WorldWideScience

Sample records for nuclear safety evaluation

  1. Status of Nuclear Safety evaluation in China

    International Nuclear Information System (INIS)

    Tian Jiashu

    1999-01-01

    Chinese nuclear safety management and control follows international practice, the regulations are mainly from IAEA with the Chinese condition. The regulatory body is National Nuclear Safety Administration (NNSA). The nuclear safety management, surveillance, safety review and evaluation are guided by NNSA with technical support by several units. Beijing Review Center of Nuclear Safety is one of these units, which was founded in 1987 within Beijing Institute of nuclear Engineering (BINE), co-directed by NNSA and BINE, it is the first technical support team to NNSA. Most of the safety reviews and evaluations of Chinese nuclear installations has been finished by this unit. It is described briefly in this paper that the NNSA's main function and organization, regulations on the nuclear safety, procedure of application and issuing of license, the main activities performed by Beijing Review Center of Nuclear Safety, the situation of severe accident analyses in China, etc. (author)

  2. Site evaluation for nuclear installations. Safety requirements

    International Nuclear Information System (INIS)

    2003-01-01

    This Safety Requirements publication supersedes the Code on the Safety of Nuclear Power Plants: Siting, which was issued in 1988 as Safety Series No. 50-C-S (Rev. 1). It takes account of developments relating to site evaluations for nuclear installations since the Code on Siting was last revised. These developments include the issuing of the Safety Fundamentals publication on The Safety of Nuclear Installations, and the revision of various safety standards and other publications relating to safety. Requirements for site evaluation are intended to ensure adequate protection of site personnel, the public and the environment from the effects of ionizing radiation arising from nuclear installations. It is recognized that there are steady advances in technology and scientific knowledge, in nuclear safety and in what is considered adequate protection. Safety requirements change with these advances and this publication reflects the present consensus among States. This Safety Requirements publication was prepared under the IAEA programme on safety standards for nuclear installations. It establishes requirements and provides criteria for ensuring safety in site evaluation for nuclear installations. The Safety Guides on site evaluation listed in the references provide recommendations on how to meet the requirements established in this Safety Requirements publication. The objective of this publication is to establish the requirements for the elements of a site evaluation for a nuclear installation so as to characterize fully the site specific conditions pertinent to the safety of a nuclear installation. The purpose is to establish requirements for criteria, to be applied as appropriate to site and site-installation interaction in operational states and accident conditions, including those that could lead to emergency measures for: (a) Defining the extent of information on a proposed site to be presented by the applicant; (b) Evaluating a proposed site to ensure that the site

  3. Researches on nuclear criticality safety evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Okuno, Hiroshi; Suyama, Kenya; Nomura, Yasushi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2003-10-01

    For criticality safety evaluation of burnup fuel, the general-purpose burnup calculation code, SWAT, was revised, and its precision was confirmed through comparison with other results from OECD/NEA's burnup credit benchmarks. Effect by replacing the evaluated nuclear data from JENDL-3.2 to ENDF/B-VI and JEF-2.2 was also studied. Correction factors were derived for conservative evaluation of nuclide concentrations obtained with the simplified burnup code ORIGEN2.1. The critical masses of curium were calculated and evaluated for nuclear criticality safety management of minor actinides. (author)

  4. Researches on nuclear criticality safety evaluation

    International Nuclear Information System (INIS)

    Okuno, Hiroshi; Suyama, Kenya; Nomura, Yasushi

    2003-01-01

    For criticality safety evaluation of burnup fuel, the general-purpose burnup calculation code, SWAT, was revised, and its precision was confirmed through comparison with other results from OECD/NEA's burnup credit benchmarks. Effect by replacing the evaluated nuclear data from JENDL-3.2 to ENDF/B-VI and JEF-2.2 was also studied. Correction factors were derived for conservative evaluation of nuclide concentrations obtained with the simplified burnup code ORIGEN2.1. The critical masses of curium were calculated and evaluated for nuclear criticality safety management of minor actinides. (author)

  5. Problems of nuclear power plant safety evaluation

    International Nuclear Information System (INIS)

    Suchomel, J.

    1977-01-01

    Nuclear power plant safety is discussed with regard to external effects on the containment and to the human factor. As for external effects, attention is focused on shock waves which may be due to explosions or accidents in flammable material transport and storage, to missiles, and to earthquake effects. The criteria for evaluating nuclear power plant safety in different countries are shown. Factors are discussed affecting the reliability of man with regard to his behaviour in a loss-of-coolant accident in the power plant. Different types of PWR containments and their functions are analyzed, mainly in case of accident. Views are discussed on the role of destructive accidents in the overall evaluation of fast reactor safety. Experiences are summed up gained with the operation of WWER reactors with respect to the environmental impact of the nuclear power plants. (Z.M.)

  6. The Interagency Nuclear Safety Review Panel's Galileo safety evaluation report

    International Nuclear Information System (INIS)

    Nelson, R.C.; Gray, L.B.; Huff, D.A.

    1989-01-01

    The safety evaluation report (SER) for Galileo was prepared by the Interagency Nuclear Safety Review Panel (INSRP) coordinators in accordance with Presidential directive/National Security Council memorandum 25. The INSRP consists of three coordinators appointed by their respective agencies, the Department of Defense, the Department of Energy (DOE), and the National Aeronautics and Space Administration (NASA). These individuals are independent of the program being evaluated and depend on independent experts drawn from the national technical community to serve on the five INSRP subpanels. The Galileo SER is based on input provided by the NASA Galileo Program Office, review and assessment of the final safety analysis report prepared by the Office of Special Applications of the DOE under a memorandum of understanding between NASA and the DOE, as well as other related data and analyses. The SER was prepared for use by the agencies and the Office of Science and Technology Policy, Executive Office of the Present for use in their launch decision-making process. Although more than 20 nuclear-powered space missions have been previously reviewed via the INSRP process, the Galileo review constituted the first review of a nuclear power source associated with launch aboard the Space Transportation System

  7. Nuclear safety. How is it evaluated?

    International Nuclear Information System (INIS)

    Andersson, Kjell; Andersson, Johan; Carlsson, Lennart; Olsson, Richard; Ericsson, A.M.; Gunsell, L.; Wene, C.O.

    1996-09-01

    A working group with representatives for the three subject areas reactor safety, disposal of spent fuels and transport of radioactive materials has performed a project aiming to clarify similarities and differences of the three areas concerning methods for safety analysis, criteria, risks etc; and to develop contacts between experts in the areas in order to facilitate transfer of methods. Some of the more precise objectives were: To identify common problems that could be solved jointly, to discuss prospects for a 'meta-method' that can support safety analysis in the entire field of nuclear safety, and to discuss possibilities for a homogeneous attitude towards risk management

  8. Evaluation of reliability assurance approaches to operational nuclear safety

    International Nuclear Information System (INIS)

    Mueller, C.J.; Bezella, W.A.

    1984-01-01

    This report discusses the results of research to evaluate existing and/or recommended safety/reliability assurance activities among nuclear and other high technology industries for potential nuclear industry implementation. Since the Three Mile Island (TMI) accident, there has been increased interest in the use of reliability programs (RP) to assure the performance of nuclear safety systems throughout the plant's lifetime. Recently, several Nuclear Regulatory Commission (NRC) task forces or safety issue review groups have recommended RPs for assuring the continuing safety of nuclear reactor plants. 18 references

  9. Method of safety evaluation in nuclear power plants

    International Nuclear Information System (INIS)

    Kuraszkiewicz, P.; Zahn, P.

    1988-01-01

    A novel quantitative technique for evaluating safety of subsystems of nuclear power plants based on expert estimations is presented. It includes methods of mathematical psychology recognizing the effect of subjective factors in the expert estimates and, consequently, contributes to further objectification of evaluation. It may be applied to complementing probabilistic safety assessment. As a result of such evaluations a characteristic 'safety of nuclear power plants' is obtained. (author)

  10. Providing Nuclear Criticality Safety Analysis Education through Benchmark Experiment Evaluation

    International Nuclear Information System (INIS)

    Bess, John D.; Briggs, J. Blair; Nigg, David W.

    2009-01-01

    One of the challenges that today's new workforce of nuclear criticality safety engineers face is the opportunity to provide assessment of nuclear systems and establish safety guidelines without having received significant experience or hands-on training prior to graduation. Participation in the International Criticality Safety Benchmark Evaluation Project (ICSBEP) and/or the International Reactor Physics Experiment Evaluation Project (IRPhEP) provides students and young professionals the opportunity to gain experience and enhance critical engineering skills.

  11. Second Meeting for Evaluation of the Nuclear Safety Convention

    International Nuclear Information System (INIS)

    2002-01-01

    This report presents the results of the Second Meeting for Evaluation of the Nuclear Safety Convention. the CSN. as the only competent Government organism on nuclear safety, represented Spain in the preparation of the national report and at the Review Meeting, acquiring a set of obligations for the next three years, until the holding of third meeting. (Author)

  12. Systematic safety evaluation of old nuclear power plants

    International Nuclear Information System (INIS)

    Dredemis, G.; Fourest, B.

    1984-01-01

    The French safety authorities have undertaken a systematic evaluation of the safety of old nuclear power plants. Apart from a complete revision of safety documents (safety analysis report, general operating rules, incident and accident procedures, internal emergency plan, quality organisation manual), this examination consisted of analysing the operating experience of systems frequently challenged and a systematic examination of the safety-related systems. This paper is based on an exercise at the Ardennes Nuclear Power Plant which has been in operation for 15 years. This paper also summarizes the main surveys and modifications relating to this power plant. (orig.)

  13. A Methodology for Evaluating Quantitative Nuclear Safety Culture Impact

    International Nuclear Information System (INIS)

    Han, Kiyoon; Jae, Moosung

    2015-01-01

    Through several accidents of NPPs including the Fukushima Daiichi in 2011 and Chernobyl accidents in 1986, nuclear safety culture has been emphasized in reactor safety world-widely. In Korea, KHNP evaluates the safety culture of NPP itself. KHNP developed the principles of the safety culture in consideration of the international standards. A questionnaire and interview questions are also developed based on these principles and it is used for evaluating the safety culture. However, existing methodology to evaluate the safety culture has some disadvantages. First, it is difficult to maintain the consistency of the assessment. Second, the period of safety culture assessment is too long (every two years) so it has limitations in preventing accidents occurred by a lack of safety culture. Third, it is not possible to measure the change in the risk of NPPs by weak safety culture since it is not clearly explains the effect of safety culture on the safety of NPPs. In this study, Safety Culture Impact Assessment Model (SCIAM) is developed overcoming these disadvantages. In this study, SCIAM which overcoming disadvantages of exiting safety culture assessment method is developed. SCIAM uses SCII to monitor the statues of the safety culture periodically and also uses RCDF to quantify the safety culture impact on NPP's safety. It is significant that SCIAM represents the standard of the healthy nuclear safety culture, while the exiting safety culture assessment presented only vulnerability of the safety culture of organization. SCIAM might contribute to monitoring the level of safety culture periodically and, to improving the safety of NPP

  14. A Methodology for Evaluating Quantitative Nuclear Safety Culture Impact

    Energy Technology Data Exchange (ETDEWEB)

    Han, Kiyoon; Jae, Moosung [Hanyang University, Seoul (Korea, Republic of)

    2015-05-15

    Through several accidents of NPPs including the Fukushima Daiichi in 2011 and Chernobyl accidents in 1986, nuclear safety culture has been emphasized in reactor safety world-widely. In Korea, KHNP evaluates the safety culture of NPP itself. KHNP developed the principles of the safety culture in consideration of the international standards. A questionnaire and interview questions are also developed based on these principles and it is used for evaluating the safety culture. However, existing methodology to evaluate the safety culture has some disadvantages. First, it is difficult to maintain the consistency of the assessment. Second, the period of safety culture assessment is too long (every two years) so it has limitations in preventing accidents occurred by a lack of safety culture. Third, it is not possible to measure the change in the risk of NPPs by weak safety culture since it is not clearly explains the effect of safety culture on the safety of NPPs. In this study, Safety Culture Impact Assessment Model (SCIAM) is developed overcoming these disadvantages. In this study, SCIAM which overcoming disadvantages of exiting safety culture assessment method is developed. SCIAM uses SCII to monitor the statues of the safety culture periodically and also uses RCDF to quantify the safety culture impact on NPP's safety. It is significant that SCIAM represents the standard of the healthy nuclear safety culture, while the exiting safety culture assessment presented only vulnerability of the safety culture of organization. SCIAM might contribute to monitoring the level of safety culture periodically and, to improving the safety of NPP.

  15. Evaluation of seismic hazards for nuclear power plants. Safety guide

    International Nuclear Information System (INIS)

    2002-01-01

    The main objective of this Safety Guide is to provide recommendations on how to determine the ground motion hazards for a plant at a particular site and the potential for surface faulting, which could affect the feasibility of construction and safe operation of a plant at that site. The guidelines and procedures presented in this Safety Guide can appropriately be used in evaluations of site suitability and seismic hazards for nuclear power plants in any seismotectonic environment. The probabilistic seismic hazard analysis recommended in this Safety Guide also addresses the needs for seismic hazard analysis of external event PSAs conducted for nuclear power plants. Many of the methods and processes described may also be applicable to nuclear facilities other than power plants. Other phenomena of permanent ground displacement (liquefaction, slope instability, subsidence and collapse) as well as the topic of seismically induced flooding are treated in Safety Guides relating to foundation safety and coastal flooding. Recommendations of a general nature are given in Section 2. Section 3 discusses the acquisition of a database containing the information needed to evaluate and address all hazards associated with earthquakes. Section 4 covers the use of this database for construction of a seismotectonic model. Sections 5 and 6 review ground motion hazards and evaluations of the potential for surface faulting, respectively. Section 7 addresses quality assurance in the evaluation of seismic hazards for nuclear power plants

  16. Evaluation for nuclear safety-critical software reliability of DCS

    International Nuclear Information System (INIS)

    Liu Ying

    2015-01-01

    With the development of control and information technology at NPPs, software reliability is important because software failure is usually considered as one form of common cause failures in Digital I and C Systems (DCS). The reliability analysis of DCS, particularly qualitative and quantitative evaluation on the nuclear safety-critical software reliability belongs to a great challenge. To solve this problem, not only comprehensive evaluation model and stage evaluation models are built in this paper, but also prediction and sensibility analysis are given to the models. It can make besement for evaluating the reliability and safety of DCS. (author)

  17. Evaluation of the Finnish nuclear safety research program 'SAFIR2010'

    International Nuclear Information System (INIS)

    2010-01-01

    A panel of three members has been asked by the Ministry of Employment and the Economy (MEE) to evaluate SAFIR2010, the Finnish research program on nuclear power plant safety. The program was established for the period 2007-2010 to help maintain expertise in nuclear safety, to integrate young people into the research in order to help assure the future availability of expertise, and to support international collaborations. The program is directed by a Steering Group, appointed by MEE, with representatives from all organizations involved with nuclear safety in Finland. SAFIR2010 has consisted of approximately 30 projects from year to year that fall into eight subject areas: 1. Organization and human factors 2. Automation and control room 3. Fuel and reactor physics 4. Thermal hydraulics 5. Severe accidents 6. Structural safety of reactor circuit 7. Construction safety 8. Probabilistic safety analysis (PSA) For each of these areas there are Reference Groups that provide oversight of the projects within their jurisdiction. The panel carried out its evaluation by reviewing copies of relevant documents and, during a one-week period 17-22 January 2010, meeting with key individuals. The results of the panel are provided as general conclusions, responses to questions posed by MEE, challenges and recommendations and comments on specific projects in each subject area. The general conclusions reflect the panel's view that SAFIR2010 is meeting its objectives and carrying out quality research. The questions addressed are: (a.) Are the achieved results in balance with the funding? Are the results exploited efficiently in practice? (b.) How well does the expertise cover the field? Is the entire SAFIR2010 programme balanced to all different fields in nuclear safety? Does it raise efficiently new experts? (c.) Have the 2006 evaluation results been implemented successfully into SAFIR2010 program? (d.) Challenges and recommendations. In general the panel was very positive about SAFIR

  18. Nuclear safety

    International Nuclear Information System (INIS)

    1991-02-01

    This book reviews the accomplishments, operations, and problems faced by the defense Nuclear Facilities Safety Board. Specifically, it discusses the recommendations that the Safety Board made to improve safety and health conditions at the Department of Energy's defense nuclear facilities, problems the Safety Board has encountered in hiring technical staff, and management problems that could affect the Safety Board's independence and credibility

  19. Nuclear criticality safety parameter evaluation for uranium metallic alloy

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez, Andrea; Abe, Alfredo, E-mail: andreasdpz@hotmail.com, E-mail: abye@uol.com.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Centro de Energia Nuclear

    2013-07-01

    Nuclear criticality safety during fuel fabrication process, transport and storage of fissile and fissionable materials requires criticality safety analysis. Normally the analysis involves computer calculations and safety parameters determination. There are many different Criticality Safety Handbooks where such safety parameters for several different fissile mixtures are presented. The handbooks have been published to provide data and safety principles for the design, safety evaluation and licensing of operations, transport and storage of fissile and fissionable materials. The data often comprise not only critical values, but also subcritical limits and safe parameters obtained for specific conditions using criticality safety calculation codes such as SCALE system. Although many data are available for different fissile and fissionable materials, compounds, mixtures, different enrichment level, there are a lack of information regarding a uranium metal alloy, specifically UMo and UNbZr. Nowadays uranium metal alloy as fuel have been investigated under RERTR program as possible candidate to became a new fuel for research reactor due to high density. This work aim to evaluate a set of criticality safety parameters for uranium metal alloy using SCALE system and MCNP Monte Carlo code. (author)

  20. Safety and cost evaluation of nuclear waste management

    International Nuclear Information System (INIS)

    Vieno, T.; Hautojaervi, A.; Korhonen, R.

    1989-11-01

    The report introduces the results of the nuclear waste management safety and cost evaluation research carried out in the Nuclear Engineering Laboratory of the Technical Research Centre of Finland (VTT) during the years 1984-1988. The emphasis is on the description of the state-of-art of performance and cost evaluation methods. The report describes VTT's most important assessment models. Development, verification and validation of the models has largely taken place within international projects, including the Stripa, HYDROCOIN, INTRACOIN, INTRAVAL, PSACOIN and BIOMOVS projects. Furthermore, VTT's other laboratories are participating in the Natural Analogue Working Group,k the CHEMVAL project and the CoCo group. Resent safety analyses carried out in the Nuclear Engineering Laboratory include a concept feasibility study of spent fuel disposal, safety analyses for the Preliminary Safety Analysis Reports (PSAR's) of the repositories to be constructed for low and medium level operational reactor waste at the Olkiluoto and Loviisa power plants as well as safety analyses of disposal of decommissioning wastes. Appendix 1 contains a comprehensive list of the most important publications and technical reports produced. They present the content and results of the research in detail

  1. Nuclear safety and regulation

    International Nuclear Information System (INIS)

    Kim, Hho Jung

    2000-03-01

    This book contains 12 chapters, which are atom and radiation, nuclear reactor and kinds of nuclear power plant, safeguard actuation system and stability evaluation for rock foundation of nuclear power plant, nuclear safety and principle, safety analysis and classification of incident, probabilistic safety assessment and major incident, nuclear safety regulation, system of nuclear safety regulation, main function and subject of safety regulation in nuclear facilities, regulation of fuel cycle and a nuclear dump site, protection of radiation and, safety supervision and, safety supervision and measurement of environmental radioactivity.

  2. Nuclear safety

    International Nuclear Information System (INIS)

    Tarride, Bruno

    2015-10-01

    The author proposes an overview of methods and concepts used in the nuclear industry, at the design level as well as at the exploitation level, to ensure an acceptable safety level, notably in the case of nuclear reactors. He first addresses the general objectives of nuclear safety and the notion of acceptable risk: definition and organisation of nuclear safety (relationships between safety authorities and operators), notion of acceptable risk, deterministic safety approach and main safety principles (safety functions and confinement barriers, concept of defence in depth). Then, the author addresses the safety approach at the design level: studies of operational situations, studies of internal and external aggressions, safety report, design principles for important-for-safety systems (failure criterion, redundancy, failure prevention, safety classification). The next part addresses safety during exploitation and general exploitation rules: definition of the operation domain and of its limits, periodic controls and tests, management in case of incidents, accidents or aggressions

  3. Nuclear law - Nuclear safety

    International Nuclear Information System (INIS)

    Pontier, Jean-Marie; Roux, Emmanuel; Leger, Marc; Deguergue, Maryse; Vallar, Christian; Pissaloux, Jean-Luc; Bernie-Boissard, Catherine; Thireau, Veronique; Takahashi, Nobuyuki; Spencer, Mary; Zhang, Li; Park, Kyun Sung; Artus, J.C.

    2012-01-01

    This book contains the contributions presented during a one-day seminar. The authors propose a framework for a legal approach to nuclear safety, a discussion of the 2009/71/EURATOM directive which establishes a European framework for nuclear safety in nuclear installations, a comment on nuclear safety and environmental governance, a discussion of the relationship between citizenship and nuclear, some thoughts about the Nuclear Safety Authority, an overview of the situation regarding the safety in nuclear waste burying, a comment on the Nome law with respect to electricity price and nuclear safety, a comment on the legal consequences of the Fukushima accident on nuclear safety in the Japanese law, a presentation of the USA nuclear regulation, an overview of nuclear safety in China, and a discussion of nuclear safety in the medical sector

  4. Nuclear Safety

    International Nuclear Information System (INIS)

    1978-09-01

    In this short paper it has only been possible to deal in a rather general way with the standards of safety used in the UK nuclear industry. The record of the industry extending over at least twenty years is impressive and, indeed, unique. No other industry has been so painstaking in protection of its workers and in its avoidance of damage to the environment. Headings are: introduction; how a nuclear power station works; radiation and its effects (including reference to ICRP, the UK National Radiological Protection Board, and safety standards); typical radiation doses (natural radiation, therapy, nuclear power programme and other sources); safety of nuclear reactors - design; key questions (matters of concern which arise in the public mind); safety of operators; safety of people in the vicinity of a nuclear power station; safety of the general public; safety bodies. (U.K.)

  5. Safety Evaluation Approach with Security Controls for Safety I and C Systems on Nuclear Power Plants

    International Nuclear Information System (INIS)

    Kim, D. H.; Jeong, S. Y.; Kim, Y. M.; Park, H. S.; Lee, M. S.; Kim, T. H.

    2016-01-01

    This paper addresses concepts of safety and security and relations between them for assessing effects of security features in safety systems. Also, evaluation approach for avoiding confliction with safety requirements and cyber security features which may be adopted in safety-related digital I and C system will be described. In this paper, safety-security life cycle model based confliction avoidance method was proposed to evaluate the effects when the cyber security control features are implemented in the safety I and C system. Also, safety effect evaluation results using the proposed evaluation method were described. In case of technical security controls, many of them are expected to conflict with safety requirements, otherwise operational and managerial controls are not relatively. Safety measures and cyber security measures for nuclear power plants should be implemented not to conflict with one another. Where safety function and security features are both required within the systems, and also where security features are implemented within safety systems, they should be justified

  6. Safety Evaluation Approach with Security Controls for Safety I and C Systems on Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Kim, D. H.; Jeong, S. Y.; Kim, Y. M.; Park, H. S. [KINS, Daejeon (Korea, Republic of); Lee, M. S.; Kim, T. H. [Formal Works Inc., Seoul (Korea, Republic of)

    2016-05-15

    This paper addresses concepts of safety and security and relations between them for assessing effects of security features in safety systems. Also, evaluation approach for avoiding confliction with safety requirements and cyber security features which may be adopted in safety-related digital I and C system will be described. In this paper, safety-security life cycle model based confliction avoidance method was proposed to evaluate the effects when the cyber security control features are implemented in the safety I and C system. Also, safety effect evaluation results using the proposed evaluation method were described. In case of technical security controls, many of them are expected to conflict with safety requirements, otherwise operational and managerial controls are not relatively. Safety measures and cyber security measures for nuclear power plants should be implemented not to conflict with one another. Where safety function and security features are both required within the systems, and also where security features are implemented within safety systems, they should be justified.

  7. Nuclear safety culture evaluation model based on SSE-CMM

    International Nuclear Information System (INIS)

    Yang Xiaohua; Liu Zhenghai; Liu Zhiming; Wan Yaping; Peng Guojian

    2012-01-01

    Safety culture, which is of great significance to establish safety objectives, characterizes level of enterprise safety production and development. Traditional safety culture evaluation models emphasis on thinking and behavior of individual and organization, and pay attention to evaluation results while ignore process. Moreover, determining evaluation indicators lacks objective evidence. A novel multidimensional safety culture evaluation model, which has scientific and completeness, is addressed by building an preliminary mapping between safety culture and SSE-CMM's (Systems Security Engineering Capability Maturity Model) process area and generic practice. The model focuses on enterprise system security engineering process evaluation and provides new ideas and scientific evidences for the study of safety culture. (authors)

  8. Fuel Receiving and Storage Station. Nuclear Regulatory Commission's safety evaluation report

    International Nuclear Information System (INIS)

    1976-01-01

    The safety evaluation report covers design of structures, components, equipment, and systems; nuclear criticality safety; radiological safety; accident analysis; conduct of operations; quality assurance; common defense and security; financial qualifications; financial protection and indemnity requirements; and technical specifications

  9. Nuclear Safety

    Energy Technology Data Exchange (ETDEWEB)

    Silver, E G [ed.

    1989-01-01

    This document is a review journal that covers significant developments in the field of nuclear safety. Its scope includes the analysis and control of hazards associated with nuclear energy, operations involving fissionable materials, and the products of nuclear fission and their effects on the environment. Primary emphasis is on safety in reactor design, construction, and operation; however, the safety aspects of the entire fuel cycle, including fuel fabrication, spent-fuel processing, nuclear waste disposal, handling of radioisotopes, and environmental effects of these operations, are also treated.

  10. Safety evaluation of the nuclear power plant at Cattenom

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    This is a systematic compilation of the material which was dealt with at the level of the German-French Commission (on questions of the safety of nuclear installations) in this discussions about the nuclear power plant at Cattenom. As a supplement to the report published already in 1982, the Commission has officially released its deliberation results on the subjects constructive safety measures, radiological effects, and precautions in case of an emergency. The allegations according to which the installation is wanting in safety are countered by the joint statement of the chairmen of GPR (Permanent Group on Reactors) and RSK (German Commission on Reactor Safety) of August 29, 1986. (HSCH) [de

  11. Safety evaluation of socket weld integrity in nuclear piping

    International Nuclear Information System (INIS)

    Choi, Y.H.; Kim, H.J.; Choi, S.Y.; Kim, Y.J.; Kim, Y.J.

    2004-01-01

    The purposes of this paper are to evaluate the integrity of socket weld in nuclear piping and prepare the technical basis for a new guideline on radiographic testing (RT) for the socket weld. Recently, the integrity of the socket weld is regarded as a safety concern in nuclear power plants because lots of failures and leaks have been reported in the socket weld. The root causes of the socket weld failure are known as unanticipated loadings such as vibration or thermal fatigue and improper weld joint during construction. The ASME Code sec. III requires 1/16 inch gap between the pipe and fitting in the socket weld. Many failure cases, however, showed that the gap requirement was not satisfied. The Code also requires magnetic particle examination (MT) or liquid penetration examination (PT) on the socket weld, but not radiographic examination (RT). It means that it is not easy to examine the 1/16 inch gap in the socket weld by using the NDE methods currently required in the Code. In this paper, the effects of the requirements in the ASME Code sec. III on the socket weld integrity were evaluated by using finite element method. The crack behavior in the socket weld was also investigated under vibration event in nuclear power plants. The results showed that the socket weld was very susceptible to the vibration if the requirements in ASME Code were not satisfied. The constraint between the pipe and fitting due to the contact significantly affects the integrity of the socket weld. This paper also suggests a new guideline on the RT for the socket weld during construction stage in nuclear power plants. (orig.)

  12. Safety indicators as a tool for operational safety evaluation of nuclear power plants

    International Nuclear Information System (INIS)

    Araujo, Jefferson Borges; Melo, Paulo Fernando Ferreira Frutuoso e; Schirru, Roberto

    2009-01-01

    Performance indicators have found a wide use in the conventional and nuclear industries. For the conventional industry, the goal is to optimize production, reducing loss of time with accidents, human error and equipment downtimes. In the nuclear industry, nuclear safety is an additional goal. This paper presents a general methodology to the establishment, selection and use of safety indicators for a two loop PWR plant, as Angra 1. The use of performance indicators is not new. The NRC has its own methodology and the IAEA presents methodology suggestions, but there is no detailed documentation about indicators selection, criteria and bases used. Additionally, only the NRC methodology performs a limited integrated evaluation. The study performed identifies areas considered critical for the plant operational safety. For each of these areas, strategic sub-areas are defined. For each strategic sub-area, specific safety indicators are defined. These proposed Safety Indicators are based on the contribution to risk considering a quantitative risk analysis. For each safety indicator, a goal, a bounded interval and proper bases are developed, to allow for a clear and comprehensive individual behavior evaluation. On the establishment of the intervals and boundaries, a probabilistic safety study, operational experience, international and national standards and technical specifications were used. Additionally, an integrated evaluation of the indicators, using expert systems, was done to obtain an overview of the plant general safety. This evaluation uses well-defined and clear rules and weights for each indicator to be considered. These rules were implemented by means of a computational language, on a friendly interface, so that it is possible to obtain a quick response about operational safety. This methodology can be used to identify situations where the plant safety is challenged, by giving a general overview of the plant operational condition. Additionally, this study can

  13. Modelling operator cognitive interactions in nuclear power plant safety evaluation

    International Nuclear Information System (INIS)

    Senders, J.W.; Moray, N.; Smiley, A.; Sellen, A.

    1985-08-01

    The overall objectives of the study were to review methods which are applicable to the analysis of control room operator cognitive interactions in nuclear plant safety evaluations and to indicate where future research effort in this area should be directed. This report is based on an exhaustive search and review of the literature on NPP (Nuclear Power Plant) operator error, human error, human cognitive function, and on human performance. A number of methods which have been proposed for the estimation of data for probabilistic risk analysis have been examined and have been found wanting. None addresses the problem of diagnosis error per se. Virtually all are concerned with the more easily detected and identified errors of action. None addresses underlying cause and mechanism. It is these mechanisms which must be understood if diagnosis errors and other cognitive errors are to be controlled and predicted. We have attempted to overcome the deficiencies of earlier work and have constructed a model/taxonomy, EXHUME, which we consider to be exhaustive. This construct has proved to be fruitful in organizing our thinking about the kinds of error that can occur and the nature of self-correcting mechanisms, and has guided our thinking in suggesting a research program which can provide the data needed for quantification of cognitive error rates and of the effects of mitigating efforts. In addition a preliminary outline of EMBED, a causal model of error, is given based on general behavioural research into perception, attention, memory, and decision making. 184 refs

  14. Critical evaluation of nuclear safety reports Pt. 1

    International Nuclear Information System (INIS)

    Egely, Gy.

    1987-01-01

    Licensing procedures of siting, commissioning and operation of nuclear power plants in the USA, FRG, France and Japan are compared. The standard format and content of nuclear safety analysis reports including the general description of the plant, the presentation of the characteristics of siting, building structures, components, facilities, the reactors, the cooling system, the safety system, the measuring and control system, the power supply system, the auxilliary system, the energy transformation system, etc. are discussed in detail by the example of the US procedure. (V.N.)

  15. Safety evaluation of the Laguna Verde nuclear power plant

    International Nuclear Information System (INIS)

    Delgado G, J.L.

    1991-01-01

    The present work describe the licensing process for the first nuclear power plant built in Mexico, it presents the difficulties found during the several years of construction and tests until the phrase a level of safety equivalent to that of the country of origin of the nuclear steam supply system could be applicable to Laguna Verde, at least from the point of view of the mexican regulatory body, and also that this statement could be signed for the inspectors of international organizations. (author)

  16. Nuclear safety. Seguranca nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Aveline, A [Rio Grande do Sul Univ., Porto Alegre, RS (Brazil). Inst. de Fisica

    1981-01-01

    What is nuclear safety Is there any technical way to reduce risks Is it possible to put them at reasonable levels Are there competitiveness and economic reliability to employ the nuclear energy by means of safety technics Looking for answers to these questions the author describes the sources of potential risks to nuclear reactors and tries to apply the answers to the Brazilian Nuclear Programme. (author).

  17. A Guidebook for Evaluating Organizations in the Nuclear Industry - an example of safety culture evaluation

    International Nuclear Information System (INIS)

    Oedewald, Pia; Pietikaeinen, Elina; Reiman, Teemu

    2011-06-01

    Organizations in the nuclear industry need to maintain an overview on their vulnerabilities and strengths with respect to safety. Systematic periodical self assessments are necessary to achieve this overview. This guidebook provides suggestions and examples to assist power companies but also external evaluators and regulators in carrying out organizational evaluations. Organizational evaluation process is divided into five main steps. These are: 1) planning the evaluation framework and the practicalities of the evaluation process, 2) selecting data collection methods and conducting the data acquisition, 3) structuring and analysing the data, 4) interpreting the findings and 5) reporting the evaluation results with possible recommendations. The guidebook emphasises the importance of a solid background framework when dealing with multifaceted phenomena like organisational activities and system safety. The validity and credibility of the evaluation stem largely from the evaluation team's ability to crystallize what they mean by organization and safety when they conduct organisational safety evaluations - and thus, what are the criteria for the evaluation. Another important and often under-considered phase in organizational evaluation is interpretation of the findings. In this guidebook a safety culture evaluation in a Nordic nuclear power plant is presented as an example of organizational evaluation. With the help of the example, challenges of each step in the organizational evaluation process are described. Suggestions for dealing with them are presented. In the case example, the DISC (Design for Integrated Safety culture) model is used as the evaluation framework. The DISC model describes the criteria for a good safety culture and the organizational functions necessary to develop a good safety culture in the organization

  18. Nuclear Power Safety Reporting System. Final evaluation results

    International Nuclear Information System (INIS)

    Finlayson, F.C.; Newton, R.D.

    1986-02-01

    This document presents the results of a study conducted by the US Nuclear Regulatory Commission of an unobtrusive, voluntary, anonymous third-party managed, nonpunitive human factors data gathering system (the Nuclear power Safety Reporting System - NPSRS) for the nuclear electric power production industry. The data to be gathered by the NPSRS are intended for use in identifying and quantifying the factors that contribute to the occurrence of significant safety incidents involving humans in nuclear power plants. The NPSRS has been designed to encourage participation in the System through guarantees of reporter anonymity provided by a third-party organization that would be responsible for NPSRS management. As additional motivation to reporters for contributing data to the NPSRS, conditional waivers of NRC disciplinary action would be provided to individuals. These conditional waivers of immunity would apply to potential violations of NRC regulations that might be disclosed through reports submitted to the System about inadvertent, noncriminal incidents in nuclear plants. This document summarizes the overall results of the study of the NPSRS concept. In it, a functional description of the NPSRS is presented together with a review and assessment of potential problem areas that might be met if the System were implemented. Conclusions and recommendations resulting from the study are also presented. A companion volume (NUREG/CR-4133, Nuclear Power Safety Reporting System: Implementation and Operational Specifications'') presented in detail the elements, requirements, forms, and procedures for implementing and operating the System. 13 refs

  19. Nuclear criticality safety evaluation of Spray Booth Operations in X-705, Portsmouth Gaseous Diffusion Plant

    International Nuclear Information System (INIS)

    Sheaffer, M.K.; Keeton, S.C.

    1993-01-01

    This report evaluates nuclear criticality safety for Spray Booth Operations in the Decontamination and Recovery Facility, X-705, at the Portsmouth Gaseous Diffusion Plant. A general description of current procedures and related hardware/equipment is presented. Control parameters relevant to nuclear criticality safety are explained, and a consolidated listing of administrative controls and safety systems is developed. Based on compliance with DOE Orders and MMES practices, the overall operation is evaluated, and recommendations for enhanced safety are suggested

  20. Nuclear safety

    International Nuclear Information System (INIS)

    2014-01-01

    The Program on Nuclear Safety comprehends Radioprotection, Radioactive Waste Management and Nuclear Material Control. These activities are developed at the Nuclear Safety Directory. The Radioactive Waste Management Department (GRR) was formally created in 1983, to promote research and development, teaching and service activities in the field of radioactive waste. Its mission is to develop and employ technologies to manage safely the radioactive wastes generated at IPEN and at its customer’s facilities all over the country, in order to protect the health and the environment of today's and future generations. The Radioprotection Service (GRP) aims primarily to establish requirements for the protection of people, as workers, contractors, students, members of the general public and the environment from harmful effects of ionizing radiation. Furthermore, it also aims to establish the primary criteria for the safety of radiation sources at IPEN and planning and preparing for response to nuclear and radiological emergencies. The procedures about the management and the control of exposures to ionizing radiation are in compliance with national standards and international recommendations. Research related to the main activities is also performed. The Nuclear Material Control has been performed by the Safeguard Service team, which manages the accountability and the control of nuclear material at IPEN facilities and provides information related to these activities to ABACC and IAEA. (author)

  1. Nuclear safety

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-07-01

    The Program on Nuclear Safety comprehends Radioprotection, Radioactive Waste Management and Nuclear Material Control. These activities are developed at the Nuclear Safety Directory. The Radioactive Waste Management Department (GRR) was formally created in 1983, to promote research and development, teaching and service activities in the field of radioactive waste. Its mission is to develop and employ technologies to manage safely the radioactive wastes generated at IPEN and at its customer’s facilities all over the country, in order to protect the health and the environment of today's and future generations. The Radioprotection Service (GRP) aims primarily to establish requirements for the protection of people, as workers, contractors, students, members of the general public and the environment from harmful effects of ionizing radiation. Furthermore, it also aims to establish the primary criteria for the safety of radiation sources at IPEN and planning and preparing for response to nuclear and radiological emergencies. The procedures about the management and the control of exposures to ionizing radiation are in compliance with national standards and international recommendations. Research related to the main activities is also performed. The Nuclear Material Control has been performed by the Safeguard Service team, which manages the accountability and the control of nuclear material at IPEN facilities and provides information related to these activities to ABACC and IAEA. (author)

  2. Strengthening of the nuclear safety regulatory body. Field evaluation review

    International Nuclear Information System (INIS)

    1996-10-01

    As a result of a request from the Preparation Committee of the Nuclear Regulatory Authority (NRA) in 1992, and as recommended by the CEC/RAMG (Commission of European Communities/Regulatory Assistance Management Group) and the Agency mission in July 1993 to the Slovak Republic, the project SLR/9/005 was approved in 1993 as a model project for the period 1994-1996. Current budge is $401,340 and disbursements to date amount to $312,873. The project time schedule has been extended to 1997. The major conclusions of this evaluation are as follows: The project responded to an urgent national need, as well as to a statutory mandate of the Agency, and was adequately co-ordinated with other international assistance programmes to NRA. The project was designed as a structured programme of assistance by means of expert missions, scientific visits and a limited amount of equipment, acting upon several key areas of NRA regulatory responsibilities. Agency assistance was provided in a timely manner. A high concentration of expert missions was noticed at the initial stages of the project, which posed some managements problems. This was corrected to some extent in the course of implementation. Additionally, some overlapping of expert mission recommendations suggests that improvements are needed in the design of such missions. The exposure to international regulatory practice and expertise has resulted in substantial developments of NRA, both in organizational and operational terms. The project can claim to have contributed to NRA having gained governmental and international confidence. NRA's role in the safety assessment of Bohunice V1 reconstruction, as well as in Bohunice V2 safety review, Bohunice A1 decommissioning and in informing the public, also points at the success achieved by the project. The institutional and financial support of the Government contributed decisively to the project achievements. (author). Figs, tabs

  3. Nuclear safety evaluation of the VVER 440, Type 213

    International Nuclear Information System (INIS)

    Urbancik, L.

    1997-01-01

    The supervisory activities of the State Office for Nuclear Safety at the Dukovany nuclear power plant are described. No event resulting in an inpermissible radioactivity leak into the environment occurred at the plant in 1996. From among the 76 failures and events having occurred, only 4 were classified as level 1 on the International Nuclear Event Scale. Changes in the technology of radioactive waste bituminization were proposed. The Interim Spent Fuel Storage Facility at the Dukovany site was in test operation in 1996. Selected physical parameters of this facility were monitored. Seven international transports of spent fuel were accomplished in 1996. The dose rates in the surroundings of the Dukovany plant are monitored constantly by a teledosimetric system operated by the nuclear power plant. Periodical sampling and radionuclide activity measurements in the environment are also performed. (M.D.)

  4. Evaluating safety-critical organizations - emphasis on the nuclear industry

    Energy Technology Data Exchange (ETDEWEB)

    Reiman, Teemu; Oedewald, Pia (VTT, Technical Research Centre of Finland (Finland))

    2009-04-15

    An organizational evaluation plays a key role in the monitoring, as well as controlling and steering, of the organizational safety culture. If left unattended, organizations have a tendency to gradually drift into a condition where they have trouble identifying their vulnerabilities and mechanisms or practices that create or maintain these vulnerabilities. The aim of an organizational evaluation should be to promote increased understanding of the sociotechnical system and its changing vulnerabilities. Evaluation contributes to organizational development and management. Evaluations are used in various situations, but when the aim is to learn about possible new vulnerabilities, identify organizational reasons for problems, or prepare for future challenges, the organization is most open to genuine surprises and new findings. It is recommended that organizational evaluations should be conducted when - there are changes in the organizational structures - new tools are implemented - when the people report increased workplace stress or a decreased working climate - when incidents and near-misses increase - when work starts to become routine - when weak signals (such as employees voicing safety concerns or other worries, the organization 'feels' different, organizational climate has changed) are perceived. In organizations that already have a high safety level, safety managers work for their successors. This means that they seldom see the results of their successful efforts to improve safety. This is due to the fact that it takes time for the improvement to become noticeable in terms of increased measurable safety levels. The most challenging issue in an organizational evaluation is the definition of criteria for safety. We have adopted a system safety perspective and we state that an organization has a high potential for safety when - safety is genuinely valued and the members of the organization are motivated to put effort on achieving high levels of safety

  5. Evaluating safety-critical organizations - emphasis on the nuclear industry

    International Nuclear Information System (INIS)

    Reiman, Teemu; Oedewald, Pia

    2009-04-01

    An organizational evaluation plays a key role in the monitoring, as well as controlling and steering, of the organizational safety culture. If left unattended, organizations have a tendency to gradually drift into a condition where they have trouble identifying their vulnerabilities and mechanisms or practices that create or maintain these vulnerabilities. The aim of an organizational evaluation should be to promote increased understanding of the sociotechnical system and its changing vulnerabilities. Evaluation contributes to organizational development and management. Evaluations are used in various situations, but when the aim is to learn about possible new vulnerabilities, identify organizational reasons for problems, or prepare for future challenges, the organization is most open to genuine surprises and new findings. It is recommended that organizational evaluations should be conducted when - there are changes in the organizational structures - new tools are implemented - when the people report increased workplace stress or a decreased working climate - when incidents and near-misses increase - when work starts to become routine - when weak signals (such as employees voicing safety concerns or other worries, the organization 'feels' different, organizational climate has changed) are perceived. In organizations that already have a high safety level, safety managers work for their successors. This means that they seldom see the results of their successful efforts to improve safety. This is due to the fact that it takes time for the improvement to become noticeable in terms of increased measurable safety levels. The most challenging issue in an organizational evaluation is the definition of criteria for safety. We have adopted a system safety perspective and we state that an organization has a high potential for safety when - safety is genuinely valued and the members of the organization are motivated to put effort on achieving high levels of safety - it is

  6. A Study on the Safety Evaluation of Real-Time Operating System in Nuclear Power Plants

    International Nuclear Information System (INIS)

    Kim, Hyung Tae; Jeong, Choong Heui; Kim, Dail Il

    2008-01-01

    Along with the digitalisation of the nuclear Instrumentation and Control (I and C) system, Real-Time Operating System (RTOS) is being widely used. The RTOS used in nuclear I and C system should satisfy strict performance requirements and resolve various technical issues under complicated conditions. In this regard a careful safety evaluation of RTOS is important for the safety of Nuclear Power Plants. The objective of this study is to provide a guideline for safety evaluation of RTOS appropriate to the nuclear I and C system. In this paper, we suggest evaluation approach for the RTOS

  7. A Study on the Safety Evaluation of Real-Time Operating System in Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyung Tae; Jeong, Choong Heui; Kim, Dail Il [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2008-10-15

    Along with the digitalisation of the nuclear Instrumentation and Control (I and C) system, Real-Time Operating System (RTOS) is being widely used. The RTOS used in nuclear I and C system should satisfy strict performance requirements and resolve various technical issues under complicated conditions. In this regard a careful safety evaluation of RTOS is important for the safety of Nuclear Power Plants. The objective of this study is to provide a guideline for safety evaluation of RTOS appropriate to the nuclear I and C system. In this paper, we suggest evaluation approach for the RTOS.

  8. Guidelines for preparing criticality safety evaluations at Department of Energy non-reactor nuclear facilities

    International Nuclear Information System (INIS)

    1993-11-01

    This document contains guidelines that should be followed when preparing Criticality Safety Evaluations that will be used to demonstrate the safety of operations performed at DOE non-reactor nuclear facilities. Adherence to these guidelines will provide consistency and uniformity in criticality safety evaluations (CSEs) across the complex and will document compliance with the requirements of DOE Order 5480.24

  9. Nuclear safety culture and nuclear safety supervision

    International Nuclear Information System (INIS)

    Chai Jianshe

    2013-01-01

    In this paper, the author reviews systematically and summarizes up the development process and stage characteristics of nuclear safety culture, analysis the connotation and characteristics of nuclear safety culture, sums up the achievements of our country's nuclear safety supervision, dissects the challenges and problems of nuclear safety supervision. This thesis focused on the relationship between nuclear safety culture and nuclear safety supervision, they are essential differences, but there is a close relationship. Nuclear safety supervision needs to introduce some concepts of nuclear safety culture, lays emphasis on humanistic care and improves its level and efficiency. Nuclear safety supervision authorities must strengthen nuclear safety culture training, conduct the development of nuclear safety culture, make sure that nuclear safety culture can play significant roles. (author)

  10. Nuclear Safety Review 2013

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-07-15

    The Nuclear Safety Review 2013 focuses on the dominant nuclear safety trends, issues and challenges in 2012. The Executive Overview provides crosscutting and worldwide nuclear safety information along with a summary of the major sections covered in this report. Sections A-E of this report cover improving radiation, transport and waste safety; strengthening safety in nuclear installations; improving regulatory infrastructure and effectiveness; enhancing emergency preparedness and response (EPR); and civil liability for nuclear damage. The Appendix provides details on the activities of the Commission on Safety Standards (CSS), and activities relevant to the IAEA Safety Standards. The world nuclear community has made noteworthy progress in strengthening nuclear safety in 2012, as promoted by the IAEA Action Plan on Nuclear Safety (hereinafter referred to as ''the Action Plan''). For example, an overwhelming majority of Member States with operating nuclear power plants (NPPs) have undertaken and essentially completed comprehensive safety reassessments ('stress tests') with the aim of evaluating the design and safety aspects of plant robustness to protect against extreme events, including: defence in depth, safety margins, cliff edge effects, multiple failures, and the prolonged loss of support systems. As a result, many have introduced additional safety measures including mitigation of station blackout. Moreover, the IAEA's peer review services and safety standards have been reviewed and strengthened where needed. Capacity building programmes have been built or improved, and EPR programmes have also been reviewed and improved. Furthermore, in 2012, the IAEA continued to share lessons learned from the Fukushima Daiichi accident with the nuclear community including through three international experts' meetings (IEMs) on reactor and spent fuel safety, communication in the event of a nuclear or radiological emergency, and protection against extreme earthquakes and tsunamis.

  11. Nuclear Safety Review 2013

    International Nuclear Information System (INIS)

    2013-07-01

    The Nuclear Safety Review 2013 focuses on the dominant nuclear safety trends, issues and challenges in 2012. The Executive Overview provides crosscutting and worldwide nuclear safety information along with a summary of the major sections covered in this report. Sections A-E of this report cover improving radiation, transport and waste safety; strengthening safety in nuclear installations; improving regulatory infrastructure and effectiveness; enhancing emergency preparedness and response (EPR); and civil liability for nuclear damage. The Appendix provides details on the activities of the Commission on Safety Standards (CSS), and activities relevant to the IAEA Safety Standards. The world nuclear community has made noteworthy progress in strengthening nuclear safety in 2012, as promoted by the IAEA Action Plan on Nuclear Safety (hereinafter referred to as ''the Action Plan''). For example, an overwhelming majority of Member States with operating nuclear power plants (NPPs) have undertaken and essentially completed comprehensive safety reassessments ('stress tests') with the aim of evaluating the design and safety aspects of plant robustness to protect against extreme events, including: defence in depth, safety margins, cliff edge effects, multiple failures, and the prolonged loss of support systems. As a result, many have introduced additional safety measures including mitigation of station blackout. Moreover, the IAEA's peer review services and safety standards have been reviewed and strengthened where needed. Capacity building programmes have been built or improved, and EPR programmes have also been reviewed and improved. Furthermore, in 2012, the IAEA continued to share lessons learned from the Fukushima Daiichi accident with the nuclear community including through three international experts' meetings (IEMs) on reactor and spent fuel safety, communication in the event of a nuclear or radiological emergency, and protection against extreme earthquakes and tsunamis

  12. Safety evaluation of nuclear power plant against the virtual tsunami

    International Nuclear Information System (INIS)

    Chin, S. B.; Imamura, Fumihiko

    2004-01-01

    The main scope of this study is the numerical analysis of virtual tsunami event near the Ulchin Nuclear Power Plants. In the numerical analysis, the maximum run-up height and draw-down are estimated at the Ulchin Nuclear Power Plants. The computer program developed in this study describes the propagation and associated run-up process of tsunamis by solving linear and nonlinear shallow-water equations with finite difference methods. It can be used to check the safety of a nuclear power plant against tsunami attacks. The program can also be used to calculate run-up height of wave and provide proper design criteria for coastal facilities and structures. A maximum inundation zone along the coastline can be developed by using the moving boundary condition. As a result, it is predicted that the Ulchin Nuclear Power Plants might be safe against the virtual tsunami event. Although the Ulchin Nuclear Power Plants are safe against the virtual tsunami event, the occurrence of a huge tsunami in the seismic gap should be investigated in detail. Furthermore, the possibility of nearshore tsunamis around the Korean Peninsula should also be studied and monitored continuously

  13. Meteorological events in site evaluation for nuclear power plants. Safety guide

    International Nuclear Information System (INIS)

    2005-01-01

    This Safety Guide provides recommendations and guidance on conducting hazard assessments of extreme and rare meteorological phenomena. It is of interest to safety assessors and regulators involved in the licensing process as well as to designers of nuclear power plants. This Safety Guide was prepared under the IAEA programme for safety standards for nuclear power plants. It supplements the IAEA Safety Requirements publication on Site Evaluation for Nuclear Facilities which is to supersede the Code on the Safety of Nuclear Power Plants: Siting, Safety Series No. 50-C-S (Rev. 1), IAEA, Vienna (1988). The present Safety Guide supersedes two earlier Safety Guides: Safety Series No. 50-SG-S11A (1981) on Extreme Meteorological Events in Nuclear Power Plant Siting, Excluding Tropical Cyclones and Safety Series No. 50-SG-S11B (1984) on Design Basis Tropical Cyclone for Nuclear Power Plants. The purpose of this Safety Guide is to provide recommendations and guidance on conducting hazard assessments of extreme and rare meteorological phenomena. This Safety Guide provides interpretation of the Safety Requirements publication on Site Evaluation for Nuclear Facilities and guidance on how to fulfil these requirements. It is aimed at safety assessors or regulators involved in the licensing process as well as designers of nuclear power plants, and provides them with guidance on the methods and procedures for analyses that support the assessment of the hazards associated with extreme and rare meteorological events. This Safety Guide discusses the extreme values of meteorological variables and rare meteorological phenomena, as well as their rates of occurrence, according to the following definitions: (a) Extreme values of meteorological variables such as air temperature and wind speed characterize the meteorological or climatological environment. And (b) Rare meteorological phenomena

  14. The awareness of employees in safety culture through the improved nuclear safety culture evaluation method

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Ga; Sung, Chan Ho; Jung, Yeon Sub [KHNP Central Research Institute, Daejeon (Korea, Republic of)

    2012-10-15

    After the Chernobyl nuclear accident in 1986, nuclear safety culture terminology was at first introduced emphasizing the importance of employees' attitude and organizational safety. The concept of safety culture was spread by INSAG 4 published in 1991. From that time, IAEA had provided the service of ASCOT for the safety culture assessment. However, many people still are thinking that safety culture is abstract and is not clear. It is why the systematic and reliable assessment methodology was not developed. Assessing safety culture is to identify what is the basic assumption for any organization to accept unconsciously. Therefore, it is very difficult to reach a meaningful conclusion by a superficial investigation alone. KHNP had been doing the safety culture assessment which was based on ASCOT methodology every 2 years. And this result had contributed to improving safety culture. But this result could not represent the level of organization's safety culture due to the limitation of method. So, KHNP has improved the safety culture method by benchmarking the over sea assessment techniques in 2011. The effectiveness of this improved methodology was validated through a pilot assessment. In this paper, the level of employees' safety culture awareness was analyzed by the improved method and reviewed what is necessary for the completeness and objectivity of the nuclear safety culture assessment methodology.

  15. The awareness of employees in safety culture through the improved nuclear safety culture evaluation method

    International Nuclear Information System (INIS)

    Kim, Young Ga; Sung, Chan Ho; Jung, Yeon Sub

    2012-01-01

    After the Chernobyl nuclear accident in 1986, nuclear safety culture terminology was at first introduced emphasizing the importance of employees' attitude and organizational safety. The concept of safety culture was spread by INSAG 4 published in 1991. From that time, IAEA had provided the service of ASCOT for the safety culture assessment. However, many people still are thinking that safety culture is abstract and is not clear. It is why the systematic and reliable assessment methodology was not developed. Assessing safety culture is to identify what is the basic assumption for any organization to accept unconsciously. Therefore, it is very difficult to reach a meaningful conclusion by a superficial investigation alone. KHNP had been doing the safety culture assessment which was based on ASCOT methodology every 2 years. And this result had contributed to improving safety culture. But this result could not represent the level of organization's safety culture due to the limitation of method. So, KHNP has improved the safety culture method by benchmarking the over sea assessment techniques in 2011. The effectiveness of this improved methodology was validated through a pilot assessment. In this paper, the level of employees' safety culture awareness was analyzed by the improved method and reviewed what is necessary for the completeness and objectivity of the nuclear safety culture assessment methodology

  16. Guideline on evaluation and acceptance of commercial grade digital equipment for nuclear safety applications

    International Nuclear Information System (INIS)

    1996-10-01

    Nuclear power plants are increasingly upgrading their instrumentation and control (I ampersand C) systems with commercial digital equipment, which allows them to continue meeting safety and reliability requirements while controlling operating costs. However, the use of commercial software-based devices for safety related applications has raised new issues that impact design, procurement, and licensing activities. This guideline describes a consistent, comprehensive approach for the evaluation and acceptance of commercial digital equipment for nuclear safety systems

  17. Seismic Hazards in Site Evaluation for Nuclear Installations. Specific Safety Guide

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-08-15

    This Safety Guide was prepared under the IAEA programme for safety standards for nuclear installations. It supplements the Safety Requirements publication on Site Evaluation for Nuclear Installations. The present publication provides guidance and recommends procedures for the evaluation of seismic hazards for nuclear power plants and other nuclear installations. It supersedes Evaluation of Seismic Hazards for Nuclear Power Plants, IAEA Safety Standards Series No. NS-G-3.3 (2002). In this publication, the following was taken into account: the need for seismic hazard curves and ground motion spectra for the probabilistic safety assessment of external events for new and existing nuclear installations; feedback of information from IAEA reviews of seismic safety studies for nuclear installations performed over the previous decade; collective knowledge gained from recent significant earthquakes; and new approaches in methods of analysis, particularly in the areas of probabilistic seismic hazard analysis and strong motion simulation. In the evaluation of a site for a nuclear installation, engineering solutions will generally be available to mitigate, by means of certain design features, the potential vibratory effects of earthquakes. However, such solutions cannot always be demonstrated to be adequate for mitigating the effects of phenomena of significant permanent ground displacement such as surface faulting, subsidence, ground collapse or fault creep. The objective of this Safety Guide is to provide recommendations and guidance on evaluating seismic hazards at a nuclear installation site and, in particular, on how to determine: (a) the vibratory ground motion hazards, in order to establish the design basis ground motions and other relevant parameters for both new and existing nuclear installations; and (b) the potential for fault displacement and the rate of fault displacement that could affect the feasibility of the site or the safe operation of the installation at

  18. SRTC criticality safety technical review: Nuclear Criticality Safety Evaluation 93-04 enriched uranium receipt

    International Nuclear Information System (INIS)

    Rathbun, R.

