuclear safety

    International Nuclear Information System (INIS)

    Cetto, A.M.; Taniguchi, T.

    2006-01-01

    Please Rarely in the history of the IAEA has radiation-based technology provided so much opportunity and presented such great risk. The harsh reality is that broader distribution of radioactive materials and sources makes more sources available to more people, thereby increasing the probability of incidents and accidents. As human beings derive greater benefit from ionizing radiation, they also stand a higher risk of being exposed to its harmful effects. Over the past ten years, the IAEA's technical cooperation programme undertook a massive effort to empower developing nations to realise social and economic goals through the application of radiation-based technologies. The Model Project on Upgrading Radiation Protection Infrastructure (the Model Project) represented a significant shift in priorities in that the aim was not to deliver technology per se, but rather to ensure that Member States acquired the capacity to self-manage all related aspects of radiation protection. Without question, the project keeps achieving a great deal. Virtually all participating countries are making significant progress in establishing a basic safety infrastructure; many also are developing the human resources required to tackle the issues of exposure control and emergency preparedness. This strengthened capacity enables Member States to realise more benefits from radiation-based technology more quickly. Moreover, through the knowledge and experience gained, more countries are reaching a level of maturity where they recognize that they hold responsibility for the radioactive sources and materials found within their borders

  19. Status of Nuclear Safety evaluation in China

    International Nuclear Information System (INIS)

    Tian Jiashu

    1999-01-01

    Chinese nuclear safety management and control follows international practice, the regulations are mainly from IAEA with the Chinese condition. The regulatory body is National Nuclear Safety Administration (NNSA). The nuclear safety management, surveillance, safety review and evaluation are guided by NNSA with technical support by several units. Beijing Review Center of Nuclear Safety is one of these units, which was founded in 1987 within Beijing Institute of nuclear Engineering (BINE), co-directed by NNSA and BINE, it is the first technical support team to NNSA. Most of the safety reviews and evaluations of Chinese nuclear installations has been finished by this unit. It is described briefly in this paper that the NNSA's main function and organization, regulations on the nuclear safety, procedure of application and issuing of license, the main activities performed by Beijing Review Center of Nuclear Safety, the situation of severe accident analyses in China, etc. (author)

  20. Nuclear industry and radioecological safety

    International Nuclear Information System (INIS)

    Semenov, V. G.

    2006-01-01

    The beginning of XXI century is marked with increasing public concern over impact of man-made activity, including nuclear technologies, on the environment. Currently, the anthropocentric principle is applied in the course of the radioecological safety guaranteeing for the environment, which postulates that human protectability serves as guarantee of the environmental one. However, this principle correctness is called in question recently. The ecocentric principle is proposed as an alternative doctrine, defining balance between human importance and that of any other elements of biota. The system recommended isn't intended for the regulatory standards development yet, because of substantial gaps in scientific knowledge. Nevertheless, renunciation of the anthropocentric principle can result in unwarranted tightened regulatory basis, decreasing of nuclear industry evolution rates, and, consequently, breaching of societal and economical priorities. It is obvious that for the safety guaranteeing, nuclear industry shouldn't stand out against a background of other fields of human activity involved hazard factors. Therefore, new conceptions applying within the regulatory system is to be weighted and exclude formal using of discussion theses. More than semi-centennial experience of the anthropocentric approach applying serves as an evidence of safe protection of ecosystems against radiation exposure that ensures safe ecological development of nuclear power industry and other fields of nuclear technologies application. (author)

  1. Nuclear Safety Review for the Year 2007

    International Nuclear Information System (INIS)

    2008-07-01

    In 2007, the 50th anniversary year of the Agency, the safety performance of the nuclear industry, on the whole, remained high, although incidents and accidents with no significant impact on public health and safety continue to make news headlines and challenge operators and regulators. It is therefore essential to maintain vigilance, continuously improve safety culture and enhance the international sharing and utilization of operating and other safety experience, including that resulting from natural events. The establishment and sustainability of infrastructures for all aspects of nuclear, radiation, transport and waste safety will remain a high priority. Member States embarking on nuclear power programmes will need to be active participants in the global nuclear safety regime. Harmonized safety standards, the peer review mechanism among contracting parties of the safety conventions, and sharing safety knowledge and best practices through networking are key elements for the continuous strengthening of the global nuclear safety regime. Technical and scientific support organizations (TSOs), whether part of the regulatory body or a separate organization, are gaining increased importance by providing the technical and scientific basis for safety related decisions and activities. There is a need for enhanced interaction and cooperation between TSOs. Academic and industrial expert communities also play a vital role in improving safety cooperation and capacity building. Countries embarking on nuclear power programmes, as well as countries expanding existing programmes, have to meet the challenge of building a technically qualified workforce. A vigorous knowledge transfer programme is key to capacity building - particularly in view of the ageing of experienced professionals in the nuclear field. National and regional safety networks, and ultimately a global safety network will greatly help these efforts. Changes in world markets and technology are having an impact on both

  2. Alternate approaches to nuclear safety

    International Nuclear Information System (INIS)

    Crane, A.T.

    1985-01-01

    For the US nuclear power industry to expand, a greatly increased portion of the public must come to share the industry's confidence in reactor safety. Major obstacles to establishing this confidence are frequent incidents with potential safety implications and a lack of incontrovertible proof that the risk of a major accident is very low. The most important step toward overcoming these obstacles would be for each utility to operate, maintain, and evaluate its reactors according to far higher standards. With improvements in reliability and safety margins, existing plants would be a stimulus for building new ones rather than an impediment. If changes to the operation of existing plants and improvements to the design of future ones were inadequate, the only hope for a revival of the nuclear industry would be an alternative reactor so obviously safe that risk would no longer be an issue. Three possible concepts are the modular high-temperature gas reactor, the process inherent ultimate safety reactor, and the liquid-metal fast reactor. All three have inherent safety features that should make a meltdown essentially impossible. They cannot know just how great the advantage of these alternate reactors would be, but the benefits of developing one or more of the concepts appear great

  3. Nuclear liability, nuclear safety, and economic efficiency

    International Nuclear Information System (INIS)

    Wood, W.C.

    1980-01-01

    This dissertation applies the methods of economic analysis to nuclear liability and Price-Anderson. First the legislative history is reviewed; in that history the economic role of liability in affecting safety and allocating risk was virtually ignored. Succeeding chapters reformulate issues from the policy debate and subject them to economic analysis. A persistent issue is whether nuclear utilities respond to their limited liability by allowing a higher probability of serious accident. Comparative-static analysis shows that limited liability does lead to a higher chance of accidents, though the effect may be small. The analysis also shows that safety is achieved in a more capital-intensive manner than is cost-minimizing and that limited liability causes reactor owners to favor more heavily populated sites for plants. Therefore, the siting decision makes potential loss greater even if there is no change in the probability of an accident. Citizens' preferences on nuclear liability are examined next, starting with the nature of coverage that would be just in the sense of contraction theories such as John Rawls' Theory of Justice. Citizens behind Rawls' veil of ignorance, forced to be fair because of their ignorance of whether they will be harmed, unanimously choose a high level of coverage. The just level of coverage is greater than the existing $560 million. Second, the nature of economically efficient liability coverage is determined and contrasted with coverage that would emerge from a democratic system of public choice. Population and expected damage profiles indicate that majorities could easily be formed among groups of citizens expecting to suffer little of the damage of a nuclear accident. Thus, majority voting on liability arrangements is likely to produce an inefficiently low level of coverage

  4. Leadership Actions to Improve Nuclear Safety Culture

    International Nuclear Information System (INIS)

    Clewett, L.K.

    2016-01-01

    The challenge many leaders face is how to effectively implement and then utilise the results of Safety Culture surveys. Bruce Power has recently successfully implemented changes to the Safety Culture survey process including how corrective actions were identified and implemented. The actions taken in response to the latest survey have proven effective with step change performance noted. Nuclear Safety is a core value for Bruce Power. Nuclear Safety at Bruce Power is based on the following four pillars: reactor safety, industrial safety, radiological safety and environmental safety. Processes and practices are in place to achieve a healthy Nuclear Safety Culture within Bruce Power such that nuclear safety is the overriding priority. This governance is based on industry leading practices which monitor, asses and take action to drive continual improvements in the Nuclear Safety Culture within Bruce Power.

  5. Nuclear Criticality Safety Data Book

    International Nuclear Information System (INIS)

    Hollenbach, D. F.

    2016-01-01

    The objective of this document is to support the revision of criticality safety process studies (CSPSs) for the Uranium Processing Facility (UPF) at the Y-12 National Security Complex (Y-12). This design analysis and calculation (DAC) document contains development and justification for generic inputs typically used in Nuclear Criticality Safety (NCS) DACs to model both normal and abnormal conditions of processes at UPF to support CSPSs. This will provide consistency between NCS DACs and efficiency in preparation and review of DACs, as frequently used data are provided in one reference source.

  6. Nuclear Criticality Safety Data Book

    Energy Technology Data Exchange (ETDEWEB)

    Hollenbach, D. F. [Y-12 National Security Complex, Oak Ridge, TN (United States)

    2016-11-14

    The objective of this document is to support the revision of criticality safety process studies (CSPSs) for the Uranium Processing Facility (UPF) at the Y-12 National Security Complex (Y-12). This design analysis and calculation (DAC) document contains development and justification for generic inputs typically used in Nuclear Criticality Safety (NCS) DACs to model both normal and abnormal conditions of processes at UPF to support CSPSs. This will provide consistency between NCS DACs and efficiency in preparation and review of DACs, as frequently used data are provided in one reference source.

  7. US nuclear safety. Review and experience

    International Nuclear Information System (INIS)

    Hanauer, S.H.

    1977-01-01

    The paper deals with the evolution of reactor safety principles, design bases, regulatory requirements, and experience in the United States. Safety concerns have evolved over the years, from reactivity transients and shut-down systems, to blowdowns and containment, to severe design basis accidents and mitigating systems, to the performance of actual materials, systems and humans. The primary safety concerns of one epoch have been superseded in considerable measure by those of later times. Successive plateaus of technical understanding are achieved by solutions being found to earlier problems. Design studies, research, operating experience and regulatory imperatives all contribute to the increased understanding and thus to the safety improvements adopted and accepted. The improvement of safety with time, and the ability of existing reactors to operate safely in the face of new concerns, has confirmed the correctness and usefulness of the defence-in-depth approach and safety margins used in safety design in the United States of America. A regulatory programme such as the one in the United States justifies its great cost by its important contributions to safety. Yet only the designers, constructors and operators of nuclear power plants can actually achieve public safety. The regulatory programme audits, assesses and spot-checks the actual work. Since neither materials nor human beings are flawless, mistakes will be made; that is why defence-in-depth and safety margins are provided. The regulatory programme should enhance safety by decreasing the frequency of uncorrected mistakes. Maintenance of public safety also requires technical and managerial competence and attention in the organizations responsible for nuclear plants as well as regulatory organizations. (author)

  8. Effective Nuclear Regulatory Systems Facing Safety and Security Challenges

    International Nuclear Information System (INIS)

    Debbabi, K.

    2016-01-01

    Nuclear regulators should not actively take part in issues concerning nuclear energy policy. Their essential function is to contribute as effectively as possible to nuclear safety. The principal focus will be on the application of this concept since the Fukushima Daiichi nuclear accident. By using a comparative approach, this paper will address the measures taken by various countries to ensure the independence of their respective nuclear regulator, especially in light of the recent nuclear accident. (author)

  9. Spent Nuclear Fuel Project Safety Management Plan

    International Nuclear Information System (INIS)

    Garvin, L.J.

    1996-02-01

    The Spent Nuclear Fuel Project Safety Management Plan describes the new nuclear facility regulatory requirements basis for the Spemt Nuclear Fuel (SNF) Project and establishes the plan to achieve compliance with this basis at the new SNF Project facilities

  10. Overview of nuclear safety regulations in Ukraine

    International Nuclear Information System (INIS)

    Benkovskii, L.

    1996-01-01

    The status of national legislation and regulation governing nuclear and radiation safety in Ukraine, the organizational structure of Nuclear Regulatory Administration which is included in the Ministry for Environmental Protection and Nuclear Safety (MEPNS), and the licensing procedures for nuclear facilities are briefly presented

  11. Risk communication activities toward nuclear safety in Tokai: your safety is our safety

    International Nuclear Information System (INIS)

    Tsuchiya, T.

    2007-01-01

    As several decades have passed since the construction of nuclear power plants began, residents have become gradually less interested in nuclear safety. The Tokai criticality accident in 1909, however, had roused residents in Tokai-Mura to realize that they live with nuclear technology risks. To prepare a field of risk communication, the Tokai-Mura C 3 project began as a pilot research project supported by NISA. Alter the project ended, we are continuing risk. communication activities as a non-profit organisation. The most important activity of C 3 project is the citizen's inspection programme for nuclear related facilities. This programme was decided by participants who voluntarily applied to the project. The concept of the citizen's inspection programme is 'not the usual facility tours'. Participants are involved from the planning stage and continue to communicate with workers of the inspected nuclear facility. Since 2003, we have conducted six programmes for five nuclear related organisations. Participants evaluated that radiation protection measures were near good but there were some problems concerning the worker's safety and safety culture, and proposed a mixture of advice based on personal experience. Some advice was accepted and it did improve the facility's safety measures. Other suggestions were not agreed upon by nuclear organisations. The reason lies in the difference of concept between the nuclear expert's 'safety' and the citizen's 'safety'. Residents do not worry about radiation only, but also about the facility's safety as a whole including the worker's safety. They say, 'If the workers are not safe, you also are unable to protect us'. Although the disagreement remained, the participants and the nuclear industry learned much about each other. Participating citizens received a substantial amount of knowledge about the nuclear industry and its safety measures, and feel the credibility and openness of the nuclear industry. On the other hand, the nuclear

  12. White paper on nuclear safety in 2004

    International Nuclear Information System (INIS)

    2005-05-01

    The white paper consists of four parts. The first part described the regulation of nuclear facility decommissioning and the clearance level at which the decommissioned waste materials are not necessarily treated as radioactive materials. The second part explained the main operations of the nuclear safety regulation of the Nuclear Safety Commission and the regulatory bodies in 2004 and Mihama unit 3 accident. The third part introduced various activities for the general preservation of nuclear safety in Japan, such as safety regulation systems for nuclear facilities, disaster preparedness of nuclear facilities, progress in nuclear research, environmental radiation surveys and international cooperation on nuclear safety. The forth part contained various materials and data related to the Nuclear Safety Commission. (J.P.N.)

  13. 48 CFR 923.7001 - Nuclear safety.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 5 2010-10-01 2010-10-01 false Nuclear safety. 923.7001... ENVIRONMENT, CONSERVATION, OCCUPATIONAL SAFETY, AND DRUG-FREE WORKPLACE Environmental, Energy and Water Efficiency, Renewable Energy Technologies, and Occupational Safety Programs 923.7001 Nuclear safety. The DOE...

  14. Nuclear safety regulatory review and research

    International Nuclear Information System (INIS)

    Queniart, D.

    1979-01-01

    The IPSN is thechnical body that supports the regulatory authorities for nuclear safety in France. This paper presents the connection between safety research and safety analysis, and the role of the IPSN in both fields. (author)

  15. Some safety aspects of nuclear facilities

    International Nuclear Information System (INIS)

    Kocic, A.; Marsicanin, B.; Milosevic, M.

    1977-01-01

    In this paper the Safety Analysis Report is considered as a source of information on the safety, availability and behaviour of similar nuclear plants. The human factor contribution to the safety system is pointed out (author)

  16. Nuclear health and safety

    International Nuclear Information System (INIS)

    1991-10-01

    This paper reports that GAO discussed the Department of Energy's (DOE) efforts to clean up the solar evaporation ponds at its Rocky Flats Plant in Colorado. DOE is trying to excavate the ponds used for storing and evaporating low-level radioactive and hazardous waste and stabilize the material by mixing it with concrete. DOE issue a press release in March 1991 stating that it has imposed strict cost control measures in managing the project. Yet DOE's most recent cost data show that total cleanup costs have soared to an estimated $169 million through completion in 2009-$50 million more than the amount GAO reported nine months ago. Delays have plagued the completion and approval of the managing plans for conducting and monitoring the program. Cleanup activities that DOE expected to resume by December 1990 have not yet begun. DOE will not meet the first major milestone of the solar ponds program-cleaning up the ponds and moving all the pondcrete off site by October 1991. Further, unless DOE provides enough project funding or resolves concerns over pondcrete disposal in Nevada, it will not finish pondcrete processing before Rocky Flats' interim status permit for pondcrete operations expires in November 1992

  17. Business of Nuclear Safety Analysis Office, Nuclear Technology Test Center

    International Nuclear Information System (INIS)

    Hayakawa, Masahiko

    1981-01-01

    The Nuclear Technology Test Center established the Nuclear Safety Analysis Office to execute newly the works concerning nuclear safety analysis in addition to the works related to the proving tests of nuclear machinery and equipments. The regulations for the Nuclear Safety Analysis Office concerning its organization, business and others were specially decided, and it started the business formally in August, 1980. It is a most important subject to secure the safety of nuclear facilities in nuclear fuel cycle as the premise of developing atomic energy. In Japan, the strict regulation of safety is executed by the government at each stage of the installation, construction, operation and maintenance of nuclear facilities, based on the responsibility for the security of installers themselves. The Nuclear Safety Analysis Office was established as the special organ to help the safety examination related to the installation of nuclear power stations and others by the government. It improves and puts in order the safety analysis codes required for the cross checking in the safety examination, and carries out safety analysis calculation. It is operated by the cooperation of the Science and Technology Agency and the Agency of Natural Resources and Energy. The purpose of establishment, the operation and the business of the Nuclear Safety Analysis Office, the plan of improving and putting in order of analysis codes, and the state of the similar organs in foreign countries are described. (Kako, I.)

  18. Health and safety in the nuclear age

    International Nuclear Information System (INIS)

    1988-01-01

    In their Communication to the Council on the development of Community measures for the application of Chapter III of the Euratom Treaty - Health and safety (COM(86) 434 final) the Commission of the European Communities announced their intention to initiate a 'Standing Conference on Health and Safety in the Nuclear Age' in order to contribute to an increase of information on nuclear activities. Following this proposition, the Commission (Directorate-General for Employment, Social Affairs and Education, Health and Safety Directorate) organized the first meeting of this Standing Conference in Luxembourg on 5, 6 and 7 October 1987 with the theme 'Information for the public and the media on health protection and safety with regard to nuclear activities'. About 120 participants representing scientific experts, the media, the bodies concerned with environmental or consumer protection, the social partners and interested national and international organizations, took part in this conference. It was the first time at European Community level that a meeting allowed an exchange of positions on the health problems related to ionizing radiation by all the parties interested in this subject. The Commission was asked to pursue this dialogue in order to improve the perception of citizens of the Community of the potential risks and the methods of protection brought into force in the nuclear field

  19. Nuclear fuel technology - Administrative criteria related to nuclear criticality safety

    International Nuclear Information System (INIS)

    2004-01-01

    An effective nuclear criticality-safety programme includes cooperation among management, supervision, and the nuclear criticality-safety staff and, for each employee, relies upon conformance with operating procedures. Although the extent and complexity of safety-related activities may vary greatly with the size and type of operation with fissile material, certain safety elements are common. This International Standard represents a codification of such elements related to nuclear criticality safety. General guidance for nuclear criticality safety may be found in ISO 1709. The responsibilities of management, supervision, and the nuclear criticality-safety staff are addressed. The Objectives and characteristics of operating and emergency procedures are included in this International Standard. ISO 14943 was prepared by Technical Committee ISO/TC 85, Nuclear energy, Subcommittee SC 5, Nuclear fuel technology

  20. Control of Nuclear Materials and Special Equipment (Nuclear Safety Regulations)

    International Nuclear Information System (INIS)

    Cizmek, A.; Prah, M.; Medakovic, S.; Ilijas, B.

    2008-01-01

    Based on Nuclear Safety Act (OG 173/03) the State Office for Nuclear Safety (SONS) in 2008 adopted beside Ordinance on performing nuclear activities (OG 74/06) and Ordinance on special conditions for individual activities to be performed by expert organizations which perform activities in the area of nuclear safety (OG 74/06) the new Ordinance on the control of nuclear material and special equipment (OG 15/08). Ordinance on the control of nuclear material and special equipment lays down the list of nuclear materials and special equipment as well as of nuclear activities covered by the system of control of production of special equipment and non-nuclear material, the procedure for notifying the intention to and filing the application for a license to carry out nuclear activities, and the format and contents of the forms for doing so. This Ordinance also lays down the manner in which nuclear material records have to be kept, the procedure for notifying the State administration organization (regulatory body) responsible for nuclear safety by the nuclear material user, and the keeping of registers of nuclear activities, nuclear material and special equipment by the State administration organization (regulatory body) responsible for nuclear safety, as well as the form and content of official nuclear safety inspector identification card and badge.(author)

  1. Safety Assessment - Swedish Nuclear Power Plants

    International Nuclear Information System (INIS)

    Kjellstroem, B.

    1996-01-01

    After the reactor accident at Three Mile Island, the Swedish nuclear power plants were equipped with filtered venting of the containment. Several types of accidents can be identified where the filtered venting has no effect on the radioactive release. The probability for such accidents is hopefully very small. It is not possible however to estimate the probability accurately. Experiences gained in the last years, which have been documented in official reports from the Nuclear Power Inspectorate indicate that the probability for core melt accidents in Swedish reactors can be significantly larger than estimated earlier. A probability up to one in a thousand operating years can not be excluded. There are so far no indications that aging of the plants has contributed to an increased accident risk. Maintaining the safety level with aging nuclear power plants can however be expected to be increasingly difficult. It is concluded that the 12 Swedish plants remain a major threat for severe radioactive pollution of the Swedish environment despite measures taken since 1980 to improve their safety. Closing of the nuclear power plants is the only possibility to eliminate this threat. It is recommended that until this is done, quantitative safety goals, same for all Swedish plants, shall be defined and strictly enforced. It is also recommended that utilities distributing misleading information about nuclear power risks shall have their operating license withdrawn. 37 refs

  2. Safety improvement of Paks nuclear power plant

    International Nuclear Information System (INIS)

    Vamos, G.

    1999-01-01

    Safety upgrading completed in the early nineties at the Paks NPP include: replacement of steam generator safety valves and control valves; reliability improvement of the electrical supply system; modification of protection logic; enhancement of the fire protection; construction of full scope Training Simulator. Design safety upgrading measures achieved in recent years were concerned with: relocation of steam generator emergency feed-water supply; emergency gas removal from the primary coolant system; hydrogen management in the containment; protection against sumps; preventing of emergency core cooling system tanks from refilling. Increasing seismic resistance, containment assessment, refurbishment of reactor protection system, improving reliability of emergency electrical supply, analysis of internal hazards are now being implemented. Safety upgrading measures which are being prepared include: bleed and feed procedures; reactor over-pressurisation protection in cold state; treatment of steam generator primary to secondary leak accidents. Operational safety improvements are dealing with safety culture, training measures and facilities; symptom based emergency operating procedures; in-service inspection; fire protection. The significance of international cooperation is emphasised in view of achieving nuclear safety standards recognised in EU

  3. Progress of nuclear safety research. 2003

    International Nuclear Information System (INIS)

    Anoda, Yoshinari; Amagai, Masaki; Tobita, Tohru

    2004-03-01

    JAERI is conducting nuclear safety research primarily at the Nuclear Safety Research Center in close cooperation with the related departments in accordance with the Long Term Plan for Development and Utilization of Nuclear Energy and Annual Plan for Safety Research issued by the Japanese government. The fields of conducting safety research at JAERI are the engineering safety of nuclear power plants and nuclear fuel cycle facilities, and radioactive waste management as well as advanced technology for safety improvement or assessment. Also, JAERI has conducted international collaboration to share the information on common global issues of nuclear safety and to supplement own research. Moreover, when accidents occurred at nuclear facilities, JAERI has taken a responsible role by providing technical experts and investigation for assistance to the government or local public body. This report summarizes the nuclear safety research activities of JAERI from April 2001 through March 2003 and utilized facilities. This report also summarizes the examination of the ruptured pipe performed for assistance to the Nuclear and Industrial Safety Agency (NISA) for investigation of the accident at the Hamaoka Nuclear Power Station Unit-1 on November, 2001, and the integrity evaluation of cracked core shroud of BWRs of the Tokyo Electric Power Company performed for assistance to the Nuclear Safety Commission in reviewing the evaluation reports by the licensees. (author)

  4. The Norwegian Plan of Action for nuclear safety issues

    International Nuclear Information System (INIS)

    1997-07-01

    The Plan of Action underlies Norwegian activities in the field of international co-operation to enhance nuclear safety and prevent radioactive contamination from activities in Eastern Europe and the former Soviet Union. Geographically the highest priority has been given to support for safety measures in north-west Russia. This information brochure outlines the main content of the Plan of Action for nuclear safety issues and lists a number of associated measures and projects

  5. Comments on nuclear reactor safety in Ontario

    International Nuclear Information System (INIS)

    1987-08-01

    The Chalk River Technicians and Technologists Union representing 500 technical employees at the Chalk River Nuclear Laboratories of AECL submit comments on nuclear reactor safety to the Ontario Nuclear Safety Review. Issues identified by the Review Commissioner are addressed from the perspective of both a labour organization and experience in the nuclear R and D field. In general, Local 1568 believes Ontario's CANDU nuclear reactors are not only safe but also essential to the continued economic prosperity of the province

  6. Consequences of electricity deregulation on nuclear safety

    International Nuclear Information System (INIS)

    Podjavorsek, M.

    2007-01-01

    The evolution of deregulation of electricity market started a couple of years ago and has not been finished yet. Deregulation causes increased pressure to reduce the costs of electricity generation. This presents a new challenge to regulatory bodies. They have to assess the impact of these changes on the safety of nuclear power plants. Accordingly, it is important to identify the risks to the nuclear power industry resulting from the deregulation. Today's trend is that the number of electricity generating power companies will be reduced in Europe and also in Slovenia due to tough competition in the electricity market. The electricity price has decreased after the introduction of the deregulated market in most countries. This has been also the main reason for less investment to new generating capacities since the price has been lower than the generation costs. Investment problems are also present for the existing units, because of danger of inappropriate maintenance and reduction of the number of staff and their qualifications below the desired level that leads to loss of institutional memory. It is expected that only the biggest companies can stand the consequences of competition in electricity prices and consequential pressure to reduce the cost. In order to review the impact of deregulation of the electricity market some relevant points are discussed in this paper such as the need to cut costs of companies by reducing the number of their activities and increasing the efficiency in the remaining activities and /or outsourcing of activities, power station operating regime, safety culture, grid reliability, reliability and safety of operation, increased number of transients, ageing of components, outage duration, extended cycle and response of nuclear regulators. From a regulatory point of view the impact of deregulation on nuclear safety is an important issue. This paper also discusses analyses and evaluations of this impact and proposes some measures how to

  7. Nuclear safety review for the year 2002

    International Nuclear Information System (INIS)

    2003-08-01

    The Nuclear Safety Review reports on worldwide efforts to strengthen nuclear, radiation and transport safety and the safety of radioactive waste management. The final version of the Nuclear Safety Review for the Year 2002 was prepared in the light of the discussion by the Board of Governors in March 2002. This report presents an overview of the current issues and trends in nuclear, radiation, transport and radioactive waste safety at the end of 2002. This overview is supported by a more detailed factual account of safety-related events and issues worldwide during 2002. National authorities and the international community continued to reflect and act upon the implications of the events of II September 2001 for nuclear, radiation, transport and waste safety. In the light of this, the Agency has decided to transfer the organizational unit on nuclear security from the Department of Safeguards to the Department of Nuclear Safety (which thereby becomes the Department of Nuclear Safety and Security). By better exploiting the synergies between safety and security and promoting further cross-fertilization of approaches, the Agency is trying to help build up mutually reinforcing global regimes of safety and security. However, the Nuclear Safety Review for the Year 2002 addresses only those areas already in the safety programme. This short analytical overview is supported by a second part (corresponding to Part I of the Nuclear Safety Reviews of previous years), which describes significant safety-related events and issues worldwide during 2002. A Draft Nuclear Safety Review for the Year 2002 was submitted to the March 2003 session of the Board of Governors in document GOV/2003/6

  8. Proceedings of the nuclear safety seminar, 2011

    International Nuclear Information System (INIS)

    Amin S Zarkasih; Dhandang P; Rohadi A; Djarwani; Santoso; Abdul Waris; Zaki Su'ud; Sihana; Heryudo Kusumo; Yusri Heni; Yus Rusdian; Judi Pramono; Amil Mardha

    2011-06-01

    The Proceedings of the nuclear safety seminar by Nuclear Energy Regulatory Agency with the theme of strengthening in nuclear safety control, nuclear security and nuclear safeguard to Introduction of Nuclear Power Plant (NPP) in Indonesia held on Jakarta 27-28 June 2011. The seminar is an annual routine activities which organized by Nuclear Energy Regulatory Agency (BAPETEN) as an exchange for information from scientists and researchers for using nuclear technology. The proceeding consist of 4 articles from keynotes’ speaker and 39 articles from BAPETEN, BATAN and outside participants. (PPIKSN)

  9. Nuclear criticality safety: 2-day training course

    International Nuclear Information System (INIS)

    Schlesser, J.A.

    1997-02-01

    This compilation of notes is presented as a source reference for the criticality safety course. At the completion of this training course, the attendee will: be able to define terms commonly used in nuclear criticality safety; be able to appreciate the fundamentals of nuclear criticality safety; be able to identify factors which affect nuclear criticality safety; be able to identify examples of criticality controls as used as Los Alamos; be able to identify examples of circumstances present during criticality accidents; have participated in conducting two critical experiments; be asked to complete a critique of the nuclear criticality safety training course

  10. Nuclear criticality safety: 2-day training course

    Energy Technology Data Exchange (ETDEWEB)

    Schlesser, J.A. [ed.] [comp.

    1997-02-01

    This compilation of notes is presented as a source reference for the criticality safety course. At the completion of this training course, the attendee will: be able to define terms commonly used in nuclear criticality safety; be able to appreciate the fundamentals of nuclear criticality safety; be able to identify factors which affect nuclear criticality safety; be able to identify examples of criticality controls as used as Los Alamos; be able to identify examples of circumstances present during criticality accidents; have participated in conducting two critical experiments; be asked to complete a critique of the nuclear criticality safety training course.

  11. Nuclear safety in France in 2001

    International Nuclear Information System (INIS)

    2002-01-01

    This press dossier summarizes the highlights of nuclear safety in France in 2001: the point-of-view of A.C. Lacoste, director of the French authority of nuclear safety (ASN), the new organisation of the control of nuclear safety and radiation protection, the ASN's policy of transparency, the evolutions of nuclear fuels and the consistency of the fuel cycle, the necessary evolutions of the nuclear crisis management, the harmonizing work of safety approaches carried out by the WENRA association. The following documents are attached in appendixes: the decrees relative to the reformation of the nuclear control in France, the missions of the ASN, the control of nuclear safety and radiation protection in France, the organization of ASN in March 2000, the incidents notified in 2001, the inspections performed in 2001, and the list of the main French nuclear sites. (J.S.)

  12. Developing safety in the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Brown, M.L.

    1996-01-01

    The nuclear fuel cycle had its origins in the new technology developed in the 1940s and 50s involving novel physical and chemical processes. At the front end of the cycle, mining, milling and fuel fabrication all underwent development, but in general the focus of process development and safety concerns was the reprocessing stage, with radiation, contamination and criticality the chief hazards. Safety research is not over and there is still work to be done in advancing technical knowledge to new generation nuclear fuels such as Mixed Oxide Fuel and in refining knowledge of margins and of potential upset conditions. Some comments are made on potential areas for work. The NUCEF facility will provide many useful data to aid safety analysis and accident prevention. The routine operations in such plants, basically chemical factories, requires industrial safety and in addition the protection of workers against radiation or contamination. The engineering and management measures for this were novel and the early operation of such plants pioneering. Later commissioning and operating experience has improved routine operating safety, leading to a new generation of factories with highly developed worker protection, engineering safeguards and safety management systems. Ventilation of contamination control zones, remote operation and maintenance, and advanced neutron shielding are engineering examples. In safety management, dose control practices, formally controlled operating procedures and safety cases, and audit processes are comparable with, or lead, best industry practice in other hazardous industries. Nonetheless it is still important that the knowledge and experience from operating plants continue to be gathered together to provide a common basis for improvement. The NEA Working Group on Fuel Cycle Safety provides a forum for much of this interchange. Some activities in the Group are described in particular the FINAS incident reporting system. (J.P.N.)

  13. Nuclear Criticality Safety Handbook (English translation)

    International Nuclear Information System (INIS)

    1995-09-01

    This is an English translation of 'Nuclear Criticality Safety Handbook' compiled by Nuclear Materials Regulation Division in Nuclear Safety Bureau of Science and Technology Agency of Japan and published by Nikkan Shobo in 1988, which was originally written in Japanese. (author)

  14. Towards a global nuclear safety culture

    International Nuclear Information System (INIS)

    Rosen, M.

    1997-01-01

    This paper discusses the evolution of the global nuclear safety culture and the role in which the IAEA has played in encouraging its development. There is also a look ahead to what the future challenges of the world-wide nuclear industry might be and to the need for a continued and improved global nuclear safety culture to meet these changing needs. (Author)

  15. Introduction into the nuclear safety technologies

    International Nuclear Information System (INIS)

    Nosovskij, A.V.; Vasil'chenko, V.M.; Pavlenko, A.A.; Pis'mennyj, E.N.; Shirokov, S.V.

    2006-01-01

    The theoretical and practical issues of the power and research nuclear reactor safety existing on the territory of Ukraine, the radwaste and nuclear material management objects, as well as the 'Shelter' object, the aspects of the nuclear and radiation safety regulation are considered

  16. Safety of nuclear power plants: Operation. Safety requirements

    International Nuclear Information System (INIS)

    2000-01-01

    The safety of a nuclear power plant is ensured by means of its proper siting, design, construction and commissioning, followed by the proper management and operation of the plant. In a later phase, proper decommissioning is required. This Safety Requirements publication supersedes the Code on the Safety of Nuclear Power Plants: Operation, which was issued in 1988 as Safety Series No. 50-C-O (Rev. 1). The purpose of this revision was: to restructure Safety Series No. 50-C-O (Rev. 1) in the light of the basic objectives, concepts and principles in the Safety Fundamentals publication The Safety of Nuclear Installations; to be consistent with the requirements of the International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources; and to reflect current practice and new concepts and technical developments. Guidance on fulfillment of these Safety Requirements may be found in the appropriate Safety Guides relating to plant operation. The objective of this publication is to establish the requirements which, in the light of experience and the present state of technology, must be satisfied to ensure the safe operation of nuclear power plants. These requirements are governed by the basic objectives, concepts and principles that are presented in the Safety Fundamentals publication The Safety of Nuclear Installations. This publication deals with matters specific to the safe operation of land based stationary thermal neutron nuclear power plants, and also covers their commissioning and subsequent decommissioning

  17. Safety of nuclear power plants: Operation. Safety requirements

    International Nuclear Information System (INIS)

    2003-01-01

    The safety of a nuclear power plant is ensured by means of its proper siting, design, construction and commissioning, followed by the proper management and operation of the plant. In a later phase, proper decommissioning is required. This Safety Requirements publication supersedes the Code on the Safety of Nuclear Power Plants: Operation, which was issued in 1988 as Safety Series No. 50-C-O (Rev. 1). The purpose of this revision was: to restructure Safety Series No. 50-C-O (Rev. 1) in the light of the basic objectives, concepts and principles in the Safety Fundamentals publication The Safety of Nuclear Installations. To be consistent with the requirements of the International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources. And to reflect current practice and new concepts and technical developments. Guidance on fulfillment of these Safety Requirements may be found in the appropriate Safety Guides relating to plant operation. The objective of this publication is to establish the requirements which, in the light of experience and the present state of technology, must be satisfied to ensure the safe operation of nuclear power plants. These requirements are governed by the basic objectives, concepts and principles that are presented in the Safety Fundamentals publication The Safety of Nuclear Installations. This publication deals with matters specific to the safe operation of land based stationary thermal neutron nuclear power plants, and also covers their commissioning and subsequent decommissioning

  18. Safety of nuclear power plants: Operation. Safety requirements

    International Nuclear Information System (INIS)

    2004-01-01

    The safety of a nuclear power plant is ensured by means of its proper siting, design, construction and commissioning, followed by the proper management and operation of the plant. In a later phase, proper decommissioning is required. This Safety Requirements publication supersedes the Code on the Safety of Nuclear Power Plants: Operation, which was issued in 1988 as Safety Series No. 50-C-O (Rev. 1). The purpose of this revision was: to restructure Safety Series No. 50-C-O (Rev. 1) in the light of the basic objectives, concepts and principles in the Safety Fundamentals publication The Safety of Nuclear Installations. To be consistent with the requirements of the International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources. And to reflect current practice and new concepts and technical developments. Guidance on fulfillment of these Safety Requirements may be found in the appropriate Safety Guides relating to plant operation. The objective of this publication is to establish the requirements which, in the light of experience and the present state of technology, must be satisfied to ensure the safe operation of nuclear power plants. These requirements are governed by the basic objectives, concepts and principles that are presented in the Safety Fundamentals publication The Safety of Nuclear Installations. This publication deals with matters specific to the safe operation of land based stationary thermal neutron nuclear power plants, and also covers their commissioning and subsequent decommissioning

  19. Effort on Nuclear Power Plants safety

    International Nuclear Information System (INIS)

    Prayoto.