    1993-01-01

    Review of NMP-NCS-930087, open-quotes Nuclear Criticality Safety Evaluation 93-04 Enriched Uranium Receipt (U), July 30, 1993, close quotes was requested of SRTC (Savannah River Technology Center) Applied Physics Group. The NCSE is a criticality assessment to determine the mass limit for Engineered Low Level Trench (ELLT) waste uranium burial. The intent is to bury uranium in pits that would be separated by a specified amount of undisturbed soil. The scope of the technical review, documented in this report, consisted of (1) an independent check of the methods and models employed, (2) independent HRXN/KENO-V.a calculations of alternate configurations, (3) application of ANSI/ANS 8.1, and (4) verification of WSRC Nuclear Criticality Safety Manual procedures. The NCSE under review concludes that a 500 gram limit per burial position is acceptable to ensure the burial site remains in a critically safe configuration for all normal and single credible abnormal conditions. This reviewer agrees with that conclusion

  19. A framework of risk-informed seismic safety evaluation of nuclear power plants in Japan

    International Nuclear Information System (INIS)

    Kondo, S.; Sakagami, M.; Hirano, M.; Shiba, M.

    2001-01-01

    A framework of risk-informed seismic design and safety evaluation of nuclear power plants is under consideration in Japan so as to utilize the progress in the seismic probabilistic safety assessment methodology. Issues resolved to introduce this framework are discussed after the concept, evaluation process and characteristics of the framework are described. (author)

  20. Development of safety factors to be used for evaluation of cracked nuclear components

    International Nuclear Information System (INIS)

    Brickstad, B.; Bergman, M.

    1996-10-01

    A modified concept for safety evaluation is introduced which separately accounts for the failure mechanisms fracture and plastic collapse. For application on nuclear components a set of safety factors are also proposed that retain the safety margins expressed in ASME, section III and XI. By performing comparative studies of the acceptance levels for surface cracks in pipes and a pressure vessel, it is shown that some of the anomalies connected with the old safety procedures are removed. It is the authors belief that the outlined safety evaluation procedure has the capability of treating cracks in a consistent way and that the procedure together with the proposed safety factors fulfill the basic safety requirements for nuclear components. Hopefully, it is possible in the near future to develop a probabilistic safety assessment procedure in Sweden, which enables a systematic treatment of uncertainties in the involved data. 14 refs

  1. Evaluation of the Community's nuclear reactor safety research programme

    International Nuclear Information System (INIS)

    Brandstetter, A.; Goedkoop, J.A.; Jaumotte, A.; Malhouitre, G.; Tomkins, B.; Zorzoli, G.B.

    1986-01-01

    This report describes an evaluation of the 1980-85 CEC reactor safety programme prepared, at the invitation of the Commission, by a panel of six independent experts by means of examining the relevant document and by holding hearings with the responsible CEC staff. It contains the recommendations made by the panel on the following topics: the need for the JRC to continue to make its competence in the reactor safety field available to the Community; the importance of continuity in the JRC and shared-cost action programmes; the difficulty of developing reactor safety research programmes which satisfy the needs of users with diverse needs; the monitoring of the utilization of the research results; the maintenance of the JRC computer codes used by the Member States; the spin-off from research results being made available to other industrial sectors; the continued contact between the JRC researchers and the national experts; the coordination of LWR safety research with that of the Member States; and, the JRC work on fast breeders to be planned with regard to the R and D programmes of the Fast Reactor European Consortium

  2. Guidelines for preparing criticality safety evaluations at Department of Energy non-reactor nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-09-01

    This Department of Energy (DOE) is approved for use by all components of DOE. It contains guidelines that should be followed when preparing Criticality Safety Evaluations that will be used to demonstrate the safety of operations performed at DOE Non-Reactor Nuclear Facilities. Adherence with these guidelines will provide consistency and uniformity in Criticality Safety Evaluations (CSEs) across the complex and will document compliance with DOE Order 5480.24 requirements as they pertain to CSEs.

  3. Guidelines for preparing criticality safety evaluations at Department of Energy non-reactor nuclear facilities

    International Nuclear Information System (INIS)

    1998-09-01

    This Department of Energy (DOE) is approved for use by all components of DOE. It contains guidelines that should be followed when preparing Criticality Safety Evaluations that will be used to demonstrate the safety of operations performed at DOE Non-Reactor Nuclear Facilities. Adherence with these guidelines will provide consistency and uniformity in Criticality Safety Evaluations (CSEs) across the complex and will document compliance with DOE Order 5480.24 requirements as they pertain to CSEs

  4. Evaluation of Influence Factors within Implementing of Nuclear Safety Culture in Embarking Countries

    International Nuclear Information System (INIS)

    Situmorang, J.

    2016-01-01

    The evaluation of the implementation nuclear safety culture at BATAN has been performed. BATAN is Indonesia’s national nuclear energy agency. Nowadays, BATAN is planning to develop an experimental power reactor. To implement the nuclear safety culture BATAN has issued BATAN chairman regulation (Perka BATAN 200). Perka BATAN is the reference for individuals and organizations to implement nuclear safety culture which includes basic principles, mechanisms, assessment, as well as the implementation of the application of safety culture. It covers the establishment of safety policies, program development, program implementation, development and measurement of safety culture. Each facilities within BATAN is expected to well implement a safety culture. The implementation of safety culture is developed by considering the characteristics, attributes and indicators. The characteristics, attributes and indicators referenced are elaborated from the IAEA. The activities to strengthen safety culture are monthly workshop with participants is head of every facilities, safety leadership training and workshop for safety division manager in every facilities. It is also issued a handbook of safety that is distributed to all employees BATAN.

  5. Integrated Plant Safety Assessment, Systematic Evaluation Program: Yankee Nuclear Power Station (Docket No. 50-29)

    International Nuclear Information System (INIS)

    1987-10-01

    The US Nuclear Regulatory Commission (NRC) has prepared Supplement 1 to the final Integrated Plant Safety Assessment Report (IPSAR) (NUREG-0825), under the scope of the Systematic Evaluation Program (SEP), for Yankee Atomic Electric Company's Yankee Nuclear Power Station located in Rowe, Massachusetts. The SEP was initiated by the NRC to review the design of older operating nuclear power plants to reconfirm and document their safety. This report documents the review completed under the SEP for those issues that required refined engineering evaluations or the continuation of ongoing evaluations after the Final IPSAR for the Yankee plant was issued. The review has provided for (1) an assessment of the significance of differences between current technical positions on selected safety issues and those that existed when Yankee was licensed, (2) a basis for deciding how these differences should be resolved in an integrated plant review, and (3) a documented evaluation of plant safety. 2 tabs

  6. A plan for safety evaluation of tsunamis at the Uljin nuclear power plant site

    International Nuclear Information System (INIS)

    Lee, H. K.; Lee, D. S.

    1999-01-01

    The sites of many nuclear and thermal power plants are located along the coast line to obtain necessary cooling water. Therefore, they are vulnerable to coastal disasters like tsunamis. The safety evaluation on tsunamis of the site of Uljin nuclear power plants was performed with the maximum potential earthquake magnitude and related fault parameters in 1986. But according to the results of recent research, the possibility was suggested that the earthquake which has bigger magnitude than was expected is likely to happen in the seismic gaps near Akita, Japan. Therefore, a plan for safety evaluation of tsunamis at the Uljin nuclear power plants was laid out

  7. General re-evaluation of the safety on the nuclear ship 'Mutsu' and its repair work

    International Nuclear Information System (INIS)

    1980-01-01

    According to the proposition by the Committee for Investigation Radiation Leak on Mutsu, the works of the general re-evaluation of safety were started after the approval by the Committee for Investigating General Re-evaluation and Repair Techniques for Mutsu. The contents of the general re-evaluation of safety are the inspection of the machines and equipments in the nuclear reactor plant, the review of the design of the nuclear reactor plant, the analysis of the nuclear reactor plant behavior in accidents, and the related experimental researches. These works have been carried out for five years, and problem did not arise at all regarding the nuclear reactor so far, but from the viewpoint of improving the safety and reliability further, it was decided to carry out the repair work based on the general re-evaluation of safety. The contents of the repair work are the improvement of the emergency core-cooling system, the improvement of the safety protection system, the improvement of the radiation monitoring equipments, the improvement of the containment vessel boundary, the improvement of the actuators for technological safety facilities, the improvement of the method controlling secondary water quality, and other repair works. The progress of the general re-evaluation of safety is reported. (Kako, I.)

  8. Safety of nuclear ships

    International Nuclear Information System (INIS)

    1978-01-01

    Interest in the utilization of nuclear steam supply systems for merchant ships and icebreakers has recently increased considerably due to the sharp rise in oil prices and the continuing trend towards larger and faster merchant ships. Canada, for example, is considering construction of an icebreaker in the near future. On the other hand, an accident which could result in serious damage to or the sinking of a nuclear ship is potentially far more dangerous to the general public than a similar accident with a conventional ship. Therefore, it was very important to evaluate in an international forum the safety of nuclear ships in the light of our contemporary safety philosophy, taking into account the results of cumulative operating experience with nuclear ships in operation. The philosophy and safety requirement for land-based nuclear installations were outlined because of many common features for both land-based nuclear installations and nuclear ships. Nevertheless, essential specific safety requirements for nuclear ships must always be considered, and the work on safety problems for nuclear ships sponsored by the NEA was regarded as an important step towards developing an international code of practice by IMCO on the safety of nuclear merchant ships. One session was devoted to the quantitative assessment of nuclear ship safety. The probability technique of an accident risk assessment for nuclear power plants is well known and widely used. Its modification, to make it applicable to nuclear propelled merchant ships, was discussed in some papers. Mathematical models for describing various postulated accidents with nuclear ships were developed and reported by several speakers. Several papers discussed a loss-of-coolant accident (LOCA) with nuclear steam supply systems of nuclear ships and engineering design features to prevent a radioactive effluence after LOCA. Other types of postulated accidents with reactors and systems in static and dynamic conditions were also

  9. An Evaluation Method for Team Competencies to Enhance Nuclear Safety Culture

    International Nuclear Information System (INIS)

    Hang, S. M.; Seong, P. H.; Kim, A. R.

    2016-01-01

    Safety culture has received attention in safety-critical industries, including nuclear power plants (NPPs), due to various prominent accidents such as concealment of a Station Blackout (SBO) of Kori NPP unit 1 in 2012, the Sewol ferry accident in 2014, and the Chernobyl accident in 1986. Analysis reports have pointed out that one of the major contributors to the cause of the accidents is ‘the lack of safety culture’. The term, nuclear safety culture, was firstly defined after the Chernobyl accident by the IAEA in INSAG report no. 4, as follows “Safety culture is that assembly of characteristics and attitudes in organizations and individuals which establishes that, as an overriding priority, nuclear plant safety issues receive the attention warranted their significance.” Afterwards, a wide consensus grew among researchers and nuclear-related organizations, that safety culture should be evaluated and managed in a certain manner. Consequently, each nuclear-related organization defined and developed their own safety culture definitions and assessment methods. However, none of these methods provides a way for an individual or a team to enhance the safety culture of an organization. Especially for a team, which is the smallest working unit in NPPs, team members easily overlook their required practices to improve nuclear safety culture. Therefore in this study, we suggested a method to estimate nuclear safety culture of a team, by approaching with the ‘competency’ point of view. The competency is commonly focused on individuals, and defined as, “underlying characteristics of an individual that are causally related to effective or superior performance in a job.” Similar to safety culture, the definition of competency focuses on characteristics and attitudes of individuals. Thus, we defined ‘safety culture competency’ as “underlying characteristics and outward attitudes of individuals that are causally related to a healthy and strong nuclear safety

  10. Development of a Novel Nuclear Safety Culture Evaluation Method for an Operating Team Using Probabilistic Safety Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Han, Sangmin; Lee, Seung Min; Seong, Poong Hyun [KAIST, Daejeon (Korea, Republic of)

    2015-05-15

    IAEA defined safety culture as follows: 'Safety Culture is that assembly of characteristics and attitudes in organizations and individuals which establishes that, as an overriding priority, nuclear plant safety issues receive the attention warranted by their significance'. Also, celebrated behavioral scientist, Cooper, defined safety culture as,'safety culture is that observable degree of effort by which all organizational members direct their attention and actions toward improving safety on a daily basis' with his internal psychological, situational, and behavioral context model. With these various definitions and criteria of safety culture, several safety culture assessment methods have been developed to improve and manage safety culture. To develop a new quantitative safety culture evaluation method for an operating team, we unified and redefined safety culture assessment items. Then we modeled a new safety culture evaluation by adopting level 1 PSA concept. Finally, we suggested the criteria to obtain nominal success probabilities of assessment items by using 'operational definition'. To validate the suggested evaluation method, we analyzed the collected audio-visual recording data collected from a full scope main control room simulator of a NPP in Korea.

  11. Development of a Novel Nuclear Safety Culture Evaluation Method for an Operating Team Using Probabilistic Safety Analysis

    International Nuclear Information System (INIS)

    Han, Sangmin; Lee, Seung Min; Seong, Poong Hyun

    2015-01-01

    IAEA defined safety culture as follows: 'Safety Culture is that assembly of characteristics and attitudes in organizations and individuals which establishes that, as an overriding priority, nuclear plant safety issues receive the attention warranted by their significance'. Also, celebrated behavioral scientist, Cooper, defined safety culture as,'safety culture is that observable degree of effort by which all organizational members direct their attention and actions toward improving safety on a daily basis' with his internal psychological, situational, and behavioral context model. With these various definitions and criteria of safety culture, several safety culture assessment methods have been developed to improve and manage safety culture. To develop a new quantitative safety culture evaluation method for an operating team, we unified and redefined safety culture assessment items. Then we modeled a new safety culture evaluation by adopting level 1 PSA concept. Finally, we suggested the criteria to obtain nominal success probabilities of assessment items by using 'operational definition'. To validate the suggested evaluation method, we analyzed the collected audio-visual recording data collected from a full scope main control room simulator of a NPP in Korea

  12. Geotechnical aspects of site evaluation and foundations for nuclear power plants. Safety guide

    International Nuclear Information System (INIS)

    2003-01-01

    This publication is a revision of the former safety standards of IAEA Safety Series No. 50-SG-S8. The scope has been extended to cover not only foundations but also design questions related to geotechnical science and engineering, such as the bearing capacity of foundations, design of earth structures and design of buried structures. Seismic aspects also play an important role in this field, and consequently the Safety Guide on Evaluation of Seismic Hazards for Nuclear Power Plants, Safety Standards Series No. NS-G-3.3, which discusses the determination of seismic input motion, is referenced on several occasions. The present Safety Guide provides an interpretation of the Safety Requirements on Site Evaluation for Nuclear Installations and guidance on how to implement them. It is intended for the use of safety assessors or regulators involved in the licensing process as well as the designers of nuclear power plants, and it provides them with guidance on the methods and procedures for analyses to support the assessment of the geotechnical aspects of the safety of nuclear power plants

  13. Geotechnical aspects of site evaluation and foundations for nuclear power plants. Safety guide

    International Nuclear Information System (INIS)

    2006-01-01

    This publication is a revision of the former safety standards of IAEA Safety Series No. 50-SG-S8. The scope has been extended to cover not only foundations but also design questions related to geotechnical science and engineering, such as the bearing capacity of foundations, design of earth structures and design of buried structures Seismic aspects also play an important role in this field, and consequently the Safety Guide on Evaluation of Seismic Hazards for Nuclear Power Plants, Safety Standards Series No. NS-G-3.3, which discusses the determination of seismic input motion, is referenced on several occasions. The present Safety Guide provides an interpretation of the Safety Requirements on Site Evaluation for Nuclear Installations and guidance on how to implement them. It is intended for the use of safety assessors or regulators involved in the licensing process as well as the designers of nuclear power plants, and it provides them with guidance on the methods and procedures for analyses to support the assessment of the geotechnical aspects of the safety of nuclear power plants

  14. Nuclear criticality safety evaluation of large cylinder cleaning operations in X-705, Portsmouth Gaseous diffusion Plant

    International Nuclear Information System (INIS)

    Sheaffer, M.K.; Keeton, S.C.; Lutz, H.F.

    1995-06-01

    This report evaluates nuclear criticality safety for large cylinder cleaning operations in the Decontamination and Recovery Facility, X-705, at the Portsmouth Gaseous Diffusion Plant. A general description of current cleaning procedures and required hardware/equipment is presented, and documentation for large cylinder cleaning operations is identified and described. Control parameters, design features, administrative controls, and safety systems relevant to nuclear criticality are discussed individually, followed by an overall assessment based on the Double Contingency Principle. Recommendations for enhanced safety are suggested, and issues for increased efficiency are presented

  15. Report of the summative evaluation by the advisory committee on nuclear safety research

    International Nuclear Information System (INIS)

    2005-03-01

    The Research Evaluation Committee of the Japan Atomic Energy Research Institute (JAERI) set up an Advisory Committee on Nuclear Safety Research in accordance with the 'Fundamental Guideline for the Evaluation of Research and Development (R and D) at JAERI' and its subsidiary regulations. The Advisory Committee on Nuclear Safety Research evaluated the adequacy of the plans of nuclear safety research to be succeeded from JAERI to a new research institute which will be established by integration of JAERI and the Japan Nuclear Cycle Development Institute (JNC). The Advisory Committee consisted of eight specialists from outside the JAERI conducted its activities from June 2004 to August 2004. The evaluation was performed on the basis of the materials submitted in advanced and of the oral presentations made at the Advisory Committee meeting which was held on July 27, 2004, in line with the items, viewpoints, and criteria for the evaluation specified by the Research Evaluation Committee. The result of the evaluation by the Advisory Committee was submitted to the Research Evaluation Committee, and was judged to be appropriate at its meeting held on December 1, 2004. This report describes the result of the evaluation by the Advisory Committee on Safety Research. (author)

  16. Evaluating software for safety systems in nuclear power plants

    International Nuclear Information System (INIS)

    Lawrence, J.D.; Persons, W.L.; Preckshot, G.G.; Gallagher, J.

    1994-01-01

    In 1991, LLNL was asked by the NRC to provide technical assistance in various aspects of computer technology that apply to computer-based reactor protection systems. This has involved the review of safety aspects of new reactor designs and the provision of technical advice on the use of computer technology in systems important to reactor safety. The latter includes determining and documenting state-of-the-art subjects that require regulatory involvement by the NRC because of their importance in the development and implementation of digital computer safety systems. These subjects include data communications, formal methods, testing, software hazards analysis, verification and validation, computer security, performance, software complexity and others. One topic software reliability and safety is the subject of this paper

  17. Evaluation of experience and trends in international co-operation in nuclear safety and licensing

    International Nuclear Information System (INIS)

    Stadie, K.B.; Strohl, P.

    1977-01-01

    The paper traces the development of co-operation in nuclear safety technology between the OECD Member countries which began as early as 1965 and is now organised under the auspices of the Committee on the Safety of Nuclear Installations of the OECD Nuclear Energy Agency. The principal objective is to exchange and evaluate information on relevant R and D and hence broaden the technical basis for decision-making by licensing authorities in the different countries. The membership of the Committee on the Safety of Nuclear Installations combines expertise in nuclear safety R and D and in licensing questions so that licensing procedures in the different countries may be exposed continuously to the influence of overall technological progress. The Committee actively seeks to narrow the differences between administrative procedures and traditional legal practices in Member countries as these affect the licensing of nuclear installations, primarily by assessing and comparing the methods employed. The paper shows how the Committee's working arrangements provide for maximum flexibility: the various co-ordinated programmes are selected after in-depth evaluation of potential areas of priority and are implemented through ad hoc Working Groups, specialist meetings or task forces, or in the form of special studies involving all interested countries. The results, conclusions and recommendations emerging from each programme are reviewed by the Committee before dissemination. Hitherto the greater part of the Committee's activities has been concerned with the safety of light water reactors and related subjects, but more attention is now being given to other topics such as LMFBR safety technology and the safety of fuel cycle facilities, particularly those at the end of the process, the so-called ''back-end'' plants. The paper discusses certain problems and constraints encountered in implementing the programme, some of which stem from Member countries' different degrees of penetration

  18. Safety evaluation report on Tennessee Valley Authority: Browns Ferry nuclear performance plan

    International Nuclear Information System (INIS)

    1989-10-01

    This safety evaluation report (SER) on the information submitted by the Tennessee Valley Authority (TVA) in its Nuclear Performance Plan, through Revision 2, for the Browns Ferry Nuclear Plant and in supporting documents has been prepared by the US Nuclear Regulatory commission staff. The Browns Ferry Nuclear Plant consists of three boiling-water reactors at a site in Limestone County, Alabama. The plan addresses the plant-specific concerns requiring resolution before the startup of Unit 2. The staff will inspect implementation of those TVA programs that address these concerns. Where systems are common to Units 1 and 2 or to Units 2 and 3, the staff safety evaluations of those systems are included herein. 85 refs

  19. Nuclear safety

    International Nuclear Information System (INIS)

    Arnott, D.

    1981-01-01

    Dr Arnott, scientific consultant to PANDORA, emphasises our lack of knowledge of the behaviour of highly active radioactive wastes, particularly effluents, and their characteristics. He proposes that they should be stored, preferably in a solidified state, until our knowledge allows their safe disposal. Political aspects and government policies are discussed and human fallibility is stressed. The nuclear establishment and nuclear power programme are severely criticised. (U.K.)

  20. Safety-specific benefit of the probabilistic evaluation of older nuclear power plants

    International Nuclear Information System (INIS)

    Hoertner, H.; Koeberlein, K.

    1991-01-01

    The report summarizes the experience of the GRS obtained within the framework of a probabilistic evaluation of older nuclear power plants and the German risk study. The applied methodology and the problems involved are explained first. After a brief summary of probabilistic analyses carried out for German nuclear power plants, reliability analyses for older systems are discussed in detail. The findings from the probabilistic safety analyses and the conclusions drawn are presented. (orig.) [de

  1. Operational safety performance and economical efficiency evaluation for nuclear power plants

    International Nuclear Information System (INIS)

    Liu Yachun; Zou Shuliang

    2012-01-01

    The economical efficiency of nuclear power includes a series of environmental parameters, for example, cleanliness. Nuclear security is the precondition and guarantee for its economy, and both are the direct embodiment of the social benefits of nuclear power. Through analyzing the supervision and management system on the effective operation of nuclear power plants, which has been put forward by the International Atomic Energy Agency (IAEA), the World Association of Nuclear Operators (WANO), the U.S. Nuclear Regulatory Commission (NRC), and other organizations, a set of indexs on the safety performance and economical efficiency of nuclear power are explored and established; Based on data envelopment analysis, a DEA approach is employed to evaluate the efficiency of the operation performance of several nuclear power plants, Some primary conclusion are achieved on the basis of analyzing the threshold parameter's sensitivity and relativity which affected operational performance. To address the conflicts between certain security and economical indicators, a multi-objective programming model is established, where top priority is given to nuclear safety, and the investment behavior of nuclear power plant is thereby optimized. (authors)

  2. Safety evaluation report on Tennessee Valley Authority: Browns Ferry Nuclear Performance Plan

    International Nuclear Information System (INIS)

    1991-01-01

    This safety evaluation report (SER) was prepared by the US Nuclear Regulatory Commission (NRC) staff and represents the second and last supplement (SSER 2) to the staff's original SER published as Volume 3 of NUREG-1232 in April 1989. Supplement 1 of Volume 3 of NUREG-1232 (SSER 1) was published in October 1989. Like its predecessors, SSER 2 is composed of numerous safety evaluations by the staff regarding specific elements contained in the Browns Ferry Nuclear Performance Plan (BFNPP), Volume 3 (up to and including Revision 2), submitted by the Tennessee Valley Authority (TVA) for the Browns Ferry Nuclear Plant (BFN). The Browns Ferry Nuclear Plant consists of three boiling-water reactors (BWRs) at a site in Limestone County, Alabama. The BFNPP describes the corrective action plans and commitments made by TVA to resolve deficiencies with its nuclear programs before the startup of Unit 2. The staff has inspected and will continue to inspect TVA's implementation of these BFNPP corrective action plans that address staff concerns about TVA's nuclear program. SSER 2 documents the NRC staff's safety evaluations and conclusions for those elements of the BFNPP that were not previously addressed by the staff or that remained open as a result of unresolved issues identified by the staff in previous SERs and inspections

  3. Development of Nuclear Safety Culture evaluation method for an operation team based on the probabilistic approach

    International Nuclear Information System (INIS)

    Han, Sang Min; Lee, Seung Min; Yim, Ho Bin; Seong, Poong Hyun

    2018-01-01

    Highlights: •We proposed a Probabilistic Safety Culture Healthiness Evaluation Method. •Positive relationship between the ‘success’ states of NSC and performance was shown. •The state probability profile showed a unique ratio regardless of the scenarios. •Cutset analysis provided not only root causes but also the latent causes of failures. •Pro-SCHEMe was found to be applicable to Korea NPPs. -- Abstract: The aim of this study is to propose a new quantitative evaluation method for Nuclear Safety Culture (NSC) in Nuclear Power Plant (NPP) operation teams based on the probabilistic approach. Various NSC evaluation methods have been developed, and the Korea NPP utility company has conducted the NSC assessment according to international practice. However, most of methods are conducted by interviews, observations, and the self-assessment. Consequently, the results are often qualitative, subjective, and mainly dependent on evaluator’s judgement, so the assessment results can be interpreted from different perspectives. To resolve limitations of present evaluation methods, the concept of Safety Culture Healthiness was suggested to produce quantitative results and provide faster evaluation process. This paper presents Probabilistic Safety Culture Healthiness Evaluation Method (Pro-SCHEMe) to generate quantitative inputs for Human Reliability Assessment (HRA) in Probabilistic Safety Assessment (PSA). Evaluation items which correspond to a basic event in PSA are derived in the first part of the paper through the literature survey; mostly from nuclear-related organizations such as the International Atomic Energy Agency (IAEA), the United States Nuclear Regulatory Commission (U.S.NRC), and the Institute of Nuclear Power Operations (INPO). Event trees (ETs) and fault trees (FTs) are devised to apply evaluation items to PSA based on the relationships among such items. The Modeling Guidelines are also suggested to classify and calculate NSC characteristics of

  4. Safety assessment for a KBS-3H spent nuclear fuel repository at Olkiluoto. Complementary evaluations of safety

    International Nuclear Information System (INIS)

    Neall, Fiona; Pastina, Barbara; Snellman, Margit; Smith, Paul; Gribi, P.; Johnson, Lawrence

    2008-12-01

    The KBS-3H design is a variant of the more general KBS-3 method for the geological disposal of spent nuclear fuel in Finland and Sweden. In the KBS-3H design, multiple assemblies containing spent fuel are emplaced horizontally in parallel, approximately 300 m long, slightly inclined deposition drifts. The copper canisters, each with a surrounding layer of bentonite clay, are placed in perforated steel shells prior to deposition in the drifts; the assembly is called the 'supercontainer'. The other KBS-3 variant is the KBS-3V design, in which the copper canisters are emplaced vertically in individual deposition holes surrounded by bentonite clay but without steel supercontainer shells. SKB and Posiva have conducted a Research, Development and Demonstration programme over the period 2002-2007 with the overall aim of establishing whether KBS-3H represents a feasible alternative to KBS-3V. As part of this programme, the long-term safety of a KBS-3H repository has been assessed in the KBS-3H safety studies. In order to focus the safety studies, the Olkiluoto site in the municipality of Eurajoki, which is the proposed site for a spent fuel repository in Finland, was used as a hypothetical site for a KBS-3H repository. The present report is part of a portfolio of reports discussing the long-term safety of the KBS-3H repository. The overall outcome of the KBS-3H safety studies is documented in the summary report, 'Safety assessment for a KBS-3H repository for spent nuclear fuel at Olkiluoto'. The purpose and scope of the KBS-3H complementary evaluations of safety report is provided in Posiva's Safety Case Plan, which is based on Regulatory Guide YVL 8.4 and on international guidelines on complementary lines of argument to long-term safety that are considered an important element of a post-closure safety case for geological repositories. Complementary evaluations of safety require the use of evaluations, evidence and qualitative supporting arguments that lie outside the

  5. Safety assessment for a KBS-3H spent nuclear fuel repository at Olkiluoto. Complementary evaluations of safety

    Energy Technology Data Exchange (ETDEWEB)

    Neall, Fiona; Pastina, Barbara; Snellman, Margit; Smith, Paul; Gribi, P.; Johnson, Lawrence

    2008-12-15

    The KBS-3H design is a variant of the more general KBS-3 method for the geological disposal of spent nuclear fuel in Finland and Sweden. In the KBS-3H design, multiple assemblies containing spent fuel are emplaced horizontally in parallel, approximately 300 m long, slightly inclined deposition drifts. The copper canisters, each with a surrounding layer of bentonite clay, are placed in perforated steel shells prior to deposition in the drifts; the assembly is called the 'supercontainer'. The other KBS-3 variant is the KBS-3V design, in which the copper canisters are emplaced vertically in individual deposition holes surrounded by bentonite clay but without steel supercontainer shells. SKB and Posiva have conducted a Research, Development and Demonstration programme over the period 2002-2007 with the overall aim of establishing whether KBS-3H represents a feasible alternative to KBS-3V. As part of this programme, the long-term safety of a KBS-3H repository has been assessed in the KBS-3H safety studies. In order to focus the safety studies, the Olkiluoto site in the municipality of Eurajoki, which is the proposed site for a spent fuel repository in Finland, was used as a hypothetical site for a KBS-3H repository. The present report is part of a portfolio of reports discussing the long-term safety of the KBS-3H repository. The overall outcome of the KBS-3H safety studies is documented in the summary report, 'Safety assessment for a KBS-3H repository for spent nuclear fuel at Olkiluoto'. The purpose and scope of the KBS-3H complementary evaluations of safety report is provided in Posiva's Safety Case Plan, which is based on Regulatory Guide YVL 8.4 and on international guidelines on complementary lines of argument to long-term safety that are considered an important element of a post-closure safety case for geological repositories. Complementary evaluations of safety require the use of evaluations, evidence and qualitative supporting arguments

  6. Evaluating the safety of aging nuclear reactor pressure vessels

    International Nuclear Information System (INIS)

    Pennell, W.E.

    1996-01-01

    Regulatory requirements limit the permissible accumulation of irradiation damage in RPV material such that adequate fracture prevention margins are maintained throughout the licensed operating period of a nuclear plant. Experience with application of those requirements has identified a number of areas where they could be further refined to eliminate excess conservatism. Research is ongoin to provide the data required to support refinement of the regulatory requirements. Research programs are investigating theeffects of local brittle zones, shallow flaws, biaxial loading, and stainless steel cladding. Preliminary results from this research indicate a potential for beneficial changes in the P-T curve and PTS analysis rules

  7. Nuclear Safety. 1997

    International Nuclear Information System (INIS)

    1998-01-01

    A quick review of the nuclear safety at EDF may be summarized as follows: - the nuclear safety at EDF maintains at a rather good standard; - none of the incidents that took place has had any direct impact upon safety; - the availability remained good; - initiation of the floor 4 reactor generation (N4 unit - 1450 MW) ensued without major difficulties (the Civaux 1 NPP has been coupled to the power network at 24 december 1997); - the analysis of the incidents interesting from the safety point of view presents many similarities with earlier ones. Significant progress has been recorded in promoting actively and directly a safe operation by making visible, evident and concrete the exertion of the nuclear operation responsibility and its control by the hierarchy. The report develops the following chapters and subjects: 1. An overview on 1997; 1.1. The technical issues of the nuclear sector; 1.2. General performances in safety; 1.3. The main incidents; 1.4. Wastes and radiation protection; 2. Nuclear safety management; 2.1. Dynamics and results; 2.2. Ameliorations to be consolidated; 3. Other important issues in safety; 3.1. Probabilistic safety studies; 3.2. Approach for safety re-evaluation; 3.3. The network safety; 3.4. Crisis management; 3.5. The Lifetime program; 3.6. PWR; 3.7. Documentation; 3.8. Competence; 4. Safety management in the future; 4.1. An open future; 4.2. The fast neutron NPP at Creys-Malville; 4.3. Stabilization of the PWR reference frame; 4.4. Implementing the EURATOM directive regarding the radiation protection standards; 4.5. Development of biomedical research and epidemiological studies; 4.6. New regulations concerning the liquid and gaseous effluents; 5. Visions of an open future; 5.1. Alternative views upon safety ay EDF; 5.2. Safety authority; 5.3. International considerations; 5.4. What happens abroad; 5.5. References from non-nuclear domain. Four appendices are added referring to policy of safety management, policy of human factors in NPPs

  8. Safety evaluation report on Tennessee Valley Authority: Watts Bar Nuclear Performance Plan

    International Nuclear Information System (INIS)

    1990-01-01

    This safety evaluation report on the information submitted by the Tennessee Valley Authority in its Nuclear Performance Plan for the Watts Bar Nuclear Plant and in supporting documents has been prepared by the US Nuclear Regulatory Commission staff. The plan addresses the plant-specific corrective actions as part of the recovery program for licensing of Unit 1. The staff will be monitoring and inspecting the implementation of the programs. The plan does not address all licensing matters that will be required for fuel load and operation of Unit 1. Those remaining licensing matters have been addressed in previous safety evaluations or will be addressed in accordance with routing NRC licensing practices. 97 refs

  9. Report of the evaluation by the Ad Hoc Review Committee on Nuclear Safety Research. Result evaluation in fiscal year 2000

    International Nuclear Information System (INIS)

    2001-06-01

    The Research Evaluation Committee, which consisted of 14 members from outside of the Japan Atomic Energy Research Institute (JAERI), set up an Ad Hoc Review Committee on Nuclear Safety Research in accordance with the Fundamental Guideline for the Evaluation of Research and Development (R and D) at JAERI' and its subsidiary regulations in order to evaluate the R and D accomplishments achieved for five years from Fiscal Year 1995 to Fiscal Year 1999 at Department of Reactor Safety Research, Department of Fuel Cycle Safety Research, Department of Environmental Safety Research and Department of Safety Research Technical Support in Tokai Research Establishment at JAERI. The Ad Hoc Review Committee consisted of 11 specialists from outside of JAERI. The Ad Hoc Review Committee conducted its activities from December 2000 to February 2001. The evaluation was performed on the basis of the materials submitted in advance and of the oral presentations made at the Ad Hoc Review Committee meeting which was held on December 11, 2000, in line with the items, viewpoints, and criteria for the evaluation specified by the Research Evaluation Committee. The result of the evaluation by the Ad Hoc Review Committee was submitted to the Research Evaluation Committee, and was judged to be appropriate at its meeting held on March 16, 2001. This report describes the result of the evaluation by the Ad Hoc Review Committee on Nuclear Safety Research. (author)

  10. Report of the evaluation by the Ad Hoc Review Committee on Nuclear Safety Research. Result evaluation in fiscal year 2000

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-06-01

    The Research Evaluation Committee, which consisted of 14 members from outside of the Japan Atomic Energy Research Institute (JAERI), set up an Ad Hoc Review Committee on Nuclear Safety Research in accordance with the Fundamental Guideline for the Evaluation of Research and Development (R and D) at JAERI' and its subsidiary regulations in order to evaluate the R and D accomplishments achieved for five years from Fiscal Year 1995 to Fiscal Year 1999 at Department of Reactor Safety Research, Department of Fuel Cycle Safety Research, Department of Environmental Safety Research and Department of Safety Research Technical Support in Tokai Research Establishment at JAERI. The Ad Hoc Review Committee consisted of 11 specialists from outside of JAERI. The Ad Hoc Review Committee conducted its activities from December 2000 to February 2001. The evaluation was performed on the basis of the materials submitted in advance and of the oral presentations made at the Ad Hoc Review Committee meeting which was held on December 11, 2000, in line with the items, viewpoints, and criteria for the evaluation specified by the Research Evaluation Committee. The result of the evaluation by the Ad Hoc Review Committee was submitted to the Research Evaluation Committee, and was judged to be appropriate at its meeting held on March 16, 2001. This report describes the result of the evaluation by the Ad Hoc Review Committee on Nuclear Safety Research. (author)

  11. Nuclear criticality safety guide

    International Nuclear Information System (INIS)

    Pruvost, N.L.; Paxton, H.C.

    1996-09-01

    This technical reference document cites information related to nuclear criticality safety principles, experience, and practice. The document also provides general guidance for criticality safety personnel and regulators

  12. Nuclear criticality safety guide

    Energy Technology Data Exchange (ETDEWEB)

    Pruvost, N.L.; Paxton, H.C. [eds.

    1996-09-01

    This technical reference document cites information related to nuclear criticality safety principles, experience, and practice. The document also provides general guidance for criticality safety personnel and regulators.

  13. Critical enrichment and critical density of infinite systems for nuclear criticality safety evaluation

    International Nuclear Information System (INIS)

    Naito, Yoshitaka; Koyama, Takashi; Komuro, Yuichi

    1986-03-01

    Critical enrichment and critical density of homogenous infinite systems, such as U-H 2 O, UO 2 -H 2 O, UO 2 F 2 aqueous solution, UO 2 (NO 3 ) 2 aqueous solution, Pu-H 2 O, PuO 2 -H 2 O, Pu(NO 3 ) 4 aqueous solution and PuO 2 ·UO 2 -H 2 O, were calculated with the criticality safety evaluation computer code system JACS for nuclear criticality safety evaluation on fuel facilities. The computed results were compared with the data described in European and American criticality handbooks and showed good agreement with each other. (author)

  14. Study on the safety evaluation method development for D and D of Nuclear Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Sin, S. W.; Kang, G. D.; Kim, H. S.; Son, J. G.; Choi, Y. J.; Lee, K. J.; Koh, E. O.; Kim, K. D.; Ha, J. H. [Korea Hydro and Nuclear Power Co. Ltd., Seoul (Korea, Republic of)

    2004-02-15

    The final goal of decommissioning of Nuclear Power Plant is to remove or to isolate the radioactivity existing at the nuclear facilities which are confronted with termination of operation. The regulatory guidance and technologies of decommissioning have been developed strategically in some advanced countries. They have already stepped into the application stage from the research and development stage. The contents and the scope of this study is as follows, preparation of standard evaluation plan and establishment of standard safety evaluation system for D and D.

  15. Study on the safety evaluation method development for D and D of Nuclear Power Plant

    International Nuclear Information System (INIS)

    Sin, S. W.; Kang, G. D.; Kim, H. S.; Son, J. G.; Choi, Y. J.; Lee, K. J.; Koh, E. O.; Kim, K. D.; Ha, J. H.

    2004-02-01

    The final goal of decommissioning of Nuclear Power Plant is to remove or to isolate the radioactivity existing at the nuclear facilities which are confronted with termination of operation. The regulatory guidance and technologies of decommissioning have been developed strategically in some advanced countries. They have already stepped into the application stage from the research and development stage. The contents and the scope of this study is as follows, preparation of standard evaluation plan and establishment of standard safety evaluation system for D and D

  16. Complex nuclear safety evaluation of the Bohunice V-1 nuclear power plant

    International Nuclear Information System (INIS)

    Kriz, Z.

    1991-01-01

    The safety concept of V-230 type reactor units dates back to the late 1960s. The units fail to be sufficiently dimensioned for emergency cooling of the reactor core and are fitted with no containment. So far, operating experience is good. The availability factor is 71.5% for unit 1 and 77.8% for unit 2. There occur 1 to 3 unscheduled shutdowns annually. The quality of steam generator tubes is very good. A complex safety assessment of the plant was accomplished in 1990. It concerned the concept and criteria of safety assessment, the earthquake situation, the condition of the primary coolant circuit equipment, the control system, the effect of the human factor, and preparedness of emergency plans. OSART and ASSET missions were accomplished at the plant. Based on the results of the missions as well as of inspections by the State Surveillance over Nuclear Safety, the decision has been adopted to operate the plant not longer than till 1995; the further fate of the plant will be decided on according to a future technical and economic analysis. (M.D.)

  17. IAEA effort on the evaluation and management of safety aspects of nuclear power plant ageing

    International Nuclear Information System (INIS)

    Pachner, J.; Yaremy, E.M.

    1991-01-01

    The questions attached to nuclear power plant (NPP) ageing and the need for monitoring and assessment of plant condition will grow in importance as more NPPs approach and pass the end of their nominal design lives. Ageing in nuclear plants must be effectively managed to ensure plant safety during their entire service life. This paper provides an overview of the IAEA programme and its results on the evaluation and management of safety aspects of NPP ageing. Under this programme, three generic guidance documents have been prepared on: data collection and record keeping; ageing management methodology; and the use of probabilistic safety assessment in plant life extension considerations. A two pronged strategy involving both technical and regulatory aspects has been adopted for the current and future work. (author)

  18. Findings by the Commission Evaluating Nuclear Safety and Repository Research in Germany

    International Nuclear Information System (INIS)

    Sandtner, W.; Closs, K.D.

    2000-01-01

    The Commission Evaluating Nuclear Safety and Repository Research in Germany, which had been appointed by the German Federal Ministry of Economics on September 24, 1999, submitted its report. Here is the gist of the Commission's findings: Irrespective of the criteria established with the political decision to terminate the use of nuclear power in Germany, competence in nuclear safety must be maintained over the next few decades. Only in this way can the government perform its duty and make provisions for the future, and can the safety of nuclear facilities and waste management pathways be ensured in accordance with the international state of the art. In view of the considerable reduction in funding in recent years and also in future, measures must be taken to ensure that further decreases in-roject funding and institutionalized government financing are excluded so as to avoid further declines in terms of manpower and competence in this field. Reactor safety and repository research must be financed at a level allowing the federal government to discharge its legal duties. The full report by the Commission, with its annexes, is available on the GRS web site (http://www.grs.de) as a PDF file. (orig.) [de

  19. A safety evaluation of fire and explosion in nuclear fuel reprocessing plants

    International Nuclear Information System (INIS)

    Nishio, Gunji; Takada, Junichi; Tukamoto, Michio; Watanabe, Kouji; Miyata, Teijirou

    1996-01-01

    The demonstration test was performed in JAERI to prove the adequacy of a safety evaluation for an air-ventilation system in the case of solvent fire and red-oil explosion in a nuclear fuel reprocessing plant. The test objectives were to obtain data of the safety evaluation on a thermofluid behavior and a confinement effect of radioactive materials during fire and explosion while the system is operating in a cell. The computer code was developed to evaluate the safety of associated network in the ventilation system and to estimate the confinement of radioactive materials in the system. The code was verified by comparison of code calculations with results of the demonstration test. (author)

  20. Neural network ensemble based supplier evaluation model in line with nuclear safety conditions

    International Nuclear Information System (INIS)

    Wang Yonggang; Chang Baosheng

    2006-01-01

    Nuclear safety is the most critical target for nuclear power plant operation. Besides the rigid operation procedures established, evaluation of suppliers working with plants can be another important aspects. Selection and evaluation of suppliers can be classified with qualitative analysis and quantitative management. The indicators involved are coupled with each other in a very complicated manner, therefore the relevant data show the strong characteristic of non-linearity. The article is based on the research and analysis of the real conditions of the Daya Bay nuclear power plant operation management. Through study and analysis of the information home and abroad, and with reference to the neural network ensemble technology, the supplier evaluation system and model are established as illustrated within the paper, thus to heighten objectivity of the supplier selection. (authors)

  1. Probabilistic safety assessment technology for commercial nuclear power plant security evaluation

    International Nuclear Information System (INIS)

    Liming, J.K.; Johnson, D.H.; Dykes, A.A.

    2004-01-01

    Commercial nuclear power plant physical security has received much more intensive treatment and regulatory attention since September 11, 2001. In light of advancements made by the nuclear power industry in the field of probabilistic safety assessment (PSA) for its power plants over that last 30 years, and given the many examples of successful applications of risk-informed regulation at U. S. nuclear power plants during recent years, it may well be advisable to apply a 'risk-informed' approach to security management at nuclear power plants from now into the future. In fact, plant PSAs developed in response to NRC Generic Letter 88-20 and related requirements are used to help define target sets of critical plant safety equipment in our current security exercises for the industry. With reasonable refinements, plant PSAs can be used to identify, analyze, and evaluate reasonable and prudent approaches to address security issues and associated defensive strategies at nuclear power plants. PSA is the ultimate scenario-based approach to risk assessment, and thus provides a most powerful tool in identifying and evaluating potential risk management decisions. This paper provides a summary of observations of factors that are influencing or could influence cost-effective or 'cost-reasonable' security management decision-making in the current political environment, and provides recommendations for the application of PSA tools and techniques to the nuclear power plant operational safety response exercise process. The paper presents a proposed framework for nuclear power plant probabilistic terrorist risk assessment that applies these tools and techniques. (authors)

  2. Development Perspective of Regulatory Audit Code System for SFR Nuclear Safety Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Moo Hoon; Lee, Gil Soo; Shin, An Dong; Suh, Nam Duk [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2012-05-15

    A sodium-cooled fast reactor (SFR) in Korea is based on the KALIMER-600 concept developed by KAERI. Based on 'Long-term R and D Plan for Future Reactor Systems' which was approved by the Korea Atomic Energy Commission in 2008, the KAERI designer is scheduled to apply the design certification of the prototype SFR in 2017. In order to establish regulatory infrastructure for the licensing of a prototype SFR, KINS has develop the regulatory requirements for the demonstration SFR since 2010, and are scheduled to develop the regulatory audit code systems in regard to core, fuel, and system, etc. since 2012. In this study, the domestic code systems used for core design and safety evaluation of PWRs and the nuclear physics and code system for SFRs were briefly reviewed, and the development perspective of regulatory audit code system for SFR nuclear safety evaluation were derived

  3. Conduct and results of the Interagency Nuclear Safety Review Panel's evaluation of the Ulysses space mission

    International Nuclear Information System (INIS)

    Sholtis, J.A. Jr.; Gray, L.B.; Huff, D.A.; Klug, N.P.; Winchester, R.O.

    1991-01-01

    The recent 6 October 1990 launch and deployment of the nuclear-powered Ulysses spacecraft from the Space Shuttle Discovery culminated an extensive safety review and evaluation effort by the Interagency Nuclear Safety Review Panel (INSRP). After more than a year of detailed independent review, study, and analysis, the INSRP prepared a Safety Evaluation Report (SER) on the Ulysses mission, in accordance with Presidential Directive-National Security Council memorandum 25. The SER, which included a review of the Ulysses Final Safety Analysis Report (FSAR) and an independent characterization of the mission risks, was used by the National Aeronautics and Space Administration (NASA) in its decision to request launch approval as well as by the Executive Office of the President in arriving at a launch decision based on risk-benefit considerations. This paper provides an overview of the Ulysses mission and the conduct as well as the results of the INSRP evaluation. While the mission risk determined by the INSRP in the SER was higher than that characterized by the Ulysses project in the FSAR, both reports indicated that the radiological risks were relatively small. In the final analysis, the SER proved to be supportive of a positive launch decision. The INSRP evaluation process has demonstrated its effectiveness numerous times since the 1960s. In every case, it has provided the essential ingredients and perspective to permit an informed launch decision at the highest level of our Government

  4. Study on safety performance evaluation system of nuclear engineering construction units based on AHP

    International Nuclear Information System (INIS)

    Xu Yulin; Sun Jian; Shi Xiaofan

    2012-01-01

    As a very effectual management mean, the performance management has extensively used by many companies of China for staff assessment. The author explored the establishment of the 'Safety Performance Evaluation System' by finding out the similarities in operation between a company and a team of nuclear power projects. Then the author analyzed the principles of the performance management and good practices and summarized safety management experiences. The weight of the system index by using AHP method was calculated in this article. (authors)

  5. Introduction to the nuclear criticality safety evaluation of facility X-705, Portsmouth Gaseous Diffusion Plant

    International Nuclear Information System (INIS)

    Sheaffer, M.K.; Keeton, S.C.

    1993-01-01

    This report is the first in a series of documents that will evaluate nuclear criticality safety in the Decontamination and Recovery Facility, X-705, Portsmouth Gaseous Diffusion Plant. It provides an overview of the facility, categorizes its functions for future analysis, reviews existing NCS documentation, and explains the follow-on effort planned for X-705. A detailed breakdown of systems, subsystems, and operational areas is presented and cross-referenced to existing NCS documentation

  6. Preparation of data for criticality safety evaluation of nuclear fuel cycle facilities

    International Nuclear Information System (INIS)

    Okuno, Hiroshi; Suyama, Kenya; Yoshiyama, Hiroshi; Tonoike, Kotaro; Miyoshi, Yoshinori

    2005-01-01

    Nuclear Criticality Safety Handbook/Data Collection, Version 2 was submitted to the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan as a contract report. In this presentation paper, its outline and related recent works are presented. After an introduction in Chapter 1, useful information to obtain the atomic number densities was collected in Chapter 2. The nuclear characteristic parameters for 11 nuclear fuels were provided in Chapter 3, and subcriticality judgment graphs were given in Chapter 4. The estimated critical and estimated lower-limit critical values were supplied for the 11 nuclear fuels as results of calculations by using the Japanese Evaluated Nuclear Data Library, JENDL-3.2, and the continuous energy Monte Carlo neutron transport code MVP in Chapter 5. The results of benchmark calculations based on the International Criticality Safety Benchmark Evaluation Project (ICSBEP) Handbook were summarized into six fuel categories in Chapter 6. As for recent works, subcriticality judgment graphs for U-SiO 2 and Pu-SiO 2 were obtained. Benchmark calculations were made with the combination of the latest version of the library JENDL-3.3 and MVP code for a series of STACY experiments and the estimated critical and estimated lower-limit critical values of 10 wt%-enriched uranium nitrate solutions were calculated. (author)

  7. Higher operational safety of nuclear power plants by evaluating the behaviour of operating personnel

    International Nuclear Information System (INIS)

    Mertins, M.; Glasner, P.

    1990-01-01

    In the GDR power reactors have been operated since 1966. Since that time operational experiences of 73 cumulative reactor years have been collected. The behaviour of operating personnel is an essential factor to guarantee the safety of operation of the nuclear power plant. Therefore a continuous analysis of the behaviour of operating personnel has been introduced at the GDR nuclear power plants. In the paper the overall system of the selection, preparation and control of the behaviour of nuclear power plant operating personnel is presented. The methods concerned are based on recording all errors of operating personnel and on analyzing them in order to find out the reasons. The aim of the analysis of reasons is to reduce the number of errors. By a feedback of experiences the nuclear safety of the nuclear power plant can be increased. All data necessary for the evaluation of errors are recorded and evaluated by a computer program. This method is explained thoroughly in the paper. Selected results of error analysis are presented. It is explained how the activities of the personnel are made safer by means of this analysis. Comparisons with other methods are made. (author). 3 refs, 4 figs

  8. Application of a structural model for advanced analysis in the evaluation of nuclear safety

    International Nuclear Information System (INIS)

    Landesmann, Alexandre; Barros, Francisco Claudio Pereira de; Batista, Eduardo de Miranda

    2003-01-01

    The Advanced Analysis concept, which means the direct consideration of both physical and geometric nonlinear effects in the analysis and design of steel buildings structures, represents the state-of-art in the field of structural analysis by this beginning of the 21 st century. In this context, the present paper presents an Advanced Analysis methodology applied to the Safety Evaluation of high hazardous civil structures. This Safety Evaluation plays an important part in the regulators position as a step in the licensing process performed by CNEN - Brazilian Nuclear Energy Commission. The proposed Advance Analysis procedure is implemented by a refined second-order plastic hinge model. The application of this model allows to carry out: the description of the inelastic structural behavior; the identification of the collapse mechanism; the ultimate load level; structural safety's level and the service ability limit. (author)

  9. Global nuclear safety culture

    International Nuclear Information System (INIS)

    1997-01-01

    As stated in the Nuclear Safety Review 1996, three components characterize the global nuclear safety culture infrastructure: (i) legally binding international agreements; (ii) non-binding common safety standards; and (iii) the application of safety standards. The IAEA has continued to foster the global nuclear safety culture by supporting intergovernmental collaborative efforts; it has facilitated extensive information exchange, promoted the drafting of international legal agreements and the development of common safety standards, and provided for the application of safety standards by organizing a wide variety of expert services

  10. Nuclear safety in France

    International Nuclear Information System (INIS)

    Servant, J.

    1979-12-01

    The main areas of nuclear safety are considered in this paper, recalling the laws and resolutions in force and also the appropriate authority in each case. The following topics are reviewed: radiological protection, protection of workers, measures to be taken in case of an accident, radioactive effluents, impact on the environment of non-nuclear pollution, nuclear plant safety, protection against malicious acts, control and safeguard of nuclear materials, radioisotopes, transport of radioactive substances, naval propulsion, waste management, nuclear plant decommissioning and export of nuclear equipment and materials. Finally, the author describes the role of the general Secretariat of the Interdepartmental Committee on Nuclear Safety

  11. Nuclear safety in France

    International Nuclear Information System (INIS)

    Queniart, D.

    1989-12-01

    This paper outlines the organizational and technical aspects of nuclear safety in France. From the organization point of view, the roles of the operator, of the safety authority and of the Institute for Protection and Nuclear Safety are developed. From the technical viewpoint, the evolution of safety since the beginning of the French nuclear programme, the roles of deterministic and probabilistic methods and the severe accident policy (prevention and mitigation, venting containment) in France are explained

  12. Safety evaluation report related to the operation of Shoreham Nuclear Power Station, Unit No. 1. Docket No. 50-322

    International Nuclear Information System (INIS)

    1983-02-01

    Supplement No. 3 to the Safety Evaluation Report of Long Island Lighting Company's application for a license to operate the Shoreham Nuclear Power Station, Unit 1, located in Suffolk County, New York, has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. This supplement addresses several items that have come to light since the previous supplement was issued

  13. Human factors evaluation of man-machine interface for periodic safety review of nuclear power plants

    International Nuclear Information System (INIS)

    Lee, Yong Hee; Lee, Jung Woon; Park, Jae Chang; Hwang, In Koo; Lee, Hyun Cheol; Jang, Tong Il; Ku, Jin Young; Kim, Soo Jin

    2004-12-01

    This report describes the research results of human factors assessment on the MMI(Man Machine Interface) equipment as part of Periodic Safety Review(PSR) of Nuclear Power Plants(NPPs). As MMI is a key factor among human factors to be reviewed in PSR, we reviewed the MMI components of nuclear power plants in aspect of human factors engineering. The availability, suitability, and effectiveness of the MMI devices were chosen to be reviewed. The MMI devices were investigated through the review of design documents related to the MMI, survey of control panels, evaluation of experts, and experimental assessment. Checklists were used to perform this assessment and record the review results. The items mentioned by the expert comments to review in detail in relation with task procedures were tested by experiments with operators' participation. For some questionable issues arisen during this MMI review, operator workload and possibility of errors in operator actions were analysed. The reviewed MMI devices contain MCR(Main Control Room), SPDS(Safety Parameter Display System), RSP(Remote Shutdown Panel), and the selected LCBs(Local Control Boards) importantly related to safety. As results of the assessments, any significant problem challenging the safety was not found on human factors in the MMI devices. However, several small items to be changed and improved in suitability of MMI devices were discovered. An action plan is recommended to accommodate the suggestions and review comments. It will enhance the plant safety on MMI area

  14. Study of evaluation techniques of software safety and reliability in nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Youn, Cheong; Baek, Y. W.; Kim, H. C.; Park, N. J.; Shin, C. Y. [Chungnam National Univ., Taejon (Korea, Republic of)

    1999-04-15

    Software system development process and software quality assurance activities are examined in this study. Especially software safety and reliability requirements in nuclear power plant are investigated. For this purpose methodologies and tools which can be applied to software analysis, design, implementation, testing, maintenance step are evaluated. Necessary tasks for each step are investigated. Duty, input, and detailed activity for each task are defined to establish development process of high quality software system. This means applying basic concepts of software engineering and principles of system development. This study establish a guideline that can assure software safety and reliability requirements in digitalized nuclear plant systems and can be used as a guidebook of software development process to assure software quality many software development organization.

  15. International Aspects of Nuclear Safety

    International Nuclear Information System (INIS)

    Lash, T.R.

    2000-01-01

    Even though not all the world's nations have developed a nuclear power industry, nuclear safety is unquestionably an international issue. Perhaps the most compelling proof is the 1986 accident at Chornobyl nuclear power plant in what is now Ukraine. The U.S. Department of Energy conducts a comprehensive, cooperative effort to reduce risks at Soviet-designed nuclear power plants. In the host countries : Armenia, Ukraine, Russia, Bulgaria, the Czech Republic, Hungary, Lithuania, Slovakia, and Kazakhstan joint projects are correcting major safety deficiencies and establishing nuclear safety infrastructures that will be self-sustaining.The U.S. effort has six primary goals: 1. Operational Safety - Implement the basic elements of operational safety consistent with internationally accepted practices. 2. Training - Improve operator training to internationally accepted standards. 3. Safety Maintenance - Help establish technically effective maintenance programs that can ensure the reliability of safety-related equipment. 4. Safety Systems - Implement safety system improvements consistent with remaining plant lifetimes. 5. Safety Evaluations - Transfer the capability to conduct in-depth plant safety evaluations using internationally accepted methods. 6. Legal and Regulatory Capabilities - Facilitate host-country implementation of necessary laws and regulatory policies consistent with their international treaty obligations governing the safe use of nuclear power

  16. Nuclear safety regulations

    International Nuclear Information System (INIS)

    1998-01-01

    The Departmental Rules and The Safety Guides were issued by the NNSA in 1998. The NNSA performed the activities of propagation and implementation of nuclear safety regulations at QTNPP in order to improve the nuclear safety culture of operating organization and construct and contract organizations

  17. Nuclear health and safety

    International Nuclear Information System (INIS)

    1991-04-01

    Numerous environmental, safety, and health problems found at other Department of Energy (DOE) defense nuclear facilities precipitated a review of these conditions at DOE's contractor-operated Pantex Plant, where our nation's nuclear weapons are assembled. This book focuses the review on examining key safety and health problems at Pantex and determining the need for external safety oversight of the plant

  18. Nuclear criticality safety guide

    International Nuclear Information System (INIS)

    Ro, Seong Ki; Shin, Hee Seong; Park, Seong Won; Shin, Young Joon.

    1997-06-01

    Nuclear criticality safety guide was described for handling, transportation and storage of nuclear fissile materials in this report. The major part of the report was excerpted frp, TID-7016(revision 2) and nuclear criticality safety written by Knief. (author). 16 tabs., 44 figs., 5 refs

  19. SRTC criticality safety technical review: Nuclear criticality safety evaluation 94-02, uranium solidification facility pencil tank module spacing

    International Nuclear Information System (INIS)

    Rathbun, R.

    1994-01-01

    Review of NMP-NCS-94-0087, ''Nuclear Criticality Safety Evaluation 94-02: Uranium Solidification Facility Pencil Tank Module Spacing (U), April 18, 1994,'' was requested of the SRTC Applied Physics Group. The NCSE is a criticality assessment to show that the USF process module spacing, as given in Non-Conformance Report SHM-0045, remains safe for operation. The NCSE under review concludes that the module spacing as given in Non-Conformance Report SHM-0045 remains in a critically safe configuration for all normal and single credible abnormal conditions. After a thorough review of the NCSE, this reviewer agrees with that conclusion

  20. Evaluation of natural phenomena hazards as part of safety assessments for nuclear facilities

    International Nuclear Information System (INIS)

    Kot, C.A.; Hsieh, B.J.; Srinivasan, M.G.; Shin, Y.W.

    1995-02-01

    The continued operation of existing US Department of Energy (DOE) nuclear facilities and laboratories requires a safety reassessment based on current criteria and guidelines. This also includes evaluations for the effects of Natural Phenomena Hazards (NPH), for which these facilities may not have been designed. The NPH evaluations follow the requirements of DOE Order 5480.28, Natural Phenomena Hazards Mitigation (1993) which establishes NPH Performance Categories (PCs) for DOE facilities and associated target probabilistic performance goals. These goals are expressed as the mean annual probability of exceedance of acceptable behavior for structures, systems and components (SSCs) subjected to NPH effects. The assignment of an NPH Performance Category is based on the overall hazard categorization (low, moderate, high) of a facility and on the function of an SSC under evaluation (DOE-STD-1021, 1992). Detailed guidance for the NPH analysis and evaluation criteria are also provided (DOE-STD-1020, 1994). These analyses can be very resource intensive, and may not be necessary for the evaluation of all SSCs in existing facilities, in particular for low hazard category facilities. An approach relying heavily on screening inspections, engineering judgment and use of NPH experience data (S. J. Eder et al., 1993), can minimize the analytical effort, give reasonable estimates of the NPH susceptibilities, and yield adequate information for an overall safety evaluation of the facility. In the following sections this approach is described in more detail and is illustrated by an application to a nuclear laboratory complex

  1. Evaluation of the nuclear installations safety of the CEA in 1998

    International Nuclear Information System (INIS)

    Laverie, M.

    1999-09-01

    Michel Laverie, Director of the nuclear safety and quality at the Cea, took stoke of the CEA nuclear installations in 1998. After a recall of the nuclear safety policy and organization, the author presents the risks factors bound to the CEA activities as the dismantling, the wastes and the human factors. A last part is devoted to the list of the accidents occurred during 1998 in the nuclear installations. Tables and statistics illustrate this analysis. (A.L.B.)

  2. Enhancing operational nuclear safety

    International Nuclear Information System (INIS)

    Sengoku, Katsuhisa

    2008-01-01

    Since Chernobyl, the dictum A n accident anywhere is an accident everywhere i s a globally shared perception. The paper presents challenges to the international nuclear community: globalization, sustainable and dynamic development, secure, safe and clean energy supply, nuclear r enaissance , public concern for nuclear safety, nuclear security, and technology and management. Strong national safety infrastructures and international cooperation are required to maintain a high level of nuclear safety and security worldwide. There is an increasing number of countries thinking of going nuclear: Morocco, Indonesia, Iran, Poland, Turkey, Bangladesh, Egypt, Vietnam, Chile, Nigeria, Malaysia, Thailand, Uruguay, Tunisia, Algeria. Another serious incident will jeopardize the prospect of nuclear renaissance. Safety and security are preconditions for countries newly introducing NPP as well as for those with mature nuclear programmes. The Global Nuclear Safety Regime (GNSR) is referred to as the institutional, legal and technical framework to achieve worldwide implementation of the safety of nuclear installations. At the top of the framework is the Convention on Nuclear Safety which covers the nuclear power plants. The convention has 56 contracting parties which meet triennially where national reports are presented and subject to the review of peers. The International Atomic Energy Agency (IAEA) undertakes a programme to foster the GNSR through the establishment of IAEA safety standards and related publications. The programme provides for the application of standards for the (1) safety of nuclear installations, (2) safety of radioactive sources, (3) safe transport of radioactive material and (4) management of radioactive waste. It also provides for the security of nuclear installations, nuclear material and radioactive material. The safety standards hierarchy is as follows: safety fundamental, safety requirements and safety guides. The safety fundamentals are the bases for IAEA

  3. Nuclear Safety Regulations

    International Nuclear Information System (INIS)

    Novosel, N.; Prah, M.

    2008-01-01

    Beside new Ordinance on the control of nuclear material and special equipment ('Official Gazette' No. 15/08), from 2006 State Office for Nuclear Safety (SONS) adopted Ordinance on performing nuclear activities ('Official Gazette' No. 74/06) and Ordinance on special requirements which expert organizations must fulfil in order to perform certain activities in the field of nuclear safety ('Official Gazette' No. 74/06), based on Nuclear Safety Act ('Official Gazette' No. 173/03). The Ordinance on performing nuclear activities regulates the procedure of notification of the intent to perform nuclear activities, submitting the application for the issue of a licence to perform nuclear activities, and the procedure for issuing decisions on granting a licence to perform a nuclear activity. The Ordinance also regulates the content of the forms for notification of the intent to perform nuclear activities, as well as of the application for the issue of a licence to perform the nuclear activity and the method of keeping the register of nuclear activities. According to the Nuclear Safety Act, nuclear activities are the production, processing, use, storage, disposal, transport, import, export, possession or other handling of nuclear material or specified equipment. The Ordinance on special requirements which expert organizations must fulfil in order to perform certain activities in the field of nuclear safety regulates these mentioned conditions, whereas compliance is established by a decision passed by the SONS. Special requirements which expert organizations must fulfil in order to perform certain activities in the field of nuclear safety are organizational, technical, technological conditions and established system of quality assurance. In 2007, State Office for Nuclear Safety finalized the text of new Ordinance on conditions for nuclear safety and protection with regard to the siting, design, construction, use and decommissioning of a facility in which a nuclear activity is

  4. Evaluation of safety issues on newly regulated nuclear power plant by tsunami-level 1 PRA

    International Nuclear Information System (INIS)

    Tsuji, Yutaro; Miwa, Shuichiro; Mori, Michitsugu

    2014-01-01

    The tsunami caused by the Great East Japan Earthquake triggered severe accidents involving the units 1 to 4 at the Fukushima Dai-ichi nuclear power station (NPS). In order to re-operate existing nuclear power plants it should be necessary to reduce the core damage frequency on risk by tsunami. In this work, effects of the off-site power supply installation on resuming operation of nuclear power plants were investigated by utilizing the Tsunami-Level 1 Probability Risk Assessment (PRA). Unit 2 of the Onagawa nuclear power station, which resembled units 2 and 3 of Fukushima Dai-ichi, was selected for PRA. First, event-tree was created for the units of the Onagawa nuclear power station with the safety systems such as Emergency Core Cooling System (ECCS), investigating the plant situation at the time of the earthquake and tsunami occurrences. It was assumed that the magnitude of the tsunami was equivalent to the Great East Japan Earthquake. The accident-analytical progression-time was 36 hours, determined from the core-damage occurrence of the unit 3 of Fukushima Dai-ichi nuclear power station. Failure probabilities were calculated by the fault tree, which was created from the elements listed in the event tree. For the calculation, failure rates reported by the NUCIA (NUClear Information Archives) were primarily utilized. Then, obtained failure probabilities were embedded to the event tree. Core damage probabilities were evaluated by calculating success and failure rates for each accidental progression and scenarios. Restoration of the failed equipment and machineries was not considered in the analysis. Installation of the power supply vehicles at the nuclear power plant site reduced the core damage probability from 2.58×10 -6 to 8.56×10 -7 . However, continued addition of the power supply vehicles could not lower the core damage probability further more. In the case of Unit 2 of Onagawa nuclear power station, there could be a limit to lower the core damage

  5. Evaluation of the Cable Types for Safety Requirements during Fire Conditions in Nuclear Facility

    International Nuclear Information System (INIS)

    Al-kattan, W.A.

    2015-01-01

    In Nuclear Power Plants (NPPs), the fire in cables causes many dangerous events in electrical or mechanical operations causing a nuclear reactor melt down. Main Control Room (MCR) in nuclear power plants have therefore, special concern in the fire protection systems. The Nuclear International Atomic Energy Agency (IAEA) has promoted the use of risk-informed and performance based methods for fire protection. These methods affirm the relevant needs to develop realistic methods to quantify the risk of fire to NPPs safety. The recent electrical cable testing has been carried out to provide empirical data on the failure modes and likelihood of fire-induced damage. In this thesis, will use fire modeling to develop fire probabilistic safety assessment to estimate the likelihood of fire induced cable damage given a specified fire profile. The objective of this work is to provide a comprehensive evaluation of the most recent fire-induced circuit failure due to different cables type that used inside the NPPs by simulation using fire modeling. One of this work scope is to suggest a suitable cable insulation material especially in case of the thermal failure thresholds, for developing the electrical cable thermal fragility distributions and evaluate parameters that influence fire-induced circuit failure modes. The main control room is implementing using the CFAST (fire simulation package). The simulation results represent the full development fire temperature and heat flux as well as the output gases. The results can be used as the basic parameters of the cables comparison and then evaluation.The importance of these results are not only for evaluating the cables but one can efficiently use them to improve the whole NPPs safety levels. The gases results of the fire simulation inside the room are oxygen, carbon monoxide, carbon dioxide, and hydrogen chloride. These gases are being used lot achieving the healthy protection of NPPs. Finally, one can measure the healthy environment

  6. Nuclear safety - Topical issues

    International Nuclear Information System (INIS)

    1995-01-01

    The following topical issues related to nuclear safety are discussed: steam generators; maintenance strategies; control rod drive nozzle cracks; core shrouds cracks; sump strainer blockage; fire protection; computer software important for safety; safety during shutdown; operational safety experience; external hazards and other site related issues. 5 figs, 5 tabs

  7. Safety Evaluation report on Tennessee Valley Authority: Sequoyah nuclear performance plan

    International Nuclear Information System (INIS)

    1988-05-01

    This Safety Evaluation Report (SER) on the information submitted by the Tennessee Valley Authority (TVA) in its Sequoyah Nuclear Performance Plan, through Revision 2, and supporting documents has been prepared by the US Nuclear Regulatory Commission staff. The plan addresses the plant-specific concerns requiring resolution before startup of either of the Sequoyah units. In particular, the SER addresses required actions for Unit 2 restart. In many cases, the programmatic aspects for Unit 1 are identical to those for Unit 2; the staff will conduct inspections of implementation of those programs. Where the Unit 1 program is different, the staff evaluation will be provided in a supplement to this SER. On the basis of its review, the staff concludes that Sequoyah-specific issues have been resolved to the extent that would support restart of Sequoyah Unit 2

  8. Reload safety evaluation report for kori nuclear power plant unit 2 cycle 9

    International Nuclear Information System (INIS)

    Cho, Beom Jin; Kim, Si Yong; Kim, Oh Hwan; Nam, Kee Il; Um, Gil Sup; Ban, Chang Hwan; Choi, Dong Uk; Yoon, Kyung Ho

    1992-04-01

    The Kori Nuclear Power Plant Unit 2 (Kori-2) is anticipated to be refuelled with 16x16 Korean Fuel Assemblies (KOFA), which are based on the KAERI design starting from Cycle 8. This report presents a reload safety evaluation for Kori-2, Cycle 9 and demonstrates that the reactor core being composed of various fuel assembly types as described below will not adversely affect the safety of the public and the plant. The evaluation of Kori-2, Cycle 9 was accomplished utilizing the methodology described in 'Reload Transition Safety Report for KORI 2' (Ref. /1-1/). The reload core for Kori-2, Cycle 9 is entirely comprised of 16x16 KOFA. In the Kori-2 licensing documentation to KEPCO the reference safety evaluation was provided for the operation of a reactor core fully loaded with KOFA as well as associated proposed changes to the Kori-2 Technical Specifications. The reload for Kori-2, Cycle 9 also introduces UO 2 /Gd 2 O 3 containing fuel rods. The use of fuel rods with Gd 2 O 3 poisoning of the fuel has been approved as a part of the above mentioned licensing documentation. All of the accidents comprising the licensing bases which could potentially be affected by the fuel reload have been reviewed for the Cycle 9 core design described herein. (Author)

  9. Evaluation of the safety of the operating nuclear power plants built to earlier standards

    International Nuclear Information System (INIS)

    Menteseoglu, S.

    2001-01-01

    The objective of this paper is to provide practical assistance on judging the safety of a nuclear power plant, on the basis of a comparison with current safety standards and operational practices. For nuclear power plants built to earlier standards for which there are questions about the adequacy of the maintenance of the plant design and operational practices, a safety review against current standards and practices can be considered a high priority. The objective of reviewing nuclear power plants built to earlier standards against current standards and practices is to determine whether there are any deviations which would have an impact on plant safety. The safety significance of the issues identified should be judged according to their implications for plant design and operation in terms of basic safety concepts such as defence in depth and safety culture. In addition, this paper provides assistance on the prioritization of corrective measures and their implementation so as to approach an acceptable level of safety

  10. Nuclear power safety

    International Nuclear Information System (INIS)

    1988-01-01

    The International Atomic Energy Agency, the organization concerned with worldwide nuclear safety has produced two international conventions to provide (1) prompt notification of nuclear accidents and (2) procedures to facilitate mutual assistance during an emergency. IAEA has also expanded operational safety review team missions, enhanced information exchange on operational safety events at nuclear power plants, and planned a review of its nuclear safety standards to ensure that they include the lessons learned from the Chernobyl nuclear plant accident. However, there appears to be a nearly unanimous belief among IAEA members that may attempt to impose international safety standards verified by an international inspection program would infringe on national sovereignty. Although several Western European countries have proposed establishing binding safety standards and inspections, no specific plant have been made; IAEA's member states are unlikely to adopt such standards and an inspection program

  11. Safety evaluation report related to the operation of Millstone Nuclear Power Station, Unit No. 3 (Docket No. 50-423)

    International Nuclear Information System (INIS)

    1985-09-01

    The Safety Evaluation Report issued in August 1984 provided the results of the NRC staff review of Northeast Nuclear Energy Company's application for a license to operate the Millstone Nuclear Power Station, Unit No. 3. Supplement No. 1 to that report, issued in March 1985 updated the information contained in the Safety Evaluation Report and addressed the ACRS Report issued on September 10, 1984. The Report, Supplement No. 2 updates the information contained in the Safety Evaluation Report and Supplement No. 1 and addresses prior unresolved items. The facility is located in Waterford Township, New London, Connecticut. 11 refs., 9 tabs

  12. Nuclear Safety Culture

    International Nuclear Information System (INIS)

    2017-01-01

    Ethics is caring about people and Safety is caring that no physical harm comes to people.Therefore Safety is a type of Ethical Behavior. Culture: is The Way We Do Things Here.Safety Culture is mixture of organization traditions, values, attitudes and behaviors modeled by Its leaders and internalized by its members that serve to make nuclear safety the overriding priority. Safety Culture is that assembly of characteristics and attitudes in Organisations and individuals which established that, as an overriding priority, nuclear plant safety issues receive the attention warranted by their significance

  13. Nuclear safety in France

    International Nuclear Information System (INIS)

    Tanguy, P.

    1979-01-01

    A brief description of the main safety aspects of the French nuclear energy programme and of the general safety organization is followed by a discussion on the current thinking in CEA on some important safety issues. As far as methodology is concerned, the use of probabilistic analysis in the licensing procedure is being extensively developed. Reactor safety research is aimed at a better knowledge of the safety margins involved in the present designs of both PWRs and LMFBRs. A greater emphasis should be put during the next years in the safety of the nuclear fuel cycle installations, including waste disposals. Finally, it is suggested that further international cooperation in the field of nuclear safety should be developed in order to insure for all countries the very high safety level which has been achieved up till now. (author)

  14. Nuclear safety. Romania. Nuclear fuel performance, modeling and evaluation. Technical report. Report prepared for the Government of Romania

    International Nuclear Information System (INIS)

    Hsu, Tai-Ran

    1992-08-01

    The document contains the technical report submitted by an IAEA expert as a result of a field mission undertaken in June-July 1992 at the Institute for Nuclear Power Research, Pitesti, Romania, in the frame of the project IAEA/UNDP-Rom/87/002 (Nuclear Safety). The objectives of the mission were to assist the Institute in understanding the physical processes during fuel power cycling, to develop a computer code for power cycling behavior of fuel elements under both normal operation and power transient conditions, to advise on the design of irradiation tests aiming at the evaluation of fuel behavior during power cycling, and on the application of Computer-Aided Design (CAD) for fuel bundles

  15. Nuclear safety. Romania. Nuclear fuel performance, modeling and evaluation. Technical report. Report prepared for the Government of Romania

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, Tai-Ran

    1992-08-01

    The document contains the technical report submitted by an IAEA expert as a result of a field mission undertaken in June-July 1992 at the Institute for Nuclear Power Research, Pitesti, Romania, in the frame of the project IAEA/UNDP-Rom/87/002 (Nuclear Safety). The objectives of the mission were to assist the Institute in understanding the physical processes during fuel power cycling, to develop a computer code for power cycling behavior of fuel elements under both normal operation and power transient conditions, to advise on the design of irradiation tests aiming at the evaluation of fuel behavior during power cycling, and on the application of Computer-Aided Design (CAD) for fuel bundles.

  16. Safety evaluation report related to the operation of Millstone Nuclear Power Station, Unit No. 3 (Docket No. 50-423)

    International Nuclear Information System (INIS)

    1984-07-01

    The Safety Evaluation Report for the application filed by Northeast Nuclear Energy Company, as applicant and agent for the owners, for a license to operate the Millstone Nuclear Power Station Unit 3 (Docket No. 50-423), has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. The facility is located in the town of Waterford, New London County, Connecticut, on the north shore of Long Island Sound. Subject to favorable resolution of the items discussed in this report, the NRC staff concludes that the facility can be operated by the applicant without endangering the health and safety of the public

  17. Development of resilience evaluation method for nuclear power plant. Part 1. Proposal of resilience index for assessment of safety of nuclear power plant under severe accident

    International Nuclear Information System (INIS)

    Demachi, Kazuyuki; Suzuki, Masaaki; Itoi, Tatsuya

    2016-01-01

    In this research, a new index 'The Resilience Index' was proposed to evaluate the capability of nuclear power plant to recover from the situation of safety function lost. Three elements assumed to evaluate the resilience index are the achievement rate, necessary time, and probability of success of each accident management activity. The resilience index is expected to visualize the improvement of safety of each nuclear power plant against severe accidents. (author)

  18. Review and evaluation of the Nuclear Regulatory Commission safety research program for Fiscal Year 1983. Report to the Congress

    International Nuclear Information System (INIS)

    1982-02-01

    Public Law 95-209 includes a requirement that the Advisory Committee on Reactor Safeguards submit an annual report to Congress on the safety research program of the Nuclear Regulatory Commission. This report presents the results of the ACRS review and evaluation of the NRC safety research program for Fiscal Year 1983. The report contains a number of comments and recommendations

  19. Nuclear safety in perspective

    DEFF Research Database (Denmark)

    Andersson, K.; Sjöberg, B.M.D.; Lauridsen, Kurt

    2003-01-01

    The aim of the NKS/SOS-1 project has been to enhance common understanding about requirements for nuclear safety by finding improved means of communicat-ing on the subject in society. The project, which has been built around a number of seminars, wassupported by limited research in three sub......-projects: Risk assessment Safety analysis Strategies for safety management The report describes an industry in change due to societal factors. The concepts of risk and safety, safety management and systems forregulatory oversight are de-scribed in the nuclear area and also, to widen the perspective, for other...

  20. New Nuclear Safety Regulations

    International Nuclear Information System (INIS)

    Novosel, N.; Prah, M.; Cizmek, A.

    2008-01-01

    Beside new Ordinance on the control of nuclear material and special equipment (Official Gazette No. 15/08), from 2006 State Office for Nuclear Safety (SONS) adopted Ordinance on performing nuclear activities (Official Gazette No. 74/06) and Ordinance on special conditions for individual activities to be performed by expert organizations which perform activities in the area of nuclear safety (Official Gazette No. 74/06), based on Nuclear Safety Act (Official Gazette No. 173/03). The Ordinance on performing nuclear activities regulates the procedure of announcing the intention to perform nuclear activity, submitting an application for the issue of a license to perform nuclear activity, and the procedure for adoption a decision on issuing a nuclear activity license. The Ordinance also regulates the contents of the application form for the announcement of the intention to perform nuclear activity, as well as of the application for the issue of a nuclear activity license and the method of keeping a nuclear activity register. The Ordinance on special conditions for individual activities to be performed by expert organizations which perform activities in the area of nuclear safety regulates these mentioned conditions, whereas compliance is established by a decision passed by the SONS. Special conditions for individual activities to be performed by expert organizations which perform activities in the area of nuclear safety are organizational, technical, technological conditions and established system of quality assurance. In 2007, SONS finalized the text of new Ordinance on nuclear safety and protection conditions for location, design, construction, operation and decommissioning of facility in which nuclear activity is performed. This Ordinance regulates nuclear safety and protection conditions for location, design, construction, operation and decommissioning of facility in which nuclear activity is performed. This Ordinance defines facilities in which nuclear activity is

  1. Safety Evaluation Report on Tennessee Valley Authority: Browns Ferry Nuclear Performance Plan: Browns Ferry Unit 2 restart

    International Nuclear Information System (INIS)

    1989-04-01

    This safety evaluation report (SER) on the information submitted by the Tennessee Valley Authority (TVA) in its Nuclear Performance Plan, through Revision 2, for the Browns Ferry Nuclear Power Station and in supporting documents has been prepared by the US Nuclear Regulatory Commission staff. The plan addresses the plant-specific concerns requiring resolution before startup of Unit 2. The staff will inspect implementation of those programs. Where systems are common to Units 1 and 2 or to Units 2 and 3, the staff safety evaluations of those systems are included herein. 3 refs

  2. China's nuclear safety regulatory body: The national nuclear safety administration

    International Nuclear Information System (INIS)

    Zhang Shiguan

    1991-04-01

    The establishment of an independent nuclear safety regulatory body is necessary for ensuring the safety of nuclear installations and nuclear fuel. Therefore the National Nuclear Safety Administration was established by the state. The aim, purpose, organization structure and main tasks of the Administration are presented. At the same time the practical examples, such as nuclear safety regulation on the Qinshan Nuclear Power Plant, safety review and inspections for the Daya Bay Nuclear Power Plant during the construction, and nuclear material accounting and management system in the nuclear fuel fabrication plant in China, are given in order to demonstrate the important roles having been played on nuclear safety by the Administration after its founding

  3. Nuclear power safety

    International Nuclear Information System (INIS)

    1991-11-01

    This paper reports that since the Chernobyl nuclear plant accident in 1986, over 70 of the International Atomic Energy Agency's 112 member states have adopted two conventions to enhance international cooperation by providing timely notification of an accident and emergency assistance. The Agency and other international organizations also developed programs to improve nuclear power plant safety and minimize dangers from radioactive contamination. Despite meaningful improvements, some of the measures have limitations, and serious nuclear safety problems remain in the design and operation of the older, Soviet-designed nuclear power plants. The Agency's ability to select reactors under its operational safety review program is limited. Also, information on the extent and seriousness of safety-related incidents at reactors in foreign countries is not publicly available. No agreements exist among nuclear power countries to make compliance with an nuclear safety standards or principles mandatory. Currently, adherence to international safety standards or principles is voluntary and nonbinding. Some states support the concept of mandatory compliance, but others, including the United States, believe that mandatory compliance infringes on national sovereignty and that the responsibility for nuclear reactor safety remains with each nation

  4. Nuclear power and safety

    International Nuclear Information System (INIS)

    Saunders, P.; Tasker, A.

    1991-01-01

    Nuclear power currently provides about a fifth of both Britain's and the world's electricity. It is the largest single source of electricity in Western Europe; in France three quarters of electricity is generated by nuclear power stations. This booklet is about the safety of those plants. It approaches the subject by outlining the basic principles and approaches behind nuclear safety, describing the protective barriers and safety systems that are designed to prevent the escape of radioactive material, and summarising the regulations that govern the construction and operation of nuclear power stations. The aim is to provide a general understanding of the subject by explaining the general principles of the Advanced Gas Cooled Reactor and setting out the UKAEA strategy for nuclear safety, the objective being always to minimize risk. (author)

  5. Safety Evaluation Report related to the operation of Shoreham Nuclear Power Station, Unit No. 1 (Docket No. 50-322)

    International Nuclear Information System (INIS)

    1989-04-01

    Supplement 10 (SSER 10) to the Safety Evaluation Report on Long Island Lighting Company's application for a license to operate the Shoreham Nuclear Power Station, Unit 1, located in Suffolk County, New York, has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. This supplement addresses several items that have been reviewed by the staff since the previous supplement was issued

  6. Safety and nuclear power

    International Nuclear Information System (INIS)

    Gittus, John; Gunning, Angela.

    1988-01-01

    Representatives of the supporters and opponents of civil nuclear power put forward the arguments they feel the public should consider when making up their mind about the nuclear industry. The main argument in favour of nuclear power is about the low risk in comparison with other risks and the amount of radiation received on average by the population in the United Kingdom from different sources. The aim is to show that the nuclear industry is fully committed to the cause of safety and this has resulted in a healthy workforce and a safe environment for the public. The arguments against are that the nuclear industry is deceitful, secretive and politically motivated and thus its arguments about safety, risks, etc, cannot be trusted. The question of safety is considered further - in particular the perceptions, definitions and responsibility. The economic case for nuclear electricity is not accepted. (U.K.)

  7. Nuclear regulation and safety

    International Nuclear Information System (INIS)

    Hendrie, J.M.

    1982-01-01

    Nuclear regulation and safety are discussed from the standpoint of a hypothetical country that is in the process of introducing a nuclear power industry and setting up a regulatory system. The national policy is assumed to be in favor of nuclear power. The regulators will have responsibility for economic, reliable electric production as well as for safety. Reactor safety is divided into three parts: shut it down, keep it covered, take out the afterheat. Emergency plans also have to be provided. Ways of keeping the core covered with water are discussed

  8. Nuclear power safety economics

    International Nuclear Information System (INIS)

    Legasov, V.A.; Demin, V.F.; Shevelev, Ya.V.

    1984-01-01

    The existing conceptual and methodical basis for the decision-making process insuring safety of the nuclear power and other (industrial and non-industrial) human activities is critically analyzed. Necessity of development a generalized economic safety analysis method (GESAM) is shown. Its purpose is justifying safety measures. Problems of GESAM development are considered including the problem of costing human risk. A number of suggestions on solving them are given. Using the discounting procedure in the assessment of risk or detriment caused by harmful impact on human health is substantiated. Examples of analyzing some safety systems in the nuclear power and other spheres of human activity are given

  9. Nuclear safety policy statement in korea

    International Nuclear Information System (INIS)

    Kim, W.S.; Kim, H.J.; Choi, K.S.; Choi, Y.S.; Park, D.K.

    2006-01-01

    Full text: Wide varieties of programs to enhance nuclear safety have been established and implemented by the Korean government in accordance with the Nuclear Safety Policy Statement announced in September 1994. The policy statement was intended to set the long-term policy goals for maintaining and achieving high-level of nuclear safety and also help the public understand the national policy and a strong will of the government toward nuclear safety. It has been recognized as very effective in developing safety culture in nuclear-related organizations and also enhancing nuclear safety in Korea. However, ageing of operating nuclear power plants and increasing of new nuclear facilities have demanded a new comprehensive national safety policy to cover the coming decade, taking the implementation results of the policy statement of 1994 and the changing environment of nuclear industries into consideration. Therefore, the results of safety policy implementation have been reviewed and, considering changing environment and future prospects, a new nuclear safety policy statement as a highest level national policy has been developed. The implementation results of 11 regulatory policy directions such as the use of Probabilistic Safety Assessment, introduction of Periodic Safety Review, strengthening of safety research, introduction of Risk Based Regulation stipulated in the safety policy statement of 1994 were reviewed and measures taken after various symposia on nuclear safety held in Nuclear Safety Days since 1995 were evaluated. The changing international and domestic environment of nuclear industry were analysed and future prospects were explored. Based on the analysis and review results, a draft of new nuclear safety policy statement was developed. The draft was finalized after the review of many prominent experts in Korea. Considering changing environment and future prospects, new policy statement that will show government's persistent will for nuclear safety has been

  10. Safety evaluation methods applied at the Technical department of the Institute for radiation protection and nuclear safety

    International Nuclear Information System (INIS)

    Crabol, B.

    1990-12-01

    Institute of radiation protection and nuclear safety (IPSN) has established a Technical emergency center (CTC) for nuclear facilities with the aim to supply the public with technical data analysis of incidents, mainly, all the predicted consequences of radioactive release into the environment. From technical point of view, the functioning of CTC relies on the work of two units, one in charge of the state of accident installation, and the second responsible for evaluation of radiological environmental effects. The latter is concerned with the meteorological situation, it relies sometimes on local, and sometimes on national weather forecast in order to compile data needed for calculating atmospheric transport at the and in the vicinity of the affected site, and further in the region and across the borders. For this analysis the Unit possesses operational computer codes. The code (SIROCCO) can take into account the kinetics of particulates and all the time dependent meteorological conditions. This calculation model can either treat the dispersed isotopes or isotope chains (rare gases, cesium isotopes, iodine isotopes...). One version of this code enables calculation of the consequences at medium and long distances using the methods of Meteorologie Nationale [fr

  11. The status of nuclear safety of Ukrainian NPPS and evaluations by ASSET methodology

    Energy Technology Data Exchange (ETDEWEB)

    Koltakov, V [State Scientific and Technical Center on Nuclear and Radiational Safety, Kiev (Ukraine)

    1997-10-01

    The presentation discusses the following issues: nuclear power plants and research reactors; electricity production and operating personnel; status of nuclear safety at NPPs of Ukraine; operation of Ukrainian NPPs; violations of NPPs operation; short review of ASSET missions; experience of feedback process. Figs, tabs.

  12. The status of nuclear safety of Ukrainian NPPS and evaluations by ASSET methodology

    International Nuclear Information System (INIS)

    Koltakov, V.

    1997-01-01

    The presentation discusses the following issues: nuclear power plants and research reactors; electricity production and operating personnel; status of nuclear safety at NPPs of Ukraine; operation of Ukrainian NPPs; violations of NPPs operation; short review of ASSET missions; experience of feedback process. Figs, tabs

  13. External human induced events in site evaluation for nuclear power plants. Safety guide

    International Nuclear Information System (INIS)

    2004-01-01

    The purpose of the present Safety Guide is to provide recommendations and guidance for the examination of the region considered for site evaluation for a plant in order to identity hazardous phenomena associated with human induced events initiated by sources external to the plant. In some cases it also presents preliminary guidance for deriving values of relevant parameters for the design basis. This Safety Guide is also applicable for periodic site evaluation and site evaluation following a major human induced event, and for the design and operation of the site's environmental monitoring system. Site evaluation includes site characterization. Consideration of external events that could lead to a degradation of the safety features of the plant and cause a release of radioactive material from the plant and/or affect the dispersion of such material in the environment. And consideration of population issues and access issues significant to safety (such as the feasibility of evacuation, the population distribution and the location of resources). The process of site evaluation continues throughout the lifetime of the facility, from siting to design, construction, operation and decommissioning. The external human induced events considered in this Safety Guide are all of accidental origin. Considerations relating to the physical protection of the plant against wilful actions by third parties are outside its scope. However, the methods described herein may also have some application for the purposes of such physical protection. The present Safety Guide may also be used for events that may originate within the boundaries of the site, but from sources which are not directly involved in the operational states of the nuclear power plant units, such as fuel depots or areas for the storage of hazardous materials for the construction of other facilities at the same site. Special consideration should be given to the hazardous material handled during the construction, operation and

  14. Safety evaluation report related to the operation of Watts Bar Nuclear Plant, Units 1 and 2

    International Nuclear Information System (INIS)

    1995-09-01

    This report supplements the Safety Evaluation Report (SER), NUREG-0847 (June 1982), Supplement No. 1 (September 1982), Supplement No. 2 (January 1984), Supplement No. 3 (January 1985). Supplement No. 4 (March 1985), Supplement No. 5 (November 1990), Supplement No. 6 (April 1991), Supplement No. 7 (September 1991), Supplement No. 8 (January 1992). Supplement No. 9 (June 1992), Supplement No. 10 (October 1992), Supplement No. 11 (April 1993), Supplement No. 12 (October 1993). Supplement No. 13 (April 1994), Supplement No. 14 (December 1994), and Supplement No. 15 (June 1995) issued by the Office of Nuclear Reactor Regulation of the U.S. Nuclear Regulatory Commission with respect to the application filed by the Tennessee Valley Authority, as applicant and owner, for licenses to operate the Watts Bar Nuclear Plant, Units 1 and 2 (Docket Nos, 50-390 and 50-391). The facility is located in Rhea County, Tennessee, near the Watts Bar Dam on the Tennessee River. This supplement provides recent information regarding resolution of some of the outstanding and confirmatory items, and proposed license conditions identified in the SER

  15. Evaluating the Cost, Safety, and Proliferation Risks of Small Floating Nuclear Reactors.

    Science.gov (United States)

    Ford, Michael J; Abdulla, Ahmed; Morgan, M Granger

    2017-11-01

    It is hard to see how our energy system can be decarbonized if the world abandons nuclear power, but equally hard to introduce the technology in nonnuclear energy states. This is especially true in countries with limited technical, institutional, and regulatory capabilities, where safety and proliferation concerns are acute. Given the need to achieve serious emissions mitigation by mid-century, and the multidecadal effort required to develop robust nuclear governance institutions, we must look to other models that might facilitate nuclear plant deployment while mitigating the technology's risks. One such deployment paradigm is the build-own-operate-return model. Because returning small land-based reactors containing spent fuel is infeasible, we evaluate the cost, safety, and proliferation risks of a system in which small modular reactors are manufactured in a factory, and then deployed to a customer nation on a floating platform. This floating small modular reactor would be owned and operated by a single entity and returned unopened to the developed state for refueling. We developed a decision model that allows for a comparison of floating and land-based alternatives considering key International Atomic Energy Agency plant-siting criteria. Abandoning onsite refueling is beneficial, and floating reactors built in a central facility can potentially reduce the risk of cost overruns and the consequences of accidents. However, if the floating platform must be built to military-grade specifications, then the cost would be much higher than a land-based system. The analysis tool presented is flexible, and can assist planners in determining the scope of risks and uncertainty associated with different deployment options. © 2017 Society for Risk Analysis.

  16. Nuclear Safety Project

    International Nuclear Information System (INIS)

    1983-12-01

    The semiannual progress report 1983/1 is a description of work within the Nuclear Safety Project performed in the first six month of 1983 in the nuclear safety field by KfK institutes and departments and by external institutions on behalf of KfK. The chosen kind of this report is that of short summaries, containing the topics work performed, results obtained and plans for future work. (orig./RW) [de

  17. Nuclear safety project

    International Nuclear Information System (INIS)

    1982-06-01

    The Annual Report 1981 is a detailed description (in German language) of work within the Nuclear Safety Project performed in 1981 in the nuclear safety field by KfK institutes and departments and by external institutes on behalf of KfK. It includes for each individual research activity short summaries in English language on - work completed - results obtained - plans for future work. This report was compiled by the project management. (orig.) [de

  18. Project Nuclear Safety

    International Nuclear Information System (INIS)

    1981-11-01

    The semiannual progress report 1981/1 is a description of work within the Nuclear Safety Project performed in the first six month of 1981 in the nuclear safety field by KfK institutes and departments and by external institutions on behalf of KfK. The chosen kind of this report is that of short summaries, containing the topics, work performed, results obtained, plans for future work. This report was compiled by the project management. (orig.) [de

  19. Nuclear safety project

    International Nuclear Information System (INIS)

    1984-11-01

    The semiannual progress report 1984/1 is a description of work within the Nuclear Safety Project performed in the first six month of 1984 in the nuclear safety field by KfK institutes and departements and by external institutions on behalf of KfK. The chosen kind of this report is that of short summaries, containing the topics work performed, results obtained and plans for future work. This report was compiled by the project management. (orig./RW) [de

  20. Nuclear safety project

    International Nuclear Information System (INIS)

    Anon.

    1980-11-01

    The 17th semi-annual report 1980/1 is a description of work within the Nuclear Safety Project performed in the first six months of 1980 in the nuclear safety field by KfK institutes and departments and by external institutions on behalf of KfK. The chosen kind of this report is that of short summaries, containing the topics - work performed, results obtained, plans for future work. (orig.) [de

  1. Nuclear Safety Project

    International Nuclear Information System (INIS)

    1978-11-01

    The 13th semi-annual report 1/78 is a description of work within the Nuclear Safety Project performed in the first six months of 1978 in the nuclear safety field by KFK institutes and departments and by external institutions on behalf of KfK. It includes for each individual research activity short summaries on - work completed, - essential results, - plans for the near future. (orig./RW) [de

  2. Organization and Nuclear Safety: Safety culture

    International Nuclear Information System (INIS)

    Martin Marquinez, A.

    1998-01-01

    This book presents the experience in nuclear safety and its influence in the exploitation on nuclear power plants. The safety organization and quality management before and after Chernobylsk and three mile island accidents

  3. Nuclear power and safety

    International Nuclear Information System (INIS)

    Chidambaram, R.

    1992-01-01

    Some aspects of safety of nuclear power with special reference to Indian nuclear power programme are discussed. India must develop technology to protect herself from the adverse economic impact arising out of the restrictive regime which is being created through globalization of safety and environmental issues. Though the studies done and experience gained so far have shown that the PHWR system adopted by India has a number of superior safety features, research work is needed in the field of operation and maintenance of reactors and also in the field of reactor life extension through delaying of ageing effects. Public relations work must be pursued to convince the public at large of the safety of nuclear power programme. The new reactor designs in the second stage of evolution are based on either further improvement of existing well-proven designs or adoptions of more innovative ideas based on physical principles to ensure a higher level of safety. The development of Indian nuclear power programme is characterised by a balanced approach in the matter of assuring safety. Safety enforcement is not just looked upon as a pure administrative matter, but experts with independent minds are also involved in safety related matters. (M.G.B.)

  4. Elements of nuclear safety

    CERN Document Server

    Libmann, Jacques

    1996-01-01

    This basically educational book is intended for all involved in nuclear facility safety. It dissects the principles and experiences conducive to the adoption of attitudes compliant with what is now known as "safety culture". This book is accessible to a wide range of readers.

  5. Researches in nuclear safety

    International Nuclear Information System (INIS)

    Souchet, Y.

    2009-01-01

    This article comprises three parts: 1 - some general considerations aiming at explaining the main motivations of safety researches, and at briefly presenting the important role of some organisations in the international conciliation, and the most common approach used in safety researches (analytical experiments, calculation codes, global experiments); 2 - an overview of some of the main safety problems that are the object of worldwide research programs (natural disasters, industrial disasters, criticality, human and organisational factors, fuel behaviour in accidental situation, serious accidents: core meltdown, corium spreading, failure of the confinement building, radioactive releases). Considering the huge number of research topics, this part cannot be exhaustive and many topics are not approached; 3 - the presentation of two research programs addressing very different problems: the evaluation of accidental releases in the case of a serious accident (behaviour of iodine and B 4 C, air infiltration, fission products release) and the propagation of a fire in a facility (PRISME program). These two programs belong to an international framework involving several partners from countries involved in nuclear energy usage. (J.S.)

  6. Nuclear safety research

    International Nuclear Information System (INIS)

    1999-01-01

    The NNSA checked and coordinated in 1999 the research project of the Surveillance Technology on Nuclear Installations under the National 9th-Five-Year Program to promote the organizations that undertake the research work on schedule and lay a foundation of obtaining achievements and effectiveness for the 9th-five-year plan on nuclear safety research

  7. Nuclear power plant safety

    International Nuclear Information System (INIS)

    Otway, H.J.

    1974-01-01

    Action at the international level will assume greater importance as the number of nuclear power plants increases, especially in the more densely populated parts of the world. Predictions of growth made prior to October 1973 [9] indicated that, by 1980, 14% of the electricity would be supplied by nuclear plants and by the year 2000 this figure would be about 50%. This will make the topic of international co-operation and standards of even greater importance. The IAEA has long been active in providing assistance to Member States in the siting design and operation of nuclear reactors. These activities have been pursued through advisory missions, the publication of codes of practice, guide books, technical reports and in arranging meetings to promote information exchange. During the early development of nuclear power, there was no well-established body of experience which would allow formulation of internationally acceptable safety criteria, except in a few special cases. Hence, nuclear power plant safety and reliability matters often received an ad hoc approach which necessarily entailed a lack of consistency in the criteria used and in the levels of safety required. It is clear that the continuation of an ad hoc approach to safety will prove inadequate in the context of a world-wide nuclear power industry, and the international trade which this implies. As in several other fields, the establishment of internationally acceptable safety standards and appropriate guides for use by regulatory bodies, utilities, designers and constructors, is becoming a necessity. The IAEA is presently planning the development of a comprehensive set of basic requirements for nuclear power plant safety, and the associated reliability requirements, which would be internationally acceptable, and could serve as a standard frame of reference for nuclear plant safety and reliability analyses

  8. Approaches to nuclear safety

    International Nuclear Information System (INIS)

    Watkins, J.D.

    1990-01-01

    This article examines the factors which affect the safe operation of a nuclear power plant. Some of these are an organizational and individual dedication to safety and excellence in every aspect of plant functions, international cooperation, and advanced reactor design. These are in addition to excellence in management of nuclear plants and the training of key operations personnel. The author feels all of these are necessary to restore public confidence in nuclear power

  9. Safety Evaluation Report related to the operation of WPPSS Nuclear Project No. 2 (Docket No. 50-397)

    International Nuclear Information System (INIS)

    1984-04-01

    This report, Supplement No. 5 to the Safety Evaluation Report (SSER 5) on the Washington Public Power Supply System application for a license to operate WNP-2 (Docket No. 50-397), located in Benton County, Washington, approximately 12 miles north of Richland, Washington, has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. This supplement reports the status of certain items that had not been resolved at the time of publication of the Safety Evaluation Report and Supplements No. 1, 2, 3, and 4

  10. Nuclear safety chains

    International Nuclear Information System (INIS)

    Robbins, M.C.; Eames, G.F.; Mayell, J.R.

    1981-01-01

    An original scheme has been developed for expressing the complex interrelationships associated with the engineered safeguards provided for a nuclear power station. This management tool, based upon network diagrams called Nuclear Safety Chains, looks at the function required of a particular item of safety plant, defines all of the vital supplies and support features necessary for successful operation, and expresses them in visual form, to facilitate analysis and optimisation for operations and maintenance staff. The safety chains are confined to manual schemes at present, although they are designed to be compatible with modern computer techniques. Their usefulness with any routine maintenance planning application on high technology plant is already being appreciated. (author)

  11. Preliminary safety evaluation for the spent nuclear fuel project`s cold vacuum drying system

    Energy Technology Data Exchange (ETDEWEB)

    Garvin, L.J., Westinghouse Hanford

    1996-07-01

    This preliminary safety evaluation (PSE) considers only the Cold Vacuum Drying System (CVDS) facility and its mission as it relates to the integrated process strategy (WHC 1995). The purpose of the PSE is to identify those CBDS design functions that may require safety- class and safety-significant accident prevention and mitigation features.

  12. Nuclear safety research in France

    International Nuclear Information System (INIS)

    Tanguy, P.

    1976-01-01

    As a consequence of the decision of choosing light water reactors (PWR) for the French nuclear plants of the next ten years, a large safety program has been launched referring to three physical barriers against fission product release: the fuel element cladding, main primary system boundary and the containment. The parallel development of French-designed fast breeder reactors involved safety studies on: sodium boiling, accidental fuel behavior, molten fuel-sodium interaction, core accident and protection, and external containment. The rapid development of nuclear energy resulted in a corresponding development of safety studies relating to nuclear fuel facilities. French regulations also required a special program to be developed for the realistic evaluation of the consequences of external agressions, the French cooperation to multinational safety research being also intensive

  13. Nuclear safety in perspective

    International Nuclear Information System (INIS)

    Andersson, K.; Sjoeberg, B.M.D.; Lauridsen, K.; Wahlstroem, B.

    2002-06-01

    The aim of the NKS/SOS-1 project has been to enhance common understanding about requirements for nuclear safety by finding improved means of communicating on the subject in society. The project, which has been built around a number of seminars, was supported by limited research in three sub-projects: 1) Risk assessment, 2) Safety analysis, and 3) Strategies for safety management. The report describes an industry in change due to societal factors. The concepts of risk and safety, safety management and systems for regulatory oversight are described in the nuclear area and also, to widen the perspective, for other industrial areas. Transparency and public participation are described as key elements in good risk communication, and case studies are given. Environmental Impact Assessment and Strategic Environmental Assessment are described as important overall processes within which risk communication can take place. Safety culture, safety indicators and quality systems are important concepts in the nuclear safety area are very useful, but also offer important challenges for the future. They have been subject to special attention in the project. (au)

  14. Probabilistic safety evaluation: Development of procedures with applications on components used in nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Dillstroem, P. [Det Norske Veritas AB, Stockholm (Sweden)

    2000-12-01

    A probabilistic procedure has been developed by SAQ Kontroll AB to calculate two different failure probabilities, P{sub F}: Probability of failure, defect size given by NDT/NDE. Probability of failure, defect not detected by NDT/NDE. Based on the procedure, SAQ Kontroll AB has developed a computer program PROPSE (PRObabilistic Program for Safety Evaluation). Within PROPSE, the following features are implemented: Two different algorithms to calculate the probability of failure are included: Simple Monte Carlo Simulation (MCS), with an error estimate on P{sub F}. First-Order Reliability Method (FORM), with sensitivity factors using the most probable point of failure in a standard normal space. Using these factors, it is possible to rank the parameters within an analysis. Estimation of partial safety factors, given an input target failure probability and characteristic values for fracture toughness, yield strength, tensile strength and defect depth. Extensive validation has been carried out, using the probabilistic computer program STAR6 from Nuclear Electric and the deterministic program SACC from SAQ Kontroll AB. The validation showed that the results from PROPSE were correct, and that the algorithms used in STAR6 were not intended to work for a general problem, when the standard deviation is either 'small' or 'large'. Distributions, to be used in a probabilistic analysis, are discussed. Examples on data to be used are also given.

  15. Probabilistic safety evaluation: Development of procedures with applications on components used in nuclear power plants

    International Nuclear Information System (INIS)

    Dillstroem, P.

    2000-12-01

    A probabilistic procedure has been developed by SAQ Kontroll AB to calculate two different failure probabilities, P F : Probability of failure, defect size given by NDT/NDE. Probability of failure, defect not detected by NDT/NDE. Based on the procedure, SAQ Kontroll AB has developed a computer program PROPSE (PRObabilistic Program for Safety Evaluation). Within PROPSE, the following features are implemented: Two different algorithms to calculate the probability of failure are included: Simple Monte Carlo Simulation (MCS), with an error estimate on P F . First-Order Reliability Method (FORM), with sensitivity factors using the most probable point of failure in a standard normal space. Using these factors, it is possible to rank the parameters within an analysis. Estimation of partial safety factors, given an input target failure probability and characteristic values for fracture toughness, yield strength, tensile strength and defect depth. Extensive validation has been carried out, using the probabilistic computer program STAR6 from Nuclear Electric and the deterministic program SACC from SAQ Kontroll AB. The validation showed that the results from PROPSE were correct, and that the algorithms used in STAR6 were not intended to work for a general problem, when the standard deviation is either 'small' or 'large'. Distributions, to be used in a probabilistic analysis, are discussed. Examples on data to be used are also given

  16. Proposed risk evaluation guidelines for use by the DOE-AL Nuclear Explosive Safety Division in evaluating proposed shipments of nuclear components

    International Nuclear Information System (INIS)

    Just, R.A.; Love, A.F.

    1997-10-01

    The licensing requirements of 10 CFR 71 (US Code of Federal Regulations) are the primary criteria used to license proposed US Department of Energy (DOE) shipments of nuclear components. However, if a shipment cannot meet 10 CFR 71 requirements, a Transportation System Risk Assessment (TSRA) is prepared to document: (1) the degree of compliance of proposed DOE shipments of nuclear components with applicable federal regulations, and (2) the risk associated with the proposed shipments. The Nuclear Explosive Safety Division (NESD) of the Department of Energy, Albuquerque Area Office (DOE-AL) is responsible for evaluating TSRAs and for preparing Safety Evaluation Reports (SERs) to authorize the off-site transport. Hazards associated with the transport may include the presence of fissile material, chemically and radiologically toxic uranium, and ionizing radiation. The Nuclear Regulatory Commission (NRC) has historically considered only radiological hazards in licensing the transport of radiological material because the US Department of Transportation considers licensing requirements of nonradiological (i.e., chemically toxic) hazards. The requirements of 10 CFR 71 are based primarily on consideration of radiological hazards. For completeness, this report provides information for assessing the effects of chemical toxicity. Evaluating the degree of compliance with the requirements of 10 CFR 71 is relatively straightforward. However, there are few precedents associated with developing TSRA risk assessments for packages that do not comply with all of the requirements of 10 CFR 71. The objective of the task is to develop Risk Evaluation Guidelines for DOE-AL to use when evaluating a TSRA. If the TSRA shows that the Risk Evaluation Guidelines are not exceeded, then from a risk perspective the TSRA should be approved if there is evidence that the ALARA (as low as reasonably achievable) principle has been applied

  17. Nuclear ships and their safety

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1961-04-15

    Several aspects of nuclear ship propulsion, with special reference to nuclear safety, were discussed at an international symposium at Taormina, Italy, from 14-18 November 1960. Discussions on specific topics are conducted, grouped under the following headings: Economics and National Activities in Nuclear Ship Propulsion; International Problems and General Aspects of Safety for Nuclear Ships; Nuclear Ship Projects from the Angle of Safety; Ship Reactor Problems; Sea Motion and Hull Problems; Maintenance and Refuelling Problems; and Safety Aspects of Nuclear Ship Operation.

  18. A Framework for Evaluation of Safety and Generation Effect of Investment Considering Life Cycle Management in Nuclear Power Plants

    International Nuclear Information System (INIS)

    Yang, Hui Chang; Kim, Joon Hyun; Ahn, Nam Sung

    2006-01-01

    Along with the increasing pressure to enhance generation availability with low cost or investment, regulatory organization has been focused on the enhancement of safety in performance-based and risk informed regulation framework. Considering this, the most cost-beneficial solution should be found among the short-term and long-term investment plans. The objective of this research is to propose a generalized framework to evaluate safety and generation effect of investment plan for equipment in nuclear power plants

  19. Safety of nuclear power reactors

    International Nuclear Information System (INIS)

    MacPherson, H.G.

    1982-01-01

    Safety is the major public issue to be resolved or accommodated if nuclear power is to have a future. Probabilistic Risk Analysis (PRA) of accidental releases of low-level radiation, the spread and activity of radiation in populated areas, and the impacts on public health from exposure evolved from the earlier Rasmussen Reactor Safety Study. Applications of the PRA technique have identified design peculiarities in specific reactors, thus increasing reactor safety and establishing a quide for evaluating reactor regulations. The Nuclear Regulatory Commission and reactor vendors must share with utilities the responsibility for reactor safety in the US and for providing reasonable assurance to the public. This entails persuasive public education and information that with safety a top priority, changes now being made in light water reactor hardware and operations will be adequate. 17 references, 2 figures, 2 tables

  20. Safety-evaluation report related to the final design of the Standard Nuclear Steam Supply Reference System - CESSAR System 80. Docket No. STN 50-470

    International Nuclear Information System (INIS)

    1983-03-01

    Supplement No. 1 to the Safety Evaluation Report for the application filed by Combustion Engineering, Inc. for a Final Design Approval for the Combustion Engineering Standard Safety Analysis Report (STN 50-470) has been prepared by the Office of Nuclear Reactor Regulation of the Nuclear Regulatory Commission. The purpose of this supplement is to update the Safety Evaluation by providing: (1) the evaluation of additional information submitted by the applicant since the Safety Evaluation Report was issued, (2) the evaluation of the matters the staff had under review when the Safety Evaluation Report was issued, and (3) the response to comments made by the Advisory Committee on Reactor Safeguards

  1. Nuclear safety. Improvement programme

    International Nuclear Information System (INIS)

    2000-01-01

    In this brochure the improvement programme of nuclear safety of the Mochovce NPP is presented in detail. In 1996, a 'Mochovce NPP Nuclear Safety Improvement Programme' was developed in the frame of unit 1 and 2 completion project. The programme has been compiled as a continuous one, with the aim to reach the highest possible safety level at the time of commissioning and to establish good preconditions for permanent safety improvement in future. Such an approach is in compliance with the world's trends of safety improvement, life-time extension, modernisation and nuclear station power increase. The basic document for development of the 'Programme' is the one titled 'Safety Issues and their Ranking for WWER 440/213 NPP' developed by a group of IAEA experts. The following organisations were selected for solution of the safety measures: EUCOM (Consortium of FRAMATOME, France, and SIEMENS, Germany); SKODA Prague, a.s.; ENERGOPROJEKT Prague, a.s. (EGP); Russian organisations associated in ATOMENERGOEXPORT; VUJE Trnava, a.s

  2. Nuclear Safety Charter

    International Nuclear Information System (INIS)

    2008-01-01

    The AREVA 'Values Charter' reaffirmed the priority that must be given to the requirement for a very high level of safety, which applies in particular to the nuclear field. The purpose of this Nuclear Safety Charter is to set forth the group's commitments in the field of nuclear safety and radiation protection so as to ensure that this requirement is met throughout the life cycle of the facilities. It should enable each of us, in carrying out our duties, to commit to this requirement personally, for the company, and for all stakeholders. These commitments are anchored in organizational and action principles and in complete transparency. They build on a safety culture shared by all personnel and maintained by periodic refresher training. They are implemented through Safety, Health, and Environmental management systems. The purpose of these commitments, beyond strict compliance with the laws and regulations in force in countries in which we operate as a group, is to foster a continuous improvement initiative aimed at continually enhancing our overall performance as a group. Content: 1 - Organization: responsibility of the group's executive management and subsidiaries, prime responsibility of the operator, a system of clearly defined responsibilities that draws on skilled support and on independent control of operating personnel, the general inspectorate: a shared expertise and an independent control of the operating organization, an organization that can be adapted for emergency management. 2 - Action principles: nuclear safety applies to every stage in the plant life cycle, lessons learned are analyzed and capitalized through the continuous improvement initiative, analyzing risks in advance is the basis of Areva's safety culture, employees are empowered to improve nuclear Safety, the group is committed to a voluntary radiation protection initiative And a sustained effort in reducing waste and effluent from facility Operations, employees and subcontractors are treated

  3. Nuclear safety endeavour in Korea

    International Nuclear Information System (INIS)

    Sang-hoon lee

    1987-01-01

    Korea's nuclear power plant program is growing. As it grows, nuclear safety becomes an important issue. This article traces the development of Korean nuclear power program, the structure of the nuclear industries, the Nuclear Safety Center and its roles in the regulation and licensing of nuclear power plant, and also identifies some of the activities carried out to enhance the safety of nuclear power plants. (author)

  4. Research on the evaluation model of the software reliability in nuclear safety class digital instrumentation and control system

    International Nuclear Information System (INIS)

    Liu Ying; Yang Ming; Li Fengjun; Ma Zhanguo; Zeng Hai

    2014-01-01

    In order to analyze the software reliability (SR) in nuclear safety class digital instrumentation and control system (D-I and C), firstly, the international software design standards were analyzed, the standards' framework was built, and we found that the D-I and C software standards should follow the NUREG-0800 BTP7-14, according to the NRC NUREG-0800 review of requirements. Secondly, the quantitative evaluation model of SR using Bayesian Belief Network and thirteen sub-model frameworks were established. Thirdly, each sub-models and the weight of corresponding indexes in the evaluation model were analyzed. Finally, the safety case was introduced. The models lay a foundation for review and quantitative evaluation on the SR in nuclear safety class D-I and C. (authors)

  5. Requirement and prospect of nuclear data activities for nuclear safety

    International Nuclear Information System (INIS)

    Kimura, Itsuro

    2000-01-01

    Owing to continuous efforts by the members of JNDC (Japanese Nuclear Data Committee) and Nuclear Data Center in JAERI (Japan Atomic Energy Research Institute), several superb evaluated nuclear data files, such as JENDL, FP (fission product) yields and decay heat, have been compiled in Japan and opened to the world. However, they are seldom adopted in safety design and safety evaluation of light water reactors and are hardly found in related safety regulatory guidelines and standards except the decay heat. In this report, shown are a few examples of presently used nuclear data in the safety design and the safety evaluation of PWRs (pressurized water reactors) and so forth. And then, several procedures are recommended in order to enhance more utilization of Japanese evaluated nuclear data files for nuclear safety. (author)

  6. Report of the review committee on evaluation of the R and D subjects in the field of nuclear safety research

    International Nuclear Information System (INIS)

    2000-09-01

    On the basis of the JAERI's Basic Guidelines for the Research Evaluation Methods and the Practices Manuals of the Institution Evaluation Committee and Research Evaluation Committee, the Ad Hoc Review Committee on Nuclear Safety Research composed of twelve experts was set up under the Research Evaluation Committee of the JAERI in order to review the R and D subjects to be implemented for five years starting in FY2000 in the Nuclear Safety Research Center (Department of Reactor Safety Research, Department of Fuel Cycle Safety Research and Department of Safety Research Technical Support). The Ad Hoc Review Committee meeting was held on January 20, 2000. According to the review methods including review items, points of review and review criteria, determined by the Research Evaluation Committee, the review was conducted based on the research plan documents submitted in advance and presentations by the Department Directors. The review report was submitted to the Research Evaluation Committee for further review and discussions in its meeting held on August 31, 2000. The Research Evaluation Committee recognized the review results as appropriate. This report describes the review results. (author)

  7. The ORSphere Benchmark Evaluation and Its Potential Impact on Nuclear Criticality Safety

    Energy Technology Data Exchange (ETDEWEB)

    John D. Bess; Margaret A. Marshall; J. Blair Briggs

    2013-10-01

    In the early 1970’s, critical experiments using an unreflected metal sphere of highly enriched uranium (HEU) were performed with the focus to provide a “very accurate description…as an ideal benchmark for calculational methods and cross-section data files.” Two near-critical configurations of the Oak Ridge Sphere (ORSphere) were evaluated as acceptable benchmark experiments for inclusion in the International Handbook of Evaluated Criticality Safety Benchmark Experiments (ICSBEP Handbook). The results from those benchmark experiments were then compared with additional unmoderated and unreflected HEU metal benchmark experiment configurations currently found in the ICSBEP Handbook. For basic geometries (spheres, cylinders, and slabs) the eigenvalues calculated using MCNP5 and ENDF/B-VII.0 were within 3 of their respective benchmark values. There appears to be generally a good agreement between calculated and benchmark values for spherical and slab geometry systems. Cylindrical geometry configurations tended to calculate low, including more complex bare HEU metal systems containing cylinders. The ORSphere experiments do not calculate within their 1s uncertainty and there is a possibility that the effect of the measured uncertainties for the GODIVA I benchmark may need reevaluated. There is significant scatter in the calculations for the highly-correlated ORCEF cylinder experiments, which are constructed from close-fitting HEU discs and annuli. Selection of a nuclear data library can have a larger impact on calculated eigenvalue results than the variation found within calculations of a given experimental series, such as the ORCEF cylinders, using a single nuclear data set.