    1979-01-01

    Prospects of nuclear power plant on designing, building and operation covering natural safety, technical safety, and emergency safety are discussed. Several problems and their solutions and nuclear energy operation in developing countries especially control and permission are also discussed. (author tr.)

  20. Nuclear safety. Beyond the technical details

    International Nuclear Information System (INIS)

    Andrews, H.R.; Harvey, M.

    1987-09-01

    Nuclear safety standards must be set up with due regard for overall societal safety. Several factors contribute to the safety of the CANDU reactor, particularly open, honest and accountable review at every level. Improved public information and education in nuclear matters will contribute to the welfare of society

  1. Annual report ''nuclear safety in France''

    International Nuclear Information System (INIS)

    2001-01-01

    This document is the 2001 annual report of the French authority of nuclear safety (ASN). It summarizes the highlights of the year 2000 and details the following aspects: the nuclear safety in France, the organization of the control of nuclear safety, the regulation relative to basic nuclear facilities, the control of facilities, the information of the public, the international relations, the organisation of emergencies, the radiation protection, the transport of radioactive materials, the radioactive wastes, the PWR reactors, the experimental reactors and other laboratories and facilities, the nuclear fuel cycle facilities, and the shutdown and dismantling of nuclear facilities. (J.S.)

  2. Safety assessment and verification for nuclear power plants. Safety guide

    International Nuclear Information System (INIS)

    2001-01-01

    This publication supports the Safety Requirements on the Safety of Nuclear Power Plants: Design. This Safety Guide was prepared on the basis of a systematic review of all the relevant publications including the Safety Fundamentals, Safety of Nuclear Power Plants: Design, current and ongoing revisions of other Safety Guides, INSAG reports and other publications that have addressed the safety of nuclear power plants. This Safety Guide also provides guidance for Contracting Parties to the Convention on Nuclear Safety in meeting their obligations under Article 14 on Assessment and Verification of Safety. The Safety Requirements publication entitled Safety of Nuclear Power Plants: Design states that a comprehensive safety assessment and an independent verification of the safety assessment shall be carried out before the design is submitted to the regulatory body. This publication provides guidance on how this requirement should be met. This Safety Guide provides recommendations to designers for carrying out a safety assessment during the initial design process and design modifications, as well as to the operating organization in carrying out independent verification of the safety assessment of new nuclear power plants with a new or already existing design. The recommendations for performing a safety assessment are suitable also as guidance for the safety review of an existing plant. The objective of reviewing existing plants against current standards and practices is to determine whether there are any deviations which would have an impact on plant safety. The methods and the recommendations of this Safety Guide can also be used by regulatory bodies for the conduct of the regulatory review and assessment. Although most recommendations of this Safety Guide are general and applicable to all types of nuclear reactors, some specific recommendations and examples apply mostly to water cooled reactors. Terms such as 'safety assessment', 'safety analysis' and 'independent

  3. Safety of nuclear installations. An international comparison

    International Nuclear Information System (INIS)

    Renner, Andrea; Diwes, Andreas; Reingardt, Martin

    2010-01-01

    Safeguarding of nuclear power plants against disruptive actions or other external hazards is part of the plant design and presumption of an operation license. The general principle is defense in depth involving different security zones with separate barriers. The safeguards for nuclear installations are organized in three areas of responsibility: governmental measures (police, military), technical (detectors, scanners, illuminations, camera tracking, concrete barriers) and personnel measures (access control, security personnel, alarm) of the operating company. International responsibilities results from the treaty on the non-proliferation of nuclear weapons and several IAEA documents. The authors discuss the national regulations in Germany, Switzerland, United Kingdom and USA. Older NPPs that are not in compliance with actual safety standards will be a topic of increasing importance.

  4. IAEA activities in nuclear safety: future perspectives. Spanish Nuclear Safety Council, Madrid, 28 May 1998

    International Nuclear Information System (INIS)

    ElBaradei, M.

    1998-01-01

    The document represents the conference given by the Director General of the IAEA at the Spanish Nuclear Safety Council in Madrid, on 28 May 1998, on Agency's activities in nuclear safety. The following aspects are emphasized: Agency's role in creating a legally binding nuclear safety regime, non-binding safety standards, services provided by the Agency to assist its Member States in the Application of safety standards, Agency's nuclear safety strategy, and future perspective concerning safety aspects related to radioactive wastes, residues of past nuclear activities, and security of radiological sources

  5. Progress of nuclear safety research. 2002

    Energy Technology Data Exchange (ETDEWEB)

    Anoda, Yoshinari; Kudo, Tamotsu; Tobita, Tohru (eds.) [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment] (and others)

    2002-11-01

    JAERI is conducting nuclear safety research primarily at the Nuclear Safety Research Center in close cooperation with the related departments in accordance with the Long Term Plan for Development and Utilization of Nuclear Energy and Annual Plan for Safety Research issued by the Japanese government. The fields of conducting safety research at JAERI are the engineering safety of nuclear power plants and nuclear fuel cycle facilities, and radioactive waste management as well as advanced technology for safety improvement or assessment. Also, JAERI has conducted international collaboration to share the information on common global issues of nuclear safety and to supplement own research. Moreover, when accidents occurred at nuclear facilities, JAERI has taken a responsible role by providing technical experts and investigation for assistance to the government or local public body. This report summarizes the nuclear safety research activities of JAERI from April 2000 through April 2002 and utilized facilities. This report also summarizes the examination of the ruptured pipe performed for assistance to the Nuclear and Industrial Safety Agency (NISA) for investigation of the accident at the Hamaoka Nuclear Power Station Unit-1 on November, 2001. (author)

  6. Nuclear Safety Research Review Committee

    International Nuclear Information System (INIS)

    Todreas, N.E.

    1990-01-01

    The Nuclear Safety Research Review Committee has had a fundamental difficulty because of the atmosphere that has existed since it was created. It came into existence at a time of decreasing budgets. For any Committee the easiest thing is to tell the Director what additional to do. That does not really help him a lot in this atmosphere of reduced budgets which he reviewed for you on Monday. Concurrently the research arm of Nuclear Regulatory Commission has recognized that the scope of its activity needed to be increased rather than decreased. In the last two-and-a-half-year period, human factors work was reinstated, radiation and health effects investigations were reinvigorated, research in the waste area was given significant acceleration. Further, accident management came into being, and the NRC finally got back into the TMI-2 area. So with all of those activities being added to the program at the same time that the research budget was going down, the situation has become very strained. What that leads to regarding Committee membership is a need for technically competent generalists who will be able to sit as the Division Directors come in, as the contractors come in, and sort the wheat from the chaff. The Committee needs people who are interested in and have a broad perspective on what regulatory needs are and specifically how safety research activities can contribute to them. The author summarizes the history of the Committee, the current status, and plans for the future

  7. Radiation safety in nuclear medicine procedures

    International Nuclear Information System (INIS)

    Cho, Sang Geon; Kim, Ja Hae; Song, Ho Chun

    2017-01-01

    Since the nuclear disaster at the Fukushima Daiichi Nuclear Power Plant in 2011, radiation safety has become an important issue in nuclear medicine. Many structured guidelines or recommendations of various academic societies or international campaigns demonstrate important issues of radiation safety in nuclear medicine procedures. There are ongoing efforts to fulfill the basic principles of radiation protection in daily nuclear medicine practice. This article reviews important principles of radiation protection in nuclear medicine procedures. Useful references, important issues, future perspectives of the optimization of nuclear medicine procedures, and diagnostic reference level are also discussed

  8. Radiation Safety in Nuclear Medicine Procedures.

    Science.gov (United States)

    Cho, Sang-Geon; Kim, Jahae; Song, Ho-Chun

    2017-03-01

    Since the nuclear disaster at the Fukushima Daiichi Nuclear Power Plant in 2011, radiation safety has become an important issue in nuclear medicine. Many structured guidelines or recommendations of various academic societies or international campaigns demonstrate important issues of radiation safety in nuclear medicine procedures. There are ongoing efforts to fulfill the basic principles of radiation protection in daily nuclear medicine practice. This article reviews important principles of radiation protection in nuclear medicine procedures. Useful references, important issues, future perspectives of the optimization of nuclear medicine procedures, and diagnostic reference level are also discussed.

  9. Radiation safety in nuclear medicine procedures

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Sang Geon; Kim, Ja Hae; Song, Ho Chun [Dept. of Nuclear Medicine, Medical Radiation Safety Research Center, Chonnam National University Hospital, Gwangju (Korea, Republic of)

    2017-03-15

    Since the nuclear disaster at the Fukushima Daiichi Nuclear Power Plant in 2011, radiation safety has become an important issue in nuclear medicine. Many structured guidelines or recommendations of various academic societies or international campaigns demonstrate important issues of radiation safety in nuclear medicine procedures. There are ongoing efforts to fulfill the basic principles of radiation protection in daily nuclear medicine practice. This article reviews important principles of radiation protection in nuclear medicine procedures. Useful references, important issues, future perspectives of the optimization of nuclear medicine procedures, and diagnostic reference level are also discussed.

  10. Nuclear Safety Culture & Leadership in Slovenske Elektrarne

    International Nuclear Information System (INIS)

    Janko, P.

    2016-01-01

    This presentation shows practically how nuclear safety culture is maintained and assessed in Slovenske elektrarne, supported by human performance program and leadership model. Safety is the highest priority and it must be driven by the Leaders in the field. Human Performance is key to safety and therefore key to our success. Safety Policy of our operating organization—licence holder, is in line with international best practices and nuclear technology is recognised as special and unique. All nuclear facilities adopt a clear safety policy and are operated with overriding priority to nuclear safety, the protection of nuclear workers, the general public and the environment from risk of harm. The focus is on nuclear safety, although the same principles apply to radiological safety, industrial safety and environmental safety. Safety culture is assessed regularly based (every two years) on eight principles for strong safety culture in nuclear utilities. Encourage excellence in all plant activities and to go beyond compliance with applicable laws and regulations. Adopt management approaches embodying the principles of Continuous Improvement and risk Management is never ending activity for us. (author)

  11. Software Quality Assurance for Nuclear Safety Systems

    International Nuclear Information System (INIS)

    Sparkman, D R; Lagdon, R

    2004-01-01

    The US Department of Energy has undertaken an initiative to improve the quality of software used to design and operate their nuclear facilities across the United States. One aspect of this initiative is to revise or create new directives and guides associated with quality practices for the safety software in its nuclear facilities. Safety software includes the safety structures, systems, and components software and firmware, support software and design and analysis software used to ensure the safety of the facility. DOE nuclear facilities are unique when compared to commercial nuclear or other industrial activities in terms of the types and quantities of hazards that must be controlled to protect workers, public and the environment. Because of these differences, DOE must develop an approach to software quality assurance that ensures appropriate risk mitigation by developing a framework of requirements that accomplishes the following goals: (sm b ullet) Ensures the software processes developed to address nuclear safety in design, operation, construction and maintenance of its facilities are safe (sm b ullet) Considers the larger system that uses the software and its impacts (sm b ullet) Ensures that the software failures do not create unsafe conditions Software designers for nuclear systems and processes must reduce risks in software applications by incorporating processes that recognize, detect, and mitigate software failure in safety related systems. It must also ensure that fail safe modes and component testing are incorporated into software design. For nuclear facilities, the consideration of risk is not necessarily sufficient to ensure safety. Systematic evaluation, independent verification and system safety analysis must be considered for software design, implementation, and operation. The software industry primarily uses risk analysis to determine the appropriate level of rigor applied to software practices. This risk-based approach distinguishes safety

  12. State Office for Nuclear Safety - New Regulatory Body in Croatia

    International Nuclear Information System (INIS)

    Novosel, N.; Prah, M.; Valcic, I.; Cizmek, A.

    2006-01-01

    The Act on Nuclear Safety was adopted by the Croatian Parliament on 15 October 2003, and it is published in the Official Gazette No. 173/03. This Act regulates safety and protective measures for using nuclear materials and specified equipment and performing nuclear activities, and establishes the State Office for Nuclear Safety. Provisions of this Act apply on nuclear activities, nuclear materials and specified equipment. Also, by accession to international conventions and agreements, Croatia took the responsibility of implementing the provisions of those international treaties. In the process of European and international integrations, Croatia has to make harmonization with European and international standards also in the field of nuclear safety. The State Office for Nuclear Safety as an independent regulatory authority started its work on 1st June 2005 by taking over responsibility for activities relating to nuclear safety and cooperation with the International Atomic Energy Agency from the Ministry of the Economy, Labour and Entrepreneurship. In this paper responsibilities, organization and projects of the State Office for Nuclear Safety will be presented, with the accent on development of regulations and international cooperation. (author)

  13. National report of Brazil: nuclear safety convention - September 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-09-01

    This National Report was prepared by a group composed of representatives of the various Brazilian organizations with responsibilities in the field of nuclear safety, aiming the fulfilling the Convention of Nuclear Energy obligations. The Report contains a description of the Brazilian policy and programme on the safety of nuclear installations, and an article by article description of the measures Brazil is undertaking in order to implement the obligations described in the Convention. The last chapter describes plans and future activities to further enhance the safety of nuclear installations in Brazil.

  14. Nuclear safety risk control in the outage of CANDU unit

    International Nuclear Information System (INIS)

    Wu Mingliang; Zheng Jianhua

    2014-01-01

    Nuclear fuel remains in the core during the outage of CANDU unit, but there are still nuclear safety risks such as reactor accidental criticality, fuel element failure due to inability to properly remove residual heat. Furthermore, these risks are aggravated by the weakening plant system configuration and multiple cross operations during the outage. This paper analyzes the phases where there are potential nuclear safety risks on the basis of the typical critical path arrangement of the outage of Qinshan NPP 3 and introduces a series of CANDU-specific risk control measures taken during the past plant outages to ensure nuclear safety during the unit outage. (authors)

  15. National report of Brazil: nuclear safety convention - September 1998

    International Nuclear Information System (INIS)

    1998-09-01

    This National Report was prepared by a group composed of representatives of the various Brazilian organizations with responsibilities in the field of nuclear safety, aiming the fulfilling the Convention of Nuclear Energy obligations. The Report contains a description of the Brazilian policy and programme on the safety of nuclear installations, and an article by article description of the measures Brazil is undertaking in order to implement the obligations described in the Convention. The last chapter describes plans and future activities to further enhance the safety of nuclear installations in Brazil

  16. Proceedings of the first annual Nuclear Criticality Safety Technology Project

    International Nuclear Information System (INIS)

    Rutherford, D.A.

    1994-09-01

    This document represents the published proceedings of the first annual Nuclear Criticality Safety Technology Project (NCSTP) Workshop, which took place May 12--14, 1992, in Gaithersburg, Md. The conference consisted of four sessions, each dealing with a specific aspect of nuclear criticality safety issues. The session titles were ''Criticality Code Development, Usage, and Validation,'' ''Experimental Needs, Facilities, and Measurements,'' ''Regulation, Compliance, and Their Effects on Nuclear Criticality Technology and Safety,'' and ''The Nuclear Criticality Community Response to the USDOE Regulations and Compliance Directives.'' The conference also sponsored a Working Group session, a report of the NCSTP Working Group is also presented. Individual papers have been cataloged separately

  17. Status of nuclear safety research - 2000

    Energy Technology Data Exchange (ETDEWEB)

    Sobajima, Makoto; Sasajima, Hideo; Umemoto, Michitaka; Yamamoto, Toshihiro; Tanaka, Tadao; Togashi, Yoshihiro; Nakata, Masahito [eds.] [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2000-11-01

    The nuclear safety research at JAERI is performed in accordance with the long term plan on nuclear research, development and use and the safety research yearly plan determined by the government and under close relationship to the related departments in and around the Nuclear Safety Research Center. The criticality accident having occurred in Tokai-mura in 1999 has been the highest level nuclear accident in Japan and ensuring safety in whole nuclear cycle is severely questioned. The causes of such an accident have to be clarified not only technical points but also organizational points, and it is extremely important to make efforts in preventing recurrence, to fulfill emergency plan and to improve the safety of whole nuclear fuel cycle for restoring the reliability by the people to nuclear energy system. The fields of conducting safety research are engineering safety research on reactor facilities and nuclear fuel cycle facilities including research on radioactive waste processing and disposal and research and development on future technology for safety improvement. Also, multinational cooperation and bilateral cooperation are promoted in international research organizations in the center to internationally share the recognition of world-common issues of nuclear safety and to attain efficient promotion of research and effective utilization of research resources. (author)

  18. Progress of nuclear safety research - 2005

    International Nuclear Information System (INIS)

    Anoda, Yoshinari; Amaya, Masaki; Saito, Junichi; Sato, Atsushi; Sono, Hiroki; Tamaki, Hitoshi; Tonoike, Kotaro; Nemoto, Yoshiyuki; Motoki, Yasuo; Moriyama, Kiyofumi; Yamaguchi, Tetsuji; Araya, Fumimasa

    2006-03-01

    The Japan Atomic Energy Research Institute (JAERI), one of the predecessors of the Japan Atomic Energy Agency (JAEA), had conducted nuclear safety research primarily at the Nuclear Safety Research Center in close cooperation with the related departments in accordance with the Long Term Plan for Development and Utilization of Nuclear Energy and Five-Years Program for Safety Research issued by the Japanese government. The fields of conducting safety research at JAERI were the engineering safety of nuclear power plants and nuclear fuel cycle facilities, and radioactive waste management as well as advanced technology for safety improvement or assessment. Also, JAERI had conducted international collaboration to share the information on common global issues of nuclear safety and to supplement own research. Moreover, when accidents occurred at nuclear facilities, JAERI had taken a responsible role by providing experts in assistance to conducting accident investigations or emergency responses by the government or local government. These nuclear safety research and technical assistance to the government have been taken over as an important role by JAEA. This report summarizes the nuclear safety research activities of JAERI from April 2003 through September 2005 and utilized facilities. (author)

  19. Nuclear safety authority. Strategical planning 2005- 2007

    International Nuclear Information System (INIS)

    Anon.

    2006-01-01

    The Nuclear safety Authority (A.S.N.) provides, in the name of the state, the monitoring of nuclear safety and radiation protection to protect workers, patients, public and environment from the risks in relation with nuclear activities and more broadly with ionizing radiations, it contributes to citizens information in these areas. The ambition of A.S.N. is to carry out a successful, legitimate, credible nuclear monitoring, recognized by citizens and that constitutes an international reference. (N.C.)

  20. Safety of nuclear power plants: Design. Safety requirements

    International Nuclear Information System (INIS)

    2000-01-01

    The present publication supersedes the Code on the Safety of Nuclear Power Plants: Design (Safety Series No. 50-C-D (Rev. 1), issued in 1988). It takes account of developments relating to the safety of nuclear power plants since the Code on Design was last revised. These developments include the issuing of the Safety Fundamentals publication, The Safety of Nuclear Installations, and the present revision of various safety standards and other publications relating to safety. Requirements for nuclear safety are intended to ensure adequate protection of site personnel, the public and the environment from the effects of ionizing radiation arising from nuclear power plants. It is recognized that technology and scientific knowledge advance, and nuclear safety and what is considered adequate protection are not static entities. Safety requirements change with these developments and this publication reflects the present consensus. This Safety Requirements publication takes account of the developments in safety requirements by, for example, including the consideration of severe accidents in the design process. Other topics that have been given more detailed attention include management of safety, design management, plant ageing and wearing out effects, computer based safety systems, external and internal hazards, human factors, feedback of operational experience, and safety assessment and verification. This publication establishes safety requirements that define the elements necessary to ensure nuclear safety. These requirements are applicable to safety functions and the associated structures, systems and components, as well as to procedures important to safety in nuclear power plants. It is expected that this publication will be used primarily for land based stationary nuclear power plants with water cooled reactors designed for electricity generation or for other heat production applications (such as district heating or desalination). It is recognized that in the case of

  1. Nuclear safety philosophy in the United Kingdom

    International Nuclear Information System (INIS)

    Anthony, R.D.

    1986-01-01

    Development of the United Kingdom (UK) nuclear safety philosophy is described in the context of the UK nuclear power program since 1959 and of its legislative framework. Basic to the philosophy is that the licensee is wholly responsible for nuclear safety. The licensing process and safety assessment principles used by the Nuclear Installations Inspectorate are discussed, and examples from the assessment of the proposed UK pressurized-water reactor are used to illustrate how the approach works in practice. The UK siting policy and regulatory developments since 1979 are also discussed. Recent, current, and future issues of interest to the regulatory authority are described against the development nuclear scene in the UK

  2. Promotion of nuclear safety culture in Korea

    International Nuclear Information System (INIS)

    Eun, Youngsoo

    1996-01-01

    The term 'nuclear safety culture' was first introduced by the IAEA after the Chernobyl accident in the former USSR and subsequently defined in the IAEA's Safety Series No. 75-IMSAG-4 'Safety Culture' as follows : 'Safety culture is that assembly of characteristics and attitudes in organizations and individuals which establish that establish that, as an overriding priority, nuclear plant safety issues receive the attention warranted by their significance.' INSAG-4 deals with the concept of 'Safety Culture' as it relates to organizations and individuals engaged in nuclear power activities, and is intended for use by governmental authorities and by the nuclear industry and its supporting organizations. The IAEA's Assessment of Safety Culture in Organizations Team (ASCOT) developed ASCOT Guidelines that can be used in the assessment of the safety culture level of the organizations and their individual workers concerned, with a view to the tangible manifestations of safety culture that has intangible characteristics in nature. The IAEA provides the nuclear safety culture assessment service on the request of the Member States. Safety culture can not be achieved by the effort of the nuclear industry and its involved individuals alone. Rather, it requires a well concerted effort among various organizations engaged in nuclear activities including regulatory organizations

  3. Investigation of nuclear power safety objects

    International Nuclear Information System (INIS)

    2003-09-01

    It is a report of ground and concept of nuclear safety objects and future issues in Japan, which has investigated by the Committee of Experts on Investigation of Nuclear Safety Objects in the Nuclear Safety Research Association. The report consisted of member of committee, main conclusions and five chapters. The first chapter contains construction of safety objects and range of object, the second chapter qualitative safety objects, the third chapter quantitative safety objects, the forth subsiding objects and the fifth other items under consideration. The qualitative safety objects on individual and society, the quantitative one on effects on health and social cost, aspect of safety objects, relation between radiation protection and safety objects, practical objective values and earthquake are stated. (S.Y.)

  4. Organization and safety in nuclear power plants

    International Nuclear Information System (INIS)

    Marcus, A.A.; Nichols, M.L.; Bromiley, P.; Olson, J.; Osborn, R.N.; Scott, W.; Pelto, P.; Thurber, J.

    1990-05-01

    Perspectives from industry, academe, and the NRC are brought together in this report and used to develop a logical framework that links management and organization factors and safety in nuclear power plant performance. The framework focuses on intermediate outcomes which can be predicted by organizational and management factors, and which are subsequently linked to safety. The intermediate outcomes are efficiency, compliance, quality, and innovation. The organization and management factors can be classified in terms of environment, context, organizational governance, organizational design, and emergent processes. Initial empirical analyses were conducted on a limited set of hypotheses derived from the framework. One set of hypotheses concerned the relationships between one of the intermediate outcome variables, efficiency, as measured by critical hours and outage rate, and safety, as measured by 5 NRC indicators. Results of the analysis suggest that critical hours and outage rates and safety, as measured in this study, are not related to each other. Hypotheses were tested concerning the effects on safety and efficiency of utility financial resources and the lagged recognition and correction of problems that accompanies the reporting of major violations and licensee event reports. The analytical technique employed was regression using polynomial distributed lags. Results suggest that both financial resources and organizational problem solving/learning have significant effects on the outcome variables when time is properly taken into account. Conclusions are drawn which point to this being a promising direction to proceed, though with some care, due to the current limitations of the study. 138 refs., 36 figs., 9 tabs

  5. 11-th International conference Nuclear power safety and nuclear education - 2009. Abstracts. Part 1. Session: Safety of nuclear technology; Innovative nuclear systems and fuel cycle; Nuclear knowledge management

    International Nuclear Information System (INIS)

    2009-01-01

    The book includes abstracts of the 11-th International conference Nuclear power safety and nuclear education - 2009 (29 Sep - 2 Oct, 2009, Obninsk). Problems of safety of nuclear technology are discussed, innovative nuclear systems and fuel cycles are treated. Abstracts on professional education for nuclear power and industry are presented. Nuclear knowledge management are discussed

  6. Safety of nuclear installations: Future direction

    International Nuclear Information System (INIS)

    1990-04-01

    The Workshop presentations were divided into sessions devoted to the following topics: Environmental impact of fossil fuel energy technologies (5 papers), Future needs for nuclear power (7 papers), Safety objectives (10 papers), Safety aspects of the next generation of current-type nuclear power plants (8 papers), Safety aspects of new designs and concepts for nuclear power plants (6 papers), Special safety issues: Safety aspects of new designs and concepts for nuclear power plants (5 papers), Safety aspects of new designs and processes for the nuclear fuel cycle (5 papers), Closing panel (3 papers), 12 poster presentations and a Summary of the Workshop. A separate abstract was prepared for each of these papers. Refs, figs and tabs

  7. What is new in the Act on Nuclear Safety

    International Nuclear Information System (INIS)

    Novosel, N.

    2005-01-01

    The Act on Nuclear Safety was passed by the Croatian Parliament on 15 October 2003, and published in Narodne novine (official journal) No. 173/03. This Act regulates safety measures for using nuclear materials and equipment, regulates nuclear activities, and establishes the National Office for Nuclear Safety. The new act supersedes the Act on Protective Measures Against Ionising Radiation and Safety in the Use of Nuclear Facilities and Installations (Narodne novine No. 18/81) and the Act on Protection against Ionising Radiation and Special Safety Measures in Using Nuclear Energy (Narodne novine No. 53/91). Regulations based on the latter Act shall apply until they are replaced by new regulations based on the Act on Nuclear Safety. Provisions of this Act apply for nuclear activities, nuclear materials and specified equipment. Croatia does not have nuclear facilities on its territory, but a Croatian power utility company owns 50% of the Nuclear Power Plant Krsko on the territory of Slovenia. In that respect, Croatia has assumed responsibilities defined by the Agreement between the Government of the Republic of Slovenia and the Government of the Republic of Croatia on the Regulation of the Status and Other Legal Relationships, Connected with Investments in the Krsko Nuclear Power Plant, its Exploitation and Decommissioning (Narodne novine No. 9/02, International Agreements). Having accessioned international conventions and agreements, Croatia has also assumed the responsibility to implement their provisions. In the process of European and international integrations, Croatia has to harmonize with the European and international standards in nuclear safety.(author)

  8. Progress of nuclear safety research, 1987

    International Nuclear Information System (INIS)

    1987-09-01

    The Japan Atomic Energy Research Institute (JAERI) has been extensively conducting nuclear safety research under the national policy of promoting peaceful uses of atomic energy. In 1973, the Department of Nuclear Safety Research was organized to perform effectively the safety research for light water reactors. Later, the Nuclear Safety Research Center was established to coordinate under its supervision various research activities related to the environmental safety as well as the safety of nuclear power plants and various nuclear fuel cycle facilities. Since the TMI-2 accident, the reactor safety research at JAERI has been reoriented to understand better a broader range of reactor accidents including a severe accident. At the same time, environmental safety research has been expanded to cover a wider range of topics. The accident at Chernobyl has revealed again the importance of nuclear safety. Described here are the activities related to nuclear safety research conducted at JAERI over the past two years. Also included are the international cooperative research programs in which JAERI is vigorously participating. (author)

  9. Nuclear safety research in HGF 2011

    International Nuclear Information System (INIS)

    Tromm, Walter

    2012-01-01

    After the events at the Japanese nuclear power plant of Fukushima Daiichi, the German federal government decided that Germany will give up electricity generation from nuclear power within a decade. The last reactor will be disconnected from the power grid in 2022. Helping to make this opt-out as safe as possible is one of the duties of the Helmholtz Association with its Nuclear Safety Research Program within the Energy Research Area. Also the demolition of nuclear power plants and the repository problem will keep society, and thus also research, busy for a number of decades to come. Giving up electricity production from nuclear power thus must not mean giving up the required nuclear technology competences. In the fields of reactor safety, demolition, final storage, radiation protection, and crisis management, in critical support of international developments, and for competent evaluation of nuclear facilities around Germany, these competences will be in demand far beyond the German opt-out. This is the reason why the final report by the Ethics Committee on 'Safe Energy Supply' emphasizes the importance of nuclear technology research. Close cooperation on national, European and international levels is indispensable in this effort. Also nuclear safety research in the Helmholtz Association is aligned with the challenges posed by the opt-out of the use of nuclear power. It is important that the high competences in the areas of plant safety and demolition, handling of radioactive waste, and safe final storage as well as radiation protection be preserved. The Nuclear Safety Research Program within the Energy Research Area of the Helmholtz Association therefore will continue studying scientific and technical aspects of the safety of nuclear reactors and the safety of nuclear waste management. These research activities are provident research conducted for society and must be preserved for a long period of time. The work is closely harmonized with the activities of the

  10. Safety design of Qinshan Nuclear Power Plant

    International Nuclear Information System (INIS)

    Ouyang Yu; Zhang Lian; Du Shenghua; Zhao Jiayu

    1984-01-01

    Safety issues have been greatly emphasized through the design of the Qinshan Nuclear Power Plant. Reasonable safety margine has been taken into account in the plant design parameters, the design incorporated various safeguard systems, such as engineering safety feature systems, safety protection systems and the features to resist natural catastrophes, e. g. earthquake, hurricanes, tide and so on. Preliminary safety analysis and environmental effect assessment have been done and anti-accident provisions and emergency policy were carefully considered. Qinshan Nuclear Power Plant safety related systems are designed in accordance with the common international standards established in the late 70's, as well as the existing engineering standard of China

  11. Nuclear safety and human competence

    International Nuclear Information System (INIS)

    Stefanescu, Petre

    2001-01-01

    Competence represents a very well defined ensemble of knowledge and skills, behavior modalities, standard procedures and judgement types that can be used in a given situation, without a priori learning. It is obvious that a person competence should fulfill the needs of the company he works for. For a Nuclear Power Plant operator competence is a constitutive part of his individuality. Competence includes: 1. Knowledge that can be classified in three main items: - procedural and declarative knowledge; - practical knowledge and skills; - fundamental knowledge. 2. 'Non cognitive' knowledge components, such as 'social information', team collective competence, safety education, risks perception and management. The last item presents a special interest for nuclear safety. On the other hand, competence level defines the quality of procedures applied in different operational situations. Competence - procedures relations are presented. Competence fundament results from operator activity analysis. The analyst has to take into consideration several phases of activity in which competence is highlighted like: - genesis, during formation; - transformation, during adaptation to a technical modification; - transfer, from expert to probationer. Competence is subject to a continuous transformation process due to technical and organizational evolutions and 'operator ageing'. Cognitive ageing of operators or the technical ageing of competence often appear to be superimposed. Technical progress acceleration increases the ageing effects of competence. Knowledge - skills dynamic relations are discussed. The changing of organizational form determines appearance of new competence gained from others domains or defined by multidisciplinary studies. Ergonomics can help the changing of organizational form through analysis of operators evolution activity which will generate new competence. Ergonomics can contribute to identify means of raising competence starting from learning process

  12. Areva - Nuclear Safety Policy 2013-2016

    International Nuclear Information System (INIS)

    2013-03-01

    The objectives of Areva's Nuclear Safety Policy cover three areas: 1 - Safety of facilities: - Establish a group wide process to maintain the regulatory compliance of facilities and to ensure the execution of improvements required by periodic reviews of safety. - Put in place proactive measures to reduce source terms present in facilities, and in particular with regard to fire, operational waste and legacy waste on AREVA sites. - Ensure the performance of arrangements and activities central to risk prevention, in particular in the areas of containment, criticality safety and radiological protection through compliance with the associated safety requirements. - Strengthen the emergency planning arrangements to be implemented in case of accidents and test these through regular exercises. 2 - Operational Safety: - Develop and verify the level of safety culture of our staff and subcontractors and increase the presence of operational managers on the ground. - Improve the requirements and responsibilities within documentation associated with operations and interventions on the basis of a significant involvement of our staff and subcontractors. - Implement robust and formal risk prevention processes to manage temporary or transitional situations, uncommon situations, or specific risks, including but not limited to parallel activities, administrative lockout/tag-out, working with naked flames, gamma radiation, work in a radioactive environment. - Integrate human and organizational factors (HOF) in the analysis of safety-related modifications of facilities; undertake detailed reviews of the causes of all significant events inside the group and improve the communication and implementation of operating experience within all group entities. - 3 Safety Management: - Maintain an organization based on clear principles of shared responsibility and delegation of authority, and have in place a robust process to assess the impact on safety of any organizational change. - Strengthen

  13. Regulatory oversight of nuclear safety in Finland. Annual report 2011

    Energy Technology Data Exchange (ETDEWEB)

    Kainulainen, E. (ed.)

    2012-07-01

    The report constitutes the report on regulatory control in the field of nuclear energy which the Radiation and Nuclear Safety Authority (STUK) is required to submit once a year to the Ministry of Employment and the Economy pursuant to Section 121 of the Nuclear Energy Decree. The report is also delivered to the Ministry of Environment, the Finnish Environment Institute, and the regional environmental authorities of the localities in which a nuclear facility is located. The regulatory control of nuclear safety in 2011 included the design, construction and operation of nuclear facilities, as well as nuclear waste management and nuclear materials. The first parts of the report explain the basics of nuclear safety regulation included as part of STUK's responsibilities, as well as the objectives of the operations, and briefly introduce the objects of regulation. The chapter concerning the development and implementation of legislation and regulations describes changes in nuclear legislation, as well as the progress of STUK's YVL Guide revision work. The section concerning the regulation of nuclear facilities contains an overall safety assessment of the nuclear facilities currently in operation or under construction. The chapter concerning the regulation of the final disposal project for spent nuclear fuel de-scribes the preparations for the final disposal project and the related regulatory activities. The section concerning nuclear non-proliferation describes the nuclear non-proliferation control for Finnish nuclear facilities and final disposal of spent nuclear fuel, as well as measures required by the Additional Protocol of the Safeguards Agreement. The chapter describing the oversight of security arrangements in the use of nuclear energy discusses oversight of the security arrangements in nuclear power plants and other plants, institutions and functions included within the scope of STUK's regulatory oversight. The chapter also discusses the national and

  14. Handbook of advanced nuclear hydrogen safety. 1st edition

    International Nuclear Information System (INIS)

    Hino, Ryutaro; Takegami, Hiroaki; Ogawa, Toru

    2017-03-01

    In the aftermath of the Fukushima nuclear accident, safety measures against hydrogen in severe accident has been recognized as a serious technical problem in Japan. Therefore, efforts have begun to form a common knowledge base between nuclear engineers and experts on combustion and explosion, and to secure and improve future nuclear energy safety. As one of such activities, we have prepared the 'Handbook of Advanced Nuclear Hydrogen Safety'. A handbook committee consisting of Japanese experts in the fields of nuclear and combustion-explosion in universities, nuclear companies, electric companies and research institutes was established in 2012. The objective and consents of the handbook were determined, and the outline of the contents was decided. The concepts of the handbook are as follows: to show advanced nuclear hydrogen safety technologies that nuclear engineers should understand, to show hydrogen safety points to make combustion-explosion experts cooperate with nuclear engineers, to expand information on water radiolysis considering the situation from just after the Fukushima accidents and to the waste management necessary for decommissioning after the accident etc. Many experts have participated to manuscript preparation, which was the first step of forming a hydrogen community across the boundaries of fields. The hydrogen community is expected to grow along with its improvement to the knowledge base on nuclear hydrogen safety. (author)

  15. Development of a nuclear ship safety philosophy

    International Nuclear Information System (INIS)

    Thompson, T.E.