  8. Evaluation of safety implications of control systems in LWR nuclear power plants

    International Nuclear Information System (INIS)

    Szukiewicz, A.J.

    1989-06-01

    An in-depth evaluation was performed on non-safety-related control systems (see Section 1) that are typically used during normal plant operation on four nuclear steam supply system plants: a General Electric Company boiling-water reactor, a Westinghouse 3-loop pressurized-water reactor (PWR), a Babcock ampersand Wilcox Co. (B ampersand W) once-through steam generator PWR, and a Combustion Engineering PWR design. A study was also conducted to determine the generic applicability of the results to the class of plants represented by the specific plants analyzed. Generic conclusions were then developed. Steam generator and reactor vessel overfill events and reactor vessel overcooling events were identified as major classes of events having the potential to be more severe than previously analyzed. Specific substasks of this issue were to study these events to determine the need for preventive and/or mitigating design measures. This report describes the technical studies performed by the laboratories, the NRC staff assessment of the results, the generic applicability of the evaluations, and the technical findings resulting from these studies. This final report contains the staff's responses to, and resolution of, the public comments that were solicited and received before September 16,1988, in response to the draft reports issued for public comment on May 27, 1988. 39 refs, 1 fig., 7 tabs

  9. Evaluation of the Ventilation and Air Cleaning System Design Concepts for Safety Requirements during Fire Conditions in Nuclear Applications

    International Nuclear Information System (INIS)

    Rashad, S.; El-Fawal, M.; Kandil, M.

    2013-01-01

    The ventilation and air cleaning system in the nuclear or radiological installations is one of the essential nuclear safety concerns. It is responsible for confining the radioactive materials involved behind suitable barriers during normal and abnormal conditions. It must be designed to prevent the release of harmful products (radioactive gases, or airborne radioactive materials) from the system or facility, impacting the public or workers, and doing environmental damage. There are two important safety functions common to all ventilation and air cleaning system in nuclear facilities. They are: a) the requirements to maintain the pressure of the ventilated volume below that of surrounding, relatively non-active areas, in order to inhibit the spread of contamination during normal and abnormal conditions, and b) the need to treat the ventilated gas so as to minimize the release of any radioactive or toxic materials. Keeping the two important safety functions is achieved by applying the fire protection for the ventilation system to achieve safety and adequate protection in nuclear applications facilities during fire and accidental criticality conditions.The main purpose of this research is to assist ventilation engineers and experts in nuclear installations for safe operation and maintaining ventilation and air cleaning system during fire accident in nuclear facilities. The research focuses on fire prevention and protection of the ventilation systems in nuclear facilities. High-Efficiency particulate air (HEPA) filters are extremely susceptible to damage when exposed to the effects of fire, smoke, and water; it is the intent of this research to provide the designer with the experience gained over the years from hard lessons learned in protecting HEPA filters from fire. It describes briefly and evaluates the design safety features, constituents and working conditions of ventilation and air cleaning system in nuclear and radioactive industry.This paper provides and

  10. Progress of nuclear safety research. 2003

    International Nuclear Information System (INIS)

    Anoda, Yoshinari; Amagai, Masaki; Tobita, Tohru

    2004-03-01

    JAERI is conducting nuclear safety research primarily at the Nuclear Safety Research Center in close cooperation with the related departments in accordance with the Long Term Plan for Development and Utilization of Nuclear Energy and Annual Plan for Safety Research issued by the Japanese government. The fields of conducting safety research at JAERI are the engineering safety of nuclear power plants and nuclear fuel cycle facilities, and radioactive waste management as well as advanced technology for safety improvement or assessment. Also, JAERI has conducted international collaboration to share the information on common global issues of nuclear safety and to supplement own research. Moreover, when accidents occurred at nuclear facilities, JAERI has taken a responsible role by providing technical experts and investigation for assistance to the government or local public body. This report summarizes the nuclear safety research activities of JAERI from April 2001 through March 2003 and utilized facilities. This report also summarizes the examination of the ruptured pipe performed for assistance to the Nuclear and Industrial Safety Agency (NISA) for investigation of the accident at the Hamaoka Nuclear Power Station Unit-1 on November, 2001, and the integrity evaluation of cracked core shroud of BWRs of the Tokyo Electric Power Company performed for assistance to the Nuclear Safety Commission in reviewing the evaluation reports by the licensees. (author)

  11. Nuclear safety infrastructure

    International Nuclear Information System (INIS)

    Moffitt, R.L.

    2010-01-01

    The introduction of nuclear power in any country requires the early establishment of a long term nuclear safety infrastructure. This is necessary to ensure that the siting, design, construction, commissioning, operation and dismantling of the nuclear power plant and any other related installations, as well as the long term management of radioactive waste and spent fuel, are conducted in a safe and secure manner. The decision to undertake a nuclear power program is a major commitment requiring strict attention to nuclear safety. This commitment is a responsibility to not only the citizens of the country developing such a program, but also a responsibility to the international community. Nobody can take on this responsibility or make the critical decisions except the host country. It is important to make sure that the decision making process and the development activities are done in as open a manner as possible allowing interested stakeholders the opportunity to review and comment on the actions and plans. It cannot be overemphasized that everyone involved in a program to develop nuclear power carries a responsibility for ensuring safety. While it is clear that the key decisions and activities are the responsibility of the host country, it is also very important to recognize that help is available. The IAEA, OECD-NEA, WANO and other international organizations along with countries with established nuclear power programs are available to provide information and assistance. In particular, the IAEA and OECD-NEA have published several documents regarding the development of a nuclear power program and they have been and continue to support many meetings and seminars regarding the development of nuclear power programs

  12. Study on the nuclear heat application system with a high temperature gas-cooled reactor and its safety evaluation (Thesis)

    International Nuclear Information System (INIS)

    Inaba, Yoshitomo

    2008-03-01

    Aiming at the realization of the nuclear heat application system with a High Temperature Gas-cooled Reactor (HTGR), research and development on the whole evaluation of the system, the connection technology between the HTGR and a chemical plant such as the safety evaluation against the fire and explosion and the control technology, and the vessel cooling system of the HTGR were carried out. In the whole evaluation of the nuclear heat application system, an ammonia production system using nuclear heat was examined, and the technical subjects caused by the connection of the chemical plant to the HTGR were distilled. After distilling the subjects, the safety evaluation method against the fire and explosion to the reactor, the mitigation technology of thermal disturbance to the reactor, and the reactor core cooling by the vessel cooling system were discussed. These subjects are very important in terms of safety. About the fire and explosion, the safety evaluation method was established by developing the process and the numerical analysis code system. About the mitigation technology of the thermal disturbance, it was demonstrated that the steam generator, which was installed at the downstream of the chemical reactor in the chemical plant, could mitigate the thermal disturbance to the reactor. In order to enhance the safety of the reactor in accidents, the heat transfer characteristic of the passive indirect core cooling system was investigated, and the heat transfer equation considering both thermal radiation and natural convection was developed for the system design. As a result, some technical subjects related to safety in the nuclear heat application system were solved. (author)

  13. Safety Evaluation Report related to the final design approval of the GESSAR II BWR/6 Nuclear Island design, Docket No. 50-447

    International Nuclear Information System (INIS)

    1983-04-01

    The Safety Evaluation Report for the application filed by General Electric Company for the Final Design Approval for the General Electric Standard Safety Analysis Report (GESSAR II FSAR) has been prepared by the Office of Nuclear Reactor Regulation of the Nuclear Regulatory Commission. This report summarizes the results of the staff's safety review of the GESSAR II BWR/6 Nuclear Island Design. Subject to favorable resolution of items discussed in the Safety Evaluation Report, the staff concludes that the facilities referencing GESSAR II, subject to approval of the balance-of-plant design, can conform with the provisions of the Act and the regulations of the Nuclear Regulatory Commission

  14. Safety Evaluation Report related to the full-term operating license for Millstone Nuclear Power Station, Unit No. 1 (Docket No. 50-245). Supplement No. 1

    International Nuclear Information System (INIS)

    1986-08-01

    This report, prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission, supplements the Safety Evaluation Report (NUREG-1143, October 1985). It fulfills a commitment to provide the Advisory Committee on Reactor Safeguards report, identifies the changes that have occurred since the Safety Evaluation Report was issued, and specifies the effective lifetime for the Full-Term Operating License

  15. Nuclear reactors safety issues

    International Nuclear Information System (INIS)

    Barre, Francois; Seiler, Nathalie

    2008-01-01

    Full text of publication follows: Since the seventies, economic incentives have led the utilities to drive a permanent evolution of the light water reactor (LWR). The evolution deals with the reactor designs as well as the way to operate them in a more flexible manner. It is for instance related to the fuel technologies and management. On the one hand, the technologies are in continuous evolution, such as the fuel pellets (MOX, Gd fuel, or Cr doped fuels..) as well as advanced cladding materials (M5 TM , MDA or ZIRLO). On the other hand, the fuel management is also subject to continuous evolution in particular in terms of increasing the level of burn-up, the reactor (core) power, the enrichment, as well as the duration of reactor cycles. For instance, in a few years in France, the burn-up has raised beyond the value of 39 GWj/t, initially authorized up to 52 GWj/t for the UO 2 fuel. In the near future, utilities foreseen to reach fuel burn-up of 60 GWj/t for MOX fuel and 70 GWj/t for UO 2 fuel. Furthermore, the future reactor of fourth generation will use new fuels of advanced conception. Furthermore with the objective of improving the safety margins, methods and calculation tools used by the utilities in the elaboration of their safety demonstrations submitted to the Safety Authority, are in movement. The margin evaluation methodologies often consist of a calculation chain of best-estimate multi-field simulations (e.g. various codes being coupled to simulate in a realistic way the evolution of the thermohydraulic, neutronic and mechanic state of the reactor). The statistical methods are more and more sophisticated and the computer codes are integrating ever-complex physical models (e.g. three-dimensional at fine scale). Following this evolution, the Institute of Radioprotection and Nuclear Safety (IRSN), whose one of the roles is to examine the safety records and to rend a technical expertise, considers the necessity of reevaluating the safety issues for advanced

  16. Framework of nuclear safety and safety assessment

    International Nuclear Information System (INIS)

    Furuta, Kazuo

    2007-01-01

    Since enormous energy is released by nuclear chain reaction mainly as a form of radiation, a great potential risk accompanies utilization of nuclear energy. Safety has been continuously a critical issue therefore from the very beginning of its development. Though the framework of nuclear safety that has been established at an early developmental stage of nuclear engineering is still valid, more comprehensive approaches are required having experienced several events such as Three Mile Island, Chernobyl, and JCO. This article gives a brief view of the most basic principles how nuclear safety is achieved, which were introduced and sophisticated in nuclear engineering but applicable also to other engineering domains in general. (author)

  17. Nuclear safety in France

    International Nuclear Information System (INIS)

    Laverie, M.

    1981-02-01

    The principles and rules governing the safety of nuclear installations are defined as from three fundamental principles and three practical rules as follows: First principle: the operator is responsible and of the highest order. Second principle: the public authorities exercise their control responsibility with respect to the design, construction and running of the installations. Third principle: nuclear safety, this is to accept that man and his technique are not infallible and that one must be prepared to control the unpredictable. First rule: the installations must include several 'lines of defence' in succession and to the extent where this is possible these must be independent of each other. Second rule: procedures are required and supervised by the Government Departments. Third rule: nuclear safety requires that any incident or anomaly must undergo an analysis in depth and is also based on a standing 'clinical' examination of the installations. The definition is given as to how the public authorities exercise their intervention: terms and conditions of the intervention by the safety authorities, authorization procedures, surveillance of the installations, general technical regulations. Two specific subjects are presented in the addendum, (a) the choice of nuclear power station sites in France and (b) the storage of radioactive wastes [fr

  18. Nuclear safety in Spain

    International Nuclear Information System (INIS)

    Caro, R.

    1988-01-01

    Control and monitoring of all Spanish nuclear facilities was first carried out by the Department of Nuclear Safety of the Junta de Energia Nuclear established by the Nuclear Energy Act in 1964. Later, following the example of other Western countries, it was concluded that regulations and monitoring of nuclear energy on one hand and its promotion and development on the other should not be done by the same national body. Therefore, the Consejo de Seguridad Nuclear (CSN) was created in 1980, as the sole national body responsible for controlling the safety of nuclear installations, and radiological protection. The CSN has five members, one chairman and four comissioners, required to be independent and therefore with politically objective criteria, internationally acknowledged technical capability, and free from other duties and responsibilities. For this purpose the Chairman has been given the status of Minister and the commissioners that of Secretary of State. They serve for six years, after being accepted by Parliament by a majority of at least 3/5 of the votes, and are called upon to report to Parliament at least twice a year on nuclear safety and radiological protection in the country. A complete report on those issues is presented to Parliament, becoming a politic document as from that moment. To prepare that report (basically a summary of CSN activities) and, in general, to fulfill all its tasks, the CSN has a staff of some 300, about 50% being technical. CSN activities cover: 1. Standards; 2. Licences; 3. Research; 4. Environment; 5. Information; and 6. International Relations

  19. Nuclear health and safety

    International Nuclear Information System (INIS)

    1991-08-01

    This paper is a review of environmental and safety programs at facilities in the Naval Reactors Program which shows no basis for allegations that unsafe conditions exist there or that the environment is being harmed by activities conducted there. The prototype reactor design provides safety measures that are consistent with commercial nuclear power plants. Minor incidents affecting safety and the environment have occurred, however, and dents affecting safety and the environment have occurred, however, and as with other nuclear facilities, past activities have caused environmental problems that require ongoing monitoring and vigilance. While the program has historically been exempt from most oversight, some federal and state environmental oversight agencies have recently been permitted access to Naval Reactors facilities for oversight purposes. The program voluntarily cooperates with the Nuclear Regulatory Commission regarding reactor modifications, safety improvements, and component reliability. In addition, the program and its contractors have established an extensive internal oversight program that is geared toward reporting the slightest deviations from requirements or procedures. Given the program's classification policies and requirements, it does not appear that the program routinely overclassifies information to prevent its release to the public or to avoid embarrassment. However, GAO did not some instances in which documents were improperly classified

  20. Safety of nuclear installations

    International Nuclear Information System (INIS)

    1991-01-01

    In accordance with the Nuclear Energy Act, a Licence may only be issued if the precautions required by the state of the art have been taken to prevent damage resulting from the construction and operation of the installation. The maximum admissible body doses in the area around the installation which must be observed in planning constructional and other technical protective measures to counter accidents in or at a nuclear power station (accident planning values, are established). According to the Radiological Protection Ordinance the Licensing Authority can consider these precautions to have been taken if, in designing the installation against accidents, the applicant has assumed the accidents which, according to the Safety Criteria and Guidelines for Nuclear Power Stations published in the Federal Register by the Federal Minister of the Interior after hearing the competent senior state authorities, must determine the design of a nuclear power station. On the basis of previous experience from safety analysis, assessment and operation of nuclear power stations, the accident guidelines published here define which accidents are determinative for the safety-related design of PWR power stations and what verification -particularly with regard to compliance with the accident planning values of the Radiological Protection Ordinance -must be provided by the applicant. (author)

  1. Nuclear safety research

    International Nuclear Information System (INIS)

    1996-01-01

    The topics 'Large-sized PWR-NPP Safety Techniques Research',and 'The Key Techniques Research on the Safety Supervision and Control for Operation of Nuclear Installations' have been adopted as an apart of 'the National 9th five Year Programs for Tacking the Key Scientific and Technical Topics' which are organized by the State Planning Commission (SPC) and State Science and Technology Commission (SSTC) respectively, and have obtained a financial support from them. To play a better role with the limited fund, the NNSA laid special stress on selecting key sub-topics on nuclear safety, and carefully choosing units which would undertake sub-topics and signing technical contracts with them

  2. Evaluation of response factors for seismic probabilistic safety assessment of nuclear power plants

    International Nuclear Information System (INIS)

    Ebisawa, K.; Abe, K.; Muramatsu, K.; Itoh, M.; Kohno, K.; Tanaka, T.

    1994-01-01

    This paper presents a method for evaluating 'response factors' of components in nuclear power plants for use in a seismic probabilistic safety assessment (PSA). The response factor here is a measure of conservatism included in response calculations in seismic design analysis of components and is defined as a ratio of conservative design resonse to actual response. This method has the following characteristic features: (1) The components are classified into several groups based on the differences in their location and in the vibration models used in design response analyses; (2) the response factors are decomposed into subfactors corresponding to the stages of the seismic response analyses in the design practices; (3) the response factors for components are calculated as products of subfactors; (4) the subfactors are expressed either as a single value or as a function of parameters that influence the response of components. This paper describes the outline of this method and results from an application to a sample problem in which response factors were quantified for examples of components selected from the groups. (orig.)

  3. Reload safety evaluation report for Kori nuclear power plant unit 1, cycle 13

    International Nuclear Information System (INIS)

    Park, Chan Oh; Moon, Bok Ja; Cho, Byeong Ho; Nam, Kee Il; Kim, Oh Hwan; Chang, Doo Soo; Yoon, Han Young; Kim, Du Ill; Ban, Chang Hwan; Choi, Dong Uk

    1993-03-01

    This report presents the reload safety evaluation for Kori-1, Cycle 13 and demonstrates that the reactor core being composed of various fuel assembly types applied in this evaluation will not adversely affect the safety of the public and the plant. All of the accidents comprising the licensing bases which could potentially be affected by the reload fuel assemblies have been reviewed for the Cycle 13 core and results are described in this report. (Author)

  4. Reload safety evaluation report for Ulchin nuclear power plant unit 1 cycle 5

    International Nuclear Information System (INIS)

    Park, Chan Oh; Kim, Yong Rae; Son, Sang Rin; Oh, Dong Seok; Kim, Hong Jin; Yoon, Kyung Ho; Yoon, Han Young; Choi, Han Rim; Choi, Dong Uk

    1992-12-01

    This report presents the reload safety evaluation for Ulchin 1, Cycle 5 and demonstrates that the reactor core being composed of various fuel assembly types applied in this evaluation will not adversely affect the safety of the public and the plant. All of the accidents comprising the licensing bases which could potentially be affected by the reload fuel assemblies have been reviewed for the Cycle 5 core and results are described in this report. (Author)

  5. Study on safety evaluation method for impact protection structures of spent nuclear fuel carriers

    International Nuclear Information System (INIS)

    Endo, Hisayoshi; Yamada, Yasuhira; Hashizume, Yutaka

    2004-01-01

    From a safety assessment view point, tanker ships transporting spent nuclear fuels such as plutonium including MOX (mixed oxide) fuels and high level radioactive wastes, are required to have security structures for collision accidents. The requirement is now reviewing in keeping with reality of the preset condition. Here, as a typical scenario, the probabilistic safety of VLCC (very large crude carrier) was examined. The FEM (finite element method) simulation analysis and new simple analyses in behalf of Minorsky method based on experience rule have been developed to analyze the collision strength, and their validity were examined. (A. Hishinuma)

  6. Plotting and analysis of fault trees in safety evaluation of nuclear power plants

    International Nuclear Information System (INIS)

    Wild, A.

    1979-12-01

    Fault tree analysis is a useful tool in determining the safety and reliability of nuclear power plants. The main strength of the fault tree method, its ability to detect cross-links between systems, can be used only if fault trees are constructed for complete nuclear generating stations. Such trees are large and have to be handled by computers. A system is described for handling fault trees using small computers such as the HP-1000 with disc drive, graphics terminal and x-y plotter

  7. Study of system safety evaluation on LTO of national project. NISA safety research project on system safety of nuclear power plants

    International Nuclear Information System (INIS)

    Takizawa, Masayuki; Sekimura, Naoto; Miyano, Hiroshi; Aoyama, Katsunobu

    2012-01-01

    Japanese safety regulatory body, that is, Nuclear and Industrial Safety Agency (NISA) started a 5-year national safety research project as 'the first stage' from 2006 FY to 2010 FY whose objective is 'Improve the technical information basis in order to utilize knowledge as well as information related to ageing management and maintenance of NPPs. Fukushima disaster happened in March 2011, and the priority of research needs for ageing management dramatically changed in Japan. The second-stage national project started in October 2011 with the concept of 'system safety' of NNPs where not only ageing management on degradation phenomena of important components but also safety management on total plant systems are paid attention to. The second-stage project is so called 'Japanese Ageing Management Program for System Safety (JAMPSS)'. (author)

  8. Preliminary Study on Effect of Aviation Fuel in the Safety Evaluation of Nuclear Power Plant Crashed by Aircraft

    International Nuclear Information System (INIS)

    Jin, Byeong Moo; Jeon, Se Jin; Lee, Yun Seok; Kim, Young Jin

    2011-01-01

    As the safety assessments of nuclear power plants for the hypothetical large civil aircraft crash should be made mandatory, studies on large aircraft-nuclear power plant impact analyses and assessments are actively in progress. The large civil aircraft are being operated with a large amount of fuel and the fuel can be assumed to contribute to the impact loads at the impact. The fuel, i.e., the internal liquid can be considered as added masses classically in the evaluation of the impact load. According to the recent experimental research, it has been shown that the impact load of high speed impacting body with internal liquid is much higher than that of the mass-equivalent impacting body. In this study, the impact loads according to the existence of the internal liquid are computed by numerical methods and the safety assessment of nuclear power plant crashed by large civil aircraft are performed as an application

  9. Nuclear installations sites safety

    International Nuclear Information System (INIS)

    Barber, P.; Candes, P.; Duclos, P.; Doumenc, A.; Faure, J.; Hugon, J.; Mohammadioun, B.

    1988-11-01

    This report is divided into ten parts bearing: 1 Safety analysis procedures for Basis Nuclear Installations sites (BNI) in France 2 Site safety for BNI in France 3 Industrial and transport activities risks for BNI in France 4 Demographic characteristics near BNI sites in France 5 Meteorologic characteristics of BNI sites in France 6 Geological aspects near the BNI sites in France 7 Seismic studies for BNI sites in France 8 Hydrogeological aspects near BNI sites in France 9 Hydrological aspects near BNI sites in France 10 Ecological and radioecological studies of BNI sites in France [fr

  10. Evaluation of static analysis tools used to assess software important to nuclear power plant safety

    Energy Technology Data Exchange (ETDEWEB)

    Ourghanlian, Alain [EDF Lab CHATOU, Simulation and Information Technologies for Power Generation Systems Department, EDF R and D, Cedex (France)

    2015-03-15

    We describe a comparative analysis of different tools used to assess safety-critical software used in nuclear power plants. To enhance the credibility of safety assessments and to optimize safety justification costs, Electricit e de France (EDF) investigates the use of methods and tools for source code semantic analysis, to obtain indisputable evidence and help assessors focus on the most critical issues. EDF has been using the PolySpace tool for more than 10 years. Currently, new industrial tools based on the same formal approach, Abstract Interpretation, are available. Practical experimentation with these new tools shows that the precision obtained on one of our shutdown systems software packages is substantially improved. In the first part of this article, we present the analysis principles of the tools used in our experimentation. In the second part, we present the main characteristics of protection-system software, and why these characteristics are well adapted for the new analysis tools.

  11. Convention on nuclear safety

    International Nuclear Information System (INIS)

    1994-01-01

    The Convention on Nuclear Safety was adopted on 17 June 1994 by Diplomatic Conference convened by the International Atomic Energy Agency at its Headquarters from 14 to 17 June 1994. The Convention will enter into force on the ninetieth day after the date of deposit with the Depository (the Agency's Director General) of the twenty-second instrument of ratification, acceptance or approval, including the instruments of seventeen States, having each at leas one nuclear installation which has achieved criticality in a reactor core. The text of the Convention as adopted is reproduced in the Annex hereto for the information of all Member States

  12. Safety evaluation of the Greifswald nuclear power plant, unit 1-4

    International Nuclear Information System (INIS)

    1990-06-01

    The first interim report primarily deals with an evaluation of the pressurized components of the primary loops, especially with the embrittlement of the reactor pressure vessel material. In addition, first estimates concerning the safety design of the plants are made. The second interim report reflects the state of further studies relating to the safety design and the evaluation of operational experiences. The report includes a summarized assessment in which the recommendations cited in the technical chapters are evaluated and subdivided into three categories of backfitting measures. (orig.) [de

  13. Safety evaluation report related to the operation of WPPSS Nuclear Project No. 2, (Docket No. 50-397). Supplement No. 4

    International Nuclear Information System (INIS)

    1983-12-01

    Supplement No. 4 to the Safety Evaluation Report on the application filed by Washington Public Power Supply System for a license to operate the WPPSS Nuclear Project No. 2, located in Richland, Washington, has been prepared by the Division of Licensing, Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. This supplement reports the status of certain items that had not been resolved at the time of publication of the Safety Evaluation Report and Supplement Nos. 1, 2 and 3

  14. Safety Evaluation Report related to the operation of Diablo Canyon Nuclear Power Plant, Units 1 and 2 (Docket Nos. 50-275 and 50-323)

    International Nuclear Information System (INIS)

    1984-02-01

    Supplement 17 to the Safety Evaluation Report for Pacific Gas and Electric Company's application for licenses to operate Diablo Canyon Nuclear Power Plants, Units 1 and 2 (Docket Nos. 50-275 and 50-323) has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. This supplement reports the status of certain items that had not been resolved at the time of publication of the Safety Evaluation Report and the previous supplements

  15. An international nuclear safety regime

    International Nuclear Information System (INIS)

    Rosen, M.

    1995-01-01

    For all the parties involved with safe use of nuclear energy, the opening for signature of the 'Convention on Nuclear Safety' (signed by 60 countries) and the ongoing work to prepare a 'Convention on Radioactive Waste Safety' are particularly important milestones. 'Convention on Nuclear Safety' is the first legal instrument that directly addresses the safety of nuclear power plants worldwide. The two conventions are only one facet of international cooperation to enhance safety. A review of some cooperative efforts of the past decades, and some key provisions of the new safety conventions, presented in this paper, show how international cooperation is increasing nuclear safety worldwide. The safety philosophy and practices involved with legal framework for the safe use of nuclear power will foster a collective international involvement and commitment. It will be a positive step towards increasing public confidence in nuclear power

  16. Reload safety evaluation report for Ulchin nuclear power plant unit 1, cycle 6

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Won Jae; Kim, Yong Rae; Kim, Oh Hwan; Kwon, Hyuk Sung; Yoon, Han Young; Choi, Han Rim; Ku, Dong Uk [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1993-11-01

    This report presents a reload safety evaluation for Ulchin 1, cycle 6 and demonstrates that the reactor core being fully composed of KOFA as described in this report will not adversely affect the safety of the public and the plant. All of the accidents comprising the licensing bases which could potentially be affected by the fuel reload have been reviewed for the cycle 6 core and results are described in this report. (Author) 1 ref., 5 figs., 6 tabs.

  17. Reload safety evaluation report for Ulchin nuclear power plant unit 1, cycle 6

    International Nuclear Information System (INIS)

    Lee, Won Jae; Kim, Yong Rae; Kim, Oh Hwan; Kwon, Hyuk Sung; Yoon, Han Young; Choi, Han Rim; Ku, Dong Uk

    1993-11-01

    This report presents a reload safety evaluation for Ulchin 1, cycle 6 and demonstrates that the reactor core being fully composed of KOFA as described in this report will not adversely affect the safety of the public and the plant. All of the accidents comprising the licensing bases which could potentially be affected by the fuel reload have been reviewed for the cycle 6 core and results are described in this report. (Author) 1 ref., 5 figs., 6 tabs

  18. Reload safety evaluation report for Yonggwang nuclear power plant unit 1, cycle 8

    International Nuclear Information System (INIS)

    Lee, Won Jae; Yoon, Kyung Ho; Cho, Young Chul; Kim, Jae Hak; Um, Kil Sup; Choi, Han Rim; Kim, Ki Hang; Sung, Kang Sik

    1993-09-01

    This report presents a reload safety evaluation for YGN-1, cycle 8 and demonstrates that the core being entirely composed of KOFA as described in the report will not adversely affect the safety of the public and the plant. All of the accidents comprising the licensing bases which could potentially be affected by the fuel reload have been reviewed for the cycle 8 core and results are described in the report. (Author) 1 ref., 4 figs., 5 tabs

  19. Reload safety evaluation report for yonggwang nuclear power plant unit 2 cycle 7

    International Nuclear Information System (INIS)

    Zee, Sung Kyun; Choi, Gyoo Hwan; Lee, Ki Bog; Park, Sang Yoon

    1993-01-01

    This report presents the reload safety evaluation for YGN-2, Cycle 7 and demonstrates that the reactor core being entirely composed of KOFA as described below will not adversely affect the safety of the public and the plant. All of the accidents comprising the licensing bases which would potentially be affected by the reload fuel assemblies have been reviewed for the Cycle 7 core design described herein. (Author)

  20. Reload safety evaluation report for yonggwang nuclear power plant unit 1 cycle 7

    International Nuclear Information System (INIS)

    Park, Chan Oh; Kwon, Tae Je; Park, Sang Yoon; Sung, Kang Sik; Kim, Ki Hang; Yim, Jeong Sik; Kim, Du Ill; Choi, Han Rim; Bae, Hoo Gun

    1992-06-01

    This report presents the reload safety evaluation for YGN-1, Cycle 7 and demonstrates that the reactor core being entirely composed of KOFA as discribed below will not adversely affect the safety of the public and the plant. All of the accidents comprising the licensing bases which could potentially be affected by the reload fuel assemblies have been reviewed for the Cycle 7 core and results are described in this report. (Author)

  1. Reload safety evaluation report for Yonggwang nuclear power plant unit 1, cycle 9

    International Nuclear Information System (INIS)

    Cho, Young Chul; Nam, Kee Il; Kim, Ki Hang; Suh, Jung Min; Um, Kil Sup; Ban, Chang Hwan; Bae, Hoo Gun

    1995-02-01

    This report presents a reload safety evaluation for YGN-1, Cycle 9 and demonstrates that the core being entirely composed of KOFA as described in the report will not adversely affect the safety of the public and the plant. All of the accidents comprising the licensing bases which could potentially be affected by the fuel reload have been reviewed for the Cycle 9 core and results are described in this report. (Author) 1 refs., 3 figs., 6 tabs

  2. Reload safety evaluation report for Ulchin nuclear power plant unit 2, cycle 6

    International Nuclear Information System (INIS)

    Chung, Jin Gon; Park, Jin Ha; Kim, Oh Hwan; Oh, Dong Seok; Kim, Du Ill; Choi, Han Rim; Ku, Dong Uk; Bae, Hoo Gun

    1994-07-01

    This report presents a reload safety evaluation for Ulchin-2, cycle 6 and demonstrates that the core being composed of various fuel types as described in the report will not adversely affect the safety of the public and the plant. All of the accidents comprising the licensing bases which could potentially be affected by the fuel reload have been reviewed for the cycle 6 core and results are described in the report. (Author) 1 ref., 3 figs., 7 tabs

  3. Reload safety evaluation report for Ulchin nuclear power plant unit 1, cycle 7

    International Nuclear Information System (INIS)

    Kim, Yong Rae; Kwon, Hyuk Sung; Kim, Oh Hwan; Choi, Han Rim; Yoon, Han Young; Ku, Dong Uk; Suh, Jung Min; Bae, Hoo Gun

    1995-02-01

    This report presents a reload safety evaluation for UCN-2, Cycle 7 and demonstrates that the core being entirely composed of KOFA as described in the report will not adversely affect the safety of the public and the plant. All of the accidents comprising the licensing bases which could potentially be affected by the fuel reload have been reviewed for the Cycle 7 core and results are described in this report. (Author) 1 refs., 3 figs., 6 tabs

  4. Reload safety evaluation report for ulchin nuclear power plant unit 2, cycle 4

    International Nuclear Information System (INIS)

    Park, Chan Oh; Park, Yong Soo; Kim, Hong Jin; Kim, Il Kon; Oh, Dong Seok; Yoon, Han Yong; Choi, Han Rim; Choi, Dong Uk; Lee, Chung Chan; Zee, Sung Kyun

    1992-09-01

    This report presents a reload safety evaluation for Ulchin-2, Cycle 4 and demonstrates that the core being composed of various fuel types as described in the report will not adversely affect the safety of the public and the plant. All of the accidents comprising the licensing bases which could potentially be affected by the fuel reload have been reviewed for the Cycle 4 core and results are described in the report. (Author)

  5. Reload safety evaluation report for Kori nuclear power unit 1, cycle 14

    International Nuclear Information System (INIS)

    Kim, Joo Young; Kim, Oh Hwan; Nam, Kee Il; Kim, Du Ill; Ban, Chang Hwan; Choi, Dong Uk

    1994-05-01

    This report presents the reload safety evaluation for Kori-1, Cycle 14 and demonstrate that the reactor core being entirely composed of KOFA as described in the report will not adversely affect the safety of the public and the plant. All of the accidents comprising the licensing bases which could potentially be affected by the fuel reload have been reviewed for the Cycle 14 core design described herein. (Author) 1 refs., 9 figs., 5 tabs

  6. Reload safety evaluation report for kori nuclear power plant unit 4, cycle 8

    International Nuclear Information System (INIS)

    Park, Chan Oh; Jung, Yil Sup; Kim, Si Yong; Kim, Ki Hang; Kwon, Hyuk Sung; Oh, Dong Seok; Kim, Du Ill; Ban, Chang Hwan; Choi, Dong Uk

    1993-06-01

    This report presents the reload safety evaluation for Kori-4, Cycle 8 and demonstrate that the reactor core being entirely composed of KOFA as described in the report will not adversely affect the safety of the public and the plant. All of the accidents comprising the licening bases which could potentially be affected by the fuel reload have been reviewed for the Cycle 8 core design described herein. (Author)

  7. Integrated plant safety assessment, Systematic Evaluation Program: Dresden Nuclear Power Station, Unit 2 (Docket No. 50-237)

    International Nuclear Information System (INIS)

    1989-10-01

    The US Nuclear Regulatory Commission (NRC) has prepared Supplement 1 to the final Integrated Plant Safety Assessment Report (IPSAR) (NUREG-0823), under the scope of the Systematic Evaluation Program (SEP), for the Commonwealth Edison Company (CECo) Dresden Nuclear Power Station, Unit 2 located in Grundy County, Illinois. The NRC initiated the SEP to provide the framework for reviewing the design of older operating nuclear reactor plants to reconfirm and document their safety. This report documents the review completed by means of the SEP for those issues that required refined engineering evaluations or the continuation of ongoing evaluations subsequent to issuing the final IPSAR for Dresden Unit 2. The review was provided for (1) an assessment of the significance of differences between current technical positions on selected issues and those that existed when Dresden Unit 2 was licensed, (2) a basis for deciding on how these differences should be resolved in an integrated plant review, and (3) a documented evaluation of plant safety. The final IPSAR and this supplement forms part of the bases for considering the conversion of the existing provisional operating license to a full-term operating license. 83 refs., 9 tabs

  8. Autoclave nuclear criticality safety analysis

    Energy Technology Data Exchange (ETDEWEB)

    D`Aquila, D.M. [Martin Marietta Energy Systems, Inc., Piketon, OH (United States); Tayloe, R.W. Jr. [Battelle, Columbus, OH (United States)

    1991-12-31

    Steam-heated autoclaves are used in gaseous diffusion uranium enrichment plants to heat large cylinders of UF{sub 6}. Nuclear criticality safety for these autoclaves is evaluated. To enhance criticality safety, systems are incorporated into the design of autoclaves to limit the amount of water present. These safety systems also increase the likelihood that any UF{sub 6} inadvertently released from a cylinder into an autoclave is not released to the environment. Up to 140 pounds of water can be held up in large autoclaves. This mass of water is sufficient to support a nuclear criticality when optimally combined with 125 pounds of UF{sub 6} enriched to 5 percent U{sup 235}. However, water in autoclaves is widely dispersed as condensed droplets and vapor, and is extremely unlikely to form a critical configuration with released UF{sub 6}.

  9. Nuclear Criticality Safety Evaluation of the 9965, 9968, 9972, 9973, 9974, and 9975 Shipping Casks

    International Nuclear Information System (INIS)

    Frost, R.L.

    1999-01-01

    A Nuclear Criticality Safety Evaluation (NCSE) has been performed for the 9965, 9968, 9972, 9973, 9974, and 9975 SRS-designed shipping casks. This was done in support of the recertification effort for the 9965 and 9968, and the certification of the newly designed 9972-9975 series. The analysis supports the use of these packages as Fissile Class I for shipment of fissionable material from the SRS FB-Line, HB-Line, and from Lawrence Livermore national Laboratory. six different types of material were analyzed with varying Isotopic composition, of both oxide and metallic form. The mass limits required to support the fissile Class I rating for each of the envelopes are given in the Table below. These mass limits apply if DOE approves an exception as described in 10 CFR 71.55(c), such that water leakage into the primary containment vessel does not need to be considered in the criticality analysis. If this exception is not granted, the mass limits are lower than those shown below. this issue is discussed in detail in sections 5 and 6 of the report.One finding from this work is important enough to highlight in the abstract. The fire tests performed for this family of shipping casks indicates only minimal charring of the Celotex thermal insulation. Analysis of the casks with no Celotex insulation (assuming it has all burned away), results in values of k-eff that exceed 1.0. Therefore, the Celotex insulation must remain intact in order to guarantee sub criticality of the 9972-9975 family of shipping casks

  10. Decision no. 2011-DC-0219 of the French nuclear safety authority from May 5, 2011, ordering the SOCATRI company to proceed to a complementary safety evaluation of some of its basic nuclear facilities in the eyes of the Fukushima Daiichi nuclear power plant accident

    International Nuclear Information System (INIS)

    2011-01-01

    As a consequence of the accident of the Fukushima Daiichi nuclear power plant (Japan), the French Prime Minister entrusted the French nuclear safety authority (ASN) with the mission to carry out a safety analysis re-evaluation of the French nuclear facilities, and in particular the nuclear power plants. A decision has been addressed by the ASN to each nuclear operator with the specifications of this safety re-evaluation analysis and the list of facilities in concern. This document is the decision addressed to the SOCATRI company, operator of the nuclear dismantling and waste processing plants of the Tricastin site (France). (J.S.)

  11. Evaluation of a Radiation Worker Safety Training Program at a nuclear facility

    Energy Technology Data Exchange (ETDEWEB)

    Lindsey, J.E.

    1993-05-01

    A radiation safety course was evaluated using the Kirkpatrick criteria of training evaluation as a guide. Thirty-nine employees were given the two-day training course and were compared with 15 employees in a control group who did not receive the training. Cognitive results show an immediate gain in knowledge, and substantial retention at 6 months. Implications of the results are discussed in terms of applications to current radiation safety training was well as follow-on training research and development requirements.

  12. Evaluation of a Radiation Worker Safety Training Program at a nuclear facility

    International Nuclear Information System (INIS)

    Lindsey, J.E.

    1993-05-01

    A radiation safety course was evaluated using the Kirkpatrick criteria of training evaluation as a guide. Thirty-nine employees were given the two-day training course and were compared with 15 employees in a control group who did not receive the training. Cognitive results show an immediate gain in knowledge, and substantial retention at 6 months. Implications of the results are discussed in terms of applications to current radiation safety training was well as follow-on training research and development requirements

  13. History of nuclear power plants safety in France (1945-2000) - Engineer techniques, expert evaluation, topical issue

    International Nuclear Information System (INIS)

    Foasso, Cyrille

    2003-01-01

    This doctoral dissertation relates the history of the mastery of risks in civil nuclear plants in France. Since 1960, it's known as the 'surete nucleaire'. Over a fifty-year period separating the discovery or the atomic fission and its industrial application on a large scale this PhD shows which technical means were used over the years by engineers to handle this risk which is said to be huge. It also studies the various processes in expert evaluation and in decision making elaborated to evaluate if the risk was acceptable or not. Beyond the conflicts between nuclear advocates and opponents, this thesis shows how ever among nuclear engineer the growing distinction between roles (promoters, experts and controlling authorities) and the various jobs (designers, builders and plant operators) triggered different estimations as far as the methods to obtain a satisfactory safety. Thanks to the progress of knowledge through research programs, thanks to the lessons drawn from the functioning or dysfunction of nuclear plants, thanks to the reinforcement of regulations (which more or less reflects the public's opinion concerning this industry) the safety has progressively improved. Thus, this historical study is multiple: a technical history of technology, a history of scientific, industrial and administrative organization, a social history and finally an international and comparative history since the nuclear energy history quickly developed beyond national boundaries. (author) [fr

  14. Experiment to evaluate software safety

    International Nuclear Information System (INIS)

    Soubies, B.; Henry, J.Y.

    1994-01-01

    The process of licensing nuclear power plants for operation consists of mandatory steps featuring detailed examination of the instrumentation and control system by the safety authorities, including softwares. The criticality of these softwares obliges the manufacturer to develop in accordance with the IEC 880 standard 'Computer software in nuclear power plant safety systems' issued by the International Electronic Commission. The evaluation approach, a two-stage assessment is described in detail. In this context, the IPSN (Institute of Protection and Nuclear Safety), the technical support body of the safety authority uses the MALPAS tool to analyse the quality of the programs. (R.P.). 4 refs

  15. Procurement strategic analysis of nuclear safety equipment

    International Nuclear Information System (INIS)

    Wu Caixia; Yang Haifeng; Li Xiaoyang; Li Shixin

    2013-01-01

    The nuclear power development plan in China puts forward a challenge on procurement of nuclear safety equipment. Based on the characteristics of the procurement of nuclear safety equipment, requirements are raised for procurement process, including further clarification of equipment technical specification, establishment and improvement of the expert database of the nuclear power industry, adoption of more reasonable evaluation method and establishment of a unified platform for nuclear power plants to procure nuclear safety equipment. This paper makes recommendation of procurement strategy for nuclear power production enterprises from following aspects, making a plan of procurement progress, dividing procurement packages rationally, establishing supplier database through qualification review and implementing classified management, promoting localization process of key equipment continually and further improving the system and mechanism of procurement of nuclear safety equipment. (authors)

  16. Nuclear power and nuclear safety 2009

    International Nuclear Information System (INIS)

    Lauritzen, B.; Oelgaard, P.L.; Kampmann, D.; Nystrup, P.E.; Thorlaksen, B.

    2010-05-01

    The report is the seventh report in a series of annual reports on the international development of nuclear power production, with special emphasis on safety issues and nuclear emergency preparedness. The report is written in collaboration between Risoe DTU and the Danish Emergency Management Agency. The report for 2009 covers the following topics: status of nuclear power production, regional trends, reactor development, safety related events, international relations, conflicts and the European safety directive. (LN)

  17. International views on nuclear safety

    International Nuclear Information System (INIS)

    Birkhofer, A.

    2002-01-01

    Safety has always been an important objective in nuclear technology. Starting with a set of sound physical principles and prudent design approaches, safety concepts have gradually been refined and cover now a wide range of provisions related to design, quality and operation. Research, the evaluation of operating experiences and probabilistic risk assessments constitute an essential basis and international co-operation plays a significant role in that context. Concerning future developments a major objective for new reactor concepts, such as the EPR, is to practically exclude a severe core damage accident with large scale consequences outside the plant. (author)

  18. Nuclear safety in crisis regions

    International Nuclear Information System (INIS)

    Ustohalova, Veronika; Englert, Matthias

    2017-01-01

    status of the radioactive inventory, the detrimental effects of the ongoing civil war on the specialist personnel situation, the evaluation of incidents with a bearing on safety, and general (subjective) comments on the political and social situation in Ukraine. The objective of this paper was to give an overview of the diverse linkages between intra- and interstate conflicts and nuclear safety, and to point up how fragile the nuclear infrastructure can become under such dynamic conditions. In a situation of political and military crisis in conjunction with a poor economic situation, and all the more under conditions of armed conflict, there can be an insidious yet massive erosion of the entire nuclear safety network, and hence a commensurate heightening of the risk of a serious accident. Within the scope of the project it has not been possible to deal with many aspects of the theme in comprehensive depth. However, the present document can serve as a starting point for a future, more in-depth study and may help to raise awareness regarding the risks of nuclear energy.

  19. Nuclear safety in crisis regions

    Energy Technology Data Exchange (ETDEWEB)

    Ustohalova, Veronika; Englert, Matthias

    2017-04-12

    legal settings, the status of the radioactive inventory, the detrimental effects of the ongoing civil war on the specialist personnel situation, the evaluation of incidents with a bearing on safety, and general (subjective) comments on the political and social situation in Ukraine. The objective of this paper was to give an overview of the diverse linkages between intra- and interstate conflicts and nuclear safety, and to point up how fragile the nuclear infrastructure can become under such dynamic conditions. In a situation of political and military crisis in conjunction with a poor economic situation, and all the more under conditions of armed conflict, there can be an insidious yet massive erosion of the entire nuclear safety network, and hence a commensurate heightening of the risk of a serious accident. Within the scope of the project it has not been possible to deal with many aspects of the theme in comprehensive depth. However, the present document can serve as a starting point for a future, more in-depth study and may help to raise awareness regarding the risks of nuclear energy.

  20. Nuclear power and nuclear safety 2006

    International Nuclear Information System (INIS)

    Lauritzen, B.; Oelgaard, P.L.; Kampmann, D.; Majborn, B.; Nonboel, E.; Nystrup, P.E.

    2007-04-01

    The report is the fourth report in a series of annual reports on the international development of nuclear power production, with special emphasis on safety issues and nuclear emergency preparedness. The report is written in collaboration between Risoe National Laboratory and the Danish Emergency Management Agency. The report for 2006 covers the following topics: status of nuclear power production, regional trends, reactor development and development of emergency management systems, safety related events of nuclear power, and international relations and conflicts. (LN)

  1. Nuclear power and nuclear safety 2004

    International Nuclear Information System (INIS)

    2005-03-01

    The report is the second report in a new series of annual reports on the international development of nuclear power production, with special emphasis on safety issues and nuclear emergency preparedness. The report is written in collaboration between Risoe National Laboratory and the Danish Emergency Management Agency. The report for 2004 covers the following topics: status of nuclear power production, regional trends, reactor development and development of emergency management systems, safety related events of nuclear power and international relations and conflicts. (ln)

  2. Nuclear power and nuclear safety 2005

    International Nuclear Information System (INIS)

    Lauritzen, B.; Oelgaard, P.L.; Kampman, D.; Majborn, B.; Nonboel, E.; Nystrup, P.E.

    2006-03-01

    The report is the third report in a series of annual reports on the international development of nuclear power production, with special emphasis on safety issues and nuclear emergency preparedness. The report is written in collaboration between Risoe National Laboratory and the Danish Emergency Management Agency. The report for 2005 covers the following topics: status of nuclear power production, regional trends, reactor development and development of emergency management systems, safety related events of nuclear power and international relations and conflicts. (ln)

  3. Nuclear power and nuclear safety 2008

    International Nuclear Information System (INIS)

    Lauritzen, B.; Oelgaard, P.L.; Kampmann, D.

    2009-06-01

    The report is the fifth report in a series of annual reports on the international development of nuclear power production, with special emphasis on safety issues and nuclear emergency preparedness. The report is written in collaboration between Risoe DTU and the Danish Emergency Management Agency. The report for 2008 covers the following topics: status of nuclear power production, regional trends, reactor development, safety related events of nuclear power, and international relations and conflicts. (LN)

  4. Contribution at the evaluation of safety softwares in nuclear power plants control systems

    International Nuclear Information System (INIS)

    Soubies, B.; Le Meur, M.; Henry, J.Y.; Boulc'h, J.

    1993-06-01

    The introduction of programmable systems such the SPIN (Numerical Integrated Protection System) has conducted at particular dispositions for the conception and the use of such systems. The utilization of such systems until 1983 has conducted at modifications in the maintenance procedures. The new methods used for the N4 project in the evaluation of safety softwares are given in this report

  5. HSE Nuclear Safety Research Program

    Energy Technology Data Exchange (ETDEWEB)

    Bagley, M.J. [Health and Safety Executive, Sheffield (United Kingdom)

    1995-12-31

    HSE funds two programmes of nuclear safety research: a programme of {approx} 2.2M of extramural research to support the Nuclear Safety Division`s regulatory activities and a programme of {approx} 11M of generic safety research managed by the Nuclear Safety Research Management Unit (NSRMU) in Sheffield, UK. This paper is concerned only with the latter programme; it describes how it is planned and procured and outlines some of the work on structural integrity problems. It also describes the changes that are taking place in the way nuclear safety research is procured in the UK. (author).

  6. HSE Nuclear Safety Research Program

    International Nuclear Information System (INIS)

    Bagley, M.J.

    1995-01-01

    HSE funds two programmes of nuclear safety research: a programme of ∼ 2.2M of extramural research to support the Nuclear Safety Division's regulatory activities and a programme of ∼ 11M of generic safety research managed by the Nuclear Safety Research Management Unit (NSRMU) in Sheffield, UK. This paper is concerned only with the latter programme; it describes how it is planned and procured and outlines some of the work on structural integrity problems. It also describes the changes that are taking place in the way nuclear safety research is procured in the UK. (author)

  7. Safety Evaluation Report related to the full-term operating license for Dresden Nuclear Power Station, Unit 2 ( Docket No. 50-237)

    International Nuclear Information System (INIS)

    1990-10-01

    The Safety Evaluation Report for the full-term operating license application filed by Commonwealth Edison Company for the Dresden Nuclear Power Station, Unit 2, has been prepared by the Office of Nuclear Regulation of the US Nuclear Regulatory Commission. The facility is located in Grundy County, Illinois. Subject to favorable resolution of the items discussed in this report, the staff concludes that the facility can continue to be operated without endangering the health and safety of the public. 72 refs

  8. Nuclear Safety Review for 2014

    International Nuclear Information System (INIS)

    2014-07-01

    The Nuclear Safety Review 2014 focuses on the dominant nuclear safety trends, issues and challenges in 2013. The Executive Overview provides general nuclear safety information along with a summary of the major issues covered in this report: strengthening safety in nuclear installations; improving radiation, transport and waste safety; enhancing emergency preparedness and response (EPR); improving regulatory infrastructure and effectiveness; and strengthening civil liability for nuclear damage. The Appendix provides details on the activities of the Commission on Safety Standards, and activities relevant to the Agency’s safety standards. The global nuclear community has made steady and continuous progress in strengthening nuclear safety in 2013, as promoted by the IAEA Action Plan on Nuclear Safety (hereinafter referred to as “the Action Plan”) and reported in Progress in the Implementation of the IAEA Action Plan on Nuclear Safety (document GOV/INF/2013/8-GC(57)/INF/5), and the Supplementary Information to that report and Progress in the Implementation of the IAEA Action Plan on Nuclear Safety (document GOV/INF/2014/2). • Significant progress continues to be made in several key areas, such as assessments of safety vulnerabilities of nuclear power plants (NPPs), strengthening of the Agency’s peer review services, improvements in EPR capabilities, strengthening and maintaining capacity building, and protecting people and the environment from ionizing radiation. The progress that has been made in these and other areas has contributed to the enhancement of the global nuclear safety framework. • Significant progress has also been made in reviewing the Agency’s safety standards, which continue to be widely applied by regulators, operators and the nuclear industry in general, with increased attention and focus on vitally important areas such as design and operation of NPPs, protection of NPPs against severe accidents, and EPR. • The Agency continued to

  9. Integrated-plant-safety assessment Systematic Evaluation program. Millstone Nuclear Power Station, Unit 1, Northeast Nuclear Energy Company, Docket No. 50-245

    International Nuclear Information System (INIS)

    1982-11-01

    The Systematic Evaluation Program was initiated in February 1977 to review the designs of older operating nuclear reactor plants to reconfirm and document their safety. The review provides: (1) an assessment of how these plants compare with current licensing safety requirements relating to selected issues, (2) a basis for deciding on how these differences should be resolved in an integrated plant review, and (3) a documented evaluation of plant safety. This report documents the review of the Millstone Nuclear Power Station, Unit 1, operated by Northeast Nuclear Energy Company (located in Waterford, Connecticut). Millstone Nuclear Power Station, Unit 1, is one of ten plants reviewed under Phase II of this program. This report indicates how 137 topics selected for review under Phase I of the program were addressed. Equipment and procedural changes have been identified as a result of the review. It is expected that this report will be one of the bases in considering the issuance of a full-term operating license in place of the existing provisional operating license

  10. Software Quality Assurance for Nuclear Safety Systems

    International Nuclear Information System (INIS)

    Sparkman, D R; Lagdon, R

    2004-01-01

    The US Department of Energy has undertaken an initiative to improve the quality of software used to design and operate their nuclear facilities across the United States. One aspect of this initiative is to revise or create new directives and guides associated with quality practices for the safety software in its nuclear facilities. Safety software includes the safety structures, systems, and components software and firmware, support software and design and analysis software used to ensure the safety of the facility. DOE nuclear facilities are unique when compared to commercial nuclear or other industrial activities in terms of the types and quantities of hazards that must be controlled to protect workers, public and the environment. Because of these differences, DOE must develop an approach to software quality assurance that ensures appropriate risk mitigation by developing a framework of requirements that accomplishes the following goals: (sm b ullet) Ensures the software processes developed to address nuclear safety in design, operation, construction and maintenance of its facilities are safe (sm b ullet) Considers the larger system that uses the software and its impacts (sm b ullet) Ensures that the software failures do not create unsafe conditions Software designers for nuclear systems and processes must reduce risks in software applications by incorporating processes that recognize, detect, and mitigate software failure in safety related systems. It must also ensure that fail safe modes and component testing are incorporated into software design. For nuclear facilities, the consideration of risk is not necessarily sufficient to ensure safety. Systematic evaluation, independent verification and system safety analysis must be considered for software design, implementation, and operation. The software industry primarily uses risk analysis to determine the appropriate level of rigor applied to software practices. This risk-based approach distinguishes safety

  11. No nuclear safety without security

    International Nuclear Information System (INIS)

    Anon.

    2016-01-01

    ead of Health and Safety - Nuclear Safety and Corporate Security at ENGIE Benelux, Pierre Doumont has the delicate job of defining and implementing measures, including cybersecurity, to prevent the risk of malevolent acts against tangible and intangible assets. He gives some hints on the contribution of nuclear security to safety.

  12. Nuclear reactor safety system

    International Nuclear Information System (INIS)

    Ball, R.M.; Roberts, R.C.

    1983-01-01

    The invention provides a safety system for a nuclear reactor which uses a parallel combination of computer type look-up tables each of which receives data on a particular parameter (from transducers located in the reactor system) and each of which produces the functional counterpart of that particular parameter. The various functional counterparts are then added together to form a control signal for shutting down the reactor. The functional counterparts are developed by analysis of experimental thermal and hydraulic data, which are used to form expressions that define safe conditions

  13. Nuclear reactor safety systems

    International Nuclear Information System (INIS)

    Ball, R.M.; Roberts, R.C.

    1980-01-01

    A safety system for shutting down a nuclear reactor under overload conditions is described. The system includes a series of parallel-connected computer memory type look-up tables each of which receives data on a particular reactor parameter and in each of which a precalculated functional value for that parameter is stored indicative of the percentage of maximum reactor load that the parameter contributes. The various functional values corresponding to the actual measured parameters are added together to provide a control signal used to shut down the reactor under overload conditions. (U.K.)

  14. Nuclear and radiation safety policy

    International Nuclear Information System (INIS)

    Mikus, T; Strycek, E.

    1998-01-01

    Slovenske elektrarne (SE) is a producer of electricity and heat, including from nuclear fuel source. The board of SE is ultimately responsible for nuclear and radiation safety matters. In this leaflet main principles of maintaining nuclear and radiation safety of the Company SE are explained

  15. Safety margin evaluation of pre-stressed concrete nuclear containment vessel model with BARC code ULCA

    International Nuclear Information System (INIS)

    Basha, S.M.; Patnaik, R.; Ramanujam, S.; Singh, R.K.; Kushwaha, H.S.; Venkat Raj, V.

    2002-01-01

    Full text: Ultimate load capacity assessment of nuclear containments has been a thrust research area for Indian pressurised heavy water reactor (PHWR) power programme. For containment safety assessment of Indian PHWRs a finite element code ULCA was developed at BARC, Trombay. This code has been extensively benchmarked with experimental results and for prediction of safety margins of Indian PHWRs. The present paper highlights the analysis results for prestressed concrete containment vessel (PCCV) tested at Sandia National Labs, USA in a round robin analysis activity co-sponsored by Nuclear Power Engineering Corporation (NUPEC), Japan and the U.S Nuclear Regulatory Commission (NRC). Three levels of failure pressure predictions namely the upper bound, the most probable and the lower bound (all with 90% confidence) were made as per the requirements of the round robin analysis activity. The most likely failure pressure is predicted to be in the range of 2.95 Pd to 3.15 Pd (Pd = design pressure of 0.39 MPa for the PCCV model) depending on the type of liners used in the construction of the PCCV model. The lower bound value of the ultimate pressure of 2.80 Pd and the upper bound of the ultimate pressure of 3.45 Pd are also predicted from the analysis. These limiting values depend on the assumptions of the analysis for simulating the concrete tendon interaction and the strain hardening characteristics of the steel members. The experimental test has been recently concluded at Sandia Laboratory and the peak pressure reached during the test is 3.3 Pd that is enveloped by our upper bound prediction of 3.45 Pd and is close to the predicted most likely pressure of 3.15 Pd

  16. Alternate approaches to nuclear safety

    International Nuclear Information System (INIS)

    Crane, A.T.

    1985-01-01

    For the US nuclear power industry to expand, a greatly increased portion of the public must come to share the industry's confidence in reactor safety. Major obstacles to establishing this confidence are frequent incidents with potential safety implications and a lack of incontrovertible proof that the risk of a major accident is very low. The most important step toward overcoming these obstacles would be for each utility to operate, maintain, and evaluate its reactors according to far higher standards. With improvements in reliability and safety margins, existing plants would be a stimulus for building new ones rather than an impediment. If changes to the operation of existing plants and improvements to the design of future ones were inadequate, the only hope for a revival of the nuclear industry would be an alternative reactor so obviously safe that risk would no longer be an issue. Three possible concepts are the modular high-temperature gas reactor, the process inherent ultimate safety reactor, and the liquid-metal fast reactor. All three have inherent safety features that should make a meltdown essentially impossible. They cannot know just how great the advantage of these alternate reactors would be, but the benefits of developing one or more of the concepts appear great

  17. Decision no. 2011-DC-0216 of the French nuclear safety authority from May 5, 2011, ordering the Laue Langevin Institute to proceed to a complementary safety evaluation of its basic nuclear facility (high flux reactor - INB no. 67) in the eyes of the Fukushima Daiichi nuclear power plant accident

    International Nuclear Information System (INIS)

    2011-01-01

    As a consequence of the accident of the Fukushima Daiichi nuclear power plant (Japan), the French Prime Minister entrusted the French nuclear safety authority (ASN) with the mission to carry out a safety analysis re-evaluation of the French nuclear facilities, and in particular the nuclear power plants. A decision has been addressed by the ASN to each nuclear operator with the specifications of this safety re-evaluation analysis and the list of facilities in concern. This document is the decision addressed to the Laue Langevin Institute, operator of the high flux research reactor (RHF) of Grenoble (France). (J.S.)

  18. Decision no. 2011-DC-0215 of the French nuclear safety authority from May 5, 2011, ordering ITER Organization to proceed to a complementary safety evaluation of its basic nuclear facility in the eyes of the Fukushima Daiichi nuclear power plant accident

    International Nuclear Information System (INIS)

    2011-01-01

    As a consequence of the accident of the Fukushima Daiichi nuclear power plant (Japan), the French Prime Minister entrusted the French nuclear safety authority (ASN) with the mission to carry out a safety analysis re-evaluation of the French nuclear facilities, and in particular the nuclear power plants. A decision has been addressed by the ASN to each nuclear operator with the specifications of this safety re-evaluation analysis and the list of facilities in concern. This document is the decision addressed to the ITER Organization, operator of the ITER tokamak facility of Cadarache (France). (J.S.)

  19. Decision no. 2011-DC-0222 of the French nuclear safety authority from May 5, 2011, ordering the Comurhex company to proceed to a complementary safety evaluation of some of its basic nuclear facilities in the eyes of the Fukushima Daiichi nuclear power plant accident

    International Nuclear Information System (INIS)

    2011-01-01

    As a consequence of the accident of the Fukushima Daiichi nuclear power plant (Japan), the French Prime Minister entrusted the French nuclear safety authority (ASN) with the mission to carry out a safety analysis re-evaluation of the French nuclear facilities, and in particular the nuclear power plants. A decision has been addressed by the ASN to each nuclear operator with the specifications of this safety re-evaluation analysis and the list of facilities in concern. This document is the decision addressed to Comurhex company, operator of the Tricastin uranium conversion plant (France). (J.S.)

  20. Decision no. 2011-DC-0223 of the French nuclear safety authority from May 5, 2011, ordering the MELOX SA company to proceed to a complementary safety evaluation of some of its basic nuclear facilities in the eyes of the Fukushima Daiichi nuclear power plant accident

    International Nuclear Information System (INIS)

    2011-01-01

    As a consequence of the accident of the Fukushima Daiichi nuclear power plant (Japan), the French Prime Minister entrusted the French nuclear safety authority (ASN) with the mission to carry out a safety analysis re-evaluation of the French nuclear facilities, and in particular the nuclear power plants. A decision has been addressed by the ASN to each nuclear operator with the specifications of this safety re-evaluation analysis and the list of facilities in concern. This document is the decision addressed to MELOX SA company, operator of the Melox MOX fuel fabrication plant of Marcoule (France). (J.S.)

  1. Decision no. 2011-DC-0218 of the French nuclear safety authority from May 5, 2011, ordering the EURODIF SA company to proceed to a complementary safety evaluation of some of its basic nuclear facilities in the eyes of the Fukushima Daiichi nuclear power plant accident

    International Nuclear Information System (INIS)

    2011-01-01

    As a consequence of the accident of the Fukushima Daiichi nuclear power plant (Japan), the French Prime Minister entrusted the French nuclear safety authority (ASN) with the mission to carry out a safety analysis re-evaluation of the French nuclear facilities, and in particular the nuclear power plants. A decision has been addressed by the ASN to each nuclear operator with the specifications of this safety re-evaluation analysis and the list of facilities in concern. This document is the decision addressed to the EURODIF SA company, operator of the George Besse I uranium enrichment plant of the Tricastin site (France). (J.S.)

  2. Decision no. 2011-DC-0224 of the French nuclear safety authority from May 5, 2011, ordering the French atomic energy and alternative energies commission (CEA) to proceed to a complementary safety evaluation of some of its basic nuclear facilities in the eyes of the Fukushima Daiichi nuclear power plant accident

    International Nuclear Information System (INIS)

    2011-01-01

    As a consequence of the accident of the Fukushima Daiichi nuclear power plant (Japan), the French Prime Minister entrusted the French nuclear safety authority (ASN) with the mission to carry out a safety analysis re-evaluation of the French nuclear facilities, and in particular the nuclear power plants. A decision has been addressed by the ASN to each nuclear operator with the specifications of this safety re-evaluation analysis and the list of facilities in concern. This document is the decision addressed to the French atomic energy commission (CEA). (J.S.)

  3. Decision no. 2011-DC-0214 of the French nuclear safety authority from May 5, 2011, ordering CIS bio international company to proceed to a complementary safety evaluation of its basic nuclear facility in the eyes of the Fukushima Daiichi nuclear power plant accident

    International Nuclear Information System (INIS)

    2011-01-01

    As a consequence of the accident of the Fukushima Daiichi nuclear power plant (Japan), the French Prime Minister entrusted the French nuclear safety authority (ASN) with the mission to carry out a safety analysis re-evaluation of the French nuclear facilities, and in particular the nuclear power plants. A decision has been addressed by the ASN to each nuclear operator with the specifications of this safety re-evaluation analysis and the list of facilities in concern. This document is the decision addressed to CIS bio international company, operator of the radiopharmaceuticals fabrication facility (INB 29) of Saclay (France). (J.S.)

  4. White paper on nuclear safety in 2009

    International Nuclear Information System (INIS)

    2009-06-01

    It deals with a general introduction of nuclear safety like general safety, safety regulation and system law and standard. It indicates of nuclear energy facility safety about general safety, safety regulation of operating nuclear power plant safety regulation under constructing nuclear power plant. It deals with radiation facility safety, monitoring of environmental radiation, radiation protection, radiation control, international cooperating on nuclear energy safety and establishment of safety regulation.

  5. Space nuclear reactor safety

    International Nuclear Information System (INIS)

    Damon, D.; Temme, M.; Brown, N.

    1990-01-01

    Definition of safety requirements and design features of the SP-100 space reactor power system has been guided by a mission risk analysis. The analysis quantifies risk from accidental radiological consequences for a reference mission. Results show that the radiological risk from a space reactor can be made very low. The total mission risk from radiological consequences for a shuttle-launched, earth orbit SP-100 mission is estimated to be 0.05 Person-REM (expected values) based on a 1 mREM/yr de Minimus dose. Results are given for each mission phase. The safety benefits of specific design features are evaluated through risk sensitivity analyses

  6. The evaluation of the nuclear facilities safety at the CEA from 1999 to 2001; Le bilan de la surete des installations nucleaires du CEA du 1999 a 2001

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-11-01

    The aim of this document is the presentation of an evaluation of the problems and the safety methods in the concerned period. The first chapter presents the nuclear safety in the CEA. The second chapter is devoted to the organization and the quality for the safety: liabilities, audits, relations with the safety authorities and with the public. The chapters three and four deal respectively with the methodological and technical abilities supporting the exploitation teams and with the nuclear safety projects. The last chapter presents the experiments and events from 1999 to 2001. (A.L.B.)

  7. Safety Evaluation for the Impact of Strom Surges on Nuclear Facilities considering the Climate Change

    International Nuclear Information System (INIS)

    Hyun, Seung Gyu; Jin, So Beom

    2012-01-01

    Twenty one units of Nuclear Power Plants(hereinafter NPPs) are operating and five units are under construction in Korea. In particular, Kori unit 1 has been operating for over 30 years. All of the interior NPPs are located in coastal areas and use the sea water for the cooling system. Therefore, the change of sea level seem to affect the safety of NPPs in case of a flood(Hyun et al., 2009). The IPCC 4 th Report(2007) showed that the climate change induced by the high CO 2 effluent scenario results in rise of the sea level (+ 26 to 59 cm), increase in wind strength and more increase of typhoon intensity in the period between 2090 and 2099 and the rate of global mean sea level rise was up to 1.8 ± 0.5 mm/yr from 1961 to 2003. Kang et al.(2005) reported that the rise rate of sea level was 5.4 ± 0.3 mm/yr at the entire East Sea and was 6.6 ± 0.4 mm/yr for the southern part of East Sea from 1992 to 2002. These results are approximately four times greater than the results of the IPCC 4 th Report. The IAEA recommends that some safety margin related with climate change should be taken into consideration in the design basis flood for constructing new NPPs considering the entire plant lifetime and for periodic safety reviewing of operating NPPs referring to the interval between two consecutive reviews(2003). This paper, therefore, summarized the current regulatory activities related with the safety assessment of the impact of storm surge on the NPPs with climate change

  8. Safety Evaluation for the Impact of Strom Surges on Nuclear Facilities considering the Climate Change

    Energy Technology Data Exchange (ETDEWEB)

    Hyun, Seung Gyu; Jin, So Beom [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2012-05-15

    Twenty one units of Nuclear Power Plants(hereinafter NPPs) are operating and five units are under construction in Korea. In particular, Kori unit 1 has been operating for over 30 years. All of the interior NPPs are located in coastal areas and use the sea water for the cooling system. Therefore, the change of sea level seem to affect the safety of NPPs in case of a flood(Hyun et al., 2009). The IPCC 4{sup th} Report(2007) showed that the climate change induced by the high CO{sub 2} effluent scenario results in rise of the sea level (+ 26 to 59 cm), increase in wind strength and more increase of typhoon intensity in the period between 2090 and 2099 and the rate of global mean sea level rise was up to 1.8 {+-} 0.5 mm/yr from 1961 to 2003. Kang et al.(2005) reported that the rise rate of sea level was 5.4 {+-} 0.3 mm/yr at the entire East Sea and was 6.6 {+-} 0.4 mm/yr for the southern part of East Sea from 1992 to 2002. These results are approximately four times greater than the results of the IPCC 4{sup th} Report. The IAEA recommends that some safety margin related with climate change should be taken into consideration in the design basis flood for constructing new NPPs considering the entire plant lifetime and for periodic safety reviewing of operating NPPs referring to the interval between two consecutive reviews(2003). This paper, therefore, summarized the current regulatory activities related with the safety assessment of the impact of storm surge on the NPPs with climate change

  9. Fracture toughness requirements of reactor vessel material in evaluation of the safety analysis report of nuclear power plants

    International Nuclear Information System (INIS)

    Widia Lastana Istanto

    2011-01-01

    Fracture toughness requirements of reactor vessel material that must be met by applicants for nuclear power plants construction permit has been investigated in this paper. The fracture toughness should be described in the Safety Analysis Reports (SARs) document that will be evaluated by the Nuclear Energy Regulatory Agency (BAPETEN). Because BAPETEN does not have a regulations or standards/codes regarding the material used for the reactor vessel, especially in the fracture toughness requirements, then the acceptance criteria that applied to evaluate the fracture toughness of reactor vessel material refers to the regulations/provisions from the countries that have been experienced in the operation of nuclear power plants, such as from the United States, Japan and Korea. Regulations and standards used are 10 CFR Part 50, ASME and ASTM. Fracture toughness of reactor vessel materials are evaluated to ensure compliance of the requirements and provisions of the Regulatory Body and the applicable standards, such as ASME or ASTM, in order to assure a reliability and integrity of the reactor vessels as well as providing an adequate safety margin during the operation, testing, maintenance, and postulated accident conditions over the reactor vessel lifetime. (author)

  10. Efficient improvement of nuclear power plant safety by reorganization of risk-informed safety importance evaluation methods for piping welded portions

    Energy Technology Data Exchange (ETDEWEB)

    Irie, Takashi; Hanafusa, Hidemitsu; Suyama, Takeshi [Institute of Nuclear Safety System, Inc., Mihama, Fukui (Japan); Morota, Hidetsugu; Kojima, Sigeo; Mizuno, Yoshinobu [Computer Software Development Co., Ltd., Tokyo (Japan)

    2002-09-01

    In this work, risk information was used to evaluate the safety importance of piping welded portions which were important for plant operation and maintenance of nuclear power plants. There are two types of risk-informed safety importance evaluation methods, namely the ASME method and the EPRI method. Since both methods have advantages and disadvantages, elements of each method were combined and reorganized. Considerations included whether the degradation mechanisms would be objectively evaluated and whether plant safety would be efficiently improved. The most objective and efficient method was as follows. Piping failure potential is quantitatively and objectively evaluated for failure with probabilistic fracture mechanics (PFM) and for other degradation mechanisms with empirical failure rates, and conditional core damage probability (CCDP) is calculated with PSA. This method reduces the inspected segment numbers to 1/4 of the deterministic method and increases the ratio of risk, which is covered by the inspected segments, to total risk from 80% of the deterministic method to 95%. Piping inspection numbers decreased for safety injection systems that were required the inspections by the deterministic method. Piping inspections were required for part of main feed water and main steam systems that were not required the inspections by the deterministic method. (author)

  11. Prospects for nuclear safety research

    Energy Technology Data Exchange (ETDEWEB)

    Beckjord, E.S.

    1995-04-01

    This document is the text of a paper presented by Eric S. Beckjord (Director, Nuclear Regulatory Research/NRC) at the 22nd Water Reactor Safety Meeting in Bethesda, MD in October 1994. The following topics are briefly reviewed: (1) Reactor vessel research, (2) Probabilistic risk assessment, (3) Direct containment heating, (4) Advanced LWR research, (5) Nuclear energy prospects in the US, and (6) Future nuclear safety research. Subtopics within the last category include economics, waste disposal, and health and safety.

  12. Safety evaluation report related to the operation of WPPSS Nuclear Project No. 2, Docket No. 50-397, Washington Public Power Supply System

    International Nuclear Information System (INIS)

    1982-12-01

    Supplement 2 to the Safety Evaluation Report for Washington Public Power Supply System's application for a license to operate WNP-2 (Docket No. 50-397), located in Benton County, Washington, approximately 12 miles north of Richland, Washington, has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. This supplement reports the status of certain items that had not been resolved at the time of publication of the Safety Evaluation Report and Supplement 1

  13. Nuclear power and nuclear safety 2011

    International Nuclear Information System (INIS)

    Lauritzen, B.; Oelgaard, P.L.; Aage, H.K.; Kampmann, D.; Nystrup, P.E.; Thomsen, J.

    2012-07-01

    The report is the ninth report in a series of annual reports on the international development of nuclear power production, with special emphasis on safety issues and nuclear emergency preparedness. The report is written in collaboration between Risoe DTU and the Danish Emergency Management Agency. The report for 2011 covers the following topics: status of nuclear power production, regional trends, reactor development, safety related events, international relations and conflicts, and the Fukushima accident. (LN)

  14. Nuclear power and nuclear safety 2012

    International Nuclear Information System (INIS)

    Lauritzen, B.; Nonboel, E.; Israelson, C.; Kampmann, D.; Nystrup, P.E.; Thomsen, J.

    2013-11-01

    The report is the tenth report in a series of annual reports on the international development of nuclear power production, with special emphasis on safety issues and nuclear emergency preparedness. The report is prepared in collaboration between DTU Nutech and the Danish Emergency Management Agency. The report for 2012 covers the following topics: status of nuclear power production, regional trends, reactor development, safety related events, international relations and conflicts, and the results of the EU stress test. (LN)

  15. File: nuclear safety and transparency

    International Nuclear Information System (INIS)

    Martinez, J.P.; Etchegoyen, A.; Jeandron, C.

    2001-01-01

    Several experiences of nuclear safety and transparency are related in this file. Public information, access to documents, transparency in nuclear regulation are such subjects developed in this debate. (N.C.)

  16. Integrated plant safety assessment: systematic evaluation program. Oyster Creek nuclear generating station. GPU Nuclear Corporation and Jersey Central Power and Light Company. Docket No. 50-219

    International Nuclear Information System (INIS)

    1982-09-01

    The Systematic Evaluation Program was initiated in February 1978 by the US Nuclear Regulatory Commission to review the designs of older operating nuclear reactor plants to reconfirm and document their safety. The review provides (1) an assessment of how these plants compare with current licensing safety requirements relating to selected issues, (2) a basis for deciding on how these differences should be resolved in an integrated plant review, and (3) a documented evaluation of plant safety. This report documents the review of the Oyster Creek Nuclear Generating Station (located in Ocean County, New Jersey), one of ten plants reviewed under Phase II of this program, and indicates how 137 topics selected for review under Phase I of the program were addressed. Equipment and procedural changes have been identified as a result of the review. It is expected that this report will be one of the bases in considering the issuance of a full-term operating license in place of the existing provisional operating license

  17. Nuclear safety research in HGF 2011

    International Nuclear Information System (INIS)

    Tromm, Walter

    2012-01-01

    After the events at the Japanese nuclear power plant of Fukushima Daiichi, the German federal government decided that Germany will give up electricity generation from nuclear power within a decade. The last reactor will be disconnected from the power grid in 2022. Helping to make this opt-out as safe as possible is one of the duties of the Helmholtz Association with its Nuclear Safety Research Program within the Energy Research Area. Also the demolition of nuclear power plants and the repository problem will keep society, and thus also research, busy for a number of decades to come. Giving up electricity production from nuclear power thus must not mean giving up the required nuclear technology competences. In the fields of reactor safety, demolition, final storage, radiation protection, and crisis management, in critical support of international developments, and for competent evaluation of nuclear facilities around Germany, these competences will be in demand far beyond the German opt-out. This is the reason why the final report by the Ethics Committee on 'Safe Energy Supply' emphasizes the importance of nuclear technology research. Close cooperation on national, European and international levels is indispensable in this effort. Also nuclear safety research in the Helmholtz Association is aligned with the challenges posed by the opt-out of the use of nuclear power. It is important that the high competences in the areas of plant safety and demolition, handling of radioactive waste, and safe final storage as well as radiation protection be preserved. The Nuclear Safety Research Program within the Energy Research Area of the Helmholtz Association therefore will continue studying scientific and technical aspects of the safety of nuclear reactors and the safety of nuclear waste management. These research activities are provident research conducted for society and must be preserved for a long period of time. The work is closely harmonized with the activities of the

  18. Risk evaluation method for faults by engineering approach. (1) Nuclear safety for accident scenario and measures for fault movement

    International Nuclear Information System (INIS)

    Narabayashi, Tadashi; Chiba, Go; Okamoto, Koji; Kameda, Hiroyuki; Ebisawa, Katsumi; Yamazaki, Haruo; Konagai, Kazuo; Kamiya, Masanobu; Nagasawa, Kazuyuki

    2016-01-01

    Japan, as a frequent earthquake country, has a responsibility to resolve efficient measures to enhance nuclear safety, to continue utilizing the nuclear power, based on the risks and importance levels in the scientific and rational manner. In his paper describes how to evaluate the risk of faults movement by engineering approach. An open fruitful discussion by experts in the various area of earthquake, geology, geotechnical, civil, and a seismic design as well as other stakeholders such as academia professors, nuclear reactor engineers, regulators, and licensees. The Atomic Energy Society established an Investigation Committee on Development of Activity and Risk Evaluation Method for Faults by Engineering Approach (IC-DAREFEA) on October 1st, a 2014. The Investigation Committee utilizes the most advanced scientific and rational judgement, and continuous discussions and efforts in the global field, in order to collect and organize these knowledge and reflect the global standards and nuclear regulations, such as risk evaluation method for the faults movements and prevention of severe accidents, based on the accumulated database in the world, including Chuetsuoki Earthquake, North Nagano Earthquake and Kumamoto Earthquake. (author)

  19. Nuclear safety organisation in France

    International Nuclear Information System (INIS)

    1979-12-01

    This report outlines the public authorities responsible for the safety of nuclear installations in France. The composition and responsibilities of the Central Safety Service of Nuclear Installations within the Ministry of Industry, the Institute of Nuclear Protection and Safety within the CEA, the Central Service of Protection Against Ionising Radiation and the Interministerial Committee of Nuclear Safety are given. Other areas covered include the technical safety examination of large nuclear installations, the occurrence of accidents, treatment and control of release of radioactive wastes and decommissioning. The section on regulations covers the authorisation procedure, plant commissioning, release of radioactive effluents, surveillance and protection of workers exposed to ionising radiation. The situation is compared with the USA and the Federal Republic of Germany. A list of commercial nuclear installations in France is given

  20. Nuclear Safety in Central and Eastern Europe

    International Nuclear Information System (INIS)

    2001-04-01

    Nuclear safety is one of the critical issues with respect to the enlargement of the European Union towards the countries of Central and Eastern Europe. In the context of the enlargement process, the European Commission overall strategy on nuclear safety matters has been to bring the general standard of nuclear safety in the pre-accession countries up to a level that would be comparable to the safety levels in the countries of the European Union. In this context, the primary objective of the project was to develop a common format and general guidance for the evaluation of the current nuclear safety status in countries that operate commercial nuclear power plants. Therefore, one of the project team first undertakings was to develop an approach that would allow for a consistent and comprehensive overview of the nuclear safety status in the CEEC, enabling an equal treatment of the countries to be evaluated. Such an approach, which did not exist, should also ensure identification of the most important safety issues of the individual nuclear power plants. The efforts resulted in the development of the ''Performance Evaluation Guide'', which focuses on important nuclear safety issues such as plant design and operation, the practice of performing safety assessments, and nuclear legislation and regulation, in particular the role of the national regulatory body. Another important aspect of the project was the validation of the Performance Evaluation Guide (PEG) by performing a preliminary evaluation of nuclear safety in the CEEC, namely in Bulgaria, Czech Republic, Hungary, Lithuania, Romania, Slovak Republic, and Slovenia. The nuclear safety evaluation of each country was performed as a desktop exercise, using solely available documents that had been prepared by various Western institutions and the countries themselves. Therefore, the evaluation is only of a preliminary nature. The project did not intend to re-assess nuclear safety, but to focus on a comprehensive summary

  1. Nuclear power: safety and prospects

    International Nuclear Information System (INIS)

    Miniere, D.

    2012-01-01

    Despite the Fukushima accident new countries are willing to use nuclear power and as a nuclear accident somewhere is a nuclear accident everywhere, all countries are concerned with nuclear safety. A big association that would gather all the national Safety Authorities would be an efficient tool to promote and improve safety at the world scale and may be the unique available tool as no country would let a foreign authority to drive its own nuclear industry. An important lesson from Fukushima and Chernobyl accidents is that the signature of a big nuclear accident is not the number of casualties (it will always be limited) but the importance of the radioactive contamination. The question is how to make this long-term and long-range contamination impossible to happen, it is the mission of nuclear safety. (A.C.)

  2. Improving versus maintaining nuclear safety

    International Nuclear Information System (INIS)

    2002-01-01

    The concept of improving nuclear safety versus maintaining it has been discussed at a number of nuclear regulators meetings in recent years. National reports have indicated that there are philosophical differences between NEA member countries about whether their regulatory approaches require licensees to continuously improve nuclear safety or to continuously maintain it. It has been concluded that, while the actual level of safety achieved in all member countries is probably much the same, this is difficult to prove in a quantitative way. In practice, all regulatory approaches require improvements to be made to correct deficiencies and when otherwise warranted. Based on contributions from members of the NEA Committee on Nuclear Regulatory Activities (CNRA), this publication provides an overview of current nuclear regulatory philosophies and approaches, as well as insights into a selection of public perception issues. This publication's intended audience is primarily nuclear safety regulators, but government authorities, nuclear power plant operators and the general public may also be interested. (author)

  3. Safety evaluation report related to the operation of Sequoyah Nuclear Plant, Units 1 and 2, Docket Nos. 50-327 and 50-328, Tennessee Valley Authority

    International Nuclear Information System (INIS)

    1982-12-01

    Supplement No. 6 to the Safety Evaluation Report (SER) related to the operation of the Tennessee Valley Authority's Sequoyah Nuclear Plant, Units 1 and 2, located in Hamilton County, Tennessee, has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. The purpose of this supplement is to update the staff's evaluations of the issues related to the hydrogen mitigation system identified in the SER and previous supplements as needing resolution

  4. Progress of nuclear safety research, (1)

    International Nuclear Information System (INIS)

    Amano, Hiroshi; Nakamura, Hiroei; Nozawa, Masao

    1981-01-01

    The Japan Atomic Energy Research Institute was established in 1956 in conformity with the national policy to extensively conduct the research associated with nuclear energy. Since then, the research on nuclear energy safety has been conducted. In 1978, the Division of Reactor Safety was organized to conduct the large research programs with large scale test facilities. Thereafter, the Divisions of Reactor Safety Evaluation, Environmental Safety Research and Reactor Fuel Examination were organized successively in the Reactor Safety Research Center. The subjects of research have ranged from the safety of nuclear reactors to that in the recycling of nuclear fuel. In this pamphlet, the activities in JAERI associated with the safety research are reported, which have been carried out in the past two years. Also, the international cooperation research program in which JAERI participated is included. This pamphlet consists of two parts, and in this Part 1, the reactor safety research is described. The safety of nuclear fuel, the integrity and safety of pressure boundary components, the engineered safety in LOCA, fuel behavior in accident and others are reported. (Kako, I.)

  5. Development of accident event trees and evaluation of safety system failure modes for the nuclear ultra large crude carrier

    International Nuclear Information System (INIS)

    Lewe, C.K.; Coffey, R.S.; Goodwin, E.F.; Maltese, J.G.; Pyatt, D.W.

    1978-01-01

    A method of applying the probabilistic accident event tree methodology to safety assessments of a nuclear powered Ultra Large Crude Carrier is presented. Also presented are the procedures by which an external accident initiating event, such as a ship collision, may be correlated with the probabilities of damage to the ship's safety systems and to their ultimate availabilities to perform required safety functions

  6. Nuclear safety review for 1984

    International Nuclear Information System (INIS)

    1985-08-01

    This publication is based on the fourth Nuclear Safety Review prepared by the IAEA Secretariat for presentation to the Board of Governors. It discusses relevant international activities in 1984 and the current status of nuclear safety and radiation protection, and looks ahead to anticipated developments

  7. Nuclear safety legislation and supervision in China

    International Nuclear Information System (INIS)

    Zhang Shiguan

    1991-02-01

    The cause for the urgent need of nuclear safety legislation and supervision in China is firstly described, and then a brief introduction to the basic principle and guideline of nuclear safety is presented. Finally the elaboration on the establishment of nuclear safety regulatory system, the enactment of a series of regulations and safety guides, and the implementation of licencing, nuclear safety supervision and research for ensuring the safety of nuclear energy, since the founding of the National Nuclear Safety Administration, are introduced

  8. Japan reforms its nuclear safety

    International Nuclear Information System (INIS)

    Anon.

    2013-01-01

    The Fukushima Daiichi NPP accident deeply questioned the bases of nuclear safety and nuclear safety regulation in Japan. It also resulted in a considerable loss of public confidence in the safety of nuclear power across the world. Although the accident was caused by natural phenomena, institutional and human factors also largely contributed to its devastating consequences, as shown by the Japanese Diet's and Government's investigation reports. 'Both regulators and licensees were held responsible and decided to fully reconsider the existing approaches to nuclear safety. Consequently, the regulatory system underwent extensive reform based on the lessons learned from the accident,' Yoshihiro Nakagome, the President of Japan Nuclear Energy Safety Organisation, an ETSON member TSO, explains. (orig.)

  9. Safety Evaluation Report related to the final design approval of the GESSAR II BWR/6 Nuclear Island Design (Docket No. 50-447). Supplement No. 3

    International Nuclear Information System (INIS)

    1985-01-01

    Supplement 3 to the Safety Evaluation Report (SER) for the application filed by General Electric Company for the final design approval for the GE BWR/6 nuclear island design has been prepared by the Office of Nuclear Reactor Regulation of the Nuclear Regulatory Commission. This report supplements the GESSAR II SER (NUREG-0979), issued in April 1983, summarizing the results of the staff's safety review of the GESSAR II BWR/6 nuclear island design. Subject to favorable resolution of the items discussed in this supplement, the staff concludes that the GESSAR II design satisfactorily addresses the severe-accident concerns described in draft NUREG-1070

  10. Improving the rationality of nuclear safety regulations

    International Nuclear Information System (INIS)

    Choi, Byung Sun; Choi, Y. G.; Mun, G. H.

    2005-03-01

    This study focuses on human nature and institutions around the risk management in Korean Nuclear Installations. Nuclear safety regulatory system in Korea has had a tendency to overvalue the technical or engineering areas. But just like other risk management system, the knowledge of social science is also required to design more valid safety regulatory system. As a result of analysis, this study suggest that performance regulation need to be introduced to current nuclear safety regulation system. In this advanced regulatory system, each nuclear generation unit have to be evaluated by performance of its own regulatory implementation and would be treated differently by the performance. Additionally, self-regulation could be very effective was to guarantee nuclear safety. Because KHNP could be judged to have an considerable capabilities to manage its own regulatory procedures. To make self-regulatory system established successfully, it is also important to arrange the appropriate incentive and compensate structures

  11. Safety Evaluation Report related to the renewal of the operating license for the General Electric-Nuclear Test Reactor (GE-NTR) (Docket No. 50-73)

    International Nuclear Information System (INIS)

    1984-09-01

    This Safety Evaluation Report for the application filed by the General Electric Company (GE) for a renewal license number R-33 to continue to operate its research reactor has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. The facility is owned and operated by GE and is located in Pleasanton, California. The staff concludes that the reactor can continue to be operated by GE without endangering the health and safety of the public

  12. Holes in the US nuclear safety net

    International Nuclear Information System (INIS)

    Utroska, D.

    1987-01-01

    Contrary to popular perception, the NRC has neither the authority nor the resources to comprehensively regulate the authority nor the resources to comprehensively regulate the nuclear power industry: it cannot check and monitor every nuclear plant in detail to assure reasonable reactor safety. This is widely understood within the power industry. After the Three Mile Island accident, the nuclear industry formed a group called the Institute of Nuclear Power Operations (INPO), based in Atlanta, Georgia. Its self-proclaimed mandate is to pick up the safety initiative where NRC regulations and reviews leave off; to make sure that each nuclear plant in the United States goes beyond compliance with minimum regulations and achieves excellence in safe and efficient performance. INPO's 1986 budget was $44 million, paid to the institute by electricity ratepayers via the nuclear utilities. Among other things, the money funds INPO's development of nuclear plant operating criteria and pays for plant inspections to determine if the standards are being met. INPO has deliberately maintained a low profile. INPO does not become involved in public or media activities on behalf of the industry or in the role of promoting the nuclear power option, the organization's formal institutional plan declares. A key aspect of INPO's public noninvolvement is keeping to itself and its members the results of its nuclear plant safety evaluations. Although consumers fund INPO activities and have a stake in nuclear plant safety, the press and the public are denied access to INPO safety investigation reports. 8 references

  13. Evaluation of reactor safety

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1960-04-15

    Although the operation of nuclear reactors has a remarkably good record of safety, the prevention of possible reactor accidents is one of the major factors that atomic planners have to contend with. At the same time, excessive caution may breed an attitude that hampers progress, either by resisting new development or by demanding unnecessarily elaborate and expensive precautions out of proportion to the actual hazards involved. The best course obviously is to determine the possible dangers and adopt adequate measures for their prevention, providing of course, for a reasonable margin of error in judging the hazards and the effectiveness of the measures. The greater the expert understanding and thoroughness with which this is done, the narrower need the margin be. This is the basic idea behind the evaluation of reactor safety

  14. Nuclear Safety through International Cooperation

    International Nuclear Information System (INIS)

    Flory, Denis

    2013-01-01

    The Fukushima Daiichi nuclear accident was the worst at a nuclear facility since the Chernobyl accident in 1986. It caused deep public anxiety and damaged confidence in nuclear power. Following this accident, strengthening nuclear safety standards and emergency response has become an imperative at the global level. The IAEA is leading in developing a global approach, and the IAEA Action Plan on Nuclear Safety is providing a comprehensive framework and acting as a significant driving force to identify lessons learned and to implement safety improvements. Strengthening nuclear safety is addressed through a number of measures proposed in the Action Plan including 12 main actions focusing on safety assessments in the light of the accident. Significant progress has been made in assessing safety vulnerabilities of nuclear power plants, strengthening the IAEA's peer review services, improvements in emergency preparedness and response capabilities, strengthening and maintaining capacity building, as well as widening the scope and enhancing communication and information sharing with Member States, international organizations and the public. Progress has also been made in reviewing the IAEA's safety standards, which continue to be widely applied by regulators, operators and the nuclear industry in general, with increased attention and focus on accident prevention, in particular severe accidents, and emergency preparedness and response.

  15. Safety evaluation report related to the operation of Watts Bar Nuclear Plant, Units 1 and 2 (Docket Nos. 50-390 and 50-391). Supplement No. 14

    Energy Technology Data Exchange (ETDEWEB)

    Tam, P.S.

    1994-12-01

    Supplement No. 14 to the Safety Evaluation Report for the application filed by the Tennessee Valley Authority for license to operate Watts Bar Nuclear Plant, Units 1 and 2, Docket Nos. 50-390 and 50-391, located in Rhea County, Tennessee, has been prepared by the Office of Nuclear Reactor Regulation of the Nuclear Regulatory Commission. The purpose of this supplement is to update the Safety Evaluation with additional information submitted by the applicant since Supplement No. 13 was issued, and matters that the staff had under review when Supplement No. 13 was issued.

  16. Safety Evaluation Report related to the operation of Shearon Harris Nuclear Power Plant, Unit No. 1 (Docket No. STN 50-400). Supplement No. 4

    International Nuclear Information System (INIS)

    1986-10-01

    This report, Supplement No. 4 to the Safety Evaluation Report for the application filed by the Carolina Power and Light Company and North Carolina Eastern Municipal Power Agency (the applicants) for a license to operate the Shearon Harris Nuclear Power Plant Unit 1 (Docket No. 50-400), has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. This supplement reports the status of certain items that had not been resolved at the time of publication of the Safety Evaluation Report and Supplement Nos. 1, 2, and 3

  17. Safety evaluation report related to the operation of Watts Bar Nuclear Plant, Units 1 and 2 (Docket Nos. 50-390 and 50-391): Supplement No. 19

    International Nuclear Information System (INIS)

    1995-11-01

    Supplement No. 19 to the Safety Evaluation Report for the application filed by the Tennessee Valley Authority for license to operate Watts Bar Nuclear Plant, Units 1 and 2, Docket Nos. 50-390 and 50-391, located in Rhea County Tennessee, has been prepared by the Office of Nuclear Reactor Regulation of the Nuclear Regulatory Commission. The purpose of this supplement is to update the Safety Evaluation with (1) additional information submitted by the applicant since Supplement No. 18 was issued, and (2) matters that the staff had under review when Supplement No. 18 was issued

  18. Safety evaluation report related to the operation of Shearon Harris Nuclear Power Plant, Unit No. 1 (Docket No. STN 50-400). Supplement No. 1

    International Nuclear Information System (INIS)

    1984-06-01

    This report, Supplement No. 1 to the Safety Evaluation Report for the application filed by the Carolina Power and Light Company and North Carolina Eastern Municipal Power Agency (the applicant) for license to operate the Shearon Harris Nuclear Power Plant Unit 1 (Docket No. 50-400), has been prepared by the Office of Nuclear Reactor Regulation of the U.S. Nuclear Regulatory Commission. This supplement reports the status of certain items that had not been resolved at the time of publication of the Safety Evaluation Report

  19. Safety Evaluation Report related to the operation of Shearon Harris Nuclear Power Plant, Unit No. 1 (Docket No. STN 50-400). Supplement No. 2

    International Nuclear Information System (INIS)

    1985-06-01

    This report, Supplement No. 2 to the Safety Evaluation Report for the application filed by the Carolina Power and Light Company and North Carolina Eastern Municipal Power Agency (the applicants) for a license to operate the Shearon Harris Nuclear Power Plant Unit 1 (Docket No. 50-400), has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. This supplement reports the status of certain items that had not been resolved at the time of publication of the Safety Evaluation Report and Supplement No. 1

  20. Safety Evaluation Report related to the operation of Shearon Harris Nuclear Power Plant, Unit No. 1 (Docket No. STN 50-400). Supplement No. 3

    International Nuclear Information System (INIS)

    1986-05-01

    This report, Supplement No. 3 to the Safety Evaluation Report for the application filed by the Carolina Power and Light Company and North Carolina Eastern Municipal Power Agency (the applicants) for a license to operate the Shearon Harris Nuclear Power Plant Unit 1 (Docket No. 50-400), has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. This supplement reports the status of certain items that had not been resolved at the time of publication of the Safety Evaluation Report and Supplement Nos. 1 and 2

  1. Safety evaluation report related to the construction of Skagit/Hanford Nuclear Project, Units 1 and 2. Docket Nos. STN 50-522 and 50-523

    International Nuclear Information System (INIS)

    1982-12-01

    Supplement 3 to the Safety Evaluation Report for the application filed by Puget Sound Power and Light Company on behalf of itself, the Pacific Power and Light Company, The Washington Water Power Company, and the Portland General Electric Company for construction permits to build the Skagit/Hanford Nuclear Project has been issued by the Office of Nuclear Reactor Regulation of the United States Nuclear Regulatory Commission. This supplement is an evaluation of the site relocation amendment to the Preliminary Safety Analysis Report. The proposed site has been relocated from Skagit County, Washington, to the Department of Energy's Hanford Reservation

  2. Safety evaluation report related to the operation of Watts Bar Nuclear Plant, Units 1 and 2, Docket Nos. 50-390 and 50-391

    International Nuclear Information System (INIS)

    1992-01-01

    Supplement No. 8 to the Safety Evaluation Report for the application filed by the Tennessee Valley Authority for license to operate Watts Bar Nuclear plant, Units 1 and 2, Docket Nos. 50-390 and 50-391, located in Rhea County, Tennessee, has been prepared by the Office of Nuclear Reactor Regulation of the Nuclear Regulatory Commission. The purpose of this supplement is to update the Safety Evaluation of (1) additional information submitted by the applicant since Supplement No. 7 was issued, and (2) matters that the staff had under review when Supplement No. 7 was issued

  3. Safety Evaluation Report related to the operation of Millstone Nuclear Power Station Unit No. 3 (Docket No. 50-4423). Supplement No. 1

    International Nuclear Information System (INIS)

    1985-03-01

    In July 1984 staff of the Nuclear Regulatory Commission issued its Safety Evaluation Report regarding the application of Northeast Nuclear Energy Company (applicant and agent for the owners) for a license to operate Millstone Nuclear Power Station, Unit No. 3 (Docket 50-423). The facility is located in the town of Waterford, New London County, Connecticut, on the north shore of Long Island Sound. This first supplement to NUREG-1031 reports the status of certain items that remained unresolved at the time the Safety Evaluation Report was published

  4. Evaluation of Model Driven Development of Safety Critical Software in the Nuclear Power Plant I and C system

    International Nuclear Information System (INIS)

    Jung, Jae Cheon; Chang, Hoon Seon; Chang, Young Woo; Kim, Jae Hack; Sohn, Se Do

    2005-01-01

    The major issues of the safety critical software are formalism and V and V. Implementing these two characteristics in the safety critical software will greatly enhance the quality of software product. The structure based development requires lots of output documents from the requirements phase to the testing phase. The requirements analysis phase is open omitted. According to the Standish group report in 2001, 49% of software project is cancelled before completion or never implemented. In addition, 23% is completed and become operational, but over-budget, over the time estimation, and with fewer features and functions than initially specified. They identified ten success factors. Among them, firm basic requirements and formal methods are technically achievable factors while the remaining eight are management related. Misunderstanding of requirements due to lack of communication between the design engineer and verification engineer causes unexpected result such as functionality error of system. Safety critical software shall comply with such characteristics as; modularity, simplicity, minimizing the sub-routine, and excluding the interrupt routine. In addition, the crosslink fault and erroneous function shall be eliminated. The easiness of repairing work after the installation shall be achieved as well. In consideration of the above issues, we evaluate the model driven development (MDD) methods for nuclear I and C systems software. For qualitative analysis, the unified modeling language (UML), functional block language (FBL) and the safety critical application environment (SCADE) are tested for the above characteristics

  5. Safety evaluation report related to the operation of Nine Mile Point Nuclear Station, Unit No. 2 (Docket No. 50-410)

    International Nuclear Information System (INIS)

    1986-07-01

    This report supplements the Safety Evaluation Report (NUREG-1047, February 1985) for the application filed by Niagara Mohawk Power Corporation, as applicant and co-owner, for a license to operate the Nine Mile Point Nuclear Station, Unit No. 2 (Docket No. 50-410). It has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. The facility is located near Oswego, New York. Supplement 1 to the Safety Evaluation Report was published in June 1985 and contained the report from the Advisory Committee on Reactor Safeguards as well as the resolution to a number of outstanding issues from the Safety Evaluation Report. Supplement 2 was published in November 1985 and contained the resolution to a number of outstanding and confirmatory issues. Subject to favorable resolution of the issues discussed in this report, the NRC staff concludes that the facility can be operated by the applicant without endangering the health and safety of the public

  6. Using probabilistic safety analysis for evaluation and optimisation of Technichal Specifications of Nuclear Power Plants

    International Nuclear Information System (INIS)

    Baeckstroem, Ola; Haeggstroem, Anna; Knochenhauer, Michael

    2010-01-01

    Studies on risk-informed methods have been a part of NKS activities since late 1980's, but at that time the industry was not ready for the use of these methods. The common understanding right now is that the industry and authorities are ready for adoption of risk-informed strategies. It shall be noted that Finland has developed the use of risk-informed analyses, whereas this area has been less focused in Sweden. The use of risk informed methods in daily operation at the Nuclear Power Plants as well as for long term evaluation and definition of rules and regulations is increasing. Risk informed methods have been applied on a case by case basis during the past few years, but it is expected that these methods will be applied in a quite different manner in the coming years. (orig.)

  7. Nuclear safety training program (NSTP) for dismantling

    International Nuclear Information System (INIS)

    Cretskens, Pieter; Lenie, Koen; Mulier, Guido

    2014-01-01

    European Control Services (GDF Suez) has developed and is still developing specific training programs for the dismantling and decontamination of nuclear installations. The main topic in these programs is nuclear safety culture. We therefore do not focus on technical training but on developing the right human behavior to work in a 'safety culture' environment. The vision and techniques behind these programs have already been tested in different environments: for example the dismantling of the BN MOX Plant in Dessel (Belgium), Nuclear Safety Culture Training for Electrabel NPP Doel..., but also in the non-nuclear industry. The expertise to do so was found in combining the know-how of the Training and the Nuclear Department of ECS. In training, ECS is one of the main providers of education in risky tasks, like elevation and manipulation of charges, working in confined spaces... but it does also develop training on demand to improve safety in a certain topic. Radiation Protection is the core business in the Nuclear Department with a presence on most of the nuclear sites in Belgium. Combining these two domains in a nuclear safety training program, NSTP, is an important stage in a dismantling project due to specific contamination, technical and other risks. It increases the level of safety and leads to a harmonization of different working cultures. The modular training program makes it possible to evaluate constantly as well as in group or individually. (authors)

  8. French statutory approach of the evaluation of the safety level of old nuclear divisions; Approche reglementaire francaise de l`appreciation du niveau de surete des tranches anciennes

    Energy Technology Data Exchange (ETDEWEB)

    Delage, M

    1994-06-01

    The legal French procedures include three steps which have to be followed during the exam of the safety in nuclear plants (creation authorization, loading authorization, actual running of the plant). After listing the different types of evaluation of safety in fraction of plants, this report presents the main themes encountered during the safety assessment: state of the reactor, maintenance, tracking of the incidents, personnel training, radioprotection, radioactive releases. The Fessenheim and Bugey list of reevaluation themes is also given. (TEC).

  9. Nuclear power: Siting and safety

    International Nuclear Information System (INIS)

    Openshaw, S.

    1986-01-01

    By 2030, half, or even two-thirds, of all electricity may be generated by nuclear power. Major reactor accidents are still expected to be rare occurrences, but nuclear safety is largely a matter of faith. Terrorist attacks, sabotage, and human error could cause a significant accident. Reactor siting can offer an additional, design-independent margin of safety. Remote geographical sites for new plants would minimize health risks, protect the industry from negative changes in public opinion concerning nuclear energy, and improve long-term public acceptance of nuclear power. U.K. siting practices usually do not consider the contribution to safety that could be obtained from remote sites. This book discusses the present trends of siting policies of nuclear power and their design-independent margin of safety

  10. Nuclear criticality safety handbook. Version 2

    International Nuclear Information System (INIS)

    1999-03-01

    The Nuclear Criticality Safety Handbook, Version 2 essentially includes the description of the Supplement Report to the Nuclear Criticality Safety Handbook, released in 1995, into the first version of Nuclear Criticality Safety Handbook, published in 1988. The following two points are new: (1) exemplifying safety margins related to modelled dissolution and extraction processes, (2) describing evaluation methods and alarm system for criticality accidents. Revision is made based on previous studies for the chapter that treats modelling the fuel system: e.g., the fuel grain size that the system can be regarded as homogeneous, non-uniformity effect of fuel solution, and burnup credit. This revision solves the inconsistencies found in the first version between the evaluation of errors found in JACS code system and criticality condition data that were calculated based on the evaluation. (author)

  11. Safety-evaluation report related to the operation of Shoreham Nuclear Power Station, Unit No. 1 (Docket No. 50-322)

    International Nuclear Information System (INIS)

    1983-09-01

    Supplement 4 (SSER 4) to the Safety Evaluation Report on Long Island Lighting Company's application for a license to operate the Shoreham Nuclear Power Station, Unit 1, located in Suffolk County, New York, has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. This supplement addresses several items that have been reviewed by the staff since the previous supplement was issued

  12. Safety evaluation report related to the operation of Shoreham Nuclear Power Station, Unit No. 1 (Docket No. 50-322). Supplement No. 7

    International Nuclear Information System (INIS)

    1984-09-01

    Supplement 7 (SSER 7) to the Safety Evaluation Report on Long Island Lighting Company's application for a license to operate the Shoreham Nuclear Power Station, Unit 1, located in Suffolk County, New York, has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. This supplement addresses several items that have been reviewed by the staff since the previous supplement was issued

  13. Safety Evaluation Report related to the operation of Shoreham Nuclear Power Station, Unit No. 1 (Docket No. 50-322). Supplement No. 8

    International Nuclear Information System (INIS)

    1984-12-01

    Supplement 8 (SSER 8) to the Safety Evaluation Report on Long Island Lighting Company's application for a license to operate the Shoreham Nuclear Power Station, Unit 1, located in Suffolk County, New York, has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. This supplement addresses several items that have been reviewed by the staff since the previous supplement was issued

  14. Safety Evaluation Report related to the operation of Diablo Canyon Nuclear Power Plant, Units 1 and 2 (Docket Nos. 50-275 and 50-323)

    International Nuclear Information System (INIS)

    1984-07-01

    Supplement 27 to the Safety Evaluation Report for Pacific Gas and Electric Company's application for a license to operate Diablo Canyon Nuclear Power Plant, Unit 1 (Docket No. 50-275), has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. This supplement addresses the revisions to the license conditions and to the Technical Specifications as they relate to Amendment 10 to Diablo Canyon, Unit 1 Facility Operating License, DPR-76

  15. Safety evaluation report related to the operation of Shoreham Nuclear Power Station, Unit No. 1 (Docket No. 50-322). Supplement No. 6

    International Nuclear Information System (INIS)

    1984-07-01

    Supplement 6 (SSER 6) to the Safety Evaluation Report on Long Island Lighting Company's application for a license to operate the Shoreham Nuclear Power Station, Unit 1, located in Suffolk County, New York, has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. This supplement addresses several items that have been reviewed by the staff since the previous supplement was issued

  16. Safety Evaluation Report related to the operation of Shoreham Nuclear Power Station, Unit No. 1 (Docket No. 50-322). Supplement No. 9

    International Nuclear Information System (INIS)

    1985-12-01

    Supplement 9 (SSER 9) to the Safety Evaluation Report on Long Island Lighting Company's application for a license to operate the Shoreham Nuclear Power Station, Unit 1, located in Suffolk County, New York, has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. This supplement addresses several items that have been reviewed by the staff since the previous supplement was issued

  17. The role of nuclear law in nuclear safety after Fukushima

    International Nuclear Information System (INIS)

    Cardozo, Diva E. Puig

    2013-01-01

    The paper contains the following topics: nuclear law, origin and evolution, role of the legal instruments on nuclear safety, nuclear safety the impact of major nuclear accidents: Chernobyl and Fukushima. The response of the nuclear law post Fukushima. Safety and security. International framework for nuclear safety: nuclear convention joint convention on safety on spent fuel management and on the safety of radioactive waste management. The Fukushima World Conference on Nuclear Safety. Convention on Prompt Notification and Assistance in case of a Nuclear Accident or Radiological Emergency. Plan of Action for Nuclear Safety. IAEA recommendations for the safety transport of radioactive material. International framework for nuclear security. Convention on the Physical Protection of Nuclear Materials. International Convention for the Suppression of Acts Against Nuclear Terrorism. Resolution No. 1540 of the Security Council of United Nations (2004). Measures to strengthen international safety. Code of conduct on the safety research reactor

  18. Progress of nuclear safety research, (2)

    International Nuclear Information System (INIS)

    Amano, Hiroshi; Nakamura, Hiroei; Nozawa, Masao

    1981-01-01

    The Japan Atomic Energy Research Institute was established in 1956 in conformity with the national policy to extensively conduct the research associated with nuclear energy. Since then, the research on nuclear energy safety has been conducted. In 1978, the Division of Reactor Safety was organized to conduct the large research programs with large scale test facilities. Thereafter, the Divisions of Reactor Safety Evaluation, Environmental Safety Research and Reactor Fuel Examination were organized successevely in the Reactor Safety Research Center. The subjects of research have ranged from the safety of nuclear reactors to that in the recycling of nuclear fuel. In this pamphlet, the activities in JAERI associated with the safety research are reported, which have been carried out in the past two years. Also the international cooperation research program in which JAERI participated is included. This pamphlet consists of two parts and in this Part 2, the environmental safety research is described. The evaluation and analysis of environmental radioactivity, the study on radioactive waste management and the studies on various subjects related to environmental safety are reported. (Kako, I.)

  19. Nuclear safety and nuclear insurance

    International Nuclear Information System (INIS)

    Abramovitz, A.

    1983-01-01

    To an extent, public opinion is against Koeberg, inspite of the fact that Escom, Koeberg's prospective licensee, are liable for damages caused in the event of an accident, that they carry public liability insurance bought in the market place to the maximum of ten million rand, and if that is not enough the government will take over responsibility for the rest. A question is put that if this kind of protection carries on, won't there always be a minority of the public who will find nuclear power socially, psychologically and politically unacceptable

  20. Safety management in nuclear technology. Proceedings

    International Nuclear Information System (INIS)

    2008-01-01

    At the symposium of TueV Sued AG (Munich, Federal Republic of Germany) held in Munich on 28 and 29 October 2008, the following lectures were held: (1) Fundamental requirements of the management system in nuclear technology - Experiences from the international developments at IAEA and WENRA (M. Herttrich); (2) Information from a comparison of requirements of safety management systems (B. Kallenbach-Herbert); (3) Requirements of a modern management system in German nuclear power plants from the view of nuclear safety (D. Majer); (4) Requirements on safety management in module 8 of the regulations project (M. Maqua); (5) Requirements on the management system in nuclear power plants according to GRS-229 and developments at the KTA 1402 ''Integrated management system for safe operation of nuclear power plants (in progress)'' (C. Verstegen); (6) Experiences from the development and implementation of safety management systems in connection with the works management of a nuclear power plant (K. Ramler); (7) Design of a safety management system of a nuclear power plant in consideration of existing management systems (U. Naumann); (8) Experiences in the utilization and evaluation of a safety management system (J. Ritter); (9) Aspects of leadership of safety management systems (S. Seitz); (10) Management of safety or safety management system? Prevailing or administration? (A. Frischknecht); (11) Change management - strategies for successful transfer of new projects: How can I motivate co-workers for a further development of the safety management system? (U. Schnabel); (12) Requirements concerning indicators in integrated management systems and safety management systems (J. Stiller); (13) Integration of proactive and reactive indicators in the safety management system (B. Fahlbruch); (14) What do indicators show? About the use of indicators by regulatory authorities (A. Kern); (15) Safety management and radiation protection in nuclear technology (K. Grantner); (16) Any more

  1. Evaluation of periodic safety status analyses

    International Nuclear Information System (INIS)

    Faber, C.; Staub, G.