    1978-01-01

    A unique safety philosophy must be recognized and accepted as an integral part of the design and operation of a nuclear ship. For the nuclear powered ship, the ultimate safety of the reactor and therefore the crew and the environment lies with the safety of the ship itself. The basis for ship safety is its ability to navigate and survive the conditions or the environment in which it may find itself. The subject of traditional ship safety is examined along with its implication for reactor protection and safety. Concepts of reactor safety are also examined. These two philosophies are combined in a manner so as to provide a sound philosophy for the safety of nuclear ships, their crews, and the environment

  16. Nuclear Safety Review for the Year 2005

    International Nuclear Information System (INIS)

    2006-01-01

    In 2005, the Agency and its Director General were awarded the Nobel Peace Prize. The Nobel Committee statement recognizes the Agency's 'efforts to prevent nuclear energy from being used for military purposes and to ensure that nuclear energy for peaceful purposes is used in the safest possible way.' The global nature of safety is reflected in the relevant international legal instruments, both binding conventions and the non-binding codes of conduct currently in place. During the year, the third review meeting of the Contracting Parties to the Convention on Nuclear Safety as well as the third meeting of the representatives of the competent authorities under the Convention on Early Notification of a Nuclear Accident and Convention on Assistance in the Case of a Nuclear Accident or a Radiological Emergency took place. Improvements have been made in national legislation and regulatory infrastructure in many Member States in 2005. However, inadequate safety management and regulatory supervision of nuclear installations and use of ionizing radiation is a continuing issue in many Member States. A continuing challenge is to collect, analyse and disseminate safety experience and knowledge. Nuclear power plant (NPP) operational safety performance remained high throughout the world in 2005. Radiation doses to workers and members of the public due to NPP operation are well below regulatory limits. Personal injury accidents and incidents are among the lowest in industry. There were no accidents that resulted in the release of radiation that could adversely impact the environment. NPPs in many parts of the world have successfully coped with severe natural disaster conditions such as earthquakes, tsunamis, widespread river flooding and hurricanes. However, operational safety performance has been on a plateau for several years and concern has been expressed in many forums regarding the need to guard against complacency in the industry. Research reactors also maintained a good

  17. The nuclear safety convention. Results for Argentine as contracting party

    International Nuclear Information System (INIS)

    Caruso, Gustavo

    2002-01-01

    A powerful mechanism for increasing safety worldwide is through the development and adoption of legally binding Safety Conventions. Since 1986 four Conventions were ratified in the areas of Nuclear, Radiation and Waste Safety. The Nuclear Safety Convention establishes an international co-operation mechanism to maintain safety nuclear installations, focused on: to achieve and maintain a high level of nuclear safety worldwide through the enhancement of national measures and international co-operation including, where appropriate, safety-related technical co-operation; to establish and maintain effective defences in nuclear installations against potential radiological hazards in order to protect individuals, society and the environment from harmful effects of ionizing radiation from such installations and to prevent accidents with radiological consequences and to mitigate such consequences should they occur. Each contracting party shall take, within the framework of its national law, the legislative, regulatory and administrative measures and other steps necessary for implementing its obligations under this Convention. Moreover, each contracting parties shall submit for review prior to each review meeting, a National Report on the measures it has taken to implement each of the obligations of the Convention. The contracting parties concluded that the review process had proven to be of great value to their national nuclear safety programmes. (author)

  18. Regulatory Safety Requirements for Operating Nuclear Installations

    International Nuclear Information System (INIS)

    Gubela, W.

    2017-01-01

    The National Nuclear Regulator (NNR) is established in terms of the National Nuclear Regulator Act (Act No 47 of 1999) and its mandate and authority are conferred through sections 5 and 7 of this Act, setting out the NNR's objectives and functions, which include exercising regulatory control over siting, design, construction etc of nuclear installations through the granting of nuclear authorisations. The NNR's responsibilities embrace all those actions aimed at providing the public with confidence and assurance that the risks arising from the production of nuclear energy remain within acceptable safety limits -> Therefore: Set fundamental safety standards, conducting pro-active safety assessments, determining licence conditions and obtaining assurance of compliance. The promotional aspects of nuclear activities in South Africa are legislated by the Nuclear Energy Act (Act No 46 of 1999). The NNR approach to regulations of nuclear safety and security take into consideration, amongst others, the potential hazards associated with the facility or activity, safety related programmes, the importance of the authorisation holder's safety related processes as well as the need to exercise regulatory control over the technical aspects such as of the design and operation of a nuclear facility in ensuring nuclear safety and security. South Africa does not have national nuclear industry codes and standards. The NNR is therefore non-prescriptive as it comes to the use of industry codes and standards. Regulatory framework (current) provide for the protection of persons, property, and environment against nuclear damage, through Licensing Process: Safety standards; Safety assessment; Authorisation and conditions of authorisation; Public participation process; Compliance assurance; Enforcement

  19. Problems of nuclear reactor safety. Vol. 1

    International Nuclear Information System (INIS)

    Shal'nov, A.V.

    1995-01-01

    Proceedings of the 9. Topical Meeting 'Problems of nuclear reactor safety' are presented. Papers include results of studies and developments associated with methods of calculation and complex computerized simulation for stationary and transient processes in nuclear power plants. Main problems of reactor safety are discussed as well as rector accidents on operating NPP's are analyzed

  20. The politics of nuclear safety regulation

    International Nuclear Information System (INIS)

    Adam, G.

    2002-01-01

    The paper discusses political aspects of decision making about the safety of nuclear power plants especially in Eastern Europe and in connection with the enlargement of the European Union. The problem of the Kozloduy NPP safety is also discussed. Recommendations on the policy and tasks for nuclear regulators are given

  1. Increase nuclear safety of WWER-440

    International Nuclear Information System (INIS)

    Nochev, T.; Sabinov, S.

    2000-01-01

    A complete program for increasing nuclear safety has been made at NPP Kozloduy with the participation of German, French, Russian and American specialists. This effort cost greater than 100 mil $. This report includes the methods of increasing nuclear safety. The style of management in NPP Kozloduy has been changed for the last seven years. (authors)

  2. Molten salt reactor as asymptotic safety nuclear system

    International Nuclear Information System (INIS)

    Novikov, V.M.; Ignatyev, V.V.

    1989-01-01

    Safety is becoming the main and priority problem of the nuclear power development. An increase of the active safety measures could hardly be considered as the proper way to achieve the asymptotically high level of nuclear safety. It seem that the more realistic way to achieve such a goal is to minimize risk factors and to maximize the use of inherent and passive safety properties. The passive inherent safety features of the liquid fuel molten salt reactor (MSR) technology are making it attractive for future energy generation. The achievement of the asymptotic safety in MSR is being connected with the minimization of such risk factors as a reactivity excess, radioactivity stored, decay heat, non nuclear energy stored in core. In this paper safety peculiarities of the different MSR concepts are discussed

  3. A nuclear safety in 21 century

    International Nuclear Information System (INIS)

    Osmachkin, V.S.

    2003-01-01

    In the paper some topics of nuclear safety are discussed, namely current situation in the world energetics and a potential of nuclear energy for sustainable development of the world, Nuclear Safety Standards and modern trends in Safety Regulation, Radiation Protection Standards are rather conservative, are based on disputable approaches and have to be more pragmatic, necessity to overcome the syndromes of awful consequences of nuclear accidents at nuclear plants, residual risks of nuclear accidents have to be covered by clear compulsory insurance actions. It is shown, that now it is worthwhile to consider efficiency of existing methods of nuclear safety regulation. It is possible, that an idea of guaranteed safety [1] could become a new approach to nuclear safety. It is based on practically total elimination of severe accidents and insurance of residual risks of nuclear accidents. The realization of such idea necessitates the consideration of all spectrum of initiating events, human errors and man-made actions, more realistically predicting consequences of accidents and the probable economical detriments. It will be a benefit for gaining public support to nuclear power. (author)

  4. Progress of nuclear safety research, 1990

    International Nuclear Information System (INIS)

    1990-07-01

    Since the Japan Atomic Energy Research Institute (JAERI) was founded as a nonprofit, general research and development organization for the peaceful use of nuclear energy, it has actively pursued the research and development of nuclear energy. Nuclear energy is the primary source of energy in Japan where energy resources are scarce. The safety research is recognized at JAERI as one of the important issues to be clarified, and the safety research on nuclear power generation, nuclear fuel cycle, waste management and environmental safety has been conducted systematically since 1973. As of the end of 1989, 38 reactors were in operation in Japan, and the nuclear electric power generated in 1988 reached 29 % of the total electric power generated. 50 years have passed since nuclear fission was discovered in 1939. The objective of the safety research at JAERI is to earn public support and trust for the use of nuclear energy. The overview of the safety research at JAERI, fuel behavior, reliability of reactor structures and components, reactor thermal-hydraulics during LOCA, safety assessment of nuclear power plants and nuclear fuel cycle facilities, radioactive waste management and environmental radioactivity are reported. (K.I.)

  5. Nuclear criticality safety: 2-day training course

    International Nuclear Information System (INIS)

    Schlesser, J.A.

    1992-11-01

    This compilation of notes is presented as a source reference for the criticality safety course. At the completion of this training course, the attendee will: (1) be able to define terms commonly used in nuclear criticality safety; (2) be able to appreciate the fundamentals of nuclear criticality safety; (3) be able to identify factors which affect nuclear criticality safety; (4) be able to identify examples of criticality controls as used at Los Alamos; (5) be able to identify examples of circumstances present during criticality accidents; (6) have participated in conducting two critical experiments

  6. Safety assessment principles for nuclear plants

    International Nuclear Information System (INIS)

    1992-01-01

    The present Safety Assessment Principles result from the revision of those which were drawn up following a recommendation arising from the Sizewell-B enquiry. The principles presented here relate only to nuclear safety; there is a section on risks from normal operation and accident conditions and the standards against which those risks are assessed. A major part of the document deals with the principles that cover the design of nuclear plants. The revised Safety assessment principles are aimed primarily at the safety assessment of new nuclear plants but they will also be used in assessing existing plants. (UK)

  7. The international dimensions of nuclear safety standards

    International Nuclear Information System (INIS)

    Reed, J.M.

    1992-01-01

    The paper reviews the activities of the major international organisations in the field of nuclear safety standards; the International Atomic Energy Agency (IAEA), the OECD's Nuclear Energy Agency (NEA) and the Commission of the European Communities. Each organisation encourages the concept of international nuclear safety standards. After Chernobyl, there were calls for some form of binding international nuclear safety standards. Many Member States of IAEA accepted these Codes as a suitable basis for formulating their national safety standards, but the prevailing view was that voluntary compliance with the Codes was the preferred path. With few reactor vendors in a limited international market, the time may be approaching when an internationally licensable nuclear reactor is needed. Commonly accepted safety standards would be a prerequisite. The paper discusses the issues involved and the complexities of standards making in the international arena. (author)

  8. Nuclear Safety Review for the Year 2012

    International Nuclear Information System (INIS)

    2012-07-01

    The Nuclear Safety Review for the Year 2012 contains an analytical overview of the dominant trends, issues and challenges worldwide in 2011 and the Agency's efforts to strengthen the global nuclear safety framework. This year's report also highlights issues and activities related to the accident at the Fukushima Daiichi nuclear power plant. The analytical overview is supported by the Appendix at the end of this document, entitled: The IAEA Safety Standards: Activities during 2011. A draft version of the Nuclear Safety Review for the Year 2012 was submitted to the March 2012 session of the Board of Governors in document GOV/2012/6. The final version of the Nuclear Safety Review for the Year 2012 was prepared in light of the discussions held during the Board of Governors and also of the comments received.

  9. Regulatory control of nuclear safety in Finland. Annual report 2008

    International Nuclear Information System (INIS)

    Kainulainen, E.

    2009-06-01

    facilities is examined using the employees' individual doses, the collective doses, and the results of emission and environmental radiation control. Summaries are also included for the regulation of the storage of spent nuclear fuel and the processing and storage of reactor waste. For the Olkiluoto 3 plant unit currently under construction, the report includes descriptions of the regulation of design, construction, manufacturing, installation and implementation preparations, as well as regulation of the operations of organisations participating in the construction project. The nuclear safety indicator system is used to examine the efficiency and effects of the regulatory activities targeted at nuclear power plants. Appendices to the report include detailed data and conclusions related to the indicators (Appendix 1) and any significant operational events (Appendix 3). The chapter concerning the regulation of the final disposal project for spent nuclear fuel describes the preparations for the final disposal project and the related regulatory activities. In addition, the oversight of the design and construction of the research facilities (Onkalo) under construction in Olkiluoto, as well as the assessment and oversight of the research, development and design work being carried out to further specify the safety case for final disposal are included in the report. The section concerning nuclear non-proliferation describes the nuclear non-proliferation control for Finnish nuclear facilities and final disposal of spent nuclear fuel, as well as measures required by the Additional Protocol of the Safeguards Agreement. Oversight of the nuclear test ban is also covered by the report. In addition to actual safety regulation, the report describes the enforcement of the regulatory oversight of nuclear facilities, regulatory indicators and the development of regulation, as well as safety research, emergency preparedness, communications and STUK's participation in international nuclear safety

  10. Nuclear Safety Review for the Year 2003

    International Nuclear Information System (INIS)

    2004-08-01

    The Nuclear Safety Review reports on worldwide efforts to strengthen nuclear, radiation and transport safety and the safety of radioactive waste management. In line with the suggestions made by the Board of Governors in March 2002, the first part is more analytical and less descriptive. This short analytical overview is supported by a second part, which describes significant safety related events and issues worldwide during 2003. A Draft Nuclear Safety Review for the Year 2003 was submitted to the March 2004 session of the Board of Governors in document GOV/2004/3. The final version of the Nuclear Safety Review for the Year 2003 was prepared in the light of the discussion by the Board.

  11. Global Nuclear Safety and Security Network

    International Nuclear Information System (INIS)

    Guo Lingquan

    2013-01-01

    The objectives of the Regulatory Network are: - to contribute to the effectiveness of nuclear regulatory systems; - to contribute to continuous enhancements, and - to achieve and promote radiation and nuclear safety and security by: • Enhancing the effectiveness and efficiency of international cooperation in the regulation of nuclear and radiation safety of facilities and activities; • Enabling adequate access by regulators to relevant safety and security information; • Promoting dissemination of information on safety and security issues as well as information of good practices for addressing and resolving these issues; • Enabling synergies among different web based networks with a view to strengthening and enhancing the global nuclear safety framework and serving the specific needs of regulators and international organizations; • Providing additional information to the public on international regulatory cooperation in safety and security matters

  12. Progress of nuclear safety research, (1)

    International Nuclear Information System (INIS)

    Amano, Hiroshi; Nakamura, Hiroei; Nozawa, Masao

    1981-01-01

    The Japan Atomic Energy Research Institute was established in 1956 in conformity with the national policy to extensively conduct the research associated with nuclear energy. Since then, the research on nuclear energy safety has been conducted. In 1978, the Division of Reactor Safety was organized to conduct the large research programs with large scale test facilities. Thereafter, the Divisions of Reactor Safety Evaluation, Environmental Safety Research and Reactor Fuel Examination were organized successively in the Reactor Safety Research Center. The subjects of research have ranged from the safety of nuclear reactors to that in the recycling of nuclear fuel. In this pamphlet, the activities in JAERI associated with the safety research are reported, which have been carried out in the past two years. Also, the international cooperation research program in which JAERI participated is included. This pamphlet consists of two parts, and in this Part 1, the reactor safety research is described. The safety of nuclear fuel, the integrity and safety of pressure boundary components, the engineered safety in LOCA, fuel behavior in accident and others are reported. (Kako, I.)

  13. Collection of guides for safety examination by Nuclear Safety Commission

    International Nuclear Information System (INIS)

    1981-01-01

    The examination on the safety for the application of permission to install nuclear facilities or to change the installation in the Nuclear Safety Commission is carried out on the basis of various guides instituted by the Nuclear Safety Commission or the old Atomic Energy Commission. Especially as for the problems common to various nuclear reactors, the Committee on Examination of Nuclear Reactor Safety performs the examination by determining the rules for them. These guides and others have been published in the monthly report of the Nuclear Safety Commission and others, but for the sake of convenient use, this collection of guides has been published. As for the guides, the letter of decision by the commission, the text of the guides and the explanation or the criteria for judgement are described, and in the case of rules, similar description is made. In this collection of guides, 20 guides and 11 rules are included. These are related to the location of nuclear power stations, the safety examination of nuclear power stations, radiation control, fire protection, and the performance of reactor systems. (Kako, I.)

  14. Nuclear power plant safety in Brazil

    International Nuclear Information System (INIS)

    Lederman, L.

    1980-01-01

    The Code of Practice for the Safe Operation of Nuclear Power Plants states that: 'In discharging its responsibility for public health and safety, the government should ensure that the operational safety of a nuclear reactor is subject to surveillance by a regulatory body independent of the operating organization'. In Brazil this task is being carried out by the Comissao Nacional de Energia Nuclear in accordance with the best international practice. (orig./RW)

  15. The French Nuclear Safety Authority - ASN

    International Nuclear Information System (INIS)

    2013-01-01

    The ASN (Nuclear Safety Authority) was created by the act of 13 June 2006 concerning the transparency and safety of nuclear activities. The ASN is an independent administrative body that is in charge of controlling nuclear activities in France. The ASN has a workforce of 471 people and a budget of about 76 millions euros. This article details its missions and how it is organized to cover all the French territory. (A.C.)

  16. The French Nuclear Safety Authority (ASN)

    International Nuclear Information System (INIS)

    Alloso, Ph.

    2011-01-01

    This article presents the statutes, the organization and the missions of the Nuclear Safety Authority (ASN) whose scope includes radiation protection since 2002. Globally ASN is in charge of: -) participating to the making of laws and regulations, -) delivering administrative authorizations, -) controlling the conformity of nuclear installations and activities with the laws and regulations, -) informing the public, and -) reporting on the state of nuclear safety and radiation protection each year. (A.C.)

  17. Safety targets for nuclear power plants

    International Nuclear Information System (INIS)

    Herttrich, P.M.

    1985-01-01

    By taking as an example the safety targets of the American nuclear energy authority US-NRC, this paper explains what is meant by global, quantitative safety targets for nuclear power plants and what expectations are associated with the selecton of such safety targets. It is shown how probabilistic methods can be an appropriate completion of proven deterministic methods and what are the sectors where their application may become important in future. (orig./HP) [de

  18. Nuclear power development, safety and environmental problems

    International Nuclear Information System (INIS)

    Kasak, F.; Kadlec, J.

    1977-09-01

    The current state is described of power production by conventional power plants and the problems of burning fossil fuels are discussed. A survey is presented of the development of world nuclear power production and of the planned construction of nuclear power plants in Czechoslovakia. The questions of the safety of nuclear installations and their environmental impacts in normal operation and in case of accident are outlined. In the analysis of these aspects of nuclear power production the probability data on the potential hazards of operating nuclear reactors as published in the Rasmussen Safety Report are discussed. (O.K.)

  19. Economic consideration of nuclear safety and cost benefit analysis in nuclear safety regulation

    International Nuclear Information System (INIS)

    Choi, Y. S.; Choi, K. S.; Choi, K. W.; Song, I. J.; Park, D. K.

    2001-01-01

    For the optimization of nuclear safety regulation, understanding of economic aspects of it becomes increasingly important together with the technical approach used so far to secure nuclear safety. Relevant economic theories on private and public goods were reviewed to re-illuminate nuclear safety from the economic perspective. The characteristics of nuclear safety as a public good was reviewed and discussed in comparison with the car safety as a private safety good. It was shown that the change of social welfare resulted from the policy change induced can be calculated by the summation of compensating variation(CV) of individuals. It was shown that the value of nuclear safety could be determined in monetary term by this approach. The theoretical background and history of cost benefit analysis of nuclear safety regulation were presented and topics for future study were suggested

  20. Standards: An international framework for nuclear safety

    International Nuclear Information System (INIS)

    Versteeg, J.

    2000-01-01

    The IAEA, uniquely among international organizations concerned with the use of radiation, radioactive materials and nuclear energy, has statutory functions to establish safety standards and to provide for their application in Member States. The IAEA also contributes towards another major element of the 'global safety culture', namely the establishment of legally binding international agreements on safety related issues. (author)

  1. Role of nuclear safety research and future plan

    International Nuclear Information System (INIS)

    Kim, W. S.; Lee, J. I.; Kang, S. C.; Park, Y. W.; Lee, J. H.; Kim, M. W.; Lee, C. J.; Park, Y. I.

    2000-01-01

    For promoting and improving nuclear safety research activities, this report gives an insight on the scope of safety research and its role in the safety management of nuclear installations, and suggests measures to adequately utilize the research results through taking an optimized role share among research organizations. Several measures such as cooperative planning of common research areas and proper role assignment, improvement of the interfaces among researchers, and reflection of end-users' opinion in the course of planning and conducting research to promote application of research results are identified. It is expected that the identified measures will contribute to enhancing the efficiency and effectiveness of nuclear safety research, if they are implemented after deliberating with the government and safety research organizations

  2. Nuclear Experts Discuss IAEA Operational Safety Reviews

    International Nuclear Information System (INIS)

    2011-01-01

    Full text: Senior nuclear experts today offered several recommendations on how the International Atomic Energy Agency (IAEA) can further develop its operational safety review services. The IAEA hosted a technical meeting on the Evaluation of Effectiveness of Operational Safety Review Services and their Future Evolution at the Agency's headquarters in Vienna from 1 to 4 November 2011. Representatives from nuclear regulatory bodies, nuclear utilities, nuclear power plants and technical support organisations from 19 IAEA Member States and the World Association of Nuclear Operators (WANO) took part in the meeting. It provided a platform for the exchange of information, experience and lessons learned from the operational safety review missions performed during 2008-2011. The meeting also included discussion of expectations for the future evolution of these services. ''This week's meeting demonstrated the response of the IAEA's Member States to the lessons learned from the Fukushima accident. Nations must constantly strive to improve their nuclear safety practices, and the IAEA review services provide an excellent tool to assess their progress,'' said Miroslav Lipar, head of the IAEA's Operational Safety Section. The IAEA's operational safety review services assess the operational safety performance of nuclear power plants by conducting peer reviews using the requirements of IAEA Safety Standards. The longest running safety review service, the Operational Safety Review Team (OSART) programme, was established in 1982 and has provided advice and assistance to Member States in 165 missions to enhance the safety of nuclear power plants during commissioning and operation. Other review services available in the area of operations evaluate operating experience feedback, safe long-term operation and safety culture. The IAEA Action Plan on Nuclear Safety includes actions focused towards strengthening the existing IAEA peer reviews by incorporating lessons learned and improving

  3. Nuclear safety review for the year 2001

    International Nuclear Information System (INIS)

    2002-07-01

    The Nuclear Safety Review for the Year 2001 reports on worldwide efforts to strengthen nuclear and radiation safety, including radioactive waste safety. It is in three parts. Part 1 describes those events in 2001 that have, or may have, significance for nuclear, radiation and waste safety worldwide. It includes developments such as new initiatives in international cooperation, events of safety significance and events that may be indicative of trends in safety. Part 2 describes some of the IAEA's efforts to strengthen international co-operation in nuclear, radiation and waste safety during 2001. It covers legally binding international agreements, non-binding safety standards, and provisions for the application of safety standards. This is done in a very brief manner, because these issues are addressed in more detail in the Agency's Annual Report for 2001. Part 3 presents a brief look ahead to some issues that are likely to be prominent in the coming year(s). The topics covered were selected by the IAEA Secretariat on the basis of trends observed in recent years, account being taken of planned or expected future developments. A draft of the Nuclear Safety Review for the Year 2001 was presented to the March 2002 session of IAEA's Board of Governors. This final version has been prepared taking account of the discussion in the Board. In some places, information has been added to describe developments early in 2002 that were considered pertinent to the discussion of events during 2001

  4. Regulatory control of nuclear safety in Finland. Annual report 2003

    International Nuclear Information System (INIS)

    Tossavainen, K.

    2004-01-01

    This report covers regulatory control of nuclear safety in 2003. Its submission to the Ministry of Trade and Industry by the Radiation and Nuclear Safety Authority (STUK) is stipulated in section 121 of the Nuclear Energy Decree. Nuclear safety regulation focused on the design and operation of Finnish nuclear facilities as well as on nuclear waste management and nuclear materials. No events occurred at the nuclear power plants that would have endangered the safe use of nuclear energy. At the Olkiluoto nuclear power plant, the number of plant conditions in non-compliance with the Technical Specifications was higher than usual. These had note-worthy common features, such as shortcomings in adherence to regulations, administration of periodic inspections, monitoring of plant states and identification of the requirements of the Technical Specifications. The licensee has launched the necessary development measures. The doses of all nuclear power plant workers were below the individual dose limit. The collective occupational dose was low internationally. Radioactive releases were low and the dose calculated on their basis for the most exposed individual in the vicinity of Loviisa and Olkiluoto nuclear power plant was well below the limit established by Government Resolution. The nuclear safety indicators describing the effectiveness of STUK's activities did not indicate changes that would have warranted STUK's immediate reaction, with the exception of the above indicators pertaining to anomalies at Olkiluoto plant. No events endangering safety occurred at the FiR 1 research reactor either. In addition, the radiation doses of those working at the research reactor and radioactive releases into the environment were clearly below set limits. The regulation of nuclear waste management focused on spent fuel storage and preparation of final disposal as well as the treatment, storage and final disposal of reactor waste. No events occurred in nuclear waste management that would

  5. Nuclear Safety in Central and Eastern Europe

    International Nuclear Information System (INIS)

    2001-04-01

    Nuclear safety is one of the critical issues with respect to the enlargement of the European Union towards the countries of Central and Eastern Europe. In the context of the enlargement process, the European Commission overall strategy on nuclear safety matters has been to bring the general standard of nuclear safety in the pre-accession countries up to a level that would be comparable to the safety levels in the countries of the European Union. In this context, the primary objective of the project was to develop a common format and general guidance for the evaluation of the current nuclear safety status in countries that operate commercial nuclear power plants. Therefore, one of the project team first undertakings was to develop an approach that would allow for a consistent and comprehensive overview of the nuclear safety status in the CEEC, enabling an equal treatment of the countries to be evaluated. Such an approach, which did not exist, should also ensure identification of the most important safety issues of the individual nuclear power plants. The efforts resulted in the development of the ''Performance Evaluation Guide'', which focuses on important nuclear safety issues such as plant design and operation, the practice of performing safety assessments, and nuclear legislation and regulation, in particular the role of the national regulatory body. Another important aspect of the project was the validation of the Performance Evaluation Guide (PEG) by performing a preliminary evaluation of nuclear safety in the CEEC, namely in Bulgaria, Czech Republic, Hungary, Lithuania, Romania, Slovak Republic, and Slovenia. The nuclear safety evaluation of each country was performed as a desktop exercise, using solely available documents that had been prepared by various Western institutions and the countries themselves. Therefore, the evaluation is only of a preliminary nature. The project did not intend to re-assess nuclear safety, but to focus on a comprehensive summary

  6. Safety planning for nuclear power stations

    International Nuclear Information System (INIS)

    Tadmor, J.

    1979-01-01

    The article shows that compared to the many industries and other human activities, nuclear power stations are among the safest. A short description of the measures taken to prevent accidents and of the additional safety means entering into action if an accident does occur is presented. It is shown that in nuclear plants the death frequency following malfunctioning is 1 death in 100.000 years whereas deaths following other human activities is 1 in 2 to 100 years and following natural calamities like earthquakes and floods is 1 in 10 years. As an example it is shown that for a population of 15.000.000 living in a radius of 40 km around 100 power stations the average number of deaths will be of 2 per year as compared to 4200 from road accidents with the corresponding number of injuries of 20 and 375.000 respectively. (B.G.)

  7. Nuclear safety training program (NSTP) for dismantling

    International Nuclear Information System (INIS)

    Cretskens, Pieter; Lenie, Koen; Mulier, Guido

    2014-01-01

    European Control Services (GDF Suez) has developed and is still developing specific training programs for the dismantling and decontamination of nuclear installations. The main topic in these programs is nuclear safety culture. We therefore do not focus on technical training but on developing the right human behavior to work in a 'safety culture' environment. The vision and techniques behind these programs have already been tested in different environments: for example the dismantling of the BN MOX Plant in Dessel (Belgium), Nuclear Safety Culture Training for Electrabel NPP Doel..., but also in the non-nuclear industry. The expertise to do so was found in combining the know-how of the Training and the Nuclear Department of ECS. In training, ECS is one of the main providers of education in risky tasks, like elevation and manipulation of charges, working in confined spaces... but it does also develop training on demand to improve safety in a certain topic. Radiation Protection is the core business in the Nuclear Department with a presence on most of the nuclear sites in Belgium. Combining these two domains in a nuclear safety training program, NSTP, is an important stage in a dismantling project due to specific contamination, technical and other risks. It increases the level of safety and leads to a harmonization of different working cultures. The modular training program makes it possible to evaluate constantly as well as in group or individually. (authors)

  8. Safety evaluation of the nuclear power plant at Cattenom

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    This is a systematic compilation of the material which was dealt with at the level of the German-French Commission (on questions of the safety of nuclear installations) in this discussions about the nuclear power plant at Cattenom. As a supplement to the report published already in 1982, the Commission has officially released its deliberation results on the subjects constructive safety measures, radiological effects, and precautions in case of an emergency. The allegations according to which the installation is wanting in safety are countered by the joint statement of the chairmen of GPR (Permanent Group on Reactors) and RSK (German Commission on Reactor Safety) of August 29, 1986. (HSCH) [de

  9. Nuclear Safety Review for the Year 2008

    International Nuclear Information System (INIS)

    2009-07-01

    Nuclear technologies are increasingly seen as important solutions for meeting a number of challenges. Enabling the peaceful use of nuclear technology to support global energy demands and other human needs must be accompanied by deliberate, internationally-coordinated actions to minimize the potential for nuclear accidents and terrorism. While in recent years, the safety performance of the nuclear industry has been good, it is important to avoid any complacency. The Agency continues to support and promote the global nuclear safety and security regime as a framework for worldwide achievement of high levels of safety and security in nuclear activities. In 2008, three general themes can be observed from the global trends, issues and challenges in nuclear safety: the continuous improvements in strengthening safety worldwide through international cooperation; an expected increase of new entrant nuclear power programmes and the expansion of existing programmes; and safety and security synergy. Regarding continuous improvements to strengthen safety worldwide, the focus was on operating experience feedback and knowledge networking; and self-assessment and peer review. In the areas of new entrant nuclear programmes and expansion of existing nuclear programmes, activities centred on national safety infrastructures; human resources and capacity building; regulatory independence; nuclear incident and emergency preparedness and response; spent fuel and radioactive waste management; and multinational aspects of nuclear activities. In the area of safety and security synergy, in 2008 there was increasing awareness that processes need to be in place to ensure that safety activities do not compromise security and vice versa. As outlined in Safety Fundamentals No. SF-1, the prime responsibility for safety must rest with the person or organization responsible for facilities and activities that give rise to radiation risks. An effective legal and governmental framework for safety

  10. The role of probabilistic safety assessment and probabilistic safety criteria in nuclear power plant safety

    International Nuclear Information System (INIS)

    1992-01-01

    The purpose of this Safety Report is to provide guidelines on the role of probabilistic safety assessment (PSA) and a range of associated reference points, collectively referred to as probabilistic safety criteria (PSC), in nuclear safety. The application of this Safety Report and the supporting Safety Practice publication should help to ensure that PSA methodology is used appropriately to assess and enhance the safety of nuclear power plants. The guidelines are intended for use by nuclear power plant designers, operators and regulators. While these guidelines have been prepared with nuclear power plants in mind, the principles involved have wide application to other nuclear and non-nuclear facilities. In Section 2 of this Safety Report guidelines are established on the role PSA can play as part of an overall safety assurance programme. Section 3 summarizes guidelines for the conduct of PSAs, and in Section 4 a PSC framework is recommended and guidance is provided for the establishment of PSC values

  11. Nuclear power plant's safety and risk

    International Nuclear Information System (INIS)

    Franzen, L.F.

    1975-01-01

    Starting with a comprehensive safety strategy as evolved over the past years and the present legal provisions for the construction and operation of nuclear power plants, the risk of the intended operation, of accidents and unforeseen events is discussed. Owing to the excellent safety record of nuclear power plants, main emphasis in discussing accidents is given to the precautionary analysis within the framework of the licensing procedure. In this context, hypothetical accidents are mentioned only as having been utilized for general risk comparisons. The development of a comprehensive risk concept for a completely objective safety assessment of nuclear power plants remains as a final goal. (orig.) [de

  12. The safety of the nuclear fuel cycle

    International Nuclear Information System (INIS)

    1993-01-01

    The nuclear fuel cycle covers the procurement and preparation of fuel for nuclear power reactors, its recovery and recycling after use and the safe storage of all wastes generated through these operations. The facilities associated with these activities have an extensive and well documented safety record accumulated over the past 40 years by technical experts and safety authorities. This report constitutes an up-to-date analysis of the safety of the nuclear fuel cycle, based on the available experience in OECD countries. It addresses the technical aspects of fuel cycle operations, provides information on operating practices and looks ahead to future activities

  13. Regulatory supervision of safety indicators; experience with radiation safety indicators in Dukovany nuclear power plant performance

    International Nuclear Information System (INIS)

    Urbancik, L.; Kulich, V.

    2004-01-01

    The State Office for Nuclear Safety uses three sets of indicators describing the following aspects of a favourable nuclear power plant operation: smooth operation in normal circumstances, low risk to the population, and operation with a positive safety attitude. These are three safety-related areas for assessment. Each area has its own set of indicators. Overall operational safety performance indicators were identified for each attribute. From this point, a level of strategic indicators was developed, and finally, a set of specific indicators was set up. While neither the overall indicators nor the strategic indicators are directly measurable, the specific indicators are directly measurable and are targeted during inspection. (author)

  14. International organisations assure nuclear safety competence

    International Nuclear Information System (INIS)

    Alonso, A.

    2000-01-01

    Irrespective of current views on the future of nuclear power programmes, concerns are arising with respect to the long-term ability to preserve safety competence because student enrollments in nuclear engineering are decreasing rapidly and experienced staff are reaching retirement age. 'Assuring Nuclear Safety Competence into the 21. Century' was discussed in depth by workshop participants. The need for a long-term strategic view was emphasised, and policy recommendations were made. These proceedings will be of particular interest to those playing a policy role in the nuclear industry, regulatory bodies and the education sector

  15. Safety management in nuclear technology. Proceedings

    International Nuclear Information System (INIS)

    2008-01-01

    At the symposium of TueV Sued AG (Munich, Federal Republic of Germany) held in Munich on 28 and 29 October 2008, the following lectures were held: (1) Fundamental requirements of the management system in nuclear technology - Experiences from the international developments at IAEA and WENRA (M. Herttrich); (2) Information from a comparison of requirements of safety management systems (B. Kallenbach-Herbert); (3) Requirements of a modern management system in German nuclear power plants from the view of nuclear safety (D. Majer); (4) Requirements on safety management in module 8 of the regulations project (M. Maqua); (5) Requirements on the management system in nuclear power plants according to GRS-229 and developments at the KTA 1402 ''Integrated management system for safe operation of nuclear power plants (in progress)'' (C. Verstegen); (6) Experiences from the development and implementation of safety management systems in connection with the works management of a nuclear power plant (K. Ramler); (7) Design of a safety management system of a nuclear power plant in consideration of existing management systems (U. Naumann); (8) Experiences in the utilization and evaluation of a safety management system (J. Ritter); (9) Aspects of leadership of safety management systems (S. Seitz); (10) Management of safety or safety management system? Prevailing or administration? (A. Frischknecht); (11) Change management - strategies for successful transfer of new projects: How can I motivate co-workers for a further development of the safety management system? (U. Schnabel); (12) Requirements concerning indicators in integrated management systems and safety management systems (J. Stiller); (13) Integration of proactive and reactive indicators in the safety management system (B. Fahlbruch); (14) What do indicators show? About the use of indicators by regulatory authorities (A. Kern); (15) Safety management and radiation protection in nuclear technology (K. Grantner); (16) Any more

  16. Evaluation of Seismic Safety for Existing Nuclear Installations. Safety Guide

    International Nuclear Information System (INIS)

    2009-01-01

    The IAEA's Statute authorizes the Agency to establish safety standards to protect health and minimize danger to life and property - standards which the IAEA must use in its own operations, and which a State can apply by means of its regulatory provisions for nuclear and radiation safety. A comprehensive body of safety standards under regular review, together with the IAEA's assistance in their application, has become a key element in a global safety regime. In the mid-1990s, a major overhaul of the IAEA's safety standards programme was initiated, with a revised oversight committee structure and a systematic approach to updating the entire corpus of standards. The new standards that have resulted are of a high calibre and reflect best practices in Member States. With the assistance of the Commission on Safety Standards, the IAEA is working to promote the global acceptance and use of its safety standards. Safety standards are only effective, however, if they are properly applied in practice. The IAEA's safety services - which range in scope from engineering safety, operational safety, and radiation, transport and waste safety to regulatory matters and safety culture in organizations - assist Member States in applying the standards and appraise their effectiveness. These safety services enable valuable insights to be shared and I continue to urge all Member States to make use of them. Regulating nuclear and radiation safety is a national responsibility, and many Member States have decided to adopt the IAEA's safety standards for use in their national regulations. For the contracting parties to the various international safety conventions, IAEA standards provide a consistent, reliable means of ensuring the effective fulfilment of obligations under the conventions. The standards are also applied by designers, manufacturers and operators around the world to enhance nuclear and radiation safety in power generation, medicine, industry, agriculture, research and education

  17. Nuclear Safety Review for the Year 2009

    International Nuclear Information System (INIS)

    2010-07-01

    The global nuclear community is experiencing a period of dynamic change. The introduction of new nuclear power plants, the rapid expansion of existing nuclear power programmes and the wider use of radioactive sources and ionizing radiation in general highlight the need for continued and improved international cooperation to address the associated challenges. The increasingly multinational nature of today's nuclear business and activities underscores this need. In this context, it is particularly important to note that the establishment of adequate safety infrastructure and capacity cannot be left to fall behind. The safety performance of the nuclear industry has remained at a high level. Various safety performance indicators, such as those related to unplanned reactor shutdowns, safety equipment availability, radiation exposures to workers, radioactive waste management and radioactive releases to the environment have shown steady improvement over the past two decades, with some levelling off in recent years. Nevertheless, it is necessary to avoid complacency and to continuously improve and strengthen the existing global nuclear safety and security regime so that nuclear technologies can be introduced or their use expanded in a safe and secure manner to meet the world's needs for human well-being and socio-economic development. The Agency continues to support and promote increased participation in the global nuclear safety and security regime as a framework for achieving high levels of safety in nuclear activities worldwide. Through consideration of the global trends, issues and challenges observed in 2009, four key themes in global nuclear safety were identified: 1) continuing international cooperation and emerging coordination for new and expanding nuclear power programmes; 2) improving the long term management of radioactive and nuclear materials; 3) capacity building for sustainable nuclear safety; and 4) strengthening global and regional networking activities

  18. The European community and nuclear safety

    International Nuclear Information System (INIS)

    Brinkhorst, L.J.

    1992-01-01

    Full text: Since the inception of the EURATOM Treaty (1957) the use of nuclear power has made an enormous progress. The nuclear sector has become a very important component of the production of energy. Prisoner of its success further development of the use of nuclear energy is confronted with the challenge of ensuring its integration within the framework of modern environment protection concepts. The link between the radiation protection objective and the responsibilities of the State's Authorities in the control of the design and operation of nuclear industrial facilities has become evident. On the other hand, the evolution in the perception of the transfrontier character of the nuclear risk by the population and. the drive for the political integration of Europe have led the Community Member States to an increasing concentration between their nuclear policy-making organs and in particular between their Nuclear Safety Authorities It is quite natural that the Community institutions, the Council of Ministers and the Commission and more recently the European Parliament have become active hosts and catalysts of the concentration of the Member States on the nuclear safety objectives which are at the source of the protection of the population and of the environment. The joint efforts of the Member States and the Commission have led to a reinforcement of the process of harmonisation of safety requirements for nuclear installations at Community level. A parallel concentration effort has been done by Community Member States concerning the back-end of the fuel cycle, in particular radioactive waste management. The European Community meets the conditions to become a key driving force for nuclear safety progress beyond its region because of the advanced stage of nuclear safety in the Community which includes the flexibility and completeness of its fuel cycle and the long experience of Community institutions in the promotion of harmonisation of safety objectives, criteria and

  19. A Methodology for Evaluating Quantitative Nuclear Safety Culture Impact

    International Nuclear Information System (INIS)

    Han, Kiyoon; Jae, Moosung

    2015-01-01

    Through several accidents of NPPs including the Fukushima Daiichi in 2011 and Chernobyl accidents in 1986, nuclear safety culture has been emphasized in reactor safety world-widely. In Korea, KHNP evaluates the safety culture of NPP itself. KHNP developed the principles of the safety culture in consideration of the international standards. A questionnaire and interview questions are also developed based on these principles and it is used for evaluating the safety culture. However, existing methodology to evaluate the safety culture has some disadvantages. First, it is difficult to maintain the consistency of the assessment. Second, the period of safety culture assessment is too long (every two years) so it has limitations in preventing accidents occurred by a lack of safety culture. Third, it is not possible to measure the change in the risk of NPPs by weak safety culture since it is not clearly explains the effect of safety culture on the safety of NPPs. In this study, Safety Culture Impact Assessment Model (SCIAM) is developed overcoming these disadvantages. In this study, SCIAM which overcoming disadvantages of exiting safety culture assessment method is developed. SCIAM uses SCII to monitor the statues of the safety culture periodically and also uses RCDF to quantify the safety culture impact on NPP's safety. It is significant that SCIAM represents the standard of the healthy nuclear safety culture, while the exiting safety culture assessment presented only vulnerability of the safety culture of organization. SCIAM might contribute to monitoring the level of safety culture periodically and, to improving the safety of NPP

  20. Nuclear safety research in HGF 2012

    International Nuclear Information System (INIS)

    Anon.

    2013-01-01

    After the events at the Japanese nuclear power plant of Fukushima Daiichi, the German Federal government decided that Germany will give up electricity generation from nuclear power within a decade. The last reactor will be disconnected from the power grid in 2022. Helping to make this opt-out safe is one of the duties of the Helmholtz Association with its Nuclear Safety Research Program within the Energy Research Area. Also the demolition of nuclear power plants and the repository problem will keep society, and thus also research, busy for a number of decades to come. Giving up electricity production from nuclear power thus must not mean giving up the required nuclear technology competences. In the fields of reactor safety, demolition, final storage, radiation protection, and crisis management, in critical support of international developments, and for competent evaluation of nuclear facilities around Germany, these competences will be in demand far beyond the German opt-out. This is the reason why the final report by the Ethics Committee on 'Safe Energy Supply' emphasizes the importance of nuclear technology research. Close cooperation on national, European and international levels is indispensable in this effort. Also nuclear safety research in the Helmholtz Association is aligned with the challenges posed by the opt-out of the use of nuclear power. It is important that the high competences in the areas of plant safety and demolition, handling of radioactive waste, and safe final storage as well as radiation protection be preserved. The Nuclear Safety Research Program within the Energy Research Area of the Helmholtz Association therefore will continue studying scientific and technical aspects of the safety of nuclear reactors and the safety of nuclear waste management. These research activities are provident research conducted for society and must be preserved for a long period of time. The work is closely harmonized with the activities of the partners in the

  1. Nuclear Criticality Safety Department Qualification Program

    International Nuclear Information System (INIS)

    Carroll, K.J.; Taylor, R.G.; Worley, C.A.

    1996-01-01

    The Nuclear Criticality Safety Department (NCSD) is committed to developing and maintaining a staff of highly qualified personnel to meet the current and anticipated needs in Nuclear Criticality Safety (NCS) at the Oak Ridge Y-12 Plant. This document defines the Qualification Program to address the NCSD technical and managerial qualification as required by the Y-1 2 Training Implementation Matrix (TIM). This Qualification Program is in compliance with DOE Order 5480.20A and applicable Lockheed Martin Energy Systems, Inc. (LMES) and Y-1 2 Plant procedures. It is implemented through a combination of WES plant-wide training courses and professional nuclear criticality safety training provided within the department. This document supersedes Y/DD-694, Revision 2, 2/27/96, Qualification Program, Nuclear Criticality Safety Department There are no backfit requirements associated with revisions to this document

  2. Nuclear and radiological safety, 1980-1993

    International Nuclear Information System (INIS)

    1994-06-01

    This document lists all sales publications of the International Atomic Energy Agency dealing with Nuclear Safety, issued during the period 1980-1993. It gives an abstract of these publications along with contents and prices in Austrian Schillings

  3. Nuclear criticality safety department training implementation

    International Nuclear Information System (INIS)

    Carroll, K.J.; Taylor, R.G.; Worley, C.A.

    1996-01-01

    The Nuclear Criticality Safety Department (NCSD) is committed to developing and maintaining a staff of qualified personnel to meet the current and anticipated needs in Nuclear Criticality Safety (NCS) at the Oak Ridge Y-12 Plant. The NCSD Qualification Program is described in Y/DD-694, Qualification Program, Nuclear Criticality Safety Department This document provides a listing of the roles and responsibilities of NCSD personnel with respect to training and details of the Training Management System (TMS) programs, Mentoring Checklists and Checksheets, as well as other documentation utilized to implement the program. This document supersedes Y/DD-696, Revision 2, dated 3/27/96, Training Implementation, Nuclear Criticality Safety Department. There are no backfit requirements associated with revisions to this document

  4. Progress of nuclear safety research, (2)

    International Nuclear Information System (INIS)

    Amano, Hiroshi; Nakamura, Hiroei; Nozawa, Masao

    1981-01-01

    The Japan Atomic Energy Research Institute was established in 1956 in conformity with the national policy to extensively conduct the research associated with nuclear energy. Since then, the research on nuclear energy safety has been conducted. In 1978, the Division of Reactor Safety was organized to conduct the large research programs with large scale test facilities. Thereafter, the Divisions of Reactor Safety Evaluation, Environmental Safety Research and Reactor Fuel Examination were organized successevely in the Reactor Safety Research Center. The subjects of research have ranged from the safety of nuclear reactors to that in the recycling of nuclear fuel. In this pamphlet, the activities in JAERI associated with the safety research are reported, which have been carried out in the past two years. Also the international cooperation research program in which JAERI participated is included. This pamphlet consists of two parts and in this Part 2, the environmental safety research is described. The evaluation and analysis of environmental radioactivity, the study on radioactive waste management and the studies on various subjects related to environmental safety are reported. (Kako, I.)

  5. Nuclear safety: what is the price to pay? Press file

    International Nuclear Information System (INIS)

    Lheureux, Yves; Leclerc, Nathalie

    2016-01-01

    After having outlined that the ANCCLI's concern about French contradictions in the field of nuclear safety, this publication proposes an overview of the situation of nuclear safety in France in 2016 from the ANCCLI's point of view: big lessons and (too) small changes after Chernobyl and Fukushima, what has changed since Chernobyl and Fukushima. It outlines why emergency measures are not adapted according to the work of the joint ANCCLI-ACRO scientific committee. The following issues are thus commented: too many remaining questions, age and safety level of a nuclear plant, the specific intervention plans (PPI), sheltering, iodine distribution, population evacuation, evacuation time about nuclear sites, hosting sites in case of evacuation, refugees, safety and security. Recommendations are then given, based on European, Japanese, American, Canadian and Indian experiences. The project of a white paper on the post-accidental situation is presented. Several illustrations are proposed about some of the above issues

  6. Documents pertaining to safety control of nuclear facilities

    International Nuclear Information System (INIS)

    1998-01-01

    The Finnish Radiation and Nuclear Safety Authority (STUK) controls the safety of nuclear facilities in Finland. This control encompasses on one hand the evaluation of plant safety on the basis of plans and analyses pertaining to the plant and on the other hand the inspection of plant structures, systems and components as well as of operational activity. STUK also monitors plants operational experience feedback and technical developments in the field, as well as the development of safety research and takes the necessary measures on their basis. Guide YVL 1.1 describes how STUK controls the design, construction and operation of nuclear power plants. The documents to be submitted to STUK are described in the nuclear energy legislation and YVL guides. This guide presents the mode of delivery, quality, contents and number of documents to be submitted to STUK

  7. Nuclear safety review for the year 1997

    International Nuclear Information System (INIS)

    1998-12-01

    The Nuclear Safety Review attempts to summarize the global nuclear safety scene during 1997. It starts with discussion of significant safety related events worldwide: International cooperation; reactor facilities; radioactive waste management; medical uses of radiation sources; events at other facilities and transport of radioactive material. This is followed by a description of principal IAEA activities that contributed to global nuclear safety, namely: legally binding international agreements; non-binding safety standards and their application. The third part highlights developments in Member States as they reported them. The review closes with a description of issues that are likely to be prominent in the coming year(s). A draft version was submitted to the March 1998 session of the IAEA Board of Governors, and this final version has been prepared in light of the discussion in the Board and was submitted for information to the 42nd session of the IAEA General Conference

  8. Nuclear Safety Project - annual report 1980

    International Nuclear Information System (INIS)

    1981-08-01

    The Annual Report 1980 is a detailed description (in German language) of work within the Nuclear Safety Project performed in 1980 in the nuclear safety field by KfK institutes and departments and by external institutes on behalf of KfK. It includes for each individual research activity short summaries in English language on work completed, essential results, plans for the near future. (orig./RW) [de

  9. Nuclear Safety Project. Annual report 1983

    International Nuclear Information System (INIS)

    1984-06-01

    The annual report 1983 is a detailed description (in German language) of work within the Nuclear Safety Project performed in 1983 in the nuclear safety field by KfK institutes and departments and by external institutes on behalf of KfK. It includes for each individual research activity short summaries in English language on work performed, results obtained and plans for future work. This report was compiled by the project management. (orig.) [de

  10. Progress in Nuclear Safety Reform of TEPCO

    International Nuclear Information System (INIS)

    Kawano, A.

    2016-01-01

    On March 29, 2014, TEPCO issued the Nuclear Safety Reform Plan describing the background cause of our Fukushima Nuclear Accident and our plan to challenge organizational and cultural change to avoid recurrence of such a tragic accident and to pursue the excellence in safety. This report will reflect that background cause with some specific examples and introduce how we are currently implementing this reform plan.

  11. Nuclear safety project. Annual report 1985

    International Nuclear Information System (INIS)

    1986-07-01

    The annual report 1985 is a detailed description (in German language) of work within the nuclear safety project performed in 1985 in the nuclear safety field by KfK institutes and departments and by external institutes on behalf of KfK. It includes for each individual research activity short summaries in English language on work performed, results obtained and plans for future work. This report was compiled by the project management. (orig./HP) [de

  12. Regulatory control of nuclear safety in Finland. Annual report 1997

    Energy Technology Data Exchange (ETDEWEB)

    Tossavainen, K. [ed.

    1998-08-01

    The report describes regulatory control of the use of nuclear energy by the Radiation and Nuclear Safety Authority (STUK) in Finland in 1997. Nuclear regulatory control ascertained that the operation of Finnish NPPs was in compliance with the conditions set out in operating licences and current regulations. In addition to NPP normal operation, STUK oversaw projects at the plant units relating to power uprating and safety improvements. STUK prepared statements for the Ministry of Trade and Industry about the applications for renewing the operating licenses of Loviisa and Olkiluoto NPPs. The most important items of supervision in nuclear waste management were studies relating to the final disposal of spent fuel from NPPs and the review of the licence application for a repository for low- and intermediate-level reactor waste from Loviisa NPP. Preparation of general safety regulations for the final disposal of spent nuclear fuel, to be published in the form of a Council of State Decision, was started. By safeguards control, the use of nuclear materials was verified to be in compliance with current regulations and that the whereabouts of every batch of nuclear material were always known. Nuclear material safeguards were stepped up to prevent illicit trafficking of nuclear materials and other radioactive materials. In co-operation with the Ministry for Foreign Affairs and the Institute of Seismology (University of Helsinki), preparations were undertaken to implement the Comprehensive Nuclear Test Ban Treaty (CTBT). For enforcement of the Treaty and as part of the international regulatory approach, STUK is currently developing laboratory analyses relating to airborne radioactivity measurements. The focus of co-operation funded by external sources was as follows: improvement of the safety of Kola and Leningrad NPPs, improvement of nuclear waste management in North-West Russia, development of the organizations of nuclear safety authorities in Eastern Europe and development

  13. Complementary safety assessments - Report by the French Nuclear Safety Authority

    International Nuclear Information System (INIS)

    2011-12-01

    As an immediate consequence of the Fukushima accident, the French Authority of Nuclear Safety (ASN) launched a campaign of on-site inspections and asked operators (mainly EDF, AREVA and CEA) to make complementary assessments of the safety of the nuclear facilities they manage. The approach defined by ASN for the complementary safety assessments (CSA) is to study the behaviour of nuclear facilities in severe accidents situations caused by an off-site natural hazard according to accident scenarios exceeding the current baseline safety requirements. This approach can be broken into 2 phases: first conformity to current design and secondly an approach to the beyond design-basis scenarios built around the principle of defence in depth. 38 inspections were performed on issues linked to the causes of the Fukushima crisis. It appears that some sites have to reinforce the robustness of the heat sink. The CSA confirmed that the processes put into place at EDF to detect non-conformities were satisfactory. The complementary safety assessments demonstrated that the current seismic margins on the EDF nuclear reactors are satisfactory. With regard to flooding, the complementary safety assessments show that the complete reassessment carried out following the flooding of the Le Blayais nuclear power plant in 1999 offers the installations a high level of protection against the risk of flooding. Concerning the loss of electrical power supplies and the loss of cooling systems, the analysis of EDF's CSA reports showed that certain heat sink and electrical power supply loss scenarios can, if nothing is done, lead to core melt in just a few hours in the most unfavourable circumstances. As for nuclear facilities that are not power or experimental reactors, some difficulties have appeared to implement the CSA approach that was initially devised for reactors. Generally speaking, ASN considers that the safety of nuclear facilities must be made more robust to improbable risks which are not

  14. Nuclear safety in EU candidate countries

    International Nuclear Information System (INIS)

    2000-10-01

    Nuclear safety in the candidate countries to the European Union is a major issue that needs to be addressed in the framework of the enlargement process. Therefore WENRA members considered it was their duty to offer their technical assistance to their Governments and the European Union Institutions. They decided to express their collective opinion on nuclear safety in those candidate countries having at least one nuclear power plant: Bulgaria, the Czech Republic, Hungary, Lithuania, Romania, Slovakia and Slovenia. The report is structured as follows: A foreword including background information, structure of the report and the methodology used, General conclusions of WENRA members reflecting their collective opinion, For each candidate country, an executive summary, a chapter on the status of the regulatory regime and regulatory body, and a chapter on the nuclear power plant safety status. Two annexes are added to address the generic safety characteristics and safety issues for RBMK and VVER plants. The report does not cover radiation protection and decommissioning issues, while safety aspects of spent fuel and radioactive waste management are only covered as regards on-site provisions. In order to produce this report, WENRA used different means: For the chapters on the regulatory regimes and regulatory bodies, experts from WENRA did the work. For the chapters on nuclear power plant safety status, experts from WENRA and from French and German technical support organisations did the work. Taking into account the contents of these chapters, WENRA has formulated its general conclusions in this report

  15. Nuclear safety in EU candidate countries

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-10-01

    Nuclear safety in the candidate countries to the European Union is a major issue that needs to be addressed in the framework of the enlargement process. Therefore WENRA members considered it was their duty to offer their technical assistance to their Governments and the European Union Institutions. They decided to express their collective opinion on nuclear safety in those candidate countries having at least one nuclear power plant: Bulgaria, the Czech Republic, Hungary, Lithuania, Romania, Slovakia and Slovenia. The report is structured as follows: A foreword including background information, structure of the report and the methodology used, General conclusions of WENRA members reflecting their collective opinion, For each candidate country, an executive summary, a chapter on the status of the regulatory regime and regulatory body, and a chapter on the nuclear power plant safety status. Two annexes are added to address the generic safety characteristics and safety issues for RBMK and VVER plants. The report does not cover radiation protection and decommissioning issues, while safety aspects of spent fuel and radioactive waste management are only covered as regards on-site provisions. In order to produce this report, WENRA used different means: For the chapters on the regulatory regimes and regulatory bodies, experts from WENRA did the work. For the chapters on nuclear power plant safety status, experts from WENRA and from French and German technical support organisations did the work. Taking into account the contents of these chapters, WENRA has formulated its general conclusions in this report.

  16. US nuclear safety review and experience

    International Nuclear Information System (INIS)

    Gilinsky, V.

    1977-01-01

    The nuclear safety review of commercial nuclear power reactors has changed over the years from the relatively simple review of Dresden 1 in 1955 to the highly complex and sophisticated regulatory process which characterizes today's reviews. Four factors have influenced this evolution: (1) maturing of the technology and industry; (2) development of the regulatory process and associated staff; (3) feedback of operating experience; and (4) public awareness and participation. The NRC's safety review responsibilities start before an application is tendered and end when the plant is decommissioned. The safety review for reactor licensing is a comprehensive, two-phase process designed to assure that all the established conservative acceptance criteria are satisfied. Operational safety is assured through a strong inspection and enforcement program which includes shutting down operating facilities when necessary to protect the health and safety of the public. The safety of operating reactors is further insured through close regulation of license changes and selective backfitting of new regulatory requirements. An effective NRC standards development program has been implemented and coordinates closely with the national standards program. A confirmatory safety research program has been developed. Both of these efforts are invaluable to the nuclear safety review because they provide the staff with key tools needed to carry out its regulatory responsibilities. Both have been given increased emphasis since the formation of the NRC in 1975. The safety review process will continue to evolve, but changes will be slower and more deliberate. It will be influenced by standardization, early site reviews and development of advanced reactor concepts. New legislation may make possible changes which will simplify and shorten the regulatory process. Certainly the experience provided by the increasing number and types of operating plants will have a very strong impact on future trends in the

  17. Safety of CANDU nuclear power stations

    International Nuclear Information System (INIS)

    Snell, V.G.

    1978-11-01

    A nuclear plant contains a large amount of radioactive material which could be a potential threat to public health. The plant is therefore designed, built and operated so that the risk to the public is low. Careful design of the normal reactor systems is the first line of defense. These systems are highly resistant to an accident happening in the first place, and can also be effective in stopping it if it does happen. Independent and redundant safety sytems minimize the effects of an accident, or stop it completely. They include shutdown systems, emergency core cooling systems, and containment systems. Massive impairment of any one safety system together with an accident can be tolerated. This 'defence in depth' approach recognizes that men and machines are imperfect and that the unexpected happens. The nuclear power plant need not be perfect to be safe. To allow meaningful judgements we must know how safe the plant is. The Atomic Energy Control Board guidelines give one such measure, but they may overestimate the true risk. We interpret these guidelines as an upper limit to the total risk, and trace their evolution. (author)

  18. Safety culture of nuclear power plant

    International Nuclear Information System (INIS)

    Zheng Beixin

    2008-01-01

    This paper is a summary on the basis of DNMC safety culture training material for managerial personnel. It intends to explain the basic contents of safety, design, management, enterprise culture, safety culture of nuclear power plant and the relationship among them. It explains especially the constituent elements of safety culture system, the basic requirements for the three levels of commitments: policy level, management level and employee level. It also makes some analyses and judgments for some typical safety culture cases, for example, transparent culture and habitual violation of procedure. (authors)

  19. report transparency and nuclear safety 2007- CISBIO

    International Nuclear Information System (INIS)

    2007-01-01

    This report presents the activities of CISBIO, nuclear base installation, for the year 2007. CISBIO realizes at Saclay most of the radiopharmaceuticals and drugs distributed in France for the nuclear medicine. The actions concerning the safety, the radiation protection, the significant events, the release control and the environmental impacts and the wastes stored on the center are discussed. (A.L.B.)

  20. AEC sets five year nuclear safety research program

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    The research by the government for the establishment of means of judging the adequacy of safety measures incorporated in nuclear facilities, including setting safety standards and collecting documents of general criteria, and the research by the industry on safety measures and the promotion of safety-related technique are stated in the five year program for 1976-80 reported by subcommittees, Atomic Energy Commission (AEC). Four considerations on the research items incorporated in the program are 1) technical programs relating to the safety of nuclear facilities and the necessary criteria, 2) priority of the relevant items decided according to their impact on circumstances, urgency, the defence-indepth concept and so on, 3) consideration of all relevant data and documents collected, and research subjects necessary to quantify safety measurement, and 4) consideration of technological actualization, the capability of each research body, the budget and the time schedule. In addition, seven major themes decided on the basis of these points are 1) reactivity-initiated accident, 2) LOCA, 3) fuel behavior, 4) structural safety, 5) radioactive release, 6) statistical method of safety evaluation, and 7) seismic characteristics. The committee has deliberated the appropriate division of researches between the government and the industry. A set of tables showing the nuclear safety research plan for 1976-80 are attached. (Iwakiri, K.)

  1. Enhancement of safety at nuclear facilities in Pakistan

    International Nuclear Information System (INIS)

    Ahmad, S.A.; Hayat, T.; Azhar, W.

    2006-01-01

    Pakistan is benefiting from nuclear technology mostly in health and energy sectors as well as agriculture and industry and has an impeccable safety record. At the national level uses of nuclear technology started in 1955 resulting in the operation of Karachi Radioisotope Center, Karachi, in December 1960. Pakistan Nuclear Safety Committee (PNSC) was formulated in 1964 with subsequent promulgation of Pakistan Atomic Energy Commission (PAEC) Ordinance in 1965 to cope with the anticipated introduction of a research reactor, namely PARR-I, and a nuclear power plant, namely KANUPP. Since then Pakistan's nuclear program has expanded to include numerous nuclear facilities of varied nature. This program has definite economic and social impacts by producing electricity, treating and diagnosing cancer patients, and introducing better crop varieties. Appropriate radiation protection includes a number of measures including database of sealed radiation sources at PAEC operated nuclear facilities, see Table l, updated during periodic physical verification of these sources, strict adherence to the BSS-115, IAEA recommended enforcement of zoning at research reactors and NPPs, etc. Pakistan is party to several international conventions and treaties, such as Convention of Nuclear Safety and Early Notification, to improve and enhance safety at its nuclear facilities. In addition Pakistan generally and PAEC particularly believes in a blend of prudent regulations and good/best practices. This is described in this paper. (Author)

  2. Radiation Protection, Nuclear Safety and Security

    International Nuclear Information System (INIS)

    Faye, Ndeye Arame Boye; Ndao, Ababacar Sadikhe; Tall, Moustapha Sadibou

    2014-01-01

    Senegal has put in place a regulatory framework which allows to frame legally the use of radioactive sources. A regulatory authority has been established to ensure its application. It is in the process of carrying out its regulatory functions. It cooperates with appropriate national or international institutions operating in fields related to radiation protection, safety and nuclear safety.

  3. Nuclear Safety Research Department annual report 2000

    DEFF Research Database (Denmark)

    Majborn, B.; Nielsen, Sven Poul; Damkjær, A.

    2001-01-01

    The report presents a summary of the work of the Nuclear Safety Research Department in 2000. The department's research and development activities were organized in two research programmes: "Radiation Protection and Reactor Safety" and "Radioecology andTracer Studies". In addtion the department...

  4. Nuclear Safety Research Department annual report 2001

    DEFF Research Database (Denmark)

    Majborn, B.; Damkjær, A.; Nielsen, Sven Poul

    2002-01-01

    The report presents a summary of the work of the Nuclear Safety Research Department in 2001. The department's research and development activities were organized in two research programmes: "Radiation Protection and Reactor Safety" and "Radioecology andTracer Studies". In addition the department...

  5. Safety assessment for Generation IV nuclear systems

    International Nuclear Information System (INIS)

    Leahy, T.J.

    2012-01-01

    The Generation IV International Forum (GIF) Risk and Safety Working Group (RSWG) was created to develop an effective approach for the safety of Generation IV advanced nuclear energy systems. Recent RSWG work has focused on the definition of an integrated safety assessment methodology (ISAM) for evaluating the safety of Generation IV systems. ISAM is an integrated 'tool-kit' consisting of 5 analytical techniques that are available and matched to appropriate stages of Generation IV system concept development: 1) qualitative safety features review - QSR, 2) phenomena identification and ranking table - PIRT, 3) objective provision tree - OPT, 4) deterministic and phenomenological analyses - DPA, and 5) probabilistic safety analysis - PSA. The integrated methodology is intended to yield safety-related insights that help actively drive the evolving design throughout the technology development cycle, potentially resulting in enhanced safety, reduced costs, and shortened development time

  6. Developing safety culture in nuclear power engineering

    International Nuclear Information System (INIS)

    Tevlin, S.A.

    2000-01-01

    The new issue (no. 11) of the IAEA publications series Safety Reports, devoted to the safety culture in nuclear engineering Safety culture development in the nuclear activities. Practical recommendations to achieve success, is analyzed. A number of recommendations of international experts is presented and basic general indicators of satisfactory and insufficient safety culture in the nuclear engineering are indicated. It is shown that the safety culture has two foundations: human behavior and high quality of the control system. The necessity of creating the confidence by the management at all levels of the enterprise, development of individual initiative and responsibility of the workers, which make it possible to realize the structural hierarchic system, including technical, human and organizational constituents, is noted. Three stages are traced in the process of introducing the safety culture. At the first stage the require,emts of scientific-technical documentation and provisions of the governmental, regional and control organs are fulfilled. At the second stage the management of the organization accepts the safety as an important direction in its activities. At the third stage the organization accomplishes its work, proceeding from the position of constant safety improvement. The general model of the safety culture development is considered [ru

  7. Nuclear safety review for the year 2000

    International Nuclear Information System (INIS)

    2001-06-01

    The nuclear safety review for the year 2000 reports on worldwide efforts to strengthen nuclear and radiation safety, including radioactive waste safety. It is in three parts: Part 1 describes those events in 2000 that have, or may have, significance for nuclear, radiation and waste safety worldwide. It includes developments such as new initiatives in international cooperation, events of safety significance and events that may be indicative of trends in safety; Part 2 describes some of the IAEA efforts to strengthen international co-operation in nuclear, radiation and waste safety during 2000. It covers legally binding international agreements, non-binding safety standards, and provisions for the application of safety standards. This is done in a very brief manner, because these issues are addressed in more detail in the Agency's Annual Report for 2000; Part 3 presents a brief look ahead to some issues that are likely to be prominent in the coming year(s). The topics covered were selected by the IAEA Secretariat on the basis of trends observed in recent years, account being taken of planned or expected future developments. A draft of the Nuclear Safety Review for the Year 2000 was presented to the March 2001 session of the IAEA Board of Governors. This final version has been prepared taking account of the discussion in the Board. In some places, information has been added to describe developments early in 2001 that were considered pertinent to the discussion of events during 2000. In such cases, a note containing the more recent information has been provided in the form of a footnote

  8. The Canadian approach to nuclear power safety

    International Nuclear Information System (INIS)

    Atchison, R.J.; Boyd, F.C.; Domaratski, Z.

    1983-07-01

    The development of the Canadian nuclear power safety philosophy and practice is traced from its early roots at the Chalk River Nuclear Laboratory to the licensing of the current generation of power reactors. Basic to the philosophy is a recognition that the primary responsibility for achieving a high standard of safety resides with the licensee. As a consequence, regulatory requirements have emphasized numerical safety goals and objectives and minimized specific design or operating rules. The Canadian licensing process is described along with a discussion of some of the difficulties encountered. Examples of specific licensing considerations for each phase of a project are included

  9. Code of safety for nuclear merchant ships

    International Nuclear Information System (INIS)

    1982-01-01

    The Code is in chapters, entitled: general (including general safety principles and principles of risk acceptance); design criteria and conditions; ship design, construction and equipment; nuclear steam supply system; machinery and electrical installations; radiation safety (including radiological protection design; protection of persons; dosimetry; radioactive waste management); operation (including emergency operation procedures); surveys. Appendices cover: sinking velocity calculations; seaway loads depending on service periods; safety assessment; limiting dose-equivalent rates for different areas and spaces; quality assurance programme; application of single failure criterion. Initial application of the Code is restricted to conventional types of ships propelled by nuclear propulsion plants with pressurized light water type reactors. (U.K.)

  10. Canadian approach to nuclear power safety

    International Nuclear Information System (INIS)

    Atchison, R.J.; Boyd, F.C.; Domaratzki, Z.

    1983-01-01

    The development of the Canadian nuclear power safety philosophy and practice is traced from its early roots at the Chalk River Nuclear Laboratories to the licensing of the current generation of power reactors. Basic to the philosophy is a recognition that the licensee is primarily responsible for achieving a high standard safety. As a consequence, regulatory requirements have emphasized numerical safety goals and objectives and minimized specific design or operating rules. In this article the Canadian licensing process is described with a discussion of some of the difficulties encountered. Examples of specific licensing considerations for each phase of a project are included

  11. Safety and Health in Nuclear Malaysia workplace

    International Nuclear Information System (INIS)

    Wo, Y.M.

    2013-01-01

    Safety and health at work place is essential to ensure the health of their workers as required under the Occupational Safety and Health Act 1994 (Act 514). In Malaysian Nuclear Agency, each building / block was appointed with one/ two supervisors, known as Area Supervisor to ensure the safety of buildings / blocks. The area supervisor will conduct periodic bimonthly inspections of the building / block under their supervision. This paper presents the results of the inspection of 80 supervisors over 45 buildings / blocks at the Malaysian Nuclear Agency for the first six months of the year 2013. (author)

  12. Safety culture in nuclear installations. Proceedings

    International Nuclear Information System (INIS)

    Carnino, A.; Weimann, G.

    1995-04-01

    These proceedings of the International Topical Meeting on Safety Culture in Nuclear Installations held in Vienna, Austria from 24 to 28 April 1995 provide a wide forum of information exchange and discussions on the topic safety culture in nuclear power plants. Safety culture deals with human factors since it deals with attitudes, organization and management. It then means that it has a natural component in it which is linked to the national culture and education. There are about 95 contributions, some of them presented by title and abstract only. All of them are in the subject scope of INIS. (Botek)

  13. Current status of nuclear safety research

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    Efforts at nuclear safety research have expanded year by year in Japan, in term of money and technical achievement. The Atomic Energy Commission set last year the five year nuclear safety research program, a guideline by which various research institutes will be able to develop their own efforts in a concerted manner. From the results of the nuclear safety research which cover very wide areas ranging from reactor engineering safety, safety of nuclear fuel cycle facilities, prevention of radiation hazards to the adequate treatment and disposal of radioactive wastes, AIJ hereafter focuses of LWR engineering safety and prevents two articles, one introducing the current results of the NSSR program developed by JAERI and the other reporting the LWR reliability demonstration testing projects being promoted by MITI. The outline of these demonstration tests was reported in this report. The tests consist of earthquake resistance reliability test of nuclear power plants, steam generator reliability tests, valve integrity tests, fuel assembly reliability tests, reliability tests of heat affected zones and reliability tests of pumps. (Kobatake, H.)

  14. Safety culture in nuclear installations - The role of the regulator

    International Nuclear Information System (INIS)

    Karigi, Alice W.

    2002-01-01

    Safety culture is an amalgamation of values, standards, morals and norms of acceptable behavior by the licensees, Radiation workers and the Regulator. The role played by a Regulator in establishing safety culture in a nuclear installation is that related to Authorization, review, assessment, inspection and enforcement. The regulator is to follow the development of a facility or activity from initial selection of the site through design, construction, commissioning, radioactive waste management through to decommissioning and closure. He is to ensure safety measures are followed through out the operation of the facility by laying down in the license conditions of controlling construction of nuclear installations and ensuring competence of the operators. (author)

  15. Radiological protection and nuclear safety postgraduate course

    International Nuclear Information System (INIS)

    Segado, R.C.; Menossi, C.A.