    1997-01-01

    In order to carry out the evaluation of safety status analyses by the safety assessor within the periodical safety reviews of nuclear power plants safety goal oriented requirements have been formulated together with complementary evaluation criteria. Their application in an inter-disciplinary coopertion covering the subject areas involved facilitates a complete safety goal oriented assessment of the plant status. The procedure is outlined briefly by an example for the safety goal 'reactivity control' for BWRs. (orig.) [de

  2. Dispersion of radioactive material in air and water and consideration of population distribution in site evaluation for nuclear power plants. Safety guide

    International Nuclear Information System (INIS)

    2002-01-01

    The IAEA issues Safety Requirements and Safety Guides pertaining to nuclear power plants and activities in the field of nuclear energy, on the basis of its Safety Fundamentals publication on The Safety of Nuclear Installations. The present Safety Guide, which supplements the Code on the Safety of Nuclear Power Plants: Siting, concerns the effects of a nuclear power plant on the surrounding region and the consideration of population distribution in the siting of a plant. This Safety Guide makes recommendations on how to meet the requirements of the Code on the Safety of Nuclear Power Plants: Siting, on the basis of knowledge of the mechanisms for the dispersion of effluents discharged into the atmosphere and into surface water and groundwater. Relevant site characteristics and safety considerations are discussed. Population distribution, the projected population growth rate, particular geographical features, the capabilities of local transport networks and communications networks, industry and agriculture in the region, and recreational and institutional activities in the region should be considered in assessing the feasibility of developing an emergency response plan. In the selection of a site for a facility using radioactive material, such as a nuclear power plant, account should be taken of any local features that might be affected by the facility and of the feasibility of off-site intervention, including emergency response and protective actions. This is in addition to the evaluation of any features of the site itself that might affect the safety of the facility. This Safety Guide recommends methods for the assessment of regional and local characteristics. This Safety Guide supersedes four earlier IAEA Safety Guides, namely: Atmospheric Dispersion in Nuclear Power Plant Siting (Safety Series No. 50-SG-S3 (1980)); Site Selection and Evaluation for Nuclear Power Plants with Respect to Population Distribution (Safety Series No. 50-SG-S4 (1980)); Hydrological

  3. Dispersion of radioactive material in air and water and consideration of population distribution in site evaluation for nuclear power plants. Safety guide

    International Nuclear Information System (INIS)

    2004-01-01

    The IAEA issues Safety Requirements and Safety Guides pertaining to nuclear power plants and activities in the field of nuclear energy, on the basis of its Safety Fundamentals publication on The Safety of Nuclear Installations. The present Safety Guide, which supplements the Code on the Safety of Nuclear Power Plants: Siting, concerns the effects of a nuclear power plant on the surrounding region and the consideration of population distribution in the siting of a plant. This Safety Guide makes recommendations on how to meet the requirements of the Code on the Safety of Nuclear Power Plants: Siting, on the basis of knowledge of the mechanisms for the dispersion of effluents discharged into the atmosphere and into surface water and groundwater. Relevant site characteristics and safety considerations are discussed. Population distribution, the projected population growth rate, particular geographical features, the capabilities of local transport networks and communications networks, industry and agriculture in the region, and recreational and institutional activities in the region should be considered in assessing the feasibility of developing an emergency response plan. In the selection of a site for a facility using radioactive material, such as a nuclear power plant, account should be taken of any local features that might be affected by the facility and of the feasibility of off-site intervention, including emergency response and protective actions. This is in addition to the evaluation of any features of the site itself that might affect the safety of the facility. This Safety Guide recommends methods for the assessment of regional and local characteristics. This Safety Guide supersedes four earlier IAEA Safety Guides, namely: Atmospheric Dispersion in Nuclear Power Plant Siting (Safety Series No. 50-SG-S3 (1980)). Site Selection and Evaluation for Nuclear Power Plants with Respect to Population Distribution (Safety Series No. 50-SG-S4 (1980)). Hydrological

  4. National nuclear safety report 2005. Convention on nuclear safety

    International Nuclear Information System (INIS)

    2006-01-01

    This National Nuclear Safety Report was presented at the 3rd. Review meeting. In general the information contained in the report are: Highlights / Themes; Follow-up from 2nd. Review meeting; Challenges, achievements and good practices; Planned measures to improve safety; Updates to National report to 3rd. Review meeting; Questions from peer review of National Report; and Conclusions

  5. Safety goals for commercial nuclear power plants

    International Nuclear Information System (INIS)

    Roe, J.W.

    1988-01-01

    In its official policy statement on safety goals for the operation of nuclear power plants, the Nuclear Regulatory Commission (NRC) set two qualitative goals, supported by two quantitative objectives. These goals are that (1) individual members of the public should be provided a level of protection from the consequences of nuclear power plant operation such that individuals bear no significant additional risk to life and health; and (2) societal risks to life and health from nuclear power plant operation should be comparable to or less than the risks of generating electricity by viable competing technologies and should not be a significant addition to other societal risks. As an alternative, this study proposes four quantitative safety goals for nuclear power plants. It begins with an analysis of the NRC's safety-goal development process, a key portion of which was devoted to delineating criteria for evaluating goal-development methods. Based on this analysis, recommendations for revision of the NRC's basic benchmarks for goal development are proposed. Using the revised criteria, NRC safety goals are evaluated, and the alternative safety goals are proposed. To further support these recommendations, both the NRC's goals and the proposed goals are compared with the results of three major probabilistic risk assessment studies. Finally, the potential impact of these recommendations on nuclear safety is described

  6. Dukovany nuclear power plant safety

    International Nuclear Information System (INIS)

    1999-01-01

    Presentation covers recommended safety issues for the Dukovany NPP which have been solved with satisfactory conclusions. Safety issues concerned include: radiation safety; nuclear safety; security; emergency preparedness; health protection at work; fire protection; environmental protection; chemical safety; technical safety. Quality assurance programs at all stages on NPP life time is described. Report includes description of NPP staff training provision, training simulator, emergency operating procedures, emergency preparedness, Year 2000 problem, inspections and life time management. Description of Dukovany Plant Safety Analysis Projects including integrity of the equipment, modernisation, equipment innovation and safety upgrading program show that this approach corresponds to the actual practice applied in EU countries, and fulfilment of current IAEA requirements for safety enhancement of the WWER 440/213 units in the course of MORAWA Equipment Upgrading program

  7. Evaluation of systems interactions in nuclear power plants: Technical findings related to Unresolved Safety Issue A-17

    International Nuclear Information System (INIS)

    Thatcher, D.

    1989-05-01

    This report presents a summary of the activities related to Unresolved Safety Issue (USI)A-17, ''Systems Interactions in Nuclear Power Plants,'' and also includes the NRC staff's conclusions based on those activities. The staff's technical findings provide the framework for the final resolution of this unresolved safety issue. The final resolution will be published later as NUREG-1229. 52 refs., 4 tabs

  8. Objectives of safety evaluation

    International Nuclear Information System (INIS)

    Rosen, M.

    1980-01-01

    An examination of the safety aspects of exported nuclear power plants demonstrates that additional and somewhat special considerations exist for these plants. In view of this and the generally small regulatory staffs of importing coutnries, suggestions are given for measures which should be taken by various organizations involved in the export and import of nuclear power facilities to raise the level of the very essential safety assessment. (orig.)

  9. Nuclear safety research master plan

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Jae Joo; Yang, J. U.; Jun, Y. S. and others

    2001-06-01

    The SRMP (Safety Research Master Plan) is established to cope with the changes of nuclear industry environments. The tech. tree is developed according to the accident progress of the nuclear reactor. The 11 research fields are derived to cover the necessary technologies to ensure the safety of nuclear reactors. Based on the developed tech. tree, the following four main research fields are derived as the main safety research areas: 1. Integrated nuclear safety enhancement, 2. Thermal hydraulic experiment and assessment, 3. Severe accident management and experiment, and 4. The integrity of equipment and structure. The research frame and strategies are also recommended to enhance the efficiency of research activity, and to extend the applicability of research output.

  10. Groundwater-stream-simulation experiments for the evaluation of the safety of proposed nuclear waste repositories

    International Nuclear Information System (INIS)

    Seitz, M.G.

    1981-01-01

    A bench-scale experimental design which integrates repository components to simulate a groundwater stream infiltrating a breached repository is described in this paper. An experiment performed with a nuclear waste solid and one rock core is briefly summarized. The nuclear waste solid consists of borosilicate glass containing formulated nuclear waste and is the source of the leached radionuclides. The rock core used is of granite and serves as the adsorption medium for the leached radionuclides

  11. Safety Evaluation Report related to the operation of Nine Mile Point Nuclear Station, Unit No. 2 (Docket No. 50-410)

    International Nuclear Information System (INIS)

    1985-02-01

    The Safety Evaluation Report for the application filed by the Niagara Mohawk Power Corporation, as applicant and co-owner, for a license to operate the Nine Mile Point Nuclear Station, Unit 2 (Docket No. 50-410), has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. The facility is located near Oswego, New York. Subject to favorable resolution of the items discussed in this report, the NRC staff concludes that the facility can be operated by the applicant without endangering the health and safety of the public

  12. Safety evaluation report related to the operation of Shearon Harris Nuclear Power Plant, Units 1 and 2. Docket Nos. STN 50-400 and STN 50-401

    International Nuclear Information System (INIS)

    1983-11-01

    The Safety Evaluation Report for the application filed by the Carolina Power and Light Company, as applicant and owner, for licenses to operate the Shearon Harris Nuclear Power Plant Units 1 and 2 (Docket Nos. 50-400 and 50-401) has been prepared by the Office of Nuclear Reactor Regulation of US Nuclear Regulatory Commission. The facility is located near Raleigh, North Carolina. Subject to favorable resolution of the items discussed in this report, the NRC staff concludes that the facility can be operated by the applicant without endangering the health and safety of the public

  13. Nuclear installations: if the biotechnologist is involved sooner in the evaluation of design, safety worries are better integrated

    International Nuclear Information System (INIS)

    Charron, S.; Tosello, M.

    1995-01-01

    The institutional background to the safety assessment of nuclear installations is based upon tripartite links between the operator of a complex and hazardous process, the regulatory authorities and their technical support services. The biotechnologists responsible for the human factor side of the safety assessment are better able to deal with this complex situation if they get involved at the very outset of a project: in order to reach a compromise that is more acceptable from the safety standpoint. (authors). 7 refs

  14. Safety goals for nuclear power

    International Nuclear Information System (INIS)

    Fischhoff, B.

    1984-02-01

    The key policy question in managing hazardous technologies is often some variant of How safe is safe enough. The US Nuclear Regulatory Commission has recently broached this topic by adopting safety goals defining acceptable risk levels for nuclear power plants. These goals are analyzed here with a general theory of standard setting (Fischhoff, 1983) which asks: (1) Are standards an appropriate policy tool in this case. (2) Can the Commission's safety philosophy be defended. (3) Do the operational goals capture that philosophy. The anlaysis shows the safety goals proposal to be sophisticated in some respects, incomplete in others. More generally, it points to difficulties with the concept of acceptable risk and any attempt to build policy instruments around it. Although focused on the NRC's safety goals, the present analysis is a prototype of what can be learned by similarly detailed consideration of other standards, not only for nuclear power but also for other hazardous technologies, as well as for issues unrelated to safety

  15. The Jules Horowitz reactor: complementary safety evaluation in the light of the Fukushima 1 nuclear power station accident

    International Nuclear Information System (INIS)

    2011-01-01

    This report proposes a complementary safety evaluation of the Jules Horowitz reactor in Cadarache (INB 172), one of the French basic nuclear installations (BNI, in French INB) in the light of the Fukushima accident. This evaluation takes the following risks into account: risks of flooding, earthquake, loss of power supply and loss of cooling, in addition to operational management of accident situations. It presents the main characteristics of the installation, identifies the risks of a cliff effect and the main structures and equipment, evaluates the seismic risk (installation sizing, installation conformity, margin evaluation), evaluates the flooding risk (installation sizing, installation conformity, margin evaluation), briefly examines other extreme natural phenomena (extreme meteorological conditions related to flooding, earthquake or flooding with a higher level than that for which the installation is designed). It analyzes the risk of a loss of power supply and of cooling (loss of external and internal electric sources, loss of the ultimate cooling system). It analyzes the management of severe accidents: crisis management organization, available intervention means, robustness of available means. It discusses the conditions of the use of subcontractors

  16. National Nuclear Safety Report 2001. Convention on Nuclear Safety

    International Nuclear Information System (INIS)

    2001-01-01

    The First National Nuclear Safety Report was presented at the first review meeting of the Nuclear Safety Convention. At that time it was concluded that Argentina met the obligations of the Convention. This second National Nuclear Safety Report is an updated report which includes all safety aspects of the Argentinian nuclear power plants and the measures taken to enhance the safety of the plants. The present report also takes into account the observations and discussions maintained during the first review meeting. The conclusion made in the first review meeting about the compliance by Argentina of the obligations of the Convention are included as Annex 1. In general, the information contained in this Report has been updated since March 31, 1998 to March 31, 2001. Those aspects that remain unchanged were not addressed in this second report with the objective of avoiding repetitions and in order to carry out a detailed analysis considering article by article. As a result of the above mentioned detailed analysis of all the Articles, it can be stated that the country fulfils all the obligations imposed by the Nuclear Safety Convention

  17. National nuclear safety report 2004. Convention on nuclear safety

    International Nuclear Information System (INIS)

    2004-01-01

    The second National Nuclear Safety Report was presented at the second review meeting of the Nuclear Safety Convention. At that time it was concluded that Argentina met the obligations of the Convention. This third National Nuclear Safety Report is an updated report which includes all safety aspects of the Argentinian nuclear power plants and the measures taken to enhance the safety of the plants. The present report also takes into account the observations and discussions maintained during the second review meeting. The conclusion made in the first review meeting about the compliance by Argentina of the obligations of the Convention are included as Annex I and those belonging to the second review meeting are included as Annex II. In general, the information contained in this Report has been updated since March 31, 2001 to April 30, 2004. Those aspects that remain unchanged were not addressed in this third report. As a result of the detailed analysis of all the Articles, it can be stated that the country fulfils all the obligations imposed by the Nuclear Safety Convention. The questions and answers originated at the Second Review Meeting are included as Annex III

  18. National nuclear safety report 1998. Convention on nuclear safety

    International Nuclear Information System (INIS)

    1998-01-01

    The Argentine Republic subscribed the Convention on Nuclear Safety, approved by a Diplomatic Conference in Vienna, Austria, in June 17th, 1994. According to the provisions in Section 5th of the Convention, each Contracting Party shall submit for its examination a National Nuclear Safety Report about the measures adopted to comply with the corresponding obligations. This Report describes the actions that the Argentine Republic is carrying on since the beginning of its nuclear activities, showing that it complies with the obligations derived from the Convention, in accordance with the provisions of its Article 4. The analysis of the compliance with such obligations is based on the legislation in force, the applicable regulatory standards and procedures, the issued licenses, and other regulatory decisions. The corresponding information is described in the analysis of each of the Convention Articles constituting this Report. The present National Report has been performed in order to comply with Article 5 of the Convention on Nuclear Safety, and has been prepared as much as possible following the Guidelines Regarding National Reports under the Convention on Nuclear Safety, approved in the Preparatory Meeting of the Contracting Parties, held in Vienna in April 1997. This means that the Report has been ordered according to the Articles of the Convention on Nuclear Safety and the contents indicated in the guidelines. The information contained in the articles, which are part of the Report shows the compliance of the Argentine Republic, as a contracting party of such Convention, with the obligations assumed

  19. Progress of nuclear safety research. 2001

    Energy Technology Data Exchange (ETDEWEB)

    Anoda, Yoshinari; Sasajima, Hideo; Nishiyama, Yutaka (eds.) [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment] [and others

    2001-10-01

    JAERI is conducting nuclear safety research primarily at the Nuclear Safety Research Center in close cooperation with the related departments in accordance with the Long Term Plan for Development and Utilization of Nuclear Energy or the Safety Research Annual Plan issued by the Japanese government. The safety research at JAERI concerns the engineering safety of nuclear power plants and nuclear fuel cycle facilities, and radioactive waste management as well as advanced technology for safety improvement or assessment. Also, JAERI has conducted international collaboration to share the information on common global issues of nuclear safety. This report summarizes the nuclear safety research activities of JAERI from April 1999 through March 2001. (author)

  20. Selecting of key safety parameters in reactor nuclear safety supervision

    International Nuclear Information System (INIS)

    He Fan; Yu Hong

    2014-01-01

    The safety parameters indicate the operational states and safety of research reactor are the basis of nuclear safety supervision institution to carry out effective supervision to nuclear facilities. In this paper, the selecting of key safety parameters presented by the research reactor operating unit to National Nuclear Safety Administration that can express the research reactor operational states and safety when operational occurrence or nuclear accident happens, and the interrelationship between them are discussed. Analysis shows that, the key parameters to nuclear safety supervision of research reactor including design limits, operational limits and conditions, safety system settings, safety limits, acceptable limits and emergency action level etc. (authors)

  1. The internationalization of nuclear safety

    International Nuclear Information System (INIS)

    Rosen, M.

    1989-01-01

    Nuclear safety is interlinked in many ways with the themes of this conference. In searching for co-operative activities that touch on global energy and environmental problems and on initiatives that relieve international tensions, the ongoing developments in nuclear power safety offer a number of successful examples. Commercial nuclear power has been with us for more than 30 years, and with 26 countries operating plants in addition to 6 more constructing their first, there has been an ongoing global co-operation, coinciding of Chernobyl with Glasnost, along with the increasing awareness of the benefits of common solutions to safety issues, have brought about an internationalization of nuclear safety. Although the main responsibility for safety rests with each operator and its government, a primary driving force expanding international co-operation is the transboundary aspects of nuclear energy, as vividly demonstrated by Chernobyl accident. In this presentation we focus on the mechanisms already in place that foster cooperation in the nuclear safety area

  2. Safety Evaluation Report on Tennessee Valley Authority: Revised Corporate Nuclear Performance Plan

    International Nuclear Information System (INIS)

    1987-07-01

    The TVA Corporate Nuclear Performance Plan addresses those corporate concerns identified by the NRC staff. Because much of the TVA corporate plan is programmatic, its effectiveness depends on its implementation, and the NRC staff plans to closely monitor this implementation. The NRC staff will address site-specific concerns in subsequent SERs on each volume of the Nuclear Performance Plan. On the basis of its review, the NRC staff finds TVA's revised Corporate Nuclear Performance Plan (Revision 4) acceptable. The NRC staff concludes that the organization and staffing of TVA's Office of Nuclear Power and the programmatic improvements in place or under way are sufficient, if implemented properly, to resolve the problems at the corporate level that led to issuance of the 10 CFR 50.54(f) letter dated September 17, 1985, and to support continuing TVA nuclear activities, including plant operations. 19 refs., 3 figs

  3. A review of the status of nuclear safety in the Central and East European Countries with special reference to the evaluation of the situation in Romania

    International Nuclear Information System (INIS)

    Webster, Simon

    2001-01-01

    This paper briefly presents the status of nuclear safety in the candidate countries in the light of the progress towards accession to the European Union, and draws particular attention to the recent evaluation made by the Atomic Questions Group of the Council of Ministers by reference to the general recommendations and the specific recommendations addressed to Romania appearing in the evaluation report. (author)

  4. Status of National Nuclear Infrastructure Development (NG-T-3.2). Basis for Evaluation - Legal, safety, security, safeguards issues

    International Nuclear Information System (INIS)

    Yllera, Javier

    2010-01-01

    A framework for achieving high levels of nuclear safety and security worldwide Builds upon: Legal Instruments; Use of IAEA SSs and security guidance; Harmonization of national regulations; Exchange of knowledge, experiences & regulatory practices and Multinational cooperation and safety reviews. The IAEA is the depository of many key international conventions and legal agreements. All countries with operating nuclear power plants are now parties to the Convention. The main objective of Convention on Nuclear Safety is to achieve and maintain a high level of nuclear safety worldwide through the enhancement of national measures and international cooperation including, where appropriate, safety related technical co-operation. All practical efforts must be made to prevent and mitigate nuclear or radiation accidents. The primary means of preventing and mitigating the consequences of accidents is “defence in depth”. Safety assessments are to be carried out and documented by the organization responsible for operating the facility, are to be independently verified and are to be submitted to the regulatory body as part of the licensing or authorization process. Licensing process must be well-defined, clear, transparent and traceable. The public should be given an opportunity to provide their views during certain steps of the licensing process

  5. Safety-Evaluation Report related to the operation of Grand Gulf Nuclear Station, Units 1 and 2. Docket Nos. 50-416 and 50-417

    International Nuclear Information System (INIS)

    1983-05-01

    Supplement 4 to the Safety Evaluation Report for Mississippi Power and Light Company, et. al., joint application for licenses to operate the Grand Gulf Nuclear Station, Units 1 and 2, located on the east bank of the Mississippi River near Port Gibson in Claiborne County, Mississippi, has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. This supplement reports the status on the resolution of those issues that required further evaluation before authorizing operation of Unit 1 above 5% rated power and other issues that were to be evaluated during the first cycle of power operation

  6. SRTC criticality technical review: Nuclear Criticality Safety Evaluation 93-18 Uranium Solidification Facility's Waste Handling Facility

    International Nuclear Information System (INIS)

    Rathbun, R.

    1993-01-01

    Separate review of NMP-NCS-930058, open-quotes Nuclear Criticality Safety Evaluation 93-18 Uranium Solidification Facility's Waste Handling Facility (U), August 17, 1993,close quotes was requested of SRTC Applied Physics Group. The NCSE is a criticality assessment to determine waste container uranium limits in the Uranium Solidification Facility's Waste Handling Facility. The NCSE under review concludes that the NDA room remains in a critically safe configuration for all normal and single credible abnormal conditions. The ability to make this conclusion is highly dependent on array limitation and inclusion of physical barriers between 2x2x1 arrays of boxes containing materials contaminated with uranium. After a thorough review of the NCSE and independent calculations, this reviewer agrees with that conclusion

  7. CNE (Embalse nuclear power plant): probabilistic safety study. Loss of service water. Probabilistic evaluation and analysis through events sequence

    International Nuclear Information System (INIS)

    Couto, A.J.; Perez, S.S.

    1987-01-01

    This work is part of a study on the service water systems of the Embalse nuclear power plant from a safety point of view. The faults of service water systems of high and low pressure that can lead to situations threatening the plant safety were analyzed in a previous report. The event 'total loss of low pressure service water' causes the largest number of such conditions. Such event is an operational incident that can lead to an accident situation due to faults in the required process systems or by omission of a procedure. The annual frequency of the event 'total loss of low pressure service water' is calculated. The main contribution comes from pump failure. The evaluation of the accident sequences shows that the most direct way to the liberation of fission products is the loss of steam generators as heat sink. The contributions to small and large LOCA and electric supply loss are analyzed. The sequence that leads to tritium release through boiling of moderator is also evaluated. (Author)

  8. Safety assessment for Generation IV nuclear systems

    International Nuclear Information System (INIS)

    Leahy, T.J.

    2012-01-01

    The Generation IV International Forum (GIF) Risk and Safety Working Group (RSWG) was created to develop an effective approach for the safety of Generation IV advanced nuclear energy systems. Recent RSWG work has focused on the definition of an integrated safety assessment methodology (ISAM) for evaluating the safety of Generation IV systems. ISAM is an integrated 'tool-kit' consisting of 5 analytical techniques that are available and matched to appropriate stages of Generation IV system concept development: 1) qualitative safety features review - QSR, 2) phenomena identification and ranking table - PIRT, 3) objective provision tree - OPT, 4) deterministic and phenomenological analyses - DPA, and 5) probabilistic safety analysis - PSA. The integrated methodology is intended to yield safety-related insights that help actively drive the evolving design throughout the technology development cycle, potentially resulting in enhanced safety, reduced costs, and shortened development time

  9. Development of Nuclear Power Plant Safety Evaluation Method for the Automation Algorithm Application

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seung Geun; Seong, Poong Hyun [KAIST, Daejeon (Korea, Republic of)

    2016-10-15

    It is commonly believed that replacing human operators to the automated system would guarantee greater efficiency, lower workloads, and fewer human error. Conventional machine learning techniques are considered as not capable to handle complex situations in NPP. Due to these kinds of issues, automation is not actively adopted although human error probability drastically increases during abnormal situations in NPP due to overload of information, high workload, and short time available for diagnosis. Recently, new machine learning techniques, which are known as ‘deep learning’ techniques have been actively applied to many fields, and the deep learning technique-based artificial intelligences (AIs) are showing better performance than conventional AIs. In 2015, deep Q-network (DQN) which is one of the deep learning techniques was developed and applied to train AI that automatically plays various Atari 2800 games, and this AI surpassed the human-level playing in many kind of games. Also in 2016, ‘Alpha-Go’, which was developed by ‘Google Deepmind’ based on deep learning technique to play the game of Go (i.e. Baduk), was defeated Se-dol Lee who is the World Go champion with score of 4:1. By the effort for reducing human error in NPPs, the ultimate goal of this study is the development of automation algorithm which can cover various situations in NPPs. As the first part, quantitative and real-time NPP safety evaluation method is being developed in order to provide the training criteria for automation algorithm. For that, EWS concept of medical field was adopted, and the applicability is investigated in this paper. Practically, the application of full automation (i.e. fully replaces human operators) may requires much more time for the validation and investigation of side-effects after the development of automation algorithm, and so the adoption in the form of full automation will take long time.

  10. Development of Nuclear Power Plant Safety Evaluation Method for the Automation Algorithm Application

    International Nuclear Information System (INIS)

    Kim, Seung Geun; Seong, Poong Hyun

    2016-01-01

    It is commonly believed that replacing human operators to the automated system would guarantee greater efficiency, lower workloads, and fewer human error. Conventional machine learning techniques are considered as not capable to handle complex situations in NPP. Due to these kinds of issues, automation is not actively adopted although human error probability drastically increases during abnormal situations in NPP due to overload of information, high workload, and short time available for diagnosis. Recently, new machine learning techniques, which are known as ‘deep learning’ techniques have been actively applied to many fields, and the deep learning technique-based artificial intelligences (AIs) are showing better performance than conventional AIs. In 2015, deep Q-network (DQN) which is one of the deep learning techniques was developed and applied to train AI that automatically plays various Atari 2800 games, and this AI surpassed the human-level playing in many kind of games. Also in 2016, ‘Alpha-Go’, which was developed by ‘Google Deepmind’ based on deep learning technique to play the game of Go (i.e. Baduk), was defeated Se-dol Lee who is the World Go champion with score of 4:1. By the effort for reducing human error in NPPs, the ultimate goal of this study is the development of automation algorithm which can cover various situations in NPPs. As the first part, quantitative and real-time NPP safety evaluation method is being developed in order to provide the training criteria for automation algorithm. For that, EWS concept of medical field was adopted, and the applicability is investigated in this paper. Practically, the application of full automation (i.e. fully replaces human operators) may requires much more time for the validation and investigation of side-effects after the development of automation algorithm, and so the adoption in the form of full automation will take long time

  11. Safety of WWER type nuclear power plants - viewing from Hungary

    International Nuclear Information System (INIS)

    Voeroess, L.

    1991-01-01

    An evaluation of WWER type nuclear power plants operating in Hungary is given, relative to the safety requirements accepted internationally; how safe can they be regarded and what can be done to assure a high level of safety in all case. After an overview of general safety criteria, an overall description of WWER-440 type nuclear reactors is presented. Design safety, operational safety issues are treated in detail. Safety inspection and safety-related research and development is discussed. Regarding the future, five different issues associated with nuclear reactor safety should be considered. (R.P.) 20 refs.; 12 figs.; 3 tabs

  12. Nuclear safety research in HGF 2012

    International Nuclear Information System (INIS)

    Anon.

    2013-01-01

    After the events at the Japanese nuclear power plant of Fukushima Daiichi, the German Federal government decided that Germany will give up electricity generation from nuclear power within a decade. The last reactor will be disconnected from the power grid in 2022. Helping to make this opt-out safe is one of the duties of the Helmholtz Association with its Nuclear Safety Research Program within the Energy Research Area. Also the demolition of nuclear power plants and the repository problem will keep society, and thus also research, busy for a number of decades to come. Giving up electricity production from nuclear power thus must not mean giving up the required nuclear technology competences. In the fields of reactor safety, demolition, final storage, radiation protection, and crisis management, in critical support of international developments, and for competent evaluation of nuclear facilities around Germany, these competences will be in demand far beyond the German opt-out. This is the reason why the final report by the Ethics Committee on 'Safe Energy Supply' emphasizes the importance of nuclear technology research. Close cooperation on national, European and international levels is indispensable in this effort. Also nuclear safety research in the Helmholtz Association is aligned with the challenges posed by the opt-out of the use of nuclear power. It is important that the high competences in the areas of plant safety and demolition, handling of radioactive waste, and safe final storage as well as radiation protection be preserved. The Nuclear Safety Research Program within the Energy Research Area of the Helmholtz Association therefore will continue studying scientific and technical aspects of the safety of nuclear reactors and the safety of nuclear waste management. These research activities are provident research conducted for society and must be preserved for a long period of time. The work is closely harmonized with the activities of the partners in the

  13. Technical evaluation of the susceptibility of safety-related systems to flooding caused by the failure of non-category I systems for Palisades nuclear power plant

    International Nuclear Information System (INIS)

    Collins, E.K.

    1979-10-01

    The technical evaluation is presented of Consumers Power Company's Palisades nuclear power plant to determine whether the failure of any non-Category I (seismic) equipment could result in a condition, such as flooding, that might potentially adversely affect the performance of safety-related equipment required for the safe shutdown of the facility or to mitigate the consequences of an accident. Criteria developed by the US Nuclear Regulatory Commission were used to evaluate the acceptability of the existing protection as well as measures taken by Consumers Power Company to minimize the danger of flooding and to protect safety-related equipment

  14. Safety evaluation report related to the full-term operating license for San Onofre Nuclear Generating Station, Unit 1 (Docket No. 50-206)

    International Nuclear Information System (INIS)

    1991-07-01

    The safety evaluation report for the full-term operating license application filed by the Southern California Edison Company and the San Diego Gas and Electric Company has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. The facility is located in San Diego County, California. The staff has evaluated the issues related to the conversion of the provisional operating license to a full-term operating license and concluded that the facility can continue to be operated without endangering the health and safety of the public following the license conversion. 43 refs., 3 figs., 3 tabs

  15. Nuclear power reactor safety

    International Nuclear Information System (INIS)

    Pon, G.A.

    1976-10-01

    This report is based on the Atomic Energy of Canada Limited submission to the Royal Commission on Electric Power Planning on the safety of CANDU reactors. It discusses normal operating conditions, postulated accident conditions, and safety systems. The release of radioactivity under normal and accident conditions is compared to the limits set by the Atomic Energy Control Regulations. (author)

  16. International nuclear safety

    International Nuclear Information System (INIS)

    Wolff, P.H.W.

    1978-01-01

    The background to the development of internationally agreed safety principles and practices is discussed. The activities of the IAEA and the scope, structure, and organisation of its programme of Reactor Safety Codes and Guides are described. Attention is drawn to certain areas needing further considerations. (UK)

  17. Nuclear safety - Culture or obsession?

    International Nuclear Information System (INIS)

    Pereira Villar, Heldio

    2002-01-01

    Although nuclear activities are among the safest, having an enviable record in this respect, public perception is quite different. It is argued here that, regardless of the fact that environmental groups and the media in general look unfavourably towards the nuclear sector, the emphasis the sector places on safety matters is a liability rather than a asset. In short, public acceptance of a risky enterprise increases with the safety concerns shown by an entrepreneur up to a certain point. Beyond this threshold the enterprise is found too risky to be accepted, and it looks like the nuclear establishment has already crossed it. Ideas for further relationship with the public are then shown. (author)

  18. Safety significance evaluation system

    International Nuclear Information System (INIS)

    Lew, B.S.; Yee, D.; Brewer, W.K.; Quattro, P.J.; Kirby, K.D.

    1991-01-01

    This paper reports that the Pacific Gas and Electric Company (PG and E), in cooperation with ABZ, Incorporated and Science Applications International Corporation (SAIC), investigated the use of artificial intelligence-based programming techniques to assist utility personnel in regulatory compliance problems. The result of this investigation is that artificial intelligence-based programming techniques can successfully be applied to this problem. To demonstrate this, a general methodology was developed and several prototype systems based on this methodology were developed. The prototypes address U.S. Nuclear Regulatory Commission (NRC) event reportability requirements, technical specification compliance based on plant equipment status, and quality assurance assistance. This collection of prototype modules is named the safety significance evaluation system

  19. The safety of nuclear installations

    International Nuclear Information System (INIS)

    1993-01-01

    This Safety Fundamental publication sets out basic objectives, concepts and principles for ensuring safety that can be used both by the IAEA in its international assistance operations and by Member States in their national nuclear programmes. These Safety Fundamentals apply primarily to those nuclear installations in which the stored energy developed in certain situations could potentially results in the release of radioactive material from its designated location with the consequent risk of radiation exposure of people. These principles are applicable to a broad range of nuclear installations, but their detailed application will depend on the particular technology and the risks posed by it. In addition to nuclear power plants, such installations may include: research reactors and facilities, fuel enrichment, manufacturing and reprocessing plants; and certain facilities for radioactive waste treatment and storage

  20. Safety Evaluation Report related to the operation of Nine Mile Point Nuclear Station, Unit No. 2 (Docket No. 50-410)

    International Nuclear Information System (INIS)

    1987-07-01

    This report supplements the Safety Evaluation Report (NUREG-1047, February 1985) for the application filed by Niagara Mohawk Power Corporation, as applicant and co-owner, for the license to operate Nine Mile Point Nuclear Station, Unit 2 (Docket No. 50-410). It has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. The facility is located near Oswego, New York. This report supports the issuance of the full-power license for Nine Mile Point Nuclear Station, Unit No. 2

  1. Integrated Plant Safety Assessment: Systematic Evaluation Program. Yankee Nuclear Power Station, Yankee Atomic Electric Company, Docket No. 50-29. Final report

    International Nuclear Information System (INIS)

    1983-06-01

    The Systematic Evaluation program was initiated in February 1977 by the US Nuclear Regulatory Commission to review the designs of older operating nuclear reactor plants to confirm and document their safety. The review provides: (1) an assessment of how these plants compare with current licensing safety requirements relating to selected issues, (2) a basis for deciding on how these differences should be resolved in an integrated plant review, and (3) a documented evaluation of plant safety. This report documents the review of Yankee Nuclear Power Station, operated by Yankee Atomic Electric Company. The Yankee plant is one of 10 plants reviewed under Phase II of this program. This report indicates how 137 topics selected for review under Phase I of the program were addressed. Equipment and procedural changes have been identified as a result of the review

  2. Integrated Plant Safety Assessment, Systematic Evaluation Program. Yankee Nuclear Power Station, Yankee Atomic Electric Company, Docket No. 50-29. Draft report

    International Nuclear Information System (INIS)

    1983-02-01

    The Systematic Evaluation Program was initiated in February 1977 by the US Nuclear Regulatory Commission to review the designs of older operating nuclear reactor plants to confirm and document their safety. The review provides (1) an assessment of how these plants compare with current licensing safety requirements relating to selected issues, (2) a basis for deciding on how these differences should be resolved in an integrated plant review, and (3) a documented evaluation of plant safety. This report documents the review of Yankee Nuclear Power Station, operated by Yankee Atomic Electric Company. The Yankee plant is one of 10 plants reviewed under Phase II of this program. This report indicates how 137 topics selected for review under Phase I of the program were addressed. Equipment and procedural changes have been identified as a result of the review

  3. Regulatory oversight on nuclear safety in Taiwan

    Energy Technology Data Exchange (ETDEWEB)

    Huang, T-T. [Atomic Energy Council, New Taipei City, Taiwan (China)

    2014-07-01

    Taiwan is a densely populated island and over 98% of its energy is imported, 16.5% of which is nuclear, in the form of materials and services. Ensuring that the most stringent nuclear safety standards are met therefore remains a priority for the government and the operator, Taiwan power Company (Taipower). There are eight nuclear power reactors in Taiwan, six of which are in operation and two are under construction. The first began operating nearly 40 years ago. For the time being the issue of whether to decommission or extend life of the operating units is also being discussed and has no conclusion yet. Nuclear energy has been a hot issue in debate over the past decades in Taiwan. Construction of Lungmen nuclear power plant, site selection of a final low-level waste disposal facility, installation of spent fuel dry storage facilities and safety of the currently operating nuclear power reactors are the issues that all Taiwanese are concerned most. In order to ensure the safety of nuclear power plant, the Atomic Energy Council (AEC) has implemented rigorous regulatory work over the past decades. After the Fukushima accident, AEC has conducted a reassessment program to re-evaluate all nuclear power plants in Taiwan, and asked Taipower to follow the technical guidelines, which ENSREG has utilized to implement stress test over nuclear power plants in Europe. In addition, AEC has invited two expert teams from OECD/NEA and ENSREG to conduct peer reviews of Taiwan's stress test national report in 2013. My presentation will focus on activities regulating safety of nuclear power programs. These will cover (A) policy of nuclear power regulation in Taiwan, (B)challenges of the Lungmen Plant, (C) post-Fukushima safety re-assessment, and (D)radioactive waste management. (author)

  4. Evaluation of repository safety

    Energy Technology Data Exchange (ETDEWEB)

    Sagar, B.; Patrick, W.; Dasgupta, B.; Mohanty, S. [Center for Nuclear Waste Regulatory Analyses, San Antonio (United States)

    2002-07-01

    . Mathematical models play an even larger role in evaluating repository safety in the much longer postclosure period. During this period, repository performance is evaluated considering gradual degradation of engineered barriers, together with possible slow changes in the natural system (e.g., climate) and under conditions of potential discrete and sudden disruptive events (e.g., volcanic eruption, seismic ground motion, and direct fault movement). The general aim of postclosure performance assessment models is to simulate the future behavior of the repository in a manner that is sufficiently simplified to be tractable, yet sufficiently realistic to give reasonable (or bounded) estimates of risk to future generations. The simplifications are based on information gained by using process level models, natural analog studies, and laboratory and fieldwork. Because of large uncertainties inherent in characterizing a large and complex system for such long periods, probabilistic simulations are generally preferred. In this paper, we briefly describe the preclosure and postclosure safety evaluation models developed jointly by the Center for Nuclear Waste Regulatory Analyses and the U.S. Nuclear Regulatory Commission. We give examples illustrating how we intend to use these models within the regulatory framework to evaluate the required.

  5. Evaluation of repository safety

    International Nuclear Information System (INIS)

    Sagar, B.; Patrick, W.; Dasgupta, B.; Mohanty, S.

    2002-01-01

    . Mathematical models play an even larger role in evaluating repository safety in the much longer postclosure period. During this period, repository performance is evaluated considering gradual degradation of engineered barriers, together with possible slow changes in the natural system (e.g., climate) and under conditions of potential discrete and sudden disruptive events (e.g., volcanic eruption, seismic ground motion, and direct fault movement). The general aim of postclosure performance assessment models is to simulate the future behavior of the repository in a manner that is sufficiently simplified to be tractable, yet sufficiently realistic to give reasonable (or bounded) estimates of risk to future generations. The simplifications are based on information gained by using process level models, natural analog studies, and laboratory and fieldwork. Because of large uncertainties inherent in characterizing a large and complex system for such long periods, probabilistic simulations are generally preferred. In this paper, we briefly describe the preclosure and postclosure safety evaluation models developed jointly by the Center for Nuclear Waste Regulatory Analyses and the U.S. Nuclear Regulatory Commission. We give examples illustrating how we intend to use these models within the regulatory framework to evaluate the required

  6. Nuclear safety management at the Wolsong NGS

    Energy Technology Data Exchange (ETDEWEB)

    Bong-Seob, Han [Korea Electric Power Corp., Wolson NPP no. 1 and 2 (Korea, Republic of)

    1997-12-01

    Nuclear safety management at the Wolsong nuclear power plant is described, including the following issues: site selection; plant history; operational goals; operational guidelines; reactor safety; safety training; plant maintenance; management of plant equipment lifetime; future tasks.

  7. Nuclear safety management at the Wolsong NGS

    International Nuclear Information System (INIS)

    Han Bong-Seob

    1997-01-01

    Nuclear safety management at the Wolsong nuclear power plant is described, including the following issues: site selection; plant history; operational goals; operational guidelines; reactor safety; safety training; plant maintenance; management of plant equipment lifetime; future tasks

  8. Safety-evaluation report related to operation of McGuire Nuclear Station, Units 1 and 2. Docket Nos. 50-369 and 50-370

    International Nuclear Information System (INIS)

    1983-05-01

    This report supplements the Safety Evaluation Report Related to the Operation of McGuire Nuclear Station, Units 1 and 2 (SER (NUREG-0422)) issued in March 1978 by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission with respect to the application filed by Duke Power Company, as applicant and owner, for licenses to operate the McGuire Nuclear Station, Units 1 and 2 (Docket Nos. 50-369 and 50-370). The facility is located in Mecklenburg County, North Carolina, about 17 mi north-northwest of Charlotte, North Carolina. This supplement provides information related to issuance of a full-power authorization for Unit 2. The staff concludes that the McGuire Nuclear Station can be operated by the licensee without endangering the health and safety of the public

  9. Safety evaluation report related to the operation of Millstone Nuclear Power Station, Unit No. 3 (Docket No. 50-423). Supplement No. 5

    International Nuclear Information System (INIS)

    1986-01-01

    This report supplements the Safety Evaluation Report (NUREG-1031) issued in July 1984, Supplement 1 issued in March 1985, Supplement 2 issued in September 1985, Supplement 3 issued in November 1985, and Supplement 4 issued in November 1985 by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission with respect to the application filed by Northeast Nuclear Energy Company (licensee and agent for the owners) for a license to operate Millstone Nuclear Power Station, Unit No. 3 (Docket 50-423). The supplement provides more recent information regarding resolution of license conditions identified in the SER. Because of the favorable resolution of the items discussed in this report, the staff concludes that Millstone Nuclear Power Station, Unit No. 3, can be operated by the licensee at power levels greater than 5% without endangering the health and safety of the public. 13 refs

  10. Nuclear health and safety

    International Nuclear Information System (INIS)

    1990-04-01

    This report summarizes the responsiveness of DOE and contractors to findings contained in DOE technical safety appraisals and environmental surveys. These appraisals and surveys have been done at DOE facilities and sites to find out the extent of the environmental, safety, and health problems and to prioritize them for corrective action. As of January 1990, DOE computer data showed over 1,700 safety and health problems and almost 1,300 environmental problems. The majority of these problems, however, have not yet been corrected. GAO also looked at the extent to which DOE has developed a computerized tracking system to monitor the status of its environmental, safety, and health problems. GAO found that the computer system lacks important information, such as various field office and independent appraisals. Inclusion of this information would provide a more complete picture of the problems at the site

  11. Safety of nuclear installations

    International Nuclear Information System (INIS)

    Esteves, R.G.

    1987-01-01

    The safety philosophy of a PWR type reactor distinguishing three levels of safety, is presented. At the first level, the concept of reactivity defining coefficients which measure the reactivity variation is introduced. At the second level, the reactor protection system establishing the design criteria to assure the high reliability, is defined. At the third level, the protection barriers to contain the consequences of accident evolution, are defined. (M.C.K.) [pt

  12. Nuclear plant safety

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    The four-member New York Power Pool Panel concluded that, for a number of reasons, no nuclear power plant in New York State is prone to the type of accident that occurred at Three Mile Island (TMI). The Panel further concluded that changes in operating practices, both regulatory and voluntary, and heightened sensitivity to reactor-core-cooling requirements will substantially reduce the chances for another such accident anywhere. Panel members found that New York State utilities have taken a responsible attitude with regard to requirements set forth by the Nuclear Regulatory Commission (NRC) as a result of the TMI accident. In a cover letter that accompanied the report to Federal and New York state officials, New York Power Pool Executive Committee Chairman Francis E. Drake, Jr. expressed hope that the report will alleviate public fears of nuclear reactors and promote wider acceptance of nuclear energy as an economic and safe means of power production. 17 references

  13. On the road to new nuclear safety

    International Nuclear Information System (INIS)

    Kovacs, Zoltan; Novakova, Helena; Spenlinger, Robert

    2013-01-01

    The article describes the issue of nuclear safety of nuclear power plants and major factors affecting nuclear safety, discusses the consequences of the Fukushima-Daiichi accident, and outlines the advanced concept of nuclear safety which extends the current regulatory requirements for plant safety. This new concept should be adopted globally to prevent occurrences having similar consequences worldwide. The tasks of this new nuclear safety concept are discussed. (orig.)

  14. Upgrade in the CNSNS of the determination process about the importance for the impact evaluation to the safety of defaults or violations in the national nuclear facilities

    International Nuclear Information System (INIS)

    Espinosa V, J. M.; Jauregui Ch, V.

    2014-10-01

    Inside the process of Impact Evaluation to the Safety of the Direccion General Adjunta de Seguridad Nuclear of the Comision Nacional de Seguridad Nuclear y Salvaguardias (CNSNS) the Significance Determination Process (SDP) is used, developed by the United States Nuclear Regulatory Commission (US NRC), to evaluate the violations or defaults to the regulatory framework and to determine its importance to the risk by means of a fixed color: Green (Very low impact to the safety), White (Low impact to moderate to the safety), Yellow (Substantial impact to the safety) or Red (High impact to the safety). All this inside the seven safety foundations of the Reactor Oversight Process: Initiator Events, Mitigation Systems, Integrity of the Barriers, Preparation for Emergencies, Occupational Radiological Safety, Radiological Safety of the Public and Physical Safety. At present the US NRC has developed a new version of the SDP, which presents changes in its structure and the opportunity of carrying out informed evaluations in risk, with more detail about the violations or defaults that happen in different areas. The CNSNS carries out the adaptation of this last version of the SDP in order to have an updated tool for the violations and defaults characterization to the regulatory framework happened in the nuclear power plant of Laguna Verde. In this article is mentioned the legal framework that confers the CNSNS the attributions to impose urgency measures and administrative sanctions to its licensees, also is established the definition of the different colors that the SDP contemplates in function of the increased risk (ΔCdf), a description of the SDP objectives and the elements that conform it is presented, in the same way some examples to illustrate its application are raised. Finally, the steps to continue for their implementation are mentioned. (Author)

  15. Safety Evaluation Report related to the operation of Millstone Nuclear Power Station, Unit No. 3 (Docket No. 50-423). Supplement No. 3

    International Nuclear Information System (INIS)

    1985-11-01

    This report supplements the Safety Evaluation Report (NUREG-1031) issued in July 1984, Supplement 1 issued in March 1985, and Supplement 2 issued in September 1985 by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission with respect to the application filed by Northeast Nuclear Energy Company (applicant and agent for the owners) for a license to operate Millstone Nuclear Power Station, Unit No. 3 (Docket 50-423). The facility is located in the Town of Waterford, New London County, Connecticut, on the north shore of Long Island Sound. This supplement provides more recent information regarding resolution or updating of some of the open and confirmatory items and license conditions identified in the Safety Evaluation Report

  16. Safety Evaluation Report related to the operation of Grand Gulf Nuclear Station, Units 1 and 2 (Docket Nos. 50-416 and 50-417). Supplement 6

    International Nuclear Information System (INIS)

    1984-08-01

    Supplement 6 to the Safety Evaluation Report for Mississippi Power and Light Company et al. joint application for licenses to operate the Grand Gulf Nuclear Station, Units 1 and 2, located on the east bank of the Mississippi River near Port Gibson in Claiborne County, Mississippi, has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. This supplement reports the NRC staff's evaluation of open items from previous supplements and Technical Specification changes required before authorizing operation of Unit 1 above 5% of rated power

  17. Safety Evaluation Report related to the operation of Grand Gulf Nuclear Station, Units 1 and 2 (Docket Nos. 50-416 and 50-417). Supplement No. 5

    International Nuclear Information System (INIS)

    1984-08-01

    Supplement 5 to the Safety Evaluation Report for Mississippi Power and Light Company, et al., joint application for licenses to operate the Grand Gulf Nuclear Station, Units 1 and 2, located on the east bank of the Mississippi River near Port Gibson in Claiborne County, Mississippi, has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. This supplement reports the status on the resolution of those issues that require further evaluation before authorizing operation of Unit 1 above 5% of rated power

  18. Nuclear safety and public debate

    International Nuclear Information System (INIS)

    Tanguy, P.

    1997-01-01

    In this article are evoked the question of nuclear safety and the public opinion, from the beginning of nuclear power plants in 1954 where a peaceful use of nuclear energy is developed in minds. If the aim was to avoid any important accident, the Three Miles Island accident and more recently the Chernobyl accident provoked a shock in public opinion and marked a peak of nuclear controversy. From this point, the policy of transparence and a best information of the public taken as a partner are necessary to maintain the dialogue. (N.C.)

  19. Research on consequence analysis method for probabilistic safety assessment of nuclear fuel facilities (4). Investigation of safety evaluation method for fire and explosion incidents

    International Nuclear Information System (INIS)

    Abe, Hitoshi; Tashiro, Shinsuke; Ueda, Yoshinori

    2010-01-01

    A special committee on 'Research on the analysis methods for accident consequence of nuclear fuel facilities (NFFs)' was organized by the Atomic Energy Society of Japan (AESJ) under the entrustment of Japan Atomic Energy Agency (JAEA). The committee aims to research on the state-of-the-art consequence analysis method for Probabilistic Safety Assessment (PSA) of NFFs, such as fuel reprocessing and fuel fabrication facilities. The objective of this research is to obtain the useful information related to the establishment of quantitative performance objectives and to risk-informed regulation through qualifying issues needed to be resolved for applying PSA to NFFs. The research activities of the committee were mainly focused on the analysis method of consequences for postulated accidents with potentially large consequences in NFFs, e.g., events of criticality, spill of molten glass, hydrogen explosion, boiling of radioactive solution, and fire (including rapid decomposition of TBP complexes), resulting in the release of radio active materials into the environment. The results of the research were summarized in a series of six reports, which consist of a review report and five technical ones. In this technical report, the research results about basic experimental data and the method for safety evaluation of fire and explosion incidents were summarized. (author)

  20. Enhancement of nuclear safety culture

    International Nuclear Information System (INIS)

    Anderson, Stanley J.

    1996-01-01

    Throughout the 40-year history of the commercial nuclear power industry, improvements have continually been made in the design of nuclear power plants and the equipment in them. In one sense, we have reached an enviable point -- in most plants, equipment failures have become relatively rare. Yet events continue to occur. Regardless of how much the plants are improved, that equipment is operated by people -- highly motivated, well-trained people -- but people nonetheless. And people occasionally make mistakes. By setting the right climate and by setting high standards, good plant management can reduce the number of mistakes made ? and also reduce their potential consequences. Another way to say this is that the proper safety culture must be established and continually improved upon in our nuclear plants. Safety culture is defined by the International Atomic Energy Agency as 'that assembly of characteristics and attitudes in organizations and individuals which establishes that, as an overriding priority, nuclear plant safety issues receive the attention that, as an overriding priority, nuclear plant safety issues receive the attention warranted by their significance.' In short, we must make safety our top priority

  1. Safety evaluation report related to the operation of Nine Mile Point Nuclear Station, Unit No. 2 (Docket No. 50-410). Supplement No. 1

    International Nuclear Information System (INIS)

    1985-06-01

    This report supplements the Safety Evaluation Report for the application filed by Niagara Mohawk Power Corporation, as applicant and co-owner, for a license to operate the Nine Mile Point Nuclear Station Unit 2. The facility is located near Oswego, New York. Subject to favorable resolution of the issues discussed in this report, the NRC staff concludes that the facility can be operated by the applicant without endangering the health and safety of the public. 1 fig., 3 tabs

  2. Nuclear power systems: Their safety

    International Nuclear Information System (INIS)

    Myers, L.C.

    1993-01-01

    Mankind utilizes energy in many forms and from a variety of sources. Canada is one of a growing number of countries which have chosen to embrace nuclear-electric generation as a component of their energy systems. As of August 1992 there were 433 power reactors operating in 35 countries and accounting for more than 15% of the world's production of electricity. In 1992, thirteen countries derived at least 25% of their electricity from nuclear units, with France leading at nearly 70%. In the same year, Canada produced about 16% of its electricity from nuclear units. Some 68 power reactors are under construction in 16 countries, enough to expand present generating capacity by close to 20%. No human endeavour carries the guarantee of perfect safety and the question of whether or not nuclear-electric generation represents an 'acceptable' risk to society has long been vigorously debated. Until the events of late April 1986, nuclear safety had indeed been an issue for discussion, for some concern, but not for alarm. The accident at the Chernobyl reactor in the USSR has irrevocably changed all that. This disaster brought the matter of nuclear safety back into the public mind in a dramatic fashion. This paper discusses the issue of safety in complex energy systems and provides brief accounts of some of the most serious reactor accidents which have occurred to date. (author). 7 refs

  3. Life Management and Safety of Nuclear Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Fabbri, S.; Diluch, A.; Vega, G., E-mail: fabbri@cnea.gov.ar [Comisión Nacional de Energía Atómica, Buenos Aires (Argentina)

    2014-10-15

    The nuclear programme in Argentina includes: nuclear power and related supplies, medical and industrial applications, waste management, research and development and human training. Nuclear facilities require life management programs that allow a safe operation. Safety is the first priority for designers and operators. This can be attained with defence in depth: regular inspections and maintenance procedures to minimize failure risks. CNEA objectives in this area are to possess the necessary capability to give safe and fast technical support. Within this scheme, one of the main activities undertaken by CNEA is to provide technological assistance to the nuclear plants and research reactors. As a consequence of an increasing concern about safety and ageing a Life Management Department for safe operation was created to take care of these subjects. The goal is to elaborate a Safety Evaluation Process for the critical components of nuclear plants and other facilities. The overall objectives of a safety process are to ensure a continuous safe, reliable and effective operation of nuclear facilities and it means the implementation of the defence in deep concept to enhance safety for the protection of the public, the workers and the environment. (author)

  4. Joint nuclear safety research projects between the US and Russian Federation International Nuclear Safety Centers

    International Nuclear Information System (INIS)

    Bougaenko, S.E.; Kraev, A.E.; Hill, D.L.; Braun, J.C.; Klickman, A.E.

    1998-01-01

    The Russian Federation Ministry for Atomic Energy (MINATOM) and the US Department of Energy (USDOE) formed international Nuclear Safety Centers in October 1995 and July 1996, respectively, to collaborate on nuclear safety research. Since January 1997, the two centers have initiated the following nine joint research projects: (1) INSC web servers and databases; (2) Material properties measurement and assessment; (3) Coupled codes: Neutronic, thermal-hydraulic, mechanical and other; (4) Severe accident management for Soviet-designed reactors; (5) Transient management and advanced control; (6) Survey of relevant nuclear safety research facilities in the Russian Federation; (8) Advanced structural analysis; and (9) Development of a nuclear safety research and development plan for MINATOM. The joint projects were selected on the basis of recommendations from two groups of experts convened by NEA and from evaluations of safety impact, cost, and deployment potential. The paper summarizes the projects, including the long-term goals, the implementing strategy and some recent accomplishments for each project

  5. Seismic safety of nuclear power plants

    International Nuclear Information System (INIS)

    Guerpinar, A.; Godoy, A.