    1998-01-01

    Full text: The first Radiation Protection and Nuclear Safety Postgraduate Course was held in 1977, when the former Radioprotection and Nuclear Safety Branch of the National Atomic Energy Commission decided implement that course for the qualification of its professionals. After then, in 1980, by agreement between the CNEA, the National University of Buenos Aires and the Ministry of Health and Social Welfare got its present academic qualification as a Post-Graduate Course. Since then, it was sponsored by the IAEA. This Organization annually grants fellowships to fifteen students from different countries. Up to now, twenty consecutive courses have been delivered and more than five hundredth graduated, more than half of them coming from abroad. The aim of the course is the qualification and training in Radiological Protection and Nuclear Safety of those professionals involved in the design, construction, operation and decommissioning of Nuclear and Radioactive Installation and their related regulatory issues. (author) [es

  16. Nuclear criticality safety handbook. Version 2

    International Nuclear Information System (INIS)

    1999-03-01

    The Nuclear Criticality Safety Handbook, Version 2 essentially includes the description of the Supplement Report to the Nuclear Criticality Safety Handbook, released in 1995, into the first version of Nuclear Criticality Safety Handbook, published in 1988. The following two points are new: (1) exemplifying safety margins related to modelled dissolution and extraction processes, (2) describing evaluation methods and alarm system for criticality accidents. Revision is made based on previous studies for the chapter that treats modelling the fuel system: e.g., the fuel grain size that the system can be regarded as homogeneous, non-uniformity effect of fuel solution, and burnup credit. This revision solves the inconsistencies found in the first version between the evaluation of errors found in JACS code system and criticality condition data that were calculated based on the evaluation. (author)

  17. Nuclear safety surveillance and control of National Nuclear Safety Administration of PRC during commissioning and operation of nuclear power plants

    International Nuclear Information System (INIS)

    Feng, W.; Zhang, C.

    1994-01-01

    This article describes the method of nuclear safety surveillance and control of National Nuclear Safety Administration (NNSA) of PRC during commissioning and operation of nuclear power plants (NPPs) and fist use for Qinshan and Guangdong Daya Bay nuclear power plants (GNPS). It is concluded that the surveillance models set up for Qinshan NPP and for GNPS commissioning were effective and had played an important role by ensuring the quality and safety of the commissioning testing and consequently the nuclear safety of these two power plants. 2 tabs

  18. Nuclear security - New challenge to the safety of nuclear power plants

    International Nuclear Information System (INIS)

    Li Ganjie

    2008-01-01

    The safety of nuclear power plants involves two aspects: one is to prevent nuclear accidents resulted from systems and equipments failure or human errors; the other is to refrain nuclear accidents from external intended attack. From this point of view, nuclear security is an organic part of the nuclear safety of power plants since they have basically the same goals and concrete measures with each other. In order to prevent malicious attacks; the concept of physical protection of nuclear facilities has been put forward. In many years, a series of codes and regulations as well as technical standard systems on physical protection had been developed at international level. The United Nations passed No. 1540 resolution as well as 'Convention on the Suppression of Acts of Nuclear terrorism', and revised 'Convention on Physical Protection of Nuclear Materials', which has enhanced a higher level capacity of preparedness by international community to deal with security issues of nuclear facilities. In China, in order to improve the capability of nuclear power plants on preventing and suppressing the external attacks, the Chinese government consecutively developed the related codes and standards as well as technical documents based on the existing laws and regulations, including 'Guide for the Nuclear Security of Nuclear Power Plants' and 'Guide for the Physical Protection of Nuclear Materials', so as to upgrade the legislative requirements for nuclear security in power plants. The government also made greater efforts to support the scientific research and staff training on physical protection, and satisfying the physical protection standards for newly-built nuclear facilities such as large scale nuclear power plants to meet requirement at international level. At the same time old facilities were renovated and the Chinese government established a nuclear emergency preparedness coordination mechanism, developed corresponding emergency preparedness plans, intensified the

  19. Seismic safety of nuclear power plants

    International Nuclear Information System (INIS)

    Guerpinar, A.; Godoy, A.

    2001-01-01

    This paper summarizes the work performed by the International Atomic Energy Agency in the areas of safety reviews and applied research in support of programmes for the assessment and enhancement of seismic safety in Eastern Europe and in particular WWER type nuclear power plants during the past seven years. Three major topics are discussed; engineering safety review services in relation to external events, technical guidelines for the assessment and upgrading of WWER type nuclear power plants, and the Coordinated Research Programme on 'Benchmark study for the seismic analysis and testing of WWER type nuclear power plants'. These topics are summarized in a way to provide an overview of the past and present safety situation in selected WWER type plants which are all located in Eastern European countries. Main conclusion of the paper is that although there is now a thorough understanding of the seismic safety issues in these operating nuclear power plants, the implementation of seismic upgrades to structures, systems and components are lagging behind, particularly for those cases in which the re-evaluation indicated the necessity to strengthen the safety related structures or install new safety systems. (author)

  20. Safety requirements and safety experience of nuclear facilities in the Federal Republic of Germany

    International Nuclear Information System (INIS)

    Schnurer, H.L.

    1977-01-01

    Peaceful use of nuclear energy within the F.R.G. is rapidly growing. The Energy Programme of the Federal Government forecasts a capacity of up to 50.000 MW in 1985. Whereas most of this capacity will be of the LWR-Type, other activities are related to LMFBR - and HTGR - development, nuclear ships, and facilities of the nuclear fuel cycle. Safety of nuclear energy is the pacemaker for the realization of nuclear programmes and projects. Due to a very high population - and industrialisation density, safety has the priority before economical aspects. Safety requirements are therefore extremely stringent, which will be shown for the legal, the technical as well as for the organizational area. They apply for each nuclear facility, its site and the nuclear energy system as a whole. Regulatory procedures differ from many other countries, assigning executive power to state authorities, which are supervised by the Federal Government. Another particularity of the regulatory process is the large scope of involvement of independent experts within the licensing procedures. The developement of national safety requirements in different countries generates a necessity to collaborate and harmonize safety and radiation protection measures, at least for facilities in border areas, to adopt international standards and to assist nuclear developing countries. However, different nationally, regional or local situations might raise problems. Safety experience with nuclear facilities can be concluded from the positive construction and operation experience, including also a few accidents and incidents and the conclusions, which have been drawn for the respective factilities and others of similar design. Another tool for safety assessments will be risk analyses, which are under development by German experts. Final, a scope of future problems and developments shows, that safety of nuclear installations - which has reached a high performance - nevertheless imposes further tasks to be solved

  1. Nuclear Safety. 1997; Surete Nucleaire. 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-01-19

    A quick review of the nuclear safety at EDF may be summarized as follows: - the nuclear safety at EDF maintains at a rather good standard; - none of the incidents that took place has had any direct impact upon safety; - the availability remained good; - initiation of the floor 4 reactor generation (N4 unit - 1450 MW) ensued without major difficulties (the Civaux 1 NPP has been coupled to the power network at 24 december 1997); - the analysis of the incidents interesting from the safety point of view presents many similarities with earlier ones. Significant progress has been recorded in promoting actively and directly a safe operation by making visible, evident and concrete the exertion of the nuclear operation responsibility and its control by the hierarchy. The report develops the following chapters and subjects: 1. An overview on 1997; 1.1. The technical issues of the nuclear sector; 1.2. General performances in safety; 1.3. The main incidents; 1.4. Wastes and radiation protection; 2. Nuclear safety management; 2.1. Dynamics and results; 2.2. Ameliorations to be consolidated; 3. Other important issues in safety; 3.1. Probabilistic safety studies; 3.2. Approach for safety re-evaluation; 3.3. The network safety; 3.4. Crisis management; 3.5. The Lifetime program; 3.6. PWR; 3.7. Documentation; 3.8. Competence; 4. Safety management in the future; 4.1. An open future; 4.2. The fast neutron NPP at Creys-Malville; 4.3. Stabilization of the PWR reference frame; 4.4. Implementing the EURATOM directive regarding the radiation protection standards; 4.5. Development of biomedical research and epidemiological studies; 4.6. New regulations concerning the liquid and gaseous effluents; 5. Visions of an open future; 5.1. Alternative views upon safety ay EDF; 5.2. Safety authority; 5.3. International considerations; 5.4. What happens abroad; 5.5. References from non-nuclear domain. Four appendices are added referring to policy of safety management, policy of human factors in NPPs

  2. On the Problem of Nuclear and Radiation Safety Increase of Nuclear Plants

    International Nuclear Information System (INIS)

    Amaglobeli, N.; Chiladze, B.; Karumidze, G.; Lomidze, N.; Mtvaralashvili, M.; Nioradze, M.; Shavgulidze, Z.; Sidelnikov, A.; Tabidze, M.; Trekov, I.

    2008-01-01

    In the present paper the possibility of increasing nuclear and radiation safety of nuclear plants by measurement of the Cherenkov radiation intensity is considered. Model installations were created and experiments conducted, by means of which some derangements of the normal operating mode of the atomic power station capable of leading to the occurrence of emergency conditions are imitated. Distilled water and plexiglass are applied as radiator and as an optical fiber light pipe. Registration of the Cherenkov radiation intensity is carried out by means of photomultipliers. It is shown that application of the suggested method can essentially improve the nuclear and radiation safety of nuclear plants. (author)

  3. Supervision of nuclear safety - IAEA requirements, accepted solutions, trends

    International Nuclear Information System (INIS)

    Jurkowski, M.

    2007-01-01

    Ten principles of the nuclear safety, based on the IAEA's standards are presented. Convention on Nuclear Safety recommends for nuclear safety landscape, the control transparency, culture safety, legal framework and knowledge preservation. Examples of solutions accepted in France, Finland, and Czech Republic are discussed. New trends in safety fundamentals and Integration Regulatory Review are presented

  4. Nuclear criticality safety program at the Fuel Cycle Facility

    International Nuclear Information System (INIS)

    Lell, R.M.; Fujita, E.K.; Tracy, D.B.; Klann, R.T.; Imel, G.R.; Benedict, R.W.; Rigg, R.H.

    1994-01-01

    The Fuel Cycle Facility (FCF) is designed to demonstrate the feasibility of a novel commercial-scale remote pyrometallurgical process for metallic fuels from liquid metal-cooled reactors and to show closure of the Integral Fast Reactor (IFR) fuel cycle. Requirements for nuclear criticality safety impose the most restrictive of the various constraints on the operation of FCF. The upper limits on batch sizes and other important process parameters are determined principally by criticality safety considerations. To maintain an efficient operation within appropriate safety limits, it is necessary to formulate a nuclear criticality safety program that integrates equipment design, process development, process modeling, conduct of operations, a measurement program, adequate material control procedures, and nuclear criticality analysis. The nuclear criticality safety program for FCF reflects this integration, ensuring that the facility can be operated efficiently without compromising safety. The experience gained from the conduct of this program in the Fuel cycle Facility will be used to design and safely operate IFR facilities on a commercial scale. The key features of the nuclear criticality safety program are described. The relationship of these features to normal facility operation is also described

  5. EUROSAFE Forum for nuclear safety. Towards Convergence of Technical Nuclear Safety Practices in Europe. Safety Improvements - Reasons, Strategies, Implementation

    International Nuclear Information System (INIS)

    Erven, Ulrich; Cherie, Jean-Bernard; Boeck, Benoit De

    2005-01-01

    The EUROSAFE Forum for Nuclear Safety is part of the EUROSAFE approach, which consists of two further elements: the EUROSAFE Tribune and the EUROSAFE Web site. The general aim of EUROSAFE is to contribute to fostering the convergence of technical nuclear safety practices in a broad European context. This is done by providing technical safety and research organisations, safety authorities, power utilities, the rest of the industry and non-governmental organisations mainly from the European Union and East-European countries, and international organisations with a platform for the presentation of recent analyses and R and D in the field of nuclear safety. The goal is to share experiences, to exchange technical and scientific opinions, and to conduct debates on key issues in the fields of nuclear safety and radiation protection. The EUROSAFE Forum on 2005 focused on Safety Improvements, Reasons - Strategies - Implementation, from the point of view of the authorities, TSOs and industry. Latest work in nuclear installation safety and research, waste management, radiation safety as well as nuclear material and nuclear facilities security carried out by GRS, IRSN, AVN and their partners in the European Union, Switzerland and Eastern Europe are presented. A high level of nuclear safety is a priority for the countries of Europe. The technical safety organisations play an important role in contributing to that objective through appropriate approaches to major safety issues as part of their assessments and research activities. The challenges to nuclear safety are international. Changes in underlying technologies such as instrumentation and control, the impact of electricity market deregulation, demands for improved safety and safety management, the ageing of nuclear facilities, waste management, maintaining and improving scientific and technical knowledge, and the need for greater transparency - these are all issues where the value of an international approach is gaining

  6. EUROSAFE Forum for nuclear safety. Towards Convergence of Technical Nuclear Safety Practices in Europe. Safety Improvements - Reasons, Strategies, Implementation

    Energy Technology Data Exchange (ETDEWEB)

    Erven, Ulrich (ed.) [Gesellschaft fuer Anlagen- und Reaktorsicherheit, GRS mbH, Schwertnergasse 1, 50667 Koeln (Germany); Cherie, Jean-Bernard (ed.) [Institut de Radioprotection et de Surete Nucleaire, IRSN, BP 17, 92262 Fontenay-aux-Roses Cedex (France); Boeck, Benoit De (ed.) [Association Vincotte Nuclear, AVN, Rue Walcourt 148, 1070 Bruxelles (Belgium)

    2005-07-01

    The EUROSAFE Forum for Nuclear Safety is part of the EUROSAFE approach, which consists of two further elements: the EUROSAFE Tribune and the EUROSAFE Web site. The general aim of EUROSAFE is to contribute to fostering the convergence of technical nuclear safety practices in a broad European context. This is done by providing technical safety and research organisations, safety authorities, power utilities, the rest of the industry and non-governmental organisations mainly from the European Union and East-European countries, and international organisations with a platform for the presentation of recent analyses and R and D in the field of nuclear safety. The goal is to share experiences, to exchange technical and scientific opinions, and to conduct debates on key issues in the fields of nuclear safety and radiation protection. The EUROSAFE Forum on 2005 focused on Safety Improvements, Reasons - Strategies - Implementation, from the point of view of the authorities, TSOs and industry. Latest work in nuclear installation safety and research, waste management, radiation safety as well as nuclear material and nuclear facilities security carried out by GRS, IRSN, AVN and their partners in the European Union, Switzerland and Eastern Europe are presented. A high level of nuclear safety is a priority for the countries of Europe. The technical safety organisations play an important role in contributing to that objective through appropriate approaches to major safety issues as part of their assessments and research activities. The challenges to nuclear safety are international. Changes in underlying technologies such as instrumentation and control, the impact of electricity market deregulation, demands for improved safety and safety management, the ageing of nuclear facilities, waste management, maintaining and improving scientific and technical knowledge, and the need for greater transparency - these are all issues where the value of an international approach is gaining

  7. Nuclear Safety Review for the Year 2010

    International Nuclear Information System (INIS)

    2011-07-01

    The Agency, as a leading organization for promoting international cooperation among its Member States, is in a unique position to observe global trends, issues and challenges in nuclear safety and security through a wide variety of activities related to the establishment of safety standards and security guidelines and their application. The contents of this Nuclear Safety Review reflect the emerging nuclear safety trends, issues and challenges for 2010, as well as recapitulate the Agency's activities intended to further strengthen the global nuclear safety and security framework in all areas of nuclear, radiation, waste and transport safety. The accident at the Fukushima Daiichi Nuclear Power Plant, caused by the extraordinary disasters of the earthquake and tsunamis that struck Japan on 11 March 2011, continues to be assessed. As this report focuses on developments in 2010, the accident and its implications are not addressed here, but will be addressed in future reports of the Agency. The international nuclear community maintained a high level of safety performance in 2010. Nuclear power plant safety performance remained high, and indicated an improved trend in the number of emergency shutdowns as well in the level of energy available during these shutdowns. In addition, more States explored or expanded their interests in nuclear power programmes, and more faced the challenge of establishing the required regulatory infrastructure, regulatory supervision and safety management over nuclear installations and the use of ionizing radiation. Issues surrounding radiation protection and radioecology continued as trends in 2010. For example, increased public awareness of exposure to and environmental impacts of naturally occurring radioactive material (NORM) as well as nuclear legacy sites has led to increased public concern. In addition, human resources in radiation protection and radioecology have been lost as a result of retirement and of the migration of experts to

  8. Safety culture in nuclear power plants. Proceedings

    International Nuclear Information System (INIS)

    1994-12-01

    As a consequence of the INSAG-4 report on 'safety culture', published by the IAEA in 1991, the Federal Commission for the Safety of Nuclear Power Plants (KSA) decided to hold a one-day seminar as a first step in this field. The KSA is an advisory body of the Federal Government and the Federal Department of Transport and Energy (EVED). It comments on applications for licenses, observes the operation of nuclear power plants, assists with the preparation of regulations, monitors the progress of research in the field of nuclear safety, and makes proposals for research tasks. The objective of this seminar was to familiarise the participants with the principles of 'safety culture', with the experiences made in Switzerland and abroad with existing concepts, as well as to eliminate existing prejudices. The main points dealt with at this seminar were: - safety culture from the point of view of operators, - safety culture from the point of view of the authorities, - safety culture: collaboration between power plants, the authorities and research organisations, - trends and developments in the field of safety culture. Invitations to attend this seminar were extended to the management boards of companies operating Swiss nuclear power plants, and to representatives of the Swiss authorities responsible for the safety of nuclear power plants. All these organisations were represented by a large number of executive and specialist staff. We would like to express our sincerest thanks to the Head of the Federal Department of Transport and Energy for his kind patronage of this seminar. (author) figs., tabs., refs

  9. Safety related terms for advanced nuclear plants

    International Nuclear Information System (INIS)

    1991-09-01

    The terms considered in this document are in widespread current use without a universal consensus as to their meaning. Other safety related terms are already defined in national or international codes and standards as well as in IAEA's Nuclear Safety Standards Series. Most of the terms in those codes and standards have been defined and used for regulatory purposes, generally for application to present reactor designs. There is no intention to duplicate the description of such regulatory terms here, but only to clarify the terms used for advanced nuclear plants. The following terms are described in this paper: Inherent safety characteristics, passive component, active component, passive systems, active system, fail-safe, grace period, foolproof, fault-/error-tolerant, simplified safety system, transparent safety

  10. Safety related terms for advanced nuclear plants

    International Nuclear Information System (INIS)

    1995-12-01

    The terms considered in this document are in widespread current use without a universal consensus as to their meaning. Other safety related terms are already defined in national or international codes and standards as well as in IAEA's Nuclear Safety Standards Series. Most of the terms in those codes and standards have been defined and used for regulatory purposes, generally for application to present reactor designs. There is no intention to duplicate the description of such regulatory terms here, but only to clarify the terms used for advanced nuclear plants. The following terms are described in this paper: Inherent safety characteristics, passive component, active component, passive systems, active system, fail-safe, grace period, foolproof, fault-/error-tolerant, simplified safety system, transparent safety

  11. A comparative approach to nuclear safety and nuclear security

    International Nuclear Information System (INIS)

    2009-01-01

    The operators in charge of nuclear facilities or activities have to deal with nuclear and radiological risks, which implies implementing two complementary approaches - safety and security - each of which entails specific methods. Targeting the same ultimate purpose, these two approaches must interact to mutually reinforce each other, without compromising one another. In this report, IRSN presents its reflections on the subject, drawing on its expertise in assessing risks on behalf of the French safety and security authorities, together with the lessons learned from sharing experience at international level. Contents: 1 - Purpose and context: Definitions, Similar risks but different causes, Transparency and confidentiality, Synergy in dealing with sabotage, A common purpose: protecting Man and the environment; 2 - Organizational principles: A legislative and regulatory framework relative to safety as well as security, The competent nuclear safety and security authorities, A difference in the distribution of responsibilities between the operators and the State (Prime responsibility of operators, A different involvement of the State), Safety culture and security culture; 3 - Principles for the application of safety and security approaches: Similar design principles (The graded approach, Defence-in-depth, Synergy between safety and security), Similar operating principles (The same requirement regarding constant monitoring, The same need to take account of feedback, The same need to update the baseline, Sharing good practices is more restricted in the area of security, The need to deal with the respective requirements of safety and security), Similar emergency management (Developing emergency and contingency plans, Carrying out exercises), Activities subject to quality requirements; 4 - Conclusion

  12. International cooperation in nuclear safety

    International Nuclear Information System (INIS)

    Rosen, M.

    1991-01-01

    The mechanisms of international co-operations, co-ordinated by International Atomic Energy Agency, are presented. These co-operations are related to international safety standards, to the safety of the four hundred existing reactors in operation, to quick help and information in case of emergency, and to the already valid international conventions. The relation between atomic energy and environmental protection is also discussed briefly. (K.A.)

  13. Safety of nuclear installations in Slovakia

    International Nuclear Information System (INIS)

    1998-01-01

    In this part next aspects are described: (1) Site selection (Legislation related to site selection; Meeting criteria at Bohunice and Mochovce sites; International agreements); (2) Design preparation and construction (Designing and construction-relevant legislation; Nuclear installation project preparation of nuclear installation at Mochovce site); (3) Operation (Operator licensing procedure; Operation limits and conditions; Maintenance testing and control documentation for management and operation; Technical support of operation; Analysis of events at nuclear installations and Radioactive waste production); (4) Planned safety upgrading activities at nuclear installations

  14. Aging of nuclear safety related concrete structures

    International Nuclear Information System (INIS)

    Cerny, R.; Vydra, V.; Toman, J.; Vodak, F.

    1994-01-01

    An analysis of aging processes in nuclear-safety-related concrete structures (NSRCS) is presented. The major environmental stressor and aging factors affecting the performance of NSRCS are summarized, as are drying and plastic shrinkage, expansion of water during the freeze-thaw cycle, water passing through cracks dissolving or leaching the soluble calcium hydroxide, attack of acid rain and ground water, chemical reactions between particular aggregates and the alkaline solution within cement paste, reaction of calcium hydroxide in cement paste hydration products with atmospheric carbon dioxide, and physical radiation effects of neutrons and gamma radiation. The current methods for aging management in NSRCS are analyzed and evaluated. A new treatment is presented for the monitoring, evaluation and prediction of aging processes, consisting in a combination of theoretical methods, laboratory experiments, in-situ measurements and numerical simulations. 24 refs

  15. Siting of nuclear facilities. Selections from Nuclear Safety

    Energy Technology Data Exchange (ETDEWEB)

    Buchanan, J.R.

    1976-07-01

    The report presented siting policy and practice for nuclear power plants as developed in the U.S. and abroad. Twenty-two articles from Nuclear Safety on this general topic are reprinted since they provide a valuable reference source. The appendices also include reprints of some relevant regulatory rules and guides on siting. Advantages and disadvantages of novel siting concepts such as underground containment, offshore siting, and nuclear energy parks are addressed. Other topics include site criteria, risk criteria, and nuclear ship criteria.

  16. Siting of nuclear facilities. Selections from Nuclear Safety

    International Nuclear Information System (INIS)

    Buchanan, J.R.

    1976-07-01

    The report presented siting policy and practice for nuclear power plants as developed in the U.S. and abroad. Twenty-two articles from Nuclear Safety on this general topic are reprinted since they provide a valuable reference source. The appendices also include reprints of some relevant regulatory rules and guides on siting. Advantages and disadvantages of novel siting concepts such as underground containment, offshore siting, and nuclear energy parks are addressed. Other topics include site criteria, risk criteria, and nuclear ship criteria

  17. Seismic safety of Paks nuclear power plant

    International Nuclear Information System (INIS)

    Katona, T.

    1993-01-01

    An extensive program is underway at Paks NPP for evaluation of the seismic safety and for development of the necessary safety increasing measures. This program includes the following five measures: investigation of methods, regulations and techniques utilized for reassessment of seismic safety of operating NPPs and promoting safety; investigation of earthquake hazards; development of concepts for creating the seismic safety location of earthquake warning system; determination of dynamic features of systems and facilities determined by the concept, and preliminary evaluation of the seismic safety

  18. Research on crisis communication of nuclear and radiation safety

    International Nuclear Information System (INIS)

    Cao Yali; Zhang Ying

    2013-01-01

    Insufficient public cognition of nuclear and radiation safety and absence of effective method to handle crisis lead to common crisis events of nuclear and radiation safety, which brings about unfavorable impact on the sound development of nuclear energy exploring and application of nuclear technology. This paper, based on crisis communication theory, analyzed the effect of current situation on nuclear and radiation safety crisis, discussed how to handle crisis, and tried to explore the effective strategies for nuclear and radiation safety crisis handling. (authors)

  19. Emergency response and nuclear risk governance. Nuclear safety at nuclear power plant accidents

    International Nuclear Information System (INIS)

    Kuhlen, Johannes

    2014-01-01

    The present study entitled ''Emergency Response and Nuclear Risk Governance: nuclear safety at nuclear power plant accidents'' deals with issues of the protection of the population and the environment against hazardous radiation (the hazards of nuclear energy) and the harmful effects of radioactivity during nuclear power plant accidents. The aim of this study is to contribute to both the identification and remediation of shortcomings and deficits in the management of severe nuclear accidents like those that occurred at Chernobyl in 1986 and at Fukushima in 2011 as well as to the improvement and harmonization of plans and measures taken on an international level in nuclear emergency management. This thesis is divided into a theoretical part and an empirical part. The theoretical part focuses on embedding the subject in a specifically global governance concept, which includes, as far as Nuclear Risk Governance is concerned, the global governance of nuclear risks. Due to their characteristic features the following governance concepts can be assigned to these risks: Nuclear Safety Governance is related to safety, Nuclear Security Governance to security and NonProliferation Governance to safeguards. The subject of investigation of the present study is as a special case of the Nuclear Safety Governance, the Nuclear Emergency governance, which refers to off-site emergency response. The global impact of nuclear accidents and the concepts of security, safety culture and residual risk are contemplated in this context. The findings (accident sequences, their consequences and implications) from the analyses of two reactor accidents prior to Fukushima (Three Mile Iceland in 1979, Chernobyl in 1986) are examined from a historical analytical perspective and the state of the Nuclear Emergency governance and international cooperation aimed at improving nuclear safety after Chernobyl is portrayed by discussing, among other topics, examples of &apos

  20. Nuclear safety. How is it evaluated?

    International Nuclear Information System (INIS)

    Andersson, Kjell; Andersson, Johan; Carlsson, Lennart; Olsson, Richard; Ericsson, A.M.; Gunsell, L.; Wene, C.O.

    1996-09-01

    A working group with representatives for the three subject areas reactor safety, disposal of spent fuels and transport of radioactive materials has performed a project aiming to clarify similarities and differences of the three areas concerning methods for safety analysis, criteria, risks etc; and to develop contacts between experts in the areas in order to facilitate transfer of methods. Some of the more precise objectives were: To identify common problems that could be solved jointly, to discuss prospects for a 'meta-method' that can support safety analysis in the entire field of nuclear safety, and to discuss possibilities for a homogeneous attitude towards risk management

  1. Operational safety of nuclear power plants

    International Nuclear Information System (INIS)

    Tanguy, P.

    1987-01-01

    The operational safety of nuclear power plants has become an important safety issue since the Chernobyl accident. A description is given of the various aspects of operational safety, including the importance of human factors, responsibility, the role and training of the operator, the operator-machine interface, commissioning and operating procedures, experience feedback, and maintenance. The lessons to be learnt from Chernobyl are considered with respect to operator errors and the management of severe accidents. Training of personnel, operating experience feedback, actions to be taken in case of severe accidents, and international cooperation in the field of operational safety, are also discussed. (U.K.)

  2. Proceedings of the Nuclear Criticality Technology Safety

    International Nuclear Information System (INIS)

    Sanchez, Renee G.

    1998-01-01

    This document contains summaries of most of the papers presented at the 1995 Nuclear Criticality Technology Safety Project (NCTSP) meeting, which was held May 16 and 17 at San Diego, Ca. The meeting was broken up into seven sessions, which covered the following topics: (1) Criticality Safety of Project Sapphire; (2) Relevant Experiments For Criticality Safety; (3) Interactions with the Former Soviet Union; (4) Misapplications and Limitations of Monte Carlo Methods Directed Toward Criticality Safety Analyses; (5) Monte Carlo Vulnerabilities of Execution and Interpretation; (6) Monte Carlo Vulnerabilities of Representation; and (7) Benchmark Comparisons

  3. Losing nuclear expertise - A safety concern

    International Nuclear Information System (INIS)

    Ziakova, M.

    2002-01-01

    Full text: Since the mid of eighties several important changes in human beings behaviour, which influence nuclear field, can be observed - the loss of interest in studying technical disciplines (namely nuclear), strong pressure of environmental movements, stagnation of electricity consumption and deregulation of electric markets. All these factors create conditions which are leading to the decrease of job positions related to the nuclear field connected particularly with research, design and engineering. Loss of interest in studying nuclear disciplines together with the decrease of number of job positions has led to the declining of university enrolments, closing of university departments and research reactors. In this manner just a very small number of appropriately educated new experts are brought In the same moment the additional internal factor - the relative ageing of the human workforce on both sites operators of nuclear facilities and research and engineering organisations can be observed. All these factors, if not addressed properly, could lead to the loss of nuclear expertise and the loss of nuclear expertise represents the direct thread to the nuclear safety. The latest studies have shown that at present NPPs cannot be replaced by other kinds of electric sources and in no case by renewable ones in an efficient manner. Therefore it is necessary to carefully manage knowledge gathered in the nuclear field during the years and to keep on the nuclear safety research, education and training to ensure and upgrade safe and reliable operation of existing and future nuclear facilities. This is responsibility of both the governments of the states using nuclear applications and owners of nuclear facilities. (author)

  4. The basic discussion on nuclear power safety improvement based on nuclear equipment design

    International Nuclear Information System (INIS)

    Zhao Feiyun; Yao Yangui; Yu Hao; He Yinbiao; Gao Lei; Yao Weida

    2013-01-01

    The safety of strengthening nuclear power design was described based on nuclear equipment design after Fukushima nuclear accident. From these aspects, such as advanced standard system, advanced design method, suitable test means, consideration of beyond design basis event, and nuclear safety culture construction, the importance of nuclear safety improvement was emphatically presented. The enlightenment was given to nuclear power designer. (authors)

  5. Nuclear Research Center Karlsruhe, Central Safety Department. Annual report 1992

    International Nuclear Information System (INIS)

    Koelzer, W.

    1993-05-01

    The Central Safety Department is responsible for handling all problems of radiation protection, safety and security of the institutes and departments of the Karlsruhe Nuclear Research Center, for waste water activity measurements and environmental monitoring of the whole area of the Center, and for research and development work mainly focusing on nuclear safety and radiation protection measures. The research and development work concentrates on the following aspects: Physical and chemical behavior of trace elements in the environment, biophysics of multicellular systems, behavior of tritium in the air/soil-plant system, improvement in radiation protection measurement and personnel dosimetry. This report gives details of the different duties, indicates the results of 1992 routine tasks and reports about results of investigations and developments of the working groups of the Department. The reader is referred to the English translation of Chapter 1 describing the duties and organization of the Central Safety Department. (orig.) [de

  6. Blueprint for nuclear safety - a nonregulatory strategy

    International Nuclear Information System (INIS)

    Knight, J.P.

    1989-01-01

    The Department of Energy operates a nuclear complex that now numbers over 250 facilities nationwide, many of which date back to the 1940s and 1950s. In 1985, Secretary Herrington moved to establish the Office of Environment, Safety and Health, give it needed resources and authorities, and begin extensive environmental protection and safety evaluations of all major DOE sites and facilities. On the nuclear safety side this necessitates an integrated program that not only strengthens oversight but also builds DOE-wide technical capabilities and promotes safety performance. This has led up to focus our attention on three areas: (1) the DOE safety oversight system -- its resources, technical capabilities, and effectiveness; (2) the safety policy development and review; and (3) the Department's capabilities to foster technical inquisitiveness and overall excellence in safety performance. The essence of this approach is found in this last term -- performance. Performance that is results-oriented; founded on realized safety enhancements and risk reduction, not merely regulation for its own sake. Performance not merely in terms of hardware fixes, but also focusing on the human part of the safety equation

  7. Reviewing industrial safety in nuclear power plants

    International Nuclear Information System (INIS)

    1990-02-01

    This document contains guidance and reference materials for Operational Safety Review Team (OSART) experts, in addition to the OSART Guidelines (TECDOC-449), for use in the review of industrial safety activities at nuclear power plants. It sets out objectives for an excellent industrial safety programme, and suggests investigations which should be made in evaluating industrial safety programmes. The attributes of an excellent industrial safety programme are listed as examples for comparison. Practical hints for reviewing industrial safety are discussed, so that the necessary information can be obtained effectively through a review of documents and records, discussions with counterparts, and field observations. There are several annexes. These deal with major features of industrial safety programmes such as safety committees, reporting and investigation systems and first aid and medical facilities. They include some examples which are considered commendable. The document should be taken into account not only when reviewing management, organization and administration but also in the review of related areas, such as maintenance and operations, so that all aspects of industrial safety in an operating nuclear power plant are covered

  8. Nuclear Safety Review for the Year 2004

    International Nuclear Information System (INIS)

    2005-08-01

    In the nuclear area, challenges continue to emerge from the globalization of issues related to safety, technology, business, information, communication and security. Scientific advances and operational experience in nuclear, radiation, waste and transport technology are providing new opportunities to continuously improve safety and security by utilizing synergies between safety and security. The prime responsibility for nuclear, radiation, waste and transport safety rests with users and national governments. The Agency continues to support a Global Nuclear Safety Regime based on strong national safety infrastructures and widespread subscription to international legal instruments to maintain high levels of safety worldwide. Central to the Agency's role are the establishment of international safety standards and the provision for applying these standards, as well as the promotion of sharing information through managing the knowledge base. Nuclear power plant operational safety performance remains high throughout the world. Challenges facing the nuclear power industry include avoiding complacency, maintaining the necessary infrastructure, nuclear power plant ageing and long-term operation, as well as new reactor designs and construction. The research reactor community has a long history of safe operation. However nearly two-thirds of the world's operating research reactors are now over 30 years old and face safety and security challenges. In 2004, the Board of Governors approved the Code of Conduct on the Safety of Research Reactors to help address these challenges. In 2004, there was international consensus on radionuclide activity concentrations in materials below which regulatory controls need not apply. Key occupational radiation protection performance indicators continued to improve in 2004. Challenges include new medical practices where workers can receive high exposures, industrial radiography and worker exposure to naturally occurring radioactive material. New

  9. Strengthening of nuclear power plant construction safety management

    International Nuclear Information System (INIS)

    Yu Jun

    2012-01-01

    The article describes the warning of the Fukushima nuclear accident, and analyzes the major nuclear safety issues in nuclear power development in China, problems in nuclear power plants under construction, and how to strengthen supervision and management in nuclear power construction. It also points out that the development of nuclear power must attach great importance to the safety, and nuclear power plant construction should strictly implement the principle of 'safety first and quality first'. (author)

  10. Order of 11 October 1977 on general safety measures applicable to fluids, radioactive waste and irradiated and non-irradiated fuels in large nuclear installations

    International Nuclear Information System (INIS)

    1978-01-01

    This Order by the Minister of Industry, Commerce and Crafts and the Minister of Labour was made in implementation of Section 40 of Decree No. 75-306 of 28 april 1975 on the protection of workers against the hazards of ionizing radiation in large nuclear installations. It lays down the safety measures to be taken as regards construction of the installation to limit radioactive dispersal and exposure of workers. The Order specifies the characteristics of the piping and vessels as well as the materials to be used for construction of such vessels and piping. The radioactive fluids must be contained in especially designed pipes and vessels and transport of radioactive substances within installations must be carried out with the approval of the person responsible for radiation protection as defined in Decree No 75-306. Finally all possible measures must be taken to eliminate risks of criticality, in particular when the quantity of fissile materials likely to be assembled is likely to exceed the limits fixed by Order of 25 January 1867. (NEA) [fr

  11. Independent assessment for new nuclear reactor safety

    Directory of Open Access Journals (Sweden)

    D'Auria Francesco

    2017-01-01

    Full Text Available A rigorous framework for safety assessment is established in all countries where nuclear technology is used for the production of electricity. On the one side, industry, i.e. reactor designers, vendors and utilities perform safety analysis and demonstrate consistency between results of safety analyses and requirements. On the other side, regulatory authorities perform independent assessment of safety and confirm the acceptability of safety of individual reactor units. The process of comparing results from analyses by reactor utilities and regulators is very complex. The process is also highly dependent upon mandatory approaches pursued for the analysis and from very many details which required the knowledge of sensitive proprietary data (e.g. spacer designs. Furthermore, all data available for the design, construction and operation of reactors produced by the nuclear industry are available to regulators. Two areas for improving the process of safety assessment for individual Nuclear Power Plant Units are identified: New details introduced by industry are not always and systematically requested by regulators for the independent assessment; New analytical techniques and capabilities are not necessarily used in the analyses by regulators (and by the industry. The established concept of independent assessment constitutes the way for improving the process of safety assessment. This is possible, or is largely facilitated, by the recent availability of the so-called Best Estimate Plus Uncertainty approach.

  12. Basic safety principles for nuclear power plants

    International Nuclear Information System (INIS)

    1988-01-01

    Nuclear power plant safety requires a continuing quest for excellence. All individuals concerned should constantly be alert to opportunities to reduce risks to the lowest practicable level. The quest, however, is most likely to be fruitful if it is based on an understanding of the underlying objectives and principles of nuclear safety, and the way in which its aspects are interrelated. This report is an attempt to provide a logical framework for such an understanding. The proposed objectives and principles of nuclear safety are interconnected and must be taken as a whole; they do not constitute a menu from which selection can be made. The report takes account of current issues and developments. It includes the concept of safety objectives and the use of probabilistic safety assessment. Reliability targets for safety systems are discussed. The concept of a 'safety culture' is crucial. Attention has been paid to the need for planning for accident management. The report contains objectives and principles. The objectives state what is to be achieved; the principles state how to achieve it. In each case, the basic principle is stated as briefly as possible. The accompanying discussion comments on the reasons for the principle and its importance, as well as exceptions, the extent of coverage and any necessary clarification. The discussion is as important as the principle it augments. 4 figs

  13. Rotating safety drum nuclear reactor

    International Nuclear Information System (INIS)

    Schneider, R.T.

    1978-01-01

    A gas cooled nuclear fission reactor employing spherical fuel elements which are held in a critical assembly configuration by centrifugal forces. This is accomplished by inserting the spherical fuel elements in a rotating drum of a shape suitable to ensure that a nuclear critical configuration of the total entity of fuel elements can only be achieved if the centrifugal forces are present. This has the effect that in case of a loss of load, a loss of coolant or other adverse occurrences, the critical part of the reactor will disassemble itself, by gravitational forces exclusively, into a non-critical configuration

  14. Nuclear Safety Charter; Charte Surete Nucleaire

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-01

    The AREVA 'Values Charter' reaffirmed the priority that must be given to the requirement for a very high level of safety, which applies in particular to the nuclear field. The purpose of this Nuclear Safety Charter is to set forth the group's commitments in the field of nuclear safety and radiation protection so as to ensure that this requirement is met throughout the life cycle of the facilities. It should enable each of us, in carrying out our duties, to commit to this requirement personally, for the company, and for all stakeholders. These commitments are anchored in organizational and action principles and in complete transparency. They build on a safety culture shared by all personnel and maintained by periodic refresher training. They are implemented through Safety, Health, and Environmental management systems. The purpose of these commitments, beyond strict compliance with the laws and regulations in force in countries in which we operate as a group, is to foster a continuous improvement initiative aimed at continually enhancing our overall performance as a group. Content: 1 - Organization: responsibility of the group's executive management and subsidiaries, prime responsibility of the operator, a system of clearly defined responsibilities that draws on skilled support and on independent control of operating personnel, the general inspectorate: a shared expertise and an independent control of the operating organization, an organization that can be adapted for emergency management. 2 - Action principles: nuclear safety applies to every stage in the plant life cycle, lessons learned are analyzed and capitalized through the continuous improvement initiative, analyzing risks in advance is the basis of Areva's safety culture, employees are empowered to improve nuclear Safety, the group is committed to a voluntary radiation protection initiative And a sustained effort in reducing waste and effluent from facility Operations, employees and

  15. Implementing Safety Measures

    Science.gov (United States)

    Required risk mitigation measures for soil fumigants protect handlers, applicators, and bystanders from pesticide exposure. Measures include buffer zones, sign posting, good agricultural practices, restricted use pesticide classification, and FMPs.

  16. Nuclear safety education and training network

    International Nuclear Information System (INIS)

    Bastos, J.; Ulfkjaer, L.

    2004-01-01

    In March 2001, the Secretariat convened an Advisory Group on Education and Training in nuclear safety. The Advisory Group considered structure, scope and means related to the implementation of an IAEA Programme on Education and Training . A strategic plan was agreed and the following outputs were envisaged: 1. A Training Support Programme in nuclear safety, including a standardized and harmonized approach for training developed by the IAEA and in use by Member States. 2. National and regional training centres, established to support sustainable national nuclear safety infrastructures. 3. Training material for use by lecturers and students developed by the IAEA in English and translated to other languages. The implementation of the plan was initiated in 2002 emphasizing the preparation of training materials. In 2003 a pilot project for a network on Education and Training in Asia was initiated

  17. Problems of nuclear power plant safety evaluation

    International Nuclear Information System (INIS)

    Suchomel, J.

    1977-01-01

    Nuclear power plant safety is discussed with regard to external effects on the containment and to the human factor. As for external effects, attention is focused on shock waves which may be due to explosions or accidents in flammable material transport and storage, to missiles, and to earthquake effects. The criteria for evaluating nuclear power plant safety in different countries are shown. Factors are discussed affecting the reliability of man with regard to his behaviour in a loss-of-coolant accident in the power plant. Different types of PWR containments and their functions are analyzed, mainly in case of accident. Views are discussed on the role of destructive accidents in the overall evaluation of fast reactor safety. Experiences are summed up gained with the operation of WWER reactors with respect to the environmental impact of the nuclear power plants. (Z.M.)

  18. Project safety studies - nuclear waste management (PSE)

    International Nuclear Information System (INIS)

    1981-10-01

    The project 'Safety Studies-Nuclear Waste Management' (PSE) is a research project performed by order of the Federal Minister for Research and Technology, the general purpose of which is to deepen and ensure the understanding of the safety aspects of the nuclear waste management and to prepare a risk analysis which will have to be established in the future. Owing to this the project is part of a series of projects which serve the further development of the concept of nuclear waste management and its safety, and which are set up in such a way as to accompany the realization of that concept. This report contains the results of the first stage of the project from 1978 to mid-1981. (orig./RW) [de

  19. Nuclear reactor safety in the USA

    International Nuclear Information System (INIS)

    Vigil, J.C.

    1983-01-01

    Nuclear reactor safety in the USA has emphasized a defense-in-depth approach to protecting the public from reactor accidents. This approach was severely tested by the Three Mile Island accident and was found to be effective in safeguarding the public health and safety. However, the economic impact of the TMI accident was very large. Consequently, more attention is now being given to plant protection as well as public-health protection in reactor-safety studies. Sophisticated computer simulations at Los Alamos are making major contributions in this area. In terms of public risk, nuclear power plants compare favorably with other large-scale alternatives to electricity generation. Unfortunately, there is a large gulf between the real risks of nuclear power and the present public perception of these risks

  20. Safety provision for nuclear power plants during remaining running time

    International Nuclear Information System (INIS)

    Rossnagel, Alexander; Hentschel, Anja

    2012-01-01

    With the phasing-out of the industrial use of nuclear energy for the power generation, the risk of the nuclear power plants has not been eliminated in principle, but only for a limited period of time. Therefore, the remaining nine nuclear power plants must also be used for the remaining ten years according to the state of science and technology. Regulatory authorities must substantiate the safety requirements for each nuclear power plant and enforce these requirements by means of various regulatory measures. The consequences of Fukushima must be included in the assessment of the safety level of nuclear power plants in Germany. In this respect, the regulatory authorities have the important tasks to investigate and assess the security risks as well as to develop instructions and orders.

  1. Modifications to nuclear power plants. Safety guide

    International Nuclear Information System (INIS)

    2004-01-01

    This Safety Guide was prepared under the IAEA's programme for safety standards for nuclear power plants. It supplements Section 7 of the Safety Requirements publication on Safety of Nuclear Power Plants: Operation, which establishes the safety requirements for the modification of nuclear power plants. Reasons for carrying out modifications to nuclear power plants may include: (1) maintaining or strengthening existing safety provisions and thus maintaining consistency with or improving on the current design. (2) recovering from plant faults. (3) improving the thermal performance or increasing the power rating of the plant. (4) increasing the maintainability of the plant, reducing the radiation exposure of personnel or reducing the costs of plant maintenance. And (5) extending the design life of the plant. Most modifications, made on the basis of operating experience, are intended to improve on the design or to improve operational performance and flexibility. Some are rendered necessary by new regulatory requirements, ageing of the plant or obsolescence of equipment. However, the benefits of regularly updating the plant design can be jeopardized if modifications are not kept under rigorous control throughout the lifetime of the plant. The need to reduce costs and improve efficiency, in combination with changes to the structure of the electricity generation sector of the economy in many countries, has led many companies to make changes in the structure of the operating organization for nuclear power plants. Whatever the reason for such organizational changes, consideration should be given to the effects of those changes with the aim of ensuring that they would have no impacts that would compromise the safety of the plant. The objective of this Safety Guide is to provide guidance and recommendations on controlling activities relating to modifications at nuclear power plants in order to reduce risk and to ensure that the configuration of the plant is at all times under

  2. Engineering design guidelines for nuclear criticality safety

    International Nuclear Information System (INIS)

    Waltz, W.R.

    1988-08-01

    This document provides general engineering design guidelines specific to nuclear criticality safety for a facility where the potential for a criticality accident exists. The guide is applicable to the design of new SRP/SRL facilities and to major modifications Of existing facilities. The document is intended an: A guide for persons actively engaged in the design process. A resource document for persons charged with design review for adequacy relative to criticality safety. A resource document for facility operating personnel. The guide defines six basic criticality safety design objectives and provides information to assist in accomplishing each objective. The guide in intended to supplement the design requirements relating to criticality safety contained in applicable Department of Energy (DOE) documents. The scope of the guide is limited to engineering design guidelines associated with criticality safety and does not include other areas of the design process, such as: criticality safety analytical methods and modeling, nor requirements for control of the design process

  3. Safety in nuclear power systems

    International Nuclear Information System (INIS)

    Myers, L.C.

    1987-05-01

    This paper discusses the issue of safety in complex energy systems and provides brief accounts of some of the most serious reactor accidents that have occurred to date. Details are also provided of Ontario Hydro's problems with Unit 2 at Pickering

  4. Nuclear Data Activities in Support of the DOE Nuclear Criticality Safety Program

    International Nuclear Information System (INIS)

    Westfall, R.M.; McKnight, R.D.

    2005-01-01

    The DOE Nuclear Criticality Safety Program (NCSP) provides the technical infrastructure maintenance for those technologies applied in the evaluation and performance of safe fissionable-material operations in the DOE complex. These technologies include an Analytical Methods element for neutron transport as well as the development of sensitivity/uncertainty methods, the performance of Critical Experiments, evaluation and qualification of experiments as Benchmarks, and a comprehensive Nuclear Data program coordinated by the NCSP Nuclear Data Advisory Group (NDAG).The NDAG gathers and evaluates differential and integral nuclear data, identifies deficiencies, and recommends priorities on meeting DOE criticality safety needs to the NCSP Criticality Safety Support Group (CSSG). Then the NDAG identifies the required resources and unique capabilities for meeting these needs, not only for performing measurements but also for data evaluation with nuclear model codes as well as for data processing for criticality safety applications. The NDAG coordinates effort with the leadership of the National Nuclear Data Center, the Cross Section Evaluation Working Group (CSEWG), and the Working Party on International Evaluation Cooperation (WPEC) of the OECD/NEA Nuclear Science Committee. The overall objective is to expedite the issuance of new data and methods to the DOE criticality safety user. This paper describes these activities in detail, with examples based upon special studies being performed in support of criticality safety for a variety of DOE operations

  5. Nuclear Data Activities in Support of the DOE Nuclear Criticality Safety Program

    Science.gov (United States)

    Westfall, R. M.; McKnight, R. D.

    2005-05-01

    The DOE Nuclear Criticality Safety Program (NCSP) provides the technical infrastructure maintenance for those technologies applied in the evaluation and performance of safe fissionable-material operations in the DOE complex. These technologies include an Analytical Methods element for neutron transport as well as the development of sensitivity/uncertainty methods, the performance of Critical Experiments, evaluation and qualification of experiments as Benchmarks, and a comprehensive Nuclear Data program coordinated by the NCSP Nuclear Data Advisory Group (NDAG). The NDAG gathers and evaluates differential and integral nuclear data, identifies deficiencies, and recommends priorities on meeting DOE criticality safety needs to the NCSP Criticality Safety Support Group (CSSG). Then the NDAG identifies the required resources and unique capabilities for meeting these needs, not only for performing measurements but also for data evaluation with nuclear model codes as well as for data processing for criticality safety applications. The NDAG coordinates effort with the leadership of the National Nuclear Data Center, the Cross Section Evaluation Working Group (CSEWG), and the Working Party on International Evaluation Cooperation (WPEC) of the OECD/NEA Nuclear Science Committee. The overall objective is to expedite the issuance of new data and methods to the DOE criticality safety user. This paper describes these activities in detail, with examples based upon special studies being performed in support of criticality safety for a variety of DOE operations.

  6. Nuclear-safety criteria and specifications for space nuclear reactors

    International Nuclear Information System (INIS)

    1982-08-01

    The policy of the United States for all US nuclear power sources in space is to ensure that the probability of release of radioactive material and the amounts released are such that an undue risk is not presented, considering the benefits of the mission. The objective of this document is to provide safety criteria which a mission/reactor designer can use to help ensure that the design is acceptable from a radiological safety standpoint. These criteria encompass mission design, reactor design, and radiological impact limitation requirements for safety, and the documentation required. They do not address terrestrial operations, occupational safety or system reliability except where the systems are important for radiological safety. Specific safety specifications based on these criteria shall also be generated and made part of contractual requirements

  7. Regulatory requirements and administrative practice in safety of nuclear installations

    International Nuclear Information System (INIS)

    Servant, J.

    1977-01-01

    This paper reviews the current situation of the France regulatory rules and procedures dealing with the safety of the main nuclear facilities and, more broadly, the nuclear security. First, the author outlines the policy of the French administration which requires that the licensee responsible for an installation has to demonstrate that all possible measures are taken to ensure a sufficient level of safety, from the early stage of the project to the end of the operation of the plant. Thus, the administration performs the assessment on a case-by-case basis, of the safety of each installation before granting a nuclear license. On the other hand, the administration settles overall safety requirements for specific categories of installations or components, which determine the ultimate safety performances, but avoid, as far as possible, to detail the technical specifications to be applied in order to comply with these goals. This approach, which allows the designers and the licensees to rely upon sound codes and standards, gains the advantage of a great flexibility without imparing the nuclear safety. The author outlines the licensing progress for the main categories of installations: nuclear power plants of the PWR type, fast breeders, uranium isotope separation plants, and irradiated fuel processing plants. Emphasis is placed on the most noteworthy points: standardization of projects, specific risks of each site, problems of advanced type reactors, etc... The development of the technical regulations is presented with emphasis on the importance of an internationally concerned action within the nuclear international community. The second part of this paper describes the France operating experience of nuclear installations from the safety point of view. Especially, the author examines the technical and administrative utilization of data from safety significant incidents in reactors and plants, and the results of the control performed by the nuclear installations

  8. The IAEA safety standards for radiation, waste and nuclear safety

    International Nuclear Information System (INIS)

    Gonzalez, Abel J.

    1997-01-01

    This paper presents a brief description of the standards for radiation, waste and nuclear safety established by the International Atomic Energy Agency (IAEA). It provides a historical overview of their development and also summarizes the standards' current preparation and review process. The final paragraphs offer an outlook on future developments. (author)

  9. Convention on nuclear safety. Final act

    International Nuclear Information System (INIS)

    1994-01-01

    The Diplomatic Conference, which was convened by the International Atomic Energy Agency at its Headquarters from 14 to 17 June 1994, adopted the Convention on Nuclear Safety reproduced in document INFCIRC/449 and the Final Act of the Conference. The text of the Final Act of the Conference, including an annexed document entitled ''Some clarification with respect to procedural and financial arrangements, national reports, and the conduct of review meetings, envisaged in the Convention on Nuclear Safety'', is reproduced in the Attachment hereto for the information of all Member States

  10. Safety improvement technologies for nuclear power generation

    International Nuclear Information System (INIS)

    Nishida, Koji; Adachi, Hirokazu; Kinoshita, Hirofumi; Takeshi, Noriaki; Yoshikawa, Kazuhiro; Itou, Kanta; Kurihara, Takao; Hino, Tetsushi

    2015-01-01

    As the Hitachi Group's efforts in nuclear power generation, this paper explains the safety improvement technologies that are currently under development or promotion. As efforts for the decommissioning of Fukushima Daiichi Nuclear Power Station, the following items have been developed. (1) As for the spent fuel removal of Unit 4, the following items have mainly been conducted: removal of the debris piled up on the top surface of existing reactor building (R/B), removal of the debris deposited in spent fuel pool (SFP), and fuel transfer operation by means of remote underwater work. The removal of all spent fuels was completed in 2014. (2) The survey robots inside R/B, which are composed of a basement survey robot to check leaking spots at upper pressure suppression chamber and a floor running robot to check leaking spots in water, were verified with a field demonstration test at Unit 1. These robots were able to find the leaking spots at midair pipe expansion joint. (3) As the survey robot for reactor containment shells, robots of I-letter posture and horizontal U-letter posture were developed, and the survey on the upper part of first-floor grating inside the containment shells was performed. (4) As the facilities for contaminated water measures, sub-drain purification equipment, Advanced Liquid Processing System, etc. were developed and supplied, which are now showing good performance. On the other hand, an advanced boiling water reactor with high safety of the United Kingdom (UK ABWR) is under procedure of approval for introduction. In addition, a next-generation light-water reactor of transuranic element combustion type is under development. (A.O.)

  11. Understanding Nuclear Safety Culture: A Systemic Approach

    International Nuclear Information System (INIS)

    Afghan, A.N.

    2016-01-01

    The Fukushima accident was a systemic failure (Report by Director General IAEA on the Fukushima Daiichi Accident). Systemic failure is a failure at system level unlike the currently understood notion which regards it as the failure of component and equipment. Systemic failures are due to the interdependence, complexity and unpredictability within systems and that is why these systems are called complex adaptive systems (CAS), in which “attractors” play an important role. If we want to understand the systemic failures we need to understand CAS and the role of these attractors. The intent of this paper is to identify some typical attractors (including stakeholders) and their role within complex adaptive system. Attractors can be stakeholders, individuals, processes, rules and regulations, SOPs etc., towards which other agents and individuals are attracted. This paper will try to identify attractors in nuclear safety culture and influence of their assumptions on safety culture behavior by taking examples from nuclear industry in Pakistan. For example, if the nuclear regulator is an attractor within nuclear safety culture CAS then how basic assumptions of nuclear plant operators and shift in-charges about “regulator” affect their own safety behavior?

  12. International Nuclear Safety Center (INSC) database

    International Nuclear Information System (INIS)

    Sofu, T.; Ley, H.; Turski, R.B.

    1997-01-01

    As an integral part of DOE's International Nuclear Safety Center (INSC) at Argonne National Laboratory, the INSC Database has been established to provide an interactively accessible information resource for the world's nuclear facilities and to promote free and open exchange of nuclear safety information among nations. The INSC Database is a comprehensive resource database aimed at a scope and level of detail suitable for safety analysis and risk evaluation for the world's nuclear power plants and facilities. It also provides an electronic forum for international collaborative safety research for the Department of Energy and its international partners. The database is intended to provide plant design information, material properties, computational tools, and results of safety analysis. Initial emphasis in data gathering is given to Soviet-designed reactors in Russia, the former Soviet Union, and Eastern Europe. The implementation is performed under the Oracle database management system, and the World Wide Web is used to serve as the access path for remote users. An interface between the Oracle database and the Web server is established through a custom designed Web-Oracle gateway which is used mainly to perform queries on the stored data in the database tables

  13. Safety culture in the nuclear field

    International Nuclear Information System (INIS)

    2005-09-01

    The council of IAEA governors ratified twelve elemental principles of physical protection of nuclear matters and installations. These principles will be included in the future updating of the international convention on the physical protection. The F basic principle proposes a definition of the safety culture and recommends that its implementation and its perenniality to be a reality in the concerned organisms.It appears as necessary to precise the concept of safety culture. The twelve principles are as follow: A State liability, B liability during international transports, C legislative and regulatory framework, D competent authority, E operators liability, F safety culture, G threats, H graduated approach, I deep defence, J assurance of the quality, K emergency plan, L confidentiality. The present document is complementary of INSAG-4, 1991 (safety series number 75, INSAG-4 safety culture, a report by the international nuclear safety advisory group, IAEA, 1991) that presents a concept of safety culture. It proposes also, in a particular chapter, the comparisons( common points and specificities) between safety culture and security culture. (N.C.)

  14. Delayed Station Blackout Event and Nuclear Safety

    Directory of Open Access Journals (Sweden)

    Andrija Volkanovski

    2015-01-01

    Full Text Available The loss of off-site power (LOOP event occurs when all electrical power to the nuclear power plant from the power grid is lost. Complete failure of both off-site and on-site alternating current (AC power sources is referred to as a station blackout (SBO. Combined LOOP and SBO events are analyzed in this paper. The analysis is done for different time delays between the LOOP and SBO events. Deterministic safety analysis is utilized for the assessment of the plant parameters for different time delays of the SBO event. Obtained plant parameters are used for the assessment of the probabilities of the functional events in the SBO event tree. The results show that the time delay of the SBO after the LOOP leads to a decrease of the core damage frequency (CDF from the SBO event tree. The reduction of the CDF depends on the time delay of the SBO after the LOOP event. The results show the importance of the safety systems to operate after the plant shutdown when the decay heat is large. Small changes of the basic events importance measures are identified with the introduction of the delay of the SBO event.

  15. Nuclear safety guide TID-7016 Revision 2

    International Nuclear Information System (INIS)

    Thomas, J.T.

    1980-01-01

    The present revision of TID-7016 Nuclear Safety Guide is discussed. This Guide differs significantly from its predecessor in that the latter was intentionally conservative in its recommendations. Firmly based on experimental evidence of criticality, the original Guide and the first revision were considered to be of most value to organizations whose activities with fissionable materials were not extensive and, secondarily, that it would serve as a point of departure for members of established nuclear safety teams, experienced in the field. The reader will find a significant change in the character of information presented in this version. Nuclear Criticality Safety has matured in the past twelve years. The advance of calculational capability has permitted validated calculations to extend and substitute for experimental data. The broadened data base has enabled better interpolation, extension, and understanding of available, information, especially in areas previously addressed by undefined but adequate factors of safety. The content has been thereby enriched in qualitative guidance. The information inherently contains, and the user can recapture, the quantitative guidance characteristic of the former Guides by employing appropriate safety factors. In fact, it becomes incumbent on the Criticality Safety Specialist to necessarily impose safety factors consistent with the possible normal and abnormal credible contingencies of an operation as revealed by his evaluation. In its present form the Guide easily becomes a suitable module in any compendium or handbook tailored for internal use by organizations. It is hoped the Guide will continue to serve immediate needs and will encourage continuing and more comprehensive efforts toward organizing nuclear criticality safety information

  16. Nuclear Safety Research Department annual report 2000

    International Nuclear Information System (INIS)

    Majborn, B.; Damkjaer, A.; Nielsen, S.P.; Nonboel, E.

    2001-08-01

    The report presents a summary of the work of the Nuclear Safety Research Department in 2000. The department's research and development activities were organized in two research programmes: 'Radiation Protection and Reactor Safety' and 'Radioecology and Tracer Studies'. In addition the department was responsible for the tasks 'Applied Health Physics and Emergency Preparedness', 'Dosimetry', 'Environmental Monitoring', and Irradiation and Isotope Services'. Lists of publications, committee memberships and staff members are included. (au)

  17. Nuclear safety guide. TID-7016, Revision 2

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, J T [ed.

    1978-05-01

    The Nuclear Safety Guide was first issued in 1956 as classified AEC report LA-2063 and was reprinted the next year, unclassified, as TID-7016. Revision 1, published in 1961, extended the scope and refined the guiding information. The present revision of the Guide differs significantly from its predecessor in that the latter was intentionally conservative in its recommendations. Firmly based on experimental evidence of criticality, the original Guide and the first revision were considered to be of most value to organizations whose activities with fissionable materials were not extensive and, secondarily, that it would serve as a point of departure for members of established nuclear safety teams, experienced in the field. The reader will find a significant change in the character of information presented in this version. Nuclear Criticality Safety has matured in the past twelve years. The advance of calculational capability has permitted validated calculations to extend and substitute for experimental data. The broadened data base has enabled better interpolation, extension, and understanding of available information, especially in areas previously addressed by undefined but adequate factors of safety. The content has been thereby enriched in qualitative guidance. The information inherently contains, and the user can recapture, the quantitative guidance characteristic of the formerGuides by employing appropriate safety factors. In fact, it becomes incumbent on the Criticality Safety Specialist to necessarily impose safety factors consistent with the possible normal and abnormal credible contingencies of an operation as revealed by his evaluation. In its present form the Guide easily becomes a suitable module in any compendium or handbook tailored for internal use by organizations. It is hoped the Guide will continue to serve immediate needs and will encourage continuing and more comprehensive efforts toward organizing nuclear criticality safety information.

  18. Nuclear safety research project. Annual report 1995

    International Nuclear Information System (INIS)

    Hueper, R.

    1996-08-01

    The reactor safety R and D work of the Karlsruhe Research Centre (FZK) has been part of the Nuclear Safety Research Project (PSF) since 1990. The present annual report 1995 summarizes the R and D results. The research tasks are coordinated in agreement with internal and external working groups. The contributions to this report correspond to the status of early 1996. An abstract in English precedes each of them, whenever the respective article is written in German. (orig.) [de

  19. The Nordic Research programme on nuclear safety

    International Nuclear Information System (INIS)

    1992-06-01

    Only two of the five Nordic countries (Denmark, Iceland, Finland, Norway and Sweden) - Sweden and Finland - operate nuclear power plants, but there are a number of nuclear installations close to their borders. Regular 4-year programmes were initiated in 1977, designated NKS-programmes. (NKS: Nordisk KerneSikkerhedsforskning - Nordic nuclear-safety research). The current fourth NKS-programme is, influenced by the Chernobyl accident, dominated by the necessity for acquiring knowledge on unexpected events and release of radioactive material from nuclear installations. The present programme is divided into the areas of emergency preparedness, waste and decommissioning, radioecology and reactor safety. It comprises a total of 18 projects, the results of which will later be published in the form of handbooks for use in cases of emergency etc. The future of joint Nordic project work in the nuclear safety field must be seen in the light of changing conditions in and around the Nordic countries, such as the opening of relations to neighbours in the east, the move towards the European Communities and the need for training a new generation of specialists in the nuclear field etc. Each project is described in considerable detail and a list of reports resulting from the third NKS-programme 1985-1989 is given. (AB)

  20. Aspects of nuclear reactor safety

    International Nuclear Information System (INIS)

    Hardt, P. von der; Rottger, H.

    1980-01-01

    The Colloquium on 'Irradiation Tests for Reactor Safety Programmes' has been organised by JRC Petten in order to determine the present state of technology in the field. The role of research and test reactors for studies of structural material and fuel elements under transient and off-normal conditions was to be explained. The Colloquium has been attended by 110 participants from outside and inside Europe. 27 papers were presented covering the major ongoing projects in Japan, the United States, and in Europe, and elaborating in particular: - design rationale and layout of safety irradiation experiments; - design, manufacture, and performance of irradiation equipment with particular attention to generation and control of transient conditions, fast response in-pile instrumentation and its out-of-pile data retrieval; - post-irradiation evaluation; - results and analytical support

  1. Expert systems and nuclear safety

    International Nuclear Information System (INIS)

    Beltracchi, L.

    1990-01-01

    The US Nuclear Regulatory Commission (NRC) and the Electric Power Research Institute have initiated a broad-based exploration of means to evaluate the potential applications of expert systems in the nuclear industry. This exploratory effort will assess the use of expert systems to augment the diagnostic and decision-making capabilities of personnel with the goal of enhancing productivity, reliability, and performance. The initial research effort is the development and documentation of guidelines for verifying and validating (V and V) expert systems. An initial application of expert systems in the nuclear industry is to aid operations and maintenance personnel in decision-making tasks. The scope of the decision aiding covers all types of cognitive behavior consisting of skill, rule, and knowledge-based behavior. For example, procedure trackers were designed and tested to support rule-based behavior. Further, these systems automate many of the tedious, error-prone human monitoring tasks, thereby reducing the potential for human error. The paper version of the procedure contains the knowledge base and the rules and thus serves as the basis of the design verification of the procedure tracker. Person-in-the-loop tests serve as the basis for the validation of a procedure tracker. When conducting validation tests, it is important to ascertain that the human retains the locus of control in the use of the expert system

  2. Professional aspects of nuclear safety

    International Nuclear Information System (INIS)

    1987-01-01

    Design and operation of nuclear facilities in Ontario are performed by professionals who have more at stake in the nuclear scene than the average resident of the province. Their technical expertise is constantly under scrutiny by their employers, the Atomic Energy Control Board, and the dissenting factions in the community. They and their families live close to nuclear facilities. It is highly unlikely that these professionals would assume a less than cautious approach to their work. The professional staff at both AECL-CANDU Operations and at Ontario Hydro have employee associations that date back many years. The presence of these associations has helped professional employees to divorce their labour-related concerns from their technical responsibilities to the advantage of the public. With the backing of their associations, the professional employees have encouraged the employers to sponsor career development programs to help them maintain state-of-the-art expertise. Employers have sponsored attendance and participation at technical seminars, many of them international. These benefits and privileges have contributed to improved standards in design, but most importantly the protection afforded by collective agreements to professional integrity has permitted engineers and other professionals to insist on the highest possible design standards

  3. Discussion on building safety culture inside a nuclear safety regulatory body

    International Nuclear Information System (INIS)

    Fan Yumao

    2013-01-01

    A strong internal safety culture plays a key role in improving the performance of a nuclear regulatory body. This paper discusses the definition of internal safety culture of nuclear regulatory bodies, and explains the functions that the safety culture to facilitate the nuclear safety regulation and finally puts forward some thoughts about building internal safety culture inside regulatory bodies. (author)

  4. A fresh start of nuclear safety regulation and international perspective

    International Nuclear Information System (INIS)

    Oshima, Kenzo

    2013-01-01

    It should be explained more to the outside modestly the Fukushima nuclear accident would be a man-made complex disaster, which might be reluctant to do but not be neglected. Utmost efforts to change inward-looking attitude and reform safety culture should be done so as to prevent superficial reflection of the Fukushima nuclear accident. Since all nuclear regulatory functions ('3S': safety, security, safeguards) were integrated in Nuclear Regulation Authority (NRA), NRA and secretariat of NRA became more responsible for international response, and strengthening of organization system and human resources development would be an urgent necessity. This article described present stage of NRA focusing on international dimension including personal views. Overseas strong concern over the Fukushima nuclear accident and international communications were reviewed. The Fukushima nuclear accident started from natural disaster and enlarged as a man-made complex disaster with many human factors (mainly inaction, wilful negligence) overlapping and safety culture flawed. Examples of overseas and Japanese action plan to learn and absorb lessons from the Fukushima accident were introduced. NRA's started activities on inviting IAEA's IRRS and OPPAS as soon as ready, strengthening nuclear security measures, safeguards to prevent nuclear proliferation, bilateral cooperation and international advisors were also presented. (T. Tanaka)

  5. Refinement of nuclear safety education reinforcing technical succession

    International Nuclear Information System (INIS)

    Yokobori, Seiichi

    2008-01-01

    In April 2008, Musashi Institute of Technology established another faculty, the Faculty of Nuclear Safety Engineering, to educate students for nuclear engineering to meet the demands of personnel for nuclear business. At this new faculty, students mainly obtain professional knowledge and skills related to nuclear safety issues. This article described refinement of nuclear safety education by reinforcing technical succession topics, such as Rankine cycle, fission, two-phase flow, defense in depth in safety. LOCA/ECCS, seismic effects, reactor maintenance. (T. Tanaka)

  6. Treaty implementation applied to conventions on nuclear safety

    International Nuclear Information System (INIS)

    Montjoie, Michel

    2015-01-01

    , but there are also provisions designed to prevent or reduce the consequences of nuclear incidents or accidents on people and the environment. While the first set of provisions may, in certain respects, be considered as outside the scope of environmental law, the second set is more akin to this area of law, and it could even be considered that the provisions of the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management only cover the protection of the environment, as the most harmful consequence of a safety breach would be a contamination of flora and fauna, with no harmful effects for people if mitigating measures are taken as soon as the contamination is discovered. After presenting the general issue of the implementation of treaties, the article will review the different 'tools' (non-compliance procedures) available under international environmental law to enforce treaty obligations. The article will then examine how the conventions on nuclear safety deal with the problem of non-compliance by analysing the strengths and weaknesses of their provisions in this area and how they fare in comparison to the possibilities available under international environmental law by taking into account the specific nature of nuclear safety. Particular attention will be placed on the reasons behind the special importance of peer reviews in obtaining 'the highest level of safety' when, while not completely non-existent, they do not have the same place in environmental conventions. (author)

  7. Assessment of IAEA safety series no. 75-INSAG-3 - ''basic safety principles for nuclear power plants''

    International Nuclear Information System (INIS)

    1989-01-01

    The International Atomic Energy Agency Safety Series No. 75-INSAG--3, 'Basic Safety Principles for Nuclear Power Plants' is reviewed in the light of the Advisory Committee on Nuclear Safety reports ACNS--2, 'Safety Objectives for Nuclear Activities in Canada', and ACNS--4, 'Recommended General Safety Requirements for Nuclear Power Plants'. The INSAG safety objectives are consistent with the safety objectives stated in ACNS--2 but are less general, applying only to nuclear power plants. The INSAG safety principles are, in general, consistent with the requirements stated in ACNS--4 but put more emphasis on 'safety culture'. They give little attention to reactor plant effluents, waste management, or decommissioning. (fig., 5 refs.)

  8. The role of the nuclear safety regulator

    International Nuclear Information System (INIS)

    Mellado, I.