    2001-01-01

    This paper summarizes the work performed by the International Atomic Energy Agency in the areas of safety reviews and applied research in support of programmes for the assessment and enhancement of seismic safety in Eastern Europe and in particular WWER type nuclear power plants during the past seven years. Three major topics are discussed; engineering safety review services in relation to external events, technical guidelines for the assessment and upgrading of WWER type nuclear power plants, and the Coordinated Research Programme on 'Benchmark study for the seismic analysis and testing of WWER type nuclear power plants'. These topics are summarized in a way to provide an overview of the past and present safety situation in selected WWER type plants which are all located in Eastern European countries. Main conclusion of the paper is that although there is now a thorough understanding of the seismic safety issues in these operating nuclear power plants, the implementation of seismic upgrades to structures, systems and components are lagging behind, particularly for those cases in which the re-evaluation indicated the necessity to strengthen the safety related structures or install new safety systems. (author)

  6. Nuclear safety and human competence

    International Nuclear Information System (INIS)

    Stefanescu, Petre

    2001-01-01

    Competence represents a very well defined ensemble of knowledge and skills, behavior modalities, standard procedures and judgement types that can be used in a given situation, without a priori learning. It is obvious that a person competence should fulfill the needs of the company he works for. For a Nuclear Power Plant operator competence is a constitutive part of his individuality. Competence includes: 1. Knowledge that can be classified in three main items: - procedural and declarative knowledge; - practical knowledge and skills; - fundamental knowledge. 2. 'Non cognitive' knowledge components, such as 'social information', team collective competence, safety education, risks perception and management. The last item presents a special interest for nuclear safety. On the other hand, competence level defines the quality of procedures applied in different operational situations. Competence - procedures relations are presented. Competence fundament results from operator activity analysis. The analyst has to take into consideration several phases of activity in which competence is highlighted like: - genesis, during formation; - transformation, during adaptation to a technical modification; - transfer, from expert to probationer. Competence is subject to a continuous transformation process due to technical and organizational evolutions and 'operator ageing'. Cognitive ageing of operators or the technical ageing of competence often appear to be superimposed. Technical progress acceleration increases the ageing effects of competence. Knowledge - skills dynamic relations are discussed. The changing of organizational form determines appearance of new competence gained from others domains or defined by multidisciplinary studies. Ergonomics can help the changing of organizational form through analysis of operators evolution activity which will generate new competence. Ergonomics can contribute to identify means of raising competence starting from learning process

  7. Safety Evaluation Report related to the operation of Nine Mile Point Nuclear Station, Unit No. 2 (Docket No. 50-410). Supplement No. 5

    International Nuclear Information System (INIS)

    1986-10-01

    This report supplements the Safety Evaluation Report (NUREG-1047, February 1985) for the application filed by Niagara Mohawk Power Corporation, as applicant and co-owner, for a license to operate Nine Mile Point Nuclear Station, Unit 2 (Docket No. 50-410). It has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. The facility is located near Oswego, New York. Supplement 1 to the Safety Evaluation Report was published in June 1985 and contained the report from the Advisory Committee on Reactor Safeguards as well as the resolution of a number of outstanding issues from the Safety Evaluation Report. Supplement 2 was published in November 1985 and contained the resolution of a number of outstanding and confirmatory issues. Supplement 3 was published in July 1986 and contained the resolution of a number of outstanding and confirmatory items, one new confirmatory item, the evaluation of the Engineering Assurance Program, and the evaluation of a number of exemption requests. Supplement 4 was published in September 1986 and contained the resolution of a number of outstanding and confirmatory issues and the evaluation of a number of exemption requests. This report contains the resolution of a number of issues that have been resolved since Supplement 4 was issued. It also contains the evaluation of a number of requests for exemption from the applicant. This report also supports the issuance of the low-power license for Nine Mile Point Nuclear Station, Unit 2

  8. Nuclear criticality safety in Canada

    International Nuclear Information System (INIS)

    Shultz, K.R.

    1980-04-01

    The approach taken to nuclear criticality safety in Canada has been influenced by the historical development of participants. The roles played by governmental agencies and private industry since the Atomic Energy Control Act was passed into Canadian Law in 1946 are outlined to set the scene for the current situation and directions that may be taken in the future. Nuclear criticality safety puts emphasis on the control of materials called special fissionable material in Canada. A brief account is given of the historical development and philosophy underlying the existing regulations governing special fissionable material. Subsequent events have led to a change in emphasis in the regulatory process that has not yet been fully integrated into Canadian legislation and regulations. Current efforts towards further development of regulations governing the practice of nuclear criticality safety are described. (auth)

  9. Nuclear energy safety - new challenges

    Energy Technology Data Exchange (ETDEWEB)

    Rausch, Julio Cezar; Fonseca, Renato Alves da, E-mail: jrausch@cnen.gov.b, E-mail: rfonseca@cnen.gov.b [Comissao Nacional de Energia Nuclear (CNEN), Rio de Janeiro, RJ (Brazil)

    2011-07-01

    Fukushima accident in March this year, the second most serious nuclear accident in the world, put in evidence a discussion that in recent years with the advent of the 'nuclear renaissance' has been relegated in the background: what factors influence the use safe nuclear energy? Organizational precursor, latent errors, reduction in specific areas of competence and maintenance of nuclear programs is a scenario where the guarantee of a sustainable development of nuclear energy becomes a major challenge for society. A deep discussion of factors that influenced the major accidents despite the nuclear industry use of the so-called 'lessons learned' is needed. Major accidents continue to happen if a radical change is not implemented in the focus of safety culture. (author)

  10. Nuclear energy safety - new challenges

    International Nuclear Information System (INIS)

    Rausch, Julio Cezar; Fonseca, Renato Alves da

    2011-01-01

    Fukushima accident in March this year, the second most serious nuclear accident in the world, put in evidence a discussion that in recent years with the advent of the 'nuclear renaissance' has been relegated in the background: what factors influence the use safe nuclear energy? Organizational precursor, latent errors, reduction in specific areas of competence and maintenance of nuclear programs is a scenario where the guarantee of a sustainable development of nuclear energy becomes a major challenge for society. A deep discussion of factors that influenced the major accidents despite the nuclear industry use of the so-called 'lessons learned' is needed. Major accidents continue to happen if a radical change is not implemented in the focus of safety culture. (author)

  11. Nuclear energy safety - new challenges

    Energy Technology Data Exchange (ETDEWEB)

    Rausch, Julio Cezar; Fonseca, Renato Alves da, E-mail: jrausch@cnen.gov.b, E-mail: rfonseca@cnen.gov.b [Comissao Nacional de Energia Nuclear (CNEN), Rio de Janeiro, RJ (Brazil)

    2011-07-01

    Fukushima accident in March this year, the second most serious nuclear accident in the world, put in evidence a discussion that in recent years with the advent of the 'nuclear renaissance' has been relegated in the background: what factors influence the use safe nuclear energy? Organizational precursor, latent errors, reduction in specific areas of competence and maintenance of nuclear programs is a scenario where the guarantee of a sustainable development of nuclear energy becomes a major challenge for society. A deep discussion of factors that influenced the major accidents despite the nuclear industry use of the so-called 'lessons learned' is needed. Major accidents continue to happen if a radical change is not implemented in the focus of safety culture. (author)

  12. NRC - regulator of nuclear safety

    International Nuclear Information System (INIS)

    1997-01-01

    The U.S. Nuclear Regulatory Commission (NRC) was formed in 1975 to regulate the various commercial and institutional uses of nuclear energy, including nuclear power plants. The agency succeeded the Atomic Energy Commission, which previously had responsibility for both developing and regulating nuclear activities. Federal research and development work for all energy sources, as well as nuclear weapons production, is now conducted by the U.S. Department of Energy. Under its responsibility to protect public health and safety, the NRC has three principal regulatory functions: (1) establish standards and regulations, (2) issue licenses for nuclear facilities and users of nuclear materials, and (3) inspect facilities and users of nuclear materials to ensure compliance with the requirements. These regulatory functions relate to both nuclear power plants and to other uses of nuclear materials - like nuclear medicine programs at hospitals, academic activities at educational institutions, research work, and such industrial applications as gauges and testing equipment. The NRC places a high priority on keeping the public informed of its work. The agency recognizes the interest of citizens in what it does through such activities as maintaining public document rooms across the country and holding public hearings, public meetings in local areas, and discussions with individuals and organizations

  13. Neutron nuclear data measurements for criticality safety

    Directory of Open Access Journals (Sweden)

    Guber Klaus

    2017-01-01

    Full Text Available To support the US Department of Energy Nuclear Criticality Safety Program, neutron-induced cross section experiments were performed at the Geel Electron Linear Accelerator of the Joint Research Center Site Geel, European Union. Neutron capture and transmission measurements were carried out using metallic natural cerium and vanadium samples. Together with existing data, the measured data will be used for a new evaluation and will be submitted with covariances to the ENDF/B nuclear data library.

  14. Nuclear Safety Review for the Year 2006

    International Nuclear Information System (INIS)

    2007-07-01

    the various stakeholders effectively and efficiently. Related to this is the need for operators, users and regulatory bodies to communicate with the public effectively and in an open and transparent manner. The global nature of safety is reflected in the relevant international instruments, including conventions and codes of conduct, currently in place. All the international conventions related to safety welcomed additional contracting parties in 2006. During the year, the second review meeting took place for the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management. The newly established Integrated Regulatory Review Service (IRRS) is contributing to the enhancement of Member States' legislative and regulatory infrastructure and the harmonization of regulatory approaches in nuclear, radiation, radioactive waste and transport safety. It is also one of the most effective feedback tools on the application of Agency standards that will be used for the further improvement of existing standards and guidance. In addition, the approach evaluates not only the policies and strategies, but also how efficient and effective they are regarding protection against all types of exposure. Therefore it is also a tool for information sharing and mutual learning on good policies and practices that can be used to reach harmonization step by step. Overall, the safety performance of the nuclear industry is good. However, there continue to be recurring events and there is a need to maintain vigilance. There is also a need for lessons learned to be transferred across the various sectors of the nuclear industry. Strong safety management and safety culture are vitally important for the continuation of this good performance. Leaders must ensure that personnel are properly trained and that adequate resources are available. The nuclear power industry around the world remains a safe and sound one with no worker or member of the public receiving a

  15. Nuclear safety: risks and regulation

    International Nuclear Information System (INIS)

    Wood, W.C.

    1983-01-01

    Taking a fresh look at nuclear safety regulations, this study finds that the mandate and organization of the Nuclear Regulatory Commission (NRC) militate against its making sound decisions. The author criticizes failures to make hard decisions on societal risk, to clarify responsibility, and to implement cost-effective safety measures. Among his recommendations are reorganization of the NRC under a single authoritative administrator, separation of technical issues from social ones, and reform of the Price-Anderson Act. The author concludes that the worst eventuality would be to continue the current state of indecision. 161 references, 6 figures, 4 tables

  16. Nuclear materials facility safety initiative

    International Nuclear Information System (INIS)

    Peddicord, K.L.; Nelson, P.; Roundhill, M.; Jardine, L.J.; Lazarev, L.; Moshkov, M.; Khromov, V.V.; Kruchkov, E.; Bolyatko, V.; Kazanskij, Yu.; Vorobeva, I.; Lash, T.R.; Newton, D.; Harris, B.

    2000-01-01

    Safety in any facility in the nuclear fuel cycle is a fundamental goal. However, it is recognized that, for example, should an accident occur in either the U.S. or Russia, the results could seriously delay joint activities to store and disposition weapons fissile materials in both countries. To address this, plans are underway jointly to develop a nuclear materials facility safety initiative. The focus of the initiative would be to share expertise which would lead in improvements in safety and safe practices in the nuclear fuel cycle.The program has two components. The first is a lab-to-lab initiative. The second involves university-to-university collaboration.The lab-to-lab and university-to-university programs will contribute to increased safety in facilities dealing with nuclear materials and related processes. These programs will support important bilateral initiatives, develop the next generation of scientists and engineers which will deal with these challenges, and foster the development of a safety culture

  17. Realism in nuclear criticality safety

    International Nuclear Information System (INIS)

    McLaughlin, T. P.

    2009-01-01

    Commercial nuclear power plant operation and regulation have made remarkable progress since the Three Mile Island Accident. This is attributed largely to a heavy dose of introspection and self-regulation by the industry and to a significant infusion of risk-informed and performance-based regulation by the Nuclear Regulatory Commission. This truly represents reality in action both by the plant operators and the regulators. On the other hand, the implementation of nuclear criticality safety in ex-reactor operations involving significant quantities of fissile material has not progressed, but, tragically, it has regressed. Not only is the practice of the discipline in excess of a factor of ten more expensive than decades ago; the trend continues. This unfortunate reality is attributed to a lack of coordination within the industry (as contrasted to what occurred in the reactor operations sector), and to a lack of implementation of risk-informed and performance-based regulation by the NRC While the criticality safety discipline is orders of magnitude smaller than the reactor safety discipline, both operators and regulators must learn from the progress made in reactor safety and apply it to the former to reduce the waste, inefficiency and potentially increased accident risks associated with current practices. Only when these changes are made will there be progress made toward putting realism back into nuclear criticality safety. (authors)

  18. Safety device for nuclear reactor

    International Nuclear Information System (INIS)

    Jacquelin, Roland.

    1977-01-01

    This invention relates to a safety device for a nuclear reactor, particularly a liquid metal (generally sodium) cooled fast reactor. This safety device includes an absorbing element with a support head connected by a disconnectable connector formed by the armature of an electromagnet at the end of an axially mobile vertical control rod. This connection is so designed that in the event of it becoming disconnected, the absorbing element gravity slides in a passage through the reactor core into an open container [fr

  19. Evaluation of research projects and studies on nuclear safety in the context of implementation of the German Atomic Energy Act (AtG). Vol. 9

    International Nuclear Information System (INIS)

    Casper, H.

    2000-01-01

    The content of this report is a collection of research projects and investigations in the field of nuclear safety evaluated in 1999 and 2000 with regard to the application of the Atomic Energy Act (Atomgesetz). In addition the report gives an overview on objectives and procedures used for the evaluation. The purpose of this project, being executed for the Federal Ministry for Environment, Nature Conservation and Nuclear Safety (BMU) of the Federal Republic of Germany is to inform all parties involved in the licensing procedure as well as the consulting councils on the latest nuclear safety research results and the status of their verification in a precise short manner. In addition experts' opinions are given with regard to the relevance of these research results to nuclear rules and guidelines as well as to the execution of the Atomic Energy Act. The information consists of precise and short evaluations of final research reports or technical reports. These evaluations are prepared by specialists who are acquainted with the technical aspects of the licensing procedure of nuclear plants in the Federal Republic of Germany. This volume is the ninth report of this series. (orig.) [de

  20. Nuclear Safety. 1997; Surete Nucleaire. 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-01-19

    A quick review of the nuclear safety at EDF may be summarized as follows: - the nuclear safety at EDF maintains at a rather good standard; - none of the incidents that took place has had any direct impact upon safety; - the availability remained good; - initiation of the floor 4 reactor generation (N4 unit - 1450 MW) ensued without major difficulties (the Civaux 1 NPP has been coupled to the power network at 24 december 1997); - the analysis of the incidents interesting from the safety point of view presents many similarities with earlier ones. Significant progress has been recorded in promoting actively and directly a safe operation by making visible, evident and concrete the exertion of the nuclear operation responsibility and its control by the hierarchy. The report develops the following chapters and subjects: 1. An overview on 1997; 1.1. The technical issues of the nuclear sector; 1.2. General performances in safety; 1.3. The main incidents; 1.4. Wastes and radiation protection; 2. Nuclear safety management; 2.1. Dynamics and results; 2.2. Ameliorations to be consolidated; 3. Other important issues in safety; 3.1. Probabilistic safety studies; 3.2. Approach for safety re-evaluation; 3.3. The network safety; 3.4. Crisis management; 3.5. The Lifetime program; 3.6. PWR; 3.7. Documentation; 3.8. Competence; 4. Safety management in the future; 4.1. An open future; 4.2. The fast neutron NPP at Creys-Malville; 4.3. Stabilization of the PWR reference frame; 4.4. Implementing the EURATOM directive regarding the radiation protection standards; 4.5. Development of biomedical research and epidemiological studies; 4.6. New regulations concerning the liquid and gaseous effluents; 5. Visions of an open future; 5.1. Alternative views upon safety ay EDF; 5.2. Safety authority; 5.3. International considerations; 5.4. What happens abroad; 5.5. References from non-nuclear domain. Four appendices are added referring to policy of safety management, policy of human factors in NPPs

  1. Towards an International Approach to Nuclear Safety

    International Nuclear Information System (INIS)

    Tomihiro Taniguchi

    2006-01-01

    This document presents in a series of transparencies the different activities of the IAEA: Introduction of International Atomic Energy Agency, Changing world, Changing Technology, Changing Global Security, Developing Innovative Nuclear Energy Systems, Global Nuclear Safety Regime, IAEA Safety Standards: Hierarchy - Global Reference for Striving for Excellence, IAEA Safety Reviews and Services: Integrated Safety Approach, Global Knowledge Network - Asian Nuclear Safety Network, Safety Issues and Challenges, Synergy between Safety and Security, Recent Developments: Safety and Security of Radioactive Sources, Convention on Physical Protection of Nuclear Material (CPPNM), Incident and Emergency Preparedness and Response, Holistic Approach for Safety and Security, Sustainable Development. (J.S.)

  2. Reliability Analysis of Public Survey in Satisfaction with Nuclear Safety

    Energy Technology Data Exchange (ETDEWEB)

    Park, Moon Soo; Moon, Joo Hyun; Kang, Chang Sun [Seoul National Univ., Seoul (Korea, Republic of)

    2005-07-01

    Korea Institute of Nuclear Safety (KINS) carried out a questionnaire survey on public's understanding nuclear safety and regulation in order to grasp public acceptance for nuclear energy. The survey was planned to help to analyze public opinion on nuclear energy and provide basic data for advertising strategy and policy development. In this study, based on results of the survey, the reliability of the survey was evaluated according to each nuclear site.

  3. Reliability Analysis of Public Survey in Satisfaction with Nuclear Safety

    International Nuclear Information System (INIS)

    Park, Moon Soo; Moon, Joo Hyun; Kang, Chang Sun

    2005-01-01

    Korea Institute of Nuclear Safety (KINS) carried out a questionnaire survey on public's understanding nuclear safety and regulation in order to grasp public acceptance for nuclear energy. The survey was planned to help to analyze public opinion on nuclear energy and provide basic data for advertising strategy and policy development. In this study, based on results of the survey, the reliability of the survey was evaluated according to each nuclear site

  4. White paper on nuclear safety in 2005

    International Nuclear Information System (INIS)

    2006-04-01

    The white paper consists of four parts. The first part described the outline of international discussions on safety culture and activities promoted by utilities and regulatory bodies in Japan. The second part explained the main activities of the Nuclear Safety Commission of Japan and nuclear regulatory authorities on nuclear safety regulation. The third part introduced various activities for ensuring overall nuclear safety in Japan, such as safety regulation systems for nuclear facilities, disaster measures at nuclear facilities, progress in nuclear research, nuclear safety regulation by risk-informed utilization, environmental radiation surveys, international cooperation on nuclear safety. The forth part contained various materials and data related to the Nuclear Safety Commission of Japan. (J.P.N.)

  5. The nuclear controversy and nuclear safety techniques

    International Nuclear Information System (INIS)

    Ragnarson, P.

    1979-09-01

    Survey interviews with 125 Swedish nuclear safety engineers are summarized and commented upon. A short historical background is given, claiming that the major safety issues of nuclear energy have been debated continously during the 50's and 60's in a way that could well have been watched and interpreted by a political, democratic system involving political parties, government departments, etc. With a few exceptions, these 125 engineers represent 10 - 20 years experience in nuclear research and development. By definition they belong to a professional group of about 800 in Sweden (1978). The main aim of the study is to find out if (how and why) a public debate can bring about changes in an industrially established technology by influencing the attitudes and technical judgements of the individuals and/or organizations involved. Examples are given in which the nuclear specialists themselves admit or claim that direct or indirect impacts from the public debate have been important. A common experience is that the scientists and engineers have been forced to broaden their professional scope through a time-consuming but - on the whole - 'positive' process. A year after the interviews started, a serious reactor accident occured near Harrisburg, Pennsylvania. The group has been used for a survey of the immediate reactions in order to see if it could cause sudden changes of attitudes among the experts. A minority demonstrated clear changes towards a more cautious attitude regarding nuclear risks. (author)

  6. Safety Evaluation Report related to the full-term operating license for Millstone Nuclear Power Station, Unit No. 1 (Docket No. 50-245)

    International Nuclear Information System (INIS)

    1985-10-01

    The Safety Evaluation Report for the full-term operating license application filed by the Connecticut Light and Power Company, the Hartford Electric Light Company, Western Massachusetts Electric Company and the Millstone Point Company [(now known as Connecticut Light and Power Company (CL and P) and Western Massachusetts Electric Company (WMECO) having authority to possess Millstone-1, 2, and 3, and the Northeast Nuclear Energy Company (NNECO) as the responsible entity for operation of the facilities)] for Millstone Nuclear Power Station Unit 1 has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. The facility is located in the town of Waterford, Connecticut. Subject to favorable resolution of the items discussed in this report, the staff concludes that the facility can continue to be operated without endangering the health and safety of the public

  7. Safety culture in nuclear power enterprise

    International Nuclear Information System (INIS)

    Zou Zhengyu; Su Luming

    2008-01-01

    The International Atomic Energy Agency (IAEA) introduced the concept of safety culture when analyzing the Chernobyl accident. Safety culture has now been widely accepted and practiced by nuclear enterprise in the world. As an important safeguard for nuclear safety, safety culture has become the core of nuclear power enterprise and entitled as the soul of nuclear enterprise. This paper analyzes the three levels of safety culture and describes its three developing phases. (authors)

  8. Basic safety principles for nuclear power plant

    International Nuclear Information System (INIS)

    Zhang Shiguan

    1989-01-01

    To ensure the safety operation of nuclear power plant, one should strictly adhere to the implelmentation of safety codes and the establishment of nuclear safety code system, as well as the applicable basic safety principles of nuclear power plants. This article briefly introduce the importance of nuclear codes and its economic benefits and the implementation of basic safety principles to be accumulated in practice for many years by various countries

  9. Regional cooperation on nuclear safety

    International Nuclear Information System (INIS)

    Kato, W.Y.; Chen, J.H.; Kim, D.H.; Simmons, R.B.V.; Surguri, S.

    1985-01-01

    A review has been conducted of a number of multi-national and bilateral arrangements between governments and between utility-sponsored organizations which provide the framework for international cooperation in the field of nuclear safety. These arrangements include the routine exchange operational data, experiences, technical reports and regulatory data, provision of special assistance when requested, collaboration in safety research, and the holding of international conferences and seminars. Areas which may be better suited for cooperation on a regional basis are identified. These areas include: exchange of operational data and experience, sharing of emergency planning information, and collaboration in safety research. Mechanisms to initiate regional cooperation in these areas are suggested

  10. 25 years of nuclear safety

    International Nuclear Information System (INIS)

    Curien, H.; Duclos, D.; Saint Raymond, Ph.

    1998-01-01

    This philosophical dossier is devoted to the last 25 years of nuclear safety. It is organized around three main subjects: the control, the communication with the public and the international relations. The control affected the builder and the operator, but also an independent authority. This duality is essential. The public relations became a main point in the risks management. The transparency leads to a better public information. The last part is devoted to the international relations. It affects the international regulations but also the opinion exchange. The nuclear industries (and even non nuclear industries) should take inspiration from the foreign management and experiences. (A.L.B.)

  11. Nuclear data for criticality safety

    International Nuclear Information System (INIS)

    Westfall, R.M.

    1994-01-01

    A brief overview is presented on emerging requirements for new criticality safety analyses arising from applications involving nuclear waste management, facility remediation, and the storage of nuclear weapons components. A derivation of criticality analyses from the specifications of national consensus standards is given. These analyses, both static and dynamic, define the needs for nuclear data. Integral data, used primarily for analytical validation, and differential data, used in performing the analyses, are listed, along with desirable margins of uncertainty. Examples are given of needs for additional data to address systems having intermediate neutron energy spectra and/or containing nuclides of intermediate mass number

  12. Reviewing industrial safety in nuclear power plants

    International Nuclear Information System (INIS)

    1990-02-01

    This document contains guidance and reference materials for Operational Safety Review Team (OSART) experts, in addition to the OSART Guidelines (TECDOC-449), for use in the review of industrial safety activities at nuclear power plants. It sets out objectives for an excellent industrial safety programme, and suggests investigations which should be made in evaluating industrial safety programmes. The attributes of an excellent industrial safety programme are listed as examples for comparison. Practical hints for reviewing industrial safety are discussed, so that the necessary information can be obtained effectively through a review of documents and records, discussions with counterparts, and field observations. There are several annexes. These deal with major features of industrial safety programmes such as safety committees, reporting and investigation systems and first aid and medical facilities. They include some examples which are considered commendable. The document should be taken into account not only when reviewing management, organization and administration but also in the review of related areas, such as maintenance and operations, so that all aspects of industrial safety in an operating nuclear power plant are covered

  13. Blueprint for nuclear safety - a nonregulatory strategy

    International Nuclear Information System (INIS)

    Knight, J.P.

    1989-01-01

    The Department of Energy operates a nuclear complex that now numbers over 250 facilities nationwide, many of which date back to the 1940s and 1950s. In 1985, Secretary Herrington moved to establish the Office of Environment, Safety and Health, give it needed resources and authorities, and begin extensive environmental protection and safety evaluations of all major DOE sites and facilities. On the nuclear safety side this necessitates an integrated program that not only strengthens oversight but also builds DOE-wide technical capabilities and promotes safety performance. This has led up to focus our attention on three areas: (1) the DOE safety oversight system -- its resources, technical capabilities, and effectiveness; (2) the safety policy development and review; and (3) the Department's capabilities to foster technical inquisitiveness and overall excellence in safety performance. The essence of this approach is found in this last term -- performance. Performance that is results-oriented; founded on realized safety enhancements and risk reduction, not merely regulation for its own sake. Performance not merely in terms of hardware fixes, but also focusing on the human part of the safety equation

  14. Nuclear Safety Review for 2015

    International Nuclear Information System (INIS)

    2015-06-01

    The Nuclear Safety Review 2015 focuses on the dominant nuclear safety trends, issues and challenges in 2014. The Executive Overview provides general nuclear safety information along with a summary of the major issues covered in this report: improving radiation, transport and waste safety; strengthening safety in nuclear installations; enhancing emergency preparedness and response (EPR); and strengthening civil liability for nuclear damage. The Appendix provides details on the activities of the Commission on Safety Standards (CSS), and activities relevant to the Agency’s safety standards. The global nuclear community continued to make steady progress in improving nuclear safety throughout the world in 2014; and, the Agency and its Member States continued to implement the IAEA Action Plan on Nuclear Safety (hereinafter referred to as “the Action Plan”), which was endorsed by the General Conference in 2011 after the Fukushima Daiichi accident in March 2011. • Significant progress has been made in reviewing and revising various Agency’s safety standards in areas such as management of radioactive waste, design basis hazard levels, protection of nuclear power plants (NPPs) against severe accidents, design margins to avoid cliff edge effects, multiple facilities at one site, and strengthening the prevention of unacceptable radiological consequences to the public and the environment, communications and EPR. In addition, the Guidelines for Drafting IAEA Safety Standards and Nuclear Security Series Publications was issued in July 2014.• The Agency continued to analyse the relevant technical aspects of the Fukushima Daiichi accident and to share and disseminate lessons learned to the wider nuclear community. In 2014, the Agency organized two international experts’ meetings (IEMs), one on radiation protection and one on severe accident management. Reports from previous IEMs were also published in 2014: IAEA Report on Human and Organizational Factors in Nuclear

  15. Safety Evaluation Report related to the operation of Diablo Canyon Nuclear Power Plant, Units 1 and 2 (Docket Nos. 50-275 and 50-323)

    International Nuclear Information System (INIS)

    1991-06-01

    Supplement 34 to the Safety Evaluation Report for the application by Pacific Gas and Electric Company (PG ampersand E) for licenses to operate Diablo Canyon Nuclear Power Plant, Unit Nos. 1 and 2 (Docket Nos. 50-275 and 50-323, respectively) has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. This supplement documents the NRC staff review of the Long-Term Seismic Program conducted by PG ampersand E in response to License Condition 2.C.(7) of Facility Operating License DPR-80, the Diablo Canyon Unit 1 operating license. 111 refs., 20 figs., 31 tabs

  16. Safety evaluation report related to the operation of Diablo Canyon Nuclear Power Plant, Units 1 and 2 (Docket Nos. 50-275 and 50-323)

    International Nuclear Information System (INIS)

    1984-06-01

    Supplement 23 to the Safety Evaluation Report for Pacific Gas and Electric Company's application for licenses to operate Diablo Canyon Nuclear Power Plants, Units 1 and 2 (Docket Nos. 50-275 and 50-323) has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. This supplement addresses the applicant's requests for approval of 22 deviations from the requirements of Section III.G of Appendix R of Title 10 of the Code of Federal Regulations Part 50

  17. Results of activities of the State Office for Nuclear Safety in state supervision of nuclear safety of nuclear facilities and radiation protection in 2003

    International Nuclear Information System (INIS)

    Kovar, P.

    2004-01-01

    The report summarises results of activities of the State Office for Nuclear Safety (SUJB) in the supervision of nuclear safety and radiation protection in the Czech Republic. The first part of the report evaluates nuclear safety of nuclear installations and contains information concerning the results of supervision of radiation protection in 2003 in the Czech Republic. The second part of the report describes new responsibilities of the SUJB in the domain of nuclear, chemical, bacteriological (biological) and toxin weapons ban. (author)

  18. Safety evaluation report related to the operation of Catawba Nuclear Station, Units 1 and 2. Docket Nos. 50-413 and 50-414. Suppl. 1

    International Nuclear Information System (INIS)

    1983-04-01

    This reort supplements the Safety Evaluation Report (NUREG-0954) issued in February 1983 by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission with respect to the application filed by Duke Power Company, North Carolina Municipal Power Agency Number 1, North Carolina Membership Corporation, and Saluda River Electric Cooperative, Inc. as applicants and owners, for licenses to operate the Catawba Nuclear Station, Units 1 and 2 (Docket Nos. 50-413 and 50-414, respectively). The facility is located in York County, South Carolina, approximately 9.6 km (6 mi) north of Rock Hill and adjacent to Lake Wylie. This supplement provides more recent information regarding resolution or updating of some of the open and confirmatory items and license conditions identified in the Safety Evaluation Report, and discusses the recommendations of the Advisory Committee on Reactor Safeguards in its report dated March 15, 1983

  19. Safety Evaluation Report related to the operation of Perry Nuclear Power Plant, Units 1 and 2 (Docket Nos. 50-440 and 50-441). Supplement No. 6

    International Nuclear Information System (INIS)

    1985-04-01

    Supplement No. 6 to the Safety Evaluation Report (NUREG-0887) on the application filed by the Cleveland Electric Illuminating Company on behalf of itself and as agent for the Duquesne Light Company, the Ohio Edison Company, the Pennsylvania Power Company, and the Toledo Edison Company (the Central Area Power Coordination Group or CAPCO), as applicants and owners, for a license to operate the Perry Nuclear Power Plant, Units 1 and 2 (Docket Nos. 50-540 and 50-441), has been prepared by the Office of the Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. The facility is located in Lake County, Ohio, approximately 35 miles northeast of Cleveland, Ohio. This supplement reports the status of certain issues that had not been resolved at the time of publication of the Safety Evaluation Report and Supplement Nos. 1 through 5 to that report

  20. Safety evaluation report related to the operation of Perry Nuclear Power Plant, Units 1 and 2 (Docket Nos. 50-440 and 50-441). Supplement No. 10

    International Nuclear Information System (INIS)

    1986-09-01

    Supplement No. 10 to the Safety Evaluation Report (NUREG-0887) on the application filed by the Cleveland Electric Illuminating Company on behalf of itself and as agent for the Duquesne Light Company, the Ohio Edison Company, the Pennsylvania Power Company, and the Toledo Edison Company (the Central Area Power Coordination Group or CAPCO), as applicants and owners for a license to operate the Perry Nuclear Power Plant, Units 1 and 2 (Docket Nos. 50-440 and 50-441), has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. The facility is located in Lake County, Ohio, approximately 35 miles northeast of Cleveland, Ohio. This supplement reports the status of certain issues and action items that had not been resolved or completed at the time of publication of the Safety Evaluation Report and Supplements Nos. 1 through 9 to that report

  1. Safety Evaluation Report related to the operation of Perry Nuclear Power Plant, Units 1 and 2, (Docket Nos. 50-440 and 50-441)

    International Nuclear Information System (INIS)

    1984-02-01

    Supplement No. 4 to the Safety Evaluation Report on the application filed by the Cleveland Electric Illuminating Company on behalf of itself and as agent for the Duquesne Light Company, the Ohio Edison Company, the Pennsylvania Power Company, and the Toledo Edison Company (the Central Area Power Coordination Group or CAPCO), as applicants and owners, for a license to operate the Perry Nuclear Power Plant, Units 1 and 2 (Docket Nos. 50-440 and 50-441), has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. The facility is located in Lake County, Ohio. This supplement reports the status of certain issues that had not been resolved at the time of publication of the Safety Evaluation Report and Supplement Nos. 1, 2 and 3 to that report

  2. Safety evaluation report related to the operation of Perry Nuclear Power Plant, Units 1 and 2: Docket Nos. 50-440 and 50-441

    International Nuclear Information System (INIS)

    1983-01-01

    Supplement No. 2 to the Safety Evaluation Report on the application filed by the Cleveland Electric Illuminating Company on behalf of itself and as agent for the Duquesne Light Company, the Ohio Edison Company, the Pennsylvania Power Company, and the Toledo Edison Company (the Central Area Power Coordination Group (CAPCO)), as applicants and owners, for a license to operate the Perry Nuclear Power Plant, Units 1 and 2 (Docket Nos. 50-440 and 50-441), has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. The facility is located in Lake County, Ohio. This supplement reports the status of certain issues that had not been resolved at the time of publication of the Safety Evaluation Report and Supplement No. 1 to that report

  3. Safety Evaluation Report related to the operation of Perry Nuclear Power Plant, Units 1 and 2 (Docket Nos. 50-440 and 50-441). Supplement No. 7

    International Nuclear Information System (INIS)

    1985-11-01

    Supplement No. 7 to the Safety Evaluation Report (NUREG-0887) on the application filed by the Cleveland Electric Illuminating Company on behalf of itself and as agent for the Duquesne Light Company, the Ohio Edison Company, the Pennsylvania Power Company, and the Toledo Edison Company (the Central Area Power Coordination Group or CAPCO), as applicants and owners, for a license to operate the Perry Nuclear Power Plant, Units 1 and 2 (Docket No. 50-440 and 50-441) has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. The facility is located in Lake County, Ohio, approximately 35 miles northeast of Cleveland, Ohio. This supplement reports the status of certain issues that had not been resolved at the time of publication of the Safety Evaluation Report and Supplement Nos. 1 through 6 to that report

  4. Safety Evaluation Report related to the operation of Watts Bar Nuclear Plant, Units 1 and 2 (Docket Nos. 50-390 and 50-391). Supplement No. 4

    International Nuclear Information System (INIS)

    1985-03-01

    This report supplements the Safety Evaluation Report, NUREG-0847 (June 1982), Supplement No. 1 (September 1982), Supplement No. 2 (January 1984), and Supplement No. 3 (January 1985) issued by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission with respect to the application filed by the Tennessee Valley Authority, as applicant and owner, for licenses to operate the Watts Bar Nuclear Plant, Units 1 and 2 (Docket Nos. 50-390 and 50-391). The facility is located in Rhea County, Tennessee, near the Watts Bar Dam on the Tennessee River. This supplement provides recent information regarding resolution of some of the open and confirmatory items and license conditions identified in the Safety Evaluation Report

  5. Safety Evaluation Report related to the operation of Watts Bar Nuclear Plant, Units 1 and 2 (Docket Nos. 50-390 and 50-391). Supplement No. 3

    International Nuclear Information System (INIS)

    1985-01-01

    This report supplements the Safety Evaluation Report, NUREG-0847 (June 1982), Supplement No. 1 (September 1982), and Supplement No. 2 (January 1984) issued by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission with respect to the application filed by the Tennessee Valley Authority, as applicant and owner, for licenses to operate the Watts Bar Nuclear Plant, Units 1 and 2 (Docket Nos. 50-390 and 50-391). The facility is located in Rhea County, Tennessee, near the Watts Bar Dam on the Tennessee River. This supplement provides recent information regarding resolution of some of the open and confirmatory items and license conditions identified in the Safety Evaluation Report

  6. Safety Evaluation Report related to the operation of Perry Nuclear Power Plant, Units 1 and 2 (Docket Nos. 50-440 and 50-441). Supplement No. 8

    International Nuclear Information System (INIS)

    1986-01-01

    Supplement No. 8 to the Safety Evaluation Report (NUREG-0887) on the application filed by the Cleveland Electric Illuminating Company on behalf of itself and as agent for the Duquesne Light Company, the Ohio Edison Company, the Pennsylvania Power Company, and the Toledo Edison Company (the Central Area Power Coordination Group or CAPCO), as applicants and owners, for a license to operate the Perry Nuclear Power Plant, Units and 1 and 2 (Docket Nos. 50-440 and 50-441), has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. The facility is located in Lake County, Ohio, approximately 35 miles northeast of Cleveland, Ohio. This supplement reports the status of certain issues that has not been resolved at the time of publication of the Safety Evaluation Report and Supplement Nos. 1 through 7 to that report

  7. Safety Evaluation Report related to the operation of Perry Nuclear Power Plant, Units 1 and 2 (Docket Nos. 50-440 and 50-441). Supplement No. 5

    International Nuclear Information System (INIS)

    1985-02-01

    Supplement No. 5 to the Safety Evaluation Report (NUREG-0887) on the application filed by the Cleveland Electric Illuminating Company on behalf of itself and as agent for the Duquesne Light Company, the Ohio Edison Company, The Pennsylvania Power Company, and the Toledo Edison Company (the Central Area Power Coordination Group or CAPCO), as applicants and owners, for a license to operate the Perry Nuclear Power Plant, Units 1 and 2 (Docket Nos. 50-440 and 50-441), has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. The facility is located in Lake County, Ohio, approximately 35 miles northeast of Cleveland, Ohio. This supplement reports the status of certain issues that had not been resolved at the time of publication of the Safety Evaluation Report and Supplement Nos. 1 through 4 to that report

  8. Safety evaluation report related to the operation of Perry Nuclear Power Plant, Units 1 and 2. Docket Nos. 50-440 and 50-441

    International Nuclear Information System (INIS)

    1983-04-01

    Supplement No. 3 to the Safety Evaluation Report on the application filed by the Cleveland Electric Illuminating Company on behalf of itself and as agent for the Duquesne Light Company, the Ohio Edison Company, the Pennsylvania Power Company, and the Toledo Edison Company (the Central Area Power Coordination Group or CAPCO), as applicants and owners, for a license to operate the Perry Nuclear Power Plant, Units 1 and 2 (Docket Nos. 50-440/441), has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. The facility is located in Lake County, Ohio. This supplement reports the status of certain issues that had not been resolved at the time of publication of the Safety Evaluation Report and Supplement Nos. 1 and 2 to that report

  9. Nordic projects concerning nuclear safety

    International Nuclear Information System (INIS)

    Soerensen, H.C.

    1988-11-01

    The report describes the nature of the work done in the first half of 1988 within the field of nuclear safety (1985-89) under the Nordic program for 1985-89. Five programmes and their documentation, are described and complete lists of addresses and of persons involved is given. (AB)

  10. Nuclear medicine software: safety aspects

    International Nuclear Information System (INIS)

    Anon.

    1989-01-01

    A brief editorial discusses the safety aspects of nuclear medicine software. Topics covered include some specific features which should be incorporated into a well-written piece of software, some specific points regarding software testing and legal liability if inappropriate medical treatment was initiated as a result of information derived from a piece of clinical apparatus incorporating a malfunctioning computer program. (U.K.)

  11. Nuclear reactor safety

    International Nuclear Information System (INIS)

    Buhl, A.R.

    1979-01-01

    Dr. Buhl feels that nuclear-energy issues are too complex to be understood as single topics, and can only be understood in relationship to broader issues. In fact, goals and risks associated with all energy options must be seen as interrelated with other broad issues, and it should be understood that there are presently no clearcut criteria to ensure that the best decisions are made. The technical community is responsible for helping the public to understand the basic incompatibility of hard and soft technologies and that there is no risk-free energy source. Four principles are outlined for assessing the risks of various energy technologies: (1) take a holistic view; (2) compare the risk with the unit energy output; (3) compare the risk with those of everyday activities; and (4) identify unusual risks associated with a particular option. Dr. Buhl refers to the study conducted by Dr. Inhaber of Canada who used this approach and concluded that nuclear power and natural gas have the lowest overall risk

  12. Nuclear power: levels of safety

    International Nuclear Information System (INIS)

    Lidsky, L.M.

    1988-01-01

    The rise and fall of the nuclear power industry in the United States is a well-documented story with enough socio-technological conflict to fill dozens of scholarly, and not so scholarly, books. Whatever the reasons for the situation we are now in, and no matter how we apportion the blame, the ultimate choice of whether to use nuclear power in this country is made by the utilities and by the public. Their choices are, finally, based on some form of risk-benefit analysis. Such analysis is done in well-documented and apparently logical form by the utilities and in a rather more inchoate but not necessarily less accurate form by the public. Nuclear power has failed in the United States because both the real and perceived risks outweigh the potential benefits. The national decision not to rely upon nuclear power in its present form is not an irrational one. A wide ranging public balancing of risk and benefit requires a classification of risk which is clear and believable for the public to be able to assess the risks associated with given technological structures. The qualitative four-level safety ladder provides such a framework. Nuclear reactors have been designed which fit clearly and demonstrably into each of the possible qualitative safety levels. Surprisingly, it appears that safer may also mean cheaper. The intellectual and technical prerequisites are in hand for an important national decision. Deployment of a qualitatively different second generation of nuclear reactors can have important benefits for the United States. Surprisingly, it may well be the nuclear establishment itself, with enormous investments of money and pride in the existing nuclear systems, that rejects second generation reactors. It may be that we will not have a second generation of reactors until the first generation of nuclear engineers and nuclear power advocates has retired

  13. A global nuclear safety culture

    International Nuclear Information System (INIS)

    1996-01-01

    The article discusses three components characterizing the infrastructure of a global nuclear safety culture, each one satisfying special needs. These are: (a) legally binding international agreements, which were drawn up at an accelerated pace in the 1980s following the Chernobyl accident, with its transboundary implications; (b) non-binding common safety standards, which were developed rapidly during the 1960s and 1970s, a period which saw a desire for harmonized safety approaches as nuclear power and the use of radiation and radioactive materials expanded globally; and (c) review and advisory services, which are provided by international experts, the need for which was underscored by the accident at Chernobyl. 5 refs, 1 fig

  14. Welding faults and nuclear safety

    International Nuclear Information System (INIS)

    Bergemann, W.

    1977-01-01

    Recommendations are presented with a view to further improving the nuclear safety and radiological protection in G.D.R. nuclear power plants by altering the requirements set out in the Labour Safety Regulation 880 for the weld quality of components of nuclear power plant systems. In order to fix the requirements to be met in non-destructive testing of welded joints, the individual systems should be classified taking injury to persons and reduction in availability as criteria. As regards the testing for leaks, it is shown that the soap-bubble test can be replaced partially by the system hydrostatic test and, that the halogen test and equivalent methods need not be applied. (author)

  15. Nuclear safety and health

    International Nuclear Information System (INIS)

    England-Joseph, J.A.

    1991-03-01

    The full extent of nonconforming parts usage in the federal government is unknown. However, large and small companies, both foreign and domestic, have sold nonconforming parts-including counterfeit and substandard items-to nuclear power plants, commercial and military aircraft, naval ships, weapons systems, and the space shuttle. Accidents resulting from the failure of nonconforming parts could be devastating, GAO testified. To eliminate this problem, GAO believes that an aggressive, government wide approach is needed, one that would ensure that federal agencies cooperate and share information about nonconforming products. This paper reports that while a centralized information system may not stop the proliferation of nonconforming products, it should help federal agencies make informed decisions about potential suppliers and products. GAO concludes that the Office of Management and Budget is in the best position to develop an effective, appropriate, and cost-beneficial plan to help resolve the problem of nonconforming parts

  16. Probabilistic assessment of nuclear safety and safeguards

    International Nuclear Information System (INIS)

    Higson, D.J.

    1987-01-01

    Nuclear reactor accidents and diversions of materials from the nuclear fuel cycle are perceived by many people as particularly serious threats to society. Probabilistic assessment is a rational approach to the evaluation of both threats, and may provide a basis for decisions on appropriate actions to control them. Probabilistic method have become standard tools used in the analysis of safety, but there are disagreements on the criteria to be applied when assessing the results of analysis. Probabilistic analysis and assessment of the effectiveness of nuclear material safeguards are still at an early stage of development. (author)

  17. Safety in nuclear power plants

    International Nuclear Information System (INIS)

    Koeberlein, K.

    1987-01-01

    In nuclear power plants large amounts of radioactive fission products ensue from the fission of uranium. In order to protect the environment, the radioactive material is confined in multiple 'activity barriers' (crystal matrix of the fuel, fuel cladding, coolant boundary, safety containment, reactor building). These barriers are protected by applying a defense-in-depth concept (high quality requirements, protection systems which recognize and terminate operational incidents, safety systems to cope with accidents). In spite of a favorable safety record of German nuclear power plants it is obvious - and became most evident by the Chernobyl accident - that absolute safety is not achievable. At Chernobyl, however, design disadvantages of that reactor type (like positive reactivity feedback of coolant voiding, missing safety containment) played an important role in accident initiation and progression. Such features of the Russian 'graphite-moderated pressure tube boiling water reactor' are different from those of light water reactors operating in western countries. The essential steps of the waste management of the nuclear fuel cycle ('Entsorgung') are the interim storage, the shipment, and the reprocessing of the spent fuel and the final repository of radioactive waste. Reprocessing means the separation of fossil material (uranium, plutonium) from radioactive waste. Legal requirements for radiological protection of the environment, which are identical for nuclear power plants and reprocessing plant, are complied with by means of comprehensive filter systems. Safety problems of a reprocessing plant are eased considerably by the fact that system pressures, process temperatures and energy densities are low. In order to confine the radioactive waste from the biosphere for a very long period of time, it is to be discarded after appropriate treatment into the deep geological underground of salt domes. (orig./HP) [de

  18. Nuclear safety: an international approach: the convention on nuclear safety

    International Nuclear Information System (INIS)

    Rosen, M.

    1994-01-01

    This paper is a general presentation of the IAEA Convention on Nuclear Safety which has already be signed by 50 countries and which is the first legal instrument that directly addresses the safety of nuclear power plants worldwide. The paper gives a review of its development and some key provisions for a better understanding of how this agreement will operate in practice. The Convention consists of an introductory preamble and four chapters consisting of 35 articles dealing with: the principal objectives, definitions and scope of application; the various obligations (general provisions, legislation, responsibility and regulation, general safety considerations taking into account: the financial and human resources, the human factors, the quality assurance, the assessment and verification of safety, the radiation protection and the emergency preparedness; the safety of installations: sitting, design and construction, operation); the periodic meetings of the contracting parties to review national reports on the measures taken to implement each of the obligations, and the final clauses and other judicial provisions common to international agreements. (J.S.). 1 append

  19. Strategies for nuclear safety

    International Nuclear Information System (INIS)

    Cetto, A.M.; Taniguchi, T.

    2006-01-01

    Please Rarely in the history of the IAEA has radiation-based technology provided so much opportunity and presented such great risk. The harsh reality is that broader distribution of radioactive materials and sources makes more sources available to more people, thereby increasing the probability of incidents and accidents. As human beings derive greater benefit from ionizing radiation, they also stand a higher risk of being exposed to its harmful effects. Over the past ten years, the IAEA's technical cooperation programme undertook a massive effort to empower developing nations to realise social and economic goals through the application of radiation-based technologies. The Model Project on Upgrading Radiation Protection Infrastructure (the Model Project) represented a significant shift in priorities in that the aim was not to deliver technology per se, but rather to ensure that Member States acquired the capacity to self-manage all related aspects of radiation protection. Without question, the project keeps achieving a great deal. Virtually all participating countries are making significant progress in establishing a basic safety infrastructure; many also are developing the human resources required to tackle the issues of exposure control and emergency preparedness. This strengthened capacity enables Member States to realise more benefits from radiation-based technology more quickly. Moreover, through the knowledge and experience gained, more countries are reaching a level of maturity where they recognize that they hold responsibility for the radioactive sources and materials found within their borders

  20. Structural Aging Program to evaluate continued performance of safety-related concrete structures in nuclear power plants

    International Nuclear Information System (INIS)

    Naus, D.J.; Oland, C.B.; Ellingwood, B.R.

    1994-01-01

    This report discusses the Structural Aging (SAG) Program which is being conducted at the Oak Ridge National Laboratory (ORNL) for the United States Nuclear Regulatory commission (USNRC). The SAG Program is addressing the aging management of safety-related concrete structures in nuclear power plants for the purpose of providing improved technical bases for their continued service. The program is organized into three technical tasks: Materials Property Data Base, Structural Component Assessment/Repair Technologies, and Quantitative Methodology for continued Service Determinations. Objectives and a summary of recent accomplishments under each of these tasks are presented

  1. International Nuclear Safety Center (INSC) database

    International Nuclear Information System (INIS)

    Sofu, T.; Ley, H.; Turski, R.B.

    1997-01-01

    As an integral part of DOE's International Nuclear Safety Center (INSC) at Argonne National Laboratory, the INSC Database has been established to provide an interactively accessible information resource for the world's nuclear facilities and to promote free and open exchange of nuclear safety information among nations. The INSC Database is a comprehensive resource database aimed at a scope and level of detail suitable for safety analysis and risk evaluation for the world's nuclear power plants and facilities. It also provides an electronic forum for international collaborative safety research for the Department of Energy and its international partners. The database is intended to provide plant design information, material properties, computational tools, and results of safety analysis. Initial emphasis in data gathering is given to Soviet-designed reactors in Russia, the former Soviet Union, and Eastern Europe. The implementation is performed under the Oracle database management system, and the World Wide Web is used to serve as the access path for remote users. An interface between the Oracle database and the Web server is established through a custom designed Web-Oracle gateway which is used mainly to perform queries on the stored data in the database tables

  2. Progress of nuclear safety research-2004

    International Nuclear Information System (INIS)

    Anoda, Yoshinari; Ebine, Noriya; Chuto, Toshinori; Sato, Satoshi; Ishikawa, Jun; Yamamoto, Toshihiro; Munakata, Masahiro; Asakura, Toshihide; Yamaguchi, Tetsuji; Kida, Takashi; Matsui, Hiroki; Haneishi, Akihiro; Araya, Fumimasa

    2005-03-01

    JAERI is conducting nuclear safety research primarily at the Nuclear Safety Research Center in close cooperation with the related departments in accordance with the Long Term Plan for Development and Utilization of Nuclear Energy and Annual Plan for Safety Research issued by the Japanese government. The fields of conducting safety research at JAERI are the engineering safety of nuclear power plants and nuclear fuel cycle facilities, and radioactive waste management as well as advanced technology for safety improvement or assessment. Also, JAERI has conducted international collaboration to share the information on common global issues of nuclear safety and to supplement own research. Moreover, when accidents occurred at nuclear facilities, JAERI has taken a responsible role by providing technical experts and investigation for assistance to the government or local public body. This report summarizes the nuclear safety research activities of JAERI from April 2002 through March 2004 and utilized facilities. (author)

  3. The Nordic nuclear safety research 1990-93. Evalution and executive summary; Nordisk kernesikkerhedsforskning 1990-93. Evaluering og administrativ sammenfatning

    Energy Technology Data Exchange (ETDEWEB)

    Marcus, F

    1994-11-01

    A four-year Nordic research programme in the field of nuclear safety was carried through from 1990 through 1993, performed under the auspices of the Nordic Committee for Nuclear Safety Research, NKS. The aim has been to increase knowledge required to judge the safety of nuclear installations in and around the Nordic areas, and to improve and harmonize emergency preparedness. There were 19 individual projects within the four main section of the programme: Emergency preparedness, Waste and decommissioning, Radioecology, and Reactor safety. The programme was evaluated in 1994 by five evaluators, and the main emphasis was on general questions. The evaluators recommend that project plans are revised at mid-term, for updating. During the project period, NKS should use specified criteria to judge progress and success. Time tables must be adhered to. Recommendations deal with reporting and presentation of results, project leaders must disseminate information at the professional level and organize seminars. The NKS annual reports should be conceived so that they can also be used for external information. NKS should establish a policy aimed at enhanced information on its projects. Final reports should contain conclusions and recommendations which can subsequently be followed up. Directors of the competent authorities in the Nordic countries should be requested to give their views on the recommendations, and also industry, on the usefulness of results. It is proposed that NKS consider presentation of the outcome to responsible ministers and their staff. These recommendations were taken into account during 1994. (AB).

  4. Safety principles for nuclear power plants

    International Nuclear Information System (INIS)

    Vuorinen, A.

    1993-01-01

    The role and purpose of safety principles for nuclear power plants are discussed. A brief information is presented on safety objectives as given in the INSAG documents. The possible linkage is discussed between the two mentioned elements of nuclear safety and safety culture. Safety culture is a rather new concept and there is more than one interpretation of the definition given by INSAG. The defence in depth is defined by INSAG as a fundamental principle of safety technology of nuclear power. Discussed is the overall strategy for safety measures, and features of nuclear power plants provided by the defence-in-depth concept. (Z.S.) 7 refs

  5. Nuclear safety guide. TID-7016, Revision 2

    International Nuclear Information System (INIS)

    Thomas, J.T.

    1978-01-01

    The Nuclear Safety Guide was first issued in 1956 as classified AEC report LA-2063 and was reprinted the next year, unclassified, as TID-7016. Revision 1, published in 1961, extended the scope and refined the guiding information. The present revision of the Guide differs significantly from its predecessor in that the latter was intentionally conservative in its recommendations. Firmly based on experimental evidence of criticality, the original Guide and the first revision were considered to be of most value to organizations whose activities with fissionable materials were not extensive and, secondarily, that it would serve as a point of departure for members of established nuclear safety teams, experienced in the field. The reader will find a significant change in the character of information presented in this version. Nuclear Criticality Safety has matured in the past twelve years. The advance of calculational capability has permitted validated calculations to extend and substitute for experimental data. The broadened data base has enabled better interpolation, extension, and understanding of available information, especially in areas previously addressed by undefined but adequate factors of safety. The content has been thereby enriched in qualitative guidance. The information inherently contains, and the user can recapture, the quantitative guidance characteristic of the formerGuides by employing appropriate safety factors. In fact, it becomes incumbent on the Criticality Safety Specialist to necessarily impose safety factors consistent with the possible normal and abnormal credible contingencies of an operation as revealed by his evaluation. In its present form the Guide easily becomes a suitable module in any compendium or handbook tailored for internal use by organizations. It is hoped the Guide will continue to serve immediate needs and will encourage continuing and more comprehensive efforts toward organizing nuclear criticality safety information

  6. Nuclear safety guide. TID-7016, Revision 2

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, J T [ed.

    1978-05-01

    The Nuclear Safety Guide was first issued in 1956 as classified AEC report LA-2063 and was reprinted the next year, unclassified, as TID-7016. Revision 1, published in 1961, extended the scope and refined the guiding information. The present revision of the Guide differs significantly from its predecessor in that the latter was intentionally conservative in its recommendations. Firmly based on experimental evidence of criticality, the original Guide and the first revision were considered to be of most value to organizations whose activities with fissionable materials were not extensive and, secondarily, that it would serve as a point of departure for members of established nuclear safety teams, experienced in the field. The reader will find a significant change in the character of information presented in this version. Nuclear Criticality Safety has matured in the past twelve years. The advance of calculational capability has permitted validated calculations to extend and substitute for experimental data. The broadened data base has enabled better interpolation, extension, and understanding of available information, especially in areas previously addressed by undefined but adequate factors of safety. The content has been thereby enriched in qualitative guidance. The information inherently contains, and the user can recapture, the quantitative guidance characteristic of the formerGuides by employing appropriate safety factors. In fact, it becomes incumbent on the Criticality Safety Specialist to necessarily impose safety factors consistent with the possible normal and abnormal credible contingencies of an operation as revealed by his evaluation. In its present form the Guide easily becomes a suitable module in any compendium or handbook tailored for internal use by organizations. It is hoped the Guide will continue to serve immediate needs and will encourage continuing and more comprehensive efforts toward organizing nuclear criticality safety information.

  7. Nuclear safety guide TID-7016 Revision 2

    International Nuclear Information System (INIS)

    Thomas, J.T.

    1980-01-01

    The present revision of TID-7016 Nuclear Safety Guide is discussed. This Guide differs significantly from its predecessor in that the latter was intentionally conservative in its recommendations. Firmly based on experimental evidence of criticality, the original Guide and the first revision were considered to be of most value to organizations whose activities with fissionable materials were not extensive and, secondarily, that it would serve as a point of departure for members of established nuclear safety teams, experienced in the field. The reader will find a significant change in the character of information presented in this version. Nuclear Criticality Safety has matured in the past twelve years. The advance of calculational capability has permitted validated calculations to extend and substitute for experimental data. The broadened data base has enabled better interpolation, extension, and understanding of available, information, especially in areas previously addressed by undefined but adequate factors of safety. The content has been thereby enriched in qualitative guidance. The information inherently contains, and the user can recapture, the quantitative guidance characteristic of the former Guides by employing appropriate safety factors. In fact, it becomes incumbent on the Criticality Safety Specialist to necessarily impose safety factors consistent with the possible normal and abnormal credible contingencies of an operation as revealed by his evaluation. In its present form the Guide easily becomes a suitable module in any compendium or handbook tailored for internal use by organizations. It is hoped the Guide will continue to serve immediate needs and will encourage continuing and more comprehensive efforts toward organizing nuclear criticality safety information

  8. Leadership Actions to Improve Nuclear Safety Culture

    International Nuclear Information System (INIS)

    Clewett, L.K.