    2007-01-01

    The Consejo de Seguridad Nuclear (CSN), or Nuclear Safety Council, is the only Spanish institution qualified in nuclear safety and radiological protection. Created in 1980, the CSN is independent of the Central State Administration, and possesses its own legal standing, estate and resources acquired directly from tax revenues. The CSN proposes regulations and advises the government on subjects within its competence, including the criteria for siting nuclear facilities once the autonomous regions have been informed. The CSN is responsible for issuing mandatory and binding reports to the Ministry of Industry. Tourism and Commerce, and for inspections and evaluation of the facilities included within its realm of competence throughout their phases (construction, start-up, operating and decommissioning). It is also responsible for the radiological control and surveillance of workers, the general public and the environment, as described below. In 1999, a new responsibility was assigned to the CSN to perform studies, assessment and inspections in relation to all phases of radioactive waste and spent fuel management. The CSN reports to the Spanish Parliament and is not subject to the hierarchy or auspices of the Government or the organisations in charge of promoting nuclear energy. The Council itself is an Associative Body comprised of 5 members, appointed by Parliament for a 6 year term (these members cannot be removed). Under this Council is situated an extensive technical body. A General Secretary is seconded by Technical Directors in the area of Nuclear Safety and Radiological Protection. As well there are a R and D Office, an Inspection Office, and a Technical Standards Office. The CSN counts 446 workers, of which 191 are university graduate specialists in nuclear safety or radiological protection. The average age is 45 years. Ongoing training is provided in technical specialties and management. (author)

  9. Psychometric model for safety culture assessment in nuclear research facilities

    International Nuclear Information System (INIS)

    Nascimento, C.S. do; Andrade, D.A.; Mesquita, R.N. de

    2017-01-01

    Highlights: • A psychometric model to evaluate ‘safety climate’ at nuclear research facilities. • The model presented evidences of good psychometric qualities. • The model was applied to nuclear research facilities in Brazil. • Some ‘safety culture’ weaknesses were detected in the assessed organization. • A potential tool to develop safety management programs in nuclear facilities. - Abstract: A safe and reliable operation of nuclear power plants depends not only on technical performance, but also on the people and on the organization. Organizational factors have been recognized as the main causal mechanisms of accidents by research organizations through USA, Europe and Japan. Deficiencies related with these factors reveal weaknesses in the organization’s safety culture. A significant number of instruments to assess the safety culture based on psychometric models that evaluate safety climate through questionnaires, and which are based on reliability and validity evidences, have been published in health and ‘safety at work’ areas. However, there are few safety culture assessment instruments with these characteristics (reliability and validity) available on nuclear literature. Therefore, this work proposes an instrument to evaluate, with valid and reliable measures, the safety climate of nuclear research facilities. The instrument was developed based on methodological principles applied to research modeling and its psychometric properties were evaluated by a reliability analysis and validation of content, face and construct. The instrument was applied to an important nuclear research organization in Brazil. This organization comprises 4 research reactors and many nuclear laboratories. The survey results made possible a demographic characterization and the identification of some possible safety culture weaknesses and pointing out potential areas to be improved in the assessed organization. Good evidence of reliability with Cronbach's alpha

  10. Psychometric model for safety culture assessment in nuclear research facilities

    Energy Technology Data Exchange (ETDEWEB)

    Nascimento, C.S. do, E-mail: claudio.souza@ctmsp.mar.mil.br [Centro Tecnológico da Marinha em São Paulo (CTMSP), Av. Professor Lineu Prestes 2468, 05508-000 São Paulo, SP (Brazil); Andrade, D.A., E-mail: delvonei@ipen.br [Instituto de Pesquisas Energéticas e Nucleares (IPEN/CNEN – SP), Av. Professor Lineu Prestes 2242, 05508-000 São Paulo, SP (Brazil); Mesquita, R.N. de, E-mail: rnavarro@ipen.br [Instituto de Pesquisas Energéticas e Nucleares (IPEN/CNEN – SP), Av. Professor Lineu Prestes 2242, 05508-000 São Paulo, SP (Brazil)

    2017-04-01

    Highlights: • A psychometric model to evaluate ‘safety climate’ at nuclear research facilities. • The model presented evidences of good psychometric qualities. • The model was applied to nuclear research facilities in Brazil. • Some ‘safety culture’ weaknesses were detected in the assessed organization. • A potential tool to develop safety management programs in nuclear facilities. - Abstract: A safe and reliable operation of nuclear power plants depends not only on technical performance, but also on the people and on the organization. Organizational factors have been recognized as the main causal mechanisms of accidents by research organizations through USA, Europe and Japan. Deficiencies related with these factors reveal weaknesses in the organization’s safety culture. A significant number of instruments to assess the safety culture based on psychometric models that evaluate safety climate through questionnaires, and which are based on reliability and validity evidences, have been published in health and ‘safety at work’ areas. However, there are few safety culture assessment instruments with these characteristics (reliability and validity) available on nuclear literature. Therefore, this work proposes an instrument to evaluate, with valid and reliable measures, the safety climate of nuclear research facilities. The instrument was developed based on methodological principles applied to research modeling and its psychometric properties were evaluated by a reliability analysis and validation of content, face and construct. The instrument was applied to an important nuclear research organization in Brazil. This organization comprises 4 research reactors and many nuclear laboratories. The survey results made possible a demographic characterization and the identification of some possible safety culture weaknesses and pointing out potential areas to be improved in the assessed organization. Good evidence of reliability with Cronbach's alpha

  11. Management of National Nuclear Power Programs for assured safety

    International Nuclear Information System (INIS)

    Connolly, T.J.

    1985-01-01

    Topics discussed in this report include: nuclear utility organization; before the Florida Public Service Commission in re: St. Lucie Unit No. 2 cost recovery; nuclear reliability improvement and safety operations; nuclear utility management; training of nuclear facility personnel; US experience in key areas of nuclear safety; the US Nuclear Regulatory Commission - function and process; regulatory considerations of the risk of nuclear power plants; overview of the processes of reliability and risk management; management significance of risk analysis; international and domestic institutional issues for peaceful nuclear uses; the role of the Institute of Nuclear Power Operations (INPO); and nuclear safety activities of the International Atomic Energy Agency (IAEA)

  12. Management of National Nuclear Power Programs for assured safety

    Energy Technology Data Exchange (ETDEWEB)

    Connolly, T.J. (ed.)

    1985-01-01

    Topics discussed in this report include: nuclear utility organization; before the Florida Public Service Commission in re: St. Lucie Unit No. 2 cost recovery; nuclear reliability improvement and safety operations; nuclear utility management; training of nuclear facility personnel; US experience in key areas of nuclear safety; the US Nuclear Regulatory Commission - function and process; regulatory considerations of the risk of nuclear power plants; overview of the processes of reliability and risk management; management significance of risk analysis; international and domestic institutional issues for peaceful nuclear uses; the role of the Institute of Nuclear Power Operations (INPO); and nuclear safety activities of the International Atomic Energy Agency (IAEA).

  13. Nuclear safety in Slovak Republic. Status of safety improvements

    International Nuclear Information System (INIS)

    Toth, A.

    1999-01-01

    Status of the safety improvements at Bohunice V-1 units concerning WWER-440/V-230 design upgrading were as follows: supplementing of steam generator super-emergency feed water system; higher capacity of emergency core cooling system; supplementing of automatic links between primary and secondary circuit systems; higher level of secondary system automation. The goal of the modernization program for Bohunice V-1 units WWER-440/V-230 was to increase nuclear safety to the level of the proposals and IAEA recommendations and to reach probability goals of the reactor concerning active zone damage, leak of radioactive materials, failures of safety systems and damage shields. Upgrading program for Mochovce NPP - WWER-440/V-213 is concerned with improving the integrity of the reactor pressure vessel, steam generators 'leak before break' methods applied for the NPP, instrumentation and control of safety systems, diagnostic systems, replacement of in-core monitoring system, emergency analyses, pressurizers safety relief valves, hydrogen removal system, seismic evaluations, non-destructive testing, fire protection. Implementation of quality assurance has a special role in improvement of operational safety activities as well as safety management and safety culture, radiation protection, decommissioning and waste management and training. The Year 2000 problem is mentioned as well

  14. Safety device for nuclear reactors

    International Nuclear Information System (INIS)

    Gruhl, H.

    1974-01-01

    The safety device is used to capture fragments of the lid of a pressure vessel when this vessel ruptures. It consists of a catcher structure attached to the concrete vessel, which is open at the top, and surrounding the pressure vessel. The catcher structure in this case may be designed as a ring installed very close to the concrete vessel, as a closure plate or may be made of transverse beams arranged parallel to each other. It is anchored either rigidly or elastically to the concrete vessel by means of springs or to the foundation by means of steel stretching members. (DG) [de

  15. The regulatory system of nuclear safety in Russia

    International Nuclear Information System (INIS)

    Mizoguchi, Shuhei

    2013-01-01

    This article explains what type of mechanism the nuclear system has and how nuclear safety is regulated in Russia. There are two main organizations in this system : ROSATOM and ROSTEKHADZOR. ROSATOM, which was founded in 2007, incorporates all the nuclear industries in Russia, including civil nuclear companies as well as nuclear weapons complex facilities. ROSTEKHNADZOR is the federal body that secures and supervises the safety in using atomic energy. This article also reviews three laws on regulating nuclear safety. (author)

  16. Manned space flight nuclear system safety. Volume 3: Reactor system preliminary nuclear safety analysis. Part 3: Nuclear Safety Analysis Document (NSAD)

    Science.gov (United States)

    1972-01-01

    Nuclear safety analysis as applied to a space base mission is presented. The nuclear safety analysis document summarizes the mission and the credible accidents/events which may lead to nuclear hazards to the general public. The radiological effects and associated consequences of the hazards are discussed in detail. The probability of occurrence is combined with the potential number of individuals exposed to or above guideline values to provide a measure of accident and total mission risk. The overall mission risk has been determined to be low with the potential exposure to or above 25 rem limited to less than 4 individuals per every 1000 missions performed. No radiological risk to the general public occurs during the prelaunch phase at KSC. The most significant risks occur from prolonged exposure to reactor debris following land impact generally associated with the disposal phase of the mission where fission product inventories can be high.

  17. Nuclear emergency preparedness. Final report of the Nordic Nuclear Safety Research Project BOK-1

    DEFF Research Database (Denmark)

    Lauritzen, B.

    2002-01-01

    Final report of the Nordic Nuclear Safety Research project BOK-1. The BOK-1 project, “Nuclear Emergency Preparedness”, was carried out in 1998-2001 with participants from the Nordic and Baltic Sea regions. The project consists of six sub-projects:Laboratory measurements and quality assurance (BOK-1.......1); Mobile measurements and measurement strategies (BOK-1.2); Field measurements and data assimilation (BOK-1.3); Countermeasures in agriculture and forestry (BOK-1.4); Emergency monitoring in theNordic and Baltic Sea countries (BOK-1.5); and Nuclear exercises (BOK-1.6). For each sub-project, the project...

  18. Protection and safety of nuclear power stations

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    The extreme requirements for the safety of nuclear power stations set tasks to the civil engineer which, resulting from dynamic load assumptions, among other things also demand the development of novel special concrete steels with a high elastic limit (here: DYWIDAG thread tie rod) for singly reinforced members. (orig.) [de

  19. Periodic safety reviews of nuclear power plants

    International Nuclear Information System (INIS)

    Toth, Csilla

    2009-01-01

    Operational nuclear power plants (NPPs) are generally subject to routine reviews of plant operation and special safety reviews following operational events. In addition, many Member States of the International Atomic Energy Agency (IAEA) have initiated systematic safety reassessment, termed periodic safety review (PSR), to assess the cumulative effects of plant ageing and plant modifications, operating experience, technical developments, site specific, organizational and human aspects. These reviews include assessments of plant design and operation against current safety standards and practices. PSRs are considered an effective way of obtaining an overall view of actual plant safety, to determine reasonable and practical modifications that should be made in order to maintain a high level of safety throughout the plant's operating lifetime. PSRs can be used as a means to identify time limiting features of the plant. The trend is to use PSR as a condition for deciding whether to continue operation of the plant beyond the originally established design lifetime and for assessing the status of the plant for long term operation. To assist Member States in the implementation of PSR, the IAEA develops safety standards, technical documents and provides different services: training courses, workshops, technical meetings and safety review missions for the independent assessment of the PSR at NPPs, including the requirements for PSR, the review process and the PSR final reports. This paper describes the PSR's objectives, scopes, methods and the relationship of PSR with other plant safety related activities and recent experiences of Member States in implementation of PSRs at NPPs. (author)

  20. Preliminary Study on the Revision of Nuclear Safety Policy Statement

    International Nuclear Information System (INIS)

    Lee, Y. E.; Lee, S. H.; Chang, H. S.; Choi, K. S.; Jung, S. J.

    2011-01-01

    Nuclear safety policy in Korea is currently declared in the Nuclear Safety Charter as the highest tier document and safety principles and directions are announced in the Nuclear Safety Policy Statement. As the circumstances affecting on the nuclear safety policy change, it needs to revise the Statement. This study aims to develop the revised Nuclear Safety Policy Statement to declare that securing safety is a prerequisite to the utilization of nuclear energy, and that all workers in nuclear industry and regulatory body must adhere to the principle of priority to safety. As a result, two different types of revision are being prepared as of August. One is based on the spirit of Nuclear Safety Charter as well as the direction of future-oriented safety policies including the changes in the environment after declaration of the Statement. The other is to declare the fundamental safety objective and safety principles as the top philosophy of national nuclear safety policy by adopting the '10 Safety Principles in IAEA Safety Fundamental' instead of the current Charter. Both versions of revision are subject to further in-depth discussion. However once the revision is finalized and declared, it would be useful to accomplish effectively the organizational responsibilities and to enhance the public confidence in nuclear safety by performing the regulatory activities in a planned and systematic manner and promulgating the government's dedication to priority to safety

  1. Factor Analysis and Framework Development for Incorporating Public Trust on Nuclear Safety issues

    International Nuclear Information System (INIS)

    Cho, Seongkyung; Lee, Gyebong; Lee, Gihyung; Lee, Gyehwi; Jeong, Jina

    2014-01-01

    The Korea Institute of Nuclear Safety (KINS), a regulatory expert organization in charge of nuclear safety in Korea, realized that a more fundamental and systematic analysis of activities is needed to actively meet the greater variety of concerns people have and increase the reliability of the results of regulation. Nuclear safety, a highly specialized field, has previously been discussed primarily from the viewpoint of the engineers who deal with the technology, but now 'public trust in nuclear safety' has to be viewed from the standpoint of the general public and from the socio-cultural perspective. Specific measures must be taken to examine which factors affect public trust and how we can secure and reproduce those factors to gain it. Also, an efficient system for incorporating public trust in nuclear safety must be established. In this study, various case studies were examined to identify the factors that affect public trust in nuclear safety. First, nuclear safety laws and information disclosure systems of major countries were examined by investigating data and conducting in-depth interviews. To explore a public framework concerning nuclear safety, big data of social media were analyzed. Also, Q methodology was used to analyze the risk schemata of the opinion leaders living in areas near nuclear power plants. Several surveys were conducted to analyze the amount of trust the public had in nuclear safety as well as their awareness of nuclear safety issues. Based on these analyses, factors affecting public trust in nuclear safety were extracted, and measures to build systems incorporating public trust in nuclear safety were proposed. This study addresses the public trust in nuclear safety on condition that the safety is ensured technically and mechanically

  2. Ordinance on the Finnish Centre of Radiation and Nuclear Safety

    International Nuclear Information System (INIS)

    1990-01-01

    This Ordinance was adopted in implementation of the 1983 Act setting up the Finnish Centre for Radiation and Nuclear Safety and the 1987 Nuclear Energy Act and entered into force on 1 November 1990. The Ordinance specifies the tasks of the Centre, as provided under both Acts, and gives it several supplementary responsibilities. In addition to its overall competence in respect of radiation safety, the Centre will carry out research into and supervise the health effects of radiation and maintain a laboratory for national measurements in that field. The Ordinance also sets out the Centre's organisation chart and the staff duties [fr

  3. A PIP chart for nuclear plant safety

    International Nuclear Information System (INIS)

    Suzuki, Tatsujiro; Yamaoka, Taiji

    1992-01-01

    While it is known that social and political aspects of nuclear safety issues are important, little study has been done on identifying the breadth of stakeholders whose policies have important influences over nuclear plant safety in a comprehensive way. The objectives of this study are to develop a chart that visually identifies important stakeholders and their policies and illustrates these influences in a hierarchical representation so that the relationship between stakeholders and nuclear safety will be better understood. This study is based on a series of extensive interviews with major stakeholders, such as nuclear plant managers, corporate planning vice presidents, state regulators, news media, and public interest groups, and focuses on one US nuclear power plant. Based on the interview results, the authors developed a conceptual policy influence paths (PIP) chart. The PIP chart illustrates the hierarchy of influence among stakeholders. The PIP chart is also useful in identifying possible stakeholders who can be easily overlooked without the PIP chart. In addition, it shows that influence flow is circular rather than linear in one direction

  4. Nuclear Safety Design Base for License Application

    Energy Technology Data Exchange (ETDEWEB)

    R.J. Garrett

    2005-09-29

    The purpose of this report is to identify and document the nuclear safety design requirements that are specific to structures, systems, and components (SSCs) of the repository that are important to safety (ITS) during the preclosure period and to support the preclosure safety analysis and the license application for the high-level radioactive waste (HLW) repository at Yucca Mountain, Nevada. The scope of this report includes the assignment of nuclear safety design requirements to SSCs that are ITS and does not include the assignment of design requirements to SSCs or natural or engineered barriers that are important to waste isolation (ITWI). These requirements are used as input for the design of the SSCs that are ITS such that the preclosure performance objectives of 10 CFR 63.111(b) [DIRS 173273] are met. The natural or engineered barriers that are important to meeting the postclosure performance objectives of 10 CFR 63.113(b) and (c) [DIRS 173273] are identified as ITWI. Although a structure, system, or component (SSC) that is ITS may also be ITWI, this report is only concerned with providing the nuclear safety requirements for SSCs that are ITS to prevent or mitigate event sequences during the repository preclosure period.

  5. NUCLEAR SAFETY DESIGN BASES FOR LICENSE APPLICATION

    Energy Technology Data Exchange (ETDEWEB)

    R.J. Garrett

    2005-03-08

    The purpose of this report is to identify and document the nuclear safety design requirements that are specific to structures, systems, and components (SSCs) of the repository that are important to safety (ITS) during the preclosure period and to support the preclosure safety analysis and the license application for the high-level radioactive waste (HLW) repository at Yucca Mountain, Nevada. The scope of this report includes the assignment of nuclear safety design requirements to SSCs that are ITS and does not include the assignment of design requirements to SSCs or natural or engineered barriers that are important to waste isolation (ITWI). These requirements are used as input for the design of the SSCs that are ITS such that the preclosure performance objectives of 10 CFR 63.111 [DIRS 156605] are met. The natural or engineered barriers that are important to meeting the postclosure performance objectives of 10 CFR 63.113 [DIRS 156605] are identified as ITWI. Although a structure, system, or component (SSC) that is ITS may also be ITWI, this report is only concerned with providing the nuclear safety requirements for SSCs that are ITS to prevent or mitigate event sequences during the repository preclosure period.

  6. Nuclear safety in the U.K

    International Nuclear Information System (INIS)

    Pape, R.P.

    1994-01-01

    The regulation of nuclear installations in the UK works through a licensing system. Licences are granted by the HSE (Health and Safety Executive), through HMNII (HM Nuclear Installations Inspectorate). HMNII's approach to the assessment of installations follows a set of Safety Assessment Principles (SAPs). Originally two sets of SAPs were produced, one for nuclear power reactors and the other for chemical plants (reprocessing etc..). During the 1980's it was found possible to combine the principles for all types of installation into one document with the earlier total of about 700 principles being reduced to 333. The new SAPs published in 1992 include a refinement of the approach to licensing which comprises a standard set of conditions for each site. The conditions usually set some objective, either for a physical feature or for maintenance. This paper describes the mechanics of the licensing process, the Tolerability of Risk (TOR) principle, and the SAPs. (J.S.). 2 refs., 1 fig., 1 tab

  7. Applying Digital Technologies to Strengthen Nuclear Safety

    International Nuclear Information System (INIS)

    Huffeteau, S.; Roy, C.

    2016-01-01

    Full text: The paper describes how the development of some information technologies can further contribute to the safety of nuclear facilities and their competitiveness. After repositioning the nuclear industry engineering practices in their historical and economic context, the paper describes five engineering practices or use cases widely developed especially in the aerospace industry: requirement management, business process enforcement by digitization of data and processes, facilities configuration management, engineering information unification, and digital licensing. Information technology (IT) plays a mandatory role for driving this change since IT is now mature enough to handle the level of complexity the nuclear industry requires. While the detailed evaluation of the expecting gains in cost decrease or safety increase can be difficult to quantify, the paper presents illustrative benefits reachable by a development of these practices. (author

  8. Summary of the nuclear safety in operation

    International Nuclear Information System (INIS)

    2004-01-01

    This summary is a collection of general information about nuclear safety of PWR type reactors exploited by EDF. Teaching aid, this work has been conceived by operators for operators, it must not be considered nor used as a doctrine document with a regulatory or prescriptive characteristic. it summarizes the great principles of nuclear safety, places them in a global approach and shows their coherence. It consists in 6 chapters and 6 annexes. The news of this edition are the chapter 2 devoted to the safety management and the annexe 6 devoted to the principal teaching coming from the feedback. At the end a glossary explains the signs and abbreviations and an index allows to find themes in the memento text from keywords. (N.C.)

  9. Australian Radiation Protection and Nuclear Safety Regulations 1999

    International Nuclear Information System (INIS)

    1999-01-01

    This document contains statutory rules made under the Australian Radiation and Nuclear Safety Act 1998 defining how specified standards to be observed, practices and procedures to be followed and measures to be taken by controlled persons in relation to activities relating to controlled facilities, as well as in relation to dealings with controlled apparatus or controlled material

  10. Australian Radiation Protection and Nuclear Safety Regulations 1999

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-11-01

    This document contains statutory rules made under the Australian Radiation and Nuclear Safety Act 1998 defining how specified standards to be observed, practices and procedures to be followed and measures to be taken by controlled persons in relation to activities relating to controlled facilities, as well as in relation to dealings with controlled apparatus or controlled material

  11. Pretension construction of safety shell in Chashma nuclear power plant

    International Nuclear Information System (INIS)

    Gong Zhenbin; Li Yinong; Ni Shaowen

    1999-01-01

    19T16 post-tension grouped anchor system is applied to the safety shell pretension in Chashma Nuclear Power Plant. The stretching force of each bundle is about 3800 kN and the prestressed reinforcement is stretched in five stages. The double-control measurement of stress controlling and extension checking is applied in strict accordance with the principle of symmetrical construction

  12. Karlsruhe Nuclear Research Center, Central Safety Department. Annual report 1993

    International Nuclear Information System (INIS)

    Koelzer, W.

    1994-04-01

    The Central Safety Department is responsible for handling all tasks of radiation protection, safety and security of the institutes and departments of the Karlsruhe Nuclear Research Center, for waste water activity measurements and environmental monitoring of the whole area of the Center, and for research and development work mainly focusing on nuclear safety and radiation protection measures. The research and development work concentrates on the following aspects: behavior of trace elements in the environment and decontamination of soil, behavior of tritium in the air/soil-plant system, improvement in radiation protection measurements and personnel dosimetry. This report gives details of the different duties, indicates the results of 1993 routine tasks and reports about results of investigations and developments of the working groups of the Department. (orig.) [de

  13. Bohunice Nuclear Power Plant Safety Upgrading Program

    International Nuclear Information System (INIS)

    Toth, A.; Fagula, L.

    1996-01-01

    Bohunice nuclear Power Plant generation represents almost 50% of the Slovak republic electric power production. Due to such high level of commitment to nuclear power in the power generation system, a special attention is given to safe and reliable operation of NPPs. Safety upgrading and operational reliability improvement of Bohunice V-1 NPP was carried out by the Bohunice staff continuously since the plant commissioning. In the 1990 - 1993 period extensive projects were realised. As a result of 'Small Reconstruction of the Bohunice V-1 NPP', the standards of both the nuclear safety and operational reliability have been significantly improved. The implementation of another modifications that will take place gradually during extended refuelling outages and overhauls in the course of 1996 through 1999, is referred to as the Gradual Reconstruction of the Bohunice V-1 Plant. The general goal of the V-1 NPP safety upgrading is the achievement of internationally acceptable level of nuclear safety. Extensive and financially demanding modification process of Bohunice V-2 NPP is likely to be implemented after a completion of the Gradual Reconstruction of the Bohunice V-1 NPP, since the year 1999. With this in mind, a first draft of the strategy of the Bohunice V-2 NPP upgrading program based on Probabilistic Safety assessment consideration was developed. A number of actions with a general effect on Bohunice site safety is evident. All these activities are aimed at reaching the essential objective of Bohunice NPP Management - to ensure a safe, reliable and effective electric energy and heat generation at the Bohunice site. (author)

  14. Nuclear Safety and Radiation Protection in Europe - a common approach

    International Nuclear Information System (INIS)

    McGarry, Ann

    2010-01-01

    In Europe, the European Union has adopted directives and implemented other measures which form the basis of a common approach to nuclear safety and radiation protection across all Member States. In particular, there are EU directives setting out radiation protection standards and establishing a Community framework for the nuclear safety of nuclear installations. There are also arrangements in place to provide for an effective response to nuclear emergencies and to facilitate high quality research into nuclear and radiation protection related topics. Inevitably the stage of development in each area is somewhat different, but generally progress is ongoing in each area. From the point of view of a small country like Ireland, the development of common standards and arrangements across Europe is beneficial as they are based on the best available knowledge and expertise; they provide for greater transparency; they facilitate public confidence and make best use of the available resources. However, there are some areas in which common approaches could be further advanced. For example, the medical exposure of patients is increasingly of concern across Europe and the further development of common approaches in this area would be helpful. It would also be useful to develop a more integrated approach to nuclear safety and radiation protection regulation and to better integrate nuclear and radiation issues with other public health and environment concerns. (author)

  15. Nuclear power plant safety under military threats

    International Nuclear Information System (INIS)

    Stritar, A.; Mavko, B.

    1993-01-01

    The Krsko nuclear power plant in Slovenia was probably the first in the world that found itself in the middle of a war region. A number of preventive measures performed during and immediately after the war in summer 1991 by the plant personnel as well as some of related activities of the Reactor Engineering Division of the 'Jozef Stefan' Institute are described. All efforts were aimed at the minimization of the possible public radiological consequences during a military attack. The critical safety functions in such conditions were checked. Concern was further devoted to maintenance of the core cooling in the core and to integrity of the spent fuel pit. The cold shutdown mode was found to be the most appropriate option. After selecting the cold shutdown mode as a most suitable operational state of the plant, further studies of the vulnerability were done. In addition to possible direct damage to structures, that would cause release of radioactivity, two important subjects were considered: AC and DC power supply and the ultimate heat sink. A quick analysis during the crisis has shown that the consequences of a military attack against the plant by jet fighters could be serious, but with the proper preventive measures and preparedness the environmental consequences could be minimized. (Z.S.) 1 fig., 1 ref

  16. Comparative approach between nuclear safety and security

    International Nuclear Information System (INIS)

    2009-04-01

    Adopting the definition of nuclear safety and nuclear security as they are specified by IAEA glossaries, this report first outlines that these both notions refer to similar risks but with causes of different nature. They discuss the notions of transparency and confidentiality and outline that security and safety both aims at the protection of population and of the environment. They discuss their organisational principles, notice that both have their own legal and regulatory framework, that authorities have expertise on both, that the responsibility is distributed among operators and the State, and that safety and security cultures are complementary. They analyse the design, exploitation and management principles of security and safety approaches: graded approach, defence-in-depth, synergy between security and safety, same daily monitoring requirement, same necessity to address the return on experience, same need to update a referential, a more constrained exchange of good practices in safety, a necessity to deal with their respective requirements, elaboration of emergency plans, performance of exercises

  17. No 2943. Project of law relative to nuclear transparency and safety

    International Nuclear Information System (INIS)

    2006-03-01

    This project of law comprises 5 titles dealing with: 1 - general dispositions: definition and scope of nuclear safety, security, radiation protection, operators liability, facilities in concern; 2 - the high nuclear safety authority: role and duties; 3 - public information in the domain of nuclear safety and radiation protection: information right of the public, local information commissions, high committee for nuclear safety transparency and information; 4 - basic nuclear facilities and transport of radioactive materials: applicable rules, police controls and measures, penal dispositions (investigations, sanctions); 5 - miscellaneous dispositions: changes made with respect to previous legislative texts. (J.S.)

  18. Selecting safety standards for nuclear power plants

    International Nuclear Information System (INIS)

    1981-01-01

    Today, many thousands of documents are available describing the requirements, guidelines, and industrial standards which can be used as bases for a nuclear power plant programme. Many of these documents relate to nuclear safety which is currently the focus of world-wide attention. The multitude of documents available on the subject, and their varying status and emphasis, make the processes of selection and implementation very important. Because nuclear power plants are technically intricate and advanced, particularly in relation to the technological status of many developing countries, these processes are also complicated. These matters were the subject of a seminar held at the Agency's headquarters in Vienna last December. The IAEA Nuclear Safety Standards (NUSS) programme was outlined and explained at the Seminar. The five areas of the NUSS programme for nuclear power plants cover, governmental organization, siting, design; operation; quality assurance. In each area the Agency has issued Codes of Practice and is developing Safety Guides. These provide regulatory agencies with a framework for safety. The Seminar recognized that the NUSS programme should enable developing countries to identify priorities in their work, particularly the implementation of safety standards. The ISO activities in the nuclear field are carried out in the framework of its Technical Committee 85 (ISO/TC85). The work is distributed in sub-committees. Seminar on selection and implementation of safety standards for nuclear power plants, jointly organized by the IAEA and the International Organization for Standardization (ISO), and held in Vienna from 15 to 18 December 1980 concerned with: terminology, definitions, units and symbols (SC-1), radiation protection (SC-2), power reactor technology (SC-3), nuclear fuel technology (SC-5). There was general agreement that the ISO standards are complementary to the NUSS codes and guides. ISO has had close relations with the IAEA for several years

  19. A study on safety climate at nuclear power plants

    International Nuclear Information System (INIS)

    Fukui, Hirokazu; Yoshida, Michio; Yoshiyama, Naohiro

    2001-01-01

    In the current study, we define safety climate as an organizational environment that induces members of the organization to give consideration to safety or take safety actions. It is of utmost importance that people holding managerial positions in an organization have a good understanding of the characteristics of the safety climate of the organization and implement safety promotion activities effectively. In the current research, we studied the rating scales and the characteristics of a safety climate. A survey was conducted, targeting technical engineers who belong to the three power stations of Kansai Electric Power Co., Inc. The questionnaire mainly consisted of questions concerning safety measures taken by individuals and questions concerning safety measures taken by the organization, to which the individuals belong. As a result of a factor analysis of the responses, we extracted five factors, namely, 'confidence in knowledge and skill', attitude of supervisors,' 'safety education in workplace', 'clarity of tasks' and 'safety confirmation/report'. In studying the rating scales of the safety climate, we selected five items from each of the above five factors, and used the total scores of the ratings of the five items as scores of each factor. Then, we examined the correlation between scores of personal factors and scores of organizational environment factors. We treated the scores of safety confirmation/report' and 'confidence in knowledge and skill', which are personal factors, as criterion variables, and the scores of 'attitude of supervisors', 'safety education in workplace' and 'clarity of tasks', which are organizational environment factors, as predictor variables. As a result, we found that levels of 'safety confirmation/report' and 'confidence in knowledge and skill' can be deduced from the scores of 'attitude of supervisors', 'safety education in workplace' and 'clarity of tasks.' Hence, we have decided to use these three organizational environment

  20. The State Surveillance over Nuclear Safety of Nuclear Facilities Act No. 28/1984

    International Nuclear Information System (INIS)

    1995-01-01

    The Act lays down responsibilities of the Czechoslovak Atomic Energy Commission in the field of state surveillance over nuclear safety of nuclear facilities; determines the responsibilities of nuclear safety inspectors in their inspection activities; specifies duties of bodies and corporations responsible for nuclear safety of nuclear facilities; stipulates the obligation to set up emergency plans; and specifies penalties imposed on corporations and individuals for noncompliance with nuclear safety provisions. The Act entered into force on 4 April 1984. (J.B.)

  1. Quality and safety of nuclear installations: the role of administration, and, nuclear safety and regulatory procedures

    International Nuclear Information System (INIS)

    Queniart, D.

    1979-12-01

    In the first paper the author defines the concepts of safety and quality and describes the means of intervention by the Public Authorities in safety matters of nuclear installations. These include individual authorisations, definition and application of technical rules and surveillance of installations. In the second paper he defines the distinction between radiation protection and safety and presents the legislative and regulatory plan for nuclear safety in France. A central safety service for nuclear installations was created in March 1973 within the Ministry of Industrial and Scientific Development, where, amongst other tasks, it draws up regulatory procedures and organizes inspections of the installations. The main American regulations for light water reactors are outlined and the French regulatory system for different types of reactors discussed

  2. Applications of nuclear safety probabilistic risk assessment to nuclear security for optimized risk mitigation

    Energy Technology Data Exchange (ETDEWEB)

    Donnelly, S.K.; Harvey, S.B. [Amec Foster Wheeler, Toronto, Ontario (Canada)

    2016-06-15

    Critical infrastructure assets such as nuclear power generating stations are potential targets for malevolent acts. Probabilistic methodologies can be applied to evaluate the real-time security risk based upon intelligence and threat levels. By employing this approach, the application of security forces and other protective measures can be optimized. Existing probabilistic safety analysis (PSA) methodologies and tools employed. in the nuclear industry can be adapted to security applications for this purpose. Existing PSA models can also be adapted and enhanced to consider total plant risk, due to nuclear safety risks as well as security risks. By creating a Probabilistic Security Model (PSM), safety and security practitioners can maximize the safety and security of the plant while minimizing the significant costs associated with security upgrades and security forces. (author)

  3. Special safety requirements applied to Brazilian nuclear power plant

    International Nuclear Information System (INIS)

    Lepecki, W.P.S.; Hamel, H.J.E.; Koenig, N.; Vieira, P.C.R.; Fritzsche, J.C.

    1981-01-01

    Some safety aspects of the Angra 2 and 3 nuclear power plants are presented. An analysis of the civil and mechanical project of these nuclear power plant having in view a safety analysis is done. (E.G.) [pt

  4. Probability and uncertainty in nuclear safety decisions

    International Nuclear Information System (INIS)

    Pate-Cornell, M.E.

    1986-01-01

    In this paper, we examine some problems posed by the use of probabilities in Nuclear Safety decisions. We discuss some of the theoretical difficulties due to the collective nature of regulatory decisions, and, in particular, the calibration and the aggregation of risk information (e.g., experts opinions). We argue that, if one chooses numerical safety goals as a regulatory basis, one can reduce the constraints to an individual safety goal and a cost-benefit criterion. We show the relevance of risk uncertainties in this kind of regulatory framework. We conclude that, whereas expected values of future failure frequencies are adequate to show compliance with economic constraints, the use of a fractile (e.g., 95%) to be specified by the regulatory agency is justified to treat hazard uncertainties for the individual safety goal. (orig.)

  5. Research and exploration on nuclear safety culture construction

    International Nuclear Information System (INIS)

    Zhang Lifang; Zhao Hongtao; Wang Hongwei

    2012-01-01

    This thesis mainly researched the definition, characteristics, development stage and setup procedure concerning nuclear safety culture, based on practice and experiences in Technical Physics Institute of Heilongjian. Academy of Science. The author discussed the importance of nuclear safety culture construction for an enterprise of nuclear technology utilization, and emphasized all the enterprise and individual who engaged in nuclear and radiation safety should acquire good nuclear safety culture quality, and ensure the application and development of the nuclear safety cult.ure construction in the enterprises of nu- clear technological utilization. (authors)

  6. Reflections on current nuclear safety problems

    International Nuclear Information System (INIS)

    Teillac, J.

    1981-01-01

    After operations totalling more than 2000 reactor-years, the safety balance is undeniably positive: no nuclear power plant in the world has so far caused significant damage to populations or to the environment. The paper reviews the darker and brighter aspects of recent analyses, in particular since the Harrisburg accident, and suggests three general lines of action: maintenance of a high level of technical competence in safety, systematic analysis of operational incidents and, finally, increased attention to the ''human factor'' as regards both the man/machine relationship and the training of personnel. With regard to the last-mentioned point, it is suggested that the greatest possible profit should be drawn from the tests carried out at the time of plant commissioning. International collaboration is particularly necessary both to ensure progress in the technical aspects of safety and to place the credibility of specialists on a firmer foundation. Finally, it is essential to assist countries which are embarking on nuclear power programmes. Nuclear safety is not always correctly perceived by public opinion, which will not definitively accept this new source of energy without having complete confidence in those who are promoting it. A clear and firm position on the part of those in positions of political responsibility is an important element in gaining public confidence. (author)

  7. Fukushima Ministerial Conference Urges Continued Work to Strengthen Nuclear Safety

    International Nuclear Information System (INIS)

    2012-01-01

    sustaining competent national regulatory authorities with effective independence and adequate human and financial resources''. It also emphasized the importance of measures to prevent and mitigate severe accidents, including protection against extreme natural hazards, saying that ''nuclear power plants should be designed, constructed and operated with the objectives of preventing accidents, and, should an accident occur, mitigating its effects and especially avoiding off-site contamination.'' The statement said emergency preparedness and response plans and capabilities should be strengthened at all levels, and emphasized the importance of international cooperation in assessing the environmental and human impact of radioactive releases from a nuclear accident. It stressed the importance of broadest adherence to the relevant international instruments, particularly the Convention on Nuclear Safety, and of further developing and strengthening communication with the public. The statement also welcomed the IAEA's release at the Conference of reports on three International Experts' Meetings held this year, on reactor and spent fuel safety, protection against extreme earthquakes and tsunamis and communication in the event of a nuclear or radiological emergency. Some 114 countries and 11 international organisations are attending the Conference, which aims to share knowledge and lessons from the Fukushima Daiichi accident, further enhance transparency and discuss the progress of international efforts to strengthen nuclear safety. Forty-four of these are attending at the level of minister or equivalent high rank, or head of organization. (IAEA)

  8. On modern needs in nuclear physics and nuclear safety education

    International Nuclear Information System (INIS)

    Tom Loennroth

    2005-01-01

    The teaching of nuclear physics has a long history, particularly after the second world war, and the present author has 20 years of experience of teaching in that field. The research in nuclear physics has made major advances over the years, and the experiments become increasingly sophisticated. However, very often the university literature lags the development, as is, indeed, the case in all physics education. As a remedy of to-day, the didactic aspects are emphasized, especially at a basic level, while the curriculum content is. still left without upgrade. A standard textbook in basic nuclear physics is, while represent more modern theoretical treatises. The latter two, as their headings indicate, do not treat experimental methods, whereas has a presentation that illustrates methods and results with figures and references. However, they are from the 60 s and 70 s, they are old, and therefore cannot attract modern students of today. Consequently, one has the inevitable feeling that modern university teaching in nuclear physics, and the related area of nuclear safety, must be upgraded. A recent report in Finland, concluded that there is not sufficient nuclear safety education, but that on the other hand, it does not necessarily have to be connected with nuclear physics education, although this is recommendable. Further, the present Finnish university law states that 'The mission of the university shall be to promote free research and scientific and artistic education, to provide higher education based on research, and. to educate students to serve their country and humanity. In carrying out their mission, the universities shall interact with the surrounding society and promote the societal impact o research finding and artistic activities'. This mismatch between the curricula and the required 'societal impact' will be discussed, and examples of implications, usually not implemented, will be given. For nuclear physics specifically, the (lack of) connection between

  9. One Year After Fukushima, Nuclear Safety Is Stronger

    International Nuclear Information System (INIS)

    2012-01-01

    Full text: Nuclear power is safer than it was a year ago as the nuclear industry, regulators and governments act on the lessons of Fukushima, but that safety must never be taken for granted, said Yukiya Amano, Director General of the International Atomic Energy Agency (IAEA). Speaking ahead of the first anniversary of the Fukushima Daiichi nuclear accident on 11 March, Amano said a culture of constant vigilance and improvement was vital to ensure that the benefits of nuclear power could be harnessed as safely as humanly possible. 'Nuclear safety is stronger than it was a year ago', he said. 'Fukushima Daiichi was a very serious accident, but we know what went wrong and we have a clear course of action to tackle those causes - not only in Japan, but anywhere in the world. 'Now we have to keep up the momentum. Complacency can kill'. On 11 March 2011 a huge earthquake and tsunami left more than 20 000 people dead or missing in eastern Japan. Amidst widespread destruction, the tsunami slammed into the Fukushima Daiichi Nuclear Power Station, disabling cooling systems and leading to fuel meltdowns in three of the six Units. The accident was a jolt to the nuclear industry, regulators and governments. It was triggered by a massive force of nature, but it was existing weaknesses of design regarding defence against natural hazards, regulatory oversight, accident management and emergency response that allowed it to unfold as it did. For example: The nuclear regulator was not sufficiently independent, allowing weak oversight of the operator, TEPCO, and regulatory requirements fell short of international best practice; Not enough attention was paid to guarding against possible extreme events at the Fukushima Daiichi site, leaving critical safety functions such as cooling systems vulnerable to the tsunami; Training to respond to serious accidents was inadequate, as were mitigation measures to prevent hydrogen explosions and protect the venting system; and Accident command lines

  10. Proceeding of the Fifth Scientific Presentation on Nuclear Safety Technology

    International Nuclear Information System (INIS)

    Suhaemi, Tj.; Sudarno; Sunaryo, G. R.; Supriatna, P.; Antariksawan, A. R.; Sumijanto; Febrianto; Histori; Aliq

    2000-01-01

    The proceedings includes the result of research and development activities on nuclear safety technology that have been done by research Center for Nuclear Safety Technology in 2000 and was presented on June 28, 2000. The proceedings is expected to give illustration of the research result on Nuclear Safety Technology

  11. Sociodrama approach for enhancing nuclear safety

    International Nuclear Information System (INIS)

    Choi, K. S.; Kim, C. B.; Ha, Y. H.

    2004-01-01

    A role playing or sociodrama has been experimentally conducted among residents from 4 NPP sites in Korea and KINS employees as a psychological approach for enhancing nuclear safety and improving public communication and public confidence in regulator in Dec. 2004. In this paper, the results were analyzed and presented and future plan and area of further study were suggested. This socio-psychological approach can be used as a new communication method for improving mutual understanding between residents and NPP operators at sites. It can be also used to solve conflicts among stakeholders and interest groups in nuclear industry

  12. Nuclear safety and radiation protection report of the Paluel nuclear facilities - 2013

    International Nuclear Information System (INIS)

    2014-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 103, 104, 114 and 115). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2013, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix

  13. Nuclear safety and radiation protection report of the Civaux nuclear facilities - 2014

    International Nuclear Information System (INIS)

    2015-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 158 and 159). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2014, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix

  14. Nuclear safety and radiation protection report of Cruas-Meysse nuclear facilities - 2012

    International Nuclear Information System (INIS)

    2013-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 111 and 112). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2012, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix. (J.S.)

  15. Nuclear safety and radiation protection report of the Dampierre-en-Burly nuclear facilities - 2013

    International Nuclear Information System (INIS)

    2014-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 84 and 85). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2013, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix

  16. Nuclear safety and radiation protection report of Dampierre-En-Burly nuclear facilities - 2012

    International Nuclear Information System (INIS)

    2013-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 84 and 85). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2012, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix. (J.S.)

  17. Nuclear safety and radiation protection report of Civaux nuclear facilities - 2012

    International Nuclear Information System (INIS)

    2013-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 158 and 159). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2012, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix. (J.S.)

  18. Nuclear safety and radiation protection report of the Penly nuclear facilities - 2013

    International Nuclear Information System (INIS)

    2014-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 136 and 140). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2013, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix

  19. Nuclear safety and radiation protection report of Golfech nuclear facilities - 2012

    International Nuclear Information System (INIS)

    2013-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 135 and 142). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2012, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix. (J.S.)

  20. Nuclear safety and radiation protection report of Nogent-Sur-Seine nuclear facilities - 2012

    International Nuclear Information System (INIS)

    2013-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 129 and 130). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2012, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix. (J.S.)

  1. Nuclear safety and radiation protection report of Penly nuclear facilities - 2012

    International Nuclear Information System (INIS)

    2013-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 136 and 140). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2012, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix. (J.S.)

  2. Nuclear safety and radiation protection report of the Fessenheim nuclear facilities - 2014

    International Nuclear Information System (INIS)

    2015-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INB no. 75). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2014, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix

  3. Nuclear safety and radiation protection report of Saint-Alban Saint-Maurice nuclear facilities - 2012

    International Nuclear Information System (INIS)

    2013-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 119 and 120). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2012, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix. (J.S.)

  4. Nuclear safety and radiation protection report of Belleville-Sur-Loire nuclear facilities - 2012

    International Nuclear Information System (INIS)

    2013-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 127 and 128). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2012, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix. (J.S.)

  5. Nuclear safety and radiation protection report of the Golfech nuclear facilities - 2014

    International Nuclear Information System (INIS)

    2015-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 135 and 142). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2014, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix

  6. Nuclear safety and radiation protection report of the Civaux nuclear facilities - 2013

    International Nuclear Information System (INIS)

    2014-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 158 and 159). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2013, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix

  7. Nuclear safety and radiation protection report of the Nogent-sur-Seine nuclear facilities - 2013

    International Nuclear Information System (INIS)

    2014-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 129 and 130). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2013, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix

  8. Nuclear safety and radiation protection report of the Dampierre-en-Burly nuclear facilities - 2014

    International Nuclear Information System (INIS)

    2015-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 84 and 85). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2014, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix

  9. Nuclear safety and radiation protection report of Blayais nuclear facilities - 2012

    International Nuclear Information System (INIS)

    2013-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 86 and 110). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2012, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix. (J.S.)

  10. Nuclear safety and radiation protection report of Fessenheim nuclear facilities - 2012

    International Nuclear Information System (INIS)

    2013-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INB no. 75). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2012, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix. (J.S.)

  11. Nuclear safety and radiation protection report of the Chooz nuclear facilities - 2014

    International Nuclear Information System (INIS)

    2015-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 139, 144 and 163 (under dismantling)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2014, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix

  12. Nuclear safety and radiation protection report of the Paluel nuclear facilities - 2014

    International Nuclear Information System (INIS)

    2015-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 103, 104, 114 and 115). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2014, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix

  13. Nuclear safety and radiation protection report of the Flamanville nuclear facilities - 2014

    International Nuclear Information System (INIS)

    2015-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 108, 109 and 167 (under construction)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2014, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix

  14. Nuclear safety and radiation protection report of the Flamanville nuclear facilities - 2013

    International Nuclear Information System (INIS)

    2014-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 108, 109 and 167 (under construction)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2013, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix

  15. Nuclear safety and radiation protection report of the Cattenom nuclear facilities - 2013

    International Nuclear Information System (INIS)

    2014-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 124, 125, 126 and 137). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2013, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix

  16. Nuclear safety and radiation protection report of the Chooz nuclear facilities - 2013

    International Nuclear Information System (INIS)

    2014-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 139, 144 and 163 (under dismantling)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2013, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix

  17. Nuclear safety and radiation protection report of the Cattenom nuclear facilities - 2014

    International Nuclear Information System (INIS)

    2015-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 124, 125, 126 and 137). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2014, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix

  18. Nuclear safety and radiation protection report of the Blayais nuclear facilities - 2013

    International Nuclear Information System (INIS)

    2014-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 86 and 110). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2013, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix

  19. Nuclear safety and radiation protection report of the Cruas-Meysse nuclear facilities - 2014

    International Nuclear Information System (INIS)

    2015-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 111 and 112). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2014, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix

  20. Nuclear safety and radiation protection report of the Belleville-sur-Loire nuclear facilities - 2013

    International Nuclear Information System (INIS)

    2014-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 127 and 128). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2013, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix

  1. Nuclear Safety Research Department annual report 2000

    Energy Technology Data Exchange (ETDEWEB)

    Majborn, B.; Damkjaer, A.; Nielsen, S.P.; Nonboel, E

    2001-08-01

    The report presents a summary of the work of the Nuclear Safety Research Department in 2000. The department's research and development activities were organized in two research programmes: 'Radiation Protection and Reactor Safety' and 'Radioecology and Tracer Studies'. In addition the department was responsible for the tasks 'Applied Health Physics and Emergency Preparedness', 'Dosimetry', 'Environmental Monitoring', and Irradiation and Isotope Services'. Lists of publications, committee memberships and staff members are included. (au)

  2. The role of nuclear reaction theory and data in nuclear energy and safety applications

    International Nuclear Information System (INIS)

    Schmidt, J.J.

    1993-01-01

    The nuclear data requirements for nuclear fission reactor design and safety computations are so large that they cannot be satisfied by experimental measurements alone. Nuclear reaction theories and models have recently been developed and refined to the extent, that, with suitable parametrisation and fitting to accurately known experimental data, they can be used for filling gaps in the available experimental nuclear data base as well as for bulk computations of nuclear reaction, e.g. activation cross sections. The concurrent rapid development of ever more powerful mainframe and personal computers has stimulated the development of comprehensive nuclear model computer codes. A representative selection of such codes will be presented in the lectures and computer exercises of this Workshop. In order to fulfill nuclear data requirements of the nineties and, at the same time, develop improved tools for nuclear physics teaching at developing country universities it will be required and a major future task of the IAEA nuclear data programme to develop computer files of ''best'' sets of nuclear parameters for standardised input to nuclear model computations of nuclear data. Nuclear scientists from developing countries can make substantial contributions to this project. (author). 25 refs

  3. Nuclear safety approach for PWRs design and operation

    International Nuclear Information System (INIS)

    Vignon, D.

    1988-01-01

    The implementation of France's major nuclear programme - 56 PWR units in service or under construction - has gone hand in hand with the development of an original philosophy in the field of nuclear safety. From an initial core of deterministic safety philosophy current in the seventies, which has been wholly retained and in some instances refined, a range of additions has been made to include consideration of a number of additional situations based on a probabilistic approach. This has resulted in a better coherence for safety and a mitigation of the severe accident probability. Furthermore, the establishment of emergency plans has enabled the Safety Authorities and the operator to adopt a coherent and logical approach to severe accidents with the aim of achieving greater defence in depth, this has resulted in the provision of certain additional measures designed to further reduce the consequences of severe accidents. This paper describes the culmination of this work, as exemplified in the new 1 400MWe - N4 advanced plant series currently under construction, of which the essential elements are also incorporated into all previous units, thereby giving them an equivalent level of safety. This now constitutes the French safety policy with respect to PWR nuclear units

  4. Upgrading the safety assessment of exported nuclear power plants

    International Nuclear Information System (INIS)

    Rosen, M.

    1978-01-01

    An examination of the safety aspects of exported nuclear power plants demonstrates that additional and somewhat special considerations exist for these plants, and thus that some new approaches may be required to insure their safety. In view of the generally small regulatory staffs of importing countries, suggestions are given for measures which should be taken by the various organizations involved in the export and import of nuclear power facilities to raise the level of the very essential safety assessment. These include the upgrading of the 'export edition' of the traditionally supplied safety documentation by use of a Supplementary Information Report, written specifically for the needs of a smaller and/or less technically qualified staff, which highlights the differences that exist between the facility to be constructed and the supposedly similar reference plant of the supplier country; by improvement of supporting safety documentation to allow for adequate understanding of significant safety parameters; and by attention to the needs of smaller countries in the critical Operating Regulations (Technical Specifications for Operation). Consideration is also given to upgrading the regulatory effort and to the obligations of principal organizations involved with exported nuclear plants, including national and international, for insuring the importing countries' technical readiness and the adequacy of the regulatory effort. Special attention is directed towards the project contract as a means of implementing programmes to achieve these goals. (author)

  5. Nuclear safety and radiation protection report of the Cattenom nuclear facilities - 2011

    International Nuclear Information System (INIS)

    2012-01-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Cattenom nuclear power plant (INB 124, 125, 126 and 137, Moselle (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2011, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise, microbial proliferation in cooling towers) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  6. Nuclear safety and radiation protection report of the Gravelines nuclear facilities - 2010

    International Nuclear Information System (INIS)

    2011-06-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Gravelines nuclear power plant (INB 96, 97 and 122, Nord (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2010, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  7. Nuclear safety and radiation protection report of the Penly nuclear facilities - 2010

    International Nuclear Information System (INIS)

    2011-06-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Penly nuclear power plant (INB 136 and 140, Seine-Maritime, 76 (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2010, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  8. Nuclear safety and radiation protection report of the Fessenheim nuclear facilities - 2010

    International Nuclear Information System (INIS)

    2011-06-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Fessenheim nuclear power plant (INB 75, Haut-Rhin, 68 (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2010, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  9. Nuclear safety and radiation protection report of the Chooz nuclear facilities - 2011

    International Nuclear Information System (INIS)

    2012-01-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Chooz nuclear power plant (Ardennes (FR)): 2 PWR reactors in operation (Chooz B, INB 139 and 144) and one partially dismantled PWR reactor (Chooz A, INB 163). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2011, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise, microbial proliferation in cooling towers) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary followed by the viewpoint of the Committees for health, safety and working conditions. (J.S.)

  10. Nuclear safety and radiation protection report of the Blayais nuclear facilities - 2011

    International Nuclear Information System (INIS)

    2012-01-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Blayais nuclear power plant (INB 86 and 110, Gironde (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2011, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  11. Nuclear safety and radiation protection report of the Nogent-sur-Seine nuclear facilities - 2011

    International Nuclear Information System (INIS)

    2012-01-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Nogent-sur-Seine nuclear power plant (INB 129 and 130, Aube (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2011, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise, microbial proliferation in cooling towers) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  12. Nuclear safety and radiation protection report of the Golfech nuclear facilities - 2010

    International Nuclear Information System (INIS)

    2011-06-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Golfech nuclear power plant (INB 135 and 142, Tarn-et-Garonne (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2010, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise, microbial proliferation in cooling towers) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  13. Nuclear safety and radiation protection report of the Cruas-Meysse nuclear facilities - 2011

    International Nuclear Information System (INIS)

    2012-01-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Cruas-Meysse nuclear power plant (INB 111 and 112, Ardeche (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2011, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise, microbial proliferation in cooling towers) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  14. Nuclear safety and radiation protection report of the Cattenom nuclear facilities - 2010

    International Nuclear Information System (INIS)

    2011-06-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Cattenom nuclear power plant (INB 124, 125, 126 and 137, Moselle (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2010, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise, microbial proliferation in cooling towers) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  15. Nuclear safety and radiation protection report of the Saint-Laurent-des-Eaux nuclear facilities - 2010

    International Nuclear Information System (INIS)

    2011-06-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Saint-Laurent-des-Eaux nuclear power plant (Saint-Laurent-Nouan (FR)): 2 partially dismantled graphite-gas reactors and a graphite sleeves storage silo (INB 46 and 74), and 2 PWR reactors in operation (INB 100). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2010, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise, microbial proliferation in cooling towers) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  16. Nuclear safety and radiation protection report of the Fessenheim nuclear facilities - 2011

    International Nuclear Information System (INIS)

    2012-01-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Fessenheim nuclear power plant (INB 75, Haut-Rhin, 68 (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2011, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  17. Nuclear safety and radiation protection report of the Gravelines nuclear facilities - 2011

    International Nuclear Information System (INIS)

    2012-01-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Gravelines nuclear power plant (INB 96, 97 and 122, Nord (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2011, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  18. Nuclear safety and radiation protection report of the Paluel nuclear facilities - 2010

    International Nuclear Information System (INIS)

    2011-01-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Paluel nuclear power plant (INB no. 103 - Paluel 1, no. 104 - Paluel 2, no. 114 - Paluel 3 and no. 115 - Paluel 4, Cany-Barville - Seine-Maritime (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities. The incidents and accidents which occurred in 2010, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document ends with a glossary and no recommendation from the Committees for health, safety and working conditions. (J.S.)

  19. Nuclear safety and radiation protection report of the Paluel nuclear facilities - 2011

    International Nuclear Information System (INIS)

    2012-01-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Paluel nuclear power plant (INB no. 103 - Paluel 1, no. 104 - Paluel 2, no. 114 - Paluel 3 and no. 115 - Paluel 4, Cany-Barville - Seine-Maritime (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities. The incidents and accidents which occurred in 2011, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  20. Nuclear safety and radiation protection report of the Dampierre-en-Burly nuclear facilities - 2010

    International Nuclear Information System (INIS)

    2011-06-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Dampierre-en-Burly nuclear power plant (INB 84 and 85, Loiret, 45 (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2010, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise, microbial proliferation in cooling towers) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  1. Nuclear safety and radiation protection report of the Dampierre-en-Burly nuclear facilities - 2011

    International Nuclear Information System (INIS)

    2012-01-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Dampierre-en-Burly nuclear power plant (INB 84 and 85, Loiret, 45 (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2011, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise, microbial proliferation in cooling towers) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  2. Nuclear safety and radiation protection report of the Creys-Malville nuclear facilities - 2011

    International Nuclear Information System (INIS)

    2012-01-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the partially dismantled facilities of the Creys-Malville nuclear power plant (also known as Superphenix power plant, INB no. 91, Creys-Mepieu - Isere (FR)) and the other fuel and waste storage facilities of the site (INB no. 141). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities. The incidents and accidents which occurred in 2011, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  3. Nuclear safety and radiation protection report of the Belleville-sur-Loire nuclear facilities - 2011

    International Nuclear Information System (INIS)

    2012-01-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Belleville-sur-Loire nuclear power plant (INB no. 127 - Belleville 1 and no. 128 - Belleville 2, Belleville-sur-Loire and Sury-pres-Lere - Cher (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities. The incidents and accidents which occurred in 2011, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise, microbial proliferation in cooling towers) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  4. Nuclear safety and radiation protection report of the Civaux nuclear facilities - 2010

    International Nuclear Information System (INIS)

    2011-06-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Civaux nuclear power plant (INB 158 and 159, Vienne (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2010, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise, microbial proliferation in cooling towers) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  5. Nuclear safety and radiation protection report of the Saint-Alban-Saint-Maurice nuclear facilities - 2010

    International Nuclear Information System (INIS)

    2011-06-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Saint-Alban-Saint-Maurice nuclear power plant (INB 119 and 120, Isere (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2010, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  6. Nuclear safety and radiation protection report of the Creys-Malville nuclear facilities - 2012

    International Nuclear Information System (INIS)

    2013-01-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the partially dismantled facilities of the Creys-Malville nuclear power plant (also known as Superphenix power plant, INB no. 91, Creys-Mepieu - Isere (FR)) and the other fuel and waste storage facilities of the site (INB no. 141). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities. The incidents and accidents which occurred in 2012, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions

  7. Nuclear safety and radiation protection report of the Saint-Alban-Saint-Maurice nuclear facilities - 2011

    International Nuclear Information System (INIS)

    2012-01-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Saint-Alban-Saint-Maurice nuclear power plant (INB 119 and 120, Isere (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2011, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  8. Nuclear safety and radiation protection report of the Gravelines nuclear facilities - 2012

    International Nuclear Information System (INIS)

    2013-01-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Gravelines nuclear power plant (INB 96, 97 and 122, Nord (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2012, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions

  9. Nuclear safety and radiation protection report of the Civaux nuclear facilities - 2011

    International Nuclear Information System (INIS)

    2012-01-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Civaux nuclear power plant (INB 158 and 159, Vienne (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2011, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise, microbial proliferation in cooling towers) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  10. Nuclear safety and radiation protection report of the Golfech nuclear facilities - 2011

    International Nuclear Information System (INIS)

    2012-01-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Golfech nuclear power plant (INB 135 and 142, Tarn-et-Garonne (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2011, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise, microbial proliferation in cooling towers) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  11. Nuclear safety and radiation protection report of the Penly nuclear facilities - 2011

    International Nuclear Information System (INIS)

    2012-01-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Penly nuclear power plant (INB 136 and 140, Seine-Maritime, 76 (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2011, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  12. Nuclear safety and radiation protection report of the Cruas-Meysse nuclear facilities - 2010

    International Nuclear Information System (INIS)

    2011-06-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Cruas-Meysse nuclear power plant (INB 111 and 112, Ardeche (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2010, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise, microbial proliferation in cooling towers) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  13. Nuclear safety and radiation protection report of the CNPE EDF nuclear facilities of Tricastin - 2011

    International Nuclear Information System (INIS)

    2012-01-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Tricastin nuclear power plant (INB 87 and 88, Saint-Paul-Trois-Chateaux, Drome (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2011, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  14. Nuclear safety and radiation protection report of the Gravelines nuclear facilities - 2013

    International Nuclear Information System (INIS)

    2014-01-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Gravelines nuclear power plant (INB 96, 97 and 122, Nord (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2013, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions

  15. Nuclear safety and radiation protection report of the Flamanville nuclear facilities - 2011

    International Nuclear Information System (INIS)

    2012-01-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Flamanville nuclear power plant (Manche (FR)): 2 PWR reactors in operation (INB 108 and 109), and 1 PWR under construction (Flamanville 3, INB 167). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2011, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise, water consumption and waste management at Flamanville 3 construction site) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  16. Nuclear safety and radiation protection report of the Flamanville nuclear facilities - 2010

    International Nuclear Information System (INIS)

    2011-06-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Flamanville nuclear power plant (Manche (FR)): 2 PWR reactors in operation (INB 108 and 109), and 1 PWR under construction (Flamanville 3, INB 167). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2010, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise, water consumption and waste management at Flamanville 3 construction site) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  17. Nuclear safety and radiation protection report of the Bugey nuclear facilities - 2010

    International Nuclear Information System (INIS)

    2011-06-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Bugey nuclear power plant (Ain (FR)): 4 PWR reactors in operation (INB 78 and 89), one partially dismantled graphite-gas reactor (INB 45), an inter-regional fuel storage facility (MIR, INB 102), and a radioactive waste storage and conditioning facility under construction (ICEDA, INB 173). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2010, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise, microbial proliferation in cooling towers) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  18. Nuclear safety and radiation protection report of the Blayais nuclear facilities - 2010

    International Nuclear Information System (INIS)

    2011-06-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Blayais nuclear power plant (INB 86 and 110, Gironde (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2010, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  19. Nuclear safety and radiation protection report of the Chinon nuclear facilities - 2010

    International Nuclear Information System (INIS)

    2011-06-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Chinon nuclear power plant (Indre-et-Loire, 37 (FR)): 4 PWR reactors in operation (Chinon B, INB 107 and 132), 3 partially dismantled graphite-gas reactors (Chinon A, INB 133, 153 and 161), a workshop for irradiated materials (AMI, INB 94), and an inter-regional fuel storage facility (MIR, INB 99). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2010, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise, microbial proliferation in cooling towers) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  20. Nuclear safety and radiation protection report of the Chooz nuclear facilities - 2010

    International Nuclear Information System (INIS)

    2011-06-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Chooz nuclear power plant (Ardennes (FR)): 2 PWR reactors in operation (Chooz B, INB 139 and 144) and one partially dismantled PWR reactor (Chooz A, INB 163). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2010, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise, microbial proliferation in cooling towers) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  1. Nuclear safety and radiation protection report of the Gravelines nuclear facilities - 2014

    International Nuclear Information System (INIS)

    2015-01-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Gravelines nuclear power plant (INB 96, 97 and 122, Nord (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2014, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions

  2. The safety of Ontario's nuclear reactors

    International Nuclear Information System (INIS)

    1980-06-01

    A Select Committee of the Legislature of Ontario was established to examine the affairs of Ontario Hydro, the provincial electrical utility. Extensive public hearings were held on several topics including the safety of nuclear power reactors operating in Ontario. The Committee found that these reactors are acceptably safe. Many of the 24 recommendations in this report deal with the licensing process and public access to information. (O.T.)

  3. Should Nuclear Safety Care About Resilience Engineering?

    International Nuclear Information System (INIS)

    Paries, J.

    2016-01-01

    The current nuclear industry safety paradigm is based on the deterministic and/or probabilistic anticipation of all potential situations, and the predetermination of all the (safe) responses. Even the defense in depth concept, which is the core of the nuclear safety strategy and is intended to handle situations in which part of the control is lost, heavily relies on detailed anticipations. In other words, nuclear safety is mainly expected from the real world’s conformity to a designed-to-be-safe world, i.e., a well controlled world, where organizations, processes, hardware, teams, and individuals comply with their rationally predetermined behaviors. In this “command and control” perspective, risk is seen as mainly generated by deviations and variations from rules, procedures, norms, and expectations. However, real operations are complex, even in normal situations, which means that they include some unpredictable events and adaptation behaviors. The traditional “command and control” perspective fail to properly acknowledge the limits to predictability inherent to a complex adaptive system. It actually strives to reduce complexity through tighter compliance to specifications and to improve predictions capabilities through a tighter monitoring of “weak signals” and “precursors”. But in a complex world, precursors are usually obvious after the event, while not identifiable before. And the efforts made to reduce complexity may also simultaneously tighten couplings between system’s components— hence increase complexity — and reduce the diversity and flexibility needed to respond to it.

  4. The current status and countermeasures of nuclear and radiation safety regulation in China

    International Nuclear Information System (INIS)

    Guo Chengzhan

    2013-01-01

    Nuclear power utilization is an inevitable choice for the development of energy science and technology civilization of human. As a kind of clean and low-carbon energy, nuclear energy plays an irreplaceable role in optimizing the energy structure, promoting energy-saving, discharge reduction and reducing resource constraints. But it is inevitably to face the risk of nuclear safety during the application of nuclear energy. Ensuring nuclear and radiation safety is the precondition and foundation of achieving the sustainable development of nuclear energy and technology utilization. As the main body of nuclear and radiation safety regulation work development, the Chinese dream of National Nuclear Safety Administration is to insure nuclear and radiation safety, boost the construction of ecological civilization, guarantee the harmonious and healthy development of human and environmental. The necessary means to deal with the new situation of nuclear and radiation safety and to promote the work of nuclear and radiation safety regulation is to summarize the experiences and lessons learned, to innovate the regulation ideas, methods and measures, to plan the nuclear and radiation safety regulation development strategy. (author)

  5. Operation Safety Review of Nuclear Power Plant

    International Nuclear Information System (INIS)

    Suharno

    2005-01-01

    A review on operation safety of Nuclear Power Plant (NPP) is carried out. NPP is established through several phases that are siting, design, fabrication and construction, and after completion of construction the next phase is operation, therefore operating organization is established. The safety of NPP is relied on operation safety. Based on that case the aim of this review is to get impression that operating organization and its activities are very important on determining the achievement of operation safety. Operating organization determines qualification and training of personnel, commissioning programs, plant operation programs, and supporting activities programs. The method used in this review is by explains the operating organization and its activities. The results indicate that the role of operating organization and its activities are very important on determining the achievement of the goals of the operation which are secure, reliable and safe. Operating organization directly responsible to operation safety. Besides that, human factor related to the implementation of safety culture has also important role. (author)

  6. Nuclear revival, nuclear safety: challenges for the European Union

    International Nuclear Information System (INIS)

    Fischer, Claude; Lacoste, Andre-Claude; Stellfox, David; Hajjani, Abdellaziz; Jamet, Philippe; Kaluzny, Yves; Lallier, Michel; Lescoeur, Bruno; Naredo, Fernando; Palm, Martina; Vincent, Cyrille; Faross, Peter; Gillet, Guillaume; Lemaitre, Philippe; Barcelo, Julio; Decobert, Veronique; Doumont, Pierre; Gouze, Jean-Remi; Hohlefelder, Walter; Herczog, Edit; Pouleur, Yvan; Teule, Rianne; Zidi, Latifa; Herzog, Philippe; Ristori, Dominique; Coniam, Jon; Kopp, Gudrun; Lambert de Diesbach, Patrice; Le Roux, Jean-Pierre; Mestrallet, Gerard; Paparizov, Atanas; Rosier, Philippe; Tamburi, Carlo; Lauvergeon, Anne; San Antonio, Santiago; Linkohr, Rolf; Auer, Josef; Bresson, Thierry de; Hohlefelder, Walter; Janouch, Frantisek; MacNaughton, Joan; Onyszkiewicz, Janusz; Reul, Herbert; Dolinsek, Urska; Komarov, Kirill; Boshkov, Aleksander; Bartuska, Vaclav; Gonnot, Francois-Michel; Grimston, Malcolm; Jesien, Leszek; Keussen, Urban; Schmitt von Sydow, Helmut; Sotura, Jean-Pierre; Jouyet, Jean-Pierre

    2008-01-01

    The nuclear revival is a fact, in Europe and the rest of the world. We are delighted at this. Today, all eyes are on the United Kingdom where the Government intends to do more than merely replace twenty-three aging power plants. The challenge facing them is considerable - Mr. Hutton, Britain's Minister for Trade and Industry, estimates that the work will generate 100,000 jobs. It is to be hoped that the soon-to-end Franco-British summit meeting will have strengthened understanding between the two countries. This would augur well for the French Presidency of the European Union which hopes to launch debate on a common energy policy within the European Council. Since the United Kingdom took the decision to re-launch the construction of nuclear reactors, France is no longer alone; it has a new ally in the nuclear debate. The British decision is also seen as encouraging by all the companies that wish to develop nuclear technology. This development is not only manifest in the United Kingdom; in Germany and a number of countries in Central and Eastern Europe, there is an obvious, if latent, desire to enter this sector. This document gathers the Proceedings of two symposiums: - the March 2008 conference on 'The Revival of Nuclear Energy, a challenge for the European Union' - and the November 2008 Conference on 'Nuclear safety: a worldwide Public Good'. Contents: Foreword by Claude Fischer; Introduction by Philippe Herzog. Part A: The revival of nuclear energy, a challenge for Europe: Partnerships, Speakers list, Synthesis for decision-makers by Andre Ferron and Michel Cruciani, 1 Address and 3 sessions, Opening Address by Dominique Ristori, First round table: Conditions to re-launch the nuclear industry in Europe, role of companies, banks and public institutions, Second round table: The need for a European energy mix and the necessity to improve the European common Market Model Last round table: The conditions for a European foreign energy policy, Speech of Anne Lauvergeon

  7. Preserving skills and expertise for nuclear safety

    International Nuclear Information System (INIS)

    Storey, P.

    2002-01-01

    Full text: For many decades to come the international nuclear sector will require a wide range of highly trained, experienced and competent personnel. However, with the decline in the availability of nuclear expertise which is being felt in many countries, maintaining safety competence for both the industry and the regulator becomes a difficult challenge. Assessing the extent of the decline now and predicting what is the likely need for expertise in the future is an important task for all countries. Assessment should take account of likely scenarios for change in the nuclear industry and should aim to identify areas of expertise most likely to be at risk. International Agencies are playing a key role in raising awareness about regulatory concern and are starting to coordinate response and exchange good practice. Regulatory responsibility for preserving skills and expertise and International Agency leadership are essential for a successful outcome to the issue. (author)

  8. Canadian Nuclear Safety Commission's intern program

    International Nuclear Information System (INIS)

    Gilmour, P.E.

    2002-01-01

    The Intern Program was introduced at the Canadian Nuclear Safety Commission, Canada's Nuclear Regulator in response to the current competitive market for engineers and scientists and the CNSC's aging workforce. It is an entry level staff development program designed to recruit and train new engineering and science graduates to eventually regulate Canada's nuclear industry. The program provides meaningful work experience and exposes the interns to the general work activities of the Commission. It also provides them with a broad awareness of the regulatory issues in which the CNSC is involved. The intern program is a two-year program focusing on the operational areas and, more specifically, on the generalist functions of project officers. (author)

  9. Safety goals for nuclear power plant operation

    International Nuclear Information System (INIS)

    1983-05-01

    This report presents and discusses the Nuclear Regulatory Commission's, Policy Statement on Safety Goals for the Operation of Nuclear Power Plants. The safety goals have been formulated in terms of qualitative goals and quantitative design objectives. The qualitative goals state that the risk to any individual member of the public from nuclear power plant operation should not be a significant contributor to that individual's risk of accidental death or injury and that the societal risks should be comparable to or less than those of viable competing technologies. The quantitative design objectives state that the average risks to individual and the societal risks of nuclear power plant operation should not exceed 0.1% of certain other risks to which members of the US population are exposed. A subsidiary quantitative design objective is established for the frequency of large-scale core melt. The significance of the goals and objectives, their bases and rationale, and the plan to evaluate the goals are provided. In addition, public comments on the 1982 proposed policy statement and responses to a series of questions that accompanied the 1982 statement are summarized

  10. Efforts to improve safety of nuclear power plants

    International Nuclear Information System (INIS)

    Matsuura, Masayoshi; Hisamochi, Kohei; Ando, Koji

    2014-01-01

    Based on lessons learned from Fukushima Daiichi Nuclear Power Plant (NPP) Accident, this article described (1) basic philosophy of enhanced safety measures of Advanced Boiling Water Reactor(ABWR) NPP, which was the only Generation III+ reactor operating in the world, (2) applicability to new regulatory requirements including countermeasures against severe accident, natural disaster and terrorism, and (3) outlines of safety systems against design basis accidents and major accidents deployed in existing Japanese NPPs and also planned in oversea NPPs such as Visaginas NPP in Lithuania were described. Backup water injection system and mobile/portable components for water injection and sources of power were prepared for further enhanced safety measures. As improved permanent safety components against major accident, filtered venting system with improved operability and nitrogen atmosphere, main steam relief valve with enhanced function in DC losses, and enhanced high-pressure water injection using turbine water lubricated type turbine pumps were detailed. (T. Tanaka)

  11. Environmental and safety problems of waste management in nuclear engineering

    International Nuclear Information System (INIS)

    Schwibach, J.; Jacobi, W.

    1976-01-01

    The environmental and safety problems which waste management in nuclear technology poses are discussed under the aspects of the disposal of radioactive waste by nuclear facilities and the safety of radioactive waste disposal. The release and global distribution of long-lived radionuclides such as tritium, Kr-85, C-14, I-129, and Pu-239 as well as the radiation exposure of the world population resulting thereof are investigated, the authors starting from a specific production rate of the nuclides released from nuclear facilities. Definitions of the terms 'dose commitment' and 'collective dose commitment' are given. Furthermore, local radiation exposure in reprocessing plants is investigated and compared with regional and global radiation exposure. A recommendation is made to take measures which would reduce the nuclides tritium, Kr-85, and C-14 in order to achieve considerably smaller collective doses. (HR/LN) [de

  12. Urgent Safety Measures in Japan after Great East Japan Earthquake

    International Nuclear Information System (INIS)

    Taniura, Wataru; Otani, Hiroyasu

    2012-01-01

    Due to tsunami triggered by the Great East Japan Earthquake, the operating and refueling reactor facilities at Fukushima Dai-ichi and Dai-ni Nuclear Power Plants caused a nuclear