    2016-01-01

    The challenge many leaders face is how to effectively implement and then utilise the results of Safety Culture surveys. Bruce Power has recently successfully implemented changes to the Safety Culture survey process including how corrective actions were identified and implemented. The actions taken in response to the latest survey have proven effective with step change performance noted. Nuclear Safety is a core value for Bruce Power. Nuclear Safety at Bruce Power is based on the following four pillars: reactor safety, industrial safety, radiological safety and environmental safety. Processes and practices are in place to achieve a healthy Nuclear Safety Culture within Bruce Power such that nuclear safety is the overriding priority. This governance is based on industry leading practices which monitor, asses and take action to drive continual improvements in the Nuclear Safety Culture within Bruce Power.

  9. Safety Evaluation Report related to the operation of Nine Mile Point Nuclear Station, Unit No. 2 (Docket No. 50-410). Supplement No. 4

    International Nuclear Information System (INIS)

    1986-09-01

    This report supplements the Safety Evaluation Report (NUREG-1047, February 1985) for the application filed by Niagara Mohawk Power Corporation, as applicant and co-owner, for a license to operate Nine Mile Point Nuclear Station, Unit 2 (Docket No. 50-410). It has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. The facility is located near Oswego, New York. Supplement 1 to the Safety Evaluation Report was published in June 1985, and contained the report from the Advisory Committee on Reactor Safeguards as well as the resolution of a number of outstanding issues from the Safety Evaluation Report. Supplement 2 was published in November 1985, and contained the resolution of a number of outstanding and confirmatory issues. Supplement 3 was published in July 1986, and contained the resolution of a number of outstanding and confirmatory items, one new confirmatory item, the evaluation of the Engineering Assurance Program, and evaluation of a number of exemption requests

  10. Nuclear industry and radioecological safety

    International Nuclear Information System (INIS)

    Semenov, V. G.

    2006-01-01

    The beginning of XXI century is marked with increasing public concern over impact of man-made activity, including nuclear technologies, on the environment. Currently, the anthropocentric principle is applied in the course of the radioecological safety guaranteeing for the environment, which postulates that human protectability serves as guarantee of the environmental one. However, this principle correctness is called in question recently. The ecocentric principle is proposed as an alternative doctrine, defining balance between human importance and that of any other elements of biota. The system recommended isn't intended for the regulatory standards development yet, because of substantial gaps in scientific knowledge. Nevertheless, renunciation of the anthropocentric principle can result in unwarranted tightened regulatory basis, decreasing of nuclear industry evolution rates, and, consequently, breaching of societal and economical priorities. It is obvious that for the safety guaranteeing, nuclear industry shouldn't stand out against a background of other fields of human activity involved hazard factors. Therefore, new conceptions applying within the regulatory system is to be weighted and exclude formal using of discussion theses. More than semi-centennial experience of the anthropocentric approach applying serves as an evidence of safe protection of ecosystems against radiation exposure that ensures safe ecological development of nuclear power industry and other fields of nuclear technologies application. (author)

  11. Nuclear Criticality Safety Data Book

    Energy Technology Data Exchange (ETDEWEB)

    Hollenbach, D. F. [Y-12 National Security Complex, Oak Ridge, TN (United States)

    2016-11-14

    The objective of this document is to support the revision of criticality safety process studies (CSPSs) for the Uranium Processing Facility (UPF) at the Y-12 National Security Complex (Y-12). This design analysis and calculation (DAC) document contains development and justification for generic inputs typically used in Nuclear Criticality Safety (NCS) DACs to model both normal and abnormal conditions of processes at UPF to support CSPSs. This will provide consistency between NCS DACs and efficiency in preparation and review of DACs, as frequently used data are provided in one reference source.

  12. Nuclear Criticality Safety Data Book

    International Nuclear Information System (INIS)

    Hollenbach, D. F.

    2016-01-01

    The objective of this document is to support the revision of criticality safety process studies (CSPSs) for the Uranium Processing Facility (UPF) at the Y-12 National Security Complex (Y-12). This design analysis and calculation (DAC) document contains development and justification for generic inputs typically used in Nuclear Criticality Safety (NCS) DACs to model both normal and abnormal conditions of processes at UPF to support CSPSs. This will provide consistency between NCS DACs and efficiency in preparation and review of DACs, as frequently used data are provided in one reference source.

  13. Modifications to nuclear power plants. Safety guide

    International Nuclear Information System (INIS)

    2004-01-01

    control and that the modified configuration conforms to the approved basis for granting a nuclear power plant operating licence. The main purpose of the recommendations concerning changes of management is to give general guidance on performing those changes in such a way that the safety of the plant is not compromised. This Safety Guide deals with the intended modification of structures, systems and components, operational limits and conditions, procedures and software, and the management systems and tools for the operation of a nuclear power plant. The recommendations made cover the whole modification process, from conception to completion. The justification for undertaking modifications is outside the scope of this Safety Guide. The modification and/or refurbishment of nuclear power plants for the purpose of extending the design lifetime could necessitate many major design modifications and special re-evaluation of plant safety (see Ref. [2]), and is therefore outside the scope of this publication. Section 2 gives guidance on general methods for modifications that could be implemented at nuclear power plants. Section 3 identifies the roles and responsibilities of various organizations involved in the modification process. Sections 4 and 5 give guidance on the different types of modification and their assessment in respect of safety aspects, and Section 4 provides guidelines on subsequent categorization. Section 6 deals with aspects of temporary modifications. Sections 7 and 8 give guidance on implementation of different types of modifications. Sections 9, 10 and 11 give basic recommendations on quality assurance, training and management of documentation. Comprehensive guidance on these matters can be found in the appropriate Safety Guides

  14. Modifications to nuclear power plants. Safety guide

    International Nuclear Information System (INIS)

    2007-01-01

    control and that the modified configuration conforms to the approved basis for granting a nuclear power plant operating licence. The main purpose of the recommendations concerning changes of management is to give general guidance on performing those changes in such a way that the safety of the plant is not compromised. This Safety Guide deals with the intended modification of structures, systems and components, operational limits and conditions, procedures and software, and the management systems and tools for the operation of a nuclear power plant. The recommendations made cover the whole modification process, from conception to completion. The justification for undertaking modifications is outside the scope of this Safety Guide. The modification and/or refurbishment of nuclear power plants for the purpose of extending the design lifetime could necessitate many major design modifications and special re-evaluation of plant safety, and is therefore outside the scope of this publication. Section 2 gives guidance on general methods for modifications that could be implemented at nuclear power plants. Section 3 identifies the roles and responsibilities of various organizations involved in the modification process. Sections 4 and 5 give guidance on the different types of modification and their assessment in respect of safety aspects, and Section 4 provides guidelines on subsequent categorization. Section 6 deals with aspects of temporary modifications. Sections 7 and 8 give guidance on implementation of different types of modifications. Sections 9, 10 and 11 give basic recommendations on quality assurance, training and management of documentation. Comprehensive guidance on these matters can be found in the appropriate Safety Guides

  15. White paper on nuclear safety in 2000

    International Nuclear Information System (INIS)

    2001-04-01

    This report is composed of three parts and a subjective part Part 1 includes special articles on the measures for the security of nuclear safety and the future problems described from the beginning of the security. Taking consideration that there exists potential risk in the utilization of nuclear energy in addition to the previous accidents in the area of nuclear energy, future measures to take for safety security were discussed as well as the reorganization of government facilities. In addition, the measures for nuclear safety according to the special nuclear disaster countermeasure law and the future problems were described. In Part 2, the trend of nuclear safety in 2000 and the actual effects of 'the basic principle for the countermeasures of the hour' proposed by the nuclear safety commission were outlined. Moreover, the activities of the commission in 2000 were briefly described. In Part 3, various activities for security of nuclear safety, the safety regulation system and the disaster protection system in nuclear facilities, nuclear safety researches in Japan were described in addition to international cooperation as to nuclear safety. Finally, various materials related to the nuclear safety commission, and the materials on the practical activities for nuclear safety were listed in the subjective part. (M.N.)

  16. Conceptual aspects of the safety evaluation of a project of complementary spent nuclear fuel dry storage unit

    Energy Technology Data Exchange (ETDEWEB)

    Freitas, Rafaela da S. A.; Fontes, Gladson S., E-mail: rafaaelaandrade@hotmail.com, E-mail: gsfontes@hotmail.com [Instituto Militar de Engenharia (IME), Rio de Janeiro, RJ (Brazil); Saldanha, Pedro L. C., E-mail: saldanha@cnen.gov.br [Comissão Nacional de Energia Nuclear (CNEN), Rio de Janeiro, RJ (Brazil)

    2017-07-01

    Based on the number of cycles and the amount of new fuel elements exchanged in the reactor cores at each cycle, the forecast for the exhaustion of the spent nuclear fuel pools of the Brazil plants has provision until 2021. As are still in the studies the availability of a long-term storage facility for spent fuel, the short-term solution will be the construction of the Complementary Storage Spent Nuclear Fuel Unit, it will build inside the site in Angra Plants. The dry cask is a method of storage in which the fuel elements of high-level radioactive waste are stored, such as spent nuclear fuel, which already cooled in the fuel pool for at least one year and up to ten years. The purpose of the present paper is to discuss a conceptual study of the safety analysis of a project of licensing of a Dry Storage Unit (DSU) with the objective of verifying the application of national and international criteria, requirements and standards. The safety analysis will make on the principles adopted by the US Nuclear USNRC and the standards adopted at CNEN for dry storage. The concept of installation, seismic, geological and other analysis will be approached for approval of the site to be installed at DSU, the approved permit for the construction and finally the external and internal events that may occur being incidents and / or accidents and which are The necessary mitigations if something occurs within a period of time. (author)

  17. Conceptual aspects of the safety evaluation of a project of complementary spent nuclear fuel dry storage unit

    International Nuclear Information System (INIS)

    Freitas, Rafaela da S. A.; Fontes, Gladson S.; Saldanha, Pedro L. C.

    2017-01-01

    Based on the number of cycles and the amount of new fuel elements exchanged in the reactor cores at each cycle, the forecast for the exhaustion of the spent nuclear fuel pools of the Brazil plants has provision until 2021. As are still in the studies the availability of a long-term storage facility for spent fuel, the short-term solution will be the construction of the Complementary Storage Spent Nuclear Fuel Unit, it will build inside the site in Angra Plants. The dry cask is a method of storage in which the fuel elements of high-level radioactive waste are stored, such as spent nuclear fuel, which already cooled in the fuel pool for at least one year and up to ten years. The purpose of the present paper is to discuss a conceptual study of the safety analysis of a project of licensing of a Dry Storage Unit (DSU) with the objective of verifying the application of national and international criteria, requirements and standards. The safety analysis will make on the principles adopted by the US Nuclear USNRC and the standards adopted at CNEN for dry storage. The concept of installation, seismic, geological and other analysis will be approached for approval of the site to be installed at DSU, the approved permit for the construction and finally the external and internal events that may occur being incidents and / or accidents and which are The necessary mitigations if something occurs within a period of time. (author)

  18. Development of a procedure for qualitative and quantitative evaluation of human factors as a part of probabilistic safety assessments of nuclear power plants. Part A

    International Nuclear Information System (INIS)

    Richei, A.

    1998-01-01

    The objective of this project is the development of a procedure for the qualitative and quantitative evaluation of human factors in the probabilistic safety assessment for nuclear power plants. The Human Error Rate Assessment and Optimizing System (HEROS) is introduced. The evaluation of a task with HEROS is realized in the three evaluation levels, i.e. 'Management Structure', 'Working Environment' and 'Man-Machine-Interface'. The developed expert system uses the fuzzy set theory for an assessment. For the evaluation of cognitive tasks evaluation criteria are derived also. The validation of the procedure is based on three examples, reflecting the common practice of probabilistic safety assessments and including problems, which cannot, respectively - only insufficiently - be evaluated with the established human risk analysis procedures. HERO applications give plausible and comprehensible results. (orig.) [de

  19. An approach to evaluate task allocation between operators and automation with respect to safety of Nuclear Power Plants

    International Nuclear Information System (INIS)

    Macwan, A.; Wei, Z.G.; Wieringa, P.A.

    1994-01-01

    Even though the use of automation is increasing in complex systems, its effect on safety cannot be systematically analyzed using current techniques. Of particular interest is task allocation between operators and automation. In evaluating its effect on safety, a quantitative definition of degree of automation (doA) is used. The definition of doA accounts for the effect of task on safety, irrespective of whether the task is carried out by operator or automation. Also included is the indirect effect due to the change in workload perceived by the operator. This workload is translated into stress which affects operator performance, expressed as human error probability, and subsequently, safety. The approach can be useful for evaluation of existing task allocation schemes as well as in making decisions about task allocation between operators and automation. (author). 13 refs, 1 fig

  20. 48 CFR 923.7001 - Nuclear safety.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 5 2010-10-01 2010-10-01 false Nuclear safety. 923.7001... ENVIRONMENT, CONSERVATION, OCCUPATIONAL SAFETY, AND DRUG-FREE WORKPLACE Environmental, Energy and Water Efficiency, Renewable Energy Technologies, and Occupational Safety Programs 923.7001 Nuclear safety. The DOE...

  1. Nuclear safety in Slovak Republic. Status of safety improvements

    International Nuclear Information System (INIS)

    Toth, A.

    1999-01-01

    Status of the safety improvements at Bohunice V-1 units concerning WWER-440/V-230 design upgrading were as follows: supplementing of steam generator super-emergency feed water system; higher capacity of emergency core cooling system; supplementing of automatic links between primary and secondary circuit systems; higher level of secondary system automation. The goal of the modernization program for Bohunice V-1 units WWER-440/V-230 was to increase nuclear safety to the level of the proposals and IAEA recommendations and to reach probability goals of the reactor concerning active zone damage, leak of radioactive materials, failures of safety systems and damage shields. Upgrading program for Mochovce NPP - WWER-440/V-213 is concerned with improving the integrity of the reactor pressure vessel, steam generators 'leak before break' methods applied for the NPP, instrumentation and control of safety systems, diagnostic systems, replacement of in-core monitoring system, emergency analyses, pressurizers safety relief valves, hydrogen removal system, seismic evaluations, non-destructive testing, fire protection. Implementation of quality assurance has a special role in improvement of operational safety activities as well as safety management and safety culture, radiation protection, decommissioning and waste management and training. The Year 2000 problem is mentioned as well

  2. Nuclear power indices and safety

    International Nuclear Information System (INIS)

    Bennet, L.L.; Fizher, D.; Nechaev, A.

    1987-01-01

    Problems discussed at the IAEA International Conference on nuclear power indices and safety held in Vienna from 28 September to 2 October, 1987 are considered. Representatives from 40 countries and 12 international organizations participated in the conference. It is marked that by the end of this century nuclear power plant capacities in developing countries will increase by more than twice. In developed countries increase of installed capacity by 65 % is forecasted. It is stressed that competently constructed and operated NPPs will be successfully competing with coal-fueled power plants in the majority of the world regions. Much attention was paid to reports on measures taken after Chernobyl' accident and its radiation effects on people helth. It is shown that parallel with fundamental theoretical studies on NPP safety as a complex engineering system much attention is paid to some problems of designing and operation of such facilities. Fuel cycle problems, radioactive waste and spent fuel storage and disposal in particular, are considered

  3. Spent Nuclear Fuel Project Safety Management Plan

    International Nuclear Information System (INIS)

    Garvin, L.J.

    1996-02-01

    The Spent Nuclear Fuel Project Safety Management Plan describes the new nuclear facility regulatory requirements basis for the Spemt Nuclear Fuel (SNF) Project and establishes the plan to achieve compliance with this basis at the new SNF Project facilities

  4. Nuclear liability, nuclear safety, and economic efficiency

    International Nuclear Information System (INIS)

    Wood, W.C.

    1980-01-01

    This dissertation applies the methods of economic analysis to nuclear liability and Price-Anderson. First the legislative history is reviewed; in that history the economic role of liability in affecting safety and allocating risk was virtually ignored. Succeeding chapters reformulate issues from the policy debate and subject them to economic analysis. A persistent issue is whether nuclear utilities respond to their limited liability by allowing a higher probability of serious accident. Comparative-static analysis shows that limited liability does lead to a higher chance of accidents, though the effect may be small. The analysis also shows that safety is achieved in a more capital-intensive manner than is cost-minimizing and that limited liability causes reactor owners to favor more heavily populated sites for plants. Therefore, the siting decision makes potential loss greater even if there is no change in the probability of an accident. Citizens' preferences on nuclear liability are examined next, starting with the nature of coverage that would be just in the sense of contraction theories such as John Rawls' Theory of Justice. Citizens behind Rawls' veil of ignorance, forced to be fair because of their ignorance of whether they will be harmed, unanimously choose a high level of coverage. The just level of coverage is greater than the existing $560 million. Second, the nature of economically efficient liability coverage is determined and contrasted with coverage that would emerge from a democratic system of public choice. Population and expected damage profiles indicate that majorities could easily be formed among groups of citizens expecting to suffer little of the damage of a nuclear accident. Thus, majority voting on liability arrangements is likely to produce an inefficiently low level of coverage

  5. Safety evaluation report related to the operation of Diablo Canyon Nuclear Power Plant, Units 1 and 2 (Docket Nos. 50-275 and 50-323). Suppl. 22

    International Nuclear Information System (INIS)

    1984-03-01

    Supplement 22 to the Safety Evaluation Report for Pacific Gas and Electric Company's application for licenses to operate Diablo Canyon Nuclear Power Plants, Unit 1 and 2 (Docket Nos. 50-275 and 50-323), has been prepared jointly by the Office of Nuclear Reactor Regulation and the Region V Office of the US Nuclear Regulatory Commission. This supplement provides the criteria that were used by the staff to determine which of the allegations that have been evaluated and must be resolved prior to Unit 1 achieving criticality and operating at power level up to 5 percent of rated power (i.e., low power operation). The supplement also reports on the status of the staff's investigation, inspection and evaluation of 219 allegations or concerns that have been identified to the NRC as of March 9, 1984, excluding those recently received under 10 CFR 2.206 petitions

  6. White paper on nuclear safety in 2004

    International Nuclear Information System (INIS)

    2005-05-01

    The white paper consists of four parts. The first part described the regulation of nuclear facility decommissioning and the clearance level at which the decommissioned waste materials are not necessarily treated as radioactive materials. The second part explained the main operations of the nuclear safety regulation of the Nuclear Safety Commission and the regulatory bodies in 2004 and Mihama unit 3 accident. The third part introduced various activities for the general preservation of nuclear safety in Japan, such as safety regulation systems for nuclear facilities, disaster preparedness of nuclear facilities, progress in nuclear research, environmental radiation surveys and international cooperation on nuclear safety. The forth part contained various materials and data related to the Nuclear Safety Commission. (J.P.N.)

  7. Nuclear safety in France in 2001

    International Nuclear Information System (INIS)

    Anon.

    2002-01-01

    This article presents the milestones of 2001 concerning nuclear safety in France: 1) the new organization of nuclear safety in France, IPSN (institute of protection and nuclear safety) and OPRI (office for protection against ionizing radiation) have merged into an independent organization: IRSN (institute of radiation protection and nuclear safety); 2) a draft bill has been proposed by the government to impose to nuclear operators new obligations concerning the transfer of information to the public; 3) nuclear safety authorities have drafted a new procedure in order to cope with the demand concerning modification of nuclear fuel management particularly the increase of the burn-up; 4) new evolutions concerning the management of a major nuclear crisis as a consequence of the terrorist attack on New-york and the accident at the AZF plant in Toulouse; 5) a point is made concerning the work of the WENRA association about the harmonization of the nuclear safety policies of its different members. (A.C.)

  8. Applying Digital Technologies to Strengthen Nuclear Safety

    International Nuclear Information System (INIS)

    Huffeteau, S.; Roy, C.

    2016-01-01

    Full text: The paper describes how the development of some information technologies can further contribute to the safety of nuclear facilities and their competitiveness. After repositioning the nuclear industry engineering practices in their historical and economic context, the paper describes five engineering practices or use cases widely developed especially in the aerospace industry: requirement management, business process enforcement by digitization of data and processes, facilities configuration management, engineering information unification, and digital licensing. Information technology (IT) plays a mandatory role for driving this change since IT is now mature enough to handle the level of complexity the nuclear industry requires. While the detailed evaluation of the expecting gains in cost decrease or safety increase can be difficult to quantify, the paper presents illustrative benefits reachable by a development of these practices. (author

  9. Safety of Nuclear Power Plants: Design. Specific Safety Requirements

    International Nuclear Information System (INIS)

    2012-01-01

    On the basis of the principles included in the Fundamental Safety Principles, IAEA Safety Standards Series No. SF-1, this Safety Requirements publication establishes requirements applicable to the design of nuclear power plants. It covers the design phase and provides input for the safe operation of the power plant. It elaborates on the safety objective, safety principles and concepts that provide the basis for deriving the safety requirements that must be met for the design of a nuclear power plant. Contents: 1. Introduction; 2. Applying the safety principles and concepts; 3. Management of safety in design; 4. Principal technical requirements; 5. General plant design; 6. Design of specific plant systems.

  10. The role of the nuclear safety regulator

    International Nuclear Information System (INIS)

    Mellado, I.

    2007-01-01

    The Consejo de Seguridad Nuclear (CSN), or Nuclear Safety Council, is the only Spanish institution qualified in nuclear safety and radiological protection. Created in 1980, the CSN is independent of the Central State Administration, and possesses its own legal standing, estate and resources acquired directly from tax revenues. The CSN proposes regulations and advises the government on subjects within its competence, including the criteria for siting nuclear facilities once the autonomous regions have been informed. The CSN is responsible for issuing mandatory and binding reports to the Ministry of Industry. Tourism and Commerce, and for inspections and evaluation of the facilities included within its realm of competence throughout their phases (construction, start-up, operating and decommissioning). It is also responsible for the radiological control and surveillance of workers, the general public and the environment, as described below. In 1999, a new responsibility was assigned to the CSN to perform studies, assessment and inspections in relation to all phases of radioactive waste and spent fuel management. The CSN reports to the Spanish Parliament and is not subject to the hierarchy or auspices of the Government or the organisations in charge of promoting nuclear energy. The Council itself is an Associative Body comprised of 5 members, appointed by Parliament for a 6 year term (these members cannot be removed). Under this Council is situated an extensive technical body. A General Secretary is seconded by Technical Directors in the area of Nuclear Safety and Radiological Protection. As well there are a R and D Office, an Inspection Office, and a Technical Standards Office. The CSN counts 446 workers, of which 191 are university graduate specialists in nuclear safety or radiological protection. The average age is 45 years. Ongoing training is provided in technical specialties and management. (author)

  11. International Symposium on Nuclear Safety

    International Nuclear Information System (INIS)

    2013-03-01

    Nuclear Regulatory Authority of the Slovak Republic and the Embassy of Japan in the Slovak Republic, under the auspices of the Deputy Prime Minister and Minister of Foreign and European Affairs Mr Lajcak organized International Symposium on Nuclear Safety on 14 and 15 March 2013. The symposium took place almost exactly two years after the occurrence of accidents at the Japanese nuclear power plant Fukushima Daichi. The main mission of the symposium was an attempt to contribute to the improvement of nuclear safety by sharing information and lessons presented by Japanese experts with experts from the region, the International Atomic Energy Agency (IAEA) and the European Commission. The aim of the symposium, unlike many other events organized in connection with the events in Fukushima Daichi NPP, was a summary of the results of stress tests and measures update adopted by the international community, especially within Europe. Panel discussion was included to the program of the symposium for this aim was, mainly focused on the current state of implementation of the National Action Plan of the Slovak Republic, the Czech Republic, Poland, Ukraine and Switzerland and the IAEA Action Plan.

  12. Risk communication activities toward nuclear safety in Tokai: your safety is our safety

    International Nuclear Information System (INIS)

    Tsuchiya, T.

    2007-01-01

    As several decades have passed since the construction of nuclear power plants began, residents have become gradually less interested in nuclear safety. The Tokai criticality accident in 1909, however, had roused residents in Tokai-Mura to realize that they live with nuclear technology risks. To prepare a field of risk communication, the Tokai-Mura C 3 project began as a pilot research project supported by NISA. Alter the project ended, we are continuing risk. communication activities as a non-profit organisation. The most important activity of C 3 project is the citizen's inspection programme for nuclear related facilities. This programme was decided by participants who voluntarily applied to the project. The concept of the citizen's inspection programme is 'not the usual facility tours'. Participants are involved from the planning stage and continue to communicate with workers of the inspected nuclear facility. Since 2003, we have conducted six programmes for five nuclear related organisations. Participants evaluated that radiation protection measures were near good but there were some problems concerning the worker's safety and safety culture, and proposed a mixture of advice based on personal experience. Some advice was accepted and it did improve the facility's safety measures. Other suggestions were not agreed upon by nuclear organisations. The reason lies in the difference of concept between the nuclear expert's 'safety' and the citizen's 'safety'. Residents do not worry about radiation only, but also about the facility's safety as a whole including the worker's safety. They say, 'If the workers are not safe, you also are unable to protect us'. Although the disagreement remained, the participants and the nuclear industry learned much about each other. Participating citizens received a substantial amount of knowledge about the nuclear industry and its safety measures, and feel the credibility and openness of the nuclear industry. On the other hand, the nuclear

  13. Interrelationship between nuclear safety, safeguards and nuclear security

    International Nuclear Information System (INIS)

    Irie, Kazutomo

    2007-01-01

    As preventive activities against danger within nuclear systems, three major areas exist; nuclear safety, safeguards and nuclear security. Considering the purpose of these activities, to prevent non-peaceful use is common in nuclear security in general and safeguards. At the same time, measures against sabotage, one of the subcategory in nuclear security, is similar to nuclear safety in aiming at preventing nuclear accidents. When taking into account the insider issues in nuclear security, the distinction between measures against sabotage and nuclear safety becomes ambiguous. Similarly, the distinction between measures against theft, another subcategory in nuclear security, and safeguards also becomes vague. These distinctions are influenced by psychological conditions of members in nuclear systems. Members who have the intention to make nuclear systems dangerous to human society shall be the 'enemy' to nuclear systems and thus be the target for nuclear security. (author)

  14. Technical evaluation of the noise and isolation testing of the safety features actuation system at the Davis Besse Nuclear Power Station, Unit 1

    International Nuclear Information System (INIS)

    Selan, J.C.

    1981-07-01

    This report documents the technical evaluation of the noise and isolation testing of the safety features actuation system at the Davis Besse Nuclear Power Station, Unit 1. The tests were to verify that faults on the non-Class 1E circuits would not propagate to the Class 1E circuits and degrade them below acceptable levels. The tests conducted demonstrated that the safety features actuation system did not degrade below acceptable levels nor was the system's ability to perform its protective functions affected

  15. Safety Evaluation Report related to the operation of Millstone Nuclear Power Station, Unit No. 3 (Docket No. 50-423). Supplement No. 4

    International Nuclear Information System (INIS)

    1985-11-01

    This report supplements the Safety Evaluation Report (NUREG-1031) issued in July 1984, Supplement 1 issued in March 1985, Supplement 2 issued in September 1985, and Supplement 3 issued in November 1985, by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission with respect to the application filed by Northeast Nuclear Energy Company (applicant and agent for the owners) for a license to operate Millstone Nuclear Power Station, Unit No. 3 (Docket 50-423). The facility is located in the Town of Waterford, New London County, Connecticut, on the north shore of Long Island Sound. This supplement provides more recent information supporting the license for initial criticality and power ascension to 5% power operation for Millstone 3. 37 refs., 10 tabs

  16. Discussion on the safety classification of nuclear safety mechanical equipment

    International Nuclear Information System (INIS)

    Shen Wei

    2010-01-01

    The purpose and definition of the equipment safety classification in nuclear plant are introduced. The differences of several safety classification criterions are compared, and the object of safety classification is determined. According to the regulation, the definition and category of the safety functions are represented. The safety classification method, safety classification process, safety class interface, and the requirement for the safety class mechanical equipment are explored. At last, the relation of the safety classification between the mechanical and electrical equipment is presented, and the relation of the safety classification between mechanical equipment and system is also presented. (author)

  17. High-reliability logic system evaluation of a programmed multiprocessor solution. Application in the nuclear reactor safety field

    International Nuclear Information System (INIS)

    Lallement, Dominique.

    1979-01-01

    Nuclear reactors are monitored by several systems combined. The hydraulic and mechanical limitations on the equipment and the heat transfer requirements in the core set a reliable working range for the boiler defined with certain safety margins. The control system tends to keep the power plant within this working range. The protection system covers all the electrical and mechanical equipment needed to safeguard the boiler in the event of abnormal transients or accidents accounted for in the design of the plant. On units in service protection is handled by cabled automatic systems. For better reliability and safety operation, greater flexibility of use (modularity, adaptability) and improved start-up criteria by data processing the tendency is to use digital programmed systems. Computers are already present in control systems but their introduction into protection systems meets with some reticence on the part of the nuclear safety authorities. A study on the replacement of conventional by digital protection systems is presented. From choices partly made on the principles which should govern the hardware and software of a protection system the reliability of different structures and elements was examined and an experimental model built with its simulator and test facilities. A prototype based on these options and studies is being built and is to be set up on one of the CEN-G reactors for tests [fr

  18. Recent Activities on Global Nuclear Safety Regime

    International Nuclear Information System (INIS)

    Cho, Kun-Woo; Park, Jeong-Seop; Kim, Do-Hyoung

    2006-01-01

    Recently, rapid progress on the globalization of the nuclear safety issues is being made in IAEA (International Atomic Energy Agency) and its member states. With the globalization, the need for international cooperation among international bodies and member states continues to grow for resolving these universal nuclear safety issues. Furthermore, the importance of strengthening the global nuclear safety regime is emphasized through various means, such as efforts in application of IAEA safety standards to all nuclear installations in the world and in strengthening the code of conduct and the convention on nuclear safety. In this regards, it is important for us to keep up with the activities related with the global nuclear safety regime as an IAEA member state and a leading country in nuclear safety regulation

  19. Effectiveness of transmitting safety-measures information in risk communication of nuclear power generation. Evaluation by the receiver of the messages

    International Nuclear Information System (INIS)

    Matsumoto, Takanobu; Shiomi, Tetsuro

    2004-01-01

    Effectiveness of risk communication were previously discussed through both ''risk information'' and ''benefit information'' of its topics. However, in technical facilities facilities such as nuclear power plant where safeness is an important concern, not only these two aspects but also safety-measures information'' are required. There have been previously no such discussions about risk communication that included ''safety-measures information''. In this report, we investigated general public's view of the difference in effectiveness of risk communication between two cases. In the first case, only ''risk'' and ''benefit information'' were given. In the second case, we added ''safety-measures information'' as well as ''risk'' and benefit information''. Measurement of the effect was performed using a questionnaire. We divided the subjects into two groups. Each group was shown one side of two pamphlets which had information concerning two conditions, and asked how it feels about ''reliance on information'', ''reliance on informer'', ''posture considered with informer'' which are factors in the process of the attitude change that is shown in the paradigm of risk communication (Kinoshita and Kikkawa, (1990)). Prior to this investigation, we identified each subject is position on nuclear power generation. Thus we were able to clarify the effectiveness of each risk communication style depending on each subject is position (approval, neutrality, objection). As a result, we reached the following conclusions: First about ''reliance on information'', where asked whether the contents of a pamphlet would be reliable, it was found that the person negative to nuclear power generation evaluated lower the pamphlet which included ''safety-measures information'' than the other. However, it was found that regardless of the difference in the position towards nuclear power generation, people who read the pamphlet including ''safety-measures information'' evaluated higher ''reliance on

  20. Safety provisions of nuclear power plants

    International Nuclear Information System (INIS)

    Niehaus, F.

    1994-01-01

    Safety of nuclear power plants is determined by a deterministic approach complemented by probabilistic considerations. Much use has been made of the wealth of information from more than 6000 years of reactor operation. Design, construction and operation is governed by national and international safety standards and practices. The IAEA has prepared a set of Nuclear Safety Standards as recommendations to its Member States, covering the areas of siting, design, operations, quality assurance, and governmental organisations. In 1988 the IAEA published a report by the International Nuclear Safety Advisory Group on Basic Safety Principles for Nuclear Power Plants, summarizing the underlying objectives and principles of excellence in nuclear safety and the way in which its aspects are interrelated. The paper will summarize some of the key safety principles and provisions, and results and uses of Probabilistic Safety Assessments. Some comments will be made on the safety of WWER 440/230 and WWER-1000 reactors which are operated on Bulgaria. 8 figs

  1. Safety performance indicators used by the Russian Safety Regulatory Authority in its practical activities on nuclear power plant safety regulation

    International Nuclear Information System (INIS)

    Khazanov, A.L.

    2005-01-01

    The Sixth Department of the Nuclear, Industrial and Environmental Regulatory Authority of Russia, Scientific and Engineering Centre for Nuclear and Radiation Safety process, analyse and use the information on nuclear power plants (NPPs) operational experience or NPPs safety improvement. Safety performance indicators (SPIs), derived from processing of information on operational violations and analysis of annual NPP Safety Reports, are used as tools to determination of trends towards changing of characteristics of operational safety, to assess the effectiveness of corrective measures, to monitor and evaluate the current operational safety level of NPPs, to regulate NPP safety. This report includes a list of the basic SPIs, those used by the Russian safety regulatory authority in regulatory activity. Some of them are absent in list of IAEA-TECDOC-1141 ('Operational safety performance indicators for nuclear power plants'). (author)

  2. Business of Nuclear Safety Analysis Office, Nuclear Technology Test Center

    International Nuclear Information System (INIS)

    Hayakawa, Masahiko

    1981-01-01

    The Nuclear Technology Test Center established the Nuclear Safety Analysis Office to execute newly the works concerning nuclear safety analysis in addition to the works related to the proving tests of nuclear machinery and equipments. The regulations for the Nuclear Safety Analysis Office concerning its organization, business and others were specially decided, and it started the business formally in August, 1980. It is a most important subject to secure the safety of nuclear facilities in nuclear fuel cycle as the premise of developing atomic energy. In Japan, the strict regulation of safety is executed by the government at each stage of the installation, construction, operation and maintenance of nuclear facilities, based on the responsibility for the security of installers themselves. The Nuclear Safety Analysis Office was established as the special organ to help the safety examination related to the installation of nuclear power stations and others by the government. It improves and puts in order the safety analysis codes required for the cross checking in the safety examination, and carries out safety analysis calculation. It is operated by the cooperation of the Science and Technology Agency and the Agency of Natural Resources and Energy. The purpose of establishment, the operation and the business of the Nuclear Safety Analysis Office, the plan of improving and putting in order of analysis codes, and the state of the similar organs in foreign countries are described. (Kako, I.)

  3. Research on consequence analysis method for probabilistic safety assessment of nuclear fuel facilities (5). Evaluation method and trial evaluation of criticality accident

    International Nuclear Information System (INIS)

    Yamane, Yuichi; Abe, Hitoshi; Nakajima, Ken; Hayashi, Yoshiaki; Arisawa, Jun; Hayami, Satoru

    2010-01-01

    A special committee of 'Research on the analysis methods for accident consequence of nuclear fuel facilities (NFFs)' was organized by the Atomic Energy Society of Japan (AESJ) under the entrustment of Japan Atomic Energy Agency (JAEA). The committee aims to research on the state-of-the-art consequence analysis method for the Probabilistic Safety Assessment (PSA) of NFFs, such as fuel reprocessing and fuel fabrication facilities. The objectives of this research are to obtain information useful for establishing quantitative performance objectives and to demonstrate risk-informed regulation through qualifying issues needed to be resolved for applying PSA to NFFs. The research activities of the committee were mainly focused on the consequence analysis method for postulated accidents with potentially large consequences in NFFs, e.g., events of criticality, spill of molten glass, hydrogen explosion, boiling of radioactive solution and fire (including the rapid decomposition of TBP complexes), resulting in the release of radioactive materials to the environment. The results of the research were summarized in a series of six reports, which consist of a review report and five technical ones. In this report, the evaluation methods of criticality accident, such as simplified methods, one-point reactor kinetics codes and quasi-static method, were investigated and their features were summarized to provide information useful for the safety evaluation of NFFs. In addition, several trial evaluations were performed for a hypothetical scenario of criticality accident using the investigated methods, and their results were compared. The release fraction of volatile fission products in a criticality accident was also investigated. (author)

  4. Results of evaluation of periodic safety review for No. 1 plant in Fukushima No. 1 Nuclear Power Station, Tokyo Electric Power Co., Inc

    International Nuclear Information System (INIS)

    1994-01-01

    No. 1 plant in Fukushima No. 1 Nuclear Power Station started the commercial power generation in March, 1971, and has continued the operation for more than 23 years. During this period, the countermeasures to troubles, periodic inspections, and the maintenance by the electric power company have been carried out. These states are to be recollected from the viewpoints of the comprehensive evaluation of the operation experiences and the reflection of the latest technological knowledge, and the safety and reliability are to be further improved in the periodic safety review. Agency of Natural Resources and Energy evaluated the report of the periodic safety review for No. 1 plant in Fukushima No. 1 Nuclear Power Station, and summarized the results. The course of the evaluation of the report is shown. The facility utilization factor was 50.1% on the average of about 23 years, but in the last 10 years, it was improved to 59.7%. In the last five years, the rate of occurrence of unexpected shutdown was 0.4 times/year. These are the results of preventive maintenance and the improvement of the facilities and operation management. Operation management, maintenance management, fuel management, radiation control, radioactive waste management and the reflection of the experience of troubles and the latest technological knowledge to the improvement of safety have been carried out properly. The work plan for disaster prevention was established. (K.I.)

  5. Aims and procedures used for the evaluation of research results in the field of nuclear safety with regard to the application of the Atomic Energy Law. Vol. 1

    International Nuclear Information System (INIS)

    Adomat, B.

    1985-01-01

    The purpose of this review, being executed for the Minister of the Interior of the German Federal Republic is to inform all parties involved in the licensing procedure as well as the consulting councils on the newest nuclear safety research results and the status of their verification in a precise, short manner. In addition experts opinions are given with regard to the relevance of these research results to nuclear rules and guidelines as well as to the execution of the Atomic Law. Each report is a short evaluation of a final research report. These evaluations are executed by specialists, who are acquainted with the technical aspects of the licensing procedure of nuclear power plants in the German Federal Republic. (orig.) [de

  6. Safety Evaluation Report related to the operation of Grand Gulf Nuclear Station, Units 1 and 2 (Docket Nos. 50-416 and 50-417)

    International Nuclear Information System (INIS)

    1984-10-01

    This report supplements the Safety Evaluation Report (NUREG-0831) issued in September 1981 by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission with respect to the application filed by Mississippi Power and Light (MP and L) Company, Middle South Energy, Inc., and South Mississippi Electric Power Association as applicants and owners, for licenses to operate the Grand Gulf Nuclear Station, Units 1 and 2 (Docket Nos. 50-416 and 50-417, respectively). The facility is located on the east bank of the Mississippi River near Port Gibson in Claiborne County, Mississippi. This supplement provides information on the NRC staff's evaluation of requests for exemptions to NRC regulations pursuant to the Commission's direction in CLI-84-19, dated October 25, 1984

  7. The importance of independent research and evaluation in assessing nuclear fuel cycle and waste management facility safety

    International Nuclear Information System (INIS)

    Downing, Walter D.; Patrick, Wesley C.; Sagar, Budhi

    2009-01-01

    In 1987, the United States Nuclear Regulatory Commission (NRC) established at Southwest Research Institute (SwRI) a federally funded research and development center. Known as the Center for Nuclear Waste Regulatory Analyses (CNWRA), its overall mission is to provide NRC with an independent assessment capability on technical and regulatory issues related to a potential geologic repository for spent nuclear fuel and high-level radioactive waste, as well as interim storage and other nuclear fuel-cycle facilities. For more than 20 years, the CNWRA has supported NRC through an extensive pre-licensing period of establishing the framework of regulations and guidance documents, developing computer codes and other review tools, and conducting independent laboratory, field, and numerical analyses. In June 2008, the United States Department of Energy (DOE) submitted a license application and final environmental impact statement to NRC seeking authorization to construct the nation's first geologic repository at Yucca Mountain, Nevada. The CNWRA will assist NRC in conducting a detailed technical review to critically evaluate the DOE license application to assess whether the potential repository has been designed and can be constructed and operated to safely dispose spent nuclear fuel and high-level radioactive waste. NRC access to independent, unbiased, technical advice from the CNWRA is an important aspect of the evaluation process. This paper discusses why an independent perspective is important when dealing with nuclear fuel cycle and waste management issues. It addresses practical considerations such as avoiding conflicts of interest while at the same time maintaining a world-class research program in technical areas related to the nuclear fuel cycle. It also describes an innovative approach for providing CNWRA scientists and engineers a creative outlet for professional development through an internally funded research program that is focused on future nuclear waste

  8. Review and evaluation of the Nuclear Regulatory Commission Safety Research Program for Fiscal Years 1984 and 1985

    International Nuclear Information System (INIS)

    1983-02-01

    This is the sixth report by the Advisory Committee on Reactor Safeguards (ACRS) that has been prepared in response to the Congressional requirement for an annual report on the Nuclear Regulatory Commission (NRC) Reactor Safety Research Program. Part I is a compilation of our general comments and recommendations regarding the NRC Safety Research Program, and includes budget recommendations and an identification of matters of special importance that deserve increased emphasis. It is intended to serve as an Executive Summary. Part II is divided into ten chapters, each of which represents a Decision Unit of the NRC research program. In each chapter, specific comments are included on the research involved in the Decision Unit, an assessment of priorities, and recommendations regarding new directions and levels of funding

  9. Consequences of electricity deregulation on nuclear safety

    International Nuclear Information System (INIS)

    Podjavorsek, M.

    2007-01-01

    The evolution of deregulation of electricity market started a couple of years ago and has not been finished yet. Deregulation causes increased pressure to reduce the costs of electricity generation. This presents a new challenge to regulatory bodies. They have to assess the impact of these changes on the safety of nuclear power plants. Accordingly, it is important to identify the risks to the nuclear power industry resulting from the deregulation. Today's trend is that the number of electricity generating power companies will be reduced in Europe and also in Slovenia due to tough competition in the electricity market. The electricity price has decreased after the introduction of the deregulated market in most countries. This has been also the main reason for less investment to new generating capacities since the price has been lower than the generation costs. Investment problems are also present for the existing units, because of danger of inappropriate maintenance and reduction of the number of staff and their qualifications below the desired level that leads to loss of institutional memory. It is expected that only the biggest companies can stand the consequences of competition in electricity prices and consequential pressure to reduce the cost. In order to review the impact of deregulation of the electricity market some relevant points are discussed in this paper such as the need to cut costs of companies by reducing the number of their activities and increasing the efficiency in the remaining activities and /or outsourcing of activities, power station operating regime, safety culture, grid reliability, reliability and safety of operation, increased number of transients, ageing of components, outage duration, extended cycle and response of nuclear regulators. From a regulatory point of view the impact of deregulation on nuclear safety is an important issue. This paper also discusses analyses and evaluations of this impact and proposes some measures how to

  10. Control of Nuclear Materials and Special Equipment (Nuclear Safety Regulations)

    International Nuclear Information System (INIS)

    Cizmek, A.; Prah, M.; Medakovic, S.; Ilijas, B.

    2008-01-01

    Based on Nuclear Safety Act (OG 173/03) the State Office for Nuclear Safety (SONS) in 2008 adopted beside Ordinance on performing nuclear activities (OG 74/06) and Ordinance on special conditions for individual activities to be performed by expert organizations which perform activities in the area of nuclear safety (OG 74/06) the new Ordinance on the control of nuclear material and special equipment (OG 15/08). Ordinance on the control of nuclear material and special equipment lays down the list of nuclear materials and special equipment as well as of nuclear activities covered by the system of control of production of special equipment and non-nuclear material, the procedure for notifying the intention to and filing the application for a license to carry out nuclear activities, and the format and contents of the forms for doing so. This Ordinance also lays down the manner in which nuclear material records have to be kept, the procedure for notifying the State administration organization (regulatory body) responsible for nuclear safety by the nuclear material user, and the keeping of registers of nuclear activities, nuclear material and special equipment by the State administration organization (regulatory body) responsible for nuclear safety, as well as the form and content of official nuclear safety inspector identification card and badge.(author)

  11. Safety assessment and verification for nuclear power plants. Safety guide

    International Nuclear Information System (INIS)

    2001-01-01

    This publication supports the Safety Requirements on the Safety of Nuclear Power Plants: Design. This Safety Guide was prepared on the basis of a systematic review of all the relevant publications including the Safety Fundamentals, Safety of Nuclear Power Plants: Design, current and ongoing revisions of other Safety Guides, INSAG reports and other publications that have addressed the safety of nuclear power plants. This Safety Guide also provides guidance for Contracting Parties to the Convention on Nuclear Safety in meeting their obligations under Article 14 on Assessment and Verification of Safety. The Safety Requirements publication entitled Safety of Nuclear Power Plants: Design states that a comprehensive safety assessment and an independent verification of the safety assessment shall be carried out before the design is submitted to the regulatory body. This publication provides guidance on how this requirement should be met. This Safety Guide provides recommendations to designers for carrying out a safety assessment during the initial design process and design modifications, as well as to the operating organization in carrying out independent verification of the safety assessment of new nuclear power plants with a new or already existing design. The recommendations for performing a safety assessment are suitable also as guidance for the safety review of an existing plant. The objective of reviewing existing plants against current standards and practices is to determine whether there are any deviations which would have an impact on plant safety. The methods and the recommendations of this Safety Guide can also be used by regulatory bodies for the conduct of the regulatory review and assessment. Although most recommendations of this Safety Guide are general and applicable to all types of nuclear reactors, some specific recommendations and examples apply mostly to water cooled reactors. Terms such as 'safety assessment', 'safety analysis' and 'independent

  12. Development of nuclear safety issues program

    Energy Technology Data Exchange (ETDEWEB)

    Cho, J. C.; Yoo, S. O.; Yoon, Y. K.; Kim, H. J.; Jeong, M. J.; Noh, K. W.; Kang, D. K

    2006-12-15

    The nuclear safety issues are defined as the cases which affect the design and operation safety of nuclear power plants and also require the resolution action. The nuclear safety issues program (NSIP) which deals with the overall procedural requirements for the nuclear safety issues management process is developed, in accordance with the request of the scientific resolution researches and the establishment/application of the nuclear safety issues management system for the nuclear power plants under design, construction or operation. The NSIP consists of the following 4 steps; - Step 1 : Collection of candidates for nuclear safety issues - Step 2 : Identification of nuclear safety issues - Step 3 : Categorization and resolution of nuclear safety issues - Step 4 : Implementation, verification and closure The NSIP will be applied to the management directives of KINS related to the nuclear safety issues. Through the identification of the nuclear safety issues which may be related to the potential for accident/incidents at operating nuclear power plants either directly or indirectly, followed by performance of regulatory researches to resolve the safety issues, it will be possible to prevent occurrence of accidents/incidents as well as to cope with unexpected accidents/incidents by analyzing the root causes timely and scientifically and by establishing the proper flow-up or remedied regulatory actions. Moreover, the identification and resolution of the safety issues related to the new nuclear power plants completed at the design stage are also expected to make the new reactor licensing reviews effective and efficient as well as to make the possibility of accidents/incidents occurrence minimize. Therefore, the NSIP developed in this study is expected to contribute for the enhancement of the safety of nuclear power plants.

  13. Development of nuclear safety issues program

    International Nuclear Information System (INIS)

    Cho, J. C.; Yoo, S. O.; Yoon, Y. K.; Kim, H. J.; Jeong, M. J.; Noh, K. W.; Kang, D. K.

    2006-12-01

    The nuclear safety issues are defined as the cases which affect the design and operation safety of nuclear power plants and also require the resolution action. The nuclear safety issues program (NSIP) which deals with the overall procedural requirements for the nuclear safety issues management process is developed, in accordance with the request of the scientific resolution researches and the establishment/application of the nuclear safety issues management system for the nuclear power plants under design, construction or operation. The NSIP consists of the following 4 steps; - Step 1 : Collection of candidates for nuclear safety issues - Step 2 : Identification of nuclear safety issues - Step 3 : Categorization and resolution of nuclear safety issues - Step 4 : Implementation, verification and closure The NSIP will be applied to the management directives of KINS related to the nuclear safety issues. Through the identification of the nuclear safety issues which may be related to the potential for accident/incidents at operating nuclear power plants either directly or indirectly, followed by performance of regulatory researches to resolve the safety issues, it will be possible to prevent occurrence of accidents/incidents as well as to cope with unexpected accidents/incidents by analyzing the root causes timely and scientifically and by establishing the proper flow-up or remedied regulatory actions. Moreover, the identification and resolution of the safety issues related to the new nuclear power plants completed at the design stage are also expected to make the new reactor licensing reviews effective and efficient as well as to make the possibility of accidents/incidents occurrence minimize. Therefore, the NSIP developed in this study is expected to contribute for the enhancement of the safety of nuclear power plants

  14. Safety of nuclear power plants: Operation. Safety requirements

    International Nuclear Information System (INIS)

    2004-01-01

    The safety of a nuclear power plant is ensured by means of its proper siting, design, construction and commissioning, followed by the proper management and operation of the plant. In a later phase, proper decommissioning is required. This Safety Requirements publication supersedes the Code on the Safety of Nuclear Power Plants: Operation, which was issued in 1988 as Safety Series No. 50-C-O (Rev. 1). The purpose of this revision was: to restructure Safety Series No. 50-C-O (Rev. 1) in the light of the basic objectives, concepts and principles in the Safety Fundamentals publication The Safety of Nuclear Installations. To be consistent with the requirements of the International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources. And to reflect current practice and new concepts and technical developments. Guidance on fulfillment of these Safety Requirements may be found in the appropriate Safety Guides relating to plant operation. The objective of this publication is to establish the requirements which, in the light of experience and the present state of technology, must be satisfied to ensure the safe operation of nuclear power plants. These requirements are governed by the basic objectives, concepts and principles that are presented in the Safety Fundamentals publication The Safety of Nuclear Installations. This publication deals with matters specific to the safe operation of land based stationary thermal neutron nuclear power plants, and also covers their commissioning and subsequent decommissioning

  15. Safety of nuclear power plants: Operation. Safety requirements

    International Nuclear Information System (INIS)

    2003-01-01

    The safety of a nuclear power plant is ensured by means of its proper siting, design, construction and commissioning, followed by the proper management and operation of the plant. In a later phase, proper decommissioning is required. This Safety Requirements publication supersedes the Code on the Safety of Nuclear Power Plants: Operation, which was issued in 1988 as Safety Series No. 50-C-O (Rev. 1). The purpose of this revision was: to restructure Safety Series No. 50-C-O (Rev. 1) in the light of the basic objectives, concepts and principles in the Safety Fundamentals publication The Safety of Nuclear Installations. To be consistent with the requirements of the International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources. And to reflect current practice and new concepts and technical developments. Guidance on fulfillment of these Safety Requirements may be found in the appropriate Safety Guides relating to plant operation. The objective of this publication is to establish the requirements which, in the light of experience and the present state of technology, must be satisfied to ensure the safe operation of nuclear power plants. These requirements are governed by the basic objectives, concepts and principles that are presented in the Safety Fundamentals publication The Safety of Nuclear Installations. This publication deals with matters specific to the safe operation of land based stationary thermal neutron nuclear power plants, and also covers their commissioning and subsequent decommissioning

  16. Safety of nuclear power plants: Operation. Safety requirements

    International Nuclear Information System (INIS)

    2000-01-01

    The safety of a nuclear power plant is ensured by means of its proper siting, design, construction and commissioning, followed by the proper management and operation of the plant. In a later phase, proper decommissioning is required. This Safety Requirements publication supersedes the Code on the Safety of Nuclear Power Plants: Operation, which was issued in 1988 as Safety Series No. 50-C-O (Rev. 1). The purpose of this revision was: to restructure Safety Series No. 50-C-O (Rev. 1) in the light of the basic objectives, concepts and principles in the Safety Fundamentals publication The Safety of Nuclear Installations; to be consistent with the requirements of the International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources; and to reflect current practice and new concepts and technical developments. Guidance on fulfillment of these Safety Requirements may be found in the appropriate Safety Guides relating to plant operation. The objective of this publication is to establish the requirements which, in the light of experience and the present state of technology, must be satisfied to ensure the safe operation of nuclear power plants. These requirements are governed by the basic objectives, concepts and principles that are presented in the Safety Fundamentals publication The Safety of Nuclear Installations. This publication deals with matters specific to the safe operation of land based stationary thermal neutron nuclear power plants, and also covers their commissioning and subsequent decommissioning

  17. Nuclear safety review for the year 2002

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-08-01

    The Nuclear Safety Review reports on worldwide efforts to strengthen nuclear, radiation and transport safety and the safety of radioactive waste management. The final version of the Nuclear Safety Review for the Year 2002 was prepared in the light of the discussion by the Board of Governors in March 2002. This report presents an overview of the current issues and trends in nuclear, radiation, transport and radioactive waste safety at the end of 2002. This overview is supported by a more detailed factual account of safety-related events and issues worldwide during 2002. National authorities and the international community continued to reflect and act upon the implications of the events of II September 2001 for nuclear, radiation, transport and waste safety. In the light of this, the Agency has decided to transfer the organizational unit on nuclear security from the Department of Safeguards to the Department of Nuclear Safety (which thereby becomes the Department of Nuclear Safety and Security). By better exploiting the synergies between safety and security and promoting further cross-fertilization of approaches, the Agency is trying to help build up mutually reinforcing global regimes of safety and security. However, the Nuclear Safety Review for the Year 2002 addresses only those areas already in the safety programme. This short analytical overview is supported by a second part (corresponding to Part I of the Nuclear Safety Reviews of previous years), which describes significant safety-related events and issues worldwide during 2002. A Draft Nuclear Safety Review for the Year 2002 was submitted to the March 2003 session of the Board of Governors in document GOV/2003/6.

  18. Nuclear safety review for the year 2002

    International Nuclear Information System (INIS)

    2003-08-01

    The Nuclear Safety Review reports on worldwide efforts to strengthen nuclear, radiation and transport safety and the safety of radioactive waste management. The final version of the Nuclear Safety Review for the Year 2002 was prepared in the light of the discussion by the Board of Governors in March 2002. This report presents an overview of the current issues and trends in nuclear, radiation, transport and radioactive waste safety at the end of 2002. This overview is supported by a more detailed factual account of safety-related events and issues worldwide during 2002. National authorities and the international community continued to reflect and act upon the implications of the events of II September 2001 for nuclear, radiation, transport and waste safety. In the light of this, the Agency has decided to transfer the organizational unit on nuclear security from the Department of Safeguards to the Department of Nuclear Safety (which thereby becomes the Department of Nuclear Safety and Security). By better exploiting the synergies between safety and security and promoting further cross-fertilization of approaches, the Agency is trying to help build up mutually reinforcing global regimes of safety and security. However, the Nuclear Safety Review for the Year 2002 addresses only those areas already in the safety programme. This short analytical overview is supported by a second part (corresponding to Part I of the Nuclear Safety Reviews of previous years), which describes significant safety-related events and issues worldwide during 2002. A Draft Nuclear Safety Review for the Year 2002 was submitted to the March 2003 session of the Board of Governors in document GOV/2003/6

  19. Managing nuclear safety at Point Lepreau

    Energy Technology Data Exchange (ETDEWEB)

    Paciga, J [New Brunswick Power, Point Lepreau NGS, PQ (Canada)

    1997-12-01

    Managing nuclear safety at Point Lepreau nuclear power plant is described, including technical issues (station aging, definition of the safe operating envelope, design configuration management, code validation, safety analysis and engineering standards); regulatory issues (action items, probabilistic safety assessment, event investigation, periodic safety review, prioritization of regulatory issues, cost benefit assessment); human performance issues (goals and measures, expectations and accountability, supervisory training, safety culture, configuration management, quality of operations and maintenance).

  20. Managing nuclear safety at Point Lepreau

    International Nuclear Information System (INIS)

    Paciga, J.

    1997-01-01

    Managing nuclear safety at Point Lepreau nuclear power plant is described, including technical issues (station aging, definition of the safe operating envelope, design configuration management, code validation, safety analysis and engineering standards); regulatory issues (action items, probabilistic safety assessment, event investigation, periodic safety review, prioritization of regulatory issues, cost benefit assessment); human performance issues (goals and measures, expectations and accountability, supervisory training, safety culture, configuration management, quality of operations and maintenance)